diff --git a/sys/x86/x86/tsc.c b/sys/x86/x86/tsc.c
index 85924df98312..de0a1505c2f6 100644
--- a/sys/x86/x86/tsc.c
+++ b/sys/x86/x86/tsc.c
@@ -1,888 +1,881 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 1998-2003 Poul-Henning Kamp
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_clock.h"
 
 #include <sys/param.h>
 #include <sys/bus.h>
 #include <sys/cpu.h>
 #include <sys/eventhandler.h>
 #include <sys/limits.h>
 #include <sys/malloc.h>
 #include <sys/systm.h>
 #include <sys/sysctl.h>
 #include <sys/time.h>
 #include <sys/timetc.h>
 #include <sys/kernel.h>
 #include <sys/power.h>
 #include <sys/smp.h>
 #include <sys/vdso.h>
 #include <machine/clock.h>
 #include <machine/cputypes.h>
 #include <machine/md_var.h>
 #include <machine/specialreg.h>
 #include <x86/vmware.h>
 #include <dev/acpica/acpi_hpet.h>
 #include <contrib/dev/acpica/include/acpi.h>
 
 #include "cpufreq_if.h"
 
 uint64_t	tsc_freq;
 int		tsc_is_invariant;
 int		tsc_perf_stat;
 
 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
 
 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
 
 #ifdef SMP
 int	smp_tsc;
 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
     "Indicates whether the TSC is safe to use in SMP mode");
 
 int	smp_tsc_adjust = 0;
 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
 #endif
 
 static int	tsc_shift = 1;
 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
 
 static int	tsc_disabled;
 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
     "Disable x86 Time Stamp Counter");
 
 static int	tsc_skip_calibration;
 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
     &tsc_skip_calibration, 0,
     "Disable TSC frequency calibration");
 
 static void tsc_freq_changed(void *arg, const struct cf_level *level,
     int status);
 static void tsc_freq_changing(void *arg, const struct cf_level *level,
     int *status);
 static u_int tsc_get_timecount(struct timecounter *tc);
 static inline u_int tsc_get_timecount_low(struct timecounter *tc);
 static u_int tsc_get_timecount_lfence(struct timecounter *tc);
 static u_int tsc_get_timecount_low_lfence(struct timecounter *tc);
 static u_int tsc_get_timecount_mfence(struct timecounter *tc);
 static u_int tsc_get_timecount_low_mfence(struct timecounter *tc);
 static u_int tscp_get_timecount(struct timecounter *tc);
 static u_int tscp_get_timecount_low(struct timecounter *tc);
 static void tsc_levels_changed(void *arg, int unit);
 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
     struct timecounter *tc);
 #ifdef COMPAT_FREEBSD32
 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
     struct timecounter *tc);
 #endif
 
 static struct timecounter tsc_timecounter = {
 	.tc_get_timecount =		tsc_get_timecount,
 	.tc_counter_mask =		~0u,
 	.tc_name =			"TSC",
 	.tc_quality =			800,	/* adjusted in code */
 	.tc_fill_vdso_timehands = 	x86_tsc_vdso_timehands,
 #ifdef COMPAT_FREEBSD32
 	.tc_fill_vdso_timehands32 = 	x86_tsc_vdso_timehands32,
 #endif
 };
 
 static void
 tsc_freq_vmware(void)
 {
 	u_int regs[4];
 
 	if (hv_high >= 0x40000010) {
 		do_cpuid(0x40000010, regs);
 		tsc_freq = regs[0] * 1000;
 	} else {
 		vmware_hvcall(VMW_HVCMD_GETHZ, regs);
 		if (regs[1] != UINT_MAX)
 			tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
 	}
 	tsc_is_invariant = 1;
 }
 
 /*
  * Calculate TSC frequency using information from the CPUID leaf 0x15
  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15
  * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor
  * Frequency Information'.  Leaf 0x16 is described in the SDM as
  * informational only, but if 0x15 did not work, and TSC calibration
  * is disabled, it is the best we can get at all.  It should still be
  * an improvement over the parsing of the CPU model name in
  * tsc_freq_intel(), when available.
  */
 static bool
 tsc_freq_cpuid(uint64_t *res)
 {
 	u_int regs[4];
 
 	if (cpu_high < 0x15)
 		return (false);
 	do_cpuid(0x15, regs);
 	if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
 		*res = (uint64_t)regs[2] * regs[1] / regs[0];
 		return (true);
 	}
 
 	if (cpu_high < 0x16)
 		return (false);
 	do_cpuid(0x16, regs);
 	if (regs[0] != 0) {
 		*res = (uint64_t)regs[0] * 1000000;
 		return (true);
 	}
 
 	return (false);
 }
 
 static void
 tsc_freq_intel(void)
 {
 	char brand[48];
 	u_int regs[4];
 	uint64_t freq;
 	char *p;
 	u_int i;
 
