diff --git a/sys/dev/sound/pci/hdspe-pcm.c b/sys/dev/sound/pci/hdspe-pcm.c
index 79bfcbea3406..322fd69723c0 100644
--- a/sys/dev/sound/pci/hdspe-pcm.c
+++ b/sys/dev/sound/pci/hdspe-pcm.c
@@ -1,1124 +1,1128 @@
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2012-2021 Ruslan Bukin
* Copyright (c) 2023-2024 Florian Walpen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* RME HDSPe driver for FreeBSD (pcm-part).
* Supported cards: AIO, RayDAT.
*/
#include
#include
#include
#include
#include
#define HDSPE_MATRIX_MAX 8
struct hdspe_latency {
uint32_t n;
uint32_t period;
float ms;
};
static struct hdspe_latency latency_map[] = {
{ 7, 32, 0.7 },
{ 0, 64, 1.5 },
{ 1, 128, 3 },
{ 2, 256, 6 },
{ 3, 512, 12 },
{ 4, 1024, 23 },
{ 5, 2048, 46 },
{ 6, 4096, 93 },
{ 0, 0, 0 },
};
struct hdspe_rate {
uint32_t speed;
uint32_t reg;
};
static struct hdspe_rate rate_map[] = {
{ 32000, (HDSPE_FREQ_32000) },
{ 44100, (HDSPE_FREQ_44100) },
{ 48000, (HDSPE_FREQ_48000) },
{ 64000, (HDSPE_FREQ_32000 | HDSPE_FREQ_DOUBLE) },
{ 88200, (HDSPE_FREQ_44100 | HDSPE_FREQ_DOUBLE) },
{ 96000, (HDSPE_FREQ_48000 | HDSPE_FREQ_DOUBLE) },
{ 128000, (HDSPE_FREQ_32000 | HDSPE_FREQ_QUAD) },
{ 176400, (HDSPE_FREQ_44100 | HDSPE_FREQ_QUAD) },
{ 192000, (HDSPE_FREQ_48000 | HDSPE_FREQ_QUAD) },
{ 0, 0 },
};
static uint32_t
hdspe_channel_play_ports(struct hdspe_channel *hc)
{
return (hc->ports & (HDSPE_CHAN_AIO_ALL | HDSPE_CHAN_RAY_ALL));
}
static uint32_t
hdspe_channel_rec_ports(struct hdspe_channel *hc)
{
return (hc->ports & (HDSPE_CHAN_AIO_ALL_REC | HDSPE_CHAN_RAY_ALL));
}
static unsigned int
hdspe_adat_width(uint32_t speed)
{
if (speed > 96000)
return (2);
if (speed > 48000)
return (4);
return (8);
}
static uint32_t
hdspe_port_first(uint32_t ports)
{
return (ports & (~(ports - 1))); /* Extract first bit set. */
}
static uint32_t
hdspe_port_first_row(uint32_t ports)
{
uint32_t ends;
/* Restrict ports to one set with contiguous slots. */
if (ports & HDSPE_CHAN_AIO_LINE)
ports = HDSPE_CHAN_AIO_LINE; /* Gap in the AIO slots here. */
else if (ports & HDSPE_CHAN_AIO_ALL)
ports &= HDSPE_CHAN_AIO_ALL; /* Rest of the AIO slots. */
else if (ports & HDSPE_CHAN_RAY_ALL)
ports &= HDSPE_CHAN_RAY_ALL; /* All RayDAT slots. */
/* Ends of port rows are followed by a port which is not in the set. */
ends = ports & (~(ports >> 1));
/* First row of contiguous ports ends in the first row end. */
return (ports & (ends ^ (ends - 1)));
}
static unsigned int
hdspe_channel_count(uint32_t ports, uint32_t adat_width)
{
unsigned int count = 0;
if (ports & HDSPE_CHAN_AIO_ALL) {
/* AIO ports. */
if (ports & HDSPE_CHAN_AIO_LINE)
count += 2;
+ if (ports & HDSPE_CHAN_AIO_EXT)
+ count += 4;
if (ports & HDSPE_CHAN_AIO_PHONE)
count += 2;
if (ports & HDSPE_CHAN_AIO_AES)
count += 2;
if (ports & HDSPE_CHAN_AIO_SPDIF)
count += 2;
if (ports & HDSPE_CHAN_AIO_ADAT)
count += adat_width;
} else if (ports & HDSPE_CHAN_RAY_ALL) {
/* RayDAT ports. */
if (ports & HDSPE_CHAN_RAY_AES)
count += 2;
if (ports & HDSPE_CHAN_RAY_SPDIF)
count += 2;
if (ports & HDSPE_CHAN_RAY_ADAT1)
count += adat_width;
if (ports & HDSPE_CHAN_RAY_ADAT2)
count += adat_width;
if (ports & HDSPE_CHAN_RAY_ADAT3)
count += adat_width;
if (ports & HDSPE_CHAN_RAY_ADAT4)
count += adat_width;
}
return (count);
}
static unsigned int
hdspe_channel_offset(uint32_t subset, uint32_t ports, unsigned int adat_width)
{
uint32_t preceding;
/* Make sure we have a subset of ports. */
subset &= ports;
/* Include all ports preceding the first one of the subset. */
preceding = ports & (~subset & (subset - 1));
if (preceding & HDSPE_CHAN_AIO_ALL)
preceding &= HDSPE_CHAN_AIO_ALL; /* Contiguous AIO slots. */
else if (preceding & HDSPE_CHAN_RAY_ALL)
preceding &= HDSPE_CHAN_RAY_ALL; /* Contiguous RayDAT slots. */
return (hdspe_channel_count(preceding, adat_width));
}
static unsigned int
hdspe_port_slot_offset(uint32_t port, unsigned int adat_width)
{
/* Exctract the first port (lowest bit) if set of ports. */
switch (hdspe_port_first(port)) {
/* AIO ports */
case HDSPE_CHAN_AIO_LINE:
return (0);
+ case HDSPE_CHAN_AIO_EXT:
+ return (2);
case HDSPE_CHAN_AIO_PHONE:
return (6);
case HDSPE_CHAN_AIO_AES:
return (8);
case HDSPE_CHAN_AIO_SPDIF:
return (10);
case HDSPE_CHAN_AIO_ADAT:
return (12);
/* RayDAT ports */
case HDSPE_CHAN_RAY_AES:
return (0);
case HDSPE_CHAN_RAY_SPDIF:
return (2);
case HDSPE_CHAN_RAY_ADAT1:
return (4);
case HDSPE_CHAN_RAY_ADAT2:
return (4 + adat_width);
case HDSPE_CHAN_RAY_ADAT3:
return (4 + 2 * adat_width);
case HDSPE_CHAN_RAY_ADAT4:
return (4 + 3 * adat_width);
default:
return (0);
}
}
static unsigned int
hdspe_port_slot_width(uint32_t ports, unsigned int adat_width)
{
uint32_t row;
/* Count number of contiguous slots from the first physical port. */
row = hdspe_port_first_row(ports);
return (hdspe_channel_count(row, adat_width));
}
static int
hdspe_hw_mixer(struct sc_chinfo *ch, unsigned int dst,
unsigned int src, unsigned short data)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
int offs;
scp = ch->parent;
sc = scp->sc;
offs = 0;
if (ch->dir == PCMDIR_PLAY)
offs = 64;
hdspe_write_4(sc, HDSPE_MIXER_BASE +
((offs + src + 128 * dst) * sizeof(uint32_t)),
data & 0xFFFF);
return (0);
};
static int
hdspechan_setgain(struct sc_chinfo *ch)
{
struct sc_info *sc;
uint32_t port, ports;
unsigned int slot, end_slot;
unsigned short volume;
sc = ch->parent->sc;
/* Iterate through all physical ports of the channel. */
ports = ch->ports;
port = hdspe_port_first(ports);
while (port != 0) {
/* Get slot range of the physical port. */
slot =
hdspe_port_slot_offset(port, hdspe_adat_width(sc->speed));
end_slot = slot +
hdspe_port_slot_width(port, hdspe_adat_width(sc->speed));
/* Treat first slot as left channel. */
volume = ch->lvol * HDSPE_MAX_GAIN / 100;
for (; slot < end_slot; slot++) {
hdspe_hw_mixer(ch, slot, slot, volume);
/* Subsequent slots all get the right channel volume. */
volume = ch->rvol * HDSPE_MAX_GAIN / 100;
}
ports &= ~port;
port = hdspe_port_first(ports);
}
return (0);
}
static int
