diff --git a/sys/netpfil/pf/pf_norm.c b/sys/netpfil/pf/pf_norm.c
index 2a3c1d442fd4..8f970b68373b 100644
--- a/sys/netpfil/pf/pf_norm.c
+++ b/sys/netpfil/pf/pf_norm.c
@@ -1,2063 +1,2067 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_inet.h"
 #include "opt_inet6.h"
 #include "opt_pf.h"
 
 #include <sys/param.h>
 #include <sys/kernel.h>
 #include <sys/lock.h>
 #include <sys/mbuf.h>
 #include <sys/mutex.h>
 #include <sys/refcount.h>
 #include <sys/socket.h>
 
 #include <net/if.h>
 #include <net/vnet.h>
 #include <net/pfvar.h>
 #include <net/if_pflog.h>
 
 #include <netinet/in.h>
 #include <netinet/ip.h>
 #include <netinet/ip_var.h>
 #include <netinet6/ip6_var.h>
 #include <netinet/tcp.h>
 #include <netinet/tcp_fsm.h>
 #include <netinet/tcp_seq.h>
 
 #ifdef INET6
 #include <netinet/ip6.h>
 #endif /* INET6 */
 
 struct pf_frent {
 	TAILQ_ENTRY(pf_frent)	fr_next;
 	struct mbuf	*fe_m;
 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
 					   ipv6, extension, fragment header */
 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
 	uint16_t	fe_len;		/* fragment length */
 	uint16_t	fe_off;		/* fragment offset */
 	uint16_t	fe_mff;		/* more fragment flag */
 };
 
 struct pf_fragment_cmp {
 	struct pf_addr	frc_src;
 	struct pf_addr	frc_dst;
 	uint32_t	frc_id;
 	sa_family_t	frc_af;
 	uint8_t		frc_proto;
 };
 
 struct pf_fragment {
 	struct pf_fragment_cmp	fr_key;
 #define fr_src	fr_key.frc_src
 #define fr_dst	fr_key.frc_dst
 #define fr_id	fr_key.frc_id
 #define fr_af	fr_key.frc_af
 #define fr_proto	fr_key.frc_proto
 
 	/* pointers to queue element */
 	struct pf_frent	*fr_firstoff[PF_FRAG_ENTRY_POINTS];
 	/* count entries between pointers */
 	uint8_t	fr_entries[PF_FRAG_ENTRY_POINTS];
 	RB_ENTRY(pf_fragment) fr_entry;
 	TAILQ_ENTRY(pf_fragment) frag_next;
 	uint32_t	fr_timeout;
 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
 	u_int16_t	fr_holes;	/* number of holes in the queue */
 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
 };
 
 struct pf_fragment_tag {
 	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
 	uint16_t	ft_extoff;	/* last extension header offset or 0 */
 	uint16_t	ft_maxlen;	/* maximum fragment payload length */
 	uint32_t	ft_id;		/* fragment id */
 };
 
 static struct mtx pf_frag_mtx;
 MTX_SYSINIT(pf_frag_mtx, &pf_frag_mtx, "pf fragments", MTX_DEF);
 #define PF_FRAG_LOCK()		mtx_lock(&pf_frag_mtx)
 #define PF_FRAG_UNLOCK()	mtx_unlock(&pf_frag_mtx)
 #define PF_FRAG_ASSERT()	mtx_assert(&pf_frag_mtx, MA_OWNED)
 
 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
 
 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
 #define	V_pf_frent_z	VNET(pf_frent_z)
 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
 #define	V_pf_frag_z	VNET(pf_frag_z)
 
 TAILQ_HEAD(pf_fragqueue, pf_fragment);
 TAILQ_HEAD(pf_cachequeue, pf_fragment);
 VNET_DEFINE_STATIC(struct pf_fragqueue,	pf_fragqueue);
 #define	V_pf_fragqueue			VNET(pf_fragqueue)
 RB_HEAD(pf_frag_tree, pf_fragment);
 VNET_DEFINE_STATIC(struct pf_frag_tree,	pf_frag_tree);
 #define	V_pf_frag_tree			VNET(pf_frag_tree)
 static int		 pf_frag_compare(struct pf_fragment *,
 			    struct pf_fragment *);
 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
 
 static void	pf_flush_fragments(void);
 static void	pf_free_fragment(struct pf_fragment *);
 static void	pf_remove_fragment(struct pf_fragment *);
 static int	pf_normalize_tcpopt(struct pf_krule *, struct mbuf *,
 		    struct tcphdr *, int, sa_family_t);
 static struct pf_frent *pf_create_fragment(u_short *);
 static int	pf_frent_holes(struct pf_frent *frent);
 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
 		    struct pf_frag_tree *tree);
 static inline int	pf_frent_index(struct pf_frent *);
 static int	pf_frent_insert(struct pf_fragment *,
 			    struct pf_frent *, struct pf_frent *);
 void			pf_frent_remove(struct pf_fragment *,
 			    struct pf_frent *);
 struct pf_frent		*pf_frent_previous(struct pf_fragment *,
 			    struct pf_frent *);
 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
 		    struct pf_frent *, u_short *);
 static struct mbuf *pf_join_fragment(struct pf_fragment *);
 #ifdef INET
 static void	pf_scrub_ip(struct mbuf **, uint32_t, uint8_t, uint8_t);
 static int	pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
 #endif	/* INET */
 #ifdef INET6
 static int	pf_reassemble6(struct mbuf **, struct ip6_hdr *,
 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
 static void	pf_scrub_ip6(struct mbuf **, uint8_t);
 #endif	/* INET6 */
 
 #define	DPFPRINTF(x) do {				\
 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
 		printf("%s: ", __func__);		\
 		printf x ;				\
 	}						\
 } while(0)
 
 #ifdef INET
 static void
 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
 {
 
 	key->frc_src.v4 = ip->ip_src;
 	key->frc_dst.v4 = ip->ip_dst;
 	key->frc_af = AF_INET;
 	key->frc_proto = ip->ip_p;
 	key->frc_id = ip->ip_id;
 }
 #endif	/* INET */
 
 void
 pf_normalize_init(void)
 {
 
 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
 	    UMA_ALIGN_PTR, 0);
 
 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
 
 	TAILQ_INIT(&V_pf_fragqueue);
 }
 
 void
 pf_normalize_cleanup(void)
 {
 
 	uma_zdestroy(V_pf_state_scrub_z);
 	uma_zdestroy(V_pf_frent_z);
 	uma_zdestroy(V_pf_frag_z);
 }
 
 static int
 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
 {
 	int	diff;
 
 	if ((diff = a->fr_id - b->fr_id) != 0)
 		return (diff);
 	if ((diff = a->fr_proto - b->fr_proto) != 0)
 		return (diff);
 	if ((diff = a->fr_af - b->fr_af) != 0)
 		return (diff);
 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
 		return (diff);
 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
 		return (diff);
 	return (0);
 }
 
 void
 pf_purge_expired_fragments(void)
 {
 	u_int32_t	expire = time_uptime -
 			    V_pf_default_rule.timeout[PFTM_FRAG];
 
 	pf_purge_fragments(expire);
 }
 
 void
 pf_purge_fragments(uint32_t expire)
 {
 	struct pf_fragment	*frag;
 
 	PF_FRAG_LOCK();
 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
 		if (frag->fr_timeout > expire)
 			break;
 
 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
 		pf_free_fragment(frag);
 	}
 
 	PF_FRAG_UNLOCK();
 }
 
 /*
  * Try to flush old fragments to make space for new ones
  */
 static void
 pf_flush_fragments(void)
 {
 	struct pf_fragment	*frag;
 	int			 goal;
 
