diff --git a/sys/powerpc/include/resource.h b/sys/powerpc/include/resource.h index 9477572176e0..e7e9493569cc 100644 --- a/sys/powerpc/include/resource.h +++ b/sys/powerpc/include/resource.h @@ -1,44 +1,51 @@ /*- * Copyright 1998 Massachusetts Institute of Technology * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _MACHINE_RESOURCE_H_ #define _MACHINE_RESOURCE_H_ 1 /* * Definitions of resource types for Intel Architecture machines * with support for legacy ISA devices and drivers. */ #define SYS_RES_IRQ 1 /* interrupt lines */ #define SYS_RES_DRQ 2 /* isa dma lines */ #define SYS_RES_MEMORY 3 /* i/o memory */ #define SYS_RES_IOPORT 4 /* i/o ports */ #define PCI_RES_BUS 5 /* PCI bus numbers */ +/* + * A powerpc-specific resource flag to request little-endian bus tags + * for a resource. + */ + +#define RF_LITTLEENDIAN RF_SPARE1 + #endif /* !_MACHINE_RESOURCE_H_ */ diff --git a/sys/powerpc/mpc85xx/fsl_sata.c b/sys/powerpc/mpc85xx/fsl_sata.c index 861aaba530e3..74fc40053fdc 100644 --- a/sys/powerpc/mpc85xx/fsl_sata.c +++ b/sys/powerpc/mpc85xx/fsl_sata.c @@ -1,1894 +1,1893 @@ /*- * Copyright (c) 2009-2012 Alexander Motin * Copyright (c) 2017 Justin Hibbits * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fsl_sata.h" struct fsl_sata_channel; struct fsl_sata_slot; enum fsl_sata_err_type; struct fsl_sata_cmd_tab; /* local prototypes */ static int fsl_sata_init(device_t dev); static int fsl_sata_deinit(device_t dev); static int fsl_sata_suspend(device_t dev); static int fsl_sata_resume(device_t dev); static void fsl_sata_pm(void *arg); static void fsl_sata_intr(void *arg); static void fsl_sata_intr_main(struct fsl_sata_channel *ch, uint32_t istatus); static void fsl_sata_begin_transaction(struct fsl_sata_channel *ch, union ccb *ccb); static void fsl_sata_dmasetprd(void *arg, bus_dma_segment_t *segs, int nsegs, int error); static void fsl_sata_execute_transaction(struct fsl_sata_slot *slot); static void fsl_sata_timeout(void *arg); static void fsl_sata_end_transaction(struct fsl_sata_slot *slot, enum fsl_sata_err_type et); static int fsl_sata_setup_fis(struct fsl_sata_channel *ch, struct fsl_sata_cmd_tab *ctp, union ccb *ccb, int tag); static void fsl_sata_dmainit(device_t dev); static void fsl_sata_dmasetupc_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error); static void fsl_sata_dmafini(device_t dev); static void fsl_sata_slotsalloc(device_t dev); static void fsl_sata_slotsfree(device_t dev); static void fsl_sata_reset(struct fsl_sata_channel *ch); static void fsl_sata_start(struct fsl_sata_channel *ch); static void fsl_sata_stop(struct fsl_sata_channel *ch); static void fsl_sata_issue_recovery(struct fsl_sata_channel *ch); static void fsl_sata_process_read_log(struct fsl_sata_channel *ch, union ccb *ccb); static void fsl_sata_process_request_sense(struct fsl_sata_channel *ch, union ccb *ccb); static void fsl_sataaction(struct cam_sim *sim, union ccb *ccb); static void fsl_satapoll(struct cam_sim *sim); static MALLOC_DEFINE(M_FSL_SATA, "FSL SATA driver", "FSL SATA driver data buffers"); #define recovery_type spriv_field0 #define RECOVERY_NONE 0 #define RECOVERY_READ_LOG 1 #define RECOVERY_REQUEST_SENSE 2 #define recovery_slot spriv_field1 #define FSL_SATA_P_CQR 0x0 #define FSL_SATA_P_CAR 0x4 #define FSL_SATA_P_CCR 0x10 #define FSL_SATA_P_CER 0x18 #define FSL_SATA_P_DER 0x20 #define FSL_SATA_P_CHBA 0x24 #define FSL_SATA_P_HSTS 0x28 #define FSL_SATA_P_HSTS_HS_ON 0x80000000 #define FSL_SATA_P_HSTS_ME 0x00040000 #define FSL_SATA_P_HSTS_DLM 0x00001000 #define FSL_SATA_P_HSTS_FOT 0x00000200 #define FSL_SATA_P_HSTS_FOR 0x00000100 #define FSL_SATA_P_HSTS_FE 0x00000020 #define FSL_SATA_P_HSTS_PR 0x00000010 #define FSL_SATA_P_HSTS_SNTFU 0x00000004 #define FSL_SATA_P_HSTS_DE 0x00000002 #define FSL_SATA_P_HCTRL 0x2c #define FSL_SATA_P_HCTRL_HC_ON 0x80000000 #define FSL_SATA_P_HCTRL_HC_FORCE_OFF 0x40000000 #define FSL_SATA_P_HCTRL_ENT 0x10000000 #define FSL_SATA_P_HCTRL_SNOOP 0x00000400 #define FSL_SATA_P_HCTRL_PM 0x00000200 #define FSL_SATA_P_HCTRL_FATAL 0x00000020 #define FSL_SATA_P_HCTRL_PHYRDY 0x00000010 #define FSL_SATA_P_HCTRL_SIG 0x00000008 #define FSL_SATA_P_HCTRL_SNTFY 0x00000004 #define FSL_SATA_P_HCTRL_DE 0x00000002 #define FSL_SATA_P_HCTRL_CC 0x00000001 #define FSL_SATA_P_HCTRL_INT_MASK 0x0000003f #define FSL_SATA_P_CQPMP 0x30 #define FSL_SATA_P_SIG 0x34 #define FSL_SATA_P_ICC 0x38 #define FSL_SATA_P_ICC_ITC_M 0x1f000000 #define FSL_SATA_P_ICC_ITC_S 24 #define FSL_SATA_P_ICC_ITTCV_M 0x0007ffff #define FSL_SATA_P_PCC 0x15c #define FSL_SATA_P_PCC_SLUMBER 0x0000000c #define FSL_SATA_P_PCC_PARTIAL 0x0000000a #define FSL_SATA_PCC_LPB_EN 0x0000000e #define FSL_SATA_MAX_SLOTS 16 /* FSL_SATA register defines */ #define FSL_SATA_P_SSTS 0x100 #define FSL_SATA_P_SERR 0x104 #define FSL_SATA_P_SCTL 0x108 #define FSL_SATA_P_SNTF 0x10c /* Pessimistic prognosis on number of required S/G entries */ #define FSL_SATA_SG_ENTRIES 63 /* Command list. 16 commands. First, 1Kbyte aligned. */ #define FSL_SATA_CL_OFFSET 0 #define FSL_SATA_CL_SIZE 16 /* Command tables. Up to 32 commands, Each, 4-byte aligned. */ #define FSL_SATA_CT_OFFSET (FSL_SATA_CL_OFFSET + FSL_SATA_CL_SIZE * FSL_SATA_MAX_SLOTS) #define FSL_SATA_CT_SIZE (96 + FSL_SATA_SG_ENTRIES * 16) /* Total main work area. */ #define FSL_SATA_WORK_SIZE (FSL_SATA_CT_OFFSET + FSL_SATA_CT_SIZE * FSL_SATA_MAX_SLOTS) #define FSL_SATA_MAX_XFER (64 * 1024 * 1024) /* Some convenience macros for getting the CTP and CLP */ #define FSL_SATA_CTP_BUS(ch, slot) \ ((ch->dma.work_bus + FSL_SATA_CT_OFFSET + (FSL_SATA_CT_SIZE * slot->slot))) #define FSL_SATA_PRD_OFFSET(prd) (96 + (prd) * 16) #define FSL_SATA_CTP(ch, slot) \ ((struct fsl_sata_cmd_tab *)(ch->dma.work + FSL_SATA_CT_OFFSET + \ (FSL_SATA_CT_SIZE * slot->slot))) #define FSL_SATA_CLP(ch, slot) \ ((struct fsl_sata_cmd_list *) (ch->dma.work + FSL_SATA_CL_OFFSET + \ (FSL_SATA_CL_SIZE * slot->slot))) struct fsl_sata_dma_prd { uint32_t dba; uint32_t reserved; uint32_t reserved2; uint32_t dwc_flg; /* 0 based */ #define FSL_SATA_PRD_MASK 0x01fffffc /* max 32MB */ #define FSL_SATA_PRD_MAX (FSL_SATA_PRD_MASK + 4) #define FSL_SATA_PRD_SNOOP 0x10000000 #define FSL_SATA_PRD_EXT 0x80000000 } __packed; struct fsl_sata_cmd_tab { uint8_t cfis[32]; uint8_t sfis[32]; uint8_t acmd[16]; uint8_t reserved[16]; struct fsl_sata_dma_prd prd_tab[FSL_SATA_SG_ENTRIES]; #define FSL_SATA_PRD_EXT_INDEX 15 #define FSL_SATA_PRD_MAX_DIRECT 16 } __packed; struct fsl_sata_cmd_list { uint32_t cda; /* word aligned */ uint16_t fis_length; /* length in bytes (aligned to words) */ uint16_t prd_length; /* PRD entries */ uint32_t ttl; uint32_t cmd_flags; #define FSL_SATA_CMD_TAG_MASK 0x001f #define FSL_SATA_CMD_ATAPI 0x0020 #define FSL_SATA_CMD_BIST 0x0040 #define FSL_SATA_CMD_RESET 0x0080 #define FSL_SATA_CMD_QUEUED 0x0100 #define FSL_SATA_CMD_SNOOP 0x0200 #define FSL_SATA_CMD_VBIST 0x0400 #define FSL_SATA_CMD_WRITE 0x0800 } __packed; /* misc defines */ #define ATA_IRQ_RID 0 #define ATA_INTR_FLAGS (INTR_MPSAFE|INTR_TYPE_BIO|INTR_ENTROPY) struct ata_dmaslot { bus_dmamap_t data_map; /* data DMA map */ int nsegs; /* Number of segs loaded */ }; /* structure holding DMA related information */ struct ata_dma { bus_dma_tag_t work_tag; /* workspace DMA tag */ bus_dmamap_t work_map; /* workspace DMA map */ uint8_t *work; /* workspace */ bus_addr_t work_bus; /* bus address of work */ bus_dma_tag_t data_tag; /* data DMA tag */ }; enum fsl_sata_slot_states { FSL_SATA_SLOT_EMPTY, FSL_SATA_SLOT_LOADING, FSL_SATA_SLOT_RUNNING, FSL_SATA_SLOT_EXECUTING }; struct fsl_sata_slot { struct fsl_sata_channel *ch; /* Channel */ uint8_t slot; /* Number of this