hdspemixer_init(struct snd_mixer *m)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
int mask;
scp = mix_getdevinfo(m);
sc = scp->sc;
if (sc == NULL)
return (-1);
mask = SOUND_MASK_PCM;
if (hdspe_channel_play_ports(scp->hc))
mask |= SOUND_MASK_VOLUME;
if (hdspe_channel_rec_ports(scp->hc))
mask |= SOUND_MASK_RECLEV;
snd_mtxlock(sc->lock);
pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
mix_setdevs(m, mask);
snd_mtxunlock(sc->lock);
return (0);
}
static int
hdspemixer_set(struct snd_mixer *m, unsigned dev,
unsigned left, unsigned right)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
int i;
scp = mix_getdevinfo(m);
#if 0
device_printf(scp->dev, "hdspemixer_set() %d %d\n",
left, right);
#endif
for (i = 0; i < scp->chnum; i++) {
ch = &scp->chan[i];
if ((dev == SOUND_MIXER_VOLUME && ch->dir == PCMDIR_PLAY) ||
(dev == SOUND_MIXER_RECLEV && ch->dir == PCMDIR_REC)) {
ch->lvol = left;
ch->rvol = right;
if (ch->run)
hdspechan_setgain(ch);
}
}
return (0);
}
static kobj_method_t hdspemixer_methods[] = {
KOBJMETHOD(mixer_init, hdspemixer_init),
KOBJMETHOD(mixer_set, hdspemixer_set),
KOBJMETHOD_END
};
MIXER_DECLARE(hdspemixer);
static void
hdspechan_enable(struct sc_chinfo *ch, int value)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t row, ports;
int reg;
unsigned int slot, end_slot;
scp = ch->parent;
sc = scp->sc;
if (ch->dir == PCMDIR_PLAY)
reg = HDSPE_OUT_ENABLE_BASE;
else
reg = HDSPE_IN_ENABLE_BASE;
ch->run = value;
/* Iterate through rows of ports with contiguous slots. */
ports = ch->ports;
row = hdspe_port_first_row(ports);
while (row != 0) {
slot =
hdspe_port_slot_offset(row, hdspe_adat_width(sc->speed));
end_slot = slot +
hdspe_port_slot_width(row, hdspe_adat_width(sc->speed));
for (; slot < end_slot; slot++) {
hdspe_write_1(sc, reg + (4 * slot), value);
}
ports &= ~row;
row = hdspe_port_first_row(ports);
}
}
static int
hdspe_running(struct sc_info *sc)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
device_t *devlist;
int devcount;
int i, j;
int err;
if ((err = device_get_children(sc->dev, &devlist, &devcount)) != 0)
goto bad;
for (i = 0; i < devcount; i++) {
scp = device_get_ivars(devlist[i]);
for (j = 0; j < scp->chnum; j++) {
ch = &scp->chan[j];
if (ch->run)
goto bad;
}
}
free(devlist, M_TEMP);
return (0);
bad:
#if 0
device_printf(sc->dev, "hdspe is running\n");
#endif
free(devlist, M_TEMP);
return (1);
}
static void
hdspe_start_audio(struct sc_info *sc)
{
sc->ctrl_register |= (HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
}
static void
hdspe_stop_audio(struct sc_info *sc)
{
if (hdspe_running(sc) == 1)
return;
sc->ctrl_register &= ~(HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
}
static void
buffer_mux_write(uint32_t *dma, uint32_t *pcm, unsigned int pos,
unsigned int samples, unsigned int slots, unsigned int channels)
{
int slot;
for (; samples > 0; samples--) {
for (slot = 0; slot < slots; slot++) {
dma[slot * HDSPE_CHANBUF_SAMPLES + pos] =
pcm[pos * channels + slot];
}
pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES;
}
}
static void
buffer_mux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports,
unsigned int pos, unsigned int samples, unsigned int adat_width,
unsigned int pcm_width)
{
unsigned int slot_offset, slots;
unsigned int channels, chan_pos;
/* Translate DMA slot offset to DMA buffer offset. */
slot_offset = hdspe_port_slot_offset(subset, adat_width);
dma += slot_offset * HDSPE_CHANBUF_SAMPLES;
/* Channel position of the port subset and total number of channels. */
chan_pos = hdspe_channel_offset(subset, ports, pcm_width);
pcm += chan_pos;
channels = hdspe_channel_count(ports, pcm_width);
/* Only copy as much as supported by both hardware and pcm channel. */
slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width));
/* Let the compiler inline and loop unroll common cases. */
if (slots == 2)
buffer_mux_write(dma, pcm, pos, samples, 2, channels);
else if (slots == 4)
buffer_mux_write(dma, pcm, pos, samples, 4, channels);
else if (slots == 8)
buffer_mux_write(dma, pcm, pos, samples, 8, channels);
else
buffer_mux_write(dma, pcm, pos, samples, slots, channels);
}
static void
buffer_demux_read(uint32_t *dma, uint32_t *pcm, unsigned int pos,
unsigned int samples, unsigned int slots, unsigned int channels)
{
int slot;
for (; samples > 0; samples--) {
for (slot = 0; slot < slots; slot++) {
pcm[pos * channels + slot] =
dma[slot * HDSPE_CHANBUF_SAMPLES + pos];
}
pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES;
}
}
static void
buffer_demux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports,
unsigned int pos, unsigned int samples, unsigned int adat_width,
unsigned int pcm_width)
{
unsigned int slot_offset, slots;
unsigned int channels, chan_pos;
/* Translate port slot offset to DMA buffer offset. */
slot_offset = hdspe_port_slot_offset(subset, adat_width);
dma += slot_offset * HDSPE_CHANBUF_SAMPLES;
/* Channel position of the port subset and total number of channels. */
chan_pos = hdspe_channel_offset(subset, ports, pcm_width);
pcm += chan_pos;
channels = hdspe_channel_count(ports, pcm_width);
/* Only copy as much as supported by both hardware and pcm channel. */
slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width));
/* Let the compiler inline and loop unroll common cases. */
if (slots == 2)
buffer_demux_read(dma, pcm, pos, samples, 2, channels);
else if (slots == 4)
buffer_demux_read(dma, pcm, pos, samples, 4, channels);
else if (slots == 8)
buffer_demux_read(dma, pcm, pos, samples, 8, channels);
else
buffer_demux_read(dma, pcm, pos, samples, slots, channels);
}
/* Copy data between DMA and PCM buffers. */
static void
buffer_copy(struct sc_chinfo *ch)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t row, ports;
uint32_t dma_pos;
unsigned int pos, length, offset;
unsigned int n;
unsigned int adat_width, pcm_width;
scp = ch->parent;
sc = scp->sc;
n = AFMT_CHANNEL(ch->format); /* n channels */
/* Let pcm formats differ from current hardware ADAT width. */
adat_width = hdspe_adat_width(sc->speed);
