diff --git a/sys/arm/arm/busdma_machdep.c b/sys/arm/arm/busdma_machdep.c
index 7d978ca0163d..8a06e7245cd9 100644
--- a/sys/arm/arm/busdma_machdep.c
+++ b/sys/arm/arm/busdma_machdep.c
@@ -1,1750 +1,1768 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2012-2015 Ian Lepore
  * Copyright (c) 2010 Mark Tinguely
  * Copyright (c) 2004 Olivier Houchard
  * Copyright (c) 2002 Peter Grehan
  * Copyright (c) 1997, 1998 Justin T. Gibbs.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions, and the following disclaimer,
  *    without modification, immediately at the beginning of the file.
  * 2. The name of the author may not be used to endorse or promote products
  *    derived from this software without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *  From i386/busdma_machdep.c 191438 2009-04-23 20:24:19Z jhb
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/malloc.h>
 #include <sys/bus.h>
 #include <sys/busdma_bufalloc.h>
 #include <sys/counter.h>
 #include <sys/interrupt.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/lock.h>
 #include <sys/memdesc.h>
 #include <sys/proc.h>
 #include <sys/mutex.h>
 #include <sys/sysctl.h>
 #include <sys/uio.h>
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/vm_page.h>
 #include <vm/vm_phys.h>
 #include <vm/vm_map.h>
 #include <vm/vm_extern.h>
 #include <vm/vm_kern.h>
 
 #include <machine/atomic.h>
 #include <machine/bus.h>
 #include <machine/cpu.h>
 #include <machine/md_var.h>
 
+//#define ARM_BUSDMA_MAPLOAD_STATS
+
 #define	BUSDMA_DCACHE_ALIGN	cpuinfo.dcache_line_size
 #define	BUSDMA_DCACHE_MASK	cpuinfo.dcache_line_mask
 
 #define	MAX_BPAGES		64
 #define	MAX_DMA_SEGMENTS	4096
 #define	BUS_DMA_EXCL_BOUNCE	BUS_DMA_BUS2
 #define	BUS_DMA_ALIGN_BOUNCE	BUS_DMA_BUS3
 #define	BUS_DMA_COULD_BOUNCE	(BUS_DMA_EXCL_BOUNCE | BUS_DMA_ALIGN_BOUNCE)
 #define	BUS_DMA_MIN_ALLOC_COMP	BUS_DMA_BUS4
 
 struct bounce_zone;
 
 struct bus_dma_tag {
 	bus_dma_tag_t		parent;
 	bus_size_t		alignment;
 	bus_addr_t		boundary;
 	bus_addr_t		lowaddr;
 	bus_addr_t		highaddr;
 	bus_dma_filter_t	*filter;
 	void			*filterarg;
 	bus_size_t		maxsize;
 	u_int			nsegments;
 	bus_size_t		maxsegsz;
 	int			flags;
 	int			ref_count;
 	int			map_count;
 	bus_dma_lock_t		*lockfunc;
 	void			*lockfuncarg;
 	struct bounce_zone	*bounce_zone;
 };
 
 struct bounce_page {
 	vm_offset_t	vaddr;		/* kva of bounce buffer */
 	bus_addr_t	busaddr;	/* Physical address */
 	vm_offset_t	datavaddr;	/* kva of client data */
 	vm_page_t	datapage;	/* physical page of client data */
 	vm_offset_t	dataoffs;	/* page offset of client data */
 	bus_size_t	datacount;	/* client data count */
 	STAILQ_ENTRY(bounce_page) links;
 };
 
 struct sync_list {
 	vm_offset_t	vaddr;		/* kva of client data */
 	bus_addr_t	paddr;		/* physical address */
 	vm_page_t	pages;		/* starting page of client data */
 	bus_size_t	datacount;	/* client data count */
 };
 
 int busdma_swi_pending;
 
 struct bounce_zone {
 	STAILQ_ENTRY(bounce_zone) links;
 	STAILQ_HEAD(bp_list, bounce_page) bounce_page_list;
 	int		total_bpages;
 	int		free_bpages;
 	int		reserved_bpages;
 	int		active_bpages;
 	int		total_bounced;
 	int		total_deferred;
 	int		map_count;
 	bus_size_t	alignment;
 	bus_addr_t	lowaddr;
 	char		zoneid[8];
 	char		lowaddrid[20];
 	struct sysctl_ctx_list sysctl_tree;
 	struct sysctl_oid *sysctl_tree_top;
 };
 
 static struct mtx bounce_lock;
 static int total_bpages;
 static int busdma_zonecount;
 static uint32_t tags_total;
 static uint32_t maps_total;
 static uint32_t maps_dmamem;
 static uint32_t maps_coherent;
+#ifdef ARM_BUSDMA_MAPLOAD_STATS
 static counter_u64_t maploads_total;
 static counter_u64_t maploads_bounced;
 static counter_u64_t maploads_coherent;
 static counter_u64_t maploads_dmamem;
 static counter_u64_t maploads_mbuf;
 static counter_u64_t maploads_physmem;
+#endif
 
 static STAILQ_HEAD(, bounce_zone) bounce_zone_list;
 
 SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "Busdma parameters");
 SYSCTL_UINT(_hw_busdma, OID_AUTO, tags_total, CTLFLAG_RD, &tags_total, 0,
    "Number of active tags");
 SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_total, CTLFLAG_RD, &maps_total, 0,
    "Number of active maps");
 SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_dmamem, CTLFLAG_RD, &maps_dmamem, 0,
    "Number of active maps for bus_dmamem_alloc buffers");
 SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_coherent, CTLFLAG_RD, &maps_coherent, 0,
    "Number of active maps with BUS_DMA_COHERENT flag set");
+#ifdef ARM_BUSDMA_MAPLOAD_STATS
 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_total, CTLFLAG_RD,
     &maploads_total, "Number of load operations performed");
 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_bounced, CTLFLAG_RD,
     &maploads_bounced, "Number of load operations that used bounce buffers");
 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_coherent, CTLFLAG_RD,
     &maploads_dmamem, "Number of load operations on BUS_DMA_COHERENT memory");
 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_dmamem, CTLFLAG_RD,
     &maploads_dmamem, "Number of load operations on bus_dmamem_alloc buffers");
 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_mbuf, CTLFLAG_RD,
     &maploads_mbuf, "Number of load operations for mbufs");
 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_physmem, CTLFLAG_RD,
     &maploads_physmem, "Number of load operations on physical buffers");
+#endif
 SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0,
    "Total bounce pages");
 
 struct bus_dmamap {
 	struct bp_list		bpages;
 	int			pagesneeded;
 	int			pagesreserved;
 	bus_dma_tag_t		dmat;
 	struct memdesc		mem;
 	bus_dmamap_callback_t	*callback;
 	void			*callback_arg;
 	int			flags;
 #define	DMAMAP_COHERENT		(1 << 0)
 #define	DMAMAP_DMAMEM_ALLOC	(1 << 1)
 #define	DMAMAP_MBUF		(1 << 2)
 	STAILQ_ENTRY(bus_dmamap) links;
 	bus_dma_segment_t	*segments;
 	int			sync_count;
 	struct sync_list	slist[];
 };
 
 static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist;
 static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist;
 
 static void init_bounce_pages(void *dummy);
 static int alloc_bounce_zone(bus_dma_tag_t dmat);
 static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages);
 static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
     int commit);
 static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map,
     vm_offset_t vaddr, bus_addr_t addr, bus_size_t size);
 static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage);
 static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, pmap_t pmap,
     bus_dmamap_t map, void *buf, bus_size_t buflen, int flags);
 static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
     vm_paddr_t buf, bus_size_t buflen, int flags);
 static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
     int flags);
 static void dma_preread_safe(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
 static void dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op);
 
 static busdma_bufalloc_t coherent_allocator;	/* Cache of coherent buffers */
 static busdma_bufalloc_t standard_allocator;	/* Cache of standard buffers */
 