 	PF_FRAG_ASSERT();
 
 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
 		if (frag)
 			pf_free_fragment(frag);
 		else
 			break;
 	}
 }
 
 /* Frees the fragments and all associated entries */
 static void
 pf_free_fragment(struct pf_fragment *frag)
 {
 	struct pf_frent		*frent;
 
 	PF_FRAG_ASSERT();
 
 	/* Free all fragments */
 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
 	    frent = TAILQ_FIRST(&frag->fr_queue)) {
 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
 
 		m_freem(frent->fe_m);
 		uma_zfree(V_pf_frent_z, frent);
 	}
 
 	pf_remove_fragment(frag);
 }
 
 static struct pf_fragment *
 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
 {
 	struct pf_fragment	*frag;
 
 	PF_FRAG_ASSERT();
 
 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
 	if (frag != NULL) {
 		/* XXX Are we sure we want to update the timeout? */
 		frag->fr_timeout = time_uptime;
 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
 	}
 
 	return (frag);
 }
 
 /* Removes a fragment from the fragment queue and frees the fragment */
 static void
 pf_remove_fragment(struct pf_fragment *frag)
 {
 
 	PF_FRAG_ASSERT();
 	KASSERT(frag, ("frag != NULL"));
 
 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
 	uma_zfree(V_pf_frag_z, frag);
 }
 
 static struct pf_frent *
 pf_create_fragment(u_short *reason)
 {
 	struct pf_frent *frent;
 
 	PF_FRAG_ASSERT();
 
 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
 	if (frent == NULL) {
 		pf_flush_fragments();
 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
 		if (frent == NULL) {
 			REASON_SET(reason, PFRES_MEMORY);
 			return (NULL);
 		}
 	}
 
 	return (frent);
 }
 
 /*
  * Calculate the additional holes that were created in the fragment
  * queue by inserting this fragment.  A fragment in the middle
  * creates one more hole by splitting.  For each connected side,
  * it loses one hole.
  * Fragment entry must be in the queue when calling this function.
  */
 static int
 pf_frent_holes(struct pf_frent *frent)
 {
 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
 	int holes = 1;
 
 	if (prev == NULL) {
 		if (frent->fe_off == 0)
 			holes--;
 	} else {
 		KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
 		if (frent->fe_off == prev->fe_off + prev->fe_len)
 			holes--;
 	}
 	if (next == NULL) {
 		if (!frent->fe_mff)
 			holes--;
 	} else {
 		KASSERT(frent->fe_mff, ("frent->fe_mff"));
 		if (next->fe_off == frent->fe_off + frent->fe_len)
 			holes--;
 	}
 	return holes;
 }
 
 static inline int
 pf_frent_index(struct pf_frent *frent)
 {
 	/*
 	 * We have an array of 16 entry points to the queue.  A full size
 	 * 65535 octet IP packet can have 8192 fragments.  So the queue
 	 * traversal length is at most 512 and at most 16 entry points are
 	 * checked.  We need 128 additional bytes on a 64 bit architecture.
 	 */
 	CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
 	    16 - 1);
 	CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
 
 	return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
 }
 
 static int
 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
     struct pf_frent *prev)
 {
 	int index;
 
 	CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
 
 	/*
 	 * A packet has at most 65536 octets.  With 16 entry points, each one
 	 * spawns 4096 octets.  We limit these to 64 fragments each, which
 	 * means on average every fragment must have at least 64 octets.
 	 */
 	index = pf_frent_index(frent);
 	if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
 		return ENOBUFS;
 	frag->fr_entries[index]++;
 
 	if (prev == NULL) {
 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
 	} else {
 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
 		    ("overlapping fragment"));
 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
 	}
 
 	if (frag->fr_firstoff[index] == NULL) {
 		KASSERT(prev == NULL || pf_frent_index(prev) < index,
 		    ("prev == NULL || pf_frent_index(pref) < index"));
 		frag->fr_firstoff[index] = frent;
 	} else {
 		if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
 			KASSERT(prev == NULL || pf_frent_index(prev) < index,
 			    ("prev == NULL || pf_frent_index(pref) < index"));
 			frag->fr_firstoff[index] = frent;
 		} else {
 			KASSERT(prev != NULL, ("prev != NULL"));
 			KASSERT(pf_frent_index(prev) == index,
 			    ("pf_frent_index(prev) == index"));
 		}
 	}
 
 	frag->fr_holes += pf_frent_holes(frent);
 
 	return 0;
 }
 
 void
 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
 {
 #ifdef INVARIANTS
 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
 #endif
 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
 	int index;
 
 	frag->fr_holes -= pf_frent_holes(frent);
 
 	index = pf_frent_index(frent);
 	KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
 	if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
 		if (next == NULL) {
 			frag->fr_firstoff[index] = NULL;
 		} else {
 			KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
 			    ("overlapping fragment"));
 			if (pf_frent_index(next) == index) {
 				frag->fr_firstoff[index] = next;
 			} else {
 				frag->fr_firstoff[index] = NULL;
 			}
 		}
 	} else {
 		KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
 		    ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
 		KASSERT(prev != NULL, ("prev != NULL"));
 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
 		    ("overlapping fragment"));
 		KASSERT(pf_frent_index(prev) == index,
 		    ("pf_frent_index(prev) == index"));
 	}
 
 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
 
 	KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
 	frag->fr_entries[index]--;
 }
 
 struct pf_frent *
 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
 {
 	struct pf_frent *prev, *next;
 	int index;
 
 	/*
 	 * If there are no fragments after frag, take the final one.  Assume
 	 * that the global queue is not empty.
 	 */
 	prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
 	KASSERT(prev != NULL, ("prev != NULL"));
 	if (prev->fe_off <= frent->fe_off)
 		return prev;
 	/*
 	 * We want to find a fragment entry that is before frag, but still
 	 * close to it.  Find the first fragment entry that is in the same
 	 * entry point or in the first entry point after that.  As we have
 	 * already checked that there are entries behind frag, this will
 	 * succeed.
 	 */
 	for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
 	    index++) {
 		prev = frag->fr_firstoff[index];
 		if (prev != NULL)
 			break;
 	}
 	KASSERT(prev != NULL, ("prev != NULL"));
 	/*
 	 * In prev we may have a fragment from the same entry point that is
 	 * before frent, or one that is just one position behind frent.
 	 * In the latter case, we go back one step and have the predecessor.
 	 * There may be none if the new fragment will be the first one.
 	 */
 	if (prev->fe_off > frent->fe_off) {
 		prev = TAILQ_PREV(prev, pf_fragq, fr_next);
 		if (prev == NULL)
 			return NULL;
 		KASSERT(prev->fe_off <= frent->fe_off,
 		    ("prev->fe_off <= frent->fe_off"));
 		return prev;
 	}
 	/*
 	 * In prev is the first fragment of the entry point.  The offset
 	 * of frag is behind it.  Find the closest previous fragment.
 	 */
 	for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
 	    next = TAILQ_NEXT(next, fr_next)) {
 		if (next->fe_off > frent->fe_off)
 			break;
 		prev = next;
 	}
 	return prev;
 }
 
 static struct pf_fragment *
 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
     u_short *reason)
 {
 	struct pf_frent		*after, *next, *prev;
 	struct pf_fragment	*frag;
 	uint16_t		total;
 	int			old_index, new_index;
 
 	PF_FRAG_ASSERT();
 
 	/* No empty fragments. */
 	if (frent->fe_len == 0) {
 		DPFPRINTF(("bad fragment: len 0"));
 		goto bad_fragment;
 	}
 