if (n == hdspe_channel_count(ch->ports, 2))
pcm_width = 2;
else if (n == hdspe_channel_count(ch->ports, 4))
pcm_width = 4;
else
pcm_width = 8;
/* Derive buffer position and length to be copied. */
if (ch->dir == PCMDIR_PLAY) {
/* Position per channel is n times smaller than PCM. */
pos = sndbuf_getreadyptr(ch->buffer) / n;
length = sndbuf_getready(ch->buffer) / n;
/* Copy no more than 2 periods in advance. */
if (length > (sc->period * 4 * 2))
length = (sc->period * 4 * 2);
/* Skip what was already copied last time. */
offset = (ch->position + HDSPE_CHANBUF_SIZE) - pos;
offset %= HDSPE_CHANBUF_SIZE;
if (offset <= length) {
pos = (pos + offset) % HDSPE_CHANBUF_SIZE;
length -= offset;
}
} else {
/* Position per channel is n times smaller than PCM. */
pos = sndbuf_getfreeptr(ch->buffer) / n;
/* Get DMA buffer write position. */
dma_pos = hdspe_read_2(sc, HDSPE_STATUS_REG);
dma_pos &= HDSPE_BUF_POSITION_MASK;
/* Copy what is newly available. */
length = (dma_pos + HDSPE_CHANBUF_SIZE) - pos;
length %= HDSPE_CHANBUF_SIZE;
}
/* Position and length in samples (4 bytes). */
pos /= 4;
length /= 4;
/* Iterate through rows of ports with contiguous slots. */
ports = ch->ports;
if (pcm_width == adat_width)
row = hdspe_port_first_row(ports);
else
row = hdspe_port_first(ports);
while (row != 0) {
if (ch->dir == PCMDIR_PLAY)
buffer_mux_port(sc->pbuf, ch->data, row, ch->ports, pos,
length, adat_width, pcm_width);
else
buffer_demux_port(sc->rbuf, ch->data, row, ch->ports,
pos, length, adat_width, pcm_width);
ports &= ~row;
if (pcm_width == adat_width)
row = hdspe_port_first_row(ports);
else
row = hdspe_port_first(ports);
}
ch->position = ((pos + length) * 4) % HDSPE_CHANBUF_SIZE;
}
static int
clean(struct sc_chinfo *ch)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t *buf;
uint32_t row, ports;
unsigned int offset, slots;
scp = ch->parent;
sc = scp->sc;
buf = sc->rbuf;
if (ch->dir == PCMDIR_PLAY)
buf = sc->pbuf;
/* Iterate through rows of ports with contiguous slots. */
ports = ch->ports;
row = hdspe_port_first_row(ports);
while (row != 0) {
offset = hdspe_port_slot_offset(row,
hdspe_adat_width(sc->speed));
slots = hdspe_port_slot_width(row, hdspe_adat_width(sc->speed));
bzero(buf + offset * HDSPE_CHANBUF_SAMPLES,
slots * HDSPE_CHANBUF_SIZE);
ports &= ~row;
row = hdspe_port_first_row(ports);
}
ch->position = 0;
return (0);
}
/* Channel interface. */
static int
hdspechan_free(kobj_t obj, void *data)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
#if 0
device_printf(scp->dev, "hdspechan_free()\n");
#endif
snd_mtxlock(sc->lock);
if (ch->data != NULL) {
free(ch->data, M_HDSPE);
ch->data = NULL;
}
if (ch->caps != NULL) {
free(ch->caps, M_HDSPE);
ch->caps = NULL;
}
snd_mtxunlock(sc->lock);
return (0);
}
static void *
hdspechan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
int num;
scp = devinfo;
sc = scp->sc;
snd_mtxlock(sc->lock);
num = scp->chnum;
ch = &scp->chan[num];
if (dir == PCMDIR_PLAY)
ch->ports = hdspe_channel_play_ports(scp->hc);
else
ch->ports = hdspe_channel_rec_ports(scp->hc);
ch->run = 0;
ch->lvol = 0;
ch->rvol = 0;
/* Support all possible ADAT widths as channel formats. */
ch->cap_fmts[0] =
SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 2), 0);
ch->cap_fmts[1] =
SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 4), 0);
ch->cap_fmts[2] =
SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 8), 0);
ch->cap_fmts[3] = 0;
ch->caps = malloc(sizeof(struct pcmchan_caps), M_HDSPE, M_NOWAIT);
*(ch->caps) = (struct pcmchan_caps) {32000, 192000, ch->cap_fmts, 0};
/* Allocate maximum buffer size. */
ch->size = HDSPE_CHANBUF_SIZE * hdspe_channel_count(ch->ports, 8);
ch->data = malloc(ch->size, M_HDSPE, M_NOWAIT);
ch->position = 0;
ch->buffer = b;
ch->channel = c;
ch->parent = scp;
ch->dir = dir;
snd_mtxunlock(sc->lock);
if (sndbuf_setup(ch->buffer, ch->data, ch->size) != 0) {
device_printf(scp->dev, "Can't setup sndbuf.\n");
hdspechan_free(obj, ch);
return (NULL);
}
return (ch);
}
static int
hdspechan_trigger(kobj_t obj, void *data, int go)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
snd_mtxlock(sc->lock);
switch (go) {
case PCMTRIG_START:
#if 0
device_printf(scp->dev, "hdspechan_trigger(): start\n");
#endif
hdspechan_enable(ch, 1);
hdspechan_setgain(ch);
hdspe_start_audio(sc);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
#if 0
device_printf(scp->dev, "hdspechan_trigger(): stop or abort\n");
#endif
clean(ch);
hdspechan_enable(ch, 0);
hdspe_stop_audio(sc);
break;
case PCMTRIG_EMLDMAWR:
case PCMTRIG_EMLDMARD:
if(ch->run)
buffer_copy(ch);
break;
}
snd_mtxunlock(sc->lock);
return (0);
}
static uint32_t
hdspechan_getptr(kobj_t obj, void *data)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
uint32_t ret, pos;
ch = data;
scp = ch->parent;
sc = scp->sc;
snd_mtxlock(sc->lock);
ret = hdspe_read_2(sc, HDSPE_STATUS_REG);
snd_mtxunlock(sc->lock);
pos = ret & HDSPE_BUF_POSITION_MASK;
pos *= AFMT_CHANNEL(ch->format); /* Hardbuf with multiple channels. */
return (pos);
}
static int
hdspechan_setformat(kobj_t obj, void *data, uint32_t format)
{
struct sc_chinfo *ch;
ch = data;
#if 0
struct sc_pcminfo *scp = ch->parent;
device_printf(scp->dev, "hdspechan_setformat(%d)\n", format);
#endif
ch->format = format;
return (0);
}
static uint32_t
hdspechan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
struct sc_pcminfo *scp;
struct hdspe_rate *hr;
struct sc_chinfo *ch;
struct sc_info *sc;
long long period;
int threshold;
int i;
ch = data;
scp = ch->parent;
sc = scp->sc;
hr = NULL;
#if 0
device_printf(scp->dev, "hdspechan_setspeed(%d)\n", speed);
#endif
if (hdspe_running(sc) == 1)
goto end;
if (sc->force_speed > 0)
speed = sc->force_speed;
/* First look for equal frequency. */
for (i = 0; rate_map[i].speed != 0; i++) {
if (rate_map[i].speed == speed)
hr = &rate_map[i];
}
/* If no match, just find nearest. */
if (hr == NULL) {
for (i = 0; rate_map[i].speed != 0; i++) {
hr = &rate_map[i];
threshold = hr->speed + ((rate_map[i + 1].speed != 0) ?