 MALLOC_DEFINE(M_BUSDMA, "busdma", "busdma metadata");
 MALLOC_DEFINE(M_BOUNCE, "bounce", "busdma bounce pages");
 
 static void
 busdma_init(void *dummy)
 {
 	int uma_flags;
 
+#ifdef ARM_BUSDMA_MAPLOAD_STATS
 	maploads_total    = counter_u64_alloc(M_WAITOK);
 	maploads_bounced  = counter_u64_alloc(M_WAITOK);
 	maploads_coherent = counter_u64_alloc(M_WAITOK);
 	maploads_dmamem   = counter_u64_alloc(M_WAITOK);
 	maploads_mbuf     = counter_u64_alloc(M_WAITOK);
 	maploads_physmem  = counter_u64_alloc(M_WAITOK);
+#endif
 
 	uma_flags = 0;
 
 	/* Create a cache of buffers in standard (cacheable) memory. */
 	standard_allocator = busdma_bufalloc_create("buffer",
 	    BUSDMA_DCACHE_ALIGN,/* minimum_alignment */
 	    NULL,		/* uma_alloc func */
 	    NULL,		/* uma_free func */
 	    uma_flags);		/* uma_zcreate_flags */
 
 #ifdef INVARIANTS
 	/*
 	 * Force UMA zone to allocate service structures like
 	 * slabs using own allocator. uma_debug code performs
 	 * atomic ops on uma_slab_t fields and safety of this
 	 * operation is not guaranteed for write-back caches
 	 */
 	uma_flags = UMA_ZONE_NOTOUCH;
 #endif
 	/*
 	 * Create a cache of buffers in uncacheable memory, to implement the
 	 * BUS_DMA_COHERENT (and potentially BUS_DMA_NOCACHE) flag.
 	 */
 	coherent_allocator = busdma_bufalloc_create("coherent",
 	    BUSDMA_DCACHE_ALIGN,/* minimum_alignment */
 	    busdma_bufalloc_alloc_uncacheable,
 	    busdma_bufalloc_free_uncacheable,
 	    uma_flags);	/* uma_zcreate_flags */
 }
 
 /*
  * This init historically used SI_SUB_VM, but now the init code requires
  * malloc(9) using M_BUSDMA memory and the pcpu zones for counter(9), which get
  * set up by SI_SUB_KMEM and SI_ORDER_LAST, so we'll go right after that by
  * using SI_SUB_KMEM+1.
  */
 SYSINIT(busdma, SI_SUB_KMEM+1, SI_ORDER_FIRST, busdma_init, NULL);
 
 /*
  * This routine checks the exclusion zone constraints from a tag against the
  * physical RAM available on the machine.  If a tag specifies an exclusion zone
  * but there's no RAM in that zone, then we avoid allocating resources to bounce
  * a request, and we can use any memory allocator (as opposed to needing
  * kmem_alloc_contig() just because it can allocate pages in an address range).
  *
  * Most tags have BUS_SPACE_MAXADDR or BUS_SPACE_MAXADDR_32BIT (they are the
  * same value on 32-bit architectures) as their lowaddr constraint, and we can't
  * possibly have RAM at an address higher than the highest address we can
  * express, so we take a fast out.
  */
 static int
 exclusion_bounce_check(vm_offset_t lowaddr, vm_offset_t highaddr)
 {
 	int i;
 
 	if (lowaddr >= BUS_SPACE_MAXADDR)
 		return (0);
 
 	for (i = 0; phys_avail[i] && phys_avail[i + 1]; i += 2) {
 		if ((lowaddr >= phys_avail[i] && lowaddr < phys_avail[i + 1]) ||
 		    (lowaddr < phys_avail[i] && highaddr >= phys_avail[i]))
 			return (1);
 	}
 	return (0);
 }
 
 /*
  * Return true if the tag has an exclusion zone that could lead to bouncing.
  */
 static __inline int
 exclusion_bounce(bus_dma_tag_t dmat)
 {
 
 	return (dmat->flags & BUS_DMA_EXCL_BOUNCE);
 }
 
 /*
  * Return true if the given address does not fall on the alignment boundary.
  */
 static __inline int
 alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr)
 {
 
 	return (addr & (dmat->alignment - 1));
 }
 
 /*
  * Return true if the DMA should bounce because the start or end does not fall
  * on a cacheline boundary (which would require a partial cacheline flush).
  * COHERENT memory doesn't trigger cacheline flushes.  Memory allocated by
  * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a
  * strict rule that such memory cannot be accessed by the CPU while DMA is in
  * progress (or by multiple DMA engines at once), so that it's always safe to do
  * full cacheline flushes even if that affects memory outside the range of a
  * given DMA operation that doesn't involve the full allocated buffer.  If we're
  * mapping an mbuf, that follows the same rules as a buffer we allocated.
  */
 static __inline int
 cacheline_bounce(bus_dmamap_t map, bus_addr_t addr, bus_size_t size)
 {
 
 	if (map->flags & (DMAMAP_DMAMEM_ALLOC | DMAMAP_COHERENT | DMAMAP_MBUF))
 		return (0);
 	return ((addr | size) & BUSDMA_DCACHE_MASK);
 }
 
 /*
  * Return true if we might need to bounce the DMA described by addr and size.
  *
  * This is used to quick-check whether we need to do the more expensive work of
  * checking the DMA page-by-page looking for alignment and exclusion bounces.
  *
  * Note that the addr argument might be either virtual or physical.  It doesn't
  * matter because we only look at the low-order bits, which are the same in both
  * address spaces and maximum alignment of generic buffer is limited up to page
  * size.
  * Bouncing of buffers allocated by bus_dmamem_alloc()is not necessary, these
  * always comply with the required rules (alignment, boundary, and address
  * range).
  */
 static __inline int
 might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t addr,
     bus_size_t size)
 {
 
 	KASSERT(map->flags & DMAMAP_DMAMEM_ALLOC ||
 	    dmat->alignment <= PAGE_SIZE,
 	    ("%s: unsupported alignment (0x%08lx) for buffer not "
 	    "allocated by bus_dmamem_alloc()",
 	    __func__, dmat->alignment));
 
 	return (!(map->flags & DMAMAP_DMAMEM_ALLOC) &&
 	    ((dmat->flags & BUS_DMA_EXCL_BOUNCE) ||
 	    alignment_bounce(dmat, addr) ||
 	    cacheline_bounce(map, addr, size)));
 }
 
 /*
  * Return true if we must bounce the DMA described by paddr and size.
  *
  * Bouncing can be triggered by DMA that doesn't begin and end on cacheline
  * boundaries, or doesn't begin on an alignment boundary, or falls within the
  * exclusion zone of any tag in the ancestry chain.
  *
  * For exclusions, walk the chain of tags comparing paddr to the exclusion zone
  * within each tag.  If the tag has a filter function, use it to decide whether
  * the DMA needs to bounce, otherwise any DMA within the zone bounces.
  */
 static int
 must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
     bus_size_t size)
 {
 
 	if (cacheline_bounce(map, paddr, size))
 		return (1);
 
 	/*
 	 *  The tag already contains ancestors' alignment restrictions so this
 	 *  check doesn't need to be inside the loop.
 	 */
 	if (alignment_bounce(dmat, paddr))
 		return (1);
 
