diff --git a/contrib/libarchive/libarchive/archive_read_support_format_iso9660.c b/contrib/libarchive/libarchive/archive_read_support_format_iso9660.c
index 806f36cbe10b..15ded7c561e5 100644
--- a/contrib/libarchive/libarchive/archive_read_support_format_iso9660.c
+++ b/contrib/libarchive/libarchive/archive_read_support_format_iso9660.c
@@ -1,3278 +1,3279 @@
 /*-
  * Copyright (c) 2003-2007 Tim Kientzle
  * Copyright (c) 2009 Andreas Henriksson <andreas@fatal.se>
  * Copyright (c) 2009-2012 Michihiro NAKAJIMA
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include "archive_platform.h"
 __FBSDID("$FreeBSD$");
 
 #ifdef HAVE_ERRNO_H
 #include <errno.h>
 #endif
 /* #include <stdint.h> */ /* See archive_platform.h */
 #include <stdio.h>
 #ifdef HAVE_STDLIB_H
 #include <stdlib.h>
 #endif
 #ifdef HAVE_STRING_H
 #include <string.h>
 #endif
 #include <time.h>
 #ifdef HAVE_ZLIB_H
 #include <zlib.h>
 #endif
 
 #include "archive.h"
 #include "archive_endian.h"
 #include "archive_entry.h"
 #include "archive_entry_locale.h"
 #include "archive_private.h"
 #include "archive_read_private.h"
 #include "archive_string.h"
 
 /*
  * An overview of ISO 9660 format:
  *
  * Each disk is laid out as follows:
  *   * 32k reserved for private use
  *   * Volume descriptor table.  Each volume descriptor
  *     is 2k and specifies basic format information.
  *     The "Primary Volume Descriptor" (PVD) is defined by the
  *     standard and should always be present; other volume
  *     descriptors include various vendor-specific extensions.
  *   * Files and directories.  Each file/dir is specified by
  *     an "extent" (starting sector and length in bytes).
  *     Dirs are just files with directory records packed one
  *     after another.  The PVD contains a single dir entry
  *     specifying the location of the root directory.  Everything
  *     else follows from there.
  *
  * This module works by first reading the volume descriptors, then
  * building a list of directory entries, sorted by starting
  * sector.  At each step, I look for the earliest dir entry that
  * hasn't yet been read, seek forward to that location and read
  * that entry.  If it's a dir, I slurp in the new dir entries and
  * add them to the heap; if it's a regular file, I return the
  * corresponding archive_entry and wait for the client to request
  * the file body.  This strategy allows us to read most compliant
  * CDs with a single pass through the data, as required by libarchive.
  */
 #define	LOGICAL_BLOCK_SIZE	2048
 #define	SYSTEM_AREA_BLOCK	16
 
 /* Structure of on-disk primary volume descriptor. */
 #define PVD_type_offset 0
 #define PVD_type_size 1
 #define PVD_id_offset (PVD_type_offset + PVD_type_size)
 #define PVD_id_size 5
 #define PVD_version_offset (PVD_id_offset + PVD_id_size)
 #define PVD_version_size 1
 #define PVD_reserved1_offset (PVD_version_offset + PVD_version_size)
 #define PVD_reserved1_size 1
 #define PVD_system_id_offset (PVD_reserved1_offset + PVD_reserved1_size)
 #define PVD_system_id_size 32
 #define PVD_volume_id_offset (PVD_system_id_offset + PVD_system_id_size)
 #define PVD_volume_id_size 32
 #define PVD_reserved2_offset (PVD_volume_id_offset + PVD_volume_id_size)
 #define PVD_reserved2_size 8
 #define PVD_volume_space_size_offset (PVD_reserved2_offset + PVD_reserved2_size)
 #define PVD_volume_space_size_size 8
 #define PVD_reserved3_offset (PVD_volume_space_size_offset + PVD_volume_space_size_size)
 #define PVD_reserved3_size 32
 #define PVD_volume_set_size_offset (PVD_reserved3_offset + PVD_reserved3_size)
 #define PVD_volume_set_size_size 4
 #define PVD_volume_sequence_number_offset (PVD_volume_set_size_offset + PVD_volume_set_size_size)
 #define PVD_volume_sequence_number_size 4
 #define PVD_logical_block_size_offset (PVD_volume_sequence_number_offset + PVD_volume_sequence_number_size)
 #define PVD_logical_block_size_size 4
 #define PVD_path_table_size_offset (PVD_logical_block_size_offset + PVD_logical_block_size_size)
 #define PVD_path_table_size_size 8
 #define PVD_type_1_path_table_offset (PVD_path_table_size_offset + PVD_path_table_size_size)
 #define PVD_type_1_path_table_size 4
 #define PVD_opt_type_1_path_table_offset (PVD_type_1_path_table_offset + PVD_type_1_path_table_size)
 #define PVD_opt_type_1_path_table_size 4
 #define PVD_type_m_path_table_offset (PVD_opt_type_1_path_table_offset + PVD_opt_type_1_path_table_size)
 #define PVD_type_m_path_table_size 4
 #define PVD_opt_type_m_path_table_offset (PVD_type_m_path_table_offset + PVD_type_m_path_table_size)
 #define PVD_opt_type_m_path_table_size 4
 #define PVD_root_directory_record_offset (PVD_opt_type_m_path_table_offset + PVD_opt_type_m_path_table_size)
 #define PVD_root_directory_record_size 34
 #define PVD_volume_set_id_offset (PVD_root_directory_record_offset + PVD_root_directory_record_size)
 #define PVD_volume_set_id_size 128
 #define PVD_publisher_id_offset (PVD_volume_set_id_offset + PVD_volume_set_id_size)
 #define PVD_publisher_id_size 128
 #define PVD_preparer_id_offset (PVD_publisher_id_offset + PVD_publisher_id_size)
 #define PVD_preparer_id_size 128
 #define PVD_application_id_offset (PVD_preparer_id_offset + PVD_preparer_id_size)
 #define PVD_application_id_size 128
 #define PVD_copyright_file_id_offset (PVD_application_id_offset + PVD_application_id_size)
 #define PVD_copyright_file_id_size 37
 #define PVD_abstract_file_id_offset (PVD_copyright_file_id_offset + PVD_copyright_file_id_size)
 #define PVD_abstract_file_id_size 37
 #define PVD_bibliographic_file_id_offset (PVD_abstract_file_id_offset + PVD_abstract_file_id_size)
 #define PVD_bibliographic_file_id_size 37
 #define PVD_creation_date_offset (PVD_bibliographic_file_id_offset + PVD_bibliographic_file_id_size)
 #define PVD_creation_date_size 17
 #define PVD_modification_date_offset (PVD_creation_date_offset + PVD_creation_date_size)
 #define PVD_modification_date_size 17
 #define PVD_expiration_date_offset (PVD_modification_date_offset + PVD_modification_date_size)
 #define PVD_expiration_date_size 17
 #define PVD_effective_date_offset (PVD_expiration_date_offset + PVD_expiration_date_size)
 #define PVD_effective_date_size 17
 #define PVD_file_structure_version_offset (PVD_effective_date_offset + PVD_effective_date_size)
 #define PVD_file_structure_version_size 1
 #define PVD_reserved4_offset (PVD_file_structure_version_offset + PVD_file_structure_version_size)
 #define PVD_reserved4_size 1
 #define PVD_application_data_offset (PVD_reserved4_offset + PVD_reserved4_size)
 #define PVD_application_data_size 512
 #define PVD_reserved5_offset (PVD_application_data_offset + PVD_application_data_size)
 #define PVD_reserved5_size (2048 - PVD_reserved5_offset)
 
 /* TODO: It would make future maintenance easier to just hardcode the
  * above values.  In particular, ECMA119 states the offsets as part of
  * the standard.  That would eliminate the need for the following check.*/
 #if PVD_reserved5_offset != 1395
 #error PVD offset and size definitions are wrong.
 #endif
 
 
 /* Structure of optional on-disk supplementary volume descriptor. */
 #define SVD_type_offset 0
 #define SVD_type_size 1
 #define SVD_id_offset (SVD_type_offset + SVD_type_size)
 #define SVD_id_size 5
 #define SVD_version_offset (SVD_id_offset + SVD_id_size)
 #define SVD_version_size 1
 /* ... */
 #define SVD_reserved1_offset	72
 #define SVD_reserved1_size	8
 #define SVD_volume_space_size_offset 80
 #define SVD_volume_space_size_size 8
 #define SVD_escape_sequences_offset (SVD_volume_space_size_offset + SVD_volume_space_size_size)
 #define SVD_escape_sequences_size 32
 /* ... */
 #define SVD_logical_block_size_offset 128
 #define SVD_logical_block_size_size 4
 #define SVD_type_L_path_table_offset 140
 #define SVD_type_M_path_table_offset 148
 /* ... */
 #define SVD_root_directory_record_offset 156
 #define SVD_root_directory_record_size 34
 #define SVD_file_structure_version_offset 881
 #define SVD_reserved2_offset	882
 #define SVD_reserved2_size	1
 #define SVD_reserved3_offset	1395
 #define SVD_reserved3_size	653
 /* ... */
 /* FIXME: validate correctness of last SVD entry offset. */
 
 /* Structure of an on-disk directory record. */
 /* Note:  ISO9660 stores each multi-byte integer twice, once in
  * each byte order.  The sizes here are the size of just one
  * of the two integers.  (This is why the offset of a field isn't
  * the same as the offset+size of the previous field.) */
 #define DR_length_offset 0
 #define DR_length_size 1
 #define DR_ext_attr_length_offset 1
 #define DR_ext_attr_length_size 1
 #define DR_extent_offset 2
 #define DR_extent_size 4
 #define DR_size_offset 10
 #define DR_size_size 4
 #define DR_date_offset 18
 #define DR_date_size 7
 #define DR_flags_offset 25
 #define DR_flags_size 1
 #define DR_file_unit_size_offset 26
 #define DR_file_unit_size_size 1
 #define DR_interleave_offset 27
 #define DR_interleave_size 1
 #define DR_volume_sequence_number_offset 28
 #define DR_volume_sequence_number_size 2
 #define DR_name_len_offset 32
 #define DR_name_len_size 1
 #define DR_name_offset 33
 
 #ifdef HAVE_ZLIB_H
 static const unsigned char zisofs_magic[8] = {
 	0x37, 0xE4, 0x53, 0x96, 0xC9, 0xDB, 0xD6, 0x07
 };
 
 struct zisofs {
 	/* Set 1 if this file compressed by paged zlib */
 	int		 pz;
 	int		 pz_log2_bs; /* Log2 of block size */
 	uint64_t	 pz_uncompressed_size;
 
 	int		 initialized;
 	unsigned char	*uncompressed_buffer;
 	size_t		 uncompressed_buffer_size;
 
 	uint32_t	 pz_offset;
 	unsigned char	 header[16];
 	size_t		 header_avail;
 	int		 header_passed;
 	unsigned char	*block_pointers;
 	size_t		 block_pointers_alloc;
 	size_t		 block_pointers_size;
 	size_t		 block_pointers_avail;
 	size_t		 block_off;
 	uint32_t	 block_avail;
 
 	z_stream	 stream;
 	int		 stream_valid;
 };
 #else
 struct zisofs {
 	/* Set 1 if this file compressed by paged zlib */
 	int		 pz;
 };
 #endif
 
 struct content {
 	uint64_t	 offset;/* Offset on disk.		*/
 	uint64_t	 size;	/* File size in bytes.		*/
 	struct content	*next;
 };
 
 /* In-memory storage for a directory record. */
 struct file_info {
 	struct file_info	*use_next;
 	struct file_info	*parent;
 	struct file_info	*next;
 	struct file_info	*re_next;
 	int		 subdirs;
 	uint64_t	 key;		/* Heap Key.			*/
 	uint64_t	 offset;	/* Offset on disk.		*/
 	uint64_t	 size;		/* File size in bytes.		*/
 	uint32_t	 ce_offset;	/* Offset of CE.		*/
 	uint32_t	 ce_size;	/* Size of CE.			*/
 	char		 rr_moved;	/* Flag to rr_moved.		*/
 	char		 rr_moved_has_re_only;
 	char		 re;		/* Having RRIP "RE" extension.	*/
 	char		 re_descendant;
 	uint64_t	 cl_offset;	/* Having RRIP "CL" extension.	*/
 	int		 birthtime_is_set;
 	time_t		 birthtime;	/* File created time.		*/
 	time_t		 mtime;		/* File last modified time.	*/
 	time_t		 atime;		/* File last accessed time.	*/
 	time_t		 ctime;		/* File attribute change time.	*/
 	uint64_t	 rdev;		/* Device number.		*/
 	mode_t		 mode;
 	uid_t		 uid;
 	gid_t		 gid;
 	int64_t		 number;
 	int		 nlinks;
 	struct archive_string name; /* Pathname */
 	unsigned char	*utf16be_name;
 	size_t		 utf16be_bytes;
 	char		 name_continues; /* Non-zero if name continues */
 	struct archive_string symlink;
 	char		 symlink_continues; /* Non-zero if link continues */
 	/* Set 1 if this file compressed by paged zlib(zisofs) */
 	int		 pz;
 	int		 pz_log2_bs; /* Log2 of block size */
 	uint64_t	 pz_uncompressed_size;
 	/* Set 1 if this file is multi extent. */
 	int		 multi_extent;
 	struct {
 		struct content	*first;
 		struct content	**last;
 	} contents;
 	struct {
 		struct file_info	*first;
 		struct file_info	**last;
 	} rede_files;
 };
 
 struct heap_queue {
 	struct file_info **files;
 	int		 allocated;
 	int		 used;
 };
 
 struct iso9660 {
 	int	magic;
 #define ISO9660_MAGIC   0x96609660
 
 	int opt_support_joliet;
 	int opt_support_rockridge;
 
 	struct archive_string pathname;
 	char	seenRockridge;	/* Set true if RR extensions are used. */
 	char	seenSUSP;	/* Set true if SUSP is being used. */
 	char	seenJoliet;
 
 	unsigned char	suspOffset;
 	struct file_info *rr_moved;
 	struct read_ce_queue {
 		struct read_ce_req {
 			uint64_t	 offset;/* Offset of CE on disk. */
 			struct file_info *file;
 		}		*reqs;
 		int		 cnt;
 		int		 allocated;
 	}	read_ce_req;
 
 	int64_t		previous_number;
 	struct archive_string previous_pathname;
 
 	struct file_info		*use_files;
 	struct heap_queue		 pending_files;
 	struct {
 		struct file_info	*first;
 		struct file_info	**last;
 	}	cache_files;
 	struct {
 		struct file_info	*first;
 		struct file_info	**last;
 	}	re_files;
 
 	uint64_t current_position;
 	ssize_t	logical_block_size;
 	uint64_t volume_size; /* Total size of volume in bytes. */
 	int32_t  volume_block;/* Total size of volume in logical blocks. */
 
 	struct vd {
 		int		location;	/* Location of Extent.	*/
 		uint32_t	size;
 	} primary, joliet;
 
 	int64_t	entry_sparse_offset;
 	int64_t	entry_bytes_remaining;
 	size_t  entry_bytes_unconsumed;
 	struct zisofs	 entry_zisofs;
 	struct content	*entry_content;
 	struct archive_string_conv *sconv_utf16be;
 	/*
 	 * Buffers for a full pathname in UTF-16BE in Joliet extensions.
 	 */
 #define UTF16_NAME_MAX	1024
 	unsigned char *utf16be_path;
 	size_t		 utf16be_path_len;
 	unsigned char *utf16be_previous_path;
 	size_t		 utf16be_previous_path_len;
 	/* Null buffer used in bidder to improve its performance. */
 	unsigned char	 null[2048];
 };
 
 static int	archive_read_format_iso9660_bid(struct archive_read *, int);
 static int	archive_read_format_iso9660_options(struct archive_read *,
 		    const char *, const char *);
 static int	archive_read_format_iso9660_cleanup(struct archive_read *);
 static int	archive_read_format_iso9660_read_data(struct archive_read *,
 		    const void **, size_t *, int64_t *);
 static int	archive_read_format_iso9660_read_data_skip(struct archive_read *);
 static int	archive_read_format_iso9660_read_header(struct archive_read *,
 		    struct archive_entry *);
 static const char *build_pathname(struct archive_string *, struct file_info *, int);
 static int	build_pathname_utf16be(unsigned char *, size_t, size_t *,
 		    struct file_info *);
 #if DEBUG
 static void	dump_isodirrec(FILE *, const unsigned char *isodirrec);
 #endif
 static time_t	time_from_tm(struct tm *);
 static time_t	isodate17(const unsigned char *);
 static time_t	isodate7(const unsigned char *);
 static int	isBootRecord(struct iso9660 *, const unsigned char *);
 static int	isVolumePartition(struct iso9660 *, const unsigned char *);
 static int	isVDSetTerminator(struct iso9660 *, const unsigned char *);
 static int	isJolietSVD(struct iso9660 *, const unsigned char *);
 static int	isSVD(struct iso9660 *, const unsigned char *);
 static int	isEVD(struct iso9660 *, const unsigned char *);
 static int	isPVD(struct iso9660 *, const unsigned char *);
 static int	next_cache_entry(struct archive_read *, struct iso9660 *,
 		    struct file_info **);
 static int	next_entry_seek(struct archive_read *, struct iso9660 *,
 		    struct file_info **);
 static struct file_info *
 		parse_file_info(struct archive_read *a,
 		    struct file_info *parent, const unsigned char *isodirrec,
 		    size_t reclen);
 static int	parse_rockridge(struct archive_read *a,
 		    struct file_info *file, const unsigned char *start,
 		    const unsigned char *end);
 static int	register_CE(struct archive_read *a, int32_t location,
 		    struct file_info *file);
 static int	read_CE(struct archive_read *a, struct iso9660 *iso9660);
 static void	parse_rockridge_NM1(struct file_info *,
 		    const unsigned char *, int);
 static void	parse_rockridge_SL1(struct file_info *,
 		    const unsigned char *, int);
 static void	parse_rockridge_TF1(struct file_info *,
 		    const unsigned char *, int);
 static void	parse_rockridge_ZF1(struct file_info *,
 		    const unsigned char *, int);
 static void	register_file(struct iso9660 *, struct file_info *);
 static void	release_files(struct iso9660 *);
 static unsigned	toi(const void *p, int n);
 static inline void re_add_entry(struct iso9660 *, struct file_info *);
 static inline struct file_info * re_get_entry(struct iso9660 *);
 static inline int rede_add_entry(struct file_info *);
 static inline struct file_info * rede_get_entry(struct file_info *);
 static inline void cache_add_entry(struct iso9660 *iso9660,
 		    struct file_info *file);
 static inline struct file_info *cache_get_entry(struct iso9660 *iso9660);
 static int	heap_add_entry(struct archive_read *a, struct heap_queue *heap,
 		    struct file_info *file, uint64_t key);
 static struct file_info *heap_get_entry(struct heap_queue *heap);
 