slot */ enum fsl_sata_slot_states state; /* Slot state */ union ccb *ccb; /* CCB occupying slot */ struct ata_dmaslot dma; /* DMA data of this slot */ struct callout timeout; /* Execution timeout */ uint32_t ttl; }; struct fsl_sata_device { int revision; int mode; u_int bytecount; u_int atapi; u_int tags; u_int caps; }; /* structure describing an ATA channel */ struct fsl_sata_channel { device_t dev; /* Device handle */ int r_mid; /* Physical channel RID */ struct resource *r_mem; /* Memory of this channel */ struct resource *r_irq; /* Interrupt of this channel */ void *ih; /* Interrupt handle */ struct ata_dma dma; /* DMA data */ struct cam_sim *sim; struct cam_path *path; uint32_t caps; /* Controller capabilities */ int pm_level; /* power management level */ int devices; /* What is present */ int pm_present; /* PM presence reported */ union ccb *hold[FSL_SATA_MAX_SLOTS]; struct fsl_sata_slot slot[FSL_SATA_MAX_SLOTS]; uint32_t oslots; /* Occupied slots */ uint32_t rslots; /* Running slots */ uint32_t aslots; /* Slots with atomic commands */ uint32_t eslots; /* Slots in error */ uint32_t toslots; /* Slots in timeout */ int lastslot; /* Last used slot */ int taggedtarget; /* Last tagged target */ int numrslots; /* Number of running slots */ int numrslotspd[16];/* Number of running slots per dev */ int numtslots; /* Number of tagged slots */ int numtslotspd[16];/* Number of tagged slots per dev */ int numhslots; /* Number of held slots */ int recoverycmd; /* Our READ LOG active */ int fatalerr; /* Fatal error happend */ int resetting; /* Hard-reset in progress. */ int resetpolldiv; /* Hard-reset poll divider. */ union ccb *frozen; /* Frozen command */ struct callout pm_timer; /* Power management events */ struct callout reset_timer; /* Hard-reset timeout */ struct fsl_sata_device user[16]; /* User-specified settings */ struct fsl_sata_device curr[16]; /* Current settings */ struct mtx_padalign mtx; /* state lock */ STAILQ_HEAD(, ccb_hdr) doneq; /* queue of completed CCBs */ int batch; /* doneq is in use */ }; enum fsl_sata_err_type { FSL_SATA_ERR_NONE, /* No error */ FSL_SATA_ERR_INVALID, /* Error detected by us before submitting. */ FSL_SATA_ERR_INNOCENT, /* Innocent victim. */ FSL_SATA_ERR_TFE, /* Task File Error. */ FSL_SATA_ERR_SATA, /* SATA error. */ FSL_SATA_ERR_TIMEOUT, /* Command execution timeout. */ FSL_SATA_ERR_NCQ, /* NCQ command error. CCB should be put on hold * until READ LOG executed to reveal error. */ }; /* macros to hide busspace uglyness */ #define ATA_INL(res, offset) \ bus_read_4((res), (offset)) #define ATA_OUTL(res, offset, value) \ bus_write_4((res), (offset), (value)) static int fsl_sata_probe(device_t dev) { if (!ofw_bus_is_compatible(dev, "fsl,pq-sata-v2") && !ofw_bus_is_compatible(dev, "fsl,pq-sata")) return (ENXIO); device_set_desc_copy(dev, "Freescale Integrated SATA Controller"); return (BUS_PROBE_DEFAULT); } static int fsl_sata_attach(device_t dev) { struct fsl_sata_channel *ch = device_get_softc(dev); struct cam_devq *devq; int rid, error, i, sata_rev = 0; ch->dev = dev; mtx_init(&ch->mtx, "FSL SATA channel lock", NULL, MTX_DEF); ch->pm_level = 0; resource_int_value(device_get_name(dev), device_get_unit(dev), "pm_level", &ch->pm_level); STAILQ_INIT(&ch->doneq); if (ch->pm_level > 3) callout_init_mtx(&ch->pm_timer, &ch->mtx, 0); resource_int_value(device_get_name(dev), device_get_unit(dev), "sata_rev", &sata_rev); for (i = 0; i < 16; i++) { ch->user[i].revision = sata_rev; ch->user[i].mode = 0; ch->user[i].bytecount = 8192; ch->user[i].tags = FSL_SATA_MAX_SLOTS; ch->user[i].caps = 0; ch->curr[i] = ch->user[i]; if (ch->pm_level) { ch->user[i].caps = CTS_SATA_CAPS_H_PMREQ | CTS_SATA_CAPS_D_PMREQ; } ch->user[i].caps |= CTS_SATA_CAPS_H_AN; } ch->r_mid = 0; if (!(ch->r_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, - &ch->r_mid, RF_ACTIVE))) + &ch->r_mid, RF_ACTIVE | RF_LITTLEENDIAN))) return (ENXIO); - rman_set_bustag(ch->r_mem, &bs_le_tag); fsl_sata_dmainit(dev); fsl_sata_slotsalloc(dev); fsl_sata_init(dev); rid = ATA_IRQ_RID; if (!(ch->r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE))) { device_printf(dev, "Unable to map interrupt\n"); error = ENXIO; goto err0; } if ((bus_setup_intr(dev, ch->r_irq, ATA_INTR_FLAGS, NULL, fsl_sata_intr, ch, &ch->ih))) { device_printf(dev, "Unable to setup interrupt\n"); error = ENXIO; goto err1; } mtx_lock(&ch->mtx); /* Create the device queue for our SIM. */ devq = cam_simq_alloc(FSL_SATA_MAX_SLOTS); if (devq == NULL) { device_printf(dev, "Unable to allocate simq\n"); error = ENOMEM; goto err1; } /* Construct SIM entry */ ch->sim = cam_sim_alloc(fsl_sataaction, fsl_satapoll, "fslsata", ch, device_get_unit(dev), (struct mtx *)&ch->mtx, 2, FSL_SATA_MAX_SLOTS, devq); if (ch->sim == NULL) { cam_simq_free(devq); device_printf(dev, "unable to allocate sim\n"); error = ENOMEM; goto err1; } if (xpt_bus_register(ch->sim, dev, 0) != CAM_SUCCESS) { device_printf(dev, "unable to register xpt bus\n"); error = ENXIO; goto err2; } if (xpt_create_path(&ch->path, /*periph*/NULL, cam_sim_path(ch->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { device_printf(dev, "unable to create path\n"); error = ENXIO; goto err3; } if (ch->pm_level > 3) { callout_reset(&ch->pm_timer, (ch->pm_level == 4) ? hz / 1000 : hz / 8, fsl_sata_pm, ch); } mtx_unlock(&ch->mtx); return (0); err3: xpt_bus_deregister(cam_sim_path(ch->sim)); err2: cam_sim_free(ch->sim, /*free_devq*/TRUE); err1: mtx_unlock(&ch->mtx); bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq); err0: bus_release_resource(dev, SYS_RES_MEMORY, ch->r_mid, ch->r_mem); mtx_destroy(&ch->mtx); return (error); } static int fsl_sata_detach(device_t dev) { struct fsl_sata_channel *ch = device_get_softc(dev); mtx_lock(&ch->mtx); xpt_async(AC_LOST_DEVICE, ch->path, NULL); xpt_free_path(ch->path); xpt_bus_deregister(cam_sim_path(ch->sim)); cam_sim_free(ch->sim, /*free_devq*/TRUE); mtx_unlock(&ch->mtx); if (ch->pm_level > 3) callout_drain(&ch->pm_timer); bus_teardown_intr(dev, ch->r_irq, ch->ih); bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq); fsl_sata_deinit(dev); fsl_sata_slotsfree(dev); fsl_sata_dmafini(dev); bus_release_resource(dev, SYS_RES_MEMORY, ch->r_mid, ch->r_mem); mtx_destroy(&ch->mtx); return (0); } static int fsl_sata_wait_register(struct fsl_sata_channel *ch, bus_size_t off, unsigned int mask, unsigned int val, int t) { int timeout = 0; uint32_t rval; while (((rval = ATA_INL(ch->r_mem, off)) & mask) != val) { if (timeout > t) { return (EBUSY); } DELAY(1000); timeout++; } return (0); } static int fsl_sata_init(device_t dev) { struct fsl_sata_channel *ch = device_get_softc(dev); uint64_t work; uint32_t r; /* Disable port interrupts */ r = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL); r &= ~FSL_SATA_P_HCTRL_HC_ON; r |= FSL_SATA_P_HCTRL_HC_FORCE_OFF; ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, r & ~FSL_SATA_P_HCTRL_INT_MASK); fsl_sata_wait_register(ch, FSL_SATA_P_HSTS, FSL_SATA_P_HSTS_HS_ON, 0, 1000); /* Setup work areas */ work = ch->dma.work_bus + FSL_SATA_CL_OFFSET; ATA_OUTL(ch->r_mem, FSL_SATA_P_CHBA, work); r &= ~FSL_SATA_P_HCTRL_ENT; r &= ~FSL_SATA_P_HCTRL_PM; ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, r); r = ATA_INL(ch->r_mem, FSL_SATA_P_PCC); ATA_OUTL(ch->r_mem, FSL_SATA_P_PCC, r & ~FSL_SATA_PCC_LPB_EN); ATA_OUTL(ch->r_mem, FSL_SATA_P_ICC, (1 << FSL_SATA_P_ICC_ITC_S)); fsl_sata_start(ch); return (0); } static int fsl_sata_deinit(device_t dev) { struct fsl_sata_channel *ch = device_get_softc(dev); uint32_t r; /* Disable port interrupts. */ r = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL); ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, r & ~FSL_SATA_P_HCTRL_INT_MASK); /* Reset command register. */ fsl_sata_stop(ch); /* Allow everything, including partial and slumber modes. */ ATA_OUTL(ch->r_mem, FSL_SATA_P_SCTL, 0); DELAY(100); /* Disable PHY. */ ATA_OUTL(ch->r_mem, FSL_SATA_P_SCTL, ATA_SC_DET_DISABLE); r = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL); /* Turn off the controller. */ ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, r & ~FSL_SATA_P_HCTRL_HC_ON); return (0); } static int fsl_sata_suspend(device_t dev) { struct fsl_sata_channel *ch = device_get_softc(dev); mtx_lock(&ch->mtx); xpt_freeze_simq(ch->sim, 1); while (ch->oslots) msleep(ch, &ch->mtx, PRIBIO, "fsl_satasusp", hz/100); fsl_sata_deinit(dev); mtx_unlock(&ch->mtx); return (0); } static int fsl_sata_resume(device_t dev) { struct fsl_sata_channel *ch = device_get_softc(dev); mtx_lock(&ch->mtx); fsl_sata_init(dev); fsl_sata_reset(ch); xpt_release_simq(ch->sim, TRUE); mtx_unlock(&ch->mtx); return (0); } static device_method_t fsl_satach_methods[] = { DEVMETHOD(device_probe, fsl_sata_probe), DEVMETHOD(device_attach, fsl_sata_attach), DEVMETHOD(device_detach, fsl_sata_detach), DEVMETHOD(device_suspend, fsl_sata_suspend), DEVMETHOD(device_resume, fsl_sata_resume), DEVMETHOD_END }; static driver_t fsl_satach_driver = { "fslsata", fsl_satach_methods, sizeof(struct fsl_sata_channel) }; DRIVER_MODULE(fsl_satach, simplebus, fsl_satach_driver, NULL, NULL); struct fsl_sata_dc_cb_args { bus_addr_t maddr; int error; }; static void fsl_sata_dmainit(device_t dev) { struct fsl_sata_channel *ch = device_get_softc(dev); struct fsl_sata_dc_cb_args dcba; /* Command area. */ if (bus_dma_tag_create(bus_get_dma_tag(dev), 1024, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, FSL_SATA_WORK_SIZE, 1, FSL_SATA_WORK_SIZE, 0, NULL, NULL, &ch->dma.work_tag)) goto error; if (bus_dmamem_alloc(ch->dma.work_tag, (void **)&ch->dma.work, BUS_DMA_ZERO, &ch->dma.work_map)) goto error; if (bus_dmamap_load(ch->dma.work_tag, ch->dma.work_map, ch->dma.work, FSL_SATA_WORK_SIZE, fsl_sata_dmasetupc_cb, &dcba, 0) || dcba.error) { bus_dmamem_free(ch->dma.work_tag, ch->dma.work, ch->dma.work_map); goto error; } ch->dma.work_bus = dcba.maddr; /* Data area. */ if (bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, FSL_SATA_MAX_XFER, FSL_SATA_SG_ENTRIES - 1, FSL_SATA_PRD_MAX, 0, busdma_lock_mutex, &ch->mtx, &ch->dma.data_tag)) { goto error; } if (bootverbose) device_printf(dev, "work area: %p\n", ch->dma.work); return; error: device_printf(dev, "WARNING - DMA initialization failed\n"); fsl_sata_dmafini(dev); } static void fsl_sata_dmasetupc_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) { struct fsl_sata_dc_cb_args *dcba = (struct fsl_sata_dc_cb_args *)xsc; if (!(dcba->error = error)) dcba->maddr = segs[0].ds_addr; } static void fsl_sata_dmafini(device_t dev) { struct fsl_sata_channel *ch = device_get_softc(dev); if (ch->dma.data_tag) { bus_dma_tag_destroy(ch->dma.data_tag); ch->dma.data_tag = NULL; } if (ch->dma.work_bus) { bus_dmamap_unload(ch->dma.work_tag, ch->dma.work_map); bus_dmamem_free(ch->dma.work_tag, ch->dma.work, ch->dma.work_map); ch->dma.work_bus = 0; ch->dma.work = NULL; } if (ch->dma.work_tag) { bus_dma_tag_destroy(ch->dma.work_tag); ch->dma.work_tag = NULL; } } static void fsl_sata_slotsalloc(device_t dev) { struct fsl_sata_channel *ch = device_get_softc(dev); int i; /* Alloc and setup command/dma slots */ bzero(ch->slot, sizeof(ch->slot)); for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { struct fsl_sata_slot *slot = &ch->slot[i]; slot->ch = ch; slot->slot = i; slot->state = FSL_SATA_SLOT_EMPTY; slot->ccb = NULL; callout_init_mtx(&slot->timeout, &ch->mtx, 0); if (bus_dmamap_create(ch->dma.data_tag, 0, &slot->dma.data_map)) device_printf(ch->dev, "FAILURE - create data_map\n"); } } static void fsl_sata_slotsfree(device_t dev) { struct fsl_sata_channel *ch = device_get_softc(dev); int i; /* Free all dma slots */ for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { struct fsl_sata_slot *slot = &ch->slot[i]; callout_drain(&slot->timeout); if (slot->dma.data_map) { bus_dmamap_destroy(ch->dma.data_tag, slot->dma.data_map); slot->dma.data_map = NULL; } } } static int fsl_sata_phy_check_events(struct fsl_sata_channel *ch, u_int32_t serr) { if (((ch->pm_level == 0) && (serr & ATA_SE_PHY_CHANGED)) || ((ch->pm_level != 0) && (serr & ATA_SE_EXCHANGED))) { u_int32_t status = ATA_INL(ch->r_mem, FSL_SATA_P_SSTS); union ccb *ccb; if (bootverbose) { if ((status & ATA_SS_DET_MASK) != ATA_SS_DET_NO_DEVICE) device_printf(ch->dev, "CONNECT requested\n"); else device_printf(ch->dev, "DISCONNECT requested\n"); } /* Issue soft reset */ xpt_async(AC_BUS_RESET, ch->path, NULL); if ((ccb = xpt_alloc_ccb_nowait()) == NULL) return (0); if (xpt_create_path(&ccb->ccb_h.path, NULL, cam_sim_path(ch->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_free_ccb(ccb); return (0); } xpt_rescan(ccb); return (1); } return (0); } static void fsl_sata_notify_events(struct fsl_sata_channel *ch, u_int32_t status) { struct cam_path *dpath; int i; ATA_OUTL(ch->r_mem, FSL_SATA_P_SNTF, status); if (bootverbose) device_printf(ch->dev, "SNTF 0x%04x\n", status); for (i = 0; i < 16; i++) { if ((status & (1 << i)) == 0) continue; if (xpt_create_path(&dpath, NULL, xpt_path_path_id(ch->path), i, 0) == CAM_REQ_CMP) { xpt_async(AC_SCSI_AEN, dpath, NULL); xpt_free_path(dpath); } } } static void fsl_sata_done(struct fsl_sata_channel *ch, union ccb *ccb) { mtx_assert(&ch->mtx, MA_OWNED); if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0 || ch->batch == 0) { xpt_done(ccb); return; } STAILQ_INSERT_TAIL(&ch->doneq, &ccb->ccb_h, sim_links.stqe); } static void fsl_sata_intr(void *arg) { struct fsl_sata_channel *ch = (struct fsl_sata_channel *)arg; struct ccb_hdr *ccb_h; uint32_t istatus; STAILQ_HEAD(, ccb_hdr) tmp_doneq = STAILQ_HEAD_INITIALIZER(tmp_doneq); /* Read interrupt statuses. */ istatus = ATA_INL(ch->r_mem, FSL_SATA_P_HSTS) & 0x7ffff; if ((istatus & 0x3f) == 0) return; mtx_lock(&ch->mtx); ch->batch = 1; fsl_sata_intr_main(ch, istatus); ch->batch = 0; /* * Prevent the possibility of issues caused by processing the queue * while unlocked below by moving the contents to a local queue. */ STAILQ_CONCAT(&tmp_doneq, &ch->doneq); mtx_unlock(&ch->mtx); while ((ccb_h = STAILQ_FIRST(&tmp_doneq)) != NULL) { STAILQ_REMOVE_HEAD(&tmp_doneq, sim_links.stqe); xpt_done_direct((union ccb *)ccb_h); } /* Clear interrupt statuses. */ ATA_OUTL(ch->r_mem, FSL_SATA_P_HSTS, istatus & 0x3f); } static void fsl_sata_pm(void *arg) { struct fsl_sata_channel *ch = (struct fsl_sata_channel *)arg; uint32_t work; if (ch->numrslots != 0) return; work = ATA_INL(ch->r_mem, FSL_SATA_P_PCC) & ~FSL_SATA_PCC_LPB_EN; if (ch->pm_level == 4) work |= FSL_SATA_P_PCC_PARTIAL; else work |= FSL_SATA_P_PCC_SLUMBER; ATA_OUTL(ch->r_mem, FSL_SATA_P_PCC, work); } /* XXX: interrupt todo */ static void fsl_sata_intr_main(struct fsl_sata_channel *ch, uint32_t istatus) { uint32_t cer, der, serr = 0, sntf = 0, ok, err; enum fsl_sata_err_type et; int i; /* Complete all successful commands. */ ok = ATA_INL(ch->r_mem, FSL_SATA_P_CCR); /* Mark all commands complete, to complete the interrupt. */ ATA_OUTL(ch->r_mem, FSL_SATA_P_CCR, ok); if (ch->aslots == 0 && ok != 0) { for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { if (((ok >> i) & 1) && ch->slot[i].ccb != NULL) fsl_sata_end_transaction(&ch->slot[i], FSL_SATA_ERR_NONE); } } /* Read command statuses. */ if (istatus & FSL_SATA_P_HSTS_SNTFU) sntf = ATA_INL(ch->r_mem, FSL_SATA_P_SNTF); /* XXX: Process PHY events */ serr = ATA_INL(ch->r_mem, FSL_SATA_P_SERR); ATA_OUTL(ch->r_mem, FSL_SATA_P_SERR, serr); if (istatus & (FSL_SATA_P_HSTS_PR)) { if (serr) { fsl_sata_phy_check_events(ch, serr); } } /* Process command errors */ err = (istatus & (FSL_SATA_P_HSTS_FE | FSL_SATA_P_HSTS_DE)); cer = ATA_INL(ch->r_mem, FSL_SATA_P_CER); ATA_OUTL(ch->r_mem, FSL_SATA_P_CER, cer); der = ATA_INL(ch->r_mem, FSL_SATA_P_DER); ATA_OUTL(ch->r_mem, FSL_SATA_P_DER, der); /* On error, complete the rest of commands with error statuses. */ if (err) { if (ch->frozen) { union ccb *fccb = ch->frozen; ch->frozen = NULL; fccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_RELEASE_SIMQ; if (!