 	/*
 	 * Intel Processor Identification and the CPUID Instruction
 	 * Application Note 485.
 	 * http://www.intel.com/assets/pdf/appnote/241618.pdf
 	 */
 	if (cpu_exthigh >= 0x80000004) {
 		p = brand;
 		for (i = 0x80000002; i < 0x80000005; i++) {
 			do_cpuid(i, regs);
 			memcpy(p, regs, sizeof(regs));
 			p += sizeof(regs);
 		}
 		p = NULL;
 		for (i = 0; i < sizeof(brand) - 1; i++)
 			if (brand[i] == 'H' && brand[i + 1] == 'z')
 				p = brand + i;
 		if (p != NULL) {
 			p -= 5;
 			switch (p[4]) {
 			case 'M':
 				i = 1;
 				break;
 			case 'G':
 				i = 1000;
 				break;
 			case 'T':
 				i = 1000000;
 				break;
 			default:
 				return;
 			}
 #define	C2D(c)	((c) - '0')
 			if (p[1] == '.') {
 				freq = C2D(p[0]) * 1000;
 				freq += C2D(p[2]) * 100;
 				freq += C2D(p[3]) * 10;
 				freq *= i * 1000;
 			} else {
 				freq = C2D(p[0]) * 1000;
 				freq += C2D(p[1]) * 100;
 				freq += C2D(p[2]) * 10;
 				freq += C2D(p[3]);
 				freq *= i * 1000000;
 			}
 #undef C2D
 			tsc_freq = freq;
 		}
 	}
 }
 
 static void
 probe_tsc_freq(void)
 {
 	uint64_t tmp_freq, tsc1, tsc2;
 	int no_cpuid_override;
 
 	if (cpu_power_ecx & CPUID_PERF_STAT) {
 		/*
 		 * XXX Some emulators expose host CPUID without actual support
 		 * for these MSRs.  We must test whether they really work.
 		 */
 		wrmsr(MSR_MPERF, 0);
 		wrmsr(MSR_APERF, 0);
 		DELAY(10);
 		if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
 			tsc_perf_stat = 1;
 	}
 
 	if (vm_guest == VM_GUEST_VMWARE) {
 		tsc_freq_vmware();
 		return;
 	}
 
 	switch (cpu_vendor_id) {
 	case CPU_VENDOR_AMD:
 	case CPU_VENDOR_HYGON:
 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
 		    (vm_guest == VM_GUEST_NO &&
 		    CPUID_TO_FAMILY(cpu_id) >= 0x10))
 			tsc_is_invariant = 1;
 		if (cpu_feature & CPUID_SSE2) {
 			tsc_timecounter.tc_get_timecount =
 			    tsc_get_timecount_mfence;
 		}
 		break;
 	case CPU_VENDOR_INTEL:
 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
 		    (vm_guest == VM_GUEST_NO &&
 		    ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
 		    CPUID_TO_MODEL(cpu_id) >= 0xe) ||
 		    (CPUID_TO_FAMILY(cpu_id) == 0xf &&
 		    CPUID_TO_MODEL(cpu_id) >= 0x3))))
 			tsc_is_invariant = 1;
 		if (cpu_feature & CPUID_SSE2) {
 			tsc_timecounter.tc_get_timecount =
 			    tsc_get_timecount_lfence;
 		}
 		break;
 	case CPU_VENDOR_CENTAUR:
 		if (vm_guest == VM_GUEST_NO &&
 		    CPUID_TO_FAMILY(cpu_id) == 0x6 &&
 		    CPUID_TO_MODEL(cpu_id) >= 0xf &&
 		    (rdmsr(0x1203) & 0x100000000ULL) == 0)
 			tsc_is_invariant = 1;
 		if (cpu_feature & CPUID_SSE2) {
 			tsc_timecounter.tc_get_timecount =
 			    tsc_get_timecount_lfence;
 		}
 		break;
 	}
 
 	if (tsc_skip_calibration) {
 		if (tsc_freq_cpuid(&tmp_freq))
 			tsc_freq = tmp_freq;
 		else if (cpu_vendor_id == CPU_VENDOR_INTEL)
 			tsc_freq_intel();
 		if (tsc_freq == 0)
 			tsc_disabled = 1;
 	} else {
 		if (bootverbose)
 			printf("Calibrating TSC clock ... ");
 		tsc1 = rdtsc();
 		DELAY(1000000);
 		tsc2 = rdtsc();
 		tsc_freq = tsc2 - tsc1;
 