 #define add_entry(arch, iso9660, file)	\
 	heap_add_entry(arch, &((iso9660)->pending_files), file, file->offset)
 #define next_entry(iso9660)		\
 	heap_get_entry(&((iso9660)->pending_files))
 
 int
 archive_read_support_format_iso9660(struct archive *_a)
 {
 	struct archive_read *a = (struct archive_read *)_a;
 	struct iso9660 *iso9660;
 	int r;
 
 	archive_check_magic(_a, ARCHIVE_READ_MAGIC,
 	    ARCHIVE_STATE_NEW, "archive_read_support_format_iso9660");
 
 	iso9660 = (struct iso9660 *)calloc(1, sizeof(*iso9660));
 	if (iso9660 == NULL) {
 		archive_set_error(&a->archive, ENOMEM,
 		    "Can't allocate iso9660 data");
 		return (ARCHIVE_FATAL);
 	}
 	iso9660->magic = ISO9660_MAGIC;
 	iso9660->cache_files.first = NULL;
 	iso9660->cache_files.last = &(iso9660->cache_files.first);
 	iso9660->re_files.first = NULL;
 	iso9660->re_files.last = &(iso9660->re_files.first);
 	/* Enable to support Joliet extensions by default.	*/
 	iso9660->opt_support_joliet = 1;
 	/* Enable to support Rock Ridge extensions by default.	*/
 	iso9660->opt_support_rockridge = 1;
 
 	r = __archive_read_register_format(a,
 	    iso9660,
 	    "iso9660",
 	    archive_read_format_iso9660_bid,
 	    archive_read_format_iso9660_options,
 	    archive_read_format_iso9660_read_header,
 	    archive_read_format_iso9660_read_data,
 	    archive_read_format_iso9660_read_data_skip,
 	    NULL,
 	    archive_read_format_iso9660_cleanup,
 	    NULL,
 	    NULL);
 
 	if (r != ARCHIVE_OK) {
 		free(iso9660);
 		return (r);
 	}
 	return (ARCHIVE_OK);
 }
 
 
 static int
 archive_read_format_iso9660_bid(struct archive_read *a, int best_bid)
 {
 	struct iso9660 *iso9660;
 	ssize_t bytes_read;
 	const unsigned char *p;
 	int seenTerminator;
 
 	/* If there's already a better bid than we can ever
 	   make, don't bother testing. */
 	if (best_bid > 48)
 		return (-1);
 
 	iso9660 = (struct iso9660 *)(a->format->data);
 
 	/*
 	 * Skip the first 32k (reserved area) and get the first
 	 * 8 sectors of the volume descriptor table.  Of course,
 	 * if the I/O layer gives us more, we'll take it.
 	 */
 #define RESERVED_AREA	(SYSTEM_AREA_BLOCK * LOGICAL_BLOCK_SIZE)
 	p = __archive_read_ahead(a,
 	    RESERVED_AREA + 8 * LOGICAL_BLOCK_SIZE,
 	    &bytes_read);
 	if (p == NULL)
 	    return (-1);
 
 	/* Skip the reserved area. */
 	bytes_read -= RESERVED_AREA;
 	p += RESERVED_AREA;
 
 	/* Check each volume descriptor. */
 	seenTerminator = 0;
 	for (; bytes_read > LOGICAL_BLOCK_SIZE;
 	    bytes_read -= LOGICAL_BLOCK_SIZE, p += LOGICAL_BLOCK_SIZE) {
 		/* Do not handle undefined Volume Descriptor Type. */
 		if (p[0] >= 4 && p[0] <= 254)
 			return (0);
 		/* Standard Identifier must be "CD001" */
 		if (memcmp(p + 1, "CD001", 5) != 0)
 			return (0);
 		if (isPVD(iso9660, p))
 			continue;
 		if (!iso9660->joliet.location) {
 			if (isJolietSVD(iso9660, p))
 				continue;
 		}
 		if (isBootRecord(iso9660, p))
 			continue;
 		if (isEVD(iso9660, p))
 			continue;
 		if (isSVD(iso9660, p))
 			continue;
 		if (isVolumePartition(iso9660, p))
 			continue;
 		if (isVDSetTerminator(iso9660, p)) {
 			seenTerminator = 1;
 			break;
 		}
 		return (0);
 	}
 	/*
 	 * ISO 9660 format must have Primary Volume Descriptor and
 	 * Volume Descriptor Set Terminator.
 	 */
 	if (seenTerminator && iso9660->primary.location > 16)
 		return (48);
 
 	/* We didn't find a valid PVD; return a bid of zero. */
 	return (0);
 }
 
 static int
 archive_read_format_iso9660_options(struct archive_read *a,
 		const char *key, const char *val)
 {
 	struct iso9660 *iso9660;
 
 	iso9660 = (struct iso9660 *)(a->format->data);
 
 	if (strcmp(key, "joliet") == 0) {
 		if (val == NULL || strcmp(val, "off") == 0 ||
 				strcmp(val, "ignore") == 0 ||
 				strcmp(val, "disable") == 0 ||
 				strcmp(val, "0") == 0)
 			iso9660->opt_support_joliet = 0;
 		else
 			iso9660->opt_support_joliet = 1;
 		return (ARCHIVE_OK);
 	}
 	if (strcmp(key, "rockridge") == 0 ||
 	    strcmp(key, "Rockridge") == 0) {
 		iso9660->opt_support_rockridge = val != NULL;
 		return (ARCHIVE_OK);
 	}
 
 	/* Note: The "warn" return is just to inform the options
 	 * supervisor that we didn't handle it.  It will generate
 	 * a suitable error if no one used this option. */
 	return (ARCHIVE_WARN);
 }
 
 static int
 isNull(struct iso9660 *iso9660, const unsigned char *h, unsigned offset,
 unsigned bytes)
 {
 
 	while (bytes >= sizeof(iso9660->null)) {
 		if (!memcmp(iso9660->null, h + offset, sizeof(iso9660->null)))
 			return (0);
 		offset += sizeof(iso9660->null);
 		bytes -= sizeof(iso9660->null);
 	}
 	if (bytes)
 		return memcmp(iso9660->null, h + offset, bytes) == 0;
 	else
 		return (1);
 }
 
 static int
 isBootRecord(struct iso9660 *iso9660, const unsigned char *h)
 {
 	(void)iso9660; /* UNUSED */
 
 	/* Type of the Volume Descriptor Boot Record must be 0. */
 	if (h[0] != 0)
 		return (0);
 
 	/* Volume Descriptor Version must be 1. */
 	if (h[6] != 1)
 		return (0);
 
 	return (1);
 }
 
 static int
 isVolumePartition(struct iso9660 *iso9660, const unsigned char *h)
 {
 	int32_t location;
 
 	/* Type of the Volume Partition Descriptor must be 3. */
 	if (h[0] != 3)
 		return (0);
 
 	/* Volume Descriptor Version must be 1. */
 	if (h[6] != 1)
 		return (0);
 	/* Unused Field */
 	if (h[7] != 0)
 		return (0);
 
 	location = archive_le32dec(h + 72);
 	if (location <= SYSTEM_AREA_BLOCK ||
 	    location >= iso9660->volume_block)
 		return (0);
 	if ((uint32_t)location != archive_be32dec(h + 76))
 		return (0);
 
 	return (1);
 }
 
 static int
 isVDSetTerminator(struct iso9660 *iso9660, const unsigned char *h)
 {
 	(void)iso9660; /* UNUSED */
 
 	/* Type of the Volume Descriptor Set Terminator must be 255. */
 	if (h[0] != 255)
 		return (0);
 
 	/* Volume Descriptor Version must be 1. */
 	if (h[6] != 1)
 		return (0);
 
 	/* Reserved field must be 0. */
 	if (!isNull(iso9660, h, 7, 2048-7))
 		return (0);
 
 	return (1);
 }
 
 static int
 isJolietSVD(struct iso9660 *iso9660, const unsigned char *h)
 {
 	const unsigned char *p;
 	ssize_t logical_block_size;
 	int32_t volume_block;
 
 	/* Check if current sector is a kind of Supplementary Volume
 	 * Descriptor. */
 	if (!isSVD(iso9660, h))
 		return (0);
 
 	/* FIXME: do more validations according to joliet spec. */
 
 	/* check if this SVD contains joliet extension! */
 	p = h + SVD_escape_sequences_offset;
 	/* N.B. Joliet spec says p[1] == '\\', but.... */
 	if (p[0] == '%' && p[1] == '/') {
 		int level = 0;
 
 		if (p[2] == '@')
 			level = 1;
 		else if (p[2] == 'C')
 			level = 2;
 		else if (p[2] == 'E')
 			level = 3;
 		else /* not joliet */
 			return (0);
 
 		iso9660->seenJoliet = level;
 
 	} else /* not joliet */
 		return (0);
 
 	logical_block_size =
 	    archive_le16dec(h + SVD_logical_block_size_offset);
 	volume_block = archive_le32dec(h + SVD_volume_space_size_offset);
 
 	iso9660->logical_block_size = logical_block_size;
 	iso9660->volume_block = volume_block;
 	iso9660->volume_size = logical_block_size * (uint64_t)volume_block;
 	/* Read Root Directory Record in Volume Descriptor. */
 	p = h + SVD_root_directory_record_offset;
 	iso9660->joliet.location = archive_le32dec(p + DR_extent_offset);
 	iso9660->joliet.size = archive_le32dec(p + DR_size_offset);
 
 	return (48);
 }
 
 static int
 isSVD(struct iso9660 *iso9660, const unsigned char *h)
 {
 	const unsigned char *p;
 	ssize_t logical_block_size;
 	int32_t volume_block;
 	int32_t location;
 
 	(void)iso9660; /* UNUSED */
 
 	/* Type 2 means it's a SVD. */
 	if (h[SVD_type_offset] != 2)
 		return (0);
 
 	/* Reserved field must be 0. */
 	if (!isNull(iso9660, h, SVD_reserved1_offset, SVD_reserved1_size))
 		return (0);
 	if (!isNull(iso9660, h, SVD_reserved2_offset, SVD_reserved2_size))
 		return (0);
 	if (!isNull(iso9660, h, SVD_reserved3_offset, SVD_reserved3_size))
 		return (0);
 
 	/* File structure version must be 1 for ISO9660/ECMA119. */
 	if (h[SVD_file_structure_version_offset] != 1)
 		return (0);
 
 	logical_block_size =
 	    archive_le16dec(h + SVD_logical_block_size_offset);
 	if (logical_block_size <= 0)
 		return (0);
 
 	volume_block = archive_le32dec(h + SVD_volume_space_size_offset);
 	if (volume_block <= SYSTEM_AREA_BLOCK+4)
 		return (0);
 
 	/* Location of Occurrence of Type L Path Table must be
 	 * available location,
 	 * >= SYSTEM_AREA_BLOCK(16) + 2 and < Volume Space Size. */
 	location = archive_le32dec(h+SVD_type_L_path_table_offset);
 	if (location < SYSTEM_AREA_BLOCK+2 || location >= volume_block)
 		return (0);
 
 	/* The Type M Path Table must be at a valid location (WinISO
 	 * and probably other programs omit this, so we allow zero)
 	 *
 	 * >= SYSTEM_AREA_BLOCK(16) + 2 and < Volume Space Size. */
 	location = archive_be32dec(h+SVD_type_M_path_table_offset);
 	if ((location > 0 && location < SYSTEM_AREA_BLOCK+2)
 	    || location >= volume_block)
 		return (0);
 
 	/* Read Root Directory Record in Volume Descriptor. */
 	p = h + SVD_root_directory_record_offset;
 	if (p[DR_length_offset] != 34)
 		return (0);
 
 	return (48);
 }
 
 static int
 isEVD(struct iso9660 *iso9660, const unsigned char *h)
 {
 	const unsigned char *p;
 	ssize_t logical_block_size;
 	int32_t volume_block;
 	int32_t location;
 
 	(void)iso9660; /* UNUSED */
 
 	/* Type of the Enhanced Volume Descriptor must be 2. */
 	if (h[PVD_type_offset] != 2)
 		return (0);
 
 	/* EVD version must be 2. */
 	if (h[PVD_version_offset] != 2)
 		return (0);
 
 	/* Reserved field must be 0. */
 	if (h[PVD_reserved1_offset] != 0)
 		return (0);
 
 	/* Reserved field must be 0. */
 	if (!isNull(iso9660, h, PVD_reserved2_offset, PVD_reserved2_size))
 		return (0);
 
 	/* Reserved field must be 0. */
 	if (!isNull(iso9660, h, PVD_reserved3_offset, PVD_reserved3_size))
 		return (0);
 
 	/* Logical block size must be > 0. */
 	/* I've looked at Ecma 119 and can't find any stronger
 	 * restriction on this field. */
 	logical_block_size =
 	    archive_le16dec(h + PVD_logical_block_size_offset);
 	if (logical_block_size <= 0)
 		return (0);
 
 	volume_block =
 	    archive_le32dec(h + PVD_volume_space_size_offset);
 	if (volume_block <= SYSTEM_AREA_BLOCK+4)
 		return (0);
 
 	/* File structure version must be 2 for ISO9660:1999. */
 	if (h[PVD_file_structure_version_offset] != 2)
 		return (0);
 
 	/* Location of Occurrence of Type L Path Table must be
 	 * available location,
 	 * >= SYSTEM_AREA_BLOCK(16) + 2 and < Volume Space Size. */
 	location = archive_le32dec(h+PVD_type_1_path_table_offset);
 	if (location < SYSTEM_AREA_BLOCK+2 || location >= volume_block)
 		return (0);
 
 	/* Location of Occurrence of Type M Path Table must be
 	 * available location,
 	 * >= SYSTEM_AREA_BLOCK(16) + 2 and < Volume Space Size. */
 	location = archive_be32dec(h+PVD_type_m_path_table_offset);
 	if ((location > 0 && location < SYSTEM_AREA_BLOCK+2)
 	    || location >= volume_block)
 		return (0);
 
 	/* Reserved field must be 0. */
 	if (!isNull(iso9660, h, PVD_reserved4_offset, PVD_reserved4_size))
 		return (0);
 
 	/* Reserved field must be 0. */
 	if (!isNull(iso9660, h, PVD_reserved5_offset, PVD_reserved5_size))
 		return (0);
 
 	/* Read Root Directory Record in Volume Descriptor. */
 	p = h + PVD_root_directory_record_offset;
 	if (p[DR_length_offset] != 34)
 		return (0);
 
 	return (48);
 }
 
 static int
 isPVD(struct iso9660 *iso9660, const unsigned char *h)
 {
 	const unsigned char *p;
 	ssize_t logical_block_size;
 	int32_t volume_block;
 	int32_t location;
 	int i;
 
 	/* Type of the Primary Volume Descriptor must be 1. */
 	if (h[PVD_type_offset] != 1)
 		return (0);
 
 	/* PVD version must be 1. */
 	if (h[PVD_version_offset] != 1)
 		return (0);
 
 	/* Reserved field must be 0. */
 	if (h[PVD_reserved1_offset] != 0)
 		return (0);
 
 	/* Reserved field must be 0. */
 	if (!isNull(iso9660, h, PVD_reserved2_offset, PVD_reserved2_size))
 		return (0);
 
 	/* Reserved field must be 0. */
 	if (!isNull(iso9660, h, PVD_reserved3_offset, PVD_reserved3_size))
 		return (0);
 
 	/* Logical block size must be > 0. */
 	/* I've looked at Ecma 119 and can't find any stronger
 	 * restriction on this field. */
 	logical_block_size =
 	    archive_le16dec(h + PVD_logical_block_size_offset);
 	if (logical_block_size <= 0)
 		return (0);
 
 	volume_block = archive_le32dec(h + PVD_volume_space_size_offset);
 	if (volume_block <= SYSTEM_AREA_BLOCK+4)
 		return (0);
 
