diff --git a/sys/crypto/aesni/aesni_wrap.c b/sys/crypto/aesni/aesni_wrap.c index a8a8ae749c77..f3ba09131c1e 100644 --- a/sys/crypto/aesni/aesni_wrap.c +++ b/sys/crypto/aesni/aesni_wrap.c @@ -1,495 +1,503 @@ /*- * Copyright (C) 2008 Damien Miller * Copyright (c) 2010 Konstantin Belousov * Copyright (c) 2010-2011 Pawel Jakub Dawidek * Copyright 2012-2013 John-Mark Gurney * Copyright (c) 2014 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by John-Mark Gurney * under sponsorship of the FreeBSD Foundation and * Rubicon Communications, LLC (Netgate). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include "aesencdec.h" #include MALLOC_DECLARE(M_AESNI); struct blocks8 { __m128i blk[8]; } __packed; void aesni_encrypt_cbc(int rounds, const void *key_schedule, size_t len, const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN]) { __m128i tot, ivreg; size_t i; len /= AES_BLOCK_LEN; ivreg = _mm_loadu_si128((const __m128i *)iv); for (i = 0; i < len; i++) { tot = aesni_enc(rounds - 1, key_schedule, _mm_loadu_si128((const __m128i *)from) ^ ivreg); ivreg = tot; _mm_storeu_si128((__m128i *)to, tot); from += AES_BLOCK_LEN; to += AES_BLOCK_LEN; } } void aesni_decrypt_cbc(int rounds, const void *key_schedule, size_t len, uint8_t *buf, const uint8_t iv[static AES_BLOCK_LEN]) { __m128i blocks[8]; struct blocks8 *blks; __m128i ivreg, nextiv; size_t i, j, cnt; ivreg = _mm_loadu_si128((const __m128i *)iv); cnt = len / AES_BLOCK_LEN / 8; for (i = 0; i < cnt; i++) { blks = (struct blocks8 *)buf; aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1], blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5], blks->blk[6], blks->blk[7], &blocks[0]); for (j = 0; j < 8; j++) { nextiv = blks->blk[j]; blks->blk[j] = blocks[j] ^ ivreg; ivreg = nextiv; } buf += AES_BLOCK_LEN * 8; } i *= 8; cnt = len / AES_BLOCK_LEN; for (; i < cnt; i++) { nextiv = _mm_loadu_si128((void *)buf); _mm_storeu_si128((void *)buf, aesni_dec(rounds - 1, key_schedule, nextiv) ^ ivreg); ivreg = nextiv; buf += AES_BLOCK_LEN; } } void aesni_encrypt_ecb(int rounds, const void *key_schedule, size_t len, const uint8_t *from, uint8_t *to) { __m128i tot; __m128i tout[8]; struct blocks8 *top; const struct blocks8 *blks; size_t i, cnt; cnt = len / AES_BLOCK_LEN / 8; for (i = 0; i < cnt; i++) { blks = (const struct blocks8 *)from; top = (struct blocks8 *)to; aesni_enc8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1], blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5], blks->blk[6], blks->blk[7], tout); top->blk[0] = tout[0]; top->blk[1] = tout[1]; top->blk[2] = tout[2]; top->blk[3] = tout[3]; top->blk[4] = tout[4]; top->blk[5] = tout[5]; top->blk[6] = tout[6]; top->blk[7] = tout[7]; from += AES_BLOCK_LEN * 8; to += AES_BLOCK_LEN * 8; } i *= 8; cnt = len / AES_BLOCK_LEN; for (; i < cnt; i++) { tot = aesni_enc(rounds - 1, key_schedule, _mm_loadu_si128((const __m128i *)from)); _mm_storeu_si128((__m128i *)to, tot); from += AES_BLOCK_LEN; to += AES_BLOCK_LEN; } } void aesni_decrypt_ecb(int rounds, const void *key_schedule, size_t len, const uint8_t from[AES_BLOCK_LEN], uint8_t to[AES_BLOCK_LEN]) { __m128i tot; __m128i tout[8]; const struct blocks8 *blks; struct blocks8 *top; size_t i, cnt; cnt = len / AES_BLOCK_LEN / 8; for (i = 0; i < cnt; i++) { blks = (const struct blocks8 *)from; top = (struct blocks8 *)to; aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1], blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5], blks->blk[6], blks->blk[7], tout); top->blk[0] = tout[0]; top->blk[1] = tout[1]; top->blk[2] = tout[2]; top->blk[3] = tout[3]; top->blk[4] = tout[4]; top->blk[5] = tout[5]; top->blk[6] = tout[6]; top->blk[7] = tout[7]; from += AES_BLOCK_LEN * 8; to += AES_BLOCK_LEN * 8; } i *= 8; cnt = len / AES_BLOCK_LEN; for (; i < cnt; i++) { tot = aesni_dec(rounds - 1, key_schedule, _mm_loadu_si128((const __m128i *)from)); _mm_storeu_si128((__m128i *)to, tot); from += AES_BLOCK_LEN; to += AES_BLOCK_LEN; } } /* * mixed endian increment, low 64bits stored in hi word to be compatible * with _icm's BSWAP. */ static inline __m128i nextc(__m128i x) { const __m128i ONE = _mm_setr_epi32(0, 0, 1, 0); const __m128i ZERO = _mm_setzero_si128(); x = _mm_add_epi64(x, ONE); __m128i t = _mm_cmpeq_epi64(x, ZERO); t = _mm_unpackhi_epi64(t, ZERO); x = _mm_sub_epi64(x, t); return x; } void aesni_encrypt_icm(int rounds, const void *key_schedule, size_t len, const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN]) { __m128i tot; __m128i tmp1, tmp2, tmp3, tmp4; __m128i tmp5, tmp6, tmp7, tmp8; __m128i ctr1, ctr2, ctr3, ctr4; __m128i ctr5, ctr6, ctr7, ctr8; __m128i BSWAP_EPI64; __m128i tout[8]; + __m128i block; struct blocks8 *top; const struct blocks8 *blks; - size_t i, cnt; + size_t i, cnt, resid; BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7); ctr1 = _mm_loadu_si128((const __m128i *)iv); ctr1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); cnt = len / AES_BLOCK_LEN / 8; for (i = 0; i < cnt; i++) { tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); ctr2 = nextc(ctr1); tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64); ctr3 = nextc(ctr2); tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64); ctr4 = nextc(ctr3); tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64); ctr5 = nextc(ctr4); tmp5 = _mm_shuffle_epi8(ctr5, BSWAP_EPI64); ctr6 = nextc(ctr5); tmp6 = _mm_shuffle_epi8(ctr6, BSWAP_EPI64); ctr7 = nextc(ctr6); tmp7 = _mm_shuffle_epi8(ctr7, BSWAP_EPI64); ctr8 = nextc(ctr7); tmp8 = _mm_shuffle_epi8(ctr8, BSWAP_EPI64); ctr1 = nextc(ctr8); blks = (const struct blocks8 *)from; top = (struct blocks8 *)to; aesni_enc8(rounds - 1, key_schedule, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tout); top->blk[0] = blks->blk[0] ^ tout[0]; top->blk[1] = blks->blk[1] ^ tout[1]; top->blk[2] = blks->blk[2] ^ tout[2]; top->blk[3] = blks->blk[3] ^ tout[3]; top->blk[4] = blks->blk[4] ^ tout[4]; top->blk[5] = blks->blk[5] ^ tout[5]; top->blk[6] = blks->blk[6] ^ tout[6]; top->blk[7] = blks->blk[7] ^ tout[7]; from += AES_BLOCK_LEN * 8; to += AES_BLOCK_LEN * 8; } i *= 8; cnt = len / AES_BLOCK_LEN; for (; i < cnt; i++) { tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); ctr1 = nextc(ctr1); tot = aesni_enc(rounds - 1, key_schedule, tmp1); tot = tot ^ _mm_loadu_si128((const __m128i *)from); _mm_storeu_si128((__m128i *)to, tot); from += AES_BLOCK_LEN; to += AES_BLOCK_LEN; } - /* handle remaining partial round */ - if (len % AES_BLOCK_LEN != 0) { + /* + * Handle remaining partial round. Copy the remaining payload onto the + * stack to ensure that the full block can be loaded safely. + */ + resid = len % AES_BLOCK_LEN; + if (resid != 0) { tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); tot = aesni_enc(rounds - 1, key_schedule, tmp1); - tot = tot ^ _mm_loadu_si128((const __m128i *)from); - memcpy(to, &tot, len % AES_BLOCK_LEN); + block = _mm_setzero_si128(); + memcpy(&block, from, resid); + tot = tot ^ _mm_loadu_si128(&block); + memcpy(to, &tot, resid); + explicit_bzero(&block, sizeof(block)); } } #define AES_XTS_BLOCKSIZE 16 #define AES_XTS_IVSIZE 8 #define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */ static inline __m128i xts_crank_lfsr(__m128i inp) { const __m128i alphamask = _mm_set_epi32(1, 1, 1, AES_XTS_ALPHA); __m128i xtweak, ret; /* set up xor mask */ xtweak = _mm_shuffle_epi32(inp, 0x93); xtweak = _mm_srai_epi32(xtweak, 31); xtweak &= alphamask; /* next term */ ret = _mm_slli_epi32(inp, 1); ret ^= xtweak; return ret; } static void aesni_crypt_xts_block(int rounds, const __m128i *key_schedule, __m128i *tweak, const uint8_t *from, uint8_t *to, int do_encrypt) { __m128i block; block = _mm_loadu_si128((const __m128i *)from) ^ *tweak; if (do_encrypt) block = aesni_enc(rounds - 1, key_schedule, block); else block = aesni_dec(rounds - 