 		/*
 		 * If the difference between calibrated frequency and
 		 * the frequency reported by CPUID 0x15/0x16 leafs
 		 * differ significantly, this probably means that
 		 * calibration is bogus.  It happens on machines
 		 * without 8254 timer.  The BIOS rarely properly
 		 * reports it in FADT boot flags, so just compare the
 		 * frequencies directly.
 		 */
 		if (tsc_freq_cpuid(&tmp_freq) && qabs(tsc_freq - tmp_freq) >
 		    uqmin(tsc_freq, tmp_freq)) {
 			no_cpuid_override = 0;
 			TUNABLE_INT_FETCH("machdep.disable_tsc_cpuid_override",
 			    &no_cpuid_override);
 			if (!no_cpuid_override) {
 				if (bootverbose) {
 					printf(
 	"TSC clock: calibration freq %ju Hz, CPUID freq %ju Hz%s\n",
 					    (uintmax_t)tsc_freq,
 					    (uintmax_t)tmp_freq,
 					    no_cpuid_override ? "" :
 					    ", doing CPUID override");
 				}
 				tsc_freq = tmp_freq;
 			}
 		}
 	}
 	if (bootverbose)
 		printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
 }
 
 void
 init_TSC(void)
 {
 
 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
 		return;
 
 #ifdef __i386__
 	/* The TSC is known to be broken on certain CPUs. */
 	switch (cpu_vendor_id) {
 	case CPU_VENDOR_AMD:
 		switch (cpu_id & 0xFF0) {
 		case 0x500:
 			/* K5 Model 0 */
 			return;
 		}
 		break;
 	case CPU_VENDOR_CENTAUR:
 		switch (cpu_id & 0xff0) {
 		case 0x540:
 			/*
 			 * http://www.centtech.com/c6_data_sheet.pdf
 			 *
 			 * I-12 RDTSC may return incoherent values in EDX:EAX
 			 * I-13 RDTSC hangs when certain event counters are used
 			 */
 			return;
 		}
 		break;
 	case CPU_VENDOR_NSC:
 		switch (cpu_id & 0xff0) {
 		case 0x540:
 			if ((cpu_id & CPUID_STEPPING) == 0)
 				return;
 			break;
 		}
 		break;
 	}
 #endif
 		
 	probe_tsc_freq();
 
 	/*
 	 * Inform CPU accounting about our boot-time clock rate.  This will
 	 * be updated if someone loads a cpufreq driver after boot that
 	 * discovers a new max frequency.
 	 */
 	if (tsc_freq != 0)
 		set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
 
 	if (tsc_is_invariant)
 		return;
 
 	/* Register to find out about changes in CPU frequency. */
 	tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
 	    tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
 	tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
 	    tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
 }
 
 #ifdef SMP
 
 /*
  * RDTSC is not a serializing instruction, and does not drain
  * instruction stream, so we need to drain the stream before executing
  * it.  It could be fixed by use of RDTSCP, except the instruction is
  * not available everywhere.
  *
  * Use CPUID for draining in the boot-time SMP constistency test.  The
  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
  * and VIA) when SSE2 is present, and nothing on older machines which
  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
  *
  * Do not use do_cpuid(), since we do not need CPUID results, which
  * have to be written into memory with do_cpuid().
  */
 #define	TSC_READ(x)							\
 static void								\
 tsc_read_##x(void *arg)							\
 {									\
 	uint64_t *tsc = arg;						\
 	u_int cpu = PCPU_GET(cpuid);					\
 									\
 	__asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");	\
 	tsc[cpu * 3 + x] = rdtsc();					\
 }
 TSC_READ(0)
 TSC_READ(1)
 TSC_READ(2)
 #undef TSC_READ
 