 	/* File structure version must be 1 for ISO9660/ECMA119. */
 	if (h[PVD_file_structure_version_offset] != 1)
 		return (0);
 
 	/* Location of Occurrence of Type L Path Table must be
 	 * available location,
 	 * > SYSTEM_AREA_BLOCK(16) + 2 and < Volume Space Size. */
 	location = archive_le32dec(h+PVD_type_1_path_table_offset);
 	if (location < SYSTEM_AREA_BLOCK+2 || location >= volume_block)
 		return (0);
 
 	/* The Type M Path Table must also be at a valid location
 	 * (although ECMA 119 requires a Type M Path Table, WinISO and
 	 * probably other programs omit it, so we permit a zero here)
 	 *
 	 * >= SYSTEM_AREA_BLOCK(16) + 2 and < Volume Space Size. */
 	location = archive_be32dec(h+PVD_type_m_path_table_offset);
 	if ((location > 0 && location < SYSTEM_AREA_BLOCK+2)
 	    || location >= volume_block)
 		return (0);
 
 	/* Reserved field must be 0. */
 	/* But accept NetBSD/FreeBSD "makefs" images with 0x20 here. */
 	for (i = 0; i < PVD_reserved4_size; ++i)
 		if (h[PVD_reserved4_offset + i] != 0
 		    && h[PVD_reserved4_offset + i] != 0x20)
 			return (0);
 
 	/* Reserved field must be 0. */
 	if (!isNull(iso9660, h, PVD_reserved5_offset, PVD_reserved5_size))
 		return (0);
 
 	/* XXX TODO: Check other values for sanity; reject more
 	 * malformed PVDs. XXX */
 
 	/* Read Root Directory Record in Volume Descriptor. */
 	p = h + PVD_root_directory_record_offset;
 	if (p[DR_length_offset] != 34)
 		return (0);
 
 	if (!iso9660->primary.location) {
 		iso9660->logical_block_size = logical_block_size;
 		iso9660->volume_block = volume_block;
 		iso9660->volume_size =
 		    logical_block_size * (uint64_t)volume_block;
 		iso9660->primary.location =
 		    archive_le32dec(p + DR_extent_offset);
 		iso9660->primary.size = archive_le32dec(p + DR_size_offset);
 	}
 
 	return (48);
 }
 
 static int
 read_children(struct archive_read *a, struct file_info *parent)
 {
 	struct iso9660 *iso9660;
 	const unsigned char *b, *p;
 	struct file_info *multi;
 	size_t step, skip_size;
 
 	iso9660 = (struct iso9660 *)(a->format->data);
 	/* flush any remaining bytes from the last round to ensure
 	 * we're positioned */
 	if (iso9660->entry_bytes_unconsumed) {
 		__archive_read_consume(a, iso9660->entry_bytes_unconsumed);
 		iso9660->entry_bytes_unconsumed = 0;
 	}
 	if (iso9660->current_position > parent->offset) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 		    "Ignoring out-of-order directory (%s) %jd > %jd",
 		    parent->name.s,
 		    (intmax_t)iso9660->current_position,
 		    (intmax_t)parent->offset);
 		return (ARCHIVE_WARN);
 	}
 	if (parent->offset + parent->size > iso9660->volume_size) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 		    "Directory is beyond end-of-media: %s",
 		    parent->name.s);
 		return (ARCHIVE_WARN);
 	}
 	if (iso9660->current_position < parent->offset) {
 		int64_t skipsize;
 
 		skipsize = parent->offset - iso9660->current_position;
 		skipsize = __archive_read_consume(a, skipsize);
 		if (skipsize < 0)
 			return ((int)skipsize);
 		iso9660->current_position = parent->offset;
 	}
 
 	step = (size_t)(((parent->size + iso9660->logical_block_size -1) /
 	    iso9660->logical_block_size) * iso9660->logical_block_size);
 	b = __archive_read_ahead(a, step, NULL);
 	if (b == NULL) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 		    "Failed to read full block when scanning "
 		    "ISO9660 directory list");
 		return (ARCHIVE_FATAL);
 	}
 	iso9660->current_position += step;
 	multi = NULL;
 	skip_size = step;
 	while (step) {
 		p = b;
 		b += iso9660->logical_block_size;
 		step -= iso9660->logical_block_size;
-		for (; *p != 0 && p < b && p + *p <= b; p += *p) {
+		for (; *p != 0 && p + DR_name_offset < b && p + *p <= b;
+			p += *p) {
 			struct file_info *child;
 
 			/* N.B.: these special directory identifiers
 			 * are 8 bit "values" even on a
 			 * Joliet CD with UCS-2 (16bit) encoding.
 			 */
 
 			/* Skip '.' entry. */
 			if (*(p + DR_name_len_offset) == 1
 			    && *(p + DR_name_offset) == '\0')
 				continue;
 			/* Skip '..' entry. */
 			if (*(p + DR_name_len_offset) == 1
 			    && *(p + DR_name_offset) == '\001')
 				continue;
 			child = parse_file_info(a, parent, p, b - p);
 			if (child == NULL) {
 				__archive_read_consume(a, skip_size);
 				return (ARCHIVE_FATAL);
 			}
 			if (child->cl_offset == 0 &&
 			    (child->multi_extent || multi != NULL)) {
 				struct content *con;
 
 				if (multi == NULL) {
 					multi = child;
 					multi->contents.first = NULL;
 					multi->contents.last =
 					    &(multi->contents.first);
 				}
 				con = malloc(sizeof(struct content));
 				if (con == NULL) {
 					archive_set_error(
 					    &a->archive, ENOMEM,
 					    "No memory for multi extent");
 					__archive_read_consume(a, skip_size);
 					return (ARCHIVE_FATAL);
 				}
 				con->offset = child->offset;
 				con->size = child->size;
 				con->next = NULL;
 				*multi->contents.last = con;
 				multi->contents.last = &(con->next);
 				if (multi == child) {
 					if (add_entry(a, iso9660, child)
 					    != ARCHIVE_OK)
 						return (ARCHIVE_FATAL);
 				} else {
 					multi->size += child->size;
 					if (!child->multi_extent)
 						multi = NULL;
 				}
 			} else
 				if (add_entry(a, iso9660, child) != ARCHIVE_OK)
 					return (ARCHIVE_FATAL);
 		}
 	}
 
 	__archive_read_consume(a, skip_size);
 
 	/* Read data which recorded by RRIP "CE" extension. */
 	if (read_CE(a, iso9660) != ARCHIVE_OK)
 		return (ARCHIVE_FATAL);
 
 	return (ARCHIVE_OK);
 }
 
 static int
 choose_volume(struct archive_read *a, struct iso9660 *iso9660)
 {
 	struct file_info *file;
 	int64_t skipsize;
 	struct vd *vd;
 	const void *block;
 	char seenJoliet;
 
 	vd = &(iso9660->primary);
 	if (!iso9660->opt_support_joliet)
 		iso9660->seenJoliet = 0;
 	if (iso9660->seenJoliet &&
 		vd->location > iso9660->joliet.location)
 		/* This condition is unlikely; by way of caution. */
 		vd = &(iso9660->joliet);
 
 	skipsize = LOGICAL_BLOCK_SIZE * (int64_t)vd->location;
 	skipsize = __archive_read_consume(a, skipsize);
 	if (skipsize < 0)
 		return ((int)skipsize);
 	iso9660->current_position = skipsize;
 
 	block = __archive_read_ahead(a, vd->size, NULL);
 	if (block == NULL) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 		    "Failed to read full block when scanning "
 		    "ISO9660 directory list");
 		return (ARCHIVE_FATAL);
 	}
 
 	/*
 	 * While reading Root Directory, flag seenJoliet must be zero to
 	 * avoid converting special name 0x00(Current Directory) and
 	 * next byte to UCS2.
 	 */
 	seenJoliet = iso9660->seenJoliet;/* Save flag. */
 	iso9660->seenJoliet = 0;
 	file = parse_file_info(a, NULL, block, vd->size);
 	if (file == NULL)
 		return (ARCHIVE_FATAL);
 	iso9660->seenJoliet = seenJoliet;
 
 	/*
 	 * If the iso image has both RockRidge and Joliet, we preferentially
 	 * use RockRidge Extensions rather than Joliet ones.
 	 */
 	if (vd == &(iso9660->primary) && iso9660->seenRockridge
 	    && iso9660->seenJoliet)
 		iso9660->seenJoliet = 0;
 
 	if (vd == &(iso9660->primary) && !iso9660->seenRockridge
 	    && iso9660->seenJoliet) {
 		/* Switch reading data from primary to joliet. */
 		vd = &(iso9660->joliet);
 		skipsize = LOGICAL_BLOCK_SIZE * (int64_t)vd->location;
 		skipsize -= iso9660->current_position;
 		skipsize = __archive_read_consume(a, skipsize);
 		if (skipsize < 0)
 			return ((int)skipsize);
 		iso9660->current_position += skipsize;
 
 		block = __archive_read_ahead(a, vd->size, NULL);
 		if (block == NULL) {
 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 			    "Failed to read full block when scanning "
 			    "ISO9660 directory list");
 			return (ARCHIVE_FATAL);
 		}
 		iso9660->seenJoliet = 0;
 		file = parse_file_info(a, NULL, block, vd->size);
 		if (file == NULL)
 			return (ARCHIVE_FATAL);
 		iso9660->seenJoliet = seenJoliet;
 	}
 
 	/* Store the root directory in the pending list. */
 	if (add_entry(a, iso9660, file) != ARCHIVE_OK)
 		return (ARCHIVE_FATAL);
 	if (iso9660->seenRockridge) {
 		a->archive.archive_format = ARCHIVE_FORMAT_ISO9660_ROCKRIDGE;
 		a->archive.archive_format_name =
 		    "ISO9660 with Rockridge extensions";
 	}
 
 	return (ARCHIVE_OK);
 }
 
 static int
 archive_read_format_iso9660_read_header(struct archive_read *a,
     struct archive_entry *entry)
 {
 	struct iso9660 *iso9660;
 	struct file_info *file;
 	int r, rd_r = ARCHIVE_OK;
 
 	iso9660 = (struct iso9660 *)(a->format->data);
 
 	if (!a->archive.archive_format) {
 		a->archive.archive_format = ARCHIVE_FORMAT_ISO9660;
 		a->archive.archive_format_name = "ISO9660";
 	}
 
 	if (iso9660->current_position == 0) {
 		r = choose_volume(a, iso9660);
 		if (r != ARCHIVE_OK)
 			return (r);
 	}
 
 	file = NULL;/* Eliminate a warning. */
 	/* Get the next entry that appears after the current offset. */
 	r = next_entry_seek(a, iso9660, &file);
 	if (r != ARCHIVE_OK)
 		return (r);
 
 	if (iso9660->seenJoliet) {
 		/*
 		 * Convert UTF-16BE of a filename to local locale MBS
 		 * and store the result into a filename field.
 		 */
 		if (iso9660->sconv_utf16be == NULL) {
 			iso9660->sconv_utf16be =
 			    archive_string_conversion_from_charset(
 				&(a->archive), "UTF-16BE", 1);
 			if (iso9660->sconv_utf16be == NULL)
 				/* Couldn't allocate memory */
 				return (ARCHIVE_FATAL);
 		}
 		if (iso9660->utf16be_path == NULL) {
 			iso9660->utf16be_path = malloc(UTF16_NAME_MAX);
 			if (iso9660->utf16be_path == NULL) {
 				archive_set_error(&a->archive, ENOMEM,
 				    "No memory");
 				return (ARCHIVE_FATAL);
 			}
 		}
 		if (iso9660->utf16be_previous_path == NULL) {
 			iso9660->utf16be_previous_path = malloc(UTF16_NAME_MAX);
 			if (iso9660->utf16be_previous_path == NULL) {
 				archive_set_error(&a->archive, ENOMEM,
 				    "No memory");
 				return (ARCHIVE_FATAL);
 			}
 		}
 
 		iso9660->utf16be_path_len = 0;
 		if (build_pathname_utf16be(iso9660->utf16be_path,
 		    UTF16_NAME_MAX, &(iso9660->utf16be_path_len), file) != 0) {
 			archive_set_error(&a->archive,
 			    ARCHIVE_ERRNO_FILE_FORMAT,
 			    "Pathname is too long");
 			return (ARCHIVE_FATAL);
 		}
 
 		r = archive_entry_copy_pathname_l(entry,
 		    (const char *)iso9660->utf16be_path,
 		    iso9660->utf16be_path_len,
 		    iso9660->sconv_utf16be);
 		if (r != 0) {
 			if (errno == ENOMEM) {
 				archive_set_error(&a->archive, ENOMEM,
 				    "No memory for Pathname");
 				return (ARCHIVE_FATAL);
 			}
 			archive_set_error(&a->archive,
 			    ARCHIVE_ERRNO_FILE_FORMAT,
 			    "Pathname cannot be converted "
 			    "from %s to current locale.",
 			    archive_string_conversion_charset_name(
 			      iso9660->sconv_utf16be));
 
 			rd_r = ARCHIVE_WARN;
 		}
 	} else {
 		const char *path = build_pathname(&iso9660->pathname, file, 0);
 		if (path == NULL) {
 			archive_set_error(&a->archive,
 			    ARCHIVE_ERRNO_FILE_FORMAT,
 			    "Pathname is too long");
 			return (ARCHIVE_FATAL);
 		} else {
 			archive_string_empty(&iso9660->pathname);
 			archive_entry_set_pathname(entry, path);
 		}
 	}
 
 	iso9660->entry_bytes_remaining = file->size;
 	/* Offset for sparse-file-aware clients. */
 	iso9660->entry_sparse_offset = 0;
 
 	if (file->offset + file->size > iso9660->volume_size) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 		    "File is beyond end-of-media: %s",
 		    archive_entry_pathname(entry));
 		iso9660->entry_bytes_remaining = 0;
 		return (ARCHIVE_WARN);
 	}
 
 	/* Set up the entry structure with information about this entry. */
 	archive_entry_set_mode(entry, file->mode);
 	archive_entry_set_uid(entry, file->uid);
 	archive_entry_set_gid(entry, file->gid);
 	archive_entry_set_nlink(entry, file->nlinks);
 	if (file->birthtime_is_set)
 		archive_entry_set_birthtime(entry, file->birthtime, 0);
 	else
 		archive_entry_unset_birthtime(entry);
 	archive_entry_set_mtime(entry, file->mtime, 0);
 	archive_entry_set_ctime(entry, file->ctime, 0);
 	archive_entry_set_atime(entry, file->atime, 0);
 	/* N.B.: Rock Ridge supports 64-bit device numbers. */
 	archive_entry_set_rdev(entry, (dev_t)file->rdev);
 	archive_entry_set_size(entry, iso9660->entry_bytes_remaining);
 	if (file->symlink.s != NULL)
 		archive_entry_copy_symlink(entry, file->symlink.s);
 
 	/* Note: If the input isn't seekable, we can't rewind to
 	 * return the same body again, so if the next entry refers to
 	 * the same data, we have to return it as a hardlink to the
 	 * original entry. */
 	if (file->number != -1 &&
 	    file->number == iso9660->previous_number) {
 		if (iso9660->seenJoliet) {
 			r = archive_entry_copy_hardlink_l(entry,
 			    (const char *)iso9660->utf16be_previous_path,
 			    iso9660->utf16be_previous_path_len,
 			    iso9660->sconv_utf16be);
 			if (r != 0) {
 				if (errno == ENOMEM) {
 					archive_set_error(&a->archive, ENOMEM,
 					    "No memory for Linkname");
 					return (ARCHIVE_FATAL);
 				}
 				archive_set_error(&a->archive,
 				    ARCHIVE_ERRNO_FILE_FORMAT,
 				    "Linkname cannot be converted "
 				    "from %s to current locale.",
 				    archive_string_conversion_charset_name(
 				      iso9660->sconv_utf16be));
 				rd_r = ARCHIVE_WARN;
 			}
 		} else
 			archive_entry_set_hardlink(entry,
 			    iso9660->previous_pathname.s);
 		archive_entry_unset_size(entry);
 		iso9660->entry_bytes_remaining = 0;
 		return (rd_r);
 	}
 
 	if ((file->mode & AE_IFMT) != AE_IFDIR &&
 	    file->offset < iso9660->current_position) {
 		int64_t r64;
 
 		r64 = __archive_read_seek(a, file->offset, SEEK_SET);
 		if (r64 != (int64_t)file->offset) {
 			/* We can't seek backwards to extract it, so issue
 			 * a warning.  Note that this can only happen if
 			 * this entry was added to the heap after we passed
 			 * this offset, that is, only if the directory
 			 * mentioning this entry is later than the body of
 			 * the entry. Such layouts are very unusual; most
 			 * ISO9660 writers lay out and record all directory
 			 * information first, then store all file bodies. */
 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 			    "Ignoring out-of-order file @%jx (%s) %jd < %jd",
 			    (intmax_t)file->number,
 			    iso9660->pathname.s,
 			    (intmax_t)file->offset,
 			    (intmax_t)iso9660->current_position);
 			iso9660->entry_bytes_remaining = 0;
 			return (ARCHIVE_WARN);
 		}
 		iso9660->current_position = (uint64_t)r64;
 	}
 