 	/*
 	 * Even though each tag has an exclusion zone that is a superset of its
 	 * own and all its ancestors' exclusions, the exclusion zone of each tag
 	 * up the chain must be checked within the loop, because the busdma
 	 * rules say the filter function is called only when the address lies
 	 * within the low-highaddr range of the tag that filterfunc belongs to.
 	 */
 	while (dmat != NULL && exclusion_bounce(dmat)) {
 		if ((paddr >= dmat->lowaddr && paddr <= dmat->highaddr) &&
 		    (dmat->filter == NULL ||
 		    dmat->filter(dmat->filterarg, paddr) != 0))
 			return (1);
 		dmat = dmat->parent;
 	}
 
 	return (0);
 }
 
 /*
  * Convenience function for manipulating driver locks from busdma (during
  * busdma_swi, for example).  Drivers that don't provide their own locks
  * should specify &Giant to dmat->lockfuncarg.  Drivers that use their own
  * non-mutex locking scheme don't have to use this at all.
  */
 void
 busdma_lock_mutex(void *arg, bus_dma_lock_op_t op)
 {
 	struct mtx *dmtx;
 
 	dmtx = (struct mtx *)arg;
 	switch (op) {
 	case BUS_DMA_LOCK:
 		mtx_lock(dmtx);
 		break;
 	case BUS_DMA_UNLOCK:
 		mtx_unlock(dmtx);
 		break;
 	default:
 		panic("Unknown operation 0x%x for busdma_lock_mutex!", op);
 	}
 }
 
 /*
  * dflt_lock should never get called.  It gets put into the dma tag when
  * lockfunc == NULL, which is only valid if the maps that are associated
  * with the tag are meant to never be defered.
  * XXX Should have a way to identify which driver is responsible here.
  */
 static void
 dflt_lock(void *arg, bus_dma_lock_op_t op)
 {
 
 	panic("driver error: busdma dflt_lock called");
 }
 
 /*
  * Allocate a device specific dma_tag.
  */
 int
 bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
     bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
     bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
     int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
     void *lockfuncarg, bus_dma_tag_t *dmat)
 {
 	bus_dma_tag_t newtag;
 	int error = 0;
 
 	/* Basic sanity checking. */
 	KASSERT(boundary == 0 || powerof2(boundary),
 	    ("dma tag boundary %lu, must be a power of 2", boundary));
 	KASSERT(boundary == 0 || boundary >= maxsegsz,
 	    ("dma tag boundary %lu is < maxsegsz %lu\n", boundary, maxsegsz));
 	KASSERT(alignment != 0 && powerof2(alignment),
 	    ("dma tag alignment %lu, must be non-zero power of 2", alignment));
 	KASSERT(maxsegsz != 0, ("dma tag maxsegsz must not be zero"));
 
 	/* Return a NULL tag on failure */
 	*dmat = NULL;
 
 	newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_BUSDMA,
 	    M_ZERO | M_NOWAIT);
 	if (newtag == NULL) {
 		CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
 		    __func__, newtag, 0, error);
 		return (ENOMEM);
 	}
 
 	newtag->parent = parent;
 	newtag->alignment = alignment;
 	newtag->boundary = boundary;
 	newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1);
 	newtag->highaddr = trunc_page((vm_paddr_t)highaddr) +
 	    (PAGE_SIZE - 1);
 	newtag->filter = filter;
 	newtag->filterarg = filterarg;
 	newtag->maxsize = maxsize;
 	newtag->nsegments = nsegments;
 	newtag->maxsegsz = maxsegsz;
 	newtag->flags = flags;
 	newtag->ref_count = 1; /* Count ourself */
 	newtag->map_count = 0;
 	if (lockfunc != NULL) {
 		newtag->lockfunc = lockfunc;
 		newtag->lockfuncarg = lockfuncarg;
 	} else {
 		newtag->lockfunc = dflt_lock;
 		newtag->lockfuncarg = NULL;
 	}
 
 	/* Take into account any restrictions imposed by our parent tag */
 	if (parent != NULL) {
 		newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr);
 		newtag->highaddr = MAX(parent->highaddr, newtag->highaddr);
 		newtag->alignment = MAX(parent->alignment, newtag->alignment);
 		newtag->flags |= parent->flags & BUS_DMA_COULD_BOUNCE;
 		newtag->flags |= parent->flags & BUS_DMA_COHERENT;
 		if (newtag->boundary == 0)
 			newtag->boundary = parent->boundary;
 		else if (parent->boundary != 0)
 			newtag->boundary = MIN(parent->boundary,
 					       newtag->boundary);
 		if (newtag->filter == NULL) {
 			/*
 			 * Short circuit to looking at our parent directly
 			 * since we have encapsulated all of its information
 			 */
 			newtag->filter = parent->filter;
 			newtag->filterarg = parent->filterarg;
 			newtag->parent = parent->parent;
 		}
 		if (newtag->parent != NULL)
 			atomic_add_int(&parent->ref_count, 1);
 	}
 
 	if (exclusion_bounce_check(newtag->lowaddr, newtag->highaddr))
 		newtag->flags |= BUS_DMA_EXCL_BOUNCE;
 	if (alignment_bounce(newtag, 1))
 		newtag->flags |= BUS_DMA_ALIGN_BOUNCE;
 
 	/*
 	 * Any request can auto-bounce due to cacheline alignment, in addition
 	 * to any alignment or boundary specifications in the tag, so if the
 	 * ALLOCNOW flag is set, there's always work to do.
 	 */
 	if ((flags & BUS_DMA_ALLOCNOW) != 0) {
 		struct bounce_zone *bz;
 		/*
 		 * Round size up to a full page, and add one more page because
 		 * there can always be one more boundary crossing than the
 		 * number of pages in a transfer.
 		 */
 		maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE;
 
 		if ((error = alloc_bounce_zone(newtag)) != 0) {
 			free(newtag, M_BUSDMA);
 			return (error);
 		}
 		bz = newtag->bounce_zone;
 
 		if (ptoa(bz->total_bpages) < maxsize) {
 			int pages;
 
 			pages = atop(maxsize) - bz->total_bpages;
 
 			/* Add pages to our bounce pool */
 			if (alloc_bounce_pages(newtag, pages) < pages)
 				error = ENOMEM;
 		}
 		/* Performed initial allocation */
 		newtag->flags |= BUS_DMA_MIN_ALLOC_COMP;
 	} else
 		newtag->bounce_zone = NULL;
 
 	if (error != 0) {
 		free(newtag, M_BUSDMA);
 	} else {
 		atomic_add_32(&tags_total, 1);
 		*dmat = newtag;
 	}
 	CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
 	    __func__, newtag, (newtag != NULL ? newtag->flags : 0), error);
 	return (error);
 }
 
 void
 bus_dma_template_clone(bus_dma_template_t *t, bus_dma_tag_t dmat)
 {
 
 	if (t == NULL || dmat == NULL)
 		return;
 
 	t->parent = dmat->parent;
 	t->alignment = dmat->alignment;
 	t->boundary = dmat->boundary;
 	t->lowaddr = dmat->lowaddr;
 	t->highaddr = dmat->highaddr;
 	t->maxsize = dmat->maxsize;
 	t->nsegments = dmat->nsegments;
 	t->maxsegsize = dmat->maxsegsz;
 	t->flags = dmat->flags;
 	t->lockfunc = dmat->lockfunc;
 	t->lockfuncarg = dmat->lockfuncarg;
 }
 