 	/* All fragments are 8 byte aligned. */
 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
 		DPFPRINTF(("bad fragment: mff and len %d", frent->fe_len));
 		goto bad_fragment;
 	}
 
 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
 		DPFPRINTF(("bad fragment: max packet %d",
 		    frent->fe_off + frent->fe_len));
 		goto bad_fragment;
 	}
 
 	DPFPRINTF((key->frc_af == AF_INET ?
 	    "reass frag %d @ %d-%d" : "reass frag %#08x @ %d-%d",
 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
 
 	/* Fully buffer all of the fragments in this fragment queue. */
 	frag = pf_find_fragment(key, &V_pf_frag_tree);
 
 	/* Create a new reassembly queue for this packet. */
 	if (frag == NULL) {
 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
 		if (frag == NULL) {
 			pf_flush_fragments();
 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
 			if (frag == NULL) {
 				REASON_SET(reason, PFRES_MEMORY);
 				goto drop_fragment;
 			}
 		}
 
 		*(struct pf_fragment_cmp *)frag = *key;
 		memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
 		memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
 		frag->fr_timeout = time_uptime;
 		frag->fr_maxlen = frent->fe_len;
 		frag->fr_holes = 1;
 		TAILQ_INIT(&frag->fr_queue);
 
 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
 
 		/* We do not have a previous fragment, cannot fail. */
 		pf_frent_insert(frag, frent, NULL);
 
 		return (frag);
 	}
 
 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
 
 	/* Remember maximum fragment len for refragmentation. */
 	if (frent->fe_len > frag->fr_maxlen)
 		frag->fr_maxlen = frent->fe_len;
 
 	/* Maximum data we have seen already. */
 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
 
 	/* Non terminal fragments must have more fragments flag. */
 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
 		goto bad_fragment;
 
 	/* Check if we saw the last fragment already. */
 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
 		if (frent->fe_off + frent->fe_len > total ||
 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
 			goto bad_fragment;
 	} else {
 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
 			goto bad_fragment;
 	}
 
 	/* Find neighbors for newly inserted fragment */
 	prev = pf_frent_previous(frag, frent);
 	if (prev == NULL) {
 		after = TAILQ_FIRST(&frag->fr_queue);
 		KASSERT(after != NULL, ("after != NULL"));
 	} else {
 		after = TAILQ_NEXT(prev, fr_next);
 	}
 
 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
 		uint16_t precut;
 
 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
 		if (precut >= frent->fe_len)
 			goto bad_fragment;
 		DPFPRINTF(("overlap -%d", precut));
 		m_adj(frent->fe_m, precut);
 		frent->fe_off += precut;
 		frent->fe_len -= precut;
 	}
 
 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
 	    after = next) {
 		uint16_t aftercut;
 
 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
 		DPFPRINTF(("adjust overlap %d", aftercut));
 		if (aftercut < after->fe_len) {
 			m_adj(after->fe_m, aftercut);
 			old_index = pf_frent_index(after);
 			after->fe_off += aftercut;
 			after->fe_len -= aftercut;
 			new_index = pf_frent_index(after);
 			if (old_index != new_index) {
 				DPFPRINTF(("frag index %d, new %d",
 				    old_index, new_index));
 				/* Fragment switched queue as fe_off changed */
 				after->fe_off -= aftercut;
 				after->fe_len += aftercut;
 				/* Remove restored fragment from old queue */
 				pf_frent_remove(frag, after);
 				after->fe_off += aftercut;
 				after->fe_len -= aftercut;
 				/* Insert into correct queue */
 				if (pf_frent_insert(frag, after, prev)) {
 					DPFPRINTF(
 					    ("fragment requeue limit exceeded"));
 					m_freem(after->fe_m);
 					uma_zfree(V_pf_frent_z, after);
 					/* There is not way to recover */
 					goto bad_fragment;
 				}
 			}
 			break;
 		}
 
 		/* This fragment is completely overlapped, lose it. */
 		next = TAILQ_NEXT(after, fr_next);
 		pf_frent_remove(frag, after);
 		m_freem(after->fe_m);
 		uma_zfree(V_pf_frent_z, after);
 	}
 
 	/* If part of the queue gets too long, there is not way to recover. */
 	if (pf_frent_insert(frag, frent, prev)) {
 		DPFPRINTF(("fragment queue limit exceeded"));
 		goto bad_fragment;
 	}
 
 	return (frag);
 
 bad_fragment:
 	REASON_SET(reason, PFRES_FRAG);
 drop_fragment:
 	uma_zfree(V_pf_frent_z, frent);
 	return (NULL);
 }
 
 static struct mbuf *
 pf_join_fragment(struct pf_fragment *frag)
 {
 	struct mbuf *m, *m2;
 	struct pf_frent	*frent, *next;
 
 	frent = TAILQ_FIRST(&frag->fr_queue);
 	next = TAILQ_NEXT(frent, fr_next);
 
 	m = frent->fe_m;
 	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
 	uma_zfree(V_pf_frent_z, frent);
 	for (frent = next; frent != NULL; frent = next) {
 		next = TAILQ_NEXT(frent, fr_next);
 
 		m2 = frent->fe_m;
 		/* Strip off ip header. */
 		m_adj(m2, frent->fe_hdrlen);
 		/* Strip off any trailing bytes. */
 		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
 
 		uma_zfree(V_pf_frent_z, frent);
 		m_cat(m, m2);
 	}
 
 	/* Remove from fragment queue. */
 	pf_remove_fragment(frag);
 
 	return (m);
 }
 
 #ifdef INET
 static int
 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
 {
 	struct mbuf		*m = *m0;
 	struct pf_frent		*frent;
 	struct pf_fragment	*frag;
 	struct pf_fragment_cmp	key;
 	uint16_t		total, hdrlen;
 
 	/* Get an entry for the fragment queue */
 	if ((frent = pf_create_fragment(reason)) == NULL)
 		return (PF_DROP);
 
 	frent->fe_m = m;
 	frent->fe_hdrlen = ip->ip_hl << 2;
 	frent->fe_extoff = 0;
 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
 
 	pf_ip2key(ip, dir, &key);
 
 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
 		return (PF_DROP);
 
 	/* The mbuf is part of the fragment entry, no direct free or access */
 	m = *m0 = NULL;
 
 	if (frag->fr_holes) {
 		DPFPRINTF(("frag %d, holes %d", frag->fr_id, frag->fr_holes));
 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
 	}
 
 	/* We have all the data */
 	frent = TAILQ_FIRST(&frag->fr_queue);
 	KASSERT(frent != NULL, ("frent != NULL"));
 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
 	hdrlen = frent->fe_hdrlen;
 
 	m = *m0 = pf_join_fragment(frag);
 	frag = NULL;
 
 	if (m->m_flags & M_PKTHDR) {
 		int plen = 0;
 		for (m = *m0; m; m = m->m_next)
 			plen += m->m_len;
 		m = *m0;
 		m->m_pkthdr.len = plen;
 	}
 
 	ip = mtod(m, struct ip *);
+	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len,
+	    htons(hdrlen + total), 0);
 	ip->ip_len = htons(hdrlen + total);
+	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off,
+	    ip->ip_off & ~(IP_MF|IP_OFFMASK), 0);
 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
 
 	if (hdrlen + total > IP_MAXPACKET) {
 		DPFPRINTF(("drop: too big: %d", total));
 		ip->ip_len = 0;
 		REASON_SET(reason, PFRES_SHORT);
 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
 		return (PF_DROP);
 	}
 