 	/* Initialize zisofs variables. */
 	iso9660->entry_zisofs.pz = file->pz;
 	if (file->pz) {
 #ifdef HAVE_ZLIB_H
 		struct zisofs  *zisofs;
 
 		zisofs = &iso9660->entry_zisofs;
 		zisofs->initialized = 0;
 		zisofs->pz_log2_bs = file->pz_log2_bs;
 		zisofs->pz_uncompressed_size = file->pz_uncompressed_size;
 		zisofs->pz_offset = 0;
 		zisofs->header_avail = 0;
 		zisofs->header_passed = 0;
 		zisofs->block_pointers_avail = 0;
 #endif
 		archive_entry_set_size(entry, file->pz_uncompressed_size);
 	}
 
 	iso9660->previous_number = file->number;
 	if (iso9660->seenJoliet) {
 		memcpy(iso9660->utf16be_previous_path, iso9660->utf16be_path,
 		    iso9660->utf16be_path_len);
 		iso9660->utf16be_previous_path_len = iso9660->utf16be_path_len;
 	} else
 		archive_strcpy(
 		    &iso9660->previous_pathname, iso9660->pathname.s);
 
 	/* Reset entry_bytes_remaining if the file is multi extent. */
 	iso9660->entry_content = file->contents.first;
 	if (iso9660->entry_content != NULL)
 		iso9660->entry_bytes_remaining = iso9660->entry_content->size;
 
 	if (archive_entry_filetype(entry) == AE_IFDIR) {
 		/* Overwrite nlinks by proper link number which is
 		 * calculated from number of sub directories. */
 		archive_entry_set_nlink(entry, 2 + file->subdirs);
 		/* Directory data has been read completely. */
 		iso9660->entry_bytes_remaining = 0;
 	}
 
 	if (rd_r != ARCHIVE_OK)
 		return (rd_r);
 	return (ARCHIVE_OK);
 }
 
 static int
 archive_read_format_iso9660_read_data_skip(struct archive_read *a)
 {
 	/* Because read_next_header always does an explicit skip
 	 * to the next entry, we don't need to do anything here. */
 	(void)a; /* UNUSED */
 	return (ARCHIVE_OK);
 }
 
 #ifdef HAVE_ZLIB_H
 
 static int
 zisofs_read_data(struct archive_read *a,
     const void **buff, size_t *size, int64_t *offset)
 {
 	struct iso9660 *iso9660;
 	struct zisofs  *zisofs;
 	const unsigned char *p;
 	size_t avail;
 	ssize_t bytes_read;
 	size_t uncompressed_size;
 	int r;
 
 	iso9660 = (struct iso9660 *)(a->format->data);
 	zisofs = &iso9660->entry_zisofs;
 
 	p = __archive_read_ahead(a, 1, &bytes_read);
 	if (bytes_read <= 0) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
 		    "Truncated zisofs file body");
 		return (ARCHIVE_FATAL);
 	}
 	if (bytes_read > iso9660->entry_bytes_remaining)
 		bytes_read = (ssize_t)iso9660->entry_bytes_remaining;
 	avail = bytes_read;
 	uncompressed_size = 0;
 
 	if (!zisofs->initialized) {
 		size_t ceil, xsize;
 
 		/* Allocate block pointers buffer. */
 		ceil = (size_t)((zisofs->pz_uncompressed_size +
 			(((int64_t)1) << zisofs->pz_log2_bs) - 1)
 			>> zisofs->pz_log2_bs);
 		xsize = (ceil + 1) * 4;
 		if (zisofs->block_pointers_alloc < xsize) {
 			size_t alloc;
 
 			if (zisofs->block_pointers != NULL)
 				free(zisofs->block_pointers);
 			alloc = ((xsize >> 10) + 1) << 10;
 			zisofs->block_pointers = malloc(alloc);
 			if (zisofs->block_pointers == NULL) {
 				archive_set_error(&a->archive, ENOMEM,
 				    "No memory for zisofs decompression");
 				return (ARCHIVE_FATAL);
 			}
 			zisofs->block_pointers_alloc = alloc;
 		}
 		zisofs->block_pointers_size = xsize;
 
 		/* Allocate uncompressed data buffer. */
 		xsize = (size_t)1UL << zisofs->pz_log2_bs;
 		if (zisofs->uncompressed_buffer_size < xsize) {
 			if (zisofs->uncompressed_buffer != NULL)
 				free(zisofs->uncompressed_buffer);
 			zisofs->uncompressed_buffer = malloc(xsize);
 			if (zisofs->uncompressed_buffer == NULL) {
 				archive_set_error(&a->archive, ENOMEM,
 				    "No memory for zisofs decompression");
 				return (ARCHIVE_FATAL);
 			}
 		}
 		zisofs->uncompressed_buffer_size = xsize;
 
 		/*
 		 * Read the file header, and check the magic code of zisofs.
 		 */
 		if (zisofs->header_avail < sizeof(zisofs->header)) {
 			xsize = sizeof(zisofs->header) - zisofs->header_avail;
 			if (avail < xsize)
 				xsize = avail;
 			memcpy(zisofs->header + zisofs->header_avail, p, xsize);
 			zisofs->header_avail += xsize;
 			avail -= xsize;
 			p += xsize;
 		}
 		if (!zisofs->header_passed &&
 		    zisofs->header_avail == sizeof(zisofs->header)) {
 			int err = 0;
 
 			if (memcmp(zisofs->header, zisofs_magic,
 			    sizeof(zisofs_magic)) != 0)
 				err = 1;
 			if (archive_le32dec(zisofs->header + 8)
 			    != zisofs->pz_uncompressed_size)
 				err = 1;
 			if (zisofs->header[12] != 4)
 				err = 1;
 			if (zisofs->header[13] != zisofs->pz_log2_bs)
 				err = 1;
 			if (err) {
 				archive_set_error(&a->archive,
 				    ARCHIVE_ERRNO_FILE_FORMAT,
 				    "Illegal zisofs file body");
 				return (ARCHIVE_FATAL);
 			}
 			zisofs->header_passed = 1;
 		}
 		/*
 		 * Read block pointers.
 		 */
 		if (zisofs->header_passed &&
 		    zisofs->block_pointers_avail < zisofs->block_pointers_size) {
 			xsize = zisofs->block_pointers_size
 			    - zisofs->block_pointers_avail;
 			if (avail < xsize)
 				xsize = avail;
 			memcpy(zisofs->block_pointers
 			    + zisofs->block_pointers_avail, p, xsize);
 			zisofs->block_pointers_avail += xsize;
 			avail -= xsize;
 			p += xsize;
 		    	if (zisofs->block_pointers_avail
 			    == zisofs->block_pointers_size) {
 				/* We've got all block pointers and initialize
 				 * related variables.	*/
 				zisofs->block_off = 0;
 				zisofs->block_avail = 0;
 				/* Complete a initialization */
 				zisofs->initialized = 1;
 			}
 		}
 
 		if (!zisofs->initialized)
 			goto next_data; /* We need more data. */
 	}
 
 	/*
 	 * Get block offsets from block pointers.
 	 */
 	if (zisofs->block_avail == 0) {
 		uint32_t bst, bed;
 
 		if (zisofs->block_off + 4 >= zisofs->block_pointers_size) {
 			/* There isn't a pair of offsets. */
 			archive_set_error(&a->archive,
 			    ARCHIVE_ERRNO_FILE_FORMAT,
 			    "Illegal zisofs block pointers");
 			return (ARCHIVE_FATAL);
 		}
 		bst = archive_le32dec(
 		    zisofs->block_pointers + zisofs->block_off);
 		if (bst != zisofs->pz_offset + (bytes_read - avail)) {
 			/* TODO: Should we seek offset of current file
 			 * by bst ? */
 			archive_set_error(&a->archive,
 			    ARCHIVE_ERRNO_FILE_FORMAT,
 			    "Illegal zisofs block pointers(cannot seek)");
 			return (ARCHIVE_FATAL);
 		}
 		bed = archive_le32dec(
 		    zisofs->block_pointers + zisofs->block_off + 4);
 		if (bed < bst) {
 			archive_set_error(&a->archive,
 			    ARCHIVE_ERRNO_FILE_FORMAT,
 			    "Illegal zisofs block pointers");
 			return (ARCHIVE_FATAL);
 		}
 		zisofs->block_avail = bed - bst;
 		zisofs->block_off += 4;
 
 		/* Initialize compression library for new block. */
 		if (zisofs->stream_valid)
 			r = inflateReset(&zisofs->stream);
 		else
 			r = inflateInit(&zisofs->stream);
 		if (r != Z_OK) {
 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 			    "Can't initialize zisofs decompression.");
 			return (ARCHIVE_FATAL);
 		}
 		zisofs->stream_valid = 1;
 		zisofs->stream.total_in = 0;
 		zisofs->stream.total_out = 0;
 	}
 
 	/*
 	 * Make uncompressed data.
 	 */
 	if (zisofs->block_avail == 0) {
 		memset(zisofs->uncompressed_buffer, 0,
 		    zisofs->uncompressed_buffer_size);
 		uncompressed_size = zisofs->uncompressed_buffer_size;
 	} else {
 		zisofs->stream.next_in = (Bytef *)(uintptr_t)(const void *)p;
 		if (avail > zisofs->block_avail)
 			zisofs->stream.avail_in = zisofs->block_avail;
 		else
 			zisofs->stream.avail_in = (uInt)avail;
 		zisofs->stream.next_out = zisofs->uncompressed_buffer;
 		zisofs->stream.avail_out =
 		    (uInt)zisofs->uncompressed_buffer_size;
 
 		r = inflate(&zisofs->stream, 0);
 		switch (r) {
 		case Z_OK: /* Decompressor made some progress.*/
 		case Z_STREAM_END: /* Found end of stream. */
 			break;
 		default:
 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 			    "zisofs decompression failed (%d)", r);
 			return (ARCHIVE_FATAL);
 		}
 		uncompressed_size =
 		    zisofs->uncompressed_buffer_size - zisofs->stream.avail_out;
 		avail -= zisofs->stream.next_in - p;
 		zisofs->block_avail -= (uint32_t)(zisofs->stream.next_in - p);
 	}
 next_data:
 	bytes_read -= avail;
 	*buff = zisofs->uncompressed_buffer;
 	*size = uncompressed_size;
 	*offset = iso9660->entry_sparse_offset;
 	iso9660->entry_sparse_offset += uncompressed_size;
 	iso9660->entry_bytes_remaining -= bytes_read;
 	iso9660->current_position += bytes_read;
 	zisofs->pz_offset += (uint32_t)bytes_read;
 	iso9660->entry_bytes_unconsumed += bytes_read;
 
 	return (ARCHIVE_OK);
 }
 
 #else /* HAVE_ZLIB_H */
 
 static int
 zisofs_read_data(struct archive_read *a,
     const void **buff, size_t *size, int64_t *offset)
 {
 
 	(void)buff;/* UNUSED */
 	(void)size;/* UNUSED */
 	(void)offset;/* UNUSED */
 	archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
 	    "zisofs is not supported on this platform.");
 	return (ARCHIVE_FAILED);
 }
 
 #endif /* HAVE_ZLIB_H */
 
 static int
 archive_read_format_iso9660_read_data(struct archive_read *a,
     const void **buff, size_t *size, int64_t *offset)
 {
 	ssize_t bytes_read;
 	struct iso9660 *iso9660;
 
 	iso9660 = (struct iso9660 *)(a->format->data);
 
 	if (iso9660->entry_bytes_unconsumed) {
 		__archive_read_consume(a, iso9660->entry_bytes_unconsumed);
 		iso9660->entry_bytes_unconsumed = 0;
 	}
 
 	if (iso9660->entry_bytes_remaining <= 0) {
 		if (iso9660->entry_content != NULL)
 			iso9660->entry_content = iso9660->entry_content->next;
 		if (iso9660->entry_content == NULL) {
 			*buff = NULL;
 			*size = 0;
 			*offset = iso9660->entry_sparse_offset;
 			return (ARCHIVE_EOF);
 		}
 		/* Seek forward to the start of the entry. */
 		if (iso9660->current_position < iso9660->entry_content->offset) {
 			int64_t step;
 
 			step = iso9660->entry_content->offset -
 			    iso9660->current_position;
 			step = __archive_read_consume(a, step);
 			if (step < 0)
 				return ((int)step);
 			iso9660->current_position =
 			    iso9660->entry_content->offset;
 		}
 		if (iso9660->entry_content->offset < iso9660->current_position) {
 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 			    "Ignoring out-of-order file (%s) %jd < %jd",
 			    iso9660->pathname.s,
 			    (intmax_t)iso9660->entry_content->offset,
 			    (intmax_t)iso9660->current_position);
 			*buff = NULL;
 			*size = 0;
 			*offset = iso9660->entry_sparse_offset;
 			return (ARCHIVE_WARN);
 		}
 		iso9660->entry_bytes_remaining = iso9660->entry_content->size;
 	}
 	if (iso9660->entry_zisofs.pz)
 		return (zisofs_read_data(a, buff, size, offset));
 
 	*buff = __archive_read_ahead(a, 1, &bytes_read);
 	if (bytes_read == 0)
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 		    "Truncated input file");
 	if (*buff == NULL)
 		return (ARCHIVE_FATAL);
 	if (bytes_read > iso9660->entry_bytes_remaining)
 		bytes_read = (ssize_t)iso9660->entry_bytes_remaining;
 	*size = bytes_read;
 	*offset = iso9660->entry_sparse_offset;
 	iso9660->entry_sparse_offset += bytes_read;
 	iso9660->entry_bytes_remaining -= bytes_read;
 	iso9660->entry_bytes_unconsumed = bytes_read;
 	iso9660->current_position += bytes_read;
 	return (ARCHIVE_OK);
 }
 
 static int
 archive_read_format_iso9660_cleanup(struct archive_read *a)
 {
 	struct iso9660 *iso9660;
 	int r = ARCHIVE_OK;
 
 	iso9660 = (struct iso9660 *)(a->format->data);
 	release_files(iso9660);
 	free(iso9660->read_ce_req.reqs);
 	archive_string_free(&iso9660->pathname);
 	archive_string_free(&iso9660->previous_pathname);
 	free(iso9660->pending_files.files);
 #ifdef HAVE_ZLIB_H
 	free(iso9660->entry_zisofs.uncompressed_buffer);
 	free(iso9660->entry_zisofs.block_pointers);
 	if (iso9660->entry_zisofs.stream_valid) {
 		if (inflateEnd(&iso9660->entry_zisofs.stream) != Z_OK) {
 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 			    "Failed to clean up zlib decompressor");
 			r = ARCHIVE_FATAL;
 		}
 	}
 #endif
 	free(iso9660->utf16be_path);
 	free(iso9660->utf16be_previous_path);
 	free(iso9660);
 	(a->format->data) = NULL;
 	return (r);
 }
 
 /*
  * This routine parses a single ISO directory record, makes sense
  * of any extensions, and stores the result in memory.
  */
 static struct file_info *
 parse_file_info(struct archive_read *a, struct file_info *parent,
     const unsigned char *isodirrec, size_t reclen)
 {
 	struct iso9660 *iso9660;
 	struct file_info *file, *filep;
 	size_t name_len;
 	const unsigned char *rr_start, *rr_end;
 	const unsigned char *p;
 	size_t dr_len;
 	uint64_t fsize, offset;
 	int32_t location;
 	int flags;
 
 	iso9660 = (struct iso9660 *)(a->format->data);
 
 	if (reclen != 0)
 		dr_len = (size_t)isodirrec[DR_length_offset];
 	/*
 	 * Sanity check that reclen is not zero and dr_len is greater than
 	 * reclen but at least 34
 	 */
 	if (reclen == 0 || reclen < dr_len || dr_len < 34) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 			"Invalid length of directory record");
 		return (NULL);
 	}
 	name_len = (size_t)isodirrec[DR_name_len_offset];
 	location = archive_le32dec(isodirrec + DR_extent_offset);
 	fsize = toi(isodirrec + DR_size_offset, DR_size_size);
 	/* Sanity check that name_len doesn't exceed dr_len. */
 	if (dr_len - 33 < name_len || name_len == 0) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 		    "Invalid length of file identifier");
 		return (NULL);
 	}
 	/* Sanity check that location doesn't exceed volume block.
 	 * Don't check lower limit of location; it's possibility
 	 * the location has negative value when file type is symbolic
 	 * link or file size is zero. As far as I know latest mkisofs
 	 * do that.
 	 */
 	if (location > 0 &&
 	    (location + ((fsize + iso9660->logical_block_size -1)
 	       / iso9660->logical_block_size))
 			> (uint32_t)iso9660->volume_block) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 		    "Invalid location of extent of file");
 		return (NULL);
 	}
 	/* Sanity check that location doesn't have a negative value
 	 * when the file is not empty. it's too large. */
 	if (fsize != 0 && location < 0) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 		    "Invalid location of extent of file");
 		return (NULL);
 	}
 
 	/* Sanity check that this entry does not create a cycle. */
 	offset = iso9660->logical_block_size * (uint64_t)location;
 	for (filep = parent; filep != NULL; filep = filep->parent) {
 		if (filep->offset == offset) {
 			archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
 			    "Directory structure contains loop");
 			return (NULL);
 		}
 	}
 