 int
 bus_dma_tag_set_domain(bus_dma_tag_t dmat, int domain)
 {
 
 	return (0);
 }
 
 int
 bus_dma_tag_destroy(bus_dma_tag_t dmat)
 {
 	bus_dma_tag_t dmat_copy;
 	int error;
 
 	error = 0;
 	dmat_copy = dmat;
 
 	if (dmat != NULL) {
 		if (dmat->map_count != 0) {
 			error = EBUSY;
 			goto out;
 		}
 
 		while (dmat != NULL) {
 			bus_dma_tag_t parent;
 
 			parent = dmat->parent;
 			atomic_subtract_int(&dmat->ref_count, 1);
 			if (dmat->ref_count == 0) {
 				atomic_subtract_32(&tags_total, 1);
 				free(dmat, M_BUSDMA);
 				/*
 				 * Last reference count, so
 				 * release our reference
 				 * count on our parent.
 				 */
 				dmat = parent;
 			} else
 				dmat = NULL;
 		}
 	}
 out:
 	CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
 	return (error);
 }
 
 static int
 allocate_bz_and_pages(bus_dma_tag_t dmat, bus_dmamap_t mapp)
 {
 	struct bounce_zone *bz;
 	int maxpages;
 	int error;
 
 	if (dmat->bounce_zone == NULL)
 		if ((error = alloc_bounce_zone(dmat)) != 0)
 			return (error);
 	bz = dmat->bounce_zone;
 	/* Initialize the new map */
 	STAILQ_INIT(&(mapp->bpages));
 
 	/*
 	 * Attempt to add pages to our pool on a per-instance basis up to a sane
 	 * limit.  Even if the tag isn't flagged as COULD_BOUNCE due to
 	 * alignment and boundary constraints, it could still auto-bounce due to
 	 * cacheline alignment, which requires at most two bounce pages.
 	 */
 	if (dmat->flags & BUS_DMA_COULD_BOUNCE)
 		maxpages = MAX_BPAGES;
 	else
 		maxpages = 2 * bz->map_count;
 	if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 ||
 	    (bz->map_count > 0 && bz->total_bpages < maxpages)) {
 		int pages;
 
 		pages = atop(roundup2(dmat->maxsize, PAGE_SIZE)) + 1;
 		pages = MIN(maxpages - bz->total_bpages, pages);
 		pages = MAX(pages, 2);
 		if (alloc_bounce_pages(dmat, pages) < pages)
 			return (ENOMEM);
 
 		if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0)
 			dmat->flags |= BUS_DMA_MIN_ALLOC_COMP;
 	}
 	bz->map_count++;
 	return (0);
 }
 
 static bus_dmamap_t
 allocate_map(bus_dma_tag_t dmat, int mflags)
 {
 	int mapsize, segsize;
 	bus_dmamap_t map;
 
 	/*
 	 * Allocate the map.  The map structure ends with an embedded
 	 * variable-sized array of sync_list structures.  Following that
 	 * we allocate enough extra space to hold the array of bus_dma_segments.
 	 */
 	KASSERT(dmat->nsegments <= MAX_DMA_SEGMENTS,
 	   ("cannot allocate %u dma segments (max is %u)",
 	    dmat->nsegments, MAX_DMA_SEGMENTS));
 	segsize = sizeof(struct bus_dma_segment) * dmat->nsegments;
 	mapsize = sizeof(*map) + sizeof(struct sync_list) * dmat->nsegments;
 	map = malloc(mapsize + segsize, M_BUSDMA, mflags | M_ZERO);
 	if (map == NULL) {
 		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
 		return (NULL);
 	}
 	map->segments = (bus_dma_segment_t *)((uintptr_t)map + mapsize);
 	STAILQ_INIT(&map->bpages);
 	return (map);
 }
 
 /*
  * Allocate a handle for mapping from kva/uva/physical
  * address space into bus device space.
  */
 int
 bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
 {
 	bus_dmamap_t map;
 	int error = 0;
 
 	*mapp = map = allocate_map(dmat, M_NOWAIT);
 	if (map == NULL) {
 		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
 		return (ENOMEM);
 	}
 
 	/*
 	 * Bouncing might be required if the driver asks for an exclusion
 	 * region, a data alignment that is stricter than 1, or DMA that begins
 	 * or ends with a partial cacheline.  Whether bouncing will actually
 	 * happen can't be known until mapping time, but we need to pre-allocate
 	 * resources now because we might not be allowed to at mapping time.
 	 */
 	error = allocate_bz_and_pages(dmat, map);
 	if (error != 0) {
 		free(map, M_BUSDMA);
 		*mapp = NULL;
 		return (error);
 	}
 	if (map->flags & DMAMAP_COHERENT)
 		atomic_add_32(&maps_coherent, 1);
 	atomic_add_32(&maps_total, 1);
 	dmat->map_count++;
 
 	return (0);
 }
 
 /*
  * Destroy a handle for mapping from kva/uva/physical
  * address space into bus device space.
  */
 int
 bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
 {
 
 	if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
 		CTR3(KTR_BUSDMA, "%s: tag %p error %d",
 		    __func__, dmat, EBUSY);
 		return (EBUSY);
 	}
 	if (dmat->bounce_zone)
 		dmat->bounce_zone->map_count--;
 	if (map->flags & DMAMAP_COHERENT)
 		atomic_subtract_32(&maps_coherent, 1);
 	atomic_subtract_32(&maps_total, 1);
 	free(map, M_BUSDMA);
 	dmat->map_count--;
 	CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
 	return (0);
 }
 
 /*
  * Allocate a piece of memory that can be efficiently mapped into bus device
  * space based on the constraints listed in the dma tag.  Returns a pointer to
  * the allocated memory, and a pointer to an associated bus_dmamap.
  */
 int
 bus_dmamem_alloc(bus_dma_tag_t dmat, void **vaddr, int flags,
     bus_dmamap_t *mapp)
 {
 	busdma_bufalloc_t ba;
 	struct busdma_bufzone *bufzone;
 	bus_dmamap_t map;
 	vm_memattr_t memattr;
 	int mflags;
 
 	if (flags & BUS_DMA_NOWAIT)
 		mflags = M_NOWAIT;
 	else
 		mflags = M_WAITOK;
 	if (flags & BUS_DMA_ZERO)
 		mflags |= M_ZERO;
 
 	*mapp = map = allocate_map(dmat, mflags);
 	if (map == NULL) {
 		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
 		    __func__, dmat, dmat->flags, ENOMEM);
 		return (ENOMEM);
 	}
 	map->flags = DMAMAP_DMAMEM_ALLOC;
 
 	/* For coherent memory, set the map flag that disables sync ops. */
 	if (flags & BUS_DMA_COHERENT)
 		map->flags |= DMAMAP_COHERENT;
 
 	/*
 	 * Choose a busdma buffer allocator based on memory type flags.
 	 * If the tag's COHERENT flag is set, that means normal memory
 	 * is already coherent, use the normal allocator.
 	 */
 	if ((flags & BUS_DMA_COHERENT) &&
 	    ((dmat->flags & BUS_DMA_COHERENT) == 0)) {
 		memattr = VM_MEMATTR_UNCACHEABLE;
 		ba = coherent_allocator;
 	} else {
 		memattr = VM_MEMATTR_DEFAULT;
 		ba = standard_allocator;
 	}
 
 	/*
 	 * Try to find a bufzone in the allocator that holds a cache of buffers
 	 * of the right size for this request.  If the buffer is too big to be
 	 * held in the allocator cache, this returns NULL.
 	 */
 	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
 