((rate_map[i + 1].speed - hr->speed) >> 1) : 0);
if (speed < threshold)
break;
}
}
switch (sc->type) {
case HDSPE_RAYDAT:
case HDSPE_AIO:
period = HDSPE_FREQ_AIO;
break;
default:
/* Unsupported card. */
goto end;
}
/* Write frequency on the device. */
sc->ctrl_register &= ~HDSPE_FREQ_MASK;
sc->ctrl_register |= hr->reg;
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
speed = hr->speed;
if (speed > 96000)
speed /= 4;
else if (speed > 48000)
speed /= 2;
/* Set DDS value. */
period /= speed;
hdspe_write_4(sc, HDSPE_FREQ_REG, period);
sc->speed = hr->speed;
end:
return (sc->speed);
}
static uint32_t
hdspechan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
{
struct hdspe_latency *hl;
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
int threshold;
int i;
ch = data;
scp = ch->parent;
sc = scp->sc;
hl = NULL;
#if 0
device_printf(scp->dev, "hdspechan_setblocksize(%d)\n", blocksize);
#endif
if (hdspe_running(sc) == 1)
goto end;
if (blocksize > HDSPE_LAT_BYTES_MAX)
blocksize = HDSPE_LAT_BYTES_MAX;
else if (blocksize < HDSPE_LAT_BYTES_MIN)
blocksize = HDSPE_LAT_BYTES_MIN;
blocksize /= 4 /* samples */;
if (sc->force_period > 0)
blocksize = sc->force_period;
/* First look for equal latency. */
for (i = 0; latency_map[i].period != 0; i++) {
if (latency_map[i].period == blocksize)
hl = &latency_map[i];
}
/* If no match, just find nearest. */
if (hl == NULL) {
for (i = 0; latency_map[i].period != 0; i++) {
hl = &latency_map[i];
threshold = hl->period + ((latency_map[i + 1].period != 0) ?
((latency_map[i + 1].period - hl->period) >> 1) : 0);
if (blocksize < threshold)
break;
}
}
snd_mtxlock(sc->lock);
sc->ctrl_register &= ~HDSPE_LAT_MASK;
sc->ctrl_register |= hdspe_encode_latency(hl->n);
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
sc->period = hl->period;
snd_mtxunlock(sc->lock);
#if 0
device_printf(scp->dev, "New period=%d\n", sc->period);
#endif
sndbuf_resize(ch->buffer,
(HDSPE_CHANBUF_SIZE * AFMT_CHANNEL(ch->format)) / (sc->period * 4),
(sc->period * 4));
end:
return (sndbuf_getblksz(ch->buffer));
}
static uint32_t hdspe_bkp_fmt[] = {
SND_FORMAT(AFMT_S32_LE, 2, 0),
0
};
static struct pcmchan_caps hdspe_bkp_caps = {32000, 192000, hdspe_bkp_fmt, 0};
static struct pcmchan_caps *
hdspechan_getcaps(kobj_t obj, void *data)
{
struct sc_chinfo *ch;
ch = data;
#if 0
struct sc_pcminfo *scl = ch->parent;
device_printf(scp->dev, "hdspechan_getcaps()\n");
#endif
if (ch->caps != NULL)
return (ch->caps);
return (&hdspe_bkp_caps);
}
static kobj_method_t hdspechan_methods[] = {
KOBJMETHOD(channel_init, hdspechan_init),
KOBJMETHOD(channel_free, hdspechan_free),
KOBJMETHOD(channel_setformat, hdspechan_setformat),
KOBJMETHOD(channel_setspeed, hdspechan_setspeed),
KOBJMETHOD(channel_setblocksize, hdspechan_setblocksize),
KOBJMETHOD(channel_trigger, hdspechan_trigger),
KOBJMETHOD(channel_getptr, hdspechan_getptr),
KOBJMETHOD(channel_getcaps, hdspechan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(hdspechan);
static int
hdspe_pcm_probe(device_t dev)
{
#if 0
device_printf(dev,"hdspe_pcm_probe()\n");
#endif
return (0);
}
static uint32_t
hdspe_pcm_intr(struct sc_pcminfo *scp)
{
struct sc_chinfo *ch;
struct sc_info *sc;
int i;
sc = scp->sc;
for (i = 0; i < scp->chnum; i++) {
ch = &scp->chan[i];
snd_mtxunlock(sc->lock);
chn_intr(ch->channel);
snd_mtxlock(sc->lock);
}
return (0);
}
static int
hdspe_pcm_attach(device_t dev)
{
char status[SND_STATUSLEN];
struct sc_pcminfo *scp;
const char *buf;
uint32_t pcm_flags;
int err;
int play, rec;
scp = device_get_ivars(dev);
scp->ih = &hdspe_pcm_intr;
if (scp->hc->ports & HDSPE_CHAN_AIO_ALL)
buf = "AIO";
else if (scp->hc->ports & HDSPE_CHAN_RAY_ALL)
buf = "RayDAT";
else
buf = "?";
device_set_descf(dev, "HDSPe %s [%s]", buf, scp->hc->descr);
/*
* We don't register interrupt handler with snd_setup_intr
* in pcm device. Mark pcm device as MPSAFE manually.
*/
pcm_flags = pcm_getflags(dev) | SD_F_MPSAFE;
if (hdspe_channel_count(scp->hc->ports, 8) > HDSPE_MATRIX_MAX)
/* Disable vchan conversion, too many channels. */
pcm_flags |= SD_F_BITPERFECT;
pcm_setflags(dev, pcm_flags);
play = (hdspe_channel_play_ports(scp->hc)) ? 1 : 0;
rec = (hdspe_channel_rec_ports(scp->hc)) ? 1 : 0;
err = pcm_register(dev, scp, play, rec);
if (err) {
device_printf(dev, "Can't register pcm.\n");
return (ENXIO);
}
scp->chnum = 0;
if (play) {
pcm_addchan(dev, PCMDIR_PLAY, &hdspechan_class, scp);
scp->chnum++;
}
if (rec) {
pcm_addchan(dev, PCMDIR_REC, &hdspechan_class, scp);
scp->chnum++;
}
snprintf(status, SND_STATUSLEN, "port 0x%jx irq %jd on %s",
rman_get_start(scp->sc->cs),
rman_get_start(scp->sc->irq),
device_get_nameunit(device_get_parent(dev)));
pcm_setstatus(dev, status);
mixer_init(dev, &hdspemixer_class, scp);
return (0);
}
static int
hdspe_pcm_detach(device_t dev)
{
int err;
err = pcm_unregister(dev);
if (err) {
device_printf(dev, "Can't unregister device.\n");
return (err);
}
return (0);
}
static device_method_t hdspe_pcm_methods[] = {
DEVMETHOD(device_probe, hdspe_pcm_probe),
DEVMETHOD(device_attach, hdspe_pcm_attach),
DEVMETHOD(device_detach, hdspe_pcm_detach),
{ 0, 0 }
};
static driver_t hdspe_pcm_driver = {
"pcm",
hdspe_pcm_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_hdspe_pcm, hdspe, hdspe_pcm_driver, 0, 0);
MODULE_DEPEND(snd_hdspe, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(snd_hdspe, 1);
diff --git a/sys/dev/sound/pci/hdspe.c b/sys/dev/sound/pci/hdspe.c
index 66f5bc5c5d7a..0e25e9599328 100644
--- a/sys/dev/sound/pci/hdspe.c
+++ b/sys/dev/sound/pci/hdspe.c
@@ -1,684 +1,685 @@
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2012-2016 Ruslan Bukin
* Copyright (c) 2023-2024 Florian Walpen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* RME HDSPe driver for FreeBSD.
* Supported cards: AIO, RayDAT.