 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
 	return (PF_PASS);
 }
 #endif	/* INET */
 
 #ifdef INET6
 static int
 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
     uint16_t hdrlen, uint16_t extoff, u_short *reason)
 {
 	struct mbuf		*m = *m0;
 	struct pf_frent		*frent;
 	struct pf_fragment	*frag;
 	struct pf_fragment_cmp	 key;
 	struct m_tag		*mtag;
 	struct pf_fragment_tag	*ftag;
 	int			 off;
 	uint32_t		 frag_id;
 	uint16_t		 total, maxlen;
 	uint8_t			 proto;
 
 	PF_FRAG_LOCK();
 
 	/* Get an entry for the fragment queue. */
 	if ((frent = pf_create_fragment(reason)) == NULL) {
 		PF_FRAG_UNLOCK();
 		return (PF_DROP);
 	}
 
 	frent->fe_m = m;
 	frent->fe_hdrlen = hdrlen;
 	frent->fe_extoff = extoff;
 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
 
 	key.frc_src.v6 = ip6->ip6_src;
 	key.frc_dst.v6 = ip6->ip6_dst;
 	key.frc_af = AF_INET6;
 	/* Only the first fragment's protocol is relevant. */
 	key.frc_proto = 0;
 	key.frc_id = fraghdr->ip6f_ident;
 
 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
 		PF_FRAG_UNLOCK();
 		return (PF_DROP);
 	}
 
 	/* The mbuf is part of the fragment entry, no direct free or access. */
 	m = *m0 = NULL;
 
 	if (frag->fr_holes) {
 		DPFPRINTF(("frag %d, holes %d", frag->fr_id, frag->fr_holes));
 		PF_FRAG_UNLOCK();
 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
 	}
 
 	/* We have all the data. */
 	frent = TAILQ_FIRST(&frag->fr_queue);
 	KASSERT(frent != NULL, ("frent != NULL"));
 	extoff = frent->fe_extoff;
 	maxlen = frag->fr_maxlen;
 	frag_id = frag->fr_id;
 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
 
 	m = *m0 = pf_join_fragment(frag);
 	frag = NULL;
 
 	PF_FRAG_UNLOCK();
 
 	/* Take protocol from first fragment header. */
 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
 	KASSERT(m, ("%s: short mbuf chain", __func__));
 	proto = *(mtod(m, caddr_t) + off);
 	m = *m0;
 
 	/* Delete frag6 header */
 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
 		goto fail;
 
 	if (m->m_flags & M_PKTHDR) {
 		int plen = 0;
 		for (m = *m0; m; m = m->m_next)
 			plen += m->m_len;
 		m = *m0;
 		m->m_pkthdr.len = plen;
 	}
 
 	if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
 	    M_NOWAIT)) == NULL)
 		goto fail;
 	ftag = (struct pf_fragment_tag *)(mtag + 1);
 	ftag->ft_hdrlen = hdrlen;
 	ftag->ft_extoff = extoff;
 	ftag->ft_maxlen = maxlen;
 	ftag->ft_id = frag_id;
 	m_tag_prepend(m, mtag);
 
 	ip6 = mtod(m, struct ip6_hdr *);
 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
 	if (extoff) {
 		/* Write protocol into next field of last extension header. */
 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
 		    &off);
 		KASSERT(m, ("%s: short mbuf chain", __func__));
 		*(mtod(m, char *) + off) = proto;
 		m = *m0;
 	} else
 		ip6->ip6_nxt = proto;
 
 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
 		DPFPRINTF(("drop: too big: %d", total));
 		ip6->ip6_plen = 0;
 		REASON_SET(reason, PFRES_SHORT);
 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
 		return (PF_DROP);
 	}
 
 	DPFPRINTF(("complete: %p(%d)", m, ntohs(ip6->ip6_plen)));
 	return (PF_PASS);
 
 fail:
 	REASON_SET(reason, PFRES_MEMORY);
 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
 	return (PF_DROP);
 }
 #endif	/* INET6 */
 
 #ifdef INET6
 int
 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
 {
 	struct mbuf		*m = *m0, *t;
 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
 	struct pf_pdesc		 pd;
 	uint32_t		 frag_id;
 	uint16_t		 hdrlen, extoff, maxlen;
 	uint8_t			 proto;
 	int			 error, action;
 
 	hdrlen = ftag->ft_hdrlen;
 	extoff = ftag->ft_extoff;
 	maxlen = ftag->ft_maxlen;
 	frag_id = ftag->ft_id;
 	m_tag_delete(m, mtag);
 	mtag = NULL;
 	ftag = NULL;
 
 	if (extoff) {
 		int off;
 
 		/* Use protocol from next field of last extension header */
 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
 		    &off);
 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
 		proto = *(mtod(m, caddr_t) + off);
 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
 		m = *m0;
 	} else {
 		struct ip6_hdr *hdr;
 
 		hdr = mtod(m, struct ip6_hdr *);
 		proto = hdr->ip6_nxt;
 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
 	}
 
 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
 	 * fragmentation wrong. */
 	maxlen = maxlen & ~7;
 
 	/*
 	 * Maxlen may be less than 8 if there was only a single
 	 * fragment.  As it was fragmented before, add a fragment
 	 * header also for a single fragment.  If total or maxlen
 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
 	 * we drop the packet.
 	 */
 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
 	m = (*m0)->m_nextpkt;
 	(*m0)->m_nextpkt = NULL;
 	if (error == 0) {
 		/* The first mbuf contains the unfragmented packet. */
 		m_freem(*m0);
 		*m0 = NULL;
 		action = PF_PASS;
 	} else {
 		/* Drop expects an mbuf to free. */
 		DPFPRINTF(("refragment error %d", error));
 		action = PF_DROP;
 	}
 	for (t = m; m; m = t) {
 		t = m->m_nextpkt;
 		m->m_nextpkt = NULL;
 		m->m_flags |= M_SKIP_FIREWALL;
 		memset(&pd, 0, sizeof(pd));
 		pd.pf_mtag = pf_find_mtag(m);
 		if (error == 0)
 			ip6_forward(m, 0);
 		else
 			m_freem(m);
 	}
 
 	return (action);
 }
 #endif /* INET6 */
 
 #ifdef INET
 int
 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kkif *kif, u_short *reason,
     struct pf_pdesc *pd)
 {
 	struct mbuf		*m = *m0;
 	struct pf_krule		*r;
 	struct ip		*h = mtod(m, struct ip *);
 	int			 mff = (ntohs(h->ip_off) & IP_MF);
 	int			 hlen = h->ip_hl << 2;
 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
 	u_int16_t		 max;
 	int			 ip_len;
 	int			 ip_off;
 	int			 tag = -1;
 	int			 verdict;
 
 	PF_RULES_RASSERT();
 
 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
 	while (r != NULL) {
 		counter_u64_add(r->evaluations, 1);
 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
 			r = r->skip[PF_SKIP_IFP].ptr;
 		else if (r->direction && r->direction != dir)
 			r = r->skip[PF_SKIP_DIR].ptr;
 		else if (r->af && r->af != AF_INET)
 			r = r->skip[PF_SKIP_AF].ptr;
 		else if (r->proto && r->proto != h->ip_p)
 			r = r->skip[PF_SKIP_PROTO].ptr;
 		else if (PF_MISMATCHAW(&r->src.addr,
 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
 		    r->src.neg, kif, M_GETFIB(m)))
 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
 		else if (PF_MISMATCHAW(&r->dst.addr,
 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
 		    r->dst.neg, NULL, M_GETFIB(m)))
 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
 			r = TAILQ_NEXT(r, entries);
 		else
 			break;
 	}
 
 	if (r == NULL || r->action == PF_NOSCRUB)
 		return (PF_PASS);
 	else {
 		counter_u64_add(r->packets[dir == PF_OUT], 1);
 		counter_u64_add(r->bytes[dir == PF_OUT], pd->tot_len);
 	}
 