(fccb->ccb_h.status & CAM_DEV_QFRZN)) { xpt_freeze_devq(fccb->ccb_h.path, 1); fccb->ccb_h.status |= CAM_DEV_QFRZN; } fsl_sata_done(ch, fccb); } for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { if (ch->slot[i].ccb == NULL) continue; if ((cer & (1 << i)) != 0) et = FSL_SATA_ERR_TFE; else if ((der & (1 << ch->slot[i].ccb->ccb_h.target_id)) != 0) et = FSL_SATA_ERR_SATA; else et = FSL_SATA_ERR_INVALID; fsl_sata_end_transaction(&ch->slot[i], et); } } /* Process NOTIFY events */ if (sntf) fsl_sata_notify_events(ch, sntf); } /* Must be called with channel locked. */ static int fsl_sata_check_collision(struct fsl_sata_channel *ch, union ccb *ccb) { int t = ccb->ccb_h.target_id; if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) { /* Tagged command while we have no supported tag free. */ if (((~ch->oslots) & (0xffff >> (16 - ch->curr[t].tags))) == 0) return (1); /* Tagged command while untagged are active. */ if (ch->numrslotspd[t] != 0 && ch->numtslotspd[t] == 0) return (1); } else { /* Untagged command while tagged are active. */ if (ch->numrslotspd[t] != 0 && ch->numtslotspd[t] != 0) return (1); } if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & (CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT))) { /* Atomic command while anything active. */ if (ch->numrslots != 0) return (1); } /* We have some atomic command running. */ if (ch->aslots != 0) return (1); return (0); } /* Must be called with channel locked. */ static void fsl_sata_begin_transaction(struct fsl_sata_channel *ch, union ccb *ccb) { struct fsl_sata_slot *slot; int tag, tags; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("fsl_sata_begin_transaction func_code=0x%x\n", ccb->ccb_h.func_code)); /* Choose empty slot. */ tags = FSL_SATA_MAX_SLOTS; if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) tags = ch->curr[ccb->ccb_h.target_id].tags; if (ch->lastslot + 1 < tags) tag = ffs(~(ch->oslots >> (ch->lastslot + 1))); else tag = 0; if (tag == 0 || tag + ch->lastslot >= tags) tag = ffs(~ch->oslots) - 1; else tag += ch->lastslot; ch->lastslot = tag; /* Occupy chosen slot. */ slot = &ch->slot[tag]; slot->ccb = ccb; slot->ttl = 0; /* Stop PM timer. */ if (ch->numrslots == 0 && ch->pm_level > 3) callout_stop(&ch->pm_timer); /* Update channel stats. */ ch->oslots |= (1 << tag); ch->numrslots++; ch->numrslotspd[ccb->ccb_h.target_id]++; if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) { ch->numtslots++; ch->numtslotspd[ccb->ccb_h.target_id]++; ch->taggedtarget = ccb->ccb_h.target_id; } if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & (CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT))) ch->aslots |= (1 << tag); if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { slot->state = FSL_SATA_SLOT_LOADING; bus_dmamap_load_ccb(ch->dma.data_tag, slot->dma.data_map, ccb, fsl_sata_dmasetprd, slot, 0); } else { slot->dma.nsegs = 0; fsl_sata_execute_transaction(slot); } CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("fsl_sata_begin_transaction exit\n")); } /* Locked by busdma engine. */ static void fsl_sata_dmasetprd(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct fsl_sata_slot *slot = arg; struct fsl_sata_channel *ch = slot->ch; struct fsl_sata_cmd_tab *ctp; struct fsl_sata_dma_prd *prd; int i, j, len, extlen; if (error) { device_printf(ch->dev, "DMA load error %d\n", error); fsl_sata_end_transaction(slot, FSL_SATA_ERR_INVALID); return; } KASSERT(nsegs <= FSL_SATA_SG_ENTRIES - 1, ("too many DMA segment entries\n")); /* Get a piece of the workspace for this request */ ctp = FSL_SATA_CTP(ch, slot); /* Fill S/G table */ prd = &ctp->prd_tab[0]; for (i = 0, j = 0; i < nsegs; i++, j++) { if (j == FSL_SATA_PRD_EXT_INDEX && FSL_SATA_PRD_MAX_DIRECT < nsegs) { prd[j].dba = htole32(FSL_SATA_CTP_BUS(ch, slot) + FSL_SATA_PRD_OFFSET(j+1)); j++; extlen = 0; } len = segs[i].ds_len; len = roundup2(len, sizeof(uint32_t)); prd[j].dba = htole32((uint32_t)segs[i].ds_addr); prd[j].dwc_flg = htole32(FSL_SATA_PRD_SNOOP | len); slot->ttl += len; if (j > FSL_SATA_PRD_MAX_DIRECT) extlen += len; } slot->dma.nsegs = j; if (j > FSL_SATA_PRD_MAX_DIRECT) prd[FSL_SATA_PRD_EXT_INDEX].dwc_flg = htole32(FSL_SATA_PRD_SNOOP | FSL_SATA_PRD_EXT | extlen); bus_dmamap_sync(ch->dma.data_tag, slot->dma.data_map, ((slot->ccb->ccb_h.flags & CAM_DIR_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); fsl_sata_execute_transaction(slot); } /* Must be called with channel locked. */ static void fsl_sata_execute_transaction(struct fsl_sata_slot *slot) { struct fsl_sata_channel *ch = slot->ch; struct fsl_sata_cmd_tab *ctp; struct fsl_sata_cmd_list *clp; union ccb *ccb = slot->ccb; int port = ccb->ccb_h.target_id & 0x0f; int fis_size, i, softreset; uint32_t tmp; uint32_t cmd_flags = FSL_SATA_CMD_WRITE | FSL_SATA_CMD_SNOOP; softreset = 0; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("fsl_sata_execute_transaction func_code=0x%x\n", ccb->ccb_h.func_code)); /* Get a piece of the workspace for this request */ ctp = FSL_SATA_CTP(ch, slot); /* Setup the FIS for this request */ if (!(fis_size = fsl_sata_setup_fis(ch, ctp, ccb, slot->slot))) { device_printf(ch->dev, "Setting up SATA FIS failed\n"); fsl_sata_end_transaction(slot, FSL_SATA_ERR_INVALID); return; } /* Setup the command list entry */ clp = FSL_SATA_CLP(ch, slot); clp->fis_length = htole16(fis_size); clp->prd_length = htole16(slot->dma.nsegs); /* Special handling for Soft Reset command. */ if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL)) { if (ccb->ataio.cmd.control & ATA_A_RESET) { softreset = 1; cmd_flags |= FSL_SATA_CMD_RESET; } else { /* Prepare FIS receive area for check. */ for (i = 0; i < 32; i++) ctp->sfis[i] = 0xff; softreset = 2; } } if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) cmd_flags |= FSL_SATA_CMD_QUEUED; clp->cmd_flags = htole32(cmd_flags | (ccb->ccb_h.func_code == XPT_SCSI_IO ? FSL_SATA_CMD_ATAPI : 0) | slot->slot); clp->ttl = htole32(slot->ttl); clp->cda = htole32(FSL_SATA_CTP_BUS(ch, slot)); bus_dmamap_sync(ch->dma.work_tag, ch->dma.work_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Issue command to the controller. */ slot->state = FSL_SATA_SLOT_RUNNING; ch->rslots |= (1 << slot->slot); ATA_OUTL(ch->r_mem, FSL_SATA_P_CQPMP, port); ATA_OUTL(ch->r_mem, FSL_SATA_P_CQR, (1 << slot->slot)); /* Device reset commands don't interrupt. Poll them. */ if (ccb->ccb_h.func_code == XPT_ATA_IO && (ccb->ataio.cmd.command == ATA_DEVICE_RESET || softreset)) { int count, timeout = ccb->ccb_h.timeout * 100; enum fsl_sata_err_type et = FSL_SATA_ERR_NONE; for (count = 0; count < timeout; count++) { DELAY(10); tmp = 0; if (softreset == 2) { tmp = ATA_INL(ch->r_mem, FSL_SATA_P_SIG); if (tmp != 0 && tmp != 0xffffffff) break; continue; } if ((ATA_INL(ch->r_mem, FSL_SATA_P_CCR) & (1 << slot->slot)) != 0) break; } if (timeout && (count >= timeout)) { device_printf(ch->dev, "Poll timeout on slot %d port %d (round %d)\n", slot->slot, port, softreset); device_printf(ch->dev, "hsts %08x cqr %08x ccr %08x ss %08x " "rs %08x cer %08x der %08x serr %08x car %08x sig %08x\n", ATA_INL(ch->r_mem, FSL_SATA_P_HSTS), ATA_INL(ch->r_mem, FSL_SATA_P_CQR), ATA_INL(ch->r_mem, FSL_SATA_P_CCR), ATA_INL(ch->r_mem, FSL_SATA_P_SSTS), ch->rslots, ATA_INL(ch->r_mem, FSL_SATA_P_CER), ATA_INL(ch->r_mem, FSL_SATA_P_DER), ATA_INL(ch->r_mem, FSL_SATA_P_SERR), ATA_INL(ch->r_mem, FSL_SATA_P_CAR), ATA_INL(ch->r_mem, FSL_SATA_P_SIG)); et = FSL_SATA_ERR_TIMEOUT; } fsl_sata_end_transaction(slot, et); return; } /* Start command execution timeout */ callout_reset_sbt(&slot->timeout, SBT_1MS * ccb->ccb_h.timeout / 2, 0, fsl_sata_timeout, slot, 0); return; } /* Must be called with channel locked. */ static void fsl_sata_process_timeout(struct fsl_sata_channel *ch) { int i; mtx_assert(&ch->mtx, MA_OWNED); /* Handle the rest of commands. */ for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { /* Do we have a running request on slot? */ if (ch->slot[i].state < FSL_SATA_SLOT_RUNNING) continue; fsl_sata_end_transaction(&ch->slot[i], FSL_SATA_ERR_TIMEOUT); } } /* Must be called with channel locked. */ static void fsl_sata_rearm_timeout(struct fsl_sata_channel *ch) { int i; mtx_assert(&ch->mtx, MA_OWNED); for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { struct fsl_sata_slot *slot = &ch->slot[i]; /* Do we have a running request on slot? */ if (slot->state < FSL_SATA_SLOT_RUNNING) continue; if ((ch->toslots & (1 << i)) == 0) continue; callout_reset_sbt(&slot->timeout, SBT_1MS * slot->ccb->ccb_h.timeout / 2, 0, fsl_sata_timeout, slot, 0); } } /* Locked by callout mechanism. */ static void fsl_sata_timeout(void *arg) { struct fsl_sata_slot *slot = arg; struct fsl_sata_channel *ch = slot->ch; device_t dev = ch->dev; uint32_t sstatus; /* Check for stale timeout. */ if (slot->state < FSL_SATA_SLOT_RUNNING) return; /* Check if slot was not being executed last time we checked. */ if (slot->state < FSL_SATA_SLOT_EXECUTING) { /* Check if slot started executing. */ sstatus = ATA_INL(ch->r_mem, FSL_SATA_P_CAR); if ((sstatus & (1 << slot->slot)) != 0) slot->state = FSL_SATA_SLOT_EXECUTING; callout_reset_sbt(&slot->timeout, SBT_1MS * slot->ccb->ccb_h.timeout / 2, 0, fsl_sata_timeout, slot, 0); return; } device_printf(dev, "Timeout on slot %d port %d\n", slot->slot, slot->ccb->ccb_h.target_id & 0x0f); /* Handle frozen command. */ if (ch->frozen) { union ccb *fccb = ch->frozen; ch->frozen = NULL; fccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_RELEASE_SIMQ; if (!(fccb->ccb_h.status & CAM_DEV_QFRZN)) { xpt_freeze_devq(fccb->ccb_h.path, 1); fccb->ccb_h.status |= CAM_DEV_QFRZN; } fsl_sata_done(ch, fccb); } if (ch->toslots == 0) xpt_freeze_simq(ch->sim, 1); ch->toslots |= (1 << slot->slot); if ((ch->rslots & ~ch->toslots) == 0) fsl_sata_process_timeout(ch); else device_printf(dev, " ... waiting for slots %08x\n", ch->rslots & ~ch->toslots); } /* Must be called with channel locked. */ static void fsl_sata_end_transaction(struct fsl_sata_slot *slot, enum fsl_sata_err_type et) { struct fsl_sata_channel *ch = slot->ch; union ccb *ccb = slot->ccb; struct fsl_sata_cmd_list *clp; int lastto; uint32_t sig; bus_dmamap_sync(ch->dma.work_tag, ch->dma.work_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); clp = FSL_SATA_CLP(ch, slot); /* Read result registers to the result struct */ if (ccb->ccb_h.func_code == XPT_ATA_IO) { struct ata_res *res = &ccb->ataio.res; if ((et == FSL_SATA_ERR_TFE) || (ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT)) { struct fsl_sata_cmd_tab *ctp = FSL_SATA_CTP(ch, slot); uint8_t *fis = ctp->sfis; res->status = fis[2]; res->error = fis[3]; res->lba_low = fis[4]; res->lba_mid = fis[5]; res->lba_high = fis[6]; res->device = fis[7]; res->lba_low_exp = fis[8]; res->lba_mid_exp = fis[9]; res->lba_high_exp = fis[10]; res->sector_count = fis[12]; res->sector_count_exp = fis[13]; if ((ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) && (ccb->ataio.cmd.control & ATA_A_RESET) == 0) { sig = ATA_INL(ch->r_mem, FSL_SATA_P_SIG); res->lba_high = sig >> 24; res->lba_mid = sig >> 16; res->lba_low = sig >> 8; res->sector_count = sig; } } else bzero(res, sizeof(*res)); if ((ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) == 0 && (ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { ccb->ataio.resid = ccb->ataio.dxfer_len - le32toh(clp->ttl); } } else { if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { ccb->csio.resid = ccb->csio.dxfer_len - le32toh(clp->ttl); } } if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { bus_dmamap_sync(ch->dma.data_tag, slot->dma.data_map, (ccb->ccb_h.flags & CAM_DIR_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ch->dma.data_tag, slot->dma.data_map); } if (et != FSL_SATA_ERR_NONE) ch->eslots |= (1 << slot->slot); /* In case of error, freeze device for proper recovery. */ if ((et != FSL_SATA_ERR_NONE) && (!ch->recoverycmd) && !(ccb->ccb_h.status & CAM_DEV_QFRZN)) { xpt_freeze_devq(ccb->ccb_h.path, 1); ccb->ccb_h.status |= CAM_DEV_QFRZN; } /* Set proper result status. */ ccb->ccb_h.status &= ~CAM_STATUS_MASK; switch (et) { case FSL_SATA_ERR_NONE: ccb->ccb_h.status |= CAM_REQ_CMP; if (ccb->ccb_h.func_code == XPT_SCSI_IO) ccb->csio.scsi_status = SCSI_STATUS_OK; break; case FSL_SATA_ERR_INVALID: ch->fatalerr = 1; ccb->ccb_h.status |= CAM_REQ_INVALID; break; case FSL_SATA_ERR_INNOCENT: ccb->ccb_h.status |= CAM_REQUEUE_REQ; break; case FSL_SATA_ERR_TFE: case FSL_SATA_ERR_NCQ: if (ccb->ccb_h.func_code == XPT_SCSI_IO) { ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR; ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND; } else { ccb->ccb_h.status |= CAM_ATA_STATUS_ERROR; } break; case FSL_SATA_ERR_SATA: ch->fatalerr = 1; if (!ch->recoverycmd) { xpt_freeze_simq(ch->sim, 1); ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_RELEASE_SIMQ; } ccb->ccb_h.status |= CAM_UNCOR_PARITY; break; case FSL_SATA_ERR_TIMEOUT: if (!ch->recoverycmd) { xpt_freeze_simq(ch->sim, 1); ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_RELEASE_SIMQ; } ccb->ccb_h.status |= CAM_CMD_TIMEOUT; break; default: ch->fatalerr = 1; ccb->ccb_h.status |= CAM_REQ_CMP_ERR; } /* Free slot. */ ch->oslots &= ~(1 << slot->slot); ch->rslots &= ~(1 << slot->slot); ch->aslots &= ~(1 << slot->slot); slot->state = FSL_SATA_SLOT_EMPTY; slot->ccb = NULL; /* Update channel stats. */ ch->numrslots--; ch->numrslotspd[ccb->ccb_h.target_id]--; ATA_OUTL(ch->r_mem, FSL_SATA_P_CCR, 1 << slot->slot); if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) { ch->numtslots--; ch->numtslotspd[ccb->ccb_h.target_id]--; } /* Cancel timeout state if request completed normally. */ if (et != FSL_SATA_ERR_TIMEOUT) { lastto = (ch->toslots == (1 << slot->slot)); ch->toslots &= ~(1 << slot->slot); if (lastto) xpt_release_simq(ch->sim, TRUE); } /* If it was first request of reset sequence and there is no error, * proceed to second request. */ if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) && (ccb->ataio.cmd.control & ATA_A_RESET) && et == FSL_SATA_ERR_NONE) { ccb->ataio.cmd.control &= ~ATA_A_RESET; fsl_sata_begin_transaction(ch, ccb); return; } /* If it was our READ LOG command - process it. */ if (ccb->ccb_h.recovery_type == RECOVERY_READ_LOG) { fsl_sata_process_read_log(ch, ccb); /* If it was our REQUEST SENSE command - process it. */ } else if (ccb->ccb_h.recovery_type == RECOVERY_REQUEST_SENSE) { fsl_sata_process_request_sense(ch, ccb); /* If it was NCQ or ATAPI command error, put result on hold. */ } else if (et == FSL_SATA_ERR_NCQ || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR && (ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)) { ch->hold[slot->slot] = ccb; ch->numhslots++; } else fsl_sata_done(ch, ccb); /* If we have no other active commands, ... */ if (ch->rslots == 0) { /* if there was fatal error - reset port. */ if (ch->toslots != 0 || ch->fatalerr) { fsl_sata_reset(ch); } else { /* if we have slots in error, we can reinit port. */ if (ch->eslots != 0) { fsl_sata_stop(ch); fsl_sata_start(ch); } /* if there commands on hold, we can do READ LOG. */ if (!ch->recoverycmd && ch->numhslots) fsl_sata_issue_recovery(ch); } /* If all the rest of commands are in timeout - give them chance. */ } else if ((ch->rslots & ~ch->toslots) == 0 && et != FSL_SATA_ERR_TIMEOUT) fsl_sata_rearm_timeout(ch); /* Unfreeze frozen command. */ if (ch->frozen && !fsl_sata_check_collision(ch, ch->frozen)) { union ccb *fccb = ch->frozen; ch->frozen = NULL; fsl_sata_begin_transaction(ch, fccb); xpt_release_simq(ch->sim, TRUE); } /* Start PM timer. */ if (ch->numrslots == 0 && ch->pm_level > 3 && (ch->curr[ch->pm_present ? 