*/
#include
#include
#include
#include
#include
#include
#include
static bool hdspe_unified_pcm = false;
static SYSCTL_NODE(_hw, OID_AUTO, hdspe, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"PCI HDSPe");
SYSCTL_BOOL(_hw_hdspe, OID_AUTO, unified_pcm, CTLFLAG_RWTUN,
&hdspe_unified_pcm, 0, "Combine physical ports in one unified pcm device");
static struct hdspe_clock_source hdspe_clock_source_table_rd[] = {
{ "internal", 0 << 1 | 1, HDSPE_STATUS1_CLOCK(15), 0, 0 },
{ "word", 0 << 1 | 0, HDSPE_STATUS1_CLOCK( 0), 1 << 24, 1 << 25 },
{ "aes", 1 << 1 | 0, HDSPE_STATUS1_CLOCK( 1), 1 << 0, 1 << 8 },
{ "spdif", 2 << 1 | 0, HDSPE_STATUS1_CLOCK( 2), 1 << 1, 1 << 9 },
{ "adat1", 3 << 1 | 0, HDSPE_STATUS1_CLOCK( 3), 1 << 2, 1 << 10 },
{ "adat2", 4 << 1 | 0, HDSPE_STATUS1_CLOCK( 4), 1 << 3, 1 << 11 },
{ "adat3", 5 << 1 | 0, HDSPE_STATUS1_CLOCK( 5), 1 << 4, 1 << 12 },
{ "adat4", 6 << 1 | 0, HDSPE_STATUS1_CLOCK( 6), 1 << 5, 1 << 13 },
{ "tco", 9 << 1 | 0, HDSPE_STATUS1_CLOCK( 9), 1 << 26, 1 << 27 },
{ "sync_in", 10 << 1 | 0, HDSPE_STATUS1_CLOCK(10), 0, 0 },
{ NULL, 0 << 1 | 0, HDSPE_STATUS1_CLOCK( 0), 0, 0 },
};
static struct hdspe_clock_source hdspe_clock_source_table_aio[] = {
{ "internal", 0 << 1 | 1, HDSPE_STATUS1_CLOCK(15), 0, 0 },
{ "word", 0 << 1 | 0, HDSPE_STATUS1_CLOCK( 0), 1 << 24, 1 << 25 },
{ "aes", 1 << 1 | 0, HDSPE_STATUS1_CLOCK( 1), 1 << 0, 1 << 8 },
{ "spdif", 2 << 1 | 0, HDSPE_STATUS1_CLOCK( 2), 1 << 1, 1 << 9 },
{ "adat", 3 << 1 | 0, HDSPE_STATUS1_CLOCK( 3), 1 << 2, 1 << 10 },
{ "tco", 9 << 1 | 0, HDSPE_STATUS1_CLOCK( 9), 1 << 26, 1 << 27 },
{ "sync_in", 10 << 1 | 0, HDSPE_STATUS1_CLOCK(10), 0, 0 },
{ NULL, 0 << 1 | 0, HDSPE_STATUS1_CLOCK( 0), 0, 0 },
};
static struct hdspe_channel chan_map_aio[] = {
{ HDSPE_CHAN_AIO_LINE, "line" },
+ { HDSPE_CHAN_AIO_EXT, "ext" },
{ HDSPE_CHAN_AIO_PHONE, "phone" },
{ HDSPE_CHAN_AIO_AES, "aes" },
{ HDSPE_CHAN_AIO_SPDIF, "s/pdif" },
{ HDSPE_CHAN_AIO_ADAT, "adat" },
{ 0, NULL },
};
static struct hdspe_channel chan_map_aio_uni[] = {
{ HDSPE_CHAN_AIO_ALL, "all" },
{ 0, NULL },
};
static struct hdspe_channel chan_map_rd[] = {
{ HDSPE_CHAN_RAY_AES, "aes" },
{ HDSPE_CHAN_RAY_SPDIF, "s/pdif" },
{ HDSPE_CHAN_RAY_ADAT1, "adat1" },
{ HDSPE_CHAN_RAY_ADAT2, "adat2" },
{ HDSPE_CHAN_RAY_ADAT3, "adat3" },
{ HDSPE_CHAN_RAY_ADAT4, "adat4" },
{ 0, NULL },
};
static struct hdspe_channel chan_map_rd_uni[] = {
{ HDSPE_CHAN_RAY_ALL, "all" },
{ 0, NULL },
};
static void
hdspe_intr(void *p)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
device_t *devlist;
int devcount;
int status;
int err;
int i;
sc = (struct sc_info *)p;
snd_mtxlock(sc->lock);
status = hdspe_read_1(sc, HDSPE_STATUS_REG);
if (status & HDSPE_AUDIO_IRQ_PENDING) {
if ((err = device_get_children(sc->dev, &devlist, &devcount)) != 0)
return;
for (i = 0; i < devcount; i++) {
scp = device_get_ivars(devlist[i]);
if (scp->ih != NULL)
scp->ih(scp);
}
hdspe_write_1(sc, HDSPE_INTERRUPT_ACK, 0);
free(devlist, M_TEMP);
}
snd_mtxunlock(sc->lock);
}
static void
hdspe_dmapsetmap(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
#if 0
device_printf(sc->dev, "hdspe_dmapsetmap()\n");
#endif
}
static int
hdspe_alloc_resources(struct sc_info *sc)
{
/* Allocate resource. */
sc->csid = PCIR_BAR(0);
sc->cs = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&sc->csid, RF_ACTIVE);
if (!sc->cs) {
device_printf(sc->dev, "Unable to map SYS_RES_MEMORY.\n");
return (ENXIO);
}
sc->cst = rman_get_bustag(sc->cs);
sc->csh = rman_get_bushandle(sc->cs);
/* Allocate interrupt resource. */
sc->irqid = 0;
sc->irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &sc->irqid,
RF_ACTIVE | RF_SHAREABLE);
if (!sc->irq ||
bus_setup_intr(sc->dev, sc->irq, INTR_MPSAFE | INTR_TYPE_AV,
NULL, hdspe_intr, sc, &sc->ih)) {
device_printf(sc->dev, "Unable to alloc interrupt resource.\n");
return (ENXIO);
}
/* Allocate DMA resources. */
if (bus_dma_tag_create(/*parent*/bus_get_dma_tag(sc->dev),
/*alignment*/4,
/*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL,
/*filterarg*/NULL,
/*maxsize*/2 * HDSPE_DMASEGSIZE,
/*nsegments*/2,
/*maxsegsz*/HDSPE_DMASEGSIZE,
/*flags*/0,
/*lockfunc*/NULL,
/*lockarg*/NULL,
/*dmatag*/&sc->dmat) != 0) {
device_printf(sc->dev, "Unable to create dma tag.\n");
return (ENXIO);
}
sc->bufsize = HDSPE_DMASEGSIZE;
/* pbuf (play buffer). */
if (bus_dmamem_alloc(sc->dmat, (void **)&sc->pbuf, BUS_DMA_WAITOK,
&sc->pmap)) {
device_printf(sc->dev, "Can't alloc pbuf.\n");
return (ENXIO);
}
if (bus_dmamap_load(sc->dmat, sc->pmap, sc->pbuf, sc->bufsize,
hdspe_dmapsetmap, sc, BUS_DMA_NOWAIT)) {
device_printf(sc->dev, "Can't load pbuf.\n");
return (ENXIO);
}
/* rbuf (rec buffer). */
if (bus_dmamem_alloc(sc->dmat, (void **)&sc->rbuf, BUS_DMA_WAITOK,
&sc->rmap)) {
device_printf(sc->dev, "Can't alloc rbuf.\n");
return (ENXIO);
}
if (bus_dmamap_load(sc->dmat, sc->rmap, sc->rbuf, sc->bufsize,
hdspe_dmapsetmap, sc, BUS_DMA_NOWAIT)) {
device_printf(sc->dev, "Can't load rbuf.\n");
return (ENXIO);
}
bzero(sc->pbuf, sc->bufsize);
bzero(sc->rbuf, sc->bufsize);
return (0);
}
static void
hdspe_map_dmabuf(struct sc_info *sc)
{
uint32_t paddr, raddr;
int i;
paddr = vtophys(sc->pbuf);
raddr = vtophys(sc->rbuf);
for (i = 0; i < HDSPE_MAX_SLOTS * 16; i++) {
hdspe_write_4(sc, HDSPE_PAGE_ADDR_BUF_OUT + 4 * i,
paddr + i * 4096);
hdspe_write_4(sc, HDSPE_PAGE_ADDR_BUF_IN + 4 * i,
raddr + i * 4096);
}
}
static int
hdspe_sysctl_sample_rate(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc = oidp->oid_arg1;
int error;
unsigned int speed, multiplier;
speed = sc->force_speed;
/* Process sysctl (unsigned) integer request. */
error = sysctl_handle_int(oidp, &speed, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
/* Speed from 32000 to 192000, 0 falls back to pcm speed setting. */
sc->force_speed = 0;
if (speed > 0) {
multiplier = 1;