1, key_schedule, block); _mm_storeu_si128((__m128i *)to, block ^ *tweak); *tweak = xts_crank_lfsr(*tweak); } static void aesni_crypt_xts_block8(int rounds, const __m128i *key_schedule, __m128i *tweak, const uint8_t *from, uint8_t *to, int do_encrypt) { __m128i tmptweak; __m128i a, b, c, d, e, f, g, h; __m128i tweaks[8]; __m128i tmp[8]; __m128i *top; const __m128i *fromp; tmptweak = *tweak; /* * unroll the loop. This lets gcc put values directly in the * register and saves memory accesses. */ fromp = (const __m128i *)from; #define PREPINP(v, pos) \ do { \ tweaks[(pos)] = tmptweak; \ (v) = _mm_loadu_si128(&fromp[pos]) ^ \ tmptweak; \ tmptweak = xts_crank_lfsr(tmptweak); \ } while (0) PREPINP(a, 0); PREPINP(b, 1); PREPINP(c, 2); PREPINP(d, 3); PREPINP(e, 4); PREPINP(f, 5); PREPINP(g, 6); PREPINP(h, 7); *tweak = tmptweak; if (do_encrypt) aesni_enc8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h, tmp); else aesni_dec8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h, tmp); top = (__m128i *)to; _mm_storeu_si128(&top[0], tmp[0] ^ tweaks[0]); _mm_storeu_si128(&top[1], tmp[1] ^ tweaks[1]); _mm_storeu_si128(&top[2], tmp[2] ^ tweaks[2]); _mm_storeu_si128(&top[3], tmp[3] ^ tweaks[3]); _mm_storeu_si128(&top[4], tmp[4] ^ tweaks[4]); _mm_storeu_si128(&top[5], tmp[5] ^ tweaks[5]); _mm_storeu_si128(&top[6], tmp[6] ^ tweaks[6]); _mm_storeu_si128(&top[7], tmp[7] ^ tweaks[7]); } static void aesni_crypt_xts(int rounds, const __m128i *data_schedule, const __m128i *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN], int do_encrypt) { __m128i tweakreg; uint8_t tweak[AES_XTS_BLOCKSIZE] __aligned(16); size_t i, cnt; /* * Prepare tweak as E_k2(IV). IV is specified as LE representation * of a 64-bit block number which we allow to be passed in directly. */ #if BYTE_ORDER == LITTLE_ENDIAN bcopy(iv, tweak, AES_XTS_IVSIZE); /* Last 64 bits of IV are always zero. */ bzero(tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE); #else #error Only LITTLE_ENDIAN architectures are supported. #endif tweakreg = _mm_loadu_si128((__m128i *)&tweak[0]); tweakreg = aesni_enc(rounds - 1, tweak_schedule, tweakreg); cnt = len / AES_XTS_BLOCKSIZE / 8; for (i = 0; i < cnt; i++) { aesni_crypt_xts_block8(rounds, data_schedule, &tweakreg, from, to, do_encrypt); from += AES_XTS_BLOCKSIZE * 8; to += AES_XTS_BLOCKSIZE * 8; } i *= 8; cnt = len / AES_XTS_BLOCKSIZE; for (; i < cnt; i++) { aesni_crypt_xts_block(rounds, data_schedule, &tweakreg, from, to, do_encrypt); from += AES_XTS_BLOCKSIZE; to += AES_XTS_BLOCKSIZE; } } void aesni_encrypt_xts(int rounds, const void *data_schedule, const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN]) { aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to, iv, 1); } void aesni_decrypt_xts(int rounds, const void *data_schedule, const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN]) { aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to, iv, 0); } int aesni_cipher_setup_common(struct aesni_session *ses, const uint8_t *key, int keylen) { int decsched; decsched = 1; switch (ses->algo) { case CRYPTO_AES_ICM: case CRYPTO_AES_NIST_GCM_16: case CRYPTO_AES_CCM_16: decsched = 0; /* FALLTHROUGH */ case CRYPTO_AES_CBC: switch (keylen) { case 128: ses->rounds = AES128_ROUNDS; break; case 192: ses->rounds = AES192_ROUNDS; break; case 256: ses->rounds = AES256_ROUNDS; break; default: CRYPTDEB("invalid CBC/ICM/GCM key length"); return (EINVAL); } break; case CRYPTO_AES_XTS: switch (keylen) { case 256: ses->rounds = AES128_ROUNDS; break; case 512: ses->rounds = AES256_ROUNDS; break; default: CRYPTDEB("invalid XTS key length"); return (EINVAL); } break; default: return (EINVAL); } aesni_set_enckey(key, ses->enc_schedule, ses->rounds); if (decsched) aesni_set_deckey(ses->enc_schedule, ses->dec_schedule, ses->rounds); if (ses->algo == CRYPTO_AES_XTS) aesni_set_enckey(key + keylen / 16, ses->xts_schedule, ses->rounds); return (0); }