 	/* Check for illegal packets */
 	if (hlen < (int)sizeof(struct ip)) {
 		REASON_SET(reason, PFRES_NORM);
 		goto drop;
 	}
 
 	if (hlen > ntohs(h->ip_len)) {
 		REASON_SET(reason, PFRES_NORM);
 		goto drop;
 	}
 
 	/* Clear IP_DF if the rule uses the no-df option */
 	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
 		u_int16_t ip_off = h->ip_off;
 
 		h->ip_off &= htons(~IP_DF);
 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
 	}
 
 	/* We will need other tests here */
 	if (!fragoff && !mff)
 		goto no_fragment;
 
 	/* We're dealing with a fragment now. Don't allow fragments
 	 * with IP_DF to enter the cache. If the flag was cleared by
 	 * no-df above, fine. Otherwise drop it.
 	 */
 	if (h->ip_off & htons(IP_DF)) {
 		DPFPRINTF(("IP_DF\n"));
 		goto bad;
 	}
 
 	ip_len = ntohs(h->ip_len) - hlen;
 	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
 
 	/* All fragments are 8 byte aligned */
 	if (mff && (ip_len & 0x7)) {
 		DPFPRINTF(("mff and %d\n", ip_len));
 		goto bad;
 	}
 
 	/* Respect maximum length */
 	if (fragoff + ip_len > IP_MAXPACKET) {
 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
 		goto bad;
 	}
 	max = fragoff + ip_len;
 
 	/* Fully buffer all of the fragments
 	 * Might return a completely reassembled mbuf, or NULL */
 	PF_FRAG_LOCK();
 	DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
 	verdict = pf_reassemble(m0, h, dir, reason);
 	PF_FRAG_UNLOCK();
 
 	if (verdict != PF_PASS)
 		return (PF_DROP);
 
 	m = *m0;
 	if (m == NULL)
 		return (PF_DROP);
 
 	h = mtod(m, struct ip *);
 
  no_fragment:
 	/* At this point, only IP_DF is allowed in ip_off */
 	if (h->ip_off & ~htons(IP_DF)) {
 		u_int16_t ip_off = h->ip_off;
 
 		h->ip_off &= htons(IP_DF);
 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
 	}
 
 	pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
 
 	return (PF_PASS);
 
  bad:
 	DPFPRINTF(("dropping bad fragment\n"));
 	REASON_SET(reason, PFRES_FRAG);
  drop:
 	if (r != NULL && r->log)
 		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
 		    1);
 
 	return (PF_DROP);
 }
 #endif
 
 #ifdef INET6
 int
 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kkif *kif,
     u_short *reason, struct pf_pdesc *pd)
 {
 	struct mbuf		*m = *m0;
 	struct pf_krule		*r;
 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
 	int			 extoff;
 	int			 off;
 	struct ip6_ext		 ext;
 	struct ip6_opt		 opt;
 	struct ip6_opt_jumbo	 jumbo;
 	struct ip6_frag		 frag;
 	u_int32_t		 jumbolen = 0, plen;
 	int			 optend;
 	int			 ooff;
 	u_int8_t		 proto;
 	int			 terminal;
 
 	PF_RULES_RASSERT();
 
 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
 	while (r != NULL) {
 		counter_u64_add(r->evaluations, 1);
 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
 			r = r->skip[PF_SKIP_IFP].ptr;
 		else if (r->direction && r->direction != dir)
 			r = r->skip[PF_SKIP_DIR].ptr;
 		else if (r->af && r->af != AF_INET6)
 			r = r->skip[PF_SKIP_AF].ptr;
 #if 0 /* header chain! */
 		else if (r->proto && r->proto != h->ip6_nxt)
 			r = r->skip[PF_SKIP_PROTO].ptr;
 #endif
 		else if (PF_MISMATCHAW(&r->src.addr,
 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
 		    r->src.neg, kif, M_GETFIB(m)))
 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
 		else if (PF_MISMATCHAW(&r->dst.addr,
 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
 		    r->dst.neg, NULL, M_GETFIB(m)))
 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
 		else
 			break;
 	}
 
 	if (r == NULL || r->action == PF_NOSCRUB)
 		return (PF_PASS);
 	else {
 		counter_u64_add(r->packets[dir == PF_OUT], 1);
 		counter_u64_add(r->bytes[dir == PF_OUT], pd->tot_len);
 	}
 
 	/* Check for illegal packets */
 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
 		goto drop;
 
 	extoff = 0;
 	off = sizeof(struct ip6_hdr);
 	proto = h->ip6_nxt;
 	terminal = 0;
 	do {
 		switch (proto) {
 		case IPPROTO_FRAGMENT:
 			goto fragment;
 			break;
 		case IPPROTO_AH:
 		case IPPROTO_ROUTING:
 		case IPPROTO_DSTOPTS:
 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
 			    NULL, AF_INET6))
 				goto shortpkt;
 			extoff = off;
 			if (proto == IPPROTO_AH)
 				off += (ext.ip6e_len + 2) * 4;
 			else
 				off += (ext.ip6e_len + 1) * 8;
 			proto = ext.ip6e_nxt;
 			break;
 		case IPPROTO_HOPOPTS:
 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
 			    NULL, AF_INET6))
 				goto shortpkt;
 			extoff = off;
 			optend = off + (ext.ip6e_len + 1) * 8;
 			ooff = off + sizeof(ext);
 			do {
 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
 				    sizeof(opt.ip6o_type), NULL, NULL,
 				    AF_INET6))
 					goto shortpkt;
 				if (opt.ip6o_type == IP6OPT_PAD1) {
 					ooff++;
 					continue;
 				}
 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
 				    NULL, NULL, AF_INET6))
 					goto shortpkt;
 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
 					goto drop;
 				switch (opt.ip6o_type) {
 				case IP6OPT_JUMBO:
 					if (h->ip6_plen != 0)
 						goto drop;
 					if (!pf_pull_hdr(m, ooff, &jumbo,
 					    sizeof(jumbo), NULL, NULL,
 					    AF_INET6))
 						goto shortpkt;
 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
 					    sizeof(jumbolen));
 					jumbolen = ntohl(jumbolen);
 					if (jumbolen <= IPV6_MAXPACKET)
 						goto drop;
 					if (sizeof(struct ip6_hdr) + jumbolen !=
 					    m->m_pkthdr.len)
 						goto drop;
 					break;
 				default:
 					break;
 				}
 				ooff += sizeof(opt) + opt.ip6o_len;
 			} while (ooff < optend);
 
 			off = optend;
 			proto = ext.ip6e_nxt;
 			break;
 		default:
 			terminal = 1;
 			break;
 		}
 	} while (!terminal);
 
 	/* jumbo payload option must be present, or plen > 0 */
 	if (ntohs(h->ip6_plen) == 0)
 		plen = jumbolen;
 	else
 		plen = ntohs(h->ip6_plen);
 	if (plen == 0)
 		goto drop;
 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
 		goto shortpkt;
 
 	pf_scrub_ip6(&m, r->min_ttl);
 
 	return (PF_PASS);
 
  fragment:
 	/* Jumbo payload packets cannot be fragmented. */
 	plen = ntohs(h->ip6_plen);
 	if (plen == 0 || jumbolen)
 		goto drop;
 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
 		goto shortpkt;
 