 	/* Create a new file entry and copy data from the ISO dir record. */
 	file = (struct file_info *)calloc(1, sizeof(*file));
 	if (file == NULL) {
 		archive_set_error(&a->archive, ENOMEM,
 		    "No memory for file entry");
 		return (NULL);
 	}
 	file->parent = parent;
 	file->offset = offset;
 	file->size = fsize;
 	file->mtime = isodate7(isodirrec + DR_date_offset);
 	file->ctime = file->atime = file->mtime;
 	file->rede_files.first = NULL;
 	file->rede_files.last = &(file->rede_files.first);
 
 	p = isodirrec + DR_name_offset;
 	/* Rockridge extensions (if any) follow name.  Compute this
 	 * before fidgeting the name_len below. */
 	rr_start = p + name_len + (name_len & 1 ? 0 : 1);
 	rr_end = isodirrec + dr_len;
 
 	if (iso9660->seenJoliet) {
 		/* Joliet names are max 64 chars (128 bytes) according to spec,
 		 * but genisoimage/mkisofs allows recording longer Joliet
 		 * names which are 103 UCS2 characters(206 bytes) by their
 		 * option '-joliet-long'.
 		 */
 		if (name_len > 206)
 			name_len = 206;
 		name_len &= ~1;
 
 		/* trim trailing first version and dot from filename.
 		 *
 		 * Remember we were in UTF-16BE land!
 		 * SEPARATOR 1 (.) and SEPARATOR 2 (;) are both
 		 * 16 bits big endian characters on Joliet.
 		 *
 		 * TODO: sanitize filename?
 		 *       Joliet allows any UCS-2 char except:
 		 *       *, /, :, ;, ? and \.
 		 */
 		/* Chop off trailing ';1' from files. */
 		if (name_len > 4 && p[name_len-4] == 0 && p[name_len-3] == ';'
 		    && p[name_len-2] == 0 && p[name_len-1] == '1')
 			name_len -= 4;
 #if 0 /* XXX: this somehow manages to strip of single-character file extensions, like '.c'. */
 		/* Chop off trailing '.' from filenames. */
 		if (name_len > 2 && p[name_len-2] == 0 && p[name_len-1] == '.')
 			name_len -= 2;
 #endif
 		if ((file->utf16be_name = malloc(name_len)) == NULL) {
 			archive_set_error(&a->archive, ENOMEM,
 			    "No memory for file name");
 			goto fail;
 		}
 		memcpy(file->utf16be_name, p, name_len);
 		file->utf16be_bytes = name_len;
 	} else {
 		/* Chop off trailing ';1' from files. */
 		if (name_len > 2 && p[name_len - 2] == ';' &&
 				p[name_len - 1] == '1')
 			name_len -= 2;
 		/* Chop off trailing '.' from filenames. */
 		if (name_len > 1 && p[name_len - 1] == '.')
 			--name_len;
 
 		archive_strncpy(&file->name, (const char *)p, name_len);
 	}
 
 	flags = isodirrec[DR_flags_offset];
 	if (flags & 0x02)
 		file->mode = AE_IFDIR | 0700;
 	else
 		file->mode = AE_IFREG | 0400;
 	if (flags & 0x80)
 		file->multi_extent = 1;
 	else
 		file->multi_extent = 0;
 	/*
 	 * Use a location for the file number, which is treated as an inode
 	 * number to find out hardlink target. If Rockridge extensions is
 	 * being used, the file number will be overwritten by FILE SERIAL
 	 * NUMBER of RRIP "PX" extension.
 	 * Note: Old mkisofs did not record that FILE SERIAL NUMBER
 	 * in ISO images.
 	 * Note2: xorriso set 0 to the location of a symlink file. 
 	 */
 	if (file->size == 0 && location >= 0) {
 		/* If file->size is zero, its location points wrong place,
 		 * and so we should not use it for the file number.
 		 * When the location has negative value, it can be used
 		 * for the file number.
 		 */
 		file->number = -1;
 		/* Do not appear before any directory entries. */
 		file->offset = -1;
 	} else
 		file->number = (int64_t)(uint32_t)location;
 
 	/* Rockridge extensions overwrite information from above. */
 	if (iso9660->opt_support_rockridge) {
 		if (parent == NULL && rr_end - rr_start >= 7) {
 			p = rr_start;
 			if (memcmp(p, "SP\x07\x01\xbe\xef", 6) == 0) {
 				/*
 				 * SP extension stores the suspOffset
 				 * (Number of bytes to skip between
 				 * filename and SUSP records.)
 				 * It is mandatory by the SUSP standard
 				 * (IEEE 1281).
 				 *
 				 * It allows SUSP to coexist with
 				 * non-SUSP uses of the System
 				 * Use Area by placing non-SUSP data
 				 * before SUSP data.
 				 *
 				 * SP extension must be in the root
 				 * directory entry, disable all SUSP
 				 * processing if not found.
 				 */
 				iso9660->suspOffset = p[6];
 				iso9660->seenSUSP = 1;
 				rr_start += 7;
 			}
 		}
 		if (iso9660->seenSUSP) {
 			int r;
 
 			file->name_continues = 0;
 			file->symlink_continues = 0;
 			rr_start += iso9660->suspOffset;
 			r = parse_rockridge(a, file, rr_start, rr_end);
 			if (r != ARCHIVE_OK)
 				goto fail;
 			/*
 			 * A file size of symbolic link files in ISO images
 			 * made by makefs is not zero and its location is
 			 * the same as those of next regular file. That is
 			 * the same as hard like file and it causes unexpected
 			 * error. 
 			 */
 			if (file->size > 0 &&
 			    (file->mode & AE_IFMT) == AE_IFLNK) {
 				file->size = 0;
 				file->number = -1;
 				file->offset = -1;
 			}
 		} else
 			/* If there isn't SUSP, disable parsing
 			 * rock ridge extensions. */
 			iso9660->opt_support_rockridge = 0;
 	}
 
 	file->nlinks = 1;/* Reset nlink. we'll calculate it later. */
 	/* Tell file's parent how many children that parent has. */
 	if (parent != NULL && (flags & 0x02))
 		parent->subdirs++;
 
 	if (iso9660->seenRockridge) {
 		if (parent != NULL && parent->parent == NULL &&
 		    (flags & 0x02) && iso9660->rr_moved == NULL &&
 		    file->name.s &&
 		    (strcmp(file->name.s, "rr_moved") == 0 ||
 		     strcmp(file->name.s, ".rr_moved") == 0)) {
 			iso9660->rr_moved = file;
 			file->rr_moved = 1;
 			file->rr_moved_has_re_only = 1;
 			file->re = 0;
 			parent->subdirs--;
 		} else if (file->re) {
 			/*
 			 * Sanity check: file's parent is rr_moved.
 			 */
 			if (parent == NULL || parent->rr_moved == 0) {
 				archive_set_error(&a->archive,
 				    ARCHIVE_ERRNO_MISC,
 				    "Invalid Rockridge RE");
 				goto fail;
 			}
 			/*
 			 * Sanity check: file does not have "CL" extension.
 			 */
 			if (file->cl_offset) {
 				archive_set_error(&a->archive,
 				    ARCHIVE_ERRNO_MISC,
 				    "Invalid Rockridge RE and CL");
 				goto fail;
 			}
 			/*
 			 * Sanity check: The file type must be a directory.
 			 */
 			if ((flags & 0x02) == 0) {
 				archive_set_error(&a->archive,
 				    ARCHIVE_ERRNO_MISC,
 				    "Invalid Rockridge RE");
 				goto fail;
 			}
 		} else if (parent != NULL && parent->rr_moved)
 			file->rr_moved_has_re_only = 0;
 		else if (parent != NULL && (flags & 0x02) &&
 		    (parent->re || parent->re_descendant))
 			file->re_descendant = 1;
 		if (file->cl_offset) {
 			struct file_info *r;
 
 			if (parent == NULL || parent->parent == NULL) {
 				archive_set_error(&a->archive,
 				    ARCHIVE_ERRNO_MISC,
 				    "Invalid Rockridge CL");
 				goto fail;
 			}
 			/*
 			 * Sanity check: The file type must be a regular file.
 			 */
 			if ((flags & 0x02) != 0) {
 				archive_set_error(&a->archive,
 				    ARCHIVE_ERRNO_MISC,
 				    "Invalid Rockridge CL");
 				goto fail;
 			}
 			parent->subdirs++;
 			/* Overwrite an offset and a number of this "CL" entry
 			 * to appear before other dirs. "+1" to those is to
 			 * make sure to appear after "RE" entry which this
 			 * "CL" entry should be connected with. */
 			file->offset = file->number = file->cl_offset + 1;
 
 			/*
 			 * Sanity check: cl_offset does not point at its
 			 * the parents or itself.
 			 */
 			for (r = parent; r; r = r->parent) {
 				if (r->offset == file->cl_offset) {
 					archive_set_error(&a->archive,
 					    ARCHIVE_ERRNO_MISC,
 					    "Invalid Rockridge CL");
 					goto fail;
 				}
 			}
 			if (file->cl_offset == file->offset ||
 			    parent->rr_moved) {
 				archive_set_error(&a->archive,
 				    ARCHIVE_ERRNO_MISC,
 				    "Invalid Rockridge CL");
 				goto fail;
 			}
 		}
 	}
 
 #if DEBUG
 	/* DEBUGGING: Warn about attributes I don't yet fully support. */
 	if ((flags & ~0x02) != 0) {
 		fprintf(stderr, "\n ** Unrecognized flag: ");
 		dump_isodirrec(stderr, isodirrec);
 		fprintf(stderr, "\n");
 	} else if (toi(isodirrec + DR_volume_sequence_number_offset, 2) != 1) {
 		fprintf(stderr, "\n ** Unrecognized sequence number: ");
 		dump_isodirrec(stderr, isodirrec);
 		fprintf(stderr, "\n");
 	} else if (*(isodirrec + DR_file_unit_size_offset) != 0) {
 		fprintf(stderr, "\n ** Unexpected file unit size: ");
 		dump_isodirrec(stderr, isodirrec);
 		fprintf(stderr, "\n");
 	} else if (*(isodirrec + DR_interleave_offset) != 0) {
 		fprintf(stderr, "\n ** Unexpected interleave: ");
 		dump_isodirrec(stderr, isodirrec);
 		fprintf(stderr, "\n");
 	} else if (*(isodirrec + DR_ext_attr_length_offset) != 0) {
 		fprintf(stderr, "\n ** Unexpected extended attribute length: ");
 		dump_isodirrec(stderr, isodirrec);
 		fprintf(stderr, "\n");
 	}
 #endif
 	register_file(iso9660, file);
 	return (file);
 fail:
 	archive_string_free(&file->name);
 	free(file);
 	return (NULL);
 }
 
 static int
 parse_rockridge(struct archive_read *a, struct file_info *file,
     const unsigned char *p, const unsigned char *end)
 {
 	struct iso9660 *iso9660;
 	int entry_seen = 0;
 
 	iso9660 = (struct iso9660 *)(a->format->data);
 
 	while (p + 4 <= end  /* Enough space for another entry. */
 	    && p[0] >= 'A' && p[0] <= 'Z' /* Sanity-check 1st char of name. */
 	    && p[1] >= 'A' && p[1] <= 'Z' /* Sanity-check 2nd char of name. */
 	    && p[2] >= 4 /* Sanity-check length. */
 	    && p + p[2] <= end) { /* Sanity-check length. */
 		const unsigned char *data = p + 4;
 		int data_length = p[2] - 4;
 		int version = p[3];
 
 		switch(p[0]) {
 		case 'C':
 			if (p[1] == 'E') {
 				if (version == 1 && data_length == 24) {
 					/*
 					 * CE extension comprises:
 					 *   8 byte sector containing extension
 					 *   8 byte offset w/in above sector
 					 *   8 byte length of continuation
 					 */
 					int32_t location =
 					    archive_le32dec(data);
 					file->ce_offset =
 					    archive_le32dec(data+8);
 					file->ce_size =
 					    archive_le32dec(data+16);
 					if (register_CE(a, location, file)
 					    != ARCHIVE_OK)
 						return (ARCHIVE_FATAL);
 				}
 			}
 			else if (p[1] == 'L') {
 				if (version == 1 && data_length == 8) {
 					file->cl_offset = (uint64_t)
 					    iso9660->logical_block_size *
 					    (uint64_t)archive_le32dec(data);
 					iso9660->seenRockridge = 1;
 				}
 			}
 			break;
 		case 'N':
 			if (p[1] == 'M') {
 				if (version == 1) {
 					parse_rockridge_NM1(file,
 					    data, data_length);
 					iso9660->seenRockridge = 1;
 				}
 			}
 			break;
 		case 'P':
 			/*
 			 * PD extension is padding;
 			 * contents are always ignored.
 			 *
 			 * PL extension won't appear;
 			 * contents are always ignored.
 			 */
 			if (p[1] == 'N') {
 				if (version == 1 && data_length == 16) {
 					file->rdev = toi(data,4);
 					file->rdev <<= 32;
 					file->rdev |= toi(data + 8, 4);
 					iso9660->seenRockridge = 1;
 				}
 			}
 			else if (p[1] == 'X') {
 				/*
 				 * PX extension comprises:
 				 *   8 bytes for mode,
 				 *   8 bytes for nlinks,
 				 *   8 bytes for uid,
 				 *   8 bytes for gid,
 				 *   8 bytes for inode.
 				 */
 				if (version == 1) {
 					if (data_length >= 8)
 						file->mode
 						    = toi(data, 4);
 					if (data_length >= 16)
 						file->nlinks
 						    = toi(data + 8, 4);
 					if (data_length >= 24)
 						file->uid
 						    = toi(data + 16, 4);
 					if (data_length >= 32)
 						file->gid
 						    = toi(data + 24, 4);
 					if (data_length >= 40)
 						file->number
 						    = toi(data + 32, 4);
 					iso9660->seenRockridge = 1;
 				}
 			}
 			break;
 		case 'R':
 			if (p[1] == 'E' && version == 1) {
 				file->re = 1;
 				iso9660->seenRockridge = 1;
 			}
 			else if (p[1] == 'R' && version == 1) {
 				/*
 				 * RR extension comprises:
 				 *    one byte flag value
 				 * This extension is obsolete,
 				 * so contents are always ignored.
 				 */
 			}
 			break;
 		case 'S':
 			if (p[1] == 'L') {
 				if (version == 1) {
 					parse_rockridge_SL1(file,
 					    data, data_length);
 					iso9660->seenRockridge = 1;
 				}
 			}
 			else if (p[1] == 'T'
 			    && data_length == 0 && version == 1) {
 				/*
 				 * ST extension marks end of this
 				 * block of SUSP entries.
 				 *
 				 * It allows SUSP to coexist with
 				 * non-SUSP uses of the System
 				 * Use Area by placing non-SUSP data
 				 * after SUSP data.
 				 */
 				iso9660->seenSUSP = 0;
 				iso9660->seenRockridge = 0;
 				return (ARCHIVE_OK);
 			}
 			break;
 		case 'T':
 			if (p[1] == 'F') {
 				if (version == 1) {
 					parse_rockridge_TF1(file,
 					    data, data_length);
 					iso9660->seenRockridge = 1;
 				}
 			}
 			break;
 		case 'Z':
 			if (p[1] == 'F') {
 				if (version == 1)
 					parse_rockridge_ZF1(file,
 					    data, data_length);
 			}
 			break;
 		default:
 			break;
 		}
 
 		p += p[2];
 		entry_seen = 1;
 	}
 
 	if (entry_seen)
 		return (ARCHIVE_OK);
 	else {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
 				  "Tried to parse Rockridge extensions, but none found");
 		return (ARCHIVE_WARN);
 	}
 }
 
 static int
 register_CE(struct archive_read *a, int32_t location,
     struct file_info *file)
 {
 	struct iso9660 *iso9660;
 	struct read_ce_queue *heap;
 	struct read_ce_req *p;
 	uint64_t offset, parent_offset;
 	int hole, parent;
 
 	iso9660 = (struct iso9660 *)(a->format->data);
 	offset = ((uint64_t)location) * (uint64_t)iso9660->logical_block_size;
 	if (((file->mode & AE_IFMT) == AE_IFREG &&
 	    offset >= file->offset) ||
 	    offset < iso9660->current_position ||
 	    (((uint64_t)file->ce_offset) + file->ce_size)
 	      > (uint64_t)iso9660->logical_block_size ||
 	    offset + file->ce_offset + file->ce_size
 		  > iso9660->volume_size) {
 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 		    "Invalid parameter in SUSP \"CE\" extension");
 		return (ARCHIVE_FATAL);
 	}
 
 	/* Expand our CE list as necessary. */
 	heap = &(iso9660->read_ce_req);
 	if (heap->cnt >= heap->allocated) {
 		int new_size;
 
 		if (heap->allocated < 16)
 			new_size = 16;
 		else
 			new_size = heap->allocated * 2;
 		/* Overflow might keep us from growing the list. */
 		if (new_size <= heap->allocated) {
 			archive_set_error(&a->archive, ENOMEM, "Out of memory");
 			return (ARCHIVE_FATAL);
 		}
 		p = calloc(new_size, sizeof(p[0]));
 		if (p == NULL) {
 			archive_set_error(&a->archive, ENOMEM, "Out of memory");
 			return (ARCHIVE_FATAL);
 		}
 		if (heap->reqs != NULL) {
 			memcpy(p, heap->reqs, heap->cnt * sizeof(*p));
 			free(heap->reqs);
 		}
 		heap->reqs = p;
 		heap->allocated = new_size;
 	}
 