if (speed > (96000 + 128000) / 2)
multiplier = 4;
else if (speed > (48000 + 64000) / 2)
multiplier = 2;
if (speed < ((32000 + 44100) / 2) * multiplier)
sc->force_speed = 32000 * multiplier;
else if (speed < ((44100 + 48000) / 2) * multiplier)
sc->force_speed = 44100 * multiplier;
else
sc->force_speed = 48000 * multiplier;
}
return (0);
}
static int
hdspe_sysctl_period(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc = oidp->oid_arg1;
int error;
unsigned int period;
period = sc->force_period;
/* Process sysctl (unsigned) integer request. */
error = sysctl_handle_int(oidp, &period, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
/* Period is from 2^5 to 2^14, 0 falls back to pcm latency settings. */
sc->force_period = 0;
if (period > 0) {
sc->force_period = 32;
while (sc->force_period < period && sc->force_period < 4096)
sc->force_period <<= 1;
}
return (0);
}
static int
hdspe_sysctl_clock_preference(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdspe_clock_source *clock_table, *clock;
char buf[16] = "invalid";
int error;
uint32_t setting;
sc = oidp->oid_arg1;
/* Select sync ports table for device type. */
if (sc->type == HDSPE_AIO)
clock_table = hdspe_clock_source_table_aio;
else if (sc->type == HDSPE_RAYDAT)
clock_table = hdspe_clock_source_table_rd;
else
return (ENXIO);
/* Extract preferred clock source from settings register. */
setting = sc->settings_register & HDSPE_SETTING_CLOCK_MASK;
for (clock = clock_table; clock->name != NULL; ++clock) {
if (clock->setting == setting)
break;
}
if (clock->name != NULL)
strlcpy(buf, clock->name, sizeof(buf));
/* Process sysctl string request. */
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return (error);
/* Find clock source matching the sysctl string. */
for (clock = clock_table; clock->name != NULL; ++clock) {
if (strncasecmp(buf, clock->name, sizeof(buf)) == 0)
break;
}
/* Set preferred clock source in settings register. */
if (clock->name != NULL) {
setting = clock->setting & HDSPE_SETTING_CLOCK_MASK;
snd_mtxlock(sc->lock);
sc->settings_register &= ~HDSPE_SETTING_CLOCK_MASK;
sc->settings_register |= setting;
hdspe_write_4(sc, HDSPE_SETTINGS_REG, sc->settings_register);
snd_mtxunlock(sc->lock);
}
return (0);
}
static int
hdspe_sysctl_clock_source(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdspe_clock_source *clock_table, *clock;
char buf[16] = "invalid";
uint32_t status;
sc = oidp->oid_arg1;
/* Select sync ports table for device type. */
if (sc->type == HDSPE_AIO)
clock_table = hdspe_clock_source_table_aio;
else if (sc->type == HDSPE_RAYDAT)
clock_table = hdspe_clock_source_table_rd;
else
return (ENXIO);
/* Read current (autosync) clock source from status register. */
snd_mtxlock(sc->lock);
status = hdspe_read_4(sc, HDSPE_STATUS1_REG);
status &= HDSPE_STATUS1_CLOCK_MASK;
snd_mtxunlock(sc->lock);
/* Translate status register value to clock source. */
for (clock = clock_table; clock->name != NULL; ++clock) {
/* In clock master mode, override with internal clock source. */
if (sc->settings_register & HDSPE_SETTING_MASTER) {
if (clock->setting & HDSPE_SETTING_MASTER)
break;
} else if (clock->status == status)
break;
}
/* Process sysctl string request. */
if (clock->name != NULL)
strlcpy(buf, clock->name, sizeof(buf));
return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
}
static int
hdspe_sysctl_clock_list(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdspe_clock_source *clock_table, *clock;
char buf[256];
int n;
sc = oidp->oid_arg1;
n = 0;
/* Select clock source table for device type. */
if (sc->type == HDSPE_AIO)
clock_table = hdspe_clock_source_table_aio;
else if (sc->type == HDSPE_RAYDAT)
clock_table = hdspe_clock_source_table_rd;
else
return (ENXIO);
/* List available clock sources. */
buf[0] = 0;
for (clock = clock_table; clock->name != NULL; ++clock) {
if (n > 0)
n += strlcpy(buf + n, ",", sizeof(buf) - n);
n += strlcpy(buf + n, clock->name, sizeof(buf) - n);
}
return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
}
static int
hdspe_sysctl_sync_status(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdspe_clock_source *clock_table, *clock;
char buf[256];
char *state;
int n;
uint32_t status;
sc = oidp->oid_arg1;
n = 0;
/* Select sync ports table for device type. */
if (sc->type == HDSPE_AIO)
clock_table = hdspe_clock_source_table_aio;
else if (sc->type == HDSPE_RAYDAT)
clock_table = hdspe_clock_source_table_rd;
else
return (ENXIO);
/* Read current lock and sync bits from status register. */
snd_mtxlock(sc->lock);
status = hdspe_read_4(sc, HDSPE_STATUS1_REG);
snd_mtxunlock(sc->lock);
/* List clock sources with lock and sync state. */
for (clock = clock_table; clock->name != NULL; ++clock) {
if (clock->sync_bit != 0) {
if (n > 0)
n += strlcpy(buf + n, ",", sizeof(buf) - n);
state = "none";
if ((clock->sync_bit & status) != 0)
state = "sync";
else if ((clock->lock_bit & status) != 0)
state = "lock";
n += snprintf(buf + n, sizeof(buf) - n, "%s(%s)",
clock->name, state);
}
}
return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
}
static int
hdspe_probe(device_t dev)
{
uint32_t rev;
if ((pci_get_vendor(dev) == PCI_VENDOR_XILINX ||
pci_get_vendor(dev) == PCI_VENDOR_RME) &&
pci_get_device(dev) == PCI_DEVICE_XILINX_HDSPE) {
rev = pci_get_revid(dev);
switch (rev) {
case PCI_REVISION_AIO:
device_set_desc(dev, "RME HDSPe AIO");
return (0);
case PCI_REVISION_RAYDAT:
device_set_desc(dev, "RME HDSPe RayDAT");
return (0);
}
}
return (ENXIO);
}
static int
hdspe_init(struct sc_info *sc)
{
long long period;
/* Set latency. */
sc->period = 32;
/*
* The pcm channel latency settings propagate unreliable blocksizes,
* different for recording and playback, and skewed due to rounding
* and total buffer size limits.
* Force period to a consistent default until these issues are fixed.