 #define	N	1000
 
 static void
 comp_smp_tsc(void *arg)
 {
 	uint64_t *tsc;
 	int64_t d1, d2;
 	u_int cpu = PCPU_GET(cpuid);
 	u_int i, j, size;
 
 	size = (mp_maxid + 1) * 3;
 	for (i = 0, tsc = arg; i < N; i++, tsc += size)
 		CPU_FOREACH(j) {
 			if (j == cpu)
 				continue;
 			d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
 			d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
 			if (d1 <= 0 || d2 <= 0) {
 				smp_tsc = 0;
 				return;
 			}
 		}
 }
 
 static void
 adj_smp_tsc(void *arg)
 {
 	uint64_t *tsc;
 	int64_t d, min, max;
 	u_int cpu = PCPU_GET(cpuid);
 	u_int first, i, size;
 
 	first = CPU_FIRST();
 	if (cpu == first)
 		return;
 	min = INT64_MIN;
 	max = INT64_MAX;
 	size = (mp_maxid + 1) * 3;
 	for (i = 0, tsc = arg; i < N; i++, tsc += size) {
 		d = tsc[first * 3] - tsc[cpu * 3 + 1];
 		if (d > min)
 			min = d;
 		d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
 		if (d > min)
 			min = d;
 		d = tsc[first * 3 + 1] - tsc[cpu * 3];
 		if (d < max)
 			max = d;
 		d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
 		if (d < max)
 			max = d;
 	}
 	if (min > max)
 		return;
 	d = min / 2 + max / 2;
 	__asm __volatile (
 		"movl $0x10, %%ecx\n\t"
 		"rdmsr\n\t"
 		"addl %%edi, %%eax\n\t"
 		"adcl %%esi, %%edx\n\t"
 		"wrmsr\n"
 		: /* No output */
 		: "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
 		: "ax", "cx", "dx", "cc"
 	);
 }
 
 static int
 test_tsc(int adj_max_count)
 {
 	uint64_t *data, *tsc;
 	u_int i, size, adj;
 
 	if ((!smp_tsc && !tsc_is_invariant))
 		return (-100);
 	size = (mp_maxid + 1) * 3;
 	data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
 	adj = 0;
 retry:
 	for (i = 0, tsc = data; i < N; i++, tsc += size)
 		smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
 	smp_tsc = 1;	/* XXX */
 	smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
 	    smp_no_rendezvous_barrier, data);
 	if (!smp_tsc && adj < adj_max_count) {
 		adj++;
 		smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
 		    smp_no_rendezvous_barrier, data);
 		goto retry;
 	}
 	free(data, M_TEMP);
 	if (bootverbose)
 		printf("SMP: %sed TSC synchronization test%s\n",
 		    smp_tsc ? "pass" : "fail", 
 		    adj > 0 ? " after adjustment" : "");
 	if (smp_tsc && tsc_is_invariant) {
 		switch (cpu_vendor_id) {
 		case CPU_VENDOR_AMD:
 		case CPU_VENDOR_HYGON:
 			/*
 			 * Processor Programming Reference (PPR) for AMD
 			 * Family 17h states that the TSC uses a common
 			 * reference for all sockets, cores and threads.
 			 */
 			if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
 				return (1000);
 			/*
 			 * Starting with Family 15h processors, TSC clock
 			 * source is in the north bridge.  Check whether
 			 * we have a single-socket/multi-core platform.
 			 * XXX Need more work for complex cases.
 			 */
 			if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
 			    (amd_feature2 & AMDID2_CMP) == 0 ||
 			    smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
 				break;
 			return (1000);
 		case CPU_VENDOR_INTEL:
 			/*
 			 * XXX Assume Intel platforms have synchronized TSCs.
 			 */
 			return (1000);
 		}
 		return (800);
 	}
 	return (-100);
 }
 
 #undef N
 
 #endif /* SMP */
 
 static void
 init_TSC_tc(void)
 {
 	uint64_t max_freq;
 	int shift;
 
 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
 		return;
 
 	/*
 	 * Limit timecounter frequency to fit in an int and prevent it from
 	 * overflowing too fast.
 	 */
 	max_freq = UINT_MAX;
 
 	/*
 	 * We can not use the TSC if we support APM.  Precise timekeeping
 	 * on an APM'ed machine is at best a fools pursuit, since 
 	 * any and all of the time spent in various SMM code can't 
 	 * be reliably accounted for.  Reading the RTC is your only
 	 * source of reliable time info.  The i8254 loses too, of course,
 	 * but we need to have some kind of time...
 	 * We don't know at this point whether APM is going to be used
 	 * or not, nor when it might be activated.  Play it safe.
 	 */
 	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
 		tsc_timecounter.tc_quality = -1000;
 		if (bootverbose)
 			printf("TSC timecounter disabled: APM enabled.\n");
 		goto init;
 	}
 