 	/*
 	 * Start with hole at end, walk it up tree to find insertion point.
 	 */
 	hole = heap->cnt++;
 	while (hole > 0) {
 		parent = (hole - 1)/2;
 		parent_offset = heap->reqs[parent].offset;
 		if (offset >= parent_offset) {
 			heap->reqs[hole].offset = offset;
 			heap->reqs[hole].file = file;
 			return (ARCHIVE_OK);
 		}
 		/* Move parent into hole <==> move hole up tree. */
 		heap->reqs[hole] = heap->reqs[parent];
 		hole = parent;
 	}
 	heap->reqs[0].offset = offset;
 	heap->reqs[0].file = file;
 	return (ARCHIVE_OK);
 }
 
 static void
 next_CE(struct read_ce_queue *heap)
 {
 	uint64_t a_offset, b_offset, c_offset;
 	int a, b, c;
 	struct read_ce_req tmp;
 
 	if (heap->cnt < 1)
 		return;
 
 	/*
 	 * Move the last item in the heap to the root of the tree
 	 */
 	heap->reqs[0] = heap->reqs[--(heap->cnt)];
 
 	/*
 	 * Rebalance the heap.
 	 */
 	a = 0; /* Starting element and its offset */
 	a_offset = heap->reqs[a].offset;
 	for (;;) {
 		b = a + a + 1; /* First child */
 		if (b >= heap->cnt)
 			return;
 		b_offset = heap->reqs[b].offset;
 		c = b + 1; /* Use second child if it is smaller. */
 		if (c < heap->cnt) {
 			c_offset = heap->reqs[c].offset;
 			if (c_offset < b_offset) {
 				b = c;
 				b_offset = c_offset;
 			}
 		}
 		if (a_offset <= b_offset)
 			return;
 		tmp = heap->reqs[a];
 		heap->reqs[a] = heap->reqs[b];
 		heap->reqs[b] = tmp;
 		a = b;
 	}
 }
 
 
 static int
 read_CE(struct archive_read *a, struct iso9660 *iso9660)
 {
 	struct read_ce_queue *heap;
 	const unsigned char *b, *p, *end;
 	struct file_info *file;
 	size_t step;
 	int r;
 
 	/* Read data which RRIP "CE" extension points. */
 	heap = &(iso9660->read_ce_req);
 	step = iso9660->logical_block_size;
 	while (heap->cnt &&
 	    heap->reqs[0].offset == iso9660->current_position) {
 		b = __archive_read_ahead(a, step, NULL);
 		if (b == NULL) {
 			archive_set_error(&a->archive,
 			    ARCHIVE_ERRNO_MISC,
 			    "Failed to read full block when scanning "
 			    "ISO9660 directory list");
 			return (ARCHIVE_FATAL);
 		}
 		do {
 			file = heap->reqs[0].file;
 			if (file->ce_offset + file->ce_size > step) {
 				archive_set_error(&a->archive,
 				    ARCHIVE_ERRNO_FILE_FORMAT,
 				    "Malformed CE information");
 				return (ARCHIVE_FATAL);
 			}
 			p = b + file->ce_offset;
 			end = p + file->ce_size;
 			next_CE(heap);
 			r = parse_rockridge(a, file, p, end);
 			if (r != ARCHIVE_OK)
 				return (ARCHIVE_FATAL);
 		} while (heap->cnt &&
 		    heap->reqs[0].offset == iso9660->current_position);
 		/* NOTE: Do not move this consume's code to front of
 		 * do-while loop. Registration of nested CE extension
 		 * might cause error because of current position. */
 		__archive_read_consume(a, step);
 		iso9660->current_position += step;
 	}
 	return (ARCHIVE_OK);
 }
 
 static void
 parse_rockridge_NM1(struct file_info *file,
 		    const unsigned char *data, int data_length)
 {
 	if (!file->name_continues)
 		archive_string_empty(&file->name);
 	file->name_continues = 0;
 	if (data_length < 1)
 		return;
 	/*
 	 * NM version 1 extension comprises:
 	 *   1 byte flag, value is one of:
 	 *     = 0: remainder is name
 	 *     = 1: remainder is name, next NM entry continues name
 	 *     = 2: "."
 	 *     = 4: ".."
 	 *     = 32: Implementation specific
 	 *     All other values are reserved.
 	 */
 	switch(data[0]) {
 	case 0:
 		if (data_length < 2)
 			return;
 		archive_strncat(&file->name,
 		    (const char *)data + 1, data_length - 1);
 		break;
 	case 1:
 		if (data_length < 2)
 			return;
 		archive_strncat(&file->name,
 		    (const char *)data + 1, data_length - 1);
 		file->name_continues = 1;
 		break;
 	case 2:
 		archive_strcat(&file->name, ".");
 		break;
 	case 4:
 		archive_strcat(&file->name, "..");
 		break;
 	default:
 		return;
 	}
 
 }
 
 static void
 parse_rockridge_TF1(struct file_info *file, const unsigned char *data,
     int data_length)
 {
 	char flag;
 	/*
 	 * TF extension comprises:
 	 *   one byte flag
 	 *   create time (optional)
 	 *   modify time (optional)
 	 *   access time (optional)
 	 *   attribute time (optional)
 	 *  Time format and presence of fields
 	 *  is controlled by flag bits.
 	 */
 	if (data_length < 1)
 		return;
 	flag = data[0];
 	++data;
 	--data_length;
 	if (flag & 0x80) {
 		/* Use 17-byte time format. */
 		if ((flag & 1) && data_length >= 17) {
 			/* Create time. */
 			file->birthtime_is_set = 1;
 			file->birthtime = isodate17(data);
 			data += 17;
 			data_length -= 17;
 		}
 		if ((flag & 2) && data_length >= 17) {
 			/* Modify time. */
 			file->mtime = isodate17(data);
 			data += 17;
 			data_length -= 17;
 		}
 		if ((flag & 4) && data_length >= 17) {
 			/* Access time. */
 			file->atime = isodate17(data);
 			data += 17;
 			data_length -= 17;
 		}
 		if ((flag & 8) && data_length >= 17) {
 			/* Attribute change time. */
 			file->ctime = isodate17(data);
 		}
 	} else {
 		/* Use 7-byte time format. */
 		if ((flag & 1) && data_length >= 7) {
 			/* Create time. */
 			file->birthtime_is_set = 1;
 			file->birthtime = isodate7(data);
 			data += 7;
 			data_length -= 7;
 		}
 		if ((flag & 2) && data_length >= 7) {
 			/* Modify time. */
 			file->mtime = isodate7(data);
 			data += 7;
 			data_length -= 7;
 		}
 		if ((flag & 4) && data_length >= 7) {
 			/* Access time. */
 			file->atime = isodate7(data);
 			data += 7;
 			data_length -= 7;
 		}
 		if ((flag & 8) && data_length >= 7) {
 			/* Attribute change time. */
 			file->ctime = isodate7(data);
 		}
 	}
 }
 
 static void
 parse_rockridge_SL1(struct file_info *file, const unsigned char *data,
     int data_length)
 {
 	const char *separator = "";
 
 	if (!file->symlink_continues || file->symlink.length < 1)
 		archive_string_empty(&file->symlink);
 	file->symlink_continues = 0;
 
 	/*
 	 * Defined flag values:
 	 *  0: This is the last SL record for this symbolic link
 	 *  1: this symbolic link field continues in next SL entry
 	 *  All other values are reserved.
 	 */
 	if (data_length < 1)
 		return;
 	switch(*data) {
 	case 0:
 		break;
 	case 1:
 		file->symlink_continues = 1;
 		break;
 	default:
 		return;
 	}
 	++data;  /* Skip flag byte. */
 	--data_length;
 
 	/*
 	 * SL extension body stores "components".
 	 * Basically, this is a complicated way of storing
 	 * a POSIX path.  It also interferes with using
 	 * symlinks for storing non-path data. <sigh>
 	 *
 	 * Each component is 2 bytes (flag and length)
 	 * possibly followed by name data.
 	 */
 	while (data_length >= 2) {
 		unsigned char flag = *data++;
 		unsigned char nlen = *data++;
 		data_length -= 2;
 
 		archive_strcat(&file->symlink, separator);
 		separator = "/";
 
 		switch(flag) {
 		case 0: /* Usual case, this is text. */
 			if (data_length < nlen)
 				return;
 			archive_strncat(&file->symlink,
 			    (const char *)data, nlen);
 			break;
 		case 0x01: /* Text continues in next component. */
 			if (data_length < nlen)
 				return;
 			archive_strncat(&file->symlink,
 			    (const char *)data, nlen);
 			separator = "";
 			break;
 		case 0x02: /* Current dir. */
 			archive_strcat(&file->symlink, ".");
 			break;
 		case 0x04: /* Parent dir. */
 			archive_strcat(&file->symlink, "..");
 			break;
 		case 0x08: /* Root of filesystem. */
 			archive_strcat(&file->symlink, "/");
 			separator = "";
 			break;
 		case 0x10: /* Undefined (historically "volume root" */
 			archive_string_empty(&file->symlink);
 			archive_strcat(&file->symlink, "ROOT");
 			break;
 		case 0x20: /* Undefined (historically "hostname") */
 			archive_strcat(&file->symlink, "hostname");
 			break;
 		default:
 			/* TODO: issue a warning ? */
 			return;
 		}
 		data += nlen;
 		data_length -= nlen;
 	}
 }
 
 static void
 parse_rockridge_ZF1(struct file_info *file, const unsigned char *data,
     int data_length)
 {
 
 	if (data[0] == 0x70 && data[1] == 0x7a && data_length == 12) {
 		/* paged zlib */
 		file->pz = 1;
 		file->pz_log2_bs = data[3];
 		file->pz_uncompressed_size = archive_le32dec(&data[4]);
 	}
 }
 
 static void
 register_file(struct iso9660 *iso9660, struct file_info *file)
 {
 
 	file->use_next = iso9660->use_files;
 	iso9660->use_files = file;
 }
 
 static void
 release_files(struct iso9660 *iso9660)
 {
 	struct content *con, *connext;
 	struct file_info *file;
 
 	file = iso9660->use_files;
 	while (file != NULL) {
 		struct file_info *next = file->use_next;
 
 		archive_string_free(&file->name);
 		archive_string_free(&file->symlink);
 		free(file->utf16be_name);
 		con = file->contents.first;
 		while (con != NULL) {
 			connext = con->next;
 			free(con);
 			con = connext;
 		}
 		free(file);
 		file = next;
 	}
 }
 
 static int
 next_entry_seek(struct archive_read *a, struct iso9660 *iso9660,
     struct file_info **pfile)
 {
 	struct file_info *file;
 	int r;
 
 	r = next_cache_entry(a, iso9660, pfile);
 	if (r != ARCHIVE_OK)
 		return (r);
 	file = *pfile;
 
 	/* Don't waste time seeking for zero-length bodies. */
 	if (file->size == 0)
 		file->offset = iso9660->current_position;
 
 	/* flush any remaining bytes from the last round to ensure
 	 * we're positioned */
 	if (iso9660->entry_bytes_unconsumed) {
 		__archive_read_consume(a, iso9660->entry_bytes_unconsumed);
 		iso9660->entry_bytes_unconsumed = 0;
 	}
 
 	/* Seek forward to the start of the entry. */
 	if (iso9660->current_position < file->offset) {
 		int64_t step;
 
 		step = file->offset - iso9660->current_position;
 		step = __archive_read_consume(a, step);
 		if (step < 0)
 			return ((int)step);
 		iso9660->current_position = file->offset;
 	}
 
 	/* We found body of file; handle it now. */
 	return (ARCHIVE_OK);
 }
 
 static int
 next_cache_entry(struct archive_read *a, struct iso9660 *iso9660,
     struct file_info **pfile)
 {
 	struct file_info *file;
 	struct {
 		struct file_info	*first;
 		struct file_info	**last;
 	}	empty_files;
 	int64_t number;
 	int count;
 
 	file = cache_get_entry(iso9660);
 	if (file != NULL) {
 		*pfile = file;
 		return (ARCHIVE_OK);
 	}
 
 	for (;;) {
 		struct file_info *re, *d;
 
 		*pfile = file = next_entry(iso9660);
 		if (file == NULL) {
 			/*
 			 * If directory entries all which are descendant of
 			 * rr_moved are still remaining, expose their.
 			 */
 			if (iso9660->re_files.first != NULL && 
 			    iso9660->rr_moved != NULL &&
 			    iso9660->rr_moved->rr_moved_has_re_only)
 				/* Expose "rr_moved" entry. */
 				cache_add_entry(iso9660, iso9660->rr_moved);
 			while ((re = re_get_entry(iso9660)) != NULL) {
 				/* Expose its descendant dirs. */
 				while ((d = rede_get_entry(re)) != NULL)
 					cache_add_entry(iso9660, d);
 			}
 			if (iso9660->cache_files.first != NULL)
 				return (next_cache_entry(a, iso9660, pfile));
 			return (ARCHIVE_EOF);
 		}
 
 		if (file->cl_offset) {
 			struct file_info *first_re = NULL;
 			int nexted_re = 0;
 
 			/*
 			 * Find "RE" dir for the current file, which
 			 * has "CL" flag.
 			 */
 			while ((re = re_get_entry(iso9660))
 			    != first_re) {
 				if (first_re == NULL)
 					first_re = re;
 				if (re->offset == file->cl_offset) {
 					re->parent->subdirs--;
 					re->parent = file->parent;
 					re->re = 0;
 					if (re->parent->re_descendant) {
 						nexted_re = 1;
 						re->re_descendant = 1;
 						if (rede_add_entry(re) < 0)
 							goto fatal_rr;
 						/* Move a list of descendants
 						 * to a new ancestor. */
 						while ((d = rede_get_entry(
 						    re)) != NULL)
 							if (rede_add_entry(d)
 							    < 0)
 								goto fatal_rr;
 						break;
 					}
 					/* Replace the current file
 					 * with "RE" dir */
 					*pfile = file = re;
 					/* Expose its descendant */
 					while ((d = rede_get_entry(
 					    file)) != NULL)
 						cache_add_entry(
 						    iso9660, d);
 					break;
 				} else
 					re_add_entry(iso9660, re);
 			}
 			if (nexted_re) {
 				/*
 				 * Do not expose this at this time
 				 * because we have not gotten its full-path
 				 * name yet.
 				 */
 				continue;
 			}
 		} else if ((file->mode & AE_IFMT) == AE_IFDIR) {
 			int r;
 
 			/* Read file entries in this dir. */
 			r = read_children(a, file);
 			if (r != ARCHIVE_OK)
 				return (r);
 
 			/*
 			 * Handle a special dir of Rockridge extensions,
 			 * "rr_moved".
 			 */
 			if (file->rr_moved) {
 				/*
 				 * If this has only the subdirectories which
 				 * have "RE" flags, do not expose at this time.
 				 */
 				if (file->rr_moved_has_re_only)
 					continue;
 				/* Otherwise expose "rr_moved" entry. */
 			} else if (file->re) {
 				/*
 				 * Do not expose this at this time
 				 * because we have not gotten its full-path
 				 * name yet.
 				 */
 				re_add_entry(iso9660, file);
 				continue;
 			} else if (file->re_descendant) {
 				/*
 				 * If the top level "RE" entry of this entry
 				 * is not exposed, we, accordingly, should not
 				 * expose this entry at this time because
 				 * we cannot make its proper full-path name.
 				 */
 				if (rede_add_entry(file) == 0)
 					continue;
 				/* Otherwise we can expose this entry because
 				 * it seems its top level "RE" has already been
 				 * exposed. */
 			}
 		}
 		break;
 	}
 
 	if ((file->mode & AE_IFMT) != AE_IFREG || file->number == -1)
 		return (ARCHIVE_OK);
 
 	count = 0;
 	number = file->number;
 	iso9660->cache_files.first = NULL;
 	iso9660->cache_files.last = &(iso9660->cache_files.first);
 	empty_files.first = NULL;
 	empty_files.last = &empty_files.first;
 	/* Collect files which has the same file serial number.
 	 * Peek pending_files so that file which number is different
 	 * is not put back. */
 	while (iso9660->pending_files.used > 0 &&
 	    (iso9660->pending_files.files[0]->number == -1 ||
 	     iso9660->pending_files.files[0]->number == number)) {
 		if (file->number == -1) {
 			/* This file has the same offset
 			 * but it's wrong offset which empty files
 			 * and symlink files have.
 			 * NOTE: This wrong offset was recorded by
 			 * old mkisofs utility. If ISO images is
 			 * created by latest mkisofs, this does not
 			 * happen.
 			 */
 			file->next = NULL;
 			*empty_files.last = file;
 			empty_files.last = &(file->next);
 		} else {
 			count++;
 			cache_add_entry(iso9660, file);
 		}
 		file = next_entry(iso9660);
 	}
 
 	if (count == 0) {
 		*pfile = file;
 		return ((file == NULL)?ARCHIVE_EOF:ARCHIVE_OK);
 	}
 	if (file->number == -1) {
 		file->next = NULL;
 		*empty_files.last = file;
 		empty_files.last = &(file->next);
 	} else {
 		count++;
 		cache_add_entry(iso9660, file);
 	}
 
 	if (count > 1) {
 		/* The count is the same as number of hardlink,
 		 * so much so that each nlinks of files in cache_file
 		 * is overwritten by value of the count.
 		 */
 		for (file = iso9660->cache_files.first;
 		    file != NULL; file = file->next)
 			file->nlinks = count;
 	}
 	/* If there are empty files, that files are added
 	 * to the tail of the cache_files. */
 	if (empty_files.first != NULL) {
 		*iso9660->cache_files.last = empty_files.first;
 		iso9660->cache_files.last = empty_files.last;
 	}
 	*pfile = cache_get_entry(iso9660);
 	return ((*pfile == NULL)?ARCHIVE_EOF:ARCHIVE_OK);
 
 fatal_rr:
 	archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
 	    "Failed to connect 'CL' pointer to 'RE' rr_moved pointer of "
 	    "Rockridge extensions: current position = %jd, CL offset = %jd",
 	    (intmax_t)iso9660->current_position, (intmax_t)file->cl_offset);
 	return (ARCHIVE_FATAL);
 }
 
 static inline void
 re_add_entry(struct iso9660 *iso9660, struct file_info *file)
 {
 	file->re_next = NULL;
 	*iso9660->re_files.last = file;
 	iso9660->re_files.last = &(file->re_next);
 }
 
 static inline struct file_info *
 re_get_entry(struct iso9660 *iso9660)
 {
 	struct file_info *file;
 
 	if ((file = iso9660->re_files.first) != NULL) {
 		iso9660->re_files.first = file->re_next;
 		if (iso9660->re_files.first == NULL)
 			iso9660->re_files.last =
 			    &(iso9660->re_files.first);
 	}
 	return (file);
 }
 
 static inline int
 rede_add_entry(struct file_info *file)
 {
 	struct file_info *re;
 