 	/*
 	 * Allocate the buffer from the uma(9) allocator if...
 	 *  - It's small enough to be in the allocator (bufzone not NULL).
 	 *  - The alignment constraint isn't larger than the allocation size
 	 *    (the allocator aligns buffers to their size boundaries).
 	 *  - There's no need to handle lowaddr/highaddr exclusion zones.
 	 * else allocate non-contiguous pages if...
 	 *  - The page count that could get allocated doesn't exceed
 	 *    nsegments also when the maximum segment size is less
 	 *    than PAGE_SIZE.
 	 *  - The alignment constraint isn't larger than a page boundary.
 	 *  - There are no boundary-crossing constraints.
 	 * else allocate a block of contiguous pages because one or more of the
 	 * constraints is something that only the contig allocator can fulfill.
 	 */
 	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
 	    !exclusion_bounce(dmat)) {
 		*vaddr = uma_zalloc(bufzone->umazone, mflags);
 	} else if (dmat->nsegments >=
 	    howmany(dmat->maxsize, MIN(dmat->maxsegsz, PAGE_SIZE)) &&
 	    dmat->alignment <= PAGE_SIZE &&
 	    (dmat->boundary % PAGE_SIZE) == 0) {
 		*vaddr = (void *)kmem_alloc_attr(dmat->maxsize, mflags, 0,
 		    dmat->lowaddr, memattr);
 	} else {
 		*vaddr = (void *)kmem_alloc_contig(dmat->maxsize, mflags, 0,
 		    dmat->lowaddr, dmat->alignment, dmat->boundary, memattr);
 	}
 	if (*vaddr == NULL) {
 		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
 		    __func__, dmat, dmat->flags, ENOMEM);
 		free(map, M_BUSDMA);
 		*mapp = NULL;
 		return (ENOMEM);
 	}
 	if (map->flags & DMAMAP_COHERENT)
 		atomic_add_32(&maps_coherent, 1);
 	atomic_add_32(&maps_dmamem, 1);
 	atomic_add_32(&maps_total, 1);
 	dmat->map_count++;
 
 	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
 	    __func__, dmat, dmat->flags, 0);
 	return (0);
 }
 
 /*
  * Free a piece of memory that was allocated via bus_dmamem_alloc, along with
  * its associated map.
  */
 void
 bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
 {
 	struct busdma_bufzone *bufzone;
 	busdma_bufalloc_t ba;
 
 	if ((map->flags & DMAMAP_COHERENT) &&
 	    ((dmat->flags & BUS_DMA_COHERENT) == 0))
 		ba = coherent_allocator;
 	else
 		ba = standard_allocator;
 
 	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
 
 	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
 	    !exclusion_bounce(dmat))
 		uma_zfree(bufzone->umazone, vaddr);
 	else
 		kmem_free((vm_offset_t)vaddr, dmat->maxsize);
 
 	dmat->map_count--;
 	if (map->flags & DMAMAP_COHERENT)
 		atomic_subtract_32(&maps_coherent, 1);
 	atomic_subtract_32(&maps_total, 1);
 	atomic_subtract_32(&maps_dmamem, 1);
 	free(map, M_BUSDMA);
 	CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags);
 }
 
 static void
 _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
     bus_size_t buflen, int flags)
 {
 	bus_addr_t curaddr;
 	bus_size_t sgsize;
 
 	if (map->pagesneeded == 0) {
 		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
 		    " map= %p, pagesneeded= %d",
 		    dmat->lowaddr, dmat->boundary, dmat->alignment,
 		    map, map->pagesneeded);
 		/*
 		 * Count the number of bounce pages
 		 * needed in order to complete this transfer
 		 */
 		curaddr = buf;
 		while (buflen != 0) {
 			sgsize = MIN(buflen, dmat->maxsegsz);
 			if (must_bounce(dmat, map, curaddr, sgsize) != 0) {
 				sgsize = MIN(sgsize,
 				    PAGE_SIZE - (curaddr & PAGE_MASK));
 				map->pagesneeded++;
 			}
 			curaddr += sgsize;
 			buflen -= sgsize;
 		}
 		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
 	}
 }
 
 static void
 _bus_dmamap_count_pages(bus_dma_tag_t dmat, pmap_t pmap, bus_dmamap_t map,
     void *buf, bus_size_t buflen, int flags)
 {
 	vm_offset_t vaddr;
 	vm_offset_t vendaddr;
 	bus_addr_t paddr;
 
 	if (map->pagesneeded == 0) {
 		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
 		    " map= %p, pagesneeded= %d",
 		    dmat->lowaddr, dmat->boundary, dmat->alignment,
 		    map, map->pagesneeded);
 		/*
 		 * Count the number of bounce pages
 		 * needed in order to complete this transfer
 		 */
 		vaddr = (vm_offset_t)buf;
 		vendaddr = (vm_offset_t)buf + buflen;
 
 		while (vaddr < vendaddr) {
 			if (__predict_true(pmap == kernel_pmap))
 				paddr = pmap_kextract(vaddr);
 			else
 				paddr = pmap_extract(pmap, vaddr);
 			if (must_bounce(dmat, map, paddr,
 			    min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr &
 			    PAGE_MASK)))) != 0) {
 				map->pagesneeded++;
 			}
 			vaddr += (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK));
 		}
 		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
 	}
 }
 
 static int
 _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags)
 {
 
 	/* Reserve Necessary Bounce Pages */
 	mtx_lock(&bounce_lock);
 	if (flags & BUS_DMA_NOWAIT) {
 		if (reserve_bounce_pages(dmat, map, 0) != 0) {
 			map->pagesneeded = 0;
 			mtx_unlock(&bounce_lock);
 			return (ENOMEM);
 		}
 	} else {
 		if (reserve_bounce_pages(dmat, map, 1) != 0) {
 			/* Queue us for resources */
 			STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links);
 			mtx_unlock(&bounce_lock);
 			return (EINPROGRESS);
 		}
 	}
 	mtx_unlock(&bounce_lock);
 
 	return (0);
 }
 
 /*
  * Add a single contiguous physical range to the segment list.
  */
 static int
 _bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
     bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
 {
 	bus_addr_t baddr, bmask;
 	int seg;
 
 	/*
 	 * Make sure we don't cross any boundaries.
 	 */
 	bmask = ~(dmat->boundary - 1);
 	if (dmat->boundary > 0) {
 		baddr = (curaddr + dmat->boundary) & bmask;
 		if (sgsize > (baddr - curaddr))
 			sgsize = (baddr - curaddr);
 	}
 
 	/*
 	 * Insert chunk into a segment, coalescing with
 	 * previous segment if possible.
 	 */
 	seg = *segp;
 	if (seg == -1) {
 		seg = 0;
 		segs[seg].ds_addr = curaddr;
 		segs[seg].ds_len = sgsize;
 	} else {
 		if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
 		    (segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
 		    (dmat->boundary == 0 ||
 		    (segs[seg].ds_addr & bmask) == (curaddr & bmask)))
 			segs[seg].ds_len += sgsize;
 		else {
 			if (++seg >= dmat->nsegments)
 				return (0);
 			segs[seg].ds_addr = curaddr;
 			segs[seg].ds_len = sgsize;
 		}
 	}
 	*segp = seg;
 	return (sgsize);
 }
 
 /*
  * Utility function to load a physical buffer.  segp contains
  * the starting segment on entrace, and the ending segment on exit.
  */
 int
 _bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
     bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp)
 {
 	bus_addr_t curaddr;
 	bus_addr_t sl_end = 0;
 	bus_size_t sgsize;
 	struct sync_list *sl;
 	int error;
 
 	if (segs == NULL)
 		segs = map->segments;
 