 	/*
 	 * Intel CPUs without a C-state invariant TSC can stop the TSC
 	 * in either C2 or C3.  Disable use of C2 and C3 while using
 	 * the TSC as the timecounter.  The timecounter can be changed
 	 * to enable C2 and C3.
 	 *
 	 * Note that the TSC is used as the cputicker for computing
 	 * thread runtime regardless of the timecounter setting, so
 	 * using an alternate timecounter and enabling C2 or C3 can
 	 * result incorrect runtimes for kernel idle threads (but not
 	 * for any non-idle threads).
 	 */
 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
 	    (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
 		tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
 		if (bootverbose)
 			printf("TSC timecounter disables C2 and C3.\n");
 	}
 
 	/*
 	 * We can not use the TSC in SMP mode unless the TSCs on all CPUs
 	 * are synchronized.  If the user is sure that the system has
 	 * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
 	 * non-zero value.  The TSC seems unreliable in virtualized SMP
 	 * environments, so it is set to a negative quality in those cases.
 	 */
 #ifdef SMP
 	if (mp_ncpus > 1)
 		tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
 	else
 #endif /* SMP */
 	if (tsc_is_invariant)
 		tsc_timecounter.tc_quality = 1000;
 	max_freq >>= tsc_shift;
 
 init:
 	for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
 		;
 
 	/*
 	 * Timecounter implementation selection, top to bottom:
-	 * - For AMD Zens and newer, use LFENCE;RDTSC.
 	 * - If RDTSCP is available, use RDTSCP.
 	 * - If fence instructions are provided (SSE2), use LFENCE;RDTSC
 	 *   on Intel, and MFENCE;RDTSC on AMD.
 	 * - For really old CPUs, just use RDTSC.
 	 */
-	if ((cpu_vendor_id == CPU_VENDOR_AMD ||
-	    cpu_vendor_id == CPU_VENDOR_HYGON) &&
-	    CPUID_TO_FAMILY(cpu_id) >= 0x17) {
-		tsc_timecounter.tc_get_timecount = shift > 0 ?
-		    tsc_get_timecount_low_lfence :
-		    tsc_get_timecount_lfence;
-	} else if ((amd_feature & AMDID_RDTSCP) != 0) {
+	if ((amd_feature & AMDID_RDTSCP) != 0) {
 		tsc_timecounter.tc_get_timecount = shift > 0 ?
 		    tscp_get_timecount_low : tscp_get_timecount;
 	} else if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
 		if (cpu_vendor_id == CPU_VENDOR_AMD ||
 		    cpu_vendor_id == CPU_VENDOR_HYGON) {
 			tsc_timecounter.tc_get_timecount = shift > 0 ?
 			    tsc_get_timecount_low_mfence :
 			    tsc_get_timecount_mfence;
 		} else {
 			tsc_timecounter.tc_get_timecount = shift > 0 ?
 			    tsc_get_timecount_low_lfence :
 			    tsc_get_timecount_lfence;
 		}
 	} else {
 		tsc_timecounter.tc_get_timecount = shift > 0 ?
 		    tsc_get_timecount_low : tsc_get_timecount;
 	}
 	if (shift > 0) {
 		tsc_timecounter.tc_name = "TSC-low";
 		if (bootverbose)
 			printf("TSC timecounter discards lower %d bit(s)\n",
 			    shift);
 	}
 	if (tsc_freq != 0) {
 		tsc_timecounter.tc_frequency = tsc_freq >> shift;
 		tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
 		tc_init(&tsc_timecounter);
 	}
 }
 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
 
 void
 resume_TSC(void)
 {
 #ifdef SMP
 	int quality;
 
 	/* If TSC was not good on boot, it is unlikely to become good now. */
 	if (tsc_timecounter.tc_quality < 0)
 		return;
 	/* Nothing to do with UP. */
 	if (mp_ncpus < 2)
 		return;
 
 	/*
 	 * If TSC was good, a single synchronization should be enough,
 	 * but honour smp_tsc_adjust if it's set.
 	 */
 	quality = test_tsc(MAX(smp_tsc_adjust, 1));
 	if (quality != tsc_timecounter.tc_quality) {
 		printf("TSC timecounter quality changed: %d -> %d\n",
 		    tsc_timecounter.tc_quality, quality);
 		tsc_timecounter.tc_quality = quality;
 	}
 #endif /* SMP */
 }
 