 	/*
 	 * Find "RE" entry.
 	 */
 	re = file->parent;
 	while (re != NULL && !re->re)
 		re = re->parent;
 	if (re == NULL)
 		return (-1);
 
 	file->re_next = NULL;
 	*re->rede_files.last = file;
 	re->rede_files.last = &(file->re_next);
 	return (0);
 }
 
 static inline struct file_info *
 rede_get_entry(struct file_info *re)
 {
 	struct file_info *file;
 
 	if ((file = re->rede_files.first) != NULL) {
 		re->rede_files.first = file->re_next;
 		if (re->rede_files.first == NULL)
 			re->rede_files.last =
 			    &(re->rede_files.first);
 	}
 	return (file);
 }
 
 static inline void
 cache_add_entry(struct iso9660 *iso9660, struct file_info *file)
 {
 	file->next = NULL;
 	*iso9660->cache_files.last = file;
 	iso9660->cache_files.last = &(file->next);
 }
 
 static inline struct file_info *
 cache_get_entry(struct iso9660 *iso9660)
 {
 	struct file_info *file;
 
 	if ((file = iso9660->cache_files.first) != NULL) {
 		iso9660->cache_files.first = file->next;
 		if (iso9660->cache_files.first == NULL)
 			iso9660->cache_files.last =
 			    &(iso9660->cache_files.first);
 	}
 	return (file);
 }
 
 static int
 heap_add_entry(struct archive_read *a, struct heap_queue *heap,
     struct file_info *file, uint64_t key)
 {
 	uint64_t file_key, parent_key;
 	int hole, parent;
 
 	/* Expand our pending files list as necessary. */
 	if (heap->used >= heap->allocated) {
 		struct file_info **new_pending_files;
 		int new_size = heap->allocated * 2;
 
 		if (heap->allocated < 1024)
 			new_size = 1024;
 		/* Overflow might keep us from growing the list. */
 		if (new_size <= heap->allocated) {
 			archive_set_error(&a->archive,
 			    ENOMEM, "Out of memory");
 			return (ARCHIVE_FATAL);
 		}
 		new_pending_files = (struct file_info **)
 		    malloc(new_size * sizeof(new_pending_files[0]));
 		if (new_pending_files == NULL) {
 			archive_set_error(&a->archive,
 			    ENOMEM, "Out of memory");
 			return (ARCHIVE_FATAL);
 		}
 		if (heap->allocated)
 			memcpy(new_pending_files, heap->files,
 			    heap->allocated * sizeof(new_pending_files[0]));
 		free(heap->files);
 		heap->files = new_pending_files;
 		heap->allocated = new_size;
 	}
 
 	file_key = file->key = key;
 
 	/*
 	 * Start with hole at end, walk it up tree to find insertion point.
 	 */
 	hole = heap->used++;
 	while (hole > 0) {
 		parent = (hole - 1)/2;
 		parent_key = heap->files[parent]->key;
 		if (file_key >= parent_key) {
 			heap->files[hole] = file;
 			return (ARCHIVE_OK);
 		}
 		/* Move parent into hole <==> move hole up tree. */
 		heap->files[hole] = heap->files[parent];
 		hole = parent;
 	}
 	heap->files[0] = file;
 
 	return (ARCHIVE_OK);
 }
 
 static struct file_info *
 heap_get_entry(struct heap_queue *heap)
 {
 	uint64_t a_key, b_key, c_key;
 	int a, b, c;
 	struct file_info *r, *tmp;
 
 	if (heap->used < 1)
 		return (NULL);
 
 	/*
 	 * The first file in the list is the earliest; we'll return this.
 	 */
 	r = heap->files[0];
 
 	/*
 	 * Move the last item in the heap to the root of the tree
 	 */
 	heap->files[0] = heap->files[--(heap->used)];
 
 	/*
 	 * Rebalance the heap.
 	 */
 	a = 0; /* Starting element and its heap key */
 	a_key = heap->files[a]->key;
 	for (;;) {
 		b = a + a + 1; /* First child */
 		if (b >= heap->used)
 			return (r);
 		b_key = heap->files[b]->key;
 		c = b + 1; /* Use second child if it is smaller. */
 		if (c < heap->used) {
 			c_key = heap->files[c]->key;
 			if (c_key < b_key) {
 				b = c;
 				b_key = c_key;
 			}
 		}
 		if (a_key <= b_key)
 			return (r);
 		tmp = heap->files[a];
 		heap->files[a] = heap->files[b];
 		heap->files[b] = tmp;
 		a = b;
 	}
 }
 
 static unsigned int
 toi(const void *p, int n)
 {
 	const unsigned char *v = (const unsigned char *)p;
 	if (n > 1)
 		return v[0] + 256 * toi(v + 1, n - 1);
 	if (n == 1)
 		return v[0];
 	return (0);
 }
 
 static time_t
 isodate7(const unsigned char *v)
 {
 	struct tm tm;
 	int offset;
 	time_t t;
 
 	memset(&tm, 0, sizeof(tm));
 	tm.tm_year = v[0];
 	tm.tm_mon = v[1] - 1;
 	tm.tm_mday = v[2];
 	tm.tm_hour = v[3];
 	tm.tm_min = v[4];
 	tm.tm_sec = v[5];
 	/* v[6] is the signed timezone offset, in 1/4-hour increments. */
 	offset = ((const signed char *)v)[6];
 	if (offset > -48 && offset < 52) {
 		tm.tm_hour -= offset / 4;
 		tm.tm_min -= (offset % 4) * 15;
 	}
 	t = time_from_tm(&tm);
 	if (t == (time_t)-1)
 		return ((time_t)0);
 	return (t);
 }
 
 static time_t
 isodate17(const unsigned char *v)
 {
 	struct tm tm;
 	int offset;
 	time_t t;
 
 	memset(&tm, 0, sizeof(tm));
 	tm.tm_year = (v[0] - '0') * 1000 + (v[1] - '0') * 100
 	    + (v[2] - '0') * 10 + (v[3] - '0')
 	    - 1900;
 	tm.tm_mon = (v[4] - '0') * 10 + (v[5] - '0');
 	tm.tm_mday = (v[6] - '0') * 10 + (v[7] - '0');
 	tm.tm_hour = (v[8] - '0') * 10 + (v[9] - '0');
 	tm.tm_min = (v[10] - '0') * 10 + (v[11] - '0');
 	tm.tm_sec = (v[12] - '0') * 10 + (v[13] - '0');
 	/* v[16] is the signed timezone offset, in 1/4-hour increments. */
 	offset = ((const signed char *)v)[16];
 	if (offset > -48 && offset < 52) {
 		tm.tm_hour -= offset / 4;
 		tm.tm_min -= (offset % 4) * 15;
 	}
 	t = time_from_tm(&tm);
 	if (t == (time_t)-1)
 		return ((time_t)0);
 	return (t);
 }
 
 static time_t
 time_from_tm(struct tm *t)
 {
 #if HAVE_TIMEGM
         /* Use platform timegm() if available. */
         return (timegm(t));
 #elif HAVE__MKGMTIME64
         return (_mkgmtime64(t));
 #else
         /* Else use direct calculation using POSIX assumptions. */
         /* First, fix up tm_yday based on the year/month/day. */
         if (mktime(t) == (time_t)-1)
                 return ((time_t)-1);
         /* Then we can compute timegm() from first principles. */
         return (t->tm_sec
             + t->tm_min * 60
             + t->tm_hour * 3600
             + t->tm_yday * 86400
             + (t->tm_year - 70) * 31536000
             + ((t->tm_year - 69) / 4) * 86400
             - ((t->tm_year - 1) / 100) * 86400
             + ((t->tm_year + 299) / 400) * 86400);
 #endif
 }
 
 static const char *
 build_pathname(struct archive_string *as, struct file_info *file, int depth)
 {
 	// Plain ISO9660 only allows 8 dir levels; if we get
 	// to 1000, then something is very, very wrong.
 	if (depth > 1000) {
 		return NULL;
 	}
 	if (file->parent != NULL && archive_strlen(&file->parent->name) > 0) {
 		if (build_pathname(as, file->parent, depth + 1) == NULL) {
 			return NULL;
 		}
 		archive_strcat(as, "/");
 	}
 	if (archive_strlen(&file->name) == 0)
 		archive_strcat(as, ".");
 	else
 		archive_string_concat(as, &file->name);
 	return (as->s);
 }
 
 static int
 build_pathname_utf16be(unsigned char *p, size_t max, size_t *len,
     struct file_info *file)
 {
 	if (file->parent != NULL && file->parent->utf16be_bytes > 0) {
 		if (build_pathname_utf16be(p, max, len, file->parent) != 0)
 			return (-1);
 		p[*len] = 0;
 		p[*len + 1] = '/';
 		*len += 2;
 	}
 	if (file->utf16be_bytes == 0) {
 		if (*len + 2 > max)
 			return (-1);/* Path is too long! */
 		p[*len] = 0;
 		p[*len + 1] = '.';
 		*len += 2;
 	} else {
 		if (*len + file->utf16be_bytes > max)
 			return (-1);/* Path is too long! */
 		memcpy(p + *len, file->utf16be_name, file->utf16be_bytes);
 		*len += file->utf16be_bytes;
 	}
 	return (0);
 }
 
 #if DEBUG
 static void
 dump_isodirrec(FILE *out, const unsigned char *isodirrec)
 {
 	fprintf(out, " l %d,",
 	    toi(isodirrec + DR_length_offset, DR_length_size));
 	fprintf(out, " a %d,",
 	    toi(isodirrec + DR_ext_attr_length_offset, DR_ext_attr_length_size));
 	fprintf(out, " ext 0x%x,",
 	    toi(isodirrec + DR_extent_offset, DR_extent_size));
 	fprintf(out, " s %d,",
 	    toi(isodirrec + DR_size_offset, DR_extent_size));
 	fprintf(out, " f 0x%x,",
 	    toi(isodirrec + DR_flags_offset, DR_flags_size));
 	fprintf(out, " u %d,",
 	    toi(isodirrec + DR_file_unit_size_offset, DR_file_unit_size_size));
 	fprintf(out, " ilv %d,",
 	    toi(isodirrec + DR_interleave_offset, DR_interleave_size));
 	fprintf(out, " seq %d,",
 	    toi(isodirrec + DR_volume_sequence_number_offset,
 		DR_volume_sequence_number_size));
 	fprintf(out, " nl %d:",
 	    toi(isodirrec + DR_name_len_offset, DR_name_len_size));
 	fprintf(out, " `%.*s'",
 	    toi(isodirrec + DR_name_len_offset, DR_name_len_size),
 		isodirrec + DR_name_offset);
 }
 #endif
diff --git a/contrib/libarchive/libarchive/archive_read_support_format_rar.c b/contrib/libarchive/libarchive/archive_read_support_format_rar.c
index 7a7318522650..f9cbe2a8810d 100644
--- a/contrib/libarchive/libarchive/archive_read_support_format_rar.c
+++ b/contrib/libarchive/libarchive/archive_read_support_format_rar.c
@@ -1,3770 +1,3787 @@
 /*-
 * Copyright (c) 2003-2007 Tim Kientzle
 * Copyright (c) 2011 Andres Mejia
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
 
 #include "archive_platform.h"
 
 #ifdef HAVE_ERRNO_H
 #include <errno.h>
 #endif
 #include <time.h>
 #include <limits.h>
 #ifdef HAVE_ZLIB_H
 #include <zlib.h> /* crc32 */
 #endif
 
 #include "archive.h"
 #ifndef HAVE_ZLIB_H
 #include "archive_crc32.h"
 #endif
 #include "archive_endian.h"
 #include "archive_entry.h"
 #include "archive_entry_locale.h"
 #include "archive_ppmd7_private.h"
 #include "archive_private.h"
 #include "archive_read_private.h"
 
 /* RAR signature, also known as the mark header */
 #define RAR_SIGNATURE "\x52\x61\x72\x21\x1A\x07\x00"
 
 /* Header types */
 #define MARK_HEAD    0x72
 #define MAIN_HEAD    0x73
 #define FILE_HEAD    0x74
 #define COMM_HEAD    0x75
 #define AV_HEAD      0x76
 #define SUB_HEAD     0x77
 #define PROTECT_HEAD 0x78
 #define SIGN_HEAD    0x79
 #define NEWSUB_HEAD  0x7a
 #define ENDARC_HEAD  0x7b
 
 /* Main Header Flags */
 #define MHD_VOLUME       0x0001
 #define MHD_COMMENT      0x0002
 #define MHD_LOCK         0x0004
 #define MHD_SOLID        0x0008
 #define MHD_NEWNUMBERING 0x0010
 #define MHD_AV           0x0020
 #define MHD_PROTECT      0x0040
 #define MHD_PASSWORD     0x0080
 #define MHD_FIRSTVOLUME  0x0100
 #define MHD_ENCRYPTVER   0x0200
 
 /* Flags common to all headers */
 #define HD_MARKDELETION     0x4000
 #define HD_ADD_SIZE_PRESENT 0x8000
 
 /* File Header Flags */
 #define FHD_SPLIT_BEFORE 0x0001
 #define FHD_SPLIT_AFTER  0x0002
 #define FHD_PASSWORD     0x0004
 #define FHD_COMMENT      0x0008
 #define FHD_SOLID        0x0010
 #define FHD_LARGE        0x0100
 #define FHD_UNICODE      0x0200
 #define FHD_SALT         0x0400
 #define FHD_VERSION      0x0800
 #define FHD_EXTTIME      0x1000
 #define FHD_EXTFLAGS     0x2000
 
 /* File dictionary sizes */
 #define DICTIONARY_SIZE_64   0x00
 #define DICTIONARY_SIZE_128  0x20
 #define DICTIONARY_SIZE_256  0x40
 #define DICTIONARY_SIZE_512  0x60
 #define DICTIONARY_SIZE_1024 0x80
 #define DICTIONARY_SIZE_2048 0xA0
 #define DICTIONARY_SIZE_4096 0xC0
 #define FILE_IS_DIRECTORY    0xE0
 #define DICTIONARY_MASK      FILE_IS_DIRECTORY
 
 /* OS Flags */
 #define OS_MSDOS  0
 #define OS_OS2    1
 #define OS_WIN32  2
 #define OS_UNIX   3
 #define OS_MAC_OS 4
 #define OS_BEOS   5
 
 /* Compression Methods */
 #define COMPRESS_METHOD_STORE   0x30
 /* LZSS */
 #define COMPRESS_METHOD_FASTEST 0x31
 #define COMPRESS_METHOD_FAST    0x32
 #define COMPRESS_METHOD_NORMAL  0x33
 /* PPMd Variant H */
 #define COMPRESS_METHOD_GOOD    0x34
 #define COMPRESS_METHOD_BEST    0x35
 
 #define CRC_POLYNOMIAL 0xEDB88320
 
 #define NS_UNIT 10000000
 
 #define DICTIONARY_MAX_SIZE 0x400000
 
 #define MAINCODE_SIZE      299
 #define OFFSETCODE_SIZE    60
 #define LOWOFFSETCODE_SIZE 17
 #define LENGTHCODE_SIZE    28
 #define HUFFMAN_TABLE_SIZE \
   MAINCODE_SIZE + OFFSETCODE_SIZE + LOWOFFSETCODE_SIZE + LENGTHCODE_SIZE
 