 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
 		goto shortpkt;
 
 	/* Offset now points to data portion. */
 	off += sizeof(frag);
 
 	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
 	if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
 		return (PF_DROP);
 	m = *m0;
 	if (m == NULL)
 		return (PF_DROP);
 
 	pd->flags |= PFDESC_IP_REAS;
 	return (PF_PASS);
 
  shortpkt:
 	REASON_SET(reason, PFRES_SHORT);
 	if (r != NULL && r->log)
 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
 		    1);
 	return (PF_DROP);
 
  drop:
 	REASON_SET(reason, PFRES_NORM);
 	if (r != NULL && r->log)
 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
 		    1);
 	return (PF_DROP);
 }
 #endif /* INET6 */
 
 int
 pf_normalize_tcp(int dir, struct pfi_kkif *kif, struct mbuf *m, int ipoff,
     int off, void *h, struct pf_pdesc *pd)
 {
 	struct pf_krule	*r, *rm = NULL;
 	struct tcphdr	*th = pd->hdr.tcp;
 	int		 rewrite = 0;
 	u_short		 reason;
 	u_int8_t	 flags;
 	sa_family_t	 af = pd->af;
 
 	PF_RULES_RASSERT();
 
 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
 	while (r != NULL) {
 		counter_u64_add(r->evaluations, 1);
 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
 			r = r->skip[PF_SKIP_IFP].ptr;
 		else if (r->direction && r->direction != dir)
 			r = r->skip[PF_SKIP_DIR].ptr;
 		else if (r->af && r->af != af)
 			r = r->skip[PF_SKIP_AF].ptr;
 		else if (r->proto && r->proto != pd->proto)
 			r = r->skip[PF_SKIP_PROTO].ptr;
 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
 		    r->src.neg, kif, M_GETFIB(m)))
 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
 			    r->src.port[0], r->src.port[1], th->th_sport))
 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
 		    r->dst.neg, NULL, M_GETFIB(m)))
 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
 			    r->dst.port[0], r->dst.port[1], th->th_dport))
 			r = r->skip[PF_SKIP_DST_PORT].ptr;
 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
 			    pf_osfp_fingerprint(pd, m, off, th),
 			    r->os_fingerprint))
 			r = TAILQ_NEXT(r, entries);
 		else {
 			rm = r;
 			break;
 		}
 	}
 
 	if (rm == NULL || rm->action == PF_NOSCRUB)
 		return (PF_PASS);
 	else {
 		counter_u64_add(r->packets[dir == PF_OUT], 1);
 		counter_u64_add(r->bytes[dir == PF_OUT], pd->tot_len);
 	}
 
 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
 		pd->flags |= PFDESC_TCP_NORM;
 
 	flags = th->th_flags;
 	if (flags & TH_SYN) {
 		/* Illegal packet */
 		if (flags & TH_RST)
 			goto tcp_drop;
 
 		if (flags & TH_FIN)
 			goto tcp_drop;
 	} else {
 		/* Illegal packet */
 		if (!(flags & (TH_ACK|TH_RST)))
 			goto tcp_drop;
 	}
 
 	if (!(flags & TH_ACK)) {
 		/* These flags are only valid if ACK is set */
 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
 			goto tcp_drop;
 	}
 
 	/* Check for illegal header length */
 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
 		goto tcp_drop;
 
 	/* If flags changed, or reserved data set, then adjust */
 	if (flags != th->th_flags || th->th_x2 != 0) {
 		u_int16_t	ov, nv;
 
 		ov = *(u_int16_t *)(&th->th_ack + 1);
 		th->th_flags = flags;
 		th->th_x2 = 0;
 		nv = *(u_int16_t *)(&th->th_ack + 1);
 
 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
 		rewrite = 1;
 	}
 
 	/* Remove urgent pointer, if TH_URG is not set */
 	if (!(flags & TH_URG) && th->th_urp) {
 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
 		    0, 0);
 		th->th_urp = 0;
 		rewrite = 1;
 	}
 
 	/* Process options */
 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
 		rewrite = 1;
 
 	/* copy back packet headers if we sanitized */
 	if (rewrite)
 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
 
 	return (PF_PASS);
 
  tcp_drop:
 	REASON_SET(&reason, PFRES_NORM);
 	if (rm != NULL && r->log)
 		PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
 		    1);
 	return (PF_DROP);
 }
 
 int
 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
 {
 	u_int32_t tsval, tsecr;
 	u_int8_t hdr[60];
 	u_int8_t *opt;
 
 	KASSERT((src->scrub == NULL),
 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
 
 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
 	if (src->scrub == NULL)
 		return (1);
 
 	switch (pd->af) {
 #ifdef INET
 	case AF_INET: {
 		struct ip *h = mtod(m, struct ip *);
 		src->scrub->pfss_ttl = h->ip_ttl;
 		break;
 	}
 #endif /* INET */
 #ifdef INET6
 	case AF_INET6: {
 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
 		src->scrub->pfss_ttl = h->ip6_hlim;
 		break;
 	}
 #endif /* INET6 */
 	}
 
 
 	/*
 	 * All normalizations below are only begun if we see the start of
 	 * the connections.  They must all set an enabled bit in pfss_flags
 	 */
 	if ((th->th_flags & TH_SYN) == 0)
 		return (0);
 
 
 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
 		/* Diddle with TCP options */
 		int hlen;
 		opt = hdr + sizeof(struct tcphdr);
 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
 		while (hlen >= TCPOLEN_TIMESTAMP) {
 			switch (*opt) {
 			case TCPOPT_EOL:	/* FALLTHROUGH */
 			case TCPOPT_NOP:
 				opt++;
 				hlen--;
 				break;
 			case TCPOPT_TIMESTAMP:
 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
 					src->scrub->pfss_flags |=
 					    PFSS_TIMESTAMP;
 					src->scrub->pfss_ts_mod =
 					    htonl(arc4random());
 
 					/* note PFSS_PAWS not set yet */
 					memcpy(&tsval, &opt[2],
 					    sizeof(u_int32_t));
 					memcpy(&tsecr, &opt[6],
 					    sizeof(u_int32_t));
 					src->scrub->pfss_tsval0 = ntohl(tsval);
 					src->scrub->pfss_tsval = ntohl(tsval);
 					src->scrub->pfss_tsecr = ntohl(tsecr);
 					getmicrouptime(&src->scrub->pfss_last);
 				}
 				/* FALLTHROUGH */
 			default:
 				hlen -= MAX(opt[1], 2);
 				opt += MAX(opt[1], 2);
 				break;
 			}
 		}
 	}
 
 	return (0);
 }
 
 void
 pf_normalize_tcp_cleanup(struct pf_state *state)
 {
 	if (state->src.scrub)
 		uma_zfree(V_pf_state_scrub_z, state->src.scrub);
 	if (state->dst.scrub)
 		uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
 
 	/* Someday... flush the TCP segment reassembly descriptors. */
 }
 
 int
 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
     u_short *reason, struct tcphdr *th, struct pf_state *state,
     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
 {
 	struct timeval uptime;
 	u_int32_t tsval, tsecr;
 	u_int tsval_from_last;
 	u_int8_t hdr[60];
 	u_int8_t *opt;
 	int copyback = 0;
 	int got_ts = 0;
 	size_t startoff;
 
 	KASSERT((src->scrub || dst->scrub),
 	    ("%s: src->scrub && dst->scrub!", __func__));
 