 /*
  * When cpufreq levels change, find out about the (new) max frequency.  We
  * use this to update CPU accounting in case it got a lower estimate at boot.
  */
 static void
 tsc_levels_changed(void *arg, int unit)
 {
 	device_t cf_dev;
 	struct cf_level *levels;
 	int count, error;
 	uint64_t max_freq;
 
 	/* Only use values from the first CPU, assuming all are equal. */
 	if (unit != 0)
 		return;
 
 	/* Find the appropriate cpufreq device instance. */
 	cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
 	if (cf_dev == NULL) {
 		printf("tsc_levels_changed() called but no cpufreq device?\n");
 		return;
 	}
 
 	/* Get settings from the device and find the max frequency. */
 	count = 64;
 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
 	if (levels == NULL)
 		return;
 	error = CPUFREQ_LEVELS(cf_dev, levels, &count);
 	if (error == 0 && count != 0) {
 		max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
 		set_cputicker(rdtsc, max_freq, 1);
 	} else
 		printf("tsc_levels_changed: no max freq found\n");
 	free(levels, M_TEMP);
 }
 
 /*
  * If the TSC timecounter is in use, veto the pending change.  It may be
  * possible in the future to handle a dynamically-changing timecounter rate.
  */
 static void
 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
 {
 
 	if (*status != 0 || timecounter != &tsc_timecounter)
 		return;
 
 	printf("timecounter TSC must not be in use when "
 	    "changing frequencies; change denied\n");
 	*status = EBUSY;
 }
 
 /* Update TSC freq with the value indicated by the caller. */
 static void
 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
 {
 	uint64_t freq;
 
 	/* If there was an error during the transition, don't do anything. */
 	if (tsc_disabled || status != 0)
 		return;
 
 	/* Total setting for this level gives the new frequency in MHz. */
 	freq = (uint64_t)level->total_set.freq * 1000000;
 	atomic_store_rel_64(&tsc_freq, freq);
 	tsc_timecounter.tc_frequency =
 	    freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
 }
 
 static int
 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
 {
 	int error;
 	uint64_t freq;
 
 	freq = atomic_load_acq_64(&tsc_freq);
 	if (freq == 0)
 		return (EOPNOTSUPP);
 	error = sysctl_handle_64(oidp, &freq, 0, req);
 	if (error == 0 && req->newptr != NULL) {
 		atomic_store_rel_64(&tsc_freq, freq);
 		atomic_store_rel_64(&tsc_timecounter.tc_frequency,
 		    freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
 	}
 	return (error);
 }
 
 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq,
     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     0, 0, sysctl_machdep_tsc_freq, "QU",
     "Time Stamp Counter frequency");
 
 static u_int
 tsc_get_timecount(struct timecounter *tc __unused)
 {
 
 	return (rdtsc32());
 }
 
 static u_int
 tscp_get_timecount(struct timecounter *tc __unused)
 {
 
 	return (rdtscp32());
 }
 
 static inline u_int
 tsc_get_timecount_low(struct timecounter *tc)
 {
 	uint32_t rv;
 
 	__asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
 	    : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
 	return (rv);
 }
 
 static u_int
 tscp_get_timecount_low(struct timecounter *tc)
 {
 	uint32_t rv;
 
 	__asm __volatile("rdtscp; movl %1, %%ecx; shrd %%cl, %%edx, %0"
 	    : "=&a" (rv) : "m" (tc->tc_priv) : "ecx", "edx");
 	return (rv);
 }
 
 static u_int
 tsc_get_timecount_lfence(struct timecounter *tc __unused)
 {
 
 	lfence();
 	return (rdtsc32());
 }
 
 static u_int
 tsc_get_timecount_low_lfence(struct timecounter *tc)
 {
 
 	lfence();
 	return (tsc_get_timecount_low(tc));
 }
 
 static u_int
 tsc_get_timecount_mfence(struct timecounter *tc __unused)
 {
 
 	mfence();
 	return (rdtsc32());
 }
 
 static u_int
 tsc_get_timecount_low_mfence(struct timecounter *tc)
 {
 
 	mfence();
 	return (tsc_get_timecount_low(tc));
 }
 
 static uint32_t
 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
 {
 
 	vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
 	vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
 	vdso_th->th_x86_hpet_idx = 0xffffffff;
 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
 	return (1);
 }
 
 #ifdef COMPAT_FREEBSD32
 static uint32_t
 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
     struct timecounter *tc)
 {
 
 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
 	vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
 	vdso_th32->th_x86_hpet_idx = 0xffffffff;
 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
 	return (1);
 }
 #endif