+#ifdef ARM_BUSDMA_MAPLOAD_STATS
 	counter_u64_add(maploads_total, 1);
 	counter_u64_add(maploads_physmem, 1);
+#endif
 
 	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
 		_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
 		if (map->pagesneeded != 0) {
+#ifdef ARM_BUSDMA_MAPLOAD_STATS
 			counter_u64_add(maploads_bounced, 1);
+#endif
 			error = _bus_dmamap_reserve_pages(dmat, map, flags);
 			if (error)
 				return (error);
 		}
 	}
 
 	sl = map->slist + map->sync_count - 1;
 
 	while (buflen > 0) {
 		curaddr = buf;
 		sgsize = MIN(buflen, dmat->maxsegsz);
 		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
 		    sgsize)) {
 			sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK));
 			curaddr = add_bounce_page(dmat, map, 0, curaddr,
 			    sgsize);
 		} else if ((dmat->flags & BUS_DMA_COHERENT) == 0) {
 			if (map->sync_count > 0)
 				sl_end = sl->paddr + sl->datacount;
 
 			if (map->sync_count == 0 || curaddr != sl_end) {
 				if (++map->sync_count > dmat->nsegments)
 					break;
 				sl++;
 				sl->vaddr = 0;
 				sl->paddr = curaddr;
 				sl->datacount = sgsize;
 				sl->pages = PHYS_TO_VM_PAGE(curaddr);
 				KASSERT(sl->pages != NULL,
 				    ("%s: page at PA:0x%08lx is not in "
 				    "vm_page_array", __func__, curaddr));
 			} else
 				sl->datacount += sgsize;
 		}
 		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
 		    segp);
 		if (sgsize == 0)
 			break;
 		buf += sgsize;
 		buflen -= sgsize;
 	}
 
 	/*
 	 * Did we fit?
 	 */
 	if (buflen != 0) {
 		bus_dmamap_unload(dmat, map);
 		return (EFBIG); /* XXX better return value here? */
 	}
 	return (0);
 }
 
 int
 _bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map,
     struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
     bus_dma_segment_t *segs, int *segp)
 {
 
 	return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags,
 	    segs, segp));
 }
 
 /*
  * Utility function to load a linear buffer.  segp contains
  * the starting segment on entrance, and the ending segment on exit.
  */
 int
 _bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
     bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs,
     int *segp)
 {
 	bus_size_t sgsize;
 	bus_addr_t curaddr;
 	bus_addr_t sl_pend = 0;
 	vm_offset_t kvaddr, vaddr, sl_vend = 0;
 	struct sync_list *sl;
 	int error;
 
+#ifdef ARM_BUSDMA_MAPLOAD_STATS
 	counter_u64_add(maploads_total, 1);
 	if (map->flags & DMAMAP_COHERENT)
 		counter_u64_add(maploads_coherent, 1);
 	if (map->flags & DMAMAP_DMAMEM_ALLOC)
 		counter_u64_add(maploads_dmamem, 1);
+#endif
 
 	if (segs == NULL)
 		segs = map->segments;
 
 	if (flags & BUS_DMA_LOAD_MBUF) {
+#ifdef ARM_BUSDMA_MAPLOAD_STATS
 		counter_u64_add(maploads_mbuf, 1);
+#endif
 		map->flags |= DMAMAP_MBUF;
 	}
 
 	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
 		_bus_dmamap_count_pages(dmat, pmap, map, buf, buflen, flags);
 		if (map->pagesneeded != 0) {
+#ifdef ARM_BUSDMA_MAPLOAD_STATS
 			counter_u64_add(maploads_bounced, 1);
+#endif
 			error = _bus_dmamap_reserve_pages(dmat, map, flags);
 			if (error)
 				return (error);
 		}
 	}
 
 	sl = map->slist + map->sync_count - 1;
 	vaddr = (vm_offset_t)buf;
 
 	while (buflen > 0) {
 		/*
 		 * Get the physical address for this segment.
 		 */
 		if (__predict_true(pmap == kernel_pmap)) {
 			curaddr = pmap_kextract(vaddr);
 			kvaddr = vaddr;
 		} else {
 			curaddr = pmap_extract(pmap, vaddr);
 			kvaddr = 0;
 		}
 
 		/*
 		 * Compute the segment size, and adjust counts.
 		 */
 		sgsize = PAGE_SIZE - (curaddr & PAGE_MASK);
 		if (sgsize > dmat->maxsegsz)
 			sgsize = dmat->maxsegsz;
 		if (buflen < sgsize)
 			sgsize = buflen;
 
 		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
 		    sgsize)) {
 			curaddr = add_bounce_page(dmat, map, kvaddr, curaddr,
 			    sgsize);
 		} else if ((dmat->flags & BUS_DMA_COHERENT) == 0) {
 			if (map->sync_count > 0) {
 				sl_pend = sl->paddr + sl->datacount;
 				sl_vend = sl->vaddr + sl->datacount;
 			}
 
 			if (map->sync_count == 0 ||
 			    (kvaddr != 0 && kvaddr != sl_vend) ||
 			    (curaddr != sl_pend)) {
 				if (++map->sync_count > dmat->nsegments)
 					goto cleanup;
 				sl++;
 				sl->vaddr = kvaddr;
 				sl->paddr = curaddr;
 				if (kvaddr != 0) {
 					sl->pages = NULL;
 				} else {
 					sl->pages = PHYS_TO_VM_PAGE(curaddr);
 					KASSERT(sl->pages != NULL,
 					    ("%s: page at PA:0x%08lx is not "
 					    "in vm_page_array", __func__,
 					    curaddr));
 				}
 				sl->datacount = sgsize;
 			} else
 				sl->datacount += sgsize;
 		}
 		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
 		    segp);
 		if (sgsize == 0)
 			break;
 		vaddr += sgsize;
 		buflen -= sgsize;
 	}
 
 cleanup:
 	/*
 	 * Did we fit?
 	 */
 	if (buflen != 0) {
 		bus_dmamap_unload(dmat, map);
 		return (EFBIG); /* XXX better return value here? */
 	}
 	return (0);
 }
 
 void
 _bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem,
     bus_dmamap_callback_t *callback, void *callback_arg)
 {
 
 	map->mem = *mem;
 	map->dmat = dmat;
 	map->callback = callback;
 	map->callback_arg = callback_arg;
 }
 
 bus_dma_segment_t *
 _bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
     bus_dma_segment_t *segs, int nsegs, int error)
 {
 
 	if (segs == NULL)
 		segs = map->segments;
 	return (segs);
 }
 
 /*
  * Release the mapping held by map.
  */
 void
 bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
 {
 	struct bounce_page *bpage;
 	struct bounce_zone *bz;
 
 	if ((bz = dmat->bounce_zone) != NULL) {
 		while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
 			STAILQ_REMOVE_HEAD(&map->bpages, links);
 			free_bounce_page(dmat, bpage);
 		}
 
 		bz = dmat->bounce_zone;
 		bz->free_bpages += map->pagesreserved;
 		bz->reserved_bpages -= map->pagesreserved;
 		map->pagesreserved = 0;
 		map->pagesneeded = 0;
 	}
 	map->sync_count = 0;
 	map->flags &= ~DMAMAP_MBUF;
 }
 
 static void
 dma_preread_safe(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
 {
 	/*
 	 * Write back any partial cachelines immediately before and
 	 * after the DMA region.  We don't need to round the address
 	 * down to the nearest cacheline or specify the exact size,
 	 * as dcache_wb_poc() will do the rounding for us and works
 	 * at cacheline granularity.
 	 */
 	if (va & BUSDMA_DCACHE_MASK)
 		dcache_wb_poc(va, pa, 1);
 	if ((va + size) & BUSDMA_DCACHE_MASK)
 		dcache_wb_poc(va + size, pa + size, 1);
 