15 : 0].caps & CTS_SATA_CAPS_D_PMREQ)) { callout_schedule(&ch->pm_timer, (ch->pm_level == 4) ? hz / 1000 : hz / 8); } } static void fsl_sata_issue_recovery(struct fsl_sata_channel *ch) { union ccb *ccb; struct ccb_ataio *ataio; struct ccb_scsiio *csio; int i; /* Find some held command. */ for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { if (ch->hold[i]) break; } ccb = xpt_alloc_ccb_nowait(); if (ccb == NULL) { device_printf(ch->dev, "Unable to allocate recovery command\n"); completeall: /* We can't do anything -- complete held commands. */ for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { if (ch->hold[i] == NULL) continue; ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK; ch->hold[i]->ccb_h.status |= CAM_RESRC_UNAVAIL; fsl_sata_done(ch, ch->hold[i]); ch->hold[i] = NULL; ch->numhslots--; } fsl_sata_reset(ch); return; } ccb->ccb_h = ch->hold[i]->ccb_h; /* Reuse old header. */ if (ccb->ccb_h.func_code == XPT_ATA_IO) { /* READ LOG */ ccb->ccb_h.recovery_type = RECOVERY_READ_LOG; ccb->ccb_h.func_code = XPT_ATA_IO; ccb->ccb_h.flags = CAM_DIR_IN; ccb->ccb_h.timeout = 1000; /* 1s should be enough. */ ataio = &ccb->ataio; ataio->data_ptr = malloc(512, M_FSL_SATA, M_NOWAIT); if (ataio->data_ptr == NULL) { xpt_free_ccb(ccb); device_printf(ch->dev, "Unable to allocate memory for READ LOG command\n"); goto completeall; } ataio->dxfer_len = 512; bzero(&ataio->cmd, sizeof(ataio->cmd)); ataio->cmd.flags = CAM_ATAIO_48BIT; ataio->cmd.command = 0x2F; /* READ LOG EXT */ ataio->cmd.sector_count = 1; ataio->cmd.sector_count_exp = 0; ataio->cmd.lba_low = 0x10; ataio->cmd.lba_mid = 0; ataio->cmd.lba_mid_exp = 0; } else { /* REQUEST SENSE */ ccb->ccb_h.recovery_type = RECOVERY_REQUEST_SENSE; ccb->ccb_h.recovery_slot = i; ccb->ccb_h.func_code = XPT_SCSI_IO; ccb->ccb_h.flags = CAM_DIR_IN; ccb->ccb_h.status = 0; ccb->ccb_h.timeout = 1000; /* 1s should be enough. */ csio = &ccb->csio; csio->data_ptr = (void *)&ch->hold[i]->csio.sense_data; csio->dxfer_len = ch->hold[i]->csio.sense_len; csio->cdb_len = 6; bzero(&csio->cdb_io, sizeof(csio->cdb_io)); csio->cdb_io.cdb_bytes[0] = 0x03; csio->cdb_io.cdb_bytes[4] = csio->dxfer_len; } /* Freeze SIM while doing recovery. */ ch->recoverycmd = 1; xpt_freeze_simq(ch->sim, 1); fsl_sata_begin_transaction(ch, ccb); } static void fsl_sata_process_read_log(struct fsl_sata_channel *ch, union ccb *ccb) { uint8_t *data; struct ata_res *res; int i; ch->recoverycmd = 0; data = ccb->ataio.data_ptr; if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP && (data[0] & 0x80) == 0) { for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { if (!ch->hold[i]) continue; if (ch->hold[i]->ccb_h.func_code != XPT_ATA_IO) continue; if ((data[0] & 0x1F) == i) { res = &ch->hold[i]->ataio.res; res->status = data[2]; res->error = data[3]; res->lba_low = data[4]; res->lba_mid = data[5]; res->lba_high = data[6]; res->device = data[7]; res->lba_low_exp = data[8]; res->lba_mid_exp = data[9]; res->lba_high_exp = data[10]; res->sector_count = data[12]; res->sector_count_exp = data[13]; } else { ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK; ch->hold[i]->ccb_h.status |= CAM_REQUEUE_REQ; } fsl_sata_done(ch, ch->hold[i]); ch->hold[i] = NULL; ch->numhslots--; } } else { if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) device_printf(ch->dev, "Error while READ LOG EXT\n"); else if ((data[0] & 0x80) == 0) { device_printf(ch->dev, "Non-queued command error in READ LOG EXT\n"); } for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { if (!ch->hold[i]) continue; if (ch->hold[i]->ccb_h.func_code != XPT_ATA_IO) continue; fsl_sata_done(ch, ch->hold[i]); ch->hold[i] = NULL; ch->numhslots--; } } free(ccb->ataio.data_ptr, M_FSL_SATA); xpt_free_ccb(ccb); xpt_release_simq(ch->sim, TRUE); } static void fsl_sata_process_request_sense(struct fsl_sata_channel *ch, union ccb *ccb) { int i; ch->recoverycmd = 0; i = ccb->ccb_h.recovery_slot; if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { ch->hold[i]->ccb_h.status |= CAM_AUTOSNS_VALID; } else { ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK; ch->hold[i]->ccb_h.status |= CAM_AUTOSENSE_FAIL; } fsl_sata_done(ch, ch->hold[i]); ch->hold[i] = NULL; ch->numhslots--; xpt_free_ccb(ccb); xpt_release_simq(ch->sim, TRUE); } static void fsl_sata_start(struct fsl_sata_channel *ch) { u_int32_t cmd; /* Clear SATA error register */ ATA_OUTL(ch->r_mem, FSL_SATA_P_SERR, 0xFFFFFFFF); /* Clear any interrupts pending on this channel */ ATA_OUTL(ch->r_mem, FSL_SATA_P_HSTS, 0x3F); ATA_OUTL(ch->r_mem, FSL_SATA_P_CER, 0xFFFF); ATA_OUTL(ch->r_mem, FSL_SATA_P_DER, 0xFFFF); /* Start operations on this channel */ cmd = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL); cmd |= FSL_SATA_P_HCTRL_HC_ON | FSL_SATA_P_HCTRL_SNOOP; cmd &= ~FSL_SATA_P_HCTRL_HC_FORCE_OFF; ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, cmd | (ch->pm_present ? FSL_SATA_P_HCTRL_PM : 0)); fsl_sata_wait_register(ch, FSL_SATA_P_HSTS, FSL_SATA_P_HSTS_PR, FSL_SATA_P_HSTS_PR, 500); ATA_OUTL(ch->r_mem, FSL_SATA_P_HSTS, ATA_INL(ch->r_mem, FSL_SATA_P_HSTS) & FSL_SATA_P_HSTS_PR); } static void fsl_sata_stop(struct fsl_sata_channel *ch) { uint32_t cmd; int i; /* Kill all activity on this channel */ cmd = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL); cmd &= ~FSL_SATA_P_HCTRL_HC_ON; for (i = 0; i < 2; i++) { ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, cmd); if (fsl_sata_wait_register(ch, FSL_SATA_P_HSTS, FSL_SATA_P_HSTS_HS_ON, 0, 500)) { if (i != 0) device_printf(ch->dev, "stopping FSL SATA engine failed\n"); cmd |= FSL_SATA_P_HCTRL_HC_FORCE_OFF; } else break; } ch->eslots = 0; } static void fsl_sata_reset(struct fsl_sata_channel *ch) { uint32_t ctrl; int i; xpt_freeze_simq(ch->sim, 1); if (bootverbose) device_printf(ch->dev, "FSL SATA reset...\n"); /* Requeue freezed command. */ if (ch->frozen) { union ccb *fccb = ch->frozen; ch->frozen = NULL; fccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_RELEASE_SIMQ; if (!