*/
sc->force_period = 256;
sc->ctrl_register = hdspe_encode_latency(7);
/* Set rate. */
sc->speed = HDSPE_SPEED_DEFAULT;
sc->force_speed = 0;
sc->ctrl_register &= ~HDSPE_FREQ_MASK;
sc->ctrl_register |= HDSPE_FREQ_MASK_DEFAULT;
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
switch (sc->type) {
case HDSPE_RAYDAT:
case HDSPE_AIO:
period = HDSPE_FREQ_AIO;
break;
default:
return (ENXIO);
}
/* Set DDS value. */
period /= sc->speed;
hdspe_write_4(sc, HDSPE_FREQ_REG, period);
/* Other settings. */
sc->settings_register = 0;
hdspe_write_4(sc, HDSPE_SETTINGS_REG, sc->settings_register);
return (0);
}
static int
hdspe_attach(device_t dev)
{
struct hdspe_channel *chan_map;
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t rev;
int i, err;
#if 0
device_printf(dev, "hdspe_attach()\n");
#endif
sc = device_get_softc(dev);
sc->lock = snd_mtxcreate(device_get_nameunit(dev),
"snd_hdspe softc");
sc->dev = dev;
pci_enable_busmaster(dev);
rev = pci_get_revid(dev);
switch (rev) {
case PCI_REVISION_AIO:
sc->type = HDSPE_AIO;
chan_map = hdspe_unified_pcm ? chan_map_aio_uni : chan_map_aio;
break;
case PCI_REVISION_RAYDAT:
sc->type = HDSPE_RAYDAT;
chan_map = hdspe_unified_pcm ? chan_map_rd_uni : chan_map_rd;
break;
default:
return (ENXIO);
}
/* Allocate resources. */
err = hdspe_alloc_resources(sc);
if (err) {
device_printf(dev, "Unable to allocate system resources.\n");
return (ENXIO);
}
if (hdspe_init(sc) != 0)
return (ENXIO);
for (i = 0; i < HDSPE_MAX_CHANS && chan_map[i].descr != NULL; i++) {
scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_NOWAIT | M_ZERO);
scp->hc = &chan_map[i];
scp->sc = sc;
scp->dev = device_add_child(dev, "pcm", DEVICE_UNIT_ANY);
device_set_ivars(scp->dev, scp);
}
hdspe_map_dmabuf(sc);
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"sync_status", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
sc, 0, hdspe_sysctl_sync_status, "A",
"List clock source signal lock and sync status");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"clock_source", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
sc, 0, hdspe_sysctl_clock_source, "A",
"Currently effective clock source");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"clock_preference", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
sc, 0, hdspe_sysctl_clock_preference, "A",
"Set 'internal' (master) or preferred autosync clock source");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"clock_list", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
sc, 0, hdspe_sysctl_clock_list, "A",
"List of supported clock sources");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"period", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
sc, 0, hdspe_sysctl_period, "A",
"Force period of samples per interrupt (32, 64, ... 4096)");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"sample_rate", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
sc, 0, hdspe_sysctl_sample_rate, "A",
"Force sample rate (32000, 44100, 48000, ... 192000)");
return (bus_generic_attach(dev));
}
static void
hdspe_dmafree(struct sc_info *sc)
{
bus_dmamap_unload(sc->dmat, sc->rmap);
bus_dmamap_unload(sc->dmat, sc->pmap);
bus_dmamem_free(sc->dmat, sc->rbuf, sc->rmap);
bus_dmamem_free(sc->dmat, sc->pbuf, sc->pmap);
sc->rbuf = sc->pbuf = NULL;
}
static int
hdspe_detach(device_t dev)
{
struct sc_info *sc;
int err;
sc = device_get_softc(dev);
if (sc == NULL) {
device_printf(dev,"Can't detach: softc is null.\n");
return (0);
}
err = device_delete_children(dev);
if (err)
return (err);
hdspe_dmafree(sc);
if (sc->ih)
bus_teardown_intr(dev, sc->irq, sc->ih);
if (sc->dmat)
bus_dma_tag_destroy(sc->dmat);
if (sc->irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
if (sc->cs)
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->cs);
if (sc->lock)
snd_mtxfree(sc->lock);
return (0);
}
static device_method_t hdspe_methods[] = {
DEVMETHOD(device_probe, hdspe_probe),
DEVMETHOD(device_attach, hdspe_attach),
DEVMETHOD(device_detach, hdspe_detach),
{ 0, 0 }
};
static driver_t hdspe_driver = {
"hdspe",
hdspe_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_hdspe, pci, hdspe_driver, 0, 0);
diff --git a/sys/dev/sound/pci/hdspe.h b/sys/dev/sound/pci/hdspe.h
index daffeb4ddebc..2f0bdddd930f 100644
--- a/sys/dev/sound/pci/hdspe.h
+++ b/sys/dev/sound/pci/hdspe.h
@@ -1,248 +1,250 @@
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2012-2016 Ruslan Bukin
* Copyright (c) 2023-2024 Florian Walpen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define PCI_VENDOR_XILINX 0x10ee
#define PCI_VENDOR_RME 0x1d18 /* Newer firmware versions. */
#define PCI_DEVICE_XILINX_HDSPE 0x3fc6 /* AIO, MADI, AES, RayDAT */
#define PCI_CLASS_REVISION 0x08
#define PCI_REVISION_AIO 212
#define PCI_REVISION_RAYDAT 211
#define HDSPE_AIO 0
#define HDSPE_RAYDAT 1
/* Hardware mixer */
#define HDSPE_OUT_ENABLE_BASE 512
#define HDSPE_IN_ENABLE_BASE 768
#define HDSPE_MIXER_BASE 32768
#define HDSPE_MAX_GAIN 32768
/* Buffer */
#define HDSPE_PAGE_ADDR_BUF_OUT 8192
#define HDSPE_PAGE_ADDR_BUF_IN (HDSPE_PAGE_ADDR_BUF_OUT + 64 * 16 * 4)
#define HDSPE_BUF_POSITION_MASK 0x000FFC0
/* Frequency */
#define HDSPE_FREQ_0 (1 << 6)
#define HDSPE_FREQ_1 (1 << 7)
#define HDSPE_FREQ_DOUBLE (1 << 8)
#define HDSPE_FREQ_QUAD (1 << 31)
#define HDSPE_FREQ_32000 HDSPE_FREQ_0
#define HDSPE_FREQ_44100 HDSPE_FREQ_1