 	dcache_inv_poc_dma(va, pa, size);
 }
 
 static void
 dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op)
 {
 	uint32_t len, offset;
 	vm_page_t m;
 	vm_paddr_t pa;
 	vm_offset_t va, tempva;
 	bus_size_t size;
 
 	offset = sl->paddr & PAGE_MASK;
 	m = sl->pages;
 	size = sl->datacount;
 	pa = sl->paddr;
 
 	for ( ; size != 0; size -= len, pa += len, offset = 0, ++m) {
 		tempva = 0;
 		if (sl->vaddr == 0) {
 			len = min(PAGE_SIZE - offset, size);
 			tempva = pmap_quick_enter_page(m);
 			va = tempva | offset;
 			KASSERT(pa == (VM_PAGE_TO_PHYS(m) | offset),
 			    ("unexpected vm_page_t phys: 0x%08x != 0x%08x",
 			    VM_PAGE_TO_PHYS(m) | offset, pa));
 		} else {
 			len = sl->datacount;
 			va = sl->vaddr;
 		}
 
 		switch (op) {
 		case BUS_DMASYNC_PREWRITE:
 		case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
 			dcache_wb_poc(va, pa, len);
 			break;
 		case BUS_DMASYNC_PREREAD:
 			/*
 			 * An mbuf may start in the middle of a cacheline. There
 			 * will be no cpu writes to the beginning of that line
 			 * (which contains the mbuf header) while dma is in
 			 * progress.  Handle that case by doing a writeback of
 			 * just the first cacheline before invalidating the
 			 * overall buffer.  Any mbuf in a chain may have this
 			 * misalignment.  Buffers which are not mbufs bounce if
 			 * they are not aligned to a cacheline.
 			 */
 			dma_preread_safe(va, pa, len);
 			break;
 		case BUS_DMASYNC_POSTREAD:
 		case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
 			dcache_inv_poc(va, pa, len);
 			break;
 		default:
 			panic("unsupported combination of sync operations: "
                               "0x%08x\n", op);
 		}
 
 		if (tempva != 0)
 			pmap_quick_remove_page(tempva);
 	}
 }
 
 void
 bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
 {
 	struct bounce_page *bpage;
 	struct sync_list *sl, *end;
 	vm_offset_t datavaddr, tempvaddr;
 
 	if (op == BUS_DMASYNC_POSTWRITE)
 		return;
 
 	/*
 	 * If the buffer was from user space, it is possible that this is not
 	 * the same vm map, especially on a POST operation.  It's not clear that
 	 * dma on userland buffers can work at all right now.  To be safe, until
 	 * we're able to test direct userland dma, panic on a map mismatch.
 	 */
 	if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
 		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
 		    "performing bounce", __func__, dmat, dmat->flags, op);
 
 		/*
 		 * For PREWRITE do a writeback.  Clean the caches from the
 		 * innermost to the outermost levels.
 		 */
 		if (op & BUS_DMASYNC_PREWRITE) {
 			while (bpage != NULL) {
 				tempvaddr = 0;
 				datavaddr = bpage->datavaddr;
 				if (datavaddr == 0) {
 					tempvaddr = pmap_quick_enter_page(
 					    bpage->datapage);
 					datavaddr = tempvaddr | bpage->dataoffs;
 				}
 				bcopy((void *)datavaddr, (void *)bpage->vaddr,
 				    bpage->datacount);
 				if (tempvaddr != 0)
 					pmap_quick_remove_page(tempvaddr);
 				if ((dmat->flags & BUS_DMA_COHERENT) == 0)
 					dcache_wb_poc(bpage->vaddr,
 					    bpage->busaddr, bpage->datacount);
 				bpage = STAILQ_NEXT(bpage, links);
 			}
 			dmat->bounce_zone->total_bounced++;
 		}
 
 		/*
 		 * Do an invalidate for PREREAD unless a writeback was already
 		 * done above due to PREWRITE also being set.  The reason for a
 		 * PREREAD invalidate is to prevent dirty lines currently in the
 		 * cache from being evicted during the DMA.  If a writeback was
 		 * done due to PREWRITE also being set there will be no dirty
 		 * lines and the POSTREAD invalidate handles the rest. The
 		 * invalidate is done from the innermost to outermost level. If
 		 * L2 were done first, a dirty cacheline could be automatically
 		 * evicted from L1 before we invalidated it, re-dirtying the L2.
 		 */
 		if ((op & BUS_DMASYNC_PREREAD) && !(op & BUS_DMASYNC_PREWRITE)) {
 			bpage = STAILQ_FIRST(&map->bpages);
 			while (bpage != NULL) {
 				if ((dmat->flags & BUS_DMA_COHERENT) == 0)
 					dcache_inv_poc_dma(bpage->vaddr,
 					    bpage->busaddr, bpage->datacount);
 				bpage = STAILQ_NEXT(bpage, links);
 			}
 		}
 
 		/*
 		 * Re-invalidate the caches on a POSTREAD, even though they were
 		 * already invalidated at PREREAD time.  Aggressive prefetching
 		 * due to accesses to other data near the dma buffer could have
 		 * brought buffer data into the caches which is now stale.  The
 		 * caches are invalidated from the outermost to innermost; the
 		 * prefetches could be happening right now, and if L1 were
 		 * invalidated first, stale L2 data could be prefetched into L1.
 		 */
 		if (op & BUS_DMASYNC_POSTREAD) {
 			while (bpage != NULL) {
 				if ((dmat->flags & BUS_DMA_COHERENT) == 0)
 					dcache_inv_poc(bpage->vaddr,
 					    bpage->busaddr, bpage->datacount);
 				tempvaddr = 0;
 				datavaddr = bpage->datavaddr;
 				if (datavaddr == 0) {
 					tempvaddr = pmap_quick_enter_page(
 					    bpage->datapage);
 					datavaddr = tempvaddr | bpage->dataoffs;
 				}
 				bcopy((void *)bpage->vaddr, (void *)datavaddr,
 				    bpage->datacount);
 				if (tempvaddr != 0)
 					pmap_quick_remove_page(tempvaddr);
 				bpage = STAILQ_NEXT(bpage, links);
 			}
 			dmat->bounce_zone->total_bounced++;
 		}
 	}
 
 	/*
 	 * For COHERENT memory no cache maintenance is necessary, but ensure all
 	 * writes have reached memory for the PREWRITE case.  No action is
 	 * needed for a PREREAD without PREWRITE also set, because that would
 	 * imply that the cpu had written to the COHERENT buffer and expected
 	 * the dma device to see that change, and by definition a PREWRITE sync
 	 * is required to make that happen.
 	 */
 	if (map->flags & DMAMAP_COHERENT) {
 		if (op & BUS_DMASYNC_PREWRITE) {
 			dsb();
 			if ((dmat->flags & BUS_DMA_COHERENT) == 0)
 				cpu_l2cache_drain_writebuf();
 		}
 		return;
 	}
 