(fccb->ccb_h.status & CAM_DEV_QFRZN)) { xpt_freeze_devq(fccb->ccb_h.path, 1); fccb->ccb_h.status |= CAM_DEV_QFRZN; } fsl_sata_done(ch, fccb); } /* Kill the engine and requeue all running commands. */ fsl_sata_stop(ch); DELAY(1000); /* sleep for 1ms */ for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { /* Do we have a running request on slot? */ if (ch->slot[i].state < FSL_SATA_SLOT_RUNNING) continue; /* XXX; Commands in loading state. */ fsl_sata_end_transaction(&ch->slot[i], FSL_SATA_ERR_INNOCENT); } for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) { if (!ch->hold[i]) continue; fsl_sata_done(ch, ch->hold[i]); ch->hold[i] = NULL; ch->numhslots--; } if (ch->toslots != 0) xpt_release_simq(ch->sim, TRUE); ch->eslots = 0; ch->toslots = 0; ch->fatalerr = 0; /* Tell the XPT about the event */ xpt_async(AC_BUS_RESET, ch->path, NULL); /* Disable port interrupts */ ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL) & ~0x3f); /* Reset and reconnect PHY, */ fsl_sata_start(ch); if (fsl_sata_wait_register(ch, FSL_SATA_P_HSTS, 0x08, 0x08, 500)) { if (bootverbose) device_printf(ch->dev, "FSL SATA reset: device not found\n"); ch->devices = 0; /* Enable wanted port interrupts */ ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL) | FSL_SATA_P_HCTRL_PHYRDY); xpt_release_simq(ch->sim, TRUE); return; } if (bootverbose) device_printf(ch->dev, "FSL SATA reset: device found\n"); ch->devices = 1; /* Enable wanted port interrupts */ ctrl = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL) & ~0x3f; ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, ctrl | FSL_SATA_P_HCTRL_FATAL | FSL_SATA_P_HCTRL_PHYRDY | FSL_SATA_P_HCTRL_SIG | FSL_SATA_P_HCTRL_SNTFY | FSL_SATA_P_HCTRL_DE | FSL_SATA_P_HCTRL_CC); xpt_release_simq(ch->sim, TRUE); } static int fsl_sata_setup_fis(struct fsl_sata_channel *ch, struct fsl_sata_cmd_tab *ctp, union ccb *ccb, int tag) { uint8_t *fis = &ctp->cfis[0]; bzero(fis, 32); fis[0] = 0x27; /* host to device */ fis[1] = (ccb->ccb_h.target_id & 0x0f); if (ccb->ccb_h.func_code == XPT_SCSI_IO) { fis[1] |= 0x80; fis[2] = ATA_PACKET_CMD; if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA) fis[3] = ATA_F_DMA; else { fis[5] = ccb->csio.dxfer_len; fis[6] = ccb->csio.dxfer_len >> 8; } fis[7] = ATA_D_LBA; fis[15] = ATA_A_4BIT; bcopy((ccb->ccb_h.flags & CAM_CDB_POINTER) ? ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes, ctp->acmd, ccb->csio.cdb_len); bzero(ctp->acmd + ccb->csio.cdb_len, 32 - ccb->csio.cdb_len); } else if ((ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) == 0) { fis[1] |= 0x80; fis[2] = ccb->ataio.cmd.command; fis[3] = ccb->ataio.cmd.features; fis[4] = ccb->ataio.cmd.lba_low; fis[5] = ccb->ataio.cmd.lba_mid; fis[6] = ccb->ataio.cmd.lba_high; fis[7] = ccb->ataio.cmd.device; fis[8] = ccb->ataio.cmd.lba_low_exp; fis[9] = ccb->ataio.cmd.lba_mid_exp; fis[10] = ccb->ataio.cmd.lba_high_exp; fis[11] = ccb->ataio.cmd.features_exp; if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) { fis[12] = tag << 3; fis[13] = 0; } else { fis[12] = ccb->ataio.cmd.sector_count; fis[13] = ccb->ataio.cmd.sector_count_exp; } fis[15] = ATA_A_4BIT; } else { fis[15] = ccb->ataio.cmd.control; } return (20); } static int fsl_sata_check_ids(struct fsl_sata_channel *ch, union ccb *ccb) { if (ccb->ccb_h.target_id > 15) { ccb->ccb_h.status = CAM_TID_INVALID; fsl_sata_done(ch, ccb); return (-1); } if (ccb->ccb_h.target_lun != 0) { ccb->ccb_h.status = CAM_LUN_INVALID; fsl_sata_done(ch, ccb); return (-1); } return (0); } static void fsl_sataaction(struct cam_sim *sim, union ccb *ccb) { struct fsl_sata_channel *ch; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("fsl_sataaction func_code=0x%x\n", ccb->ccb_h.func_code)); ch = (struct fsl_sata_channel *)cam_sim_softc(sim); switch (ccb->ccb_h.func_code) { /* Common cases first */ case XPT_ATA_IO: /* Execute the requested I/O operation */ case XPT_SCSI_IO: if (fsl_sata_check_ids(ch, ccb)) return; if (ch->devices == 0 || (ch->pm_present == 0 && ccb->ccb_h.target_id > 0 && ccb->ccb_h.target_id < 15)) { ccb->ccb_h.status = CAM_SEL_TIMEOUT; break; } ccb->ccb_h.recovery_type = RECOVERY_NONE; /* Check for command collision. */ if (fsl_sata_check_collision(ch, ccb)) { /* Freeze command. */ ch->frozen = ccb; /* We have only one frozen slot, so freeze simq also. */ xpt_freeze_simq(ch->sim, 1); return; } fsl_sata_begin_transaction(ch, ccb); return; case XPT_ABORT: /* Abort the specified CCB */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; break; case XPT_SET_TRAN_SETTINGS: { struct ccb_trans_settings *cts = &ccb->cts; struct fsl_sata_device *d; if (fsl_sata_check_ids(ch, ccb)) return; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) d = &ch->curr[ccb->ccb_h.target_id]; else d = &ch->user[ccb->ccb_h.target_id]; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_REVISION) d->revision = cts->xport_specific.sata.revision; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_MODE) d->mode = cts->xport_specific.sata.mode; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_BYTECOUNT) d->bytecount = min(8192, cts->xport_specific.sata.bytecount); if (cts->xport_specific.sata.valid & CTS_SATA_VALID_TAGS) d->tags = min(FSL_SATA_MAX_SLOTS, cts->xport_specific.sata.tags); if (cts->xport_specific.sata.valid & CTS_SATA_VALID_PM) ch->pm_present = cts->xport_specific.sata.pm_present; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_ATAPI) d->atapi = cts->xport_specific.sata.atapi; ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_GET_TRAN_SETTINGS: /* Get default/user set transfer settings for the target */ { struct ccb_trans_settings *cts = &ccb->cts; struct fsl_sata_device *d; uint32_t status; if (fsl_sata_check_ids(ch, ccb)) return; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) d = &ch->curr[ccb->ccb_h.target_id]; else d = &ch->user[ccb->ccb_h.target_id]; cts->protocol = PROTO_UNSPECIFIED; cts->protocol_version = PROTO_VERSION_UNSPECIFIED; cts->transport = XPORT_SATA; cts->transport_version = XPORT_VERSION_UNSPECIFIED; cts->proto_specific.valid = 0; cts->xport_specific.sata.valid = 0; if (cts->type == CTS_TYPE_CURRENT_SETTINGS && (ccb->ccb_h.target_id == 15 || (ccb->ccb_h.target_id == 0 && !ch->pm_present))) { status = ATA_INL(ch->r_mem, FSL_SATA_P_SSTS) & ATA_SS_SPD_MASK; if (status & 0x0f0) { cts->xport_specific.sata.revision = (status & 0x0f0) >> 4; cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION; } cts->xport_specific.sata.caps = d->caps & CTS_SATA_CAPS_D; if (ch->pm_level) { cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_PMREQ; } cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_AN; cts->xport_specific.sata.caps &= ch->user[ccb->ccb_h.target_id].caps; cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS; } else { cts->xport_specific.sata.revision = d->revision; cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION; cts->xport_specific.sata.caps = d->caps; cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS; } cts->xport_specific.sata.mode = d->mode; cts->xport_specific.sata.valid |= CTS_SATA_VALID_MODE; cts->xport_specific.sata.bytecount = d->bytecount; cts->xport_specific.sata.valid |= CTS_SATA_VALID_BYTECOUNT; cts->xport_specific.sata.pm_present = ch->pm_present; cts->xport_specific.sata.valid |= CTS_SATA_VALID_PM; cts->xport_specific.sata.tags = d->tags; cts->xport_specific.sata.valid |= CTS_SATA_VALID_TAGS; cts->xport_specific.sata.atapi = d->atapi; cts->xport_specific.sata.valid |= CTS_SATA_VALID_ATAPI; ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_RESET_BUS: /* Reset the specified SCSI bus */ case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ fsl_sata_reset(ch); ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_TERM_IO: /* Terminate the I/O process */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = PI_SDTR_ABLE; cpi->hba_inquiry |= PI_TAG_ABLE; #if 0 /* * XXX: CAM tries to reset port 15 if it sees port multiplier * support. Disable it for now. */ cpi->hba_inquiry |= PI_SATAPM; #endif cpi->target_sprt = 0; cpi->hba_misc = PIM_SEQSCAN | PIM_UNMAPPED; cpi->hba_eng_cnt = 0; /* * XXX: This should be 15, since hardware *does* support a port * multiplier. See above. */ cpi->max_target = 0; cpi->max_lun = 0; cpi->initiator_id = 0; cpi->bus_id = cam_sim_bus(sim); cpi->base_transfer_speed = 150000; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "FSL