#define HDSPE_FREQ_48000 (HDSPE_FREQ_0 | HDSPE_FREQ_1)
#define HDSPE_FREQ_MASK (HDSPE_FREQ_0 | HDSPE_FREQ_1 | \
HDSPE_FREQ_DOUBLE | HDSPE_FREQ_QUAD)
#define HDSPE_FREQ_MASK_DEFAULT HDSPE_FREQ_48000
#define HDSPE_FREQ_REG 256
#define HDSPE_FREQ_AIO 104857600000000ULL
#define HDSPE_SPEED_DEFAULT 48000
/* Latency */
#define HDSPE_LAT_0 (1 << 1)
#define HDSPE_LAT_1 (1 << 2)
#define HDSPE_LAT_2 (1 << 3)
#define HDSPE_LAT_MASK (HDSPE_LAT_0 | HDSPE_LAT_1 | HDSPE_LAT_2)
#define HDSPE_LAT_BYTES_MAX (4096 * 4)
#define HDSPE_LAT_BYTES_MIN (32 * 4)
#define hdspe_encode_latency(x) (((x)<<1) & HDSPE_LAT_MASK)
/* Gain */
#define HDSP_ADGain0 (1 << 25)
#define HDSP_ADGain1 (1 << 26)
#define HDSP_DAGain0 (1 << 27)
#define HDSP_DAGain1 (1 << 28)
#define HDSP_PhoneGain0 (1 << 29)
#define HDSP_PhoneGain1 (1 << 30)
#define HDSP_ADGainMask (HDSP_ADGain0 | HDSP_ADGain1)
#define HDSP_ADGainMinus10dBV (HDSP_ADGainMask)
#define HDSP_ADGainPlus4dBu (HDSP_ADGain0)
#define HDSP_ADGainLowGain 0
#define HDSP_DAGainMask (HDSP_DAGain0 | HDSP_DAGain1)
#define HDSP_DAGainHighGain (HDSP_DAGainMask)
#define HDSP_DAGainPlus4dBu (HDSP_DAGain0)
#define HDSP_DAGainMinus10dBV 0
#define HDSP_PhoneGainMask (HDSP_PhoneGain0|HDSP_PhoneGain1)
#define HDSP_PhoneGain0dB HDSP_PhoneGainMask
#define HDSP_PhoneGainMinus6dB (HDSP_PhoneGain0)
#define HDSP_PhoneGainMinus12dB 0
/* Settings */
#define HDSPE_SETTINGS_REG 0
#define HDSPE_CONTROL_REG 64
#define HDSPE_STATUS_REG 0
#define HDSPE_STATUS1_REG 64
#define HDSPE_STATUS2_REG 192
#define HDSPE_ENABLE (1 << 0)
/* Interrupts */
#define HDSPE_AUDIO_IRQ_PENDING (1 << 0)
#define HDSPE_AUDIO_INT_ENABLE (1 << 5)
#define HDSPE_INTERRUPT_ACK 96
/* Channels */
#define HDSPE_MAX_SLOTS 64 /* Mono channels */
#define HDSPE_MAX_CHANS (HDSPE_MAX_SLOTS / 2) /* Stereo pairs */
#define HDSPE_CHANBUF_SAMPLES (16 * 1024)
#define HDSPE_CHANBUF_SIZE (4 * HDSPE_CHANBUF_SAMPLES)
#define HDSPE_DMASEGSIZE (HDSPE_CHANBUF_SIZE * HDSPE_MAX_SLOTS)
#define HDSPE_CHAN_AIO_LINE (1 << 0)
-#define HDSPE_CHAN_AIO_PHONE (1 << 1)
-#define HDSPE_CHAN_AIO_AES (1 << 2)
-#define HDSPE_CHAN_AIO_SPDIF (1 << 3)
-#define HDSPE_CHAN_AIO_ADAT (1 << 4)
+#define HDSPE_CHAN_AIO_EXT (1 << 1)
+#define HDSPE_CHAN_AIO_PHONE (1 << 2)
+#define HDSPE_CHAN_AIO_AES (1 << 3)
+#define HDSPE_CHAN_AIO_SPDIF (1 << 4)
+#define HDSPE_CHAN_AIO_ADAT (1 << 5)
#define HDSPE_CHAN_AIO_ALL_REC (HDSPE_CHAN_AIO_LINE | \
+ HDSPE_CHAN_AIO_EXT | \
HDSPE_CHAN_AIO_AES | \
HDSPE_CHAN_AIO_SPDIF | \
HDSPE_CHAN_AIO_ADAT)
#define HDSPE_CHAN_AIO_ALL (HDSPE_CHAN_AIO_ALL_REC | \
HDSPE_CHAN_AIO_PHONE) \
-#define HDSPE_CHAN_RAY_AES (1 << 5)
-#define HDSPE_CHAN_RAY_SPDIF (1 << 6)
-#define HDSPE_CHAN_RAY_ADAT1 (1 << 7)
-#define HDSPE_CHAN_RAY_ADAT2 (1 << 8)
-#define HDSPE_CHAN_RAY_ADAT3 (1 << 9)
-#define HDSPE_CHAN_RAY_ADAT4 (1 << 10)
+#define HDSPE_CHAN_RAY_AES (1 << 6)
+#define HDSPE_CHAN_RAY_SPDIF (1 << 7)
+#define HDSPE_CHAN_RAY_ADAT1 (1 << 8)
+#define HDSPE_CHAN_RAY_ADAT2 (1 << 9)
+#define HDSPE_CHAN_RAY_ADAT3 (1 << 10)
+#define HDSPE_CHAN_RAY_ADAT4 (1 << 11)
#define HDSPE_CHAN_RAY_ALL (HDSPE_CHAN_RAY_AES | \
HDSPE_CHAN_RAY_SPDIF | \
HDSPE_CHAN_RAY_ADAT1 | \
HDSPE_CHAN_RAY_ADAT2 | \
HDSPE_CHAN_RAY_ADAT3 | \
HDSPE_CHAN_RAY_ADAT4)
struct hdspe_channel {
uint32_t ports;
char *descr;
};
/* Clock sources */
#define HDSPE_SETTING_MASTER (1 << 0)
#define HDSPE_SETTING_CLOCK_MASK 0x1f
#define HDSPE_STATUS1_CLOCK_SHIFT 28
#define HDSPE_STATUS1_CLOCK_MASK (0x0f << HDSPE_STATUS1_CLOCK_SHIFT)
#define HDSPE_STATUS1_CLOCK(n) (((n) << HDSPE_STATUS1_CLOCK_SHIFT) & \
HDSPE_STATUS1_CLOCK_MASK)
struct hdspe_clock_source {
char *name;
uint32_t setting;
uint32_t status;
uint32_t lock_bit;
uint32_t sync_bit;
};
static MALLOC_DEFINE(M_HDSPE, "hdspe", "hdspe audio");
/* Channel registers */
struct sc_chinfo {
struct snd_dbuf *buffer;
struct pcm_channel *channel;
struct sc_pcminfo *parent;
/* Channel information */
struct pcmchan_caps *caps;
uint32_t cap_fmts[4];
uint32_t dir;
uint32_t format;
uint32_t ports;
uint32_t lvol;
uint32_t rvol;
/* Buffer */
uint32_t *data;
uint32_t size;
uint32_t position;
/* Flags */
uint32_t run;
};
/* PCM device private data */
struct sc_pcminfo {
device_t dev;
uint32_t (*ih) (struct sc_pcminfo *scp);
uint32_t chnum;
struct sc_chinfo chan[HDSPE_MAX_CHANS];
struct sc_info *sc;
struct hdspe_channel *hc;
};
/* HDSPe device private data */
struct sc_info {
device_t dev;
struct mtx *lock;
uint32_t ctrl_register;
uint32_t settings_register;
uint32_t type;
/* Control/Status register */
struct resource *cs;
int csid;
bus_space_tag_t cst;
bus_space_handle_t csh;
struct resource *irq;
int irqid;
void *ih;
bus_dma_tag_t dmat;
/* Play/Record DMA buffers */
uint32_t *pbuf;
uint32_t *rbuf;
uint32_t bufsize;
bus_dmamap_t pmap;
bus_dmamap_t rmap;
uint32_t period;
uint32_t speed;
uint32_t force_period;
uint32_t force_speed;
};
#define hdspe_read_1(sc, regno) \
bus_space_read_1((sc)->cst, (sc)->csh, (regno))
#define hdspe_read_2(sc, regno) \
bus_space_read_2((sc)->cst, (sc)->csh, (regno))
#define hdspe_read_4(sc, regno) \
bus_space_read_4((sc)->cst, (sc)->csh, (regno))
#define hdspe_write_1(sc, regno, data) \
bus_space_write_1((sc)->cst, (sc)->csh, (regno), (data))
#define hdspe_write_2(sc, regno, data) \
bus_space_write_2((sc)->cst, (sc)->csh, (regno), (data))
#define hdspe_write_4(sc, regno, data) \
bus_space_write_4((sc)->cst, (sc)->csh, (regno), (data))