diff --git a/contrib/llvm-project/clang/include/clang/Sema/Sema.h b/contrib/llvm-project/clang/include/clang/Sema/Sema.h index 681a76dfa56a..53257a1bb028 100644 --- a/contrib/llvm-project/clang/include/clang/Sema/Sema.h +++ b/contrib/llvm-project/clang/include/clang/Sema/Sema.h @@ -1,13632 +1,13635 @@ //===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the Sema class, which performs semantic analysis and // builds ASTs. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_SEMA_H #define LLVM_CLANG_SEMA_SEMA_H #include "clang/AST/ASTConcept.h" #include "clang/AST/ASTFwd.h" #include "clang/AST/Attr.h" #include "clang/AST/Availability.h" #include "clang/AST/ComparisonCategories.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprConcepts.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprOpenMP.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/LocInfoType.h" #include "clang/AST/MangleNumberingContext.h" #include "clang/AST/NSAPI.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtOpenMP.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/TypeOrdering.h" #include "clang/Basic/BitmaskEnum.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/DarwinSDKInfo.h" #include "clang/Basic/ExpressionTraits.h" #include "clang/Basic/Module.h" #include "clang/Basic/OpenCLOptions.h" #include "clang/Basic/OpenMPKinds.h" #include "clang/Basic/PragmaKinds.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TemplateKinds.h" #include "clang/Basic/TypeTraits.h" #include "clang/Sema/AnalysisBasedWarnings.h" #include "clang/Sema/CleanupInfo.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/ExternalSemaSource.h" #include "clang/Sema/IdentifierResolver.h" #include "clang/Sema/ObjCMethodList.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/Scope.h" #include "clang/Sema/SemaConcept.h" #include "clang/Sema/TypoCorrection.h" #include "clang/Sema/Weak.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Frontend/OpenMP/OMPConstants.h" #include #include #include #include #include namespace llvm { class APSInt; template class DenseSet; class SmallBitVector; struct InlineAsmIdentifierInfo; } namespace clang { class ADLResult; class ASTConsumer; class ASTContext; class ASTMutationListener; class ASTReader; class ASTWriter; class ArrayType; class ParsedAttr; class BindingDecl; class BlockDecl; class CapturedDecl; class CXXBasePath; class CXXBasePaths; class CXXBindTemporaryExpr; typedef SmallVector CXXCastPath; class CXXConstructorDecl; class CXXConversionDecl; class CXXDeleteExpr; class CXXDestructorDecl; class CXXFieldCollector; class CXXMemberCallExpr; class CXXMethodDecl; class CXXScopeSpec; class CXXTemporary; class CXXTryStmt; class CallExpr; class ClassTemplateDecl; class ClassTemplatePartialSpecializationDecl; class ClassTemplateSpecializationDecl; class VarTemplatePartialSpecializationDecl; class CodeCompleteConsumer; class CodeCompletionAllocator; class CodeCompletionTUInfo; class CodeCompletionResult; class CoroutineBodyStmt; class Decl; class DeclAccessPair; class DeclContext; class DeclRefExpr; class DeclaratorDecl; class DeducedTemplateArgument; class DependentDiagnostic; class DesignatedInitExpr; class Designation; class EnableIfAttr; class EnumConstantDecl; class Expr; class ExtVectorType; class FormatAttr; class FriendDecl; class FunctionDecl; class FunctionProtoType; class FunctionTemplateDecl; class ImplicitConversionSequence; typedef MutableArrayRef ConversionSequenceList; class InitListExpr; class InitializationKind; class InitializationSequence; class InitializedEntity; class IntegerLiteral; class LabelStmt; class LambdaExpr; class LangOptions; class LocalInstantiationScope; class LookupResult; class MacroInfo; typedef ArrayRef> ModuleIdPath; class ModuleLoader; class MultiLevelTemplateArgumentList; class NamedDecl; class ObjCCategoryDecl; class ObjCCategoryImplDecl; class ObjCCompatibleAliasDecl; class ObjCContainerDecl; class ObjCImplDecl; class ObjCImplementationDecl; class ObjCInterfaceDecl; class ObjCIvarDecl; template class ObjCList; class ObjCMessageExpr; class ObjCMethodDecl; class ObjCPropertyDecl; class ObjCProtocolDecl; class OMPThreadPrivateDecl; class OMPRequiresDecl; class OMPDeclareReductionDecl; class OMPDeclareSimdDecl; class OMPClause; struct OMPVarListLocTy; struct OverloadCandidate; enum class OverloadCandidateParamOrder : char; enum OverloadCandidateRewriteKind : unsigned; class OverloadCandidateSet; class OverloadExpr; class ParenListExpr; class ParmVarDecl; class Preprocessor; class PseudoDestructorTypeStorage; class PseudoObjectExpr; class QualType; class StandardConversionSequence; class Stmt; class StringLiteral; class SwitchStmt; class TemplateArgument; class TemplateArgumentList; class TemplateArgumentLoc; class TemplateDecl; class TemplateInstantiationCallback; class TemplateParameterList; class TemplatePartialOrderingContext; class TemplateTemplateParmDecl; class Token; class TypeAliasDecl; class TypedefDecl; class TypedefNameDecl; class TypeLoc; class TypoCorrectionConsumer; class UnqualifiedId; class UnresolvedLookupExpr; class UnresolvedMemberExpr; class UnresolvedSetImpl; class UnresolvedSetIterator; class UsingDecl; class UsingShadowDecl; class ValueDecl; class VarDecl; class VarTemplateSpecializationDecl; class VisibilityAttr; class VisibleDeclConsumer; class IndirectFieldDecl; struct DeductionFailureInfo; class TemplateSpecCandidateSet; namespace sema { class AccessedEntity; class BlockScopeInfo; class Capture; class CapturedRegionScopeInfo; class CapturingScopeInfo; class CompoundScopeInfo; class DelayedDiagnostic; class DelayedDiagnosticPool; class FunctionScopeInfo; class LambdaScopeInfo; class PossiblyUnreachableDiag; class RISCVIntrinsicManager; class SemaPPCallbacks; class TemplateDeductionInfo; } namespace threadSafety { class BeforeSet; void threadSafetyCleanup(BeforeSet* Cache); } // FIXME: No way to easily map from TemplateTypeParmTypes to // TemplateTypeParmDecls, so we have this horrible PointerUnion. typedef std::pair, SourceLocation> UnexpandedParameterPack; /// Describes whether we've seen any nullability information for the given /// file. struct FileNullability { /// The first pointer declarator (of any pointer kind) in the file that does /// not have a corresponding nullability annotation. SourceLocation PointerLoc; /// The end location for the first pointer declarator in the file. Used for /// placing fix-its. SourceLocation PointerEndLoc; /// Which kind of pointer declarator we saw. uint8_t PointerKind; /// Whether we saw any type nullability annotations in the given file. bool SawTypeNullability = false; }; /// A mapping from file IDs to a record of whether we've seen nullability /// information in that file. class FileNullabilityMap { /// A mapping from file IDs to the nullability information for each file ID. llvm::DenseMap Map; /// A single-element cache based on the file ID. struct { FileID File; FileNullability Nullability; } Cache; public: FileNullability &operator[](FileID file) { // Check the single-element cache. if (file == Cache.File) return Cache.Nullability; // It's not in the single-element cache; flush the cache if we have one. if (!Cache.File.isInvalid()) { Map[Cache.File] = Cache.Nullability; } // Pull this entry into the cache. Cache.File = file; Cache.Nullability = Map[file]; return Cache.Nullability; } }; /// Tracks expected type during expression parsing, for use in code completion. /// The type is tied to a particular token, all functions that update or consume /// the type take a start location of the token they are looking at as a /// parameter. This avoids updating the type on hot paths in the parser. class PreferredTypeBuilder { public: PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {} void enterCondition(Sema &S, SourceLocation Tok); void enterReturn(Sema &S, SourceLocation Tok); void enterVariableInit(SourceLocation Tok, Decl *D); /// Handles e.g. BaseType{ .D = Tok... void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType, const Designation &D); /// Computing a type for the function argument may require running /// overloading, so we postpone its computation until it is actually needed. /// /// Clients should be very careful when using this funciton, as it stores a /// function_ref, clients should make sure all calls to get() with the same /// location happen while function_ref is alive. /// /// The callback should also emit signature help as a side-effect, but only /// if the completion point has been reached. void enterFunctionArgument(SourceLocation Tok, llvm::function_ref ComputeType); void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc); void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind, SourceLocation OpLoc); void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op); void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base); void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS); /// Handles all type casts, including C-style cast, C++ casts, etc. void enterTypeCast(SourceLocation Tok, QualType CastType); /// Get the expected type associated with this location, if any. /// /// If the location is a function argument, determining the expected type /// involves considering all function overloads and the arguments so far. /// In this case, signature help for these function overloads will be reported /// as a side-effect (only if the completion point has been reached). QualType get(SourceLocation Tok) const { if (!Enabled || Tok != ExpectedLoc) return QualType(); if (!Type.isNull()) return Type; if (ComputeType) return ComputeType(); return QualType(); } private: bool Enabled; /// Start position of a token for which we store expected type. SourceLocation ExpectedLoc; /// Expected type for a token starting at ExpectedLoc. QualType Type; /// A function to compute expected type at ExpectedLoc. It is only considered /// if Type is null. llvm::function_ref ComputeType; }; /// Sema - This implements semantic analysis and AST building for C. class Sema final { Sema(const Sema &) = delete; void operator=(const Sema &) = delete; ///Source of additional semantic information. ExternalSemaSource *ExternalSource; ///Whether Sema has generated a multiplexer and has to delete it. bool isMultiplexExternalSource; static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD); /// Determine whether two declarations should be linked together, given that /// the old declaration might not be visible and the new declaration might /// not have external linkage. bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old, const NamedDecl *New) { if (isVisible(Old)) return true; // See comment in below overload for why it's safe to compute the linkage // of the new declaration here. if (New->isExternallyDeclarable()) { assert(Old->isExternallyDeclarable() && "should not have found a non-externally-declarable previous decl"); return true; } return false; } bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New); void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, QualType ResultTy, ArrayRef Args); public: /// The maximum alignment, same as in llvm::Value. We duplicate them here /// because that allows us not to duplicate the constants in clang code, /// which we must to since we can't directly use the llvm constants. /// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp /// /// This is the greatest alignment value supported by load, store, and alloca /// instructions, and global values. static const unsigned MaxAlignmentExponent = 32; static const uint64_t MaximumAlignment = 1ull << MaxAlignmentExponent; typedef OpaquePtr DeclGroupPtrTy; typedef OpaquePtr TemplateTy; typedef OpaquePtr TypeTy; OpenCLOptions OpenCLFeatures; FPOptions CurFPFeatures; const LangOptions &LangOpts; Preprocessor &PP; ASTContext &Context; ASTConsumer &Consumer; DiagnosticsEngine &Diags; SourceManager &SourceMgr; /// Flag indicating whether or not to collect detailed statistics. bool CollectStats; /// Code-completion consumer. CodeCompleteConsumer *CodeCompleter; /// CurContext - This is the current declaration context of parsing. DeclContext *CurContext; /// Generally null except when we temporarily switch decl contexts, /// like in \see ActOnObjCTemporaryExitContainerContext. DeclContext *OriginalLexicalContext; /// VAListTagName - The declaration name corresponding to __va_list_tag. /// This is used as part of a hack to omit that class from ADL results. DeclarationName VAListTagName; bool MSStructPragmaOn; // True when \#pragma ms_struct on /// Controls member pointer representation format under the MS ABI. LangOptions::PragmaMSPointersToMembersKind MSPointerToMemberRepresentationMethod; /// Stack of active SEH __finally scopes. Can be empty. SmallVector CurrentSEHFinally; /// Source location for newly created implicit MSInheritanceAttrs SourceLocation ImplicitMSInheritanceAttrLoc; /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by /// `TransformTypos` in order to keep track of any TypoExprs that are created /// recursively during typo correction and wipe them away if the correction /// fails. llvm::SmallVector TypoExprs; /// pragma clang section kind enum PragmaClangSectionKind { PCSK_Invalid = 0, PCSK_BSS = 1, PCSK_Data = 2, PCSK_Rodata = 3, PCSK_Text = 4, PCSK_Relro = 5 }; enum PragmaClangSectionAction { PCSA_Set = 0, PCSA_Clear = 1 }; struct PragmaClangSection { std::string SectionName; bool Valid = false; SourceLocation PragmaLocation; }; PragmaClangSection PragmaClangBSSSection; PragmaClangSection PragmaClangDataSection; PragmaClangSection PragmaClangRodataSection; PragmaClangSection PragmaClangRelroSection; PragmaClangSection PragmaClangTextSection; enum PragmaMsStackAction { PSK_Reset = 0x0, // #pragma () PSK_Set = 0x1, // #pragma (value) PSK_Push = 0x2, // #pragma (push[, id]) PSK_Pop = 0x4, // #pragma (pop[, id]) PSK_Show = 0x8, // #pragma (show) -- only for "pack"! PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value) PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value) }; // #pragma pack and align. class AlignPackInfo { public: // `Native` represents default align mode, which may vary based on the // platform. enum Mode : unsigned char { Native, Natural, Packed, Mac68k }; // #pragma pack info constructor AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL) : PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) { assert(Num == PackNumber && "The pack number has been truncated."); } // #pragma align info constructor AlignPackInfo(AlignPackInfo::Mode M, bool IsXL) : PackAttr(false), AlignMode(M), PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {} explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {} AlignPackInfo() : AlignPackInfo(Native, false) {} // When a AlignPackInfo itself cannot be used, this returns an 32-bit // integer encoding for it. This should only be passed to // AlignPackInfo::getFromRawEncoding, it should not be inspected directly. static uint32_t getRawEncoding(const AlignPackInfo &Info) { std::uint32_t Encoding{}; if (Info.IsXLStack()) Encoding |= IsXLMask; Encoding |= static_cast(Info.getAlignMode()) << 1; if (Info.IsPackAttr()) Encoding |= PackAttrMask; Encoding |= static_cast(Info.getPackNumber()) << 4; return Encoding; } static AlignPackInfo getFromRawEncoding(unsigned Encoding) { bool IsXL = static_cast(Encoding & IsXLMask); AlignPackInfo::Mode M = static_cast((Encoding & AlignModeMask) >> 1); int PackNumber = (Encoding & PackNumMask) >> 4; if (Encoding & PackAttrMask) return AlignPackInfo(M, PackNumber, IsXL); return AlignPackInfo(M, IsXL); } bool IsPackAttr() const { return PackAttr; } bool IsAlignAttr() const { return !PackAttr; } Mode getAlignMode() const { return AlignMode; } unsigned getPackNumber() const { return PackNumber; } bool IsPackSet() const { // #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack // attriute on a decl. return PackNumber != UninitPackVal && PackNumber != 0; } bool IsXLStack() const { return XLStack; } bool operator==(const AlignPackInfo &Info) const { return std::tie(AlignMode, PackNumber, PackAttr, XLStack) == std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr, Info.XLStack); } bool operator!=(const AlignPackInfo &Info) const { return !(*this == Info); } private: /// \brief True if this is a pragma pack attribute, /// not a pragma align attribute. bool PackAttr; /// \brief The alignment mode that is in effect. Mode AlignMode; /// \brief The pack number of the stack. unsigned char PackNumber; /// \brief True if it is a XL #pragma align/pack stack. bool XLStack; /// \brief Uninitialized pack value. static constexpr unsigned char UninitPackVal = -1; // Masks to encode and decode an AlignPackInfo. static constexpr uint32_t IsXLMask{0x0000'0001}; static constexpr uint32_t AlignModeMask{0x0000'0006}; static constexpr uint32_t PackAttrMask{0x00000'0008}; static constexpr uint32_t PackNumMask{0x0000'01F0}; }; template struct PragmaStack { struct Slot { llvm::StringRef StackSlotLabel; ValueType Value; SourceLocation PragmaLocation; SourceLocation PragmaPushLocation; Slot(llvm::StringRef StackSlotLabel, ValueType Value, SourceLocation PragmaLocation, SourceLocation PragmaPushLocation) : StackSlotLabel(StackSlotLabel), Value(Value), PragmaLocation(PragmaLocation), PragmaPushLocation(PragmaPushLocation) {} }; void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action, llvm::StringRef StackSlotLabel, ValueType Value) { if (Action == PSK_Reset) { CurrentValue = DefaultValue; CurrentPragmaLocation = PragmaLocation; return; } if (Action & PSK_Push) Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation, PragmaLocation); else if (Action & PSK_Pop) { if (!StackSlotLabel.empty()) { // If we've got a label, try to find it and jump there. auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) { return x.StackSlotLabel == StackSlotLabel; }); // If we found the label so pop from there. if (I != Stack.rend()) { CurrentValue = I->Value; CurrentPragmaLocation = I->PragmaLocation; Stack.erase(std::prev(I.base()), Stack.end()); } } else if (!Stack.empty()) { // We do not have a label, just pop the last entry. CurrentValue = Stack.back().Value; CurrentPragmaLocation = Stack.back().PragmaLocation; Stack.pop_back(); } } if (Action & PSK_Set) { CurrentValue = Value; CurrentPragmaLocation = PragmaLocation; } } // MSVC seems to add artificial slots to #pragma stacks on entering a C++ // method body to restore the stacks on exit, so it works like this: // // struct S { // #pragma (push, InternalPragmaSlot, ) // void Method {} // #pragma (pop, InternalPragmaSlot) // }; // // It works even with #pragma vtordisp, although MSVC doesn't support // #pragma vtordisp(push [, id], n) // syntax. // // Push / pop a named sentinel slot. void SentinelAction(PragmaMsStackAction Action, StringRef Label) { assert((Action == PSK_Push || Action == PSK_Pop) && "Can only push / pop #pragma stack sentinels!"); Act(CurrentPragmaLocation, Action, Label, CurrentValue); } // Constructors. explicit PragmaStack(const ValueType &Default) : DefaultValue(Default), CurrentValue(Default) {} bool hasValue() const { return CurrentValue != DefaultValue; } SmallVector Stack; ValueType DefaultValue; // Value used for PSK_Reset action. ValueType CurrentValue; SourceLocation CurrentPragmaLocation; }; // FIXME: We should serialize / deserialize these if they occur in a PCH (but // we shouldn't do so if they're in a module). /// Whether to insert vtordisps prior to virtual bases in the Microsoft /// C++ ABI. Possible values are 0, 1, and 2, which mean: /// /// 0: Suppress all vtordisps /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial /// structors /// 2: Always insert vtordisps to support RTTI on partially constructed /// objects PragmaStack VtorDispStack; PragmaStack AlignPackStack; // The current #pragma align/pack values and locations at each #include. struct AlignPackIncludeState { AlignPackInfo CurrentValue; SourceLocation CurrentPragmaLocation; bool HasNonDefaultValue, ShouldWarnOnInclude; }; SmallVector AlignPackIncludeStack; // Segment #pragmas. PragmaStack DataSegStack; PragmaStack BSSSegStack; PragmaStack ConstSegStack; PragmaStack CodeSegStack; // This stack tracks the current state of Sema.CurFPFeatures. PragmaStack FpPragmaStack; FPOptionsOverride CurFPFeatureOverrides() { FPOptionsOverride result; if (!FpPragmaStack.hasValue()) { result = FPOptionsOverride(); } else { result = FpPragmaStack.CurrentValue; } return result; } // RAII object to push / pop sentinel slots for all MS #pragma stacks. // Actions should be performed only if we enter / exit a C++ method body. class PragmaStackSentinelRAII { public: PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct); ~PragmaStackSentinelRAII(); private: Sema &S; StringRef SlotLabel; bool ShouldAct; }; /// A mapping that describes the nullability we've seen in each header file. FileNullabilityMap NullabilityMap; /// Last section used with #pragma init_seg. StringLiteral *CurInitSeg; SourceLocation CurInitSegLoc; /// Sections used with #pragma alloc_text. llvm::StringMap> FunctionToSectionMap; /// VisContext - Manages the stack for \#pragma GCC visibility. void *VisContext; // Really a "PragmaVisStack*" /// This an attribute introduced by \#pragma clang attribute. struct PragmaAttributeEntry { SourceLocation Loc; ParsedAttr *Attribute; SmallVector MatchRules; bool IsUsed; }; /// A push'd group of PragmaAttributeEntries. struct PragmaAttributeGroup { /// The location of the push attribute. SourceLocation Loc; /// The namespace of this push group. const IdentifierInfo *Namespace; SmallVector Entries; }; SmallVector PragmaAttributeStack; /// The declaration that is currently receiving an attribute from the /// #pragma attribute stack. const Decl *PragmaAttributeCurrentTargetDecl; /// This represents the last location of a "#pragma clang optimize off" /// directive if such a directive has not been closed by an "on" yet. If /// optimizations are currently "on", this is set to an invalid location. SourceLocation OptimizeOffPragmaLocation; /// The "on" or "off" argument passed by \#pragma optimize, that denotes /// whether the optimizations in the list passed to the pragma should be /// turned off or on. This boolean is true by default because command line /// options are honored when `#pragma optimize("", on)`. /// (i.e. `ModifyFnAttributeMSPragmaOptimze()` does nothing) bool MSPragmaOptimizeIsOn = true; /// Set of no-builtin functions listed by \#pragma function. llvm::SmallSetVector MSFunctionNoBuiltins; /// Flag indicating if Sema is building a recovery call expression. /// /// This flag is used to avoid building recovery call expressions /// if Sema is already doing so, which would cause infinite recursions. bool IsBuildingRecoveryCallExpr; /// Used to control the generation of ExprWithCleanups. CleanupInfo Cleanup; /// ExprCleanupObjects - This is the stack of objects requiring /// cleanup that are created by the current full expression. SmallVector ExprCleanupObjects; /// Store a set of either DeclRefExprs or MemberExprs that contain a reference /// to a variable (constant) that may or may not be odr-used in this Expr, and /// we won't know until all lvalue-to-rvalue and discarded value conversions /// have been applied to all subexpressions of the enclosing full expression. /// This is cleared at the end of each full expression. using MaybeODRUseExprSet = llvm::SetVector, llvm::SmallPtrSet>; MaybeODRUseExprSet MaybeODRUseExprs; std::unique_ptr CachedFunctionScope; /// Stack containing information about each of the nested /// function, block, and method scopes that are currently active. SmallVector FunctionScopes; /// The index of the first FunctionScope that corresponds to the current /// context. unsigned FunctionScopesStart = 0; ArrayRef getFunctionScopes() const { return llvm::makeArrayRef(FunctionScopes.begin() + FunctionScopesStart, FunctionScopes.end()); } /// Stack containing information needed when in C++2a an 'auto' is encountered /// in a function declaration parameter type specifier in order to invent a /// corresponding template parameter in the enclosing abbreviated function /// template. This information is also present in LambdaScopeInfo, stored in /// the FunctionScopes stack. SmallVector InventedParameterInfos; /// The index of the first InventedParameterInfo that refers to the current /// context. unsigned InventedParameterInfosStart = 0; ArrayRef getInventedParameterInfos() const { return llvm::makeArrayRef(InventedParameterInfos.begin() + InventedParameterInfosStart, InventedParameterInfos.end()); } typedef LazyVector ExtVectorDeclsType; /// ExtVectorDecls - This is a list all the extended vector types. This allows /// us to associate a raw vector type with one of the ext_vector type names. /// This is only necessary for issuing pretty diagnostics. ExtVectorDeclsType ExtVectorDecls; /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes. std::unique_ptr FieldCollector; typedef llvm::SmallSetVector NamedDeclSetType; /// Set containing all declared private fields that are not used. NamedDeclSetType UnusedPrivateFields; /// Set containing all typedefs that are likely unused. llvm::SmallSetVector UnusedLocalTypedefNameCandidates; /// Delete-expressions to be analyzed at the end of translation unit /// /// This list contains class members, and locations of delete-expressions /// that could not be proven as to whether they mismatch with new-expression /// used in initializer of the field. typedef std::pair DeleteExprLoc; typedef llvm::SmallVector DeleteLocs; llvm::MapVector DeleteExprs; typedef llvm::SmallPtrSet RecordDeclSetTy; /// PureVirtualClassDiagSet - a set of class declarations which we have /// emitted a list of pure virtual functions. Used to prevent emitting the /// same list more than once. std::unique_ptr PureVirtualClassDiagSet; /// ParsingInitForAutoVars - a set of declarations with auto types for which /// we are currently parsing the initializer. llvm::SmallPtrSet ParsingInitForAutoVars; /// Look for a locally scoped extern "C" declaration by the given name. NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name); typedef LazyVector TentativeDefinitionsType; /// All the tentative definitions encountered in the TU. TentativeDefinitionsType TentativeDefinitions; /// All the external declarations encoutered and used in the TU. SmallVector ExternalDeclarations; typedef LazyVector UnusedFileScopedDeclsType; /// The set of file scoped decls seen so far that have not been used /// and must warn if not used. Only contains the first declaration. UnusedFileScopedDeclsType UnusedFileScopedDecls; typedef LazyVector DelegatingCtorDeclsType; /// All the delegating constructors seen so far in the file, used for /// cycle detection at the end of the TU. DelegatingCtorDeclsType DelegatingCtorDecls; /// All the overriding functions seen during a class definition /// that had their exception spec checks delayed, plus the overridden /// function. SmallVector, 2> DelayedOverridingExceptionSpecChecks; /// All the function redeclarations seen during a class definition that had /// their exception spec checks delayed, plus the prior declaration they /// should be checked against. Except during error recovery, the new decl /// should always be a friend declaration, as that's the only valid way to /// redeclare a special member before its class is complete. SmallVector, 2> DelayedEquivalentExceptionSpecChecks; typedef llvm::MapVector> LateParsedTemplateMapT; LateParsedTemplateMapT LateParsedTemplateMap; /// Callback to the parser to parse templated functions when needed. typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT); typedef void LateTemplateParserCleanupCB(void *P); LateTemplateParserCB *LateTemplateParser; LateTemplateParserCleanupCB *LateTemplateParserCleanup; void *OpaqueParser; void SetLateTemplateParser(LateTemplateParserCB *LTP, LateTemplateParserCleanupCB *LTPCleanup, void *P) { LateTemplateParser = LTP; LateTemplateParserCleanup = LTPCleanup; OpaqueParser = P; } class DelayedDiagnostics; class DelayedDiagnosticsState { sema::DelayedDiagnosticPool *SavedPool; friend class Sema::DelayedDiagnostics; }; typedef DelayedDiagnosticsState ParsingDeclState; typedef DelayedDiagnosticsState ProcessingContextState; /// A class which encapsulates the logic for delaying diagnostics /// during parsing and other processing. class DelayedDiagnostics { /// The current pool of diagnostics into which delayed /// diagnostics should go. sema::DelayedDiagnosticPool *CurPool; public: DelayedDiagnostics() : CurPool(nullptr) {} /// Adds a delayed diagnostic. void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h /// Determines whether diagnostics should be delayed. bool shouldDelayDiagnostics() { return CurPool != nullptr; } /// Returns the current delayed-diagnostics pool. sema::DelayedDiagnosticPool *getCurrentPool() const { return CurPool; } /// Enter a new scope. Access and deprecation diagnostics will be /// collected in this pool. DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) { DelayedDiagnosticsState state; state.SavedPool = CurPool; CurPool = &pool; return state; } /// Leave a delayed-diagnostic state that was previously pushed. /// Do not emit any of the diagnostics. This is performed as part /// of the bookkeeping of popping a pool "properly". void popWithoutEmitting(DelayedDiagnosticsState state) { CurPool = state.SavedPool; } /// Enter a new scope where access and deprecation diagnostics are /// not delayed. DelayedDiagnosticsState pushUndelayed() { DelayedDiagnosticsState state; state.SavedPool = CurPool; CurPool = nullptr; return state; } /// Undo a previous pushUndelayed(). void popUndelayed(DelayedDiagnosticsState state) { assert(CurPool == nullptr); CurPool = state.SavedPool; } } DelayedDiagnostics; /// A RAII object to temporarily push a declaration context. class ContextRAII { private: Sema &S; DeclContext *SavedContext; ProcessingContextState SavedContextState; QualType SavedCXXThisTypeOverride; unsigned SavedFunctionScopesStart; unsigned SavedInventedParameterInfosStart; public: ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true) : S(S), SavedContext(S.CurContext), SavedContextState(S.DelayedDiagnostics.pushUndelayed()), SavedCXXThisTypeOverride(S.CXXThisTypeOverride), SavedFunctionScopesStart(S.FunctionScopesStart), SavedInventedParameterInfosStart(S.InventedParameterInfosStart) { assert(ContextToPush && "pushing null context"); S.CurContext = ContextToPush; if (NewThisContext) S.CXXThisTypeOverride = QualType(); // Any saved FunctionScopes do not refer to this context. S.FunctionScopesStart = S.FunctionScopes.size(); S.InventedParameterInfosStart = S.InventedParameterInfos.size(); } void pop() { if (!SavedContext) return; S.CurContext = SavedContext; S.DelayedDiagnostics.popUndelayed(SavedContextState); S.CXXThisTypeOverride = SavedCXXThisTypeOverride; S.FunctionScopesStart = SavedFunctionScopesStart; S.InventedParameterInfosStart = SavedInventedParameterInfosStart; SavedContext = nullptr; } ~ContextRAII() { pop(); } }; /// Whether the AST is currently being rebuilt to correct immediate /// invocations. Immediate invocation candidates and references to consteval /// functions aren't tracked when this is set. bool RebuildingImmediateInvocation = false; /// Used to change context to isConstantEvaluated without pushing a heavy /// ExpressionEvaluationContextRecord object. bool isConstantEvaluatedOverride; bool isConstantEvaluated() { return ExprEvalContexts.back().isConstantEvaluated() || isConstantEvaluatedOverride; } /// RAII object to handle the state changes required to synthesize /// a function body. class SynthesizedFunctionScope { Sema &S; Sema::ContextRAII SavedContext; bool PushedCodeSynthesisContext = false; public: SynthesizedFunctionScope(Sema &S, DeclContext *DC) : S(S), SavedContext(S, DC) { S.PushFunctionScope(); S.PushExpressionEvaluationContext( Sema::ExpressionEvaluationContext::PotentiallyEvaluated); if (auto *FD = dyn_cast(DC)) FD->setWillHaveBody(true); else assert(isa(DC)); } void addContextNote(SourceLocation UseLoc) { assert(!PushedCodeSynthesisContext); Sema::CodeSynthesisContext Ctx; Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction; Ctx.PointOfInstantiation = UseLoc; Ctx.Entity = cast(S.CurContext); S.pushCodeSynthesisContext(Ctx); PushedCodeSynthesisContext = true; } ~SynthesizedFunctionScope() { if (PushedCodeSynthesisContext) S.popCodeSynthesisContext(); if (auto *FD = dyn_cast(S.CurContext)) FD->setWillHaveBody(false); S.PopExpressionEvaluationContext(); S.PopFunctionScopeInfo(); } }; /// WeakUndeclaredIdentifiers - Identifiers contained in \#pragma weak before /// declared. Rare. May alias another identifier, declared or undeclared. /// /// For aliases, the target identifier is used as a key for eventual /// processing when the target is declared. For the single-identifier form, /// the sole identifier is used as the key. Each entry is a `SetVector` /// (ordered by parse order) of aliases (identified by the alias name) in case /// of multiple aliases to the same undeclared identifier. llvm::MapVector< IdentifierInfo *, llvm::SetVector< WeakInfo, llvm::SmallVector, llvm::SmallDenseSet>> WeakUndeclaredIdentifiers; /// ExtnameUndeclaredIdentifiers - Identifiers contained in /// \#pragma redefine_extname before declared. Used in Solaris system headers /// to define functions that occur in multiple standards to call the version /// in the currently selected standard. llvm::DenseMap ExtnameUndeclaredIdentifiers; /// Load weak undeclared identifiers from the external source. void LoadExternalWeakUndeclaredIdentifiers(); /// WeakTopLevelDecl - Translation-unit scoped declarations generated by /// \#pragma weak during processing of other Decls. /// I couldn't figure out a clean way to generate these in-line, so /// we store them here and handle separately -- which is a hack. /// It would be best to refactor this. SmallVector WeakTopLevelDecl; IdentifierResolver IdResolver; /// Translation Unit Scope - useful to Objective-C actions that need /// to lookup file scope declarations in the "ordinary" C decl namespace. /// For example, user-defined classes, built-in "id" type, etc. Scope *TUScope; /// The C++ "std" namespace, where the standard library resides. LazyDeclPtr StdNamespace; /// The C++ "std::bad_alloc" class, which is defined by the C++ /// standard library. LazyDeclPtr StdBadAlloc; /// The C++ "std::align_val_t" enum class, which is defined by the C++ /// standard library. LazyDeclPtr StdAlignValT; /// The C++ "std::experimental" namespace, where the experimental parts /// of the standard library resides. NamespaceDecl *StdExperimentalNamespaceCache; /// The C++ "std::initializer_list" template, which is defined in /// \. ClassTemplateDecl *StdInitializerList; /// The C++ "std::coroutine_traits" template, which is defined in /// \ ClassTemplateDecl *StdCoroutineTraitsCache; /// The namespace where coroutine components are defined. In standard, /// they are defined in std namespace. And in the previous implementation, /// they are defined in std::experimental namespace. NamespaceDecl *CoroTraitsNamespaceCache; /// The C++ "type_info" declaration, which is defined in \. RecordDecl *CXXTypeInfoDecl; /// The MSVC "_GUID" struct, which is defined in MSVC header files. RecordDecl *MSVCGuidDecl; /// The C++ "std::source_location::__impl" struct, defined in /// \. RecordDecl *StdSourceLocationImplDecl; /// Caches identifiers/selectors for NSFoundation APIs. std::unique_ptr NSAPIObj; /// The declaration of the Objective-C NSNumber class. ObjCInterfaceDecl *NSNumberDecl; /// The declaration of the Objective-C NSValue class. ObjCInterfaceDecl *NSValueDecl; /// Pointer to NSNumber type (NSNumber *). QualType NSNumberPointer; /// Pointer to NSValue type (NSValue *). QualType NSValuePointer; /// The Objective-C NSNumber methods used to create NSNumber literals. ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods]; /// The declaration of the Objective-C NSString class. ObjCInterfaceDecl *NSStringDecl; /// Pointer to NSString type (NSString *). QualType NSStringPointer; /// The declaration of the stringWithUTF8String: method. ObjCMethodDecl *StringWithUTF8StringMethod; /// The declaration of the valueWithBytes:objCType: method. ObjCMethodDecl *ValueWithBytesObjCTypeMethod; /// The declaration of the Objective-C NSArray class. ObjCInterfaceDecl *NSArrayDecl; /// The declaration of the arrayWithObjects:count: method. ObjCMethodDecl *ArrayWithObjectsMethod; /// The declaration of the Objective-C NSDictionary class. ObjCInterfaceDecl *NSDictionaryDecl; /// The declaration of the dictionaryWithObjects:forKeys:count: method. ObjCMethodDecl *DictionaryWithObjectsMethod; /// id type. QualType QIDNSCopying; /// will hold 'respondsToSelector:' Selector RespondsToSelectorSel; /// A flag to remember whether the implicit forms of operator new and delete /// have been declared. bool GlobalNewDeleteDeclared; /// Describes how the expressions currently being parsed are /// evaluated at run-time, if at all. enum class ExpressionEvaluationContext { /// The current expression and its subexpressions occur within an /// unevaluated operand (C++11 [expr]p7), such as the subexpression of /// \c sizeof, where the type of the expression may be significant but /// no code will be generated to evaluate the value of the expression at /// run time. Unevaluated, /// The current expression occurs within a braced-init-list within /// an unevaluated operand. This is mostly like a regular unevaluated /// context, except that we still instantiate constexpr functions that are /// referenced here so that we can perform narrowing checks correctly. UnevaluatedList, /// The current expression occurs within a discarded statement. /// This behaves largely similarly to an unevaluated operand in preventing /// definitions from being required, but not in other ways. DiscardedStatement, /// The current expression occurs within an unevaluated /// operand that unconditionally permits abstract references to /// fields, such as a SIZE operator in MS-style inline assembly. UnevaluatedAbstract, /// The current context is "potentially evaluated" in C++11 terms, /// but the expression is evaluated at compile-time (like the values of /// cases in a switch statement). ConstantEvaluated, /// In addition of being constant evaluated, the current expression /// occurs in an immediate function context - either a consteval function /// or a consteval if function. ImmediateFunctionContext, /// The current expression is potentially evaluated at run time, /// which means that code may be generated to evaluate the value of the /// expression at run time. PotentiallyEvaluated, /// The current expression is potentially evaluated, but any /// declarations referenced inside that expression are only used if /// in fact the current expression is used. /// /// This value is used when parsing default function arguments, for which /// we would like to provide diagnostics (e.g., passing non-POD arguments /// through varargs) but do not want to mark declarations as "referenced" /// until the default argument is used. PotentiallyEvaluatedIfUsed }; using ImmediateInvocationCandidate = llvm::PointerIntPair; /// Data structure used to record current or nested /// expression evaluation contexts. struct ExpressionEvaluationContextRecord { /// The expression evaluation context. ExpressionEvaluationContext Context; /// Whether the enclosing context needed a cleanup. CleanupInfo ParentCleanup; /// The number of active cleanup objects when we entered /// this expression evaluation context. unsigned NumCleanupObjects; /// The number of typos encountered during this expression evaluation /// context (i.e. the number of TypoExprs created). unsigned NumTypos; MaybeODRUseExprSet SavedMaybeODRUseExprs; /// The lambdas that are present within this context, if it /// is indeed an unevaluated context. SmallVector Lambdas; /// The declaration that provides context for lambda expressions /// and block literals if the normal declaration context does not /// suffice, e.g., in a default function argument. Decl *ManglingContextDecl; /// If we are processing a decltype type, a set of call expressions /// for which we have deferred checking the completeness of the return type. SmallVector DelayedDecltypeCalls; /// If we are processing a decltype type, a set of temporary binding /// expressions for which we have deferred checking the destructor. SmallVector DelayedDecltypeBinds; llvm::SmallPtrSet PossibleDerefs; /// Expressions appearing as the LHS of a volatile assignment in this /// context. We produce a warning for these when popping the context if /// they are not discarded-value expressions nor unevaluated operands. SmallVector VolatileAssignmentLHSs; /// Set of candidates for starting an immediate invocation. llvm::SmallVector ImmediateInvocationCandidates; /// Set of DeclRefExprs referencing a consteval function when used in a /// context not already known to be immediately invoked. llvm::SmallPtrSet ReferenceToConsteval; /// \brief Describes whether we are in an expression constext which we have /// to handle differently. enum ExpressionKind { EK_Decltype, EK_TemplateArgument, EK_Other } ExprContext; // A context can be nested in both a discarded statement context and // an immediate function context, so they need to be tracked independently. bool InDiscardedStatement; bool InImmediateFunctionContext; ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context, unsigned NumCleanupObjects, CleanupInfo ParentCleanup, Decl *ManglingContextDecl, ExpressionKind ExprContext) : Context(Context), ParentCleanup(ParentCleanup), NumCleanupObjects(NumCleanupObjects), NumTypos(0), ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext), InDiscardedStatement(false), InImmediateFunctionContext(false) {} bool isUnevaluated() const { return Context == ExpressionEvaluationContext::Unevaluated || Context == ExpressionEvaluationContext::UnevaluatedAbstract || Context == ExpressionEvaluationContext::UnevaluatedList; } bool isConstantEvaluated() const { return Context == ExpressionEvaluationContext::ConstantEvaluated || Context == ExpressionEvaluationContext::ImmediateFunctionContext; } bool isImmediateFunctionContext() const { return Context == ExpressionEvaluationContext::ImmediateFunctionContext || (Context == ExpressionEvaluationContext::DiscardedStatement && InImmediateFunctionContext); } bool isDiscardedStatementContext() const { return Context == ExpressionEvaluationContext::DiscardedStatement || (Context == ExpressionEvaluationContext::ImmediateFunctionContext && InDiscardedStatement); } }; /// A stack of expression evaluation contexts. SmallVector ExprEvalContexts; + // Set of failed immediate invocations to avoid double diagnosing. + llvm::SmallPtrSet FailedImmediateInvocations; + /// Emit a warning for all pending noderef expressions that we recorded. void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec); /// Compute the mangling number context for a lambda expression or /// block literal. Also return the extra mangling decl if any. /// /// \param DC - The DeclContext containing the lambda expression or /// block literal. std::tuple getCurrentMangleNumberContext(const DeclContext *DC); /// SpecialMemberOverloadResult - The overloading result for a special member /// function. /// /// This is basically a wrapper around PointerIntPair. The lowest bits of the /// integer are used to determine whether overload resolution succeeded. class SpecialMemberOverloadResult { public: enum Kind { NoMemberOrDeleted, Ambiguous, Success }; private: llvm::PointerIntPair Pair; public: SpecialMemberOverloadResult() {} SpecialMemberOverloadResult(CXXMethodDecl *MD) : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {} CXXMethodDecl *getMethod() const { return Pair.getPointer(); } void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); } Kind getKind() const { return static_cast(Pair.getInt()); } void setKind(Kind K) { Pair.setInt(K); } }; class SpecialMemberOverloadResultEntry : public llvm::FastFoldingSetNode, public SpecialMemberOverloadResult { public: SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID) : FastFoldingSetNode(ID) {} }; /// A cache of special member function overload resolution results /// for C++ records. llvm::FoldingSet SpecialMemberCache; /// A cache of the flags available in enumerations with the flag_bits /// attribute. mutable llvm::DenseMap FlagBitsCache; /// The kind of translation unit we are processing. /// /// When we're processing a complete translation unit, Sema will perform /// end-of-translation-unit semantic tasks (such as creating /// initializers for tentative definitions in C) once parsing has /// completed. Modules and precompiled headers perform different kinds of /// checks. const TranslationUnitKind TUKind; llvm::BumpPtrAllocator BumpAlloc; /// The number of SFINAE diagnostics that have been trapped. unsigned NumSFINAEErrors; typedef llvm::DenseMap> UnparsedDefaultArgInstantiationsMap; /// A mapping from parameters with unparsed default arguments to the /// set of instantiations of each parameter. /// /// This mapping is a temporary data structure used when parsing /// nested class templates or nested classes of class templates, /// where we might end up instantiating an inner class before the /// default arguments of its methods have been parsed. UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations; // Contains the locations of the beginning of unparsed default // argument locations. llvm::DenseMap UnparsedDefaultArgLocs; /// UndefinedInternals - all the used, undefined objects which require a /// definition in this translation unit. llvm::MapVector UndefinedButUsed; /// Determine if VD, which must be a variable or function, is an external /// symbol that nonetheless can't be referenced from outside this translation /// unit because its type has no linkage and it's not extern "C". bool isExternalWithNoLinkageType(ValueDecl *VD); /// Obtain a sorted list of functions that are undefined but ODR-used. void getUndefinedButUsed( SmallVectorImpl > &Undefined); /// Retrieves list of suspicious delete-expressions that will be checked at /// the end of translation unit. const llvm::MapVector & getMismatchingDeleteExpressions() const; class GlobalMethodPool { public: using Lists = std::pair; using iterator = llvm::DenseMap::iterator; iterator begin() { return Methods.begin(); } iterator end() { return Methods.end(); } iterator find(Selector Sel) { return Methods.find(Sel); } std::pair insert(std::pair &&Val) { return Methods.insert(Val); } int count(Selector Sel) const { return Methods.count(Sel); } bool empty() const { return Methods.empty(); } private: llvm::DenseMap Methods; }; /// Method Pool - allows efficient lookup when typechecking messages to "id". /// We need to maintain a list, since selectors can have differing signatures /// across classes. In Cocoa, this happens to be extremely uncommon (only 1% /// of selectors are "overloaded"). /// At the head of the list it is recorded whether there were 0, 1, or >= 2 /// methods inside categories with a particular selector. GlobalMethodPool MethodPool; /// Method selectors used in a \@selector expression. Used for implementation /// of -Wselector. llvm::MapVector ReferencedSelectors; /// List of SourceLocations where 'self' is implicitly retained inside a /// block. llvm::SmallVector, 1> ImplicitlyRetainedSelfLocs; /// Kinds of C++ special members. enum CXXSpecialMember { CXXDefaultConstructor, CXXCopyConstructor, CXXMoveConstructor, CXXCopyAssignment, CXXMoveAssignment, CXXDestructor, CXXInvalid }; typedef llvm::PointerIntPair SpecialMemberDecl; /// The C++ special members which we are currently in the process of /// declaring. If this process recursively triggers the declaration of the /// same special member, we should act as if it is not yet declared. llvm::SmallPtrSet SpecialMembersBeingDeclared; /// Kinds of defaulted comparison operator functions. enum class DefaultedComparisonKind : unsigned char { /// This is not a defaultable comparison operator. None, /// This is an operator== that should be implemented as a series of /// subobject comparisons. Equal, /// This is an operator<=> that should be implemented as a series of /// subobject comparisons. ThreeWay, /// This is an operator!= that should be implemented as a rewrite in terms /// of a == comparison. NotEqual, /// This is an <, <=, >, or >= that should be implemented as a rewrite in /// terms of a <=> comparison. Relational, }; /// The function definitions which were renamed as part of typo-correction /// to match their respective declarations. We want to keep track of them /// to ensure that we don't emit a "redefinition" error if we encounter a /// correctly named definition after the renamed definition. llvm::SmallPtrSet TypoCorrectedFunctionDefinitions; /// Stack of types that correspond to the parameter entities that are /// currently being copy-initialized. Can be empty. llvm::SmallVector CurrentParameterCopyTypes; void ReadMethodPool(Selector Sel); void updateOutOfDateSelector(Selector Sel); /// Private Helper predicate to check for 'self'. bool isSelfExpr(Expr *RExpr); bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method); /// Cause the active diagnostic on the DiagosticsEngine to be /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and /// should not be used elsewhere. void EmitCurrentDiagnostic(unsigned DiagID); /// Records and restores the CurFPFeatures state on entry/exit of compound /// statements. class FPFeaturesStateRAII { public: FPFeaturesStateRAII(Sema &S); ~FPFeaturesStateRAII(); FPOptionsOverride getOverrides() { return OldOverrides; } private: Sema& S; FPOptions OldFPFeaturesState; FPOptionsOverride OldOverrides; LangOptions::FPEvalMethodKind OldEvalMethod; SourceLocation OldFPPragmaLocation; }; void addImplicitTypedef(StringRef Name, QualType T); bool WarnedStackExhausted = false; /// Increment when we find a reference; decrement when we find an ignored /// assignment. Ultimately the value is 0 if every reference is an ignored /// assignment. llvm::DenseMap RefsMinusAssignments; /// Indicate RISC-V vector builtin functions enabled or not. bool DeclareRISCVVBuiltins = false; private: std::unique_ptr RVIntrinsicManager; Optional> CachedDarwinSDKInfo; bool WarnedDarwinSDKInfoMissing = false; public: Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, TranslationUnitKind TUKind = TU_Complete, CodeCompleteConsumer *CompletionConsumer = nullptr); ~Sema(); /// Perform initialization that occurs after the parser has been /// initialized but before it parses anything. void Initialize(); /// This virtual key function only exists to limit the emission of debug info /// describing the Sema class. GCC and Clang only emit debug info for a class /// with a vtable when the vtable is emitted. Sema is final and not /// polymorphic, but the debug info size savings are so significant that it is /// worth adding a vtable just to take advantage of this optimization. virtual void anchor(); const LangOptions &getLangOpts() const { return LangOpts; } OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; } FPOptions &getCurFPFeatures() { return CurFPFeatures; } DiagnosticsEngine &getDiagnostics() const { return Diags; } SourceManager &getSourceManager() const { return SourceMgr; } Preprocessor &getPreprocessor() const { return PP; } ASTContext &getASTContext() const { return Context; } ASTConsumer &getASTConsumer() const { return Consumer; } ASTMutationListener *getASTMutationListener() const; ExternalSemaSource* getExternalSource() const { return ExternalSource; } DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc, StringRef Platform); DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(); ///Registers an external source. If an external source already exists, /// creates a multiplex external source and appends to it. /// ///\param[in] E - A non-null external sema source. /// void addExternalSource(ExternalSemaSource *E); void PrintStats() const; /// Warn that the stack is nearly exhausted. void warnStackExhausted(SourceLocation Loc); /// Run some code with "sufficient" stack space. (Currently, at least 256K is /// guaranteed). Produces a warning if we're low on stack space and allocates /// more in that case. Use this in code that may recurse deeply (for example, /// in template instantiation) to avoid stack overflow. void runWithSufficientStackSpace(SourceLocation Loc, llvm::function_ref Fn); /// Helper class that creates diagnostics with optional /// template instantiation stacks. /// /// This class provides a wrapper around the basic DiagnosticBuilder /// class that emits diagnostics. ImmediateDiagBuilder is /// responsible for emitting the diagnostic (as DiagnosticBuilder /// does) and, if the diagnostic comes from inside a template /// instantiation, printing the template instantiation stack as /// well. class ImmediateDiagBuilder : public DiagnosticBuilder { Sema &SemaRef; unsigned DiagID; public: ImmediateDiagBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID) : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {} ImmediateDiagBuilder(DiagnosticBuilder &&DB, Sema &SemaRef, unsigned DiagID) : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {} // This is a cunning lie. DiagnosticBuilder actually performs move // construction in its copy constructor (but due to varied uses, it's not // possible to conveniently express this as actual move construction). So // the default copy ctor here is fine, because the base class disables the // source anyway, so the user-defined ~ImmediateDiagBuilder is a safe no-op // in that case anwyay. ImmediateDiagBuilder(const ImmediateDiagBuilder &) = default; ~ImmediateDiagBuilder() { // If we aren't active, there is nothing to do. if (!isActive()) return; // Otherwise, we need to emit the diagnostic. First clear the diagnostic // builder itself so it won't emit the diagnostic in its own destructor. // // This seems wasteful, in that as written the DiagnosticBuilder dtor will // do its own needless checks to see if the diagnostic needs to be // emitted. However, because we take care to ensure that the builder // objects never escape, a sufficiently smart compiler will be able to // eliminate that code. Clear(); // Dispatch to Sema to emit the diagnostic. SemaRef.EmitCurrentDiagnostic(DiagID); } /// Teach operator<< to produce an object of the correct type. template friend const ImmediateDiagBuilder & operator<<(const ImmediateDiagBuilder &Diag, const T &Value) { const DiagnosticBuilder &BaseDiag = Diag; BaseDiag << Value; return Diag; } // It is necessary to limit this to rvalue reference to avoid calling this // function with a bitfield lvalue argument since non-const reference to // bitfield is not allowed. template ::value>::type> const ImmediateDiagBuilder &operator<<(T &&V) const { const DiagnosticBuilder &BaseDiag = *this; BaseDiag << std::move(V); return *this; } }; /// A generic diagnostic builder for errors which may or may not be deferred. /// /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch) /// which are not allowed to appear inside __device__ functions and are /// allowed to appear in __host__ __device__ functions only if the host+device /// function is never codegen'ed. /// /// To handle this, we use the notion of "deferred diagnostics", where we /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed. /// /// This class lets you emit either a regular diagnostic, a deferred /// diagnostic, or no diagnostic at all, according to an argument you pass to /// its constructor, thus simplifying the process of creating these "maybe /// deferred" diagnostics. class SemaDiagnosticBuilder { public: enum Kind { /// Emit no diagnostics. K_Nop, /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()). K_Immediate, /// Emit the diagnostic immediately, and, if it's a warning or error, also /// emit a call stack showing how this function can be reached by an a /// priori known-emitted function. K_ImmediateWithCallStack, /// Create a deferred diagnostic, which is emitted only if the function /// it's attached to is codegen'ed. Also emit a call stack as with /// K_ImmediateWithCallStack. K_Deferred }; SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID, FunctionDecl *Fn, Sema &S); SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D); SemaDiagnosticBuilder(const SemaDiagnosticBuilder &) = default; ~SemaDiagnosticBuilder(); bool isImmediate() const { return ImmediateDiag.has_value(); } /// Convertible to bool: True if we immediately emitted an error, false if /// we didn't emit an error or we created a deferred error. /// /// Example usage: /// /// if (SemaDiagnosticBuilder(...) << foo << bar) /// return ExprError(); /// /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably /// want to use these instead of creating a SemaDiagnosticBuilder yourself. operator bool() const { return isImmediate(); } template friend const SemaDiagnosticBuilder & operator<<(const SemaDiagnosticBuilder &Diag, const T &Value) { if (Diag.ImmediateDiag) *Diag.ImmediateDiag << Value; else if (Diag.PartialDiagId) Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second << Value; return Diag; } // It is necessary to limit this to rvalue reference to avoid calling this // function with a bitfield lvalue argument since non-const reference to // bitfield is not allowed. template ::value>::type> const SemaDiagnosticBuilder &operator<<(T &&V) const { if (ImmediateDiag) *ImmediateDiag << std::move(V); else if (PartialDiagId) S.DeviceDeferredDiags[Fn][*PartialDiagId].second << std::move(V); return *this; } friend const SemaDiagnosticBuilder & operator<<(const SemaDiagnosticBuilder &Diag, const PartialDiagnostic &PD) { if (Diag.ImmediateDiag) PD.Emit(*Diag.ImmediateDiag); else if (Diag.PartialDiagId) Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second = PD; return Diag; } void AddFixItHint(const FixItHint &Hint) const { if (ImmediateDiag) ImmediateDiag->AddFixItHint(Hint); else if (PartialDiagId) S.DeviceDeferredDiags[Fn][*PartialDiagId].second.AddFixItHint(Hint); } friend ExprResult ExprError(const SemaDiagnosticBuilder &) { return ExprError(); } friend StmtResult StmtError(const SemaDiagnosticBuilder &) { return StmtError(); } operator ExprResult() const { return ExprError(); } operator StmtResult() const { return StmtError(); } operator TypeResult() const { return TypeError(); } operator DeclResult() const { return DeclResult(true); } operator MemInitResult() const { return MemInitResult(true); } private: Sema &S; SourceLocation Loc; unsigned DiagID; FunctionDecl *Fn; bool ShowCallStack; // Invariant: At most one of these Optionals has a value. // FIXME: Switch these to a Variant once that exists. llvm::Optional ImmediateDiag; llvm::Optional PartialDiagId; }; /// Is the last error level diagnostic immediate. This is used to determined /// whether the next info diagnostic should be immediate. bool IsLastErrorImmediate = true; /// Emit a diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint = false); /// Emit a partial diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic &PD, bool DeferHint = false); /// Build a partial diagnostic. PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h /// Whether deferrable diagnostics should be deferred. bool DeferDiags = false; /// RAII class to control scope of DeferDiags. class DeferDiagsRAII { Sema &S; bool SavedDeferDiags = false; public: DeferDiagsRAII(Sema &S, bool DeferDiags) : S(S), SavedDeferDiags(S.DeferDiags) { S.DeferDiags = DeferDiags; } ~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; } }; /// Whether uncompilable error has occurred. This includes error happens /// in deferred diagnostics. bool hasUncompilableErrorOccurred() const; bool findMacroSpelling(SourceLocation &loc, StringRef name); /// Get a string to suggest for zero-initialization of a type. std::string getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const; std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const; /// Calls \c Lexer::getLocForEndOfToken() SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0); /// Retrieve the module loader associated with the preprocessor. ModuleLoader &getModuleLoader() const; /// Invent a new identifier for parameters of abbreviated templates. IdentifierInfo * InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName, unsigned Index); void emitAndClearUnusedLocalTypedefWarnings(); private: /// Function or variable declarations to be checked for whether the deferred /// diagnostics should be emitted. llvm::SmallSetVector DeclsToCheckForDeferredDiags; public: // Emit all deferred diagnostics. void emitDeferredDiags(); enum TUFragmentKind { /// The global module fragment, between 'module;' and a module-declaration. Global, /// A normal translation unit fragment. For a non-module unit, this is the /// entire translation unit. Otherwise, it runs from the module-declaration /// to the private-module-fragment (if any) or the end of the TU (if not). Normal, /// The private module fragment, between 'module :private;' and the end of /// the translation unit. Private }; void ActOnStartOfTranslationUnit(); void ActOnEndOfTranslationUnit(); void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind); void CheckDelegatingCtorCycles(); Scope *getScopeForContext(DeclContext *Ctx); void PushFunctionScope(); void PushBlockScope(Scope *BlockScope, BlockDecl *Block); sema::LambdaScopeInfo *PushLambdaScope(); /// This is used to inform Sema what the current TemplateParameterDepth /// is during Parsing. Currently it is used to pass on the depth /// when parsing generic lambda 'auto' parameters. void RecordParsingTemplateParameterDepth(unsigned Depth); void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD, RecordDecl *RD, CapturedRegionKind K, unsigned OpenMPCaptureLevel = 0); /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short /// time after they've been popped. class PoppedFunctionScopeDeleter { Sema *Self; public: explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {} void operator()(sema::FunctionScopeInfo *Scope) const; }; using PoppedFunctionScopePtr = std::unique_ptr; PoppedFunctionScopePtr PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr, const Decl *D = nullptr, QualType BlockType = QualType()); sema::FunctionScopeInfo *getCurFunction() const { return FunctionScopes.empty() ? nullptr : FunctionScopes.back(); } sema::FunctionScopeInfo *getEnclosingFunction() const; void setFunctionHasBranchIntoScope(); void setFunctionHasBranchProtectedScope(); void setFunctionHasIndirectGoto(); void setFunctionHasMustTail(); void PushCompoundScope(bool IsStmtExpr); void PopCompoundScope(); sema::CompoundScopeInfo &getCurCompoundScope() const; bool hasAnyUnrecoverableErrorsInThisFunction() const; /// Retrieve the current block, if any. sema::BlockScopeInfo *getCurBlock(); /// Get the innermost lambda enclosing the current location, if any. This /// looks through intervening non-lambda scopes such as local functions and /// blocks. sema::LambdaScopeInfo *getEnclosingLambda() const; /// Retrieve the current lambda scope info, if any. /// \param IgnoreNonLambdaCapturingScope true if should find the top-most /// lambda scope info ignoring all inner capturing scopes that are not /// lambda scopes. sema::LambdaScopeInfo * getCurLambda(bool IgnoreNonLambdaCapturingScope = false); /// Retrieve the current generic lambda info, if any. sema::LambdaScopeInfo *getCurGenericLambda(); /// Retrieve the current captured region, if any. sema::CapturedRegionScopeInfo *getCurCapturedRegion(); /// Retrieve the current function, if any, that should be analyzed for /// potential availability violations. sema::FunctionScopeInfo *getCurFunctionAvailabilityContext(); /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls SmallVectorImpl &WeakTopLevelDecls() { return WeakTopLevelDecl; } /// Called before parsing a function declarator belonging to a function /// declaration. void ActOnStartFunctionDeclarationDeclarator(Declarator &D, unsigned TemplateParameterDepth); /// Called after parsing a function declarator belonging to a function /// declaration. void ActOnFinishFunctionDeclarationDeclarator(Declarator &D); void ActOnComment(SourceRange Comment); //===--------------------------------------------------------------------===// // Type Analysis / Processing: SemaType.cpp. // QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs, const DeclSpec *DS = nullptr); QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA, const DeclSpec *DS = nullptr); QualType BuildPointerType(QualType T, SourceLocation Loc, DeclarationName Entity); QualType BuildReferenceType(QualType T, bool LValueRef, SourceLocation Loc, DeclarationName Entity); QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, Expr *ArraySize, unsigned Quals, SourceRange Brackets, DeclarationName Entity); QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc); QualType BuildExtVectorType(QualType T, Expr *ArraySize, SourceLocation AttrLoc); QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns, SourceLocation AttrLoc); QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace, SourceLocation AttrLoc); /// Same as above, but constructs the AddressSpace index if not provided. QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, SourceLocation AttrLoc); bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc); bool CheckFunctionReturnType(QualType T, SourceLocation Loc); /// Build a function type. /// /// This routine checks the function type according to C++ rules and /// under the assumption that the result type and parameter types have /// just been instantiated from a template. It therefore duplicates /// some of the behavior of GetTypeForDeclarator, but in a much /// simpler form that is only suitable for this narrow use case. /// /// \param T The return type of the function. /// /// \param ParamTypes The parameter types of the function. This array /// will be modified to account for adjustments to the types of the /// function parameters. /// /// \param Loc The location of the entity whose type involves this /// function type or, if there is no such entity, the location of the /// type that will have function type. /// /// \param Entity The name of the entity that involves the function /// type, if known. /// /// \param EPI Extra information about the function type. Usually this will /// be taken from an existing function with the same prototype. /// /// \returns A suitable function type, if there are no errors. The /// unqualified type will always be a FunctionProtoType. /// Otherwise, returns a NULL type. QualType BuildFunctionType(QualType T, MutableArrayRef ParamTypes, SourceLocation Loc, DeclarationName Entity, const FunctionProtoType::ExtProtoInfo &EPI); QualType BuildMemberPointerType(QualType T, QualType Class, SourceLocation Loc, DeclarationName Entity); QualType BuildBlockPointerType(QualType T, SourceLocation Loc, DeclarationName Entity); QualType BuildParenType(QualType T); QualType BuildAtomicType(QualType T, SourceLocation Loc); QualType BuildReadPipeType(QualType T, SourceLocation Loc); QualType BuildWritePipeType(QualType T, SourceLocation Loc); QualType BuildBitIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc); TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S); TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy); /// Package the given type and TSI into a ParsedType. ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo); DeclarationNameInfo GetNameForDeclarator(Declarator &D); DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name); static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo = nullptr); CanThrowResult canThrow(const Stmt *E); /// Determine whether the callee of a particular function call can throw. /// E, D and Loc are all optional. static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D, SourceLocation Loc = SourceLocation()); const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT); void UpdateExceptionSpec(FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI); bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range); bool CheckDistantExceptionSpec(QualType T); bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New); bool CheckEquivalentExceptionSpec( const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc); bool CheckEquivalentExceptionSpec( const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc); bool handlerCanCatch(QualType HandlerType, QualType ExceptionType); bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, const PartialDiagnostic &NestedDiagID, const PartialDiagnostic &NoteID, const PartialDiagnostic &NoThrowDiagID, const FunctionProtoType *Superset, SourceLocation SuperLoc, const FunctionProtoType *Subset, SourceLocation SubLoc); bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID, const PartialDiagnostic &NoteID, const FunctionProtoType *Target, SourceLocation TargetLoc, const FunctionProtoType *Source, SourceLocation SourceLoc); TypeResult ActOnTypeName(Scope *S, Declarator &D); /// The parser has parsed the context-sensitive type 'instancetype' /// in an Objective-C message declaration. Return the appropriate type. ParsedType ActOnObjCInstanceType(SourceLocation Loc); /// Abstract class used to diagnose incomplete types. struct TypeDiagnoser { TypeDiagnoser() {} virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0; virtual ~TypeDiagnoser() {} }; static int getPrintable(int I) { return I; } static unsigned getPrintable(unsigned I) { return I; } static bool getPrintable(bool B) { return B; } static const char * getPrintable(const char *S) { return S; } static StringRef getPrintable(StringRef S) { return S; } static const std::string &getPrintable(const std::string &S) { return S; } static const IdentifierInfo *getPrintable(const IdentifierInfo *II) { return II; } static DeclarationName getPrintable(DeclarationName N) { return N; } static QualType getPrintable(QualType T) { return T; } static SourceRange getPrintable(SourceRange R) { return R; } static SourceRange getPrintable(SourceLocation L) { return L; } static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); } static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();} template class BoundTypeDiagnoser : public TypeDiagnoser { protected: unsigned DiagID; std::tuple Args; template void emit(const SemaDiagnosticBuilder &DB, std::index_sequence) const { // Apply all tuple elements to the builder in order. bool Dummy[] = {false, (DB << getPrintable(std::get(Args)))...}; (void)Dummy; } public: BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args) : TypeDiagnoser(), DiagID(DiagID), Args(Args...) { assert(DiagID != 0 && "no diagnostic for type diagnoser"); } void diagnose(Sema &S, SourceLocation Loc, QualType T) override { const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID); emit(DB, std::index_sequence_for()); DB << T; } }; /// Do a check to make sure \p Name looks like a legal argument for the /// swift_name attribute applied to decl \p D. Raise a diagnostic if the name /// is invalid for the given declaration. /// /// \p AL is used to provide caret diagnostics in case of a malformed name. /// /// \returns true if the name is a valid swift name for \p D, false otherwise. bool DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc, const ParsedAttr &AL, bool IsAsync); /// A derivative of BoundTypeDiagnoser for which the diagnostic's type /// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless. /// For example, a diagnostic with no other parameters would generally have /// the form "...%select{incomplete|sizeless}0 type %1...". template class SizelessTypeDiagnoser : public BoundTypeDiagnoser { public: SizelessTypeDiagnoser(unsigned DiagID, const Ts &... Args) : BoundTypeDiagnoser(DiagID, Args...) {} void diagnose(Sema &S, SourceLocation Loc, QualType T) override { const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID); this->emit(DB, std::index_sequence_for()); DB << T->isSizelessType() << T; } }; enum class CompleteTypeKind { /// Apply the normal rules for complete types. In particular, /// treat all sizeless types as incomplete. Normal, /// Relax the normal rules for complete types so that they include /// sizeless built-in types. AcceptSizeless, // FIXME: Eventually we should flip the default to Normal and opt in // to AcceptSizeless rather than opt out of it. Default = AcceptSizeless }; enum class AcceptableKind { Visible, Reachable }; private: /// Methods for marking which expressions involve dereferencing a pointer /// marked with the 'noderef' attribute. Expressions are checked bottom up as /// they are parsed, meaning that a noderef pointer may not be accessed. For /// example, in `&*p` where `p` is a noderef pointer, we will first parse the /// `*p`, but need to check that `address of` is called on it. This requires /// keeping a container of all pending expressions and checking if the address /// of them are eventually taken. void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E); void CheckAddressOfNoDeref(const Expr *E); void CheckMemberAccessOfNoDeref(const MemberExpr *E); bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T, CompleteTypeKind Kind, TypeDiagnoser *Diagnoser); struct ModuleScope { SourceLocation BeginLoc; clang::Module *Module = nullptr; bool ModuleInterface = false; bool IsPartition = false; bool ImplicitGlobalModuleFragment = false; VisibleModuleSet OuterVisibleModules; }; /// The modules we're currently parsing. llvm::SmallVector ModuleScopes; /// The global module fragment of the current translation unit. clang::Module *GlobalModuleFragment = nullptr; /// The modules we imported directly. llvm::SmallPtrSet DirectModuleImports; /// Namespace definitions that we will export when they finish. llvm::SmallPtrSet DeferredExportedNamespaces; /// Helper function to judge if we are in module purview. /// Return false if we are not in a module. bool isCurrentModulePurview() const { return getCurrentModule() ? getCurrentModule()->isModulePurview() : false; } /// Enter the scope of the global module. Module *PushGlobalModuleFragment(SourceLocation BeginLoc, bool IsImplicit); /// Leave the scope of the global module. void PopGlobalModuleFragment(); VisibleModuleSet VisibleModules; /// Cache for module units which is usable for current module. llvm::DenseSet UsableModuleUnitsCache; bool isUsableModule(const Module *M); bool isAcceptableSlow(const NamedDecl *D, AcceptableKind Kind); // Determine whether the module M belongs to the current TU. bool isModuleUnitOfCurrentTU(const Module *M) const; public: /// Get the module unit whose scope we are currently within. Module *getCurrentModule() const { return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module; } /// Is the module scope we are an interface? bool currentModuleIsInterface() const { return ModuleScopes.empty() ? false : ModuleScopes.back().ModuleInterface; } /// Get the module owning an entity. Module *getOwningModule(const Decl *Entity) { return Entity->getOwningModule(); } bool isModuleDirectlyImported(const Module *M) { return DirectModuleImports.contains(M); } /// Make a merged definition of an existing hidden definition \p ND /// visible at the specified location. void makeMergedDefinitionVisible(NamedDecl *ND); bool isModuleVisible(const Module *M, bool ModulePrivate = false); // When loading a non-modular PCH files, this is used to restore module // visibility. void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) { VisibleModules.setVisible(Mod, ImportLoc); } /// Determine whether a declaration is visible to name lookup. bool isVisible(const NamedDecl *D) { return D->isUnconditionallyVisible() || isAcceptableSlow(D, AcceptableKind::Visible); } /// Determine whether a declaration is reachable. bool isReachable(const NamedDecl *D) { // All visible declarations are reachable. return D->isUnconditionallyVisible() || isAcceptableSlow(D, AcceptableKind::Reachable); } /// Determine whether a declaration is acceptable (visible/reachable). bool isAcceptable(const NamedDecl *D, AcceptableKind Kind) { return Kind == AcceptableKind::Visible ? isVisible(D) : isReachable(D); } /// Determine whether any declaration of an entity is visible. bool hasVisibleDeclaration(const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr) { return isVisible(D) || hasVisibleDeclarationSlow(D, Modules); } bool hasVisibleDeclarationSlow(const NamedDecl *D, llvm::SmallVectorImpl *Modules); /// Determine whether any declaration of an entity is reachable. bool hasReachableDeclaration(const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr) { return isReachable(D) || hasReachableDeclarationSlow(D, Modules); } bool hasReachableDeclarationSlow( const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); bool hasVisibleMergedDefinition(NamedDecl *Def); bool hasMergedDefinitionInCurrentModule(NamedDecl *Def); /// Determine if \p D and \p Suggested have a structurally compatible /// layout as described in C11 6.2.7/1. bool hasStructuralCompatLayout(Decl *D, Decl *Suggested); /// Determine if \p D has a visible definition. If not, suggest a declaration /// that should be made visible to expose the definition. bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, bool OnlyNeedComplete = false); bool hasVisibleDefinition(const NamedDecl *D) { NamedDecl *Hidden; return hasVisibleDefinition(const_cast(D), &Hidden); } /// Determine if \p D has a reachable definition. If not, suggest a /// declaration that should be made reachable to expose the definition. bool hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested, bool OnlyNeedComplete = false); bool hasReachableDefinition(NamedDecl *D) { NamedDecl *Hidden; return hasReachableDefinition(D, &Hidden); } bool hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested, AcceptableKind Kind, bool OnlyNeedComplete = false); bool hasAcceptableDefinition(NamedDecl *D, AcceptableKind Kind) { NamedDecl *Hidden; return hasAcceptableDefinition(D, &Hidden, Kind); } /// Determine if the template parameter \p D has a visible default argument. bool hasVisibleDefaultArgument(const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if the template parameter \p D has a reachable default argument. bool hasReachableDefaultArgument( const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if the template parameter \p D has a reachable default argument. bool hasAcceptableDefaultArgument(const NamedDecl *D, llvm::SmallVectorImpl *Modules, Sema::AcceptableKind Kind); /// Determine if there is a visible declaration of \p D that is an explicit /// specialization declaration for a specialization of a template. (For a /// member specialization, use hasVisibleMemberSpecialization.) bool hasVisibleExplicitSpecialization( const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if there is a reachable declaration of \p D that is an explicit /// specialization declaration for a specialization of a template. (For a /// member specialization, use hasReachableMemberSpecialization.) bool hasReachableExplicitSpecialization( const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if there is a visible declaration of \p D that is a member /// specialization declaration (as opposed to an instantiated declaration). bool hasVisibleMemberSpecialization( const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if there is a reachable declaration of \p D that is a member /// specialization declaration (as opposed to an instantiated declaration). bool hasReachableMemberSpecialization( const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if \p A and \p B are equivalent internal linkage declarations /// from different modules, and thus an ambiguity error can be downgraded to /// an extension warning. bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A, const NamedDecl *B); void diagnoseEquivalentInternalLinkageDeclarations( SourceLocation Loc, const NamedDecl *D, ArrayRef Equiv); bool isUsualDeallocationFunction(const CXXMethodDecl *FD); bool isCompleteType(SourceLocation Loc, QualType T, CompleteTypeKind Kind = CompleteTypeKind::Default) { return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr); } bool RequireCompleteType(SourceLocation Loc, QualType T, CompleteTypeKind Kind, TypeDiagnoser &Diagnoser); bool RequireCompleteType(SourceLocation Loc, QualType T, CompleteTypeKind Kind, unsigned DiagID); bool RequireCompleteType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser) { return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser); } bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) { return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID); } template bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireCompleteType(Loc, T, Diagnoser); } template bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID, const Ts &... Args) { SizelessTypeDiagnoser Diagnoser(DiagID, Args...); return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser); } /// Get the type of expression E, triggering instantiation to complete the /// type if necessary -- that is, if the expression refers to a templated /// static data member of incomplete array type. /// /// May still return an incomplete type if instantiation was not possible or /// if the type is incomplete for a different reason. Use /// RequireCompleteExprType instead if a diagnostic is expected for an /// incomplete expression type. QualType getCompletedType(Expr *E); void completeExprArrayBound(Expr *E); bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind, TypeDiagnoser &Diagnoser); bool RequireCompleteExprType(Expr *E, unsigned DiagID); template bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser); } template bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID, const Ts &... Args) { SizelessTypeDiagnoser Diagnoser(DiagID, Args...); return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser); } bool RequireLiteralType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser); bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID); template bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireLiteralType(Loc, T, Diagnoser); } QualType getElaboratedType(ElaboratedTypeKeyword Keyword, const CXXScopeSpec &SS, QualType T, TagDecl *OwnedTagDecl = nullptr); // Returns the underlying type of a decltype with the given expression. QualType getDecltypeForExpr(Expr *E); QualType BuildTypeofExprType(Expr *E); /// If AsUnevaluated is false, E is treated as though it were an evaluated /// context, such as when building a type for decltype(auto). QualType BuildDecltypeType(Expr *E, bool AsUnevaluated = true); QualType BuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc); //===--------------------------------------------------------------------===// // Symbol table / Decl tracking callbacks: SemaDecl.cpp. // struct SkipBodyInfo { SkipBodyInfo() : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr), New(nullptr) {} bool ShouldSkip; bool CheckSameAsPrevious; NamedDecl *Previous; NamedDecl *New; }; DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr); void DiagnoseUseOfUnimplementedSelectors(); bool isSimpleTypeSpecifier(tok::TokenKind Kind) const; ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec *SS = nullptr, bool isClassName = false, bool HasTrailingDot = false, ParsedType ObjectType = nullptr, bool IsCtorOrDtorName = false, bool WantNontrivialTypeSourceInfo = false, bool IsClassTemplateDeductionContext = true, IdentifierInfo **CorrectedII = nullptr); TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S); bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S); void DiagnoseUnknownTypeName(IdentifierInfo *&II, SourceLocation IILoc, Scope *S, CXXScopeSpec *SS, ParsedType &SuggestedType, bool IsTemplateName = false); /// Attempt to behave like MSVC in situations where lookup of an unqualified /// type name has failed in a dependent context. In these situations, we /// automatically form a DependentTypeName that will retry lookup in a related /// scope during instantiation. ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II, SourceLocation NameLoc, bool IsTemplateTypeArg); /// Describes the result of the name lookup and resolution performed /// by \c ClassifyName(). enum NameClassificationKind { /// This name is not a type or template in this context, but might be /// something else. NC_Unknown, /// Classification failed; an error has been produced. NC_Error, /// The name has been typo-corrected to a keyword. NC_Keyword, /// The name was classified as a type. NC_Type, /// The name was classified as a specific non-type, non-template /// declaration. ActOnNameClassifiedAsNonType should be called to /// convert the declaration to an expression. NC_NonType, /// The name was classified as an ADL-only function name. /// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the /// result to an expression. NC_UndeclaredNonType, /// The name denotes a member of a dependent type that could not be /// resolved. ActOnNameClassifiedAsDependentNonType should be called to /// convert the result to an expression. NC_DependentNonType, /// The name was classified as an overload set, and an expression /// representing that overload set has been formed. /// ActOnNameClassifiedAsOverloadSet should be called to form a suitable /// expression referencing the overload set. NC_OverloadSet, /// The name was classified as a template whose specializations are types. NC_TypeTemplate, /// The name was classified as a variable template name. NC_VarTemplate, /// The name was classified as a function template name. NC_FunctionTemplate, /// The name was classified as an ADL-only function template name. NC_UndeclaredTemplate, /// The name was classified as a concept name. NC_Concept, }; class NameClassification { NameClassificationKind Kind; union { ExprResult Expr; NamedDecl *NonTypeDecl; TemplateName Template; ParsedType Type; }; explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {} public: NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {} NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {} static NameClassification Error() { return NameClassification(NC_Error); } static NameClassification Unknown() { return NameClassification(NC_Unknown); } static NameClassification OverloadSet(ExprResult E) { NameClassification Result(NC_OverloadSet); Result.Expr = E; return Result; } static NameClassification NonType(NamedDecl *D) { NameClassification Result(NC_NonType); Result.NonTypeDecl = D; return Result; } static NameClassification UndeclaredNonType() { return NameClassification(NC_UndeclaredNonType); } static NameClassification DependentNonType() { return NameClassification(NC_DependentNonType); } static NameClassification TypeTemplate(TemplateName Name) { NameClassification Result(NC_TypeTemplate); Result.Template = Name; return Result; } static NameClassification VarTemplate(TemplateName Name) { NameClassification Result(NC_VarTemplate); Result.Template = Name; return Result; } static NameClassification FunctionTemplate(TemplateName Name) { NameClassification Result(NC_FunctionTemplate); Result.Template = Name; return Result; } static NameClassification Concept(TemplateName Name) { NameClassification Result(NC_Concept); Result.Template = Name; return Result; } static NameClassification UndeclaredTemplate(TemplateName Name) { NameClassification Result(NC_UndeclaredTemplate); Result.Template = Name; return Result; } NameClassificationKind getKind() const { return Kind; } ExprResult getExpression() const { assert(Kind == NC_OverloadSet); return Expr; } ParsedType getType() const { assert(Kind == NC_Type); return Type; } NamedDecl *getNonTypeDecl() const { assert(Kind == NC_NonType); return NonTypeDecl; } TemplateName getTemplateName() const { assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate); return Template; } TemplateNameKind getTemplateNameKind() const { switch (Kind) { case NC_TypeTemplate: return TNK_Type_template; case NC_FunctionTemplate: return TNK_Function_template; case NC_VarTemplate: return TNK_Var_template; case NC_Concept: return TNK_Concept_template; case NC_UndeclaredTemplate: return TNK_Undeclared_template; default: llvm_unreachable("unsupported name classification."); } } }; /// Perform name lookup on the given name, classifying it based on /// the results of name lookup and the following token. /// /// This routine is used by the parser to resolve identifiers and help direct /// parsing. When the identifier cannot be found, this routine will attempt /// to correct the typo and classify based on the resulting name. /// /// \param S The scope in which we're performing name lookup. /// /// \param SS The nested-name-specifier that precedes the name. /// /// \param Name The identifier. If typo correction finds an alternative name, /// this pointer parameter will be updated accordingly. /// /// \param NameLoc The location of the identifier. /// /// \param NextToken The token following the identifier. Used to help /// disambiguate the name. /// /// \param CCC The correction callback, if typo correction is desired. NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, SourceLocation NameLoc, const Token &NextToken, CorrectionCandidateCallback *CCC = nullptr); /// Act on the result of classifying a name as an undeclared (ADL-only) /// non-type declaration. ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, SourceLocation NameLoc); /// Act on the result of classifying a name as an undeclared member of a /// dependent base class. ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, bool IsAddressOfOperand); /// Act on the result of classifying a name as a specific non-type /// declaration. ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, NamedDecl *Found, SourceLocation NameLoc, const Token &NextToken); /// Act on the result of classifying a name as an overload set. ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet); /// Describes the detailed kind of a template name. Used in diagnostics. enum class TemplateNameKindForDiagnostics { ClassTemplate, FunctionTemplate, VarTemplate, AliasTemplate, TemplateTemplateParam, Concept, DependentTemplate }; TemplateNameKindForDiagnostics getTemplateNameKindForDiagnostics(TemplateName Name); /// Determine whether it's plausible that E was intended to be a /// template-name. bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) { if (!getLangOpts().CPlusPlus || E.isInvalid()) return false; Dependent = false; if (auto *DRE = dyn_cast(E.get())) return !DRE->hasExplicitTemplateArgs(); if (auto *ME = dyn_cast(E.get())) return !ME->hasExplicitTemplateArgs(); Dependent = true; if (auto *DSDRE = dyn_cast(E.get())) return !DSDRE->hasExplicitTemplateArgs(); if (auto *DSME = dyn_cast(E.get())) return !DSME->hasExplicitTemplateArgs(); // Any additional cases recognized here should also be handled by // diagnoseExprIntendedAsTemplateName. return false; } void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, SourceLocation Less, SourceLocation Greater); void warnOnReservedIdentifier(const NamedDecl *D); Decl *ActOnDeclarator(Scope *S, Declarator &D); NamedDecl *HandleDeclarator(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists); bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo, QualType &T, SourceLocation Loc, unsigned FailedFoldDiagID); void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S); bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info); bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, DeclarationName Name, SourceLocation Loc, bool IsTemplateId); void diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, SourceLocation FallbackLoc, SourceLocation ConstQualLoc = SourceLocation(), SourceLocation VolatileQualLoc = SourceLocation(), SourceLocation RestrictQualLoc = SourceLocation(), SourceLocation AtomicQualLoc = SourceLocation(), SourceLocation UnalignedQualLoc = SourceLocation()); static bool adjustContextForLocalExternDecl(DeclContext *&DC); void DiagnoseFunctionSpecifiers(const DeclSpec &DS); NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D, const LookupResult &R); NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R); NamedDecl *getShadowedDeclaration(const BindingDecl *D, const LookupResult &R); void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, const LookupResult &R); void CheckShadow(Scope *S, VarDecl *D); /// Warn if 'E', which is an expression that is about to be modified, refers /// to a shadowing declaration. void CheckShadowingDeclModification(Expr *E, SourceLocation Loc); void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI); private: /// Map of current shadowing declarations to shadowed declarations. Warn if /// it looks like the user is trying to modify the shadowing declaration. llvm::DenseMap ShadowingDecls; public: void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange); void handleTagNumbering(const TagDecl *Tag, Scope *TagScope); void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, TypedefNameDecl *NewTD); void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D); NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, TypeSourceInfo *TInfo, LookupResult &Previous); NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D, LookupResult &Previous, bool &Redeclaration); NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool &AddToScope, ArrayRef Bindings = None); NamedDecl * ActOnDecompositionDeclarator(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists); // Returns true if the variable declaration is a redeclaration bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous); void CheckVariableDeclarationType(VarDecl *NewVD); bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, Expr *Init); void CheckCompleteVariableDeclaration(VarDecl *VD); void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD); void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D); NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, TypeSourceInfo *TInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool &AddToScope); bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD); enum class CheckConstexprKind { /// Diagnose issues that are non-constant or that are extensions. Diagnose, /// Identify whether this function satisfies the formal rules for constexpr /// functions in the current lanugage mode (with no extensions). CheckValid }; bool CheckConstexprFunctionDefinition(const FunctionDecl *FD, CheckConstexprKind Kind); void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD); void FindHiddenVirtualMethods(CXXMethodDecl *MD, SmallVectorImpl &OverloadedMethods); void NoteHiddenVirtualMethods(CXXMethodDecl *MD, SmallVectorImpl &OverloadedMethods); // Returns true if the function declaration is a redeclaration bool CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, LookupResult &Previous, bool IsMemberSpecialization, bool DeclIsDefn); bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl); bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, QualType NewT, QualType OldT); void CheckMain(FunctionDecl *FD, const DeclSpec &D); void CheckMSVCRTEntryPoint(FunctionDecl *FD); Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, bool IsDefinition); void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D); Decl *ActOnParamDeclarator(Scope *S, Declarator &D); ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC, SourceLocation Loc, QualType T); ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc, SourceLocation NameLoc, IdentifierInfo *Name, QualType T, TypeSourceInfo *TSInfo, StorageClass SC); void ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, Expr *defarg); void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc, SourceLocation ArgLoc); void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc); ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg, SourceLocation EqualLoc); void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg, SourceLocation EqualLoc); // Contexts where using non-trivial C union types can be disallowed. This is // passed to err_non_trivial_c_union_in_invalid_context. enum NonTrivialCUnionContext { // Function parameter. NTCUC_FunctionParam, // Function return. NTCUC_FunctionReturn, // Default-initialized object. NTCUC_DefaultInitializedObject, // Variable with automatic storage duration. NTCUC_AutoVar, // Initializer expression that might copy from another object. NTCUC_CopyInit, // Assignment. NTCUC_Assignment, // Compound literal. NTCUC_CompoundLiteral, // Block capture. NTCUC_BlockCapture, // lvalue-to-rvalue conversion of volatile type. NTCUC_LValueToRValueVolatile, }; /// Emit diagnostics if the initializer or any of its explicit or /// implicitly-generated subexpressions require copying or /// default-initializing a type that is or contains a C union type that is /// non-trivial to copy or default-initialize. void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc); // These flags are passed to checkNonTrivialCUnion. enum NonTrivialCUnionKind { NTCUK_Init = 0x1, NTCUK_Destruct = 0x2, NTCUK_Copy = 0x4, }; /// Emit diagnostics if a non-trivial C union type or a struct that contains /// a non-trivial C union is used in an invalid context. void checkNonTrivialCUnion(QualType QT, SourceLocation Loc, NonTrivialCUnionContext UseContext, unsigned NonTrivialKind); void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit); void ActOnUninitializedDecl(Decl *dcl); void ActOnInitializerError(Decl *Dcl); void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc); void ActOnCXXForRangeDecl(Decl *D); StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, IdentifierInfo *Ident, ParsedAttributes &Attrs); void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc); void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc); void CheckStaticLocalForDllExport(VarDecl *VD); void FinalizeDeclaration(Decl *D); DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, ArrayRef Group); DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef Group); /// Should be called on all declarations that might have attached /// documentation comments. void ActOnDocumentableDecl(Decl *D); void ActOnDocumentableDecls(ArrayRef Group); enum class FnBodyKind { /// C++ [dcl.fct.def.general]p1 /// function-body: /// ctor-initializer[opt] compound-statement /// function-try-block Other, /// = default ; Default, /// = delete ; Delete }; void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, SourceLocation LocAfterDecls); void CheckForFunctionRedefinition( FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr, SkipBodyInfo *SkipBody = nullptr); Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists, SkipBodyInfo *SkipBody = nullptr, FnBodyKind BodyKind = FnBodyKind::Other); Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D, SkipBodyInfo *SkipBody = nullptr, FnBodyKind BodyKind = FnBodyKind::Other); void SetFunctionBodyKind(Decl *D, SourceLocation Loc, FnBodyKind BodyKind); void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D); ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr); ExprResult ActOnRequiresClause(ExprResult ConstraintExpr); void ActOnStartOfObjCMethodDef(Scope *S, Decl *D); bool isObjCMethodDecl(Decl *D) { return D && isa(D); } /// Determine whether we can delay parsing the body of a function or /// function template until it is used, assuming we don't care about emitting /// code for that function. /// /// This will be \c false if we may need the body of the function in the /// middle of parsing an expression (where it's impractical to switch to /// parsing a different function), for instance, if it's constexpr in C++11 /// or has an 'auto' return type in C++14. These cases are essentially bugs. bool canDelayFunctionBody(const Declarator &D); /// Determine whether we can skip parsing the body of a function /// definition, assuming we don't care about analyzing its body or emitting /// code for that function. /// /// This will be \c false only if we may need the body of the function in /// order to parse the rest of the program (for instance, if it is /// \c constexpr in C++11 or has an 'auto' return type in C++14). bool canSkipFunctionBody(Decl *D); void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope); Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body); Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation); Decl *ActOnSkippedFunctionBody(Decl *Decl); void ActOnFinishInlineFunctionDef(FunctionDecl *D); /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an /// attribute for which parsing is delayed. void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs); /// Diagnose any unused parameters in the given sequence of /// ParmVarDecl pointers. void DiagnoseUnusedParameters(ArrayRef Parameters); /// Diagnose whether the size of parameters or return value of a /// function or obj-c method definition is pass-by-value and larger than a /// specified threshold. void DiagnoseSizeOfParametersAndReturnValue(ArrayRef Parameters, QualType ReturnTy, NamedDecl *D); void DiagnoseInvalidJumps(Stmt *Body); Decl *ActOnFileScopeAsmDecl(Expr *expr, SourceLocation AsmLoc, SourceLocation RParenLoc); /// Handle a C++11 empty-declaration and attribute-declaration. Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList, SourceLocation SemiLoc); enum class ModuleDeclKind { Interface, ///< 'export module X;' Implementation, ///< 'module X;' PartitionInterface, ///< 'export module X:Y;' PartitionImplementation, ///< 'module X:Y;' }; /// An enumeration to represent the transition of states in parsing module /// fragments and imports. If we are not parsing a C++20 TU, or we find /// an error in state transition, the state is set to NotACXX20Module. enum class ModuleImportState { FirstDecl, ///< Parsing the first decl in a TU. GlobalFragment, ///< after 'module;' but before 'module X;' ImportAllowed, ///< after 'module X;' but before any non-import decl. ImportFinished, ///< after any non-import decl. PrivateFragment, ///< after 'module :private;'. NotACXX20Module ///< Not a C++20 TU, or an invalid state was found. }; private: /// The parser has begun a translation unit to be compiled as a C++20 /// Header Unit, helper for ActOnStartOfTranslationUnit() only. void HandleStartOfHeaderUnit(); public: /// The parser has processed a module-declaration that begins the definition /// of a module interface or implementation. DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, ModuleDeclKind MDK, ModuleIdPath Path, ModuleIdPath Partition, ModuleImportState &ImportState); /// The parser has processed a global-module-fragment declaration that begins /// the definition of the global module fragment of the current module unit. /// \param ModuleLoc The location of the 'module' keyword. DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc); /// The parser has processed a private-module-fragment declaration that begins /// the definition of the private module fragment of the current module unit. /// \param ModuleLoc The location of the 'module' keyword. /// \param PrivateLoc The location of the 'private' keyword. DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, SourceLocation PrivateLoc); /// The parser has processed a module import declaration. /// /// \param StartLoc The location of the first token in the declaration. This /// could be the location of an '@', 'export', or 'import'. /// \param ExportLoc The location of the 'export' keyword, if any. /// \param ImportLoc The location of the 'import' keyword. /// \param Path The module toplevel name as an access path. /// \param IsPartition If the name is for a partition. DeclResult ActOnModuleImport(SourceLocation StartLoc, SourceLocation ExportLoc, SourceLocation ImportLoc, ModuleIdPath Path, bool IsPartition = false); DeclResult ActOnModuleImport(SourceLocation StartLoc, SourceLocation ExportLoc, SourceLocation ImportLoc, Module *M, ModuleIdPath Path = {}); /// The parser has processed a module import translated from a /// #include or similar preprocessing directive. void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod); void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod); /// The parsed has entered a submodule. void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod); /// The parser has left a submodule. void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod); /// Create an implicit import of the given module at the given /// source location, for error recovery, if possible. /// /// This routine is typically used when an entity found by name lookup /// is actually hidden within a module that we know about but the user /// has forgotten to import. void createImplicitModuleImportForErrorRecovery(SourceLocation Loc, Module *Mod); /// Kinds of missing import. Note, the values of these enumerators correspond /// to %select values in diagnostics. enum class MissingImportKind { Declaration, Definition, DefaultArgument, ExplicitSpecialization, PartialSpecialization }; /// Diagnose that the specified declaration needs to be visible but /// isn't, and suggest a module import that would resolve the problem. void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, MissingImportKind MIK, bool Recover = true); void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, SourceLocation DeclLoc, ArrayRef Modules, MissingImportKind MIK, bool Recover); Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, SourceLocation LBraceLoc); Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl, SourceLocation RBraceLoc); /// We've found a use of a templated declaration that would trigger an /// implicit instantiation. Check that any relevant explicit specializations /// and partial specializations are visible/reachable, and diagnose if not. void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec); void checkSpecializationReachability(SourceLocation Loc, NamedDecl *Spec); /// Retrieve a suitable printing policy for diagnostics. PrintingPolicy getPrintingPolicy() const { return getPrintingPolicy(Context, PP); } /// Retrieve a suitable printing policy for diagnostics. static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx, const Preprocessor &PP); /// Scope actions. void ActOnPopScope(SourceLocation Loc, Scope *S); void ActOnTranslationUnitScope(Scope *S); Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, const ParsedAttributesView &DeclAttrs, RecordDecl *&AnonRecord); Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, const ParsedAttributesView &DeclAttrs, MultiTemplateParamsArg TemplateParams, bool IsExplicitInstantiation, RecordDecl *&AnonRecord); Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, AccessSpecifier AS, RecordDecl *Record, const PrintingPolicy &Policy); Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, RecordDecl *Record); /// Common ways to introduce type names without a tag for use in diagnostics. /// Keep in sync with err_tag_reference_non_tag. enum NonTagKind { NTK_NonStruct, NTK_NonClass, NTK_NonUnion, NTK_NonEnum, NTK_Typedef, NTK_TypeAlias, NTK_Template, NTK_TypeAliasTemplate, NTK_TemplateTemplateArgument, }; /// Given a non-tag type declaration, returns an enum useful for indicating /// what kind of non-tag type this is. NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK); bool isAcceptableTagRedeclaration(const TagDecl *Previous, TagTypeKind NewTag, bool isDefinition, SourceLocation NewTagLoc, const IdentifierInfo *Name); enum TagUseKind { TUK_Reference, // Reference to a tag: 'struct foo *X;' TUK_Declaration, // Fwd decl of a tag: 'struct foo;' TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;' TUK_Friend // Friend declaration: 'friend struct foo;' }; Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, AccessSpecifier AS, SourceLocation ModulePrivateLoc, MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, bool &IsDependent, SourceLocation ScopedEnumKWLoc, bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, bool IsTypeSpecifier, bool IsTemplateParamOrArg, SkipBodyInfo *SkipBody = nullptr); Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, MultiTemplateParamsArg TempParamLists); TypeResult ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation TagLoc, SourceLocation NameLoc); void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, SmallVectorImpl &Decls); Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth); FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, InClassInitStyle InitStyle, AccessSpecifier AS); MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, InClassInitStyle InitStyle, AccessSpecifier AS, const ParsedAttr &MSPropertyAttr); FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T, TypeSourceInfo *TInfo, RecordDecl *Record, SourceLocation Loc, bool Mutable, Expr *BitfieldWidth, InClassInitStyle InitStyle, SourceLocation TSSL, AccessSpecifier AS, NamedDecl *PrevDecl, Declarator *D = nullptr); bool CheckNontrivialField(FieldDecl *FD); void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM); enum TrivialABIHandling { /// The triviality of a method unaffected by "trivial_abi". TAH_IgnoreTrivialABI, /// The triviality of a method affected by "trivial_abi". TAH_ConsiderTrivialABI }; bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, TrivialABIHandling TAH = TAH_IgnoreTrivialABI, bool Diagnose = false); /// For a defaulted function, the kind of defaulted function that it is. class DefaultedFunctionKind { CXXSpecialMember SpecialMember : 8; DefaultedComparisonKind Comparison : 8; public: DefaultedFunctionKind() : SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) { } DefaultedFunctionKind(CXXSpecialMember CSM) : SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {} DefaultedFunctionKind(DefaultedComparisonKind Comp) : SpecialMember(CXXInvalid), Comparison(Comp) {} bool isSpecialMember() const { return SpecialMember != CXXInvalid; } bool isComparison() const { return Comparison != DefaultedComparisonKind::None; } explicit operator bool() const { return isSpecialMember() || isComparison(); } CXXSpecialMember asSpecialMember() const { return SpecialMember; } DefaultedComparisonKind asComparison() const { return Comparison; } /// Get the index of this function kind for use in diagnostics. unsigned getDiagnosticIndex() const { static_assert(CXXInvalid > CXXDestructor, "invalid should have highest index"); static_assert((unsigned)DefaultedComparisonKind::None == 0, "none should be equal to zero"); return SpecialMember + (unsigned)Comparison; } }; DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD); CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) { return getDefaultedFunctionKind(MD).asSpecialMember(); } DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) { return getDefaultedFunctionKind(FD).asComparison(); } void ActOnLastBitfield(SourceLocation DeclStart, SmallVectorImpl &AllIvarDecls); Decl *ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, tok::ObjCKeywordKind visibility); // This is used for both record definitions and ObjC interface declarations. void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl, ArrayRef Fields, SourceLocation LBrac, SourceLocation RBrac, const ParsedAttributesView &AttrList); /// ActOnTagStartDefinition - Invoked when we have entered the /// scope of a tag's definition (e.g., for an enumeration, class, /// struct, or union). void ActOnTagStartDefinition(Scope *S, Decl *TagDecl); /// Perform ODR-like check for C/ObjC when merging tag types from modules. /// Differently from C++, actually parse the body and reject / error out /// in case of a structural mismatch. bool ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody); typedef void *SkippedDefinitionContext; /// Invoked when we enter a tag definition that we're skipping. SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD); void ActOnObjCContainerStartDefinition(ObjCContainerDecl *IDecl); /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a /// C++ record definition's base-specifiers clause and are starting its /// member declarations. void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl, SourceLocation FinalLoc, bool IsFinalSpelledSealed, bool IsAbstract, SourceLocation LBraceLoc); /// ActOnTagFinishDefinition - Invoked once we have finished parsing /// the definition of a tag (enumeration, class, struct, or union). void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl, SourceRange BraceRange); void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context); void ActOnObjCContainerFinishDefinition(); /// Invoked when we must temporarily exit the objective-c container /// scope for parsing/looking-up C constructs. /// /// Must be followed by a call to \see ActOnObjCReenterContainerContext void ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl *ObjCCtx); void ActOnObjCReenterContainerContext(ObjCContainerDecl *ObjCCtx); /// ActOnTagDefinitionError - Invoked when there was an unrecoverable /// error parsing the definition of a tag. void ActOnTagDefinitionError(Scope *S, Decl *TagDecl); EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum, EnumConstantDecl *LastEnumConst, SourceLocation IdLoc, IdentifierInfo *Id, Expr *val); bool CheckEnumUnderlyingType(TypeSourceInfo *TI); bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, QualType EnumUnderlyingTy, bool IsFixed, const EnumDecl *Prev); /// Determine whether the body of an anonymous enumeration should be skipped. /// \param II The name of the first enumerator. SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, SourceLocation IILoc); Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant, SourceLocation IdLoc, IdentifierInfo *Id, const ParsedAttributesView &Attrs, SourceLocation EqualLoc, Expr *Val); void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, Decl *EnumDecl, ArrayRef Elements, Scope *S, const ParsedAttributesView &Attr); /// Set the current declaration context until it gets popped. void PushDeclContext(Scope *S, DeclContext *DC); void PopDeclContext(); /// EnterDeclaratorContext - Used when we must lookup names in the context /// of a declarator's nested name specifier. void EnterDeclaratorContext(Scope *S, DeclContext *DC); void ExitDeclaratorContext(Scope *S); /// Enter a template parameter scope, after it's been associated with a particular /// DeclContext. Causes lookup within the scope to chain through enclosing contexts /// in the correct order. void EnterTemplatedContext(Scope *S, DeclContext *DC); /// Push the parameters of D, which must be a function, into scope. void ActOnReenterFunctionContext(Scope* S, Decl* D); void ActOnExitFunctionContext(); /// If \p AllowLambda is true, treat lambda as function. DeclContext *getFunctionLevelDeclContext(bool AllowLambda = false); /// Returns a pointer to the innermost enclosing function, or nullptr if the /// current context is not inside a function. If \p AllowLambda is true, /// this can return the call operator of an enclosing lambda, otherwise /// lambdas are skipped when looking for an enclosing function. FunctionDecl *getCurFunctionDecl(bool AllowLambda = false); /// getCurMethodDecl - If inside of a method body, this returns a pointer to /// the method decl for the method being parsed. If we're currently /// in a 'block', this returns the containing context. ObjCMethodDecl *getCurMethodDecl(); /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method /// or C function we're in, otherwise return null. If we're currently /// in a 'block', this returns the containing context. NamedDecl *getCurFunctionOrMethodDecl(); /// Add this decl to the scope shadowed decl chains. void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true); /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns /// true if 'D' belongs to the given declaration context. /// /// \param AllowInlineNamespace If \c true, allow the declaration to be in the /// enclosing namespace set of the context, rather than contained /// directly within it. bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr, bool AllowInlineNamespace = false); /// Finds the scope corresponding to the given decl context, if it /// happens to be an enclosing scope. Otherwise return NULL. static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC); /// Subroutines of ActOnDeclarator(). TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T, TypeSourceInfo *TInfo); bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New); /// Describes the kind of merge to perform for availability /// attributes (including "deprecated", "unavailable", and "availability"). enum AvailabilityMergeKind { /// Don't merge availability attributes at all. AMK_None, /// Merge availability attributes for a redeclaration, which requires /// an exact match. AMK_Redeclaration, /// Merge availability attributes for an override, which requires /// an exact match or a weakening of constraints. AMK_Override, /// Merge availability attributes for an implementation of /// a protocol requirement. AMK_ProtocolImplementation, /// Merge availability attributes for an implementation of /// an optional protocol requirement. AMK_OptionalProtocolImplementation }; /// Describes the kind of priority given to an availability attribute. /// /// The sum of priorities deteremines the final priority of the attribute. /// The final priority determines how the attribute will be merged. /// An attribute with a lower priority will always remove higher priority /// attributes for the specified platform when it is being applied. An /// attribute with a higher priority will not be applied if the declaration /// already has an availability attribute with a lower priority for the /// specified platform. The final prirority values are not expected to match /// the values in this enumeration, but instead should be treated as a plain /// integer value. This enumeration just names the priority weights that are /// used to calculate that final vaue. enum AvailabilityPriority : int { /// The availability attribute was specified explicitly next to the /// declaration. AP_Explicit = 0, /// The availability attribute was applied using '#pragma clang attribute'. AP_PragmaClangAttribute = 1, /// The availability attribute for a specific platform was inferred from /// an availability attribute for another platform. AP_InferredFromOtherPlatform = 2 }; /// Attribute merging methods. Return true if a new attribute was added. AvailabilityAttr * mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, int Priority); TypeVisibilityAttr * mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, TypeVisibilityAttr::VisibilityType Vis); VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, VisibilityAttr::VisibilityType Vis); UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, StringRef UuidAsWritten, MSGuidDecl *GuidDecl); DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI); DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI); MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, bool BestCase, MSInheritanceModel Model); ErrorAttr *mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI, StringRef NewUserDiagnostic); FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, int FirstArg); SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name); CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name); AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D, const AttributeCommonInfo &CI, const IdentifierInfo *Ident); MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI); SwiftNameAttr *mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA, StringRef Name); OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D, const AttributeCommonInfo &CI); InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL); InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL); WebAssemblyImportNameAttr *mergeImportNameAttr( Decl *D, const WebAssemblyImportNameAttr &AL); WebAssemblyImportModuleAttr *mergeImportModuleAttr( Decl *D, const WebAssemblyImportModuleAttr &AL); EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL); EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D, const EnforceTCBLeafAttr &AL); BTFDeclTagAttr *mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL); HLSLNumThreadsAttr *mergeHLSLNumThreadsAttr(Decl *D, const AttributeCommonInfo &AL, int X, int Y, int Z); HLSLShaderAttr *mergeHLSLShaderAttr(Decl *D, const AttributeCommonInfo &AL, HLSLShaderAttr::ShaderType ShaderType); void mergeDeclAttributes(NamedDecl *New, Decl *Old, AvailabilityMergeKind AMK = AMK_Redeclaration); void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, LookupResult &OldDecls); bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S, bool MergeTypeWithOld, bool NewDeclIsDefn); bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, Scope *S, bool MergeTypeWithOld); void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old); void MergeVarDecl(VarDecl *New, LookupResult &Previous); void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld); void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old); bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn); void notePreviousDefinition(const NamedDecl *Old, SourceLocation New); bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S); // AssignmentAction - This is used by all the assignment diagnostic functions // to represent what is actually causing the operation enum AssignmentAction { AA_Assigning, AA_Passing, AA_Returning, AA_Converting, AA_Initializing, AA_Sending, AA_Casting, AA_Passing_CFAudited }; /// C++ Overloading. enum OverloadKind { /// This is a legitimate overload: the existing declarations are /// functions or function templates with different signatures. Ovl_Overload, /// This is not an overload because the signature exactly matches /// an existing declaration. Ovl_Match, /// This is not an overload because the lookup results contain a /// non-function. Ovl_NonFunction }; OverloadKind CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &OldDecls, NamedDecl *&OldDecl, bool IsForUsingDecl); bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl, bool ConsiderCudaAttrs = true, bool ConsiderRequiresClauses = true); enum class AllowedExplicit { /// Allow no explicit functions to be used. None, /// Allow explicit conversion functions but not explicit constructors. Conversions, /// Allow both explicit conversion functions and explicit constructors. All }; ImplicitConversionSequence TryImplicitConversion(Expr *From, QualType ToType, bool SuppressUserConversions, AllowedExplicit AllowExplicit, bool InOverloadResolution, bool CStyle, bool AllowObjCWritebackConversion); bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType); bool IsFloatingPointPromotion(QualType FromType, QualType ToType); bool IsComplexPromotion(QualType FromType, QualType ToType); bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCWritebackConversion(QualType FromType, QualType ToType, QualType &ConvertedType); bool IsBlockPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType); bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType, const FunctionProtoType *NewType, unsigned *ArgPos = nullptr, bool Reversed = false); void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, QualType FromType, QualType ToType); void maybeExtendBlockObject(ExprResult &E); CastKind PrepareCastToObjCObjectPointer(ExprResult &E); bool CheckPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath& BasePath, bool IgnoreBaseAccess, bool Diagnose = true); bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType &ConvertedType); bool CheckMemberPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath &BasePath, bool IgnoreBaseAccess); bool IsQualificationConversion(QualType FromType, QualType ToType, bool CStyle, bool &ObjCLifetimeConversion); bool IsFunctionConversion(QualType FromType, QualType ToType, QualType &ResultTy); bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType); bool isSameOrCompatibleFunctionType(QualType Param, QualType Arg); bool CanPerformAggregateInitializationForOverloadResolution( const InitializedEntity &Entity, InitListExpr *From); bool IsStringInit(Expr *Init, const ArrayType *AT); bool CanPerformCopyInitialization(const InitializedEntity &Entity, ExprResult Init); ExprResult PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, ExprResult Init, bool TopLevelOfInitList = false, bool AllowExplicit = false); ExprResult PerformObjectArgumentInitialization(Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, CXXMethodDecl *Method); /// Check that the lifetime of the initializer (and its subobjects) is /// sufficient for initializing the entity, and perform lifetime extension /// (when permitted) if not. void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init); ExprResult PerformContextuallyConvertToBool(Expr *From); ExprResult PerformContextuallyConvertToObjCPointer(Expr *From); /// Contexts in which a converted constant expression is required. enum CCEKind { CCEK_CaseValue, ///< Expression in a case label. CCEK_Enumerator, ///< Enumerator value with fixed underlying type. CCEK_TemplateArg, ///< Value of a non-type template parameter. CCEK_ArrayBound, ///< Array bound in array declarator or new-expression. CCEK_ExplicitBool, ///< Condition in an explicit(bool) specifier. CCEK_Noexcept ///< Condition in a noexcept(bool) specifier. }; ExprResult CheckConvertedConstantExpression(Expr *From, QualType T, llvm::APSInt &Value, CCEKind CCE); ExprResult CheckConvertedConstantExpression(Expr *From, QualType T, APValue &Value, CCEKind CCE, NamedDecl *Dest = nullptr); /// Abstract base class used to perform a contextual implicit /// conversion from an expression to any type passing a filter. class ContextualImplicitConverter { public: bool Suppress; bool SuppressConversion; ContextualImplicitConverter(bool Suppress = false, bool SuppressConversion = false) : Suppress(Suppress), SuppressConversion(SuppressConversion) {} /// Determine whether the specified type is a valid destination type /// for this conversion. virtual bool match(QualType T) = 0; /// Emits a diagnostic complaining that the expression does not have /// integral or enumeration type. virtual SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0; /// Emits a diagnostic when the expression has incomplete class type. virtual SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0; /// Emits a diagnostic when the only matching conversion function /// is explicit. virtual SemaDiagnosticBuilder diagnoseExplicitConv( Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0; /// Emits a note for the explicit conversion function. virtual SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0; /// Emits a diagnostic when there are multiple possible conversion /// functions. virtual SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0; /// Emits a note for one of the candidate conversions. virtual SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0; /// Emits a diagnostic when we picked a conversion function /// (for cases when we are not allowed to pick a conversion function). virtual SemaDiagnosticBuilder diagnoseConversion( Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0; virtual ~ContextualImplicitConverter() {} }; class ICEConvertDiagnoser : public ContextualImplicitConverter { bool AllowScopedEnumerations; public: ICEConvertDiagnoser(bool AllowScopedEnumerations, bool Suppress, bool SuppressConversion) : ContextualImplicitConverter(Suppress, SuppressConversion), AllowScopedEnumerations(AllowScopedEnumerations) {} /// Match an integral or (possibly scoped) enumeration type. bool match(QualType T) override; SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override { return diagnoseNotInt(S, Loc, T); } /// Emits a diagnostic complaining that the expression does not have /// integral or enumeration type. virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0; }; /// Perform a contextual implicit conversion. ExprResult PerformContextualImplicitConversion( SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter); enum ObjCSubscriptKind { OS_Array, OS_Dictionary, OS_Error }; ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE); // Note that LK_String is intentionally after the other literals, as // this is used for diagnostics logic. enum ObjCLiteralKind { LK_Array, LK_Dictionary, LK_Numeric, LK_Boxed, LK_String, LK_Block, LK_None }; ObjCLiteralKind CheckLiteralKind(Expr *FromE); ExprResult PerformObjectMemberConversion(Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, NamedDecl *Member); // Members have to be NamespaceDecl* or TranslationUnitDecl*. // TODO: make this is a typesafe union. typedef llvm::SmallSetVector AssociatedNamespaceSet; typedef llvm::SmallSetVector AssociatedClassSet; using ADLCallKind = CallExpr::ADLCallKind; void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, bool AllowExplicit = true, bool AllowExplicitConversion = false, ADLCallKind IsADLCandidate = ADLCallKind::NotADL, ConversionSequenceList EarlyConversions = None, OverloadCandidateParamOrder PO = {}); void AddFunctionCandidates(const UnresolvedSetImpl &Functions, ArrayRef Args, OverloadCandidateSet &CandidateSet, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr, bool SuppressUserConversions = false, bool PartialOverloading = false, bool FirstArgumentIsBase = false); void AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversion = false, OverloadCandidateParamOrder PO = {}); void AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, ConversionSequenceList EarlyConversions = None, OverloadCandidateParamOrder PO = {}); void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, OverloadCandidateParamOrder PO = {}); void AddTemplateOverloadCandidate( FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, bool AllowExplicit = true, ADLCallKind IsADLCandidate = ADLCallKind::NotADL, OverloadCandidateParamOrder PO = {}); bool CheckNonDependentConversions( FunctionTemplateDecl *FunctionTemplate, ArrayRef ParamTypes, ArrayRef Args, OverloadCandidateSet &CandidateSet, ConversionSequenceList &Conversions, bool SuppressUserConversions, CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(), Expr::Classification ObjectClassification = {}, OverloadCandidateParamOrder PO = {}); void AddConversionCandidate( CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, bool AllowExplicit, bool AllowResultConversion = true); void AddTemplateConversionCandidate( FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, bool AllowExplicit, bool AllowResultConversion = true); void AddSurrogateCandidate(CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, const FunctionProtoType *Proto, Expr *Object, ArrayRef Args, OverloadCandidateSet& CandidateSet); void AddNonMemberOperatorCandidates( const UnresolvedSetImpl &Functions, ArrayRef Args, OverloadCandidateSet &CandidateSet, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr); void AddMemberOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, ArrayRef Args, OverloadCandidateSet &CandidateSet, OverloadCandidateParamOrder PO = {}); void AddBuiltinCandidate(QualType *ParamTys, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool IsAssignmentOperator = false, unsigned NumContextualBoolArguments = 0); void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, ArrayRef Args, OverloadCandidateSet& CandidateSet); void AddArgumentDependentLookupCandidates(DeclarationName Name, SourceLocation Loc, ArrayRef Args, TemplateArgumentListInfo *ExplicitTemplateArgs, OverloadCandidateSet& CandidateSet, bool PartialOverloading = false); // Emit as a 'note' the specific overload candidate void NoteOverloadCandidate( NamedDecl *Found, FunctionDecl *Fn, OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(), QualType DestType = QualType(), bool TakingAddress = false); // Emit as a series of 'note's all template and non-templates identified by // the expression Expr void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(), bool TakingAddress = false); /// Check the enable_if expressions on the given function. Returns the first /// failing attribute, or NULL if they were all successful. EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc, ArrayRef Args, bool MissingImplicitThis = false); /// Find the failed Boolean condition within a given Boolean /// constant expression, and describe it with a string. std::pair findFailedBooleanCondition(Expr *Cond); /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any /// non-ArgDependent DiagnoseIfAttrs. /// /// Argument-dependent diagnose_if attributes should be checked each time a /// function is used as a direct callee of a function call. /// /// Returns true if any errors were emitted. bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, const Expr *ThisArg, ArrayRef Args, SourceLocation Loc); /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any /// ArgDependent DiagnoseIfAttrs. /// /// Argument-independent diagnose_if attributes should be checked on every use /// of a function. /// /// Returns true if any errors were emitted. bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, SourceLocation Loc); /// Returns whether the given function's address can be taken or not, /// optionally emitting a diagnostic if the address can't be taken. /// /// Returns false if taking the address of the function is illegal. bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, bool Complain = false, SourceLocation Loc = SourceLocation()); // [PossiblyAFunctionType] --> [Return] // NonFunctionType --> NonFunctionType // R (A) --> R(A) // R (*)(A) --> R (A) // R (&)(A) --> R (A) // R (S::*)(A) --> R (A) QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType); FunctionDecl * ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType, bool Complain, DeclAccessPair &Found, bool *pHadMultipleCandidates = nullptr); FunctionDecl * resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult); bool resolveAndFixAddressOfSingleOverloadCandidate( ExprResult &SrcExpr, bool DoFunctionPointerConversion = false); FunctionDecl * ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, bool Complain = false, DeclAccessPair *Found = nullptr); bool ResolveAndFixSingleFunctionTemplateSpecialization( ExprResult &SrcExpr, bool DoFunctionPointerConverion = false, bool Complain = false, SourceRange OpRangeForComplaining = SourceRange(), QualType DestTypeForComplaining = QualType(), unsigned DiagIDForComplaining = 0); Expr *FixOverloadedFunctionReference(Expr *E, DeclAccessPair FoundDecl, FunctionDecl *Fn); ExprResult FixOverloadedFunctionReference(ExprResult, DeclAccessPair FoundDecl, FunctionDecl *Fn); void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool PartialOverloading = false); void AddOverloadedCallCandidates( LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, OverloadCandidateSet &CandidateSet); // An enum used to represent the different possible results of building a // range-based for loop. enum ForRangeStatus { FRS_Success, FRS_NoViableFunction, FRS_DiagnosticIssued }; ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc, SourceLocation RangeLoc, const DeclarationNameInfo &NameInfo, LookupResult &MemberLookup, OverloadCandidateSet *CandidateSet, Expr *Range, ExprResult *CallExpr); ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig, bool AllowTypoCorrection=true, bool CalleesAddressIsTaken=false); bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, MultiExprArg Args, SourceLocation RParenLoc, OverloadCandidateSet *CandidateSet, ExprResult *Result); ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, NestedNameSpecifierLoc NNSLoc, DeclarationNameInfo DNI, const UnresolvedSetImpl &Fns, bool PerformADL = true); ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, const UnresolvedSetImpl &Fns, Expr *input, bool RequiresADL = true); void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, OverloadedOperatorKind Op, const UnresolvedSetImpl &Fns, ArrayRef Args, bool RequiresADL = true); ExprResult CreateOverloadedBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, bool RequiresADL = true, bool AllowRewrittenCandidates = true, FunctionDecl *DefaultedFn = nullptr); ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, FunctionDecl *DefaultedFn); ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, SourceLocation RLoc, Expr *Base, MultiExprArg Args); ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig = nullptr, bool IsExecConfig = false, bool AllowRecovery = false); ExprResult BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc); ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, bool *NoArrowOperatorFound = nullptr); /// CheckCallReturnType - Checks that a call expression's return type is /// complete. Returns true on failure. The location passed in is the location /// that best represents the call. bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc, CallExpr *CE, FunctionDecl *FD); /// Helpers for dealing with blocks and functions. bool CheckParmsForFunctionDef(ArrayRef Parameters, bool CheckParameterNames); void CheckCXXDefaultArguments(FunctionDecl *FD); void CheckExtraCXXDefaultArguments(Declarator &D); Scope *getNonFieldDeclScope(Scope *S); /// \name Name lookup /// /// These routines provide name lookup that is used during semantic /// analysis to resolve the various kinds of names (identifiers, /// overloaded operator names, constructor names, etc.) into zero or /// more declarations within a particular scope. The major entry /// points are LookupName, which performs unqualified name lookup, /// and LookupQualifiedName, which performs qualified name lookup. /// /// All name lookup is performed based on some specific criteria, /// which specify what names will be visible to name lookup and how /// far name lookup should work. These criteria are important both /// for capturing language semantics (certain lookups will ignore /// certain names, for example) and for performance, since name /// lookup is often a bottleneck in the compilation of C++. Name /// lookup criteria is specified via the LookupCriteria enumeration. /// /// The results of name lookup can vary based on the kind of name /// lookup performed, the current language, and the translation /// unit. In C, for example, name lookup will either return nothing /// (no entity found) or a single declaration. In C++, name lookup /// can additionally refer to a set of overloaded functions or /// result in an ambiguity. All of the possible results of name /// lookup are captured by the LookupResult class, which provides /// the ability to distinguish among them. //@{ /// Describes the kind of name lookup to perform. enum LookupNameKind { /// Ordinary name lookup, which finds ordinary names (functions, /// variables, typedefs, etc.) in C and most kinds of names /// (functions, variables, members, types, etc.) in C++. LookupOrdinaryName = 0, /// Tag name lookup, which finds the names of enums, classes, /// structs, and unions. LookupTagName, /// Label name lookup. LookupLabel, /// Member name lookup, which finds the names of /// class/struct/union members. LookupMemberName, /// Look up of an operator name (e.g., operator+) for use with /// operator overloading. This lookup is similar to ordinary name /// lookup, but will ignore any declarations that are class members. LookupOperatorName, /// Look up a name following ~ in a destructor name. This is an ordinary /// lookup, but prefers tags to typedefs. LookupDestructorName, /// Look up of a name that precedes the '::' scope resolution /// operator in C++. This lookup completely ignores operator, object, /// function, and enumerator names (C++ [basic.lookup.qual]p1). LookupNestedNameSpecifierName, /// Look up a namespace name within a C++ using directive or /// namespace alias definition, ignoring non-namespace names (C++ /// [basic.lookup.udir]p1). LookupNamespaceName, /// Look up all declarations in a scope with the given name, /// including resolved using declarations. This is appropriate /// for checking redeclarations for a using declaration. LookupUsingDeclName, /// Look up an ordinary name that is going to be redeclared as a /// name with linkage. This lookup ignores any declarations that /// are outside of the current scope unless they have linkage. See /// C99 6.2.2p4-5 and C++ [basic.link]p6. LookupRedeclarationWithLinkage, /// Look up a friend of a local class. This lookup does not look /// outside the innermost non-class scope. See C++11 [class.friend]p11. LookupLocalFriendName, /// Look up the name of an Objective-C protocol. LookupObjCProtocolName, /// Look up implicit 'self' parameter of an objective-c method. LookupObjCImplicitSelfParam, /// Look up the name of an OpenMP user-defined reduction operation. LookupOMPReductionName, /// Look up the name of an OpenMP user-defined mapper. LookupOMPMapperName, /// Look up any declaration with any name. LookupAnyName }; /// Specifies whether (or how) name lookup is being performed for a /// redeclaration (vs. a reference). enum RedeclarationKind { /// The lookup is a reference to this name that is not for the /// purpose of redeclaring the name. NotForRedeclaration = 0, /// The lookup results will be used for redeclaration of a name, /// if an entity by that name already exists and is visible. ForVisibleRedeclaration, /// The lookup results will be used for redeclaration of a name /// with external linkage; non-visible lookup results with external linkage /// may also be found. ForExternalRedeclaration }; RedeclarationKind forRedeclarationInCurContext() { // A declaration with an owning module for linkage can never link against // anything that is not visible. We don't need to check linkage here; if // the context has internal linkage, redeclaration lookup won't find things // from other TUs, and we can't safely compute linkage yet in general. if (cast(CurContext) ->getOwningModuleForLinkage(/*IgnoreLinkage*/true)) return ForVisibleRedeclaration; return ForExternalRedeclaration; } /// The possible outcomes of name lookup for a literal operator. enum LiteralOperatorLookupResult { /// The lookup resulted in an error. LOLR_Error, /// The lookup found no match but no diagnostic was issued. LOLR_ErrorNoDiagnostic, /// The lookup found a single 'cooked' literal operator, which /// expects a normal literal to be built and passed to it. LOLR_Cooked, /// The lookup found a single 'raw' literal operator, which expects /// a string literal containing the spelling of the literal token. LOLR_Raw, /// The lookup found an overload set of literal operator templates, /// which expect the characters of the spelling of the literal token to be /// passed as a non-type template argument pack. LOLR_Template, /// The lookup found an overload set of literal operator templates, /// which expect the character type and characters of the spelling of the /// string literal token to be passed as template arguments. LOLR_StringTemplatePack, }; SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D, CXXSpecialMember SM, bool ConstArg, bool VolatileArg, bool RValueThis, bool ConstThis, bool VolatileThis); typedef std::function TypoDiagnosticGenerator; typedef std::function TypoRecoveryCallback; private: bool CppLookupName(LookupResult &R, Scope *S); struct TypoExprState { std::unique_ptr Consumer; TypoDiagnosticGenerator DiagHandler; TypoRecoveryCallback RecoveryHandler; TypoExprState(); TypoExprState(TypoExprState &&other) noexcept; TypoExprState &operator=(TypoExprState &&other) noexcept; }; /// The set of unhandled TypoExprs and their associated state. llvm::MapVector DelayedTypos; /// Creates a new TypoExpr AST node. TypoExpr *createDelayedTypo(std::unique_ptr TCC, TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, SourceLocation TypoLoc); // The set of known/encountered (unique, canonicalized) NamespaceDecls. // // The boolean value will be true to indicate that the namespace was loaded // from an AST/PCH file, or false otherwise. llvm::MapVector KnownNamespaces; /// Whether we have already loaded known namespaces from an extenal /// source. bool LoadedExternalKnownNamespaces; /// Helper for CorrectTypo and CorrectTypoDelayed used to create and /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction /// should be skipped entirely. std::unique_ptr makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, DeclContext *MemberContext, bool EnteringContext, const ObjCObjectPointerType *OPT, bool ErrorRecovery); public: const TypoExprState &getTypoExprState(TypoExpr *TE) const; /// Clears the state of the given TypoExpr. void clearDelayedTypo(TypoExpr *TE); /// Look up a name, looking for a single declaration. Return /// null if the results were absent, ambiguous, or overloaded. /// /// It is preferable to use the elaborated form and explicitly handle /// ambiguity and overloaded. NamedDecl *LookupSingleName(Scope *S, DeclarationName Name, SourceLocation Loc, LookupNameKind NameKind, RedeclarationKind Redecl = NotForRedeclaration); bool LookupBuiltin(LookupResult &R); void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID); bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation = false, bool ForceNoCPlusPlus = false); bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup = false); bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, CXXScopeSpec &SS); bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, bool AllowBuiltinCreation = false, bool EnteringContext = false); ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc, RedeclarationKind Redecl = NotForRedeclaration); bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class); void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, UnresolvedSetImpl &Functions); LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc, SourceLocation GnuLabelLoc = SourceLocation()); DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class); CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class); CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class, unsigned Quals); CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals); CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class, unsigned Quals); CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals); CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class); bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id, bool IsUDSuffix); LiteralOperatorLookupResult LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef ArgTys, bool AllowRaw, bool AllowTemplate, bool AllowStringTemplate, bool DiagnoseMissing, StringLiteral *StringLit = nullptr); bool isKnownName(StringRef name); /// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs. enum class FunctionEmissionStatus { Emitted, CUDADiscarded, // Discarded due to CUDA/HIP hostness OMPDiscarded, // Discarded due to OpenMP hostness TemplateDiscarded, // Discarded due to uninstantiated templates Unknown, }; FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl, bool Final = false); // Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check. bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee); void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, ArrayRef Args, ADLResult &Functions); void LookupVisibleDecls(Scope *S, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope = true, bool LoadExternal = true); void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope = true, bool IncludeDependentBases = false, bool LoadExternal = true); enum CorrectTypoKind { CTK_NonError, // CorrectTypo used in a non error recovery situation. CTK_ErrorRecovery // CorrectTypo used in normal error recovery. }; TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, CorrectTypoKind Mode, DeclContext *MemberContext = nullptr, bool EnteringContext = false, const ObjCObjectPointerType *OPT = nullptr, bool RecordFailure = true); TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, DeclContext *MemberContext = nullptr, bool EnteringContext = false, const ObjCObjectPointerType *OPT = nullptr); /// Process any TypoExprs in the given Expr and its children, /// generating diagnostics as appropriate and returning a new Expr if there /// were typos that were all successfully corrected and ExprError if one or /// more typos could not be corrected. /// /// \param E The Expr to check for TypoExprs. /// /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its /// initializer. /// /// \param RecoverUncorrectedTypos If true, when typo correction fails, it /// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs. /// /// \param Filter A function applied to a newly rebuilt Expr to determine if /// it is an acceptable/usable result from a single combination of typo /// corrections. As long as the filter returns ExprError, different /// combinations of corrections will be tried until all are exhausted. ExprResult CorrectDelayedTyposInExpr( Expr *E, VarDecl *InitDecl = nullptr, bool RecoverUncorrectedTypos = false, llvm::function_ref Filter = [](Expr *E) -> ExprResult { return E; }); ExprResult CorrectDelayedTyposInExpr( ExprResult ER, VarDecl *InitDecl = nullptr, bool RecoverUncorrectedTypos = false, llvm::function_ref Filter = [](Expr *E) -> ExprResult { return E; }) { return ER.isInvalid() ? ER : CorrectDelayedTyposInExpr(ER.get(), InitDecl, RecoverUncorrectedTypos, Filter); } void diagnoseTypo(const TypoCorrection &Correction, const PartialDiagnostic &TypoDiag, bool ErrorRecovery = true); void diagnoseTypo(const TypoCorrection &Correction, const PartialDiagnostic &TypoDiag, const PartialDiagnostic &PrevNote, bool ErrorRecovery = true); void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F); void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc, ArrayRef Args, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses); void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, bool ConsiderLinkage, bool AllowInlineNamespace); bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old); bool CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old); bool CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old); bool IsRedefinitionInModule(const NamedDecl *New, const NamedDecl *Old) const; void DiagnoseAmbiguousLookup(LookupResult &Result); //@} /// Attempts to produce a RecoveryExpr after some AST node cannot be created. ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End, ArrayRef SubExprs, QualType T = QualType()); ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id, SourceLocation IdLoc, bool TypoCorrection = false); FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID, SourceLocation Loc); NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc); NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, Scope *S); void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction( FunctionDecl *FD); void AddKnownFunctionAttributes(FunctionDecl *FD); // More parsing and symbol table subroutines. void ProcessPragmaWeak(Scope *S, Decl *D); // Decl attributes - this routine is the top level dispatcher. void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD); // Helper for delayed processing of attributes. void ProcessDeclAttributeDelayed(Decl *D, const ParsedAttributesView &AttrList); // Options for ProcessDeclAttributeList(). struct ProcessDeclAttributeOptions { ProcessDeclAttributeOptions() : IncludeCXX11Attributes(true), IgnoreTypeAttributes(false) {} ProcessDeclAttributeOptions WithIncludeCXX11Attributes(bool Val) { ProcessDeclAttributeOptions Result = *this; Result.IncludeCXX11Attributes = Val; return Result; } ProcessDeclAttributeOptions WithIgnoreTypeAttributes(bool Val) { ProcessDeclAttributeOptions Result = *this; Result.IgnoreTypeAttributes = Val; return Result; } // Should C++11 attributes be processed? bool IncludeCXX11Attributes; // Should any type attributes encountered be ignored? // If this option is false, a diagnostic will be emitted for any type // attributes of a kind that does not "slide" from the declaration to // the decl-specifier-seq. bool IgnoreTypeAttributes; }; void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AttrList, const ProcessDeclAttributeOptions &Options = ProcessDeclAttributeOptions()); bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList); void checkUnusedDeclAttributes(Declarator &D); /// Handles semantic checking for features that are common to all attributes, /// such as checking whether a parameter was properly specified, or the /// correct number of arguments were passed, etc. Returns true if the /// attribute has been diagnosed. bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A, bool SkipArgCountCheck = false); bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A, bool SkipArgCountCheck = false); /// Determine if type T is a valid subject for a nonnull and similar /// attributes. By default, we look through references (the behavior used by /// nonnull), but if the second parameter is true, then we treat a reference /// type as valid. bool isValidPointerAttrType(QualType T, bool RefOkay = false); bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value); bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC, const FunctionDecl *FD = nullptr); bool CheckAttrTarget(const ParsedAttr &CurrAttr); bool CheckAttrNoArgs(const ParsedAttr &CurrAttr); bool checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, const Expr *E, StringRef &Str, SourceLocation *ArgLocation = nullptr); bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum, StringRef &Str, SourceLocation *ArgLocation = nullptr); llvm::Error isValidSectionSpecifier(StringRef Str); bool checkSectionName(SourceLocation LiteralLoc, StringRef Str); bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str); bool checkTargetClonesAttrString(SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal, bool &HasDefault, bool &HasCommas, SmallVectorImpl &Strings); bool checkMSInheritanceAttrOnDefinition( CXXRecordDecl *RD, SourceRange Range, bool BestCase, MSInheritanceModel SemanticSpelling); void CheckAlignasUnderalignment(Decl *D); /// Adjust the calling convention of a method to be the ABI default if it /// wasn't specified explicitly. This handles method types formed from /// function type typedefs and typename template arguments. void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor, SourceLocation Loc); // Check if there is an explicit attribute, but only look through parens. // The intent is to look for an attribute on the current declarator, but not // one that came from a typedef. bool hasExplicitCallingConv(QualType T); /// Get the outermost AttributedType node that sets a calling convention. /// Valid types should not have multiple attributes with different CCs. const AttributedType *getCallingConvAttributedType(QualType T) const; /// Process the attributes before creating an attributed statement. Returns /// the semantic attributes that have been processed. void ProcessStmtAttributes(Stmt *Stmt, const ParsedAttributes &InAttrs, SmallVectorImpl &OutAttrs); void WarnConflictingTypedMethods(ObjCMethodDecl *Method, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl); void CheckConflictingOverridingMethod(ObjCMethodDecl *Method, ObjCMethodDecl *Overridden, bool IsProtocolMethodDecl); /// WarnExactTypedMethods - This routine issues a warning if method /// implementation declaration matches exactly that of its declaration. void WarnExactTypedMethods(ObjCMethodDecl *Method, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl); typedef llvm::SmallPtrSet SelectorSet; /// CheckImplementationIvars - This routine checks if the instance variables /// listed in the implelementation match those listed in the interface. void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, ObjCIvarDecl **Fields, unsigned nIvars, SourceLocation Loc); /// ImplMethodsVsClassMethods - This is main routine to warn if any method /// remains unimplemented in the class or category \@implementation. void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool IncompleteImpl = false); /// DiagnoseUnimplementedProperties - This routine warns on those properties /// which must be implemented by this implementation. void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl, ObjCContainerDecl *CDecl, bool SynthesizeProperties); /// Diagnose any null-resettable synthesized setters. void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl); /// DefaultSynthesizeProperties - This routine default synthesizes all /// properties which must be synthesized in the class's \@implementation. void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl, ObjCInterfaceDecl *IDecl, SourceLocation AtEnd); void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd); /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is /// an ivar synthesized for 'Method' and 'Method' is a property accessor /// declared in class 'IFace'. bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace, ObjCMethodDecl *Method, ObjCIvarDecl *IV); /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which /// backs the property is not used in the property's accessor. void DiagnoseUnusedBackingIvarInAccessor(Scope *S, const ObjCImplementationDecl *ImplD); /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and /// it property has a backing ivar, returns this ivar; otherwise, returns NULL. /// It also returns ivar's property on success. ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, const ObjCPropertyDecl *&PDecl) const; /// Called by ActOnProperty to handle \@property declarations in /// class extensions. ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, Selector GetterSel, SourceLocation GetterNameLoc, Selector SetterSel, SourceLocation SetterNameLoc, const bool isReadWrite, unsigned &Attributes, const unsigned AttributesAsWritten, QualType T, TypeSourceInfo *TSI, tok::ObjCKeywordKind MethodImplKind); /// Called by ActOnProperty and HandlePropertyInClassExtension to /// handle creating the ObjcPropertyDecl for a category or \@interface. ObjCPropertyDecl *CreatePropertyDecl(Scope *S, ObjCContainerDecl *CDecl, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, Selector GetterSel, SourceLocation GetterNameLoc, Selector SetterSel, SourceLocation SetterNameLoc, const bool isReadWrite, const unsigned Attributes, const unsigned AttributesAsWritten, QualType T, TypeSourceInfo *TSI, tok::ObjCKeywordKind MethodImplKind, DeclContext *lexicalDC = nullptr); /// AtomicPropertySetterGetterRules - This routine enforces the rule (via /// warning) when atomic property has one but not the other user-declared /// setter or getter. void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl, ObjCInterfaceDecl* IDecl); void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D); void DiagnoseMissingDesignatedInitOverrides( const ObjCImplementationDecl *ImplD, const ObjCInterfaceDecl *IFD); void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID); enum MethodMatchStrategy { MMS_loose, MMS_strict }; /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns /// true, or false, accordingly. bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, const ObjCMethodDecl *PrevMethod, MethodMatchStrategy strategy = MMS_strict); /// MatchAllMethodDeclarations - Check methods declaraed in interface or /// or protocol against those declared in their implementations. void MatchAllMethodDeclarations(const SelectorSet &InsMap, const SelectorSet &ClsMap, SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl=false); /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in /// category matches with those implemented in its primary class and /// warns each time an exact match is found. void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP); /// Add the given method to the list of globally-known methods. void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method); /// Returns default addr space for method qualifiers. LangAS getDefaultCXXMethodAddrSpace() const; private: /// AddMethodToGlobalPool - Add an instance or factory method to the global /// pool. See descriptoin of AddInstanceMethodToGlobalPool. void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance); /// LookupMethodInGlobalPool - Returns the instance or factory method and /// optionally warns if there are multiple signatures. ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass, bool instance); public: /// - Returns instance or factory methods in global method pool for /// given selector. It checks the desired kind first, if none is found, and /// parameter checkTheOther is set, it then checks the other kind. If no such /// method or only one method is found, function returns false; otherwise, it /// returns true. bool CollectMultipleMethodsInGlobalPool(Selector Sel, SmallVectorImpl& Methods, bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound = nullptr); bool AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, bool receiverIdOrClass, SmallVectorImpl& Methods); void DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl &Methods, Selector Sel, SourceRange R, bool receiverIdOrClass); private: /// - Returns a selector which best matches given argument list or /// nullptr if none could be found ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, SmallVectorImpl& Methods); /// Record the typo correction failure and return an empty correction. TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc, bool RecordFailure = true) { if (RecordFailure) TypoCorrectionFailures[Typo].insert(TypoLoc); return TypoCorrection(); } public: /// AddInstanceMethodToGlobalPool - All instance methods in a translation /// unit are added to a global pool. This allows us to efficiently associate /// a selector with a method declaraation for purposes of typechecking /// messages sent to "id" (where the class of the object is unknown). void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) { AddMethodToGlobalPool(Method, impl, /*instance*/true); } /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods. void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) { AddMethodToGlobalPool(Method, impl, /*instance*/false); } /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global /// pool. void AddAnyMethodToGlobalPool(Decl *D); /// LookupInstanceMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass=false) { return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass, /*instance*/true); } /// LookupFactoryMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass=false) { return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass, /*instance*/false); } const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel, QualType ObjectType=QualType()); /// LookupImplementedMethodInGlobalPool - Returns the method which has an /// implementation. ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel); /// CollectIvarsToConstructOrDestruct - Collect those ivars which require /// initialization. void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, SmallVectorImpl &Ivars); //===--------------------------------------------------------------------===// // Statement Parsing Callbacks: SemaStmt.cpp. public: class FullExprArg { public: FullExprArg() : E(nullptr) { } FullExprArg(Sema &actions) : E(nullptr) { } ExprResult release() { return E; } Expr *get() const { return E; } Expr *operator->() { return E; } private: // FIXME: No need to make the entire Sema class a friend when it's just // Sema::MakeFullExpr that needs access to the constructor below. friend class Sema; explicit FullExprArg(Expr *expr) : E(expr) {} Expr *E; }; FullExprArg MakeFullExpr(Expr *Arg) { return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation()); } FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) { return FullExprArg( ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get()); } FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) { ExprResult FE = ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(), /*DiscardedValue*/ true); return FullExprArg(FE.get()); } StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true); StmtResult ActOnExprStmtError(); StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro = false); void ActOnStartOfCompoundStmt(bool IsStmtExpr); void ActOnAfterCompoundStatementLeadingPragmas(); void ActOnFinishOfCompoundStmt(); StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, ArrayRef Elts, bool isStmtExpr); /// A RAII object to enter scope of a compound statement. class CompoundScopeRAII { public: CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) { S.ActOnStartOfCompoundStmt(IsStmtExpr); } ~CompoundScopeRAII() { S.ActOnFinishOfCompoundStmt(); } private: Sema &S; }; /// An RAII helper that pops function a function scope on exit. struct FunctionScopeRAII { Sema &S; bool Active; FunctionScopeRAII(Sema &S) : S(S), Active(true) {} ~FunctionScopeRAII() { if (Active) S.PopFunctionScopeInfo(); } void disable() { Active = false; } }; StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc); void ActOnForEachDeclStmt(DeclGroupPtrTy Decl); StmtResult ActOnForEachLValueExpr(Expr *E); ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val); StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS, SourceLocation DotDotDotLoc, ExprResult RHS, SourceLocation ColonLoc); void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt); StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt, Scope *CurScope); StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt); StmtResult BuildAttributedStmt(SourceLocation AttrsLoc, ArrayRef Attrs, Stmt *SubStmt); StmtResult ActOnAttributedStmt(const ParsedAttributes &AttrList, Stmt *SubStmt); class ConditionResult; StmtResult ActOnIfStmt(SourceLocation IfLoc, IfStatementKind StatementKind, SourceLocation LParenLoc, Stmt *InitStmt, ConditionResult Cond, SourceLocation RParenLoc, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal); StmtResult BuildIfStmt(SourceLocation IfLoc, IfStatementKind StatementKind, SourceLocation LParenLoc, Stmt *InitStmt, ConditionResult Cond, SourceLocation RParenLoc, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal); StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, SourceLocation LParenLoc, Stmt *InitStmt, ConditionResult Cond, SourceLocation RParenLoc); StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body); StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc, ConditionResult Cond, SourceLocation RParenLoc, Stmt *Body); StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen); StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *First, ConditionResult Second, FullExprArg Third, SourceLocation RParenLoc, Stmt *Body); ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection); StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, Stmt *First, Expr *collection, SourceLocation RParenLoc); StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body); enum BuildForRangeKind { /// Initial building of a for-range statement. BFRK_Build, /// Instantiation or recovery rebuild of a for-range statement. Don't /// attempt any typo-correction. BFRK_Rebuild, /// Determining whether a for-range statement could be built. Avoid any /// unnecessary or irreversible actions. BFRK_Check }; StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection, SourceLocation RParenLoc, BuildForRangeKind Kind); StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, BuildForRangeKind Kind); StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body); StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl); StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *DestExp); StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope); StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope); void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, unsigned NumParams); typedef std::pair CapturedParamNameType; void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, ArrayRef Params, unsigned OpenMPCaptureLevel = 0); StmtResult ActOnCapturedRegionEnd(Stmt *S); void ActOnCapturedRegionError(); RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, unsigned NumParams); struct NamedReturnInfo { const VarDecl *Candidate; enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable }; Status S; bool isMoveEligible() const { return S != None; }; bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; } }; enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn }; NamedReturnInfo getNamedReturnInfo( Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal); NamedReturnInfo getNamedReturnInfo(const VarDecl *VD); const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info, QualType ReturnType); ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value, bool SupressSimplerImplicitMoves = false); StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, Scope *CurScope); StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, bool AllowRecovery = false); StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, NamedReturnInfo &NRInfo, bool SupressSimplerImplicitMoves); StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg Constraints, MultiExprArg Exprs, Expr *AsmString, MultiExprArg Clobbers, unsigned NumLabels, SourceLocation RParenLoc); void FillInlineAsmIdentifierInfo(Expr *Res, llvm::InlineAsmIdentifierInfo &Info); ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool IsUnevaluatedContext); bool LookupInlineAsmField(StringRef Base, StringRef Member, unsigned &Offset, SourceLocation AsmLoc); ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member, SourceLocation AsmLoc); StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef AsmToks, StringRef AsmString, unsigned NumOutputs, unsigned NumInputs, ArrayRef Constraints, ArrayRef Clobbers, ArrayRef Exprs, SourceLocation EndLoc); LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName, SourceLocation Location, bool AlwaysCreate); VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, bool Invalid = false); Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D); StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body); StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body); StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, MultiStmtArg Catch, Stmt *Finally); StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw); StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, Scope *CurScope); ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand); StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SynchExpr, Stmt *SynchBody); StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body); VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id); Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D); StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, Stmt *HandlerBlock); StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef Handlers); StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ? SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler); StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block); void ActOnStartSEHFinallyBlock(); void ActOnAbortSEHFinallyBlock(); StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block); StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope); void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock); bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const; /// If it's a file scoped decl that must warn if not used, keep track /// of it. void MarkUnusedFileScopedDecl(const DeclaratorDecl *D); /// DiagnoseUnusedExprResult - If the statement passed in is an expression /// whose result is unused, warn. void DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID); void DiagnoseUnusedNestedTypedefs(const RecordDecl *D); void DiagnoseUnusedDecl(const NamedDecl *ND); /// If VD is set but not otherwise used, diagnose, for a parameter or a /// variable. void DiagnoseUnusedButSetDecl(const VarDecl *VD); /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null /// statement as a \p Body, and it is located on the same line. /// /// This helps prevent bugs due to typos, such as: /// if (condition); /// do_stuff(); void DiagnoseEmptyStmtBody(SourceLocation StmtLoc, const Stmt *Body, unsigned DiagID); /// Warn if a for/while loop statement \p S, which is followed by /// \p PossibleBody, has a suspicious null statement as a body. void DiagnoseEmptyLoopBody(const Stmt *S, const Stmt *PossibleBody); /// Warn if a value is moved to itself. void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, SourceLocation OpLoc); /// Returns a field in a CXXRecordDecl that has the same name as the decl \p /// SelfAssigned when inside a CXXMethodDecl. const FieldDecl * getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned); /// Warn if we're implicitly casting from a _Nullable pointer type to a /// _Nonnull one. void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType, SourceLocation Loc); /// Warn when implicitly casting 0 to nullptr. void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E); ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) { return DelayedDiagnostics.push(pool); } void PopParsingDeclaration(ParsingDeclState state, Decl *decl); typedef ProcessingContextState ParsingClassState; ParsingClassState PushParsingClass() { ParsingClassDepth++; return DelayedDiagnostics.pushUndelayed(); } void PopParsingClass(ParsingClassState state) { ParsingClassDepth--; DelayedDiagnostics.popUndelayed(state); } void redelayDiagnostics(sema::DelayedDiagnosticPool &pool); void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef Locs, const ObjCInterfaceDecl *UnknownObjCClass, bool ObjCPropertyAccess, bool AvoidPartialAvailabilityChecks = false, ObjCInterfaceDecl *ClassReceiver = nullptr); bool makeUnavailableInSystemHeader(SourceLocation loc, UnavailableAttr::ImplicitReason reason); /// Issue any -Wunguarded-availability warnings in \c FD void DiagnoseUnguardedAvailabilityViolations(Decl *FD); void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx); //===--------------------------------------------------------------------===// // Expression Parsing Callbacks: SemaExpr.cpp. bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid); bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef Locs, const ObjCInterfaceDecl *UnknownObjCClass = nullptr, bool ObjCPropertyAccess = false, bool AvoidPartialAvailabilityChecks = false, ObjCInterfaceDecl *ClassReciever = nullptr); void NoteDeletedFunction(FunctionDecl *FD); void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD); bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD, ObjCMethodDecl *Getter, SourceLocation Loc); void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, ArrayRef Args); void PushExpressionEvaluationContext( ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr, ExpressionEvaluationContextRecord::ExpressionKind Type = ExpressionEvaluationContextRecord::EK_Other); enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl }; void PushExpressionEvaluationContext( ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t, ExpressionEvaluationContextRecord::ExpressionKind Type = ExpressionEvaluationContextRecord::EK_Other); void PopExpressionEvaluationContext(); void DiscardCleanupsInEvaluationContext(); ExprResult TransformToPotentiallyEvaluated(Expr *E); TypeSourceInfo *TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo); ExprResult HandleExprEvaluationContextForTypeof(Expr *E); ExprResult CheckUnevaluatedOperand(Expr *E); void CheckUnusedVolatileAssignment(Expr *E); ExprResult ActOnConstantExpression(ExprResult Res); // Functions for marking a declaration referenced. These functions also // contain the relevant logic for marking if a reference to a function or // variable is an odr-use (in the C++11 sense). There are separate variants // for expressions referring to a decl; these exist because odr-use marking // needs to be delayed for some constant variables when we build one of the // named expressions. // // MightBeOdrUse indicates whether the use could possibly be an odr-use, and // should usually be true. This only needs to be set to false if the lack of // odr-use cannot be determined from the current context (for instance, // because the name denotes a virtual function and was written without an // explicit nested-name-specifier). void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse); void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, bool MightBeOdrUse = true); void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var); void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr); void MarkMemberReferenced(MemberExpr *E); void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E); void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc, unsigned CapturingScopeIndex); ExprResult CheckLValueToRValueConversionOperand(Expr *E); void CleanupVarDeclMarking(); enum TryCaptureKind { TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef }; /// Try to capture the given variable. /// /// \param Var The variable to capture. /// /// \param Loc The location at which the capture occurs. /// /// \param Kind The kind of capture, which may be implicit (for either a /// block or a lambda), or explicit by-value or by-reference (for a lambda). /// /// \param EllipsisLoc The location of the ellipsis, if one is provided in /// an explicit lambda capture. /// /// \param BuildAndDiagnose Whether we are actually supposed to add the /// captures or diagnose errors. If false, this routine merely check whether /// the capture can occur without performing the capture itself or complaining /// if the variable cannot be captured. /// /// \param CaptureType Will be set to the type of the field used to capture /// this variable in the innermost block or lambda. Only valid when the /// variable can be captured. /// /// \param DeclRefType Will be set to the type of a reference to the capture /// from within the current scope. Only valid when the variable can be /// captured. /// /// \param FunctionScopeIndexToStopAt If non-null, it points to the index /// of the FunctionScopeInfo stack beyond which we do not attempt to capture. /// This is useful when enclosing lambdas must speculatively capture /// variables that may or may not be used in certain specializations of /// a nested generic lambda. /// /// \returns true if an error occurred (i.e., the variable cannot be /// captured) and false if the capture succeeded. bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt); /// Try to capture the given variable. bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind = TryCapture_Implicit, SourceLocation EllipsisLoc = SourceLocation()); /// Checks if the variable must be captured. bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc); /// Given a variable, determine the type that a reference to that /// variable will have in the given scope. QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc); /// Mark all of the declarations referenced within a particular AST node as /// referenced. Used when template instantiation instantiates a non-dependent /// type -- entities referenced by the type are now referenced. void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T); void MarkDeclarationsReferencedInExpr(Expr *E, bool SkipLocalVariables = false, ArrayRef StopAt = None); /// Try to recover by turning the given expression into a /// call. Returns true if recovery was attempted or an error was /// emitted; this may also leave the ExprResult invalid. bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD, bool ForceComplain = false, bool (*IsPlausibleResult)(QualType) = nullptr); /// Figure out if an expression could be turned into a call. bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy, UnresolvedSetImpl &NonTemplateOverloads); /// Try to convert an expression \p E to type \p Ty. Returns the result of the /// conversion. ExprResult tryConvertExprToType(Expr *E, QualType Ty); /// Conditionally issue a diagnostic based on the statements's reachability /// analysis. /// /// \param Stmts If Stmts is non-empty, delay reporting the diagnostic until /// the function body is parsed, and then do a basic reachability analysis to /// determine if the statement is reachable. If it is unreachable, the /// diagnostic will not be emitted. bool DiagIfReachable(SourceLocation Loc, ArrayRef Stmts, const PartialDiagnostic &PD); /// Conditionally issue a diagnostic based on the current /// evaluation context. /// /// \param Statement If Statement is non-null, delay reporting the /// diagnostic until the function body is parsed, and then do a basic /// reachability analysis to determine if the statement is reachable. /// If it is unreachable, the diagnostic will not be emitted. bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, const PartialDiagnostic &PD); /// Similar, but diagnostic is only produced if all the specified statements /// are reachable. bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef Stmts, const PartialDiagnostic &PD); // Primary Expressions. SourceRange getExprRange(Expr *E) const; ExprResult ActOnIdExpression( Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand, CorrectionCandidateCallback *CCC = nullptr, bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr); void DecomposeUnqualifiedId(const UnqualifiedId &Id, TemplateArgumentListInfo &Buffer, DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *&TemplateArgs); bool DiagnoseDependentMemberLookup(LookupResult &R); bool DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, CorrectionCandidateCallback &CCC, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr, ArrayRef Args = None, TypoExpr **Out = nullptr); DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, IdentifierInfo *II); ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV); ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S, IdentifierInfo *II, bool AllowBuiltinCreation=false); ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, bool isAddressOfOperand, const TemplateArgumentListInfo *TemplateArgs); /// If \p D cannot be odr-used in the current expression evaluation context, /// return a reason explaining why. Otherwise, return NOUR_None. NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D); DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, SourceLocation Loc, const CXXScopeSpec *SS = nullptr); DeclRefExpr * BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, const DeclarationNameInfo &NameInfo, const CXXScopeSpec *SS = nullptr, NamedDecl *FoundD = nullptr, SourceLocation TemplateKWLoc = SourceLocation(), const TemplateArgumentListInfo *TemplateArgs = nullptr); DeclRefExpr * BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, const DeclarationNameInfo &NameInfo, NestedNameSpecifierLoc NNS, NamedDecl *FoundD = nullptr, SourceLocation TemplateKWLoc = SourceLocation(), const TemplateArgumentListInfo *TemplateArgs = nullptr); ExprResult BuildAnonymousStructUnionMemberReference( const CXXScopeSpec &SS, SourceLocation nameLoc, IndirectFieldDecl *indirectField, DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none), Expr *baseObjectExpr = nullptr, SourceLocation opLoc = SourceLocation()); ExprResult BuildPossibleImplicitMemberExpr( const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, const Scope *S, UnresolvedLookupExpr *AsULE = nullptr); ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, bool IsDefiniteInstance, const Scope *S); bool UseArgumentDependentLookup(const CXXScopeSpec &SS, const LookupResult &R, bool HasTrailingLParen); ExprResult BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI = nullptr); ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL, bool AcceptInvalidDecl = false); ExprResult BuildDeclarationNameExpr( const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, NamedDecl *FoundD = nullptr, const TemplateArgumentListInfo *TemplateArgs = nullptr, bool AcceptInvalidDecl = false); ExprResult BuildLiteralOperatorCall(LookupResult &R, DeclarationNameInfo &SuffixInfo, ArrayRef Args, SourceLocation LitEndLoc, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr); ExprResult BuildPredefinedExpr(SourceLocation Loc, PredefinedExpr::IdentKind IK); ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind); ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val); ExprResult BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, SourceLocation LParen, SourceLocation RParen, TypeSourceInfo *TSI); ExprResult ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc, SourceLocation LParen, SourceLocation RParen, ParsedType ParsedTy); bool CheckLoopHintExpr(Expr *E, SourceLocation Loc); ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr); ExprResult ActOnCharacterConstant(const Token &Tok, Scope *UDLScope = nullptr); ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E); ExprResult ActOnParenListExpr(SourceLocation L, SourceLocation R, MultiExprArg Val); /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). ExprResult ActOnStringLiteral(ArrayRef StringToks, Scope *UDLScope = nullptr); ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef ArgTypes, ArrayRef ArgExprs); ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef Types, ArrayRef Exprs); // Binary/Unary Operators. 'Tok' is the token for the operator. ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *InputExpr); ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input); ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, Expr *Input); bool isQualifiedMemberAccess(Expr *E); QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc); ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R); ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind); ExprResult ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, bool IsType, void *TyOrEx, SourceRange ArgRange); ExprResult CheckPlaceholderExpr(Expr *E); bool CheckVecStepExpr(Expr *E); bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind); bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc, SourceRange ExprRange, UnaryExprOrTypeTrait ExprKind); ExprResult ActOnSizeofParameterPackExpr(Scope *S, SourceLocation OpLoc, IdentifierInfo &Name, SourceLocation NameLoc, SourceLocation RParenLoc); ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, Expr *Input); ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc, MultiExprArg ArgExprs, SourceLocation RLoc); ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc); ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, Expr *ColumnIdx, SourceLocation RBLoc); ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, Expr *LowerBound, SourceLocation ColonLocFirst, SourceLocation ColonLocSecond, Expr *Length, Expr *Stride, SourceLocation RBLoc); ExprResult ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, SourceLocation RParenLoc, ArrayRef Dims, ArrayRef Brackets); /// Data structure for iterator expression. struct OMPIteratorData { IdentifierInfo *DeclIdent = nullptr; SourceLocation DeclIdentLoc; ParsedType Type; OMPIteratorExpr::IteratorRange Range; SourceLocation AssignLoc; SourceLocation ColonLoc; SourceLocation SecColonLoc; }; ExprResult ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc, SourceLocation LLoc, SourceLocation RLoc, ArrayRef Data); // This struct is for use by ActOnMemberAccess to allow // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after // changing the access operator from a '.' to a '->' (to see if that is the // change needed to fix an error about an unknown member, e.g. when the class // defines a custom operator->). struct ActOnMemberAccessExtraArgs { Scope *S; UnqualifiedId &Id; Decl *ObjCImpDecl; }; ExprResult BuildMemberReferenceExpr( Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs, const Scope *S, ActOnMemberAccessExtraArgs *ExtraArgs = nullptr); ExprResult BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, const Scope *S, bool SuppressQualifierCheck = false, ActOnMemberAccessExtraArgs *ExtraArgs = nullptr); ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, FieldDecl *Field, DeclAccessPair FoundDecl, const DeclarationNameInfo &MemberNameInfo); ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow); bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType, const CXXScopeSpec &SS, const LookupResult &R); ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Member, Decl *ObjCImpDecl); MemberExpr * BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS, SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK, ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr); MemberExpr * BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK, ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr); void ActOnDefaultCtorInitializers(Decl *CDtorDecl); bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl, const FunctionProtoType *Proto, ArrayRef Args, SourceLocation RParenLoc, bool ExecConfig = false); void CheckStaticArrayArgument(SourceLocation CallLoc, ParmVarDecl *Param, const Expr *ArgExpr); /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, MultiExprArg ArgExprs, SourceLocation RParenLoc, Expr *ExecConfig = nullptr); ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, MultiExprArg ArgExprs, SourceLocation RParenLoc, Expr *ExecConfig = nullptr, bool IsExecConfig = false, bool AllowRecovery = false); Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id, MultiExprArg CallArgs); enum class AtomicArgumentOrder { API, AST }; ExprResult BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, SourceLocation RParenLoc, MultiExprArg Args, AtomicExpr::AtomicOp Op, AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API); ExprResult BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc, ArrayRef Arg, SourceLocation RParenLoc, Expr *Config = nullptr, bool IsExecConfig = false, ADLCallKind UsesADL = ADLCallKind::NotADL); ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, MultiExprArg ExecConfig, SourceLocation GGGLoc); ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc, Declarator &D, ParsedType &Ty, SourceLocation RParenLoc, Expr *CastExpr); ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty, SourceLocation RParenLoc, Expr *Op); CastKind PrepareScalarCast(ExprResult &src, QualType destType); /// Build an altivec or OpenCL literal. ExprResult BuildVectorLiteral(SourceLocation LParenLoc, SourceLocation RParenLoc, Expr *E, TypeSourceInfo *TInfo); ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME); ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc, Expr *InitExpr); ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *LiteralExpr); ExprResult ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, SourceLocation RBraceLoc); ExprResult BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, SourceLocation RBraceLoc); ExprResult ActOnDesignatedInitializer(Designation &Desig, SourceLocation EqualOrColonLoc, bool GNUSyntax, ExprResult Init); private: static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind); public: ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr); ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr); ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr); void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, UnresolvedSetImpl &Functions); void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc); /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. ExprResult ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr); /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, LabelDecl *TheDecl); void ActOnStartStmtExpr(); ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt, SourceLocation RPLoc); ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, SourceLocation RPLoc, unsigned TemplateDepth); // Handle the final expression in a statement expression. ExprResult ActOnStmtExprResult(ExprResult E); void ActOnStmtExprError(); // __builtin_offsetof(type, identifier(.identifier|[expr])*) struct OffsetOfComponent { SourceLocation LocStart, LocEnd; bool isBrackets; // true if [expr], false if .ident union { IdentifierInfo *IdentInfo; Expr *E; } U; }; /// __builtin_offsetof(type, a.b[123][456].c) ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, TypeSourceInfo *TInfo, ArrayRef Components, SourceLocation RParenLoc); ExprResult ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc, SourceLocation TypeLoc, ParsedType ParsedArgTy, ArrayRef Components, SourceLocation RParenLoc); // __builtin_choose_expr(constExpr, expr1, expr2) ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr, SourceLocation RPLoc); // __builtin_va_arg(expr, type) ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, SourceLocation RPLoc); ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E, TypeSourceInfo *TInfo, SourceLocation RPLoc); // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(), // __builtin_COLUMN(), __builtin_source_location() ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind, SourceLocation BuiltinLoc, SourceLocation RPLoc); // Build a potentially resolved SourceLocExpr. ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind, QualType ResultTy, SourceLocation BuiltinLoc, SourceLocation RPLoc, DeclContext *ParentContext); // __null ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc); bool CheckCaseExpression(Expr *E); /// Describes the result of an "if-exists" condition check. enum IfExistsResult { /// The symbol exists. IER_Exists, /// The symbol does not exist. IER_DoesNotExist, /// The name is a dependent name, so the results will differ /// from one instantiation to the next. IER_Dependent, /// An error occurred. IER_Error }; IfExistsResult CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS, const DeclarationNameInfo &TargetNameInfo); IfExistsResult CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name); StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested); StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name, Stmt *Nested); //===------------------------- "Block" Extension ------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is /// started. void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockArguments - This callback allows processing of block arguments. /// If there are no arguments, this is still invoked. void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo, Scope *CurScope); /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body, Scope *CurScope); //===---------------------------- Clang Extensions ----------------------===// /// __builtin_convertvector(...) ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc); //===---------------------------- OpenCL Features -----------------------===// /// __builtin_astype(...) ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc); ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc); //===---------------------------- C++ Features --------------------------===// // Act on C++ namespaces Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc, SourceLocation NamespaceLoc, SourceLocation IdentLoc, IdentifierInfo *Ident, SourceLocation LBrace, const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UsingDecl); void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace); NamespaceDecl *getStdNamespace() const; NamespaceDecl *getOrCreateStdNamespace(); NamespaceDecl *lookupStdExperimentalNamespace(); NamespaceDecl *getCachedCoroNamespace() { return CoroTraitsNamespaceCache; } CXXRecordDecl *getStdBadAlloc() const; EnumDecl *getStdAlignValT() const; private: // A cache representing if we've fully checked the various comparison category // types stored in ASTContext. The bit-index corresponds to the integer value // of a ComparisonCategoryType enumerator. llvm::SmallBitVector FullyCheckedComparisonCategories; ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, CXXScopeSpec &SS, ParsedType TemplateTypeTy, IdentifierInfo *MemberOrBase); public: enum class ComparisonCategoryUsage { /// The '<=>' operator was used in an expression and a builtin operator /// was selected. OperatorInExpression, /// A defaulted 'operator<=>' needed the comparison category. This /// typically only applies to 'std::strong_ordering', due to the implicit /// fallback return value. DefaultedOperator, }; /// Lookup the specified comparison category types in the standard /// library, an check the VarDecls possibly returned by the operator<=> /// builtins for that type. /// /// \return The type of the comparison category type corresponding to the /// specified Kind, or a null type if an error occurs QualType CheckComparisonCategoryType(ComparisonCategoryType Kind, SourceLocation Loc, ComparisonCategoryUsage Usage); /// Tests whether Ty is an instance of std::initializer_list and, if /// it is and Element is not NULL, assigns the element type to Element. bool isStdInitializerList(QualType Ty, QualType *Element); /// Looks for the std::initializer_list template and instantiates it /// with Element, or emits an error if it's not found. /// /// \returns The instantiated template, or null on error. QualType BuildStdInitializerList(QualType Element, SourceLocation Loc); /// Determine whether Ctor is an initializer-list constructor, as /// defined in [dcl.init.list]p2. bool isInitListConstructor(const FunctionDecl *Ctor); Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc, SourceLocation NamespcLoc, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, const ParsedAttributesView &AttrList); void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir); Decl *ActOnNamespaceAliasDef(Scope *CurScope, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *Ident); void FilterUsingLookup(Scope *S, LookupResult &lookup); void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow); bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target, const LookupResult &PreviousDecls, UsingShadowDecl *&PrevShadow); UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, NamedDecl *Target, UsingShadowDecl *PrevDecl); bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc, bool HasTypenameKeyword, const CXXScopeSpec &SS, SourceLocation NameLoc, const LookupResult &Previous); bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, SourceLocation NameLoc, const LookupResult *R = nullptr, const UsingDecl *UD = nullptr); NamedDecl *BuildUsingDeclaration( Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, const ParsedAttributesView &AttrList, bool IsInstantiation, bool IsUsingIfExists); NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, SourceLocation EnumLoc, SourceLocation NameLoc, EnumDecl *ED); NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom, ArrayRef Expansions); bool CheckInheritingConstructorUsingDecl(UsingDecl *UD); /// Given a derived-class using shadow declaration for a constructor and the /// correspnding base class constructor, find or create the implicit /// synthesized derived class constructor to use for this initialization. CXXConstructorDecl * findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor, ConstructorUsingShadowDecl *DerivedShadow); Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS, SourceLocation UsingLoc, SourceLocation TypenameLoc, CXXScopeSpec &SS, UnqualifiedId &Name, SourceLocation EllipsisLoc, const ParsedAttributesView &AttrList); Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS, SourceLocation UsingLoc, SourceLocation EnumLoc, const DeclSpec &); Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS, MultiTemplateParamsArg TemplateParams, SourceLocation UsingLoc, UnqualifiedId &Name, const ParsedAttributesView &AttrList, TypeResult Type, Decl *DeclFromDeclSpec); /// BuildCXXConstructExpr - Creates a complete call to a constructor, /// including handling of its default argument expressions. /// /// \param ConstructKind - a CXXConstructExpr::ConstructionKind ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, CXXConstructorDecl *Constructor, MultiExprArg Exprs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); /// Build a CXXConstructExpr whose constructor has already been resolved if /// it denotes an inherited constructor. ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if // the constructor can be elidable? ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field); /// Instantiate or parse a C++ default argument expression as necessary. /// Return true on error. bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param); /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating /// the default expr if needed. ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param); /// FinalizeVarWithDestructor - Prepare for calling destructor on the /// constructed variable. void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType); /// Helper class that collects exception specifications for /// implicitly-declared special member functions. class ImplicitExceptionSpecification { // Pointer to allow copying Sema *Self; // We order exception specifications thus: // noexcept is the most restrictive, but is only used in C++11. // throw() comes next. // Then a throw(collected exceptions) // Finally no specification, which is expressed as noexcept(false). // throw(...) is used instead if any called function uses it. ExceptionSpecificationType ComputedEST; llvm::SmallPtrSet ExceptionsSeen; SmallVector Exceptions; void ClearExceptions() { ExceptionsSeen.clear(); Exceptions.clear(); } public: explicit ImplicitExceptionSpecification(Sema &Self) : Self(&Self), ComputedEST(EST_BasicNoexcept) { if (!Self.getLangOpts().CPlusPlus11) ComputedEST = EST_DynamicNone; } /// Get the computed exception specification type. ExceptionSpecificationType getExceptionSpecType() const { assert(!isComputedNoexcept(ComputedEST) && "noexcept(expr) should not be a possible result"); return ComputedEST; } /// The number of exceptions in the exception specification. unsigned size() const { return Exceptions.size(); } /// The set of exceptions in the exception specification. const QualType *data() const { return Exceptions.data(); } /// Integrate another called method into the collected data. void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method); /// Integrate an invoked expression into the collected data. void CalledExpr(Expr *E) { CalledStmt(E); } /// Integrate an invoked statement into the collected data. void CalledStmt(Stmt *S); /// Overwrite an EPI's exception specification with this /// computed exception specification. FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const { FunctionProtoType::ExceptionSpecInfo ESI; ESI.Type = getExceptionSpecType(); if (ESI.Type == EST_Dynamic) { ESI.Exceptions = Exceptions; } else if (ESI.Type == EST_None) { /// C++11 [except.spec]p14: /// The exception-specification is noexcept(false) if the set of /// potential exceptions of the special member function contains "any" ESI.Type = EST_NoexceptFalse; ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(), tok::kw_false).get(); } return ESI; } }; /// Evaluate the implicit exception specification for a defaulted /// special member function. void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD); /// Check the given noexcept-specifier, convert its expression, and compute /// the appropriate ExceptionSpecificationType. ExprResult ActOnNoexceptSpec(Expr *NoexceptExpr, ExceptionSpecificationType &EST); /// Check the given exception-specification and update the /// exception specification information with the results. void checkExceptionSpecification(bool IsTopLevel, ExceptionSpecificationType EST, ArrayRef DynamicExceptions, ArrayRef DynamicExceptionRanges, Expr *NoexceptExpr, SmallVectorImpl &Exceptions, FunctionProtoType::ExceptionSpecInfo &ESI); /// Determine if we're in a case where we need to (incorrectly) eagerly /// parse an exception specification to work around a libstdc++ bug. bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D); /// Add an exception-specification to the given member function /// (or member function template). The exception-specification was parsed /// after the method itself was declared. void actOnDelayedExceptionSpecification(Decl *Method, ExceptionSpecificationType EST, SourceRange SpecificationRange, ArrayRef DynamicExceptions, ArrayRef DynamicExceptionRanges, Expr *NoexceptExpr); class InheritedConstructorInfo; /// Determine if a special member function should have a deleted /// definition when it is defaulted. bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, InheritedConstructorInfo *ICI = nullptr, bool Diagnose = false); /// Produce notes explaining why a defaulted function was defined as deleted. void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD); /// Declare the implicit default constructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// default constructor will be added. /// /// \returns The implicitly-declared default constructor. CXXConstructorDecl *DeclareImplicitDefaultConstructor( CXXRecordDecl *ClassDecl); /// DefineImplicitDefaultConstructor - Checks for feasibility of /// defining this constructor as the default constructor. void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// Declare the implicit destructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// destructor will be added. /// /// \returns The implicitly-declared destructor. CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl); /// DefineImplicitDestructor - Checks for feasibility of /// defining this destructor as the default destructor. void DefineImplicitDestructor(SourceLocation CurrentLocation, CXXDestructorDecl *Destructor); /// Build an exception spec for destructors that don't have one. /// /// C++11 says that user-defined destructors with no exception spec get one /// that looks as if the destructor was implicitly declared. void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor); /// Define the specified inheriting constructor. void DefineInheritingConstructor(SourceLocation UseLoc, CXXConstructorDecl *Constructor); /// Declare the implicit copy constructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// copy constructor will be added. /// /// \returns The implicitly-declared copy constructor. CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl); /// DefineImplicitCopyConstructor - Checks for feasibility of /// defining this constructor as the copy constructor. void DefineImplicitCopyConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// Declare the implicit move constructor for the given class. /// /// \param ClassDecl The Class declaration into which the implicit /// move constructor will be added. /// /// \returns The implicitly-declared move constructor, or NULL if it wasn't /// declared. CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl); /// DefineImplicitMoveConstructor - Checks for feasibility of /// defining this constructor as the move constructor. void DefineImplicitMoveConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// Declare the implicit copy assignment operator for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// copy assignment operator will be added. /// /// \returns The implicitly-declared copy assignment operator. CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl); /// Defines an implicitly-declared copy assignment operator. void DefineImplicitCopyAssignment(SourceLocation CurrentLocation, CXXMethodDecl *MethodDecl); /// Declare the implicit move assignment operator for the given class. /// /// \param ClassDecl The Class declaration into which the implicit /// move assignment operator will be added. /// /// \returns The implicitly-declared move assignment operator, or NULL if it /// wasn't declared. CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl); /// Defines an implicitly-declared move assignment operator. void DefineImplicitMoveAssignment(SourceLocation CurrentLocation, CXXMethodDecl *MethodDecl); /// Force the declaration of any implicitly-declared members of this /// class. void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class); /// Check a completed declaration of an implicit special member. void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD); /// Determine whether the given function is an implicitly-deleted /// special member function. bool isImplicitlyDeleted(FunctionDecl *FD); /// Check whether 'this' shows up in the type of a static member /// function after the (naturally empty) cv-qualifier-seq would be. /// /// \returns true if an error occurred. bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method); /// Whether this' shows up in the exception specification of a static /// member function. bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method); /// Check whether 'this' shows up in the attributes of the given /// static member function. /// /// \returns true if an error occurred. bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method); /// MaybeBindToTemporary - If the passed in expression has a record type with /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise /// it simply returns the passed in expression. ExprResult MaybeBindToTemporary(Expr *E); /// Wrap the expression in a ConstantExpr if it is a potential immediate /// invocation. ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl); bool CompleteConstructorCall(CXXConstructorDecl *Constructor, QualType DeclInitType, MultiExprArg ArgsPtr, SourceLocation Loc, SmallVectorImpl &ConvertedArgs, bool AllowExplicit = false, bool IsListInitialization = false); ParsedType getInheritingConstructorName(CXXScopeSpec &SS, SourceLocation NameLoc, IdentifierInfo &Name); ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, bool EnteringContext); ParsedType getDestructorName(SourceLocation TildeLoc, IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, ParsedType ObjectType, bool EnteringContext); ParsedType getDestructorTypeForDecltype(const DeclSpec &DS, ParsedType ObjectType); // Checks that reinterpret casts don't have undefined behavior. void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, bool IsDereference, SourceRange Range); // Checks that the vector type should be initialized from a scalar // by splatting the value rather than populating a single element. // This is the case for AltiVecVector types as well as with // AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified. bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy); // Checks if the -faltivec-src-compat=gcc option is specified. // If so, AltiVecVector, AltiVecBool and AltiVecPixel types are // treated the same way as they are when trying to initialize // these vectors on gcc (an error is emitted). bool CheckAltivecInitFromScalar(SourceRange R, QualType VecTy, QualType SrcTy); /// ActOnCXXNamedCast - Parse /// {dynamic,static,reinterpret,const,addrspace}_cast's. ExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, Declarator &D, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, Expr *E, SourceLocation RParenLoc); ExprResult BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, TypeSourceInfo *Ty, Expr *E, SourceRange AngleBrackets, SourceRange Parens); ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl, ExprResult Operand, SourceLocation RParenLoc); ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI, Expr *Operand, SourceLocation RParenLoc); ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc); ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc); /// ActOnCXXTypeid - Parse typeid( something ). ExprResult ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc); ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc); /// ActOnCXXUuidof - Parse __uuidof( something ). ExprResult ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); /// Handle a C++1z fold-expression: ( expr op ... op expr ). ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS, tok::TokenKind Operator, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc); ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee, SourceLocation LParenLoc, Expr *LHS, BinaryOperatorKind Operator, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc, Optional NumExpansions); ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc, BinaryOperatorKind Operator); //// ActOnCXXThis - Parse 'this' pointer. ExprResult ActOnCXXThis(SourceLocation loc); /// Build a CXXThisExpr and mark it referenced in the current context. Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit); void MarkThisReferenced(CXXThisExpr *This); /// Try to retrieve the type of the 'this' pointer. /// /// \returns The type of 'this', if possible. Otherwise, returns a NULL type. QualType getCurrentThisType(); /// When non-NULL, the C++ 'this' expression is allowed despite the /// current context not being a non-static member function. In such cases, /// this provides the type used for 'this'. QualType CXXThisTypeOverride; /// RAII object used to temporarily allow the C++ 'this' expression /// to be used, with the given qualifiers on the current class type. class CXXThisScopeRAII { Sema &S; QualType OldCXXThisTypeOverride; bool Enabled; public: /// Introduce a new scope where 'this' may be allowed (when enabled), /// using the given declaration (which is either a class template or a /// class) along with the given qualifiers. /// along with the qualifiers placed on '*this'. CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals, bool Enabled = true); ~CXXThisScopeRAII(); }; /// Make sure the value of 'this' is actually available in the current /// context, if it is a potentially evaluated context. /// /// \param Loc The location at which the capture of 'this' occurs. /// /// \param Explicit Whether 'this' is explicitly captured in a lambda /// capture list. /// /// \param FunctionScopeIndexToStopAt If non-null, it points to the index /// of the FunctionScopeInfo stack beyond which we do not attempt to capture. /// This is useful when enclosing lambdas must speculatively capture /// 'this' that may or may not be used in certain specializations of /// a nested generic lambda (depending on whether the name resolves to /// a non-static member function or a static function). /// \return returns 'true' if failed, 'false' if success. bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false, bool BuildAndDiagnose = true, const unsigned *const FunctionScopeIndexToStopAt = nullptr, bool ByCopy = false); /// Determine whether the given type is the type of *this that is used /// outside of the body of a member function for a type that is currently /// being defined. bool isThisOutsideMemberFunctionBody(QualType BaseType); /// ActOnCXXBoolLiteral - Parse {true,false} literals. ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); ExprResult ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef AvailSpecs, SourceLocation AtLoc, SourceLocation RParen); /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc); //// ActOnCXXThrow - Parse throw expressions. ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr); ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, bool IsThrownVarInScope); bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E); /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep, SourceLocation LParenOrBraceLoc, MultiExprArg Exprs, SourceLocation RParenOrBraceLoc, bool ListInitialization); ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation RParenLoc, bool ListInitialization); /// ActOnCXXNew - Parsed a C++ 'new' expression. ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, Declarator &D, Expr *Initializer); ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, QualType AllocType, TypeSourceInfo *AllocTypeInfo, Optional ArraySize, SourceRange DirectInitRange, Expr *Initializer); /// Determine whether \p FD is an aligned allocation or deallocation /// function that is unavailable. bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const; /// Produce diagnostics if \p FD is an aligned allocation or deallocation /// function that is unavailable. void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, SourceLocation Loc); bool CheckAllocatedType(QualType AllocType, SourceLocation Loc, SourceRange R); /// The scope in which to find allocation functions. enum AllocationFunctionScope { /// Only look for allocation functions in the global scope. AFS_Global, /// Only look for allocation functions in the scope of the /// allocated class. AFS_Class, /// Look for allocation functions in both the global scope /// and in the scope of the allocated class. AFS_Both }; /// Finds the overloads of operator new and delete that are appropriate /// for the allocation. bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, AllocationFunctionScope NewScope, AllocationFunctionScope DeleteScope, QualType AllocType, bool IsArray, bool &PassAlignment, MultiExprArg PlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete, bool Diagnose = true); void DeclareGlobalNewDelete(); void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, ArrayRef Params); bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, DeclarationName Name, FunctionDecl* &Operator, bool Diagnose = true); FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc, bool CanProvideSize, bool Overaligned, DeclarationName Name); FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc, CXXRecordDecl *RD); /// ActOnCXXDelete - Parsed a C++ 'delete' expression ExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, Expr *Operand); void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, bool IsDelete, bool CallCanBeVirtual, bool WarnOnNonAbstractTypes, SourceLocation DtorLoc); ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen, Expr *Operand, SourceLocation RParen); ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, SourceLocation RParen); /// Parsed one of the type trait support pseudo-functions. ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef Args, SourceLocation RParenLoc); ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef Args, SourceLocation RParenLoc); /// ActOnArrayTypeTrait - Parsed one of the binary type trait support /// pseudo-functions. ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, ParsedType LhsTy, Expr *DimExpr, SourceLocation RParen); ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, TypeSourceInfo *TSInfo, Expr *DimExpr, SourceLocation RParen); /// ActOnExpressionTrait - Parsed one of the unary type trait support /// pseudo-functions. ExprResult ActOnExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen); ExprResult BuildExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen); ExprResult ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, ParsedType &ObjectType, bool &MayBePseudoDestructor); ExprResult BuildPseudoDestructorExpr(Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, const CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage DestroyedType); ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, UnqualifiedId &FirstTypeName, SourceLocation CCLoc, SourceLocation TildeLoc, UnqualifiedId &SecondTypeName); ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation TildeLoc, const DeclSpec& DS); /// MaybeCreateExprWithCleanups - If the current full-expression /// requires any cleanups, surround it with a ExprWithCleanups node. /// Otherwise, just returns the passed-in expression. Expr *MaybeCreateExprWithCleanups(Expr *SubExpr); Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt); ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr); MaterializeTemporaryExpr * CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, bool BoundToLvalueReference); ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) { return ActOnFinishFullExpr( Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue); } ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC, bool DiscardedValue, bool IsConstexpr = false); StmtResult ActOnFinishFullStmt(Stmt *Stmt); // Marks SS invalid if it represents an incomplete type. bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC); // Complete an enum decl, maybe without a scope spec. bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L, CXXScopeSpec *SS = nullptr); DeclContext *computeDeclContext(QualType T); DeclContext *computeDeclContext(const CXXScopeSpec &SS, bool EnteringContext = false); bool isDependentScopeSpecifier(const CXXScopeSpec &SS); CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS); /// The parser has parsed a global nested-name-specifier '::'. /// /// \param CCLoc The location of the '::'. /// /// \param SS The nested-name-specifier, which will be updated in-place /// to reflect the parsed nested-name-specifier. /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS); /// The parser has parsed a '__super' nested-name-specifier. /// /// \param SuperLoc The location of the '__super' keyword. /// /// \param ColonColonLoc The location of the '::'. /// /// \param SS The nested-name-specifier, which will be updated in-place /// to reflect the parsed nested-name-specifier. /// /// \returns true if an error occurred, false otherwise. bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc, SourceLocation ColonColonLoc, CXXScopeSpec &SS); bool isAcceptableNestedNameSpecifier(const NamedDecl *SD, bool *CanCorrect = nullptr); NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS); /// Keeps information about an identifier in a nested-name-spec. /// struct NestedNameSpecInfo { /// The type of the object, if we're parsing nested-name-specifier in /// a member access expression. ParsedType ObjectType; /// The identifier preceding the '::'. IdentifierInfo *Identifier; /// The location of the identifier. SourceLocation IdentifierLoc; /// The location of the '::'. SourceLocation CCLoc; /// Creates info object for the most typical case. NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc, SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType()) : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) { } NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc, SourceLocation ColonColonLoc, QualType ObjectType) : ObjectType(ParsedType::make(ObjectType)), Identifier(II), IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) { } }; bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, NestedNameSpecInfo &IdInfo); bool BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo, bool EnteringContext, CXXScopeSpec &SS, NamedDecl *ScopeLookupResult, bool ErrorRecoveryLookup, bool *IsCorrectedToColon = nullptr, bool OnlyNamespace = false); /// The parser has parsed a nested-name-specifier 'identifier::'. /// /// \param S The scope in which this nested-name-specifier occurs. /// /// \param IdInfo Parser information about an identifier in the /// nested-name-spec. /// /// \param EnteringContext Whether we're entering the context nominated by /// this nested-name-specifier. /// /// \param SS The nested-name-specifier, which is both an input /// parameter (the nested-name-specifier before this type) and an /// output parameter (containing the full nested-name-specifier, /// including this new type). /// /// \param ErrorRecoveryLookup If true, then this method is called to improve /// error recovery. In this case do not emit error message. /// /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':' /// are allowed. The bool value pointed by this parameter is set to 'true' /// if the identifier is treated as if it was followed by ':', not '::'. /// /// \param OnlyNamespace If true, only considers namespaces in lookup. /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo, bool EnteringContext, CXXScopeSpec &SS, bool *IsCorrectedToColon = nullptr, bool OnlyNamespace = false); ExprResult ActOnDecltypeExpression(Expr *E); bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, const DeclSpec &DS, SourceLocation ColonColonLoc); bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS, NestedNameSpecInfo &IdInfo, bool EnteringContext); /// The parser has parsed a nested-name-specifier /// 'template[opt] template-name < template-args >::'. /// /// \param S The scope in which this nested-name-specifier occurs. /// /// \param SS The nested-name-specifier, which is both an input /// parameter (the nested-name-specifier before this type) and an /// output parameter (containing the full nested-name-specifier, /// including this new type). /// /// \param TemplateKWLoc the location of the 'template' keyword, if any. /// \param TemplateName the template name. /// \param TemplateNameLoc The location of the template name. /// \param LAngleLoc The location of the opening angle bracket ('<'). /// \param TemplateArgs The template arguments. /// \param RAngleLoc The location of the closing angle bracket ('>'). /// \param CCLoc The location of the '::'. /// /// \param EnteringContext Whether we're entering the context of the /// nested-name-specifier. /// /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy TemplateName, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, SourceLocation CCLoc, bool EnteringContext); /// Given a C++ nested-name-specifier, produce an annotation value /// that the parser can use later to reconstruct the given /// nested-name-specifier. /// /// \param SS A nested-name-specifier. /// /// \returns A pointer containing all of the information in the /// nested-name-specifier \p SS. void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS); /// Given an annotation pointer for a nested-name-specifier, restore /// the nested-name-specifier structure. /// /// \param Annotation The annotation pointer, produced by /// \c SaveNestedNameSpecifierAnnotation(). /// /// \param AnnotationRange The source range corresponding to the annotation. /// /// \param SS The nested-name-specifier that will be updated with the contents /// of the annotation pointer. void RestoreNestedNameSpecifierAnnotation(void *Annotation, SourceRange AnnotationRange, CXXScopeSpec &SS); bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global /// scope or nested-name-specifier) is parsed, part of a declarator-id. /// After this method is called, according to [C++ 3.4.3p3], names should be /// looked up in the declarator-id's scope, until the declarator is parsed and /// ActOnCXXExitDeclaratorScope is called. /// The 'SS' should be a non-empty valid CXXScopeSpec. bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS); /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. /// Used to indicate that names should revert to being looked up in the /// defining scope. void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an /// initializer for the declaration 'Dcl'. /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a /// static data member of class X, names should be looked up in the scope of /// class X. void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl); /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an /// initializer for the declaration 'Dcl'. void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl); /// Create a new lambda closure type. CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, unsigned LambdaDependencyKind, LambdaCaptureDefault CaptureDefault); /// Start the definition of a lambda expression. CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, ArrayRef Params, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause); /// Number lambda for linkage purposes if necessary. void handleLambdaNumbering( CXXRecordDecl *Class, CXXMethodDecl *Method, Optional> Mangling = None); /// Endow the lambda scope info with the relevant properties. void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, bool Mutable); /// Perform initialization analysis of the init-capture and perform /// any implicit conversions such as an lvalue-to-rvalue conversion if /// not being used to initialize a reference. ParsedType actOnLambdaInitCaptureInitialization( SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) { return ParsedType::make(buildLambdaInitCaptureInitialization( Loc, ByRef, EllipsisLoc, None, Id, InitKind != LambdaCaptureInitKind::CopyInit, Init)); } QualType buildLambdaInitCaptureInitialization( SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, Optional NumExpansions, IdentifierInfo *Id, bool DirectInit, Expr *&Init); /// Create a dummy variable within the declcontext of the lambda's /// call operator, for name lookup purposes for a lambda init capture. /// /// CodeGen handles emission of lambda captures, ignoring these dummy /// variables appropriately. VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc, IdentifierInfo *Id, unsigned InitStyle, Expr *Init); /// Add an init-capture to a lambda scope. void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var); /// Note that we have finished the explicit captures for the /// given lambda. void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI); /// \brief This is called after parsing the explicit template parameter list /// on a lambda (if it exists) in C++2a. void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, ArrayRef TParams, SourceLocation RAngleLoc, ExprResult RequiresClause); /// Introduce the lambda parameters into scope. void addLambdaParameters( ArrayRef Captures, CXXMethodDecl *CallOperator, Scope *CurScope); /// Deduce a block or lambda's return type based on the return /// statements present in the body. void deduceClosureReturnType(sema::CapturingScopeInfo &CSI); /// ActOnStartOfLambdaDefinition - This is called just before we start /// parsing the body of a lambda; it analyzes the explicit captures and /// arguments, and sets up various data-structures for the body of the /// lambda. void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope); /// ActOnLambdaError - If there is an error parsing a lambda, this callback /// is invoked to pop the information about the lambda. void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation = false); /// ActOnLambdaExpr - This is called when the body of a lambda expression /// was successfully completed. ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope); /// Does copying/destroying the captured variable have side effects? bool CaptureHasSideEffects(const sema::Capture &From); /// Diagnose if an explicit lambda capture is unused. Returns true if a /// diagnostic is emitted. bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, const sema::Capture &From); /// Build a FieldDecl suitable to hold the given capture. FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture); /// Initialize the given capture with a suitable expression. ExprResult BuildCaptureInit(const sema::Capture &Capture, SourceLocation ImplicitCaptureLoc, bool IsOpenMPMapping = false); /// Complete a lambda-expression having processed and attached the /// lambda body. ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, sema::LambdaScopeInfo *LSI); /// Get the return type to use for a lambda's conversion function(s) to /// function pointer type, given the type of the call operator. QualType getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType, CallingConv CC); /// Define the "body" of the conversion from a lambda object to a /// function pointer. /// /// This routine doesn't actually define a sensible body; rather, it fills /// in the initialization expression needed to copy the lambda object into /// the block, and IR generation actually generates the real body of the /// block pointer conversion. void DefineImplicitLambdaToFunctionPointerConversion( SourceLocation CurrentLoc, CXXConversionDecl *Conv); /// Define the "body" of the conversion from a lambda object to a /// block pointer. /// /// This routine doesn't actually define a sensible body; rather, it fills /// in the initialization expression needed to copy the lambda object into /// the block, and IR generation actually generates the real body of the /// block pointer conversion. void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc, CXXConversionDecl *Conv); ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src); /// Check whether the given expression is a valid constraint expression. /// A diagnostic is emitted if it is not, false is returned, and /// PossibleNonPrimary will be set to true if the failure might be due to a /// non-primary expression being used as an atomic constraint. bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(), bool *PossibleNonPrimary = nullptr, bool IsTrailingRequiresClause = false); private: /// Caches pairs of template-like decls whose associated constraints were /// checked for subsumption and whether or not the first's constraints did in /// fact subsume the second's. llvm::DenseMap, bool> SubsumptionCache; /// Caches the normalized associated constraints of declarations (concepts or /// constrained declarations). If an error occurred while normalizing the /// associated constraints of the template or concept, nullptr will be cached /// here. llvm::DenseMap NormalizationCache; llvm::ContextualFoldingSet SatisfactionCache; /// Introduce the instantiated function parameters into the local /// instantiation scope, and set the parameter names to those used /// in the template. bool addInstantiatedParametersToScope( FunctionDecl *Function, const FunctionDecl *PatternDecl, LocalInstantiationScope &Scope, const MultiLevelTemplateArgumentList &TemplateArgs); public: const NormalizedConstraint * getNormalizedAssociatedConstraints( NamedDecl *ConstrainedDecl, ArrayRef AssociatedConstraints); /// \brief Check whether the given declaration's associated constraints are /// at least as constrained than another declaration's according to the /// partial ordering of constraints. /// /// \param Result If no error occurred, receives the result of true if D1 is /// at least constrained than D2, and false otherwise. /// /// \returns true if an error occurred, false otherwise. bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef AC1, NamedDecl *D2, ArrayRef AC2, bool &Result); /// If D1 was not at least as constrained as D2, but would've been if a pair /// of atomic constraints involved had been declared in a concept and not /// repeated in two separate places in code. /// \returns true if such a diagnostic was emitted, false otherwise. bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1, ArrayRef AC1, NamedDecl *D2, ArrayRef AC2); /// \brief Check whether the given list of constraint expressions are /// satisfied (as if in a 'conjunction') given template arguments. /// \param Template the template-like entity that triggered the constraints /// check (either a concept or a constrained entity). /// \param ConstraintExprs a list of constraint expressions, treated as if /// they were 'AND'ed together. /// \param TemplateArgs the list of template arguments to substitute into the /// constraint expression. /// \param TemplateIDRange The source range of the template id that /// caused the constraints check. /// \param Satisfaction if true is returned, will contain details of the /// satisfaction, with enough information to diagnose an unsatisfied /// expression. /// \returns true if an error occurred and satisfaction could not be checked, /// false otherwise. bool CheckConstraintSatisfaction( const NamedDecl *Template, ArrayRef ConstraintExprs, ArrayRef TemplateArgs, SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction); /// \brief Check whether the given non-dependent constraint expression is /// satisfied. Returns false and updates Satisfaction with the satisfaction /// verdict if successful, emits a diagnostic and returns true if an error /// occurred and satisfaction could not be determined. /// /// \returns true if an error occurred, false otherwise. bool CheckConstraintSatisfaction(const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction); /// Check whether the given function decl's trailing requires clause is /// satisfied, if any. Returns false and updates Satisfaction with the /// satisfaction verdict if successful, emits a diagnostic and returns true if /// an error occurred and satisfaction could not be determined. /// /// \returns true if an error occurred, false otherwise. bool CheckFunctionConstraints(const FunctionDecl *FD, ConstraintSatisfaction &Satisfaction, SourceLocation UsageLoc = SourceLocation()); /// \brief Ensure that the given template arguments satisfy the constraints /// associated with the given template, emitting a diagnostic if they do not. /// /// \param Template The template to which the template arguments are being /// provided. /// /// \param TemplateArgs The converted, canonicalized template arguments. /// /// \param TemplateIDRange The source range of the template id that /// caused the constraints check. /// /// \returns true if the constrains are not satisfied or could not be checked /// for satisfaction, false if the constraints are satisfied. bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template, ArrayRef TemplateArgs, SourceRange TemplateIDRange); /// \brief Emit diagnostics explaining why a constraint expression was deemed /// unsatisfied. /// \param First whether this is the first time an unsatisfied constraint is /// diagnosed for this error. void DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction, bool First = true); /// \brief Emit diagnostics explaining why a constraint expression was deemed /// unsatisfied. void DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction, bool First = true); // ParseObjCStringLiteral - Parse Objective-C string literals. ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs, ArrayRef Strings); ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S); /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the /// numeric literal expression. Type of the expression will be "NSNumber *" /// or "id" if NSNumber is unavailable. ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number); ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc, bool Value); ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements); /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the /// '@' prefixed parenthesized expression. The type of the expression will /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type /// of ValueType, which is allowed to be a built-in numeric type, "char *", /// "const char *" or C structure with attribute 'objc_boxable'. ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr); ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, Expr *IndexExpr, ObjCMethodDecl *getterMethod, ObjCMethodDecl *setterMethod); ExprResult BuildObjCDictionaryLiteral(SourceRange SR, MutableArrayRef Elements); ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc, TypeSourceInfo *EncodedTypeInfo, SourceLocation RParenLoc); ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl, CXXConversionDecl *Method, bool HadMultipleCandidates); ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc, SourceLocation EncodeLoc, SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc); /// ParseObjCSelectorExpression - Build selector expression for \@selector ExprResult ParseObjCSelectorExpression(Selector Sel, SourceLocation AtLoc, SourceLocation SelLoc, SourceLocation LParenLoc, SourceLocation RParenLoc, bool WarnMultipleSelectors); /// ParseObjCProtocolExpression - Build protocol expression for \@protocol ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName, SourceLocation AtLoc, SourceLocation ProtoLoc, SourceLocation LParenLoc, SourceLocation ProtoIdLoc, SourceLocation RParenLoc); //===--------------------------------------------------------------------===// // C++ Declarations // Decl *ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, Expr *LangStr, SourceLocation LBraceLoc); Decl *ActOnFinishLinkageSpecification(Scope *S, Decl *LinkageSpec, SourceLocation RBraceLoc); //===--------------------------------------------------------------------===// // C++ Classes // CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS); bool isCurrentClassName(const IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS = nullptr); bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS); bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, SourceLocation ColonLoc, const ParsedAttributesView &Attrs); NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, Expr *BitfieldWidth, const VirtSpecifiers &VS, InClassInitStyle InitStyle); void ActOnStartCXXInClassMemberInitializer(); void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl, SourceLocation EqualLoc, Expr *Init); MemInitResult ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, SourceLocation LParenLoc, ArrayRef Args, SourceLocation RParenLoc, SourceLocation EllipsisLoc); MemInitResult ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, Expr *InitList, SourceLocation EllipsisLoc); MemInitResult BuildMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, Expr *Init, SourceLocation EllipsisLoc); MemInitResult BuildMemberInitializer(ValueDecl *Member, Expr *Init, SourceLocation IdLoc); MemInitResult BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, Expr *Init, CXXRecordDecl *ClassDecl, SourceLocation EllipsisLoc); MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, CXXRecordDecl *ClassDecl); bool SetDelegatingInitializer(CXXConstructorDecl *Constructor, CXXCtorInitializer *Initializer); bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, ArrayRef Initializers = None); void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation); /// MarkBaseAndMemberDestructorsReferenced - Given a record decl, /// mark all the non-trivial destructors of its members and bases as /// referenced. void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc, CXXRecordDecl *Record); /// Mark destructors of virtual bases of this class referenced. In the Itanium /// C++ ABI, this is done when emitting a destructor for any non-abstract /// class. In the Microsoft C++ ABI, this is done any time a class's /// destructor is referenced. void MarkVirtualBaseDestructorsReferenced( SourceLocation Location, CXXRecordDecl *ClassDecl, llvm::SmallPtrSetImpl *DirectVirtualBases = nullptr); /// Do semantic checks to allow the complete destructor variant to be emitted /// when the destructor is defined in another translation unit. In the Itanium /// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they /// can be emitted in separate TUs. To emit the complete variant, run a subset /// of the checks performed when emitting a regular destructor. void CheckCompleteDestructorVariant(SourceLocation CurrentLocation, CXXDestructorDecl *Dtor); /// The list of classes whose vtables have been used within /// this translation unit, and the source locations at which the /// first use occurred. typedef std::pair VTableUse; /// The list of vtables that are required but have not yet been /// materialized. SmallVector VTableUses; /// The set of classes whose vtables have been used within /// this translation unit, and a bit that will be true if the vtable is /// required to be emitted (otherwise, it should be emitted only if needed /// by code generation). llvm::DenseMap VTablesUsed; /// Load any externally-stored vtable uses. void LoadExternalVTableUses(); /// Note that the vtable for the given class was used at the /// given location. void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, bool DefinitionRequired = false); /// Mark the exception specifications of all virtual member functions /// in the given class as needed. void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, const CXXRecordDecl *RD); /// MarkVirtualMembersReferenced - Will mark all members of the given /// CXXRecordDecl referenced. void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD, bool ConstexprOnly = false); /// Define all of the vtables that have been used in this /// translation unit and reference any virtual members used by those /// vtables. /// /// \returns true if any work was done, false otherwise. bool DefineUsedVTables(); void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl); void ActOnMemInitializers(Decl *ConstructorDecl, SourceLocation ColonLoc, ArrayRef MemInits, bool AnyErrors); /// Check class-level dllimport/dllexport attribute. The caller must /// ensure that referenceDLLExportedClassMethods is called some point later /// when all outer classes of Class are complete. void checkClassLevelDLLAttribute(CXXRecordDecl *Class); void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class); void referenceDLLExportedClassMethods(); void propagateDLLAttrToBaseClassTemplate( CXXRecordDecl *Class, Attr *ClassAttr, ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc); /// Add gsl::Pointer attribute to std::container::iterator /// \param ND The declaration that introduces the name /// std::container::iterator. \param UnderlyingRecord The record named by ND. void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord); /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types. void inferGslOwnerPointerAttribute(CXXRecordDecl *Record); /// Add [[gsl::Pointer]] attributes for std:: types. void inferGslPointerAttribute(TypedefNameDecl *TD); void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record); /// Check that the C++ class annoated with "trivial_abi" satisfies all the /// conditions that are needed for the attribute to have an effect. void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD); void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, SourceLocation RBrac, const ParsedAttributesView &AttrList); void ActOnFinishCXXMemberDecls(); void ActOnFinishCXXNonNestedClass(); void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param); unsigned ActOnReenterTemplateScope(Decl *Template, llvm::function_ref EnterScope); void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record); void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method); void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param); void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record); void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method); void ActOnFinishDelayedMemberInitializers(Decl *Record); void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, CachedTokens &Toks); void UnmarkAsLateParsedTemplate(FunctionDecl *FD); bool IsInsideALocalClassWithinATemplateFunction(); Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, Expr *AssertExpr, Expr *AssertMessageExpr, SourceLocation RParenLoc); Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, Expr *AssertExpr, StringLiteral *AssertMessageExpr, SourceLocation RParenLoc, bool Failed); FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart, SourceLocation FriendLoc, TypeSourceInfo *TSInfo); Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, MultiTemplateParamsArg TemplateParams); NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParams); QualType CheckConstructorDeclarator(Declarator &D, QualType R, StorageClass& SC); void CheckConstructor(CXXConstructorDecl *Constructor); QualType CheckDestructorDeclarator(Declarator &D, QualType R, StorageClass& SC); bool CheckDestructor(CXXDestructorDecl *Destructor); void CheckConversionDeclarator(Declarator &D, QualType &R, StorageClass& SC); Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion); void CheckDeductionGuideDeclarator(Declarator &D, QualType &R, StorageClass &SC); void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD); void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD); bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM); void CheckDelayedMemberExceptionSpecs(); bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD, DefaultedComparisonKind DCK); void DeclareImplicitEqualityComparison(CXXRecordDecl *RD, FunctionDecl *Spaceship); void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD, DefaultedComparisonKind DCK); //===--------------------------------------------------------------------===// // C++ Derived Classes // /// ActOnBaseSpecifier - Parsed a base specifier CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeSourceInfo *TInfo, SourceLocation EllipsisLoc); BaseResult ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, const ParsedAttributesView &Attrs, bool Virtual, AccessSpecifier Access, ParsedType basetype, SourceLocation BaseLoc, SourceLocation EllipsisLoc); bool AttachBaseSpecifiers(CXXRecordDecl *Class, MutableArrayRef Bases); void ActOnBaseSpecifiers(Decl *ClassDecl, MutableArrayRef Bases); bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base); bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, CXXBasePaths &Paths); // FIXME: I don't like this name. void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range, CXXCastPath *BasePath = nullptr, bool IgnoreAccess = false); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, unsigned InaccessibleBaseID, unsigned AmbiguousBaseConvID, SourceLocation Loc, SourceRange Range, DeclarationName Name, CXXCastPath *BasePath, bool IgnoreAccess = false); std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths); bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New, const CXXMethodDecl *Old); /// CheckOverridingFunctionReturnType - Checks whether the return types are /// covariant, according to C++ [class.virtual]p5. bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New, const CXXMethodDecl *Old); /// CheckOverridingFunctionExceptionSpec - Checks whether the exception /// spec is a subset of base spec. bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, const CXXMethodDecl *Old); bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange); /// CheckOverrideControl - Check C++11 override control semantics. void CheckOverrideControl(NamedDecl *D); /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was /// not used in the declaration of an overriding method. void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent); /// CheckForFunctionMarkedFinal - Checks whether a virtual member function /// overrides a virtual member function marked 'final', according to /// C++11 [class.virtual]p4. bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, const CXXMethodDecl *Old); //===--------------------------------------------------------------------===// // C++ Access Control // enum AccessResult { AR_accessible, AR_inaccessible, AR_dependent, AR_delayed }; bool SetMemberAccessSpecifier(NamedDecl *MemberDecl, NamedDecl *PrevMemberDecl, AccessSpecifier LexicalAS); AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E, DeclAccessPair FoundDecl); AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E, DeclAccessPair FoundDecl); AccessResult CheckAllocationAccess(SourceLocation OperatorLoc, SourceRange PlacementRange, CXXRecordDecl *NamingClass, DeclAccessPair FoundDecl, bool Diagnose = true); AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D, DeclAccessPair FoundDecl, const InitializedEntity &Entity, bool IsCopyBindingRefToTemp = false); AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D, DeclAccessPair FoundDecl, const InitializedEntity &Entity, const PartialDiagnostic &PDiag); AccessResult CheckDestructorAccess(SourceLocation Loc, CXXDestructorDecl *Dtor, const PartialDiagnostic &PDiag, QualType objectType = QualType()); AccessResult CheckFriendAccess(NamedDecl *D); AccessResult CheckMemberAccess(SourceLocation UseLoc, CXXRecordDecl *NamingClass, DeclAccessPair Found); AccessResult CheckStructuredBindingMemberAccess(SourceLocation UseLoc, CXXRecordDecl *DecomposedClass, DeclAccessPair Field); AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr, const SourceRange &, DeclAccessPair FoundDecl); AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr, Expr *ArgExpr, DeclAccessPair FoundDecl); AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr, ArrayRef ArgExprs, DeclAccessPair FoundDecl); AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr, DeclAccessPair FoundDecl); AccessResult CheckBaseClassAccess(SourceLocation AccessLoc, QualType Base, QualType Derived, const CXXBasePath &Path, unsigned DiagID, bool ForceCheck = false, bool ForceUnprivileged = false); void CheckLookupAccess(const LookupResult &R); bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass, QualType BaseType); bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass, DeclAccessPair Found, QualType ObjectType, SourceLocation Loc, const PartialDiagnostic &Diag); bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass, DeclAccessPair Found, QualType ObjectType) { return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType, SourceLocation(), PDiag()); } void HandleDependentAccessCheck(const DependentDiagnostic &DD, const MultiLevelTemplateArgumentList &TemplateArgs); void PerformDependentDiagnostics(const DeclContext *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx); /// When true, access checking violations are treated as SFINAE /// failures rather than hard errors. bool AccessCheckingSFINAE; enum AbstractDiagSelID { AbstractNone = -1, AbstractReturnType, AbstractParamType, AbstractVariableType, AbstractFieldType, AbstractIvarType, AbstractSynthesizedIvarType, AbstractArrayType }; bool isAbstractType(SourceLocation Loc, QualType T); bool RequireNonAbstractType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser); template bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireNonAbstractType(Loc, T, Diagnoser); } void DiagnoseAbstractType(const CXXRecordDecl *RD); //===--------------------------------------------------------------------===// // C++ Overloaded Operators [C++ 13.5] // bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl); bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl); //===--------------------------------------------------------------------===// // C++ Templates [C++ 14] // void FilterAcceptableTemplateNames(LookupResult &R, bool AllowFunctionTemplates = true, bool AllowDependent = true); bool hasAnyAcceptableTemplateNames(LookupResult &R, bool AllowFunctionTemplates = true, bool AllowDependent = true, bool AllowNonTemplateFunctions = false); /// Try to interpret the lookup result D as a template-name. /// /// \param D A declaration found by name lookup. /// \param AllowFunctionTemplates Whether function templates should be /// considered valid results. /// \param AllowDependent Whether unresolved using declarations (that might /// name templates) should be considered valid results. static NamedDecl *getAsTemplateNameDecl(NamedDecl *D, bool AllowFunctionTemplates = true, bool AllowDependent = true); enum TemplateNameIsRequiredTag { TemplateNameIsRequired }; /// Whether and why a template name is required in this lookup. class RequiredTemplateKind { public: /// Template name is required if TemplateKWLoc is valid. RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation()) : TemplateKW(TemplateKWLoc) {} /// Template name is unconditionally required. RequiredTemplateKind(TemplateNameIsRequiredTag) {} SourceLocation getTemplateKeywordLoc() const { return TemplateKW.value_or(SourceLocation()); } bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); } bool isRequired() const { return TemplateKW != SourceLocation(); } explicit operator bool() const { return isRequired(); } private: llvm::Optional TemplateKW; }; enum class AssumedTemplateKind { /// This is not assumed to be a template name. None, /// This is assumed to be a template name because lookup found nothing. FoundNothing, /// This is assumed to be a template name because lookup found one or more /// functions (but no function templates). FoundFunctions, }; bool LookupTemplateName( LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType, bool EnteringContext, bool &MemberOfUnknownSpecialization, RequiredTemplateKind RequiredTemplate = SourceLocation(), AssumedTemplateKind *ATK = nullptr, bool AllowTypoCorrection = true); TemplateNameKind isTemplateName(Scope *S, CXXScopeSpec &SS, bool hasTemplateKeyword, const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, TemplateTy &Template, bool &MemberOfUnknownSpecialization, bool Disambiguation = false); /// Try to resolve an undeclared template name as a type template. /// /// Sets II to the identifier corresponding to the template name, and updates /// Name to a corresponding (typo-corrected) type template name and TNK to /// the corresponding kind, if possible. void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name, TemplateNameKind &TNK, SourceLocation NameLoc, IdentifierInfo *&II); bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, SourceLocation NameLoc, bool Diagnose = true); /// Determine whether a particular identifier might be the name in a C++1z /// deduction-guide declaration. bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name, SourceLocation NameLoc, ParsedTemplateTy *Template = nullptr); bool DiagnoseUnknownTemplateName(const IdentifierInfo &II, SourceLocation IILoc, Scope *S, const CXXScopeSpec *SS, TemplateTy &SuggestedTemplate, TemplateNameKind &SuggestedKind); bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, NamedDecl *Instantiation, bool InstantiatedFromMember, const NamedDecl *Pattern, const NamedDecl *PatternDef, TemplateSpecializationKind TSK, bool Complain = true); void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl); TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl); NamedDecl *ActOnTypeParameter(Scope *S, bool Typename, SourceLocation EllipsisLoc, SourceLocation KeyLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position, SourceLocation EqualLoc, ParsedType DefaultArg, bool HasTypeConstraint); bool ActOnTypeConstraint(const CXXScopeSpec &SS, TemplateIdAnnotation *TypeConstraint, TemplateTypeParmDecl *ConstrainedParameter, SourceLocation EllipsisLoc); bool BuildTypeConstraint(const CXXScopeSpec &SS, TemplateIdAnnotation *TypeConstraint, TemplateTypeParmDecl *ConstrainedParameter, SourceLocation EllipsisLoc, bool AllowUnexpandedPack); bool AttachTypeConstraint(NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, ConceptDecl *NamedConcept, const TemplateArgumentListInfo *TemplateArgs, TemplateTypeParmDecl *ConstrainedParameter, SourceLocation EllipsisLoc); bool AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *ConstrainedParameter, SourceLocation EllipsisLoc); bool RequireStructuralType(QualType T, SourceLocation Loc); QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, SourceLocation Loc); QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc); NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, unsigned Depth, unsigned Position, SourceLocation EqualLoc, Expr *DefaultArg); NamedDecl *ActOnTemplateTemplateParameter(Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params, SourceLocation EllipsisLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position, SourceLocation EqualLoc, ParsedTemplateArgument DefaultArg); TemplateParameterList * ActOnTemplateParameterList(unsigned Depth, SourceLocation ExportLoc, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ArrayRef Params, SourceLocation RAngleLoc, Expr *RequiresClause); /// The context in which we are checking a template parameter list. enum TemplateParamListContext { TPC_ClassTemplate, TPC_VarTemplate, TPC_FunctionTemplate, TPC_ClassTemplateMember, TPC_FriendClassTemplate, TPC_FriendFunctionTemplate, TPC_FriendFunctionTemplateDefinition, TPC_TypeAliasTemplate }; bool CheckTemplateParameterList(TemplateParameterList *NewParams, TemplateParameterList *OldParams, TemplateParamListContext TPC, SkipBodyInfo *SkipBody = nullptr); TemplateParameterList *MatchTemplateParametersToScopeSpecifier( SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId, ArrayRef ParamLists, bool IsFriend, bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic = false); DeclResult CheckClassTemplate( Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, AccessSpecifier AS, SourceLocation ModulePrivateLoc, SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody = nullptr); TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, QualType NTTPType, SourceLocation Loc); /// Get a template argument mapping the given template parameter to itself, /// e.g. for X in \c template, this would return an expression template /// argument referencing X. TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param, SourceLocation Location); void translateTemplateArguments(const ASTTemplateArgsPtr &In, TemplateArgumentListInfo &Out); ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType); void NoteAllFoundTemplates(TemplateName Name); QualType CheckTemplateIdType(TemplateName Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &TemplateArgs); TypeResult ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy Template, IdentifierInfo *TemplateII, SourceLocation TemplateIILoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, bool IsCtorOrDtorName = false, bool IsClassName = false); /// Parsed an elaborated-type-specifier that refers to a template-id, /// such as \c class T::template apply. TypeResult ActOnTagTemplateIdType(TagUseKind TUK, TypeSpecifierType TagSpec, SourceLocation TagLoc, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy TemplateD, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc); DeclResult ActOnVarTemplateSpecialization( Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, StorageClass SC, bool IsPartialSpecialization); /// Get the specialization of the given variable template corresponding to /// the specified argument list, or a null-but-valid result if the arguments /// are dependent. DeclResult CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, SourceLocation TemplateNameLoc, const TemplateArgumentListInfo &TemplateArgs); /// Form a reference to the specialization of the given variable template /// corresponding to the specified argument list, or a null-but-valid result /// if the arguments are dependent. ExprResult CheckVarTemplateId(const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, VarTemplateDecl *Template, SourceLocation TemplateLoc, const TemplateArgumentListInfo *TemplateArgs); ExprResult CheckConceptTemplateId(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &ConceptNameInfo, NamedDecl *FoundDecl, ConceptDecl *NamedConcept, const TemplateArgumentListInfo *TemplateArgs); void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc); ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, bool RequiresADL, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); TemplateNameKind ActOnTemplateName( Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, TemplateTy &Template, bool AllowInjectedClassName = false); DeclResult ActOnClassTemplateSpecialization( Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody = nullptr); bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc, TemplateDecl *PrimaryTemplate, unsigned NumExplicitArgs, ArrayRef Args); void CheckTemplatePartialSpecialization( ClassTemplatePartialSpecializationDecl *Partial); void CheckTemplatePartialSpecialization( VarTemplatePartialSpecializationDecl *Partial); Decl *ActOnTemplateDeclarator(Scope *S, MultiTemplateParamsArg TemplateParameterLists, Declarator &D); bool CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, TemplateSpecializationKind NewTSK, NamedDecl *PrevDecl, TemplateSpecializationKind PrevTSK, SourceLocation PrevPtOfInstantiation, bool &SuppressNew); bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, const TemplateArgumentListInfo &ExplicitTemplateArgs, LookupResult &Previous); bool CheckFunctionTemplateSpecialization( FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, LookupResult &Previous, bool QualifiedFriend = false); bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous); void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous); DeclResult ActOnExplicitInstantiation( Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, const ParsedAttributesView &Attr); DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr); DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, Declarator &D); TemplateArgumentLoc SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, Decl *Param, SmallVectorImpl &Converted, bool &HasDefaultArg); /// Specifies the context in which a particular template /// argument is being checked. enum CheckTemplateArgumentKind { /// The template argument was specified in the code or was /// instantiated with some deduced template arguments. CTAK_Specified, /// The template argument was deduced via template argument /// deduction. CTAK_Deduced, /// The template argument was deduced from an array bound /// via template argument deduction. CTAK_DeducedFromArrayBound }; bool CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, unsigned ArgumentPackIndex, SmallVectorImpl &Converted, CheckTemplateArgumentKind CTAK = CTAK_Specified); /// Check that the given template arguments can be be provided to /// the given template, converting the arguments along the way. /// /// \param Template The template to which the template arguments are being /// provided. /// /// \param TemplateLoc The location of the template name in the source. /// /// \param TemplateArgs The list of template arguments. If the template is /// a template template parameter, this function may extend the set of /// template arguments to also include substituted, defaulted template /// arguments. /// /// \param PartialTemplateArgs True if the list of template arguments is /// intentionally partial, e.g., because we're checking just the initial /// set of template arguments. /// /// \param Converted Will receive the converted, canonicalized template /// arguments. /// /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to /// contain the converted forms of the template arguments as written. /// Otherwise, \p TemplateArgs will not be modified. /// /// \param ConstraintsNotSatisfied If provided, and an error occurred, will /// receive true if the cause for the error is the associated constraints of /// the template not being satisfied by the template arguments. /// /// \returns true if an error occurred, false otherwise. bool CheckTemplateArgumentList(TemplateDecl *Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, SmallVectorImpl &Converted, bool UpdateArgsWithConversions = true, bool *ConstraintsNotSatisfied = nullptr); bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, TemplateArgumentLoc &Arg, SmallVectorImpl &Converted); bool CheckTemplateArgument(TypeSourceInfo *Arg); ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param, QualType InstantiatedParamType, Expr *Arg, TemplateArgument &Converted, CheckTemplateArgumentKind CTAK = CTAK_Specified); bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, TemplateParameterList *Params, TemplateArgumentLoc &Arg); ExprResult BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc); ExprResult BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, SourceLocation Loc); /// Enumeration describing how template parameter lists are compared /// for equality. enum TemplateParameterListEqualKind { /// We are matching the template parameter lists of two templates /// that might be redeclarations. /// /// \code /// template struct X; /// template struct X; /// \endcode TPL_TemplateMatch, /// We are matching the template parameter lists of two template /// template parameters as part of matching the template parameter lists /// of two templates that might be redeclarations. /// /// \code /// template class TT> struct X; /// template class Other> struct X; /// \endcode TPL_TemplateTemplateParmMatch, /// We are matching the template parameter lists of a template /// template argument against the template parameter lists of a template /// template parameter. /// /// \code /// template class Metafun> struct X; /// template struct integer_c; /// X xic; /// \endcode TPL_TemplateTemplateArgumentMatch }; bool TemplateParameterListsAreEqual(TemplateParameterList *New, TemplateParameterList *Old, bool Complain, TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc = SourceLocation()); bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams); /// Called when the parser has parsed a C++ typename /// specifier, e.g., "typename T::type". /// /// \param S The scope in which this typename type occurs. /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param II the identifier we're retrieving (e.g., 'type' in the example). /// \param IdLoc the location of the identifier. TypeResult ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS, const IdentifierInfo &II, SourceLocation IdLoc); /// Called when the parser has parsed a C++ typename /// specifier that ends in a template-id, e.g., /// "typename MetaFun::template apply". /// /// \param S The scope in which this typename type occurs. /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param TemplateLoc the location of the 'template' keyword, if any. /// \param TemplateName The template name. /// \param TemplateII The identifier used to name the template. /// \param TemplateIILoc The location of the template name. /// \param LAngleLoc The location of the opening angle bracket ('<'). /// \param TemplateArgs The template arguments. /// \param RAngleLoc The location of the closing angle bracket ('>'). TypeResult ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS, SourceLocation TemplateLoc, TemplateTy TemplateName, IdentifierInfo *TemplateII, SourceLocation TemplateIILoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc); QualType CheckTypenameType(ElaboratedTypeKeyword Keyword, SourceLocation KeywordLoc, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo &II, SourceLocation IILoc, TypeSourceInfo **TSI, bool DeducedTSTContext); QualType CheckTypenameType(ElaboratedTypeKeyword Keyword, SourceLocation KeywordLoc, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo &II, SourceLocation IILoc, bool DeducedTSTContext = true); TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, SourceLocation Loc, DeclarationName Name); bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS); ExprResult RebuildExprInCurrentInstantiation(Expr *E); bool RebuildTemplateParamsInCurrentInstantiation( TemplateParameterList *Params); std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args); std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgument *Args, unsigned NumArgs); //===--------------------------------------------------------------------===// // C++ Concepts //===--------------------------------------------------------------------===// Decl *ActOnConceptDefinition( Scope *S, MultiTemplateParamsArg TemplateParameterLists, IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr); void CheckConceptRedefinition(ConceptDecl *NewDecl, LookupResult &Previous, bool &AddToScope); RequiresExprBodyDecl * ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, ArrayRef LocalParameters, Scope *BodyScope); void ActOnFinishRequiresExpr(); concepts::Requirement *ActOnSimpleRequirement(Expr *E); concepts::Requirement *ActOnTypeRequirement( SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc, IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId); concepts::Requirement *ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc); concepts::Requirement * ActOnCompoundRequirement( Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, TemplateIdAnnotation *TypeConstraint, unsigned Depth); concepts::Requirement *ActOnNestedRequirement(Expr *Constraint); concepts::ExprRequirement * BuildExprRequirement( Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc, concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement); concepts::ExprRequirement * BuildExprRequirement( concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag, bool IsSatisfied, SourceLocation NoexceptLoc, concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement); concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type); concepts::TypeRequirement * BuildTypeRequirement( concepts::Requirement::SubstitutionDiagnostic *SubstDiag); concepts::NestedRequirement *BuildNestedRequirement(Expr *E); concepts::NestedRequirement * BuildNestedRequirement( concepts::Requirement::SubstitutionDiagnostic *SubstDiag); ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body, ArrayRef LocalParameters, ArrayRef Requirements, SourceLocation ClosingBraceLoc); //===--------------------------------------------------------------------===// // C++ Variadic Templates (C++0x [temp.variadic]) //===--------------------------------------------------------------------===// /// Determine whether an unexpanded parameter pack might be permitted in this /// location. Useful for error recovery. bool isUnexpandedParameterPackPermitted(); /// The context in which an unexpanded parameter pack is /// being diagnosed. /// /// Note that the values of this enumeration line up with the first /// argument to the \c err_unexpanded_parameter_pack diagnostic. enum UnexpandedParameterPackContext { /// An arbitrary expression. UPPC_Expression = 0, /// The base type of a class type. UPPC_BaseType, /// The type of an arbitrary declaration. UPPC_DeclarationType, /// The type of a data member. UPPC_DataMemberType, /// The size of a bit-field. UPPC_BitFieldWidth, /// The expression in a static assertion. UPPC_StaticAssertExpression, /// The fixed underlying type of an enumeration. UPPC_FixedUnderlyingType, /// The enumerator value. UPPC_EnumeratorValue, /// A using declaration. UPPC_UsingDeclaration, /// A friend declaration. UPPC_FriendDeclaration, /// A declaration qualifier. UPPC_DeclarationQualifier, /// An initializer. UPPC_Initializer, /// A default argument. UPPC_DefaultArgument, /// The type of a non-type template parameter. UPPC_NonTypeTemplateParameterType, /// The type of an exception. UPPC_ExceptionType, /// Partial specialization. UPPC_PartialSpecialization, /// Microsoft __if_exists. UPPC_IfExists, /// Microsoft __if_not_exists. UPPC_IfNotExists, /// Lambda expression. UPPC_Lambda, /// Block expression. UPPC_Block, /// A type constraint. UPPC_TypeConstraint, // A requirement in a requires-expression. UPPC_Requirement, // A requires-clause. UPPC_RequiresClause, }; /// Diagnose unexpanded parameter packs. /// /// \param Loc The location at which we should emit the diagnostic. /// /// \param UPPC The context in which we are diagnosing unexpanded /// parameter packs. /// /// \param Unexpanded the set of unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc, UnexpandedParameterPackContext UPPC, ArrayRef Unexpanded); /// If the given type contains an unexpanded parameter pack, /// diagnose the error. /// /// \param Loc The source location where a diagnostc should be emitted. /// /// \param T The type that is being checked for unexpanded parameter /// packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T, UnexpandedParameterPackContext UPPC); /// If the given expression contains an unexpanded parameter /// pack, diagnose the error. /// /// \param E The expression that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(Expr *E, UnexpandedParameterPackContext UPPC = UPPC_Expression); /// If the given requirees-expression contains an unexpanded reference to one /// of its own parameter packs, diagnose the error. /// /// \param RE The requiress-expression that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE); /// If the given nested-name-specifier contains an unexpanded /// parameter pack, diagnose the error. /// /// \param SS The nested-name-specifier that is being checked for /// unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS, UnexpandedParameterPackContext UPPC); /// If the given name contains an unexpanded parameter pack, /// diagnose the error. /// /// \param NameInfo The name (with source location information) that /// is being checked for unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo, UnexpandedParameterPackContext UPPC); /// If the given template name contains an unexpanded parameter pack, /// diagnose the error. /// /// \param Loc The location of the template name. /// /// \param Template The template name that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TemplateName Template, UnexpandedParameterPackContext UPPC); /// If the given template argument contains an unexpanded parameter /// pack, diagnose the error. /// /// \param Arg The template argument that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg, UnexpandedParameterPackContext UPPC); /// Collect the set of unexpanded parameter packs within the given /// template argument. /// /// \param Arg The template argument that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TemplateArgument Arg, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// template argument. /// /// \param Arg The template argument that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// type. /// /// \param T The type that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(QualType T, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// type. /// /// \param TL The type that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TypeLoc TL, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// nested-name-specifier. /// /// \param NNS The nested-name-specifier that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// name. /// /// \param NameInfo The name that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo, SmallVectorImpl &Unexpanded); /// Invoked when parsing a template argument followed by an /// ellipsis, which creates a pack expansion. /// /// \param Arg The template argument preceding the ellipsis, which /// may already be invalid. /// /// \param EllipsisLoc The location of the ellipsis. ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg, SourceLocation EllipsisLoc); /// Invoked when parsing a type followed by an ellipsis, which /// creates a pack expansion. /// /// \param Type The type preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc); /// Construct a pack expansion type from the pattern of the pack /// expansion. TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern, SourceLocation EllipsisLoc, Optional NumExpansions); /// Construct a pack expansion type from the pattern of the pack /// expansion. QualType CheckPackExpansion(QualType Pattern, SourceRange PatternRange, SourceLocation EllipsisLoc, Optional NumExpansions); /// Invoked when parsing an expression followed by an ellipsis, which /// creates a pack expansion. /// /// \param Pattern The expression preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc); /// Invoked when parsing an expression followed by an ellipsis, which /// creates a pack expansion. /// /// \param Pattern The expression preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, Optional NumExpansions); /// Determine whether we could expand a pack expansion with the /// given set of parameter packs into separate arguments by repeatedly /// transforming the pattern. /// /// \param EllipsisLoc The location of the ellipsis that identifies the /// pack expansion. /// /// \param PatternRange The source range that covers the entire pattern of /// the pack expansion. /// /// \param Unexpanded The set of unexpanded parameter packs within the /// pattern. /// /// \param ShouldExpand Will be set to \c true if the transformer should /// expand the corresponding pack expansions into separate arguments. When /// set, \c NumExpansions must also be set. /// /// \param RetainExpansion Whether the caller should add an unexpanded /// pack expansion after all of the expanded arguments. This is used /// when extending explicitly-specified template argument packs per /// C++0x [temp.arg.explicit]p9. /// /// \param NumExpansions The number of separate arguments that will be in /// the expanded form of the corresponding pack expansion. This is both an /// input and an output parameter, which can be set by the caller if the /// number of expansions is known a priori (e.g., due to a prior substitution) /// and will be set by the callee when the number of expansions is known. /// The callee must set this value when \c ShouldExpand is \c true; it may /// set this value in other cases. /// /// \returns true if an error occurred (e.g., because the parameter packs /// are to be instantiated with arguments of different lengths), false /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) /// must be set. bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc, SourceRange PatternRange, ArrayRef Unexpanded, const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand, bool &RetainExpansion, Optional &NumExpansions); /// Determine the number of arguments in the given pack expansion /// type. /// /// This routine assumes that the number of arguments in the expansion is /// consistent across all of the unexpanded parameter packs in its pattern. /// /// Returns an empty Optional if the type can't be expanded. Optional getNumArgumentsInExpansion(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs); /// Determine whether the given declarator contains any unexpanded /// parameter packs. /// /// This routine is used by the parser to disambiguate function declarators /// with an ellipsis prior to the ')', e.g., /// /// \code /// void f(T...); /// \endcode /// /// To determine whether we have an (unnamed) function parameter pack or /// a variadic function. /// /// \returns true if the declarator contains any unexpanded parameter packs, /// false otherwise. bool containsUnexpandedParameterPacks(Declarator &D); /// Returns the pattern of the pack expansion for a template argument. /// /// \param OrigLoc The template argument to expand. /// /// \param Ellipsis Will be set to the location of the ellipsis. /// /// \param NumExpansions Will be set to the number of expansions that will /// be generated from this pack expansion, if known a priori. TemplateArgumentLoc getTemplateArgumentPackExpansionPattern( TemplateArgumentLoc OrigLoc, SourceLocation &Ellipsis, Optional &NumExpansions) const; /// Given a template argument that contains an unexpanded parameter pack, but /// which has already been substituted, attempt to determine the number of /// elements that will be produced once this argument is fully-expanded. /// /// This is intended for use when transforming 'sizeof...(Arg)' in order to /// avoid actually expanding the pack where possible. Optional getFullyPackExpandedSize(TemplateArgument Arg); //===--------------------------------------------------------------------===// // C++ Template Argument Deduction (C++ [temp.deduct]) //===--------------------------------------------------------------------===// /// Adjust the type \p ArgFunctionType to match the calling convention, /// noreturn, and optionally the exception specification of \p FunctionType. /// Deduction often wants to ignore these properties when matching function /// types. QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType, bool AdjustExceptionSpec = false); /// Describes the result of template argument deduction. /// /// The TemplateDeductionResult enumeration describes the result of /// template argument deduction, as returned from /// DeduceTemplateArguments(). The separate TemplateDeductionInfo /// structure provides additional information about the results of /// template argument deduction, e.g., the deduced template argument /// list (if successful) or the specific template parameters or /// deduced arguments that were involved in the failure. enum TemplateDeductionResult { /// Template argument deduction was successful. TDK_Success = 0, /// The declaration was invalid; do nothing. TDK_Invalid, /// Template argument deduction exceeded the maximum template /// instantiation depth (which has already been diagnosed). TDK_InstantiationDepth, /// Template argument deduction did not deduce a value /// for every template parameter. TDK_Incomplete, /// Template argument deduction did not deduce a value for every /// expansion of an expanded template parameter pack. TDK_IncompletePack, /// Template argument deduction produced inconsistent /// deduced values for the given template parameter. TDK_Inconsistent, /// Template argument deduction failed due to inconsistent /// cv-qualifiers on a template parameter type that would /// otherwise be deduced, e.g., we tried to deduce T in "const T" /// but were given a non-const "X". TDK_Underqualified, /// Substitution of the deduced template argument values /// resulted in an error. TDK_SubstitutionFailure, /// After substituting deduced template arguments, a dependent /// parameter type did not match the corresponding argument. TDK_DeducedMismatch, /// After substituting deduced template arguments, an element of /// a dependent parameter type did not match the corresponding element /// of the corresponding argument (when deducing from an initializer list). TDK_DeducedMismatchNested, /// A non-depnedent component of the parameter did not match the /// corresponding component of the argument. TDK_NonDeducedMismatch, /// When performing template argument deduction for a function /// template, there were too many call arguments. TDK_TooManyArguments, /// When performing template argument deduction for a function /// template, there were too few call arguments. TDK_TooFewArguments, /// The explicitly-specified template arguments were not valid /// template arguments for the given template. TDK_InvalidExplicitArguments, /// Checking non-dependent argument conversions failed. TDK_NonDependentConversionFailure, /// The deduced arguments did not satisfy the constraints associated /// with the template. TDK_ConstraintsNotSatisfied, /// Deduction failed; that's all we know. TDK_MiscellaneousDeductionFailure, /// CUDA Target attributes do not match. TDK_CUDATargetMismatch }; TemplateDeductionResult DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, sema::TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, sema::TemplateDeductionInfo &Info); TemplateDeductionResult SubstituteExplicitTemplateArguments( FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo &ExplicitTemplateArgs, SmallVectorImpl &Deduced, SmallVectorImpl &ParamTypes, QualType *FunctionType, sema::TemplateDeductionInfo &Info); /// brief A function argument from which we performed template argument // deduction for a call. struct OriginalCallArg { OriginalCallArg(QualType OriginalParamType, bool DecomposedParam, unsigned ArgIdx, QualType OriginalArgType) : OriginalParamType(OriginalParamType), DecomposedParam(DecomposedParam), ArgIdx(ArgIdx), OriginalArgType(OriginalArgType) {} QualType OriginalParamType; bool DecomposedParam; unsigned ArgIdx; QualType OriginalArgType; }; TemplateDeductionResult FinishTemplateArgumentDeduction( FunctionTemplateDecl *FunctionTemplate, SmallVectorImpl &Deduced, unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, SmallVectorImpl const *OriginalCallArgs = nullptr, bool PartialOverloading = false, llvm::function_ref CheckNonDependent = []{ return false; }); TemplateDeductionResult DeduceTemplateArguments( FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, bool PartialOverloading, llvm::function_ref)> CheckNonDependent); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, bool IsAddressOfFunction = false); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, QualType ToType, CXXConversionDecl *&Specialization, sema::TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, bool IsAddressOfFunction = false); /// Substitute Replacement for \p auto in \p TypeWithAuto QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement); /// Substitute Replacement for auto in TypeWithAuto TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, QualType Replacement); // Substitute auto in TypeWithAuto for a Dependent auto type QualType SubstAutoTypeDependent(QualType TypeWithAuto); // Substitute auto in TypeWithAuto for a Dependent auto type TypeSourceInfo * SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto); /// Completely replace the \c auto in \p TypeWithAuto by /// \p Replacement. This does not retain any \c auto type sugar. QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement); TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, QualType Replacement); /// Result type of DeduceAutoType. enum DeduceAutoResult { DAR_Succeeded, DAR_Failed, DAR_FailedAlreadyDiagnosed }; DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result, Optional DependentDeductionDepth = None, bool IgnoreConstraints = false); DeduceAutoResult DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result, Optional DependentDeductionDepth = None, bool IgnoreConstraints = false); void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init); bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, bool Diagnose = true); /// Declare implicit deduction guides for a class template if we've /// not already done so. void DeclareImplicitDeductionGuides(TemplateDecl *Template, SourceLocation Loc); QualType DeduceTemplateSpecializationFromInitializer( TypeSourceInfo *TInfo, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Init); QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name, QualType Type, TypeSourceInfo *TSI, SourceRange Range, bool DirectInit, Expr *Init); TypeLoc getReturnTypeLoc(FunctionDecl *FD) const; bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, SourceLocation ReturnLoc, Expr *&RetExpr, const AutoType *AT); FunctionTemplateDecl *getMoreSpecializedTemplate( FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, unsigned NumCallArguments2, bool Reversed = false, bool AllowOrderingByConstraints = true); UnresolvedSetIterator getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd, TemplateSpecCandidateSet &FailedCandidates, SourceLocation Loc, const PartialDiagnostic &NoneDiag, const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, bool Complain = true, QualType TargetType = QualType()); ClassTemplatePartialSpecializationDecl * getMoreSpecializedPartialSpecialization( ClassTemplatePartialSpecializationDecl *PS1, ClassTemplatePartialSpecializationDecl *PS2, SourceLocation Loc); bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T, sema::TemplateDeductionInfo &Info); VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization( VarTemplatePartialSpecializationDecl *PS1, VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc); bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T, sema::TemplateDeductionInfo &Info); bool isTemplateTemplateParameterAtLeastAsSpecializedAs( TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc); void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used); void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used); void MarkDeducedTemplateParameters( const FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced) { return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced); } static void MarkDeducedTemplateParameters(ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced); //===--------------------------------------------------------------------===// // C++ Template Instantiation // MultiLevelTemplateArgumentList getTemplateInstantiationArgs( const NamedDecl *D, const TemplateArgumentList *Innermost = nullptr, bool RelativeToPrimary = false, const FunctionDecl *Pattern = nullptr); /// A context in which code is being synthesized (where a source location /// alone is not sufficient to identify the context). This covers template /// instantiation and various forms of implicitly-generated functions. struct CodeSynthesisContext { /// The kind of template instantiation we are performing enum SynthesisKind { /// We are instantiating a template declaration. The entity is /// the declaration we're instantiating (e.g., a CXXRecordDecl). TemplateInstantiation, /// We are instantiating a default argument for a template /// parameter. The Entity is the template parameter whose argument is /// being instantiated, the Template is the template, and the /// TemplateArgs/NumTemplateArguments provide the template arguments as /// specified. DefaultTemplateArgumentInstantiation, /// We are instantiating a default argument for a function. /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs /// provides the template arguments as specified. DefaultFunctionArgumentInstantiation, /// We are substituting explicit template arguments provided for /// a function template. The entity is a FunctionTemplateDecl. ExplicitTemplateArgumentSubstitution, /// We are substituting template argument determined as part of /// template argument deduction for either a class template /// partial specialization or a function template. The /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or /// a TemplateDecl. DeducedTemplateArgumentSubstitution, /// We are substituting prior template arguments into a new /// template parameter. The template parameter itself is either a /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl. PriorTemplateArgumentSubstitution, /// We are checking the validity of a default template argument that /// has been used when naming a template-id. DefaultTemplateArgumentChecking, /// We are computing the exception specification for a defaulted special /// member function. ExceptionSpecEvaluation, /// We are instantiating the exception specification for a function /// template which was deferred until it was needed. ExceptionSpecInstantiation, /// We are instantiating a requirement of a requires expression. RequirementInstantiation, /// We are checking the satisfaction of a nested requirement of a requires /// expression. NestedRequirementConstraintsCheck, /// We are declaring an implicit special member function. DeclaringSpecialMember, /// We are declaring an implicit 'operator==' for a defaulted /// 'operator<=>'. DeclaringImplicitEqualityComparison, /// We are defining a synthesized function (such as a defaulted special /// member). DefiningSynthesizedFunction, // We are checking the constraints associated with a constrained entity or // the constraint expression of a concept. This includes the checks that // atomic constraints have the type 'bool' and that they can be constant // evaluated. ConstraintsCheck, // We are substituting template arguments into a constraint expression. ConstraintSubstitution, // We are normalizing a constraint expression. ConstraintNormalization, // We are substituting into the parameter mapping of an atomic constraint // during normalization. ParameterMappingSubstitution, /// We are rewriting a comparison operator in terms of an operator<=>. RewritingOperatorAsSpaceship, /// We are initializing a structured binding. InitializingStructuredBinding, /// We are marking a class as __dllexport. MarkingClassDllexported, /// We are building an implied call from __builtin_dump_struct. The /// arguments are in CallArgs. BuildingBuiltinDumpStructCall, /// Added for Template instantiation observation. /// Memoization means we are _not_ instantiating a template because /// it is already instantiated (but we entered a context where we /// would have had to if it was not already instantiated). Memoization } Kind; /// Was the enclosing context a non-instantiation SFINAE context? bool SavedInNonInstantiationSFINAEContext; /// The point of instantiation or synthesis within the source code. SourceLocation PointOfInstantiation; /// The entity that is being synthesized. Decl *Entity; /// The template (or partial specialization) in which we are /// performing the instantiation, for substitutions of prior template /// arguments. NamedDecl *Template; union { /// The list of template arguments we are substituting, if they /// are not part of the entity. const TemplateArgument *TemplateArgs; /// The list of argument expressions in a synthesized call. const Expr *const *CallArgs; }; // FIXME: Wrap this union around more members, or perhaps store the // kind-specific members in the RAII object owning the context. union { /// The number of template arguments in TemplateArgs. unsigned NumTemplateArgs; /// The number of expressions in CallArgs. unsigned NumCallArgs; /// The special member being declared or defined. CXXSpecialMember SpecialMember; }; ArrayRef template_arguments() const { assert(Kind != DeclaringSpecialMember); return {TemplateArgs, NumTemplateArgs}; } /// The template deduction info object associated with the /// substitution or checking of explicit or deduced template arguments. sema::TemplateDeductionInfo *DeductionInfo; /// The source range that covers the construct that cause /// the instantiation, e.g., the template-id that causes a class /// template instantiation. SourceRange InstantiationRange; CodeSynthesisContext() : Kind(TemplateInstantiation), SavedInNonInstantiationSFINAEContext(false), Entity(nullptr), Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0), DeductionInfo(nullptr) {} /// Determines whether this template is an actual instantiation /// that should be counted toward the maximum instantiation depth. bool isInstantiationRecord() const; }; /// List of active code synthesis contexts. /// /// This vector is treated as a stack. As synthesis of one entity requires /// synthesis of another, additional contexts are pushed onto the stack. SmallVector CodeSynthesisContexts; /// Specializations whose definitions are currently being instantiated. llvm::DenseSet> InstantiatingSpecializations; /// Non-dependent types used in templates that have already been instantiated /// by some template instantiation. llvm::DenseSet InstantiatedNonDependentTypes; /// Extra modules inspected when performing a lookup during a template /// instantiation. Computed lazily. SmallVector CodeSynthesisContextLookupModules; /// Cache of additional modules that should be used for name lookup /// within the current template instantiation. Computed lazily; use /// getLookupModules() to get a complete set. llvm::DenseSet LookupModulesCache; /// Get the set of additional modules that should be checked during /// name lookup. A module and its imports become visible when instanting a /// template defined within it. llvm::DenseSet &getLookupModules(); /// Map from the most recent declaration of a namespace to the most /// recent visible declaration of that namespace. llvm::DenseMap VisibleNamespaceCache; /// Whether we are in a SFINAE context that is not associated with /// template instantiation. /// /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside /// of a template instantiation or template argument deduction. bool InNonInstantiationSFINAEContext; /// The number of \p CodeSynthesisContexts that are not template /// instantiations and, therefore, should not be counted as part of the /// instantiation depth. /// /// When the instantiation depth reaches the user-configurable limit /// \p LangOptions::InstantiationDepth we will abort instantiation. // FIXME: Should we have a similar limit for other forms of synthesis? unsigned NonInstantiationEntries; /// The depth of the context stack at the point when the most recent /// error or warning was produced. /// /// This value is used to suppress printing of redundant context stacks /// when there are multiple errors or warnings in the same instantiation. // FIXME: Does this belong in Sema? It's tough to implement it anywhere else. unsigned LastEmittedCodeSynthesisContextDepth = 0; /// The template instantiation callbacks to trace or track /// instantiations (objects can be chained). /// /// This callbacks is used to print, trace or track template /// instantiations as they are being constructed. std::vector> TemplateInstCallbacks; /// The current index into pack expansion arguments that will be /// used for substitution of parameter packs. /// /// The pack expansion index will be -1 to indicate that parameter packs /// should be instantiated as themselves. Otherwise, the index specifies /// which argument within the parameter pack will be used for substitution. int ArgumentPackSubstitutionIndex; /// RAII object used to change the argument pack substitution index /// within a \c Sema object. /// /// See \c ArgumentPackSubstitutionIndex for more information. class ArgumentPackSubstitutionIndexRAII { Sema &Self; int OldSubstitutionIndex; public: ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex) : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) { Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex; } ~ArgumentPackSubstitutionIndexRAII() { Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex; } }; friend class ArgumentPackSubstitutionRAII; /// For each declaration that involved template argument deduction, the /// set of diagnostics that were suppressed during that template argument /// deduction. /// /// FIXME: Serialize this structure to the AST file. typedef llvm::DenseMap > SuppressedDiagnosticsMap; SuppressedDiagnosticsMap SuppressedDiagnostics; /// A stack object to be created when performing template /// instantiation. /// /// Construction of an object of type \c InstantiatingTemplate /// pushes the current instantiation onto the stack of active /// instantiations. If the size of this stack exceeds the maximum /// number of recursive template instantiations, construction /// produces an error and evaluates true. /// /// Destruction of this object will pop the named instantiation off /// the stack. struct InstantiatingTemplate { /// Note that we are instantiating a class template, /// function template, variable template, alias template, /// or a member thereof. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, Decl *Entity, SourceRange InstantiationRange = SourceRange()); struct ExceptionSpecification {}; /// Note that we are instantiating an exception specification /// of a function template. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionDecl *Entity, ExceptionSpecification, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating a default argument in a /// template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateParameter Param, TemplateDecl *Template, ArrayRef TemplateArgs, SourceRange InstantiationRange = SourceRange()); /// Note that we are substituting either explicitly-specified or /// deduced template arguments during function template argument deduction. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionTemplateDecl *FunctionTemplate, ArrayRef TemplateArgs, CodeSynthesisContext::SynthesisKind Kind, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating as part of template /// argument deduction for a class template declaration. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, ArrayRef TemplateArgs, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating as part of template /// argument deduction for a class template partial /// specialization. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ClassTemplatePartialSpecializationDecl *PartialSpec, ArrayRef TemplateArgs, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating as part of template /// argument deduction for a variable template partial /// specialization. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, VarTemplatePartialSpecializationDecl *PartialSpec, ArrayRef TemplateArgs, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating a default argument for a function /// parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ParmVarDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange = SourceRange()); /// Note that we are substituting prior template arguments into a /// non-type parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template, NonTypeTemplateParmDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange); /// Note that we are substituting prior template arguments into a /// template template parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template, TemplateTemplateParmDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange); /// Note that we are checking the default template argument /// against the template parameter for a given template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, NamedDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange); struct ConstraintsCheck {}; /// \brief Note that we are checking the constraints associated with some /// constrained entity (a concept declaration or a template with associated /// constraints). InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ConstraintsCheck, NamedDecl *Template, ArrayRef TemplateArgs, SourceRange InstantiationRange); struct ConstraintSubstitution {}; /// \brief Note that we are checking a constraint expression associated /// with a template declaration or as part of the satisfaction check of a /// concept. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ConstraintSubstitution, NamedDecl *Template, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange); struct ConstraintNormalization {}; /// \brief Note that we are normalizing a constraint expression. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ConstraintNormalization, NamedDecl *Template, SourceRange InstantiationRange); struct ParameterMappingSubstitution {}; /// \brief Note that we are subtituting into the parameter mapping of an /// atomic constraint during constraint normalization. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ParameterMappingSubstitution, NamedDecl *Template, SourceRange InstantiationRange); /// \brief Note that we are substituting template arguments into a part of /// a requirement of a requires expression. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, concepts::Requirement *Req, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are checking the satisfaction of the constraint /// expression inside of a nested requirement. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, concepts::NestedRequirement *Req, ConstraintsCheck, SourceRange InstantiationRange = SourceRange()); /// Note that we have finished instantiating this template. void Clear(); ~InstantiatingTemplate() { Clear(); } /// Determines whether we have exceeded the maximum /// recursive template instantiations. bool isInvalid() const { return Invalid; } /// Determine whether we are already instantiating this /// specialization in some surrounding active instantiation. bool isAlreadyInstantiating() const { return AlreadyInstantiating; } private: Sema &SemaRef; bool Invalid; bool AlreadyInstantiating; bool CheckInstantiationDepth(SourceLocation PointOfInstantiation, SourceRange InstantiationRange); InstantiatingTemplate( Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind, SourceLocation PointOfInstantiation, SourceRange InstantiationRange, Decl *Entity, NamedDecl *Template = nullptr, ArrayRef TemplateArgs = None, sema::TemplateDeductionInfo *DeductionInfo = nullptr); InstantiatingTemplate(const InstantiatingTemplate&) = delete; InstantiatingTemplate& operator=(const InstantiatingTemplate&) = delete; }; void pushCodeSynthesisContext(CodeSynthesisContext Ctx); void popCodeSynthesisContext(); /// Determine whether we are currently performing template instantiation. bool inTemplateInstantiation() const { return CodeSynthesisContexts.size() > NonInstantiationEntries; } void PrintContextStack() { if (!CodeSynthesisContexts.empty() && CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) { PrintInstantiationStack(); LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size(); } if (PragmaAttributeCurrentTargetDecl) PrintPragmaAttributeInstantiationPoint(); } void PrintInstantiationStack(); void PrintPragmaAttributeInstantiationPoint(); /// Determines whether we are currently in a context where /// template argument substitution failures are not considered /// errors. /// /// \returns An empty \c Optional if we're not in a SFINAE context. /// Otherwise, contains a pointer that, if non-NULL, contains the nearest /// template-deduction context object, which can be used to capture /// diagnostics that will be suppressed. Optional isSFINAEContext() const; /// Determines whether we are currently in a context that /// is not evaluated as per C++ [expr] p5. bool isUnevaluatedContext() const { assert(!ExprEvalContexts.empty() && "Must be in an expression evaluation context"); return ExprEvalContexts.back().isUnevaluated(); } bool isImmediateFunctionContext() const { assert(!ExprEvalContexts.empty() && "Must be in an expression evaluation context"); return ExprEvalContexts.back().isImmediateFunctionContext(); } /// RAII class used to determine whether SFINAE has /// trapped any errors that occur during template argument /// deduction. class SFINAETrap { Sema &SemaRef; unsigned PrevSFINAEErrors; bool PrevInNonInstantiationSFINAEContext; bool PrevAccessCheckingSFINAE; bool PrevLastDiagnosticIgnored; public: explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false) : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors), PrevInNonInstantiationSFINAEContext( SemaRef.InNonInstantiationSFINAEContext), PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE), PrevLastDiagnosticIgnored( SemaRef.getDiagnostics().isLastDiagnosticIgnored()) { if (!SemaRef.isSFINAEContext()) SemaRef.InNonInstantiationSFINAEContext = true; SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE; } ~SFINAETrap() { SemaRef.NumSFINAEErrors = PrevSFINAEErrors; SemaRef.InNonInstantiationSFINAEContext = PrevInNonInstantiationSFINAEContext; SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE; SemaRef.getDiagnostics().setLastDiagnosticIgnored( PrevLastDiagnosticIgnored); } /// Determine whether any SFINAE errors have been trapped. bool hasErrorOccurred() const { return SemaRef.NumSFINAEErrors > PrevSFINAEErrors; } }; /// RAII class used to indicate that we are performing provisional /// semantic analysis to determine the validity of a construct, so /// typo-correction and diagnostics in the immediate context (not within /// implicitly-instantiated templates) should be suppressed. class TentativeAnalysisScope { Sema &SemaRef; // FIXME: Using a SFINAETrap for this is a hack. SFINAETrap Trap; bool PrevDisableTypoCorrection; public: explicit TentativeAnalysisScope(Sema &SemaRef) : SemaRef(SemaRef), Trap(SemaRef, true), PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) { SemaRef.DisableTypoCorrection = true; } ~TentativeAnalysisScope() { SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection; } }; /// The current instantiation scope used to store local /// variables. LocalInstantiationScope *CurrentInstantiationScope; /// Tracks whether we are in a context where typo correction is /// disabled. bool DisableTypoCorrection; /// The number of typos corrected by CorrectTypo. unsigned TyposCorrected; typedef llvm::SmallSet SrcLocSet; typedef llvm::DenseMap IdentifierSourceLocations; /// A cache containing identifiers for which typo correction failed and /// their locations, so that repeated attempts to correct an identifier in a /// given location are ignored if typo correction already failed for it. IdentifierSourceLocations TypoCorrectionFailures; /// Worker object for performing CFG-based warnings. sema::AnalysisBasedWarnings AnalysisWarnings; threadSafety::BeforeSet *ThreadSafetyDeclCache; /// An entity for which implicit template instantiation is required. /// /// The source location associated with the declaration is the first place in /// the source code where the declaration was "used". It is not necessarily /// the point of instantiation (which will be either before or after the /// namespace-scope declaration that triggered this implicit instantiation), /// However, it is the location that diagnostics should generally refer to, /// because users will need to know what code triggered the instantiation. typedef std::pair PendingImplicitInstantiation; /// The queue of implicit template instantiations that are required /// but have not yet been performed. std::deque PendingInstantiations; /// Queue of implicit template instantiations that cannot be performed /// eagerly. SmallVector LateParsedInstantiations; class GlobalEagerInstantiationScope { public: GlobalEagerInstantiationScope(Sema &S, bool Enabled) : S(S), Enabled(Enabled) { if (!Enabled) return; SavedPendingInstantiations.swap(S.PendingInstantiations); SavedVTableUses.swap(S.VTableUses); } void perform() { if (Enabled) { S.DefineUsedVTables(); S.PerformPendingInstantiations(); } } ~GlobalEagerInstantiationScope() { if (!Enabled) return; // Restore the set of pending vtables. assert(S.VTableUses.empty() && "VTableUses should be empty before it is discarded."); S.VTableUses.swap(SavedVTableUses); // Restore the set of pending implicit instantiations. if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) { assert(S.PendingInstantiations.empty() && "PendingInstantiations should be empty before it is discarded."); S.PendingInstantiations.swap(SavedPendingInstantiations); } else { // Template instantiations in the PCH may be delayed until the TU. S.PendingInstantiations.swap(SavedPendingInstantiations); S.PendingInstantiations.insert(S.PendingInstantiations.end(), SavedPendingInstantiations.begin(), SavedPendingInstantiations.end()); } } private: Sema &S; SmallVector SavedVTableUses; std::deque SavedPendingInstantiations; bool Enabled; }; /// The queue of implicit template instantiations that are required /// and must be performed within the current local scope. /// /// This queue is only used for member functions of local classes in /// templates, which must be instantiated in the same scope as their /// enclosing function, so that they can reference function-local /// types, static variables, enumerators, etc. std::deque PendingLocalImplicitInstantiations; class LocalEagerInstantiationScope { public: LocalEagerInstantiationScope(Sema &S) : S(S) { SavedPendingLocalImplicitInstantiations.swap( S.PendingLocalImplicitInstantiations); } void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); } ~LocalEagerInstantiationScope() { assert(S.PendingLocalImplicitInstantiations.empty() && "there shouldn't be any pending local implicit instantiations"); SavedPendingLocalImplicitInstantiations.swap( S.PendingLocalImplicitInstantiations); } private: Sema &S; std::deque SavedPendingLocalImplicitInstantiations; }; /// A helper class for building up ExtParameterInfos. class ExtParameterInfoBuilder { SmallVector Infos; bool HasInteresting = false; public: /// Set the ExtParameterInfo for the parameter at the given index, /// void set(unsigned index, FunctionProtoType::ExtParameterInfo info) { assert(Infos.size() <= index); Infos.resize(index); Infos.push_back(info); if (!HasInteresting) HasInteresting = (info != FunctionProtoType::ExtParameterInfo()); } /// Return a pointer (suitable for setting in an ExtProtoInfo) to the /// ExtParameterInfo array we've built up. const FunctionProtoType::ExtParameterInfo * getPointerOrNull(unsigned numParams) { if (!HasInteresting) return nullptr; Infos.resize(numParams); return Infos.data(); } }; void PerformPendingInstantiations(bool LocalOnly = false); TypeSourceInfo *SubstType(TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity, bool AllowDeducedTST = false); QualType SubstType(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); TypeSourceInfo *SubstType(TypeLoc TL, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity, CXXRecordDecl *ThisContext, Qualifiers ThisTypeQuals); void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto, const MultiLevelTemplateArgumentList &Args); bool SubstExceptionSpec(SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI, SmallVectorImpl &ExceptionStorage, const MultiLevelTemplateArgumentList &Args); ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs, int indexAdjustment, Optional NumExpansions, bool ExpectParameterPack); bool SubstParmTypes(SourceLocation Loc, ArrayRef Params, const FunctionProtoType::ExtParameterInfo *ExtParamInfos, const MultiLevelTemplateArgumentList &TemplateArgs, SmallVectorImpl &ParamTypes, SmallVectorImpl *OutParams, ExtParameterInfoBuilder &ParamInfos); ExprResult SubstExpr(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs); /// Substitute the given template arguments into a list of /// expressions, expanding pack expansions if required. /// /// \param Exprs The list of expressions to substitute into. /// /// \param IsCall Whether this is some form of call, in which case /// default arguments will be dropped. /// /// \param TemplateArgs The set of template arguments to substitute. /// /// \param Outputs Will receive all of the substituted arguments. /// /// \returns true if an error occurred, false otherwise. bool SubstExprs(ArrayRef Exprs, bool IsCall, const MultiLevelTemplateArgumentList &TemplateArgs, SmallVectorImpl &Outputs); StmtResult SubstStmt(Stmt *S, const MultiLevelTemplateArgumentList &TemplateArgs); TemplateParameterList * SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs); bool SubstTemplateArguments(ArrayRef Args, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateArgumentListInfo &Outputs); Decl *SubstDecl(Decl *D, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs); /// Substitute the name and return type of a defaulted 'operator<=>' to form /// an implicit 'operator=='. FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD, FunctionDecl *Spaceship); ExprResult SubstInitializer(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs, bool CXXDirectInit); bool SubstBaseSpecifiers(CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); bool InstantiateClass(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK, bool Complain = true); bool InstantiateEnum(SourceLocation PointOfInstantiation, EnumDecl *Instantiation, EnumDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK); bool InstantiateInClassInitializer( SourceLocation PointOfInstantiation, FieldDecl *Instantiation, FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); struct LateInstantiatedAttribute { const Attr *TmplAttr; LocalInstantiationScope *Scope; Decl *NewDecl; LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S, Decl *D) : TmplAttr(A), Scope(S), NewDecl(D) { } }; typedef SmallVector LateInstantiatedAttrVec; void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Pattern, Decl *Inst, LateInstantiatedAttrVec *LateAttrs = nullptr, LocalInstantiationScope *OuterMostScope = nullptr); void InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Pattern, Decl *Inst, LateInstantiatedAttrVec *LateAttrs = nullptr, LocalInstantiationScope *OuterMostScope = nullptr); void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor); bool usesPartialOrExplicitSpecialization( SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec); bool InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation, ClassTemplateSpecializationDecl *ClassTemplateSpec, TemplateSpecializationKind TSK, bool Complain = true); void InstantiateClassMembers(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK); void InstantiateClassTemplateSpecializationMembers( SourceLocation PointOfInstantiation, ClassTemplateSpecializationDecl *ClassTemplateSpec, TemplateSpecializationKind TSK); NestedNameSpecifierLoc SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, const MultiLevelTemplateArgumentList &TemplateArgs); DeclarationNameInfo SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo, const MultiLevelTemplateArgumentList &TemplateArgs); TemplateName SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name, SourceLocation Loc, const MultiLevelTemplateArgumentList &TemplateArgs); bool SubstTypeConstraint(TemplateTypeParmDecl *Inst, const TypeConstraint *TC, const MultiLevelTemplateArgumentList &TemplateArgs); bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param); void InstantiateExceptionSpec(SourceLocation PointOfInstantiation, FunctionDecl *Function); bool CheckInstantiatedFunctionTemplateConstraints( SourceLocation PointOfInstantiation, FunctionDecl *Decl, ArrayRef TemplateArgs, ConstraintSatisfaction &Satisfaction); FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, const TemplateArgumentList *Args, SourceLocation Loc); void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, FunctionDecl *Function, bool Recursive = false, bool DefinitionRequired = false, bool AtEndOfTU = false); VarTemplateSpecializationDecl *BuildVarTemplateInstantiation( VarTemplateDecl *VarTemplate, VarDecl *FromVar, const TemplateArgumentList &TemplateArgList, const TemplateArgumentListInfo &TemplateArgsInfo, SmallVectorImpl &Converted, SourceLocation PointOfInstantiation, LateInstantiatedAttrVec *LateAttrs = nullptr, LocalInstantiationScope *StartingScope = nullptr); VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl( VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, const MultiLevelTemplateArgumentList &TemplateArgs); void BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar, const MultiLevelTemplateArgumentList &TemplateArgs, LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, LocalInstantiationScope *StartingScope, bool InstantiatingVarTemplate = false, VarTemplateSpecializationDecl *PrevVTSD = nullptr); void InstantiateVariableInitializer( VarDecl *Var, VarDecl *OldVar, const MultiLevelTemplateArgumentList &TemplateArgs); void InstantiateVariableDefinition(SourceLocation PointOfInstantiation, VarDecl *Var, bool Recursive = false, bool DefinitionRequired = false, bool AtEndOfTU = false); void InstantiateMemInitializers(CXXConstructorDecl *New, const CXXConstructorDecl *Tmpl, const MultiLevelTemplateArgumentList &TemplateArgs); NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs, bool FindingInstantiatedContext = false); DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC, const MultiLevelTemplateArgumentList &TemplateArgs); // Objective-C declarations. enum ObjCContainerKind { OCK_None = -1, OCK_Interface = 0, OCK_Protocol, OCK_Category, OCK_ClassExtension, OCK_Implementation, OCK_CategoryImplementation }; ObjCContainerKind getObjCContainerKind() const; DeclResult actOnObjCTypeParam(Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc, unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc, SourceLocation colonLoc, ParsedType typeBound); ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, ArrayRef typeParams, SourceLocation rAngleLoc); void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList); ObjCInterfaceDecl *ActOnStartClassInterface( Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, IdentifierInfo *SuperName, SourceLocation SuperLoc, ArrayRef SuperTypeArgs, SourceRange SuperTypeArgsRange, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList); void ActOnSuperClassOfClassInterface(Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperName, SourceLocation SuperLoc, ArrayRef SuperTypeArgs, SourceRange SuperTypeArgsRange); void ActOnTypedefedProtocols(SmallVectorImpl &ProtocolRefs, SmallVectorImpl &ProtocolLocs, IdentifierInfo *SuperName, SourceLocation SuperLoc); Decl *ActOnCompatibilityAlias( SourceLocation AtCompatibilityAliasLoc, IdentifierInfo *AliasName, SourceLocation AliasLocation, IdentifierInfo *ClassName, SourceLocation ClassLocation); bool CheckForwardProtocolDeclarationForCircularDependency( IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList &PList); ObjCProtocolDecl *ActOnStartProtocolInterface( SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc, Decl *const *ProtoRefNames, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList); ObjCCategoryDecl *ActOnStartCategoryInterface( SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList); ObjCImplementationDecl *ActOnStartClassImplementation( SourceLocation AtClassImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperClassname, SourceLocation SuperClassLoc, const ParsedAttributesView &AttrList); ObjCCategoryImplDecl *ActOnStartCategoryImplementation( SourceLocation AtCatImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc, const ParsedAttributesView &AttrList); DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef Decls); DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, ArrayRef TypeParamLists, unsigned NumElts); DeclGroupPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc, ArrayRef IdentList, const ParsedAttributesView &attrList); void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, ArrayRef ProtocolId, SmallVectorImpl &Protocols); void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, SourceLocation ProtocolLoc, IdentifierInfo *TypeArgId, SourceLocation TypeArgLoc, bool SelectProtocolFirst = false); /// Given a list of identifiers (and their locations), resolve the /// names to either Objective-C protocol qualifiers or type /// arguments, as appropriate. void actOnObjCTypeArgsOrProtocolQualifiers( Scope *S, ParsedType baseType, SourceLocation lAngleLoc, ArrayRef identifiers, ArrayRef identifierLocs, SourceLocation rAngleLoc, SourceLocation &typeArgsLAngleLoc, SmallVectorImpl &typeArgs, SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc, SmallVectorImpl &protocols, SourceLocation &protocolRAngleLoc, bool warnOnIncompleteProtocols); /// Build a an Objective-C protocol-qualified 'id' type where no /// base type was specified. TypeResult actOnObjCProtocolQualifierType( SourceLocation lAngleLoc, ArrayRef protocols, ArrayRef protocolLocs, SourceLocation rAngleLoc); /// Build a specialized and/or protocol-qualified Objective-C type. TypeResult actOnObjCTypeArgsAndProtocolQualifiers( Scope *S, SourceLocation Loc, ParsedType BaseType, SourceLocation TypeArgsLAngleLoc, ArrayRef TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc); /// Build an Objective-C type parameter type. QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError = false); /// Build an Objective-C object pointer type. QualType BuildObjCObjectType(QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc, ArrayRef TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError = false); /// Ensure attributes are consistent with type. /// \param [in, out] Attributes The attributes to check; they will /// be modified to be consistent with \p PropertyTy. void CheckObjCPropertyAttributes(Decl *PropertyPtrTy, SourceLocation Loc, unsigned &Attributes, bool propertyInPrimaryClass); /// Process the specified property declaration and create decls for the /// setters and getters as needed. /// \param property The property declaration being processed void ProcessPropertyDecl(ObjCPropertyDecl *property); void DiagnosePropertyMismatch(ObjCPropertyDecl *Property, ObjCPropertyDecl *SuperProperty, const IdentifierInfo *Name, bool OverridingProtocolProperty); void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID); Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef allMethods = None, ArrayRef allTUVars = None); Decl *ActOnProperty(Scope *S, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, ObjCDeclSpec &ODS, Selector GetterSel, Selector SetterSel, tok::ObjCKeywordKind MethodImplKind, DeclContext *lexicalDC = nullptr); Decl *ActOnPropertyImplDecl(Scope *S, SourceLocation AtLoc, SourceLocation PropertyLoc, bool ImplKind, IdentifierInfo *PropertyId, IdentifierInfo *PropertyIvar, SourceLocation PropertyIvarLoc, ObjCPropertyQueryKind QueryKind); enum ObjCSpecialMethodKind { OSMK_None, OSMK_Alloc, OSMK_New, OSMK_Copy, OSMK_RetainingInit, OSMK_NonRetainingInit }; struct ObjCArgInfo { IdentifierInfo *Name; SourceLocation NameLoc; // The Type is null if no type was specified, and the DeclSpec is invalid // in this case. ParsedType Type; ObjCDeclSpec DeclSpec; /// ArgAttrs - Attribute list for this argument. ParsedAttributesView ArgAttrs; }; Decl *ActOnMethodDeclaration( Scope *S, SourceLocation BeginLoc, // location of the + or -. SourceLocation EndLoc, // location of the ; or {. tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, ArrayRef SelectorLocs, Selector Sel, // optional arguments. The number of types/arguments is obtained // from the Sel.getNumArgs(). ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind, bool isVariadic, bool MethodDefinition); ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel, const ObjCObjectPointerType *OPT, bool IsInstance); ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty, bool IsInstance); bool CheckARCMethodDecl(ObjCMethodDecl *method); bool inferObjCARCLifetime(ValueDecl *decl); void deduceOpenCLAddressSpace(ValueDecl *decl); ExprResult HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, Expr *BaseExpr, SourceLocation OpLoc, DeclarationName MemberName, SourceLocation MemberLoc, SourceLocation SuperLoc, QualType SuperType, bool Super); ExprResult ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, IdentifierInfo &propertyName, SourceLocation receiverNameLoc, SourceLocation propertyNameLoc); ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc); /// Describes the kind of message expression indicated by a message /// send that starts with an identifier. enum ObjCMessageKind { /// The message is sent to 'super'. ObjCSuperMessage, /// The message is an instance message. ObjCInstanceMessage, /// The message is a class message, and the identifier is a type /// name. ObjCClassMessage }; ObjCMessageKind getObjCMessageKind(Scope *S, IdentifierInfo *Name, SourceLocation NameLoc, bool IsSuper, bool HasTrailingDot, ParsedType &ReceiverType); ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args, bool isImplicit = false); ExprResult BuildClassMessageImplicit(QualType ReceiverType, bool isSuperReceiver, SourceLocation Loc, Selector Sel, ObjCMethodDecl *Method, MultiExprArg Args); ExprResult ActOnClassMessage(Scope *S, ParsedType Receiver, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildInstanceMessage(Expr *Receiver, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args, bool isImplicit = false); ExprResult BuildInstanceMessageImplicit(Expr *Receiver, QualType ReceiverType, SourceLocation Loc, Selector Sel, ObjCMethodDecl *Method, MultiExprArg Args); ExprResult ActOnInstanceMessage(Scope *S, Expr *Receiver, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, TypeSourceInfo *TSInfo, Expr *SubExpr); ExprResult ActOnObjCBridgedCast(Scope *S, SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, ParsedType Type, SourceLocation RParenLoc, Expr *SubExpr); void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr); void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr); bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, CastKind &Kind); bool checkObjCBridgeRelatedComponents(SourceLocation Loc, QualType DestType, QualType SrcType, ObjCInterfaceDecl *&RelatedClass, ObjCMethodDecl *&ClassMethod, ObjCMethodDecl *&InstanceMethod, TypedefNameDecl *&TDNDecl, bool CfToNs, bool Diagnose = true); bool CheckObjCBridgeRelatedConversions(SourceLocation Loc, QualType DestType, QualType SrcType, Expr *&SrcExpr, bool Diagnose = true); bool CheckConversionToObjCLiteral(QualType DstType, Expr *&SrcExpr, bool Diagnose = true); bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall); /// Check whether the given new method is a valid override of the /// given overridden method, and set any properties that should be inherited. void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, const ObjCMethodDecl *Overridden); /// Describes the compatibility of a result type with its method. enum ResultTypeCompatibilityKind { RTC_Compatible, RTC_Incompatible, RTC_Unknown }; void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, ObjCMethodDecl *overridden); void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, ObjCInterfaceDecl *CurrentClass, ResultTypeCompatibilityKind RTC); enum PragmaOptionsAlignKind { POAK_Native, // #pragma options align=native POAK_Natural, // #pragma options align=natural POAK_Packed, // #pragma options align=packed POAK_Power, // #pragma options align=power POAK_Mac68k, // #pragma options align=mac68k POAK_Reset // #pragma options align=reset }; /// ActOnPragmaClangSection - Called on well formed \#pragma clang section void ActOnPragmaClangSection(SourceLocation PragmaLoc, PragmaClangSectionAction Action, PragmaClangSectionKind SecKind, StringRef SecName); /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align. void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind, SourceLocation PragmaLoc); /// ActOnPragmaPack - Called on well formed \#pragma pack(...). void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action, StringRef SlotLabel, Expr *Alignment); enum class PragmaAlignPackDiagnoseKind { NonDefaultStateAtInclude, ChangedStateAtExit }; void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind, SourceLocation IncludeLoc); void DiagnoseUnterminatedPragmaAlignPack(); /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off]. void ActOnPragmaMSStruct(PragmaMSStructKind Kind); /// ActOnPragmaMSComment - Called on well formed /// \#pragma comment(kind, "arg"). void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind, StringRef Arg); /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma /// pointers_to_members(representation method[, general purpose /// representation]). void ActOnPragmaMSPointersToMembers( LangOptions::PragmaMSPointersToMembersKind Kind, SourceLocation PragmaLoc); /// Called on well formed \#pragma vtordisp(). void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action, SourceLocation PragmaLoc, MSVtorDispMode Value); enum PragmaSectionKind { PSK_DataSeg, PSK_BSSSeg, PSK_ConstSeg, PSK_CodeSeg, }; bool UnifySection(StringRef SectionName, int SectionFlags, NamedDecl *TheDecl); bool UnifySection(StringRef SectionName, int SectionFlags, SourceLocation PragmaSectionLocation); /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg. void ActOnPragmaMSSeg(SourceLocation PragmaLocation, PragmaMsStackAction Action, llvm::StringRef StackSlotLabel, StringLiteral *SegmentName, llvm::StringRef PragmaName); /// Called on well formed \#pragma section(). void ActOnPragmaMSSection(SourceLocation PragmaLocation, int SectionFlags, StringLiteral *SegmentName); /// Called on well-formed \#pragma init_seg(). void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation, StringLiteral *SegmentName); /// Called on well-formed \#pragma alloc_text(). void ActOnPragmaMSAllocText( SourceLocation PragmaLocation, StringRef Section, const SmallVector> &Functions); /// Called on #pragma clang __debug dump II void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II); /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name, StringRef Value); /// Are precise floating point semantics currently enabled? bool isPreciseFPEnabled() { return !CurFPFeatures.getAllowFPReassociate() && !CurFPFeatures.getNoSignedZero() && !CurFPFeatures.getAllowReciprocal() && !CurFPFeatures.getAllowApproxFunc(); } void ActOnPragmaFPEvalMethod(SourceLocation Loc, LangOptions::FPEvalMethodKind Value); /// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action, PragmaFloatControlKind Value); /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'. void ActOnPragmaUnused(const Token &Identifier, Scope *curScope, SourceLocation PragmaLoc); /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... . void ActOnPragmaVisibility(const IdentifierInfo* VisType, SourceLocation PragmaLoc); NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II, SourceLocation Loc); void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W); /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident. void ActOnPragmaWeakID(IdentifierInfo* WeakName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc); /// ActOnPragmaRedefineExtname - Called on well formed /// \#pragma redefine_extname oldname newname. void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName, IdentifierInfo* AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc); /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident. void ActOnPragmaWeakAlias(IdentifierInfo* WeakName, IdentifierInfo* AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc); /// ActOnPragmaFPContract - Called on well formed /// \#pragma {STDC,OPENCL} FP_CONTRACT and /// \#pragma clang fp contract void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC); /// Called on well formed /// \#pragma clang fp reassociate void ActOnPragmaFPReassociate(SourceLocation Loc, bool IsEnabled); /// ActOnPragmaFenvAccess - Called on well formed /// \#pragma STDC FENV_ACCESS void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled); /// Called on well formed '\#pragma clang fp' that has option 'exceptions'. void ActOnPragmaFPExceptions(SourceLocation Loc, LangOptions::FPExceptionModeKind); /// Called to set constant rounding mode for floating point operations. void ActOnPragmaFEnvRound(SourceLocation Loc, llvm::RoundingMode); /// Called to set exception behavior for floating point operations. void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind); /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'. void AddAlignmentAttributesForRecord(RecordDecl *RD); /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record. void AddMsStructLayoutForRecord(RecordDecl *RD); /// PushNamespaceVisibilityAttr - Note that we've entered a /// namespace with a visibility attribute. void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr, SourceLocation Loc); /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used, /// add an appropriate visibility attribute. void AddPushedVisibilityAttribute(Decl *RD); /// PopPragmaVisibility - Pop the top element of the visibility stack; used /// for '\#pragma GCC visibility' and visibility attributes on namespaces. void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc); /// FreeVisContext - Deallocate and null out VisContext. void FreeVisContext(); /// AddCFAuditedAttribute - Check whether we're currently within /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding /// the appropriate attribute. void AddCFAuditedAttribute(Decl *D); void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute, SourceLocation PragmaLoc, attr::ParsedSubjectMatchRuleSet Rules); void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc, const IdentifierInfo *Namespace); /// Called on well-formed '\#pragma clang attribute pop'. void ActOnPragmaAttributePop(SourceLocation PragmaLoc, const IdentifierInfo *Namespace); /// Adds the attributes that have been specified using the /// '\#pragma clang attribute push' directives to the given declaration. void AddPragmaAttributes(Scope *S, Decl *D); void DiagnoseUnterminatedPragmaAttribute(); /// Called on well formed \#pragma clang optimize. void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc); /// #pragma optimize("[optimization-list]", on | off). void ActOnPragmaMSOptimize(SourceLocation Loc, bool IsOn); /// Call on well formed \#pragma function. void ActOnPragmaMSFunction(SourceLocation Loc, const llvm::SmallVectorImpl &NoBuiltins); /// Get the location for the currently active "\#pragma clang optimize /// off". If this location is invalid, then the state of the pragma is "on". SourceLocation getOptimizeOffPragmaLocation() const { return OptimizeOffPragmaLocation; } /// Only called on function definitions; if there is a pragma in scope /// with the effect of a range-based optnone, consider marking the function /// with attribute optnone. void AddRangeBasedOptnone(FunctionDecl *FD); /// Only called on function definitions; if there is a `#pragma alloc_text` /// that decides which code section the function should be in, add /// attribute section to the function. void AddSectionMSAllocText(FunctionDecl *FD); /// Adds the 'optnone' attribute to the function declaration if there /// are no conflicts; Loc represents the location causing the 'optnone' /// attribute to be added (usually because of a pragma). void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc); /// Only called on function definitions; if there is a MSVC #pragma optimize /// in scope, consider changing the function's attributes based on the /// optimization list passed to the pragma. void ModifyFnAttributesMSPragmaOptimize(FunctionDecl *FD); /// Only called on function definitions; if there is a pragma in scope /// with the effect of a range-based no_builtin, consider marking the function /// with attribute no_builtin. void AddImplicitMSFunctionNoBuiltinAttr(FunctionDecl *FD); /// AddAlignedAttr - Adds an aligned attribute to a particular declaration. void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, bool IsPackExpansion); void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T, bool IsPackExpansion); /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular /// declaration. void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, Expr *OE); /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular /// declaration. void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, Expr *ParamExpr); /// AddAlignValueAttr - Adds an align_value attribute to a particular /// declaration. void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E); /// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D. void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Annot, MutableArrayRef Args); /// ConstantFoldAttrArgs - Folds attribute arguments into ConstantExprs /// (unless they are value dependent or type dependent). Returns false /// and emits a diagnostic if one or more of the arguments could not be /// folded into a constant. bool ConstantFoldAttrArgs(const AttributeCommonInfo &CI, MutableArrayRef Args); /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular /// declaration. void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks); /// AddModeAttr - Adds a mode attribute to a particular declaration. void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name, bool InInstantiation = false); void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, ParameterABI ABI); enum class RetainOwnershipKind {NS, CF, OS}; void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, RetainOwnershipKind K, bool IsTemplateInstantiation); /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size /// attribute to a particular declaration. void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI, Expr *Min, Expr *Max); /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a /// particular declaration. void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI, Expr *Min, Expr *Max); bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type); //===--------------------------------------------------------------------===// // C++ Coroutines TS // bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc, StringRef Keyword); ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E); ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E); StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E); ExprResult BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc); ExprResult BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, UnresolvedLookupExpr *Lookup); ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *Operand, Expr *Awaiter, bool IsImplicit = false); ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *Operand, UnresolvedLookupExpr *Lookup); ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E); StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E, bool IsImplicit = false); StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs); bool buildCoroutineParameterMoves(SourceLocation Loc); VarDecl *buildCoroutinePromise(SourceLocation Loc); void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body); /// Lookup 'coroutine_traits' in std namespace and std::experimental /// namespace. The namespace found is recorded in Namespace. ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc, SourceLocation FuncLoc, NamespaceDecl *&Namespace); /// Check that the expression co_await promise.final_suspend() shall not be /// potentially-throwing. bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend); //===--------------------------------------------------------------------===// // OpenMP directives and clauses. // private: void *VarDataSharingAttributesStack; struct DeclareTargetContextInfo { struct MapInfo { OMPDeclareTargetDeclAttr::MapTypeTy MT; SourceLocation Loc; }; /// Explicitly listed variables and functions in a 'to' or 'link' clause. llvm::DenseMap ExplicitlyMapped; /// The 'device_type' as parsed from the clause. OMPDeclareTargetDeclAttr::DevTypeTy DT = OMPDeclareTargetDeclAttr::DT_Any; /// The directive kind, `begin declare target` or `declare target`. OpenMPDirectiveKind Kind; /// The directive with indirect clause. Optional Indirect; /// The directive location. SourceLocation Loc; DeclareTargetContextInfo(OpenMPDirectiveKind Kind, SourceLocation Loc) : Kind(Kind), Loc(Loc) {} }; /// Number of nested '#pragma omp declare target' directives. SmallVector DeclareTargetNesting; /// Initialization of data-sharing attributes stack. void InitDataSharingAttributesStack(); void DestroyDataSharingAttributesStack(); ExprResult VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind, bool StrictlyPositive = true, bool SuppressExprDiags = false); /// Returns OpenMP nesting level for current directive. unsigned getOpenMPNestingLevel() const; /// Adjusts the function scopes index for the target-based regions. void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex, unsigned Level) const; /// Returns the number of scopes associated with the construct on the given /// OpenMP level. int getNumberOfConstructScopes(unsigned Level) const; /// Push new OpenMP function region for non-capturing function. void pushOpenMPFunctionRegion(); /// Pop OpenMP function region for non-capturing function. void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI); /// Analyzes and checks a loop nest for use by a loop transformation. /// /// \param Kind The loop transformation directive kind. /// \param NumLoops How many nested loops the directive is expecting. /// \param AStmt Associated statement of the transformation directive. /// \param LoopHelpers [out] The loop analysis result. /// \param Body [out] The body code nested in \p NumLoops loop. /// \param OriginalInits [out] Collection of statements and declarations that /// must have been executed/declared before entering the /// loop. /// /// \return Whether there was any error. bool checkTransformableLoopNest( OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops, SmallVectorImpl &LoopHelpers, Stmt *&Body, SmallVectorImpl, 0>> &OriginalInits); /// Helper to keep information about the current `omp begin/end declare /// variant` nesting. struct OMPDeclareVariantScope { /// The associated OpenMP context selector. OMPTraitInfo *TI; /// The associated OpenMP context selector mangling. std::string NameSuffix; OMPDeclareVariantScope(OMPTraitInfo &TI); }; /// Return the OMPTraitInfo for the surrounding scope, if any. OMPTraitInfo *getOMPTraitInfoForSurroundingScope() { return OMPDeclareVariantScopes.empty() ? nullptr : OMPDeclareVariantScopes.back().TI; } /// The current `omp begin/end declare variant` scopes. SmallVector OMPDeclareVariantScopes; /// The current `omp begin/end assumes` scopes. SmallVector OMPAssumeScoped; /// All `omp assumes` we encountered so far. SmallVector OMPAssumeGlobal; public: /// The declarator \p D defines a function in the scope \p S which is nested /// in an `omp begin/end declare variant` scope. In this method we create a /// declaration for \p D and rename \p D according to the OpenMP context /// selector of the surrounding scope. Return all base functions in \p Bases. void ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, SmallVectorImpl &Bases); /// Register \p D as specialization of all base functions in \p Bases in the /// current `omp begin/end declare variant` scope. void ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope( Decl *D, SmallVectorImpl &Bases); /// Act on \p D, a function definition inside of an `omp [begin/end] assumes`. void ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D); /// Can we exit an OpenMP declare variant scope at the moment. bool isInOpenMPDeclareVariantScope() const { return !OMPDeclareVariantScopes.empty(); } /// Given the potential call expression \p Call, determine if there is a /// specialization via the OpenMP declare variant mechanism available. If /// there is, return the specialized call expression, otherwise return the /// original \p Call. ExprResult ActOnOpenMPCall(ExprResult Call, Scope *Scope, SourceLocation LParenLoc, MultiExprArg ArgExprs, SourceLocation RParenLoc, Expr *ExecConfig); /// Handle a `omp begin declare variant`. void ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, OMPTraitInfo &TI); /// Handle a `omp end declare variant`. void ActOnOpenMPEndDeclareVariant(); /// Checks if the variant/multiversion functions are compatible. bool areMultiversionVariantFunctionsCompatible( const FunctionDecl *OldFD, const FunctionDecl *NewFD, const PartialDiagnostic &NoProtoDiagID, const PartialDiagnosticAt &NoteCausedDiagIDAt, const PartialDiagnosticAt &NoSupportDiagIDAt, const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, bool ConstexprSupported, bool CLinkageMayDiffer); /// Function tries to capture lambda's captured variables in the OpenMP region /// before the original lambda is captured. void tryCaptureOpenMPLambdas(ValueDecl *V); /// Return true if the provided declaration \a VD should be captured by /// reference. /// \param Level Relative level of nested OpenMP construct for that the check /// is performed. /// \param OpenMPCaptureLevel Capture level within an OpenMP construct. bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level, unsigned OpenMPCaptureLevel) const; /// Check if the specified variable is used in one of the private /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP /// constructs. VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false, unsigned StopAt = 0); /// The member expression(this->fd) needs to be rebuilt in the template /// instantiation to generate private copy for OpenMP when default /// clause is used. The function will return true if default /// cluse is used. bool isOpenMPRebuildMemberExpr(ValueDecl *D); ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK, ExprObjectKind OK, SourceLocation Loc); /// If the current region is a loop-based region, mark the start of the loop /// construct. void startOpenMPLoop(); /// If the current region is a range loop-based region, mark the start of the /// loop construct. void startOpenMPCXXRangeFor(); /// Check if the specified variable is used in 'private' clause. /// \param Level Relative level of nested OpenMP construct for that the check /// is performed. OpenMPClauseKind isOpenMPPrivateDecl(ValueDecl *D, unsigned Level, unsigned CapLevel) const; /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.) /// for \p FD based on DSA for the provided corresponding captured declaration /// \p D. void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level); /// Check if the specified variable is captured by 'target' directive. /// \param Level Relative level of nested OpenMP construct for that the check /// is performed. bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level, unsigned CaptureLevel) const; /// Check if the specified global variable must be captured by outer capture /// regions. /// \param Level Relative level of nested OpenMP construct for that /// the check is performed. bool isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level, unsigned CaptureLevel) const; ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc, Expr *Op); /// Called on start of new data sharing attribute block. void StartOpenMPDSABlock(OpenMPDirectiveKind K, const DeclarationNameInfo &DirName, Scope *CurScope, SourceLocation Loc); /// Start analysis of clauses. void StartOpenMPClause(OpenMPClauseKind K); /// End analysis of clauses. void EndOpenMPClause(); /// Called on end of data sharing attribute block. void EndOpenMPDSABlock(Stmt *CurDirective); /// Check if the current region is an OpenMP loop region and if it is, /// mark loop control variable, used in \p Init for loop initialization, as /// private by default. /// \param Init First part of the for loop. void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init); /// Called on well-formed '\#pragma omp metadirective' after parsing /// of the associated statement. StmtResult ActOnOpenMPMetaDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); // OpenMP directives and clauses. /// Called on correct id-expression from the '#pragma omp /// threadprivate'. ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec, const DeclarationNameInfo &Id, OpenMPDirectiveKind Kind); /// Called on well-formed '#pragma omp threadprivate'. DeclGroupPtrTy ActOnOpenMPThreadprivateDirective( SourceLocation Loc, ArrayRef VarList); /// Builds a new OpenMPThreadPrivateDecl and checks its correctness. OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc, ArrayRef VarList); /// Called on well-formed '#pragma omp allocate'. DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc, ArrayRef VarList, ArrayRef Clauses, DeclContext *Owner = nullptr); /// Called on well-formed '#pragma omp [begin] assume[s]'. void ActOnOpenMPAssumesDirective(SourceLocation Loc, OpenMPDirectiveKind DKind, ArrayRef Assumptions, bool SkippedClauses); /// Check if there is an active global `omp begin assumes` directive. bool isInOpenMPAssumeScope() const { return !OMPAssumeScoped.empty(); } /// Check if there is an active global `omp assumes` directive. bool hasGlobalOpenMPAssumes() const { return !OMPAssumeGlobal.empty(); } /// Called on well-formed '#pragma omp end assumes'. void ActOnOpenMPEndAssumesDirective(); /// Called on well-formed '#pragma omp requires'. DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc, ArrayRef ClauseList); /// Check restrictions on Requires directive OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc, ArrayRef Clauses); /// Check if the specified type is allowed to be used in 'omp declare /// reduction' construct. QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc, TypeResult ParsedType); /// Called on start of '#pragma omp declare reduction'. DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart( Scope *S, DeclContext *DC, DeclarationName Name, ArrayRef> ReductionTypes, AccessSpecifier AS, Decl *PrevDeclInScope = nullptr); /// Initialize declare reduction construct initializer. void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D); /// Finish current declare reduction construct initializer. void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner); /// Initialize declare reduction construct initializer. /// \return omp_priv variable. VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D); /// Finish current declare reduction construct initializer. void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer, VarDecl *OmpPrivParm); /// Called at the end of '#pragma omp declare reduction'. DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd( Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid); /// Check variable declaration in 'omp declare mapper' construct. TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D); /// Check if the specified type is allowed to be used in 'omp declare /// mapper' construct. QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc, TypeResult ParsedType); /// Called on start of '#pragma omp declare mapper'. DeclGroupPtrTy ActOnOpenMPDeclareMapperDirective( Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType, SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS, Expr *MapperVarRef, ArrayRef Clauses, Decl *PrevDeclInScope = nullptr); /// Build the mapper variable of '#pragma omp declare mapper'. ExprResult ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S, QualType MapperType, SourceLocation StartLoc, DeclarationName VN); bool isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const; const ValueDecl *getOpenMPDeclareMapperVarName() const; /// Called on the start of target region i.e. '#pragma omp declare target'. bool ActOnStartOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI); /// Called at the end of target region i.e. '#pragma omp end declare target'. const DeclareTargetContextInfo ActOnOpenMPEndDeclareTargetDirective(); /// Called once a target context is completed, that can be when a /// '#pragma omp end declare target' was encountered or when a /// '#pragma omp declare target' without declaration-definition-seq was /// encountered. void ActOnFinishedOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI); /// Report unterminated 'omp declare target' or 'omp begin declare target' at /// the end of a compilation unit. void DiagnoseUnterminatedOpenMPDeclareTarget(); /// Searches for the provided declaration name for OpenMP declare target /// directive. NamedDecl *lookupOpenMPDeclareTargetName(Scope *CurScope, CXXScopeSpec &ScopeSpec, const DeclarationNameInfo &Id); /// Called on correct id-expression from the '#pragma omp declare target'. void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc, OMPDeclareTargetDeclAttr::MapTypeTy MT, DeclareTargetContextInfo &DTCI); /// Check declaration inside target region. void checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D, SourceLocation IdLoc = SourceLocation()); /// Finishes analysis of the deferred functions calls that may be declared as /// host/nohost during device/host compilation. void finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller, const FunctionDecl *Callee, SourceLocation Loc); /// Return true if currently in OpenMP task with untied clause context. bool isInOpenMPTaskUntiedContext() const; /// Return true inside OpenMP declare target region. bool isInOpenMPDeclareTargetContext() const { return !DeclareTargetNesting.empty(); } /// Return true inside OpenMP target region. bool isInOpenMPTargetExecutionDirective() const; /// Return the number of captured regions created for an OpenMP directive. static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind); /// Initialization of captured region for OpenMP region. void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope); /// Called for syntactical loops (ForStmt or CXXForRangeStmt) associated to /// an OpenMP loop directive. StmtResult ActOnOpenMPCanonicalLoop(Stmt *AStmt); /// Process a canonical OpenMP loop nest that can either be a canonical /// literal loop (ForStmt or CXXForRangeStmt), or the generated loop of an /// OpenMP loop transformation construct. StmtResult ActOnOpenMPLoopnest(Stmt *AStmt); /// End of OpenMP region. /// /// \param S Statement associated with the current OpenMP region. /// \param Clauses List of clauses for the current OpenMP region. /// /// \returns Statement for finished OpenMP region. StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef Clauses); StmtResult ActOnOpenMPExecutableDirective( OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName, OpenMPDirectiveKind CancelRegion, ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp parallel' after parsing /// of the associated statement. StmtResult ActOnOpenMPParallelDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); using VarsWithInheritedDSAType = llvm::SmallDenseMap; /// Called on well-formed '\#pragma omp simd' after parsing /// of the associated statement. StmtResult ActOnOpenMPSimdDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '#pragma omp tile' after parsing of its clauses and /// the associated statement. StmtResult ActOnOpenMPTileDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '#pragma omp unroll' after parsing of its clauses /// and the associated statement. StmtResult ActOnOpenMPUnrollDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp for' after parsing /// of the associated statement. StmtResult ActOnOpenMPForDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp for simd' after parsing /// of the associated statement. StmtResult ActOnOpenMPForSimdDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp sections' after parsing /// of the associated statement. StmtResult ActOnOpenMPSectionsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp section' after parsing of the /// associated statement. StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp single' after parsing of the /// associated statement. StmtResult ActOnOpenMPSingleDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp master' after parsing of the /// associated statement. StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp critical' after parsing of the /// associated statement. StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName, ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp parallel for' after parsing /// of the associated statement. StmtResult ActOnOpenMPParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel for simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel master' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp parallel masked' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelMaskedDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp parallel sections' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp task' after parsing of the /// associated statement. StmtResult ActOnOpenMPTaskDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp taskyield'. StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp barrier'. StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp taskwait'. StmtResult ActOnOpenMPTaskwaitDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp taskgroup'. StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp flush'. StmtResult ActOnOpenMPFlushDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp depobj'. StmtResult ActOnOpenMPDepobjDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp scan'. StmtResult ActOnOpenMPScanDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp ordered' after parsing of the /// associated statement. StmtResult ActOnOpenMPOrderedDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp atomic' after parsing of the /// associated statement. StmtResult ActOnOpenMPAtomicDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target' after parsing of the /// associated statement. StmtResult ActOnOpenMPTargetDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target data' after parsing of /// the associated statement. StmtResult ActOnOpenMPTargetDataDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target enter data' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AStmt); /// Called on well-formed '\#pragma omp target exit data' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AStmt); /// Called on well-formed '\#pragma omp target parallel' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target parallel for' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams' after parsing of the /// associated statement. StmtResult ActOnOpenMPTeamsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp teams loop' after parsing of the /// associated statement. StmtResult ActOnOpenMPTeamsGenericLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams loop' after parsing of /// the associated statement. StmtResult ActOnOpenMPTargetTeamsGenericLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel loop' after parsing of the /// associated statement. StmtResult ActOnOpenMPParallelGenericLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target parallel loop' after parsing /// of the associated statement. StmtResult ActOnOpenMPTargetParallelGenericLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp cancellation point'. StmtResult ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc, SourceLocation EndLoc, OpenMPDirectiveKind CancelRegion); /// Called on well-formed '\#pragma omp cancel'. StmtResult ActOnOpenMPCancelDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, OpenMPDirectiveKind CancelRegion); /// Called on well-formed '\#pragma omp taskloop' after parsing of the /// associated statement. StmtResult ActOnOpenMPTaskLoopDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp taskloop simd' after parsing of /// the associated statement. StmtResult ActOnOpenMPTaskLoopSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp master taskloop' after parsing of the /// associated statement. StmtResult ActOnOpenMPMasterTaskLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp master taskloop simd' after parsing of /// the associated statement. StmtResult ActOnOpenMPMasterTaskLoopSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel master taskloop' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelMasterTaskLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel master taskloop simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp masked taskloop' after parsing of the /// associated statement. StmtResult ActOnOpenMPMaskedTaskLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp masked taskloop simd' after parsing of /// the associated statement. StmtResult ActOnOpenMPMaskedTaskLoopSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel masked taskloop' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelMaskedTaskLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel masked taskloop simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelMaskedTaskLoopSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp distribute' after parsing /// of the associated statement. StmtResult ActOnOpenMPDistributeDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target update'. StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AStmt); /// Called on well-formed '\#pragma omp distribute parallel for' after /// parsing of the associated statement. StmtResult ActOnOpenMPDistributeParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp distribute parallel for simd' /// after parsing of the associated statement. StmtResult ActOnOpenMPDistributeParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp distribute simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPDistributeSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target parallel for simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target simd' after parsing of /// the associated statement. StmtResult ActOnOpenMPTargetSimdDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute' after parsing of /// the associated statement. StmtResult ActOnOpenMPTeamsDistributeDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute simd' after parsing /// of the associated statement. StmtResult ActOnOpenMPTeamsDistributeSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute parallel for simd' /// after parsing of the associated statement. StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute parallel for' /// after parsing of the associated statement. StmtResult ActOnOpenMPTeamsDistributeParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams' after parsing of the /// associated statement. StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target teams distribute' after parsing /// of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams distribute parallel for' /// after parsing of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams distribute parallel for /// simd' after parsing of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams distribute simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp interop'. StmtResult ActOnOpenMPInteropDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp dispatch' after parsing of the // /associated statement. StmtResult ActOnOpenMPDispatchDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp masked' after parsing of the // /associated statement. StmtResult ActOnOpenMPMaskedDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp loop' after parsing of the /// associated statement. StmtResult ActOnOpenMPGenericLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Checks correctness of linear modifiers. bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind, SourceLocation LinLoc); /// Checks that the specified declaration matches requirements for the linear /// decls. bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc, OpenMPLinearClauseKind LinKind, QualType Type, bool IsDeclareSimd = false); /// Called on well-formed '\#pragma omp declare simd' after parsing of /// the associated method/function. DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective( DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS, Expr *Simdlen, ArrayRef Uniforms, ArrayRef Aligneds, ArrayRef Alignments, ArrayRef Linears, ArrayRef LinModifiers, ArrayRef Steps, SourceRange SR); /// Checks '\#pragma omp declare variant' variant function and original /// functions after parsing of the associated method/function. /// \param DG Function declaration to which declare variant directive is /// applied to. /// \param VariantRef Expression that references the variant function, which /// must be used instead of the original one, specified in \p DG. /// \param TI The trait info object representing the match clause. /// \param NumAppendArgs The number of omp_interop_t arguments to account for /// in checking. /// \returns None, if the function/variant function are not compatible with /// the pragma, pair of original function/variant ref expression otherwise. Optional> checkOpenMPDeclareVariantFunction(DeclGroupPtrTy DG, Expr *VariantRef, OMPTraitInfo &TI, unsigned NumAppendArgs, SourceRange SR); /// Called on well-formed '\#pragma omp declare variant' after parsing of /// the associated method/function. /// \param FD Function declaration to which declare variant directive is /// applied to. /// \param VariantRef Expression that references the variant function, which /// must be used instead of the original one, specified in \p DG. /// \param TI The context traits associated with the function variant. /// \param AdjustArgsNothing The list of 'nothing' arguments. /// \param AdjustArgsNeedDevicePtr The list of 'need_device_ptr' arguments. /// \param AppendArgs The list of 'append_args' arguments. /// \param AdjustArgsLoc The Location of an 'adjust_args' clause. /// \param AppendArgsLoc The Location of an 'append_args' clause. /// \param SR The SourceRange of the 'declare variant' directive. void ActOnOpenMPDeclareVariantDirective( FunctionDecl *FD, Expr *VariantRef, OMPTraitInfo &TI, ArrayRef AdjustArgsNothing, ArrayRef AdjustArgsNeedDevicePtr, ArrayRef AppendArgs, SourceLocation AdjustArgsLoc, SourceLocation AppendArgsLoc, SourceRange SR); OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind, Expr *Expr, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'allocator' clause. OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'if' clause. OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier, Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation NameModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc); /// Called on well-formed 'final' clause. OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'num_threads' clause. OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'align' clause. OMPClause *ActOnOpenMPAlignClause(Expr *Alignment, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'safelen' clause. OMPClause *ActOnOpenMPSafelenClause(Expr *Length, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'simdlen' clause. OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-form 'sizes' clause. OMPClause *ActOnOpenMPSizesClause(ArrayRef SizeExprs, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-form 'full' clauses. OMPClause *ActOnOpenMPFullClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-form 'partial' clauses. OMPClause *ActOnOpenMPPartialClause(Expr *FactorExpr, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'collapse' clause. OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'ordered' clause. OMPClause * ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc, SourceLocation LParenLoc = SourceLocation(), Expr *NumForLoops = nullptr); /// Called on well-formed 'grainsize' clause. OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'num_tasks' clause. OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'hint' clause. OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'detach' clause. OMPClause *ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind, unsigned Argument, SourceLocation ArgumentLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'when' clause. OMPClause *ActOnOpenMPWhenClause(OMPTraitInfo &TI, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'default' clause. OMPClause *ActOnOpenMPDefaultClause(llvm::omp::DefaultKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'proc_bind' clause. OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'order' clause. OMPClause *ActOnOpenMPOrderClause(OpenMPOrderClauseKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'update' clause. OMPClause *ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPSingleExprWithArgClause( OpenMPClauseKind Kind, ArrayRef Arguments, Expr *Expr, SourceLocation StartLoc, SourceLocation LParenLoc, ArrayRef ArgumentsLoc, SourceLocation DelimLoc, SourceLocation EndLoc); /// Called on well-formed 'schedule' clause. OMPClause *ActOnOpenMPScheduleClause( OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc, SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'nowait' clause. OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'untied' clause. OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'mergeable' clause. OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'read' clause. OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'write' clause. OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'update' clause. OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'capture' clause. OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'compare' clause. OMPClause *ActOnOpenMPCompareClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'seq_cst' clause. OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'acq_rel' clause. OMPClause *ActOnOpenMPAcqRelClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'acquire' clause. OMPClause *ActOnOpenMPAcquireClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'release' clause. OMPClause *ActOnOpenMPReleaseClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'relaxed' clause. OMPClause *ActOnOpenMPRelaxedClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'init' clause. OMPClause *ActOnOpenMPInitClause(Expr *InteropVar, ArrayRef PrefExprs, bool IsTarget, bool IsTargetSync, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation VarLoc, SourceLocation EndLoc); /// Called on well-formed 'use' clause. OMPClause *ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation VarLoc, SourceLocation EndLoc); /// Called on well-formed 'destroy' clause. OMPClause *ActOnOpenMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation VarLoc, SourceLocation EndLoc); /// Called on well-formed 'novariants' clause. OMPClause *ActOnOpenMPNovariantsClause(Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'nocontext' clause. OMPClause *ActOnOpenMPNocontextClause(Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'filter' clause. OMPClause *ActOnOpenMPFilterClause(Expr *ThreadID, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'threads' clause. OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'simd' clause. OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'nogroup' clause. OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'unified_address' clause. OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'unified_address' clause. OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'reverse_offload' clause. OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'dynamic_allocators' clause. OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'atomic_default_mem_order' clause. OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause( OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Data used for processing a list of variables in OpenMP clauses. struct OpenMPVarListDataTy final { Expr *DepModOrTailExpr = nullptr; SourceLocation ColonLoc; SourceLocation RLoc; CXXScopeSpec ReductionOrMapperIdScopeSpec; DeclarationNameInfo ReductionOrMapperId; int ExtraModifier = -1; ///< Additional modifier for linear, map, depend or ///< lastprivate clause. SmallVector MapTypeModifiers; SmallVector MapTypeModifiersLoc; SmallVector MotionModifiers; SmallVector MotionModifiersLoc; bool IsMapTypeImplicit = false; SourceLocation ExtraModifierLoc; SourceLocation OmpAllMemoryLoc; }; OMPClause *ActOnOpenMPVarListClause(OpenMPClauseKind Kind, ArrayRef Vars, const OMPVarListLocTy &Locs, OpenMPVarListDataTy &Data); /// Called on well-formed 'inclusive' clause. OMPClause *ActOnOpenMPInclusiveClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'exclusive' clause. OMPClause *ActOnOpenMPExclusiveClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'allocate' clause. OMPClause * ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef VarList, SourceLocation StartLoc, SourceLocation ColonLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'private' clause. OMPClause *ActOnOpenMPPrivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'firstprivate' clause. OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'lastprivate' clause. OMPClause *ActOnOpenMPLastprivateClause( ArrayRef VarList, OpenMPLastprivateModifier LPKind, SourceLocation LPKindLoc, SourceLocation ColonLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'shared' clause. OMPClause *ActOnOpenMPSharedClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'reduction' clause. OMPClause *ActOnOpenMPReductionClause( ArrayRef VarList, OpenMPReductionClauseModifier Modifier, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions = llvm::None); /// Called on well-formed 'task_reduction' clause. OMPClause *ActOnOpenMPTaskReductionClause( ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions = llvm::None); /// Called on well-formed 'in_reduction' clause. OMPClause *ActOnOpenMPInReductionClause( ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions = llvm::None); /// Called on well-formed 'linear' clause. OMPClause * ActOnOpenMPLinearClause(ArrayRef VarList, Expr *Step, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind LinKind, SourceLocation LinLoc, SourceLocation ColonLoc, SourceLocation EndLoc); /// Called on well-formed 'aligned' clause. OMPClause *ActOnOpenMPAlignedClause(ArrayRef VarList, Expr *Alignment, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc); /// Called on well-formed 'copyin' clause. OMPClause *ActOnOpenMPCopyinClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'copyprivate' clause. OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'flush' pseudo clause. OMPClause *ActOnOpenMPFlushClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'depobj' pseudo clause. OMPClause *ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'depend' clause. OMPClause *ActOnOpenMPDependClause(const OMPDependClause::DependDataTy &Data, Expr *DepModifier, ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'device' clause. OMPClause *ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier, Expr *Device, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ModifierLoc, SourceLocation EndLoc); /// Called on well-formed 'map' clause. OMPClause *ActOnOpenMPMapClause( ArrayRef MapTypeModifiers, ArrayRef MapTypeModifiersLoc, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, OpenMPMapClauseKind MapType, bool IsMapTypeImplicit, SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef VarList, const OMPVarListLocTy &Locs, bool NoDiagnose = false, ArrayRef UnresolvedMappers = llvm::None); /// Called on well-formed 'num_teams' clause. OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'thread_limit' clause. OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'priority' clause. OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'dist_schedule' clause. OMPClause *ActOnOpenMPDistScheduleClause( OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc); /// Called on well-formed 'defaultmap' clause. OMPClause *ActOnOpenMPDefaultmapClause( OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc, SourceLocation KindLoc, SourceLocation EndLoc); /// Called on well-formed 'to' clause. OMPClause * ActOnOpenMPToClause(ArrayRef MotionModifiers, ArrayRef MotionModifiersLoc, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, SourceLocation ColonLoc, ArrayRef VarList, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers = llvm::None); /// Called on well-formed 'from' clause. OMPClause * ActOnOpenMPFromClause(ArrayRef MotionModifiers, ArrayRef MotionModifiersLoc, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, SourceLocation ColonLoc, ArrayRef VarList, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers = llvm::None); /// Called on well-formed 'use_device_ptr' clause. OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef VarList, const OMPVarListLocTy &Locs); /// Called on well-formed 'use_device_addr' clause. OMPClause *ActOnOpenMPUseDeviceAddrClause(ArrayRef VarList, const OMPVarListLocTy &Locs); /// Called on well-formed 'is_device_ptr' clause. OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef VarList, const OMPVarListLocTy &Locs); /// Called on well-formed 'has_device_addr' clause. OMPClause *ActOnOpenMPHasDeviceAddrClause(ArrayRef VarList, const OMPVarListLocTy &Locs); /// Called on well-formed 'nontemporal' clause. OMPClause *ActOnOpenMPNontemporalClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Data for list of allocators. struct UsesAllocatorsData { /// Allocator. Expr *Allocator = nullptr; /// Allocator traits. Expr *AllocatorTraits = nullptr; /// Locations of '(' and ')' symbols. SourceLocation LParenLoc, RParenLoc; }; /// Called on well-formed 'uses_allocators' clause. OMPClause *ActOnOpenMPUsesAllocatorClause(SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc, ArrayRef Data); /// Called on well-formed 'affinity' clause. OMPClause *ActOnOpenMPAffinityClause(SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, Expr *Modifier, ArrayRef Locators); /// Called on a well-formed 'bind' clause. OMPClause *ActOnOpenMPBindClause(OpenMPBindClauseKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// The kind of conversion being performed. enum CheckedConversionKind { /// An implicit conversion. CCK_ImplicitConversion, /// A C-style cast. CCK_CStyleCast, /// A functional-style cast. CCK_FunctionalCast, /// A cast other than a C-style cast. CCK_OtherCast, /// A conversion for an operand of a builtin overloaded operator. CCK_ForBuiltinOverloadedOp }; static bool isCast(CheckedConversionKind CCK) { return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast || CCK == CCK_OtherCast; } /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit /// cast. If there is already an implicit cast, merge into the existing one. /// If isLvalue, the result of the cast is an lvalue. ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK, ExprValueKind VK = VK_PRValue, const CXXCastPath *BasePath = nullptr, CheckedConversionKind CCK = CCK_ImplicitConversion); /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding /// to the conversion from scalar type ScalarTy to the Boolean type. static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy); /// IgnoredValueConversions - Given that an expression's result is /// syntactically ignored, perform any conversions that are /// required. ExprResult IgnoredValueConversions(Expr *E); // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts // functions and arrays to their respective pointers (C99 6.3.2.1). ExprResult UsualUnaryConversions(Expr *E); /// CallExprUnaryConversions - a special case of an unary conversion /// performed on a function designator of a call expression. ExprResult CallExprUnaryConversions(Expr *E); // DefaultFunctionArrayConversion - converts functions and arrays // to their respective pointers (C99 6.3.2.1). ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true); // DefaultFunctionArrayLvalueConversion - converts functions and // arrays to their respective pointers and performs the // lvalue-to-rvalue conversion. ExprResult DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose = true); // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on // the operand. This function is a no-op if the operand has a function type // or an array type. ExprResult DefaultLvalueConversion(Expr *E); // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that // do not have a prototype. Integer promotions are performed on each // argument, and arguments that have type float are promoted to double. ExprResult DefaultArgumentPromotion(Expr *E); /// If \p E is a prvalue denoting an unmaterialized temporary, materialize /// it as an xvalue. In C++98, the result will still be a prvalue, because /// we don't have xvalues there. ExprResult TemporaryMaterializationConversion(Expr *E); // Used for emitting the right warning by DefaultVariadicArgumentPromotion enum VariadicCallType { VariadicFunction, VariadicBlock, VariadicMethod, VariadicConstructor, VariadicDoesNotApply }; VariadicCallType getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, Expr *Fn); // Used for determining in which context a type is allowed to be passed to a // vararg function. enum VarArgKind { VAK_Valid, VAK_ValidInCXX11, VAK_Undefined, VAK_MSVCUndefined, VAK_Invalid }; // Determines which VarArgKind fits an expression. VarArgKind isValidVarArgType(const QualType &Ty); /// Check to see if the given expression is a valid argument to a variadic /// function, issuing a diagnostic if not. void checkVariadicArgument(const Expr *E, VariadicCallType CT); /// Check whether the given statement can have musttail applied to it, /// issuing a diagnostic and returning false if not. In the success case, /// the statement is rewritten to remove implicit nodes from the return /// value. bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA); private: /// Check whether the given statement can have musttail applied to it, /// issuing a diagnostic and returning false if not. bool checkMustTailAttr(const Stmt *St, const Attr &MTA); public: /// Check to see if a given expression could have '.c_str()' called on it. bool hasCStrMethod(const Expr *E); /// GatherArgumentsForCall - Collector argument expressions for various /// form of call prototypes. bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, const FunctionProtoType *Proto, unsigned FirstParam, ArrayRef Args, SmallVectorImpl &AllArgs, VariadicCallType CallType = VariadicDoesNotApply, bool AllowExplicit = false, bool IsListInitialization = false); // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but // will create a runtime trap if the resulting type is not a POD type. ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, FunctionDecl *FDecl); /// Context in which we're performing a usual arithmetic conversion. enum ArithConvKind { /// An arithmetic operation. ACK_Arithmetic, /// A bitwise operation. ACK_BitwiseOp, /// A comparison. ACK_Comparison, /// A conditional (?:) operator. ACK_Conditional, /// A compound assignment expression. ACK_CompAssign, }; // UsualArithmeticConversions - performs the UsualUnaryConversions on it's // operands and then handles various conversions that are common to binary // operators (C99 6.3.1.8). If both operands aren't arithmetic, this // routine returns the first non-arithmetic type found. The client is // responsible for emitting appropriate error diagnostics. QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, ArithConvKind ACK); /// AssignConvertType - All of the 'assignment' semantic checks return this /// enum to indicate whether the assignment was allowed. These checks are /// done for simple assignments, as well as initialization, return from /// function, argument passing, etc. The query is phrased in terms of a /// source and destination type. enum AssignConvertType { /// Compatible - the types are compatible according to the standard. Compatible, /// PointerToInt - The assignment converts a pointer to an int, which we /// accept as an extension. PointerToInt, /// IntToPointer - The assignment converts an int to a pointer, which we /// accept as an extension. IntToPointer, /// FunctionVoidPointer - The assignment is between a function pointer and /// void*, which the standard doesn't allow, but we accept as an extension. FunctionVoidPointer, /// IncompatiblePointer - The assignment is between two pointers types that /// are not compatible, but we accept them as an extension. IncompatiblePointer, /// IncompatibleFunctionPointer - The assignment is between two function /// pointers types that are not compatible, but we accept them as an /// extension. IncompatibleFunctionPointer, /// IncompatiblePointerSign - The assignment is between two pointers types /// which point to integers which have a different sign, but are otherwise /// identical. This is a subset of the above, but broken out because it's by /// far the most common case of incompatible pointers. IncompatiblePointerSign, /// CompatiblePointerDiscardsQualifiers - The assignment discards /// c/v/r qualifiers, which we accept as an extension. CompatiblePointerDiscardsQualifiers, /// IncompatiblePointerDiscardsQualifiers - The assignment /// discards qualifiers that we don't permit to be discarded, /// like address spaces. IncompatiblePointerDiscardsQualifiers, /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment /// changes address spaces in nested pointer types which is not allowed. /// For instance, converting __private int ** to __generic int ** is /// illegal even though __private could be converted to __generic. IncompatibleNestedPointerAddressSpaceMismatch, /// IncompatibleNestedPointerQualifiers - The assignment is between two /// nested pointer types, and the qualifiers other than the first two /// levels differ e.g. char ** -> const char **, but we accept them as an /// extension. IncompatibleNestedPointerQualifiers, /// IncompatibleVectors - The assignment is between two vector types that /// have the same size, which we accept as an extension. IncompatibleVectors, /// IntToBlockPointer - The assignment converts an int to a block /// pointer. We disallow this. IntToBlockPointer, /// IncompatibleBlockPointer - The assignment is between two block /// pointers types that are not compatible. IncompatibleBlockPointer, /// IncompatibleObjCQualifiedId - The assignment is between a qualified /// id type and something else (that is incompatible with it). For example, /// "id " = "Foo *", where "Foo *" doesn't implement the XXX protocol. IncompatibleObjCQualifiedId, /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an /// object with __weak qualifier. IncompatibleObjCWeakRef, /// Incompatible - We reject this conversion outright, it is invalid to /// represent it in the AST. Incompatible }; /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the /// assignment conversion type specified by ConvTy. This returns true if the /// conversion was invalid or false if the conversion was accepted. bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, AssignmentAction Action, bool *Complained = nullptr); /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag /// enum. If AllowMask is true, then we also allow the complement of a valid /// value, to be used as a mask. bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, bool AllowMask) const; /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant /// integer not in the range of enum values. void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, Expr *SrcExpr); /// CheckAssignmentConstraints - Perform type checking for assignment, /// argument passing, variable initialization, and function return values. /// C99 6.5.16. AssignConvertType CheckAssignmentConstraints(SourceLocation Loc, QualType LHSType, QualType RHSType); /// Check assignment constraints and optionally prepare for a conversion of /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS /// is true. AssignConvertType CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, CastKind &Kind, bool ConvertRHS = true); /// Check assignment constraints for an assignment of RHS to LHSType. /// /// \param LHSType The destination type for the assignment. /// \param RHS The source expression for the assignment. /// \param Diagnose If \c true, diagnostics may be produced when checking /// for assignability. If a diagnostic is produced, \p RHS will be /// set to ExprError(). Note that this function may still return /// without producing a diagnostic, even for an invalid assignment. /// \param DiagnoseCFAudited If \c true, the target is a function parameter /// in an audited Core Foundation API and does not need to be checked /// for ARC retain issues. /// \param ConvertRHS If \c true, \p RHS will be updated to model the /// conversions necessary to perform the assignment. If \c false, /// \p Diagnose must also be \c false. AssignConvertType CheckSingleAssignmentConstraints( QualType LHSType, ExprResult &RHS, bool Diagnose = true, bool DiagnoseCFAudited = false, bool ConvertRHS = true); // If the lhs type is a transparent union, check whether we // can initialize the transparent union with the given expression. AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &RHS); bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType); bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, AssignmentAction Action, bool AllowExplicit = false); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, const ImplicitConversionSequence& ICS, AssignmentAction Action, CheckedConversionKind CCK = CCK_ImplicitConversion); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, const StandardConversionSequence& SCS, AssignmentAction Action, CheckedConversionKind CCK); ExprResult PerformQualificationConversion( Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue, CheckedConversionKind CCK = CCK_ImplicitConversion); /// the following "Check" methods will return a valid/converted QualType /// or a null QualType (indicating an error diagnostic was issued). /// type checking binary operators (subroutines of CreateBuiltinBinOp). QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS, ExprResult &RHS); QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, ExprResult &RHS); QualType CheckPointerToMemberOperands( // C++ 5.5 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, SourceLocation OpLoc, bool isIndirect); QualType CheckMultiplyDivideOperands( // C99 6.5.5 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, bool IsDivide); QualType CheckRemainderOperands( // C99 6.5.5 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign = false); QualType CheckAdditionOperands( // C99 6.5.6 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr); QualType CheckSubtractionOperands( // C99 6.5.6 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, QualType* CompLHSTy = nullptr); QualType CheckShiftOperands( // C99 6.5.7 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc, bool IsCompAssign = false); void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE); QualType CheckCompareOperands( // C99 6.5.8/9 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); QualType CheckBitwiseOperands( // C99 6.5.[10...12] ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); QualType CheckLogicalOperands( // C99 6.5.[13,14] ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); // CheckAssignmentOperands is used for both simple and compound assignment. // For simple assignment, pass both expressions and a null converted type. // For compound assignment, pass both expressions and the converted type. QualType CheckAssignmentOperands( // C99 6.5.16.[1,2] Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType, BinaryOperatorKind Opc); ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opcode, Expr *Op); ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opcode, Expr *LHS, Expr *RHS); ExprResult checkPseudoObjectRValue(Expr *E); Expr *recreateSyntacticForm(PseudoObjectExpr *E); QualType CheckConditionalOperands( // C99 6.5.15 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc); QualType CXXCheckConditionalOperands( // C++ 5.16 ExprResult &cond, ExprResult &lhs, ExprResult &rhs, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc); QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc); QualType CheckSizelessVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc); QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2, bool ConvertArgs = true); QualType FindCompositePointerType(SourceLocation Loc, ExprResult &E1, ExprResult &E2, bool ConvertArgs = true) { Expr *E1Tmp = E1.get(), *E2Tmp = E2.get(); QualType Composite = FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs); E1 = E1Tmp; E2 = E2Tmp; return Composite; } QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc); bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, SourceLocation QuestionLoc); void DiagnoseAlwaysNonNullPointer(Expr *E, Expr::NullPointerConstantKind NullType, bool IsEqual, SourceRange Range); /// type checking for vector binary operators. QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, bool AllowBothBool, bool AllowBoolConversion, bool AllowBoolOperation, bool ReportInvalid); QualType GetSignedVectorType(QualType V); QualType GetSignedSizelessVectorType(QualType V); QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); QualType CheckSizelessVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc); // type checking for sizeless vector binary operators. QualType CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, ArithConvKind OperationKind); /// Type checking for matrix binary operators. QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign); QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign); bool isValidSveBitcast(QualType srcType, QualType destType); bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy); bool areVectorTypesSameSize(QualType srcType, QualType destType); bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType); bool isLaxVectorConversion(QualType srcType, QualType destType); bool areSameVectorElemTypes(QualType srcType, QualType destType); bool anyAltivecTypes(QualType srcType, QualType destType); /// type checking declaration initializers (C99 6.7.8) bool CheckForConstantInitializer(Expr *e, QualType t); // type checking C++ declaration initializers (C++ [dcl.init]). /// ReferenceCompareResult - Expresses the result of comparing two /// types (cv1 T1 and cv2 T2) to determine their compatibility for the /// purposes of initialization by reference (C++ [dcl.init.ref]p4). enum ReferenceCompareResult { /// Ref_Incompatible - The two types are incompatible, so direct /// reference binding is not possible. Ref_Incompatible = 0, /// Ref_Related - The two types are reference-related, which means /// that their unqualified forms (T1 and T2) are either the same /// or T1 is a base class of T2. Ref_Related, /// Ref_Compatible - The two types are reference-compatible. Ref_Compatible }; // Fake up a scoped enumeration that still contextually converts to bool. struct ReferenceConversionsScope { /// The conversions that would be performed on an lvalue of type T2 when /// binding a reference of type T1 to it, as determined when evaluating /// whether T1 is reference-compatible with T2. enum ReferenceConversions { Qualification = 0x1, NestedQualification = 0x2, Function = 0x4, DerivedToBase = 0x8, ObjC = 0x10, ObjCLifetime = 0x20, LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime) }; }; using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions; ReferenceCompareResult CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2, ReferenceConversions *Conv = nullptr); ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, Expr *CastExpr, CastKind &CastKind, ExprValueKind &VK, CXXCastPath &Path); /// Force an expression with unknown-type to an expression of the /// given type. ExprResult forceUnknownAnyToType(Expr *E, QualType ToType); /// Type-check an expression that's being passed to an /// __unknown_anytype parameter. ExprResult checkUnknownAnyArg(SourceLocation callLoc, Expr *result, QualType ¶mType); // CheckMatrixCast - Check type constraints for matrix casts. // We allow casting between matrixes of the same dimensions i.e. when they // have the same number of rows and column. Returns true if the cast is // invalid. bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy, CastKind &Kind); // CheckVectorCast - check type constraints for vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size. // returns true if the cast is invalid bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, CastKind &Kind); /// Prepare `SplattedExpr` for a vector splat operation, adding /// implicit casts if necessary. ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr); // CheckExtVectorCast - check type constraints for extended vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size, // or vectors and the element type of that vector. // returns the cast expr ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr, CastKind &Kind); ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type, SourceLocation LParenLoc, Expr *CastExpr, SourceLocation RParenLoc); enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error }; /// Checks for invalid conversions and casts between /// retainable pointers and other pointer kinds for ARC and Weak. ARCConversionResult CheckObjCConversion(SourceRange castRange, QualType castType, Expr *&op, CheckedConversionKind CCK, bool Diagnose = true, bool DiagnoseCFAudited = false, BinaryOperatorKind Opc = BO_PtrMemD ); Expr *stripARCUnbridgedCast(Expr *e); void diagnoseARCUnbridgedCast(Expr *e); bool CheckObjCARCUnavailableWeakConversion(QualType castType, QualType ExprType); /// checkRetainCycles - Check whether an Objective-C message send /// might create an obvious retain cycle. void checkRetainCycles(ObjCMessageExpr *msg); void checkRetainCycles(Expr *receiver, Expr *argument); void checkRetainCycles(VarDecl *Var, Expr *Init); /// checkUnsafeAssigns - Check whether +1 expr is being assigned /// to weak/__unsafe_unretained type. bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS); /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned /// to weak/__unsafe_unretained expression. void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS); /// CheckMessageArgumentTypes - Check types in an Obj-C message send. /// \param Method - May be null. /// \param [out] ReturnType - The return type of the send. /// \return true iff there were any incompatible types. bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType, MultiExprArg Args, Selector Sel, ArrayRef SelectorLocs, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage, SourceLocation lbrac, SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType, ExprValueKind &VK); /// Determine the result of a message send expression based on /// the type of the receiver, the method expected to receive the message, /// and the form of the message send. QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage); /// If the given expression involves a message send to a method /// with a related result type, emit a note describing what happened. void EmitRelatedResultTypeNote(const Expr *E); /// Given that we had incompatible pointer types in a return /// statement, check whether we're in a method with a related result /// type, and if so, emit a note describing what happened. void EmitRelatedResultTypeNoteForReturn(QualType destType); class ConditionResult { Decl *ConditionVar; FullExprArg Condition; bool Invalid; bool HasKnownValue; bool KnownValue; friend class Sema; ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition, bool IsConstexpr) : ConditionVar(ConditionVar), Condition(Condition), Invalid(false), HasKnownValue(IsConstexpr && Condition.get() && !Condition.get()->isValueDependent()), KnownValue(HasKnownValue && !!Condition.get()->EvaluateKnownConstInt(S.Context)) {} explicit ConditionResult(bool Invalid) : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid), HasKnownValue(false), KnownValue(false) {} public: ConditionResult() : ConditionResult(false) {} bool isInvalid() const { return Invalid; } std::pair get() const { return std::make_pair(cast_or_null(ConditionVar), Condition.get()); } llvm::Optional getKnownValue() const { if (!HasKnownValue) return None; return KnownValue; } }; static ConditionResult ConditionError() { return ConditionResult(true); } enum class ConditionKind { Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'. ConstexprIf, ///< A constant boolean condition from 'if constexpr'. Switch ///< An integral condition for a 'switch' statement. }; QualType PreferredConditionType(ConditionKind K) const { return K == ConditionKind::Switch ? Context.IntTy : Context.BoolTy; } ConditionResult ActOnCondition(Scope *S, SourceLocation Loc, Expr *SubExpr, ConditionKind CK, bool MissingOK = false); ConditionResult ActOnConditionVariable(Decl *ConditionVar, SourceLocation StmtLoc, ConditionKind CK); DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D); ExprResult CheckConditionVariable(VarDecl *ConditionVar, SourceLocation StmtLoc, ConditionKind CK); ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond); /// CheckBooleanCondition - Diagnose problems involving the use of /// the given expression as a boolean condition (e.g. in an if /// statement). Also performs the standard function and array /// decays, possibly changing the input variable. /// /// \param Loc - A location associated with the condition, e.g. the /// 'if' keyword. /// \return true iff there were any errors ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E, bool IsConstexpr = false); /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression /// found in an explicit(bool) specifier. ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E); /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier. /// Returns true if the explicit specifier is now resolved. bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec); /// DiagnoseAssignmentAsCondition - Given that an expression is /// being used as a boolean condition, warn if it's an assignment. void DiagnoseAssignmentAsCondition(Expr *E); /// Redundant parentheses over an equality comparison can indicate /// that the user intended an assignment used as condition. void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE); /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid. ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false); /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID); /// Checks that the Objective-C declaration is declared in the global scope. /// Emits an error and marks the declaration as invalid if it's not declared /// in the global scope. bool CheckObjCDeclScope(Decl *D); /// Abstract base class used for diagnosing integer constant /// expression violations. class VerifyICEDiagnoser { public: bool Suppress; VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { } virtual SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T); virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) = 0; virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc); virtual ~VerifyICEDiagnoser() {} }; enum AllowFoldKind { NoFold, AllowFold, }; /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE, /// and reports the appropriate diagnostics. Returns false on success. /// Can optionally return the value of the expression. ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, VerifyICEDiagnoser &Diagnoser, AllowFoldKind CanFold = NoFold); ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, unsigned DiagID, AllowFoldKind CanFold = NoFold); ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result = nullptr, AllowFoldKind CanFold = NoFold); ExprResult VerifyIntegerConstantExpression(Expr *E, AllowFoldKind CanFold = NoFold) { return VerifyIntegerConstantExpression(E, nullptr, CanFold); } /// VerifyBitField - verifies that a bit field expression is an ICE and has /// the correct width, and that the field type is valid. /// Returns false on success. ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, QualType FieldTy, bool IsMsStruct, Expr *BitWidth); private: unsigned ForceCUDAHostDeviceDepth = 0; public: /// Increments our count of the number of times we've seen a pragma forcing /// functions to be __host__ __device__. So long as this count is greater /// than zero, all functions encountered will be __host__ __device__. void PushForceCUDAHostDevice(); /// Decrements our count of the number of times we've seen a pragma forcing /// functions to be __host__ __device__. Returns false if the count is 0 /// before incrementing, so you can emit an error. bool PopForceCUDAHostDevice(); /// Diagnostics that are emitted only if we discover that the given function /// must be codegen'ed. Because handling these correctly adds overhead to /// compilation, this is currently only enabled for CUDA compilations. llvm::DenseMap, std::vector> DeviceDeferredDiags; /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the /// key in a hashtable, both the FD and location are hashed. struct FunctionDeclAndLoc { CanonicalDeclPtr FD; SourceLocation Loc; }; /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the /// same deferred diag twice. llvm::DenseSet LocsWithCUDACallDiags; /// An inverse call graph, mapping known-emitted functions to one of their /// known-emitted callers (plus the location of the call). /// /// Functions that we can tell a priori must be emitted aren't added to this /// map. llvm::DenseMap, /* Caller = */ FunctionDeclAndLoc> DeviceKnownEmittedFns; /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current /// context is "used as device code". /// /// - If CurContext is a __host__ function, does not emit any diagnostics /// unless \p EmitOnBothSides is true. /// - If CurContext is a __device__ or __global__ function, emits the /// diagnostics immediately. /// - If CurContext is a __host__ __device__ function and we are compiling for /// the device, creates a diagnostic which is emitted if and when we realize /// that the function will be codegen'ed. /// /// Example usage: /// /// // Variable-length arrays are not allowed in CUDA device code. /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget()) /// return ExprError(); /// // Otherwise, continue parsing as normal. SemaDiagnosticBuilder CUDADiagIfDeviceCode(SourceLocation Loc, unsigned DiagID); /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current /// context is "used as host code". /// /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched. SemaDiagnosticBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID); /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current /// context is "used as device code". /// /// - If CurContext is a `declare target` function or it is known that the /// function is emitted for the device, emits the diagnostics immediately. /// - If CurContext is a non-`declare target` function and we are compiling /// for the device, creates a diagnostic which is emitted if and when we /// realize that the function will be codegen'ed. /// /// Example usage: /// /// // Variable-length arrays are not allowed in NVPTX device code. /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported)) /// return ExprError(); /// // Otherwise, continue parsing as normal. SemaDiagnosticBuilder diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD); /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current /// context is "used as host code". /// /// - If CurContext is a `declare target` function or it is known that the /// function is emitted for the host, emits the diagnostics immediately. /// - If CurContext is a non-host function, just ignore it. /// /// Example usage: /// /// // Variable-length arrays are not allowed in NVPTX device code. /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported)) /// return ExprError(); /// // Otherwise, continue parsing as normal. SemaDiagnosticBuilder diagIfOpenMPHostCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD); SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD = nullptr); SemaDiagnosticBuilder targetDiag(SourceLocation Loc, const PartialDiagnostic &PD, FunctionDecl *FD = nullptr) { return targetDiag(Loc, PD.getDiagID(), FD) << PD; } /// Check if the type is allowed to be used for the current target. void checkTypeSupport(QualType Ty, SourceLocation Loc, ValueDecl *D = nullptr); enum CUDAFunctionTarget { CFT_Device, CFT_Global, CFT_Host, CFT_HostDevice, CFT_InvalidTarget }; /// Determines whether the given function is a CUDA device/host/kernel/etc. /// function. /// /// Use this rather than examining the function's attributes yourself -- you /// will get it wrong. Returns CFT_Host if D is null. CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D, bool IgnoreImplicitHDAttr = false); CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs); enum CUDAVariableTarget { CVT_Device, /// Emitted on device side with a shadow variable on host side CVT_Host, /// Emitted on host side only CVT_Both, /// Emitted on both sides with different addresses CVT_Unified, /// Emitted as a unified address, e.g. managed variables }; /// Determines whether the given variable is emitted on host or device side. CUDAVariableTarget IdentifyCUDATarget(const VarDecl *D); /// Gets the CUDA target for the current context. CUDAFunctionTarget CurrentCUDATarget() { return IdentifyCUDATarget(dyn_cast(CurContext)); } static bool isCUDAImplicitHostDeviceFunction(const FunctionDecl *D); // CUDA function call preference. Must be ordered numerically from // worst to best. enum CUDAFunctionPreference { CFP_Never, // Invalid caller/callee combination. CFP_WrongSide, // Calls from host-device to host or device // function that do not match current compilation // mode. CFP_HostDevice, // Any calls to host/device functions. CFP_SameSide, // Calls from host-device to host or device // function matching current compilation mode. CFP_Native, // host-to-host or device-to-device calls. }; /// Identifies relative preference of a given Caller/Callee /// combination, based on their host/device attributes. /// \param Caller function which needs address of \p Callee. /// nullptr in case of global context. /// \param Callee target function /// /// \returns preference value for particular Caller/Callee combination. CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller, const FunctionDecl *Callee); /// Determines whether Caller may invoke Callee, based on their CUDA /// host/device attributes. Returns false if the call is not allowed. /// /// Note: Will return true for CFP_WrongSide calls. These may appear in /// semantically correct CUDA programs, but only if they're never codegen'ed. bool IsAllowedCUDACall(const FunctionDecl *Caller, const FunctionDecl *Callee) { return IdentifyCUDAPreference(Caller, Callee) != CFP_Never; } /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD, /// depending on FD and the current compilation settings. void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD, const LookupResult &Previous); /// May add implicit CUDAConstantAttr attribute to VD, depending on VD /// and current compilation settings. void MaybeAddCUDAConstantAttr(VarDecl *VD); public: /// Check whether we're allowed to call Callee from the current context. /// /// - If the call is never allowed in a semantically-correct program /// (CFP_Never), emits an error and returns false. /// /// - If the call is allowed in semantically-correct programs, but only if /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to /// be emitted if and when the caller is codegen'ed, and returns true. /// /// Will only create deferred diagnostics for a given SourceLocation once, /// so you can safely call this multiple times without generating duplicate /// deferred errors. /// /// - Otherwise, returns true without emitting any diagnostics. bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee); void CUDACheckLambdaCapture(CXXMethodDecl *D, const sema::Capture &Capture); /// Set __device__ or __host__ __device__ attributes on the given lambda /// operator() method. /// /// CUDA lambdas by default is host device function unless it has explicit /// host or device attribute. void CUDASetLambdaAttrs(CXXMethodDecl *Method); /// Finds a function in \p Matches with highest calling priority /// from \p Caller context and erases all functions with lower /// calling priority. void EraseUnwantedCUDAMatches( const FunctionDecl *Caller, SmallVectorImpl> &Matches); /// Given a implicit special member, infer its CUDA target from the /// calls it needs to make to underlying base/field special members. /// \param ClassDecl the class for which the member is being created. /// \param CSM the kind of special member. /// \param MemberDecl the special member itself. /// \param ConstRHS true if this is a copy operation with a const object on /// its RHS. /// \param Diagnose true if this call should emit diagnostics. /// \return true if there was an error inferring. /// The result of this call is implicit CUDA target attribute(s) attached to /// the member declaration. bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, CXXSpecialMember CSM, CXXMethodDecl *MemberDecl, bool ConstRHS, bool Diagnose); /// \return true if \p CD can be considered empty according to CUDA /// (E.2.3.1 in CUDA 7.5 Programming guide). bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD); bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD); // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In // case of error emits appropriate diagnostic and invalidates \p Var. // // \details CUDA allows only empty constructors as initializers for global // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all // __shared__ variables whether they are local or not (they all are implicitly // static in CUDA). One exception is that CUDA allows constant initializers // for __constant__ and __device__ variables. void checkAllowedCUDAInitializer(VarDecl *VD); /// Check whether NewFD is a valid overload for CUDA. Emits /// diagnostics and invalidates NewFD if not. void checkCUDATargetOverload(FunctionDecl *NewFD, const LookupResult &Previous); /// Copies target attributes from the template TD to the function FD. void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD); /// Returns the name of the launch configuration function. This is the name /// of the function that will be called to configure kernel call, with the /// parameters specified via <<<>>>. std::string getCudaConfigureFuncName() const; /// \name Code completion //@{ /// Describes the context in which code completion occurs. enum ParserCompletionContext { /// Code completion occurs at top-level or namespace context. PCC_Namespace, /// Code completion occurs within a class, struct, or union. PCC_Class, /// Code completion occurs within an Objective-C interface, protocol, /// or category. PCC_ObjCInterface, /// Code completion occurs within an Objective-C implementation or /// category implementation PCC_ObjCImplementation, /// Code completion occurs within the list of instance variables /// in an Objective-C interface, protocol, category, or implementation. PCC_ObjCInstanceVariableList, /// Code completion occurs following one or more template /// headers. PCC_Template, /// Code completion occurs following one or more template /// headers within a class. PCC_MemberTemplate, /// Code completion occurs within an expression. PCC_Expression, /// Code completion occurs within a statement, which may /// also be an expression or a declaration. PCC_Statement, /// Code completion occurs at the beginning of the /// initialization statement (or expression) in a for loop. PCC_ForInit, /// Code completion occurs within the condition of an if, /// while, switch, or for statement. PCC_Condition, /// Code completion occurs within the body of a function on a /// recovery path, where we do not have a specific handle on our position /// in the grammar. PCC_RecoveryInFunction, /// Code completion occurs where only a type is permitted. PCC_Type, /// Code completion occurs in a parenthesized expression, which /// might also be a type cast. PCC_ParenthesizedExpression, /// Code completion occurs within a sequence of declaration /// specifiers within a function, method, or block. PCC_LocalDeclarationSpecifiers }; void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path); void CodeCompleteOrdinaryName(Scope *S, ParserCompletionContext CompletionContext); void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS, bool AllowNonIdentifiers, bool AllowNestedNameSpecifiers); struct CodeCompleteExpressionData; void CodeCompleteExpression(Scope *S, const CodeCompleteExpressionData &Data); void CodeCompleteExpression(Scope *S, QualType PreferredType, bool IsParenthesized = false); void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase, SourceLocation OpLoc, bool IsArrow, bool IsBaseExprStatement, QualType PreferredType); void CodeCompletePostfixExpression(Scope *S, ExprResult LHS, QualType PreferredType); void CodeCompleteTag(Scope *S, unsigned TagSpec); void CodeCompleteTypeQualifiers(DeclSpec &DS); void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D, const VirtSpecifiers *VS = nullptr); void CodeCompleteBracketDeclarator(Scope *S); void CodeCompleteCase(Scope *S); enum class AttributeCompletion { Attribute, Scope, None, }; void CodeCompleteAttribute( AttributeCommonInfo::Syntax Syntax, AttributeCompletion Completion = AttributeCompletion::Attribute, const IdentifierInfo *Scope = nullptr); /// Determines the preferred type of the current function argument, by /// examining the signatures of all possible overloads. /// Returns null if unknown or ambiguous, or if code completion is off. /// /// If the code completion point has been reached, also reports the function /// signatures that were considered. /// /// FIXME: rename to GuessCallArgumentType to reduce confusion. QualType ProduceCallSignatureHelp(Expr *Fn, ArrayRef Args, SourceLocation OpenParLoc); QualType ProduceConstructorSignatureHelp(QualType Type, SourceLocation Loc, ArrayRef Args, SourceLocation OpenParLoc, bool Braced); QualType ProduceCtorInitMemberSignatureHelp( Decl *ConstructorDecl, CXXScopeSpec SS, ParsedType TemplateTypeTy, ArrayRef ArgExprs, IdentifierInfo *II, SourceLocation OpenParLoc, bool Braced); QualType ProduceTemplateArgumentSignatureHelp( TemplateTy, ArrayRef, SourceLocation LAngleLoc); void CodeCompleteInitializer(Scope *S, Decl *D); /// Trigger code completion for a record of \p BaseType. \p InitExprs are /// expressions in the initializer list seen so far and \p D is the current /// Designation being parsed. void CodeCompleteDesignator(const QualType BaseType, llvm::ArrayRef InitExprs, const Designation &D); void CodeCompleteAfterIf(Scope *S, bool IsBracedThen); void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext, bool IsUsingDeclaration, QualType BaseType, QualType PreferredType); void CodeCompleteUsing(Scope *S); void CodeCompleteUsingDirective(Scope *S); void CodeCompleteNamespaceDecl(Scope *S); void CodeCompleteNamespaceAliasDecl(Scope *S); void CodeCompleteOperatorName(Scope *S); void CodeCompleteConstructorInitializer( Decl *Constructor, ArrayRef Initializers); void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro, bool AfterAmpersand); void CodeCompleteAfterFunctionEquals(Declarator &D); void CodeCompleteObjCAtDirective(Scope *S); void CodeCompleteObjCAtVisibility(Scope *S); void CodeCompleteObjCAtStatement(Scope *S); void CodeCompleteObjCAtExpression(Scope *S); void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS); void CodeCompleteObjCPropertyGetter(Scope *S); void CodeCompleteObjCPropertySetter(Scope *S); void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS, bool IsParameter); void CodeCompleteObjCMessageReceiver(Scope *S); void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc, ArrayRef SelIdents, bool AtArgumentExpression); void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver, ArrayRef SelIdents, bool AtArgumentExpression, bool IsSuper = false); void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver, ArrayRef SelIdents, bool AtArgumentExpression, ObjCInterfaceDecl *Super = nullptr); void CodeCompleteObjCForCollection(Scope *S, DeclGroupPtrTy IterationVar); void CodeCompleteObjCSelector(Scope *S, ArrayRef SelIdents); void CodeCompleteObjCProtocolReferences( ArrayRef Protocols); void CodeCompleteObjCProtocolDecl(Scope *S); void CodeCompleteObjCInterfaceDecl(Scope *S); void CodeCompleteObjCSuperclass(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCImplementationDecl(Scope *S); void CodeCompleteObjCInterfaceCategory(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCImplementationCategory(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCPropertyDefinition(Scope *S); void CodeCompleteObjCPropertySynthesizeIvar(Scope *S, IdentifierInfo *PropertyName); void CodeCompleteObjCMethodDecl(Scope *S, Optional IsInstanceMethod, ParsedType ReturnType); void CodeCompleteObjCMethodDeclSelector(Scope *S, bool IsInstanceMethod, bool AtParameterName, ParsedType ReturnType, ArrayRef SelIdents); void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName, SourceLocation ClassNameLoc, bool IsBaseExprStatement); void CodeCompletePreprocessorDirective(bool InConditional); void CodeCompleteInPreprocessorConditionalExclusion(Scope *S); void CodeCompletePreprocessorMacroName(bool IsDefinition); void CodeCompletePreprocessorExpression(); void CodeCompletePreprocessorMacroArgument(Scope *S, IdentifierInfo *Macro, MacroInfo *MacroInfo, unsigned Argument); void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled); void CodeCompleteNaturalLanguage(); void CodeCompleteAvailabilityPlatformName(); void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator, CodeCompletionTUInfo &CCTUInfo, SmallVectorImpl &Results); //@} //===--------------------------------------------------------------------===// // Extra semantic analysis beyond the C type system public: SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL, unsigned ByteNo) const; enum FormatArgumentPassingKind { FAPK_Fixed, // values to format are fixed (no C-style variadic arguments) FAPK_Variadic, // values to format are passed as variadic arguments FAPK_VAList, // values to format are passed in a va_list }; // Used to grab the relevant information from a FormatAttr and a // FunctionDeclaration. struct FormatStringInfo { unsigned FormatIdx; unsigned FirstDataArg; FormatArgumentPassingKind ArgPassingKind; }; static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, bool IsVariadic, FormatStringInfo *FSI); private: void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, const ArraySubscriptExpr *ASE = nullptr, bool AllowOnePastEnd = true, bool IndexNegated = false); void CheckArrayAccess(const Expr *E); bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, const FunctionProtoType *Proto); bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc, ArrayRef Args); bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, const FunctionProtoType *Proto); bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto); void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, ArrayRef Args, const FunctionProtoType *Proto, SourceLocation Loc); void checkAIXMemberAlignment(SourceLocation Loc, const Expr *Arg); void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, StringRef ParamName, QualType ArgTy, QualType ParamTy); void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, const Expr *ThisArg, ArrayRef Args, bool IsMemberFunction, SourceLocation Loc, SourceRange Range, VariadicCallType CallType); bool CheckObjCString(Expr *Arg); ExprResult CheckOSLogFormatStringArg(Expr *Arg); ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, CallExpr *TheCall); bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall); void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall); bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, unsigned MaxWidth); bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall); bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall); bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg, bool WantCDE); bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall); bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall); bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall); bool CheckMipsBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall); bool CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall); bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall); bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall); bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall); bool CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall); bool CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, ArrayRef ArgNums); bool CheckX86BuiltinTileDuplicate(CallExpr *TheCall, ArrayRef ArgNums); bool CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, ArrayRef ArgNums); bool CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall); bool CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall); bool CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum); bool CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall); bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall); bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call); bool SemaBuiltinUnorderedCompare(CallExpr *TheCall); bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs); bool SemaBuiltinComplex(CallExpr *TheCall); bool SemaBuiltinVSX(CallExpr *TheCall); bool SemaBuiltinOSLogFormat(CallExpr *TheCall); bool SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum); public: // Used by C++ template instantiation. ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall); ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, SourceLocation BuiltinLoc, SourceLocation RParenLoc); private: bool SemaBuiltinPrefetch(CallExpr *TheCall); bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall); bool SemaBuiltinArithmeticFence(CallExpr *TheCall); bool SemaBuiltinAssume(CallExpr *TheCall); bool SemaBuiltinAssumeAligned(CallExpr *TheCall); bool SemaBuiltinLongjmp(CallExpr *TheCall); bool SemaBuiltinSetjmp(CallExpr *TheCall); ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult); ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult); ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op); ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, bool IsDelete); bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result); bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, int High, bool RangeIsError = true); bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, unsigned Multiple); bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum); bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, unsigned ArgBits); bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum, unsigned ArgBits); bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, int ArgNum, unsigned ExpectedFieldNum, bool AllowName); bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall); bool SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID, const char *TypeDesc); bool CheckPPCMMAType(QualType Type, SourceLocation TypeLoc); bool SemaBuiltinElementwiseMath(CallExpr *TheCall); bool PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall); bool PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall); // Matrix builtin handling. ExprResult SemaBuiltinMatrixTranspose(CallExpr *TheCall, ExprResult CallResult); ExprResult SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, ExprResult CallResult); ExprResult SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, ExprResult CallResult); public: enum FormatStringType { FST_Scanf, FST_Printf, FST_NSString, FST_Strftime, FST_Strfmon, FST_Kprintf, FST_FreeBSDKPrintf, FST_OSTrace, FST_OSLog, FST_Unknown }; static FormatStringType GetFormatStringType(const FormatAttr *Format); bool FormatStringHasSArg(const StringLiteral *FExpr); static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx); private: bool CheckFormatArguments(const FormatAttr *Format, ArrayRef Args, bool IsCXXMember, VariadicCallType CallType, SourceLocation Loc, SourceRange Range, llvm::SmallBitVector &CheckedVarArgs); bool CheckFormatArguments(ArrayRef Args, FormatArgumentPassingKind FAPK, unsigned format_idx, unsigned firstDataArg, FormatStringType Type, VariadicCallType CallType, SourceLocation Loc, SourceRange range, llvm::SmallBitVector &CheckedVarArgs); void CheckAbsoluteValueFunction(const CallExpr *Call, const FunctionDecl *FDecl); void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl); void CheckMemaccessArguments(const CallExpr *Call, unsigned BId, IdentifierInfo *FnName); void CheckStrlcpycatArguments(const CallExpr *Call, IdentifierInfo *FnName); void CheckStrncatArguments(const CallExpr *Call, IdentifierInfo *FnName); void CheckFreeArguments(const CallExpr *E); void CheckReturnValExpr(Expr *RetValExp, QualType lhsType, SourceLocation ReturnLoc, bool isObjCMethod = false, const AttrVec *Attrs = nullptr, const FunctionDecl *FD = nullptr); public: void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS, BinaryOperatorKind Opcode); private: void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation()); void CheckBoolLikeConversion(Expr *E, SourceLocation CC); void CheckForIntOverflow(Expr *E); void CheckUnsequencedOperations(const Expr *E); /// Perform semantic checks on a completed expression. This will either /// be a full-expression or a default argument expression. void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(), bool IsConstexpr = false); void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field, Expr *Init); /// Check if there is a field shadowing. void CheckShadowInheritedFields(const SourceLocation &Loc, DeclarationName FieldName, const CXXRecordDecl *RD, bool DeclIsField = true); /// Check if the given expression contains 'break' or 'continue' /// statement that produces control flow different from GCC. void CheckBreakContinueBinding(Expr *E); /// Check whether receiver is mutable ObjC container which /// attempts to add itself into the container void CheckObjCCircularContainer(ObjCMessageExpr *Message); void CheckTCBEnforcement(const SourceLocation CallExprLoc, const NamedDecl *Callee); void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE); void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, bool DeleteWasArrayForm); public: /// Register a magic integral constant to be used as a type tag. void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, uint64_t MagicValue, QualType Type, bool LayoutCompatible, bool MustBeNull); struct TypeTagData { TypeTagData() {} TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) : Type(Type), LayoutCompatible(LayoutCompatible), MustBeNull(MustBeNull) {} QualType Type; /// If true, \c Type should be compared with other expression's types for /// layout-compatibility. unsigned LayoutCompatible : 1; unsigned MustBeNull : 1; }; /// A pair of ArgumentKind identifier and magic value. This uniquely /// identifies the magic value. typedef std::pair TypeTagMagicValue; private: /// A map from magic value to type information. std::unique_ptr> TypeTagForDatatypeMagicValues; /// Peform checks on a call of a function with argument_with_type_tag /// or pointer_with_type_tag attributes. void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, const ArrayRef ExprArgs, SourceLocation CallSiteLoc); /// Check if we are taking the address of a packed field /// as this may be a problem if the pointer value is dereferenced. void CheckAddressOfPackedMember(Expr *rhs); /// The parser's current scope. /// /// The parser maintains this state here. Scope *CurScope; mutable IdentifierInfo *Ident_super; mutable IdentifierInfo *Ident___float128; /// Nullability type specifiers. IdentifierInfo *Ident__Nonnull = nullptr; IdentifierInfo *Ident__Nullable = nullptr; IdentifierInfo *Ident__Nullable_result = nullptr; IdentifierInfo *Ident__Null_unspecified = nullptr; IdentifierInfo *Ident_NSError = nullptr; /// The handler for the FileChanged preprocessor events. /// /// Used for diagnostics that implement custom semantic analysis for #include /// directives, like -Wpragma-pack. sema::SemaPPCallbacks *SemaPPCallbackHandler; protected: friend class Parser; friend class InitializationSequence; friend class ASTReader; friend class ASTDeclReader; friend class ASTWriter; public: /// Retrieve the keyword associated IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability); /// The struct behind the CFErrorRef pointer. RecordDecl *CFError = nullptr; bool isCFError(RecordDecl *D); /// Retrieve the identifier "NSError". IdentifierInfo *getNSErrorIdent(); /// Retrieve the parser's current scope. /// /// This routine must only be used when it is certain that semantic analysis /// and the parser are in precisely the same context, which is not the case /// when, e.g., we are performing any kind of template instantiation. /// Therefore, the only safe places to use this scope are in the parser /// itself and in routines directly invoked from the parser and *never* from /// template substitution or instantiation. Scope *getCurScope() const { return CurScope; } void incrementMSManglingNumber() const { return CurScope->incrementMSManglingNumber(); } IdentifierInfo *getSuperIdentifier() const; IdentifierInfo *getFloat128Identifier() const; ObjCContainerDecl *getObjCDeclContext() const; DeclContext *getCurLexicalContext() const { return OriginalLexicalContext ? OriginalLexicalContext : CurContext; } const DeclContext *getCurObjCLexicalContext() const { const DeclContext *DC = getCurLexicalContext(); // A category implicitly has the attribute of the interface. if (const ObjCCategoryDecl *CatD = dyn_cast(DC)) DC = CatD->getClassInterface(); return DC; } /// Determine the number of levels of enclosing template parameters. This is /// only usable while parsing. Note that this does not include dependent /// contexts in which no template parameters have yet been declared, such as /// in a terse function template or generic lambda before the first 'auto' is /// encountered. unsigned getTemplateDepth(Scope *S) const; /// To be used for checking whether the arguments being passed to /// function exceeds the number of parameters expected for it. static bool TooManyArguments(size_t NumParams, size_t NumArgs, bool PartialOverloading = false) { // We check whether we're just after a comma in code-completion. if (NumArgs > 0 && PartialOverloading) return NumArgs + 1 > NumParams; // If so, we view as an extra argument. return NumArgs > NumParams; } // Emitting members of dllexported classes is delayed until the class // (including field initializers) is fully parsed. SmallVector DelayedDllExportClasses; SmallVector DelayedDllExportMemberFunctions; private: int ParsingClassDepth = 0; class SavePendingParsedClassStateRAII { public: SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); } ~SavePendingParsedClassStateRAII() { assert(S.DelayedOverridingExceptionSpecChecks.empty() && "there shouldn't be any pending delayed exception spec checks"); assert(S.DelayedEquivalentExceptionSpecChecks.empty() && "there shouldn't be any pending delayed exception spec checks"); swapSavedState(); } private: Sema &S; decltype(DelayedOverridingExceptionSpecChecks) SavedOverridingExceptionSpecChecks; decltype(DelayedEquivalentExceptionSpecChecks) SavedEquivalentExceptionSpecChecks; void swapSavedState() { SavedOverridingExceptionSpecChecks.swap( S.DelayedOverridingExceptionSpecChecks); SavedEquivalentExceptionSpecChecks.swap( S.DelayedEquivalentExceptionSpecChecks); } }; /// Helper class that collects misaligned member designations and /// their location info for delayed diagnostics. struct MisalignedMember { Expr *E; RecordDecl *RD; ValueDecl *MD; CharUnits Alignment; MisalignedMember() : E(), RD(), MD() {} MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD, CharUnits Alignment) : E(E), RD(RD), MD(MD), Alignment(Alignment) {} explicit MisalignedMember(Expr *E) : MisalignedMember(E, nullptr, nullptr, CharUnits()) {} bool operator==(const MisalignedMember &m) { return this->E == m.E; } }; /// Small set of gathered accesses to potentially misaligned members /// due to the packed attribute. SmallVector MisalignedMembers; /// Adds an expression to the set of gathered misaligned members. void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, CharUnits Alignment); public: /// Diagnoses the current set of gathered accesses. This typically /// happens at full expression level. The set is cleared after emitting the /// diagnostics. void DiagnoseMisalignedMembers(); /// This function checks if the expression is in the sef of potentially /// misaligned members and it is converted to some pointer type T with lower /// or equal alignment requirements. If so it removes it. This is used when /// we do not want to diagnose such misaligned access (e.g. in conversions to /// void*). void DiscardMisalignedMemberAddress(const Type *T, Expr *E); /// This function calls Action when it determines that E designates a /// misaligned member due to the packed attribute. This is used to emit /// local diagnostics like in reference binding. void RefersToMemberWithReducedAlignment( Expr *E, llvm::function_ref Action); /// Describes the reason a calling convention specification was ignored, used /// for diagnostics. enum class CallingConventionIgnoredReason { ForThisTarget = 0, VariadicFunction, ConstructorDestructor, BuiltinFunction }; /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current /// context is "used as device code". /// /// - If CurLexicalContext is a kernel function or it is known that the /// function will be emitted for the device, emits the diagnostics /// immediately. /// - If CurLexicalContext is a function and we are compiling /// for the device, but we don't know that this function will be codegen'ed /// for devive yet, creates a diagnostic which is emitted if and when we /// realize that the function will be codegen'ed. /// /// Example usage: /// /// Diagnose __float128 type usage only from SYCL device code if the current /// target doesn't support it /// if (!S.Context.getTargetInfo().hasFloat128Type() && /// S.getLangOpts().SYCLIsDevice) /// SYCLDiagIfDeviceCode(Loc, diag::err_type_unsupported) << "__float128"; SemaDiagnosticBuilder SYCLDiagIfDeviceCode(SourceLocation Loc, unsigned DiagID); /// Check whether we're allowed to call Callee from the current context. /// /// - If the call is never allowed in a semantically-correct program /// emits an error and returns false. /// /// - If the call is allowed in semantically-correct programs, but only if /// it's never codegen'ed, creates a deferred diagnostic to be emitted if /// and when the caller is codegen'ed, and returns true. /// /// - Otherwise, returns true without emitting any diagnostics. /// /// Adds Callee to DeviceCallGraph if we don't know if its caller will be /// codegen'ed yet. bool checkSYCLDeviceFunction(SourceLocation Loc, FunctionDecl *Callee); void deepTypeCheckForSYCLDevice(SourceLocation UsedAt, llvm::DenseSet Visited, ValueDecl *DeclToCheck); }; /// RAII object that enters a new expression evaluation context. class EnterExpressionEvaluationContext { Sema &Actions; bool Entered = true; public: EnterExpressionEvaluationContext( Sema &Actions, Sema::ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr, Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext = Sema::ExpressionEvaluationContextRecord::EK_Other, bool ShouldEnter = true) : Actions(Actions), Entered(ShouldEnter) { if (Entered) Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl, ExprContext); } EnterExpressionEvaluationContext( Sema &Actions, Sema::ExpressionEvaluationContext NewContext, Sema::ReuseLambdaContextDecl_t, Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext = Sema::ExpressionEvaluationContextRecord::EK_Other) : Actions(Actions) { Actions.PushExpressionEvaluationContext( NewContext, Sema::ReuseLambdaContextDecl, ExprContext); } enum InitListTag { InitList }; EnterExpressionEvaluationContext(Sema &Actions, InitListTag, bool ShouldEnter = true) : Actions(Actions), Entered(false) { // In C++11 onwards, narrowing checks are performed on the contents of // braced-init-lists, even when they occur within unevaluated operands. // Therefore we still need to instantiate constexpr functions used in such // a context. if (ShouldEnter && Actions.isUnevaluatedContext() && Actions.getLangOpts().CPlusPlus11) { Actions.PushExpressionEvaluationContext( Sema::ExpressionEvaluationContext::UnevaluatedList); Entered = true; } } ~EnterExpressionEvaluationContext() { if (Entered) Actions.PopExpressionEvaluationContext(); } }; DeductionFailureInfo MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK, sema::TemplateDeductionInfo &Info); /// Contains a late templated function. /// Will be parsed at the end of the translation unit, used by Sema & Parser. struct LateParsedTemplate { CachedTokens Toks; /// The template function declaration to be late parsed. Decl *D; }; template <> void Sema::PragmaStack::Act(SourceLocation PragmaLocation, PragmaMsStackAction Action, llvm::StringRef StackSlotLabel, AlignPackInfo Value); std::unique_ptr CreateRISCVIntrinsicManager(Sema &S); } // end namespace clang namespace llvm { // Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its // SourceLocation. template <> struct DenseMapInfo { using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc; using FDBaseInfo = DenseMapInfo>; static FunctionDeclAndLoc getEmptyKey() { return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()}; } static FunctionDeclAndLoc getTombstoneKey() { return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()}; } static unsigned getHashValue(const FunctionDeclAndLoc &FDL) { return hash_combine(FDBaseInfo::getHashValue(FDL.FD), FDL.Loc.getHashValue()); } static bool isEqual(const FunctionDeclAndLoc &LHS, const FunctionDeclAndLoc &RHS) { return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc; } }; } // namespace llvm #endif diff --git a/contrib/llvm-project/clang/lib/Sema/SemaExpr.cpp b/contrib/llvm-project/clang/lib/Sema/SemaExpr.cpp index 83081bbf0aa0..a8fe9a68c8cb 100644 --- a/contrib/llvm-project/clang/lib/Sema/SemaExpr.cpp +++ b/contrib/llvm-project/clang/lib/Sema/SemaExpr.cpp @@ -1,20815 +1,20825 @@ //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for expressions. // //===----------------------------------------------------------------------===// #include "TreeTransform.h" #include "UsedDeclVisitor.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprOpenMP.h" #include "clang/AST/OperationKinds.h" #include "clang/AST/ParentMapContext.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/DiagnosticSema.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/AnalysisBasedWarnings.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/DelayedDiagnostic.h" #include "clang/Sema/Designator.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Overload.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaFixItUtils.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Template.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/Support/TypeSize.h" using namespace clang; using namespace sema; /// Determine whether the use of this declaration is valid, without /// emitting diagnostics. bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) { // See if this is an auto-typed variable whose initializer we are parsing. if (ParsingInitForAutoVars.count(D)) return false; // See if this is a deleted function. if (FunctionDecl *FD = dyn_cast(D)) { if (FD->isDeleted()) return false; // If the function has a deduced return type, and we can't deduce it, // then we can't use it either. if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false)) return false; // See if this is an aligned allocation/deallocation function that is // unavailable. if (TreatUnavailableAsInvalid && isUnavailableAlignedAllocationFunction(*FD)) return false; } // See if this function is unavailable. if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable && cast(CurContext)->getAvailability() != AR_Unavailable) return false; if (isa(D)) return false; return true; } static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) { // Warn if this is used but marked unused. if (const auto *A = D->getAttr()) { // [[maybe_unused]] should not diagnose uses, but __attribute__((unused)) // should diagnose them. if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused && A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) { const Decl *DC = cast_or_null(S.getCurObjCLexicalContext()); if (DC && !DC->hasAttr()) S.Diag(Loc, diag::warn_used_but_marked_unused) << D; } } } /// Emit a note explaining that this function is deleted. void Sema::NoteDeletedFunction(FunctionDecl *Decl) { assert(Decl && Decl->isDeleted()); if (Decl->isDefaulted()) { // If the method was explicitly defaulted, point at that declaration. if (!Decl->isImplicit()) Diag(Decl->getLocation(), diag::note_implicitly_deleted); // Try to diagnose why this special member function was implicitly // deleted. This might fail, if that reason no longer applies. DiagnoseDeletedDefaultedFunction(Decl); return; } auto *Ctor = dyn_cast(Decl); if (Ctor && Ctor->isInheritingConstructor()) return NoteDeletedInheritingConstructor(Ctor); Diag(Decl->getLocation(), diag::note_availability_specified_here) << Decl << 1; } /// Determine whether a FunctionDecl was ever declared with an /// explicit storage class. static bool hasAnyExplicitStorageClass(const FunctionDecl *D) { for (auto I : D->redecls()) { if (I->getStorageClass() != SC_None) return true; } return false; } /// Check whether we're in an extern inline function and referring to a /// variable or function with internal linkage (C11 6.7.4p3). /// /// This is only a warning because we used to silently accept this code, but /// in many cases it will not behave correctly. This is not enabled in C++ mode /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6) /// and so while there may still be user mistakes, most of the time we can't /// prove that there are errors. static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S, const NamedDecl *D, SourceLocation Loc) { // This is disabled under C++; there are too many ways for this to fire in // contexts where the warning is a false positive, or where it is technically // correct but benign. if (S.getLangOpts().CPlusPlus) return; // Check if this is an inlined function or method. FunctionDecl *Current = S.getCurFunctionDecl(); if (!Current) return; if (!Current->isInlined()) return; if (!Current->isExternallyVisible()) return; // Check if the decl has internal linkage. if (D->getFormalLinkage() != InternalLinkage) return; // Downgrade from ExtWarn to Extension if // (1) the supposedly external inline function is in the main file, // and probably won't be included anywhere else. // (2) the thing we're referencing is a pure function. // (3) the thing we're referencing is another inline function. // This last can give us false negatives, but it's better than warning on // wrappers for simple C library functions. const FunctionDecl *UsedFn = dyn_cast(D); bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc); if (!DowngradeWarning && UsedFn) DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr(); S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet : diag::ext_internal_in_extern_inline) << /*IsVar=*/!UsedFn << D; S.MaybeSuggestAddingStaticToDecl(Current); S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at) << D; } void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) { const FunctionDecl *First = Cur->getFirstDecl(); // Suggest "static" on the function, if possible. if (!hasAnyExplicitStorageClass(First)) { SourceLocation DeclBegin = First->getSourceRange().getBegin(); Diag(DeclBegin, diag::note_convert_inline_to_static) << Cur << FixItHint::CreateInsertion(DeclBegin, "static "); } } /// Determine whether the use of this declaration is valid, and /// emit any corresponding diagnostics. /// /// This routine diagnoses various problems with referencing /// declarations that can occur when using a declaration. For example, /// it might warn if a deprecated or unavailable declaration is being /// used, or produce an error (and return true) if a C++0x deleted /// function is being used. /// /// \returns true if there was an error (this declaration cannot be /// referenced), false otherwise. /// bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef Locs, const ObjCInterfaceDecl *UnknownObjCClass, bool ObjCPropertyAccess, bool AvoidPartialAvailabilityChecks, ObjCInterfaceDecl *ClassReceiver) { SourceLocation Loc = Locs.front(); if (getLangOpts().CPlusPlus && isa(D)) { // If there were any diagnostics suppressed by template argument deduction, // emit them now. auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); if (Pos != SuppressedDiagnostics.end()) { for (const PartialDiagnosticAt &Suppressed : Pos->second) Diag(Suppressed.first, Suppressed.second); // Clear out the list of suppressed diagnostics, so that we don't emit // them again for this specialization. However, we don't obsolete this // entry from the table, because we want to avoid ever emitting these // diagnostics again. Pos->second.clear(); } // C++ [basic.start.main]p3: // The function 'main' shall not be used within a program. if (cast(D)->isMain()) Diag(Loc, diag::ext_main_used); diagnoseUnavailableAlignedAllocation(*cast(D), Loc); } // See if this is an auto-typed variable whose initializer we are parsing. if (ParsingInitForAutoVars.count(D)) { if (isa(D)) { Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer) << D->getDeclName(); } else { Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) << D->getDeclName() << cast(D)->getType(); } return true; } if (FunctionDecl *FD = dyn_cast(D)) { // See if this is a deleted function. if (FD->isDeleted()) { auto *Ctor = dyn_cast(FD); if (Ctor && Ctor->isInheritingConstructor()) Diag(Loc, diag::err_deleted_inherited_ctor_use) << Ctor->getParent() << Ctor->getInheritedConstructor().getConstructor()->getParent(); else Diag(Loc, diag::err_deleted_function_use); NoteDeletedFunction(FD); return true; } // [expr.prim.id]p4 // A program that refers explicitly or implicitly to a function with a // trailing requires-clause whose constraint-expression is not satisfied, // other than to declare it, is ill-formed. [...] // // See if this is a function with constraints that need to be satisfied. // Check this before deducing the return type, as it might instantiate the // definition. if (FD->getTrailingRequiresClause()) { ConstraintSatisfaction Satisfaction; if (CheckFunctionConstraints(FD, Satisfaction, Loc)) // A diagnostic will have already been generated (non-constant // constraint expression, for example) return true; if (!Satisfaction.IsSatisfied) { Diag(Loc, diag::err_reference_to_function_with_unsatisfied_constraints) << D; DiagnoseUnsatisfiedConstraint(Satisfaction); return true; } } // If the function has a deduced return type, and we can't deduce it, // then we can't use it either. if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && DeduceReturnType(FD, Loc)) return true; if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD)) return true; if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD)) return true; } if (auto *MD = dyn_cast(D)) { // Lambdas are only default-constructible or assignable in C++2a onwards. if (MD->getParent()->isLambda() && ((isa(MD) && cast(MD)->isDefaultConstructor()) || MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) { Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign) << !isa(MD); } } auto getReferencedObjCProp = [](const NamedDecl *D) -> const ObjCPropertyDecl * { if (const auto *MD = dyn_cast(D)) return MD->findPropertyDecl(); return nullptr; }; if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) { if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc)) return true; } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) { return true; } // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions // Only the variables omp_in and omp_out are allowed in the combiner. // Only the variables omp_priv and omp_orig are allowed in the // initializer-clause. auto *DRD = dyn_cast(CurContext); if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) && isa(D)) { Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction) << getCurFunction()->HasOMPDeclareReductionCombiner; Diag(D->getLocation(), diag::note_entity_declared_at) << D; return true; } // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions // List-items in map clauses on this construct may only refer to the declared // variable var and entities that could be referenced by a procedure defined // at the same location if (LangOpts.OpenMP && isa(D) && !isOpenMPDeclareMapperVarDeclAllowed(cast(D))) { Diag(Loc, diag::err_omp_declare_mapper_wrong_var) << getOpenMPDeclareMapperVarName(); Diag(D->getLocation(), diag::note_entity_declared_at) << D; return true; } if (const auto *EmptyD = dyn_cast(D)) { Diag(Loc, diag::err_use_of_empty_using_if_exists); Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here); return true; } DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess, AvoidPartialAvailabilityChecks, ClassReceiver); DiagnoseUnusedOfDecl(*this, D, Loc); diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc); if (auto *VD = dyn_cast(D)) checkTypeSupport(VD->getType(), Loc, VD); if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) { if (!Context.getTargetInfo().isTLSSupported()) if (const auto *VD = dyn_cast(D)) if (VD->getTLSKind() != VarDecl::TLS_None) targetDiag(*Locs.begin(), diag::err_thread_unsupported); } if (isa(D) && isa(D->getDeclContext()) && !isUnevaluatedContext()) { // C++ [expr.prim.req.nested] p3 // A local parameter shall only appear as an unevaluated operand // (Clause 8) within the constraint-expression. Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context) << D; Diag(D->getLocation(), diag::note_entity_declared_at) << D; return true; } return false; } /// DiagnoseSentinelCalls - This routine checks whether a call or /// message-send is to a declaration with the sentinel attribute, and /// if so, it checks that the requirements of the sentinel are /// satisfied. void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, ArrayRef Args) { const SentinelAttr *attr = D->getAttr(); if (!attr) return; // The number of formal parameters of the declaration. unsigned numFormalParams; // The kind of declaration. This is also an index into a %select in // the diagnostic. enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType; if (ObjCMethodDecl *MD = dyn_cast(D)) { numFormalParams = MD->param_size(); calleeType = CT_Method; } else if (FunctionDecl *FD = dyn_cast(D)) { numFormalParams = FD->param_size(); calleeType = CT_Function; } else if (isa(D)) { QualType type = cast(D)->getType(); const FunctionType *fn = nullptr; if (const PointerType *ptr = type->getAs()) { fn = ptr->getPointeeType()->getAs(); if (!fn) return; calleeType = CT_Function; } else if (const BlockPointerType *ptr = type->getAs()) { fn = ptr->getPointeeType()->castAs(); calleeType = CT_Block; } else { return; } if (const FunctionProtoType *proto = dyn_cast(fn)) { numFormalParams = proto->getNumParams(); } else { numFormalParams = 0; } } else { return; } // "nullPos" is the number of formal parameters at the end which // effectively count as part of the variadic arguments. This is // useful if you would prefer to not have *any* formal parameters, // but the language forces you to have at least one. unsigned nullPos = attr->getNullPos(); assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel"); numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos); // The number of arguments which should follow the sentinel. unsigned numArgsAfterSentinel = attr->getSentinel(); // If there aren't enough arguments for all the formal parameters, // the sentinel, and the args after the sentinel, complain. if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) { Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); return; } // Otherwise, find the sentinel expression. Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1]; if (!sentinelExpr) return; if (sentinelExpr->isValueDependent()) return; if (Context.isSentinelNullExpr(sentinelExpr)) return; // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr', // or 'NULL' if those are actually defined in the context. Only use // 'nil' for ObjC methods, where it's much more likely that the // variadic arguments form a list of object pointers. SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc()); std::string NullValue; if (calleeType == CT_Method && PP.isMacroDefined("nil")) NullValue = "nil"; else if (getLangOpts().CPlusPlus11) NullValue = "nullptr"; else if (PP.isMacroDefined("NULL")) NullValue = "NULL"; else NullValue = "(void*) 0"; if (MissingNilLoc.isInvalid()) Diag(Loc, diag::warn_missing_sentinel) << int(calleeType); else Diag(MissingNilLoc, diag::warn_missing_sentinel) << int(calleeType) << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue); Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); } SourceRange Sema::getExprRange(Expr *E) const { return E ? E->getSourceRange() : SourceRange(); } //===----------------------------------------------------------------------===// // Standard Promotions and Conversions //===----------------------------------------------------------------------===// /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) { // Handle any placeholder expressions which made it here. if (E->hasPlaceholderType()) { ExprResult result = CheckPlaceholderExpr(E); if (result.isInvalid()) return ExprError(); E = result.get(); } QualType Ty = E->getType(); assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); if (Ty->isFunctionType()) { if (auto *DRE = dyn_cast(E->IgnoreParenCasts())) if (auto *FD = dyn_cast(DRE->getDecl())) if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc())) return ExprError(); E = ImpCastExprToType(E, Context.getPointerType(Ty), CK_FunctionToPointerDecay).get(); } else if (Ty->isArrayType()) { // In C90 mode, arrays only promote to pointers if the array expression is // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has // type 'array of type' is converted to an expression that has type 'pointer // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression // that has type 'array of type' ...". The relevant change is "an lvalue" // (C90) to "an expression" (C99). // // C++ 4.2p1: // An lvalue or rvalue of type "array of N T" or "array of unknown bound of // T" can be converted to an rvalue of type "pointer to T". // if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) { ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), CK_ArrayToPointerDecay); if (Res.isInvalid()) return ExprError(); E = Res.get(); } } return E; } static void CheckForNullPointerDereference(Sema &S, Expr *E) { // Check to see if we are dereferencing a null pointer. If so, // and if not volatile-qualified, this is undefined behavior that the // optimizer will delete, so warn about it. People sometimes try to use this // to get a deterministic trap and are surprised by clang's behavior. This // only handles the pattern "*null", which is a very syntactic check. const auto *UO = dyn_cast(E->IgnoreParenCasts()); if (UO && UO->getOpcode() == UO_Deref && UO->getSubExpr()->getType()->isPointerType()) { const LangAS AS = UO->getSubExpr()->getType()->getPointeeType().getAddressSpace(); if ((!isTargetAddressSpace(AS) || (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) && UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant( S.Context, Expr::NPC_ValueDependentIsNotNull) && !UO->getType().isVolatileQualified()) { S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, S.PDiag(diag::warn_indirection_through_null) << UO->getSubExpr()->getSourceRange()); S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, S.PDiag(diag::note_indirection_through_null)); } } } static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE, SourceLocation AssignLoc, const Expr* RHS) { const ObjCIvarDecl *IV = OIRE->getDecl(); if (!IV) return; DeclarationName MemberName = IV->getDeclName(); IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); if (!Member || !Member->isStr("isa")) return; const Expr *Base = OIRE->getBase(); QualType BaseType = Base->getType(); if (OIRE->isArrow()) BaseType = BaseType->getPointeeType(); if (const ObjCObjectType *OTy = BaseType->getAs()) if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) { ObjCInterfaceDecl *ClassDeclared = nullptr; ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); if (!ClassDeclared->getSuperClass() && (*ClassDeclared->ivar_begin()) == IV) { if (RHS) { NamedDecl *ObjectSetClass = S.LookupSingleName(S.TUScope, &S.Context.Idents.get("object_setClass"), SourceLocation(), S.LookupOrdinaryName); if (ObjectSetClass) { SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc()); S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) << FixItHint::CreateInsertion(OIRE->getBeginLoc(), "object_setClass(") << FixItHint::CreateReplacement( SourceRange(OIRE->getOpLoc(), AssignLoc), ",") << FixItHint::CreateInsertion(RHSLocEnd, ")"); } else S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign); } else { NamedDecl *ObjectGetClass = S.LookupSingleName(S.TUScope, &S.Context.Idents.get("object_getClass"), SourceLocation(), S.LookupOrdinaryName); if (ObjectGetClass) S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) << FixItHint::CreateInsertion(OIRE->getBeginLoc(), "object_getClass(") << FixItHint::CreateReplacement( SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")"); else S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use); } S.Diag(IV->getLocation(), diag::note_ivar_decl); } } } ExprResult Sema::DefaultLvalueConversion(Expr *E) { // Handle any placeholder expressions which made it here. if (E->hasPlaceholderType()) { ExprResult result = CheckPlaceholderExpr(E); if (result.isInvalid()) return ExprError(); E = result.get(); } // C++ [conv.lval]p1: // A glvalue of a non-function, non-array type T can be // converted to a prvalue. if (!E->isGLValue()) return E; QualType T = E->getType(); assert(!T.isNull() && "r-value conversion on typeless expression?"); // lvalue-to-rvalue conversion cannot be applied to function or array types. if (T->isFunctionType() || T->isArrayType()) return E; // We don't want to throw lvalue-to-rvalue casts on top of // expressions of certain types in C++. if (getLangOpts().CPlusPlus && (E->getType() == Context.OverloadTy || T->isDependentType() || T->isRecordType())) return E; // The C standard is actually really unclear on this point, and // DR106 tells us what the result should be but not why. It's // generally best to say that void types just doesn't undergo // lvalue-to-rvalue at all. Note that expressions of unqualified // 'void' type are never l-values, but qualified void can be. if (T->isVoidType()) return E; // OpenCL usually rejects direct accesses to values of 'half' type. if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && T->isHalfType()) { Diag(E->getExprLoc(), diag::err_opencl_half_load_store) << 0 << T; return ExprError(); } CheckForNullPointerDereference(*this, E); if (const ObjCIsaExpr *OISA = dyn_cast(E->IgnoreParenCasts())) { NamedDecl *ObjectGetClass = LookupSingleName(TUScope, &Context.Idents.get("object_getClass"), SourceLocation(), LookupOrdinaryName); if (ObjectGetClass) Diag(E->getExprLoc(), diag::warn_objc_isa_use) << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(") << FixItHint::CreateReplacement( SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")"); else Diag(E->getExprLoc(), diag::warn_objc_isa_use); } else if (const ObjCIvarRefExpr *OIRE = dyn_cast(E->IgnoreParenCasts())) DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr); // C++ [conv.lval]p1: // [...] If T is a non-class type, the type of the prvalue is the // cv-unqualified version of T. Otherwise, the type of the // rvalue is T. // // C99 6.3.2.1p2: // If the lvalue has qualified type, the value has the unqualified // version of the type of the lvalue; otherwise, the value has the // type of the lvalue. if (T.hasQualifiers()) T = T.getUnqualifiedType(); // Under the MS ABI, lock down the inheritance model now. if (T->isMemberPointerType() && Context.getTargetInfo().getCXXABI().isMicrosoft()) (void)isCompleteType(E->getExprLoc(), T); ExprResult Res = CheckLValueToRValueConversionOperand(E); if (Res.isInvalid()) return Res; E = Res.get(); // Loading a __weak object implicitly retains the value, so we need a cleanup to // balance that. if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak) Cleanup.setExprNeedsCleanups(true); if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) Cleanup.setExprNeedsCleanups(true); // C++ [conv.lval]p3: // If T is cv std::nullptr_t, the result is a null pointer constant. CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue; Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue, CurFPFeatureOverrides()); // C11 6.3.2.1p2: // ... if the lvalue has atomic type, the value has the non-atomic version // of the type of the lvalue ... if (const AtomicType *Atomic = T->getAs()) { T = Atomic->getValueType().getUnqualifiedType(); Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(), nullptr, VK_PRValue, FPOptionsOverride()); } return Res; } ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) { ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose); if (Res.isInvalid()) return ExprError(); Res = DefaultLvalueConversion(Res.get()); if (Res.isInvalid()) return ExprError(); return Res; } /// CallExprUnaryConversions - a special case of an unary conversion /// performed on a function designator of a call expression. ExprResult Sema::CallExprUnaryConversions(Expr *E) { QualType Ty = E->getType(); ExprResult Res = E; // Only do implicit cast for a function type, but not for a pointer // to function type. if (Ty->isFunctionType()) { Res = ImpCastExprToType(E, Context.getPointerType(Ty), CK_FunctionToPointerDecay); if (Res.isInvalid()) return ExprError(); } Res = DefaultLvalueConversion(Res.get()); if (Res.isInvalid()) return ExprError(); return Res.get(); } /// UsualUnaryConversions - Performs various conversions that are common to most /// operators (C99 6.3). The conversions of array and function types are /// sometimes suppressed. For example, the array->pointer conversion doesn't /// apply if the array is an argument to the sizeof or address (&) operators. /// In these instances, this routine should *not* be called. ExprResult Sema::UsualUnaryConversions(Expr *E) { // First, convert to an r-value. ExprResult Res = DefaultFunctionArrayLvalueConversion(E); if (Res.isInvalid()) return ExprError(); E = Res.get(); QualType Ty = E->getType(); assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod(); if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() && (getLangOpts().getFPEvalMethod() != LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine || PP.getLastFPEvalPragmaLocation().isValid())) { switch (EvalMethod) { default: llvm_unreachable("Unrecognized float evaluation method"); break; case LangOptions::FEM_UnsetOnCommandLine: llvm_unreachable("Float evaluation method should be set by now"); break; case LangOptions::FEM_Double: if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0) // Widen the expression to double. return Ty->isComplexType() ? ImpCastExprToType(E, Context.getComplexType(Context.DoubleTy), CK_FloatingComplexCast) : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast); break; case LangOptions::FEM_Extended: if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0) // Widen the expression to long double. return Ty->isComplexType() ? ImpCastExprToType( E, Context.getComplexType(Context.LongDoubleTy), CK_FloatingComplexCast) : ImpCastExprToType(E, Context.LongDoubleTy, CK_FloatingCast); break; } } // Half FP have to be promoted to float unless it is natively supported if (Ty->isHalfType() && !getLangOpts().NativeHalfType) return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast); // Try to perform integral promotions if the object has a theoretically // promotable type. if (Ty->isIntegralOrUnscopedEnumerationType()) { // C99 6.3.1.1p2: // // The following may be used in an expression wherever an int or // unsigned int may be used: // - an object or expression with an integer type whose integer // conversion rank is less than or equal to the rank of int // and unsigned int. // - A bit-field of type _Bool, int, signed int, or unsigned int. // // If an int can represent all values of the original type, the // value is converted to an int; otherwise, it is converted to an // unsigned int. These are called the integer promotions. All // other types are unchanged by the integer promotions. QualType PTy = Context.isPromotableBitField(E); if (!PTy.isNull()) { E = ImpCastExprToType(E, PTy, CK_IntegralCast).get(); return E; } if (Ty->isPromotableIntegerType()) { QualType PT = Context.getPromotedIntegerType(Ty); E = ImpCastExprToType(E, PT, CK_IntegralCast).get(); return E; } } return E; } /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that /// do not have a prototype. Arguments that have type float or __fp16 /// are promoted to double. All other argument types are converted by /// UsualUnaryConversions(). ExprResult Sema::DefaultArgumentPromotion(Expr *E) { QualType Ty = E->getType(); assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); ExprResult Res = UsualUnaryConversions(E); if (Res.isInvalid()) return ExprError(); E = Res.get(); // If this is a 'float' or '__fp16' (CVR qualified or typedef) // promote to double. // Note that default argument promotion applies only to float (and // half/fp16); it does not apply to _Float16. const BuiltinType *BTy = Ty->getAs(); if (BTy && (BTy->getKind() == BuiltinType::Half || BTy->getKind() == BuiltinType::Float)) { if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) { if (BTy->getKind() == BuiltinType::Half) { E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get(); } } else { E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get(); } } if (BTy && getLangOpts().getExtendIntArgs() == LangOptions::ExtendArgsKind::ExtendTo64 && Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() && Context.getTypeSizeInChars(BTy) < Context.getTypeSizeInChars(Context.LongLongTy)) { E = (Ty->isUnsignedIntegerType()) ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast) .get() : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get(); assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy"); } // C++ performs lvalue-to-rvalue conversion as a default argument // promotion, even on class types, but note: // C++11 [conv.lval]p2: // When an lvalue-to-rvalue conversion occurs in an unevaluated // operand or a subexpression thereof the value contained in the // referenced object is not accessed. Otherwise, if the glvalue // has a class type, the conversion copy-initializes a temporary // of type T from the glvalue and the result of the conversion // is a prvalue for the temporary. // FIXME: add some way to gate this entire thing for correctness in // potentially potentially evaluated contexts. if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) { ExprResult Temp = PerformCopyInitialization( InitializedEntity::InitializeTemporary(E->getType()), E->getExprLoc(), E); if (Temp.isInvalid()) return ExprError(); E = Temp.get(); } return E; } /// Determine the degree of POD-ness for an expression. /// Incomplete types are considered POD, since this check can be performed /// when we're in an unevaluated context. Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) { if (Ty->isIncompleteType()) { // C++11 [expr.call]p7: // After these conversions, if the argument does not have arithmetic, // enumeration, pointer, pointer to member, or class type, the program // is ill-formed. // // Since we've already performed array-to-pointer and function-to-pointer // decay, the only such type in C++ is cv void. This also handles // initializer lists as variadic arguments. if (Ty->isVoidType()) return VAK_Invalid; if (Ty->isObjCObjectType()) return VAK_Invalid; return VAK_Valid; } if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) return VAK_Invalid; if (Ty.isCXX98PODType(Context)) return VAK_Valid; // C++11 [expr.call]p7: // Passing a potentially-evaluated argument of class type (Clause 9) // having a non-trivial copy constructor, a non-trivial move constructor, // or a non-trivial destructor, with no corresponding parameter, // is conditionally-supported with implementation-defined semantics. if (getLangOpts().CPlusPlus11 && !Ty->isDependentType()) if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl()) if (!Record->hasNonTrivialCopyConstructor() && !Record->hasNonTrivialMoveConstructor() && !Record->hasNonTrivialDestructor()) return VAK_ValidInCXX11; if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType()) return VAK_Valid; if (Ty->isObjCObjectType()) return VAK_Invalid; if (getLangOpts().MSVCCompat) return VAK_MSVCUndefined; // FIXME: In C++11, these cases are conditionally-supported, meaning we're // permitted to reject them. We should consider doing so. return VAK_Undefined; } void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) { // Don't allow one to pass an Objective-C interface to a vararg. const QualType &Ty = E->getType(); VarArgKind VAK = isValidVarArgType(Ty); // Complain about passing non-POD types through varargs. switch (VAK) { case VAK_ValidInCXX11: DiagRuntimeBehavior( E->getBeginLoc(), nullptr, PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT); LLVM_FALLTHROUGH; case VAK_Valid: if (Ty->isRecordType()) { // This is unlikely to be what the user intended. If the class has a // 'c_str' member function, the user probably meant to call that. DiagRuntimeBehavior(E->getBeginLoc(), nullptr, PDiag(diag::warn_pass_class_arg_to_vararg) << Ty << CT << hasCStrMethod(E) << ".c_str()"); } break; case VAK_Undefined: case VAK_MSVCUndefined: DiagRuntimeBehavior(E->getBeginLoc(), nullptr, PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) << getLangOpts().CPlusPlus11 << Ty << CT); break; case VAK_Invalid: if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) Diag(E->getBeginLoc(), diag::err_cannot_pass_non_trivial_c_struct_to_vararg) << Ty << CT; else if (Ty->isObjCObjectType()) DiagRuntimeBehavior(E->getBeginLoc(), nullptr, PDiag(diag::err_cannot_pass_objc_interface_to_vararg) << Ty << CT); else Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg) << isa(E) << Ty << CT; break; } } /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but /// will create a trap if the resulting type is not a POD type. ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, FunctionDecl *FDecl) { if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) { // Strip the unbridged-cast placeholder expression off, if applicable. if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast && (CT == VariadicMethod || (FDecl && FDecl->hasAttr()))) { E = stripARCUnbridgedCast(E); // Otherwise, do normal placeholder checking. } else { ExprResult ExprRes = CheckPlaceholderExpr(E); if (ExprRes.isInvalid()) return ExprError(); E = ExprRes.get(); } } ExprResult ExprRes = DefaultArgumentPromotion(E); if (ExprRes.isInvalid()) return ExprError(); // Copy blocks to the heap. if (ExprRes.get()->getType()->isBlockPointerType()) maybeExtendBlockObject(ExprRes); E = ExprRes.get(); // Diagnostics regarding non-POD argument types are // emitted along with format string checking in Sema::CheckFunctionCall(). if (isValidVarArgType(E->getType()) == VAK_Undefined) { // Turn this into a trap. CXXScopeSpec SS; SourceLocation TemplateKWLoc; UnqualifiedId Name; Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), E->getBeginLoc()); ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name, /*HasTrailingLParen=*/true, /*IsAddressOfOperand=*/false); if (TrapFn.isInvalid()) return ExprError(); ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(), None, E->getEndLoc()); if (Call.isInvalid()) return ExprError(); ExprResult Comma = ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E); if (Comma.isInvalid()) return ExprError(); return Comma.get(); } if (!getLangOpts().CPlusPlus && RequireCompleteType(E->getExprLoc(), E->getType(), diag::err_call_incomplete_argument)) return ExprError(); return E; } /// Converts an integer to complex float type. Helper function of /// UsualArithmeticConversions() /// /// \return false if the integer expression is an integer type and is /// successfully converted to the complex type. static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr, ExprResult &ComplexExpr, QualType IntTy, QualType ComplexTy, bool SkipCast) { if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true; if (SkipCast) return false; if (IntTy->isIntegerType()) { QualType fpTy = cast(ComplexTy)->getElementType(); IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating); IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, CK_FloatingRealToComplex); } else { assert(IntTy->isComplexIntegerType()); IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, CK_IntegralComplexToFloatingComplex); } return false; } /// Handle arithmetic conversion with complex types. Helper function of /// UsualArithmeticConversions() static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS, ExprResult &RHS, QualType LHSType, QualType RHSType, bool IsCompAssign) { // if we have an integer operand, the result is the complex type. if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType, /*skipCast*/false)) return LHSType; if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType, /*skipCast*/IsCompAssign)) return RHSType; // This handles complex/complex, complex/float, or float/complex. // When both operands are complex, the shorter operand is converted to the // type of the longer, and that is the type of the result. This corresponds // to what is done when combining two real floating-point operands. // The fun begins when size promotion occur across type domains. // From H&S 6.3.4: When one operand is complex and the other is a real // floating-point type, the less precise type is converted, within it's // real or complex domain, to the precision of the other type. For example, // when combining a "long double" with a "double _Complex", the // "double _Complex" is promoted to "long double _Complex". // Compute the rank of the two types, regardless of whether they are complex. int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType); auto *LHSComplexType = dyn_cast(LHSType); auto *RHSComplexType = dyn_cast(RHSType); QualType LHSElementType = LHSComplexType ? LHSComplexType->getElementType() : LHSType; QualType RHSElementType = RHSComplexType ? RHSComplexType->getElementType() : RHSType; QualType ResultType = S.Context.getComplexType(LHSElementType); if (Order < 0) { // Promote the precision of the LHS if not an assignment. ResultType = S.Context.getComplexType(RHSElementType); if (!IsCompAssign) { if (LHSComplexType) LHS = S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast); else LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast); } } else if (Order > 0) { // Promote the precision of the RHS. if (RHSComplexType) RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast); else RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast); } return ResultType; } /// Handle arithmetic conversion from integer to float. Helper function /// of UsualArithmeticConversions() static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr, ExprResult &IntExpr, QualType FloatTy, QualType IntTy, bool ConvertFloat, bool ConvertInt) { if (IntTy->isIntegerType()) { if (ConvertInt) // Convert intExpr to the lhs floating point type. IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy, CK_IntegralToFloating); return FloatTy; } // Convert both sides to the appropriate complex float. assert(IntTy->isComplexIntegerType()); QualType result = S.Context.getComplexType(FloatTy); // _Complex int -> _Complex float if (ConvertInt) IntExpr = S.ImpCastExprToType(IntExpr.get(), result, CK_IntegralComplexToFloatingComplex); // float -> _Complex float if (ConvertFloat) FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result, CK_FloatingRealToComplex); return result; } /// Handle arithmethic conversion with floating point types. Helper /// function of UsualArithmeticConversions() static QualType handleFloatConversion(Sema &S, ExprResult &LHS, ExprResult &RHS, QualType LHSType, QualType RHSType, bool IsCompAssign) { bool LHSFloat = LHSType->isRealFloatingType(); bool RHSFloat = RHSType->isRealFloatingType(); // N1169 4.1.4: If one of the operands has a floating type and the other // operand has a fixed-point type, the fixed-point operand // is converted to the floating type [...] if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) { if (LHSFloat) RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating); else if (!IsCompAssign) LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating); return LHSFloat ? LHSType : RHSType; } // If we have two real floating types, convert the smaller operand // to the bigger result. if (LHSFloat && RHSFloat) { int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); if (order > 0) { RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast); return LHSType; } assert(order < 0 && "illegal float comparison"); if (!IsCompAssign) LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast); return RHSType; } if (LHSFloat) { // Half FP has to be promoted to float unless it is natively supported if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType) LHSType = S.Context.FloatTy; return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType, /*ConvertFloat=*/!IsCompAssign, /*ConvertInt=*/ true); } assert(RHSFloat); return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType, /*ConvertFloat=*/ true, /*ConvertInt=*/!IsCompAssign); } /// Diagnose attempts to convert between __float128, __ibm128 and /// long double if there is no support for such conversion. /// Helper function of UsualArithmeticConversions(). static bool unsupportedTypeConversion(const Sema &S, QualType LHSType, QualType RHSType) { // No issue if either is not a floating point type. if (!LHSType->isFloatingType() || !RHSType->isFloatingType()) return false; // No issue if both have the same 128-bit float semantics. auto *LHSComplex = LHSType->getAs(); auto *RHSComplex = RHSType->getAs(); QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType; QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType; const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem); const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem); if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() || &RHSSem != &llvm::APFloat::IEEEquad()) && (&LHSSem != &llvm::APFloat::IEEEquad() || &RHSSem != &llvm::APFloat::PPCDoubleDouble())) return false; return true; } typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType); namespace { /// These helper callbacks are placed in an anonymous namespace to /// permit their use as function template parameters. ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) { return S.ImpCastExprToType(op, toType, CK_IntegralCast); } ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) { return S.ImpCastExprToType(op, S.Context.getComplexType(toType), CK_IntegralComplexCast); } } /// Handle integer arithmetic conversions. Helper function of /// UsualArithmeticConversions() template static QualType handleIntegerConversion(Sema &S, ExprResult &LHS, ExprResult &RHS, QualType LHSType, QualType RHSType, bool IsCompAssign) { // The rules for this case are in C99 6.3.1.8 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType); bool LHSSigned = LHSType->hasSignedIntegerRepresentation(); bool RHSSigned = RHSType->hasSignedIntegerRepresentation(); if (LHSSigned == RHSSigned) { // Same signedness; use the higher-ranked type if (order >= 0) { RHS = (*doRHSCast)(S, RHS.get(), LHSType); return LHSType; } else if (!IsCompAssign) LHS = (*doLHSCast)(S, LHS.get(), RHSType); return RHSType; } else if (order != (LHSSigned ? 1 : -1)) { // The unsigned type has greater than or equal rank to the // signed type, so use the unsigned type if (RHSSigned) { RHS = (*doRHSCast)(S, RHS.get(), LHSType); return LHSType; } else if (!IsCompAssign) LHS = (*doLHSCast)(S, LHS.get(), RHSType); return RHSType; } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) { // The two types are different widths; if we are here, that // means the signed type is larger than the unsigned type, so // use the signed type. if (LHSSigned) { RHS = (*doRHSCast)(S, RHS.get(), LHSType); return LHSType; } else if (!IsCompAssign) LHS = (*doLHSCast)(S, LHS.get(), RHSType); return RHSType; } else { // The signed type is higher-ranked than the unsigned type, // but isn't actually any bigger (like unsigned int and long // on most 32-bit systems). Use the unsigned type corresponding // to the signed type. QualType result = S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType); RHS = (*doRHSCast)(S, RHS.get(), result); if (!IsCompAssign) LHS = (*doLHSCast)(S, LHS.get(), result); return result; } } /// Handle conversions with GCC complex int extension. Helper function /// of UsualArithmeticConversions() static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS, ExprResult &RHS, QualType LHSType, QualType RHSType, bool IsCompAssign) { const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType(); const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType(); if (LHSComplexInt && RHSComplexInt) { QualType LHSEltType = LHSComplexInt->getElementType(); QualType RHSEltType = RHSComplexInt->getElementType(); QualType ScalarType = handleIntegerConversion (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign); return S.Context.getComplexType(ScalarType); } if (LHSComplexInt) { QualType LHSEltType = LHSComplexInt->getElementType(); QualType ScalarType = handleIntegerConversion (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign); QualType ComplexType = S.Context.getComplexType(ScalarType); RHS = S.ImpCastExprToType(RHS.get(), ComplexType, CK_IntegralRealToComplex); return ComplexType; } assert(RHSComplexInt); QualType RHSEltType = RHSComplexInt->getElementType(); QualType ScalarType = handleIntegerConversion (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign); QualType ComplexType = S.Context.getComplexType(ScalarType); if (!IsCompAssign) LHS = S.ImpCastExprToType(LHS.get(), ComplexType, CK_IntegralRealToComplex); return ComplexType; } /// Return the rank of a given fixed point or integer type. The value itself /// doesn't matter, but the values must be increasing with proper increasing /// rank as described in N1169 4.1.1. static unsigned GetFixedPointRank(QualType Ty) { const auto *BTy = Ty->getAs(); assert(BTy && "Expected a builtin type."); switch (BTy->getKind()) { case BuiltinType::ShortFract: case BuiltinType::UShortFract: case BuiltinType::SatShortFract: case BuiltinType::SatUShortFract: return 1; case BuiltinType::Fract: case BuiltinType::UFract: case BuiltinType::SatFract: case BuiltinType::SatUFract: return 2; case BuiltinType::LongFract: case BuiltinType::ULongFract: case BuiltinType::SatLongFract: case BuiltinType::SatULongFract: return 3; case BuiltinType::ShortAccum: case BuiltinType::UShortAccum: case BuiltinType::SatShortAccum: case BuiltinType::SatUShortAccum: return 4; case BuiltinType::Accum: case BuiltinType::UAccum: case BuiltinType::SatAccum: case BuiltinType::SatUAccum: return 5; case BuiltinType::LongAccum: case BuiltinType::ULongAccum: case BuiltinType::SatLongAccum: case BuiltinType::SatULongAccum: return 6; default: if (BTy->isInteger()) return 0; llvm_unreachable("Unexpected fixed point or integer type"); } } /// handleFixedPointConversion - Fixed point operations between fixed /// point types and integers or other fixed point types do not fall under /// usual arithmetic conversion since these conversions could result in loss /// of precsision (N1169 4.1.4). These operations should be calculated with /// the full precision of their result type (N1169 4.1.6.2.1). static QualType handleFixedPointConversion(Sema &S, QualType LHSTy, QualType RHSTy) { assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type"); assert((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types"); // If one operand has signed fixed-point type and the other operand has // unsigned fixed-point type, then the unsigned fixed-point operand is // converted to its corresponding signed fixed-point type and the resulting // type is the type of the converted operand. if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType()) LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy); else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType()) RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy); // The result type is the type with the highest rank, whereby a fixed-point // conversion rank is always greater than an integer conversion rank; if the // type of either of the operands is a saturating fixedpoint type, the result // type shall be the saturating fixed-point type corresponding to the type // with the highest rank; the resulting value is converted (taking into // account rounding and overflow) to the precision of the resulting type. // Same ranks between signed and unsigned types are resolved earlier, so both // types are either signed or both unsigned at this point. unsigned LHSTyRank = GetFixedPointRank(LHSTy); unsigned RHSTyRank = GetFixedPointRank(RHSTy); QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy; if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType()) ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy); return ResultTy; } /// Check that the usual arithmetic conversions can be performed on this pair of /// expressions that might be of enumeration type. static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS, SourceLocation Loc, Sema::ArithConvKind ACK) { // C++2a [expr.arith.conv]p1: // If one operand is of enumeration type and the other operand is of a // different enumeration type or a floating-point type, this behavior is // deprecated ([depr.arith.conv.enum]). // // Warn on this in all language modes. Produce a deprecation warning in C++20. // Eventually we will presumably reject these cases (in C++23 onwards?). QualType L = LHS->getType(), R = RHS->getType(); bool LEnum = L->isUnscopedEnumerationType(), REnum = R->isUnscopedEnumerationType(); bool IsCompAssign = ACK == Sema::ACK_CompAssign; if ((!IsCompAssign && LEnum && R->isFloatingType()) || (REnum && L->isFloatingType())) { S.Diag(Loc, S.getLangOpts().CPlusPlus20 ? diag::warn_arith_conv_enum_float_cxx20 : diag::warn_arith_conv_enum_float) << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum << L << R; } else if (!IsCompAssign && LEnum && REnum && !S.Context.hasSameUnqualifiedType(L, R)) { unsigned DiagID; if (!L->castAs()->getDecl()->hasNameForLinkage() || !R->castAs()->getDecl()->hasNameForLinkage()) { // If either enumeration type is unnamed, it's less likely that the // user cares about this, but this situation is still deprecated in // C++2a. Use a different warning group. DiagID = S.getLangOpts().CPlusPlus20 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20 : diag::warn_arith_conv_mixed_anon_enum_types; } else if (ACK == Sema::ACK_Conditional) { // Conditional expressions are separated out because they have // historically had a different warning flag. DiagID = S.getLangOpts().CPlusPlus20 ? diag::warn_conditional_mixed_enum_types_cxx20 : diag::warn_conditional_mixed_enum_types; } else if (ACK == Sema::ACK_Comparison) { // Comparison expressions are separated out because they have // historically had a different warning flag. DiagID = S.getLangOpts().CPlusPlus20 ? diag::warn_comparison_mixed_enum_types_cxx20 : diag::warn_comparison_mixed_enum_types; } else { DiagID = S.getLangOpts().CPlusPlus20 ? diag::warn_arith_conv_mixed_enum_types_cxx20 : diag::warn_arith_conv_mixed_enum_types; } S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << L << R; } } /// UsualArithmeticConversions - Performs various conversions that are common to /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this /// routine returns the first non-arithmetic type found. The client is /// responsible for emitting appropriate error diagnostics. QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, ArithConvKind ACK) { checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK); if (ACK != ACK_CompAssign) { LHS = UsualUnaryConversions(LHS.get()); if (LHS.isInvalid()) return QualType(); } RHS = UsualUnaryConversions(RHS.get()); if (RHS.isInvalid()) return QualType(); // For conversion purposes, we ignore any qualifiers. // For example, "const float" and "float" are equivalent. QualType LHSType = Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); QualType RHSType = Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); // For conversion purposes, we ignore any atomic qualifier on the LHS. if (const AtomicType *AtomicLHS = LHSType->getAs()) LHSType = AtomicLHS->getValueType(); // If both types are identical, no conversion is needed. if (LHSType == RHSType) return LHSType; // If either side is a non-arithmetic type (e.g. a pointer), we are done. // The caller can deal with this (e.g. pointer + int). if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) return QualType(); // Apply unary and bitfield promotions to the LHS's type. QualType LHSUnpromotedType = LHSType; if (LHSType->isPromotableIntegerType()) LHSType = Context.getPromotedIntegerType(LHSType); QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get()); if (!LHSBitfieldPromoteTy.isNull()) LHSType = LHSBitfieldPromoteTy; if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign) LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast); // If both types are identical, no conversion is needed. if (LHSType == RHSType) return LHSType; // At this point, we have two different arithmetic types. // Diagnose attempts to convert between __ibm128, __float128 and long double // where such conversions currently can't be handled. if (unsupportedTypeConversion(*this, LHSType, RHSType)) return QualType(); // Handle complex types first (C99 6.3.1.8p1). if (LHSType->isComplexType() || RHSType->isComplexType()) return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign); // Now handle "real" floating types (i.e. float, double, long double). if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign); // Handle GCC complex int extension. if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType()) return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign); if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) return handleFixedPointConversion(*this, LHSType, RHSType); // Finally, we have two differing integer types. return handleIntegerConversion (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign); } //===----------------------------------------------------------------------===// // Semantic Analysis for various Expression Types //===----------------------------------------------------------------------===// ExprResult Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef ArgTypes, ArrayRef ArgExprs) { unsigned NumAssocs = ArgTypes.size(); assert(NumAssocs == ArgExprs.size()); TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; for (unsigned i = 0; i < NumAssocs; ++i) { if (ArgTypes[i]) (void) GetTypeFromParser(ArgTypes[i], &Types[i]); else Types[i] = nullptr; } ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, ControllingExpr, llvm::makeArrayRef(Types, NumAssocs), ArgExprs); delete [] Types; return ER; } ExprResult Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef Types, ArrayRef Exprs) { unsigned NumAssocs = Types.size(); assert(NumAssocs == Exprs.size()); // Decay and strip qualifiers for the controlling expression type, and handle // placeholder type replacement. See committee discussion from WG14 DR423. { EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr); if (R.isInvalid()) return ExprError(); ControllingExpr = R.get(); } bool TypeErrorFound = false, IsResultDependent = ControllingExpr->isTypeDependent(), ContainsUnexpandedParameterPack = ControllingExpr->containsUnexpandedParameterPack(); // The controlling expression is an unevaluated operand, so side effects are // likely unintended. if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr->HasSideEffects(Context, false)) Diag(ControllingExpr->getExprLoc(), diag::warn_side_effects_unevaluated_context); for (unsigned i = 0; i < NumAssocs; ++i) { if (Exprs[i]->containsUnexpandedParameterPack()) ContainsUnexpandedParameterPack = true; if (Types[i]) { if (Types[i]->getType()->containsUnexpandedParameterPack()) ContainsUnexpandedParameterPack = true; if (Types[i]->getType()->isDependentType()) { IsResultDependent = true; } else { // C11 6.5.1.1p2 "The type name in a generic association shall specify a // complete object type other than a variably modified type." unsigned D = 0; if (Types[i]->getType()->isIncompleteType()) D = diag::err_assoc_type_incomplete; else if (!Types[i]->getType()->isObjectType()) D = diag::err_assoc_type_nonobject; else if (Types[i]->getType()->isVariablyModifiedType()) D = diag::err_assoc_type_variably_modified; else { // Because the controlling expression undergoes lvalue conversion, // array conversion, and function conversion, an association which is // of array type, function type, or is qualified can never be // reached. We will warn about this so users are less surprised by // the unreachable association. However, we don't have to handle // function types; that's not an object type, so it's handled above. // // The logic is somewhat different for C++ because C++ has different // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says, // If T is a non-class type, the type of the prvalue is the cv- // unqualified version of T. Otherwise, the type of the prvalue is T. // The result of these rules is that all qualified types in an // association in C are unreachable, and in C++, only qualified non- // class types are unreachable. unsigned Reason = 0; QualType QT = Types[i]->getType(); if (QT->isArrayType()) Reason = 1; else if (QT.hasQualifiers() && (!LangOpts.CPlusPlus || !QT->isRecordType())) Reason = 2; if (Reason) Diag(Types[i]->getTypeLoc().getBeginLoc(), diag::warn_unreachable_association) << QT << (Reason - 1); } if (D != 0) { Diag(Types[i]->getTypeLoc().getBeginLoc(), D) << Types[i]->getTypeLoc().getSourceRange() << Types[i]->getType(); TypeErrorFound = true; } // C11 6.5.1.1p2 "No two generic associations in the same generic // selection shall specify compatible types." for (unsigned j = i+1; j < NumAssocs; ++j) if (Types[j] && !Types[j]->getType()->isDependentType() && Context.typesAreCompatible(Types[i]->getType(), Types[j]->getType())) { Diag(Types[j]->getTypeLoc().getBeginLoc(), diag::err_assoc_compatible_types) << Types[j]->getTypeLoc().getSourceRange() << Types[j]->getType() << Types[i]->getType(); Diag(Types[i]->getTypeLoc().getBeginLoc(), diag::note_compat_assoc) << Types[i]->getTypeLoc().getSourceRange() << Types[i]->getType(); TypeErrorFound = true; } } } } if (TypeErrorFound) return ExprError(); // If we determined that the generic selection is result-dependent, don't // try to compute the result expression. if (IsResultDependent) return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack); SmallVector CompatIndices; unsigned DefaultIndex = -1U; // Look at the canonical type of the controlling expression in case it was a // deduced type like __auto_type. However, when issuing diagnostics, use the // type the user wrote in source rather than the canonical one. for (unsigned i = 0; i < NumAssocs; ++i) { if (!Types[i]) DefaultIndex = i; else if (Context.typesAreCompatible( ControllingExpr->getType().getCanonicalType(), Types[i]->getType())) CompatIndices.push_back(i); } // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have // type compatible with at most one of the types named in its generic // association list." if (CompatIndices.size() > 1) { // We strip parens here because the controlling expression is typically // parenthesized in macro definitions. ControllingExpr = ControllingExpr->IgnoreParens(); Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match) << ControllingExpr->getSourceRange() << ControllingExpr->getType() << (unsigned)CompatIndices.size(); for (unsigned I : CompatIndices) { Diag(Types[I]->getTypeLoc().getBeginLoc(), diag::note_compat_assoc) << Types[I]->getTypeLoc().getSourceRange() << Types[I]->getType(); } return ExprError(); } // C11 6.5.1.1p2 "If a generic selection has no default generic association, // its controlling expression shall have type compatible with exactly one of // the types named in its generic association list." if (DefaultIndex == -1U && CompatIndices.size() == 0) { // We strip parens here because the controlling expression is typically // parenthesized in macro definitions. ControllingExpr = ControllingExpr->IgnoreParens(); Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match) << ControllingExpr->getSourceRange() << ControllingExpr->getType(); return ExprError(); } // C11 6.5.1.1p3 "If a generic selection has a generic association with a // type name that is compatible with the type of the controlling expression, // then the result expression of the generic selection is the expression // in that generic association. Otherwise, the result expression of the // generic selection is the expression in the default generic association." unsigned ResultIndex = CompatIndices.size() ? CompatIndices[0] : DefaultIndex; return GenericSelectionExpr::Create( Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); } /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the /// location of the token and the offset of the ud-suffix within it. static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc, unsigned Offset) { return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(), S.getLangOpts()); } /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up /// the corresponding cooked (non-raw) literal operator, and build a call to it. static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope, IdentifierInfo *UDSuffix, SourceLocation UDSuffixLoc, ArrayRef Args, SourceLocation LitEndLoc) { assert(Args.size() <= 2 && "too many arguments for literal operator"); QualType ArgTy[2]; for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { ArgTy[ArgIdx] = Args[ArgIdx]->getType(); if (ArgTy[ArgIdx]->isArrayType()) ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]); } DeclarationName OpName = S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName); if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()), /*AllowRaw*/ false, /*AllowTemplate*/ false, /*AllowStringTemplatePack*/ false, /*DiagnoseMissing*/ true) == Sema::LOLR_Error) return ExprError(); return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc); } /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from /// multiple tokens. However, the common case is that StringToks points to one /// string. /// ExprResult Sema::ActOnStringLiteral(ArrayRef StringToks, Scope *UDLScope) { assert(!StringToks.empty() && "Must have at least one string!"); StringLiteralParser Literal(StringToks, PP); if (Literal.hadError) return ExprError(); SmallVector StringTokLocs; for (const Token &Tok : StringToks) StringTokLocs.push_back(Tok.getLocation()); QualType CharTy = Context.CharTy; StringLiteral::StringKind Kind = StringLiteral::Ordinary; if (Literal.isWide()) { CharTy = Context.getWideCharType(); Kind = StringLiteral::Wide; } else if (Literal.isUTF8()) { if (getLangOpts().Char8) CharTy = Context.Char8Ty; Kind = StringLiteral::UTF8; } else if (Literal.isUTF16()) { CharTy = Context.Char16Ty; Kind = StringLiteral::UTF16; } else if (Literal.isUTF32()) { CharTy = Context.Char32Ty; Kind = StringLiteral::UTF32; } else if (Literal.isPascal()) { CharTy = Context.UnsignedCharTy; } // Warn on initializing an array of char from a u8 string literal; this // becomes ill-formed in C++2a. if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 && !getLangOpts().Char8 && Kind == StringLiteral::UTF8) { Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string); // Create removals for all 'u8' prefixes in the string literal(s). This // ensures C++2a compatibility (but may change the program behavior when // built by non-Clang compilers for which the execution character set is // not always UTF-8). auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8); SourceLocation RemovalDiagLoc; for (const Token &Tok : StringToks) { if (Tok.getKind() == tok::utf8_string_literal) { if (RemovalDiagLoc.isInvalid()) RemovalDiagLoc = Tok.getLocation(); RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange( Tok.getLocation(), Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2, getSourceManager(), getLangOpts()))); } } Diag(RemovalDiagLoc, RemovalDiag); } QualType StrTy = Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars()); // Pass &StringTokLocs[0], StringTokLocs.size() to factory! StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(), Kind, Literal.Pascal, StrTy, &StringTokLocs[0], StringTokLocs.size()); if (Literal.getUDSuffix().empty()) return Lit; // We're building a user-defined literal. IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); SourceLocation UDSuffixLoc = getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()], Literal.getUDSuffixOffset()); // Make sure we're allowed user-defined literals here. if (!UDLScope) return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl)); // C++11 [lex.ext]p5: The literal L is treated as a call of the form // operator "" X (str, len) QualType SizeType = Context.getSizeType(); DeclarationName OpName = Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); QualType ArgTy[] = { Context.getArrayDecayedType(StrTy), SizeType }; LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); switch (LookupLiteralOperator(UDLScope, R, ArgTy, /*AllowRaw*/ false, /*AllowTemplate*/ true, /*AllowStringTemplatePack*/ true, /*DiagnoseMissing*/ true, Lit)) { case LOLR_Cooked: { llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars()); IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType, StringTokLocs[0]); Expr *Args[] = { Lit, LenArg }; return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back()); } case LOLR_Template: { TemplateArgumentListInfo ExplicitArgs; TemplateArgument Arg(Lit); TemplateArgumentLocInfo ArgInfo(Lit); ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(), &ExplicitArgs); } case LOLR_StringTemplatePack: { TemplateArgumentListInfo ExplicitArgs; unsigned CharBits = Context.getIntWidth(CharTy); bool CharIsUnsigned = CharTy->isUnsignedIntegerType(); llvm::APSInt Value(CharBits, CharIsUnsigned); TemplateArgument TypeArg(CharTy); TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy)); ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo)); for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) { Value = Lit->getCodeUnit(I); TemplateArgument Arg(Context, Value, CharTy); TemplateArgumentLocInfo ArgInfo; ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); } return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(), &ExplicitArgs); } case LOLR_Raw: case LOLR_ErrorNoDiagnostic: llvm_unreachable("unexpected literal operator lookup result"); case LOLR_Error: return ExprError(); } llvm_unreachable("unexpected literal operator lookup result"); } DeclRefExpr * Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, SourceLocation Loc, const CXXScopeSpec *SS) { DeclarationNameInfo NameInfo(D->getDeclName(), Loc); return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); } DeclRefExpr * Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, const DeclarationNameInfo &NameInfo, const CXXScopeSpec *SS, NamedDecl *FoundD, SourceLocation TemplateKWLoc, const TemplateArgumentListInfo *TemplateArgs) { NestedNameSpecifierLoc NNS = SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc, TemplateArgs); } // CUDA/HIP: Check whether a captured reference variable is referencing a // host variable in a device or host device lambda. static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S, VarDecl *VD) { if (!S.getLangOpts().CUDA || !VD->hasInit()) return false; assert(VD->getType()->isReferenceType()); // Check whether the reference variable is referencing a host variable. auto *DRE = dyn_cast(VD->getInit()); if (!DRE) return false; auto *Referee = dyn_cast(DRE->getDecl()); if (!Referee || !Referee->hasGlobalStorage() || Referee->hasAttr()) return false; // Check whether the current function is a device or host device lambda. // Check whether the reference variable is a capture by getDeclContext() // since refersToEnclosingVariableOrCapture() is not ready at this point. auto *MD = dyn_cast_or_null(S.CurContext); if (MD && MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call && MD->hasAttr() && VD->getDeclContext() != MD) return true; return false; } NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) { // A declaration named in an unevaluated operand never constitutes an odr-use. if (isUnevaluatedContext()) return NOUR_Unevaluated; // C++2a [basic.def.odr]p4: // A variable x whose name appears as a potentially-evaluated expression e // is odr-used by e unless [...] x is a reference that is usable in // constant expressions. // CUDA/HIP: // If a reference variable referencing a host variable is captured in a // device or host device lambda, the value of the referee must be copied // to the capture and the reference variable must be treated as odr-use // since the value of the referee is not known at compile time and must // be loaded from the captured. if (VarDecl *VD = dyn_cast(D)) { if (VD->getType()->isReferenceType() && !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) && !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) && VD->isUsableInConstantExpressions(Context)) return NOUR_Constant; } // All remaining non-variable cases constitute an odr-use. For variables, we // need to wait and see how the expression is used. return NOUR_None; } /// BuildDeclRefExpr - Build an expression that references a /// declaration that does not require a closure capture. DeclRefExpr * Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, const DeclarationNameInfo &NameInfo, NestedNameSpecifierLoc NNS, NamedDecl *FoundD, SourceLocation TemplateKWLoc, const TemplateArgumentListInfo *TemplateArgs) { bool RefersToCapturedVariable = isa(D) && NeedToCaptureVariable(cast(D), NameInfo.getLoc()); DeclRefExpr *E = DeclRefExpr::Create( Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty, VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D)); MarkDeclRefReferenced(E); // C++ [except.spec]p17: // An exception-specification is considered to be needed when: // - in an expression, the function is the unique lookup result or // the selected member of a set of overloaded functions. // // We delay doing this until after we've built the function reference and // marked it as used so that: // a) if the function is defaulted, we get errors from defining it before / // instead of errors from computing its exception specification, and // b) if the function is a defaulted comparison, we can use the body we // build when defining it as input to the exception specification // computation rather than computing a new body. if (auto *FPT = Ty->getAs()) { if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT)) E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); } } if (getLangOpts().ObjCWeak && isa(D) && Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() && !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc())) getCurFunction()->recordUseOfWeak(E); FieldDecl *FD = dyn_cast(D); if (IndirectFieldDecl *IFD = dyn_cast(D)) FD = IFD->getAnonField(); if (FD) { UnusedPrivateFields.remove(FD); // Just in case we're building an illegal pointer-to-member. if (FD->isBitField()) E->setObjectKind(OK_BitField); } // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier // designates a bit-field. if (auto *BD = dyn_cast(D)) if (auto *BE = BD->getBinding()) E->setObjectKind(BE->getObjectKind()); return E; } /// Decomposes the given name into a DeclarationNameInfo, its location, and /// possibly a list of template arguments. /// /// If this produces template arguments, it is permitted to call /// DecomposeTemplateName. /// /// This actually loses a lot of source location information for /// non-standard name kinds; we should consider preserving that in /// some way. void Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, TemplateArgumentListInfo &Buffer, DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *&TemplateArgs) { if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) { Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(), Id.TemplateId->NumArgs); translateTemplateArguments(TemplateArgsPtr, Buffer); TemplateName TName = Id.TemplateId->Template.get(); SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; NameInfo = Context.getNameForTemplate(TName, TNameLoc); TemplateArgs = &Buffer; } else { NameInfo = GetNameFromUnqualifiedId(Id); TemplateArgs = nullptr; } } static void emitEmptyLookupTypoDiagnostic( const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS, DeclarationName Typo, SourceLocation TypoLoc, ArrayRef Args, unsigned DiagnosticID, unsigned DiagnosticSuggestID) { DeclContext *Ctx = SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false); if (!TC) { // Emit a special diagnostic for failed member lookups. // FIXME: computing the declaration context might fail here (?) if (Ctx) SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx << SS.getRange(); else SemaRef.Diag(TypoLoc, DiagnosticID) << Typo; return; } std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts()); bool DroppedSpecifier = TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr; unsigned NoteID = TC.getCorrectionDeclAs() ? diag::note_implicit_param_decl : diag::note_previous_decl; if (!Ctx) SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo, SemaRef.PDiag(NoteID)); else SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) << Typo << Ctx << DroppedSpecifier << SS.getRange(), SemaRef.PDiag(NoteID)); } /// Diagnose a lookup that found results in an enclosing class during error /// recovery. This usually indicates that the results were found in a dependent /// base class that could not be searched as part of a template definition. /// Always issues a diagnostic (though this may be only a warning in MS /// compatibility mode). /// /// Return \c true if the error is unrecoverable, or \c false if the caller /// should attempt to recover using these lookup results. bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) { // During a default argument instantiation the CurContext points // to a CXXMethodDecl; but we can't apply a this-> fixit inside a // function parameter list, hence add an explicit check. bool isDefaultArgument = !CodeSynthesisContexts.empty() && CodeSynthesisContexts.back().Kind == CodeSynthesisContext::DefaultFunctionArgumentInstantiation; CXXMethodDecl *CurMethod = dyn_cast(CurContext); bool isInstance = CurMethod && CurMethod->isInstance() && R.getNamingClass() == CurMethod->getParent() && !isDefaultArgument; // There are two ways we can find a class-scope declaration during template // instantiation that we did not find in the template definition: if it is a // member of a dependent base class, or if it is declared after the point of // use in the same class. Distinguish these by comparing the class in which // the member was found to the naming class of the lookup. unsigned DiagID = diag::err_found_in_dependent_base; unsigned NoteID = diag::note_member_declared_at; if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) { DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class : diag::err_found_later_in_class; } else if (getLangOpts().MSVCCompat) { DiagID = diag::ext_found_in_dependent_base; NoteID = diag::note_dependent_member_use; } if (isInstance) { // Give a code modification hint to insert 'this->'. Diag(R.getNameLoc(), DiagID) << R.getLookupName() << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); CheckCXXThisCapture(R.getNameLoc()); } else { // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming // they're not shadowed). Diag(R.getNameLoc(), DiagID) << R.getLookupName(); } for (NamedDecl *D : R) Diag(D->getLocation(), NoteID); // Return true if we are inside a default argument instantiation // and the found name refers to an instance member function, otherwise // the caller will try to create an implicit member call and this is wrong // for default arguments. // // FIXME: Is this special case necessary? We could allow the caller to // diagnose this. if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) { Diag(R.getNameLoc(), diag::err_member_call_without_object); return true; } // Tell the callee to try to recover. return false; } /// Diagnose an empty lookup. /// /// \return false if new lookup candidates were found bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, CorrectionCandidateCallback &CCC, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, TypoExpr **Out) { DeclarationName Name = R.getLookupName(); unsigned diagnostic = diag::err_undeclared_var_use; unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; if (Name.getNameKind() == DeclarationName::CXXOperatorName || Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { diagnostic = diag::err_undeclared_use; diagnostic_suggest = diag::err_undeclared_use_suggest; } // If the original lookup was an unqualified lookup, fake an // unqualified lookup. This is useful when (for example) the // original lookup would not have found something because it was a // dependent name. DeclContext *DC = SS.isEmpty() ? CurContext : nullptr; while (DC) { if (isa(DC)) { LookupQualifiedName(R, DC); if (!R.empty()) { // Don't give errors about ambiguities in this lookup. R.suppressDiagnostics(); // If there's a best viable function among the results, only mention // that one in the notes. OverloadCandidateSet Candidates(R.getNameLoc(), OverloadCandidateSet::CSK_Normal); AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates); OverloadCandidateSet::iterator Best; if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) == OR_Success) { R.clear(); R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); R.resolveKind(); } return DiagnoseDependentMemberLookup(R); } R.clear(); } DC = DC->getLookupParent(); } // We didn't find anything, so try to correct for a typo. TypoCorrection Corrected; if (S && Out) { SourceLocation TypoLoc = R.getNameLoc(); assert(!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"); *Out = CorrectTypoDelayed( R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, [=](const TypoCorrection &TC) { emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args, diagnostic, diagnostic_suggest); }, nullptr, CTK_ErrorRecovery); if (*Out) return true; } else if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, CTK_ErrorRecovery))) { std::string CorrectedStr(Corrected.getAsString(getLangOpts())); bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; R.setLookupName(Corrected.getCorrection()); bool AcceptableWithRecovery = false; bool AcceptableWithoutRecovery = false; NamedDecl *ND = Corrected.getFoundDecl(); if (ND) { if (Corrected.isOverloaded()) { OverloadCandidateSet OCS(R.getNameLoc(), OverloadCandidateSet::CSK_Normal); OverloadCandidateSet::iterator Best; for (NamedDecl *CD : Corrected) { if (FunctionTemplateDecl *FTD = dyn_cast(CD)) AddTemplateOverloadCandidate( FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs, Args, OCS); else if (FunctionDecl *FD = dyn_cast(CD)) if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0) AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args, OCS); } switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) { case OR_Success: ND = Best->FoundDecl; Corrected.setCorrectionDecl(ND); break; default: // FIXME: Arbitrarily pick the first declaration for the note. Corrected.setCorrectionDecl(ND); break; } } R.addDecl(ND); if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) { CXXRecordDecl *Record = nullptr; if (Corrected.getCorrectionSpecifier()) { const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType(); Record = Ty->getAsCXXRecordDecl(); } if (!Record) Record = cast( ND->getDeclContext()->getRedeclContext()); R.setNamingClass(Record); } auto *UnderlyingND = ND->getUnderlyingDecl(); AcceptableWithRecovery = isa(UnderlyingND) || isa(UnderlyingND); // FIXME: If we ended up with a typo for a type name or // Objective-C class name, we're in trouble because the parser // is in the wrong place to recover. Suggest the typo // correction, but don't make it a fix-it since we're not going // to recover well anyway. AcceptableWithoutRecovery = isa(UnderlyingND) || getAsTypeTemplateDecl(UnderlyingND) || isa(UnderlyingND); } else { // FIXME: We found a keyword. Suggest it, but don't provide a fix-it // because we aren't able to recover. AcceptableWithoutRecovery = true; } if (AcceptableWithRecovery || AcceptableWithoutRecovery) { unsigned NoteID = Corrected.getCorrectionDeclAs() ? diag::note_implicit_param_decl : diag::note_previous_decl; if (SS.isEmpty()) diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name, PDiag(NoteID), AcceptableWithRecovery); else diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) << Name << computeDeclContext(SS, false) << DroppedSpecifier << SS.getRange(), PDiag(NoteID), AcceptableWithRecovery); // Tell the callee whether to try to recover. return !AcceptableWithRecovery; } } R.clear(); // Emit a special diagnostic for failed member lookups. // FIXME: computing the declaration context might fail here (?) if (!SS.isEmpty()) { Diag(R.getNameLoc(), diag::err_no_member) << Name << computeDeclContext(SS, false) << SS.getRange(); return true; } // Give up, we can't recover. Diag(R.getNameLoc(), diagnostic) << Name; return true; } /// In Microsoft mode, if we are inside a template class whose parent class has /// dependent base classes, and we can't resolve an unqualified identifier, then /// assume the identifier is a member of a dependent base class. We can only /// recover successfully in static methods, instance methods, and other contexts /// where 'this' is available. This doesn't precisely match MSVC's /// instantiation model, but it's close enough. static Expr * recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context, DeclarationNameInfo &NameInfo, SourceLocation TemplateKWLoc, const TemplateArgumentListInfo *TemplateArgs) { // Only try to recover from lookup into dependent bases in static methods or // contexts where 'this' is available. QualType ThisType = S.getCurrentThisType(); const CXXRecordDecl *RD = nullptr; if (!ThisType.isNull()) RD = ThisType->getPointeeType()->getAsCXXRecordDecl(); else if (auto *MD = dyn_cast(S.CurContext)) RD = MD->getParent(); if (!RD || !RD->hasAnyDependentBases()) return nullptr; // Diagnose this as unqualified lookup into a dependent base class. If 'this' // is available, suggest inserting 'this->' as a fixit. SourceLocation Loc = NameInfo.getLoc(); auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base); DB << NameInfo.getName() << RD; if (!ThisType.isNull()) { DB << FixItHint::CreateInsertion(Loc, "this->"); return CXXDependentScopeMemberExpr::Create( Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true, /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc, /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs); } // Synthesize a fake NNS that points to the derived class. This will // perform name lookup during template instantiation. CXXScopeSpec SS; auto *NNS = NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl()); SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc)); return DependentScopeDeclRefExpr::Create( Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, TemplateArgs); } ExprResult Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand, CorrectionCandidateCallback *CCC, bool IsInlineAsmIdentifier, Token *KeywordReplacement) { assert(!(IsAddressOfOperand && HasTrailingLParen) && "cannot be direct & operand and have a trailing lparen"); if (SS.isInvalid()) return ExprError(); TemplateArgumentListInfo TemplateArgsBuffer; // Decompose the UnqualifiedId into the following data. DeclarationNameInfo NameInfo; const TemplateArgumentListInfo *TemplateArgs; DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); DeclarationName Name = NameInfo.getName(); IdentifierInfo *II = Name.getAsIdentifierInfo(); SourceLocation NameLoc = NameInfo.getLoc(); if (II && II->isEditorPlaceholder()) { // FIXME: When typed placeholders are supported we can create a typed // placeholder expression node. return ExprError(); } // C++ [temp.dep.expr]p3: // An id-expression is type-dependent if it contains: // -- an identifier that was declared with a dependent type, // (note: handled after lookup) // -- a template-id that is dependent, // (note: handled in BuildTemplateIdExpr) // -- a conversion-function-id that specifies a dependent type, // -- a nested-name-specifier that contains a class-name that // names a dependent type. // Determine whether this is a member of an unknown specialization; // we need to handle these differently. bool DependentID = false; if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && Name.getCXXNameType()->isDependentType()) { DependentID = true; } else if (SS.isSet()) { if (DeclContext *DC = computeDeclContext(SS, false)) { if (RequireCompleteDeclContext(SS, DC)) return ExprError(); } else { DependentID = true; } } if (DependentID) return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, IsAddressOfOperand, TemplateArgs); // Perform the required lookup. LookupResult R(*this, NameInfo, (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam) ? LookupObjCImplicitSelfParam : LookupOrdinaryName); if (TemplateKWLoc.isValid() || TemplateArgs) { // Lookup the template name again to correctly establish the context in // which it was found. This is really unfortunate as we already did the // lookup to determine that it was a template name in the first place. If // this becomes a performance hit, we can work harder to preserve those // results until we get here but it's likely not worth it. bool MemberOfUnknownSpecialization; AssumedTemplateKind AssumedTemplate; if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, MemberOfUnknownSpecialization, TemplateKWLoc, &AssumedTemplate)) return ExprError(); if (MemberOfUnknownSpecialization || (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, IsAddressOfOperand, TemplateArgs); } else { bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl(); LookupParsedName(R, S, &SS, !IvarLookupFollowUp); // If the result might be in a dependent base class, this is a dependent // id-expression. if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, IsAddressOfOperand, TemplateArgs); // If this reference is in an Objective-C method, then we need to do // some special Objective-C lookup, too. if (IvarLookupFollowUp) { ExprResult E(LookupInObjCMethod(R, S, II, true)); if (E.isInvalid()) return ExprError(); if (Expr *Ex = E.getAs()) return Ex; } } if (R.isAmbiguous()) return ExprError(); // This could be an implicitly declared function reference if the language // mode allows it as a feature. if (R.empty() && HasTrailingLParen && II && getLangOpts().implicitFunctionsAllowed()) { NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); if (D) R.addDecl(D); } // Determine whether this name might be a candidate for // argument-dependent lookup. bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); if (R.empty() && !ADL) { if (SS.isEmpty() && getLangOpts().MSVCCompat) { if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo, TemplateKWLoc, TemplateArgs)) return E; } // Don't diagnose an empty lookup for inline assembly. if (IsInlineAsmIdentifier) return ExprError(); // If this name wasn't predeclared and if this is not a function // call, diagnose the problem. TypoExpr *TE = nullptr; DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep() : nullptr); DefaultValidator.IsAddressOfOperand = IsAddressOfOperand; assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && "Typo correction callback misconfigured"); if (CCC) { // Make sure the callback knows what the typo being diagnosed is. CCC->setTypoName(II); if (SS.isValid()) CCC->setTypoNNS(SS.getScopeRep()); } // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for // a template name, but we happen to have always already looked up the name // before we get here if it must be a template name. if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr, None, &TE)) { if (TE && KeywordReplacement) { auto &State = getTypoExprState(TE); auto BestTC = State.Consumer->getNextCorrection(); if (BestTC.isKeyword()) { auto *II = BestTC.getCorrectionAsIdentifierInfo(); if (State.DiagHandler) State.DiagHandler(BestTC); KeywordReplacement->startToken(); KeywordReplacement->setKind(II->getTokenID()); KeywordReplacement->setIdentifierInfo(II); KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin()); // Clean up the state associated with the TypoExpr, since it has // now been diagnosed (without a call to CorrectDelayedTyposInExpr). clearDelayedTypo(TE); // Signal that a correction to a keyword was performed by returning a // valid-but-null ExprResult. return (Expr*)nullptr; } State.Consumer->resetCorrectionStream(); } return TE ? TE : ExprError(); } assert(!R.empty() && "DiagnoseEmptyLookup returned false but added no results"); // If we found an Objective-C instance variable, let // LookupInObjCMethod build the appropriate expression to // reference the ivar. if (ObjCIvarDecl *Ivar = R.getAsSingle()) { R.clear(); ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); // In a hopelessly buggy code, Objective-C instance variable // lookup fails and no expression will be built to reference it. if (!E.isInvalid() && !E.get()) return ExprError(); return E; } } // This is guaranteed from this point on. assert(!R.empty() || ADL); // Check whether this might be a C++ implicit instance member access. // C++ [class.mfct.non-static]p3: // When an id-expression that is not part of a class member access // syntax and not used to form a pointer to member is used in the // body of a non-static member function of class X, if name lookup // resolves the name in the id-expression to a non-static non-type // member of some class C, the id-expression is transformed into a // class member access expression using (*this) as the // postfix-expression to the left of the . operator. // // But we don't actually need to do this for '&' operands if R // resolved to a function or overloaded function set, because the // expression is ill-formed if it actually works out to be a // non-static member function: // // C++ [expr.ref]p4: // Otherwise, if E1.E2 refers to a non-static member function. . . // [t]he expression can be used only as the left-hand operand of a // member function call. // // There are other safeguards against such uses, but it's important // to get this right here so that we don't end up making a // spuriously dependent expression if we're inside a dependent // instance method. if (!R.empty() && (*R.begin())->isCXXClassMember()) { bool MightBeImplicitMember; if (!IsAddressOfOperand) MightBeImplicitMember = true; else if (!SS.isEmpty()) MightBeImplicitMember = false; else if (R.isOverloadedResult()) MightBeImplicitMember = false; else if (R.isUnresolvableResult()) MightBeImplicitMember = true; else MightBeImplicitMember = isa(R.getFoundDecl()) || isa(R.getFoundDecl()) || isa(R.getFoundDecl()); if (MightBeImplicitMember) return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, S); } if (TemplateArgs || TemplateKWLoc.isValid()) { // In C++1y, if this is a variable template id, then check it // in BuildTemplateIdExpr(). // The single lookup result must be a variable template declaration. if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId && Id.TemplateId->Kind == TNK_Var_template) { assert(R.getAsSingle() && "There should only be one declaration found."); } return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs); } return BuildDeclarationNameExpr(SS, R, ADL); } /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified /// declaration name, generally during template instantiation. /// There's a large number of things which don't need to be done along /// this path. ExprResult Sema::BuildQualifiedDeclarationNameExpr( CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) { DeclContext *DC = computeDeclContext(SS, false); if (!DC) return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, /*TemplateArgs=*/nullptr); if (RequireCompleteDeclContext(SS, DC)) return ExprError(); LookupResult R(*this, NameInfo, LookupOrdinaryName); LookupQualifiedName(R, DC); if (R.isAmbiguous()) return ExprError(); if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, /*TemplateArgs=*/nullptr); if (R.empty()) { // Don't diagnose problems with invalid record decl, the secondary no_member // diagnostic during template instantiation is likely bogus, e.g. if a class // is invalid because it's derived from an invalid base class, then missing // members were likely supposed to be inherited. if (const auto *CD = dyn_cast(DC)) if (CD->isInvalidDecl()) return ExprError(); Diag(NameInfo.getLoc(), diag::err_no_member) << NameInfo.getName() << DC << SS.getRange(); return ExprError(); } if (const TypeDecl *TD = R.getAsSingle()) { // Diagnose a missing typename if this resolved unambiguously to a type in // a dependent context. If we can recover with a type, downgrade this to // a warning in Microsoft compatibility mode. unsigned DiagID = diag::err_typename_missing; if (RecoveryTSI && getLangOpts().MSVCCompat) DiagID = diag::ext_typename_missing; SourceLocation Loc = SS.getBeginLoc(); auto D = Diag(Loc, DiagID); D << SS.getScopeRep() << NameInfo.getName().getAsString() << SourceRange(Loc, NameInfo.getEndLoc()); // Don't recover if the caller isn't expecting us to or if we're in a SFINAE // context. if (!RecoveryTSI) return ExprError(); // Only issue the fixit if we're prepared to recover. D << FixItHint::CreateInsertion(Loc, "typename "); // Recover by pretending this was an elaborated type. QualType Ty = Context.getTypeDeclType(TD); TypeLocBuilder TLB; TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc()); QualType ET = getElaboratedType(ETK_None, SS, Ty); ElaboratedTypeLoc QTL = TLB.push(ET); QTL.setElaboratedKeywordLoc(SourceLocation()); QTL.setQualifierLoc(SS.getWithLocInContext(Context)); *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET); return ExprEmpty(); } // Defend against this resolving to an implicit member access. We usually // won't get here if this might be a legitimate a class member (we end up in // BuildMemberReferenceExpr instead), but this can be valid if we're forming // a pointer-to-member or in an unevaluated context in C++11. if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand) return BuildPossibleImplicitMemberExpr(SS, /*TemplateKWLoc=*/SourceLocation(), R, /*TemplateArgs=*/nullptr, S); return BuildDeclarationNameExpr(SS, R, /* ADL */ false); } /// The parser has read a name in, and Sema has detected that we're currently /// inside an ObjC method. Perform some additional checks and determine if we /// should form a reference to an ivar. /// /// Ideally, most of this would be done by lookup, but there's /// actually quite a lot of extra work involved. DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, IdentifierInfo *II) { SourceLocation Loc = Lookup.getNameLoc(); ObjCMethodDecl *CurMethod = getCurMethodDecl(); // Check for error condition which is already reported. if (!CurMethod) return DeclResult(true); // There are two cases to handle here. 1) scoped lookup could have failed, // in which case we should look for an ivar. 2) scoped lookup could have // found a decl, but that decl is outside the current instance method (i.e. // a global variable). In these two cases, we do a lookup for an ivar with // this name, if the lookup sucedes, we replace it our current decl. // If we're in a class method, we don't normally want to look for // ivars. But if we don't find anything else, and there's an // ivar, that's an error. bool IsClassMethod = CurMethod->isClassMethod(); bool LookForIvars; if (Lookup.empty()) LookForIvars = true; else if (IsClassMethod) LookForIvars = false; else LookForIvars = (Lookup.isSingleResult() && Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); ObjCInterfaceDecl *IFace = nullptr; if (LookForIvars) { IFace = CurMethod->getClassInterface(); ObjCInterfaceDecl *ClassDeclared; ObjCIvarDecl *IV = nullptr; if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) { // Diagnose using an ivar in a class method. if (IsClassMethod) { Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); return DeclResult(true); } // Diagnose the use of an ivar outside of the declaring class. if (IV->getAccessControl() == ObjCIvarDecl::Private && !declaresSameEntity(ClassDeclared, IFace) && !getLangOpts().DebuggerSupport) Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName(); // Success. return IV; } } else if (CurMethod->isInstanceMethod()) { // We should warn if a local variable hides an ivar. if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) { ObjCInterfaceDecl *ClassDeclared; if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { if (IV->getAccessControl() != ObjCIvarDecl::Private || declaresSameEntity(IFace, ClassDeclared)) Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); } } } else if (Lookup.isSingleResult() && Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) { // If accessing a stand-alone ivar in a class method, this is an error. if (const ObjCIvarDecl *IV = dyn_cast(Lookup.getFoundDecl())) { Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); return DeclResult(true); } } // Didn't encounter an error, didn't find an ivar. return DeclResult(false); } ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV) { ObjCMethodDecl *CurMethod = getCurMethodDecl(); assert(CurMethod && CurMethod->isInstanceMethod() && "should not reference ivar from this context"); ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); assert(IFace && "should not reference ivar from this context"); // If we're referencing an invalid decl, just return this as a silent // error node. The error diagnostic was already emitted on the decl. if (IV->isInvalidDecl()) return ExprError(); // Check if referencing a field with __attribute__((deprecated)). if (DiagnoseUseOfDecl(IV, Loc)) return ExprError(); // FIXME: This should use a new expr for a direct reference, don't // turn this into Self->ivar, just return a BareIVarExpr or something. IdentifierInfo &II = Context.Idents.get("self"); UnqualifiedId SelfName; SelfName.setImplicitSelfParam(&II); CXXScopeSpec SelfScopeSpec; SourceLocation TemplateKWLoc; ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName, /*HasTrailingLParen=*/false, /*IsAddressOfOperand=*/false); if (SelfExpr.isInvalid()) return ExprError(); SelfExpr = DefaultLvalueConversion(SelfExpr.get()); if (SelfExpr.isInvalid()) return ExprError(); MarkAnyDeclReferenced(Loc, IV, true); ObjCMethodFamily MF = CurMethod->getMethodFamily(); if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV)) Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName(); ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc, IV->getLocation(), SelfExpr.get(), true, true); if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { if (!isUnevaluatedContext() && !