 	/*
 	 * Enforce the minimum TTL seen for this connection.  Negate a common
 	 * technique to evade an intrusion detection system and confuse
 	 * firewall state code.
 	 */
 	switch (pd->af) {
 #ifdef INET
 	case AF_INET: {
 		if (src->scrub) {
 			struct ip *h = mtod(m, struct ip *);
 			if (h->ip_ttl > src->scrub->pfss_ttl)
 				src->scrub->pfss_ttl = h->ip_ttl;
 			h->ip_ttl = src->scrub->pfss_ttl;
 		}
 		break;
 	}
 #endif /* INET */
 #ifdef INET6
 	case AF_INET6: {
 		if (src->scrub) {
 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
 			if (h->ip6_hlim > src->scrub->pfss_ttl)
 				src->scrub->pfss_ttl = h->ip6_hlim;
 			h->ip6_hlim = src->scrub->pfss_ttl;
 		}
 		break;
 	}
 #endif /* INET6 */
 	}
 
 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
 		/* Diddle with TCP options */
 		int hlen;
 		opt = hdr + sizeof(struct tcphdr);
 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
 		while (hlen >= TCPOLEN_TIMESTAMP) {
 			startoff = opt - (hdr + sizeof(struct tcphdr));
 			switch (*opt) {
 			case TCPOPT_EOL:	/* FALLTHROUGH */
 			case TCPOPT_NOP:
 				opt++;
 				hlen--;
 				break;
 			case TCPOPT_TIMESTAMP:
 				/* Modulate the timestamps.  Can be used for
 				 * NAT detection, OS uptime determination or
 				 * reboot detection.
 				 */
 
 				if (got_ts) {
 					/* Huh?  Multiple timestamps!? */
 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
 						DPFPRINTF(("multiple TS??"));
 						pf_print_state(state);
 						printf("\n");
 					}
 					REASON_SET(reason, PFRES_TS);
 					return (PF_DROP);
 				}
 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
 					memcpy(&tsval, &opt[2],
 					    sizeof(u_int32_t));
 					if (tsval && src->scrub &&
 					    (src->scrub->pfss_flags &
 					    PFSS_TIMESTAMP)) {
 						tsval = ntohl(tsval);
 						pf_patch_32_unaligned(m,
 						    &th->th_sum,
 						    &opt[2],
 						    htonl(tsval +
 						    src->scrub->pfss_ts_mod),
 						    PF_ALGNMNT(startoff),
 						    0);
 						copyback = 1;
 					}
 
 					/* Modulate TS reply iff valid (!0) */
 					memcpy(&tsecr, &opt[6],
 					    sizeof(u_int32_t));
 					if (tsecr && dst->scrub &&
 					    (dst->scrub->pfss_flags &
 					    PFSS_TIMESTAMP)) {
 						tsecr = ntohl(tsecr)
 						    - dst->scrub->pfss_ts_mod;
 						pf_patch_32_unaligned(m,
 						    &th->th_sum,
 						    &opt[6],
 						    htonl(tsecr),
 						    PF_ALGNMNT(startoff),
 						    0);
 						copyback = 1;
 					}
 					got_ts = 1;
 				}
 				/* FALLTHROUGH */
 			default:
 				hlen -= MAX(opt[1], 2);
 				opt += MAX(opt[1], 2);
 				break;
 			}
 		}
 		if (copyback) {
 			/* Copyback the options, caller copys back header */
 			*writeback = 1;
 			m_copyback(m, off + sizeof(struct tcphdr),
 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
 			    sizeof(struct tcphdr));
 		}
 	}
 
 
 	/*
 	 * Must invalidate PAWS checks on connections idle for too long.
 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
 	 * TS echo check only works for the first 12 days of a connection
 	 * when the TS has exhausted half its 32bit space
 	 */
 #define TS_MAX_IDLE	(24*24*60*60)
 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
 
 	getmicrouptime(&uptime);
 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
 	    time_uptime - state->creation > TS_MAX_CONN))  {
 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
 			DPFPRINTF(("src idled out of PAWS\n"));
 			pf_print_state(state);
 			printf("\n");
 		}
 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
 		    | PFSS_PAWS_IDLED;
 	}
 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
 			DPFPRINTF(("dst idled out of PAWS\n"));
 			pf_print_state(state);
 			printf("\n");
 		}
 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
 		    | PFSS_PAWS_IDLED;
 	}
 
 	if (got_ts && src->scrub && dst->scrub &&
 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
 		/* Validate that the timestamps are "in-window".
 		 * RFC1323 describes TCP Timestamp options that allow
 		 * measurement of RTT (round trip time) and PAWS
 		 * (protection against wrapped sequence numbers).  PAWS
 		 * gives us a set of rules for rejecting packets on
 		 * long fat pipes (packets that were somehow delayed
 		 * in transit longer than the time it took to send the
 		 * full TCP sequence space of 4Gb).  We can use these
 		 * rules and infer a few others that will let us treat
 		 * the 32bit timestamp and the 32bit echoed timestamp
 		 * as sequence numbers to prevent a blind attacker from
 		 * inserting packets into a connection.
 		 *
 		 * RFC1323 tells us:
 		 *  - The timestamp on this packet must be greater than
 		 *    or equal to the last value echoed by the other
 		 *    endpoint.  The RFC says those will be discarded
 		 *    since it is a dup that has already been acked.
 		 *    This gives us a lowerbound on the timestamp.
 		 *        timestamp >= other last echoed timestamp
 		 *  - The timestamp will be less than or equal to
 		 *    the last timestamp plus the time between the
 		 *    last packet and now.  The RFC defines the max
 		 *    clock rate as 1ms.  We will allow clocks to be
 		 *    up to 10% fast and will allow a total difference
 		 *    or 30 seconds due to a route change.  And this
 		 *    gives us an upperbound on the timestamp.
 		 *        timestamp <= last timestamp + max ticks
 		 *    We have to be careful here.  Windows will send an
 		 *    initial timestamp of zero and then initialize it
 		 *    to a random value after the 3whs; presumably to
 		 *    avoid a DoS by having to call an expensive RNG
 		 *    during a SYN flood.  Proof MS has at least one
 		 *    good security geek.
 		 *
 		 *  - The TCP timestamp option must also echo the other
 		 *    endpoints timestamp.  The timestamp echoed is the
 		 *    one carried on the earliest unacknowledged segment
 		 *    on the left edge of the sequence window.  The RFC
 		 *    states that the host will reject any echoed
 		 *    timestamps that were larger than any ever sent.
 		 *    This gives us an upperbound on the TS echo.
 		 *        tescr <= largest_tsval
 		 *  - The lowerbound on the TS echo is a little more
 		 *    tricky to determine.  The other endpoint's echoed
 		 *    values will not decrease.  But there may be
 		 *    network conditions that re-order packets and
 		 *    cause our view of them to decrease.  For now the
 		 *    only lowerbound we can safely determine is that
 		 *    the TS echo will never be less than the original
 		 *    TS.  XXX There is probably a better lowerbound.
 		 *    Remove TS_MAX_CONN with better lowerbound check.
 		 *        tescr >= other original TS
 		 *
 		 * It is also important to note that the fastest
 		 * timestamp clock of 1ms will wrap its 32bit space in
 		 * 24 days.  So we just disable TS checking after 24
 		 * days of idle time.  We actually must use a 12d
 		 * connection limit until we can come up with a better
 		 * lowerbound to the TS echo check.
 		 */
 		struct timeval delta_ts;
 		int ts_fudge;
 
 
 		/*
 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
 		 * a host's timestamp.  This can happen if the previous
 		 * packet got delayed in transit for much longer than
 		 * this packet.
 		 */
 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
 