 	/*
 	 * Cache maintenance for normal (non-COHERENT non-bounce) buffers.  All
 	 * the comments about the sequences for flushing cache levels in the
 	 * bounce buffer code above apply here as well.  In particular, the fact
 	 * that the sequence is inner-to-outer for PREREAD invalidation and
 	 * outer-to-inner for POSTREAD invalidation is not a mistake.
 	 */
 	if (map->sync_count != 0) {
 		sl = &map->slist[0];
 		end = &map->slist[map->sync_count];
 		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
 		    "performing sync", __func__, dmat, dmat->flags, op);
 
 		for ( ; sl != end; ++sl)
 			dma_dcache_sync(sl, op);
 	}
 }
 
 static void
 init_bounce_pages(void *dummy __unused)
 {
 
 	total_bpages = 0;
 	STAILQ_INIT(&bounce_zone_list);
 	STAILQ_INIT(&bounce_map_waitinglist);
 	STAILQ_INIT(&bounce_map_callbacklist);
 	mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF);
 }
 SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL);
 
 static struct sysctl_ctx_list *
 busdma_sysctl_tree(struct bounce_zone *bz)
 {
 
 	return (&bz->sysctl_tree);
 }
 
 static struct sysctl_oid *
 busdma_sysctl_tree_top(struct bounce_zone *bz)
 {
 
 	return (bz->sysctl_tree_top);
 }
 
 static int
 alloc_bounce_zone(bus_dma_tag_t dmat)
 {
 	struct bounce_zone *bz;
 
 	/* Check to see if we already have a suitable zone */
 	STAILQ_FOREACH(bz, &bounce_zone_list, links) {
 		if ((dmat->alignment <= bz->alignment) &&
 		    (dmat->lowaddr >= bz->lowaddr)) {
 			dmat->bounce_zone = bz;
 			return (0);
 		}
 	}
 
 	if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_BUSDMA,
 	    M_NOWAIT | M_ZERO)) == NULL)
 		return (ENOMEM);
 
 	STAILQ_INIT(&bz->bounce_page_list);
 	bz->free_bpages = 0;
 	bz->reserved_bpages = 0;
 	bz->active_bpages = 0;
 	bz->lowaddr = dmat->lowaddr;
 	bz->alignment = MAX(dmat->alignment, PAGE_SIZE);
 	bz->map_count = 0;
 	snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount);
 	busdma_zonecount++;
 	snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr);
 	STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links);
 	dmat->bounce_zone = bz;
 
 	sysctl_ctx_init(&bz->sysctl_tree);
 	bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree,
 	    SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid,
 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
 	if (bz->sysctl_tree_top == NULL) {
 		sysctl_ctx_free(&bz->sysctl_tree);
 		return (0);	/* XXX error code? */
 	}
 
 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
 	    "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0,
 	    "Total bounce pages");
 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
 	    "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0,
 	    "Free bounce pages");
 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
 	    "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0,
 	    "Reserved bounce pages");
 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
 	    "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0,
 	    "Active bounce pages");
 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
 	    "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0,
 	    "Total bounce requests (pages bounced)");
 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
 	    "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0,
 	    "Total bounce requests that were deferred");
 	SYSCTL_ADD_STRING(busdma_sysctl_tree(bz),
 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
 	    "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, "");
 	SYSCTL_ADD_ULONG(busdma_sysctl_tree(bz),
 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
 	    "alignment", CTLFLAG_RD, &bz->alignment, "");
 
 	return (0);
 }
 
 static int
 alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages)
 {
 	struct bounce_zone *bz;
 	int count;
 
 	bz = dmat->bounce_zone;
 	count = 0;
 	while (numpages > 0) {
 		struct bounce_page *bpage;
 
 		bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_BUSDMA,
 		    M_NOWAIT | M_ZERO);
 
 		if (bpage == NULL)
 			break;
 		bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_BOUNCE,
 		    M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0);
 		if (bpage->vaddr == 0) {
 			free(bpage, M_BUSDMA);
 			break;
 		}
 		bpage->busaddr = pmap_kextract(bpage->vaddr);
 		mtx_lock(&bounce_lock);
 		STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links);
 		total_bpages++;
 		bz->total_bpages++;
 		bz->free_bpages++;
 		mtx_unlock(&bounce_lock);
 		count++;
 		numpages--;
 	}
 	return (count);
 }
 
 static int
 reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit)
 {
 	struct bounce_zone *bz;
 	int pages;
 
 	mtx_assert(&bounce_lock, MA_OWNED);
 	bz = dmat->bounce_zone;
 	pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved);
 	if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages))
 		return (map->pagesneeded - (map->pagesreserved + pages));
 	bz->free_bpages -= pages;
 	bz->reserved_bpages += pages;
 	map->pagesreserved += pages;
 	pages = map->pagesneeded - map->pagesreserved;
 
 	return (pages);
 }
 
 static bus_addr_t
 add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr,
     bus_addr_t addr, bus_size_t size)
 {
 	struct bounce_zone *bz;
 	struct bounce_page *bpage;
 
 	KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag"));
 	KASSERT(map != NULL, ("add_bounce_page: bad map %p", map));
 
 	bz = dmat->bounce_zone;
 	if (map->pagesneeded == 0)
 		panic("add_bounce_page: map doesn't need any pages");
 	map->pagesneeded--;
 
 	if (map->pagesreserved == 0)
 		panic("add_bounce_page: map doesn't need any pages");
 	map->pagesreserved--;
 
 	mtx_lock(&bounce_lock);
 	bpage = STAILQ_FIRST(&bz->bounce_page_list);
 	if (bpage == NULL)
 		panic("add_bounce_page: free page list is empty");
 
 	STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links);
 	bz->reserved_bpages--;
 	bz->active_bpages++;
 	mtx_unlock(&bounce_lock);
 
 	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
 		/* Page offset needs to be preserved. */
 		bpage->vaddr |= addr & PAGE_MASK;
 		bpage->busaddr |= addr & PAGE_MASK;
 	}
 	bpage->datavaddr = vaddr;
 	bpage->datapage = PHYS_TO_VM_PAGE(addr);
 	bpage->dataoffs = addr & PAGE_MASK;
 	bpage->datacount = size;
 	STAILQ_INSERT_TAIL(&(map->bpages), bpage, links);
 	return (bpage->busaddr);
 }
 
 static void
 free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage)
 {
 	struct bus_dmamap *map;
 	struct bounce_zone *bz;
 
 	bz = dmat->bounce_zone;
 	bpage->datavaddr = 0;
 	bpage->datacount = 0;
 	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
 		/*
 		 * Reset the bounce page to start at offset 0.  Other uses
 		 * of this bounce page may need to store a full page of
 		 * data and/or assume it starts on a page boundary.
 		 */
 		bpage->vaddr &= ~PAGE_MASK;
 		bpage->busaddr &= ~PAGE_MASK;
 	}
 
 	mtx_lock(&bounce_lock);
 	STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links);
 	bz->free_bpages++;
 	bz->active_bpages--;
 	if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) {
 		if (reserve_bounce_pages(map->dmat, map, 1) == 0) {
 			STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links);
 			STAILQ_INSERT_TAIL(&bounce_map_callbacklist,
 			    map, links);
 			busdma_swi_pending = 1;
 			bz->total_deferred++;
 			swi_sched(vm_ih, 0);
 		}
 	}
 	mtx_unlock(&bounce_lock);
 }
 
 void
 busdma_swi(void)
 {
 	bus_dma_tag_t dmat;
 	struct bus_dmamap *map;
 
 	mtx_lock(&bounce_lock);
 	while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) {
 		STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links);
 		mtx_unlock(&bounce_lock);
 		dmat = map->dmat;
 		dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_LOCK);
 		bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback,
 		    map->callback_arg, BUS_DMA_WAITOK);
 		dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_UNLOCK);
 		mtx_lock(&bounce_lock);
 	}
 	mtx_unlock(&bounce_lock);
 }