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) getCurFunction()->recordUseOfWeak(Result); } if (getLangOpts().ObjCAutoRefCount) if (const BlockDecl *BD = CurContext->getInnermostBlockDecl()) ImplicitlyRetainedSelfLocs.push_back({Loc, BD}); return Result; } /// The parser has read a name in, and Sema has detected that we're currently /// inside an ObjC method. Perform some additional checks and determine if we /// should form a reference to an ivar. If so, build an expression referencing /// that ivar. ExprResult Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, IdentifierInfo *II, bool AllowBuiltinCreation) { // FIXME: Integrate this lookup step into LookupParsedName. DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II); if (Ivar.isInvalid()) return ExprError(); if (Ivar.isUsable()) return BuildIvarRefExpr(S, Lookup.getNameLoc(), cast(Ivar.get())); if (Lookup.empty() && II && AllowBuiltinCreation) LookupBuiltin(Lookup); // Sentinel value saying that we didn't do anything special. return ExprResult(false); } /// Cast a base object to a member's actual type. /// /// There are two relevant checks: /// /// C++ [class.access.base]p7: /// /// If a class member access operator [...] is used to access a non-static /// data member or non-static member function, the reference is ill-formed if /// the left operand [...] cannot be implicitly converted to a pointer to the /// naming class of the right operand. /// /// C++ [expr.ref]p7: /// /// If E2 is a non-static data member or a non-static member function, the /// program is ill-formed if the class of which E2 is directly a member is an /// ambiguous base (11.8) of the naming class (11.9.3) of E2. /// /// Note that the latter check does not consider access; the access of the /// "real" base class is checked as appropriate when checking the access of the /// member name. ExprResult Sema::PerformObjectMemberConversion(Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, NamedDecl *Member) { CXXRecordDecl *RD = dyn_cast(Member->getDeclContext()); if (!RD) return From; QualType DestRecordType; QualType DestType; QualType FromRecordType; QualType FromType = From->getType(); bool PointerConversions = false; if (isa(Member)) { DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); auto FromPtrType = FromType->getAs(); DestRecordType = Context.getAddrSpaceQualType( DestRecordType, FromPtrType ? FromType->getPointeeType().getAddressSpace() : FromType.getAddressSpace()); if (FromPtrType) { DestType = Context.getPointerType(DestRecordType); FromRecordType = FromPtrType->getPointeeType(); PointerConversions = true; } else { DestType = DestRecordType; FromRecordType = FromType; } } else if (CXXMethodDecl *Method = dyn_cast(Member)) { if (Method->isStatic()) return From; DestType = Method->getThisType(); DestRecordType = DestType->getPointeeType(); if (FromType->getAs()) { FromRecordType = FromType->getPointeeType(); PointerConversions = true; } else { FromRecordType = FromType; DestType = DestRecordType; } LangAS FromAS = FromRecordType.getAddressSpace(); LangAS DestAS = DestRecordType.getAddressSpace(); if (FromAS != DestAS) { QualType FromRecordTypeWithoutAS = Context.removeAddrSpaceQualType(FromRecordType); QualType FromTypeWithDestAS = Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS); if (PointerConversions) FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS); From = ImpCastExprToType(From, FromTypeWithDestAS, CK_AddressSpaceConversion, From->getValueKind()) .get(); } } else { // No conversion necessary. return From; } if (DestType->isDependentType() || FromType->isDependentType()) return From; // If the unqualified types are the same, no conversion is necessary. if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) return From; SourceRange FromRange = From->getSourceRange(); SourceLocation FromLoc = FromRange.getBegin(); ExprValueKind VK = From->getValueKind(); // C++ [class.member.lookup]p8: // [...] Ambiguities can often be resolved by qualifying a name with its // class name. // // If the member was a qualified name and the qualified referred to a // specific base subobject type, we'll cast to that intermediate type // first and then to the object in which the member is declared. That allows // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: // // class Base { public: int x; }; // class Derived1 : public Base { }; // class Derived2 : public Base { }; // class VeryDerived : public Derived1, public Derived2 { void f(); }; // // void VeryDerived::f() { // x = 17; // error: ambiguous base subobjects // Derived1::x = 17; // okay, pick the Base subobject of Derived1 // } if (Qualifier && Qualifier->getAsType()) { QualType QType = QualType(Qualifier->getAsType(), 0); assert(QType->isRecordType() && "lookup done with non-record type"); QualType QRecordType = QualType(QType->castAs(), 0); // In C++98, the qualifier type doesn't actually have to be a base // type of the object type, in which case we just ignore it. // Otherwise build the appropriate casts. if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) { CXXCastPath BasePath; if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, FromLoc, FromRange, &BasePath)) return ExprError(); if (PointerConversions) QType = Context.getPointerType(QType); From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, VK, &BasePath).get(); FromType = QType; FromRecordType = QRecordType; // If the qualifier type was the same as the destination type, // we're done. if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) return From; } } CXXCastPath BasePath; if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, FromLoc, FromRange, &BasePath, /*IgnoreAccess=*/true)) return ExprError(); return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, VK, &BasePath); } bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, const LookupResult &R, bool HasTrailingLParen) { // Only when used directly as the postfix-expression of a call. if (!HasTrailingLParen) return false; // Never if a scope specifier was provided. if (SS.isSet()) return false; // Only in C++ or ObjC++. if (!getLangOpts().CPlusPlus) return false; // Turn off ADL when we find certain kinds of declarations during // normal lookup: for (NamedDecl *D : R) { // C++0x [basic.lookup.argdep]p3: // -- a declaration of a class member // Since using decls preserve this property, we check this on the // original decl. if (D->isCXXClassMember()) return false; // C++0x [basic.lookup.argdep]p3: // -- a block-scope function declaration that is not a // using-declaration // NOTE: we also trigger this for function templates (in fact, we // don't check the decl type at all, since all other decl types // turn off ADL anyway). if (isa(D)) D = cast(D)->getTargetDecl(); else if (D->getLexicalDeclContext()->isFunctionOrMethod()) return false; // C++0x [basic.lookup.argdep]p3: // -- a declaration that is neither a function or a function // template // And also for builtin functions. if (isa(D)) { FunctionDecl *FDecl = cast(D); // But also builtin functions. if (FDecl->getBuiltinID() && FDecl->isImplicit()) return false; } else if (!isa(D)) return false; } return true; } /// Diagnoses obvious problems with the use of the given declaration /// as an expression. This is only actually called for lookups that /// were not overloaded, and it doesn't promise that the declaration /// will in fact be used. static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { if (D->isInvalidDecl()) return true; if (isa(D)) { S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); return true; } if (isa(D)) { S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); return true; } if (isa(D)) { S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); return true; } return false; } // Certain multiversion types should be treated as overloaded even when there is // only one result. static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) { assert(R.isSingleResult() && "Expected only a single result"); const auto *FD = dyn_cast(R.getFoundDecl()); return FD && (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()); } ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL, bool AcceptInvalidDecl) { // If this is a single, fully-resolved result and we don't need ADL, // just build an ordinary singleton decl ref. if (!NeedsADL && R.isSingleResult() && !R.getAsSingle() && !ShouldLookupResultBeMultiVersionOverload(R)) return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(), R.getRepresentativeDecl(), nullptr, AcceptInvalidDecl); // We only need to check the declaration if there's exactly one // result, because in the overloaded case the results can only be // functions and function templates. if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) && CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) return ExprError(); // Otherwise, just build an unresolved lookup expression. Suppress // any lookup-related diagnostics; we'll hash these out later, when // we've picked a target. R.suppressDiagnostics(); UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), SS.getWithLocInContext(Context), R.getLookupNameInfo(), NeedsADL, R.isOverloadedResult(), R.begin(), R.end()); return ULE; } static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, ValueDecl *var); /// Complete semantic analysis for a reference to the given declaration. ExprResult Sema::BuildDeclarationNameExpr( const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, bool AcceptInvalidDecl) { assert(D && "Cannot refer to a NULL declaration"); assert(!isa(D) && "Cannot refer unambiguously to a function template"); SourceLocation Loc = NameInfo.getLoc(); if (CheckDeclInExpr(*this, Loc, D)) { // Recovery from invalid cases (e.g. D is an invalid Decl). // We use the dependent type for the RecoveryExpr to prevent bogus follow-up // diagnostics, as invalid decls use int as a fallback type. return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {}); } if (TemplateDecl *Template = dyn_cast(D)) { // Specifically diagnose references to class templates that are missing // a template argument list. diagnoseMissingTemplateArguments(TemplateName(Template), Loc); return ExprError(); } // Make sure that we're referring to a value. if (!isa(D)) { Diag(Loc, diag::err_ref_non_value) << D << SS.getRange(); Diag(D->getLocation(), diag::note_declared_at); return ExprError(); } // Check whether this declaration can be used. Note that we suppress // this check when we're going to perform argument-dependent lookup // on this function name, because this might not be the function // that overload resolution actually selects. if (DiagnoseUseOfDecl(D, Loc)) return ExprError(); auto *VD = cast(D); // Only create DeclRefExpr's for valid Decl's. if (VD->isInvalidDecl() && !AcceptInvalidDecl) return ExprError(); // Handle members of anonymous structs and unions. If we got here, // and the reference is to a class member indirect field, then this // must be the subject of a pointer-to-member expression. if (IndirectFieldDecl *indirectField = dyn_cast(VD)) if (!indirectField->isCXXClassMember()) return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), indirectField); QualType type = VD->getType(); if (type.isNull()) return ExprError(); ExprValueKind valueKind = VK_PRValue; // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value, // is expanded by some outer '...' in the context of the use. type = type.getNonPackExpansionType(); switch (D->getKind()) { // Ignore all the non-ValueDecl kinds. #define ABSTRACT_DECL(kind) #define VALUE(type, base) #define DECL(type, base) case Decl::type: #include "clang/AST/DeclNodes.inc" llvm_unreachable("invalid value decl kind"); // These shouldn't make it here. case Decl::ObjCAtDefsField: llvm_unreachable("forming non-member reference to ivar?"); // Enum constants are always r-values and never references. // Unresolved using declarations are dependent. case Decl::EnumConstant: case Decl::UnresolvedUsingValue: case Decl::OMPDeclareReduction: case Decl::OMPDeclareMapper: valueKind = VK_PRValue; break; // Fields and indirect fields that got here must be for // pointer-to-member expressions; we just call them l-values for // internal consistency, because this subexpression doesn't really // exist in the high-level semantics. case Decl::Field: case Decl::IndirectField: case Decl::ObjCIvar: assert(getLangOpts().CPlusPlus && "building reference to field in C?"); // These can't have reference type in well-formed programs, but // for internal consistency we do this anyway. type = type.getNonReferenceType(); valueKind = VK_LValue; break; // Non-type template parameters are either l-values or r-values // depending on the type. case Decl::NonTypeTemplateParm: { if (const ReferenceType *reftype = type->getAs()) { type = reftype->getPointeeType(); valueKind = VK_LValue; // even if the parameter is an r-value reference break; } // [expr.prim.id.unqual]p2: // If the entity is a template parameter object for a template // parameter of type T, the type of the expression is const T. // [...] The expression is an lvalue if the entity is a [...] template // parameter object. if (type->isRecordType()) { type = type.getUnqualifiedType().withConst(); valueKind = VK_LValue; break; } // For non-references, we need to strip qualifiers just in case // the template parameter was declared as 'const int' or whatever. valueKind = VK_PRValue; type = type.getUnqualifiedType(); break; } case Decl::Var: case Decl::VarTemplateSpecialization: case Decl::VarTemplatePartialSpecialization: case Decl::Decomposition: case Decl::OMPCapturedExpr: // In C, "extern void blah;" is valid and is an r-value. if (!getLangOpts().CPlusPlus && !type.hasQualifiers() && type->isVoidType()) { valueKind = VK_PRValue; break; } LLVM_FALLTHROUGH; case Decl::ImplicitParam: case Decl::ParmVar: { // These are always l-values. valueKind = VK_LValue; type = type.getNonReferenceType(); // FIXME: Does the addition of const really only apply in // potentially-evaluated contexts? Since the variable isn't actually // captured in an unevaluated context, it seems that the answer is no. if (!isUnevaluatedContext()) { QualType CapturedType = getCapturedDeclRefType(cast(VD), Loc); if (!CapturedType.isNull()) type = CapturedType; } break; } case Decl::Binding: { // These are always lvalues. valueKind = VK_LValue; type = type.getNonReferenceType(); // FIXME: Support lambda-capture of BindingDecls, once CWG actually // decides how that's supposed to work. auto *BD = cast(VD); if (BD->getDeclContext() != CurContext) { auto *DD = dyn_cast_or_null(BD->getDecomposedDecl()); if (DD && DD->hasLocalStorage()) diagnoseUncapturableValueReference(*this, Loc, BD); } break; } case Decl::Function: { if (unsigned BID = cast(VD)->getBuiltinID()) { if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) { type = Context.BuiltinFnTy; valueKind = VK_PRValue; break; } } const FunctionType *fty = type->castAs(); // If we're referring to a function with an __unknown_anytype // result type, make the entire expression __unknown_anytype. if (fty->getReturnType() == Context.UnknownAnyTy) { type = Context.UnknownAnyTy; valueKind = VK_PRValue; break; } // Functions are l-values in C++. if (getLangOpts().CPlusPlus) { valueKind = VK_LValue; break; } // C99 DR 316 says that, if a function type comes from a // function definition (without a prototype), that type is only // used for checking compatibility. Therefore, when referencing // the function, we pretend that we don't have the full function // type. if (!cast(VD)->hasPrototype() && isa(fty)) type = Context.getFunctionNoProtoType(fty->getReturnType(), fty->getExtInfo()); // Functions are r-values in C. valueKind = VK_PRValue; break; } case Decl::CXXDeductionGuide: llvm_unreachable("building reference to deduction guide"); case Decl::MSProperty: case Decl::MSGuid: case Decl::TemplateParamObject: // FIXME: Should MSGuidDecl and template parameter objects be subject to // capture in OpenMP, or duplicated between host and device? valueKind = VK_LValue; break; case Decl::UnnamedGlobalConstant: valueKind = VK_LValue; break; case Decl::CXXMethod: // If we're referring to a method with an __unknown_anytype // result type, make the entire expression __unknown_anytype. // This should only be possible with a type written directly. if (const FunctionProtoType *proto = dyn_cast(VD->getType())) if (proto->getReturnType() == Context.UnknownAnyTy) { type = Context.UnknownAnyTy; valueKind = VK_PRValue; break; } // C++ methods are l-values if static, r-values if non-static. if (cast(VD)->isStatic()) { valueKind = VK_LValue; break; } LLVM_FALLTHROUGH; case Decl::CXXConversion: case Decl::CXXDestructor: case Decl::CXXConstructor: valueKind = VK_PRValue; break; } return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD, /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs); } static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, SmallString<32> &Target) { Target.resize(CharByteWidth * (Source.size() + 1)); char *ResultPtr = &Target[0]; const llvm::UTF8 *ErrorPtr; bool success = llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); (void)success; assert(success); Target.resize(ResultPtr - &Target[0]); } ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc, PredefinedExpr::IdentKind IK) { // Pick the current block, lambda, captured statement or function. Decl *currentDecl = nullptr; if (const BlockScopeInfo *BSI = getCurBlock()) currentDecl = BSI->TheDecl; else if (const LambdaScopeInfo *LSI = getCurLambda()) currentDecl = LSI->CallOperator; else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion()) currentDecl = CSI->TheCapturedDecl; else currentDecl = getCurFunctionOrMethodDecl(); if (!currentDecl) { Diag(Loc, diag::ext_predef_outside_function); currentDecl = Context.getTranslationUnitDecl(); } QualType ResTy; StringLiteral *SL = nullptr; if (cast(currentDecl)->isDependentContext()) ResTy = Context.DependentTy; else { // Pre-defined identifiers are of type char[x], where x is the length of // the string. auto Str = PredefinedExpr::ComputeName(IK, currentDecl); unsigned Length = Str.length(); llvm::APInt LengthI(32, Length + 1); if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) { ResTy = Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst()); SmallString<32> RawChars; ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(), Str, RawChars); ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, ArrayType::Normal, /*IndexTypeQuals*/ 0); SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide, /*Pascal*/ false, ResTy, Loc); } else { ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst()); ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, ArrayType::Normal, /*IndexTypeQuals*/ 0); SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary, /*Pascal*/ false, ResTy, Loc); } } return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL); } ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, SourceLocation LParen, SourceLocation RParen, TypeSourceInfo *TSI) { return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI); } ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc, SourceLocation LParen, SourceLocation RParen, ParsedType ParsedTy) { TypeSourceInfo *TSI = nullptr; QualType Ty = GetTypeFromParser(ParsedTy, &TSI); if (Ty.isNull()) return ExprError(); if (!TSI) TSI = Context.getTrivialTypeSourceInfo(Ty, LParen); return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI); } ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { PredefinedExpr::IdentKind IK; switch (Kind) { default: llvm_unreachable("Unknown simple primary expr!"); case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2] case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break; case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS] case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS] case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS] case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS] case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break; } return BuildPredefinedExpr(Loc, IK); } ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) { SmallString<16> CharBuffer; bool Invalid = false; StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); if (Invalid) return ExprError(); CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), PP, Tok.getKind()); if (Literal.hadError()) return ExprError(); QualType Ty; if (Literal.isWide()) Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++. else if (Literal.isUTF8() && getLangOpts().C2x) Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C2x else if (Literal.isUTF8() && getLangOpts().Char8) Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists. else if (Literal.isUTF16()) Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11. else if (Literal.isUTF32()) Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11. else if (!getLangOpts().CPlusPlus || Literal.isMultiChar()) Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++. else Ty = Context.CharTy; // 'x' -> char in C++; // u8'x' -> char in C11-C17 and in C++ without char8_t. CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii; if (Literal.isWide()) Kind = CharacterLiteral::Wide; else if (Literal.isUTF16()) Kind = CharacterLiteral::UTF16; else if (Literal.isUTF32()) Kind = CharacterLiteral::UTF32; else if (Literal.isUTF8()) Kind = CharacterLiteral::UTF8; Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty, Tok.getLocation()); if (Literal.getUDSuffix().empty()) return Lit; // We're building a user-defined literal. IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); SourceLocation UDSuffixLoc = getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); // Make sure we're allowed user-defined literals here. if (!UDLScope) return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl)); // C++11 [lex.ext]p6: The literal L is treated as a call of the form // operator "" X (ch) return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc, Lit, Tok.getLocation()); } ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) { unsigned IntSize = Context.getTargetInfo().getIntWidth(); return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val), Context.IntTy, Loc); } static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal, QualType Ty, SourceLocation Loc) { const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty); using llvm::APFloat; APFloat Val(Format); APFloat::opStatus result = Literal.GetFloatValue(Val); // Overflow is always an error, but underflow is only an error if // we underflowed to zero (APFloat reports denormals as underflow). if ((result & APFloat::opOverflow) || ((result & APFloat::opUnderflow) && Val.isZero())) { unsigned diagnostic; SmallString<20> buffer; if (result & APFloat::opOverflow) { diagnostic = diag::warn_float_overflow; APFloat::getLargest(Format).toString(buffer); } else { diagnostic = diag::warn_float_underflow; APFloat::getSmallest(Format).toString(buffer); } S.Diag(Loc, diagnostic) << Ty << StringRef(buffer.data(), buffer.size()); } bool isExact = (result == APFloat::opOK); return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc); } bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) { assert(E && "Invalid expression"); if (E->isValueDependent()) return false; QualType QT = E->getType(); if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) { Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT; return true; } llvm::APSInt ValueAPS; ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS); if (R.isInvalid()) return true; bool ValueIsPositive = ValueAPS.isStrictlyPositive(); if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) { Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value) << toString(ValueAPS, 10) << ValueIsPositive; return true; } return false; } ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) { // Fast path for a single digit (which is quite common). A single digit // cannot have a trigraph, escaped newline, radix prefix, or suffix. if (Tok.getLength() == 1) { const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); return ActOnIntegerConstant(Tok.getLocation(), Val-'0'); } SmallString<128> SpellingBuffer; // NumericLiteralParser wants to overread by one character. Add padding to // the buffer in case the token is copied to the buffer. If getSpelling() // returns a StringRef to the memory buffer, it should have a null char at // the EOF, so it is also safe. SpellingBuffer.resize(Tok.getLength() + 1); // Get the spelling of the token, which eliminates trigraphs, etc. bool Invalid = false; StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid); if (Invalid) return ExprError(); NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP.getSourceManager(), PP.getLangOpts(), PP.getTargetInfo(), PP.getDiagnostics()); if (Literal.hadError) return ExprError(); if (Literal.hasUDSuffix()) { // We're building a user-defined literal. IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); SourceLocation UDSuffixLoc = getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); // Make sure we're allowed user-defined literals here. if (!UDLScope) return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl)); QualType CookedTy; if (Literal.isFloatingLiteral()) { // C++11 [lex.ext]p4: If S contains a literal operator with parameter type // long double, the literal is treated as a call of the form // operator "" X (f L) CookedTy = Context.LongDoubleTy; } else { // C++11 [lex.ext]p3: If S contains a literal operator with parameter type // unsigned long long, the literal is treated as a call of the form // operator "" X (n ULL) CookedTy = Context.UnsignedLongLongTy; } DeclarationName OpName = Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); SourceLocation TokLoc = Tok.getLocation(); // Perform literal operator lookup to determine if we're building a raw // literal or a cooked one. LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); switch (LookupLiteralOperator(UDLScope, R, CookedTy, /*AllowRaw*/ true, /*AllowTemplate*/ true, /*AllowStringTemplatePack*/ false, /*DiagnoseMissing*/ !Literal.isImaginary)) { case LOLR_ErrorNoDiagnostic: // Lookup failure for imaginary constants isn't fatal, there's still the // GNU extension producing _Complex types. break; case LOLR_Error: return ExprError(); case LOLR_Cooked: { Expr *Lit; if (Literal.isFloatingLiteral()) { Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation()); } else { llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0); if (Literal.GetIntegerValue(ResultVal)) Diag(Tok.getLocation(), diag::err_integer_literal_too_large) << /* Unsigned */ 1; Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy, Tok.getLocation()); } return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); } case LOLR_Raw: { // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the // literal is treated as a call of the form // operator "" X ("n") unsigned Length = Literal.getUDSuffixOffset(); QualType StrTy = Context.getConstantArrayType( Context.adjustStringLiteralBaseType(Context.CharTy.withConst()), llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0); Expr *Lit = StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ordinary, /*Pascal*/ false, StrTy, &TokLoc, 1); return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); } case LOLR_Template: { // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator // template), L is treated as a call fo the form // operator "" X <'c1', 'c2', ... 'ck'>() // where n is the source character sequence c1 c2 ... ck. TemplateArgumentListInfo ExplicitArgs; unsigned CharBits = Context.getIntWidth(Context.CharTy); bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType(); llvm::APSInt Value(CharBits, CharIsUnsigned); for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) { Value = TokSpelling[I]; TemplateArgument Arg(Context, Value, Context.CharTy); TemplateArgumentLocInfo ArgInfo; ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); } return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc, &ExplicitArgs); } case LOLR_StringTemplatePack: llvm_unreachable("unexpected literal operator lookup result"); } } Expr *Res; if (Literal.isFixedPointLiteral()) { QualType Ty; if (Literal.isAccum) { if (Literal.isHalf) { Ty = Context.ShortAccumTy; } else if (Literal.isLong) { Ty = Context.LongAccumTy; } else { Ty = Context.AccumTy; } } else if (Literal.isFract) { if (Literal.isHalf) { Ty = Context.ShortFractTy; } else if (Literal.isLong) { Ty = Context.LongFractTy; } else { Ty = Context.FractTy; } } if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty); bool isSigned = !Literal.isUnsigned; unsigned scale = Context.getFixedPointScale(Ty); unsigned bit_width = Context.getTypeInfo(Ty).Width; llvm::APInt Val(bit_width, 0, isSigned); bool Overflowed = Literal.GetFixedPointValue(Val, scale); bool ValIsZero = Val.isZero() && !Overflowed; auto MaxVal = Context.getFixedPointMax(Ty).getValue(); if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero) // Clause 6.4.4 - The value of a constant shall be in the range of // representable values for its type, with exception for constants of a // fract type with a value of exactly 1; such a constant shall denote // the maximal value for the type. --Val; else if (Val.ugt(MaxVal) || Overflowed) Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point); Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty, Tok.getLocation(), scale); } else if (Literal.isFloatingLiteral()) { QualType Ty; if (Literal.isHalf){ if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts())) Ty = Context.HalfTy; else { Diag(Tok.getLocation(), diag::err_half_const_requires_fp16); return ExprError(); } } else if (Literal.isFloat) Ty = Context.FloatTy; else if (Literal.isLong) Ty = Context.LongDoubleTy; else if (Literal.isFloat16) Ty = Context.Float16Ty; else if (Literal.isFloat128) Ty = Context.Float128Ty; else Ty = Context.DoubleTy; Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation()); if (Ty == Context.DoubleTy) { if (getLangOpts().SinglePrecisionConstants) { if (Ty->castAs()->getKind() != BuiltinType::Float) { Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); } } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption( "cl_khr_fp64", getLangOpts())) { // Impose single-precision float type when cl_khr_fp64 is not enabled. Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64) << (getLangOpts().getOpenCLCompatibleVersion() >= 300); Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); } } } else if (!Literal.isIntegerLiteral()) { return ExprError(); } else { QualType Ty; // 'long long' is a C99 or C++11 feature. if (!getLangOpts().C99 && Literal.isLongLong) { if (getLangOpts().CPlusPlus) Diag(Tok.getLocation(), getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); else Diag(Tok.getLocation(), diag::ext_c99_longlong); } // 'z/uz' literals are a C++2b feature. if (Literal.isSizeT) Diag(Tok.getLocation(), getLangOpts().CPlusPlus ? getLangOpts().CPlusPlus2b ? diag::warn_cxx20_compat_size_t_suffix : diag::ext_cxx2b_size_t_suffix : diag::err_cxx2b_size_t_suffix); // 'wb/uwb' literals are a C2x feature. We support _BitInt as a type in C++, // but we do not currently support the suffix in C++ mode because it's not // entirely clear whether WG21 will prefer this suffix to return a library // type such as std::bit_int instead of returning a _BitInt. if (Literal.isBitInt && !getLangOpts().CPlusPlus) PP.Diag(Tok.getLocation(), getLangOpts().C2x ? diag::warn_c2x_compat_bitint_suffix : diag::ext_c2x_bitint_suffix); // Get the value in the widest-possible width. What is "widest" depends on // whether the literal is a bit-precise integer or not. For a bit-precise // integer type, try to scan the source to determine how many bits are // needed to represent the value. This may seem a bit expensive, but trying // to get the integer value from an overly-wide APInt is *extremely* // expensive, so the naive approach of assuming // llvm::IntegerType::MAX_INT_BITS is a big performance hit. unsigned BitsNeeded = Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded( Literal.getLiteralDigits(), Literal.getRadix()) : Context.getTargetInfo().getIntMaxTWidth(); llvm::APInt ResultVal(BitsNeeded, 0); if (Literal.GetIntegerValue(ResultVal)) { // If this value didn't fit into uintmax_t, error and force to ull. Diag(Tok.getLocation(), diag::err_integer_literal_too_large) << /* Unsigned */ 1; Ty = Context.UnsignedLongLongTy; assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && "long long is not intmax_t?"); } else { // If this value fits into a ULL, try to figure out what else it fits into // according to the rules of C99 6.4.4.1p5. // Octal, Hexadecimal, and integers with a U suffix are allowed to // be an unsigned int. bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; // Check from smallest to largest, picking the smallest type we can. unsigned Width = 0; // Microsoft specific integer suffixes are explicitly sized. if (Literal.MicrosoftInteger) { if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) { Width = 8; Ty = Context.CharTy; } else { Width = Literal.MicrosoftInteger; Ty = Context.getIntTypeForBitwidth(Width, /*Signed=*/!Literal.isUnsigned); } } // Bit-precise integer literals are automagically-sized based on the // width required by the literal. if (Literal.isBitInt) { // The signed version has one more bit for the sign value. There are no // zero-width bit-precise integers, even if the literal value is 0. Width = std::max(ResultVal.getActiveBits(), 1u) + (Literal.isUnsigned ? 0u : 1u); // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH, // and reset the type to the largest supported width. unsigned int MaxBitIntWidth = Context.getTargetInfo().getMaxBitIntWidth(); if (Width > MaxBitIntWidth) { Diag(Tok.getLocation(), diag::err_integer_literal_too_large) << Literal.isUnsigned; Width = MaxBitIntWidth; } // Reset the result value to the smaller APInt and select the correct // type to be used. Note, we zext even for signed values because the // literal itself is always an unsigned value (a preceeding - is a // unary operator, not part of the literal). ResultVal = ResultVal.zextOrTrunc(Width); Ty = Context.getBitIntType(Literal.isUnsigned, Width); } // Check C++2b size_t literals. if (Literal.isSizeT) { assert(!Literal.MicrosoftInteger && "size_t literals can't be Microsoft literals"); unsigned SizeTSize = Context.getTargetInfo().getTypeWidth( Context.getTargetInfo().getSizeType()); // Does it fit in size_t? if (ResultVal.isIntN(SizeTSize)) { // Does it fit in ssize_t? if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0) Ty = Context.getSignedSizeType(); else if (AllowUnsigned) Ty = Context.getSizeType(); Width = SizeTSize; } } if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong && !Literal.isSizeT) { // Are int/unsigned possibilities? unsigned IntSize = Context.getTargetInfo().getIntWidth(); // Does it fit in a unsigned int? if (ResultVal.isIntN(IntSize)) { // Does it fit in a signed int? if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) Ty = Context.IntTy; else if (AllowUnsigned) Ty = Context.UnsignedIntTy; Width = IntSize; } } // Are long/unsigned long possibilities? if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) { unsigned LongSize = Context.getTargetInfo().getLongWidth(); // Does it fit in a unsigned long? if (ResultVal.isIntN(LongSize)) { // Does it fit in a signed long? if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) Ty = Context.LongTy; else if (AllowUnsigned) Ty = Context.UnsignedLongTy; // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2 // is compatible. else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) { const unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); Diag(Tok.getLocation(), getLangOpts().CPlusPlus ? Literal.isLong ? diag::warn_old_implicitly_unsigned_long_cxx : /*C++98 UB*/ diag:: ext_old_implicitly_unsigned_long_cxx : diag::warn_old_implicitly_unsigned_long) << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0 : /*will be ill-formed*/ 1); Ty = Context.UnsignedLongTy; } Width = LongSize; } } // Check long long if needed. if (Ty.isNull() && !Literal.isSizeT) { unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); // Does it fit in a unsigned long long? if (ResultVal.isIntN(LongLongSize)) { // Does it fit in a signed long long? // To be compatible with MSVC, hex integer literals ending with the // LL or i64 suffix are always signed in Microsoft mode. if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || (getLangOpts().MSVCCompat && Literal.isLongLong))) Ty = Context.LongLongTy; else if (AllowUnsigned) Ty = Context.UnsignedLongLongTy; Width = LongLongSize; } } // If we still couldn't decide a type, we either have 'size_t' literal // that is out of range, or a decimal literal that does not fit in a // signed long long and has no U suffix. if (Ty.isNull()) { if (Literal.isSizeT) Diag(Tok.getLocation(), diag::err_size_t_literal_too_large) << Literal.isUnsigned; else Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed); Ty = Context.UnsignedLongLongTy; Width = Context.getTargetInfo().getLongLongWidth(); } if (ResultVal.getBitWidth() != Width) ResultVal = ResultVal.trunc(Width); } Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); } // If this is an imaginary literal, create the ImaginaryLiteral wrapper. if (Literal.isImaginary) { Res = new (Context) ImaginaryLiteral(Res, Context.getComplexType(Res->getType())); Diag(Tok.getLocation(), diag::ext_imaginary_constant); } return Res; } ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { assert(E && "ActOnParenExpr() missing expr"); QualType ExprTy = E->getType(); if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() && !E->isLValue() && ExprTy->hasFloatingRepresentation()) return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E); return new (Context) ParenExpr(L, R, E); } static bool CheckVecStepTraitOperandType(Sema &S, QualType T, SourceLocation Loc, SourceRange ArgRange) { // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in // scalar or vector data type argument..." // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic // type (C99 6.2.5p18) or void. if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) << T << ArgRange; return true; } assert((T->isVoidType() || !T->isIncompleteType()) && "Scalar types should always be complete"); return false; } static bool CheckExtensionTraitOperandType(Sema &S, QualType T, SourceLocation Loc, SourceRange ArgRange, UnaryExprOrTypeTrait TraitKind) { // Invalid types must be hard errors for SFINAE in C++. if (S.LangOpts.CPlusPlus) return true; // C99 6.5.3.4p1: if (T->isFunctionType() && (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf || TraitKind == UETT_PreferredAlignOf)) { // sizeof(function)/alignof(function) is allowed as an extension. S.Diag(Loc, diag::ext_sizeof_alignof_function_type) << getTraitSpelling(TraitKind) << ArgRange; return false; } // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where // this is an error (OpenCL v1.1 s6.3.k) if (T->isVoidType()) { unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type : diag::ext_sizeof_alignof_void_type; S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange; return false; } return true; } static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, SourceLocation Loc, SourceRange ArgRange, UnaryExprOrTypeTrait TraitKind) { // Reject sizeof(interface) and sizeof(interface) if the // runtime doesn't allow it. if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) { S.Diag(Loc, diag::err_sizeof_nonfragile_interface) << T << (TraitKind == UETT_SizeOf) << ArgRange; return true; } return false; } /// Check whether E is a pointer from a decayed array type (the decayed /// pointer type is equal to T) and emit a warning if it is. static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T, Expr *E) { // Don't warn if the operation changed the type. if (T != E->getType()) return; // Now look for array decays. ImplicitCastExpr *ICE = dyn_cast(E); if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay) return; S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange() << ICE->getType() << ICE->getSubExpr()->getType(); } /// Check the constraints on expression operands to unary type expression /// and type traits. /// /// Completes any types necessary and validates the constraints on the operand /// expression. The logic mostly mirrors the type-based overload, but may modify /// the expression as it completes the type for that expression through template /// instantiation, etc. bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind) { QualType ExprTy = E->getType(); assert(!ExprTy->isReferenceType()); bool IsUnevaluatedOperand = (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep); if (IsUnevaluatedOperand) { ExprResult Result = CheckUnevaluatedOperand(E); if (Result.isInvalid()) return true; E = Result.get(); } // The operand for sizeof and alignof is in an unevaluated expression context, // so side effects could result in unintended consequences. // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes // used to build SFINAE gadgets. // FIXME: Should we consider instantiation-dependent operands to 'alignof'? if (IsUnevaluatedOperand && !inTemplateInstantiation() && !E->isInstantiationDependent() && !E->getType()->isVariableArrayType() && E->HasSideEffects(Context, false)) Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); if (ExprKind == UETT_VecStep) return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(), E->getSourceRange()); // Explicitly list some types as extensions. if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(), E->getSourceRange(), ExprKind)) return false; // 'alignof' applied to an expression only requires the base element type of // the expression to be complete. 'sizeof' requires the expression's type to // be complete (and will attempt to complete it if it's an array of unknown // bound). if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { if (RequireCompleteSizedType( E->getExprLoc(), Context.getBaseElementType(E->getType()), diag::err_sizeof_alignof_incomplete_or_sizeless_type, getTraitSpelling(ExprKind), E->getSourceRange())) return true; } else { if (RequireCompleteSizedExprType( E, diag::err_sizeof_alignof_incomplete_or_sizeless_type, getTraitSpelling(ExprKind), E->getSourceRange())) return true; } // Completing the expression's type may have changed it. ExprTy = E->getType(); assert(!ExprTy->isReferenceType()); if (ExprTy->isFunctionType()) { Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type) << getTraitSpelling(ExprKind) << E->getSourceRange(); return true; } if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(), E->getSourceRange(), ExprKind)) return true; if (ExprKind == UETT_SizeOf) { if (DeclRefExpr *DeclRef = dyn_cast(E->IgnoreParens())) { if (ParmVarDecl *PVD = dyn_cast(DeclRef->getFoundDecl())) { QualType OType = PVD->getOriginalType(); QualType Type = PVD->getType(); if (Type->isPointerType() && OType->isArrayType()) { Diag(E->getExprLoc(), diag::warn_sizeof_array_param) << Type << OType; Diag(PVD->getLocation(), diag::note_declared_at); } } } // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array // decays into a pointer and returns an unintended result. This is most // likely a typo for "sizeof(array) op x". if (BinaryOperator *BO = dyn_cast(E->IgnoreParens())) { warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), BO->getLHS()); warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), BO->getRHS()); } } return false; } /// Check the constraints on operands to unary expression and type /// traits. /// /// This will complete any types necessary, and validate the various constraints /// on those operands. /// /// The UsualUnaryConversions() function is *not* called by this routine. /// C99 6.3.2.1p[2-4] all state: /// Except when it is the operand of the sizeof operator ... /// /// C++ [expr.sizeof]p4 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer /// standard conversions are not applied to the operand of sizeof. /// /// This policy is followed for all of the unary trait expressions. bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc, SourceRange ExprRange, UnaryExprOrTypeTrait ExprKind) { if (ExprType->isDependentType()) return false; // C++ [expr.sizeof]p2: // When applied to a reference or a reference type, the result // is the size of the referenced type. // C++11 [expr.alignof]p3: // When alignof is applied to a reference type, the result // shall be the alignment of the referenced type. if (const ReferenceType *Ref = ExprType->getAs()) ExprType = Ref->getPointeeType(); // C11 6.5.3.4/3, C++11 [expr.alignof]p3: // When alignof or _Alignof is applied to an array type, the result // is the alignment of the element type. if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_OpenMPRequiredSimdAlign) ExprType = Context.getBaseElementType(ExprType); if (ExprKind == UETT_VecStep) return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange); // Explicitly list some types as extensions. if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange, ExprKind)) return false; if (RequireCompleteSizedType( OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type, getTraitSpelling(ExprKind), ExprRange)) return true; if (ExprType->isFunctionType()) { Diag(OpLoc, diag::err_sizeof_alignof_function_type) << getTraitSpelling(ExprKind) << ExprRange; return true; } if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange, ExprKind)) return true; return false; } static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) { // Cannot know anything else if the expression is dependent. if (E->isTypeDependent()) return false; if (E->getObjectKind() == OK_BitField) { S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 1 << E->getSourceRange(); return true; } ValueDecl *D = nullptr; Expr *Inner = E->IgnoreParens(); if (DeclRefExpr *DRE = dyn_cast(Inner)) { D = DRE->getDecl(); } else if (MemberExpr *ME = dyn_cast(Inner)) { D = ME->getMemberDecl(); } // If it's a field, require the containing struct to have a // complete definition so that we can compute the layout. // // This can happen in C++11 onwards, either by naming the member // in a way that is not transformed into a member access expression // (in an unevaluated operand, for instance), or by naming the member // in a trailing-return-type. // // For the record, since __alignof__ on expressions is a GCC // extension, GCC seems to permit this but always gives the // nonsensical answer 0. // // We don't really need the layout here --- we could instead just // directly check for all the appropriate alignment-lowing // attributes --- but that would require duplicating a lot of // logic that just isn't worth duplicating for such a marginal // use-case. if (FieldDecl *FD = dyn_cast_or_null(D)) { // Fast path this check, since we at least know the record has a // definition if we can find a member of it. if (!FD->getParent()->isCompleteDefinition()) { S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type) << E->getSourceRange(); return true; } // Otherwise, if it's a field, and the field doesn't have // reference type, then it must have a complete type (or be a // flexible array member, which we explicitly want to // white-list anyway), which makes the following checks trivial. if (!FD->getType()->isReferenceType()) return false; } return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind); } bool Sema::CheckVecStepExpr(Expr *E) { E = E->IgnoreParens(); // Cannot know anything else if the expression is dependent. if (E->isTypeDependent()) return false; return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); } static void captureVariablyModifiedType(ASTContext &Context, QualType T, CapturingScopeInfo *CSI) { assert(T->isVariablyModifiedType()); assert(CSI != nullptr); // We're going to walk down into the type and look for VLA expressions. do { const Type *Ty = T.getTypePtr(); switch (Ty->getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_TYPE(Class, Base) #define DEPENDENT_TYPE(Class, Base) case Type::Class: #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) #include "clang/AST/TypeNodes.inc" T = QualType(); break; // These types are never variably-modified. case Type::Builtin: case Type::Complex: case Type::Vector: case Type::ExtVector: case Type::ConstantMatrix: case Type::Record: case Type::Enum: case Type::Elaborated: case Type::TemplateSpecialization: case Type::ObjCObject: case Type::ObjCInterface: case Type::ObjCObjectPointer: case Type::ObjCTypeParam: case Type::Pipe: case Type::BitInt: llvm_unreachable("type class is never variably-modified!"); case Type::Adjusted: T = cast(Ty)->getOriginalType(); break; case Type::Decayed: T = cast(Ty)->getPointeeType(); break; case Type::Pointer: T = cast(Ty)->getPointeeType(); break; case Type::BlockPointer: T = cast(Ty)->getPointeeType(); break; case Type::LValueReference: case Type::RValueReference: T = cast(Ty)->getPointeeType(); break; case Type::MemberPointer: T = cast(Ty)->getPointeeType(); break; case Type::ConstantArray: case Type::IncompleteArray: // Losing element qualification here is fine. T = cast(Ty)->getElementType(); break; case Type::VariableArray: { // Losing element qualification here is fine. const VariableArrayType *VAT = cast(Ty); // Unknown size indication requires no size computation. // Otherwise, evaluate and record it. auto Size = VAT->getSizeExpr(); if (Size && !CSI->isVLATypeCaptured(VAT) && (isa(CSI) || isa(CSI))) CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType()); T = VAT->getElementType(); break; } case Type::FunctionProto: case Type::FunctionNoProto: T = cast(Ty)->getReturnType(); break; case Type::Paren: case Type::TypeOf: case Type::UnaryTransform: case Type::Attributed: case Type::BTFTagAttributed: case Type::SubstTemplateTypeParm: case Type::MacroQualified: // Keep walking after single level desugaring. T = T.getSingleStepDesugaredType(Context); break; case Type::Typedef: T = cast(Ty)->desugar(); break; case Type::Decltype: T = cast(Ty)->desugar(); break; case Type::Using: T = cast(Ty)->desugar(); break; case Type::Auto: case Type::DeducedTemplateSpecialization: T = cast(Ty)->getDeducedType(); break; case Type::TypeOfExpr: T = cast(Ty)->getUnderlyingExpr()->getType(); break; case Type::Atomic: T = cast(Ty)->getValueType(); break; } } while (!T.isNull() && T->isVariablyModifiedType()); } /// Build a sizeof or alignof expression given a type operand. ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R) { if (!TInfo) return ExprError(); QualType T = TInfo->getType(); if (!T->isDependentType() && CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) return ExprError(); if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) { if (auto *TT = T->getAs()) { for (auto I = FunctionScopes.rbegin(), E = std::prev(FunctionScopes.rend()); I != E; ++I) { auto *CSI = dyn_cast(*I); if (CSI == nullptr) break; DeclContext *DC = nullptr; if (auto *LSI = dyn_cast(CSI)) DC = LSI->CallOperator; else if (auto *CRSI = dyn_cast(CSI)) DC = CRSI->TheCapturedDecl; else if (auto *BSI = dyn_cast(CSI)) DC = BSI->TheDecl; if (DC) { if (DC->containsDecl(TT->getDecl())) break; captureVariablyModifiedType(Context, T, CSI); } } } } // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. if (isUnevaluatedContext() && ExprKind == UETT_SizeOf && TInfo->getType()->isVariablyModifiedType()) TInfo = TransformToPotentiallyEvaluated(TInfo); return new (Context) UnaryExprOrTypeTraitExpr( ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd()); } /// Build a sizeof or alignof expression given an expression /// operand. ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind) { ExprResult PE = CheckPlaceholderExpr(E); if (PE.isInvalid()) return ExprError(); E = PE.get(); // Verify that the operand is valid. bool isInvalid = false; if (E->isTypeDependent()) { // Delay type-checking for type-dependent expressions. } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { isInvalid = CheckAlignOfExpr(*this, E, ExprKind); } else if (ExprKind == UETT_VecStep) { isInvalid = CheckVecStepExpr(E); } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) { Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr); isInvalid = true; } else if (E->refersToBitField()) { // C99 6.5.3.4p1. Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0; isInvalid = true; } else { isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); } if (isInvalid) return ExprError(); if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) { PE = TransformToPotentiallyEvaluated(E); if (PE.isInvalid()) return ExprError(); E = PE.get(); } // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. return new (Context) UnaryExprOrTypeTraitExpr( ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd()); } /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c /// expr and the same for @c alignof and @c __alignof /// Note that the ArgRange is invalid if isType is false. ExprResult Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, bool IsType, void *TyOrEx, SourceRange ArgRange) { // If error parsing type, ignore. if (!TyOrEx) return ExprError(); if (IsType) { TypeSourceInfo *TInfo; (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); } Expr *ArgEx = (Expr *)TyOrEx; ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); return Result; } static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, bool IsReal) { if (V.get()->isTypeDependent()) return S.Context.DependentTy; // _Real and _Imag are only l-values for normal l-values. if (V.get()->getObjectKind() != OK_Ordinary) { V = S.DefaultLvalueConversion(V.get()); if (V.isInvalid()) return QualType(); } // These operators return the element type of a complex type. if (const ComplexType *CT = V.get()->getType()->getAs()) return CT->getElementType(); // Otherwise they pass through real integer and floating point types here. if (V.get()->getType()->isArithmeticType()) return V.get()->getType(); // Test for placeholders. ExprResult PR = S.CheckPlaceholderExpr(V.get()); if (PR.isInvalid()) return QualType(); if (PR.get() != V.get()) { V = PR; return CheckRealImagOperand(S, V, Loc, IsReal); } // Reject anything else. S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() << (IsReal ? "__real" : "__imag"); return QualType(); } ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, Expr *Input) { UnaryOperatorKind Opc; switch (Kind) { default: llvm_unreachable("Unknown unary op!"); case tok::plusplus: Opc = UO_PostInc; break; case tok::minusminus: Opc = UO_PostDec; break; } // Since this might is a postfix expression, get rid of ParenListExprs. ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input); if (Result.isInvalid()) return ExprError(); Input = Result.get(); return BuildUnaryOp(S, OpLoc, Opc, Input); } /// Diagnose if arithmetic on the given ObjC pointer is illegal. /// /// \return true on error static bool checkArithmeticOnObjCPointer(Sema &S, SourceLocation opLoc, Expr *op) { assert(op->getType()->isObjCObjectPointerType()); if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() && !S.LangOpts.ObjCSubscriptingLegacyRuntime) return false; S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface) << op->getType()->castAs()->getPointeeType() << op->getSourceRange(); return true; } static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) { auto *BaseNoParens = Base->IgnoreParens(); if (auto *MSProp = dyn_cast(BaseNoParens)) return MSProp->getPropertyDecl()->getType()->isArrayType(); return isa(BaseNoParens); } // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent. // Typically this is DependentTy, but can sometimes be more precise. // // There are cases when we could determine a non-dependent type: // - LHS and RHS may have non-dependent types despite being type-dependent // (e.g. unbounded array static members of the current instantiation) // - one may be a dependent-sized array with known element type // - one may be a dependent-typed valid index (enum in current instantiation) // // We *always* return a dependent type, in such cases it is DependentTy. // This avoids creating type-dependent expressions with non-dependent types. // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS, const ASTContext &Ctx) { assert(LHS->isTypeDependent() || RHS->isTypeDependent()); QualType LTy = LHS->getType(), RTy = RHS->getType(); QualType Result = Ctx.DependentTy; if (RTy->isIntegralOrUnscopedEnumerationType()) { if (const PointerType *PT = LTy->getAs()) Result = PT->getPointeeType(); else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe()) Result = AT->getElementType(); } else if (LTy->isIntegralOrUnscopedEnumerationType()) { if (const PointerType *PT = RTy->getAs()) Result = PT->getPointeeType(); else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe()) Result = AT->getElementType(); } // Ensure we return a dependent type. return Result->isDependentType() ? Result : Ctx.DependentTy; } static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args); ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc, MultiExprArg ArgExprs, SourceLocation rbLoc) { if (base && !base->getType().isNull() && base->hasPlaceholderType(BuiltinType::OMPArraySection)) return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(), SourceLocation(), /*Length*/ nullptr, /*Stride=*/nullptr, rbLoc); // Since this might be a postfix expression, get rid of ParenListExprs. if (isa(base)) { ExprResult result = MaybeConvertParenListExprToParenExpr(S, base); if (result.isInvalid()) return ExprError(); base = result.get(); } // Check if base and idx form a MatrixSubscriptExpr. // // Helper to check for comma expressions, which are not allowed as indices for // matrix subscript expressions. auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) { if (isa(E) && cast(E)->isCommaOp()) { Diag(E->getExprLoc(), diag::err_matrix_subscript_comma) << SourceRange(base->getBeginLoc(), rbLoc); return true; } return false; }; // The matrix subscript operator ([][])is considered a single operator. // Separating the index expressions by parenthesis is not allowed. if (base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) && !isa(base)) { Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index) << SourceRange(base->getBeginLoc(), rbLoc); return ExprError(); } // If the base is a MatrixSubscriptExpr, try to create a new // MatrixSubscriptExpr. auto *matSubscriptE = dyn_cast(base); if (matSubscriptE) { assert(ArgExprs.size() == 1); if (CheckAndReportCommaError(ArgExprs.front())) return ExprError(); assert(matSubscriptE->isIncomplete() && "base has to be an incomplete matrix subscript"); return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(), matSubscriptE->getRowIdx(), ArgExprs.front(), rbLoc); } // Handle any non-overload placeholder types in the base and index // expressions. We can't handle overloads here because the other // operand might be an overloadable type, in which case the overload // resolution for the operator overload should get the first crack // at the overload. bool IsMSPropertySubscript = false; if (base->getType()->isNonOverloadPlaceholderType()) { IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base); if (!IsMSPropertySubscript) { ExprResult result = CheckPlaceholderExpr(base); if (result.isInvalid()) return ExprError(); base = result.get(); } } // If the base is a matrix type, try to create a new MatrixSubscriptExpr. if (base->getType()->isMatrixType()) { assert(ArgExprs.size() == 1); if (CheckAndReportCommaError(ArgExprs.front())) return ExprError(); return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr, rbLoc); } if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) { Expr *idx = ArgExprs[0]; if ((isa(idx) && cast(idx)->isCommaOp()) || (isa(idx) && cast(idx)->getOperator() == OO_Comma)) { Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript) << SourceRange(base->getBeginLoc(), rbLoc); } } if (ArgExprs.size() == 1 && ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) { ExprResult result = CheckPlaceholderExpr(ArgExprs[0]); if (result.isInvalid()) return ExprError(); ArgExprs[0] = result.get(); } else { if (checkArgsForPlaceholders(*this, ArgExprs)) return ExprError(); } // Build an unanalyzed expression if either operand is type-dependent. if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 && (base->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) { return new (Context) ArraySubscriptExpr( base, ArgExprs.front(), getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()), VK_LValue, OK_Ordinary, rbLoc); } // MSDN, property (C++) // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx // This attribute can also be used in the declaration of an empty array in a // class or structure definition. For example: // __declspec(property(get=GetX, put=PutX)) int x[]; // The above statement indicates that x[] can be used with one or more array // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), // and p->x[a][b] = i will be turned into p->PutX(a, b, i); if (IsMSPropertySubscript) { assert(ArgExprs.size() == 1); // Build MS property subscript expression if base is MS property reference // or MS property subscript. return new (Context) MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc); } // Use C++ overloaded-operator rules if either operand has record // type. The spec says to do this if either type is *overloadable*, // but enum types can't declare subscript operators or conversion // operators, so there's nothing interesting for overload resolution // to do if there aren't any record types involved. // // ObjC pointers have their own subscripting logic that is not tied // to overload resolution and so should not take this path. if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() && ((base->getType()->isRecordType() || (ArgExprs.size() != 1 || ArgExprs[0]->getType()->isRecordType())))) { return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs); } ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc); if (!Res.isInvalid() && isa(Res.get())) CheckSubscriptAccessOfNoDeref(cast(Res.get())); return Res; } ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) { InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty); InitializationKind Kind = InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation()); InitializationSequence InitSeq(*this, Entity, Kind, E); return InitSeq.Perform(*this, Entity, Kind, E); } ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, Expr *ColumnIdx, SourceLocation RBLoc) { ExprResult BaseR = CheckPlaceholderExpr(Base); if (BaseR.isInvalid()) return BaseR; Base = BaseR.get(); ExprResult RowR = CheckPlaceholderExpr(RowIdx); if (RowR.isInvalid()) return RowR; RowIdx = RowR.get(); if (!ColumnIdx) return new (Context) MatrixSubscriptExpr( Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc); // Build an unanalyzed expression if any of the operands is type-dependent. if (Base->isTypeDependent() || RowIdx->isTypeDependent() || ColumnIdx->isTypeDependent()) return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, Context.DependentTy, RBLoc); ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx); if (ColumnR.isInvalid()) return ColumnR; ColumnIdx = ColumnR.get(); // Check that IndexExpr is an integer expression. If it is a constant // expression, check that it is less than Dim (= the number of elements in the // corresponding dimension). auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim, bool IsColumnIdx) -> Expr * { if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) { Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer) << IsColumnIdx; return nullptr; } if (Optional Idx = IndexExpr->getIntegerConstantExpr(Context)) { if ((*Idx < 0 || *Idx >= Dim)) { Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range) << IsColumnIdx << Dim; return nullptr; } } ExprResult ConvExpr = tryConvertExprToType(IndexExpr, Context.getSizeType()); assert(!ConvExpr.isInvalid() && "should be able to convert any integer type to size type"); return ConvExpr.get(); }; auto *MTy = Base->getType()->getAs(); RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false); ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true); if (!RowIdx || !ColumnIdx) return ExprError(); return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, MTy->getElementType(), RBLoc); } void Sema::CheckAddressOfNoDeref(const Expr *E) { ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); const Expr *StrippedExpr = E->IgnoreParenImpCasts(); // For expressions like `&(*s).b`, the base is recorded and what should be // checked. const MemberExpr *Member = nullptr; while ((Member = dyn_cast(StrippedExpr)) && !Member->isArrow()) StrippedExpr = Member->getBase()->IgnoreParenImpCasts(); LastRecord.PossibleDerefs.erase(StrippedExpr); } void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) { if (isUnevaluatedContext()) return; QualType ResultTy = E->getType(); ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); // Bail if the element is an array since it is not memory access. if (isa(ResultTy)) return; if (ResultTy->hasAttr(attr::NoDeref)) { LastRecord.PossibleDerefs.insert(E); return; } // Check if the base type is a pointer to a member access of a struct // marked with noderef. const Expr *Base = E->getBase(); QualType BaseTy = Base->getType(); if (!(isa(BaseTy) || isa(BaseTy))) // Not a pointer access return; const MemberExpr *Member = nullptr; while ((Member = dyn_cast(Base->IgnoreParenCasts())) && Member->isArrow()) Base = Member->getBase(); if (const auto *Ptr = dyn_cast(Base->getType())) { if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) LastRecord.PossibleDerefs.insert(E); } } ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, Expr *LowerBound, SourceLocation ColonLocFirst, SourceLocation ColonLocSecond, Expr *Length, Expr *Stride, SourceLocation RBLoc) { if (Base->hasPlaceholderType() && !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) { ExprResult Result = CheckPlaceholderExpr(Base); if (Result.isInvalid()) return ExprError(); Base = Result.get(); } if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { ExprResult Result = CheckPlaceholderExpr(LowerBound); if (Result.isInvalid()) return ExprError(); Result = DefaultLvalueConversion(Result.get()); if (Result.isInvalid()) return ExprError(); LowerBound = Result.get(); } if (Length && Length->getType()->isNonOverloadPlaceholderType()) { ExprResult Result = CheckPlaceholderExpr(Length); if (Result.isInvalid()) return ExprError(); Result = DefaultLvalueConversion(Result.get()); if (Result.isInvalid()) return ExprError(); Length = Result.get(); } if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) { ExprResult Result = CheckPlaceholderExpr(Stride); if (Result.isInvalid()) return ExprError(); Result = DefaultLvalueConversion(Result.get()); if (Result.isInvalid()) return ExprError(); Stride = Result.get(); } // Build an unanalyzed expression if either operand is type-dependent. if (Base->isTypeDependent() || (LowerBound && (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) || (Length && (Length->isTypeDependent() || Length->isValueDependent())) || (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) { return new (Context) OMPArraySectionExpr( Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue, OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); } // Perform default conversions. QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base); QualType ResultTy; if (OriginalTy->isAnyPointerType()) { ResultTy = OriginalTy->getPointeeType(); } else if (OriginalTy->isArrayType()) { ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType(); } else { return ExprError( Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value) << Base->getSourceRange()); } // C99 6.5.2.1p1 if (LowerBound) { auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(), LowerBound); if (Res.isInvalid()) return ExprError(Diag(LowerBound->getExprLoc(), diag::err_omp_typecheck_section_not_integer) << 0 << LowerBound->getSourceRange()); LowerBound = Res.get(); if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char) << 0 << LowerBound->getSourceRange(); } if (Length) { auto Res = PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length); if (Res.isInvalid()) return ExprError(Diag(Length->getExprLoc(), diag::err_omp_typecheck_section_not_integer) << 1 << Length->getSourceRange()); Length = Res.get(); if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) Diag(Length->getExprLoc(), diag::warn_omp_section_is_char) << 1 << Length->getSourceRange(); } if (Stride) { ExprResult Res = PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride); if (Res.isInvalid()) return ExprError(Diag(Stride->getExprLoc(), diag::err_omp_typecheck_section_not_integer) << 1 << Stride->getSourceRange()); Stride = Res.get(); if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char) << 1 << Stride->getSourceRange(); } // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, // C++ [expr.sub]p1: The type "T" shall be a completely-defined object // type. Note that functions are not objects, and that (in C99 parlance) // incomplete types are not object types. if (ResultTy->isFunctionType()) { Diag(Base->getExprLoc(), diag::err_omp_section_function_type) << ResultTy << Base->getSourceRange(); return ExprError(); } if (RequireCompleteType(Base->getExprLoc(), ResultTy, diag::err_omp_section_incomplete_type, Base)) return ExprError(); if (LowerBound && !OriginalTy->isAnyPointerType()) { Expr::EvalResult Result; if (LowerBound->EvaluateAsInt(Result, Context)) { // OpenMP 5.0, [2.1.5 Array Sections] // The array section must be a subset of the original array. llvm::APSInt LowerBoundValue = Result.Val.getInt(); if (LowerBoundValue.isNegative()) { Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array) << LowerBound->getSourceRange(); return ExprError(); } } } if (Length) { Expr::EvalResult Result; if (Length->EvaluateAsInt(Result, Context)) { // OpenMP 5.0, [2.1.5 Array Sections] // The length must evaluate to non-negative integers. llvm::APSInt LengthValue = Result.Val.getInt(); if (LengthValue.isNegative()) { Diag(Length->getExprLoc(), diag::err_omp_section_length_negative) << toString(LengthValue, /*Radix=*/10, /*Signed=*/true) << Length->getSourceRange(); return ExprError(); } } } else if (ColonLocFirst.isValid() && (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() && !OriginalTy->isVariableArrayType()))) { // OpenMP 5.0, [2.1.5 Array Sections] // When the size of the array dimension is not known, the length must be // specified explicitly. Diag(ColonLocFirst, diag::err_omp_section_length_undefined) << (!OriginalTy.isNull() && OriginalTy->isArrayType()); return ExprError(); } if (Stride) { Expr::EvalResult Result; if (Stride->EvaluateAsInt(Result, Context)) { // OpenMP 5.0, [2.1.5 Array Sections] // The stride must evaluate to a positive integer. llvm::APSInt StrideValue = Result.Val.getInt(); if (!StrideValue.isStrictlyPositive()) { Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive) << toString(StrideValue, /*Radix=*/10, /*Signed=*/true) << Stride->getSourceRange(); return ExprError(); } } } if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) { ExprResult Result = DefaultFunctionArrayLvalueConversion(Base); if (Result.isInvalid()) return ExprError(); Base = Result.get(); } return new (Context) OMPArraySectionExpr( Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue, OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); } ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, SourceLocation RParenLoc, ArrayRef Dims, ArrayRef Brackets) { if (Base->hasPlaceholderType()) { ExprResult Result = CheckPlaceholderExpr(Base); if (Result.isInvalid()) return ExprError(); Result = DefaultLvalueConversion(Result.get()); if (Result.isInvalid()) return ExprError(); Base = Result.get(); } QualType BaseTy = Base->getType(); // Delay analysis of the types/expressions if instantiation/specialization is // required. if (!BaseTy->isPointerType() && Base->isTypeDependent()) return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base, LParenLoc, RParenLoc, Dims, Brackets); if (!BaseTy->isPointerType() || (!Base->isTypeDependent() && BaseTy->getPointeeType()->isIncompleteType())) return ExprError(Diag(Base->getExprLoc(), diag::err_omp_non_pointer_type_array_shaping_base) << Base->getSourceRange()); SmallVector NewDims; bool ErrorFound = false; for (Expr *Dim : Dims) { if (Dim->hasPlaceholderType()) { ExprResult Result = CheckPlaceholderExpr(Dim); if (Result.isInvalid()) { ErrorFound = true; continue; } Result = DefaultLvalueConversion(Result.get()); if (Result.isInvalid()) { ErrorFound = true; continue; } Dim = Result.get(); } if (!Dim->isTypeDependent()) { ExprResult Result = PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim); if (Result.isInvalid()) { ErrorFound = true; Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer) << Dim->getSourceRange(); continue; } Dim = Result.get(); Expr::EvalResult EvResult; if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) { // OpenMP 5.0, [2.1.4 Array Shaping] // Each si is an integral type expression that must evaluate to a // positive integer. llvm::APSInt Value = EvResult.Val.getInt(); if (!Value.isStrictlyPositive()) { Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive) << toString(Value, /*Radix=*/10, /*Signed=*/true) << Dim->getSourceRange(); ErrorFound = true; continue; } } } NewDims.push_back(Dim); } if (ErrorFound) return ExprError(); return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base, LParenLoc, RParenLoc, NewDims, Brackets); } ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc, SourceLocation LLoc, SourceLocation RLoc, ArrayRef Data) { SmallVector ID; bool IsCorrect = true; for (const OMPIteratorData &D : Data) { TypeSourceInfo *TInfo = nullptr; SourceLocation StartLoc; QualType DeclTy; if (!D.Type.getAsOpaquePtr()) { // OpenMP 5.0, 2.1.6 Iterators // In an iterator-specifier, if the iterator-type is not specified then // the type of that iterator is of int type. DeclTy = Context.IntTy; StartLoc = D.DeclIdentLoc; } else { DeclTy = GetTypeFromParser(D.Type, &TInfo); StartLoc = TInfo->getTypeLoc().getBeginLoc(); } bool IsDeclTyDependent = DeclTy->isDependentType() || DeclTy->containsUnexpandedParameterPack() || DeclTy->isInstantiationDependentType(); if (!IsDeclTyDependent) { if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) { // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ // The iterator-type must be an integral or pointer type. Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) << DeclTy; IsCorrect = false; continue; } if (DeclTy.isConstant(Context)) { // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ // The iterator-type must not be const qualified. Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) << DeclTy; IsCorrect = false; continue; } } // Iterator declaration. assert(D.DeclIdent && "Identifier expected."); // Always try to create iterator declarator to avoid extra error messages // about unknown declarations use. auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc, D.DeclIdent, DeclTy, TInfo, SC_None); VD->setImplicit(); if (S) { // Check for conflicting previous declaration. DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc); LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForVisibleRedeclaration); Previous.suppressDiagnostics(); LookupName(Previous, S); FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, /*AllowInlineNamespace=*/false); if (!Previous.empty()) { NamedDecl *Old = Previous.getRepresentativeDecl(); Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName(); Diag(Old->getLocation(), diag::note_previous_definition); } else { PushOnScopeChains(VD, S); } } else { CurContext->addDecl(VD); } Expr *Begin = D.Range.Begin; if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) { ExprResult BeginRes = PerformImplicitConversion(Begin, DeclTy, AA_Converting); Begin = BeginRes.get(); } Expr *End = D.Range.End; if (!IsDeclTyDependent && End && !End->isTypeDependent()) { ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting); End = EndRes.get(); } Expr *Step = D.Range.Step; if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) { if (!Step->getType()->isIntegralType(Context)) { Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral) << Step << Step->getSourceRange(); IsCorrect = false; continue; } Optional Result = Step->getIntegerConstantExpr(Context); // OpenMP 5.0, 2.1.6 Iterators, Restrictions // If the step expression of a range-specification equals zero, the // behavior is unspecified. if (Result && Result->isZero()) { Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero) << Step << Step->getSourceRange(); IsCorrect = false; continue; } } if (!Begin || !End || !IsCorrect) { IsCorrect = false; continue; } OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back(); IDElem.IteratorDecl = VD; IDElem.AssignmentLoc = D.AssignLoc; IDElem.Range.Begin = Begin; IDElem.Range.End = End; IDElem.Range.Step = Step; IDElem.ColonLoc = D.ColonLoc; IDElem.SecondColonLoc = D.SecColonLoc; } if (!IsCorrect) { // Invalidate all created iterator declarations if error is found. for (const OMPIteratorExpr::IteratorDefinition &D : ID) { if (Decl *ID = D.IteratorDecl) ID->setInvalidDecl(); } return ExprError(); } SmallVector Helpers; if (!CurContext->isDependentContext()) { // Build number of ityeration for each iteration range. // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) : // ((Begini-Stepi-1-Endi) / -Stepi); for (OMPIteratorExpr::IteratorDefinition &D : ID) { // (Endi - Begini) ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End, D.Range.Begin); if(!Res.isUsable()) { IsCorrect = false; continue; } ExprResult St, St1; if (D.Range.Step) { St = D.Range.Step; // (Endi - Begini) + Stepi Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get()); if (!Res.isUsable()) { IsCorrect = false; continue; } // (Endi - Begini) + Stepi - 1 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(), ActOnIntegerConstant(D.AssignmentLoc, 1).get()); if (!Res.isUsable()) { IsCorrect = false; continue; } // ((Endi - Begini) + Stepi - 1) / Stepi Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get()); if (!Res.isUsable()) { IsCorrect = false; continue; } St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step); // (Begini - Endi) ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.Begin, D.Range.End); if (!Res1.isUsable()) { IsCorrect = false; continue; } // (Begini - Endi) - Stepi Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get()); if (!Res1.isUsable()) { IsCorrect = false; continue; } // (Begini - Endi) - Stepi - 1 Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(), ActOnIntegerConstant(D.AssignmentLoc, 1).get()); if (!Res1.isUsable()) { IsCorrect = false; continue; } // ((Begini - Endi) - Stepi - 1) / (-Stepi) Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get()); if (!Res1.isUsable()) { IsCorrect = false; continue; } // Stepi > 0. ExprResult CmpRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step, ActOnIntegerConstant(D.AssignmentLoc, 0).get()); if (!CmpRes.isUsable()) { IsCorrect = false; continue; } Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(), Res.get(), Res1.get()); if (!Res.isUsable()) { IsCorrect = false; continue; } } Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false); if (!Res.isUsable()) { IsCorrect = false; continue; } // Build counter update. // Build counter. auto *CounterVD = VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(), D.IteratorDecl->getBeginLoc(), nullptr, Res.get()->getType(), nullptr, SC_None); CounterVD->setImplicit(); ExprResult RefRes = BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue, D.IteratorDecl->getBeginLoc()); // Build counter update. // I = Begini + counter * Stepi; ExprResult UpdateRes; if (D.Range.Step) { UpdateRes = CreateBuiltinBinOp( D.AssignmentLoc, BO_Mul, DefaultLvalueConversion(RefRes.get()).get(), St.get()); } else { UpdateRes = DefaultLvalueConversion(RefRes.get()); } if (!UpdateRes.isUsable()) { IsCorrect = false; continue; } UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin, UpdateRes.get()); if (!UpdateRes.isUsable()) { IsCorrect = false; continue; } ExprResult VDRes = BuildDeclRefExpr(cast(D.IteratorDecl), cast(D.IteratorDecl)->getType(), VK_LValue, D.IteratorDecl->getBeginLoc()); UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(), UpdateRes.get()); if (!UpdateRes.isUsable()) { IsCorrect = false; continue; } UpdateRes = ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true); if (!UpdateRes.isUsable()) { IsCorrect = false; continue; } ExprResult CounterUpdateRes = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get()); if (!CounterUpdateRes.isUsable()) { IsCorrect = false; continue; } CounterUpdateRes = ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true); if (!CounterUpdateRes.isUsable()) { IsCorrect = false; continue; } OMPIteratorHelperData &HD = Helpers.emplace_back(); HD.CounterVD = CounterVD; HD.Upper = Res.get(); HD.Update = UpdateRes.get(); HD.CounterUpdate = CounterUpdateRes.get(); } } else { Helpers.assign(ID.size(), {}); } if (!IsCorrect) { // Invalidate all created iterator declarations if error is found. for (const OMPIteratorExpr::IteratorDefinition &D : ID) { if (Decl *ID = D.IteratorDecl) ID->setInvalidDecl(); } return ExprError(); } return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc, LLoc, RLoc, ID, Helpers); } ExprResult Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc) { Expr *LHSExp = Base; Expr *RHSExp = Idx; ExprValueKind VK = VK_LValue; ExprObjectKind OK = OK_Ordinary; // Per C++ core issue 1213, the result is an xvalue if either operand is // a non-lvalue array, and an lvalue otherwise. if (getLangOpts().CPlusPlus11) { for (auto *Op : {LHSExp, RHSExp}) { Op = Op->IgnoreImplicit(); if (Op->getType()->isArrayType() && !Op->isLValue()) VK = VK_XValue; } } // Perform default conversions. if (!LHSExp->getType()->getAs()) { ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); if (Result.isInvalid()) return ExprError(); LHSExp = Result.get(); } ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); if (Result.isInvalid()) return ExprError(); RHSExp = Result.get(); QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent // to the expression *((e1)+(e2)). This means the array "Base" may actually be // in the subscript position. As a result, we need to derive the array base // and index from the expression types. Expr *BaseExpr, *IndexExpr; QualType ResultType; if (LHSTy->isDependentType() || RHSTy->isDependentType()) { BaseExpr = LHSExp; IndexExpr = RHSExp; ResultType = getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext()); } else if (const PointerType *PTy = LHSTy->getAs()) { BaseExpr = LHSExp; IndexExpr = RHSExp; ResultType = PTy->getPointeeType(); } else if (const ObjCObjectPointerType *PTy = LHSTy->getAs()) { BaseExpr = LHSExp; IndexExpr = RHSExp; // Use custom logic if this should be the pseudo-object subscript // expression. if (!LangOpts.isSubscriptPointerArithmetic()) return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr, nullptr); ResultType = PTy->getPointeeType(); } else if (const PointerType *PTy = RHSTy->getAs()) { // Handle the uncommon case of "123[Ptr]". BaseExpr = RHSExp; IndexExpr = LHSExp; ResultType = PTy->getPointeeType(); } else if (const ObjCObjectPointerType *PTy = RHSTy->getAs()) { // Handle the uncommon case of "123[Ptr]". BaseExpr = RHSExp; IndexExpr = LHSExp; ResultType = PTy->getPointeeType(); if (!LangOpts.isSubscriptPointerArithmetic()) { Diag(LLoc, diag::err_subscript_nonfragile_interface) << ResultType << BaseExpr->getSourceRange(); return ExprError(); } } else if (const VectorType *VTy = LHSTy->getAs()) { BaseExpr = LHSExp; // vectors: V[123] IndexExpr = RHSExp; // We apply C++ DR1213 to vector subscripting too. if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) { ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); if (Materialized.isInvalid()) return ExprError(); LHSExp = Materialized.get(); } VK = LHSExp->getValueKind(); if (VK != VK_PRValue) OK = OK_VectorComponent; ResultType = VTy->getElementType(); QualType BaseType = BaseExpr->getType(); Qualifiers BaseQuals = BaseType.getQualifiers(); Qualifiers MemberQuals = ResultType.getQualifiers(); Qualifiers Combined = BaseQuals + MemberQuals; if (Combined != MemberQuals) ResultType = Context.getQualifiedType(ResultType, Combined); } else if (LHSTy->isBuiltinType() && LHSTy->getAs()->isVLSTBuiltinType()) { const BuiltinType *BTy = LHSTy->getAs(); if (BTy->isSVEBool()) return ExprError(Diag(LLoc, diag::err_subscript_svbool_t) << LHSExp->getSourceRange() << RHSExp->getSourceRange()); BaseExpr = LHSExp; IndexExpr = RHSExp; if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) { ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); if (Materialized.isInvalid()) return ExprError(); LHSExp = Materialized.get(); } VK = LHSExp->getValueKind(); if (VK != VK_PRValue) OK = OK_VectorComponent; ResultType = BTy->getSveEltType(Context); QualType BaseType = BaseExpr->getType(); Qualifiers BaseQuals = BaseType.getQualifiers(); Qualifiers MemberQuals = ResultType.getQualifiers(); Qualifiers Combined = BaseQuals + MemberQuals; if (Combined != MemberQuals) ResultType = Context.getQualifiedType(ResultType, Combined); } else if (LHSTy->isArrayType()) { // If we see an array that wasn't promoted by // DefaultFunctionArrayLvalueConversion, it must be an array that // wasn't promoted because of the C90 rule that doesn't // allow promoting non-lvalue arrays. Warn, then // force the promotion here. Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) << LHSExp->getSourceRange(); LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), CK_ArrayToPointerDecay).get(); LHSTy = LHSExp->getType(); BaseExpr = LHSExp; IndexExpr = RHSExp; ResultType = LHSTy->castAs()->getPointeeType(); } else if (RHSTy->isArrayType()) { // Same as previous, except for 123[f().a] case Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) << RHSExp->getSourceRange(); RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), CK_ArrayToPointerDecay).get(); RHSTy = RHSExp->getType(); BaseExpr = RHSExp; IndexExpr = LHSExp; ResultType = RHSTy->castAs()->getPointeeType(); } else { return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) << LHSExp->getSourceRange() << RHSExp->getSourceRange()); } // C99 6.5.2.1p1 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) << IndexExpr->getSourceRange()); if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) && !IndexExpr->isTypeDependent()) Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, // C++ [expr.sub]p1: The type "T" shall be a completely-defined object // type. Note that Functions are not objects, and that (in C99 parlance) // incomplete types are not object types. if (ResultType->isFunctionType()) { Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type) << ResultType << BaseExpr->getSourceRange(); return ExprError(); } if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) { // GNU extension: subscripting on pointer to void Diag(LLoc, diag::ext_gnu_subscript_void_type) << BaseExpr->getSourceRange(); // C forbids expressions of unqualified void type from being l-values. // See IsCForbiddenLValueType. if (!ResultType.hasQualifiers()) VK = VK_PRValue; } else if (!ResultType->isDependentType() && RequireCompleteSizedType( LLoc, ResultType, diag::err_subscript_incomplete_or_sizeless_type, BaseExpr)) return ExprError(); assert(VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()); if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() && FunctionScopes.size() > 1) { if (auto *TT = LHSExp->IgnoreParenImpCasts()->getType()->getAs()) { for (auto I = FunctionScopes.rbegin(), E = std::prev(FunctionScopes.rend()); I != E; ++I) { auto *CSI = dyn_cast(*I); if (CSI == nullptr) break; DeclContext *DC = nullptr; if (auto *LSI = dyn_cast(CSI)) DC = LSI->CallOperator; else if (auto *CRSI = dyn_cast(CSI)) DC = CRSI->TheCapturedDecl; else if (auto *BSI = dyn_cast(CSI)) DC = BSI->TheDecl; if (DC) { if (DC->containsDecl(TT->getDecl())) break; captureVariablyModifiedType( Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI); } } } } return new (Context) ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc); } bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param) { if (Param->hasUnparsedDefaultArg()) { // If we've already cleared out the location for the default argument, // that means we're parsing it right now. if (!UnparsedDefaultArgLocs.count(Param)) { Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; Diag(CallLoc, diag::note_recursive_default_argument_used_here); Param->setInvalidDecl(); return true; } Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later) << FD << cast(FD->getDeclContext()); Diag(UnparsedDefaultArgLocs[Param], diag::note_default_argument_declared_here); return true; } if (Param->hasUninstantiatedDefaultArg() && InstantiateDefaultArgument(CallLoc, FD, Param)) return true; assert(Param->hasInit() && "default argument but no initializer?"); // If the default expression creates temporaries, we need to // push them to the current stack of expression temporaries so they'll // be properly destroyed. // FIXME: We should really be rebuilding the default argument with new // bound temporaries; see the comment in PR5810. // We don't need to do that with block decls, though, because // blocks in default argument expression can never capture anything. if (auto Init = dyn_cast(Param->getInit())) { // Set the "needs cleanups" bit regardless of whether there are // any explicit objects. Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects()); // Append all the objects to the cleanup list. Right now, this // should always be a no-op, because blocks in default argument // expressions should never be able to capture anything. assert(!Init->getNumObjects() && "default argument expression has capturing blocks?"); } // We already type-checked the argument, so we know it works. // Just mark all of the declarations in this potentially-evaluated expression // as being "referenced". EnterExpressionEvaluationContext EvalContext( *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param); MarkDeclarationsReferencedInExpr(Param->getDefaultArg(), /*SkipLocalVariables=*/true); return false; } ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param) { assert(Param->hasDefaultArg() && "can't build nonexistent default arg"); if (CheckCXXDefaultArgExpr(CallLoc, FD, Param)) return ExprError(); return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext); } Sema::VariadicCallType Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, Expr *Fn) { if (Proto && Proto->isVariadic()) { if (isa_and_nonnull(FDecl)) return VariadicConstructor; else if (Fn && Fn->getType()->isBlockPointerType()) return VariadicBlock; else if (FDecl) { if (CXXMethodDecl *Method = dyn_cast_or_null(FDecl)) if (Method->isInstance()) return VariadicMethod; } else if (Fn && Fn->getType() == Context.BoundMemberTy) return VariadicMethod; return VariadicFunction; } return VariadicDoesNotApply; } namespace { class FunctionCallCCC final : public FunctionCallFilterCCC { public: FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName, unsigned NumArgs, MemberExpr *ME) : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME), FunctionName(FuncName) {} bool ValidateCandidate(const TypoCorrection &candidate) override { if (!candidate.getCorrectionSpecifier() || candidate.getCorrectionAsIdentifierInfo() != FunctionName) { return false; } return FunctionCallFilterCCC::ValidateCandidate(candidate); } std::unique_ptr clone() override { return std::make_unique(*this); } private: const IdentifierInfo *const FunctionName; }; } static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn, FunctionDecl *FDecl, ArrayRef Args) { MemberExpr *ME = dyn_cast(Fn); DeclarationName FuncName = FDecl->getDeclName(); SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc(); FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME); if (TypoCorrection Corrected = S.CorrectTypo( DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName, S.getScopeForContext(S.CurContext), nullptr, CCC, Sema::CTK_ErrorRecovery)) { if (NamedDecl *ND = Corrected.getFoundDecl()) { if (Corrected.isOverloaded()) { OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal); OverloadCandidateSet::iterator Best; for (NamedDecl *CD : Corrected) { if (FunctionDecl *FD = dyn_cast(CD)) S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args, OCS); } switch (OCS.BestViableFunction(S, NameLoc, Best)) { case OR_Success: ND = Best->FoundDecl; Corrected.setCorrectionDecl(ND); break; default: break; } } ND = ND->getUnderlyingDecl(); if (isa(ND) || isa(ND)) return Corrected; } } return TypoCorrection(); } /// ConvertArgumentsForCall - Converts the arguments specified in /// Args/NumArgs to the parameter types of the function FDecl with /// function prototype Proto. Call is the call expression itself, and /// Fn is the function expression. For a C++ member function, this /// routine does not attempt to convert the object argument. Returns /// true if the call is ill-formed. bool Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl, const FunctionProtoType *Proto, ArrayRef Args, SourceLocation RParenLoc, bool IsExecConfig) { // Bail out early if calling a builtin with custom typechecking. if (FDecl) if (unsigned ID = FDecl->getBuiltinID()) if (Context.BuiltinInfo.hasCustomTypechecking(ID)) return false; // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by // assignment, to the types of the corresponding parameter, ... unsigned NumParams = Proto->getNumParams(); bool Invalid = false; unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams; unsigned FnKind = Fn->getType()->isBlockPointerType() ? 1 /* block */ : (IsExecConfig ? 3 /* kernel function (exec config) */ : 0 /* function */); // If too few arguments are available (and we don't have default // arguments for the remaining parameters), don't make the call. if (Args.size() < NumParams) { if (Args.size() < MinArgs) { TypoCorrection TC; if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { unsigned diag_id = MinArgs == NumParams && !Proto->isVariadic() ? diag::err_typecheck_call_too_few_args_suggest : diag::err_typecheck_call_too_few_args_at_least_suggest; diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs << static_cast(Args.size()) << TC.getCorrectionRange()); } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName()) Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic() ? diag::err_typecheck_call_too_few_args_one : diag::err_typecheck_call_too_few_args_at_least_one) << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange(); else Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic() ? diag::err_typecheck_call_too_few_args : diag::err_typecheck_call_too_few_args_at_least) << FnKind << MinArgs << static_cast(Args.size()) << Fn->getSourceRange(); // Emit the location of the prototype. if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; return true; } // We reserve space for the default arguments when we create // the call expression, before calling ConvertArgumentsForCall. assert((Call->getNumArgs() == NumParams) && "We should have reserved space for the default arguments before!"); } // If too many are passed and not variadic, error on the extras and drop // them. if (Args.size() > NumParams) { if (!Proto->isVariadic()) { TypoCorrection TC; if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { unsigned diag_id = MinArgs == NumParams && !Proto->isVariadic() ? diag::err_typecheck_call_too_many_args_suggest : diag::err_typecheck_call_too_many_args_at_most_suggest; diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams << static_cast(Args.size()) << TC.getCorrectionRange()); } else if (NumParams == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName()) Diag(Args[NumParams]->getBeginLoc(), MinArgs == NumParams ? diag::err_typecheck_call_too_many_args_one : diag::err_typecheck_call_too_many_args_at_most_one) << FnKind << FDecl->getParamDecl(0) << static_cast(Args.size()) << Fn->getSourceRange() << SourceRange(Args[NumParams]->getBeginLoc(), Args.back()->getEndLoc()); else Diag(Args[NumParams]->getBeginLoc(), MinArgs == NumParams ? diag::err_typecheck_call_too_many_args : diag::err_typecheck_call_too_many_args_at_most) << FnKind << NumParams << static_cast(Args.size()) << Fn->getSourceRange() << SourceRange(Args[NumParams]->getBeginLoc(), Args.back()->getEndLoc()); // Emit the location of the prototype. if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; // This deletes the extra arguments. Call->shrinkNumArgs(NumParams); return true; } } SmallVector AllArgs; VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn); Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args, AllArgs, CallType); if (Invalid) return true; unsigned TotalNumArgs = AllArgs.size(); for (unsigned i = 0; i < TotalNumArgs; ++i) Call->setArg(i, AllArgs[i]); Call->computeDependence(); return false; } bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, const FunctionProtoType *Proto, unsigned FirstParam, ArrayRef Args, SmallVectorImpl &AllArgs, VariadicCallType CallType, bool AllowExplicit, bool IsListInitialization) { unsigned NumParams = Proto->getNumParams(); bool Invalid = false; size_t ArgIx = 0; // Continue to check argument types (even if we have too few/many args). for (unsigned i = FirstParam; i < NumParams; i++) { QualType ProtoArgType = Proto->getParamType(i); Expr *Arg; ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr; if (ArgIx < Args.size()) { Arg = Args[ArgIx++]; if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType, diag::err_call_incomplete_argument, Arg)) return true; // Strip the unbridged-cast placeholder expression off, if applicable. bool CFAudited = false; if (Arg->getType() == Context.ARCUnbridgedCastTy && FDecl && FDecl->hasAttr() && (!Param || !Param->hasAttr())) Arg = stripARCUnbridgedCast(Arg); else if (getLangOpts().ObjCAutoRefCount && FDecl && FDecl->hasAttr() && (!Param || !Param->hasAttr())) CFAudited = true; if (Proto->getExtParameterInfo(i).isNoEscape() && ProtoArgType->isBlockPointerType()) if (auto *BE = dyn_cast(Arg->IgnoreParenNoopCasts(Context))) BE->getBlockDecl()->setDoesNotEscape(); InitializedEntity Entity = Param ? InitializedEntity::InitializeParameter(Context, Param, ProtoArgType) : InitializedEntity::InitializeParameter( Context, ProtoArgType, Proto->isParamConsumed(i)); // Remember that parameter belongs to a CF audited API. if (CFAudited) Entity.setParameterCFAudited(); ExprResult ArgE = PerformCopyInitialization( Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit); if (ArgE.isInvalid()) return true; Arg = ArgE.getAs(); } else { assert(Param && "can't use default arguments without a known callee"); ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); if (ArgExpr.isInvalid()) return true; Arg = ArgExpr.getAs(); } // Check for array bounds violations for each argument to the call. This // check only triggers warnings when the argument isn't a more complex Expr // with its own checking, such as a BinaryOperator. CheckArrayAccess(Arg); // Check for violations of C99 static array rules (C99 6.7.5.3p7). CheckStaticArrayArgument(CallLoc, Param, Arg); AllArgs.push_back(Arg); } // If this is a variadic call, handle args passed through "...". if (CallType != VariadicDoesNotApply) { // Assume that extern "C" functions with variadic arguments that // return __unknown_anytype aren't *really* variadic. if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl && FDecl->isExternC()) { for (Expr *A : Args.slice(ArgIx)) { QualType paramType; // ignored ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType); Invalid |= arg.isInvalid(); AllArgs.push_back(arg.get()); } // Otherwise do argument promotion, (C99 6.5.2.2p7). } else { for (Expr *A : Args.slice(ArgIx)) { ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl); Invalid |= Arg.isInvalid(); AllArgs.push_back(Arg.get()); } } // Check for array bounds violations. for (Expr *A : Args.slice(ArgIx)) CheckArrayAccess(A); } return Invalid; } static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) { TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc(); if (DecayedTypeLoc DTL = TL.getAs()) TL = DTL.getOriginalLoc(); if (ArrayTypeLoc ATL = TL.getAs()) S.Diag(PVD->getLocation(), diag::note_callee_static_array) << ATL.getLocalSourceRange(); } /// CheckStaticArrayArgument - If the given argument corresponds to a static /// array parameter, check that it is non-null, and that if it is formed by /// array-to-pointer decay, the underlying array is sufficiently large. /// /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the /// array type derivation, then for each call to the function, the value of the /// corresponding actual argument shall provide access to the first element of /// an array with at least as many elements as specified by the size expression. void Sema::CheckStaticArrayArgument(SourceLocation CallLoc, ParmVarDecl *Param, const Expr *ArgExpr) { // Static array parameters are not supported in C++. if (!Param || getLangOpts().CPlusPlus) return; QualType OrigTy = Param->getOriginalType(); const ArrayType *AT = Context.getAsArrayType(OrigTy); if (!AT || AT->getSizeModifier() != ArrayType::Static) return; if (ArgExpr->isNullPointerConstant(Context, Expr::NPC_NeverValueDependent)) { Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); DiagnoseCalleeStaticArrayParam(*this, Param); return; } const ConstantArrayType *CAT = dyn_cast(AT); if (!CAT) return; const ConstantArrayType *ArgCAT = Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType()); if (!ArgCAT) return; if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(), ArgCAT->getElementType())) { if (ArgCAT->getSize().ult(CAT->getSize())) { Diag(CallLoc, diag::warn_static_array_too_small) << ArgExpr->getSourceRange() << (unsigned)ArgCAT->getSize().getZExtValue() << (unsigned)CAT->getSize().getZExtValue() << 0; DiagnoseCalleeStaticArrayParam(*this, Param); } return; } Optional ArgSize = getASTContext().getTypeSizeInCharsIfKnown(ArgCAT); Optional ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT); if (ArgSize && ParmSize && *ArgSize < *ParmSize) { Diag(CallLoc, diag::warn_static_array_too_small) << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity() << (unsigned)ParmSize->getQuantity() << 1; DiagnoseCalleeStaticArrayParam(*this, Param); } } /// Given a function expression of unknown-any type, try to rebuild it /// to have a function type. static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); /// Is the given type a placeholder that we need to lower out /// immediately during argument processing? static bool isPlaceholderToRemoveAsArg(QualType type) { // Placeholders are never sugared. const BuiltinType *placeholder = dyn_cast(type); if (!placeholder) return false; switch (placeholder->getKind()) { // Ignore all the non-placeholder types. #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ case BuiltinType::Id: #include "clang/Basic/OpenCLImageTypes.def" #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ case BuiltinType::Id: #include "clang/Basic/OpenCLExtensionTypes.def" // In practice we'll never use this, since all SVE types are sugared // via TypedefTypes rather than exposed directly as BuiltinTypes. #define SVE_TYPE(Name, Id, SingletonId) \ case BuiltinType::Id: #include "clang/Basic/AArch64SVEACLETypes.def" #define PPC_VECTOR_TYPE(Name, Id, Size) \ case BuiltinType::Id: #include "clang/Basic/PPCTypes.def" #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: #include "clang/Basic/RISCVVTypes.def" #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: #include "clang/AST/BuiltinTypes.def" return false; // We cannot lower out overload sets; they might validly be resolved // by the call machinery. case BuiltinType::Overload: return false; // Unbridged casts in ARC can be handled in some call positions and // should be left in place. case BuiltinType::ARCUnbridgedCast: return false; // Pseudo-objects should be converted as soon as possible. case BuiltinType::PseudoObject: return true; // The debugger mode could theoretically but currently does not try // to resolve unknown-typed arguments based on known parameter types. case BuiltinType::UnknownAny: return true; // These are always invalid as call arguments and should be reported. case BuiltinType::BoundMember: case BuiltinType::BuiltinFn: case BuiltinType::IncompleteMatrixIdx: case BuiltinType::OMPArraySection: case BuiltinType::OMPArrayShaping: case BuiltinType::OMPIterator: return true; } llvm_unreachable("bad builtin type kind"); } /// Check an argument list for placeholders that we won't try to /// handle later. static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) { // Apply this processing to all the arguments at once instead of // dying at the first failure. bool hasInvalid = false; for (size_t i = 0, e = args.size(); i != e; i++) { if (isPlaceholderToRemoveAsArg(args[i]->getType())) { ExprResult result = S.CheckPlaceholderExpr(args[i]); if (result.isInvalid()) hasInvalid = true; else args[i] = result.get(); } } return hasInvalid; } /// If a builtin function has a pointer argument with no explicit address /// space, then it should be able to accept a pointer to any address /// space as input. In order to do this, we need to replace the /// standard builtin declaration with one that uses the same address space /// as the call. /// /// \returns nullptr If this builtin is not a candidate for a rewrite i.e. /// it does not contain any pointer arguments without /// an address space qualifer. Otherwise the rewritten /// FunctionDecl is returned. /// TODO: Handle pointer return types. static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context, FunctionDecl *FDecl, MultiExprArg ArgExprs) { QualType DeclType = FDecl->getType(); const FunctionProtoType *FT = dyn_cast(DeclType); if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT || ArgExprs.size() < FT->getNumParams()) return nullptr; bool NeedsNewDecl = false; unsigned i = 0; SmallVector OverloadParams; for (QualType ParamType : FT->param_types()) { // Convert array arguments to pointer to simplify type lookup. ExprResult ArgRes = Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]); if (ArgRes.isInvalid()) return nullptr; Expr *Arg = ArgRes.get(); QualType ArgType = Arg->getType(); if (!ParamType->isPointerType() || ParamType.hasAddressSpace() || !ArgType->isPointerType() || !ArgType->getPointeeType().hasAddressSpace()) { OverloadParams.push_back(ParamType); continue; } QualType PointeeType = ParamType->getPointeeType(); if (PointeeType.hasAddressSpace()) continue; NeedsNewDecl = true; LangAS AS = ArgType->getPointeeType().getAddressSpace(); PointeeType = Context.getAddrSpaceQualType(PointeeType, AS); OverloadParams.push_back(Context.getPointerType(PointeeType)); } if (!NeedsNewDecl) return nullptr; FunctionProtoType::ExtProtoInfo EPI; EPI.Variadic = FT->isVariadic(); QualType OverloadTy = Context.getFunctionType(FT->getReturnType(), OverloadParams, EPI); DeclContext *Parent = FDecl->getParent(); FunctionDecl *OverloadDecl = FunctionDecl::Create( Context, Parent, FDecl->getLocation(), FDecl->getLocation(), FDecl->getIdentifier(), OverloadTy, /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(), false, /*hasPrototype=*/true); SmallVector Params; FT = cast(OverloadTy); for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { QualType ParamType = FT->getParamType(i); ParmVarDecl *Parm = ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(), SourceLocation(), nullptr, ParamType, /*TInfo=*/nullptr, SC_None, nullptr); Parm->setScopeInfo(0, i); Params.push_back(Parm); } OverloadDecl->setParams(Params); Sema->mergeDeclAttributes(OverloadDecl, FDecl); return OverloadDecl; } static void checkDirectCallValidity(Sema &S, const Expr *Fn, FunctionDecl *Callee, MultiExprArg ArgExprs) { // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and // similar attributes) really don't like it when functions are called with an // invalid number of args. if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(), /*PartialOverloading=*/false) && !Callee->isVariadic()) return; if (Callee->getMinRequiredArguments() > ArgExprs.size()) return; if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) { S.Diag(Fn->getBeginLoc(), isa(Callee) ? diag::err_ovl_no_viable_member_function_in_call : diag::err_ovl_no_viable_function_in_call) << Callee << Callee->getSourceRange(); S.Diag(Callee->getLocation(), diag::note_ovl_candidate_disabled_by_function_cond_attr) << Attr->getCond()->getSourceRange() << Attr->getMessage(); return; } } static bool enclosingClassIsRelatedToClassInWhichMembersWereFound( const UnresolvedMemberExpr *const UME, Sema &S) { const auto GetFunctionLevelDCIfCXXClass = [](Sema &S) -> const CXXRecordDecl * { const DeclContext *const DC = S.getFunctionLevelDeclContext(); if (!DC || !DC->getParent()) return nullptr; // If the call to some member function was made from within a member // function body 'M' return return 'M's parent. if (const auto *MD = dyn_cast(DC)) return MD->getParent()->getCanonicalDecl(); // else the call was made from within a default member initializer of a // class, so return the class. if (const auto *RD = dyn_cast(DC)) return RD->getCanonicalDecl(); return nullptr; }; // If our DeclContext is neither a member function nor a class (in the // case of a lambda in a default member initializer), we can't have an // enclosing 'this'. const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S); if (!CurParentClass) return false; // The naming class for implicit member functions call is the class in which // name lookup starts. const CXXRecordDecl *const NamingClass = UME->getNamingClass()->getCanonicalDecl(); assert(NamingClass && "Must have naming class even for implicit access"); // If the unresolved member functions were found in a 'naming class' that is // related (either the same or derived from) to the class that contains the // member function that itself contained the implicit member access. return CurParentClass == NamingClass || CurParentClass->isDerivedFrom(NamingClass); } static void tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) { if (!UME) return; LambdaScopeInfo *const CurLSI = S.getCurLambda(); // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't // already been captured, or if this is an implicit member function call (if // it isn't, an attempt to capture 'this' should already have been made). if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None || !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured()) return; // Check if the naming class in which the unresolved members were found is // related (same as or is a base of) to the enclosing class. if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S)) return; DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent(); // If the enclosing function is not dependent, then this lambda is // capture ready, so if we can capture this, do so. if (!EnclosingFunctionCtx->isDependentContext()) { // If the current lambda and all enclosing lambdas can capture 'this' - // then go ahead and capture 'this' (since our unresolved overload set // contains at least one non-static member function). if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false)) S.CheckCXXThisCapture(CallLoc); } else if (S.CurContext->isDependentContext()) { // ... since this is an implicit member reference, that might potentially // involve a 'this' capture, mark 'this' for potential capture in // enclosing lambdas. if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None) CurLSI->addPotentialThisCapture(CallLoc); } } // Once a call is fully resolved, warn for unqualified calls to specific // C++ standard functions, like move and forward. static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S, CallExpr *Call) { // We are only checking unary move and forward so exit early here. if (Call->getNumArgs() != 1) return; Expr *E = Call->getCallee()->IgnoreParenImpCasts(); if (!E || isa(E)) return; DeclRefExpr *DRE = dyn_cast_or_null(E); if (!DRE || !DRE->getLocation().isValid()) return; if (DRE->getQualifier()) return; const FunctionDecl *FD = Call->getDirectCallee(); if (!FD) return; // Only warn for some functions deemed more frequent or problematic. unsigned BuiltinID = FD->getBuiltinID(); if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward) return; S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function) << FD->getQualifiedNameAsString() << FixItHint::CreateInsertion(DRE->getLocation(), "std::"); } ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, MultiExprArg ArgExprs, SourceLocation RParenLoc, Expr *ExecConfig) { ExprResult Call = BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig, /*IsExecConfig=*/false, /*AllowRecovery=*/true); if (Call.isInvalid()) return Call; // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier // language modes. if (auto *ULE = dyn_cast(Fn)) { if (ULE->hasExplicitTemplateArgs() && ULE->decls_begin() == ULE->decls_end()) { Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20 ? diag::warn_cxx17_compat_adl_only_template_id : diag::ext_adl_only_template_id) << ULE->getName(); } } if (LangOpts.OpenMP) Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc, ExecConfig); if (LangOpts.CPlusPlus) { CallExpr *CE = dyn_cast(Call.get()); if (CE) DiagnosedUnqualifiedCallsToStdFunctions(*this, CE); } return Call; } /// BuildCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, MultiExprArg ArgExprs, SourceLocation RParenLoc, Expr *ExecConfig, bool IsExecConfig, bool AllowRecovery) { // Since this might be a postfix expression, get rid of ParenListExprs. ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn); if (Result.isInvalid()) return ExprError(); Fn = Result.get(); if (checkArgsForPlaceholders(*this, ArgExprs)) return ExprError(); if (getLangOpts().CPlusPlus) { // If this is a pseudo-destructor expression, build the call immediately. if (isa(Fn)) { if (!ArgExprs.empty()) { // Pseudo-destructor calls should not have any arguments. Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args) << FixItHint::CreateRemoval( SourceRange(ArgExprs.front()->getBeginLoc(), ArgExprs.back()->getEndLoc())); } return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides()); } if (Fn->getType() == Context.PseudoObjectTy) { ExprResult result = CheckPlaceholderExpr(Fn); if (result.isInvalid()) return ExprError(); Fn = result.get(); } // Determine whether this is a dependent call inside a C++ template, // in which case we won't do any semantic analysis now. if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) { if (ExecConfig) { return CUDAKernelCallExpr::Create(Context, Fn, cast(ExecConfig), ArgExprs, Context.DependentTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides()); } else { tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( *this, dyn_cast(Fn->IgnoreParens()), Fn->getBeginLoc()); return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides()); } } // Determine whether this is a call to an object (C++ [over.call.object]). if (Fn->getType()->isRecordType()) return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs, RParenLoc); if (Fn->getType() == Context.UnknownAnyTy) { ExprResult result = rebuildUnknownAnyFunction(*this, Fn); if (result.isInvalid()) return ExprError(); Fn = result.get(); } if (Fn->getType() == Context.BoundMemberTy) { return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig, IsExecConfig, AllowRecovery); } } // Check for overloaded calls. This can happen even in C due to extensions. if (Fn->getType() == Context.OverloadTy) { OverloadExpr::FindResult find = OverloadExpr::find(Fn); // We aren't supposed to apply this logic if there's an '&' involved. if (!find.HasFormOfMemberPointer) { if (Expr::hasAnyTypeDependentArguments(ArgExprs)) return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides()); OverloadExpr *ovl = find.Expression; if (UnresolvedLookupExpr *ULE = dyn_cast(ovl)) return BuildOverloadedCallExpr( Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig, /*AllowTypoCorrection=*/true, find.IsAddressOfOperand); return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig, IsExecConfig, AllowRecovery); } } // If we're directly calling a function, get the appropriate declaration. if (Fn->getType() == Context.UnknownAnyTy) { ExprResult result = rebuildUnknownAnyFunction(*this, Fn); if (result.isInvalid()) return ExprError(); Fn = result.get(); } Expr *NakedFn = Fn->IgnoreParens(); bool CallingNDeclIndirectly = false; NamedDecl *NDecl = nullptr; if (UnaryOperator *UnOp = dyn_cast(NakedFn)) { if (UnOp->getOpcode() == UO_AddrOf) { CallingNDeclIndirectly = true; NakedFn = UnOp->getSubExpr()->IgnoreParens(); } } if (auto *DRE = dyn_cast(NakedFn)) { NDecl = DRE->getDecl(); FunctionDecl *FDecl = dyn_cast(NDecl); if (FDecl && FDecl->getBuiltinID()) { // Rewrite the function decl for this builtin by replacing parameters // with no explicit address space with the address space of the arguments // in ArgExprs. if ((FDecl = rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) { NDecl = FDecl; Fn = DeclRefExpr::Create( Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false, SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl, nullptr, DRE->isNonOdrUse()); } } } else if (isa(NakedFn)) NDecl = cast(NakedFn)->getMemberDecl(); if (FunctionDecl *FD = dyn_cast_or_null(NDecl)) { if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable( FD, /*Complain=*/true, Fn->getBeginLoc())) return ExprError(); checkDirectCallValidity(*this, Fn, FD, ArgExprs); // If this expression is a call to a builtin function in HIP device // compilation, allow a pointer-type argument to default address space to be // passed as a pointer-type parameter to a non-default address space. // If Arg is declared in the default address space and Param is declared // in a non-default address space, perform an implicit address space cast to // the parameter type. if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD && FD->getBuiltinID()) { for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) { ParmVarDecl *Param = FD->getParamDecl(Idx); if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() || !ArgExprs[Idx]->getType()->isPointerType()) continue; auto ParamAS = Param->getType()->getPointeeType().getAddressSpace(); auto ArgTy = ArgExprs[Idx]->getType(); auto ArgPtTy = ArgTy->getPointeeType(); auto ArgAS = ArgPtTy.getAddressSpace(); // Add address space cast if target address spaces are different bool NeedImplicitASC = ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling. ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS // or from specific AS which has target AS matching that of Param. getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS)); if (!NeedImplicitASC) continue; // First, ensure that the Arg is an RValue. if (ArgExprs[Idx]->isGLValue()) { ArgExprs[Idx] = ImplicitCastExpr::Create( Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx], nullptr, VK_PRValue, FPOptionsOverride()); } // Construct a new arg type with address space of Param Qualifiers ArgPtQuals = ArgPtTy.getQualifiers(); ArgPtQuals.setAddressSpace(ParamAS); auto NewArgPtTy = Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals); auto NewArgTy = Context.getQualifiedType(Context.getPointerType(NewArgPtTy), ArgTy.getQualifiers()); // Finally perform an implicit address space cast ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy, CK_AddressSpaceConversion) .get(); } } } if (Context.isDependenceAllowed() && (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) { assert(!getLangOpts().CPlusPlus); assert((Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && "should only occur in error-recovery path."); QualType ReturnType = llvm::isa_and_nonnull(NDecl) ? cast(NDecl)->getCallResultType() : Context.DependentTy; return CallExpr::Create(Context, Fn, ArgExprs, ReturnType, Expr::getValueKindForType(ReturnType), RParenLoc, CurFPFeatureOverrides()); } return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc, ExecConfig, IsExecConfig); } /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id // with the specified CallArgs Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id, MultiExprArg CallArgs) { StringRef Name = Context.BuiltinInfo.getName(Id); LookupResult R(*this, &Context.Idents.get(Name), Loc, Sema::LookupOrdinaryName); LookupName(R, TUScope, /*AllowBuiltinCreation=*/true); auto *BuiltInDecl = R.getAsSingle(); assert(BuiltInDecl && "failed to find builtin declaration"); ExprResult DeclRef = BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc); assert(DeclRef.isUsable() && "Builtin reference cannot fail"); ExprResult Call = BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc); assert(!Call.isInvalid() && "Call to builtin cannot fail!"); return Call.get(); } /// Parse a __builtin_astype expression. /// /// __builtin_astype( value, dst type ) /// ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc) { QualType DstTy = GetTypeFromParser(ParsedDestTy); return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc); } /// Create a new AsTypeExpr node (bitcast) from the arguments. ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc) { ExprValueKind VK = VK_PRValue; ExprObjectKind OK = OK_Ordinary; QualType SrcTy = E->getType(); if (!SrcTy->isDependentType() && Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) return ExprError( Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size) << DestTy << SrcTy << E->getSourceRange()); return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc); } /// ActOnConvertVectorExpr - create a new convert-vector expression from the /// provided arguments. /// /// __builtin_convertvector( value, dst type ) /// ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc) { TypeSourceInfo *TInfo; GetTypeFromParser(ParsedDestTy, &TInfo); return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc); } /// BuildResolvedCallExpr - Build a call to a resolved expression, /// i.e. an expression not of \p OverloadTy. The expression should /// unary-convert to an expression of function-pointer or /// block-pointer type. /// /// \param NDecl the declaration being called, if available ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc, ArrayRef Args, SourceLocation RParenLoc, Expr *Config, bool IsExecConfig, ADLCallKind UsesADL) { FunctionDecl *FDecl = dyn_cast_or_null(NDecl); unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); // Functions with 'interrupt' attribute cannot be called directly. if (FDecl && FDecl->hasAttr()) { Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called); return ExprError(); } // Interrupt handlers don't save off the VFP regs automatically on ARM, // so there's some risk when calling out to non-interrupt handler functions // that the callee might not preserve them. This is easy to diagnose here, // but can be very challenging to debug. // Likewise, X86 interrupt handlers may only call routines with attribute // no_caller_saved_registers since there is no efficient way to // save and restore the non-GPR state. if (auto *Caller = getCurFunctionDecl()) { if (Caller->hasAttr()) { bool VFP = Context.getTargetInfo().hasFeature("vfp"); if (VFP && (!FDecl || !FDecl->hasAttr())) { Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention); if (FDecl) Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; } } if (Caller->hasAttr() && ((!FDecl || !FDecl->hasAttr()))) { Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave); if (FDecl) Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; } } // Promote the function operand. // We special-case function promotion here because we only allow promoting // builtin functions to function pointers in the callee of a call. ExprResult Result; QualType ResultTy; if (BuiltinID && Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) { // Extract the return type from the (builtin) function pointer type. // FIXME Several builtins still have setType in // Sema::CheckBuiltinFunctionCall. One should review their definitions in // Builtins.def to ensure they are correct before removing setType calls. QualType FnPtrTy = Context.getPointerType(FDecl->getType()); Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get(); ResultTy = FDecl->getCallResultType(); } else { Result = CallExprUnaryConversions(Fn); ResultTy = Context.BoolTy; } if (Result.isInvalid()) return ExprError(); Fn = Result.get(); // Check for a valid function type, but only if it is not a builtin which // requires custom type checking. These will be handled by // CheckBuiltinFunctionCall below just after creation of the call expression. const FunctionType *FuncT = nullptr; if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) { retry: if (const PointerType *PT = Fn->getType()->getAs()) { // C99 6.5.2.2p1 - "The expression that denotes the called function shall // have type pointer to function". FuncT = PT->getPointeeType()->getAs(); if (!FuncT) return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) << Fn->getType() << Fn->getSourceRange()); } else if (const BlockPointerType *BPT = Fn->getType()->getAs()) { FuncT = BPT->getPointeeType()->castAs(); } else { // Handle calls to expressions of unknown-any type. if (Fn->getType() == Context.UnknownAnyTy) { ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); if (rewrite.isInvalid()) return ExprError(); Fn = rewrite.get(); goto retry; } return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) << Fn->getType() << Fn->getSourceRange()); } } // Get the number of parameters in the function prototype, if any. // We will allocate space for max(Args.size(), NumParams) arguments // in the call expression. const auto *Proto = dyn_cast_or_null(FuncT); unsigned NumParams = Proto ? Proto->getNumParams() : 0; CallExpr *TheCall; if (Config) { assert(UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL"); TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast(Config), Args, ResultTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides(), NumParams); } else { TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides(), NumParams, UsesADL); } if (!Context.isDependenceAllowed()) { // Forget about the nulled arguments since typo correction // do not handle them well. TheCall->shrinkNumArgs(Args.size()); // C cannot always handle TypoExpr nodes in builtin calls and direct // function calls as their argument checking don't necessarily handle // dependent types properly, so make sure any TypoExprs have been // dealt with. ExprResult Result = CorrectDelayedTyposInExpr(TheCall); if (!Result.isUsable()) return ExprError(); CallExpr *TheOldCall = TheCall; TheCall = dyn_cast(Result.get()); bool CorrectedTypos = TheCall != TheOldCall; if (!TheCall) return Result; Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()); // A new call expression node was created if some typos were corrected. // However it may not have been constructed with enough storage. In this // case, rebuild the node with enough storage. The waste of space is // immaterial since this only happens when some typos were corrected. if (CorrectedTypos && Args.size() < NumParams) { if (Config) TheCall = CUDAKernelCallExpr::Create( Context, Fn, cast(Config), Args, ResultTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides(), NumParams); else TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides(), NumParams, UsesADL); } // We can now handle the nulled arguments for the default arguments. TheCall->setNumArgsUnsafe(std::max(Args.size(), NumParams)); } // Bail out early if calling a builtin with custom type checking. if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); if (getLangOpts().CUDA) { if (Config) { // CUDA: Kernel calls must be to global functions if (FDecl && !FDecl->hasAttr()) return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function) << FDecl << Fn->getSourceRange()); // CUDA: Kernel function must have 'void' return type if (!FuncT->getReturnType()->isVoidType() && !FuncT->getReturnType()->getAs() && !FuncT->getReturnType()->isInstantiationDependentType()) return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return) << Fn->getType() << Fn->getSourceRange()); } else { // CUDA: Calls to global functions must be configured if (FDecl && FDecl->hasAttr()) return ExprError(Diag(LParenLoc, diag::err_global_call_not_config) << FDecl << Fn->getSourceRange()); } } // Check for a valid return type if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall, FDecl)) return ExprError(); // We know the result type of the call, set it. TheCall->setType(FuncT->getCallResultType(Context)); TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType())); if (Proto) { if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc, IsExecConfig)) return ExprError(); } else { assert(isa(FuncT) && "Unknown FunctionType!"); if (FDecl) { // Check if we have too few/too many template arguments, based // on our knowledge of the function definition. const FunctionDecl *Def = nullptr; if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) { Proto = Def->getType()->getAs(); if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size())) Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange(); } // If the function we're calling isn't a function prototype, but we have // a function prototype from a prior declaratiom, use that prototype. if (!FDecl->hasPrototype()) Proto = FDecl->getType()->getAs(); } // If we still haven't found a prototype to use but there are arguments to // the call, diagnose this as calling a function without a prototype. // However, if we found a function declaration, check to see if // -Wdeprecated-non-prototype was disabled where the function was declared. // If so, we will silence the diagnostic here on the assumption that this // interface is intentional and the user knows what they're doing. We will // also silence the diagnostic if there is a function declaration but it // was implicitly defined (the user already gets diagnostics about the // creation of the implicit function declaration, so the additional warning // is not helpful). if (!Proto && !Args.empty() && (!FDecl || (!FDecl->isImplicit() && !Diags.isIgnored(diag::warn_strict_uses_without_prototype, FDecl->getLocation())))) Diag(LParenLoc, diag::warn_strict_uses_without_prototype) << (FDecl != nullptr) << FDecl; // Promote the arguments (C99 6.5.2.2p6). for (unsigned i = 0, e = Args.size(); i != e; i++) { Expr *Arg = Args[i]; if (Proto && i < Proto->getNumParams()) { InitializedEntity Entity = InitializedEntity::InitializeParameter( Context, Proto->getParamType(i), Proto->isParamConsumed(i)); ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), Arg); if (ArgE.isInvalid()) return true; Arg = ArgE.getAs(); } else { ExprResult ArgE = DefaultArgumentPromotion(Arg); if (ArgE.isInvalid()) return true; Arg = ArgE.getAs(); } if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(), diag::err_call_incomplete_argument, Arg)) return ExprError(); TheCall->setArg(i, Arg); } TheCall->computeDependence(); } if (CXXMethodDecl *Method = dyn_cast_or_null(FDecl)) if (!Method->isStatic()) return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) << Fn->getSourceRange()); // Check for sentinels if (NDecl) DiagnoseSentinelCalls(NDecl, LParenLoc, Args); // Warn for unions passing across security boundary (CMSE). if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) { for (unsigned i = 0, e = Args.size(); i != e; i++) { if (const auto *RT = dyn_cast(Args[i]->getType().getCanonicalType())) { if (RT->getDecl()->isOrContainsUnion()) Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 0 << i; } } } // Do special checking on direct calls to functions. if (FDecl) { if (CheckFunctionCall(FDecl, TheCall, Proto)) return ExprError(); checkFortifiedBuiltinMemoryFunction(FDecl, TheCall); if (BuiltinID) return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); } else if (NDecl) { if (CheckPointerCall(NDecl, TheCall, Proto)) return ExprError(); } else { if (CheckOtherCall(TheCall, Proto)) return ExprError(); } return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl); } ExprResult Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc, Expr *InitExpr) { assert(Ty && "ActOnCompoundLiteral(): missing type"); assert(InitExpr && "ActOnCompoundLiteral(): missing expression"); TypeSourceInfo *TInfo; QualType literalType = GetTypeFromParser(Ty, &TInfo); if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(literalType); return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); } ExprResult Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *LiteralExpr) { QualType literalType = TInfo->getType(); if (literalType->isArrayType()) { if (RequireCompleteSizedType( LParenLoc, Context.getBaseElementType(literalType), diag::err_array_incomplete_or_sizeless_type, SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) return ExprError(); if (literalType->isVariableArrayType()) { if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc, diag::err_variable_object_no_init)) { return ExprError(); } } } else if (!literalType->isDependentType() && RequireCompleteType(LParenLoc, literalType, diag::err_typecheck_decl_incomplete_type, SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) return ExprError(); InitializedEntity Entity = InitializedEntity::InitializeCompoundLiteralInit(TInfo); InitializationKind Kind = InitializationKind::CreateCStyleCast(LParenLoc, SourceRange(LParenLoc, RParenLoc), /*InitList=*/true); InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr); ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr, &literalType); if (Result.isInvalid()) return ExprError(); LiteralExpr = Result.get(); bool isFileScope = !CurContext->isFunctionOrMethod(); // In C, compound literals are l-values for some reason. // For GCC compatibility, in C++, file-scope array compound literals with // constant initializers are also l-values, and compound literals are // otherwise prvalues. // // (GCC also treats C++ list-initialized file-scope array prvalues with // constant initializers as l-values, but that's non-conforming, so we don't // follow it there.) // // FIXME: It would be better to handle the lvalue cases as materializing and // lifetime-extending a temporary object, but our materialized temporaries // representation only supports lifetime extension from a variable, not "out // of thin air". // FIXME: For C++, we might want to instead lifetime-extend only if a pointer // is bound to the result of applying array-to-pointer decay to the compound // literal. // FIXME: GCC supports compound literals of reference type, which should // obviously have a value kind derived from the kind of reference involved. ExprValueKind VK = (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType())) ? VK_PRValue : VK_LValue; if (isFileScope) if (auto ILE = dyn_cast(LiteralExpr)) for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) { Expr *Init = ILE->getInit(i); ILE->setInit(i, ConstantExpr::Create(Context, Init)); } auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, VK, LiteralExpr, isFileScope); if (isFileScope) { if (!LiteralExpr->isTypeDependent() && !LiteralExpr->isValueDependent() && !literalType->isDependentType()) // C99 6.5.2.5p3 if (CheckForConstantInitializer(LiteralExpr, literalType)) return ExprError(); } else if (literalType.getAddressSpace() != LangAS::opencl_private && literalType.getAddressSpace() != LangAS::Default) { // Embedded-C extensions to C99 6.5.2.5: // "If the compound literal occurs inside the body of a function, the // type name shall not be qualified by an address-space qualifier." Diag(LParenLoc, diag::err_compound_literal_with_address_space) << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()); return ExprError(); } if (!isFileScope && !getLangOpts().CPlusPlus) { // Compound literals that have automatic storage duration are destroyed at // the end of the scope in C; in C++, they're just temporaries. // Emit diagnostics if it is or contains a C union type that is non-trivial // to destruct. if (E->getType().hasNonTrivialToPrimitiveDestructCUnion()) checkNonTrivialCUnion(E->getType(), E->getExprLoc(), NTCUC_CompoundLiteral, NTCUK_Destruct); // Diagnose jumps that enter or exit the lifetime of the compound literal. if (literalType.isDestructedType()) { Cleanup.setExprNeedsCleanups(true); ExprCleanupObjects.push_back(E); getCurFunction()->setHasBranchProtectedScope(); } } if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() || E->getType().hasNonTrivialToPrimitiveCopyCUnion()) checkNonTrivialCUnionInInitializer(E->getInitializer(), E->getInitializer()->getExprLoc()); return MaybeBindToTemporary(E); } ExprResult Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, SourceLocation RBraceLoc) { // Only produce each kind of designated initialization diagnostic once. SourceLocation FirstDesignator; bool DiagnosedArrayDesignator = false; bool DiagnosedNestedDesignator = false; bool DiagnosedMixedDesignator = false; // Check that any designated initializers are syntactically valid in the // current language mode. for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { if (auto *DIE = dyn_cast(InitArgList[I])) { if (FirstDesignator.isInvalid()) FirstDesignator = DIE->getBeginLoc(); if (!getLangOpts().CPlusPlus) break; if (!DiagnosedNestedDesignator && DIE->size() > 1) { DiagnosedNestedDesignator = true; Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested) << DIE->getDesignatorsSourceRange(); } for (auto &Desig : DIE->designators()) { if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) { DiagnosedArrayDesignator = true; Diag(Desig.getBeginLoc(), diag::ext_designated_init_array) << Desig.getSourceRange(); } } if (!DiagnosedMixedDesignator && !isa(InitArgList[0])) { DiagnosedMixedDesignator = true; Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) << DIE->getSourceRange(); Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed) << InitArgList[0]->getSourceRange(); } } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator && isa(InitArgList[0])) { DiagnosedMixedDesignator = true; auto *DIE = cast(InitArgList[0]); Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) << DIE->getSourceRange(); Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed) << InitArgList[I]->getSourceRange(); } } if (FirstDesignator.isValid()) { // Only diagnose designated initiaization as a C++20 extension if we didn't // already diagnose use of (non-C++20) C99 designator syntax. if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator && !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) { Diag(FirstDesignator, getLangOpts().CPlusPlus20 ? diag::warn_cxx17_compat_designated_init : diag::ext_cxx_designated_init); } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) { Diag(FirstDesignator, diag::ext_designated_init); } } return BuildInitList(LBraceLoc, InitArgList, RBraceLoc); } ExprResult Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, SourceLocation RBraceLoc) { // Semantic analysis for initializers is done by ActOnDeclarator() and // CheckInitializer() - it requires knowledge of the object being initialized. // Immediately handle non-overload placeholders. Overloads can be // resolved contextually, but everything else here can't. for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) { ExprResult result = CheckPlaceholderExpr(InitArgList[I]); // Ignore failures; dropping the entire initializer list because // of one failure would be terrible for indexing/etc. if (result.isInvalid()) continue; InitArgList[I] = result.get(); } } InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList, RBraceLoc); E->setType(Context.VoidTy); // FIXME: just a place holder for now. return E; } /// Do an explicit extend of the given block pointer if we're in ARC. void Sema::maybeExtendBlockObject(ExprResult &E) { assert(E.get()->getType()->isBlockPointerType()); assert(E.get()->isPRValue()); // Only do this in an r-value context. if (!getLangOpts().ObjCAutoRefCount) return; E = ImplicitCastExpr::Create( Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(), /*base path*/ nullptr, VK_PRValue, FPOptionsOverride()); Cleanup.setExprNeedsCleanups(true); } /// Prepare a conversion of the given expression to an ObjC object /// pointer type. CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) { QualType type = E.get()->getType(); if (type->isObjCObjectPointerType()) { return CK_BitCast; } else if (type->isBlockPointerType()) { maybeExtendBlockObject(E); return CK_BlockPointerToObjCPointerCast; } else { assert(type->isPointerType()); return CK_CPointerToObjCPointerCast; } } /// Prepares for a scalar cast, performing all the necessary stages /// except the final cast and returning the kind required. CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) { // Both Src and Dest are scalar types, i.e. arithmetic or pointer. // Also, callers should have filtered out the invalid cases with // pointers. Everything else should be possible. QualType SrcTy = Src.get()->getType(); if (Context.hasSameUnqualifiedType(SrcTy, DestTy)) return CK_NoOp; switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) { case Type::STK_MemberPointer: llvm_unreachable("member pointer type in C"); case Type::STK_CPointer: case Type::STK_BlockPointer: case Type::STK_ObjCObjectPointer: switch (DestTy->getScalarTypeKind()) { case Type::STK_CPointer: { LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace(); LangAS DestAS = DestTy->getPointeeType().getAddressSpace(); if (SrcAS != DestAS) return CK_AddressSpaceConversion; if (Context.hasCvrSimilarType(SrcTy, DestTy)) return CK_NoOp; return CK_BitCast; } case Type::STK_BlockPointer: return (SrcKind == Type::STK_BlockPointer ? CK_BitCast : CK_AnyPointerToBlockPointerCast); case Type::STK_ObjCObjectPointer: if (SrcKind == Type::STK_ObjCObjectPointer) return CK_BitCast; if (SrcKind == Type::STK_CPointer) return CK_CPointerToObjCPointerCast; maybeExtendBlockObject(Src); return CK_BlockPointerToObjCPointerCast; case Type::STK_Bool: return CK_PointerToBoolean; case Type::STK_Integral: return CK_PointerToIntegral; case Type::STK_Floating: case Type::STK_FloatingComplex: case Type::STK_IntegralComplex: case Type::STK_MemberPointer: case Type::STK_FixedPoint: llvm_unreachable("illegal cast from pointer"); } llvm_unreachable("Should have returned before this"); case Type::STK_FixedPoint: switch (DestTy->getScalarTypeKind()) { case Type::STK_FixedPoint: return CK_FixedPointCast; case Type::STK_Bool: return CK_FixedPointToBoolean; case Type::STK_Integral: return CK_FixedPointToIntegral; case Type::STK_Floating: return CK_FixedPointToFloating; case Type::STK_IntegralComplex: case Type::STK_FloatingComplex: Diag(Src.get()->getExprLoc(), diag::err_unimplemented_conversion_with_fixed_point_type) << DestTy; return CK_IntegralCast; case Type::STK_CPointer: case Type::STK_ObjCObjectPointer: case Type::STK_BlockPointer: case Type::STK_MemberPointer: llvm_unreachable("illegal cast to pointer type"); } llvm_unreachable("Should have returned before this"); case Type::STK_Bool: // casting from bool is like casting from an integer case Type::STK_Integral: switch (DestTy->getScalarTypeKind()) { case Type::STK_CPointer: case Type::STK_ObjCObjectPointer: case Type::STK_BlockPointer: if (Src.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) return CK_NullToPointer; return CK_IntegralToPointer; case Type::STK_Bool: return CK_IntegralToBoolean; case Type::STK_Integral: return CK_IntegralCast; case Type::STK_Floating: return CK_IntegralToFloating; case Type::STK_IntegralComplex: Src = ImpCastExprToType(Src.get(), DestTy->castAs()->getElementType(), CK_IntegralCast); return CK_IntegralRealToComplex; case Type::STK_FloatingComplex: Src = ImpCastExprToType(Src.get(), DestTy->castAs()->getElementType(), CK_IntegralToFloating); return CK_FloatingRealToComplex; case Type::STK_MemberPointer: llvm_unreachable("member pointer type in C"); case Type::STK_FixedPoint: return CK_IntegralToFixedPoint; } llvm_unreachable("Should have returned before this"); case Type::STK_Floating: switch (DestTy->getScalarTypeKind()) { case Type::STK_Floating: return CK_FloatingCast; case Type::STK_Bool: return CK_FloatingToBoolean; case Type::STK_Integral: return CK_FloatingToIntegral; case Type::STK_FloatingComplex: Src = ImpCastExprToType(Src.get(), DestTy->castAs()->getElementType(), CK_FloatingCast); return CK_FloatingRealToComplex; case Type::STK_IntegralComplex: Src = ImpCastExprToType(Src.get(), DestTy->castAs()->getElementType(), CK_FloatingToIntegral); return CK_IntegralRealToComplex; case Type::STK_CPointer: case Type::STK_ObjCObjectPointer: case Type::STK_BlockPointer: llvm_unreachable("valid float->pointer cast?"); case Type::STK_MemberPointer: llvm_unreachable("member pointer type in C"); case Type::STK_FixedPoint: return CK_FloatingToFixedPoint; } llvm_unreachable("Should have returned before this"); case Type::STK_FloatingComplex: switch (DestTy->getScalarTypeKind()) { case Type::STK_FloatingComplex: return CK_FloatingComplexCast; case Type::STK_IntegralComplex: return CK_FloatingComplexToIntegralComplex; case Type::STK_Floating: { QualType ET = SrcTy->castAs()->getElementType(); if (Context.hasSameType(ET, DestTy)) return CK_FloatingComplexToReal; Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal); return CK_FloatingCast; } case Type::STK_Bool: return CK_FloatingComplexToBoolean; case Type::STK_Integral: Src = ImpCastExprToType(Src.get(), SrcTy->castAs()->getElementType(), CK_FloatingComplexToReal); return CK_FloatingToIntegral; case Type::STK_CPointer: case Type::STK_ObjCObjectPointer: case Type::STK_BlockPointer: llvm_unreachable("valid complex float->pointer cast?"); case Type::STK_MemberPointer: llvm_unreachable("member pointer type in C"); case Type::STK_FixedPoint: Diag(Src.get()->getExprLoc(), diag::err_unimplemented_conversion_with_fixed_point_type) << SrcTy; return CK_IntegralCast; } llvm_unreachable("Should have returned before this"); case Type::STK_IntegralComplex: switch (DestTy->getScalarTypeKind()) { case Type::STK_FloatingComplex: return CK_IntegralComplexToFloatingComplex; case Type::STK_IntegralComplex: return CK_IntegralComplexCast; case Type::STK_Integral: { QualType ET = SrcTy->castAs()->getElementType(); if (Context.hasSameType(ET, DestTy)) return CK_IntegralComplexToReal; Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal); return CK_IntegralCast; } case Type::STK_Bool: return CK_IntegralComplexToBoolean; case Type::STK_Floating: Src = ImpCastExprToType(Src.get(), SrcTy->castAs()->getElementType(), CK_IntegralComplexToReal); return CK_IntegralToFloating; case Type::STK_CPointer: case Type::STK_ObjCObjectPointer: case Type::STK_BlockPointer: llvm_unreachable("valid complex int->pointer cast?"); case Type::STK_MemberPointer: llvm_unreachable("member pointer type in C"); case Type::STK_FixedPoint: Diag(Src.get()->getExprLoc(), diag::err_unimplemented_conversion_with_fixed_point_type) << SrcTy; return CK_IntegralCast; } llvm_unreachable("Should have returned before this"); } llvm_unreachable("Unhandled scalar cast"); } static bool breakDownVectorType(QualType type, uint64_t &len, QualType &eltType) { // Vectors are simple. if (const VectorType *vecType = type->getAs()) { len = vecType->getNumElements(); eltType = vecType->getElementType(); assert(eltType->isScalarType()); return true; } // We allow lax conversion to and from non-vector types, but only if // they're real types (i.e. non-complex, non-pointer scalar types). if (!type->isRealType()) return false; len = 1; eltType = type; return true; } /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST) /// allowed? /// /// This will also return false if the two given types do not make sense from /// the perspective of SVE bitcasts. bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) { assert(srcTy->isVectorType() || destTy->isVectorType()); auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) { if (!FirstType->isSizelessBuiltinType()) return false; const auto *VecTy = SecondType->getAs(); return VecTy && VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector; }; return ValidScalableConversion(srcTy, destTy) || ValidScalableConversion(destTy, srcTy); } /// Are the two types matrix types and do they have the same dimensions i.e. /// do they have the same number of rows and the same number of columns? bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) { if (!destTy->isMatrixType() || !srcTy->isMatrixType()) return false; const ConstantMatrixType *matSrcType = srcTy->getAs(); const ConstantMatrixType *matDestType = destTy->getAs(); return matSrcType->getNumRows() == matDestType->getNumRows() && matSrcType->getNumColumns() == matDestType->getNumColumns(); } bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) { assert(DestTy->isVectorType() || SrcTy->isVectorType()); uint64_t SrcLen, DestLen; QualType SrcEltTy, DestEltTy; if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy)) return false; if (!breakDownVectorType(DestTy, DestLen, DestEltTy)) return false; // ASTContext::getTypeSize will return the size rounded up to a // power of 2, so instead of using that, we need to use the raw // element size multiplied by the element count. uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy); uint64_t DestEltSize = Context.getTypeSize(DestEltTy); return (SrcLen * SrcEltSize == DestLen * DestEltSize); } // This returns true if at least one of the types is an altivec vector. bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) { assert((DestTy->isVectorType() || SrcTy->isVectorType()) && "expected at least one type to be a vector here"); bool IsSrcTyAltivec = SrcTy->isVectorType() && (SrcTy->castAs()->getVectorKind() == VectorType::AltiVecVector); bool IsDestTyAltivec = DestTy->isVectorType() && (DestTy->castAs()->getVectorKind() == VectorType::AltiVecVector); return (IsSrcTyAltivec || IsDestTyAltivec); } // This returns true if both vectors have the same element type. bool Sema::areSameVectorElemTypes(QualType SrcTy, QualType DestTy) { assert((DestTy->isVectorType() || SrcTy->isVectorType()) && "expected at least one type to be a vector here"); uint64_t SrcLen, DestLen; QualType SrcEltTy, DestEltTy; if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy)) return false; if (!breakDownVectorType(DestTy, DestLen, DestEltTy)) return false; return (SrcEltTy == DestEltTy); } /// Are the two types lax-compatible vector types? That is, given /// that one of them is a vector, do they have equal storage sizes, /// where the storage size is the number of elements times the element /// size? /// /// This will also return false if either of the types is neither a /// vector nor a real type. bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) { assert(destTy->isVectorType() || srcTy->isVectorType()); // Disallow lax conversions between scalars and ExtVectors (these // conversions are allowed for other vector types because common headers // depend on them). Most scalar OP ExtVector cases are handled by the // splat path anyway, which does what we want (convert, not bitcast). // What this rules out for ExtVectors is crazy things like char4*float. if (srcTy->isScalarType() && destTy->isExtVectorType()) return false; if (destTy->isScalarType() && srcTy->isExtVectorType()) return false; return areVectorTypesSameSize(srcTy, destTy); } /// Is this a legal conversion between two types, one of which is /// known to be a vector type? bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) { assert(destTy->isVectorType() || srcTy->isVectorType()); switch (Context.getLangOpts().getLaxVectorConversions()) { case LangOptions::LaxVectorConversionKind::None: return false; case LangOptions::LaxVectorConversionKind::Integer: if (!srcTy->isIntegralOrEnumerationType()) { auto *Vec = srcTy->getAs(); if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) return false; } if (!destTy->isIntegralOrEnumerationType()) { auto *Vec = destTy->getAs(); if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) return false; } // OK, integer (vector) -> integer (vector) bitcast. break; case LangOptions::LaxVectorConversionKind::All: break; } return areLaxCompatibleVectorTypes(srcTy, destTy); } bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy, CastKind &Kind) { if (SrcTy->isMatrixType() && DestTy->isMatrixType()) { if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) { return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes) << DestTy << SrcTy << R; } } else if (SrcTy->isMatrixType()) { return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrix_and_type) << SrcTy << DestTy << R; } else if (DestTy->isMatrixType()) { return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrix_and_type) << DestTy << SrcTy << R; } Kind = CK_MatrixCast; return false; } bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, CastKind &Kind) { assert(VectorTy->isVectorType() && "Not a vector type!"); if (Ty->isVectorType() || Ty->isIntegralType(Context)) { if (!areLaxCompatibleVectorTypes(Ty, VectorTy)) return Diag(R.getBegin(), Ty->isVectorType() ? diag::err_invalid_conversion_between_vectors : diag::err_invalid_conversion_between_vector_and_integer) << VectorTy << Ty << R; } else return Diag(R.getBegin(), diag::err_invalid_conversion_between_vector_and_scalar) << VectorTy << Ty << R; Kind = CK_BitCast; return false; } ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) { QualType DestElemTy = VectorTy->castAs()->getElementType(); if (DestElemTy == SplattedExpr->getType()) return SplattedExpr; assert(DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()); CastKind CK; if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) { // OpenCL requires that we convert `true` boolean expressions to -1, but // only when splatting vectors. if (DestElemTy->isFloatingType()) { // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast // in two steps: boolean to signed integral, then to floating. ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy, CK_BooleanToSignedIntegral); SplattedExpr = CastExprRes.get(); CK = CK_IntegralToFloating; } else { CK = CK_BooleanToSignedIntegral; } } else { ExprResult CastExprRes = SplattedExpr; CK = PrepareScalarCast(CastExprRes, DestElemTy); if (CastExprRes.isInvalid()) return ExprError(); SplattedExpr = CastExprRes.get(); } return ImpCastExprToType(SplattedExpr, DestElemTy, CK); } ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr, CastKind &Kind) { assert(DestTy->isExtVectorType() && "Not an extended vector type!"); QualType SrcTy = CastExpr->getType(); // If SrcTy is a VectorType, the total size must match to explicitly cast to // an ExtVectorType. // In OpenCL, casts between vectors of different types are not allowed. // (See OpenCL 6.2). if (SrcTy->isVectorType()) { if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) || (getLangOpts().OpenCL && !Context.hasSameUnqualifiedType(DestTy, SrcTy))) { Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) << DestTy << SrcTy << R; return ExprError(); } Kind = CK_BitCast; return CastExpr; } // All non-pointer scalars can be cast to ExtVector type. The appropriate // conversion will take place first from scalar to elt type, and then // splat from elt type to vector. if (SrcTy->isPointerType()) return Diag(R.getBegin(), diag::err_invalid_conversion_between_vector_and_scalar) << DestTy << SrcTy << R; Kind = CK_VectorSplat; return prepareVectorSplat(DestTy, CastExpr); } ExprResult Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, Declarator &D, ParsedType &Ty, SourceLocation RParenLoc, Expr *CastExpr) { assert(!D.isInvalidType() && (CastExpr != nullptr) && "ActOnCastExpr(): missing type or expr"); TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType()); if (D.isInvalidType()) return ExprError(); if (getLangOpts().CPlusPlus) { // Check that there are no default arguments (C++ only). CheckExtraCXXDefaultArguments(D); } else { // Make sure any TypoExprs have been dealt with. ExprResult Res = CorrectDelayedTyposInExpr(CastExpr); if (!Res.isUsable()) return ExprError(); CastExpr = Res.get(); } checkUnusedDeclAttributes(D); QualType castType = castTInfo->getType(); Ty = CreateParsedType(castType, castTInfo); bool isVectorLiteral = false; // Check for an altivec or OpenCL literal, // i.e. all the elements are integer constants. ParenExpr *PE = dyn_cast(CastExpr); ParenListExpr *PLE = dyn_cast(CastExpr); if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL) && castType->isVectorType() && (PE || PLE)) { if (PLE && PLE->getNumExprs() == 0) { Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer); return ExprError(); } if (PE || PLE->getNumExprs() == 1) { Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0)); if (!E->isTypeDependent() && !E->getType()->isVectorType()) isVectorLiteral = true; } else isVectorLiteral = true; } // If this is a vector initializer, '(' type ')' '(' init, ..., init ')' // then handle it as such. if (isVectorLiteral) return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo); // If the Expr being casted is a ParenListExpr, handle it specially. // This is not an AltiVec-style cast, so turn the ParenListExpr into a // sequence of BinOp comma operators. if (isa(CastExpr)) { ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr); if (Result.isInvalid()) return ExprError(); CastExpr = Result.get(); } if (getLangOpts().CPlusPlus && !castType->isVoidType()) Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange(); CheckTollFreeBridgeCast(castType, CastExpr); CheckObjCBridgeRelatedCast(castType, CastExpr); DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr); return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr); } ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc, SourceLocation RParenLoc, Expr *E, TypeSourceInfo *TInfo) { assert((isa(E) || isa(E)) && "Expected paren or paren list expression"); Expr **exprs; unsigned numExprs; Expr *subExpr; SourceLocation LiteralLParenLoc, LiteralRParenLoc; if (ParenListExpr *PE = dyn_cast(E)) { LiteralLParenLoc = PE->getLParenLoc(); LiteralRParenLoc = PE->getRParenLoc(); exprs = PE->getExprs(); numExprs = PE->getNumExprs(); } else { // isa by assertion at function entrance LiteralLParenLoc = cast(E)->getLParen(); LiteralRParenLoc = cast(E)->getRParen(); subExpr = cast(E)->getSubExpr(); exprs = &subExpr; numExprs = 1; } QualType Ty = TInfo->getType(); assert(Ty->isVectorType() && "Expected vector type"); SmallVector initExprs; const VectorType *VTy = Ty->castAs(); unsigned numElems = VTy->getNumElements(); // '(...)' form of vector initialization in AltiVec: the number of // initializers must be one or must match the size of the vector. // If a single value is specified in the initializer then it will be // replicated to all the components of the vector if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty, VTy->getElementType())) return ExprError(); if (ShouldSplatAltivecScalarInCast(VTy)) { // The number of initializers must be one or must match the size of the // vector. If a single value is specified in the initializer then it will // be replicated to all the components of the vector if (numExprs == 1) { QualType ElemTy = VTy->getElementType(); ExprResult Literal = DefaultLvalueConversion(exprs[0]); if (Literal.isInvalid()) return ExprError(); Literal = ImpCastExprToType(Literal.get(), ElemTy, PrepareScalarCast(Literal, ElemTy)); return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); } else if (numExprs < numElems) { Diag(E->getExprLoc(), diag::err_incorrect_number_of_vector_initializers); return ExprError(); } else initExprs.append(exprs, exprs + numExprs); } else { // For OpenCL, when the number of initializers is a single value, // it will be replicated to all components of the vector. if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorType::GenericVector && numExprs == 1) { QualType ElemTy = VTy->getElementType(); ExprResult Literal = DefaultLvalueConversion(exprs[0]); if (Literal.isInvalid()) return ExprError(); Literal = ImpCastExprToType(Literal.get(), ElemTy, PrepareScalarCast(Literal, ElemTy)); return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); } initExprs.append(exprs, exprs + numExprs); } // FIXME: This means that pretty-printing the final AST will produce curly // braces instead of the original commas. InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc, initExprs, LiteralRParenLoc); initE->setType(Ty); return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE); } /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn /// the ParenListExpr into a sequence of comma binary operators. ExprResult Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) { ParenListExpr *E = dyn_cast(OrigExpr); if (!E) return OrigExpr; ExprResult Result(E->getExpr(0)); for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), E->getExpr(i)); if (Result.isInvalid()) return ExprError(); return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); } ExprResult Sema::ActOnParenListExpr(SourceLocation L, SourceLocation R, MultiExprArg Val) { return ParenListExpr::Create(Context, L, Val, R); } /// Emit a specialized diagnostic when one expression is a null pointer /// constant and the other is not a pointer. Returns true if a diagnostic is /// emitted. bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, SourceLocation QuestionLoc) { Expr *NullExpr = LHSExpr; Expr *NonPointerExpr = RHSExpr; Expr::NullPointerConstantKind NullKind = NullExpr->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull); if (NullKind == Expr::NPCK_NotNull) { NullExpr = RHSExpr; NonPointerExpr = LHSExpr; NullKind = NullExpr->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull); } if (NullKind == Expr::NPCK_NotNull) return false; if (NullKind == Expr::NPCK_ZeroExpression) return false; if (NullKind == Expr::NPCK_ZeroLiteral) { // In this case, check to make sure that we got here from a "NULL" // string in the source code. NullExpr = NullExpr->IgnoreParenImpCasts(); SourceLocation loc = NullExpr->getExprLoc(); if (!findMacroSpelling(loc, "NULL")) return false; } int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr); Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) << NonPointerExpr->getType() << DiagType << NonPointerExpr->getSourceRange(); return true; } /// Return false if the condition expression is valid, true otherwise. static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) { QualType CondTy = Cond->getType(); // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type. if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) { S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) << CondTy << Cond->getSourceRange(); return true; } // C99 6.5.15p2 if (CondTy->isScalarType()) return false; S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar) << CondTy << Cond->getSourceRange(); return true; } /// Handle when one or both operands are void type. static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS, ExprResult &RHS) { Expr *LHSExpr = LHS.get(); Expr *RHSExpr = RHS.get(); if (!LHSExpr->getType()->isVoidType()) S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void) << RHSExpr->getSourceRange(); if (!RHSExpr->getType()->isVoidType()) S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void) << LHSExpr->getSourceRange(); LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid); RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid); return S.Context.VoidTy; } /// Return false if the NullExpr can be promoted to PointerTy, /// true otherwise. static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr, QualType PointerTy) { if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) || !NullExpr.get()->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) return true; NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer); return false; } /// Checks compatibility between two pointers and return the resulting /// type. static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc) { QualType LHSTy = LHS.get()->getType(); QualType RHSTy = RHS.get()->getType(); if (S.Context.hasSameType(LHSTy, RHSTy)) { // Two identical pointers types are always compatible. return LHSTy; } QualType lhptee, rhptee; // Get the pointee types. bool IsBlockPointer = false; if (const BlockPointerType *LHSBTy = LHSTy->getAs()) { lhptee = LHSBTy->getPointeeType(); rhptee = RHSTy->castAs()->getPointeeType(); IsBlockPointer = true; } else { lhptee = LHSTy->castAs()->getPointeeType(); rhptee = RHSTy->castAs()->getPointeeType(); } // C99 6.5.15p6: If both operands are pointers to compatible types or to // differently qualified versions of compatible types, the result type is // a pointer to an appropriately qualified version of the composite // type. // Only CVR-qualifiers exist in the standard, and the differently-qualified // clause doesn't make sense for our extensions. E.g. address space 2 should // be incompatible with address space 3: they may live on different devices or // anything. Qualifiers lhQual = lhptee.getQualifiers(); Qualifiers rhQual = rhptee.getQualifiers(); LangAS ResultAddrSpace = LangAS::Default; LangAS LAddrSpace = lhQual.getAddressSpace(); LangAS RAddrSpace = rhQual.getAddressSpace(); // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address // spaces is disallowed. if (lhQual.isAddressSpaceSupersetOf(rhQual)) ResultAddrSpace = LAddrSpace; else if (rhQual.isAddressSpaceSupersetOf(lhQual)) ResultAddrSpace = RAddrSpace; else { S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers(); auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast; lhQual.removeCVRQualifiers(); rhQual.removeCVRQualifiers(); // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers // (C99 6.7.3) for address spaces. We assume that the check should behave in // the same manner as it's defined for CVR qualifiers, so for OpenCL two // qual types are compatible iff // * corresponded types are compatible // * CVR qualifiers are equal // * address spaces are equal // Thus for conditional operator we merge CVR and address space unqualified // pointees and if there is a composite type we return a pointer to it with // merged qualifiers. LHSCastKind = LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; RHSCastKind = RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; lhQual.removeAddressSpace(); rhQual.removeAddressSpace(); lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual); rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual); QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee); if (CompositeTy.isNull()) { // In this situation, we assume void* type. No especially good // reason, but this is what gcc does, and we do have to pick // to get a consistent AST. QualType incompatTy; incompatTy = S.Context.getPointerType( S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace)); LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind); RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind); // FIXME: For OpenCL the warning emission and cast to void* leaves a room // for casts between types with incompatible address space qualifiers. // For the following code the compiler produces casts between global and // local address spaces of the corresponded innermost pointees: // local int *global *a; // global int *global *b; // a = (0 ? a : b); // see C99 6.5.16.1.p1. S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers) << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return incompatTy; } // The pointer types are compatible. // In case of OpenCL ResultTy should have the address space qualifier // which is a superset of address spaces of both the 2nd and the 3rd // operands of the conditional operator. QualType ResultTy = [&, ResultAddrSpace]() { if (S.getLangOpts().OpenCL) { Qualifiers CompositeQuals = CompositeTy.getQualifiers(); CompositeQuals.setAddressSpace(ResultAddrSpace); return S.Context .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals) .withCVRQualifiers(MergedCVRQual); } return CompositeTy.withCVRQualifiers(MergedCVRQual); }(); if (IsBlockPointer) ResultTy = S.Context.getBlockPointerType(ResultTy); else ResultTy = S.Context.getPointerType(ResultTy); LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind); RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind); return ResultTy; } /// Return the resulting type when the operands are both block pointers. static QualType checkConditionalBlockPointerCompatibility(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc) { QualType LHSTy = LHS.get()->getType(); QualType RHSTy = RHS.get()->getType(); if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { QualType destType = S.Context.getPointerType(S.Context.VoidTy); LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); return destType; } S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } // We have 2 block pointer types. return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); } /// Return the resulting type when the operands are both pointers. static QualType checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc) { // get the pointer types QualType LHSTy = LHS.get()->getType(); QualType RHSTy = RHS.get()->getType(); // get the "pointed to" types QualType lhptee = LHSTy->castAs()->getPointeeType(); QualType rhptee = RHSTy->castAs()->getPointeeType(); // ignore qualifiers on void (C99 6.5.15p3, clause 6) if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { // Figure out necessary qualifiers (C99 6.5.15p6) QualType destPointee = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers()); QualType destType = S.Context.getPointerType(destPointee); // Add qualifiers if necessary. LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp); // Promote to void*. RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); return destType; } if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { QualType destPointee = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers()); QualType destType = S.Context.getPointerType(destPointee); // Add qualifiers if necessary. RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp); // Promote to void*. LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); return destType; } return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); } /// Return false if the first expression is not an integer and the second /// expression is not a pointer, true otherwise. static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int, Expr* PointerExpr, SourceLocation Loc, bool IsIntFirstExpr) { if (!PointerExpr->getType()->isPointerType() || !Int.get()->getType()->isIntegerType()) return false; Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr; Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get(); S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch) << Expr1->getType() << Expr2->getType() << Expr1->getSourceRange() << Expr2->getSourceRange(); Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(), CK_IntegralToPointer); return true; } /// Simple conversion between integer and floating point types. /// /// Used when handling the OpenCL conditional operator where the /// condition is a vector while the other operands are scalar. /// /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar /// types are either integer or floating type. Between the two /// operands, the type with the higher rank is defined as the "result /// type". The other operand needs to be promoted to the same type. No /// other type promotion is allowed. We cannot use /// UsualArithmeticConversions() for this purpose, since it always /// promotes promotable types. static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc) { LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get()); if (LHS.isInvalid()) return QualType(); RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); if (RHS.isInvalid()) return QualType(); // For conversion purposes, we ignore any qualifiers. // For example, "const float" and "float" are equivalent. QualType LHSType = S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); QualType RHSType = S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) { S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) << LHSType << LHS.get()->getSourceRange(); return QualType(); } if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) { S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) << RHSType << RHS.get()->getSourceRange(); return QualType(); } // If both types are identical, no conversion is needed. if (LHSType == RHSType) return LHSType; // Now handle "real" floating types (i.e. float, double, long double). if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) return handleFloatConversion(S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false); // Finally, we have two differing integer types. return handleIntegerConversion (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false); } /// Convert scalar operands to a vector that matches the /// condition in length. /// /// Used when handling the OpenCL conditional operator where the /// condition is a vector while the other operands are scalar. /// /// We first compute the "result type" for the scalar operands /// according to OpenCL v1.1 s6.3.i. Both operands are then converted /// into a vector of that type where the length matches the condition /// vector type. s6.11.6 requires that the element types of the result /// and the condition must have the same number of bits. static QualType OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS, QualType CondTy, SourceLocation QuestionLoc) { QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc); if (ResTy.isNull()) return QualType(); const VectorType *CV = CondTy->getAs(); assert(CV); // Determine the vector result type unsigned NumElements = CV->getNumElements(); QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements); // Ensure that all types have the same number of bits if (S.Context.getTypeSize(CV->getElementType()) != S.Context.getTypeSize(ResTy)) { // Since VectorTy is created internally, it does not pretty print // with an OpenCL name. Instead, we just print a description. std::string EleTyName = ResTy.getUnqualifiedType().getAsString(); SmallString<64> Str; llvm::raw_svector_ostream OS(Str); OS << "(vector of " << NumElements << " '" << EleTyName << "' values)"; S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondTy << OS.str(); return QualType(); } // Convert operands to the vector result type LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat); RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat); return VectorTy; } /// Return false if this is a valid OpenCL condition vector static bool checkOpenCLConditionVector(Sema &S, Expr *Cond, SourceLocation QuestionLoc) { // OpenCL v1.1 s6.11.6 says the elements of the vector must be of // integral type. const VectorType *CondTy = Cond->getType()->getAs(); assert(CondTy); QualType EleTy = CondTy->getElementType(); if (EleTy->isIntegerType()) return false; S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) << Cond->getType() << Cond->getSourceRange(); return true; } /// Return false if the vector condition type and the vector /// result type are compatible. /// /// OpenCL v1.1 s6.11.6 requires that both vector types have the same /// number of elements, and their element types have the same number /// of bits. static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy, SourceLocation QuestionLoc) { const VectorType *CV = CondTy->getAs(); const VectorType *RV = VecResTy->getAs(); assert(CV && RV); if (CV->getNumElements() != RV->getNumElements()) { S.Diag(QuestionLoc, diag::err_conditional_vector_size) << CondTy << VecResTy; return true; } QualType CVE = CV->getElementType(); QualType RVE = RV->getElementType(); if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) { S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondTy << VecResTy; return true; } return false; } /// Return the resulting type for the conditional operator in /// OpenCL (aka "ternary selection operator", OpenCL v1.1 /// s6.3.i) when the condition is a vector type. static QualType OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc) { Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get()); if (Cond.isInvalid()) return QualType(); QualType CondTy = Cond.get()->getType(); if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc)) return QualType(); // If either operand is a vector then find the vector type of the // result as specified in OpenCL v1.1 s6.3.i. if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) { bool IsBoolVecLang = !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus; QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, /*AllowBoolConversions*/ false, /*AllowBooleanOperation*/ IsBoolVecLang, /*ReportInvalid*/ true); if (VecResTy.isNull()) return QualType(); // The result type must match the condition type as specified in // OpenCL v1.1 s6.11.6. if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc)) return QualType(); return VecResTy; } // Both operands are scalar. return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc); } /// Return true if the Expr is block type static bool checkBlockType(Sema &S, const Expr *E) { if (const CallExpr *CE = dyn_cast(E)) { QualType Ty = CE->getCallee()->getType(); if (Ty->isBlockPointerType()) { S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block); return true; } } return false; } /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension. /// In that case, LHS = cond. /// C99 6.5.15 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc) { ExprResult LHSResult = CheckPlaceholderExpr(LHS.get()); if (!LHSResult.isUsable()) return QualType(); LHS = LHSResult; ExprResult RHSResult = CheckPlaceholderExpr(RHS.get()); if (!RHSResult.isUsable()) return QualType(); RHS = RHSResult; // C++ is sufficiently different to merit its own checker. if (getLangOpts().CPlusPlus) return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); VK = VK_PRValue; OK = OK_Ordinary; if (Context.isDependenceAllowed() && (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())) { assert(!getLangOpts().CPlusPlus); assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && "should only occur in error-recovery path."); return Context.DependentTy; } // The OpenCL operator with a vector condition is sufficiently // different to merit its own checker. if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) || Cond.get()->getType()->isExtVectorType()) return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc); // First, check the condition. Cond = UsualUnaryConversions(Cond.get()); if (Cond.isInvalid()) return QualType(); if (checkCondition(*this, Cond.get(), QuestionLoc)) return QualType(); // Now check the two expressions. if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, /*AllowBoolConversions*/ false, /*AllowBooleanOperation*/ false, /*ReportInvalid*/ true); QualType ResTy = UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); QualType LHSTy = LHS.get()->getType(); QualType RHSTy = RHS.get()->getType(); // Diagnose attempts to convert between __ibm128, __float128 and long double // where such conversions currently can't be handled. if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) { Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary // selection operator (?:). if (getLangOpts().OpenCL && ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) { return QualType(); } // If both operands have arithmetic type, do the usual arithmetic conversions // to find a common type: C99 6.5.15p3,5. if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { // Disallow invalid arithmetic conversions, such as those between bit- // precise integers types of different sizes, or between a bit-precise // integer and another type. if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) { Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); return ResTy; } // And if they're both bfloat (which isn't arithmetic), that's fine too. if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) { return LHSTy; } // If both operands are the same structure or union type, the result is that // type. if (const RecordType *LHSRT = LHSTy->getAs()) { // C99 6.5.15p3 if (const RecordType *RHSRT = RHSTy->getAs()) if (LHSRT->getDecl() == RHSRT->getDecl()) // "If both the operands have structure or union type, the result has // that type." This implies that CV qualifiers are dropped. return LHSTy.getUnqualifiedType(); // FIXME: Type of conditional expression must be complete in C mode. } // C99 6.5.15p5: "If both operands have void type, the result has void type." // The following || allows only one side to be void (a GCC-ism). if (LHSTy->isVoidType() || RHSTy->isVoidType()) { return checkConditionalVoidType(*this, LHS, RHS); } // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has // the type of the other operand." if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy; if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy; // All objective-c pointer type analysis is done here. QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); if (!compositeType.isNull()) return compositeType; // Handle block pointer types. if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) return checkConditionalBlockPointerCompatibility(*this, LHS, RHS, QuestionLoc); // Check constraints for C object pointers types (C99 6.5.15p3,6). if (LHSTy->isPointerType() && RHSTy->isPointerType()) return checkConditionalObjectPointersCompatibility(*this, LHS, RHS, QuestionLoc); // GCC compatibility: soften pointer/integer mismatch. Note that // null pointers have been filtered out by this point. if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc, /*IsIntFirstExpr=*/true)) return RHSTy; if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc, /*IsIntFirstExpr=*/false)) return LHSTy; // Allow ?: operations in which both operands have the same // built-in sizeless type. if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy)) return LHSTy; // Emit a better diagnostic if one of the expressions is a null pointer // constant and the other is not a pointer type. In this case, the user most // likely forgot to take the address of the other expression. if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) return QualType(); // Otherwise, the operands are not compatible. Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } /// FindCompositeObjCPointerType - Helper method to find composite type of /// two objective-c pointer types of the two input expressions. QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc) { QualType LHSTy = LHS.get()->getType(); QualType RHSTy = RHS.get()->getType(); // Handle things like Class and struct objc_class*. Here we case the result // to the pseudo-builtin, because that will be implicitly cast back to the // redefinition type if an attempt is made to access its fields. if (LHSTy->isObjCClassType() && (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) { RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); return LHSTy; } if (RHSTy->isObjCClassType() && (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) { LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); return RHSTy; } // And the same for struct objc_object* / id if (LHSTy->isObjCIdType() && (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) { RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); return LHSTy; } if (RHSTy->isObjCIdType() && (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) { LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); return RHSTy; } // And the same for struct objc_selector* / SEL if (Context.isObjCSelType(LHSTy) && (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) { RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast); return LHSTy; } if (Context.isObjCSelType(RHSTy) && (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) { LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast); return RHSTy; } // Check constraints for Objective-C object pointers types. if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { // Two identical object pointer types are always compatible. return LHSTy; } const ObjCObjectPointerType *LHSOPT = LHSTy->castAs(); const ObjCObjectPointerType *RHSOPT = RHSTy->castAs(); QualType compositeType = LHSTy; // If both operands are interfaces and either operand can be // assigned to the other, use that type as the composite // type. This allows // xxx ? (A*) a : (B*) b // where B is a subclass of A. // // Additionally, as for assignment, if either type is 'id' // allow silent coercion. Finally, if the types are // incompatible then make sure to use 'id' as the composite // type so the result is acceptable for sending messages to. // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. // It could return the composite type. if (!(compositeType = Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) { // Nothing more to do. } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; } else if ((LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) && Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, true)) { // Need to handle "id" explicitly. // GCC allows qualified id and any Objective-C type to devolve to // id. Currently localizing to here until clear this should be // part of ObjCQualifiedIdTypesAreCompatible. compositeType = Context.getObjCIdType(); } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { compositeType = Context.getObjCIdType(); } else { Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); QualType incompatTy = Context.getObjCIdType(); LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast); RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast); return incompatTy; } // The object pointer types are compatible. LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast); RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast); return compositeType; } // Check Objective-C object pointer types and 'void *' if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { if (getLangOpts().ObjCAutoRefCount) { // ARC forbids the implicit conversion of object pointers to 'void *', // so these types are not compatible. Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); LHS = RHS = true; return QualType(); } QualType lhptee = LHSTy->castAs()->getPointeeType(); QualType rhptee = RHSTy->castAs()->getPointeeType(); QualType destPointee = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); QualType destType = Context.getPointerType(destPointee); // Add qualifiers if necessary. LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp); // Promote to void*. RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast); return destType; } if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { if (getLangOpts().ObjCAutoRefCount) { // ARC forbids the implicit conversion of object pointers to 'void *', // so these types are not compatible. Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); LHS = RHS = true; return QualType(); } QualType lhptee = LHSTy->castAs()->getPointeeType(); QualType rhptee = RHSTy->castAs()->getPointeeType(); QualType destPointee = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); QualType destType = Context.getPointerType(destPointee); // Add qualifiers if necessary. RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp); // Promote to void*. LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast); return destType; } return QualType(); } /// SuggestParentheses - Emit a note with a fixit hint that wraps /// ParenRange in parentheses. static void SuggestParentheses(Sema &Self, SourceLocation Loc, const PartialDiagnostic &Note, SourceRange ParenRange) { SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd()); if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() && EndLoc.isValid()) { Self.Diag(Loc, Note) << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") << FixItHint::CreateInsertion(EndLoc, ")"); } else { // We can't display the parentheses, so just show the bare note. Self.Diag(Loc, Note) << ParenRange; } } static bool IsArithmeticOp(BinaryOperatorKind Opc) { return BinaryOperator::isAdditiveOp(Opc) || BinaryOperator::isMultiplicativeOp(Opc) || BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or; // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and // not any of the logical operators. Bitwise-xor is commonly used as a // logical-xor because there is no logical-xor operator. The logical // operators, including uses of xor, have a high false positive rate for // precedence warnings. } /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary /// expression, either using a built-in or overloaded operator, /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side /// expression. static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode, Expr **RHSExprs) { // Don't strip parenthesis: we should not warn if E is in parenthesis. E = E->IgnoreImpCasts(); E = E->IgnoreConversionOperatorSingleStep(); E = E->IgnoreImpCasts(); if (auto *MTE = dyn_cast(E)) { E = MTE->getSubExpr(); E = E->IgnoreImpCasts(); } // Built-in binary operator. if (BinaryOperator *OP = dyn_cast(E)) { if (IsArithmeticOp(OP->getOpcode())) { *Opcode = OP->getOpcode(); *RHSExprs = OP->getRHS(); return true; } } // Overloaded operator. if (CXXOperatorCallExpr *Call = dyn_cast(E)) { if (Call->getNumArgs() != 2) return false; // Make sure this is really a binary operator that is safe to pass into // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op. OverloadedOperatorKind OO = Call->getOperator(); if (OO < OO_Plus || OO > OO_Arrow || OO == OO_PlusPlus || OO == OO_MinusMinus) return false; BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO); if (IsArithmeticOp(OpKind)) { *Opcode = OpKind; *RHSExprs = Call->getArg(1); return true; } } return false; } /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type /// or is a logical expression such as (x==y) which has int type, but is /// commonly interpreted as boolean. static bool ExprLooksBoolean(Expr *E) { E = E->IgnoreParenImpCasts(); if (E->getType()->isBooleanType()) return true; if (BinaryOperator *OP = dyn_cast(E)) return OP->isComparisonOp() || OP->isLogicalOp(); if (UnaryOperator *OP = dyn_cast(E)) return OP->getOpcode() == UO_LNot; if (E->getType()->isPointerType()) return true; // FIXME: What about overloaded operator calls returning "unspecified boolean // type"s (commonly pointer-to-members)? return false; } /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator /// and binary operator are mixed in a way that suggests the programmer assumed /// the conditional operator has higher precedence, for example: /// "int x = a + someBinaryCondition ? 1 : 2". static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc, Expr *Condition, Expr *LHSExpr, Expr *RHSExpr) { BinaryOperatorKind CondOpcode; Expr *CondRHS; if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS)) return; if (!ExprLooksBoolean(CondRHS)) return; // The condition is an arithmetic binary expression, with a right- // hand side that looks boolean, so warn. unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode) ? diag::warn_precedence_bitwise_conditional : diag::warn_precedence_conditional; Self.Diag(OpLoc, DiagID) << Condition->getSourceRange() << BinaryOperator::getOpcodeStr(CondOpcode); SuggestParentheses( Self, OpLoc, Self.PDiag(diag::note_precedence_silence) << BinaryOperator::getOpcodeStr(CondOpcode), SourceRange(Condition->getBeginLoc(), Condition->getEndLoc())); SuggestParentheses(Self, OpLoc, Self.PDiag(diag::note_precedence_conditional_first), SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc())); } /// Compute the nullability of a conditional expression. static QualType computeConditionalNullability(QualType ResTy, bool IsBin, QualType LHSTy, QualType RHSTy, ASTContext &Ctx) { if (!ResTy->isAnyPointerType()) return ResTy; auto GetNullability = [&Ctx](QualType Ty) { Optional Kind = Ty->getNullability(Ctx); if (Kind) { // For our purposes, treat _Nullable_result as _Nullable. if (*Kind == NullabilityKind::NullableResult) return NullabilityKind::Nullable; return *Kind; } return NullabilityKind::Unspecified; }; auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy); NullabilityKind MergedKind; // Compute nullability of a binary conditional expression. if (IsBin) { if (LHSKind == NullabilityKind::NonNull) MergedKind = NullabilityKind::NonNull; else MergedKind = RHSKind; // Compute nullability of a normal conditional expression. } else { if (LHSKind == NullabilityKind::Nullable || RHSKind == NullabilityKind::Nullable) MergedKind = NullabilityKind::Nullable; else if (LHSKind == NullabilityKind::NonNull) MergedKind = RHSKind; else if (RHSKind == NullabilityKind::NonNull) MergedKind = LHSKind; else MergedKind = NullabilityKind::Unspecified; } // Return if ResTy already has the correct nullability. if (GetNullability(ResTy) == MergedKind) return ResTy; // Strip all nullability from ResTy. while (ResTy->getNullability(Ctx)) ResTy = ResTy.getSingleStepDesugaredType(Ctx); // Create a new AttributedType with the new nullability kind. auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind); return Ctx.getAttributedType(NewAttr, ResTy, ResTy); } /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr) { if (!Context.isDependenceAllowed()) { // C cannot handle TypoExpr nodes in the condition because it // doesn't handle dependent types properly, so make sure any TypoExprs have // been dealt with before checking the operands. ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr); ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr); ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr); if (!CondResult.isUsable()) return ExprError(); if (LHSExpr) { if (!LHSResult.isUsable()) return ExprError(); } if (!RHSResult.isUsable()) return ExprError(); CondExpr = CondResult.get(); LHSExpr = LHSResult.get(); RHSExpr = RHSResult.get(); } // If this is the gnu "x ?: y" extension, analyze the types as though the LHS // was the condition. OpaqueValueExpr *opaqueValue = nullptr; Expr *commonExpr = nullptr; if (!LHSExpr) { commonExpr = CondExpr; // Lower out placeholder types first. This is important so that we don't // try to capture a placeholder. This happens in few cases in C++; such // as Objective-C++'s dictionary subscripting syntax. if (commonExpr->hasPlaceholderType()) { ExprResult result = CheckPlaceholderExpr(commonExpr); if (!result.isUsable()) return ExprError(); commonExpr = result.get(); } // We usually want to apply unary conversions *before* saving, except // in the special case of a C++ l-value conditional. if (!(getLangOpts().CPlusPlus && !commonExpr->isTypeDependent() && commonExpr->getValueKind() == RHSExpr->getValueKind() && commonExpr->isGLValue() && commonExpr->isOrdinaryOrBitFieldObject() && RHSExpr->isOrdinaryOrBitFieldObject() && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { ExprResult commonRes = UsualUnaryConversions(commonExpr); if (commonRes.isInvalid()) return ExprError(); commonExpr = commonRes.get(); } // If the common expression is a class or array prvalue, materialize it // so that we can safely refer to it multiple times. if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() || commonExpr->getType()->isArrayType())) { ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr); if (MatExpr.isInvalid()) return ExprError(); commonExpr = MatExpr.get(); } opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), commonExpr->getType(), commonExpr->getValueKind(), commonExpr->getObjectKind(), commonExpr); LHSExpr = CondExpr = opaqueValue; } QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType(); ExprValueKind VK = VK_PRValue; ExprObjectKind OK = OK_Ordinary; ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr; QualType result = CheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() || RHS.isInvalid()) return ExprError(); DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(), RHS.get()); CheckBoolLikeConversion(Cond.get(), QuestionLoc); result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy, Context); if (!commonExpr) return new (Context) ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc, RHS.get(), result, VK, OK); return new (Context) BinaryConditionalOperator( commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc, ColonLoc, result, VK, OK); } // Check if we have a conversion between incompatible cmse function pointer // types, that is, a conversion between a function pointer with the // cmse_nonsecure_call attribute and one without. static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType, QualType ToType) { if (const auto *ToFn = dyn_cast(S.Context.getCanonicalType(ToType))) { if (const auto *FromFn = dyn_cast(S.Context.getCanonicalType(FromType))) { FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall(); } } return false; } // checkPointerTypesForAssignment - This is a very tricky routine (despite // being closely modeled after the C99 spec:-). The odd characteristic of this // routine is it effectively iqnores the qualifiers on the top level pointee. // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. // FIXME: add a couple examples in this comment. static Sema::AssignConvertType checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) { assert(LHSType.isCanonical() && "LHS not canonicalized!"); assert(RHSType.isCanonical() && "RHS not canonicalized!"); // get the "pointed to" type (ignoring qualifiers at the top level) const Type *lhptee, *rhptee; Qualifiers lhq, rhq; std::tie(lhptee, lhq) = cast(LHSType)->getPointeeType().split().asPair(); std::tie(rhptee, rhq) = cast(RHSType)->getPointeeType().split().asPair(); Sema::AssignConvertType ConvTy = Sema::Compatible; // C99 6.5.16.1p1: This following citation is common to constraints // 3 & 4 (below). ...and the type *pointed to* by the left has all the // qualifiers of the type *pointed to* by the right; // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay. if (lhq.getObjCLifetime() != rhq.getObjCLifetime() && lhq.compatiblyIncludesObjCLifetime(rhq)) { // Ignore lifetime for further calculation. lhq.removeObjCLifetime(); rhq.removeObjCLifetime(); } if (!lhq.compatiblyIncludes(rhq)) { // Treat address-space mismatches as fatal. if (!lhq.isAddressSpaceSupersetOf(rhq)) return Sema::IncompatiblePointerDiscardsQualifiers; // It's okay to add or remove GC or lifetime qualifiers when converting to // and from void*. else if (lhq.withoutObjCGCAttr().withoutObjCLifetime() .compatiblyIncludes( rhq.withoutObjCGCAttr().withoutObjCLifetime()) && (lhptee->isVoidType() || rhptee->isVoidType())) ; // keep old // Treat lifetime mismatches as fatal. else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; // For GCC/MS compatibility, other qualifier mismatches are treated // as still compatible in C. else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; } // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or // incomplete type and the other is a pointer to a qualified or unqualified // version of void... if (lhptee->isVoidType()) { if (rhptee->isIncompleteOrObjectType()) return ConvTy; // As an extension, we allow cast to/from void* to function pointer. assert(rhptee->isFunctionType()); return Sema::FunctionVoidPointer; } if (rhptee->isVoidType()) { if (lhptee->isIncompleteOrObjectType()) return ConvTy; // As an extension, we allow cast to/from void* to function pointer. assert(lhptee->isFunctionType()); return Sema::FunctionVoidPointer; } // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or // unqualified versions of compatible types, ... QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); if (!S.Context.typesAreCompatible(ltrans, rtrans)) { // Check if the pointee types are compatible ignoring the sign. // We explicitly check for char so that we catch "char" vs // "unsigned char" on systems where "char" is unsigned. if (lhptee->isCharType()) ltrans = S.Context.UnsignedCharTy; else if (lhptee->hasSignedIntegerRepresentation()) ltrans = S.Context.getCorrespondingUnsignedType(ltrans); if (rhptee->isCharType()) rtrans = S.Context.UnsignedCharTy; else if (rhptee->hasSignedIntegerRepresentation()) rtrans = S.Context.getCorrespondingUnsignedType(rtrans); if (ltrans == rtrans) { // Types are compatible ignoring the sign. Qualifier incompatibility // takes priority over sign incompatibility because the sign // warning can be disabled. if (ConvTy != Sema::Compatible) return ConvTy; return Sema::IncompatiblePointerSign; } // If we are a multi-level pointer, it's possible that our issue is simply // one of qualification - e.g. char ** -> const char ** is not allowed. If // the eventual target type is the same and the pointers have the same // level of indirection, this must be the issue. if (isa(lhptee) && isa(rhptee)) { do { std::tie(lhptee, lhq) = cast(lhptee)->getPointeeType().split().asPair(); std::tie(rhptee, rhq) = cast(rhptee)->getPointeeType().split().asPair(); // Inconsistent address spaces at this point is invalid, even if the // address spaces would be compatible. // FIXME: This doesn't catch address space mismatches for pointers of // different nesting levels, like: // __local int *** a; // int ** b = a; // It's not clear how to actually determine when such pointers are // invalidly incompatible. if (lhq.getAddressSpace() != rhq.getAddressSpace()) return Sema::IncompatibleNestedPointerAddressSpaceMismatch; } while (isa(lhptee) && isa(rhptee)); if (lhptee == rhptee) return Sema::IncompatibleNestedPointerQualifiers; } // General pointer incompatibility takes priority over qualifiers. if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType()) return Sema::IncompatibleFunctionPointer; return Sema::IncompatiblePointer; } if (!S.getLangOpts().CPlusPlus && S.IsFunctionConversion(ltrans, rtrans, ltrans)) return Sema::IncompatibleFunctionPointer; if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans)) return Sema::IncompatibleFunctionPointer; return ConvTy; } /// checkBlockPointerTypesForAssignment - This routine determines whether two /// block pointer types are compatible or whether a block and normal pointer /// are compatible. It is more restrict than comparing two function pointer // types. static Sema::AssignConvertType checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) { assert(LHSType.isCanonical() && "LHS not canonicalized!"); assert(RHSType.isCanonical() && "RHS not canonicalized!"); QualType lhptee, rhptee; // get the "pointed to" type (ignoring qualifiers at the top level) lhptee = cast(LHSType)->getPointeeType(); rhptee = cast(RHSType)->getPointeeType(); // In C++, the types have to match exactly. if (S.getLangOpts().CPlusPlus) return Sema::IncompatibleBlockPointer; Sema::AssignConvertType ConvTy = Sema::Compatible; // For blocks we enforce that qualifiers are identical. Qualifiers LQuals = lhptee.getLocalQualifiers(); Qualifiers RQuals = rhptee.getLocalQualifiers(); if (S.getLangOpts().OpenCL) { LQuals.removeAddressSpace(); RQuals.removeAddressSpace(); } if (LQuals != RQuals) ConvTy = Sema::CompatiblePointerDiscardsQualifiers; // FIXME: OpenCL doesn't define the exact compile time semantics for a block // assignment. // The current behavior is similar to C++ lambdas. A block might be // assigned to a variable iff its return type and parameters are compatible // (C99 6.2.7) with the corresponding return type and parameters of the LHS of // an assignment. Presumably it should behave in way that a function pointer // assignment does in C, so for each parameter and return type: // * CVR and address space of LHS should be a superset of CVR and address // space of RHS. // * unqualified types should be compatible. if (S.getLangOpts().OpenCL) { if (!S.Context.typesAreBlockPointerCompatible( S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals), S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals))) return Sema::IncompatibleBlockPointer; } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType)) return Sema::IncompatibleBlockPointer; return ConvTy; } /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types /// for assignment compatibility. static Sema::AssignConvertType checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) { assert(LHSType.isCanonical() && "LHS was not canonicalized!"); assert(RHSType.isCanonical() && "RHS was not canonicalized!"); if (LHSType->isObjCBuiltinType()) { // Class is not compatible with ObjC object pointers. if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() && !RHSType->isObjCQualifiedClassType()) return Sema::IncompatiblePointer; return Sema::Compatible; } if (RHSType->isObjCBuiltinType()) { if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() && !LHSType->isObjCQualifiedClassType()) return Sema::IncompatiblePointer; return Sema::Compatible; } QualType lhptee = LHSType->castAs()->getPointeeType(); QualType rhptee = RHSType->castAs()->getPointeeType(); if (!lhptee.isAtLeastAsQualifiedAs(rhptee) && // make an exception for id

!LHSType->isObjCQualifiedIdType()) return Sema::CompatiblePointerDiscardsQualifiers; if (S.Context.typesAreCompatible(LHSType, RHSType)) return Sema::Compatible; if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType()) return Sema::IncompatibleObjCQualifiedId; return Sema::IncompatiblePointer; } Sema::AssignConvertType Sema::CheckAssignmentConstraints(SourceLocation Loc, QualType LHSType, QualType RHSType) { // Fake up an opaque expression. We don't actually care about what // cast operations are required, so if CheckAssignmentConstraints // adds casts to this they'll be wasted, but fortunately that doesn't // usually happen on valid code. OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue); ExprResult RHSPtr = &RHSExpr; CastKind K; return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false); } /// This helper function returns true if QT is a vector type that has element /// type ElementType. static bool isVector(QualType QT, QualType ElementType) { if (const VectorType *VT = QT->getAs()) return VT->getElementType().getCanonicalType() == ElementType; return false; } /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently /// has code to accommodate several GCC extensions when type checking /// pointers. Here are some objectionable examples that GCC considers warnings: /// /// int a, *pint; /// short *pshort; /// struct foo *pfoo; /// /// pint = pshort; // warning: assignment from incompatible pointer type /// a = pint; // warning: assignment makes integer from pointer without a cast /// pint = a; // warning: assignment makes pointer from integer without a cast /// pint = pfoo; // warning: assignment from incompatible pointer type /// /// As a result, the code for dealing with pointers is more complex than the /// C99 spec dictates. /// /// Sets 'Kind' for any result kind except Incompatible. Sema::AssignConvertType Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, CastKind &Kind, bool ConvertRHS) { QualType RHSType = RHS.get()->getType(); QualType OrigLHSType = LHSType; // Get canonical types. We're not formatting these types, just comparing // them. LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType(); RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType(); // Common case: no conversion required. if (LHSType == RHSType) { Kind = CK_NoOp; return Compatible; } // If the LHS has an __auto_type, there are no additional type constraints // to be worried about. if (const auto *AT = dyn_cast(LHSType)) { if (AT->isGNUAutoType()) { Kind = CK_NoOp; return Compatible; } } // If we have an atomic type, try a non-atomic assignment, then just add an // atomic qualification step. if (const AtomicType *AtomicTy = dyn_cast(LHSType)) { Sema::AssignConvertType result = CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind); if (result != Compatible) return result; if (Kind != CK_NoOp && ConvertRHS) RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind); Kind = CK_NonAtomicToAtomic; return Compatible; } // If the left-hand side is a reference type, then we are in a // (rare!) case where we've allowed the use of references in C, // e.g., as a parameter type in a built-in function. In this case, // just make sure that the type referenced is compatible with the // right-hand side type. The caller is responsible for adjusting // LHSType so that the resulting expression does not have reference // type. if (const ReferenceType *LHSTypeRef = LHSType->getAs()) { if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) { Kind = CK_LValueBitCast; return Compatible; } return Incompatible; } // Allow scalar to ExtVector assignments, and assignments of an ExtVector type // to the same ExtVector type. if (LHSType->isExtVectorType()) { if (RHSType->isExtVectorType()) return Incompatible; if (RHSType->isArithmeticType()) { // CK_VectorSplat does T -> vector T, so first cast to the element type. if (ConvertRHS) RHS = prepareVectorSplat(LHSType, RHS.get()); Kind = CK_VectorSplat; return Compatible; } } // Conversions to or from vector type. if (LHSType->isVectorType() || RHSType->isVectorType()) { if (LHSType->isVectorType() && RHSType->isVectorType()) { // Allow assignments of an AltiVec vector type to an equivalent GCC // vector type and vice versa if (Context.areCompatibleVectorTypes(LHSType, RHSType)) { Kind = CK_BitCast; return Compatible; } // If we are allowing lax vector conversions, and LHS and RHS are both // vectors, the total size only needs to be the same. This is a bitcast; // no bits are changed but the result type is different. if (isLaxVectorConversion(RHSType, LHSType)) { // The default for lax vector conversions with Altivec vectors will // change, so if we are converting between vector types where // at least one is an Altivec vector, emit a warning. if (anyAltivecTypes(RHSType, LHSType) && !areSameVectorElemTypes(RHSType, LHSType)) Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType; Kind = CK_BitCast; return IncompatibleVectors; } } // When the RHS comes from another lax conversion (e.g. binops between // scalars and vectors) the result is canonicalized as a vector. When the // LHS is also a vector, the lax is allowed by the condition above. Handle // the case where LHS is a scalar. if (LHSType->isScalarType()) { const VectorType *VecType = RHSType->getAs(); if (VecType && VecType->getNumElements() == 1 && isLaxVectorConversion(RHSType, LHSType)) { if (VecType->getVectorKind() == VectorType::AltiVecVector) Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType; ExprResult *VecExpr = &RHS; *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast); Kind = CK_BitCast; return Compatible; } } // Allow assignments between fixed-length and sizeless SVE vectors. if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) || (LHSType->isVectorType() && RHSType->isSizelessBuiltinType())) if (Context.areCompatibleSveTypes(LHSType, RHSType) || Context.areLaxCompatibleSveTypes(LHSType, RHSType)) { Kind = CK_BitCast; return Compatible; } return Incompatible; } // Diagnose attempts to convert between __ibm128, __float128 and long double // where such conversions currently can't be handled. if (unsupportedTypeConversion(*this, LHSType, RHSType)) return Incompatible; // Disallow assigning a _Complex to a real type in C++ mode since it simply // discards the imaginary part. if (getLangOpts().CPlusPlus && RHSType->getAs() && !LHSType->getAs()) return Incompatible; // Arithmetic conversions. if (LHSType->isArithmeticType() && RHSType->isArithmeticType() && !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) { if (ConvertRHS) Kind = PrepareScalarCast(RHS, LHSType); return Compatible; } // Conversions to normal pointers. if (const PointerType *LHSPointer = dyn_cast(LHSType)) { // U* -> T* if (isa(RHSType)) { LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace(); if (AddrSpaceL != AddrSpaceR) Kind = CK_AddressSpaceConversion; else if (Context.hasCvrSimilarType(RHSType, LHSType)) Kind = CK_NoOp; else Kind = CK_BitCast; return checkPointerTypesForAssignment(*this, LHSType, RHSType); } // int -> T* if (RHSType->isIntegerType()) { Kind = CK_IntegralToPointer; // FIXME: null? return IntToPointer; } // C pointers are not compatible with ObjC object pointers, // with two exceptions: if (isa(RHSType)) { // - conversions to void* if (LHSPointer->getPointeeType()->isVoidType()) { Kind = CK_BitCast; return Compatible; } // - conversions from 'Class' to the redefinition type if (RHSType->isObjCClassType() && Context.hasSameType(LHSType, Context.getObjCClassRedefinitionType())) { Kind = CK_BitCast; return Compatible; } Kind = CK_BitCast; return IncompatiblePointer; } // U^ -> void* if (RHSType->getAs()) { if (LHSPointer->getPointeeType()->isVoidType()) { LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); LangAS AddrSpaceR = RHSType->getAs() ->getPointeeType() .getAddressSpace(); Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; return Compatible; } } return Incompatible; } // Conversions to block pointers. if (isa(LHSType)) { // U^ -> T^ if (RHSType->isBlockPointerType()) { LangAS AddrSpaceL = LHSType->getAs() ->getPointeeType() .getAddressSpace(); LangAS AddrSpaceR = RHSType->getAs() ->getPointeeType() .getAddressSpace(); Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType); } // int or null -> T^ if (RHSType->isIntegerType()) { Kind = CK_IntegralToPointer; // FIXME: null return IntToBlockPointer; } // id -> T^ if (getLangOpts().ObjC && RHSType->isObjCIdType()) { Kind = CK_AnyPointerToBlockPointerCast; return Compatible; } // void* -> T^ if (const PointerType *RHSPT = RHSType->getAs()) if (RHSPT->getPointeeType()->isVoidType()) { Kind = CK_AnyPointerToBlockPointerCast; return Compatible; } return Incompatible; } // Conversions to Objective-C pointers. if (isa(LHSType)) { // A* -> B* if (RHSType->isObjCObjectPointerType()) { Kind = CK_BitCast; Sema::AssignConvertType result = checkObjCPointerTypesForAssignment(*this, LHSType, RHSType); if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && result == Compatible && !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType)) result = IncompatibleObjCWeakRef; return result; } // int or null -> A* if (RHSType->isIntegerType()) { Kind = CK_IntegralToPointer; // FIXME: null return IntToPointer; } // In general, C pointers are not compatible with ObjC object pointers, // with two exceptions: if (isa(RHSType)) { Kind = CK_CPointerToObjCPointerCast; // - conversions from 'void*' if (RHSType->isVoidPointerType()) { return Compatible; } // - conversions to 'Class' from its redefinition type if (LHSType->isObjCClassType() && Context.hasSameType(RHSType, Context.getObjCClassRedefinitionType())) { return Compatible; } return IncompatiblePointer; } // Only under strict condition T^ is compatible with an Objective-C pointer. if (RHSType->isBlockPointerType() && LHSType->isBlockCompatibleObjCPointerType(Context)) { if (ConvertRHS) maybeExtendBlockObject(RHS); Kind = CK_BlockPointerToObjCPointerCast; return Compatible; } return Incompatible; } // Conversions from pointers that are not covered by the above. if (isa(RHSType)) { // T* -> _Bool if (LHSType == Context.BoolTy) { Kind = CK_PointerToBoolean; return Compatible; } // T* -> int if (LHSType->isIntegerType()) { Kind = CK_PointerToIntegral; return PointerToInt; } return Incompatible; } // Conversions from Objective-C pointers that are not covered by the above. if (isa(RHSType)) { // T* -> _Bool if (LHSType == Context.BoolTy) { Kind = CK_PointerToBoolean; return Compatible; } // T* -> int if (LHSType->isIntegerType()) { Kind = CK_PointerToIntegral; return PointerToInt; } return Incompatible; } // struct A -> struct B if (isa(LHSType) && isa(RHSType)) { if (Context.typesAreCompatible(LHSType, RHSType)) { Kind = CK_NoOp; return Compatible; } } if (LHSType->isSamplerT() && RHSType->isIntegerType()) { Kind = CK_IntToOCLSampler; return Compatible; } return Incompatible; } /// Constructs a transparent union from an expression that is /// used to initialize the transparent union. static void ConstructTransparentUnion(Sema &S, ASTContext &C, ExprResult &EResult, QualType UnionType, FieldDecl *Field) { // Build an initializer list that designates the appropriate member // of the transparent union. Expr *E = EResult.get(); InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), E, SourceLocation()); Initializer->setType(UnionType); Initializer->setInitializedFieldInUnion(Field); // Build a compound literal constructing a value of the transparent // union type from this initializer list. TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, VK_PRValue, Initializer, false); } Sema::AssignConvertType Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &RHS) { QualType RHSType = RHS.get()->getType(); // If the ArgType is a Union type, we want to handle a potential // transparent_union GCC extension. const RecordType *UT = ArgType->getAsUnionType(); if (!UT || !UT->getDecl()->hasAttr()) return Incompatible; // The field to initialize within the transparent union. RecordDecl *UD = UT->getDecl(); FieldDecl *InitField = nullptr; // It's compatible if the expression matches any of the fields. for (auto *it : UD->fields()) { if (it->getType()->isPointerType()) { // If the transparent union contains a pointer type, we allow: // 1) void pointer // 2) null pointer constant if (RHSType->isPointerType()) if (RHSType->castAs()->getPointeeType()->isVoidType()) { RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast); InitField = it; break; } if (RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_NullToPointer); InitField = it; break; } } CastKind Kind; if (CheckAssignmentConstraints(it->getType(), RHS, Kind) == Compatible) { RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind); InitField = it; break; } } if (!InitField) return Incompatible; ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField); return Compatible; } Sema::AssignConvertType Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS, bool Diagnose, bool DiagnoseCFAudited, bool ConvertRHS) { // We need to be able to tell the caller whether we diagnosed a problem, if // they ask us to issue diagnostics. assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed"); // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly, // we can't avoid *all* modifications at the moment, so we need some somewhere // to put the updated value. ExprResult LocalRHS = CallerRHS; ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS; if (const auto *LHSPtrType = LHSType->getAs()) { if (const auto *RHSPtrType = RHS.get()->getType()->getAs()) { if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) && !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { Diag(RHS.get()->getExprLoc(), diag::warn_noderef_to_dereferenceable_pointer) << RHS.get()->getSourceRange(); } } } if (getLangOpts().CPlusPlus) { if (!LHSType->isRecordType() && !LHSType->isAtomicType()) { // C++ 5.17p3: If the left operand is not of class type, the // expression is implicitly converted (C++ 4) to the // cv-unqualified type of the left operand. QualType RHSType = RHS.get()->getType(); if (Diagnose) { RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), AA_Assigning); } else { ImplicitConversionSequence ICS = TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), /*SuppressUserConversions=*/false, AllowedExplicit::None, /*InOverloadResolution=*/false, /*CStyle=*/false, /*AllowObjCWritebackConversion=*/false); if (ICS.isFailure()) return Incompatible; RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), ICS, AA_Assigning); } if (RHS.isInvalid()) return Incompatible; Sema::AssignConvertType result = Compatible; if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType)) result = IncompatibleObjCWeakRef; return result; } // FIXME: Currently, we fall through and treat C++ classes like C // structures. // FIXME: We also fall through for atomics; not sure what should // happen there, though. } else if (RHS.get()->getType() == Context.OverloadTy) { // As a set of extensions to C, we support overloading on functions. These // functions need to be resolved here. DeclAccessPair DAP; if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction( RHS.get(), LHSType, /*Complain=*/false, DAP)) RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD); else return Incompatible; } // C99 6.5.16.1p1: the left operand is a pointer and the right is // a null pointer constant. if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType()) && RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { if (Diagnose || ConvertRHS) { CastKind Kind; CXXCastPath Path; CheckPointerConversion(RHS.get(), LHSType, Kind, Path, /*IgnoreBaseAccess=*/false, Diagnose); if (ConvertRHS) RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path); } return Compatible; } // OpenCL queue_t type assignment. if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant( Context, Expr::NPC_ValueDependentIsNull)) { RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); return Compatible; } // This check seems unnatural, however it is necessary to ensure the proper // conversion of functions/arrays. If the conversion were done for all // DeclExpr's (created by ActOnIdExpression), it would mess up the unary // expressions that suppress this implicit conversion (&, sizeof). // // Suppress this for references: C++ 8.5.3p5. if (!LHSType->isReferenceType()) { // FIXME: We potentially allocate here even if ConvertRHS is false. RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose); if (RHS.isInvalid()) return Incompatible; } CastKind Kind; Sema::AssignConvertType result = CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS); // C99 6.5.16.1p2: The value of the right operand is converted to the // type of the assignment expression. // CheckAssignmentConstraints allows the left-hand side to be a reference, // so that we can use references in built-in functions even in C. // The getNonReferenceType() call makes sure that the resulting expression // does not have reference type. if (result != Incompatible && RHS.get()->getType() != LHSType) { QualType Ty = LHSType.getNonLValueExprType(Context); Expr *E = RHS.get(); // Check for various Objective-C errors. If we are not reporting // diagnostics and just checking for errors, e.g., during overload // resolution, return Incompatible to indicate the failure. if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion, Diagnose, DiagnoseCFAudited) != ACR_okay) { if (!Diagnose) return Incompatible; } if (getLangOpts().ObjC && (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType, E->getType(), E, Diagnose) || CheckConversionToObjCLiteral(LHSType, E, Diagnose))) { if (!Diagnose) return Incompatible; // Replace the expression with a corrected version and continue so we // can find further errors. RHS = E; return Compatible; } if (ConvertRHS) RHS = ImpCastExprToType(E, Ty, Kind); } return result; } namespace { /// The original operand to an operator, prior to the application of the usual /// arithmetic conversions and converting the arguments of a builtin operator /// candidate. struct OriginalOperand { explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) { if (auto *MTE = dyn_cast(Op)) Op = MTE->getSubExpr(); if (auto *BTE = dyn_cast(Op)) Op = BTE->getSubExpr(); if (auto *ICE = dyn_cast(Op)) { Orig = ICE->getSubExprAsWritten(); Conversion = ICE->getConversionFunction(); } } QualType getType() const { return Orig->getType(); } Expr *Orig; NamedDecl *Conversion; }; } QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS, ExprResult &RHS) { OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get()); Diag(Loc, diag::err_typecheck_invalid_operands) << OrigLHS.getType() << OrigRHS.getType() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); // If a user-defined conversion was applied to either of the operands prior // to applying the built-in operator rules, tell the user about it. if (OrigLHS.Conversion) { Diag(OrigLHS.Conversion->getLocation(), diag::note_typecheck_invalid_operands_converted) << 0 << LHS.get()->getType(); } if (OrigRHS.Conversion) { Diag(OrigRHS.Conversion->getLocation(), diag::note_typecheck_invalid_operands_converted) << 1 << RHS.get()->getType(); } return QualType(); } // Diagnose cases where a scalar was implicitly converted to a vector and // diagnose the underlying types. Otherwise, diagnose the error // as invalid vector logical operands for non-C++ cases. QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, ExprResult &RHS) { QualType LHSType = LHS.get()->IgnoreImpCasts()->getType(); QualType RHSType = RHS.get()->IgnoreImpCasts()->getType(); bool LHSNatVec = LHSType->isVectorType(); bool RHSNatVec = RHSType->isVectorType(); if (!(LHSNatVec && RHSNatVec)) { Expr *Vector = LHSNatVec ? LHS.get() : RHS.get(); Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get(); Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType() << Vector->getSourceRange(); return QualType(); } Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) << 1 << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } /// Try to convert a value of non-vector type to a vector type by converting /// the type to the element type of the vector and then performing a splat. /// If the language is OpenCL, we only use conversions that promote scalar /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except /// for float->int. /// /// OpenCL V2.0 6.2.6.p2: /// An error shall occur if any scalar operand type has greater rank /// than the type of the vector element. /// /// \param scalar - if non-null, actually perform the conversions /// \return true if the operation fails (but without diagnosing the failure) static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar, QualType scalarTy, QualType vectorEltTy, QualType vectorTy, unsigned &DiagID) { // The conversion to apply to the scalar before splatting it, // if necessary. CastKind scalarCast = CK_NoOp; if (vectorEltTy->isIntegralType(S.Context)) { if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() || (scalarTy->isIntegerType() && S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) { DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; return true; } if (!scalarTy->isIntegralType(S.Context)) return true; scalarCast = CK_IntegralCast; } else if (vectorEltTy->isRealFloatingType()) { if (scalarTy->isRealFloatingType()) { if (S.getLangOpts().OpenCL && S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) { DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; return true; } scalarCast = CK_FloatingCast; } else if (scalarTy->isIntegralType(S.Context)) scalarCast = CK_IntegralToFloating; else return true; } else { return true; } // Adjust scalar if desired. if (scalar) { if (scalarCast != CK_NoOp) *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast); *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat); } return false; } /// Convert vector E to a vector with the same number of elements but different /// element type. static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) { const auto *VecTy = E->getType()->getAs(); assert(VecTy && "Expression E must be a vector"); QualType NewVecTy = VecTy->isExtVectorType() ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements()) : S.Context.getVectorType(ElementType, VecTy->getNumElements(), VecTy->getVectorKind()); // Look through the implicit cast. Return the subexpression if its type is // NewVecTy. if (auto *ICE = dyn_cast(E)) if (ICE->getSubExpr()->getType() == NewVecTy) return ICE->getSubExpr(); auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast; return S.ImpCastExprToType(E, NewVecTy, Cast); } /// Test if a (constant) integer Int can be casted to another integer type /// IntTy without losing precision. static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int, QualType OtherIntTy) { QualType IntTy = Int->get()->getType().getUnqualifiedType(); // Reject cases where the value of the Int is unknown as that would // possibly cause truncation, but accept cases where the scalar can be // demoted without loss of precision. Expr::EvalResult EVResult; bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy); bool IntSigned = IntTy->hasSignedIntegerRepresentation(); bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation(); if (CstInt) { // If the scalar is constant and is of a higher order and has more active // bits that the vector element type, reject it. llvm::APSInt Result = EVResult.Val.getInt(); unsigned NumBits = IntSigned ? (Result.isNegative() ? Result.getMinSignedBits() : Result.getActiveBits()) : Result.getActiveBits(); if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits) return true; // If the signedness of the scalar type and the vector element type // differs and the number of bits is greater than that of the vector // element reject it. return (IntSigned != OtherIntSigned && NumBits > S.Context.getIntWidth(OtherIntTy)); } // Reject cases where the value of the scalar is not constant and it's // order is greater than that of the vector element type. return (Order < 0); } /// Test if a (constant) integer Int can be casted to floating point type /// FloatTy without losing precision. static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int, QualType FloatTy) { QualType IntTy = Int->get()->getType().getUnqualifiedType(); // Determine if the integer constant can be expressed as a floating point // number of the appropriate type. Expr::EvalResult EVResult; bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); uint64_t Bits = 0; if (CstInt) { // Reject constants that would be truncated if they were converted to // the floating point type. Test by simple to/from conversion. // FIXME: Ideally the conversion to an APFloat and from an APFloat // could be avoided if there was a convertFromAPInt method // which could signal back if implicit truncation occurred. llvm::APSInt Result = EVResult.Val.getInt(); llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy)); Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(), llvm::APFloat::rmTowardZero); llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy), !IntTy->hasSignedIntegerRepresentation()); bool Ignored = false; Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven, &Ignored); if (Result != ConvertBack) return true; } else { // Reject types that cannot be fully encoded into the mantissa of // the float. Bits = S.Context.getTypeSize(IntTy); unsigned FloatPrec = llvm::APFloat::semanticsPrecision( S.Context.getFloatTypeSemantics(FloatTy)); if (Bits > FloatPrec) return true; } return false; } /// Attempt to convert and splat Scalar into a vector whose types matches /// Vector following GCC conversion rules. The rule is that implicit /// conversion can occur when Scalar can be casted to match Vector's element /// type without causing truncation of Scalar. static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar, ExprResult *Vector) { QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType(); QualType VectorTy = Vector->get()->getType().getUnqualifiedType(); QualType VectorEltTy; if (const auto *VT = VectorTy->getAs()) { assert(!isa(VT) && "ExtVectorTypes should not be handled here!"); VectorEltTy = VT->getElementType(); } else if (VectorTy->isVLSTBuiltinType()) { VectorEltTy = VectorTy->castAs()->getSveEltType(S.getASTContext()); } else { llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here"); } // Reject cases where the vector element type or the scalar element type are // not integral or floating point types. if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType()) return true; // The conversion to apply to the scalar before splatting it, // if necessary. CastKind ScalarCast = CK_NoOp; // Accept cases where the vector elements are integers and the scalar is // an integer. // FIXME: Notionally if the scalar was a floating point value with a precise // integral representation, we could cast it to an appropriate integer // type and then perform the rest of the checks here. GCC will perform // this conversion in some cases as determined by the input language. // We should accept it on a language independent basis. if (VectorEltTy->isIntegralType(S.Context) && ScalarTy->isIntegralType(S.Context) && S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) { if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy)) return true; ScalarCast = CK_IntegralCast; } else if (VectorEltTy->isIntegralType(S.Context) && ScalarTy->isRealFloatingType()) { if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy)) ScalarCast = CK_FloatingToIntegral; else return true; } else if (VectorEltTy->isRealFloatingType()) { if (ScalarTy->isRealFloatingType()) { // Reject cases where the scalar type is not a constant and has a higher // Order than the vector element type. llvm::APFloat Result(0.0); // Determine whether this is a constant scalar. In the event that the // value is dependent (and thus cannot be evaluated by the constant // evaluator), skip the evaluation. This will then diagnose once the // expression is instantiated. bool CstScalar = Scalar->get()->isValueDependent() || Scalar->get()->EvaluateAsFloat(Result, S.Context); int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy); if (!CstScalar && Order < 0) return true; // If the scalar cannot be safely casted to the vector element type, // reject it. if (CstScalar) { bool Truncated = false; Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy), llvm::APFloat::rmNearestTiesToEven, &Truncated); if (Truncated) return true; } ScalarCast = CK_FloatingCast; } else if (ScalarTy->isIntegralType(S.Context)) { if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy)) return true; ScalarCast = CK_IntegralToFloating; } else return true; } else if (ScalarTy->isEnumeralType()) return true; // Adjust scalar if desired. if (Scalar) { if (ScalarCast != CK_NoOp) *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast); *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat); } return false; } QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, bool AllowBothBool, bool AllowBoolConversions, bool AllowBoolOperation, bool ReportInvalid) { if (!IsCompAssign) { LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); if (LHS.isInvalid()) return QualType(); } RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); if (RHS.isInvalid()) return QualType(); // For conversion purposes, we ignore any qualifiers. // For example, "const float" and "float" are equivalent. QualType LHSType = LHS.get()->getType().getUnqualifiedType(); QualType RHSType = RHS.get()->getType().getUnqualifiedType(); const VectorType *LHSVecType = LHSType->getAs(); const VectorType *RHSVecType = RHSType->getAs(); assert(LHSVecType || RHSVecType); if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) || (RHSVecType && RHSVecType->getElementType()->isBFloat16Type())) return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); // AltiVec-style "vector bool op vector bool" combinations are allowed // for some operators but not others. if (!AllowBothBool && LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool && RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool) return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); // This operation may not be performed on boolean vectors. if (!AllowBoolOperation && (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType())) return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); // If the vector types are identical, return. if (Context.hasSameType(LHSType, RHSType)) return LHSType; // If we have compatible AltiVec and GCC vector types, use the AltiVec type. if (LHSVecType && RHSVecType && Context.areCompatibleVectorTypes(LHSType, RHSType)) { if (isa(LHSVecType)) { RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); return LHSType; } if (!IsCompAssign) LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); return RHSType; } // AllowBoolConversions says that bool and non-bool AltiVec vectors // can be mixed, with the result being the non-bool type. The non-bool // operand must have integer element type. if (AllowBoolConversions && LHSVecType && RHSVecType && LHSVecType->getNumElements() == RHSVecType->getNumElements() && (Context.getTypeSize(LHSVecType->getElementType()) == Context.getTypeSize(RHSVecType->getElementType()))) { if (LHSVecType->getVectorKind() == VectorType::AltiVecVector && LHSVecType->getElementType()->isIntegerType() && RHSVecType->getVectorKind() == VectorType::AltiVecBool) { RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); return LHSType; } if (!IsCompAssign && LHSVecType->getVectorKind() == VectorType::AltiVecBool && RHSVecType->getVectorKind() == VectorType::AltiVecVector && RHSVecType->getElementType()->isIntegerType()) { LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); return RHSType; } } // Expressions containing fixed-length and sizeless SVE vectors are invalid // since the ambiguity can affect the ABI. auto IsSveConversion = [](QualType FirstType, QualType SecondType) { const VectorType *VecType = SecondType->getAs(); return FirstType->isSizelessBuiltinType() && VecType && (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector || VecType->getVectorKind() == VectorType::SveFixedLengthPredicateVector); }; if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) { Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType; return QualType(); } // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid // since the ambiguity can affect the ABI. auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) { const VectorType *FirstVecType = FirstType->getAs(); const VectorType *SecondVecType = SecondType->getAs(); if (FirstVecType && SecondVecType) return FirstVecType->getVectorKind() == VectorType::GenericVector && (SecondVecType->getVectorKind() == VectorType::SveFixedLengthDataVector || SecondVecType->getVectorKind() == VectorType::SveFixedLengthPredicateVector); return FirstType->isSizelessBuiltinType() && SecondVecType && SecondVecType->getVectorKind() == VectorType::GenericVector; }; if (IsSveGnuConversion(LHSType, RHSType) || IsSveGnuConversion(RHSType, LHSType)) { Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType; return QualType(); } // If there's a vector type and a scalar, try to convert the scalar to // the vector element type and splat. unsigned DiagID = diag::err_typecheck_vector_not_convertable; if (!RHSVecType) { if (isa(LHSVecType)) { if (!tryVectorConvertAndSplat(*this, &RHS, RHSType, LHSVecType->getElementType(), LHSType, DiagID)) return LHSType; } else { if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) return LHSType; } } if (!LHSVecType) { if (isa(RHSVecType)) { if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS), LHSType, RHSVecType->getElementType(), RHSType, DiagID)) return RHSType; } else { if (LHS.get()->isLValue() || !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) return RHSType; } } // FIXME: The code below also handles conversion between vectors and // non-scalars, we should break this down into fine grained specific checks // and emit proper diagnostics. QualType VecType = LHSVecType ? LHSType : RHSType; const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType; QualType OtherType = LHSVecType ? RHSType : LHSType; ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS; if (isLaxVectorConversion(OtherType, VecType)) { if (anyAltivecTypes(RHSType, LHSType) && !areSameVectorElemTypes(RHSType, LHSType)) Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType; // If we're allowing lax vector conversions, only the total (data) size // needs to be the same. For non compound assignment, if one of the types is // scalar, the result is always the vector type. if (!IsCompAssign) { *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast); return VecType; // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs' // type. Note that this is already done by non-compound assignments in // CheckAssignmentConstraints. If it's a scalar type, only bitcast for // <1 x T> -> T. The result is also a vector type. } else if (OtherType->isExtVectorType() || OtherType->isVectorType() || (OtherType->isScalarType() && VT->getNumElements() == 1)) { ExprResult *RHSExpr = &RHS; *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast); return VecType; } } // Okay, the expression is invalid. // If there's a non-vector, non-real operand, diagnose that. if ((!RHSVecType && !RHSType->isRealType()) || (!LHSVecType && !LHSType->isRealType())) { Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } // OpenCL V1.1 6.2.6.p1: // If the operands are of more than one vector type, then an error shall // occur. Implicit conversions between vector types are not permitted, per // section 6.2.1. if (getLangOpts().OpenCL && RHSVecType && isa(RHSVecType) && LHSVecType && isa(LHSVecType)) { Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType << RHSType; return QualType(); } // If there is a vector type that is not a ExtVector and a scalar, we reach // this point if scalar could not be converted to the vector's element type // without truncation. if ((RHSVecType && !isa(RHSVecType)) || (LHSVecType && !isa(LHSVecType))) { QualType Scalar = LHSVecType ? RHSType : LHSType; QualType Vector = LHSVecType ? LHSType : RHSType; unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0; Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation) << ScalarOrVector << Scalar << Vector; return QualType(); } // Otherwise, use the generic diagnostic. Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, ArithConvKind OperationKind) { if (!IsCompAssign) { LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); if (LHS.isInvalid()) return QualType(); } RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); if (RHS.isInvalid()) return QualType(); QualType LHSType = LHS.get()->getType().getUnqualifiedType(); QualType RHSType = RHS.get()->getType().getUnqualifiedType(); const BuiltinType *LHSBuiltinTy = LHSType->getAs(); const BuiltinType *RHSBuiltinTy = RHSType->getAs(); unsigned DiagID = diag::err_typecheck_invalid_operands; if ((OperationKind == ACK_Arithmetic) && ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) || (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) { Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } if (Context.hasSameType(LHSType, RHSType)) return LHSType; if (LHSType->isVLSTBuiltinType() && !RHSType->isVLSTBuiltinType()) { if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) return LHSType; } if (RHSType->isVLSTBuiltinType() && !LHSType->isVLSTBuiltinType()) { if (LHS.get()->isLValue() || !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) return RHSType; } if ((!LHSType->isVLSTBuiltinType() && !LHSType->isRealType()) || (!RHSType->isVLSTBuiltinType() && !RHSType->isRealType())) { Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() && Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC != Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) { Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } if (LHSType->isVLSTBuiltinType() || RHSType->isVLSTBuiltinType()) { QualType Scalar = LHSType->isVLSTBuiltinType() ? RHSType : LHSType; QualType Vector = LHSType->isVLSTBuiltinType() ? LHSType : RHSType; bool ScalarOrVector = LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType(); Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation) << ScalarOrVector << Scalar << Vector; return QualType(); } Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } // checkArithmeticNull - Detect when a NULL constant is used improperly in an // expression. These are mainly cases where the null pointer is used as an // integer instead of a pointer. static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompare) { // The canonical way to check for a GNU null is with isNullPointerConstant, // but we use a bit of a hack here for speed; this is a relatively // hot path, and isNullPointerConstant is slow. bool LHSNull = isa(LHS.get()->IgnoreParenImpCasts()); bool RHSNull = isa(RHS.get()->IgnoreParenImpCasts()); QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType(); // Avoid analyzing cases where the result will either be invalid (and // diagnosed as such) or entirely valid and not something to warn about. if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() || NonNullType->isMemberPointerType() || NonNullType->isFunctionType()) return; // Comparison operations would not make sense with a null pointer no matter // what the other expression is. if (!IsCompare) { S.Diag(Loc, diag::warn_null_in_arithmetic_operation) << (LHSNull ? LHS.get()->getSourceRange() : SourceRange()) << (RHSNull ? RHS.get()->getSourceRange() : SourceRange()); return; } // The rest of the operations only make sense with a null pointer // if the other expression is a pointer. if (LHSNull == RHSNull || NonNullType->isAnyPointerType() || NonNullType->canDecayToPointerType()) return; S.Diag(Loc, diag::warn_null_in_comparison_operation) << LHSNull /* LHS is NULL */ << NonNullType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); } static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS, SourceLocation Loc) { const auto *LUE = dyn_cast(LHS); const auto *RUE = dyn_cast(RHS); if (!LUE || !RUE) return; if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() || RUE->getKind() != UETT_SizeOf) return; const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens(); QualType LHSTy = LHSArg->getType(); QualType RHSTy; if (RUE->isArgumentType()) RHSTy = RUE->getArgumentType().getNonReferenceType(); else RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType(); if (LHSTy->isPointerType() && !RHSTy->isPointerType()) { if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy)) return; S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange(); if (const auto *DRE = dyn_cast(LHSArg)) { if (const ValueDecl *LHSArgDecl = DRE->getDecl()) S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here) << LHSArgDecl; } } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) { QualType ArrayElemTy = ArrayTy->getElementType(); if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) || ArrayElemTy->isDependentType() || RHSTy->isDependentType() || RHSTy->isReferenceType() || ArrayElemTy->isCharType() || S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy)) return; S.Diag(Loc, diag::warn_division_sizeof_array) << LHSArg->getSourceRange() << ArrayElemTy << RHSTy; if (const auto *DRE = dyn_cast(LHSArg)) { if (const ValueDecl *LHSArgDecl = DRE->getDecl()) S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here) << LHSArgDecl; } S.Diag(Loc, diag::note_precedence_silence) << RHS; } } static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsDiv) { // Check for division/remainder by zero. Expr::EvalResult RHSValue; if (!RHS.get()->isValueDependent() && RHS.get()->EvaluateAsInt(RHSValue, S.Context) && RHSValue.Val.getInt() == 0) S.DiagRuntimeBehavior(Loc, RHS.get(), S.PDiag(diag::warn_remainder_division_by_zero) << IsDiv << RHS.get()->getSourceRange()); } QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, bool IsDiv) { checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); QualType LHSTy = LHS.get()->getType(); QualType RHSTy = RHS.get()->getType(); if (LHSTy->isVectorType() || RHSTy->isVectorType()) return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, /*AllowBothBool*/ getLangOpts().AltiVec, /*AllowBoolConversions*/ false, /*AllowBooleanOperation*/ false, /*ReportInvalid*/ true); if (LHSTy->isVLSTBuiltinType() || RHSTy->isVLSTBuiltinType()) return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, ACK_Arithmetic); if (!IsDiv && (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType())) return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign); // For division, only matrix-by-scalar is supported. Other combinations with // matrix types are invalid. if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType()) return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign); QualType compType = UsualArithmeticConversions( LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); if (compType.isNull() || !compType->isArithmeticType()) return InvalidOperands(Loc, LHS, RHS); if (IsDiv) { DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv); DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc); } return compType; } QualType Sema::CheckRemainderOperands( ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) { if (LHS.get()->getType()->hasIntegerRepresentation() && RHS.get()->getType()->hasIntegerRepresentation()) return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, /*AllowBothBool*/ getLangOpts().AltiVec, /*AllowBoolConversions*/ false, /*AllowBooleanOperation*/ false, /*ReportInvalid*/ true); return InvalidOperands(Loc, LHS, RHS); } if (LHS.get()->getType()->isVLSTBuiltinType() || RHS.get()->getType()->isVLSTBuiltinType()) { if (LHS.get()->getType()->hasIntegerRepresentation() && RHS.get()->getType()->hasIntegerRepresentation()) return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, ACK_Arithmetic); return InvalidOperands(Loc, LHS, RHS); } QualType compType = UsualArithmeticConversions( LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); if (compType.isNull() || !compType->isIntegerType()) return InvalidOperands(Loc, LHS, RHS); DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */); return compType; } /// Diagnose invalid arithmetic on two void pointers. static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc, Expr *LHSExpr, Expr *RHSExpr) { S.Diag(Loc, S.getLangOpts().CPlusPlus ? diag::err_typecheck_pointer_arith_void_type : diag::ext_gnu_void_ptr) << 1 /* two pointers */ << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); } /// Diagnose invalid arithmetic on a void pointer. static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc, Expr *Pointer) { S.Diag(Loc, S.getLangOpts().CPlusPlus ? diag::err_typecheck_pointer_arith_void_type : diag::ext_gnu_void_ptr) << 0 /* one pointer */ << Pointer->getSourceRange(); } /// Diagnose invalid arithmetic on a null pointer. /// /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n' /// idiom, which we recognize as a GNU extension. /// static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc, Expr *Pointer, bool IsGNUIdiom) { if (IsGNUIdiom) S.Diag(Loc, diag::warn_gnu_null_ptr_arith) << Pointer->getSourceRange(); else S.Diag(Loc, diag::warn_pointer_arith_null_ptr) << S.getLangOpts().CPlusPlus << Pointer->getSourceRange(); } /// Diagnose invalid subraction on a null pointer. /// static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc, Expr *Pointer, bool BothNull) { // Null - null is valid in C++ [expr.add]p7 if (BothNull && S.getLangOpts().CPlusPlus) return; // Is this s a macro from a system header? if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc)) return; S.DiagRuntimeBehavior(Loc, Pointer, S.PDiag(diag::warn_pointer_sub_null_ptr) << S.getLangOpts().CPlusPlus << Pointer->getSourceRange()); } /// Diagnose invalid arithmetic on two function pointers. static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc, Expr *LHS, Expr *RHS) { assert(LHS->getType()->isAnyPointerType()); assert(RHS->getType()->isAnyPointerType()); S.Diag(Loc, S.getLangOpts().CPlusPlus ? diag::err_typecheck_pointer_arith_function_type : diag::ext_gnu_ptr_func_arith) << 1 /* two pointers */ << LHS->getType()->getPointeeType() // We only show the second type if it differs from the first. << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(), RHS->getType()) << RHS->getType()->getPointeeType() << LHS->getSourceRange() << RHS->getSourceRange(); } /// Diagnose invalid arithmetic on a function pointer. static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc, Expr *Pointer) { assert(Pointer->getType()->isAnyPointerType()); S.Diag(Loc, S.getLangOpts().CPlusPlus ? diag::err_typecheck_pointer_arith_function_type : diag::ext_gnu_ptr_func_arith) << 0 /* one pointer */ << Pointer->getType()->getPointeeType() << 0 /* one pointer, so only one type */ << Pointer->getSourceRange(); } /// Emit error if Operand is incomplete pointer type /// /// \returns True if pointer has incomplete type static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc, Expr *Operand) { QualType ResType = Operand->getType(); if (const AtomicType *ResAtomicType = ResType->getAs()) ResType = ResAtomicType->getValueType(); assert(ResType->isAnyPointerType() && !ResType->isDependentType()); QualType PointeeTy = ResType->getPointeeType(); return S.RequireCompleteSizedType( Loc, PointeeTy, diag::err_typecheck_arithmetic_incomplete_or_sizeless_type, Operand->getSourceRange()); } /// Check the validity of an arithmetic pointer operand. /// /// If the operand has pointer type, this code will check for pointer types /// which are invalid in arithmetic operations. These will be diagnosed /// appropriately, including whether or not the use is supported as an /// extension. /// /// \returns True when the operand is valid to use (even if as an extension). static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc, Expr *Operand) { QualType ResType = Operand->getType(); if (const AtomicType *ResAtomicType = ResType->getAs()) ResType = ResAtomicType->getValueType(); if (!ResType->isAnyPointerType()) return true; QualType PointeeTy = ResType->getPointeeType(); if (PointeeTy->isVoidType()) { diagnoseArithmeticOnVoidPointer(S, Loc, Operand); return !S.getLangOpts().CPlusPlus; } if (PointeeTy->isFunctionType()) { diagnoseArithmeticOnFunctionPointer(S, Loc, Operand); return !S.getLangOpts().CPlusPlus; } if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false; return true; } /// Check the validity of a binary arithmetic operation w.r.t. pointer /// operands. /// /// This routine will diagnose any invalid arithmetic on pointer operands much /// like \see checkArithmeticOpPointerOperand. However, it has special logic /// for emitting a single diagnostic even for operations where both LHS and RHS /// are (potentially problematic) pointers. /// /// \returns True when the operand is valid to use (even if as an extension). static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc, Expr *LHSExpr, Expr *RHSExpr) { bool isLHSPointer = LHSExpr->getType()->isAnyPointerType(); bool isRHSPointer = RHSExpr->getType()->isAnyPointerType(); if (!isLHSPointer && !isRHSPointer) return true; QualType LHSPointeeTy, RHSPointeeTy; if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType(); if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType(); // if both are pointers check if operation is valid wrt address spaces if (isLHSPointer && isRHSPointer) { if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) { S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/ << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); return false; } } // Check for arithmetic on pointers to incomplete types. bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType(); bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType(); if (isLHSVoidPtr || isRHSVoidPtr) { if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr); else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr); else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr); return !S.getLangOpts().CPlusPlus; } bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType(); bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType(); if (isLHSFuncPtr || isRHSFuncPtr) { if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr); else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, RHSExpr); else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr); return !S.getLangOpts().CPlusPlus; } if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false; if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false; return true; } /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string /// literal. static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc, Expr *LHSExpr, Expr *RHSExpr) { StringLiteral* StrExpr = dyn_cast(LHSExpr->IgnoreImpCasts()); Expr* IndexExpr = RHSExpr; if (!StrExpr) { StrExpr = dyn_cast(RHSExpr->IgnoreImpCasts()); IndexExpr = LHSExpr; } bool IsStringPlusInt = StrExpr && IndexExpr->getType()->isIntegralOrUnscopedEnumerationType(); if (!IsStringPlusInt || IndexExpr->isValueDependent()) return; SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); Self.Diag(OpLoc, diag::warn_string_plus_int) << DiagRange << IndexExpr->IgnoreImpCasts()->getType(); // Only print a fixit for "str" + int, not for int + "str". if (IndexExpr == RHSExpr) { SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") << FixItHint::CreateInsertion(EndLoc, "]"); } else Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); } /// Emit a warning when adding a char literal to a string. static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc, Expr *LHSExpr, Expr *RHSExpr) { const Expr *StringRefExpr = LHSExpr; const CharacterLiteral *CharExpr = dyn_cast(RHSExpr->IgnoreImpCasts()); if (!CharExpr) { CharExpr = dyn_cast(LHSExpr->IgnoreImpCasts()); StringRefExpr = RHSExpr; } if (!CharExpr || !StringRefExpr) return; const QualType StringType = StringRefExpr->getType(); // Return if not a PointerType. if (!StringType->isAnyPointerType()) return; // Return if not a CharacterType. if (!StringType->getPointeeType()->isAnyCharacterType()) return; ASTContext &Ctx = Self.getASTContext(); SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); const QualType CharType = CharExpr->getType(); if (!CharType->isAnyCharacterType() && CharType->isIntegerType() && llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) { Self.Diag(OpLoc, diag::warn_string_plus_char) << DiagRange << Ctx.CharTy; } else { Self.Diag(OpLoc, diag::warn_string_plus_char) << DiagRange << CharExpr->getType(); } // Only print a fixit for str + char, not for char + str. if (isa(RHSExpr->IgnoreImpCasts())) { SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") << FixItHint::CreateInsertion(EndLoc, "]"); } else { Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); } } /// Emit error when two pointers are incompatible. static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc, Expr *LHSExpr, Expr *RHSExpr) { assert(LHSExpr->getType()->isAnyPointerType()); assert(RHSExpr->getType()->isAnyPointerType()); S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible) << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); } // C99 6.5.6 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc, QualType* CompLHSTy) { checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) { QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy, /*AllowBothBool*/ getLangOpts().AltiVec, /*AllowBoolConversions*/ getLangOpts().ZVector, /*AllowBooleanOperation*/ false, /*ReportInvalid*/ true); if (CompLHSTy) *CompLHSTy = compType; return compType; } if (LHS.get()->getType()->isVLSTBuiltinType() || RHS.get()->getType()->isVLSTBuiltinType()) { QualType compType = CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic); if (CompLHSTy) *CompLHSTy = compType; return compType; } if (LHS.get()->getType()->isConstantMatrixType() || RHS.get()->getType()->isConstantMatrixType()) { QualType compType = CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy); if (CompLHSTy) *CompLHSTy = compType; return compType; } QualType compType = UsualArithmeticConversions( LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); // Diagnose "string literal" '+' int and string '+' "char literal". if (Opc == BO_Add) { diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get()); diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get()); } // handle the common case first (both operands are arithmetic). if (!compType.isNull() && compType->isArithmeticType()) { if (CompLHSTy) *CompLHSTy = compType; return compType; } // Type-checking. Ultimately the pointer's going to be in PExp; // note that we bias towards the LHS being the pointer. Expr *PExp = LHS.get(), *IExp = RHS.get(); bool isObjCPointer; if (PExp->getType()->isPointerType()) { isObjCPointer = false; } else if (PExp->getType()->isObjCObjectPointerType()) { isObjCPointer = true; } else { std::swap(PExp, IExp); if (PExp->getType()->isPointerType()) { isObjCPointer = false; } else if (PExp->getType()->isObjCObjectPointerType()) { isObjCPointer = true; } else { return InvalidOperands(Loc, LHS, RHS); } } assert(PExp->getType()->isAnyPointerType()); if (!IExp->getType()->isIntegerType()) return InvalidOperands(Loc, LHS, RHS); // Adding to a null pointer results in undefined behavior. if (PExp->IgnoreParenCasts()->isNullPointerConstant( Context, Expr::NPC_ValueDependentIsNotNull)) { // In C++ adding zero to a null pointer is defined. Expr::EvalResult KnownVal; if (!getLangOpts().CPlusPlus || (!IExp->isValueDependent() && (!IExp->EvaluateAsInt(KnownVal, Context) || KnownVal.Val.getInt() != 0))) { // Check the conditions to see if this is the 'p = nullptr + n' idiom. bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension( Context, BO_Add, PExp, IExp); diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom); } } if (!checkArithmeticOpPointerOperand(*this, Loc, PExp)) return QualType(); if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp)) return QualType(); // Check array bounds for pointer arithemtic CheckArrayAccess(PExp, IExp); if (CompLHSTy) { QualType LHSTy = Context.isPromotableBitField(LHS.get()); if (LHSTy.isNull()) { LHSTy = LHS.get()->getType(); if (LHSTy->isPromotableIntegerType()) LHSTy = Context.getPromotedIntegerType(LHSTy); } *CompLHSTy = LHSTy; } return PExp->getType(); } // C99 6.5.6 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, QualType* CompLHSTy) { checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) { QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy, /*AllowBothBool*/ getLangOpts().AltiVec, /*AllowBoolConversions*/ getLangOpts().ZVector, /*AllowBooleanOperation*/ false, /*ReportInvalid*/ true); if (CompLHSTy) *CompLHSTy = compType; return compType; } if (LHS.get()->getType()->isVLSTBuiltinType() || RHS.get()->getType()->isVLSTBuiltinType()) { QualType compType = CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic); if (CompLHSTy) *CompLHSTy = compType; return compType; } if (LHS.get()->getType()->isConstantMatrixType() || RHS.get()->getType()->isConstantMatrixType()) { QualType compType = CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy); if (CompLHSTy) *CompLHSTy = compType; return compType; } QualType compType = UsualArithmeticConversions( LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); // Enforce type constraints: C99 6.5.6p3. // Handle the common case first (both operands are arithmetic). if (!compType.isNull() && compType->isArithmeticType()) { if (CompLHSTy) *CompLHSTy = compType; return compType; } // Either ptr - int or ptr - ptr. if (LHS.get()->getType()->isAnyPointerType()) { QualType lpointee = LHS.get()->getType()->getPointeeType(); // Diagnose bad cases where we step over interface counts. if (LHS.get()->getType()->isObjCObjectPointerType() && checkArithmeticOnObjCPointer(*this, Loc, LHS.get())) return QualType(); // The result type of a pointer-int computation is the pointer type. if (RHS.get()->getType()->isIntegerType()) { // Subtracting from a null pointer should produce a warning. // The last argument to the diagnose call says this doesn't match the // GNU int-to-pointer idiom. if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) { // In C++ adding zero to a null pointer is defined. Expr::EvalResult KnownVal; if (!getLangOpts().CPlusPlus || (!RHS.get()->isValueDependent() && (!RHS.get()->EvaluateAsInt(KnownVal, Context) || KnownVal.Val.getInt() != 0))) { diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false); } } if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get())) return QualType(); // Check array bounds for pointer arithemtic CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr, /*AllowOnePastEnd*/true, /*IndexNegated*/true); if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); return LHS.get()->getType(); } // Handle pointer-pointer subtractions. if (const PointerType *RHSPTy = RHS.get()->getType()->getAs()) { QualType rpointee = RHSPTy->getPointeeType(); if (getLangOpts().CPlusPlus) { // Pointee types must be the same: C++ [expr.add] if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); } } else { // Pointee types must be compatible C99 6.5.6p3 if (!Context.typesAreCompatible( Context.getCanonicalType(lpointee).getUnqualifiedType(), Context.getCanonicalType(rpointee).getUnqualifiedType())) { diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); return QualType(); } } if (!checkArithmeticBinOpPointerOperands(*this, Loc, LHS.get(), RHS.get())) return QualType(); bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant( Context, Expr::NPC_ValueDependentIsNotNull); bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant( Context, Expr::NPC_ValueDependentIsNotNull); // Subtracting nullptr or from nullptr is suspect if (LHSIsNullPtr) diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr); if (RHSIsNullPtr) diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr); // The pointee type may have zero size. As an extension, a structure or // union may have zero size or an array may have zero length. In this // case subtraction does not make sense. if (!rpointee->isVoidType() && !rpointee->isFunctionType()) { CharUnits ElementSize = Context.getTypeSizeInChars(rpointee); if (ElementSize.isZero()) { Diag(Loc,diag::warn_sub_ptr_zero_size_types) << rpointee.getUnqualifiedType() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); } } if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); return Context.getPointerDiffType(); } } return InvalidOperands(Loc, LHS, RHS); } static bool isScopedEnumerationType(QualType T) { if (const EnumType *ET = T->getAs()) return ET->getDecl()->isScoped(); return false; } static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc, QualType LHSType) { // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined), // so skip remaining warnings as we don't want to modify values within Sema. if (S.getLangOpts().OpenCL) return; // Check right/shifter operand Expr::EvalResult RHSResult; if (RHS.get()->isValueDependent() || !RHS.get()->EvaluateAsInt(RHSResult, S.Context)) return; llvm::APSInt Right = RHSResult.Val.getInt(); if (Right.isNegative()) { S.DiagRuntimeBehavior(Loc, RHS.get(), S.PDiag(diag::warn_shift_negative) << RHS.get()->getSourceRange()); return; } QualType LHSExprType = LHS.get()->getType(); uint64_t LeftSize = S.Context.getTypeSize(LHSExprType); if (LHSExprType->isBitIntType()) LeftSize = S.Context.getIntWidth(LHSExprType); else if (LHSExprType->isFixedPointType()) { auto FXSema = S.Context.getFixedPointSemantics(LHSExprType); LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding(); } llvm::APInt LeftBits(Right.getBitWidth(), LeftSize); if (Right.uge(LeftBits)) { S.DiagRuntimeBehavior(Loc, RHS.get(), S.PDiag(diag::warn_shift_gt_typewidth) << RHS.get()->getSourceRange()); return; } // FIXME: We probably need to handle fixed point types specially here. if (Opc != BO_Shl || LHSExprType->isFixedPointType()) return; // When left shifting an ICE which is signed, we can check for overflow which // according to C++ standards prior to C++2a has undefined behavior // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one // more than the maximum value representable in the result type, so never // warn for those. (FIXME: Unsigned left-shift overflow in a constant // expression is still probably a bug.) Expr::EvalResult LHSResult; if (LHS.get()->isValueDependent() || LHSType->hasUnsignedIntegerRepresentation() || !LHS.get()->EvaluateAsInt(LHSResult, S.Context)) return; llvm::APSInt Left = LHSResult.Val.getInt(); // Don't warn if signed overflow is defined, then all the rest of the // diagnostics will not be triggered because the behavior is defined. // Also don't warn in C++20 mode (and newer), as signed left shifts // always wrap and never overflow. if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20) return; // If LHS does not have a non-negative value then, the // behavior is undefined before C++2a. Warn about it. if (Left.isNegative()) { S.DiagRuntimeBehavior(Loc, LHS.get(), S.PDiag(diag::warn_shift_lhs_negative) << LHS.get()->getSourceRange()); return; } llvm::APInt ResultBits = static_cast(Right) + Left.getMinSignedBits(); if (LeftBits.uge(ResultBits)) return; llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue()); Result = Result.shl(Right); // Print the bit representation of the signed integer as an unsigned // hexadecimal number. SmallString<40> HexResult; Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true); // If we are only missing a sign bit, this is less likely to result in actual // bugs -- if the result is cast back to an unsigned type, it will have the // expected value. Thus we place this behind a different warning that can be // turned off separately if needed. if (LeftBits == ResultBits - 1) { S.Diag(Loc, diag::warn_shift_result_sets_sign_bit) << HexResult << LHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return; } S.Diag(Loc, diag::warn_shift_result_gt_typewidth) << HexResult.str() << Result.getMinSignedBits() << LHSType << Left.getBitWidth() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); } /// Return the resulting type when a vector is shifted /// by a scalar or vector shift amount. static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector. if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) && !LHS.get()->getType()->isVectorType()) { S.Diag(Loc, diag::err_shift_rhs_only_vector) << RHS.get()->getType() << LHS.get()->getType() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } if (!IsCompAssign) { LHS = S.UsualUnaryConversions(LHS.get()); if (LHS.isInvalid()) return QualType(); } RHS = S.UsualUnaryConversions(RHS.get()); if (RHS.isInvalid()) return QualType(); QualType LHSType = LHS.get()->getType(); // Note that LHS might be a scalar because the routine calls not only in // OpenCL case. const VectorType *LHSVecTy = LHSType->getAs(); QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType; // Note that RHS might not be a vector. QualType RHSType = RHS.get()->getType(); const VectorType *RHSVecTy = RHSType->getAs(); QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType; // Do not allow shifts for boolean vectors. if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) || (RHSVecTy && RHSVecTy->isExtVectorBoolType())) { S.Diag(Loc, diag::err_typecheck_invalid_operands) << LHS.get()->getType() << RHS.get()->getType() << LHS.get()->getSourceRange(); return QualType(); } // The operands need to be integers. if (!LHSEleType->isIntegerType()) { S.Diag(Loc, diag::err_typecheck_expect_int) << LHS.get()->getType() << LHS.get()->getSourceRange(); return QualType(); } if (!RHSEleType->isIntegerType()) { S.Diag(Loc, diag::err_typecheck_expect_int) << RHS.get()->getType() << RHS.get()->getSourceRange(); return QualType(); } if (!LHSVecTy) { assert(RHSVecTy); if (IsCompAssign) return RHSType; if (LHSEleType != RHSEleType) { LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast); LHSEleType = RHSEleType; } QualType VecTy = S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements()); LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat); LHSType = VecTy; } else if (RHSVecTy) { // OpenCL v1.1 s6.3.j says that for vector types, the operators // are applied component-wise. So if RHS is a vector, then ensure // that the number of elements is the same as LHS... if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) { S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) << LHS.get()->getType() << RHS.get()->getType() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) { const BuiltinType *LHSBT = LHSEleType->getAs(); const BuiltinType *RHSBT = RHSEleType->getAs(); if (LHSBT != RHSBT && S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) { S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal) << LHS.get()->getType() << RHS.get()->getType() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); } } } else { // ...else expand RHS to match the number of elements in LHS. QualType VecTy = S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements()); RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); } return LHSType; } static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { if (!IsCompAssign) { LHS = S.UsualUnaryConversions(LHS.get()); if (LHS.isInvalid()) return QualType(); } RHS = S.UsualUnaryConversions(RHS.get()); if (RHS.isInvalid()) return QualType(); QualType LHSType = LHS.get()->getType(); const BuiltinType *LHSBuiltinTy = LHSType->getAs(); QualType LHSEleType = LHSType->isVLSTBuiltinType() ? LHSBuiltinTy->getSveEltType(S.getASTContext()) : LHSType; // Note that RHS might not be a vector QualType RHSType = RHS.get()->getType(); const BuiltinType *RHSBuiltinTy = RHSType->getAs(); QualType RHSEleType = RHSType->isVLSTBuiltinType() ? RHSBuiltinTy->getSveEltType(S.getASTContext()) : RHSType; if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) || (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) { S.Diag(Loc, diag::err_typecheck_invalid_operands) << LHSType << RHSType << LHS.get()->getSourceRange(); return QualType(); } if (!LHSEleType->isIntegerType()) { S.Diag(Loc, diag::err_typecheck_expect_int) << LHS.get()->getType() << LHS.get()->getSourceRange(); return QualType(); } if (!RHSEleType->isIntegerType()) { S.Diag(Loc, diag::err_typecheck_expect_int) << RHS.get()->getType() << RHS.get()->getSourceRange(); return QualType(); } if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() && (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC != S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) { S.Diag(Loc, diag::err_typecheck_invalid_operands) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } if (!LHSType->isVLSTBuiltinType()) { assert(RHSType->isVLSTBuiltinType()); if (IsCompAssign) return RHSType; if (LHSEleType != RHSEleType) { LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast); LHSEleType = RHSEleType; } const llvm::ElementCount VecSize = S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC; QualType VecTy = S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue()); LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat); LHSType = VecTy; } else if (RHSBuiltinTy && RHSBuiltinTy->isVLSTBuiltinType()) { if (S.Context.getTypeSize(RHSBuiltinTy) != S.Context.getTypeSize(LHSBuiltinTy)) { S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } } else { const llvm::ElementCount VecSize = S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC; if (LHSEleType != RHSEleType) { RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast); RHSEleType = LHSEleType; } QualType VecTy = S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue()); RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); } return LHSType; } // C99 6.5.7 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc, bool IsCompAssign) { checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); // Vector shifts promote their scalar inputs to vector type. if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) { if (LangOpts.ZVector) { // The shift operators for the z vector extensions work basically // like general shifts, except that neither the LHS nor the RHS is // allowed to be a "vector bool". if (auto LHSVecType = LHS.get()->getType()->getAs()) if (LHSVecType->getVectorKind() == VectorType::AltiVecBool) return InvalidOperands(Loc, LHS, RHS); if (auto RHSVecType = RHS.get()->getType()->getAs()) if (RHSVecType->getVectorKind() == VectorType::AltiVecBool) return InvalidOperands(Loc, LHS, RHS); } return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign); } if (LHS.get()->getType()->isVLSTBuiltinType() || RHS.get()->getType()->isVLSTBuiltinType()) return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign); // Shifts don't perform usual arithmetic conversions, they just do integer // promotions on each operand. C99 6.5.7p3 // For the LHS, do usual unary conversions, but then reset them away // if this is a compound assignment. ExprResult OldLHS = LHS; LHS = UsualUnaryConversions(LHS.get()); if (LHS.isInvalid()) return QualType(); QualType LHSType = LHS.get()->getType(); if (IsCompAssign) LHS = OldLHS; // The RHS is simpler. RHS = UsualUnaryConversions(RHS.get()); if (RHS.isInvalid()) return QualType(); QualType RHSType = RHS.get()->getType(); // C99 6.5.7p2: Each of the operands shall have integer type. // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point. if ((!LHSType->isFixedPointOrIntegerType() && !LHSType->hasIntegerRepresentation()) || !RHSType->hasIntegerRepresentation()) return InvalidOperands(Loc, LHS, RHS); // C++0x: Don't allow scoped enums. FIXME: Use something better than // hasIntegerRepresentation() above instead of this. if (isScopedEnumerationType(LHSType) || isScopedEnumerationType(RHSType)) { return InvalidOperands(Loc, LHS, RHS); } DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType); // "The type of the result is that of the promoted left operand." return LHSType; } /// Diagnose bad pointer comparisons. static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc, ExprResult &LHS, ExprResult &RHS, bool IsError) { S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers : diag::ext_typecheck_comparison_of_distinct_pointers) << LHS.get()->getType() << RHS.get()->getType() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); } /// Returns false if the pointers are converted to a composite type, /// true otherwise. static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc, ExprResult &LHS, ExprResult &RHS) { // C++ [expr.rel]p2: // [...] Pointer conversions (4.10) and qualification // conversions (4.4) are performed on pointer operands (or on // a pointer operand and a null pointer constant) to bring // them to their composite pointer type. [...] // // C++ [expr.eq]p1 uses the same notion for (in)equality // comparisons of pointers. QualType LHSType = LHS.get()->getType(); QualType RHSType = RHS.get()->getType(); assert(LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()); QualType T = S.FindCompositePointerType(Loc, LHS, RHS); if (T.isNull()) { if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) && (RHSType->isAnyPointerType() || RHSType->isMemberPointerType())) diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true); else S.InvalidOperands(Loc, LHS, RHS); return true; } return false; } static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc, ExprResult &LHS, ExprResult &RHS, bool IsError) { S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void : diag::ext_typecheck_comparison_of_fptr_to_void) << LHS.get()->getType() << RHS.get()->getType() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); } static bool isObjCObjectLiteral(ExprResult &E) { switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) { case Stmt::ObjCArrayLiteralClass: case Stmt::ObjCDictionaryLiteralClass: case Stmt::ObjCStringLiteralClass: case Stmt::ObjCBoxedExprClass: return true; default: // Note that ObjCBoolLiteral is NOT an object literal! return false; } } static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) { const ObjCObjectPointerType *Type = LHS->getType()->getAs(); // If this is not actually an Objective-C object, bail out. if (!Type) return false; // Get the LHS object's interface type. QualType InterfaceType = Type->getPointeeType(); // If the RHS isn't an Objective-C object, bail out. if (!RHS->getType()->isObjCObjectPointerType()) return false; // Try to find the -isEqual: method. Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector(); ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel, InterfaceType, /*IsInstance=*/true); if (!Method) { if (Type->isObjCIdType()) { // For 'id', just check the global pool. Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(), /*receiverId=*/true); } else { // Check protocols. Method = S.LookupMethodInQualifiedType(IsEqualSel, Type, /*IsInstance=*/true); } } if (!Method) return false; QualType T = Method->parameters()[0]->getType(); if (!T->isObjCObjectPointerType()) return false; QualType R = Method->getReturnType(); if (!R->isScalarType()) return false; return true; } Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) { FromE = FromE->IgnoreParenImpCasts(); switch (FromE->getStmtClass()) { default: break; case Stmt::ObjCStringLiteralClass: // "string literal" return LK_String; case Stmt::ObjCArrayLiteralClass: // "array literal" return LK_Array; case Stmt::ObjCDictionaryLiteralClass: // "dictionary literal" return LK_Dictionary; case Stmt::BlockExprClass: return LK_Block; case Stmt::ObjCBoxedExprClass: { Expr *Inner = cast(FromE)->getSubExpr()->IgnoreParens(); switch (Inner->getStmtClass()) { case Stmt::IntegerLiteralClass: case Stmt::FloatingLiteralClass: case Stmt::CharacterLiteralClass: case Stmt::ObjCBoolLiteralExprClass: case Stmt::CXXBoolLiteralExprClass: // "numeric literal" return LK_Numeric; case Stmt::ImplicitCastExprClass: { CastKind CK = cast(Inner)->getCastKind(); // Boolean literals can be represented by implicit casts. if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) return LK_Numeric; break; } default: break; } return LK_Boxed; } } return LK_None; } static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc, ExprResult &LHS, ExprResult &RHS, BinaryOperator::Opcode Opc){ Expr *Literal; Expr *Other; if (isObjCObjectLiteral(LHS)) { Literal = LHS.get(); Other = RHS.get(); } else { Literal = RHS.get(); Other = LHS.get(); } // Don't warn on comparisons against nil. Other = Other->IgnoreParenCasts(); if (Other->isNullPointerConstant(S.getASTContext(), Expr::NPC_ValueDependentIsNotNull)) return; // This should be kept in sync with warn_objc_literal_comparison. // LK_String should always be after the other literals, since it has its own // warning flag. Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal); assert(LiteralKind != Sema::LK_Block); if (LiteralKind == Sema::LK_None) { llvm_unreachable("Unknown Objective-C object literal kind"); } if (LiteralKind == Sema::LK_String) S.Diag(Loc, diag::warn_objc_string_literal_comparison) << Literal->getSourceRange(); else S.Diag(Loc, diag::warn_objc_literal_comparison) << LiteralKind << Literal->getSourceRange(); if (BinaryOperator::isEqualityOp(Opc) && hasIsEqualMethod(S, LHS.get(), RHS.get())) { SourceLocation Start = LHS.get()->getBeginLoc(); SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc()); CharSourceRange OpRange = CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); S.Diag(Loc, diag::note_objc_literal_comparison_isequal) << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![") << FixItHint::CreateReplacement(OpRange, " isEqual:") << FixItHint::CreateInsertion(End, "]"); } } /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended. static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc) { // Check that left hand side is !something. UnaryOperator *UO = dyn_cast(LHS.get()->IgnoreImpCasts()); if (!UO || UO->getOpcode() != UO_LNot) return; // Only check if the right hand side is non-bool arithmetic type. if (RHS.get()->isKnownToHaveBooleanValue()) return; // Make sure that the something in !something is not bool. Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts(); if (SubExpr->isKnownToHaveBooleanValue()) return; // Emit warning. bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor; S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check) << Loc << IsBitwiseOp; // First note suggest !(x < y) SourceLocation FirstOpen = SubExpr->getBeginLoc(); SourceLocation FirstClose = RHS.get()->getEndLoc(); FirstClose = S.getLocForEndOfToken(FirstClose); if (FirstClose.isInvalid()) FirstOpen = SourceLocation(); S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix) << IsBitwiseOp << FixItHint::CreateInsertion(FirstOpen, "(") << FixItHint::CreateInsertion(FirstClose, ")"); // Second note suggests (!x) < y SourceLocation SecondOpen = LHS.get()->getBeginLoc(); SourceLocation SecondClose = LHS.get()->getEndLoc(); SecondClose = S.getLocForEndOfToken(SecondClose); if (SecondClose.isInvalid()) SecondOpen = SourceLocation(); S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens) << FixItHint::CreateInsertion(SecondOpen, "(") << FixItHint::CreateInsertion(SecondClose, ")"); } // Returns true if E refers to a non-weak array. static bool checkForArray(const Expr *E) { const ValueDecl *D = nullptr; if (const DeclRefExpr *DR = dyn_cast(E)) { D = DR->getDecl(); } else if (const MemberExpr *Mem = dyn_cast(E)) { if (Mem->isImplicitAccess()) D = Mem->getMemberDecl(); } if (!D) return false; return D->getType()->isArrayType() && !D->isWeak(); } /// Diagnose some forms of syntactically-obvious tautological comparison. static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc, Expr *LHS, Expr *RHS, BinaryOperatorKind Opc) { Expr *LHSStripped = LHS->IgnoreParenImpCasts(); Expr *RHSStripped = RHS->IgnoreParenImpCasts(); QualType LHSType = LHS->getType(); QualType RHSType = RHS->getType(); if (LHSType->hasFloatingRepresentation() || (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) || S.inTemplateInstantiation()) return; // Comparisons between two array types are ill-formed for operator<=>, so // we shouldn't emit any additional warnings about it. if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType()) return; // For non-floating point types, check for self-comparisons of the form // x == x, x != x, x < x, etc. These always evaluate to a constant, and // often indicate logic errors in the program. // // NOTE: Don't warn about comparison expressions resulting from macro // expansion. Also don't warn about comparisons which are only self // comparisons within a template instantiation. The warnings should catch // obvious cases in the definition of the template anyways. The idea is to // warn when the typed comparison operator will always evaluate to the same // result. // Used for indexing into %select in warn_comparison_always enum { AlwaysConstant, AlwaysTrue, AlwaysFalse, AlwaysEqual, // std::strong_ordering::equal from operator<=> }; // C++2a [depr.array.comp]: // Equality and relational comparisons ([expr.eq], [expr.rel]) between two // operands of array type are deprecated. if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() && RHSStripped->getType()->isArrayType()) { S.Diag(Loc, diag::warn_depr_array_comparison) << LHS->getSourceRange() << RHS->getSourceRange() << LHSStripped->getType() << RHSStripped->getType(); // Carry on to produce the tautological comparison warning, if this // expression is potentially-evaluated, we can resolve the array to a // non-weak declaration, and so on. } if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) { if (Expr::isSameComparisonOperand(LHS, RHS)) { unsigned Result; switch (Opc) { case BO_EQ: case BO_LE: case BO_GE: Result = AlwaysTrue; break; case BO_NE: case BO_LT: case BO_GT: Result = AlwaysFalse; break; case BO_Cmp: Result = AlwaysEqual; break; default: Result = AlwaysConstant; break; } S.DiagRuntimeBehavior(Loc, nullptr, S.PDiag(diag::warn_comparison_always) << 0 /*self-comparison*/ << Result); } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) { // What is it always going to evaluate to? unsigned Result; switch (Opc) { case BO_EQ: // e.g. array1 == array2 Result = AlwaysFalse; break; case BO_NE: // e.g. array1 != array2 Result = AlwaysTrue; break; default: // e.g. array1 <= array2 // The best we can say is 'a constant' Result = AlwaysConstant; break; } S.DiagRuntimeBehavior(Loc, nullptr, S.PDiag(diag::warn_comparison_always) << 1 /*array comparison*/ << Result); } } if (isa(LHSStripped)) LHSStripped = LHSStripped->IgnoreParenCasts(); if (isa(RHSStripped)) RHSStripped = RHSStripped->IgnoreParenCasts(); // Warn about comparisons against a string constant (unless the other // operand is null); the user probably wants string comparison function. Expr *LiteralString = nullptr; Expr *LiteralStringStripped = nullptr; if ((isa(LHSStripped) || isa(LHSStripped)) && !RHSStripped->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) { LiteralString = LHS; LiteralStringStripped = LHSStripped; } else if ((isa(RHSStripped) || isa(RHSStripped)) && !LHSStripped->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) { LiteralString = RHS; LiteralStringStripped = RHSStripped; } if (LiteralString) { S.DiagRuntimeBehavior(Loc, nullptr, S.PDiag(diag::warn_stringcompare) << isa(LiteralStringStripped) << LiteralString->getSourceRange()); } } static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) { switch (CK) { default: { #ifndef NDEBUG llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK) << "\n"; #endif llvm_unreachable("unhandled cast kind"); } case CK_UserDefinedConversion: return ICK_Identity; case CK_LValueToRValue: return ICK_Lvalue_To_Rvalue; case CK_ArrayToPointerDecay: return ICK_Array_To_Pointer; case CK_FunctionToPointerDecay: return ICK_Function_To_Pointer; case CK_IntegralCast: return ICK_Integral_Conversion; case CK_FloatingCast: return ICK_Floating_Conversion; case CK_IntegralToFloating: case CK_FloatingToIntegral: return ICK_Floating_Integral; case CK_IntegralComplexCast: case CK_FloatingComplexCast: case CK_FloatingComplexToIntegralComplex: case CK_IntegralComplexToFloatingComplex: return ICK_Complex_Conversion; case CK_FloatingComplexToReal: case CK_FloatingRealToComplex: case CK_IntegralComplexToReal: case CK_IntegralRealToComplex: return ICK_Complex_Real; } } static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E, QualType FromType, SourceLocation Loc) { // Check for a narrowing implicit conversion. StandardConversionSequence SCS; SCS.setAsIdentityConversion(); SCS.setToType(0, FromType); SCS.setToType(1, ToType); if (const auto *ICE = dyn_cast(E)) SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind()); APValue PreNarrowingValue; QualType PreNarrowingType; switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue, PreNarrowingType, /*IgnoreFloatToIntegralConversion*/ true)) { case NK_Dependent_Narrowing: // Implicit conversion to a narrower type, but the expression is // value-dependent so we can't tell whether it's actually narrowing. case NK_Not_Narrowing: return false; case NK_Constant_Narrowing: // Implicit conversion to a narrower type, and the value is not a constant // expression. S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) << /*Constant*/ 1 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType; return true; case NK_Variable_Narrowing: // Implicit conversion to a narrower type, and the value is not a constant // expression. case NK_Type_Narrowing: S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) << /*Constant*/ 0 << FromType << ToType; // TODO: It's not a constant expression, but what if the user intended it // to be? Can we produce notes to help them figure out why it isn't? return true; } llvm_unreachable("unhandled case in switch"); } static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc) { QualType LHSType = LHS.get()->getType(); QualType RHSType = RHS.get()->getType(); // Dig out the original argument type and expression before implicit casts // were applied. These are the types/expressions we need to check the // [expr.spaceship] requirements against. ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts(); ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts(); QualType LHSStrippedType = LHSStripped.get()->getType(); QualType RHSStrippedType = RHSStripped.get()->getType(); // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the // other is not, the program is ill-formed. if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) { S.InvalidOperands(Loc, LHSStripped, RHSStripped); return QualType(); } // FIXME: Consider combining this with checkEnumArithmeticConversions. int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() + RHSStrippedType->isEnumeralType(); if (NumEnumArgs == 1) { bool LHSIsEnum = LHSStrippedType->isEnumeralType(); QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType; if (OtherTy->hasFloatingRepresentation()) { S.InvalidOperands(Loc, LHSStripped, RHSStripped); return QualType(); } } if (NumEnumArgs == 2) { // C++2a [expr.spaceship]p5: If both operands have the same enumeration // type E, the operator yields the result of converting the operands // to the underlying type of E and applying <=> to the converted operands. if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) { S.InvalidOperands(Loc, LHS, RHS); return QualType(); } QualType IntType = LHSStrippedType->castAs()->getDecl()->getIntegerType(); assert(IntType->isArithmeticType()); // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we // promote the boolean type, and all other promotable integer types, to // avoid this. if (IntType->isPromotableIntegerType()) IntType = S.Context.getPromotedIntegerType(IntType); LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast); RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast); LHSType = RHSType = IntType; } // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the // usual arithmetic conversions are applied to the operands. QualType Type = S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); if (Type.isNull()) return S.InvalidOperands(Loc, LHS, RHS); Optional CCT = getComparisonCategoryForBuiltinCmp(Type); if (!CCT) return S.InvalidOperands(Loc, LHS, RHS); bool HasNarrowing = checkThreeWayNarrowingConversion( S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc()); HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType, RHS.get()->getBeginLoc()); if (HasNarrowing) return QualType(); assert(!Type.isNull() && "composite type for <=> has not been set"); return S.CheckComparisonCategoryType( *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression); } static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc) { if (Opc == BO_Cmp) return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc); // C99 6.5.8p3 / C99 6.5.9p4 QualType Type = S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); if (Type.isNull()) return S.InvalidOperands(Loc, LHS, RHS); assert(Type->isArithmeticType() || Type->isEnumeralType()); if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc)) return S.InvalidOperands(Loc, LHS, RHS); // Check for comparisons of floating point operands using != and ==. if (Type->hasFloatingRepresentation()) S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); // The result of comparisons is 'bool' in C++, 'int' in C. return S.Context.getLogicalOperationType(); } void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) { if (!NullE.get()->getType()->isAnyPointerType()) return; int NullValue = PP.isMacroDefined("NULL") ? 0 : 1; if (!E.get()->getType()->isAnyPointerType() && E.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == Expr::NPCK_ZeroExpression) { if (const auto *CL = dyn_cast(E.get())) { if (CL->getValue() == 0) Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) << NullValue << FixItHint::CreateReplacement(E.get()->getExprLoc(), NullValue ? "NULL" : "(void *)0"); } else if (const auto *CE = dyn_cast(E.get())) { TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType(); if (T == Context.CharTy) Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) << NullValue << FixItHint::CreateReplacement(E.get()->getExprLoc(), NullValue ? "NULL" : "(void *)0"); } } } // C99 6.5.8, C++ [expr.rel] QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc) { bool IsRelational = BinaryOperator::isRelationalOp(Opc); bool IsThreeWay = Opc == BO_Cmp; bool IsOrdered = IsRelational || IsThreeWay; auto IsAnyPointerType = [](ExprResult E) { QualType Ty = E.get()->getType(); return Ty->isPointerType() || Ty->isMemberPointerType(); }; // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer // type, array-to-pointer, ..., conversions are performed on both operands to // bring them to their composite type. // Otherwise, all comparisons expect an rvalue, so convert to rvalue before // any type-related checks. if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) { LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); if (LHS.isInvalid()) return QualType(); RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); if (RHS.isInvalid()) return QualType(); } else { LHS = DefaultLvalueConversion(LHS.get()); if (LHS.isInvalid()) return QualType(); RHS = DefaultLvalueConversion(RHS.get()); if (RHS.isInvalid()) return QualType(); } checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true); if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) { CheckPtrComparisonWithNullChar(LHS, RHS); CheckPtrComparisonWithNullChar(RHS, LHS); } // Handle vector comparisons separately. if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) return CheckVectorCompareOperands(LHS, RHS, Loc, Opc); if (LHS.get()->getType()->isVLSTBuiltinType() || RHS.get()->getType()->isVLSTBuiltinType()) return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc); diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); QualType LHSType = LHS.get()->getType(); QualType RHSType = RHS.get()->getType(); if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) && (RHSType->isArithmeticType() || RHSType->isEnumeralType())) return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc); const Expr::NullPointerConstantKind LHSNullKind = LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); const Expr::NullPointerConstantKind RHSNullKind = RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull; bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull; auto computeResultTy = [&]() { if (Opc != BO_Cmp) return Context.getLogicalOperationType(); assert(getLangOpts().CPlusPlus); assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())); QualType CompositeTy = LHS.get()->getType(); assert(!CompositeTy->isReferenceType()); Optional CCT = getComparisonCategoryForBuiltinCmp(CompositeTy); if (!CCT) return InvalidOperands(Loc, LHS, RHS); if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) { // P0946R0: Comparisons between a null pointer constant and an object // pointer result in std::strong_equality, which is ill-formed under // P1959R0. Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero) << (LHSIsNull ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange()); return QualType(); } return CheckComparisonCategoryType( *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression); }; if (!IsOrdered && LHSIsNull != RHSIsNull) { bool IsEquality = Opc == BO_EQ; if (RHSIsNull) DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality, RHS.get()->getSourceRange()); else DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality, LHS.get()->getSourceRange()); } if (IsOrdered && LHSType->isFunctionPointerType() && RHSType->isFunctionPointerType()) { // Valid unless a relational comparison of function pointers bool IsError = Opc == BO_Cmp; auto DiagID = IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers : getLangOpts().CPlusPlus ? diag::warn_typecheck_ordered_comparison_of_function_pointers : diag::ext_typecheck_ordered_comparison_of_function_pointers; Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); if (IsError) return QualType(); } if ((LHSType->isIntegerType() && !LHSIsNull) || (RHSType->isIntegerType() && !RHSIsNull)) { // Skip normal pointer conversion checks in this case; we have better // diagnostics for this below. } else if (getLangOpts().CPlusPlus) { // Equality comparison of a function pointer to a void pointer is invalid, // but we allow it as an extension. // FIXME: If we really want to allow this, should it be part of composite // pointer type computation so it works in conditionals too? if (!IsOrdered && ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) || (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) { // This is a gcc extension compatibility comparison. // In a SFINAE context, we treat this as a hard error to maintain // conformance with the C++ standard. diagnoseFunctionPointerToVoidComparison( *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext()); if (isSFINAEContext()) return QualType(); RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); return computeResultTy(); } // C++ [expr.eq]p2: // If at least one operand is a pointer [...] bring them to their // composite pointer type. // C++ [expr.spaceship]p6 // If at least one of the operands is of pointer type, [...] bring them // to their composite pointer type. // C++ [expr.rel]p2: // If both operands are pointers, [...] bring them to their composite // pointer type. // For <=>, the only valid non-pointer types are arrays and functions, and // we already decayed those, so this is really the same as the relational // comparison rule. if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >= (IsOrdered ? 2 : 1) && (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() || RHSType->isObjCObjectPointerType()))) { if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) return QualType(); return computeResultTy(); } } else if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2 // All of the following pointer-related warnings are GCC extensions, except // when handling null pointer constants. QualType LCanPointeeTy = LHSType->castAs()->getPointeeType().getCanonicalType(); QualType RCanPointeeTy = RHSType->castAs()->getPointeeType().getCanonicalType(); // C99 6.5.9p2 and C99 6.5.8p2 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), RCanPointeeTy.getUnqualifiedType())) { if (IsRelational) { // Pointers both need to point to complete or incomplete types if ((LCanPointeeTy->isIncompleteType() != RCanPointeeTy->isIncompleteType()) && !getLangOpts().C11) { Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers) << LHS.get()->getSourceRange() << RHS.get()->getSourceRange() << LHSType << RHSType << LCanPointeeTy->isIncompleteType() << RCanPointeeTy->isIncompleteType(); } } } else if (!IsRelational && (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { // Valid unless comparison between non-null pointer and function pointer if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) && !LHSIsNull && !RHSIsNull) diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS, /*isError*/false); } else { // Invalid diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false); } if (LCanPointeeTy != RCanPointeeTy) { // Treat NULL constant as a special case in OpenCL. if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) { if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) { Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) << LHSType << RHSType << 0 /* comparison */ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); } } LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace(); LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace(); CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; if (LHSIsNull && !RHSIsNull) LHS = ImpCastExprToType(LHS.get(), RHSType, Kind); else RHS = ImpCastExprToType(RHS.get(), LHSType, Kind); } return computeResultTy(); } if (getLangOpts().CPlusPlus) { // C++ [expr.eq]p4: // Two operands of type std::nullptr_t or one operand of type // std::nullptr_t and the other a null pointer constant compare equal. if (!IsOrdered && LHSIsNull && RHSIsNull) { if (LHSType->isNullPtrType()) { RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); return computeResultTy(); } if (RHSType->isNullPtrType()) { LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); return computeResultTy(); } } // Comparison of Objective-C pointers and block pointers against nullptr_t. // These aren't covered by the composite pointer type rules. if (!IsOrdered && RHSType->isNullPtrType() && (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) { RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); return computeResultTy(); } if (!IsOrdered && LHSType->isNullPtrType() && (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) { LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); return computeResultTy(); } if (IsRelational && ((LHSType->isNullPtrType() && RHSType->isPointerType()) || (RHSType->isNullPtrType() && LHSType->isPointerType()))) { // HACK: Relational comparison of nullptr_t against a pointer type is // invalid per DR583, but we allow it within std::less<> and friends, // since otherwise common uses of it break. // FIXME: Consider removing this hack once LWG fixes std::less<> and // friends to have std::nullptr_t overload candidates. DeclContext *DC = CurContext; if (isa(DC)) DC = DC->getParent(); if (auto *CTSD = dyn_cast(DC)) { if (CTSD->isInStdNamespace() && llvm::StringSwitch(CTSD->getName()) .Cases("less", "less_equal", "greater", "greater_equal", true) .Default(false)) { if (RHSType->isNullPtrType()) RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); else LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); return computeResultTy(); } } } // C++ [expr.eq]p2: // If at least one operand is a pointer to member, [...] bring them to // their composite pointer type. if (!IsOrdered && (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) { if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) return QualType(); else return computeResultTy(); } } // Handle block pointer types. if (!IsOrdered && LHSType->isBlockPointerType() && RHSType->isBlockPointerType()) { QualType lpointee = LHSType->castAs()->getPointeeType(); QualType rpointee = RHSType->castAs()->getPointeeType(); if (!LHSIsNull && !RHSIsNull && !Context.typesAreCompatible(lpointee, rpointee)) { Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); } RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); return computeResultTy(); } // Allow block pointers to be compared with null pointer constants. if (!IsOrdered && ((LHSType->isBlockPointerType() && RHSType->isPointerType()) || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) { if (!LHSIsNull && !RHSIsNull) { if (!((RHSType->isPointerType() && RHSType->castAs() ->getPointeeType()->isVoidType()) || (LHSType->isPointerType() && LHSType->castAs() ->getPointeeType()->isVoidType()))) Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); } if (LHSIsNull && !RHSIsNull) LHS = ImpCastExprToType(LHS.get(), RHSType, RHSType->isPointerType() ? CK_BitCast : CK_AnyPointerToBlockPointerCast); else RHS = ImpCastExprToType(RHS.get(), LHSType, LHSType->isPointerType() ? CK_BitCast : CK_AnyPointerToBlockPointerCast); return computeResultTy(); } if (LHSType->isObjCObjectPointerType() || RHSType->isObjCObjectPointerType()) { const PointerType *LPT = LHSType->getAs(); const PointerType *RPT = RHSType->getAs(); if (LPT || RPT) { bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false; bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false; if (!LPtrToVoid && !RPtrToVoid && !Context.typesAreCompatible(LHSType, RHSType)) { diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false); } // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than // the RHS, but we have test coverage for this behavior. // FIXME: Consider using convertPointersToCompositeType in C++. if (LHSIsNull && !RHSIsNull) { Expr *E = LHS.get(); if (getLangOpts().ObjCAutoRefCount) CheckObjCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion); LHS = ImpCastExprToType(E, RHSType, RPT ? CK_BitCast :CK_CPointerToObjCPointerCast); } else { Expr *E = RHS.get(); if (getLangOpts().ObjCAutoRefCount) CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, /*Diagnose=*/true, /*DiagnoseCFAudited=*/false, Opc); RHS = ImpCastExprToType(E, LHSType, LPT ? CK_BitCast :CK_CPointerToObjCPointerCast); } return computeResultTy(); } if (LHSType->isObjCObjectPointerType() && RHSType->isObjCObjectPointerType()) { if (!Context.areComparableObjCPointerTypes(LHSType, RHSType)) diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false); if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS)) diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc); if (LHSIsNull && !RHSIsNull) LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); else RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); return computeResultTy(); } if (!IsOrdered && LHSType->isBlockPointerType() && RHSType->isBlockCompatibleObjCPointerType(Context)) { LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BlockPointerToObjCPointerCast); return computeResultTy(); } else if (!IsOrdered && LHSType->isBlockCompatibleObjCPointerType(Context) && RHSType->isBlockPointerType()) { RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BlockPointerToObjCPointerCast); return computeResultTy(); } } if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) || (LHSType->isIntegerType() && RHSType->isAnyPointerType())) { unsigned DiagID = 0; bool isError = false; if (LangOpts.DebuggerSupport) { // Under a debugger, allow the comparison of pointers to integers, // since users tend to want to compare addresses. } else if ((LHSIsNull && LHSType->isIntegerType()) || (RHSIsNull && RHSType->isIntegerType())) { if (IsOrdered) { isError = getLangOpts().CPlusPlus; DiagID = isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; } } else if (getLangOpts().CPlusPlus) { DiagID = diag::err_typecheck_comparison_of_pointer_integer; isError = true; } else if (IsOrdered) DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; else DiagID = diag::ext_typecheck_comparison_of_pointer_integer; if (DiagID) { Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); if (isError) return QualType(); } if (LHSType->isIntegerType()) LHS = ImpCastExprToType(LHS.get(), RHSType, LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); else RHS = ImpCastExprToType(RHS.get(), LHSType, RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); return computeResultTy(); } // Handle block pointers. if (!IsOrdered && RHSIsNull && LHSType->isBlockPointerType() && RHSType->isIntegerType()) { RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); return computeResultTy(); } if (!IsOrdered && LHSIsNull && LHSType->isIntegerType() && RHSType->isBlockPointerType()) { LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); return computeResultTy(); } if (getLangOpts().getOpenCLCompatibleVersion() >= 200) { if (LHSType->isClkEventT() && RHSType->isClkEventT()) { return computeResultTy(); } if (LHSType->isQueueT() && RHSType->isQueueT()) { return computeResultTy(); } if (LHSIsNull && RHSType->isQueueT()) { LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); return computeResultTy(); } if (LHSType->isQueueT() && RHSIsNull) { RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); return computeResultTy(); } } return InvalidOperands(Loc, LHS, RHS); } // Return a signed ext_vector_type that is of identical size and number of // elements. For floating point vectors, return an integer type of identical // size and number of elements. In the non ext_vector_type case, search from // the largest type to the smallest type to avoid cases where long long == long, // where long gets picked over long long. QualType Sema::GetSignedVectorType(QualType V) { const VectorType *VTy = V->castAs(); unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); if (isa(VTy)) { if (VTy->isExtVectorBoolType()) return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements()); if (TypeSize == Context.getTypeSize(Context.CharTy)) return Context.getExtVectorType(Context.CharTy, VTy->getNumElements()); if (TypeSize == Context.getTypeSize(Context.ShortTy)) return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements()); if (TypeSize == Context.getTypeSize(Context.IntTy)) return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); if (TypeSize == Context.getTypeSize(Context.Int128Ty)) return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements()); if (TypeSize == Context.getTypeSize(Context.LongTy)) return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && "Unhandled vector element size in vector compare"); return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); } if (TypeSize == Context.getTypeSize(Context.Int128Ty)) return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(), VectorType::GenericVector); if (TypeSize == Context.getTypeSize(Context.LongLongTy)) return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(), VectorType::GenericVector); if (TypeSize == Context.getTypeSize(Context.LongTy)) return Context.getVectorType(Context.LongTy, VTy->getNumElements(), VectorType::GenericVector); if (TypeSize == Context.getTypeSize(Context.IntTy)) return Context.getVectorType(Context.IntTy, VTy->getNumElements(), VectorType::GenericVector); if (TypeSize == Context.getTypeSize(Context.ShortTy)) return Context.getVectorType(Context.ShortTy, VTy->getNumElements(), VectorType::GenericVector); assert(TypeSize == Context.getTypeSize(Context.CharTy) && "Unhandled vector element size in vector compare"); return Context.getVectorType(Context.CharTy, VTy->getNumElements(), VectorType::GenericVector); } QualType Sema::GetSignedSizelessVectorType(QualType V) { const BuiltinType *VTy = V->castAs(); assert(VTy->isSizelessBuiltinType() && "expected sizeless type"); const QualType ETy = V->getSveEltType(Context); const auto TypeSize = Context.getTypeSize(ETy); const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true); const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC; return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue()); } /// CheckVectorCompareOperands - vector comparisons are a clang extension that /// operates on extended vector types. Instead of producing an IntTy result, /// like a scalar comparison, a vector comparison produces a vector of integer /// types. QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc) { if (Opc == BO_Cmp) { Diag(Loc, diag::err_three_way_vector_comparison); return QualType(); } // Check to make sure we're operating on vectors of the same type and width, // Allowing one side to be a scalar of element type. QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false, /*AllowBothBool*/ true, /*AllowBoolConversions*/ getLangOpts().ZVector, /*AllowBooleanOperation*/ true, /*ReportInvalid*/ true); if (vType.isNull()) return vType; QualType LHSType = LHS.get()->getType(); // Determine the return type of a vector compare. By default clang will return // a scalar for all vector compares except vector bool and vector pixel. // With the gcc compiler we will always return a vector type and with the xl // compiler we will always return a scalar type. This switch allows choosing // which behavior is prefered. if (getLangOpts().AltiVec) { switch (getLangOpts().getAltivecSrcCompat()) { case LangOptions::AltivecSrcCompatKind::Mixed: // If AltiVec, the comparison results in a numeric type, i.e. // bool for C++, int for C if (vType->castAs()->getVectorKind() == VectorType::AltiVecVector) return Context.getLogicalOperationType(); else Diag(Loc, diag::warn_deprecated_altivec_src_compat); break; case LangOptions::AltivecSrcCompatKind::GCC: // For GCC we always return the vector type. break; case LangOptions::AltivecSrcCompatKind::XL: return Context.getLogicalOperationType(); break; } } // For non-floating point types, check for self-comparisons of the form // x == x, x != x, x < x, etc. These always evaluate to a constant, and // often indicate logic errors in the program. diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); // Check for comparisons of floating point operands using != and ==. if (LHSType->hasFloatingRepresentation()) { assert(RHS.get()->getType()->hasFloatingRepresentation()); CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); } // Return a signed type for the vector. return GetSignedVectorType(vType); } QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc) { if (Opc == BO_Cmp) { Diag(Loc, diag::err_three_way_vector_comparison); return QualType(); } // Check to make sure we're operating on vectors of the same type and width, // Allowing one side to be a scalar of element type. QualType vType = CheckSizelessVectorOperands( LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison); if (vType.isNull()) return vType; QualType LHSType = LHS.get()->getType(); // For non-floating point types, check for self-comparisons of the form // x == x, x != x, x < x, etc. These always evaluate to a constant, and // often indicate logic errors in the program. diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); // Check for comparisons of floating point operands using != and ==. if (LHSType->hasFloatingRepresentation()) { assert(RHS.get()->getType()->hasFloatingRepresentation()); CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); } const BuiltinType *LHSBuiltinTy = LHSType->getAs(); const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs(); if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() && RHSBuiltinTy->isSVEBool()) return LHSType; // Return a signed type for the vector. return GetSignedSizelessVectorType(vType); } static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS, const ExprResult &XorRHS, const SourceLocation Loc) { // Do not diagnose macros. if (Loc.isMacroID()) return; // Do not diagnose if both LHS and RHS are macros. if (XorLHS.get()->getExprLoc().isMacroID() && XorRHS.get()->getExprLoc().isMacroID()) return; bool Negative = false; bool ExplicitPlus = false; const auto *LHSInt = dyn_cast(XorLHS.get()); const auto *RHSInt = dyn_cast(XorRHS.get()); if (!LHSInt) return; if (!RHSInt) { // Check negative literals. if (const auto *UO = dyn_cast(XorRHS.get())) { UnaryOperatorKind Opc = UO->getOpcode(); if (Opc != UO_Minus && Opc != UO_Plus) return; RHSInt = dyn_cast(UO->getSubExpr()); if (!RHSInt) return; Negative = (Opc == UO_Minus); ExplicitPlus = !Negative; } else { return; } } const llvm::APInt &LeftSideValue = LHSInt->getValue(); llvm::APInt RightSideValue = RHSInt->getValue(); if (LeftSideValue != 2 && LeftSideValue != 10) return; if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth()) return; CharSourceRange ExprRange = CharSourceRange::getCharRange( LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation())); llvm::StringRef ExprStr = Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts()); CharSourceRange XorRange = CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); llvm::StringRef XorStr = Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts()); // Do not diagnose if xor keyword/macro is used. if (XorStr == "xor") return; std::string LHSStr = std::string(Lexer::getSourceText( CharSourceRange::getTokenRange(LHSInt->getSourceRange()), S.getSourceManager(), S.getLangOpts())); std::string RHSStr = std::string(Lexer::getSourceText( CharSourceRange::getTokenRange(RHSInt->getSourceRange()), S.getSourceManager(), S.getLangOpts())); if (Negative) { RightSideValue = -RightSideValue; RHSStr = "-" + RHSStr; } else if (ExplicitPlus) { RHSStr = "+" + RHSStr; } StringRef LHSStrRef = LHSStr; StringRef RHSStrRef = RHSStr; // Do not diagnose literals with digit separators, binary, hexadecimal, octal // literals. if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") || RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") || LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") || RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") || (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) || (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) || LHSStrRef.contains('\'') || RHSStrRef.contains('\'')) return; bool SuggestXor = S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor"); const llvm::APInt XorValue = LeftSideValue ^ RightSideValue; int64_t RightSideIntValue = RightSideValue.getSExtValue(); if (LeftSideValue == 2 && RightSideIntValue >= 0) { std::string SuggestedExpr = "1 << " + RHSStr; bool Overflow = false; llvm::APInt One = (LeftSideValue - 1); llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow); if (Overflow) { if (RightSideIntValue < 64) S.Diag(Loc, diag::warn_xor_used_as_pow_base) << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr) << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr); else if (RightSideIntValue == 64) S.Diag(Loc, diag::warn_xor_used_as_pow) << ExprStr << toString(XorValue, 10, true); else return; } else { S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra) << ExprStr << toString(XorValue, 10, true) << SuggestedExpr << toString(PowValue, 10, true) << FixItHint::CreateReplacement( ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr); } S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr) << SuggestXor; } else if (LeftSideValue == 10) { std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue); S.Diag(Loc, diag::warn_xor_used_as_pow_base) << ExprStr << toString(XorValue, 10, true) << SuggestedValue << FixItHint::CreateReplacement(ExprRange, SuggestedValue); S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr) << SuggestXor; } } QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc) { // Ensure that either both operands are of the same vector type, or // one operand is of a vector type and the other is of its element type. QualType vType = CheckVectorOperands(LHS, RHS, Loc, false, /*AllowBothBool*/ true, /*AllowBoolConversions*/ false, /*AllowBooleanOperation*/ false, /*ReportInvalid*/ false); if (vType.isNull()) return InvalidOperands(Loc, LHS, RHS); if (getLangOpts().OpenCL && getLangOpts().getOpenCLCompatibleVersion() < 120 && vType->hasFloatingRepresentation()) return InvalidOperands(Loc, LHS, RHS); // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the // usage of the logical operators && and || with vectors in C. This // check could be notionally dropped. if (!getLangOpts().CPlusPlus && !(isa(vType->getAs()))) return InvalidLogicalVectorOperands(Loc, LHS, RHS); return GetSignedVectorType(LHS.get()->getType()); } QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { if (!IsCompAssign) { LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); if (LHS.isInvalid()) return QualType(); } RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); if (RHS.isInvalid()) return QualType(); // For conversion purposes, we ignore any qualifiers. // For example, "const float" and "float" are equivalent. QualType LHSType = LHS.get()->getType().getUnqualifiedType(); QualType RHSType = RHS.get()->getType().getUnqualifiedType(); const MatrixType *LHSMatType = LHSType->getAs(); const MatrixType *RHSMatType = RHSType->getAs(); assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix"); if (Context.hasSameType(LHSType, RHSType)) return LHSType; // Type conversion may change LHS/RHS. Keep copies to the original results, in // case we have to return InvalidOperands. ExprResult OriginalLHS = LHS; ExprResult OriginalRHS = RHS; if (LHSMatType && !RHSMatType) { RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType()); if (!RHS.isInvalid()) return LHSType; return InvalidOperands(Loc, OriginalLHS, OriginalRHS); } if (!LHSMatType && RHSMatType) { LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType()); if (!LHS.isInvalid()) return RHSType; return InvalidOperands(Loc, OriginalLHS, OriginalRHS); } return InvalidOperands(Loc, LHS, RHS); } QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { if (!IsCompAssign) { LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); if (LHS.isInvalid()) return QualType(); } RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); if (RHS.isInvalid()) return QualType(); auto *LHSMatType = LHS.get()->getType()->getAs(); auto *RHSMatType = RHS.get()->getType()->getAs(); assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix"); if (LHSMatType && RHSMatType) { if (LHSMatType->getNumColumns() != RHSMatType->getNumRows()) return InvalidOperands(Loc, LHS, RHS); if (!Context.hasSameType(LHSMatType->getElementType(), RHSMatType->getElementType())) return InvalidOperands(Loc, LHS, RHS); return Context.getConstantMatrixType(LHSMatType->getElementType(), LHSMatType->getNumRows(), RHSMatType->getNumColumns()); } return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign); } static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) { switch (Opc) { default: return false; case BO_And: case BO_AndAssign: case BO_Or: case BO_OrAssign: case BO_Xor: case BO_XorAssign: return true; } } inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc) { checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); bool IsCompAssign = Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign; bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc); if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) { if (LHS.get()->getType()->hasIntegerRepresentation() && RHS.get()->getType()->hasIntegerRepresentation()) return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, /*AllowBothBool*/ true, /*AllowBoolConversions*/ getLangOpts().ZVector, /*AllowBooleanOperation*/ LegalBoolVecOperator, /*ReportInvalid*/ true); return InvalidOperands(Loc, LHS, RHS); } if (LHS.get()->getType()->isVLSTBuiltinType() || RHS.get()->getType()->isVLSTBuiltinType()) { if (LHS.get()->getType()->hasIntegerRepresentation() && RHS.get()->getType()->hasIntegerRepresentation()) return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, ACK_BitwiseOp); return InvalidOperands(Loc, LHS, RHS); } if (LHS.get()->getType()->isVLSTBuiltinType() || RHS.get()->getType()->isVLSTBuiltinType()) { if (LHS.get()->getType()->hasIntegerRepresentation() && RHS.get()->getType()->hasIntegerRepresentation()) return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, ACK_BitwiseOp); return InvalidOperands(Loc, LHS, RHS); } if (Opc == BO_And) diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); if (LHS.get()->getType()->hasFloatingRepresentation() || RHS.get()->getType()->hasFloatingRepresentation()) return InvalidOperands(Loc, LHS, RHS); ExprResult LHSResult = LHS, RHSResult = RHS; QualType compType = UsualArithmeticConversions( LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp); if (LHSResult.isInvalid() || RHSResult.isInvalid()) return QualType(); LHS = LHSResult.get(); RHS = RHSResult.get(); if (Opc == BO_Xor) diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc); if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType()) return compType; return InvalidOperands(Loc, LHS, RHS); } // C99 6.5.[13,14] inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc) { // Check vector operands differently. if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) return CheckVectorLogicalOperands(LHS, RHS, Loc); bool EnumConstantInBoolContext = false; for (const ExprResult &HS : {LHS, RHS}) { if (const auto *DREHS = dyn_cast(HS.get())) { const auto *ECDHS = dyn_cast(DREHS->getDecl()); if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1) EnumConstantInBoolContext = true; } } if (EnumConstantInBoolContext) Diag(Loc, diag::warn_enum_constant_in_bool_context); // Diagnose cases where the user write a logical and/or but probably meant a // bitwise one. We do this when the LHS is a non-bool integer and the RHS // is a constant. if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() && !LHS.get()->getType()->isBooleanType() && RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() && // Don't warn in macros or template instantiations. !Loc.isMacroID() && !inTemplateInstantiation()) { // If the RHS can be constant folded, and if it constant folds to something // that isn't 0 or 1 (which indicate a potential logical operation that // happened to fold to true/false) then warn. // Parens on the RHS are ignored. Expr::EvalResult EVResult; if (RHS.get()->EvaluateAsInt(EVResult, Context)) { llvm::APSInt Result = EVResult.Val.getInt(); if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() && !RHS.get()->getExprLoc().isMacroID()) || (Result != 0 && Result != 1)) { Diag(Loc, diag::warn_logical_instead_of_bitwise) << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||"); // Suggest replacing the logical operator with the bitwise version Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator) << (Opc == BO_LAnd ? "&" : "|") << FixItHint::CreateReplacement( SourceRange(Loc, getLocForEndOfToken(Loc)), Opc == BO_LAnd ? "&" : "|"); if (Opc == BO_LAnd) // Suggest replacing "Foo() && kNonZero" with "Foo()" Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant) << FixItHint::CreateRemoval( SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()), RHS.get()->getEndLoc())); } } } if (!Context.getLangOpts().CPlusPlus) { // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do // not operate on the built-in scalar and vector float types. if (Context.getLangOpts().OpenCL && Context.getLangOpts().OpenCLVersion < 120) { if (LHS.get()->getType()->isFloatingType() || RHS.get()->getType()->isFloatingType()) return InvalidOperands(Loc, LHS, RHS); } LHS = UsualUnaryConversions(LHS.get()); if (LHS.isInvalid()) return QualType(); RHS = UsualUnaryConversions(RHS.get()); if (RHS.isInvalid()) return QualType(); if (!LHS.get()->getType()->isScalarType() || !RHS.get()->getType()->isScalarType()) return InvalidOperands(Loc, LHS, RHS); return Context.IntTy; } // The following is safe because we only use this method for // non-overloadable operands. // C++ [expr.log.and]p1 // C++ [expr.log.or]p1 // The operands are both contextually converted to type bool. ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get()); if (LHSRes.isInvalid()) return InvalidOperands(Loc, LHS, RHS); LHS = LHSRes; ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get()); if (RHSRes.isInvalid()) return InvalidOperands(Loc, LHS, RHS); RHS = RHSRes; // C++ [expr.log.and]p2 // C++ [expr.log.or]p2 // The result is a bool. return Context.BoolTy; } static bool IsReadonlyMessage(Expr *E, Sema &S) { const MemberExpr *ME = dyn_cast(E); if (!ME) return false; if (!isa(ME->getMemberDecl())) return false; ObjCMessageExpr *Base = dyn_cast( ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts()); if (!Base) return false; return Base->getMethodDecl() != nullptr; } /// Is the given expression (which must be 'const') a reference to a /// variable which was originally non-const, but which has become /// 'const' due to being captured within a block? enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda }; static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) { assert(E->isLValue() && E->getType().isConstQualified()); E = E->IgnoreParens(); // Must be a reference to a declaration from an enclosing scope. DeclRefExpr *DRE = dyn_cast(E); if (!DRE) return NCCK_None; if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None; // The declaration must be a variable which is not declared 'const'. VarDecl *var = dyn_cast(DRE->getDecl()); if (!var) return NCCK_None; if (var->getType().isConstQualified()) return NCCK_None; assert(var->hasLocalStorage() && "capture added 'const' to non-local?"); // Decide whether the first capture was for a block or a lambda. DeclContext *DC = S.CurContext, *Prev = nullptr; // Decide whether the first capture was for a block or a lambda. while (DC) { // For init-capture, it is possible that the variable belongs to the // template pattern of the current context. if (auto *FD = dyn_cast(DC)) if (var->isInitCapture() && FD->getTemplateInstantiationPattern() == var->getDeclContext()) break; if (DC == var->getDeclContext()) break; Prev = DC; DC = DC->getParent(); } // Unless we have an init-capture, we've gone one step too far. if (!var->isInitCapture()) DC = Prev; return (isa(DC) ? NCCK_Block : NCCK_Lambda); } static bool IsTypeModifiable(QualType Ty, bool IsDereference) { Ty = Ty.getNonReferenceType(); if (IsDereference && Ty->isPointerType()) Ty = Ty->getPointeeType(); return !Ty.isConstQualified(); } // Update err_typecheck_assign_const and note_typecheck_assign_const // when this enum is changed. enum { ConstFunction, ConstVariable, ConstMember, ConstMethod, NestedConstMember, ConstUnknown, // Keep as last element }; /// Emit the "read-only variable not assignable" error and print notes to give /// more information about why the variable is not assignable, such as pointing /// to the declaration of a const variable, showing that a method is const, or /// that the function is returning a const reference. static void DiagnoseConstAssignment(Sema &S, const Expr *E, SourceLocation Loc) { SourceRange ExprRange = E->getSourceRange(); // Only emit one error on the first const found. All other consts will emit // a note to the error. bool DiagnosticEmitted = false; // Track if the current expression is the result of a dereference, and if the // next checked expression is the result of a dereference. bool IsDereference = false; bool NextIsDereference = false; // Loop to process MemberExpr chains. while (true) { IsDereference = NextIsDereference; E = E->IgnoreImplicit()->IgnoreParenImpCasts(); if (const MemberExpr *ME = dyn_cast(E)) { NextIsDereference = ME->isArrow(); const ValueDecl *VD = ME->getMemberDecl(); if (const FieldDecl *Field = dyn_cast(VD)) { // Mutable fields can be modified even if the class is const. if (Field->isMutable()) { assert(DiagnosticEmitted && "Expected diagnostic not emitted."); break; } if (!IsTypeModifiable(Field->getType(), IsDereference)) { if (!DiagnosticEmitted) { S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstMember << false /*static*/ << Field << Field->getType(); DiagnosticEmitted = true; } S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) << ConstMember << false /*static*/ << Field << Field->getType() << Field->getSourceRange(); } E = ME->getBase(); continue; } else if (const VarDecl *VDecl = dyn_cast(VD)) { if (VDecl->getType().isConstQualified()) { if (!DiagnosticEmitted) { S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstMember << true /*static*/ << VDecl << VDecl->getType(); DiagnosticEmitted = true; } S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) << ConstMember << true /*static*/ << VDecl << VDecl->getType() << VDecl->getSourceRange(); } // Static fields do not inherit constness from parents. break; } break; // End MemberExpr } else if (const ArraySubscriptExpr *ASE = dyn_cast(E)) { E = ASE->getBase()->IgnoreParenImpCasts(); continue; } else if (const ExtVectorElementExpr *EVE = dyn_cast(E)) { E = EVE->getBase()->IgnoreParenImpCasts(); continue; } break; } if (const CallExpr *CE = dyn_cast(E)) { // Function calls const FunctionDecl *FD = CE->getDirectCallee(); if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) { if (!DiagnosticEmitted) { S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstFunction << FD; DiagnosticEmitted = true; } S.Diag(FD->getReturnTypeSourceRange().getBegin(), diag::note_typecheck_assign_const) << ConstFunction << FD << FD->getReturnType() << FD->getReturnTypeSourceRange(); } } else if (const DeclRefExpr *DRE = dyn_cast(E)) { // Point to variable declaration. if (const ValueDecl *VD = DRE->getDecl()) { if (!IsTypeModifiable(VD->getType(), IsDereference)) { if (!DiagnosticEmitted) { S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstVariable << VD << VD->getType(); DiagnosticEmitted = true; } S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) << ConstVariable << VD << VD->getType() << VD->getSourceRange(); } } } else if (isa(E)) { if (const DeclContext *DC = S.getFunctionLevelDeclContext()) { if (const CXXMethodDecl *MD = dyn_cast(DC)) { if (MD->isConst()) { if (!DiagnosticEmitted) { S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstMethod << MD; DiagnosticEmitted = true; } S.Diag(MD->getLocation(), diag::note_typecheck_assign_const) << ConstMethod << MD << MD->getSourceRange(); } } } } if (DiagnosticEmitted) return; // Can't determine a more specific message, so display the generic error. S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown; } enum OriginalExprKind { OEK_Variable, OEK_Member, OEK_LValue }; static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD, const RecordType *Ty, SourceLocation Loc, SourceRange Range, OriginalExprKind OEK, bool &DiagnosticEmitted) { std::vector RecordTypeList; RecordTypeList.push_back(Ty); unsigned NextToCheckIndex = 0; // We walk the record hierarchy breadth-first to ensure that we print // diagnostics in field nesting order. while (RecordTypeList.size() > NextToCheckIndex) { bool IsNested = NextToCheckIndex > 0; for (const FieldDecl *Field : RecordTypeList[NextToCheckIndex]->getDecl()->fields()) { // First, check every field for constness. QualType FieldTy = Field->getType(); if (FieldTy.isConstQualified()) { if (!DiagnosticEmitted) { S.Diag(Loc, diag::err_typecheck_assign_const) << Range << NestedConstMember << OEK << VD << IsNested << Field; DiagnosticEmitted = true; } S.Diag(Field->getLocation(), diag::note_typecheck_assign_const) << NestedConstMember << IsNested << Field << FieldTy << Field->getSourceRange(); } // Then we append it to the list to check next in order. FieldTy = FieldTy.getCanonicalType(); if (const auto *FieldRecTy = FieldTy->getAs()) { if (!llvm::is_contained(RecordTypeList, FieldRecTy)) RecordTypeList.push_back(FieldRecTy); } } ++NextToCheckIndex; } } /// Emit an error for the case where a record we are trying to assign to has a /// const-qualified field somewhere in its hierarchy. static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E, SourceLocation Loc) { QualType Ty = E->getType(); assert(Ty->isRecordType() && "lvalue was not record?"); SourceRange Range = E->getSourceRange(); const RecordType *RTy = Ty.getCanonicalType()->getAs(); bool DiagEmitted = false; if (const MemberExpr *ME = dyn_cast(E)) DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc, Range, OEK_Member, DiagEmitted); else if (const DeclRefExpr *DRE = dyn_cast(E)) DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc, Range, OEK_Variable, DiagEmitted); else DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc, Range, OEK_LValue, DiagEmitted); if (!DiagEmitted) DiagnoseConstAssignment(S, E, Loc); } /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, /// emit an error and return true. If so, return false. static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { assert(!E->hasPlaceholderType(BuiltinType::PseudoObject)); S.CheckShadowingDeclModification(E, Loc); SourceLocation OrigLoc = Loc; Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, &Loc); if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S)) IsLV = Expr::MLV_InvalidMessageExpression; if (IsLV == Expr::MLV_Valid) return false; unsigned DiagID = 0; bool NeedType = false; switch (IsLV) { // C99 6.5.16p2 case Expr::MLV_ConstQualified: // Use a specialized diagnostic when we're assigning to an object // from an enclosing function or block. if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) { if (NCCK == NCCK_Block) DiagID = diag::err_block_decl_ref_not_modifiable_lvalue; else DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue; break; } // In ARC, use some specialized diagnostics for occasions where we // infer 'const'. These are always pseudo-strong variables. if (S.getLangOpts().ObjCAutoRefCount) { DeclRefExpr *declRef = dyn_cast(E->IgnoreParenCasts()); if (declRef && isa(declRef->getDecl())) { VarDecl *var = cast(declRef->getDecl()); // Use the normal diagnostic if it's pseudo-__strong but the // user actually wrote 'const'. if (var->isARCPseudoStrong() && (!var->getTypeSourceInfo() || !var->getTypeSourceInfo()->getType().isConstQualified())) { // There are three pseudo-strong cases: // - self ObjCMethodDecl *method = S.getCurMethodDecl(); if (method && var == method->getSelfDecl()) { DiagID = method->isClassMethod() ? diag::err_typecheck_arc_assign_self_class_method : diag::err_typecheck_arc_assign_self; // - Objective-C externally_retained attribute. } else if (var->hasAttr() || isa(var)) { DiagID = diag::err_typecheck_arc_assign_externally_retained; // - fast enumeration variables } else { DiagID = diag::err_typecheck_arr_assign_enumeration; } SourceRange Assign; if (Loc != OrigLoc) Assign = SourceRange(OrigLoc, OrigLoc); S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; // We need to preserve the AST regardless, so migration tool // can do its job. return false; } } } // If none of the special cases above are triggered, then this is a // simple const assignment. if (DiagID == 0) { DiagnoseConstAssignment(S, E, Loc); return true; } break; case Expr::MLV_ConstAddrSpace: DiagnoseConstAssignment(S, E, Loc); return true; case Expr::MLV_ConstQualifiedField: DiagnoseRecursiveConstFields(S, E, Loc); return true; case Expr::MLV_ArrayType: case Expr::MLV_ArrayTemporary: DiagID = diag::err_typecheck_array_not_modifiable_lvalue; NeedType = true; break; case Expr::MLV_NotObjectType: DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue; NeedType = true; break; case Expr::MLV_LValueCast: DiagID = diag::err_typecheck_lvalue_casts_not_supported; break; case Expr::MLV_Valid: llvm_unreachable("did not take early return for MLV_Valid"); case Expr::MLV_InvalidExpression: case Expr::MLV_MemberFunction: case Expr::MLV_ClassTemporary: DiagID = diag::err_typecheck_expression_not_modifiable_lvalue; break; case Expr::MLV_IncompleteType: case Expr::MLV_IncompleteVoidType: return S.RequireCompleteType(Loc, E->getType(), diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E); case Expr::MLV_DuplicateVectorComponents: DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue; break; case Expr::MLV_NoSetterProperty: llvm_unreachable("readonly properties should be processed differently"); case Expr::MLV_InvalidMessageExpression: DiagID = diag::err_readonly_message_assignment; break; case Expr::MLV_SubObjCPropertySetting: DiagID = diag::err_no_subobject_property_setting; break; } SourceRange Assign; if (Loc != OrigLoc) Assign = SourceRange(OrigLoc, OrigLoc); if (NeedType) S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign; else S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; return true; } static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr, SourceLocation Loc, Sema &Sema) { if (Sema.inTemplateInstantiation()) return; if (Sema.isUnevaluatedContext()) return; if (Loc.isInvalid() || Loc.isMacroID()) return; if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID()) return; // C / C++ fields MemberExpr *ML = dyn_cast(LHSExpr); MemberExpr *MR = dyn_cast(RHSExpr); if (ML && MR) { if (!(isa(ML->getBase()) && isa(MR->getBase()))) return; const ValueDecl *LHSDecl = cast(ML->getMemberDecl()->getCanonicalDecl()); const ValueDecl *RHSDecl = cast(MR->getMemberDecl()->getCanonicalDecl()); if (LHSDecl != RHSDecl) return; if (LHSDecl->getType().isVolatileQualified()) return; if (const ReferenceType *RefTy = LHSDecl->getType()->getAs()) if (RefTy->getPointeeType().isVolatileQualified()) return; Sema.Diag(Loc, diag::warn_identity_field_assign) << 0; } // Objective-C instance variables ObjCIvarRefExpr *OL = dyn_cast(LHSExpr); ObjCIvarRefExpr *OR = dyn_cast(RHSExpr); if (OL && OR && OL->getDecl() == OR->getDecl()) { DeclRefExpr *RL = dyn_cast(OL->getBase()->IgnoreImpCasts()); DeclRefExpr *RR = dyn_cast(OR->getBase()->IgnoreImpCasts()); if (RL && RR && RL->getDecl() == RR->getDecl()) Sema.Diag(Loc, diag::warn_identity_field_assign) << 1; } } // C99 6.5.16.1 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType, BinaryOperatorKind Opc) { assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)); // Verify that LHS is a modifiable lvalue, and emit error if not. if (CheckForModifiableLvalue(LHSExpr, Loc, *this)) return QualType(); QualType LHSType = LHSExpr->getType(); QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : CompoundType; // OpenCL v1.2 s6.1.1.1 p2: // The half data type can only be used to declare a pointer to a buffer that // contains half values if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && LHSType->isHalfType()) { Diag(Loc, diag::err_opencl_half_load_store) << 1 << LHSType.getUnqualifiedType(); return QualType(); } AssignConvertType ConvTy; if (CompoundType.isNull()) { Expr *RHSCheck = RHS.get(); CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this); QualType LHSTy(LHSType); ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); if (RHS.isInvalid()) return QualType(); // Special case of NSObject attributes on c-style pointer types. if (ConvTy == IncompatiblePointer && ((Context.isObjCNSObjectType(LHSType) && RHSType->isObjCObjectPointerType()) || (Context.isObjCNSObjectType(RHSType) && LHSType->isObjCObjectPointerType()))) ConvTy = Compatible; if (ConvTy == Compatible && LHSType->isObjCObjectType()) Diag(Loc, diag::err_objc_object_assignment) << LHSType; // If the RHS is a unary plus or minus, check to see if they = and + are // right next to each other. If so, the user may have typo'd "x =+ 4" // instead of "x += 4". if (ImplicitCastExpr *ICE = dyn_cast(RHSCheck)) RHSCheck = ICE->getSubExpr(); if (UnaryOperator *UO = dyn_cast(RHSCheck)) { if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) && Loc.isFileID() && UO->getOperatorLoc().isFileID() && // Only if the two operators are exactly adjacent. Loc.getLocWithOffset(1) == UO->getOperatorLoc() && // And there is a space or other character before the subexpr of the // unary +/-. We don't want to warn on "x=-1". Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() && UO->getSubExpr()->getBeginLoc().isFileID()) { Diag(Loc, diag::warn_not_compound_assign) << (UO->getOpcode() == UO_Plus ? "+" : "-") << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); } } if (ConvTy == Compatible) { if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) { // Warn about retain cycles where a block captures the LHS, but // not if the LHS is a simple variable into which the block is // being stored...unless that variable can be captured by reference! const Expr *InnerLHS = LHSExpr->IgnoreParenCasts(); const DeclRefExpr *DRE = dyn_cast(InnerLHS); if (!DRE || DRE->getDecl()->hasAttr()) checkRetainCycles(LHSExpr, RHS.get()); } if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong || LHSType.isNonWeakInMRRWithObjCWeak(Context)) { // It is safe to assign a weak reference into a strong variable. // Although this code can still have problems: // id x = self.weakProp; // id y = self.weakProp; // we do not warn to warn spuriously when 'x' and 'y' are on separate // paths through the function. This should be revisited if // -Wrepeated-use-of-weak is made flow-sensitive. // For ObjCWeak only, we do not warn if the assign is to a non-weak // variable, which will be valid for the current autorelease scope. if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, RHS.get()->getBeginLoc())) getCurFunction()->markSafeWeakUse(RHS.get()); } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) { checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get()); } } } else { // Compound assignment "x += y" ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType); } if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, RHS.get(), AA_Assigning)) return QualType(); CheckForNullPointerDereference(*this, LHSExpr); if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) { if (CompoundType.isNull()) { // C++2a [expr.ass]p5: // A simple-assignment whose left operand is of a volatile-qualified // type is deprecated unless the assignment is either a discarded-value // expression or an unevaluated operand ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr); } else { // C++20 [expr.ass]p6: // [Compound-assignment] expressions are deprecated if E1 has // volatile-qualified type and op is not one of the bitwise // operators |, &, ˆ. switch (Opc) { case BO_OrAssign: case BO_AndAssign: case BO_XorAssign: break; default: Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType; } } } // C11 6.5.16p3: The type of an assignment expression is the type of the // left operand would have after lvalue conversion. // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has // qualified type, the value has the unqualified version of the type of the // lvalue; additionally, if the lvalue has atomic type, the value has the // non-atomic version of the type of the lvalue. // C++ 5.17p1: the type of the assignment expression is that of its left // operand. return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType(); } // Only ignore explicit casts to void. static bool IgnoreCommaOperand(const Expr *E) { E = E->IgnoreParens(); if (const CastExpr *CE = dyn_cast(E)) { if (CE->getCastKind() == CK_ToVoid) { return true; } // static_cast on a dependent type will not show up as CK_ToVoid. if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() && CE->getSubExpr()->getType()->isDependentType()) { return true; } } return false; } // Look for instances where it is likely the comma operator is confused with // another operator. There is an explicit list of acceptable expressions for // the left hand side of the comma operator, otherwise emit a warning. void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) { // No warnings in macros if (Loc.isMacroID()) return; // Don't warn in template instantiations. if (inTemplateInstantiation()) return; // Scope isn't fine-grained enough to explicitly list the specific cases, so // instead, skip more than needed, then call back into here with the // CommaVisitor in SemaStmt.cpp. // The listed locations are the initialization and increment portions // of a for loop. The additional checks are on the condition of // if statements, do/while loops, and for loops. // Differences in scope flags for C89 mode requires the extra logic. const unsigned ForIncrementFlags = getLangOpts().C99 || getLangOpts().CPlusPlus ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope : Scope::ContinueScope | Scope::BreakScope; const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope; const unsigned ScopeFlags = getCurScope()->getFlags(); if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags || (ScopeFlags & ForInitFlags) == ForInitFlags) return; // If there are multiple comma operators used together, get the RHS of the // of the comma operator as the LHS. while (const BinaryOperator *BO = dyn_cast(LHS)) { if (BO->getOpcode() != BO_Comma) break; LHS = BO->getRHS(); } // Only allow some expressions on LHS to not warn. if (IgnoreCommaOperand(LHS)) return; Diag(Loc, diag::warn_comma_operator); Diag(LHS->getBeginLoc(), diag::note_cast_to_void) << LHS->getSourceRange() << FixItHint::CreateInsertion(LHS->getBeginLoc(), LangOpts.CPlusPlus ? "static_cast(" : "(void)(") << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()), ")"); } // C99 6.5.17 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS, SourceLocation Loc) { LHS = S.CheckPlaceholderExpr(LHS.get()); RHS = S.CheckPlaceholderExpr(RHS.get()); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); // C's comma performs lvalue conversion (C99 6.3.2.1) on both its // operands, but not unary promotions. // C++'s comma does not do any conversions at all (C++ [expr.comma]p1). // So we treat the LHS as a ignored value, and in C++ we allow the // containing site to determine what should be done with the RHS. LHS = S.IgnoredValueConversions(LHS.get()); if (LHS.isInvalid()) return QualType(); S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand); if (!S.getLangOpts().CPlusPlus) { RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); if (RHS.isInvalid()) return QualType(); if (!RHS.get()->getType()->isVoidType()) S.RequireCompleteType(Loc, RHS.get()->getType(), diag::err_incomplete_type); } if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc)) S.DiagnoseCommaOperator(LHS.get(), Loc); return RHS.get()->getType(); } /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation OpLoc, bool IsInc, bool IsPrefix) { if (Op->isTypeDependent()) return S.Context.DependentTy; QualType ResType = Op->getType(); // Atomic types can be used for increment / decrement where the non-atomic // versions can, so ignore the _Atomic() specifier for the purpose of // checking. if (const AtomicType *ResAtomicType = ResType->getAs()) ResType = ResAtomicType->getValueType(); assert(!ResType.isNull() && "no type for increment/decrement expression"); if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) { // Decrement of bool is not allowed. if (!IsInc) { S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); return QualType(); } // Increment of bool sets it to true, but is deprecated. S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool : diag::warn_increment_bool) << Op->getSourceRange(); } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) { // Error on enum increments and decrements in C++ mode S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType; return QualType(); } else if (ResType->isRealType()) { // OK! } else if (ResType->isPointerType()) { // C99 6.5.2.4p2, 6.5.6p2 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op)) return QualType(); } else if (ResType->isObjCObjectPointerType()) { // On modern runtimes, ObjC pointer arithmetic is forbidden. // Otherwise, we just need a complete type. if (checkArithmeticIncompletePointerType(S, OpLoc, Op) || checkArithmeticOnObjCPointer(S, OpLoc, Op)) return QualType(); } else if (ResType->isAnyComplexType()) { // C99 does not support ++/-- on complex types, we allow as an extension. S.Diag(OpLoc, diag::ext_integer_increment_complex) << ResType << Op->getSourceRange(); } else if (ResType->isPlaceholderType()) { ExprResult PR = S.CheckPlaceholderExpr(Op); if (PR.isInvalid()) return QualType(); return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc, IsInc, IsPrefix); } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) { // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 ) } else if (S.getLangOpts().ZVector && ResType->isVectorType() && (ResType->castAs()->getVectorKind() != VectorType::AltiVecBool)) { // The z vector extensions allow ++ and -- for non-bool vectors. } else if(S.getLangOpts().OpenCL && ResType->isVectorType() && ResType->castAs()->getElementType()->isIntegerType()) { // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types. } else { S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) << ResType << int(IsInc) << Op->getSourceRange(); return QualType(); } // At this point, we know we have a real, complex or pointer type. // Now make sure the operand is a modifiable lvalue. if (CheckForModifiableLvalue(Op, OpLoc, S)) return QualType(); if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) { // C++2a [expr.pre.inc]p1, [expr.post.inc]p1: // An operand with volatile-qualified type is deprecated S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile) << IsInc << ResType; } // In C++, a prefix increment is the same type as the operand. Otherwise // (in C or with postfix), the increment is the unqualified type of the // operand. if (IsPrefix && S.getLangOpts().CPlusPlus) { VK = VK_LValue; OK = Op->getObjectKind(); return ResType; } else { VK = VK_PRValue; return ResType.getUnqualifiedType(); } } /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). /// This routine allows us to typecheck complex/recursive expressions /// where the declaration is needed for type checking. We only need to /// handle cases when the expression references a function designator /// or is an lvalue. Here are some examples: /// - &(x) => x /// - &*****f => f for f a function designator. /// - &s.xx => s /// - &s.zz[1].yy -> s, if zz is an array /// - *(x + 1) -> x, if x is an array /// - &"123"[2] -> 0 /// - & __real__ x -> x /// /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to /// members. static ValueDecl *getPrimaryDecl(Expr *E) { switch (E->getStmtClass()) { case Stmt::DeclRefExprClass: return cast(E)->getDecl(); case Stmt::MemberExprClass: // If this is an arrow operator, the address is an offset from // the base's value, so the object the base refers to is // irrelevant. if (cast(E)->isArrow()) return nullptr; // Otherwise, the expression refers to a part of the base return getPrimaryDecl(cast(E)->getBase()); case Stmt::ArraySubscriptExprClass: { // FIXME: This code shouldn't be necessary! We should catch the implicit // promotion of register arrays earlier. Expr* Base = cast(E)->getBase(); if (ImplicitCastExpr* ICE = dyn_cast(Base)) { if (ICE->getSubExpr()->getType()->isArrayType()) return getPrimaryDecl(ICE->getSubExpr()); } return nullptr; } case Stmt::UnaryOperatorClass: { UnaryOperator *UO = cast(E); switch(UO->getOpcode()) { case UO_Real: case UO_Imag: case UO_Extension: return getPrimaryDecl(UO->getSubExpr()); default: return nullptr; } } case Stmt::ParenExprClass: return getPrimaryDecl(cast(E)->getSubExpr()); case Stmt::ImplicitCastExprClass: // If the result of an implicit cast is an l-value, we care about // the sub-expression; otherwise, the result here doesn't matter. return getPrimaryDecl(cast(E)->getSubExpr()); case Stmt::CXXUuidofExprClass: return cast(E)->getGuidDecl(); default: return nullptr; } } namespace { enum { AO_Bit_Field = 0, AO_Vector_Element = 1, AO_Property_Expansion = 2, AO_Register_Variable = 3, AO_Matrix_Element = 4, AO_No_Error = 5 }; } /// Diagnose invalid operand for address of operations. /// /// \param Type The type of operand which cannot have its address taken. static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc, Expr *E, unsigned Type) { S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange(); } /// CheckAddressOfOperand - The operand of & must be either a function /// designator or an lvalue designating an object. If it is an lvalue, the /// object cannot be declared with storage class register or be a bit field. /// Note: The usual conversions are *not* applied to the operand of the & /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. /// In C++, the operand might be an overloaded function name, in which case /// we allow the '&' but retain the overloaded-function type. QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) { if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){ if (PTy->getKind() == BuiltinType::Overload) { Expr *E = OrigOp.get()->IgnoreParens(); if (!isa(E)) { assert(cast(E)->getOpcode() == UO_AddrOf); Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function) << OrigOp.get()->getSourceRange(); return QualType(); } OverloadExpr *Ovl = cast(E); if (isa(Ovl)) if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) { Diag(OpLoc, diag::err_invalid_form_pointer_member_function) << OrigOp.get()->getSourceRange(); return QualType(); } return Context.OverloadTy; } if (PTy->getKind() == BuiltinType::UnknownAny) return Context.UnknownAnyTy; if (PTy->getKind() == BuiltinType::BoundMember) { Diag(OpLoc, diag::err_invalid_form_pointer_member_function) << OrigOp.get()->getSourceRange(); return QualType(); } OrigOp = CheckPlaceholderExpr(OrigOp.get()); if (OrigOp.isInvalid()) return QualType(); } if (OrigOp.get()->isTypeDependent()) return Context.DependentTy; assert(!OrigOp.get()->hasPlaceholderType()); // Make sure to ignore parentheses in subsequent checks Expr *op = OrigOp.get()->IgnoreParens(); // In OpenCL captures for blocks called as lambda functions // are located in the private address space. Blocks used in // enqueue_kernel can be located in a different address space // depending on a vendor implementation. Thus preventing // taking an address of the capture to avoid invalid AS casts. if (LangOpts.OpenCL) { auto* VarRef = dyn_cast(op); if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) { Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture); return QualType(); } } if (getLangOpts().C99) { // Implement C99-only parts of addressof rules. if (UnaryOperator* uOp = dyn_cast(op)) { if (uOp->getOpcode() == UO_Deref) // Per C99 6.5.3.2, the address of a deref always returns a valid result // (assuming the deref expression is valid). return uOp->getSubExpr()->getType(); } // Technically, there should be a check for array subscript // expressions here, but the result of one is always an lvalue anyway. } ValueDecl *dcl = getPrimaryDecl(op); if (auto *FD = dyn_cast_or_null(dcl)) if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, op->getBeginLoc())) return QualType(); Expr::LValueClassification lval = op->ClassifyLValue(Context); unsigned AddressOfError = AO_No_Error; if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) { bool sfinae = (bool)isSFINAEContext(); Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary : diag::ext_typecheck_addrof_temporary) << op->getType() << op->getSourceRange(); if (sfinae) return QualType(); // Materialize the temporary as an lvalue so that we can take its address. OrigOp = op = CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true); } else if (isa(op)) { return Context.getPointerType(op->getType()); } else if (lval == Expr::LV_MemberFunction) { // If it's an instance method, make a member pointer. // The expression must have exactly the form &A::foo. // If the underlying expression isn't a decl ref, give up. if (!isa(op)) { Diag(OpLoc, diag::err_invalid_form_pointer_member_function) << OrigOp.get()->getSourceRange(); return QualType(); } DeclRefExpr *DRE = cast(op); CXXMethodDecl *MD = cast(DRE->getDecl()); // The id-expression was parenthesized. if (OrigOp.get() != DRE) { Diag(OpLoc, diag::err_parens_pointer_member_function) << OrigOp.get()->getSourceRange(); // The method was named without a qualifier. } else if (!DRE->getQualifier()) { if (MD->getParent()->getName().empty()) Diag(OpLoc, diag::err_unqualified_pointer_member_function) << op->getSourceRange(); else { SmallString<32> Str; StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str); Diag(OpLoc, diag::err_unqualified_pointer_member_function) << op->getSourceRange() << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual); } } // Taking the address of a dtor is illegal per C++ [class.dtor]p2. if (isa(MD)) Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange(); QualType MPTy = Context.getMemberPointerType( op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr()); // Under the MS ABI, lock down the inheritance model now. if (Context.getTargetInfo().getCXXABI().isMicrosoft()) (void)isCompleteType(OpLoc, MPTy); return MPTy; } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { // C99 6.5.3.2p1 // The operand must be either an l-value or a function designator if (!op->getType()->isFunctionType()) { // Use a special diagnostic for loads from property references. if (isa(op)) { AddressOfError = AO_Property_Expansion; } else { Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) << op->getType() << op->getSourceRange(); return QualType(); } } } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1 // The operand cannot be a bit-field AddressOfError = AO_Bit_Field; } else if (op->getObjectKind() == OK_VectorComponent) { // The operand cannot be an element of a vector AddressOfError = AO_Vector_Element; } else if (op->getObjectKind() == OK_MatrixComponent) { // The operand cannot be an element of a matrix. AddressOfError = AO_Matrix_Element; } else if (dcl) { // C99 6.5.3.2p1 // We have an lvalue with a decl. Make sure the decl is not declared // with the register storage-class specifier. if (const VarDecl *vd = dyn_cast(dcl)) { // in C++ it is not error to take address of a register // variable (c++03 7.1.1P3) if (vd->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus) { AddressOfError = AO_Register_Variable; } } else if (isa(dcl)) { AddressOfError = AO_Property_Expansion; } else if (isa(dcl)) { return Context.OverloadTy; } else if (isa(dcl) || isa(dcl)) { // Okay: we can take the address of a field. // Could be a pointer to member, though, if there is an explicit // scope qualifier for the class. if (isa(op) && cast(op)->getQualifier()) { DeclContext *Ctx = dcl->getDeclContext(); if (Ctx && Ctx->isRecord()) { if (dcl->getType()->isReferenceType()) { Diag(OpLoc, diag::err_cannot_form_pointer_to_member_of_reference_type) << dcl->getDeclName() << dcl->getType(); return QualType(); } while (cast(Ctx)->isAnonymousStructOrUnion()) Ctx = Ctx->getParent(); QualType MPTy = Context.getMemberPointerType( op->getType(), Context.getTypeDeclType(cast(Ctx)).getTypePtr()); // Under the MS ABI, lock down the inheritance model now. if (Context.getTargetInfo().getCXXABI().isMicrosoft()) (void)isCompleteType(OpLoc, MPTy); return MPTy; } } } else if (!isa(dcl)) llvm_unreachable("Unknown/unexpected decl type"); } if (AddressOfError != AO_No_Error) { diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError); return QualType(); } if (lval == Expr::LV_IncompleteVoidType) { // Taking the address of a void variable is technically illegal, but we // allow it in cases which are otherwise valid. // Example: "extern void x; void* y = &x;". Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); } // If the operand has type "type", the result has type "pointer to type". if (op->getType()->isObjCObjectType()) return Context.getObjCObjectPointerType(op->getType()); CheckAddressOfPackedMember(op); return Context.getPointerType(op->getType()); } static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) { const DeclRefExpr *DRE = dyn_cast(Exp); if (!DRE) return; const Decl *D = DRE->getDecl(); if (!D) return; const ParmVarDecl *Param = dyn_cast(D); if (!Param) return; if (const FunctionDecl* FD = dyn_cast(Param->getDeclContext())) if (!FD->hasAttr() && !Param->hasAttr()) return; if (FunctionScopeInfo *FD = S.getCurFunction()) FD->ModifiedNonNullParams.insert(Param); } /// CheckIndirectionOperand - Type check unary indirection (prefix '*'). static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK, SourceLocation OpLoc) { if (Op->isTypeDependent()) return S.Context.DependentTy; ExprResult ConvResult = S.UsualUnaryConversions(Op); if (ConvResult.isInvalid()) return QualType(); Op = ConvResult.get(); QualType OpTy = Op->getType(); QualType Result; if (isa(Op)) { QualType OpOrigType = Op->IgnoreParenCasts()->getType(); S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true, Op->getSourceRange()); } if (const PointerType *PT = OpTy->getAs()) { Result = PT->getPointeeType(); } else if (const ObjCObjectPointerType *OPT = OpTy->getAs()) Result = OPT->getPointeeType(); else { ExprResult PR = S.CheckPlaceholderExpr(Op); if (PR.isInvalid()) return QualType(); if (PR.get() != Op) return CheckIndirectionOperand(S, PR.get(), VK, OpLoc); } if (Result.isNull()) { S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) << OpTy << Op->getSourceRange(); return QualType(); } // Note that per both C89 and C99, indirection is always legal, even if Result // is an incomplete type or void. It would be possible to warn about // dereferencing a void pointer, but it's completely well-defined, and such a // warning is unlikely to catch any mistakes. In C++, indirection is not valid // for pointers to 'void' but is fine for any other pointer type: // // C++ [expr.unary.op]p1: // [...] the expression to which [the unary * operator] is applied shall // be a pointer to an object type, or a pointer to a function type if (S.getLangOpts().CPlusPlus && Result->isVoidType()) S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer) << OpTy << Op->getSourceRange(); // Dereferences are usually l-values... VK = VK_LValue; // ...except that certain expressions are never l-values in C. if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType()) VK = VK_PRValue; return Result; } BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) { BinaryOperatorKind Opc; switch (Kind) { default: llvm_unreachable("Unknown binop!"); case tok::periodstar: Opc = BO_PtrMemD; break; case tok::arrowstar: Opc = BO_PtrMemI; break; case tok::star: Opc = BO_Mul; break; case tok::slash: Opc = BO_Div; break; case tok::percent: Opc = BO_Rem; break; case tok::plus: Opc = BO_Add; break; case tok::minus: Opc = BO_Sub; break; case tok::lessless: Opc = BO_Shl; break; case tok::greatergreater: Opc = BO_Shr; break; case tok::lessequal: Opc = BO_LE; break; case tok::less: Opc = BO_LT; break; case tok::greaterequal: Opc = BO_GE; break; case tok::greater: Opc = BO_GT; break; case tok::exclaimequal: Opc = BO_NE; break; case tok::equalequal: Opc = BO_EQ; break; case tok::spaceship: Opc = BO_Cmp; break; case tok::amp: Opc = BO_And; break; case tok::caret: Opc = BO_Xor; break; case tok::pipe: Opc = BO_Or; break; case tok::ampamp: Opc = BO_LAnd; break; case tok::pipepipe: Opc = BO_LOr; break; case tok::equal: Opc = BO_Assign; break; case tok::starequal: Opc = BO_MulAssign; break; case tok::slashequal: Opc = BO_DivAssign; break; case tok::percentequal: Opc = BO_RemAssign; break; case tok::plusequal: Opc = BO_AddAssign; break; case tok::minusequal: Opc = BO_SubAssign; break; case tok::lesslessequal: Opc = BO_ShlAssign; break; case tok::greatergreaterequal: Opc = BO_ShrAssign; break; case tok::ampequal: Opc = BO_AndAssign; break; case tok::caretequal: Opc = BO_XorAssign; break; case tok::pipeequal: Opc = BO_OrAssign; break; case tok::comma: Opc = BO_Comma; break; } return Opc; } static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode( tok::TokenKind Kind) { UnaryOperatorKind Opc; switch (Kind) { default: llvm_unreachable("Unknown unary op!"); case tok::plusplus: Opc = UO_PreInc; break; case tok::minusminus: Opc = UO_PreDec; break; case tok::amp: Opc = UO_AddrOf; break; case tok::star: Opc = UO_Deref; break; case tok::plus: Opc = UO_Plus; break; case tok::minus: Opc = UO_Minus; break; case tok::tilde: Opc = UO_Not; break; case tok::exclaim: Opc = UO_LNot; break; case tok::kw___real: Opc = UO_Real; break; case tok::kw___imag: Opc = UO_Imag; break; case tok::kw___extension__: Opc = UO_Extension; break; } return Opc; } const FieldDecl * Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) { // Explore the case for adding 'this->' to the LHS of a self assignment, very // common for setters. // struct A { // int X; // -void setX(int X) { X = X; } // +void setX(int X) { this->X = X; } // }; // Only consider parameters for self assignment fixes. if (!isa(SelfAssigned)) return nullptr; const auto *Method = dyn_cast_or_null(getCurFunctionDecl(true)); if (!Method) return nullptr; const CXXRecordDecl *Parent = Method->getParent(); // In theory this is fixable if the lambda explicitly captures this, but // that's added complexity that's rarely going to be used. if (Parent->isLambda()) return nullptr; // FIXME: Use an actual Lookup operation instead of just traversing fields // in order to get base class fields. auto Field = llvm::find_if(Parent->fields(), [Name(SelfAssigned->getDeclName())](const FieldDecl *F) { return F->getDeclName() == Name; }); return (Field != Parent->field_end()) ? *Field : nullptr; } /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself. /// This warning suppressed in the event of macro expansions. static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr, SourceLocation OpLoc, bool IsBuiltin) { if (S.inTemplateInstantiation()) return; if (S.isUnevaluatedContext()) return; if (OpLoc.isInvalid() || OpLoc.isMacroID()) return; LHSExpr = LHSExpr->IgnoreParenImpCasts(); RHSExpr = RHSExpr->IgnoreParenImpCasts(); const DeclRefExpr *LHSDeclRef = dyn_cast(LHSExpr); const DeclRefExpr *RHSDeclRef = dyn_cast(RHSExpr); if (!LHSDeclRef || !RHSDeclRef || LHSDeclRef->getLocation().isMacroID() || RHSDeclRef->getLocation().isMacroID()) return; const ValueDecl *LHSDecl = cast(LHSDeclRef->getDecl()->getCanonicalDecl()); const ValueDecl *RHSDecl = cast(RHSDeclRef->getDecl()->getCanonicalDecl()); if (LHSDecl != RHSDecl) return; if (LHSDecl->getType().isVolatileQualified()) return; if (const ReferenceType *RefTy = LHSDecl->getType()->getAs()) if (RefTy->getPointeeType().isVolatileQualified()) return; auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin : diag::warn_self_assignment_overloaded) << LHSDeclRef->getType() << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); if (const FieldDecl *SelfAssignField = S.getSelfAssignmentClassMemberCandidate(RHSDecl)) Diag << 1 << SelfAssignField << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->"); else Diag << 0; } /// Check if a bitwise-& is performed on an Objective-C pointer. This /// is usually indicative of introspection within the Objective-C pointer. static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R, SourceLocation OpLoc) { if (!S.getLangOpts().ObjC) return; const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr; const Expr *LHS = L.get(); const Expr *RHS = R.get(); if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { ObjCPointerExpr = LHS; OtherExpr = RHS; } else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { ObjCPointerExpr = RHS; OtherExpr = LHS; } // This warning is deliberately made very specific to reduce false // positives with logic that uses '&' for hashing. This logic mainly // looks for code trying to introspect into tagged pointers, which // code should generally never do. if (ObjCPointerExpr && isa(OtherExpr->IgnoreParenCasts())) { unsigned Diag = diag::warn_objc_pointer_masking; // Determine if we are introspecting the result of performSelectorXXX. const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts(); // Special case messages to -performSelector and friends, which // can return non-pointer values boxed in a pointer value. // Some clients may wish to silence warnings in this subcase. if (const ObjCMessageExpr *ME = dyn_cast(Ex)) { Selector S = ME->getSelector(); StringRef SelArg0 = S.getNameForSlot(0); if (SelArg0.startswith("performSelector")) Diag = diag::warn_objc_pointer_masking_performSelector; } S.Diag(OpLoc, Diag) << ObjCPointerExpr->getSourceRange(); } } static NamedDecl *getDeclFromExpr(Expr *E) { if (!E) return nullptr; if (auto *DRE = dyn_cast(E)) return DRE->getDecl(); if (auto *ME = dyn_cast(E)) return ME->getMemberDecl(); if (auto *IRE = dyn_cast(E)) return IRE->getDecl(); return nullptr; } // This helper function promotes a binary operator's operands (which are of a // half vector type) to a vector of floats and then truncates the result to // a vector of either half or short. static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS, BinaryOperatorKind Opc, QualType ResultTy, ExprValueKind VK, ExprObjectKind OK, bool IsCompAssign, SourceLocation OpLoc, FPOptionsOverride FPFeatures) { auto &Context = S.getASTContext(); assert((isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short"); assert(isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && "both operands expected to be a half vector"); RHS = convertVector(RHS.get(), Context.FloatTy, S); QualType BinOpResTy = RHS.get()->getType(); // If Opc is a comparison, ResultType is a vector of shorts. In that case, // change BinOpResTy to a vector of ints. if (isVector(ResultTy, Context.ShortTy)) BinOpResTy = S.GetSignedVectorType(BinOpResTy); if (IsCompAssign) return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc, FPFeatures, BinOpResTy, BinOpResTy); LHS = convertVector(LHS.get(), Context.FloatTy, S); auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, BinOpResTy, VK, OK, OpLoc, FPFeatures); return convertVector(BO, ResultTy->castAs()->getElementType(), S); } static std::pair CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr) { ExprResult LHS = LHSExpr, RHS = RHSExpr; if (!S.Context.isDependenceAllowed()) { // C cannot handle TypoExpr nodes on either side of a binop because it // doesn't handle dependent types properly, so make sure any TypoExprs have // been dealt with before checking the operands. LHS = S.CorrectDelayedTyposInExpr(LHS); RHS = S.CorrectDelayedTyposInExpr( RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false, [Opc, LHS](Expr *E) { if (Opc != BO_Assign) return ExprResult(E); // Avoid correcting the RHS to the same Expr as the LHS. Decl *D = getDeclFromExpr(E); return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E; }); } return std::make_pair(LHS, RHS); } /// Returns true if conversion between vectors of halfs and vectors of floats /// is needed. static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx, Expr *E0, Expr *E1 = nullptr) { if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType || Ctx.getTargetInfo().useFP16ConversionIntrinsics()) return false; auto HasVectorOfHalfType = [&Ctx](Expr *E) { QualType Ty = E->IgnoreImplicit()->getType(); // Don't promote half precision neon vectors like float16x4_t in arm_neon.h // to vectors of floats. Although the element type of the vectors is __fp16, // the vectors shouldn't be treated as storage-only types. See the // discussion here: https://reviews.llvm.org/rG825235c140e7 if (const VectorType *VT = Ty->getAs()) { if (VT->getVectorKind() == VectorType::NeonVector) return false; return VT->getElementType().getCanonicalType() == Ctx.HalfTy; } return false; }; return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1)); } /// CreateBuiltinBinOp - Creates a new built-in binary operation with /// operator @p Opc at location @c TokLoc. This routine only supports /// built-in operations; ActOnBinOp handles overloaded operators. ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr) { if (getLangOpts().CPlusPlus11 && isa(RHSExpr)) { // The syntax only allows initializer lists on the RHS of assignment, // so we don't need to worry about accepting invalid code for // non-assignment operators. // C++11 5.17p9: // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning // of x = {} is x = T(). InitializationKind Kind = InitializationKind::CreateDirectList( RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); InitializedEntity Entity = InitializedEntity::InitializeTemporary(LHSExpr->getType()); InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr); ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr); if (Init.isInvalid()) return Init; RHSExpr = Init.get(); } ExprResult LHS = LHSExpr, RHS = RHSExpr; QualType ResultTy; // Result type of the binary operator. // The following two variables are used for compound assignment operators QualType CompLHSTy; // Type of LHS after promotions for computation QualType CompResultTy; // Type of computation result ExprValueKind VK = VK_PRValue; ExprObjectKind OK = OK_Ordinary; bool ConvertHalfVec = false; std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); if (!LHS.isUsable() || !RHS.isUsable()) return ExprError(); if (getLangOpts().OpenCL) { QualType LHSTy = LHSExpr->getType(); QualType RHSTy = RHSExpr->getType(); // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by // the ATOMIC_VAR_INIT macro. if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) { SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); if (BO_Assign == Opc) Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR; else ResultTy = InvalidOperands(OpLoc, LHS, RHS); return ExprError(); } // OpenCL special types - image, sampler, pipe, and blocks are to be used // only with a builtin functions and therefore should be disallowed here. if (LHSTy->isImageType() || RHSTy->isImageType() || LHSTy->isSamplerT() || RHSTy->isSamplerT() || LHSTy->isPipeType() || RHSTy->isPipeType() || LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { ResultTy = InvalidOperands(OpLoc, LHS, RHS); return ExprError(); } } checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr); checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr); switch (Opc) { case BO_Assign: ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc); if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() != OK_ObjCProperty) { VK = LHS.get()->getValueKind(); OK = LHS.get()->getObjectKind(); } if (!ResultTy.isNull()) { DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc); // Avoid copying a block to the heap if the block is assigned to a local // auto variable that is declared in the same scope as the block. This // optimization is unsafe if the local variable is declared in an outer // scope. For example: // // BlockTy b; // { // b = ^{...}; // } // // It is unsafe to invoke the block here if it wasn't copied to the // // heap. // b(); if (auto *BE = dyn_cast(RHS.get()->IgnoreParens())) if (auto *DRE = dyn_cast(LHS.get()->IgnoreParens())) if (auto *VD = dyn_cast(DRE->getDecl())) if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD)) BE->getBlockDecl()->setCanAvoidCopyToHeap(); if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion()) checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(), NTCUC_Assignment, NTCUK_Copy); } RecordModifiableNonNullParam(*this, LHS.get()); break; case BO_PtrMemD: case BO_PtrMemI: ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc, Opc == BO_PtrMemI); break; case BO_Mul: case BO_Div: ConvertHalfVec = true; ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false, Opc == BO_Div); break; case BO_Rem: ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc); break; case BO_Add: ConvertHalfVec = true; ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc); break; case BO_Sub: ConvertHalfVec = true; ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc); break; case BO_Shl: case BO_Shr: ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc); break; case BO_LE: case BO_LT: case BO_GE: case BO_GT: ConvertHalfVec = true; ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); break; case BO_EQ: case BO_NE: ConvertHalfVec = true; ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); break; case BO_Cmp: ConvertHalfVec = true; ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()); break; case BO_And: checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc); LLVM_FALLTHROUGH; case BO_Xor: case BO_Or: ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); break; case BO_LAnd: case BO_LOr: ConvertHalfVec = true; ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc); break; case BO_MulAssign: case BO_DivAssign: ConvertHalfVec = true; CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true, Opc == BO_DivAssign); CompLHSTy = CompResultTy; if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); break; case BO_RemAssign: CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true); CompLHSTy = CompResultTy; if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); break; case BO_AddAssign: ConvertHalfVec = true; CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy); if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); break; case BO_SubAssign: ConvertHalfVec = true; CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy); if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); break; case BO_ShlAssign: case BO_ShrAssign: CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true); CompLHSTy = CompResultTy; if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); break; case BO_AndAssign: case BO_OrAssign: // fallthrough DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); LLVM_FALLTHROUGH; case BO_XorAssign: CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); CompLHSTy = CompResultTy; if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); break; case BO_Comma: ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc); if (getLangOpts().CPlusPlus && !RHS.isInvalid()) { VK = RHS.get()->getValueKind(); OK = RHS.get()->getObjectKind(); } break; } if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid()) return ExprError(); // Some of the binary operations require promoting operands of half vector to // float vectors and truncating the result back to half vector. For now, we do // this only when HalfArgsAndReturn is set (that is, when the target is arm or // arm64). assert( (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && "both sides are half vectors or neither sides are"); ConvertHalfVec = needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get()); // Check for array bounds violations for both sides of the BinaryOperator CheckArrayAccess(LHS.get()); CheckArrayAccess(RHS.get()); if (const ObjCIsaExpr *OISA = dyn_cast(LHS.get()->IgnoreParenCasts())) { NamedDecl *ObjectSetClass = LookupSingleName(TUScope, &Context.Idents.get("object_setClass"), SourceLocation(), LookupOrdinaryName); if (ObjectSetClass && isa(LHS.get())) { SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc()); Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(), "object_setClass(") << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") << FixItHint::CreateInsertion(RHSLocEnd, ")"); } else Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign); } else if (const ObjCIvarRefExpr *OIRE = dyn_cast(LHS.get()->IgnoreParenCasts())) DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get()); // Opc is not a compound assignment if CompResultTy is null. if (CompResultTy.isNull()) { if (ConvertHalfVec) return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false, OpLoc, CurFPFeatureOverrides()); return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc, CurFPFeatureOverrides()); } // Handle compound assignments. if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() != OK_ObjCProperty) { VK = VK_LValue; OK = LHS.get()->getObjectKind(); } // The LHS is not converted to the result type for fixed-point compound // assignment as the common type is computed on demand. Reset the CompLHSTy // to the LHS type we would have gotten after unary conversions. if (CompResultTy->isFixedPointType()) CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType(); if (ConvertHalfVec) return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true, OpLoc, CurFPFeatureOverrides()); return CompoundAssignOperator::Create( Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc, CurFPFeatureOverrides(), CompLHSTy, CompResultTy); } /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison /// operators are mixed in a way that suggests that the programmer forgot that /// comparison operators have higher precedence. The most typical example of /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc, SourceLocation OpLoc, Expr *LHSExpr, Expr *RHSExpr) { BinaryOperator *LHSBO = dyn_cast(LHSExpr); BinaryOperator *RHSBO = dyn_cast(RHSExpr); // Check that one of the sides is a comparison operator and the other isn't. bool isLeftComp = LHSBO && LHSBO->isComparisonOp(); bool isRightComp = RHSBO && RHSBO->isComparisonOp(); if (isLeftComp == isRightComp) return; // Bitwise operations are sometimes used as eager logical ops. // Don't diagnose this. bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp(); bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp(); if (isLeftBitwise || isRightBitwise) return; SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getBeginLoc(), OpLoc) : SourceRange(OpLoc, RHSExpr->getEndLoc()); StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr(); SourceRange ParensRange = isLeftComp ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc()) : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc()); Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel) << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr; SuggestParentheses(Self, OpLoc, Self.PDiag(diag::note_precedence_silence) << OpStr, (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange()); SuggestParentheses(Self, OpLoc, Self.PDiag(diag::note_precedence_bitwise_first) << BinaryOperator::getOpcodeStr(Opc), ParensRange); } /// It accepts a '&&' expr that is inside a '||' one. /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression /// in parentheses. static void EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc, BinaryOperator *Bop) { assert(Bop->getOpcode() == BO_LAnd); Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or) << Bop->getSourceRange() << OpLoc; SuggestParentheses(Self, Bop->getOperatorLoc(), Self.PDiag(diag::note_precedence_silence) << Bop->getOpcodeStr(), Bop->getSourceRange()); } /// Returns true if the given expression can be evaluated as a constant /// 'true'. static bool EvaluatesAsTrue(Sema &S, Expr *E) { bool Res; return !E->isValueDependent() && E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res; } /// Returns true if the given expression can be evaluated as a constant /// 'false'. static bool EvaluatesAsFalse(Sema &S, Expr *E) { bool Res; return !E->isValueDependent() && E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res; } /// Look for '&&' in the left hand of a '||' expr. static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc, Expr *LHSExpr, Expr *RHSExpr) { if (BinaryOperator *Bop = dyn_cast(LHSExpr)) { if (Bop->getOpcode() == BO_LAnd) { // If it's "a && b || 0" don't warn since the precedence doesn't matter. if (EvaluatesAsFalse(S, RHSExpr)) return; // If it's "1 && a || b" don't warn since the precedence doesn't matter. if (!EvaluatesAsTrue(S, Bop->getLHS())) return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); } else if (Bop->getOpcode() == BO_LOr) { if (BinaryOperator *RBop = dyn_cast(Bop->getRHS())) { // If it's "a || b && 1 || c" we didn't warn earlier for // "a || b && 1", but warn now. if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS())) return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop); } } } } /// Look for '&&' in the right hand of a '||' expr. static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc, Expr *LHSExpr, Expr *RHSExpr) { if (BinaryOperator *Bop = dyn_cast(RHSExpr)) { if (Bop->getOpcode() == BO_LAnd) { // If it's "0 || a && b" don't warn since the precedence doesn't matter. if (EvaluatesAsFalse(S, LHSExpr)) return; // If it's "a || b && 1" don't warn since the precedence doesn't matter. if (!EvaluatesAsTrue(S, Bop->getRHS())) return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); } } } /// Look for bitwise op in the left or right hand of a bitwise op with /// lower precedence and emit a diagnostic together with a fixit hint that wraps /// the '&' expression in parentheses. static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc, SourceLocation OpLoc, Expr *SubExpr) { if (BinaryOperator *Bop = dyn_cast(SubExpr)) { if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) { S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op) << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc) << Bop->getSourceRange() << OpLoc; SuggestParentheses(S, Bop->getOperatorLoc(), S.PDiag(diag::note_precedence_silence) << Bop->getOpcodeStr(), Bop->getSourceRange()); } } } static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc, Expr *SubExpr, StringRef Shift) { if (BinaryOperator *Bop = dyn_cast(SubExpr)) { if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) { StringRef Op = Bop->getOpcodeStr(); S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift) << Bop->getSourceRange() << OpLoc << Shift << Op; SuggestParentheses(S, Bop->getOperatorLoc(), S.PDiag(diag::note_precedence_silence) << Op, Bop->getSourceRange()); } } } static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc, Expr *LHSExpr, Expr *RHSExpr) { CXXOperatorCallExpr *OCE = dyn_cast(LHSExpr); if (!OCE) return; FunctionDecl *FD = OCE->getDirectCallee(); if (!FD || !FD->isOverloadedOperator()) return; OverloadedOperatorKind Kind = FD->getOverloadedOperator(); if (Kind != OO_LessLess && Kind != OO_GreaterGreater) return; S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison) << LHSExpr->getSourceRange() << RHSExpr->getSourceRange() << (Kind == OO_LessLess); SuggestParentheses(S, OCE->getOperatorLoc(), S.PDiag(diag::note_precedence_silence) << (Kind == OO_LessLess ? "<<" : ">>"), OCE->getSourceRange()); SuggestParentheses( S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first), SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc())); } /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky /// precedence. static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc, SourceLocation OpLoc, Expr *LHSExpr, Expr *RHSExpr){ // Diagnose "arg1 'bitwise' arg2 'eq' arg3". if (BinaryOperator::isBitwiseOp(Opc)) DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr); // Diagnose "arg1 & arg2 | arg3" if ((Opc == BO_Or || Opc == BO_Xor) && !OpLoc.isMacroID()/* Don't warn in macros. */) { DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr); DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr); } // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does. // We don't warn for 'assert(a || b && "bad")' since this is safe. if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) { DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr); DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr); } if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext())) || Opc == BO_Shr) { StringRef Shift = BinaryOperator::getOpcodeStr(Opc); DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift); DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift); } // Warn on overloaded shift operators and comparisons, such as: // cout << 5 == 4; if (BinaryOperator::isComparisonOp(Opc)) DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr); } // Binary Operators. 'Tok' is the token for the operator. ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr) { BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind); assert(LHSExpr && "ActOnBinOp(): missing left expression"); assert(RHSExpr && "ActOnBinOp(): missing right expression"); // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr); return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr); } void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, UnresolvedSetImpl &Functions) { OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc); if (OverOp != OO_None && OverOp != OO_Equal) LookupOverloadedOperatorName(OverOp, S, Functions); // In C++20 onwards, we may have a second operator to look up. if (getLangOpts().CPlusPlus20) { if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp)) LookupOverloadedOperatorName(ExtraOp, S, Functions); } } /// Build an overloaded binary operator expression in the given scope. static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHS, Expr *RHS) { switch (Opc) { case BO_Assign: case BO_DivAssign: case BO_RemAssign: case BO_SubAssign: case BO_AndAssign: case BO_OrAssign: case BO_XorAssign: DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false); CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S); break; default: break; } // Find all of the overloaded operators visible from this point. UnresolvedSet<16> Functions; S.LookupBinOp(Sc, OpLoc, Opc, Functions); // Build the (potentially-overloaded, potentially-dependent) // binary operation. return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS); } ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr) { ExprResult LHS, RHS; std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); if (!LHS.isUsable() || !RHS.isUsable()) return ExprError(); LHSExpr = LHS.get(); RHSExpr = RHS.get(); // We want to end up calling one of checkPseudoObjectAssignment // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if // both expressions are overloadable or either is type-dependent), // or CreateBuiltinBinOp (in any other case). We also want to get // any placeholder types out of the way. // Handle pseudo-objects in the LHS. if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) { // Assignments with a pseudo-object l-value need special analysis. if (pty->getKind() == BuiltinType::PseudoObject && BinaryOperator::isAssignmentOp(Opc)) return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr); // Don't resolve overloads if the other type is overloadable. if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) { // We can't actually test that if we still have a placeholder, // though. Fortunately, none of the exceptions we see in that // code below are valid when the LHS is an overload set. Note // that an overload set can be dependently-typed, but it never // instantiates to having an overloadable type. ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); if (resolvedRHS.isInvalid()) return ExprError(); RHSExpr = resolvedRHS.get(); if (RHSExpr->isTypeDependent() || RHSExpr->getType()->isOverloadableType()) return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); } // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function // template, diagnose the missing 'template' keyword instead of diagnosing // an invalid use of a bound member function. // // Note that "A::x < b" might be valid if 'b' has an overloadable type due // to C++1z [over.over]/1.4, but we already checked for that case above. if (Opc == BO_LT && inTemplateInstantiation() && (pty->getKind() == BuiltinType::BoundMember || pty->getKind() == BuiltinType::Overload)) { auto *OE = dyn_cast(LHSExpr); if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() && llvm::any_of(OE->decls(), [](NamedDecl *ND) { return isa(ND); })) { Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc() : OE->getNameLoc(), diag::err_template_kw_missing) << OE->getName().getAsString() << ""; return ExprError(); } } ExprResult LHS = CheckPlaceholderExpr(LHSExpr); if (LHS.isInvalid()) return ExprError(); LHSExpr = LHS.get(); } // Handle pseudo-objects in the RHS. if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) { // An overload in the RHS can potentially be resolved by the type // being assigned to. if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) { if (getLangOpts().CPlusPlus && (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() || LHSExpr->getType()->isOverloadableType())) return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); } // Don't resolve overloads if the other type is overloadable. if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload && LHSExpr->getType()->isOverloadableType()) return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); if (!resolvedRHS.isUsable()) return ExprError(); RHSExpr = resolvedRHS.get(); } if (getLangOpts().CPlusPlus) { // If either expression is type-dependent, always build an // overloaded op. if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent()) return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); // Otherwise, build an overloaded op if either expression has an // overloadable type. if (LHSExpr->getType()->isOverloadableType() || RHSExpr->getType()->isOverloadableType()) return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); } if (getLangOpts().RecoveryAST && (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) { assert(!getLangOpts().CPlusPlus); assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) && "Should only occur in error-recovery path."); if (BinaryOperator::isCompoundAssignmentOp(Opc)) // C [6.15.16] p3: // An assignment expression has the value of the left operand after the // assignment, but is not an lvalue. return CompoundAssignOperator::Create( Context, LHSExpr, RHSExpr, Opc, LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary, OpLoc, CurFPFeatureOverrides()); QualType ResultType; switch (Opc) { case BO_Assign: ResultType = LHSExpr->getType().getUnqualifiedType(); break; case BO_LT: case BO_GT: case BO_LE: case BO_GE: case BO_EQ: case BO_NE: case BO_LAnd: case BO_LOr: // These operators have a fixed result type regardless of operands. ResultType = Context.IntTy; break; case BO_Comma: ResultType = RHSExpr->getType(); break; default: ResultType = Context.DependentTy; break; } return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType, VK_PRValue, OK_Ordinary, OpLoc, CurFPFeatureOverrides()); } // Build a built-in binary operation. return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); } static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) { if (T.isNull() || T->isDependentType()) return false; if (!T->isPromotableIntegerType()) return true; return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy); } ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *InputExpr) { ExprResult Input = InputExpr; ExprValueKind VK = VK_PRValue; ExprObjectKind OK = OK_Ordinary; QualType resultType; bool CanOverflow = false; bool ConvertHalfVec = false; if (getLangOpts().OpenCL) { QualType Ty = InputExpr->getType(); // The only legal unary operation for atomics is '&'. if ((Opc != UO_AddrOf && Ty->isAtomicType()) || // OpenCL special types - image, sampler, pipe, and blocks are to be used // only with a builtin functions and therefore should be disallowed here. (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType() || Ty->isBlockPointerType())) { return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << InputExpr->getType() << Input.get()->getSourceRange()); } } if (getLangOpts().HLSL) { if (Opc == UO_AddrOf) return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0); if (Opc == UO_Deref) return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1); } switch (Opc) { case UO_PreInc: case UO_PreDec: case UO_PostInc: case UO_PostDec: resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK, OpLoc, Opc == UO_PreInc || Opc == UO_PostInc, Opc == UO_PreInc || Opc == UO_PreDec); CanOverflow = isOverflowingIntegerType(Context, resultType); break; case UO_AddrOf: resultType = CheckAddressOfOperand(Input, OpLoc); CheckAddressOfNoDeref(InputExpr); RecordModifiableNonNullParam(*this, InputExpr); break; case UO_Deref: { Input = DefaultFunctionArrayLvalueConversion(Input.get()); if (Input.isInvalid()) return ExprError(); resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc); break; } case UO_Plus: case UO_Minus: CanOverflow = Opc == UO_Minus && isOverflowingIntegerType(Context, Input.get()->getType()); Input = UsualUnaryConversions(Input.get()); if (Input.isInvalid()) return ExprError(); // Unary plus and minus require promoting an operand of half vector to a // float vector and truncating the result back to a half vector. For now, we // do this only when HalfArgsAndReturns is set (that is, when the target is // arm or arm64). ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get()); // If the operand is a half vector, promote it to a float vector. if (ConvertHalfVec) Input = convertVector(Input.get(), Context.FloatTy, *this); resultType = Input.get()->getType(); if (resultType->isDependentType()) break; if (resultType->isArithmeticType()) // C99 6.5.3.3p1 break; else if (resultType->isVectorType() && // The z vector extensions don't allow + or - with bool vectors. (!Context.getLangOpts().ZVector || resultType->castAs()->getVectorKind() != VectorType::AltiVecBool)) break; else if (resultType->isVLSTBuiltinType()) // SVE vectors allow + and - break; else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6 Opc == UO_Plus && resultType->isPointerType()) break; return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input.get()->getSourceRange()); case UO_Not: // bitwise complement Input = UsualUnaryConversions(Input.get()); if (Input.isInvalid()) return ExprError(); resultType = Input.get()->getType(); if (resultType->isDependentType()) break; // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. if (resultType->isComplexType() || resultType->isComplexIntegerType()) // C99 does not support '~' for complex conjugation. Diag(OpLoc, diag::ext_integer_complement_complex) << resultType << Input.get()->getSourceRange(); else if (resultType->hasIntegerRepresentation()) break; else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) { // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate // on vector float types. QualType T = resultType->castAs()->getElementType(); if (!T->isIntegerType()) return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input.get()->getSourceRange()); } else { return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input.get()->getSourceRange()); } break; case UO_LNot: // logical negation // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). Input = DefaultFunctionArrayLvalueConversion(Input.get()); if (Input.isInvalid()) return ExprError(); resultType = Input.get()->getType(); // Though we still have to promote half FP to float... if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) { Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get(); resultType = Context.FloatTy; } if (resultType->isDependentType()) break; if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) { // C99 6.5.3.3p1: ok, fallthrough; if (Context.getLangOpts().CPlusPlus) { // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9: // operand contextually converted to bool. Input = ImpCastExprToType(Input.get(), Context.BoolTy, ScalarTypeToBooleanCastKind(resultType)); } else if (Context.getLangOpts().OpenCL && Context.getLangOpts().OpenCLVersion < 120) { // OpenCL v1.1 6.3.h: The logical operator not (!) does not // operate on scalar float types. if (!resultType->isIntegerType() && !resultType->isPointerType()) return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input.get()->getSourceRange()); } } else if (resultType->isExtVectorType()) { if (Context.getLangOpts().OpenCL && Context.getLangOpts().getOpenCLCompatibleVersion() < 120) { // OpenCL v1.1 6.3.h: The logical operator not (!) does not // operate on vector float types. QualType T = resultType->castAs()->getElementType(); if (!T->isIntegerType()) return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input.get()->getSourceRange()); } // Vector logical not returns the signed variant of the operand type. resultType = GetSignedVectorType(resultType); break; } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) { const VectorType *VTy = resultType->castAs(); if (VTy->getVectorKind() != VectorType::GenericVector) return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input.get()->getSourceRange()); // Vector logical not returns the signed variant of the operand type. resultType = GetSignedVectorType(resultType); break; } else { return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input.get()->getSourceRange()); } // LNot always has type int. C99 6.5.3.3p5. // In C++, it's bool. C++ 5.3.1p8 resultType = Context.getLogicalOperationType(); break; case UO_Real: case UO_Imag: resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real); // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary // complex l-values to ordinary l-values and all other values to r-values. if (Input.isInvalid()) return ExprError(); if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) { if (Input.get()->isGLValue() && Input.get()->getObjectKind() == OK_Ordinary) VK = Input.get()->getValueKind(); } else if (!getLangOpts().CPlusPlus) { // In C, a volatile scalar is read by __imag. In C++, it is not. Input = DefaultLvalueConversion(Input.get()); } break; case UO_Extension: resultType = Input.get()->getType(); VK = Input.get()->getValueKind(); OK = Input.get()->getObjectKind(); break; case UO_Coawait: // It's unnecessary to represent the pass-through operator co_await in the // AST; just return the input expression instead. assert(!Input.get()->getType()->isDependentType() && "the co_await expression must be non-dependant before " "building operator co_await"); return Input; } if (resultType.isNull() || Input.isInvalid()) return ExprError(); // Check for array bounds violations in the operand of the UnaryOperator, // except for the '*' and '&' operators that have to be handled specially // by CheckArrayAccess (as there are special cases like &array[arraysize] // that are explicitly defined as valid by the standard). if (Opc != UO_AddrOf && Opc != UO_Deref) CheckArrayAccess(Input.get()); auto *UO = UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK, OpLoc, CanOverflow, CurFPFeatureOverrides()); if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) && !isa(UO->getType().getDesugaredType(Context)) && !isUnevaluatedContext()) ExprEvalContexts.back().PossibleDerefs.insert(UO); // Convert the result back to a half vector. if (ConvertHalfVec) return convertVector(UO, Context.HalfTy, *this); return UO; } /// Determine whether the given expression is a qualified member /// access expression, of a form that could be turned into a pointer to member /// with the address-of operator. bool Sema::isQualifiedMemberAccess(Expr *E) { if (DeclRefExpr *DRE = dyn_cast(E)) { if (!DRE->getQualifier()) return false; ValueDecl *VD = DRE->getDecl(); if (!VD->isCXXClassMember()) return false; if (isa(VD) || isa(VD)) return true; if (CXXMethodDecl *Method = dyn_cast(VD)) return Method->isInstance(); return false; } if (UnresolvedLookupExpr *ULE = dyn_cast(E)) { if (!ULE->getQualifier()) return false; for (NamedDecl *D : ULE->decls()) { if (CXXMethodDecl *Method = dyn_cast(D)) { if (Method->isInstance()) return true; } else { // Overload set does not contain methods. break; } } return false; } return false; } ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input) { // First things first: handle placeholders so that the // overloaded-operator check considers the right type. if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) { // Increment and decrement of pseudo-object references. if (pty->getKind() == BuiltinType::PseudoObject && UnaryOperator::isIncrementDecrementOp(Opc)) return checkPseudoObjectIncDec(S, OpLoc, Opc, Input); // extension is always a builtin operator. if (Opc == UO_Extension) return CreateBuiltinUnaryOp(OpLoc, Opc, Input); // & gets special logic for several kinds of placeholder. // The builtin code knows what to do. if (Opc == UO_AddrOf && (pty->getKind() == BuiltinType::Overload || pty->getKind() == BuiltinType::UnknownAny || pty->getKind() == BuiltinType::BoundMember)) return CreateBuiltinUnaryOp(OpLoc, Opc, Input); // Anything else needs to be handled now. ExprResult Result = CheckPlaceholderExpr(Input); if (Result.isInvalid()) return ExprError(); Input = Result.get(); } if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() && UnaryOperator::getOverloadedOperator(Opc) != OO_None && !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) { // Find all of the overloaded operators visible from this point. UnresolvedSet<16> Functions; OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); if (S && OverOp != OO_None) LookupOverloadedOperatorName(OverOp, S, Functions); return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input); } return CreateBuiltinUnaryOp(OpLoc, Opc, Input); } // Unary Operators. 'Tok' is the token for the operator. ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, Expr *Input) { return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input); } /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, LabelDecl *TheDecl) { TheDecl->markUsed(Context); // Create the AST node. The address of a label always has type 'void*'. return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy)); } void Sema::ActOnStartStmtExpr() { PushExpressionEvaluationContext(ExprEvalContexts.back().Context); } void Sema::ActOnStmtExprError() { // Note that function is also called by TreeTransform when leaving a // StmtExpr scope without rebuilding anything. DiscardCleanupsInEvaluationContext(); PopExpressionEvaluationContext(); } ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt, SourceLocation RPLoc) { return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S)); } ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, SourceLocation RPLoc, unsigned TemplateDepth) { assert(SubStmt && isa(SubStmt) && "Invalid action invocation!"); CompoundStmt *Compound = cast(SubStmt); if (hasAnyUnrecoverableErrorsInThisFunction()) DiscardCleanupsInEvaluationContext(); assert(!Cleanup.exprNeedsCleanups() && "cleanups within StmtExpr not correctly bound!"); PopExpressionEvaluationContext(); // FIXME: there are a variety of strange constraints to enforce here, for // example, it is not possible to goto into a stmt expression apparently. // More semantic analysis is needed. // If there are sub-stmts in the compound stmt, take the type of the last one // as the type of the stmtexpr. QualType Ty = Context.VoidTy; bool StmtExprMayBindToTemp = false; if (!Compound->body_empty()) { // For GCC compatibility we get the last Stmt excluding trailing NullStmts. if (const auto *LastStmt = dyn_cast(Compound->getStmtExprResult())) { if (const Expr *Value = LastStmt->getExprStmt()) { StmtExprMayBindToTemp = true; Ty = Value->getType(); } } } // FIXME: Check that expression type is complete/non-abstract; statement // expressions are not lvalues. Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth); if (StmtExprMayBindToTemp) return MaybeBindToTemporary(ResStmtExpr); return ResStmtExpr; } ExprResult Sema::ActOnStmtExprResult(ExprResult ER) { if (ER.isInvalid()) return ExprError(); // Do function/array conversion on the last expression, but not // lvalue-to-rvalue. However, initialize an unqualified type. ER = DefaultFunctionArrayConversion(ER.get()); if (ER.isInvalid()) return ExprError(); Expr *E = ER.get(); if (E->isTypeDependent()) return E; // In ARC, if the final expression ends in a consume, splice // the consume out and bind it later. In the alternate case // (when dealing with a retainable type), the result // initialization will create a produce. In both cases the // result will be +1, and we'll need to balance that out with // a bind. auto *Cast = dyn_cast(E); if (Cast && Cast->getCastKind() == CK_ARCConsumeObject) return Cast->getSubExpr(); // FIXME: Provide a better location for the initialization. return PerformCopyInitialization( InitializedEntity::InitializeStmtExprResult( E->getBeginLoc(), E->getType().getUnqualifiedType()), SourceLocation(), E); } ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, TypeSourceInfo *TInfo, ArrayRef Components, SourceLocation RParenLoc) { QualType ArgTy = TInfo->getType(); bool Dependent = ArgTy->isDependentType(); SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); // We must have at least one component that refers to the type, and the first // one is known to be a field designator. Verify that the ArgTy represents // a struct/union/class. if (!Dependent && !ArgTy->isRecordType()) return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) << ArgTy << TypeRange); // Type must be complete per C99 7.17p3 because a declaring a variable // with an incomplete type would be ill-formed. if (!Dependent && RequireCompleteType(BuiltinLoc, ArgTy, diag::err_offsetof_incomplete_type, TypeRange)) return ExprError(); bool DidWarnAboutNonPOD = false; QualType CurrentType = ArgTy; SmallVector Comps; SmallVector Exprs; for (const OffsetOfComponent &OC : Components) { if (OC.isBrackets) { // Offset of an array sub-field. TODO: Should we allow vector elements? if (!CurrentType->isDependentType()) { const ArrayType *AT = Context.getAsArrayType(CurrentType); if(!AT) return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) << CurrentType); CurrentType = AT->getElementType(); } else CurrentType = Context.DependentTy; ExprResult IdxRval = DefaultLvalueConversion(static_cast(OC.U.E)); if (IdxRval.isInvalid()) return ExprError(); Expr *Idx = IdxRval.get(); // The expression must be an integral expression. // FIXME: An integral constant expression? if (!Idx->isTypeDependent() && !Idx->isValueDependent() && !Idx->getType()->isIntegerType()) return ExprError( Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer) << Idx->getSourceRange()); // Record this array index. Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); Exprs.push_back(Idx); continue; } // Offset of a field. if (CurrentType->isDependentType()) { // We have the offset of a field, but we can't look into the dependent // type. Just record the identifier of the field. Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); CurrentType = Context.DependentTy; continue; } // We need to have a complete type to look into. if (RequireCompleteType(OC.LocStart, CurrentType, diag::err_offsetof_incomplete_type)) return ExprError(); // Look for the designated field. const RecordType *RC = CurrentType->getAs(); if (!RC) return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) << CurrentType); RecordDecl *RD = RC->getDecl(); // C++ [lib.support.types]p5: // The macro offsetof accepts a restricted set of type arguments in this // International Standard. type shall be a POD structure or a POD union // (clause 9). // C++11 [support.types]p4: // If type is not a standard-layout class (Clause 9), the results are // undefined. if (CXXRecordDecl *CRD = dyn_cast(RD)) { bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD(); unsigned DiagID = LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type : diag::ext_offsetof_non_pod_type; if (!IsSafe && !DidWarnAboutNonPOD && DiagRuntimeBehavior(BuiltinLoc, nullptr, PDiag(DiagID) << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType)) DidWarnAboutNonPOD = true; } // Look for the field. LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); LookupQualifiedName(R, RD); FieldDecl *MemberDecl = R.getAsSingle(); IndirectFieldDecl *IndirectMemberDecl = nullptr; if (!MemberDecl) { if ((IndirectMemberDecl = R.getAsSingle())) MemberDecl = IndirectMemberDecl->getAnonField(); } if (!MemberDecl) return ExprError(Diag(BuiltinLoc, diag::err_no_member) << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd)); // C99 7.17p3: // (If the specified member is a bit-field, the behavior is undefined.) // // We diagnose this as an error. if (MemberDecl->isBitField()) { Diag(OC.LocEnd, diag::err_offsetof_bitfield) << MemberDecl->getDeclName() << SourceRange(BuiltinLoc, RParenLoc); Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); return ExprError(); } RecordDecl *Parent = MemberDecl->getParent(); if (IndirectMemberDecl) Parent = cast(IndirectMemberDecl->getDeclContext()); // If the member was found in a base class, introduce OffsetOfNodes for // the base class indirections. CXXBasePaths Paths; if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent), Paths)) { if (Paths.getDetectedVirtual()) { Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base) << MemberDecl->getDeclName() << SourceRange(BuiltinLoc, RParenLoc); return ExprError(); } CXXBasePath &Path = Paths.front(); for (const CXXBasePathElement &B : Path) Comps.push_back(OffsetOfNode(B.Base)); } if (IndirectMemberDecl) { for (auto *FI : IndirectMemberDecl->chain()) { assert(isa(FI)); Comps.push_back(OffsetOfNode(OC.LocStart, cast(FI), OC.LocEnd)); } } else Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); CurrentType = MemberDecl->getType().getNonReferenceType(); } return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo, Comps, Exprs, RParenLoc); } ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc, SourceLocation TypeLoc, ParsedType ParsedArgTy, ArrayRef Components, SourceLocation RParenLoc) { TypeSourceInfo *ArgTInfo; QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo); if (ArgTy.isNull()) return ExprError(); if (!ArgTInfo) ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc); } ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr, SourceLocation RPLoc) { assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); ExprValueKind VK = VK_PRValue; ExprObjectKind OK = OK_Ordinary; QualType resType; bool CondIsTrue = false; if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { resType = Context.DependentTy; } else { // The conditional expression is required to be a constant expression. llvm::APSInt condEval(32); ExprResult CondICE = VerifyIntegerConstantExpression( CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant); if (CondICE.isInvalid()) return ExprError(); CondExpr = CondICE.get(); CondIsTrue = condEval.getZExtValue(); // If the condition is > zero, then the AST type is the same as the LHSExpr. Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr; resType = ActiveExpr->getType(); VK = ActiveExpr->getValueKind(); OK = ActiveExpr->getObjectKind(); } return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc, CondIsTrue); } //===----------------------------------------------------------------------===// // Clang Extensions. //===----------------------------------------------------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is started. void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) { BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); if (LangOpts.CPlusPlus) { MangleNumberingContext *MCtx; Decl *ManglingContextDecl; std::tie(MCtx, ManglingContextDecl) = getCurrentMangleNumberContext(Block->getDeclContext()); if (MCtx) { unsigned ManglingNumber = MCtx->getManglingNumber(Block); Block->setBlockMangling(ManglingNumber, ManglingContextDecl); } } PushBlockScope(CurScope, Block); CurContext->addDecl(Block); if (CurScope) PushDeclContext(CurScope, Block); else CurContext = Block; getCurBlock()->HasImplicitReturnType = true; // Enter a new evaluation context to insulate the block from any // cleanups from the enclosing full-expression. PushExpressionEvaluationContext( ExpressionEvaluationContext::PotentiallyEvaluated); } void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo, Scope *CurScope) { assert(ParamInfo.getIdentifier() == nullptr && "block-id should have no identifier!"); assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral); BlockScopeInfo *CurBlock = getCurBlock(); TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope); QualType T = Sig->getType(); // FIXME: We should allow unexpanded parameter packs here, but that would, // in turn, make the block expression contain unexpanded parameter packs. if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) { // Drop the parameters. FunctionProtoType::ExtProtoInfo EPI; EPI.HasTrailingReturn = false; EPI.TypeQuals.addConst(); T = Context.getFunctionType(Context.DependentTy, None, EPI); Sig = Context.getTrivialTypeSourceInfo(T); } // GetTypeForDeclarator always produces a function type for a block // literal signature. Furthermore, it is always a FunctionProtoType // unless the function was written with a typedef. assert(T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature"); // Look for an explicit signature in that function type. FunctionProtoTypeLoc ExplicitSignature; if ((ExplicitSignature = Sig->getTypeLoc() .getAsAdjusted())) { // Check whether that explicit signature was synthesized by // GetTypeForDeclarator. If so, don't save that as part of the // written signature. if (ExplicitSignature.getLocalRangeBegin() == ExplicitSignature.getLocalRangeEnd()) { // This would be much cheaper if we stored TypeLocs instead of // TypeSourceInfos. TypeLoc Result = ExplicitSignature.getReturnLoc(); unsigned Size = Result.getFullDataSize(); Sig = Context.CreateTypeSourceInfo(Result.getType(), Size); Sig->getTypeLoc().initializeFullCopy(Result, Size); ExplicitSignature = FunctionProtoTypeLoc(); } } CurBlock->TheDecl->setSignatureAsWritten(Sig); CurBlock->FunctionType = T; const auto *Fn = T->castAs(); QualType RetTy = Fn->getReturnType(); bool isVariadic = (isa(Fn) && cast(Fn)->isVariadic()); CurBlock->TheDecl->setIsVariadic(isVariadic); // Context.DependentTy is used as a placeholder for a missing block // return type. TODO: what should we do with declarators like: // ^ * { ... } // If the answer is "apply template argument deduction".... if (RetTy != Context.DependentTy) { CurBlock->ReturnType = RetTy; CurBlock->TheDecl->setBlockMissingReturnType(false); CurBlock->HasImplicitReturnType = false; } // Push block parameters from the declarator if we had them. SmallVector Params; if (ExplicitSignature) { for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) { ParmVarDecl *Param = ExplicitSignature.getParam(I); if (Param->getIdentifier() == nullptr && !Param->isImplicit() && !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) { // Diagnose this as an extension in C17 and earlier. if (!getLangOpts().C2x) Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); } Params.push_back(Param); } // Fake up parameter variables if we have a typedef, like // ^ fntype { ... } } else if (const FunctionProtoType *Fn = T->getAs()) { for (const auto &I : Fn->param_types()) { ParmVarDecl *Param = BuildParmVarDeclForTypedef( CurBlock->TheDecl, ParamInfo.getBeginLoc(), I); Params.push_back(Param); } } // Set the parameters on the block decl. if (!Params.empty()) { CurBlock->TheDecl->setParams(Params); CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(), /*CheckParameterNames=*/false); } // Finally we can process decl attributes. ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); // Put the parameter variables in scope. for (auto AI : CurBlock->TheDecl->parameters()) { AI->setOwningFunction(CurBlock->TheDecl); // If this has an identifier, add it to the scope stack. if (AI->getIdentifier()) { CheckShadow(CurBlock->TheScope, AI); PushOnScopeChains(AI, CurBlock->TheScope); } } } /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { // Leave the expression-evaluation context. DiscardCleanupsInEvaluationContext(); PopExpressionEvaluationContext(); // Pop off CurBlock, handle nested blocks. PopDeclContext(); PopFunctionScopeInfo(); } /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body, Scope *CurScope) { // If blocks are disabled, emit an error. if (!LangOpts.Blocks) Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL; // Leave the expression-evaluation context. if (hasAnyUnrecoverableErrorsInThisFunction()) DiscardCleanupsInEvaluationContext(); assert(!Cleanup.exprNeedsCleanups() && "cleanups within block not correctly bound!"); PopExpressionEvaluationContext(); BlockScopeInfo *BSI = cast(FunctionScopes.back()); BlockDecl *BD = BSI->TheDecl; if (BSI->HasImplicitReturnType) deduceClosureReturnType(*BSI); QualType RetTy = Context.VoidTy; if (!BSI->ReturnType.isNull()) RetTy = BSI->ReturnType; bool NoReturn = BD->hasAttr(); QualType BlockTy; // If the user wrote a function type in some form, try to use that. if (!BSI->FunctionType.isNull()) { const FunctionType *FTy = BSI->FunctionType->castAs(); FunctionType::ExtInfo Ext = FTy->getExtInfo(); if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true); // Turn protoless block types into nullary block types. if (isa(FTy)) { FunctionProtoType::ExtProtoInfo EPI; EPI.ExtInfo = Ext; BlockTy = Context.getFunctionType(RetTy, None, EPI); // Otherwise, if we don't need to change anything about the function type, // preserve its sugar structure. } else if (FTy->getReturnType() == RetTy && (!NoReturn || FTy->getNoReturnAttr())) { BlockTy = BSI->FunctionType; // Otherwise, make the minimal modifications to the function type. } else { const FunctionProtoType *FPT = cast(FTy); FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); EPI.TypeQuals = Qualifiers(); EPI.ExtInfo = Ext; BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI); } // If we don't have a function type, just build one from nothing. } else { FunctionProtoType::ExtProtoInfo EPI; EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn); BlockTy = Context.getFunctionType(RetTy, None, EPI); } DiagnoseUnusedParameters(BD->parameters()); BlockTy = Context.getBlockPointerType(BlockTy); // If needed, diagnose invalid gotos and switches in the block. if (getCurFunction()->NeedsScopeChecking() && !PP.isCodeCompletionEnabled()) DiagnoseInvalidJumps(cast(Body)); BD->setBody(cast(Body)); if (Body && getCurFunction()->HasPotentialAvailabilityViolations) DiagnoseUnguardedAvailabilityViolations(BD); // Try to apply the named return value optimization. We have to check again // if we can do this, though, because blocks keep return statements around // to deduce an implicit return type. if (getLangOpts().CPlusPlus && RetTy->isRecordType() && !BD->isDependentContext()) computeNRVO(Body, BSI); if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() || RetTy.hasNonTrivialToPrimitiveCopyCUnion()) checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy); PopDeclContext(); // Set the captured variables on the block. SmallVector Captures; for (Capture &Cap : BSI->Captures) { if (Cap.isInvalid() || Cap.isThisCapture()) continue; VarDecl *Var = Cap.getVariable(); Expr *CopyExpr = nullptr; if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) { if (const RecordType *Record = Cap.getCaptureType()->getAs()) { // The capture logic needs the destructor, so make sure we mark it. // Usually this is unnecessary because most local variables have // their destructors marked at declaration time, but parameters are // an exception because it's technically only the call site that // actually requires the destructor. if (isa(Var)) FinalizeVarWithDestructor(Var, Record); // Enter a separate potentially-evaluated context while building block // initializers to isolate their cleanups from those of the block // itself. // FIXME: Is this appropriate even when the block itself occurs in an // unevaluated operand? EnterExpressionEvaluationContext EvalContext( *this, ExpressionEvaluationContext::PotentiallyEvaluated); SourceLocation Loc = Cap.getLocation(); ExprResult Result = BuildDeclarationNameExpr( CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); // According to the blocks spec, the capture of a variable from // the stack requires a const copy constructor. This is not true // of the copy/move done to move a __block variable to the heap. if (!Result.isInvalid() && !Result.get()->getType().isConstQualified()) { Result = ImpCastExprToType(Result.get(), Result.get()->getType().withConst(), CK_NoOp, VK_LValue); } if (!Result.isInvalid()) { Result = PerformCopyInitialization( InitializedEntity::InitializeBlock(Var->getLocation(), Cap.getCaptureType()), Loc, Result.get()); } // Build a full-expression copy expression if initialization // succeeded and used a non-trivial constructor. Recover from // errors by pretending that the copy isn't necessary. if (!Result.isInvalid() && !cast(Result.get())->getConstructor() ->isTrivial()) { Result = MaybeCreateExprWithCleanups(Result); CopyExpr = Result.get(); } } } BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(), CopyExpr); Captures.push_back(NewCap); } BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0); // Pop the block scope now but keep it alive to the end of this function. AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy); BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy); // If the block isn't obviously global, i.e. it captures anything at // all, then we need to do a few things in the surrounding context: if (Result->getBlockDecl()->hasCaptures()) { // First, this expression has a new cleanup object. ExprCleanupObjects.push_back(Result->getBlockDecl()); Cleanup.setExprNeedsCleanups(true); // It also gets a branch-protected scope if any of the captured // variables needs destruction. for (const auto &CI : Result->getBlockDecl()->captures()) { const VarDecl *var = CI.getVariable(); if (var->getType().isDestructedType() != QualType::DK_none) { setFunctionHasBranchProtectedScope(); break; } } } if (getCurFunction()) getCurFunction()->addBlock(BD); return Result; } ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, SourceLocation RPLoc) { TypeSourceInfo *TInfo; GetTypeFromParser(Ty, &TInfo); return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc); } ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E, TypeSourceInfo *TInfo, SourceLocation RPLoc) { Expr *OrigExpr = E; bool IsMS = false; // CUDA device code does not support varargs. if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { if (const FunctionDecl *F = dyn_cast(CurContext)) { CUDAFunctionTarget T = IdentifyCUDATarget(F); if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice) return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device)); } } // NVPTX does not support va_arg expression. if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && Context.getTargetInfo().getTriple().isNVPTX()) targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device); // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg() // as Microsoft ABI on an actual Microsoft platform, where // __builtin_ms_va_list and __builtin_va_list are the same.) if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() && Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) { QualType MSVaListType = Context.getBuiltinMSVaListType(); if (Context.hasSameType(MSVaListType, E->getType())) { if (CheckForModifiableLvalue(E, BuiltinLoc, *this)) return ExprError(); IsMS = true; } } // Get the va_list type QualType VaListType = Context.getBuiltinVaListType(); if (!IsMS) { if (VaListType->isArrayType()) { // Deal with implicit array decay; for example, on x86-64, // va_list is an array, but it's supposed to decay to // a pointer for va_arg. VaListType = Context.getArrayDecayedType(VaListType); // Make sure the input expression also decays appropriately. ExprResult Result = UsualUnaryConversions(E); if (Result.isInvalid()) return ExprError(); E = Result.get(); } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) { // If va_list is a record type and we are compiling in C++ mode, // check the argument using reference binding. InitializedEntity Entity = InitializedEntity::InitializeParameter( Context, Context.getLValueReferenceType(VaListType), false); ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E); if (Init.isInvalid()) return ExprError(); E = Init.getAs(); } else { // Otherwise, the va_list argument must be an l-value because // it is modified by va_arg. if (!E->isTypeDependent() && CheckForModifiableLvalue(E, BuiltinLoc, *this)) return ExprError(); } } if (!IsMS && !E->isTypeDependent() && !Context.hasSameType(VaListType, E->getType())) return ExprError( Diag(E->getBeginLoc(), diag::err_first_argument_to_va_arg_not_of_type_va_list) << OrigExpr->getType() << E->getSourceRange()); if (!TInfo->getType()->isDependentType()) { if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(), diag::err_second_parameter_to_va_arg_incomplete, TInfo->getTypeLoc())) return ExprError(); if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(), diag::err_second_parameter_to_va_arg_abstract, TInfo->getTypeLoc())) return ExprError(); if (!TInfo->getType().isPODType(Context)) { Diag(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType()->isObjCLifetimeType() ? diag::warn_second_parameter_to_va_arg_ownership_qualified : diag::warn_second_parameter_to_va_arg_not_pod) << TInfo->getType() << TInfo->getTypeLoc().getSourceRange(); } // Check for va_arg where arguments of the given type will be promoted // (i.e. this va_arg is guaranteed to have undefined behavior). QualType PromoteType; if (TInfo->getType()->isPromotableIntegerType()) { PromoteType = Context.getPromotedIntegerType(TInfo->getType()); // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says, // and C2x 7.16.1.1p2 says, in part: // If type is not compatible with the type of the actual next argument // (as promoted according to the default argument promotions), the // behavior is undefined, except for the following cases: // - both types are pointers to qualified or unqualified versions of // compatible types; // - one type is a signed integer type, the other type is the // corresponding unsigned integer type, and the value is // representable in both types; // - one type is pointer to qualified or unqualified void and the // other is a pointer to a qualified or unqualified character type. // Given that type compatibility is the primary requirement (ignoring // qualifications), you would think we could call typesAreCompatible() // directly to test this. However, in C++, that checks for *same type*, // which causes false positives when passing an enumeration type to // va_arg. Instead, get the underlying type of the enumeration and pass // that. QualType UnderlyingType = TInfo->getType(); if (const auto *ET = UnderlyingType->getAs()) UnderlyingType = ET->getDecl()->getIntegerType(); if (Context.typesAreCompatible(PromoteType, UnderlyingType, /*CompareUnqualified*/ true)) PromoteType = QualType(); // If the types are still not compatible, we need to test whether the // promoted type and the underlying type are the same except for // signedness. Ask the AST for the correctly corresponding type and see // if that's compatible. if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() && PromoteType->isUnsignedIntegerType() != UnderlyingType->isUnsignedIntegerType()) { UnderlyingType = UnderlyingType->isUnsignedIntegerType() ? Context.getCorrespondingSignedType(UnderlyingType) : Context.getCorrespondingUnsignedType(UnderlyingType); if (Context.typesAreCompatible(PromoteType, UnderlyingType, /*CompareUnqualified*/ true)) PromoteType = QualType(); } } if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float)) PromoteType = Context.DoubleTy; if (!PromoteType.isNull()) DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E, PDiag(diag::warn_second_parameter_to_va_arg_never_compatible) << TInfo->getType() << PromoteType << TInfo->getTypeLoc().getSourceRange()); } QualType T = TInfo->getType().getNonLValueExprType(Context); return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS); } ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { // The type of __null will be int or long, depending on the size of // pointers on the target. QualType Ty; unsigned pw = Context.getTargetInfo().getPointerWidth(0); if (pw == Context.getTargetInfo().getIntWidth()) Ty = Context.IntTy; else if (pw == Context.getTargetInfo().getLongWidth()) Ty = Context.LongTy; else if (pw == Context.getTargetInfo().getLongLongWidth()) Ty = Context.LongLongTy; else { llvm_unreachable("I don't know size of pointer!"); } return new (Context) GNUNullExpr(Ty, TokenLoc); } static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) { CXXRecordDecl *ImplDecl = nullptr; // Fetch the std::source_location::__impl decl. if (NamespaceDecl *Std = S.getStdNamespace()) { LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"), Loc, Sema::LookupOrdinaryName); if (S.LookupQualifiedName(ResultSL, Std)) { if (auto *SLDecl = ResultSL.getAsSingle()) { LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"), Loc, Sema::LookupOrdinaryName); if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) && S.LookupQualifiedName(ResultImpl, SLDecl)) { ImplDecl = ResultImpl.getAsSingle(); } } } } if (!ImplDecl || !ImplDecl->isCompleteDefinition()) { S.Diag(Loc, diag::err_std_source_location_impl_not_found); return nullptr; } // Verify that __impl is a trivial struct type, with no base classes, and with // only the four expected fields. if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() || ImplDecl->getNumBases() != 0) { S.Diag(Loc, diag::err_std_source_location_impl_malformed); return nullptr; } unsigned Count = 0; for (FieldDecl *F : ImplDecl->fields()) { StringRef Name = F->getName(); if (Name == "_M_file_name") { if (F->getType() != S.Context.getPointerType(S.Context.CharTy.withConst())) break; Count++; } else if (Name == "_M_function_name") { if (F->getType() != S.Context.getPointerType(S.Context.CharTy.withConst())) break; Count++; } else if (Name == "_M_line") { if (!F->getType()->isIntegerType()) break; Count++; } else if (Name == "_M_column") { if (!F->getType()->isIntegerType()) break; Count++; } else { Count = 100; // invalid break; } } if (Count != 4) { S.Diag(Loc, diag::err_std_source_location_impl_malformed); return nullptr; } return ImplDecl; } ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind, SourceLocation BuiltinLoc, SourceLocation RPLoc) { QualType ResultTy; switch (Kind) { case SourceLocExpr::File: case SourceLocExpr::Function: { QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0); ResultTy = Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); break; } case SourceLocExpr::Line: case SourceLocExpr::Column: ResultTy = Context.UnsignedIntTy; break; case SourceLocExpr::SourceLocStruct: if (!StdSourceLocationImplDecl) { StdSourceLocationImplDecl = LookupStdSourceLocationImpl(*this, BuiltinLoc); if (!StdSourceLocationImplDecl) return ExprError(); } ResultTy = Context.getPointerType( Context.getRecordType(StdSourceLocationImplDecl).withConst()); break; } return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext); } ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind, QualType ResultTy, SourceLocation BuiltinLoc, SourceLocation RPLoc, DeclContext *ParentContext) { return new (Context) SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext); } bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp, bool Diagnose) { if (!getLangOpts().ObjC) return false; const ObjCObjectPointerType *PT = DstType->getAs(); if (!PT) return false; const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); // Ignore any parens, implicit casts (should only be // array-to-pointer decays), and not-so-opaque values. The last is // important for making this trigger for property assignments. Expr *SrcExpr = Exp->IgnoreParenImpCasts(); if (OpaqueValueExpr *OV = dyn_cast(SrcExpr)) if (OV->getSourceExpr()) SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts(); if (auto *SL = dyn_cast(SrcExpr)) { if (!PT->isObjCIdType() && !(ID && ID->getIdentifier()->isStr("NSString"))) return false; if (!SL->isOrdinary()) return false; if (Diagnose) { Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix) << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@"); Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get(); } return true; } if ((isa(SrcExpr) || isa(SrcExpr) || isa(SrcExpr) || isa(SrcExpr) || isa(SrcExpr)) && !SrcExpr->isNullPointerConstant( getASTContext(), Expr::NPC_NeverValueDependent)) { if (!ID || !ID->getIdentifier()->isStr("NSNumber")) return false; if (Diagnose) { Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix) << /*number*/1 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@"); Expr *NumLit = BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get(); if (NumLit) Exp = NumLit; } return true; } return false; } static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType, const Expr *SrcExpr) { if (!DstType->isFunctionPointerType() || !SrcExpr->getType()->isFunctionType()) return false; auto *DRE = dyn_cast(SrcExpr->IgnoreParenImpCasts()); if (!DRE) return false; auto *FD = dyn_cast(DRE->getDecl()); if (!FD) return false; return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, SrcExpr->getBeginLoc()); } bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, AssignmentAction Action, bool *Complained) { if (Complained) *Complained = false; // Decode the result (notice that AST's are still created for extensions). bool CheckInferredResultType = false; bool isInvalid = false; unsigned DiagKind = 0; ConversionFixItGenerator ConvHints; bool MayHaveConvFixit = false; bool MayHaveFunctionDiff = false; const ObjCInterfaceDecl *IFace = nullptr; const ObjCProtocolDecl *PDecl = nullptr; switch (ConvTy) { case Compatible: DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr); return false; case PointerToInt: if (getLangOpts().CPlusPlus) { DiagKind = diag::err_typecheck_convert_pointer_int; isInvalid = true; } else { DiagKind = diag::ext_typecheck_convert_pointer_int; } ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); MayHaveConvFixit = true; break; case IntToPointer: if (getLangOpts().CPlusPlus) { DiagKind = diag::err_typecheck_convert_int_pointer; isInvalid = true; } else { DiagKind = diag::ext_typecheck_convert_int_pointer; } ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); MayHaveConvFixit = true; break; case IncompatibleFunctionPointer: if (getLangOpts().CPlusPlus) { DiagKind = diag::err_typecheck_convert_incompatible_function_pointer; isInvalid = true; } else { DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer; } ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); MayHaveConvFixit = true; break; case IncompatiblePointer: if (Action == AA_Passing_CFAudited) { DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer; } else if (getLangOpts().CPlusPlus) { DiagKind = diag::err_typecheck_convert_incompatible_pointer; isInvalid = true; } else { DiagKind = diag::ext_typecheck_convert_incompatible_pointer; } CheckInferredResultType = DstType->isObjCObjectPointerType() && SrcType->isObjCObjectPointerType(); if (!CheckInferredResultType) { ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); } else if (CheckInferredResultType) { SrcType = SrcType.getUnqualifiedType(); DstType = DstType.getUnqualifiedType(); } MayHaveConvFixit = true; break; case IncompatiblePointerSign: if (getLangOpts().CPlusPlus) { DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign; isInvalid = true; } else { DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; } break; case FunctionVoidPointer: if (getLangOpts().CPlusPlus) { DiagKind = diag::err_typecheck_convert_pointer_void_func; isInvalid = true; } else { DiagKind = diag::ext_typecheck_convert_pointer_void_func; } break; case IncompatiblePointerDiscardsQualifiers: { // Perform array-to-pointer decay if necessary. if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType); isInvalid = true; Qualifiers lhq = SrcType->getPointeeType().getQualifiers(); Qualifiers rhq = DstType->getPointeeType().getQualifiers(); if (lhq.getAddressSpace() != rhq.getAddressSpace()) { DiagKind = diag::err_typecheck_incompatible_address_space; break; } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) { DiagKind = diag::err_typecheck_incompatible_ownership; break; } llvm_unreachable("unknown error case for discarding qualifiers!"); // fallthrough } case CompatiblePointerDiscardsQualifiers: // If the qualifiers lost were because we were applying the // (deprecated) C++ conversion from a string literal to a char* // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: // Ideally, this check would be performed in // checkPointerTypesForAssignment. However, that would require a // bit of refactoring (so that the second argument is an // expression, rather than a type), which should be done as part // of a larger effort to fix checkPointerTypesForAssignment for // C++ semantics. if (getLangOpts().CPlusPlus && IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) return false; if (getLangOpts().CPlusPlus) { DiagKind = diag::err_typecheck_convert_discards_qualifiers; isInvalid = true; } else { DiagKind = diag::ext_typecheck_convert_discards_qualifiers; } break; case IncompatibleNestedPointerQualifiers: if (getLangOpts().CPlusPlus) { isInvalid = true; DiagKind = diag::err_nested_pointer_qualifier_mismatch; } else { DiagKind = diag::ext_nested_pointer_qualifier_mismatch; } break; case IncompatibleNestedPointerAddressSpaceMismatch: DiagKind = diag::err_typecheck_incompatible_nested_address_space; isInvalid = true; break; case IntToBlockPointer: DiagKind = diag::err_int_to_block_pointer; isInvalid = true; break; case IncompatibleBlockPointer: DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; isInvalid = true; break; case IncompatibleObjCQualifiedId: { if (SrcType->isObjCQualifiedIdType()) { const ObjCObjectPointerType *srcOPT = SrcType->castAs(); for (auto *srcProto : srcOPT->quals()) { PDecl = srcProto; break; } if (const ObjCInterfaceType *IFaceT = DstType->castAs()->getInterfaceType()) IFace = IFaceT->getDecl(); } else if (DstType->isObjCQualifiedIdType()) { const ObjCObjectPointerType *dstOPT = DstType->castAs(); for (auto *dstProto : dstOPT->quals()) { PDecl = dstProto; break; } if (const ObjCInterfaceType *IFaceT = SrcType->castAs()->getInterfaceType()) IFace = IFaceT->getDecl(); } if (getLangOpts().CPlusPlus) { DiagKind = diag::err_incompatible_qualified_id; isInvalid = true; } else { DiagKind = diag::warn_incompatible_qualified_id; } break; } case IncompatibleVectors: if (getLangOpts().CPlusPlus) { DiagKind = diag::err_incompatible_vectors; isInvalid = true; } else { DiagKind = diag::warn_incompatible_vectors; } break; case IncompatibleObjCWeakRef: DiagKind = diag::err_arc_weak_unavailable_assign; isInvalid = true; break; case Incompatible: if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) { if (Complained) *Complained = true; return true; } DiagKind = diag::err_typecheck_convert_incompatible; ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); MayHaveConvFixit = true; isInvalid = true; MayHaveFunctionDiff = true; break; } QualType FirstType, SecondType; switch (Action) { case AA_Assigning: case AA_Initializing: // The destination type comes first. FirstType = DstType; SecondType = SrcType; break; case AA_Returning: case AA_Passing: case AA_Passing_CFAudited: case AA_Converting: case AA_Sending: case AA_Casting: // The source type comes first. FirstType = SrcType; SecondType = DstType; break; } PartialDiagnostic FDiag = PDiag(DiagKind); AssignmentAction ActionForDiag = Action; if (Action == AA_Passing_CFAudited) ActionForDiag = AA_Passing; FDiag << FirstType << SecondType << ActionForDiag << SrcExpr->getSourceRange(); if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign || DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) { auto isPlainChar = [](const clang::Type *Type) { return Type->isSpecificBuiltinType(BuiltinType::Char_S) || Type->isSpecificBuiltinType(BuiltinType::Char_U); }; FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) || isPlainChar(SecondType->getPointeeOrArrayElementType())); } // If we can fix the conversion, suggest the FixIts. if (!ConvHints.isNull()) { for (FixItHint &H : ConvHints.Hints) FDiag << H; } if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); } if (MayHaveFunctionDiff) HandleFunctionTypeMismatch(FDiag, SecondType, FirstType); Diag(Loc, FDiag); if ((DiagKind == diag::warn_incompatible_qualified_id || DiagKind == diag::err_incompatible_qualified_id) && PDecl && IFace && !IFace->hasDefinition()) Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id) << IFace << PDecl; if (SecondType == Context.OverloadTy) NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression, FirstType, /*TakingAddress=*/true); if (CheckInferredResultType) EmitRelatedResultTypeNote(SrcExpr); if (Action == AA_Returning && ConvTy == IncompatiblePointer) EmitRelatedResultTypeNoteForReturn(DstType); if (Complained) *Complained = true; return isInvalid; } ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, AllowFoldKind CanFold) { class SimpleICEDiagnoser : public VerifyICEDiagnoser { public: SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T) override { return S.Diag(Loc, diag::err_ice_not_integral) << T << S.LangOpts.CPlusPlus; } SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override { return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus; } } Diagnoser; return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold); } ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, unsigned DiagID, AllowFoldKind CanFold) { class IDDiagnoser : public VerifyICEDiagnoser { unsigned DiagID; public: IDDiagnoser(unsigned DiagID) : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { } SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override { return S.Diag(Loc, DiagID); } } Diagnoser(DiagID); return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold); } Sema::SemaDiagnosticBuilder Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T) { return diagnoseNotICE(S, Loc); } Sema::SemaDiagnosticBuilder Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) { return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus; } ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, VerifyICEDiagnoser &Diagnoser, AllowFoldKind CanFold) { SourceLocation DiagLoc = E->getBeginLoc(); if (getLangOpts().CPlusPlus11) { // C++11 [expr.const]p5: // If an expression of literal class type is used in a context where an // integral constant expression is required, then that class type shall // have a single non-explicit conversion function to an integral or // unscoped enumeration type ExprResult Converted; class CXX11ConvertDiagnoser : public ICEConvertDiagnoser { VerifyICEDiagnoser &BaseDiagnoser; public: CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser) : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false, BaseDiagnoser.Suppress, true), BaseDiagnoser(BaseDiagnoser) {} SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) override { return BaseDiagnoser.diagnoseNotICEType(S, Loc, T); } SemaDiagnosticBuilder diagnoseIncomplete( Sema &S, SourceLocation Loc, QualType T) override { return S.Diag(Loc, diag::err_ice_incomplete_type) << T; } SemaDiagnosticBuilder diagnoseExplicitConv( Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy; } SemaDiagnosticBuilder noteExplicitConv( Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) << ConvTy->isEnumeralType() << ConvTy; } SemaDiagnosticBuilder diagnoseAmbiguous( Sema &S, SourceLocation Loc, QualType T) override { return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T; } SemaDiagnosticBuilder noteAmbiguous( Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) << ConvTy->isEnumeralType() << ConvTy; } SemaDiagnosticBuilder diagnoseConversion( Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { llvm_unreachable("conversion functions are permitted"); } } ConvertDiagnoser(Diagnoser); Converted = PerformContextualImplicitConversion(DiagLoc, E, ConvertDiagnoser); if (Converted.isInvalid()) return Converted; E = Converted.get(); if (!E->getType()->isIntegralOrUnscopedEnumerationType()) return ExprError(); } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { // An ICE must be of integral or unscoped enumeration type. if (!Diagnoser.Suppress) Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType()) << E->getSourceRange(); return ExprError(); } ExprResult RValueExpr = DefaultLvalueConversion(E); if (RValueExpr.isInvalid()) return ExprError(); E = RValueExpr.get(); // Circumvent ICE checking in C++11 to avoid evaluating the expression twice // in the non-ICE case. if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) { if (Result) *Result = E->EvaluateKnownConstIntCheckOverflow(Context); if (!isa(E)) E = Result ? ConstantExpr::Create(Context, E, APValue(*Result)) : ConstantExpr::Create(Context, E); return E; } Expr::EvalResult EvalResult; SmallVector Notes; EvalResult.Diag = &Notes; // Try to evaluate the expression, and produce diagnostics explaining why it's // not a constant expression as a side-effect. bool Folded = E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) && EvalResult.Val.isInt() && !EvalResult.HasSideEffects; if (!isa(E)) E = ConstantExpr::Create(Context, E, EvalResult.Val); // In C++11, we can rely on diagnostics being produced for any expression // which is not a constant expression. If no diagnostics were produced, then // this is a constant expression. if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) { if (Result) *Result = EvalResult.Val.getInt(); return E; } // If our only note is the usual "invalid subexpression" note, just point // the caret at its location rather than producing an essentially // redundant note. if (Notes.size() == 1 && Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { DiagLoc = Notes[0].first; Notes.clear(); } if (!Folded || !CanFold) { if (!Diagnoser.Suppress) { Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange(); for (const PartialDiagnosticAt &Note : Notes) Diag(Note.first, Note.second); } return ExprError(); } Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange(); for (const PartialDiagnosticAt &Note : Notes) Diag(Note.first, Note.second); if (Result) *Result = EvalResult.Val.getInt(); return E; } namespace { // Handle the case where we conclude a expression which we speculatively // considered to be unevaluated is actually evaluated. class TransformToPE : public TreeTransform { typedef TreeTransform BaseTransform; public: TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { } // Make sure we redo semantic analysis bool AlwaysRebuild() { return true; } bool ReplacingOriginal() { return true; } // We need to special-case DeclRefExprs referring to FieldDecls which // are not part of a member pointer formation; normal TreeTransforming // doesn't catch this case because of the way we represent them in the AST. // FIXME: This is a bit ugly; is it really the best way to handle this // case? // // Error on DeclRefExprs referring to FieldDecls. ExprResult TransformDeclRefExpr(DeclRefExpr *E) { if (isa(E->getDecl()) && !SemaRef.isUnevaluatedContext()) return SemaRef.Diag(E->getLocation(), diag::err_invalid_non_static_member_use) << E->getDecl() << E->getSourceRange(); return BaseTransform::TransformDeclRefExpr(E); } // Exception: filter out member pointer formation ExprResult TransformUnaryOperator(UnaryOperator *E) { if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType()) return E; return BaseTransform::TransformUnaryOperator(E); } // The body of a lambda-expression is in a separate expression evaluation // context so never needs to be transformed. // FIXME: Ideally we wouldn't transform the closure type either, and would // just recreate the capture expressions and lambda expression. StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) { return SkipLambdaBody(E, Body); } }; } ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) { assert(isUnevaluatedContext() && "Should only transform unevaluated expressions"); ExprEvalContexts.back().Context = ExprEvalContexts[ExprEvalContexts.size()-2].Context; if (isUnevaluatedContext()) return E; return TransformToPE(*this).TransformExpr(E); } TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) { assert(isUnevaluatedContext() && "Should only transform unevaluated expressions"); ExprEvalContexts.back().Context = ExprEvalContexts[ExprEvalContexts.size() - 2].Context; if (isUnevaluatedContext()) return TInfo; return TransformToPE(*this).TransformType(TInfo); } void Sema::PushExpressionEvaluationContext( ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl, ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup, LambdaContextDecl, ExprContext); // Discarded statements and immediate contexts nested in other // discarded statements or immediate context are themselves // a discarded statement or an immediate context, respectively. ExprEvalContexts.back().InDiscardedStatement = ExprEvalContexts[ExprEvalContexts.size() - 2] .isDiscardedStatementContext(); ExprEvalContexts.back().InImmediateFunctionContext = ExprEvalContexts[ExprEvalContexts.size() - 2] .isImmediateFunctionContext(); Cleanup.reset(); if (!MaybeODRUseExprs.empty()) std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs); } void Sema::PushExpressionEvaluationContext( ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t, ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl; PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext); } namespace { const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) { PossibleDeref = PossibleDeref->IgnoreParenImpCasts(); if (const auto *E = dyn_cast(PossibleDeref)) { if (E->getOpcode() == UO_Deref) return CheckPossibleDeref(S, E->getSubExpr()); } else if (const auto *E = dyn_cast(PossibleDeref)) { return CheckPossibleDeref(S, E->getBase()); } else if (const auto *E = dyn_cast(PossibleDeref)) { return CheckPossibleDeref(S, E->getBase()); } else if (const auto E = dyn_cast(PossibleDeref)) { QualType Inner; QualType Ty = E->getType(); if (const auto *Ptr = Ty->getAs()) Inner = Ptr->getPointeeType(); else if (const auto *Arr = S.Context.getAsArrayType(Ty)) Inner = Arr->getElementType(); else return nullptr; if (Inner->hasAttr(attr::NoDeref)) return E; } return nullptr; } } // namespace void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) { for (const Expr *E : Rec.PossibleDerefs) { const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E); if (DeclRef) { const ValueDecl *Decl = DeclRef->getDecl(); Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type) << Decl->getName() << E->getSourceRange(); Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName(); } else { Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl) << E->getSourceRange(); } } Rec.PossibleDerefs.clear(); } /// Check whether E, which is either a discarded-value expression or an /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue, /// and if so, remove it from the list of volatile-qualified assignments that /// we are going to warn are deprecated. void Sema::CheckUnusedVolatileAssignment(Expr *E) { if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20) return; // Note: ignoring parens here is not justified by the standard rules, but // ignoring parentheses seems like a more reasonable approach, and this only // drives a deprecation warning so doesn't affect conformance. if (auto *BO = dyn_cast(E->IgnoreParenImpCasts())) { if (BO->getOpcode() == BO_Assign) { auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs; llvm::erase_value(LHSs, BO->getLHS()); } } } ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) { if (isUnevaluatedContext() || !E.isUsable() || !Decl || !Decl->isConsteval() || isConstantEvaluated() || RebuildingImmediateInvocation || isImmediateFunctionContext()) return E; /// Opportunistically remove the callee from ReferencesToConsteval if we can. /// It's OK if this fails; we'll also remove this in /// HandleImmediateInvocations, but catching it here allows us to avoid /// walking the AST looking for it in simple cases. if (auto *Call = dyn_cast(E.get()->IgnoreImplicit())) if (auto *DeclRef = dyn_cast(Call->getCallee()->IgnoreImplicit())) ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef); E = MaybeCreateExprWithCleanups(E); ConstantExpr *Res = ConstantExpr::Create( getASTContext(), E.get(), ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(), getASTContext()), /*IsImmediateInvocation*/ true); /// Value-dependent constant expressions should not be immediately /// evaluated until they are instantiated. if (!Res->isValueDependent()) ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0); return Res; } static void EvaluateAndDiagnoseImmediateInvocation( Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) { llvm::SmallVector Notes; Expr::EvalResult Eval; Eval.Diag = &Notes; ConstantExpr *CE = Candidate.getPointer(); bool Result = CE->EvaluateAsConstantExpr( Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation); if (!Result || !Notes.empty()) { + SemaRef.FailedImmediateInvocations.insert(CE); Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit(); if (auto *FunctionalCast = dyn_cast(InnerExpr)) InnerExpr = FunctionalCast->getSubExpr(); FunctionDecl *FD = nullptr; if (auto *Call = dyn_cast(InnerExpr)) FD = cast(Call->getCalleeDecl()); else if (auto *Call = dyn_cast(InnerExpr)) FD = Call->getConstructor(); else llvm_unreachable("unhandled decl kind"); assert(FD->isConsteval()); SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD; for (auto &Note : Notes) SemaRef.Diag(Note.first, Note.second); return; } CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext()); } static void RemoveNestedImmediateInvocation( Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec, SmallVector::reverse_iterator It) { struct ComplexRemove : TreeTransform { using Base = TreeTransform; llvm::SmallPtrSetImpl &DRSet; SmallVector &IISet; SmallVector::reverse_iterator CurrentII; ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl &DR, SmallVector &II, SmallVector::reverse_iterator Current) : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {} void RemoveImmediateInvocation(ConstantExpr* E) { auto It = std::find_if(CurrentII, IISet.rend(), [E](Sema::ImmediateInvocationCandidate Elem) { return Elem.getPointer() == E; }); - assert(It != IISet.rend() && - "ConstantExpr marked IsImmediateInvocation should " - "be present"); - It->setInt(1); // Mark as deleted + // It is possible that some subexpression of the current immediate + // invocation was handled from another expression evaluation context. Do + // not handle the current immediate invocation if some of its + // subexpressions failed before. + if (It == IISet.rend()) { + if (SemaRef.FailedImmediateInvocations.contains(E)) + CurrentII->setInt(1); + } else { + It->setInt(1); // Mark as deleted + } } ExprResult TransformConstantExpr(ConstantExpr *E) { if (!E->isImmediateInvocation()) return Base::TransformConstantExpr(E); RemoveImmediateInvocation(E); return Base::TransformExpr(E->getSubExpr()); } /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so /// we need to remove its DeclRefExpr from the DRSet. ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) { DRSet.erase(cast(E->getCallee()->IgnoreImplicit())); return Base::TransformCXXOperatorCallExpr(E); } /// Base::TransformInitializer skip ConstantExpr so we need to visit them /// here. ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) { if (!Init) return Init; /// ConstantExpr are the first layer of implicit node to be removed so if /// Init isn't a ConstantExpr, no ConstantExpr will be skipped. if (auto *CE = dyn_cast(Init)) if (CE->isImmediateInvocation()) RemoveImmediateInvocation(CE); return Base::TransformInitializer(Init, NotCopyInit); } ExprResult TransformDeclRefExpr(DeclRefExpr *E) { DRSet.erase(E); return E; } ExprResult TransformLambdaExpr(LambdaExpr *E) { // Do not rebuild lambdas to avoid creating a new type. // Lambdas have already been processed inside their eval context. return E; } bool AlwaysRebuild() { return false; } bool ReplacingOriginal() { return true; } bool AllowSkippingCXXConstructExpr() { bool Res = AllowSkippingFirstCXXConstructExpr; AllowSkippingFirstCXXConstructExpr = true; return Res; } bool AllowSkippingFirstCXXConstructExpr = true; } Transformer(SemaRef, Rec.ReferenceToConsteval, Rec.ImmediateInvocationCandidates, It); /// CXXConstructExpr with a single argument are getting skipped by /// TreeTransform in some situtation because they could be implicit. This /// can only occur for the top-level CXXConstructExpr because it is used /// nowhere in the expression being transformed therefore will not be rebuilt. /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from /// skipping the first CXXConstructExpr. if (isa(It->getPointer()->IgnoreImplicit())) Transformer.AllowSkippingFirstCXXConstructExpr = false; ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr()); assert(Res.isUsable()); Res = SemaRef.MaybeCreateExprWithCleanups(Res); It->getPointer()->setSubExpr(Res.get()); } static void HandleImmediateInvocations(Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec) { if ((Rec.ImmediateInvocationCandidates.size() == 0 && Rec.ReferenceToConsteval.size() == 0) || SemaRef.RebuildingImmediateInvocation) return; - /// When we have more then 1 ImmediateInvocationCandidates we need to check - /// for nested ImmediateInvocationCandidates. when we have only 1 we only - /// need to remove ReferenceToConsteval in the immediate invocation. - if (Rec.ImmediateInvocationCandidates.size() > 1) { + /// When we have more than 1 ImmediateInvocationCandidates or previously + /// failed immediate invocations, we need to check for nested + /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics. + /// Otherwise we only need to remove ReferenceToConsteval in the immediate + /// invocation. + if (Rec.ImmediateInvocationCandidates.size() > 1 || + !SemaRef.FailedImmediateInvocations.empty()) { /// Prevent sema calls during the tree transform from adding pointers that /// are already in the sets. llvm::SaveAndRestore DisableIITracking( SemaRef.RebuildingImmediateInvocation, true); /// Prevent diagnostic during tree transfrom as they are duplicates Sema::TentativeAnalysisScope DisableDiag(SemaRef); for (auto It = Rec.ImmediateInvocationCandidates.rbegin(); It != Rec.ImmediateInvocationCandidates.rend(); It++) if (!It->getInt()) RemoveNestedImmediateInvocation(SemaRef, Rec, It); } else if (Rec.ImmediateInvocationCandidates.size() == 1 && Rec.ReferenceToConsteval.size()) { struct SimpleRemove : RecursiveASTVisitor { llvm::SmallPtrSetImpl &DRSet; SimpleRemove(llvm::SmallPtrSetImpl &S) : DRSet(S) {} bool VisitDeclRefExpr(DeclRefExpr *E) { DRSet.erase(E); return DRSet.size(); } } Visitor(Rec.ReferenceToConsteval); Visitor.TraverseStmt( Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr()); } for (auto CE : Rec.ImmediateInvocationCandidates) if (!CE.getInt()) EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE); for (auto DR : Rec.ReferenceToConsteval) { auto *FD = cast(DR->getDecl()); SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address) << FD; SemaRef.Diag(FD->getLocation(), diag::note_declared_at); } } void Sema::PopExpressionEvaluationContext() { ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back(); unsigned NumTypos = Rec.NumTypos; if (!Rec.Lambdas.empty()) { using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind; if (!getLangOpts().CPlusPlus20 && (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() || (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) { unsigned D; if (Rec.isUnevaluated()) { // C++11 [expr.prim.lambda]p2: // A lambda-expression shall not appear in an unevaluated operand // (Clause 5). D = diag::err_lambda_unevaluated_operand; } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) { // C++1y [expr.const]p2: // A conditional-expression e is a core constant expression unless the // evaluation of e, following the rules of the abstract machine, would // evaluate [...] a lambda-expression. D = diag::err_lambda_in_constant_expression; } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) { // C++17 [expr.prim.lamda]p2: // A lambda-expression shall not appear [...] in a template-argument. D = diag::err_lambda_in_invalid_context; } else llvm_unreachable("Couldn't infer lambda error message."); for (const auto *L : Rec.Lambdas) Diag(L->getBeginLoc(), D); } } WarnOnPendingNoDerefs(Rec); HandleImmediateInvocations(*this, Rec); // Warn on any volatile-qualified simple-assignments that are not discarded- // value expressions nor unevaluated operands (those cases get removed from // this list by CheckUnusedVolatileAssignment). for (auto *BO : Rec.VolatileAssignmentLHSs) Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile) << BO->getType(); // When are coming out of an unevaluated context, clear out any // temporaries that we may have created as part of the evaluation of // the expression in that context: they aren't relevant because they // will never be constructed. if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) { ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects, ExprCleanupObjects.end()); Cleanup = Rec.ParentCleanup; CleanupVarDeclMarking(); std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs); // Otherwise, merge the contexts together. } else { Cleanup.mergeFrom(Rec.ParentCleanup); MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(), Rec.SavedMaybeODRUseExprs.end()); } // Pop the current expression evaluation context off the stack. ExprEvalContexts.pop_back(); // The global expression evaluation context record is never popped. ExprEvalContexts.back().NumTypos += NumTypos; } void Sema::DiscardCleanupsInEvaluationContext() { ExprCleanupObjects.erase( ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects, ExprCleanupObjects.end()); Cleanup.reset(); MaybeODRUseExprs.clear(); } ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) { ExprResult Result = CheckPlaceholderExpr(E); if (Result.isInvalid()) return ExprError(); E = Result.get(); if (!E->getType()->isVariablyModifiedType()) return E; return TransformToPotentiallyEvaluated(E); } /// Are we in a context that is potentially constant evaluated per C++20 /// [expr.const]p12? static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) { /// C++2a [expr.const]p12: // An expression or conversion is potentially constant evaluated if it is switch (SemaRef.ExprEvalContexts.back().Context) { case Sema::ExpressionEvaluationContext::ConstantEvaluated: case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: // -- a manifestly constant-evaluated expression, case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: case Sema::ExpressionEvaluationContext::DiscardedStatement: // -- a potentially-evaluated expression, case Sema::ExpressionEvaluationContext::UnevaluatedList: // -- an immediate subexpression of a braced-init-list, // -- [FIXME] an expression of the form & cast-expression that occurs // within a templated entity // -- a subexpression of one of the above that is not a subexpression of // a nested unevaluated operand. return true; case Sema::ExpressionEvaluationContext::Unevaluated: case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: // Expressions in this context are never evaluated. return false; } llvm_unreachable("Invalid context"); } /// Return true if this function has a calling convention that requires mangling /// in the size of the parameter pack. static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) { // These manglings don't do anything on non-Windows or non-x86 platforms, so // we don't need parameter type sizes. const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); if (!TT.isOSWindows() || !TT.isX86()) return false; // If this is C++ and this isn't an extern "C" function, parameters do not // need to be complete. In this case, C++ mangling will apply, which doesn't // use the size of the parameters. if (S.getLangOpts().CPlusPlus && !FD->isExternC()) return false; // Stdcall, fastcall, and vectorcall need this special treatment. CallingConv CC = FD->getType()->castAs()->getCallConv(); switch (CC) { case CC_X86StdCall: case CC_X86FastCall: case CC_X86VectorCall: return true; default: break; } return false; } /// Require that all of the parameter types of function be complete. Normally, /// parameter types are only required to be complete when a function is called /// or defined, but to mangle functions with certain calling conventions, the /// mangler needs to know the size of the parameter list. In this situation, /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles /// the function as _foo@0, i.e. zero bytes of parameters, which will usually /// result in a linker error. Clang doesn't implement this behavior, and instead /// attempts to error at compile time. static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD, SourceLocation Loc) { class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser { FunctionDecl *FD; ParmVarDecl *Param; public: ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param) : FD(FD), Param(Param) {} void diagnose(Sema &S, SourceLocation Loc, QualType T) override { CallingConv CC = FD->getType()->castAs()->getCallConv(); StringRef CCName; switch (CC) { case CC_X86StdCall: CCName = "stdcall"; break; case CC_X86FastCall: CCName = "fastcall"; break; case CC_X86VectorCall: CCName = "vectorcall"; break; default: llvm_unreachable("CC does not need mangling"); } S.Diag(Loc, diag::err_cconv_incomplete_param_type) << Param->getDeclName() << FD->getDeclName() << CCName; } }; for (ParmVarDecl *Param : FD->parameters()) { ParamIncompleteTypeDiagnoser Diagnoser(FD, Param); S.RequireCompleteType(Loc, Param->getType(), Diagnoser); } } namespace { enum class OdrUseContext { /// Declarations in this context are not odr-used. None, /// Declarations in this context are formally odr-used, but this is a /// dependent context. Dependent, /// Declarations in this context are odr-used but not actually used (yet). FormallyOdrUsed, /// Declarations in this context are used. Used }; } /// Are we within a context in which references to resolved functions or to /// variables result in odr-use? static OdrUseContext isOdrUseContext(Sema &SemaRef) { OdrUseContext Result; switch (SemaRef.ExprEvalContexts.back().Context) { case Sema::ExpressionEvaluationContext::Unevaluated: case Sema::ExpressionEvaluationContext::UnevaluatedList: case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: return OdrUseContext::None; case Sema::ExpressionEvaluationContext::ConstantEvaluated: case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: Result = OdrUseContext::Used; break; case Sema::ExpressionEvaluationContext::DiscardedStatement: Result = OdrUseContext::FormallyOdrUsed; break; case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: // A default argument formally results in odr-use, but doesn't actually // result in a use in any real sense until it itself is used. Result = OdrUseContext::FormallyOdrUsed; break; } if (SemaRef.CurContext->isDependentContext()) return OdrUseContext::Dependent; return Result; } static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) { if (!Func->isConstexpr()) return false; if (Func->isImplicitlyInstantiable() || !Func->isUserProvided()) return true; auto *CCD = dyn_cast(Func); return CCD && CCD->getInheritedConstructor(); } /// Mark a function referenced, and check whether it is odr-used /// (C++ [basic.def.odr]p2, C99 6.9p3) void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, bool MightBeOdrUse) { assert(Func && "No function?"); Func->setReferenced(); // Recursive functions aren't really used until they're used from some other // context. bool IsRecursiveCall = CurContext == Func; // C++11 [basic.def.odr]p3: // A function whose name appears as a potentially-evaluated expression is // odr-used if it is the unique lookup result or the selected member of a // set of overloaded functions [...]. // // We (incorrectly) mark overload resolution as an unevaluated context, so we // can just check that here. OdrUseContext OdrUse = MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None; if (IsRecursiveCall && OdrUse == OdrUseContext::Used) OdrUse = OdrUseContext::FormallyOdrUsed; // Trivial default constructors and destructors are never actually used. // FIXME: What about other special members? if (Func->isTrivial() && !Func->hasAttr() && OdrUse == OdrUseContext::Used) { if (auto *Constructor = dyn_cast(Func)) if (Constructor->isDefaultConstructor()) OdrUse = OdrUseContext::FormallyOdrUsed; if (isa(Func)) OdrUse = OdrUseContext::FormallyOdrUsed; } // C++20 [expr.const]p12: // A function [...] is needed for constant evaluation if it is [...] a // constexpr function that is named by an expression that is potentially // constant evaluated bool NeededForConstantEvaluation = isPotentiallyConstantEvaluatedContext(*this) && isImplicitlyDefinableConstexprFunction(Func); // Determine whether we require a function definition to exist, per // C++11 [temp.inst]p3: // Unless a function template specialization has been explicitly // instantiated or explicitly specialized, the function template // specialization is implicitly instantiated when the specialization is // referenced in a context that requires a function definition to exist. // C++20 [temp.inst]p7: // The existence of a definition of a [...] function is considered to // affect the semantics of the program if the [...] function is needed for // constant evaluation by an expression // C++20 [basic.def.odr]p10: // Every program shall contain exactly one definition of every non-inline // function or variable that is odr-used in that program outside of a // discarded statement // C++20 [special]p1: // The implementation will implicitly define [defaulted special members] // if they are odr-used or needed for constant evaluation. // // Note that we skip the implicit instantiation of templates that are only // used in unused default arguments or by recursive calls to themselves. // This is formally non-conforming, but seems reasonable in practice. bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used || NeededForConstantEvaluation); // C++14 [temp.expl.spec]p6: // If a template [...] is explicitly specialized then that specialization // shall be declared before the first use of that specialization that would // cause an implicit instantiation to take place, in every translation unit // in which such a use occurs if (NeedDefinition && (Func->getTemplateSpecializationKind() != TSK_Undeclared || Func->getMemberSpecializationInfo())) checkSpecializationReachability(Loc, Func); if (getLangOpts().CUDA) CheckCUDACall(Loc, Func); if (getLangOpts().SYCLIsDevice) checkSYCLDeviceFunction(Loc, Func); // If we need a definition, try to create one. if (NeedDefinition && !Func->getBody()) { runWithSufficientStackSpace(Loc, [&] { if (CXXConstructorDecl *Constructor = dyn_cast(Func)) { Constructor = cast(Constructor->getFirstDecl()); if (Constructor->isDefaulted() && !Constructor->isDeleted()) { if (Constructor->isDefaultConstructor()) { if (Constructor->isTrivial() && !Constructor->hasAttr()) return; DefineImplicitDefaultConstructor(Loc, Constructor); } else if (Constructor->isCopyConstructor()) { DefineImplicitCopyConstructor(Loc, Constructor); } else if (Constructor->isMoveConstructor()) { DefineImplicitMoveConstructor(Loc, Constructor); } } else if (Constructor->getInheritedConstructor()) { DefineInheritingConstructor(Loc, Constructor); } } else if (CXXDestructorDecl *Destructor = dyn_cast(Func)) { Destructor = cast(Destructor->getFirstDecl()); if (Destructor->isDefaulted() && !Destructor->isDeleted()) { if (Destructor->isTrivial() && !Destructor->hasAttr()) return; DefineImplicitDestructor(Loc, Destructor); } if (Destructor->isVirtual() && getLangOpts().AppleKext) MarkVTableUsed(Loc, Destructor->getParent()); } else if (CXXMethodDecl *MethodDecl = dyn_cast(Func)) { if (MethodDecl->isOverloadedOperator() && MethodDecl->getOverloadedOperator() == OO_Equal) { MethodDecl = cast(MethodDecl->getFirstDecl()); if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) { if (MethodDecl->isCopyAssignmentOperator()) DefineImplicitCopyAssignment(Loc, MethodDecl); else if (MethodDecl->isMoveAssignmentOperator()) DefineImplicitMoveAssignment(Loc, MethodDecl); } } else if (isa(MethodDecl) && MethodDecl->getParent()->isLambda()) { CXXConversionDecl *Conversion = cast(MethodDecl->getFirstDecl()); if (Conversion->isLambdaToBlockPointerConversion()) DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion); else DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion); } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext) MarkVTableUsed(Loc, MethodDecl->getParent()); } if (Func->isDefaulted() && !Func->isDeleted()) { DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func); if (DCK != DefaultedComparisonKind::None) DefineDefaultedComparison(Loc, Func, DCK); } // Implicit instantiation of function templates and member functions of // class templates. if (Func->isImplicitlyInstantiable()) { TemplateSpecializationKind TSK = Func->getTemplateSpecializationKindForInstantiation(); SourceLocation PointOfInstantiation = Func->getPointOfInstantiation(); bool FirstInstantiation = PointOfInstantiation.isInvalid(); if (FirstInstantiation) { PointOfInstantiation = Loc; if (auto *MSI = Func->getMemberSpecializationInfo()) MSI->setPointOfInstantiation(Loc); // FIXME: Notify listener. else Func->setTemplateSpecializationKind(TSK, PointOfInstantiation); } else if (TSK != TSK_ImplicitInstantiation) { // Use the point of use as the point of instantiation, instead of the // point of explicit instantiation (which we track as the actual point // of instantiation). This gives better backtraces in diagnostics. PointOfInstantiation = Loc; } if (FirstInstantiation || TSK != TSK_ImplicitInstantiation || Func->isConstexpr()) { if (isa(Func->getDeclContext()) && cast(Func->getDeclContext())->isLocalClass() && CodeSynthesisContexts.size()) PendingLocalImplicitInstantiations.push_back( std::make_pair(Func, PointOfInstantiation)); else if (Func->isConstexpr()) // Do not defer instantiations of constexpr functions, to avoid the // expression evaluator needing to call back into Sema if it sees a // call to such a function. InstantiateFunctionDefinition(PointOfInstantiation, Func); else { Func->setInstantiationIsPending(true); PendingInstantiations.push_back( std::make_pair(Func, PointOfInstantiation)); // Notify the consumer that a function was implicitly instantiated. Consumer.HandleCXXImplicitFunctionInstantiation(Func); } } } else { // Walk redefinitions, as some of them may be instantiable. for (auto i : Func->redecls()) { if (!i->isUsed(false) && i->isImplicitlyInstantiable()) MarkFunctionReferenced(Loc, i, MightBeOdrUse); } } }); } // C++14 [except.spec]p17: // An exception-specification is considered to be needed when: // - the function is odr-used or, if it appears in an unevaluated operand, // would be odr-used if the expression were potentially-evaluated; // // Note, we do this even if MightBeOdrUse is false. That indicates that the // function is a pure virtual function we're calling, and in that case the // function was selected by overload resolution and we need to resolve its // exception specification for a different reason. const FunctionProtoType *FPT = Func->getType()->getAs(); if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) ResolveExceptionSpec(Loc, FPT); // If this is the first "real" use, act on that. if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) { // Keep track of used but undefined functions. if (!Func->isDefined()) { if (mightHaveNonExternalLinkage(Func)) UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); else if (Func->getMostRecentDecl()->isInlined() && !LangOpts.GNUInline && !Func->getMostRecentDecl()->hasAttr()) UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); else if (isExternalWithNoLinkageType(Func)) UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); } // Some x86 Windows calling conventions mangle the size of the parameter // pack into the name. Computing the size of the parameters requires the // parameter types to be complete. Check that now. if (funcHasParameterSizeMangling(*this, Func)) CheckCompleteParameterTypesForMangler(*this, Func, Loc); // In the MS C++ ABI, the compiler emits destructor variants where they are // used. If the destructor is used here but defined elsewhere, mark the // virtual base destructors referenced. If those virtual base destructors // are inline, this will ensure they are defined when emitting the complete // destructor variant. This checking may be redundant if the destructor is // provided later in this TU. if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { if (auto *Dtor = dyn_cast(Func)) { CXXRecordDecl *Parent = Dtor->getParent(); if (Parent->getNumVBases() > 0 && !Dtor->getBody()) CheckCompleteDestructorVariant(Loc, Dtor); } } Func->markUsed(Context); } } /// Directly mark a variable odr-used. Given a choice, prefer to use /// MarkVariableReferenced since it does additional checks and then /// calls MarkVarDeclODRUsed. /// If the variable must be captured: /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext /// - else capture it in the DeclContext that maps to the /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack. static void MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef, const unsigned *const FunctionScopeIndexToStopAt = nullptr) { // Keep track of used but undefined variables. // FIXME: We shouldn't suppress this warning for static data members. if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly && (!Var->isExternallyVisible() || Var->isInline() || SemaRef.isExternalWithNoLinkageType(Var)) && !(Var->isStaticDataMember() && Var->hasInit())) { SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()]; if (old.isInvalid()) old = Loc; } QualType CaptureType, DeclRefType; if (SemaRef.LangOpts.OpenMP) SemaRef.tryCaptureOpenMPLambdas(Var); SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit, /*EllipsisLoc*/ SourceLocation(), /*BuildAndDiagnose*/ true, CaptureType, DeclRefType, FunctionScopeIndexToStopAt); if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) { auto *FD = dyn_cast_or_null(SemaRef.CurContext); auto VarTarget = SemaRef.IdentifyCUDATarget(Var); auto UserTarget = SemaRef.IdentifyCUDATarget(FD); if (VarTarget == Sema::CVT_Host && (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice || UserTarget == Sema::CFT_Global)) { // Diagnose ODR-use of host global variables in device functions. // Reference of device global variables in host functions is allowed // through shadow variables therefore it is not diagnosed. if (SemaRef.LangOpts.CUDAIsDevice) { SemaRef.targetDiag(Loc, diag::err_ref_bad_target) << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget; SemaRef.targetDiag(Var->getLocation(), Var->getType().isConstQualified() ? diag::note_cuda_const_var_unpromoted : diag::note_cuda_host_var); } } else if (VarTarget == Sema::CVT_Device && (UserTarget == Sema::CFT_Host || UserTarget == Sema::CFT_HostDevice)) { // Record a CUDA/HIP device side variable if it is ODR-used // by host code. This is done conservatively, when the variable is // referenced in any of the following contexts: // - a non-function context // - a host function // - a host device function // This makes the ODR-use of the device side variable by host code to // be visible in the device compilation for the compiler to be able to // emit template variables instantiated by host code only and to // externalize the static device side variable ODR-used by host code. if (!Var->hasExternalStorage()) SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var); else if (SemaRef.LangOpts.GPURelocatableDeviceCode) SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var); } } Var->markUsed(SemaRef.Context); } void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc, unsigned CapturingScopeIndex) { MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex); } static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, ValueDecl *var) { DeclContext *VarDC = var->getDeclContext(); // If the parameter still belongs to the translation unit, then // we're actually just using one parameter in the declaration of // the next. if (isa(var) && isa(VarDC)) return; // For C code, don't diagnose about capture if we're not actually in code // right now; it's impossible to write a non-constant expression outside of // function context, so we'll get other (more useful) diagnostics later. // // For C++, things get a bit more nasty... it would be nice to suppress this // diagnostic for certain cases like using a local variable in an array bound // for a member of a local class, but the correct predicate is not obvious. if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod()) return; unsigned ValueKind = isa(var) ? 1 : 0; unsigned ContextKind = 3; // unknown if (isa(VarDC) && cast(VarDC->getParent())->isLambda()) { ContextKind = 2; } else if (isa(VarDC)) { ContextKind = 0; } else if (isa(VarDC)) { ContextKind = 1; } S.Diag(loc, diag::err_reference_to_local_in_enclosing_context) << var << ValueKind << ContextKind << VarDC; S.Diag(var->getLocation(), diag::note_entity_declared_at) << var; // FIXME: Add additional diagnostic info about class etc. which prevents // capture. } static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var, bool &SubCapturesAreNested, QualType &CaptureType, QualType &DeclRefType) { // Check whether we've already captured it. if (CSI->CaptureMap.count(Var)) { // If we found a capture, any subcaptures are nested. SubCapturesAreNested = true; // Retrieve the capture type for this variable. CaptureType = CSI->getCapture(Var).getCaptureType(); // Compute the type of an expression that refers to this variable. DeclRefType = CaptureType.getNonReferenceType(); // Similarly to mutable captures in lambda, all the OpenMP captures by copy // are mutable in the sense that user can change their value - they are // private instances of the captured declarations. const Capture &Cap = CSI->getCapture(Var); if (Cap.isCopyCapture() && !(isa(CSI) && cast(CSI)->Mutable) && !(isa(CSI) && cast(CSI)->CapRegionKind == CR_OpenMP)) DeclRefType.addConst(); return true; } return false; } // Only block literals, captured statements, and lambda expressions can // capture; other scopes don't work. static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var, SourceLocation Loc, const bool Diagnose, Sema &S) { if (isa(DC) || isa(DC) || isLambdaCallOperator(DC)) return getLambdaAwareParentOfDeclContext(DC); else if (Var->hasLocalStorage()) { if (Diagnose) diagnoseUncapturableValueReference(S, Loc, Var); } return nullptr; } // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture // certain types of variables (unnamed, variably modified types etc.) // so check for eligibility. static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var, SourceLocation Loc, const bool Diagnose, Sema &S) { bool IsBlock = isa(CSI); bool IsLambda = isa(CSI); // Lambdas are not allowed to capture unnamed variables // (e.g. anonymous unions). // FIXME: The C++11 rule don't actually state this explicitly, but I'm // assuming that's the intent. if (IsLambda && !Var->getDeclName()) { if (Diagnose) { S.Diag(Loc, diag::err_lambda_capture_anonymous_var); S.Diag(Var->getLocation(), diag::note_declared_at); } return false; } // Prohibit variably-modified types in blocks; they're difficult to deal with. if (Var->getType()->isVariablyModifiedType() && IsBlock) { if (Diagnose) { S.Diag(Loc, diag::err_ref_vm_type); S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; } return false; } // Prohibit structs with flexible array members too. // We cannot capture what is in the tail end of the struct. if (const RecordType *VTTy = Var->getType()->getAs()) { if (VTTy->getDecl()->hasFlexibleArrayMember()) { if (Diagnose) { if (IsBlock) S.Diag(Loc, diag::err_ref_flexarray_type); else S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var; S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; } return false; } } const bool HasBlocksAttr = Var->hasAttr(); // Lambdas and captured statements are not allowed to capture __block // variables; they don't support the expected semantics. if (HasBlocksAttr && (IsLambda || isa(CSI))) { if (Diagnose) { S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda; S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; } return false; } // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks if (S.getLangOpts().OpenCL && IsBlock && Var->getType()->isBlockPointerType()) { if (Diagnose) S.Diag(Loc, diag::err_opencl_block_ref_block); return false; } return true; } // Returns true if the capture by block was successful. static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var, SourceLocation Loc, const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const bool Nested, Sema &S, bool Invalid) { bool ByRef = false; // Blocks are not allowed to capture arrays, excepting OpenCL. // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference // (decayed to pointers). if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) { if (BuildAndDiagnose) { S.Diag(Loc, diag::err_ref_array_type); S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; Invalid = true; } else { return false; } } // Forbid the block-capture of autoreleasing variables. if (!Invalid && CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { if (BuildAndDiagnose) { S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*block*/ 0; S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; Invalid = true; } else { return false; } } // Warn about implicitly autoreleasing indirect parameters captured by blocks. if (const auto *PT = CaptureType->getAs()) { QualType PointeeTy = PT->getPointeeType(); if (!Invalid && PointeeTy->getAs() && PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing && !S.Context.hasDirectOwnershipQualifier(PointeeTy)) { if (BuildAndDiagnose) { SourceLocation VarLoc = Var->getLocation(); S.Diag(Loc, diag::warn_block_capture_autoreleasing); S.Diag(VarLoc, diag::note_declare_parameter_strong); } } } const bool HasBlocksAttr = Var->hasAttr(); if (HasBlocksAttr || CaptureType->isReferenceType() || (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) { // Block capture by reference does not change the capture or // declaration reference types. ByRef = true; } else { // Block capture by copy introduces 'const'. CaptureType = CaptureType.getNonReferenceType().withConst(); DeclRefType = CaptureType; } // Actually capture the variable. if (BuildAndDiagnose) BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(), CaptureType, Invalid); return !Invalid; } /// Capture the given variable in the captured region. static bool captureInCapturedRegion( CapturedRegionScopeInfo *RSI, VarDecl *Var, SourceLocation Loc, const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind, bool IsTopScope, Sema &S, bool Invalid) { // By default, capture variables by reference. bool ByRef = true; if (IsTopScope && Kind != Sema::TryCapture_Implicit) { ByRef = (Kind == Sema::TryCapture_ExplicitByRef); } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) { // Using an LValue reference type is consistent with Lambdas (see below). if (S.isOpenMPCapturedDecl(Var)) { bool HasConst = DeclRefType.isConstQualified(); DeclRefType = DeclRefType.getUnqualifiedType(); // Don't lose diagnostics about assignments to const. if (HasConst) DeclRefType.addConst(); } // Do not capture firstprivates in tasks. if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) != OMPC_unknown) return true; ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel); } if (ByRef) CaptureType = S.Context.getLValueReferenceType(DeclRefType); else CaptureType = DeclRefType; // Actually capture the variable. if (BuildAndDiagnose) RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable, Loc, SourceLocation(), CaptureType, Invalid); return !Invalid; } /// Capture the given variable in the lambda. static bool captureInLambda(LambdaScopeInfo *LSI, VarDecl *Var, SourceLocation Loc, const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const bool RefersToCapturedVariable, const Sema::TryCaptureKind Kind, SourceLocation EllipsisLoc, const bool IsTopScope, Sema &S, bool Invalid) { // Determine whether we are capturing by reference or by value. bool ByRef = false; if (IsTopScope && Kind != Sema::TryCapture_Implicit) { ByRef = (Kind == Sema::TryCapture_ExplicitByRef); } else { ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref); } // Compute the type of the field that will capture this variable. if (ByRef) { // C++11 [expr.prim.lambda]p15: // An entity is captured by reference if it is implicitly or // explicitly captured but not captured by copy. It is // unspecified whether additional unnamed non-static data // members are declared in the closure type for entities // captured by reference. // // FIXME: It is not clear whether we want to build an lvalue reference // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears // to do the former, while EDG does the latter. Core issue 1249 will // clarify, but for now we follow GCC because it's a more permissive and // easily defensible position. CaptureType = S.Context.getLValueReferenceType(DeclRefType); } else { // C++11 [expr.prim.lambda]p14: // For each entity captured by copy, an unnamed non-static // data member is declared in the closure type. The // declaration order of these members is unspecified. The type // of such a data member is the type of the corresponding // captured entity if the entity is not a reference to an // object, or the referenced type otherwise. [Note: If the // captured entity is a reference to a function, the // corresponding data member is also a reference to a // function. - end note ] if (const ReferenceType *RefType = CaptureType->getAs()){ if (!RefType->getPointeeType()->isFunctionType()) CaptureType = RefType->getPointeeType(); } // Forbid the lambda copy-capture of autoreleasing variables. if (!Invalid && CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { if (BuildAndDiagnose) { S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1; S.Diag(Var->getLocation(), diag::note_previous_decl) << Var->getDeclName(); Invalid = true; } else { return false; } } // Make sure that by-copy captures are of a complete and non-abstract type. if (!Invalid && BuildAndDiagnose) { if (!CaptureType->isDependentType() && S.RequireCompleteSizedType( Loc, CaptureType, diag::err_capture_of_incomplete_or_sizeless_type, Var->getDeclName())) Invalid = true; else if (S.RequireNonAbstractType(Loc, CaptureType, diag::err_capture_of_abstract_type)) Invalid = true; } } // Compute the type of a reference to this captured variable. if (ByRef) DeclRefType = CaptureType.getNonReferenceType(); else { // C++ [expr.prim.lambda]p5: // The closure type for a lambda-expression has a public inline // function call operator [...]. This function call operator is // declared const (9.3.1) if and only if the lambda-expression's // parameter-declaration-clause is not followed by mutable. DeclRefType = CaptureType.getNonReferenceType(); if (!LSI->Mutable && !CaptureType->isReferenceType()) DeclRefType.addConst(); } // Add the capture. if (BuildAndDiagnose) LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable, Loc, EllipsisLoc, CaptureType, Invalid); return !Invalid; } static bool canCaptureVariableByCopy(VarDecl *Var, const ASTContext &Context) { // Offer a Copy fix even if the type is dependent. if (Var->getType()->isDependentType()) return true; QualType T = Var->getType().getNonReferenceType(); if (T.isTriviallyCopyableType(Context)) return true; if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { if (!(RD = RD->getDefinition())) return false; if (RD->hasSimpleCopyConstructor()) return true; if (RD->hasUserDeclaredCopyConstructor()) for (CXXConstructorDecl *Ctor : RD->ctors()) if (Ctor->isCopyConstructor()) return !Ctor->isDeleted(); } return false; } /// Create up to 4 fix-its for explicit reference and value capture of \p Var or /// default capture. Fixes may be omitted if they aren't allowed by the /// standard, for example we can't emit a default copy capture fix-it if we /// already explicitly copy capture capture another variable. static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI, VarDecl *Var) { assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None); // Don't offer Capture by copy of default capture by copy fixes if Var is // known not to be copy constructible. bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext()); SmallString<32> FixBuffer; StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : ""; if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) { SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd(); if (ShouldOfferCopyFix) { // Offer fixes to insert an explicit capture for the variable. // [] -> [VarName] // [OtherCapture] -> [OtherCapture, VarName] FixBuffer.assign({Separator, Var->getName()}); Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit) << Var << /*value*/ 0 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer); } // As above but capture by reference. FixBuffer.assign({Separator, "&", Var->getName()}); Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit) << Var << /*reference*/ 1 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer); } // Only try to offer default capture if there are no captures excluding this // and init captures. // [this]: OK. // [X = Y]: OK. // [&A, &B]: Don't offer. // [A, B]: Don't offer. if (llvm::any_of(LSI->Captures, [](Capture &C) { return !C.isThisCapture() && !C.isInitCapture(); })) return; // The default capture specifiers, '=' or '&', must appear first in the // capture body. SourceLocation DefaultInsertLoc = LSI->IntroducerRange.getBegin().getLocWithOffset(1); if (ShouldOfferCopyFix) { bool CanDefaultCopyCapture = true; // [=, *this] OK since c++17 // [=, this] OK since c++20 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20) CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17 ? LSI->getCXXThisCapture().isCopyCapture() : false; // We can't use default capture by copy if any captures already specified // capture by copy. if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) { return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture(); })) { FixBuffer.assign({"=", Separator}); Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit) << /*value*/ 0 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer); } } // We can't use default capture by reference if any captures already specified // capture by reference. if (llvm::none_of(LSI->Captures, [](Capture &C) { return !C.isInitCapture() && C.isReferenceCapture() && !C.isThisCapture(); })) { FixBuffer.assign({"&", Separator}); Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit) << /*reference*/ 1 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer); } } bool Sema::tryCaptureVariable( VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) { // An init-capture is notionally from the context surrounding its // declaration, but its parent DC is the lambda class. DeclContext *VarDC = Var->getDeclContext(); if (Var->isInitCapture()) VarDC = VarDC->getParent(); DeclContext *DC = CurContext; const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; // We need to sync up the Declaration Context with the // FunctionScopeIndexToStopAt if (FunctionScopeIndexToStopAt) { unsigned FSIndex = FunctionScopes.size() - 1; while (FSIndex != MaxFunctionScopesIndex) { DC = getLambdaAwareParentOfDeclContext(DC); --FSIndex; } } // If the variable is declared in the current context, there is no need to // capture it. if (VarDC == DC) return true; // Capture global variables if it is required to use private copy of this // variable. bool IsGlobal = !Var->hasLocalStorage(); if (IsGlobal && !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true, MaxFunctionScopesIndex))) return true; Var = Var->getCanonicalDecl(); // Walk up the stack to determine whether we can capture the variable, // performing the "simple" checks that don't depend on type. We stop when // we've either hit the declared scope of the variable or find an existing // capture of that variable. We start from the innermost capturing-entity // (the DC) and ensure that all intervening capturing-entities // (blocks/lambdas etc.) between the innermost capturer and the variable`s // declcontext can either capture the variable or have already captured // the variable. CaptureType = Var->getType(); DeclRefType = CaptureType.getNonReferenceType(); bool Nested = false; bool Explicit = (Kind != TryCapture_Implicit); unsigned FunctionScopesIndex = MaxFunctionScopesIndex; do { // Only block literals, captured statements, and lambda expressions can // capture; other scopes don't work. DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var, ExprLoc, BuildAndDiagnose, *this); // We need to check for the parent *first* because, if we *have* // private-captured a global variable, we need to recursively capture it in // intermediate blocks, lambdas, etc. if (!ParentDC) { if (IsGlobal) { FunctionScopesIndex = MaxFunctionScopesIndex - 1; break; } return true; } FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex]; CapturingScopeInfo *CSI = cast(FSI); // Check whether we've already captured it. if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType, DeclRefType)) { CSI->getCapture(Var).markUsed(BuildAndDiagnose); break; } // If we are instantiating a generic lambda call operator body, // we do not want to capture new variables. What was captured // during either a lambdas transformation or initial parsing // should be used. if (isGenericLambdaCallOperatorSpecialization(DC)) { if (BuildAndDiagnose) { LambdaScopeInfo *LSI = cast(CSI); if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) { Diag(ExprLoc, diag::err_lambda_impcap) << Var; Diag(Var->getLocation(), diag::note_previous_decl) << Var; Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl); buildLambdaCaptureFixit(*this, LSI, Var); } else diagnoseUncapturableValueReference(*this, ExprLoc, Var); } return true; } // Try to capture variable-length arrays types. if (Var->getType()->isVariablyModifiedType()) { // We're going to walk down into the type and look for VLA // expressions. QualType QTy = Var->getType(); if (ParmVarDecl *PVD = dyn_cast_or_null(Var)) QTy = PVD->getOriginalType(); captureVariablyModifiedType(Context, QTy, CSI); } if (getLangOpts().OpenMP) { if (auto *RSI = dyn_cast(CSI)) { // OpenMP private variables should not be captured in outer scope, so // just break here. Similarly, global variables that are captured in a // target region should not be captured outside the scope of the region. if (RSI->CapRegionKind == CR_OpenMP) { OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl( Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel); // If the variable is private (i.e. not captured) and has variably // modified type, we still need to capture the type for correct // codegen in all regions, associated with the construct. Currently, // it is captured in the innermost captured region only. if (IsOpenMPPrivateDecl != OMPC_unknown && Var->getType()->isVariablyModifiedType()) { QualType QTy = Var->getType(); if (ParmVarDecl *PVD = dyn_cast_or_null(Var)) QTy = PVD->getOriginalType(); for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel); I < E; ++I) { auto *OuterRSI = cast( FunctionScopes[FunctionScopesIndex - I]); assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel && "Wrong number of captured regions associated with the " "OpenMP construct."); captureVariablyModifiedType(Context, QTy, OuterRSI); } } bool IsTargetCap = IsOpenMPPrivateDecl != OMPC_private && isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel); // Do not capture global if it is not privatized in outer regions. bool IsGlobalCap = IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel); // When we detect target captures we are looking from inside the // target region, therefore we need to propagate the capture from the // enclosing region. Therefore, the capture is not initially nested. if (IsTargetCap) adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel); if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private || (IsGlobal && !IsGlobalCap)) { Nested = !IsTargetCap; bool HasConst = DeclRefType.isConstQualified(); DeclRefType = DeclRefType.getUnqualifiedType(); // Don't lose diagnostics about assignments to const. if (HasConst) DeclRefType.addConst(); CaptureType = Context.getLValueReferenceType(DeclRefType); break; } } } } if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) { // No capture-default, and this is not an explicit capture // so cannot capture this variable. if (BuildAndDiagnose) { Diag(ExprLoc, diag::err_lambda_impcap) << Var; Diag(Var->getLocation(), diag::note_previous_decl) << Var; auto *LSI = cast(CSI); if (LSI->Lambda) { Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl); buildLambdaCaptureFixit(*this, LSI, Var); } // FIXME: If we error out because an outer lambda can not implicitly // capture a variable that an inner lambda explicitly captures, we // should have the inner lambda do the explicit capture - because // it makes for cleaner diagnostics later. This would purely be done // so that the diagnostic does not misleadingly claim that a variable // can not be captured by a lambda implicitly even though it is captured // explicitly. Suggestion: // - create const bool VariableCaptureWasInitiallyExplicit = Explicit // at the function head // - cache the StartingDeclContext - this must be a lambda // - captureInLambda in the innermost lambda the variable. } return true; } FunctionScopesIndex--; DC = ParentDC; Explicit = false; } while (!VarDC->Equals(DC)); // Walk back down the scope stack, (e.g. from outer lambda to inner lambda) // computing the type of the capture at each step, checking type-specific // requirements, and adding captures if requested. // If the variable had already been captured previously, we start capturing // at the lambda nested within that one. bool Invalid = false; for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N; ++I) { CapturingScopeInfo *CSI = cast(FunctionScopes[I]); // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture // certain types of variables (unnamed, variably modified types etc.) // so check for eligibility. if (!Invalid) Invalid = !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this); // After encountering an error, if we're actually supposed to capture, keep // capturing in nested contexts to suppress any follow-on diagnostics. if (Invalid && !BuildAndDiagnose) return true; if (BlockScopeInfo *BSI = dyn_cast(CSI)) { Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested, *this, Invalid); Nested = true; } else if (CapturedRegionScopeInfo *RSI = dyn_cast(CSI)) { Invalid = !captureInCapturedRegion( RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested, Kind, /*IsTopScope*/ I == N - 1, *this, Invalid); Nested = true; } else { LambdaScopeInfo *LSI = cast(CSI); Invalid = !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested, Kind, EllipsisLoc, /*IsTopScope*/ I == N - 1, *this, Invalid); Nested = true; } if (Invalid && !BuildAndDiagnose) return true; } return Invalid; } bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc) { QualType CaptureType; QualType DeclRefType; return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc, /*BuildAndDiagnose=*/true, CaptureType, DeclRefType, nullptr); } bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) { QualType CaptureType; QualType DeclRefType; return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), /*BuildAndDiagnose=*/false, CaptureType, DeclRefType, nullptr); } QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) { QualType CaptureType; QualType DeclRefType; // Determine whether we can capture this variable. if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), /*BuildAndDiagnose=*/false, CaptureType, DeclRefType, nullptr)) return QualType(); return DeclRefType; } namespace { // Helper to copy the template arguments from a DeclRefExpr or MemberExpr. // The produced TemplateArgumentListInfo* points to data stored within this // object, so should only be used in contexts where the pointer will not be // used after the CopiedTemplateArgs object is destroyed. class CopiedTemplateArgs { bool HasArgs; TemplateArgumentListInfo TemplateArgStorage; public: template CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) { if (HasArgs) E->copyTemplateArgumentsInto(TemplateArgStorage); } operator TemplateArgumentListInfo*() #ifdef __has_cpp_attribute #if __has_cpp_attribute(clang::lifetimebound) [[clang::lifetimebound]] #endif #endif { return HasArgs ? &TemplateArgStorage : nullptr; } }; } /// Walk the set of potential results of an expression and mark them all as /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason. /// /// \return A new expression if we found any potential results, ExprEmpty() if /// not, and ExprError() if we diagnosed an error. static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E, NonOdrUseReason NOUR) { // Per C++11 [basic.def.odr], a variable is odr-used "unless it is // an object that satisfies the requirements for appearing in a // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1) // is immediately applied." This function handles the lvalue-to-rvalue // conversion part. // // If we encounter a node that claims to be an odr-use but shouldn't be, we // transform it into the relevant kind of non-odr-use node and rebuild the // tree of nodes leading to it. // // This is a mini-TreeTransform that only transforms a restricted subset of // nodes (and only certain operands of them). // Rebuild a subexpression. auto Rebuild = [&](Expr *Sub) { return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR); }; // Check whether a potential result satisfies the requirements of NOUR. auto IsPotentialResultOdrUsed = [&](NamedDecl *D) { // Any entity other than a VarDecl is always odr-used whenever it's named // in a potentially-evaluated expression. auto *VD = dyn_cast(D); if (!VD) return true; // C++2a [basic.def.odr]p4: // A variable x whose name appears as a potentially-evalauted expression // e is odr-used by e unless // -- x is a reference that is usable in constant expressions, or // -- x is a variable of non-reference type that is usable in constant // expressions and has no mutable subobjects, and e is an element of // the set of potential results of an expression of // non-volatile-qualified non-class type to which the lvalue-to-rvalue // conversion is applied, or // -- x is a variable of non-reference type, and e is an element of the // set of potential results of a discarded-value expression to which // the lvalue-to-rvalue conversion is not applied // // We check the first bullet and the "potentially-evaluated" condition in // BuildDeclRefExpr. We check the type requirements in the second bullet // in CheckLValueToRValueConversionOperand below. switch (NOUR) { case NOUR_None: case NOUR_Unevaluated: llvm_unreachable("unexpected non-odr-use-reason"); case NOUR_Constant: // Constant references were handled when they were built. if (VD->getType()->isReferenceType()) return true; if (auto *RD = VD->getType()->getAsCXXRecordDecl()) if (RD->hasMutableFields()) return true; if (!VD->isUsableInConstantExpressions(S.Context)) return true; break; case NOUR_Discarded: if (VD->getType()->isReferenceType()) return true; break; } return false; }; // Mark that this expression does not constitute an odr-use. auto MarkNotOdrUsed = [&] { S.MaybeODRUseExprs.remove(E); if (LambdaScopeInfo *LSI = S.getCurLambda()) LSI->markVariableExprAsNonODRUsed(E); }; // C++2a [basic.def.odr]p2: // The set of potential results of an expression e is defined as follows: switch (E->getStmtClass()) { // -- If e is an id-expression, ... case Expr::DeclRefExprClass: { auto *DRE = cast(E); if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl())) break; // Rebuild as a non-odr-use DeclRefExpr. MarkNotOdrUsed(); return DeclRefExpr::Create( S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(), DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(), DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(), DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR); } case Expr::FunctionParmPackExprClass: { auto *FPPE = cast(E); // If any of the declarations in the pack is odr-used, then the expression // as a whole constitutes an odr-use. for (VarDecl *D : *FPPE) if (IsPotentialResultOdrUsed(D)) return ExprEmpty(); // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice, // nothing cares about whether we marked this as an odr-use, but it might // be useful for non-compiler tools. MarkNotOdrUsed(); break; } // -- If e is a subscripting operation with an array operand... case Expr::ArraySubscriptExprClass: { auto *ASE = cast(E); Expr *OldBase = ASE->getBase()->IgnoreImplicit(); if (!OldBase->getType()->isArrayType()) break; ExprResult Base = Rebuild(OldBase); if (!Base.isUsable()) return Base; Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS(); Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS(); SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored. return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS, ASE->getRBracketLoc()); } case Expr::MemberExprClass: { auto *ME = cast(E); // -- If e is a class member access expression [...] naming a non-static // data member... if (isa(ME->getMemberDecl())) { ExprResult Base = Rebuild(ME->getBase()); if (!Base.isUsable()) return Base; return MemberExpr::Create( S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(), ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(), ME->getObjectKind(), ME->isNonOdrUse()); } if (ME->getMemberDecl()->isCXXInstanceMember()) break; // -- If e is a class member access expression naming a static data member, // ... if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl())) break; // Rebuild as a non-odr-use MemberExpr. MarkNotOdrUsed(); return MemberExpr::Create( S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(), ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR); } case Expr::BinaryOperatorClass: { auto *BO = cast(E); Expr *LHS = BO->getLHS(); Expr *RHS = BO->getRHS(); // -- If e is a pointer-to-member expression of the form e1 .* e2 ... if (BO->getOpcode() == BO_PtrMemD) { ExprResult Sub = Rebuild(LHS); if (!Sub.isUsable()) return Sub; LHS = Sub.get(); // -- If e is a comma expression, ... } else if (BO->getOpcode() == BO_Comma) { ExprResult Sub = Rebuild(RHS); if (!Sub.isUsable()) return Sub; RHS = Sub.get(); } else { break; } return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(), LHS, RHS); } // -- If e has the form (e1)... case Expr::ParenExprClass: { auto *PE = cast(E); ExprResult Sub = Rebuild(PE->getSubExpr()); if (!Sub.isUsable()) return Sub; return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get()); } // -- If e is a glvalue conditional expression, ... // We don't apply this to a binary conditional operator. FIXME: Should we? case Expr::ConditionalOperatorClass: { auto *CO = cast(E); ExprResult LHS = Rebuild(CO->getLHS()); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = Rebuild(CO->getRHS()); if (RHS.isInvalid()) return ExprError(); if (!LHS.isUsable() && !RHS.isUsable()) return ExprEmpty(); if (!LHS.isUsable()) LHS = CO->getLHS(); if (!RHS.isUsable()) RHS = CO->getRHS(); return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(), CO->getCond(), LHS.get(), RHS.get()); } // [Clang extension] // -- If e has the form __extension__ e1... case Expr::UnaryOperatorClass: { auto *UO = cast(E); if (UO->getOpcode() != UO_Extension) break; ExprResult Sub = Rebuild(UO->getSubExpr()); if (!Sub.isUsable()) return Sub; return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension, Sub.get()); } // [Clang extension] // -- If e has the form _Generic(...), the set of potential results is the // union of the sets of potential results of the associated expressions. case Expr::GenericSelectionExprClass: { auto *GSE = cast(E); SmallVector AssocExprs; bool AnyChanged = false; for (Expr *OrigAssocExpr : GSE->getAssocExprs()) { ExprResult AssocExpr = Rebuild(OrigAssocExpr); if (AssocExpr.isInvalid()) return ExprError(); if (AssocExpr.isUsable()) { AssocExprs.push_back(AssocExpr.get()); AnyChanged = true; } else { AssocExprs.push_back(OrigAssocExpr); } } return AnyChanged ? S.CreateGenericSelectionExpr( GSE->getGenericLoc(), GSE->getDefaultLoc(), GSE->getRParenLoc(), GSE->getControllingExpr(), GSE->getAssocTypeSourceInfos(), AssocExprs) : ExprEmpty(); } // [Clang extension] // -- If e has the form __builtin_choose_expr(...), the set of potential // results is the union of the sets of potential results of the // second and third subexpressions. case Expr::ChooseExprClass: { auto *CE = cast(E); ExprResult LHS = Rebuild(CE->getLHS()); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = Rebuild(CE->getLHS()); if (RHS.isInvalid()) return ExprError(); if (!LHS.get() && !RHS.get()) return ExprEmpty(); if (!LHS.isUsable()) LHS = CE->getLHS(); if (!RHS.isUsable()) RHS = CE->getRHS(); return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(), RHS.get(), CE->getRParenLoc()); } // Step through non-syntactic nodes. case Expr::ConstantExprClass: { auto *CE = cast(E); ExprResult Sub = Rebuild(CE->getSubExpr()); if (!Sub.isUsable()) return Sub; return ConstantExpr::Create(S.Context, Sub.get()); } // We could mostly rely on the recursive rebuilding to rebuild implicit // casts, but not at the top level, so rebuild them here. case Expr::ImplicitCastExprClass: { auto *ICE = cast(E); // Only step through the narrow set of cast kinds we expect to encounter. // Anything else suggests we've left the region in which potential results // can be found. switch (ICE->getCastKind()) { case CK_NoOp: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: { ExprResult Sub = Rebuild(ICE->getSubExpr()); if (!Sub.isUsable()) return Sub; CXXCastPath Path(ICE->path()); return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(), ICE->getValueKind(), &Path); } default: break; } break; } default: break; } // Can't traverse through this node. Nothing to do. return ExprEmpty(); } ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) { // Check whether the operand is or contains an object of non-trivial C union // type. if (E->getType().isVolatileQualified() && (E->getType().hasNonTrivialToPrimitiveDestructCUnion() || E->getType().hasNonTrivialToPrimitiveCopyCUnion())) checkNonTrivialCUnion(E->getType(), E->getExprLoc(), Sema::NTCUC_LValueToRValueVolatile, NTCUK_Destruct|NTCUK_Copy); // C++2a [basic.def.odr]p4: // [...] an expression of non-volatile-qualified non-class type to which // the lvalue-to-rvalue conversion is applied [...] if (E->getType().isVolatileQualified() || E->getType()->getAs()) return E; ExprResult Result = rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant); if (Result.isInvalid()) return ExprError(); return Result.get() ? Result : E; } ExprResult Sema::ActOnConstantExpression(ExprResult Res) { Res = CorrectDelayedTyposInExpr(Res); if (!Res.isUsable()) return Res; // If a constant-expression is a reference to a variable where we delay // deciding whether it is an odr-use, just assume we will apply the // lvalue-to-rvalue conversion. In the one case where this doesn't happen // (a non-type template argument), we have special handling anyway. return CheckLValueToRValueConversionOperand(Res.get()); } void Sema::CleanupVarDeclMarking() { // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive // call. MaybeODRUseExprSet LocalMaybeODRUseExprs; std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs); for (Expr *E : LocalMaybeODRUseExprs) { if (auto *DRE = dyn_cast(E)) { MarkVarDeclODRUsed(cast(DRE->getDecl()), DRE->getLocation(), *this); } else if (auto *ME = dyn_cast(E)) { MarkVarDeclODRUsed(cast(ME->getMemberDecl()), ME->getMemberLoc(), *this); } else if (auto *FP = dyn_cast(E)) { for (VarDecl *VD : *FP) MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this); } else { llvm_unreachable("Unexpected expression"); } } assert(MaybeODRUseExprs.empty() && "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?"); } static void DoMarkVarDeclReferenced( Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E, llvm::DenseMap &RefsMinusAssignments) { assert((!E || isa(E) || isa(E) || isa(E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"); Var->setReferenced(); if (Var->isInvalidDecl()) return; auto *MSI = Var->getMemberSpecializationInfo(); TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind() : Var->getTemplateSpecializationKind(); OdrUseContext OdrUse = isOdrUseContext(SemaRef); bool UsableInConstantExpr = Var->mightBeUsableInConstantExpressions(SemaRef.Context); if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) { RefsMinusAssignments.insert({Var, 0}).first->getSecond()++; } // C++20 [expr.const]p12: // A variable [...] is needed for constant evaluation if it is [...] a // variable whose name appears as a potentially constant evaluated // expression that is either a contexpr variable or is of non-volatile // const-qualified integral type or of reference type bool NeededForConstantEvaluation = isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr; bool NeedDefinition = OdrUse == OdrUseContext::Used || NeededForConstantEvaluation; assert(!isa(Var) && "Can't instantiate a partial template specialization."); // If this might be a member specialization of a static data member, check // the specialization is visible. We already did the checks for variable // template specializations when we created them. if (NeedDefinition && TSK != TSK_Undeclared && !isa(Var)) SemaRef.checkSpecializationVisibility(Loc, Var); // Perform implicit instantiation of static data members, static data member // templates of class templates, and variable template specializations. Delay // instantiations of variable templates, except for those that could be used // in a constant expression. if (NeedDefinition && isTemplateInstantiation(TSK)) { // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit // instantiation declaration if a variable is usable in a constant // expression (among other cases). bool TryInstantiating = TSK == TSK_ImplicitInstantiation || (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr); if (TryInstantiating) { SourceLocation PointOfInstantiation = MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation(); bool FirstInstantiation = PointOfInstantiation.isInvalid(); if (FirstInstantiation) { PointOfInstantiation = Loc; if (MSI) MSI->setPointOfInstantiation(PointOfInstantiation); // FIXME: Notify listener. else Var->setTemplateSpecializationKind(TSK, PointOfInstantiation); } if (UsableInConstantExpr) { // Do not defer instantiations of variables that could be used in a // constant expression. SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] { SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var); }); // Re-set the member to trigger a recomputation of the dependence bits // for the expression. if (auto *DRE = dyn_cast_or_null(E)) DRE->setDecl(DRE->getDecl()); else if (auto *ME = dyn_cast_or_null(E)) ME->setMemberDecl(ME->getMemberDecl()); } else if (FirstInstantiation || isa(Var)) { // FIXME: For a specialization of a variable template, we don't // distinguish between "declaration and type implicitly instantiated" // and "implicit instantiation of definition requested", so we have // no direct way to avoid enqueueing the pending instantiation // multiple times. SemaRef.PendingInstantiations .push_back(std::make_pair(Var, PointOfInstantiation)); } } } // C++2a [basic.def.odr]p4: // A variable x whose name appears as a potentially-evaluated expression e // is odr-used by e unless // -- x is a reference that is usable in constant expressions // -- x is a variable of non-reference type that is usable in constant // expressions and has no mutable subobjects [FIXME], and e is an // element of the set of potential results of an expression of // non-volatile-qualified non-class type to which the lvalue-to-rvalue // conversion is applied // -- x is a variable of non-reference type, and e is an element of the set // of potential results of a discarded-value expression to which the // lvalue-to-rvalue conversion is not applied [FIXME] // // We check the first part of the second bullet here, and // Sema::CheckLValueToRValueConversionOperand deals with the second part. // FIXME: To get the third bullet right, we need to delay this even for // variables that are not usable in constant expressions. // If we already know this isn't an odr-use, there's nothing more to do. if (DeclRefExpr *DRE = dyn_cast_or_null(E)) if (DRE->isNonOdrUse()) return; if (MemberExpr *ME = dyn_cast_or_null(E)) if (ME->isNonOdrUse()) return; switch (OdrUse) { case OdrUseContext::None: assert((!E || isa(E)) && "missing non-odr-use marking for unevaluated decl ref"); break; case OdrUseContext::FormallyOdrUsed: // FIXME: Ignoring formal odr-uses results in incorrect lambda capture // behavior. break; case OdrUseContext::Used: // If we might later find that this expression isn't actually an odr-use, // delay the marking. if (E && Var->isUsableInConstantExpressions(SemaRef.Context)) SemaRef.MaybeODRUseExprs.insert(E); else MarkVarDeclODRUsed(Var, Loc, SemaRef); break; case OdrUseContext::Dependent: // If this is a dependent context, we don't need to mark variables as // odr-used, but we may still need to track them for lambda capture. // FIXME: Do we also need to do this inside dependent typeid expressions // (which are modeled as unevaluated at this point)? const bool RefersToEnclosingScope = (SemaRef.CurContext != Var->getDeclContext() && Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage()); if (RefersToEnclosingScope) { LambdaScopeInfo *const LSI = SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true); if (LSI && (!LSI->CallOperator || !LSI->CallOperator->Encloses(Var->getDeclContext()))) { // If a variable could potentially be odr-used, defer marking it so // until we finish analyzing the full expression for any // lvalue-to-rvalue // or discarded value conversions that would obviate odr-use. // Add it to the list of potential captures that will be analyzed // later (ActOnFinishFullExpr) for eventual capture and odr-use marking // unless the variable is a reference that was initialized by a constant // expression (this will never need to be captured or odr-used). // // FIXME: We can simplify this a lot after implementing P0588R1. assert(E && "Capture variable should be used in an expression."); if (!Var->getType()->isReferenceType() || !Var->isUsableInConstantExpressions(SemaRef.Context)) LSI->addPotentialCapture(E->IgnoreParens()); } } break; } } /// Mark a variable referenced, and check whether it is odr-used /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be /// used directly for normal expressions referring to VarDecl. void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) { DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments); } static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E, bool MightBeOdrUse, llvm::DenseMap &RefsMinusAssignments) { if (SemaRef.isInOpenMPDeclareTargetContext()) SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D); if (VarDecl *Var = dyn_cast(D)) { DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments); return; } SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse); // If this is a call to a method via a cast, also mark the method in the // derived class used in case codegen can devirtualize the call. const MemberExpr *ME = dyn_cast(E); if (!ME) return; CXXMethodDecl *MD = dyn_cast(ME->getMemberDecl()); if (!MD) return; // Only attempt to devirtualize if this is truly a virtual call. bool IsVirtualCall = MD->isVirtual() && ME->performsVirtualDispatch(SemaRef.getLangOpts()); if (!IsVirtualCall) return; // If it's possible to devirtualize the call, mark the called function // referenced. CXXMethodDecl *DM = MD->getDevirtualizedMethod( ME->getBase(), SemaRef.getLangOpts().AppleKext); if (DM) SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse); } /// Perform reference-marking and odr-use handling for a DeclRefExpr. /// /// Note, this may change the dependence of the DeclRefExpr, and so needs to be /// handled with care if the DeclRefExpr is not newly-created. void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) { // TODO: update this with DR# once a defect report is filed. // C++11 defect. The address of a pure member should not be an ODR use, even // if it's a qualified reference. bool OdrUse = true; if (const CXXMethodDecl *Method = dyn_cast(E->getDecl())) if (Method->isVirtual() && !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) OdrUse = false; if (auto *FD = dyn_cast(E->getDecl())) if (!isUnevaluatedContext() && !isConstantEvaluated() && FD->isConsteval() && !RebuildingImmediateInvocation) ExprEvalContexts.back().ReferenceToConsteval.insert(E); MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse, RefsMinusAssignments); } /// Perform reference-marking and odr-use handling for a MemberExpr. void Sema::MarkMemberReferenced(MemberExpr *E) { // C++11 [basic.def.odr]p2: // A non-overloaded function whose name appears as a potentially-evaluated // expression or a member of a set of candidate functions, if selected by // overload resolution when referred to from a potentially-evaluated // expression, is odr-used, unless it is a pure virtual function and its // name is not explicitly qualified. bool MightBeOdrUse = true; if (E->performsVirtualDispatch(getLangOpts())) { if (CXXMethodDecl *Method = dyn_cast(E->getMemberDecl())) if (Method->isPure()) MightBeOdrUse = false; } SourceLocation Loc = E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc(); MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse, RefsMinusAssignments); } /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr. void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) { for (VarDecl *VD : *E) MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true, RefsMinusAssignments); } /// Perform marking for a reference to an arbitrary declaration. It /// marks the declaration referenced, and performs odr-use checking for /// functions and variables. This method should not be used when building a /// normal expression which refers to a variable. void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse) { if (MightBeOdrUse) { if (auto *VD = dyn_cast(D)) { MarkVariableReferenced(Loc, VD); return; } } if (auto *FD = dyn_cast(D)) { MarkFunctionReferenced(Loc, FD, MightBeOdrUse); return; } D->setReferenced(); } namespace { // Mark all of the declarations used by a type as referenced. // FIXME: Not fully implemented yet! We need to have a better understanding // of when we're entering a context we should not recurse into. // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to // TreeTransforms rebuilding the type in a new context. Rather than // duplicating the TreeTransform logic, we should consider reusing it here. // Currently that causes problems when rebuilding LambdaExprs. class MarkReferencedDecls : public RecursiveASTVisitor { Sema &S; SourceLocation Loc; public: typedef RecursiveASTVisitor Inherited; MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } bool TraverseTemplateArgument(const TemplateArgument &Arg); }; } bool MarkReferencedDecls::TraverseTemplateArgument( const TemplateArgument &Arg) { { // A non-type template argument is a constant-evaluated context. EnterExpressionEvaluationContext Evaluated( S, Sema::ExpressionEvaluationContext::ConstantEvaluated); if (Arg.getKind() == TemplateArgument::Declaration) { if (Decl *D = Arg.getAsDecl()) S.MarkAnyDeclReferenced(Loc, D, true); } else if (Arg.getKind() == TemplateArgument::Expression) { S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false); } } return Inherited::TraverseTemplateArgument(Arg); } void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { MarkReferencedDecls Marker(*this, Loc); Marker.TraverseType(T); } namespace { /// Helper class that marks all of the declarations referenced by /// potentially-evaluated subexpressions as "referenced". class EvaluatedExprMarker : public UsedDeclVisitor { public: typedef UsedDeclVisitor Inherited; bool SkipLocalVariables; ArrayRef StopAt; EvaluatedExprMarker(Sema &S, bool SkipLocalVariables, ArrayRef StopAt) : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {} void visitUsedDecl(SourceLocation Loc, Decl *D) { S.MarkFunctionReferenced(Loc, cast(D)); } void Visit(Expr *E) { if (llvm::is_contained(StopAt, E)) return; Inherited::Visit(E); } void VisitConstantExpr(ConstantExpr *E) { // Don't mark declarations within a ConstantExpression, as this expression // will be evaluated and folded to a value. } void VisitDeclRefExpr(DeclRefExpr *E) { // If we were asked not to visit local variables, don't. if (SkipLocalVariables) { if (VarDecl *VD = dyn_cast(E->getDecl())) if (VD->hasLocalStorage()) return; } // FIXME: This can trigger the instantiation of the initializer of a // variable, which can cause the expression to become value-dependent // or error-dependent. Do we need to propagate the new dependence bits? S.MarkDeclRefReferenced(E); } void VisitMemberExpr(MemberExpr *E) { S.MarkMemberReferenced(E); Visit(E->getBase()); } }; } // namespace /// Mark any declarations that appear within this expression or any /// potentially-evaluated subexpressions as "referenced". /// /// \param SkipLocalVariables If true, don't mark local variables as /// 'referenced'. /// \param StopAt Subexpressions that we shouldn't recurse into. void Sema::MarkDeclarationsReferencedInExpr(Expr *E, bool SkipLocalVariables, ArrayRef StopAt) { EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E); } /// Emit a diagnostic when statements are reachable. /// FIXME: check for reachability even in expressions for which we don't build a /// CFG (eg, in the initializer of a global or in a constant expression). /// For example, /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; } bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef Stmts, const PartialDiagnostic &PD) { if (!Stmts.empty() && getCurFunctionOrMethodDecl()) { if (!FunctionScopes.empty()) FunctionScopes.back()->PossiblyUnreachableDiags.push_back( sema::PossiblyUnreachableDiag(PD, Loc, Stmts)); return true; } // The initializer of a constexpr variable or of the first declaration of a // static data member is not syntactically a constant evaluated constant, // but nonetheless is always required to be a constant expression, so we // can skip diagnosing. // FIXME: Using the mangling context here is a hack. if (auto *VD = dyn_cast_or_null( ExprEvalContexts.back().ManglingContextDecl)) { if (VD->isConstexpr() || (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline())) return false; // FIXME: For any other kind of variable, we should build a CFG for its // initializer and check whether the context in question is reachable. } Diag(Loc, PD); return true; } /// Emit a diagnostic that describes an effect on the run-time behavior /// of the program being compiled. /// /// This routine emits the given diagnostic when the code currently being /// type-checked is "potentially evaluated", meaning that there is a /// possibility that the code will actually be executable. Code in sizeof() /// expressions, code used only during overload resolution, etc., are not /// potentially evaluated. This routine will suppress such diagnostics or, /// in the absolutely nutty case of potentially potentially evaluated /// expressions (C++ typeid), queue the diagnostic to potentially emit it /// later. /// /// This routine should be used for all diagnostics that describe the run-time /// behavior of a program, such as passing a non-POD value through an ellipsis. /// Failure to do so will likely result in spurious diagnostics or failures /// during overload resolution or within sizeof/alignof/typeof/typeid. bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef Stmts, const PartialDiagnostic &PD) { if (ExprEvalContexts.back().isDiscardedStatementContext()) return false; switch (ExprEvalContexts.back().Context) { case ExpressionEvaluationContext::Unevaluated: case ExpressionEvaluationContext::UnevaluatedList: case ExpressionEvaluationContext::UnevaluatedAbstract: case ExpressionEvaluationContext::DiscardedStatement: // The argument will never be evaluated, so don't complain. break; case ExpressionEvaluationContext::ConstantEvaluated: case ExpressionEvaluationContext::ImmediateFunctionContext: // Relevant diagnostics should be produced by constant evaluation. break; case ExpressionEvaluationContext::PotentiallyEvaluated: case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: return DiagIfReachable(Loc, Stmts, PD); } return false; } bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, const PartialDiagnostic &PD) { return DiagRuntimeBehavior( Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD); } bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, CallExpr *CE, FunctionDecl *FD) { if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) return false; // If we're inside a decltype's expression, don't check for a valid return // type or construct temporaries until we know whether this is the last call. if (ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype) { ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE); return false; } class CallReturnIncompleteDiagnoser : public TypeDiagnoser { FunctionDecl *FD; CallExpr *CE; public: CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE) : FD(FD), CE(CE) { } void diagnose(Sema &S, SourceLocation Loc, QualType T) override { if (!FD) { S.Diag(Loc, diag::err_call_incomplete_return) << T << CE->getSourceRange(); return; } S.Diag(Loc, diag::err_call_function_incomplete_return) << CE->getSourceRange() << FD << T; S.Diag(FD->getLocation(), diag::note_entity_declared_at) << FD->getDeclName(); } } Diagnoser(FD, CE); if (RequireCompleteType(Loc, ReturnType, Diagnoser)) return true; return false; } // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses // will prevent this condition from triggering, which is what we want. void Sema::DiagnoseAssignmentAsCondition(Expr *E) { SourceLocation Loc; unsigned diagnostic = diag::warn_condition_is_assignment; bool IsOrAssign = false; if (BinaryOperator *Op = dyn_cast(E)) { if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign) return; IsOrAssign = Op->getOpcode() == BO_OrAssign; // Greylist some idioms by putting them into a warning subcategory. if (ObjCMessageExpr *ME = dyn_cast(Op->getRHS()->IgnoreParenCasts())) { Selector Sel = ME->getSelector(); // self = [ init...] if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init) diagnostic = diag::warn_condition_is_idiomatic_assignment; // = [ nextObject] else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject") diagnostic = diag::warn_condition_is_idiomatic_assignment; } Loc = Op->getOperatorLoc(); } else if (CXXOperatorCallExpr *Op = dyn_cast(E)) { if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual) return; IsOrAssign = Op->getOperator() == OO_PipeEqual; Loc = Op->getOperatorLoc(); } else if (PseudoObjectExpr *POE = dyn_cast(E)) return DiagnoseAssignmentAsCondition(POE->getSyntacticForm()); else { // Not an assignment. return; } Diag(Loc, diagnostic) << E->getSourceRange(); SourceLocation Open = E->getBeginLoc(); SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd()); Diag(Loc, diag::note_condition_assign_silence) << FixItHint::CreateInsertion(Open, "(") << FixItHint::CreateInsertion(Close, ")"); if (IsOrAssign) Diag(Loc, diag::note_condition_or_assign_to_comparison) << FixItHint::CreateReplacement(Loc, "!="); else Diag(Loc, diag::note_condition_assign_to_comparison) << FixItHint::CreateReplacement(Loc, "=="); } /// Redundant parentheses over an equality comparison can indicate /// that the user intended an assignment used as condition. void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) { // Don't warn if the parens came from a macro. SourceLocation parenLoc = ParenE->getBeginLoc(); if (parenLoc.isInvalid() || parenLoc.isMacroID()) return; // Don't warn for dependent expressions. if (ParenE->isTypeDependent()) return; Expr *E = ParenE->IgnoreParens(); if (BinaryOperator *opE = dyn_cast(E)) if (opE->getOpcode() == BO_EQ && opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context) == Expr::MLV_Valid) { SourceLocation Loc = opE->getOperatorLoc(); Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange(); SourceRange ParenERange = ParenE->getSourceRange(); Diag(Loc, diag::note_equality_comparison_silence) << FixItHint::CreateRemoval(ParenERange.getBegin()) << FixItHint::CreateRemoval(ParenERange.getEnd()); Diag(Loc, diag::note_equality_comparison_to_assign) << FixItHint::CreateReplacement(Loc, "="); } } ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E, bool IsConstexpr) { DiagnoseAssignmentAsCondition(E); if (ParenExpr *parenE = dyn_cast(E)) DiagnoseEqualityWithExtraParens(parenE); ExprResult result = CheckPlaceholderExpr(E); if (result.isInvalid()) return ExprError(); E = result.get(); if (!E->isTypeDependent()) { if (getLangOpts().CPlusPlus) return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E); if (ERes.isInvalid()) return ExprError(); E = ERes.get(); QualType T = E->getType(); if (!T->isScalarType()) { // C99 6.8.4.1p1 Diag(Loc, diag::err_typecheck_statement_requires_scalar) << T << E->getSourceRange(); return ExprError(); } CheckBoolLikeConversion(E, Loc); } return E; } Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc, Expr *SubExpr, ConditionKind CK, bool MissingOK) { // MissingOK indicates whether having no condition expression is valid // (for loop) or invalid (e.g. while loop). if (!SubExpr) return MissingOK ? ConditionResult() : ConditionError(); ExprResult Cond; switch (CK) { case ConditionKind::Boolean: Cond = CheckBooleanCondition(Loc, SubExpr); break; case ConditionKind::ConstexprIf: Cond = CheckBooleanCondition(Loc, SubExpr, true); break; case ConditionKind::Switch: Cond = CheckSwitchCondition(Loc, SubExpr); break; } if (Cond.isInvalid()) { Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(), {SubExpr}, PreferredConditionType(CK)); if (!Cond.get()) return ConditionError(); } // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead. FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc); if (!FullExpr.get()) return ConditionError(); return ConditionResult(*this, nullptr, FullExpr, CK == ConditionKind::ConstexprIf); } namespace { /// A visitor for rebuilding a call to an __unknown_any expression /// to have an appropriate type. struct RebuildUnknownAnyFunction : StmtVisitor { Sema &S; RebuildUnknownAnyFunction(Sema &S) : S(S) {} ExprResult VisitStmt(Stmt *S) { llvm_unreachable("unexpected statement!"); } ExprResult VisitExpr(Expr *E) { S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call) << E->getSourceRange(); return ExprError(); } /// Rebuild an expression which simply semantically wraps another /// expression which it shares the type and value kind of. template ExprResult rebuildSugarExpr(T *E) { ExprResult SubResult = Visit(E->getSubExpr()); if (SubResult.isInvalid()) return ExprError(); Expr *SubExpr = SubResult.get(); E->setSubExpr(SubExpr); E->setType(SubExpr->getType()); E->setValueKind(SubExpr->getValueKind()); assert(E->getObjectKind() == OK_Ordinary); return E; } ExprResult VisitParenExpr(ParenExpr *E) { return rebuildSugarExpr(E); } ExprResult VisitUnaryExtension(UnaryOperator *E) { return rebuildSugarExpr(E); } ExprResult VisitUnaryAddrOf(UnaryOperator *E) { ExprResult SubResult = Visit(E->getSubExpr()); if (SubResult.isInvalid()) return ExprError(); Expr *SubExpr = SubResult.get(); E->setSubExpr(SubExpr); E->setType(S.Context.getPointerType(SubExpr->getType())); assert(E->isPRValue()); assert(E->getObjectKind() == OK_Ordinary); return E; } ExprResult resolveDecl(Expr *E, ValueDecl *VD) { if (!isa(VD)) return VisitExpr(E); E->setType(VD->getType()); assert(E->isPRValue()); if (S.getLangOpts().CPlusPlus && !(isa(VD) && cast(VD)->isInstance())) E->setValueKind(VK_LValue); return E; } ExprResult VisitMemberExpr(MemberExpr *E) { return resolveDecl(E, E->getMemberDecl()); } ExprResult VisitDeclRefExpr(DeclRefExpr *E) { return resolveDecl(E, E->getDecl()); } }; } /// Given a function expression of unknown-any type, try to rebuild it /// to have a function type. static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) { ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr); if (Result.isInvalid()) return ExprError(); return S.DefaultFunctionArrayConversion(Result.get()); } namespace { /// A visitor for rebuilding an expression of type __unknown_anytype /// into one which resolves the type directly on the referring /// expression. Strict preservation of the original source /// structure is not a goal. struct RebuildUnknownAnyExpr : StmtVisitor { Sema &S; /// The current destination type. QualType DestType; RebuildUnknownAnyExpr(Sema &S, QualType CastType) : S(S), DestType(CastType) {} ExprResult VisitStmt(Stmt *S) { llvm_unreachable("unexpected statement!"); } ExprResult VisitExpr(Expr *E) { S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) << E->getSourceRange(); return ExprError(); } ExprResult VisitCallExpr(CallExpr *E); ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E); /// Rebuild an expression which simply semantically wraps another /// expression which it shares the type and value kind of. template ExprResult rebuildSugarExpr(T *E) { ExprResult SubResult = Visit(E->getSubExpr()); if (SubResult.isInvalid()) return ExprError(); Expr *SubExpr = SubResult.get(); E->setSubExpr(SubExpr); E->setType(SubExpr->getType()); E->setValueKind(SubExpr->getValueKind()); assert(E->getObjectKind() == OK_Ordinary); return E; } ExprResult VisitParenExpr(ParenExpr *E) { return rebuildSugarExpr(E); } ExprResult VisitUnaryExtension(UnaryOperator *E) { return rebuildSugarExpr(E); } ExprResult VisitUnaryAddrOf(UnaryOperator *E) { const PointerType *Ptr = DestType->getAs(); if (!Ptr) { S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof) << E->getSourceRange(); return ExprError(); } if (isa(E->getSubExpr())) { S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call) << E->getSourceRange(); return ExprError(); } assert(E->isPRValue()); assert(E->getObjectKind() == OK_Ordinary); E->setType(DestType); // Build the sub-expression as if it were an object of the pointee type. DestType = Ptr->getPointeeType(); ExprResult SubResult = Visit(E->getSubExpr()); if (SubResult.isInvalid()) return ExprError(); E->setSubExpr(SubResult.get()); return E; } ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E); ExprResult resolveDecl(Expr *E, ValueDecl *VD); ExprResult VisitMemberExpr(MemberExpr *E) { return resolveDecl(E, E->getMemberDecl()); } ExprResult VisitDeclRefExpr(DeclRefExpr *E) { return resolveDecl(E, E->getDecl()); } }; } /// Rebuilds a call expression which yielded __unknown_anytype. ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) { Expr *CalleeExpr = E->getCallee(); enum FnKind { FK_MemberFunction, FK_FunctionPointer, FK_BlockPointer }; FnKind Kind; QualType CalleeType = CalleeExpr->getType(); if (CalleeType == S.Context.BoundMemberTy) { assert(isa(E) || isa(E)); Kind = FK_MemberFunction; CalleeType = Expr::findBoundMemberType(CalleeExpr); } else if (const PointerType *Ptr = CalleeType->getAs()) { CalleeType = Ptr->getPointeeType(); Kind = FK_FunctionPointer; } else { CalleeType = CalleeType->castAs()->getPointeeType(); Kind = FK_BlockPointer; } const FunctionType *FnType = CalleeType->castAs(); // Verify that this is a legal result type of a function. if (DestType->isArrayType() || DestType->isFunctionType()) { unsigned diagID = diag::err_func_returning_array_function; if (Kind == FK_BlockPointer) diagID = diag::err_block_returning_array_function; S.Diag(E->getExprLoc(), diagID) << DestType->isFunctionType() << DestType; return ExprError(); } // Otherwise, go ahead and set DestType as the call's result. E->setType(DestType.getNonLValueExprType(S.Context)); E->setValueKind(Expr::getValueKindForType(DestType)); assert(E->getObjectKind() == OK_Ordinary); // Rebuild the function type, replacing the result type with DestType. const FunctionProtoType *Proto = dyn_cast(FnType); if (Proto) { // __unknown_anytype(...) is a special case used by the debugger when // it has no idea what a function's signature is. // // We want to build this call essentially under the K&R // unprototyped rules, but making a FunctionNoProtoType in C++ // would foul up all sorts of assumptions. However, we cannot // simply pass all arguments as variadic arguments, nor can we // portably just call the function under a non-variadic type; see // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic. // However, it turns out that in practice it is generally safe to // call a function declared as "A foo(B,C,D);" under the prototype // "A foo(B,C,D,...);". The only known exception is with the // Windows ABI, where any variadic function is implicitly cdecl // regardless of its normal CC. Therefore we change the parameter // types to match the types of the arguments. // // This is a hack, but it is far superior to moving the // corresponding target-specific code from IR-gen to Sema/AST. ArrayRef ParamTypes = Proto->getParamTypes(); SmallVector ArgTypes; if (ParamTypes.empty() && Proto->isVariadic()) { // the special case ArgTypes.reserve(E->getNumArgs()); for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i))); } ParamTypes = ArgTypes; } DestType = S.Context.getFunctionType(DestType, ParamTypes, Proto->getExtProtoInfo()); } else { DestType = S.Context.getFunctionNoProtoType(DestType, FnType->getExtInfo()); } // Rebuild the appropriate pointer-to-function type. switch (Kind) { case FK_MemberFunction: // Nothing to do. break; case FK_FunctionPointer: DestType = S.Context.getPointerType(DestType); break; case FK_BlockPointer: DestType = S.Context.getBlockPointerType(DestType); break; } // Finally, we can recurse. ExprResult CalleeResult = Visit(CalleeExpr); if (!CalleeResult.isUsable()) return ExprError(); E->setCallee(CalleeResult.get()); // Bind a temporary if necessary. return S.MaybeBindToTemporary(E); } ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) { // Verify that this is a legal result type of a call. if (DestType->isArrayType() || DestType->isFunctionType()) { S.Diag(E->getExprLoc(), diag::err_func_returning_array_function) << DestType->isFunctionType() << DestType; return ExprError(); } // Rewrite the method result type if available. if (ObjCMethodDecl *Method = E->getMethodDecl()) { assert(Method->getReturnType() == S.Context.UnknownAnyTy); Method->setReturnType(DestType); } // Change the type of the message. E->setType(DestType.getNonReferenceType()); E->setValueKind(Expr::getValueKindForType(DestType)); return S.MaybeBindToTemporary(E); } ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) { // The only case we should ever see here is a function-to-pointer decay. if (E->getCastKind() == CK_FunctionToPointerDecay) { assert(E->isPRValue()); assert(E->getObjectKind() == OK_Ordinary); E->setType(DestType); // Rebuild the sub-expression as the pointee (function) type. DestType = DestType->castAs()->getPointeeType(); ExprResult Result = Visit(E->getSubExpr()); if (!Result.isUsable()) return ExprError(); E->setSubExpr(Result.get()); return E; } else if (E->getCastKind() == CK_LValueToRValue) { assert(E->isPRValue()); assert(E->getObjectKind() == OK_Ordinary); assert(isa(E->getType())); E->setType(DestType); // The sub-expression has to be a lvalue reference, so rebuild it as such. DestType = S.Context.getLValueReferenceType(DestType); ExprResult Result = Visit(E->getSubExpr()); if (!Result.isUsable()) return ExprError(); E->setSubExpr(Result.get()); return E; } else { llvm_unreachable("Unhandled cast type!"); } } ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) { ExprValueKind ValueKind = VK_LValue; QualType Type = DestType; // We know how to make this work for certain kinds of decls: // - functions if (FunctionDecl *FD = dyn_cast(VD)) { if (const PointerType *Ptr = Type->getAs()) { DestType = Ptr->getPointeeType(); ExprResult Result = resolveDecl(E, VD); if (Result.isInvalid()) return ExprError(); return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay, VK_PRValue); } if (!Type->isFunctionType()) { S.Diag(E->getExprLoc(), diag::err_unknown_any_function) << VD << E->getSourceRange(); return ExprError(); } if (const FunctionProtoType *FT = Type->getAs()) { // We must match the FunctionDecl's type to the hack introduced in // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown // type. See the lengthy commentary in that routine. QualType FDT = FD->getType(); const FunctionType *FnType = FDT->castAs(); const FunctionProtoType *Proto = dyn_cast_or_null(FnType); DeclRefExpr *DRE = dyn_cast(E); if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) { SourceLocation Loc = FD->getLocation(); FunctionDecl *NewFD = FunctionDecl::Create( S.Context, FD->getDeclContext(), Loc, Loc, FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(), SC_None, S.getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/, FD->hasPrototype(), /*ConstexprKind*/ ConstexprSpecKind::Unspecified); if (FD->getQualifier()) NewFD->setQualifierInfo(FD->getQualifierLoc()); SmallVector Params; for (const auto &AI : FT->param_types()) { ParmVarDecl *Param = S.BuildParmVarDeclForTypedef(FD, Loc, AI); Param->setScopeInfo(0, Params.size()); Params.push_back(Param); } NewFD->setParams(Params); DRE->setDecl(NewFD); VD = DRE->getDecl(); } } if (CXXMethodDecl *MD = dyn_cast(FD)) if (MD->isInstance()) { ValueKind = VK_PRValue; Type = S.Context.BoundMemberTy; } // Function references aren't l-values in C. if (!S.getLangOpts().CPlusPlus) ValueKind = VK_PRValue; // - variables } else if (isa(VD)) { if (const ReferenceType *RefTy = Type->getAs()) { Type = RefTy->getPointeeType(); } else if (Type->isFunctionType()) { S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type) << VD << E->getSourceRange(); return ExprError(); } // - nothing else } else { S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl) << VD << E->getSourceRange(); return ExprError(); } // Modifying the declaration like this is friendly to IR-gen but // also really dangerous. VD->setType(DestType); E->setType(Type); E->setValueKind(ValueKind); return E; } /// Check a cast of an unknown-any type. We intentionally only /// trigger this for C-style casts. ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, Expr *CastExpr, CastKind &CastKind, ExprValueKind &VK, CXXCastPath &Path) { // The type we're casting to must be either void or complete. if (!CastType->isVoidType() && RequireCompleteType(TypeRange.getBegin(), CastType, diag::err_typecheck_cast_to_incomplete)) return ExprError(); // Rewrite the casted expression from scratch. ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr); if (!result.isUsable()) return ExprError(); CastExpr = result.get(); VK = CastExpr->getValueKind(); CastKind = CK_NoOp; return CastExpr; } ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) { return RebuildUnknownAnyExpr(*this, ToType).Visit(E); } ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc, Expr *arg, QualType ¶mType) { // If the syntactic form of the argument is not an explicit cast of // any sort, just do default argument promotion. ExplicitCastExpr *castArg = dyn_cast(arg->IgnoreParens()); if (!castArg) { ExprResult result = DefaultArgumentPromotion(arg); if (result.isInvalid()) return ExprError(); paramType = result.get()->getType(); return result; } // Otherwise, use the type that was written in the explicit cast. assert(!arg->hasPlaceholderType()); paramType = castArg->getTypeAsWritten(); // Copy-initialize a parameter of that type. InitializedEntity entity = InitializedEntity::InitializeParameter(Context, paramType, /*consumed*/ false); return PerformCopyInitialization(entity, callLoc, arg); } static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) { Expr *orig = E; unsigned diagID = diag::err_uncasted_use_of_unknown_any; while (true) { E = E->IgnoreParenImpCasts(); if (CallExpr *call = dyn_cast(E)) { E = call->getCallee(); diagID = diag::err_uncasted_call_of_unknown_any; } else { break; } } SourceLocation loc; NamedDecl *d; if (DeclRefExpr *ref = dyn_cast(E)) { loc = ref->getLocation(); d = ref->getDecl(); } else if (MemberExpr *mem = dyn_cast(E)) { loc = mem->getMemberLoc(); d = mem->getMemberDecl(); } else if (ObjCMessageExpr *msg = dyn_cast(E)) { diagID = diag::err_uncasted_call_of_unknown_any; loc = msg->getSelectorStartLoc(); d = msg->getMethodDecl(); if (!d) { S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method) << static_cast(msg->isClassMessage()) << msg->getSelector() << orig->getSourceRange(); return ExprError(); } } else { S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) << E->getSourceRange(); return ExprError(); } S.Diag(loc, diagID) << d << orig->getSourceRange(); // Never recoverable. return ExprError(); } /// Check for operands with placeholder types and complain if found. /// Returns ExprError() if there was an error and no recovery was possible. ExprResult Sema::CheckPlaceholderExpr(Expr *E) { if (!Context.isDependenceAllowed()) { // C cannot handle TypoExpr nodes on either side of a binop because it // doesn't handle dependent types properly, so make sure any TypoExprs have // been dealt with before checking the operands. ExprResult Result = CorrectDelayedTyposInExpr(E); if (!Result.isUsable()) return ExprError(); E = Result.get(); } const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType(); if (!placeholderType) return E; switch (placeholderType->getKind()) { // Overloaded expressions. case BuiltinType::Overload: { // Try to resolve a single function template specialization. // This is obligatory. ExprResult Result = E; if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false)) return Result; // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization // leaves Result unchanged on failure. Result = E; if (resolveAndFixAddressOfSingleOverloadCandidate(Result)) return Result; // If that failed, try to recover with a call. tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable), /*complain*/ true); return Result; } // Bound member functions. case BuiltinType::BoundMember: { ExprResult result = E; const Expr *BME = E->IgnoreParens(); PartialDiagnostic PD = PDiag(diag::err_bound_member_function); // Try to give a nicer diagnostic if it is a bound member that we recognize. if (isa(BME)) { PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1; } else if (const auto *ME = dyn_cast(BME)) { if (ME->getMemberNameInfo().getName().getNameKind() == DeclarationName::CXXDestructorName) PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0; } tryToRecoverWithCall(result, PD, /*complain*/ true); return result; } // ARC unbridged casts. case BuiltinType::ARCUnbridgedCast: { Expr *realCast = stripARCUnbridgedCast(E); diagnoseARCUnbridgedCast(realCast); return realCast; } // Expressions of unknown type. case BuiltinType::UnknownAny: return diagnoseUnknownAnyExpr(*this, E); // Pseudo-objects. case BuiltinType::PseudoObject: return checkPseudoObjectRValue(E); case BuiltinType::BuiltinFn: { // Accept __noop without parens by implicitly converting it to a call expr. auto *DRE = dyn_cast(E->IgnoreParenImpCasts()); if (DRE) { auto *FD = cast(DRE->getDecl()); unsigned BuiltinID = FD->getBuiltinID(); if (BuiltinID == Builtin::BI__noop) { E = ImpCastExprToType(E, Context.getPointerType(FD->getType()), CK_BuiltinFnToFnPtr) .get(); return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy, VK_PRValue, SourceLocation(), FPOptionsOverride()); } if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) { // Any use of these other than a direct call is ill-formed as of C++20, // because they are not addressable functions. In earlier language // modes, warn and force an instantiation of the real body. Diag(E->getBeginLoc(), getLangOpts().CPlusPlus20 ? diag::err_use_of_unaddressable_function : diag::warn_cxx20_compat_use_of_unaddressable_function); if (FD->isImplicitlyInstantiable()) { // Require a definition here because a normal attempt at // instantiation for a builtin will be ignored, and we won't try // again later. We assume that the definition of the template // precedes this use. InstantiateFunctionDefinition(E->getBeginLoc(), FD, /*Recursive=*/false, /*DefinitionRequired=*/true, /*AtEndOfTU=*/false); } // Produce a properly-typed reference to the function. CXXScopeSpec SS; SS.Adopt(DRE->getQualifierLoc()); TemplateArgumentListInfo TemplateArgs; DRE->copyTemplateArgumentsInto(TemplateArgs); return BuildDeclRefExpr( FD, FD->getType(), VK_LValue, DRE->getNameInfo(), DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(), DRE->getTemplateKeywordLoc(), DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr); } } Diag(E->getBeginLoc(), diag::err_builtin_fn_use); return ExprError(); } case BuiltinType::IncompleteMatrixIdx: Diag(cast(E->IgnoreParens()) ->getRowIdx() ->getBeginLoc(), diag::err_matrix_incomplete_index); return ExprError(); // Expressions of unknown type. case BuiltinType::OMPArraySection: Diag(E->getBeginLoc(), diag::err_omp_array_section_use); return ExprError(); // Expressions of unknown type. case BuiltinType::OMPArrayShaping: return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use)); case BuiltinType::OMPIterator: return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use)); // Everything else should be impossible. #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ case BuiltinType::Id: #include "clang/Basic/OpenCLImageTypes.def" #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ case BuiltinType::Id: #include "clang/Basic/OpenCLExtensionTypes.def" #define SVE_TYPE(Name, Id, SingletonId) \ case BuiltinType::Id: #include "clang/Basic/AArch64SVEACLETypes.def" #define PPC_VECTOR_TYPE(Name, Id, Size) \ case BuiltinType::Id: #include "clang/Basic/PPCTypes.def" #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: #include "clang/Basic/RISCVVTypes.def" #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id: #define PLACEHOLDER_TYPE(Id, SingletonId) #include "clang/AST/BuiltinTypes.def" break; } llvm_unreachable("invalid placeholder type!"); } bool Sema::CheckCaseExpression(Expr *E) { if (E->isTypeDependent()) return true; if (E->isValueDependent() || E->isIntegerConstantExpr(Context)) return E->getType()->isIntegralOrEnumerationType(); return false; } /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && "Unknown Objective-C Boolean value!"); QualType BoolT = Context.ObjCBuiltinBoolTy; if (!Context.getBOOLDecl()) { LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc, Sema::LookupOrdinaryName); if (LookupName(Result, getCurScope()) && Result.isSingleResult()) { NamedDecl *ND = Result.getFoundDecl(); if (TypedefDecl *TD = dyn_cast(ND)) Context.setBOOLDecl(TD); } } if (Context.getBOOLDecl()) BoolT = Context.getBOOLType(); return new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc); } ExprResult Sema::ActOnObjCAvailabilityCheckExpr( llvm::ArrayRef AvailSpecs, SourceLocation AtLoc, SourceLocation RParen) { auto FindSpecVersion = [&](StringRef Platform) -> Optional { auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) { return Spec.getPlatform() == Platform; }); // Transcribe the "ios" availability check to "maccatalyst" when compiling // for "maccatalyst" if "maccatalyst" is not specified. if (Spec == AvailSpecs.end() && Platform == "maccatalyst") { Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) { return Spec.getPlatform() == "ios"; }); } if (Spec == AvailSpecs.end()) return None; return Spec->getVersion(); }; VersionTuple Version; if (auto MaybeVersion = FindSpecVersion(Context.getTargetInfo().getPlatformName())) Version = *MaybeVersion; // The use of `@available` in the enclosing context should be analyzed to // warn when it's used inappropriately (i.e. not if(@available)). if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext()) Context->HasPotentialAvailabilityViolations = true; return new (Context) ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy); } ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End, ArrayRef SubExprs, QualType T) { if (!Context.getLangOpts().RecoveryAST) return ExprError(); if (isSFINAEContext()) return ExprError(); if (T.isNull() || T->isUndeducedType() || !Context.getLangOpts().RecoveryASTType) // We don't know the concrete type, fallback to dependent type. T = Context.DependentTy; return RecoveryExpr::Create(Context, T, Begin, End, SubExprs); }