 		/* Calculate max ticks since the last timestamp */
 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
 #define TS_MICROSECS	1000000		/* microseconds per second */
 		delta_ts = uptime;
 		timevalsub(&delta_ts, &src->scrub->pfss_last);
 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
 
 		if ((src->state >= TCPS_ESTABLISHED &&
 		    dst->state >= TCPS_ESTABLISHED) &&
 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
 			/* Bad RFC1323 implementation or an insertion attack.
 			 *
 			 * - Solaris 2.6 and 2.7 are known to send another ACK
 			 *   after the FIN,FIN|ACK,ACK closing that carries
 			 *   an old timestamp.
 			 */
 
 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
 			    tsval_from_last) ? '1' : ' ',
 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
 			    "idle: %jus %lums\n",
 			    tsval, tsecr, tsval_from_last,
 			    (uintmax_t)delta_ts.tv_sec,
 			    delta_ts.tv_usec / 1000));
 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
 			    "\n", dst->scrub->pfss_tsval,
 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
 				pf_print_state(state);
 				pf_print_flags(th->th_flags);
 				printf("\n");
 			}
 			REASON_SET(reason, PFRES_TS);
 			return (PF_DROP);
 		}
 
 		/* XXX I'd really like to require tsecr but it's optional */
 
 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
 	    src->scrub && dst->scrub &&
 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
 		/* Didn't send a timestamp.  Timestamps aren't really useful
 		 * when:
 		 *  - connection opening or closing (often not even sent).
 		 *    but we must not let an attacker to put a FIN on a
 		 *    data packet to sneak it through our ESTABLISHED check.
 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
 		 *  - on an empty ACK.  The TS will not be echoed so it will
 		 *    probably not help keep the RTT calculation in sync and
 		 *    there isn't as much danger when the sequence numbers
 		 *    got wrapped.  So some stacks don't include TS on empty
 		 *    ACKs :-(
 		 *
 		 * To minimize the disruption to mostly RFC1323 conformant
 		 * stacks, we will only require timestamps on data packets.
 		 *
 		 * And what do ya know, we cannot require timestamps on data
 		 * packets.  There appear to be devices that do legitimate
 		 * TCP connection hijacking.  There are HTTP devices that allow
 		 * a 3whs (with timestamps) and then buffer the HTTP request.
 		 * If the intermediate device has the HTTP response cache, it
 		 * will spoof the response but not bother timestamping its
 		 * packets.  So we can look for the presence of a timestamp in
 		 * the first data packet and if there, require it in all future
 		 * packets.
 		 */
 
 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
 			/*
 			 * Hey!  Someone tried to sneak a packet in.  Or the
 			 * stack changed its RFC1323 behavior?!?!
 			 */
 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
 				DPFPRINTF(("Did not receive expected RFC1323 "
 				    "timestamp\n"));
 				pf_print_state(state);
 				pf_print_flags(th->th_flags);
 				printf("\n");
 			}
 			REASON_SET(reason, PFRES_TS);
 			return (PF_DROP);
 		}
 	}
 
 
 	/*
 	 * We will note if a host sends his data packets with or without
 	 * timestamps.  And require all data packets to contain a timestamp
 	 * if the first does.  PAWS implicitly requires that all data packets be
 	 * timestamped.  But I think there are middle-man devices that hijack
 	 * TCP streams immediately after the 3whs and don't timestamp their
 	 * packets (seen in a WWW accelerator or cache).
 	 */
 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
 		if (got_ts)
 			src->scrub->pfss_flags |= PFSS_DATA_TS;
 		else {
 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
 				/* Don't warn if other host rejected RFC1323 */
 				DPFPRINTF(("Broken RFC1323 stack did not "
 				    "timestamp data packet. Disabled PAWS "
 				    "security.\n"));
 				pf_print_state(state);
 				pf_print_flags(th->th_flags);
 				printf("\n");
 			}
 		}
 	}
 
 
 	/*
 	 * Update PAWS values
 	 */
 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
 		getmicrouptime(&src->scrub->pfss_last);
 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
 			src->scrub->pfss_tsval = tsval;
 
 		if (tsecr) {
 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
 				src->scrub->pfss_tsecr = tsecr;
 
 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
 			    src->scrub->pfss_tsval0 == 0)) {
 				/* tsval0 MUST be the lowest timestamp */
 				src->scrub->pfss_tsval0 = tsval;
 			}
 
 			/* Only fully initialized after a TS gets echoed */
 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
 				src->scrub->pfss_flags |= PFSS_PAWS;
 		}
 	}
 
 	/* I have a dream....  TCP segment reassembly.... */
 	return (0);
 }
 
 static int
 pf_normalize_tcpopt(struct pf_krule *r, struct mbuf *m, struct tcphdr *th,
     int off, sa_family_t af)
 {
 	u_int16_t	*mss;
 	int		 thoff;
 	int		 opt, cnt, optlen = 0;
 	int		 rewrite = 0;
 	u_char		 opts[TCP_MAXOLEN];
 	u_char		*optp = opts;
 	size_t		 startoff;
 
 	thoff = th->th_off << 2;
 	cnt = thoff - sizeof(struct tcphdr);
 
 	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
 	    NULL, NULL, af))
 		return (rewrite);
 
 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
 		startoff = optp - opts;
 		opt = optp[0];
 		if (opt == TCPOPT_EOL)
 			break;
 		if (opt == TCPOPT_NOP)
 			optlen = 1;
 		else {
 			if (cnt < 2)
 				break;
 			optlen = optp[1];
 			if (optlen < 2 || optlen > cnt)
 				break;
 		}
 		switch (opt) {
 		case TCPOPT_MAXSEG:
 			mss = (u_int16_t *)(optp + 2);
 			if ((ntohs(*mss)) > r->max_mss) {
 				pf_patch_16_unaligned(m,
 				    &th->th_sum,
 				    mss, htons(r->max_mss),
 				    PF_ALGNMNT(startoff),
 				    0);
 				rewrite = 1;
 			}
 			break;
 		default:
 			break;
 		}
 	}
 
 	if (rewrite)
 		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
 
 	return (rewrite);
 }
 
 #ifdef INET
 static void
 pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
 {
 	struct mbuf		*m = *m0;
 	struct ip		*h = mtod(m, struct ip *);
 
 	/* Clear IP_DF if no-df was requested */
 	if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
 		u_int16_t ip_off = h->ip_off;
 
 		h->ip_off &= htons(~IP_DF);
 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
 	}
 
 	/* Enforce a minimum ttl, may cause endless packet loops */
 	if (min_ttl && h->ip_ttl < min_ttl) {
 		u_int16_t ip_ttl = h->ip_ttl;
 
 		h->ip_ttl = min_ttl;
 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
 	}
 
 	/* Enforce tos */
 	if (flags & PFRULE_SET_TOS) {
 		u_int16_t	ov, nv;
 
 		ov = *(u_int16_t *)h;
 		h->ip_tos = tos | (h->ip_tos & IPTOS_ECN_MASK);
 		nv = *(u_int16_t *)h;
 
 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
 	}
 
 	/* random-id, but not for fragments */
 	if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
 		uint16_t ip_id = h->ip_id;
 
 		ip_fillid(h);
 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
 	}
 }
 #endif /* INET */
 
 #ifdef INET6
 static void
 pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
 {
 	struct mbuf		*m = *m0;
 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
 
 	/* Enforce a minimum ttl, may cause endless packet loops */
 	if (min_ttl && h->ip6_hlim < min_ttl)
 		h->ip6_hlim = min_ttl;
 }
 #endif