SATA", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->transport = XPORT_SATA; cpi->transport_version = XPORT_VERSION_UNSPECIFIED; cpi->protocol = PROTO_ATA; cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; cpi->maxio = (FSL_SATA_SG_ENTRIES - 1) * PAGE_SIZE; cpi->ccb_h.status = CAM_REQ_CMP; break; } default: ccb->ccb_h.status = CAM_REQ_INVALID; break; } fsl_sata_done(ch, ccb); } static void fsl_satapoll(struct cam_sim *sim) { struct fsl_sata_channel *ch = (struct fsl_sata_channel *)cam_sim_softc(sim); uint32_t istatus; /* Read interrupt statuses and process if any. */ istatus = ATA_INL(ch->r_mem, FSL_SATA_P_HSTS); if (istatus != 0) fsl_sata_intr_main(ch, istatus); } MODULE_VERSION(fsl_sata, 1); MODULE_DEPEND(fsl_sata, cam, 1, 1, 1); diff --git a/sys/powerpc/powerpc/nexus.c b/sys/powerpc/powerpc/nexus.c index 3c71e1e79e3b..55afadcb4e20 100644 --- a/sys/powerpc/powerpc/nexus.c +++ b/sys/powerpc/powerpc/nexus.c @@ -1,315 +1,321 @@ /*- * Copyright 1998 Massachusetts Institute of Technology * Copyright 2001 by Thomas Moestl . * Copyright 2006 by Marius Strobl . * All rights reserved. * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: FreeBSD: src/sys/i386/i386/nexus.c,v 1.43 2001/02/09 */ /* * This code implements a `root nexus' for Power ISA Architecture * machines. The function of the root nexus is to serve as an * attachment point for both processors and buses, and to manage * resources which are common to all of them. In particular, * this code implements the core resource managers for interrupt * requests and I/O memory address space. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct rman intr_rman; static struct rman mem_rman; static device_probe_t nexus_probe; static device_attach_t nexus_attach; static bus_get_rman_t nexus_get_rman; static bus_map_resource_t nexus_map_resource; static bus_unmap_resource_t nexus_unmap_resource; #ifdef SMP static bus_bind_intr_t nexus_bind_intr; #endif static bus_config_intr_t nexus_config_intr; static bus_setup_intr_t nexus_setup_intr; static bus_teardown_intr_t nexus_teardown_intr; static bus_get_bus_tag_t nexus_get_bus_tag; static ofw_bus_map_intr_t nexus_ofw_map_intr; static device_method_t nexus_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nexus_probe), DEVMETHOD(device_attach, nexus_attach), /* Bus interface */ DEVMETHOD(bus_add_child, bus_generic_add_child), DEVMETHOD(bus_adjust_resource, bus_generic_rman_adjust_resource), DEVMETHOD(bus_activate_resource, bus_generic_rman_activate_resource), DEVMETHOD(bus_alloc_resource, bus_generic_rman_alloc_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_rman_deactivate_resource), DEVMETHOD(bus_get_rman, nexus_get_rman), DEVMETHOD(bus_map_resource, nexus_map_resource), DEVMETHOD(bus_release_resource, bus_generic_rman_release_resource), DEVMETHOD(bus_unmap_resource, nexus_unmap_resource), #ifdef SMP DEVMETHOD(bus_bind_intr, nexus_bind_intr), #endif DEVMETHOD(bus_config_intr, nexus_config_intr), DEVMETHOD(bus_setup_intr, nexus_setup_intr), DEVMETHOD(bus_teardown_intr, nexus_teardown_intr), DEVMETHOD(bus_get_bus_tag, nexus_get_bus_tag), /* ofw_bus interface */ DEVMETHOD(ofw_bus_map_intr, nexus_ofw_map_intr), DEVMETHOD_END }; DEFINE_CLASS_0(nexus, nexus_driver, nexus_methods, 1); EARLY_DRIVER_MODULE(nexus, root, nexus_driver, 0, 0, BUS_PASS_BUS); MODULE_VERSION(nexus, 1); static int nexus_probe(device_t dev) { device_quiet(dev); /* suppress attach message for neatness */ return (BUS_PROBE_DEFAULT); } static int nexus_attach(device_t dev) { intr_rman.rm_type = RMAN_ARRAY; intr_rman.rm_descr = "Interrupts"; mem_rman.rm_type = RMAN_ARRAY; mem_rman.rm_descr = "I/O memory addresses"; if (rman_init(&intr_rman) != 0 || rman_init(&mem_rman) != 0 || rman_manage_region(&intr_rman, 0, ~0) != 0 || rman_manage_region(&mem_rman, 0, BUS_SPACE_MAXADDR) != 0) panic("%s: failed to set up rmans.", __func__); /* Add ofwbus0. */ device_add_child(dev, "ofwbus", 0); /* Now, probe children. */ bus_generic_probe(dev); bus_generic_attach(dev); return (0); } static int nexus_setup_intr(device_t bus __unused, device_t child, struct resource *r, int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg, void **cookiep) { int error, domain; if (r == NULL) panic("%s: NULL interrupt resource!", __func__); if (cookiep != NULL) *cookiep = NULL; if ((rman_get_flags(r) & RF_SHAREABLE) == 0) flags |= INTR_EXCL; /* We depend here on rman_activate_resource() being idempotent. */ error = rman_activate_resource(r); if (error) return (error); if (bus_get_domain(child, &domain) != 0) { if(bootverbose) device_printf(child, "no domain found\n"); domain = 0; } error = powerpc_setup_intr(device_get_nameunit(child), rman_get_start(r), filt, intr, arg, flags, cookiep, domain); return (error); } static int nexus_teardown_intr(device_t bus __unused, device_t child __unused, struct resource *r, void *ih) { if (r == NULL) return (EINVAL); return (powerpc_teardown_intr(ih)); } static bus_space_tag_t nexus_get_bus_tag(device_t bus __unused, device_t child __unused) { #if BYTE_ORDER == LITTLE_ENDIAN return(&bs_le_tag); #else return(&bs_be_tag); #endif } #ifdef SMP static int nexus_bind_intr(device_t bus __unused, device_t child __unused, struct resource *r, int cpu) { return (powerpc_bind_intr(rman_get_start(r), cpu)); } #endif static int nexus_config_intr(device_t dev, int irq, enum intr_trigger trig, enum intr_polarity pol) { return (powerpc_config_intr(irq, trig, pol)); } static int nexus_ofw_map_intr(device_t dev, device_t child, phandle_t iparent, int icells, pcell_t *irq) { u_int intr = MAP_IRQ(iparent, irq[0]); if (icells > 1) powerpc_fw_config_intr(intr, irq[1]); return (intr); } static struct rman * nexus_get_rman(device_t bus, int type, u_int flags) { switch (type) { case SYS_RES_IRQ: return (&intr_rman); case SYS_RES_MEMORY: return (&mem_rman); default: return (NULL); } } static int nexus_map_resource(device_t bus, device_t child, int type, struct resource *r, struct resource_map_request *argsp, struct resource_map *map) { struct resource_map_request args; rman_res_t length, start; int error; /* Resources must be active to be mapped. */ if (!(rman_get_flags(r) & RF_ACTIVE)) return (ENXIO); /* Mappings are only supported on I/O and memory resources. */ switch (type) { case SYS_RES_IOPORT: case SYS_RES_MEMORY: break; default: return (EINVAL); } resource_init_map_request(&args); error = resource_validate_map_request(r, argsp, &args, &start, &length); if (error) return (error); /* * If this is a memory resource, map it into the kernel. */ switch (type) { case SYS_RES_IOPORT: panic("%s:%d SYS_RES_IOPORT handling not implemented", __func__, __LINE__); /* XXX: untested map->r_bushandle = start; - map->r_bustag = nexus_get_bus_tag(NULL, NULL); + if ((rman_get_flags(r) & RF_LITTLEENDIAN) != 0) + map->r_bustag = &bs_le_tag; + else + map->r_bustag = nexus_get_bus_tag(NULL, NULL); map->r_size = length; map->r_vaddr = NULL; */ break; case SYS_RES_MEMORY: map->r_vaddr = pmap_mapdev_attr(start, length, args.memattr); - map->r_bustag = nexus_get_bus_tag(NULL, NULL); + if ((rman_get_flags(r) & RF_LITTLEENDIAN) != 0) + map->r_bustag = &bs_le_tag; + else + map->r_bustag = nexus_get_bus_tag(NULL, NULL); map->r_size = length; map->r_bushandle = (bus_space_handle_t)map->r_vaddr; break; } return (0); } static int nexus_unmap_resource(device_t bus, device_t child, int type, struct resource *r, struct resource_map *map) { /* * If this is a memory resource, unmap it. */ switch (type) { case SYS_RES_MEMORY: pmap_unmapdev(map->r_vaddr, map->r_size); /* FALLTHROUGH */ case SYS_RES_IOPORT: break; default: return (EINVAL); } return (0); }