 #define MAX_SYMBOL_LENGTH 0xF
 #define MAX_SYMBOLS       20
 
 /* Virtual Machine Properties */
 #define VM_MEMORY_SIZE 0x40000
 #define VM_MEMORY_MASK (VM_MEMORY_SIZE - 1)
 #define PROGRAM_WORK_SIZE 0x3C000
 #define PROGRAM_GLOBAL_SIZE 0x2000
 #define PROGRAM_SYSTEM_GLOBAL_ADDRESS PROGRAM_WORK_SIZE
 #define PROGRAM_SYSTEM_GLOBAL_SIZE 0x40
 #define PROGRAM_USER_GLOBAL_ADDRESS (PROGRAM_SYSTEM_GLOBAL_ADDRESS + PROGRAM_SYSTEM_GLOBAL_SIZE)
 #define PROGRAM_USER_GLOBAL_SIZE (PROGRAM_GLOBAL_SIZE - PROGRAM_SYSTEM_GLOBAL_SIZE)
 
 /*
  * Considering L1,L2 cache miss and a calling of write system-call,
  * the best size of the output buffer(uncompressed buffer) is 128K.
  * If the structure of extracting process is changed, this value
  * might be researched again.
  */
 #define UNP_BUFFER_SIZE   (128 * 1024)
 
 /* Define this here for non-Windows platforms */
 #if !((defined(__WIN32__) || defined(_WIN32) || defined(__WIN32)) && !defined(__CYGWIN__))
 #define FILE_ATTRIBUTE_DIRECTORY 0x10
 #endif
 
 #undef minimum
 #define minimum(a, b)	((a)<(b)?(a):(b))
 
 /* Stack overflow check */
 #define MAX_COMPRESS_DEPTH 1024
 
 /* Fields common to all headers */
 struct rar_header
 {
   char crc[2];
   char type;
   char flags[2];
   char size[2];
 };
 
 /* Fields common to all file headers */
 struct rar_file_header
 {
   char pack_size[4];
   char unp_size[4];
   char host_os;
   char file_crc[4];
   char file_time[4];
   char unp_ver;
   char method;
   char name_size[2];
   char file_attr[4];
 };
 
 struct huffman_tree_node
 {
   int branches[2];
 };
 
 struct huffman_table_entry
 {
   unsigned int length;
   int value;
 };
 
 struct huffman_code
 {
   struct huffman_tree_node *tree;
   int numentries;
   int numallocatedentries;
   int minlength;
   int maxlength;
   int tablesize;
   struct huffman_table_entry *table;
 };
 
 struct lzss
 {
   unsigned char *window;
   int mask;
   int64_t position;
 };
 
 struct data_block_offsets
 {
   int64_t header_size;
   int64_t start_offset;
   int64_t end_offset;
 };
 
 struct rar_program_code
 {
   uint8_t *staticdata;
   uint32_t staticdatalen;
   uint8_t *globalbackup;
   uint32_t globalbackuplen;
   uint64_t fingerprint;
   uint32_t usagecount;
   uint32_t oldfilterlength;
   struct rar_program_code *next;
 };
 
 struct rar_filter
 {
   struct rar_program_code *prog;
   uint32_t initialregisters[8];
   uint8_t *globaldata;
   uint32_t globaldatalen;
   size_t blockstartpos;
   uint32_t blocklength;
   uint32_t filteredblockaddress;
   uint32_t filteredblocklength;
   struct rar_filter *next;
 };
 
 struct memory_bit_reader
 {
   const uint8_t *bytes;
   size_t length;
   size_t offset;
   uint64_t bits;
   int available;
   int at_eof;
 };
 
 struct rar_virtual_machine
 {
   uint32_t registers[8];
   uint8_t memory[VM_MEMORY_SIZE + sizeof(uint32_t)];
 };
 
 struct rar_filters
 {
   struct rar_virtual_machine *vm;
   struct rar_program_code *progs;
   struct rar_filter *stack;
   int64_t filterstart;
   uint32_t lastfilternum;
   int64_t lastend;
   uint8_t *bytes;
   size_t bytes_ready;
 };
 
 struct audio_state
 {
   int8_t weight[5];
   int16_t delta[4];
   int8_t lastdelta;
   int error[11];
   int count;
   uint8_t lastbyte;
 };
 
 struct rar
 {
   /* Entries from main RAR header */
   unsigned main_flags;
   unsigned long file_crc;
   char reserved1[2];
   char reserved2[4];
   char encryptver;
 
   /* File header entries */
   char compression_method;
   unsigned file_flags;
   int64_t packed_size;
   int64_t unp_size;
   time_t mtime;
   long mnsec;
   mode_t mode;
   char *filename;
   char *filename_save;
   size_t filename_save_size;
   size_t filename_allocated;
 
   /* File header optional entries */
   char salt[8];
   time_t atime;
   long ansec;
   time_t ctime;
   long cnsec;
   time_t arctime;
   long arcnsec;
 
   /* Fields to help with tracking decompression of files. */
   int64_t bytes_unconsumed;
   int64_t bytes_remaining;
   int64_t bytes_uncopied;
   int64_t offset;
   int64_t offset_outgoing;
   int64_t offset_seek;
   char valid;
   unsigned int unp_offset;
   unsigned int unp_buffer_size;
   unsigned char *unp_buffer;
   unsigned int dictionary_size;
   char start_new_block;
   char entry_eof;
   unsigned long crc_calculated;
   int found_first_header;
   char has_endarc_header;
   struct data_block_offsets *dbo;
   unsigned int cursor;
   unsigned int nodes;
   char filename_must_match;
 
   /* LZSS members */
   struct huffman_code maincode;
   struct huffman_code offsetcode;
   struct huffman_code lowoffsetcode;
   struct huffman_code lengthcode;
   unsigned char lengthtable[HUFFMAN_TABLE_SIZE];
   struct lzss lzss;
   unsigned int lastlength;
   unsigned int lastoffset;
   unsigned int oldoffset[4];
   unsigned int lastlowoffset;
   unsigned int numlowoffsetrepeats;
   char start_new_table;
 
   /* Filters */
   struct rar_filters filters;
 
   /* PPMd Variant H members */
   char ppmd_valid;
   char ppmd_eod;
   char is_ppmd_block;
   int ppmd_escape;
   CPpmd7 ppmd7_context;
   CPpmd7z_RangeDec range_dec;
   IByteIn bytein;
 
   /*
    * String conversion object.
    */
   int init_default_conversion;
   struct archive_string_conv *sconv_default;
   struct archive_string_conv *opt_sconv;
   struct archive_string_conv *sconv_utf8;
   struct archive_string_conv *sconv_utf16be;
 
   /*
    * Bit stream reader.
    */
   struct rar_br {
 #define CACHE_TYPE	uint64_t
 #define CACHE_BITS	(8 * sizeof(CACHE_TYPE))
     /* Cache buffer. */
     CACHE_TYPE		 cache_buffer;
     /* Indicates how many bits avail in cache_buffer. */
     int			 cache_avail;
     ssize_t		 avail_in;
     const unsigned char *next_in;
   } br;
 
   /*
    * Custom field to denote that this archive contains encrypted entries
    */
   int has_encrypted_entries;
 };
 
 static int archive_read_support_format_rar_capabilities(struct archive_read *);
 static int archive_read_format_rar_has_encrypted_entries(struct archive_read *);
 static int archive_read_format_rar_bid(struct archive_read *, int);
 static int archive_read_format_rar_options(struct archive_read *,
     const char *, const char *);
 static int archive_read_format_rar_read_header(struct archive_read *,
     struct archive_entry *);
 static int archive_read_format_rar_read_data(struct archive_read *,
     const void **, size_t *, int64_t *);
 static int archive_read_format_rar_read_data_skip(struct archive_read *a);
 static int64_t archive_read_format_rar_seek_data(struct archive_read *, int64_t,
     int);
 static int archive_read_format_rar_cleanup(struct archive_read *);
 
 /* Support functions */
 static int read_header(struct archive_read *, struct archive_entry *, char);
 static time_t get_time(int);
 static int read_exttime(const char *, struct rar *, const char *);
 static int read_symlink_stored(struct archive_read *, struct archive_entry *,
                                struct archive_string_conv *);
 static int read_data_stored(struct archive_read *, const void **, size_t *,
                             int64_t *);
 static int read_data_compressed(struct archive_read *, const void **, size_t *,
                                 int64_t *, size_t);
 static int rar_br_preparation(struct archive_read *, struct rar_br *);
 static int parse_codes(struct archive_read *);
 static void free_codes(struct archive_read *);
 static int read_next_symbol(struct archive_read *, struct huffman_code *);
 static int create_code(struct archive_read *, struct huffman_code *,
                        unsigned char *, int, char);
 static int add_value(struct archive_read *, struct huffman_code *, int, int,
                      int);
 static int new_node(struct huffman_code *);
 static int make_table(struct archive_read *, struct huffman_code *);
 static int make_table_recurse(struct archive_read *, struct huffman_code *, int,
                               struct huffman_table_entry *, int, int);
 static int expand(struct archive_read *, int64_t *);
 static int copy_from_lzss_window_to_unp(struct archive_read *, const void **,
                                         int64_t, int);
 static const void *rar_read_ahead(struct archive_read *, size_t, ssize_t *);
 static int parse_filter(struct archive_read *, const uint8_t *, uint16_t,
                         uint8_t);
 static int run_filters(struct archive_read *);
 static void clear_filters(struct rar_filters *);
 static struct rar_filter *create_filter(struct rar_program_code *,
                                         const uint8_t *, uint32_t,
                                         uint32_t[8], size_t, uint32_t);
 static void delete_filter(struct rar_filter *filter);
 static struct rar_program_code *compile_program(const uint8_t *, size_t);
 static void delete_program_code(struct rar_program_code *prog);
 static uint32_t membr_next_rarvm_number(struct memory_bit_reader *br);
 static inline uint32_t membr_bits(struct memory_bit_reader *br, int bits);
 static int membr_fill(struct memory_bit_reader *br, int bits);
 static int read_filter(struct archive_read *, int64_t *);
 static int rar_decode_byte(struct archive_read*, uint8_t *);
 static int execute_filter(struct archive_read*, struct rar_filter *,
                           struct rar_virtual_machine *, size_t);
 static int copy_from_lzss_window(struct archive_read *, void *, int64_t, int);
 static inline void vm_write_32(struct rar_virtual_machine*, size_t, uint32_t);
 static inline uint32_t vm_read_32(struct rar_virtual_machine*, size_t);
 
 /*
  * Bit stream reader.
  */
 /* Check that the cache buffer has enough bits. */
 #define rar_br_has(br, n) ((br)->cache_avail >= n)
 /* Get compressed data by bit. */
 #define rar_br_bits(br, n)        \
   (((uint32_t)((br)->cache_buffer >>    \
     ((br)->cache_avail - (n)))) & cache_masks[n])
 #define rar_br_bits_forced(br, n)     \
   (((uint32_t)((br)->cache_buffer <<    \
     ((n) - (br)->cache_avail))) & cache_masks[n])
 /* Read ahead to make sure the cache buffer has enough compressed data we
  * will use.
  *  True  : completed, there is enough data in the cache buffer.
  *  False : there is no data in the stream. */
 #define rar_br_read_ahead(a, br, n) \
   ((rar_br_has(br, (n)) || rar_br_fillup(a, br)) || rar_br_has(br, (n)))
 /* Notify how many bits we consumed. */
 #define rar_br_consume(br, n) ((br)->cache_avail -= (n))
 #define rar_br_consume_unalined_bits(br) ((br)->cache_avail &= ~7)
 
 static const uint32_t cache_masks[] = {
   0x00000000, 0x00000001, 0x00000003, 0x00000007,
   0x0000000F, 0x0000001F, 0x0000003F, 0x0000007F,
   0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF,
   0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF,
   0x0000FFFF, 0x0001FFFF, 0x0003FFFF, 0x0007FFFF,
   0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF,
   0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF,
   0x0FFFFFFF, 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF,
   0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF
 };
 
 /*
  * Shift away used bits in the cache data and fill it up with following bits.
  * Call this when cache buffer does not have enough bits you need.
  *
  * Returns 1 if the cache buffer is full.
  * Returns 0 if the cache buffer is not full; input buffer is empty.
  */
 static int
 rar_br_fillup(struct archive_read *a, struct rar_br *br)
 {
   struct rar *rar = (struct rar *)(a->format->data);
   int n = CACHE_BITS - br->cache_avail;
 
   for (;;) {
     switch (n >> 3) {
     case 8:
       if (br->avail_in >= 8) {
         br->cache_buffer =
             ((uint64_t)br->next_in[0]) << 56 |
             ((uint64_t)br->next_in[1]) << 48 |
             ((uint64_t)br->next_in[2]) << 40 |
             ((uint64_t)br->next_in[3]) << 32 |
             ((uint32_t)br->next_in[4]) << 24 |
             ((uint32_t)br->next_in[5]) << 16 |
             ((uint32_t)br->next_in[6]) << 8 |
              (uint32_t)br->next_in[7];
         br->next_in += 8;
         br->avail_in -= 8;
         br->cache_avail += 8 * 8;
         rar->bytes_unconsumed += 8;
         rar->bytes_remaining -= 8;
         return (1);
       }
       break;
     case 7:
       if (br->avail_in >= 7) {
         br->cache_buffer =
            (br->cache_buffer << 56) |
             ((uint64_t)br->next_in[0]) << 48 |
             ((uint64_t)br->next_in[1]) << 40 |
             ((uint64_t)br->next_in[2]) << 32 |
             ((uint32_t)br->next_in[3]) << 24 |
             ((uint32_t)br->next_in[4]) << 16 |
             ((uint32_t)br->next_in[5]) << 8 |
              (uint32_t)br->next_in[6];
         br->next_in += 7;
         br->avail_in -= 7;
         br->cache_avail += 7 * 8;
         rar->bytes_unconsumed += 7;
         rar->bytes_remaining -= 7;
         return (1);
       }
       break;
     case 6:
       if (br->avail_in >= 6) {
         br->cache_buffer =
            (br->cache_buffer << 48) |
             ((uint64_t)br->next_in[0]) << 40 |
             ((uint64_t)br->next_in[1]) << 32 |
             ((uint32_t)br->next_in[2]) << 24 |
             ((uint32_t)br->next_in[3]) << 16 |
             ((uint32_t)br->next_in[4]) << 8 |
              (uint32_t)br->next_in[5];
         br->next_in += 6;
         br->avail_in -= 6;
         br->cache_avail += 6 * 8;
         rar->bytes_unconsumed += 6;
         rar->bytes_remaining -= 6;
         return (1);
       }
       break;
     case 0:
       /* We have enough compressed data in
        * the cache buffer.*/
       return (1);
     default:
       break;
     }
     if (br->avail_in <= 0) {
 
       if (rar->bytes_unconsumed > 0) {
         /* Consume as much as the decompressor
          * actually used. */
         __archive_read_consume(a, rar->bytes_unconsumed);
         rar->bytes_unconsumed = 0;
       }
       br->next_in = rar_read_ahead(a, 1, &(br->avail_in));
       if (br->next_in == NULL)
         return (0);
       if (br->avail_in == 0)
         return (0);
     }
     br->cache_buffer =
        (br->cache_buffer << 8) | *br->next_in++;
     br->avail_in--;
     br->cache_avail += 8;
     n -= 8;
     rar->bytes_unconsumed++;
     rar->bytes_remaining--;
   }
 }
 
 static int
 rar_br_preparation(struct archive_read *a, struct rar_br *br)
 {
   struct rar *rar = (struct rar *)(a->format->data);
 
   if (rar->bytes_remaining > 0) {
     br->next_in = rar_read_ahead(a, 1, &(br->avail_in));
     if (br->next_in == NULL) {
       archive_set_error(&a->archive,
           ARCHIVE_ERRNO_FILE_FORMAT,
           "Truncated RAR file data");
       return (ARCHIVE_FATAL);
     }
     if (br->cache_avail == 0)
       (void)rar_br_fillup(a, br);
   }
   return (ARCHIVE_OK);
 }
 
 /* Find last bit set */
 static inline int
 rar_fls(unsigned int word)
 {
   word |= (word >>  1);
   word |= (word >>  2);
   word |= (word >>  4);
   word |= (word >>  8);
   word |= (word >> 16);
   return word - (word >> 1);
 }
 
 /* LZSS functions */
 static inline int64_t
 lzss_position(struct lzss *lzss)
 {
   return lzss->position;
 }
 
 static inline int
 lzss_mask(struct lzss *lzss)
 {
   return lzss->mask;
 }
 
 static inline int
 lzss_size(struct lzss *lzss)
 {
   return lzss->mask + 1;
 }
 
 static inline int
 lzss_offset_for_position(struct lzss *lzss, int64_t pos)
 {
   return (int)(pos & lzss->mask);
 }
 
 static inline unsigned char *
 lzss_pointer_for_position(struct lzss *lzss, int64_t pos)
 {
   return &lzss->window[lzss_offset_for_position(lzss, pos)];
 }
 
 static inline int
 lzss_current_offset(struct lzss *lzss)
 {
   return lzss_offset_for_position(lzss, lzss->position);
 }
 
 static inline uint8_t *
 lzss_current_pointer(struct lzss *lzss)
 {
   return lzss_pointer_for_position(lzss, lzss->position);
 }
 
 static inline void
 lzss_emit_literal(struct rar *rar, uint8_t literal)
 {
   *lzss_current_pointer(&rar->lzss) = literal;
   rar->lzss.position++;
 }
 
 static inline void
 lzss_emit_match(struct rar *rar, int offset, int length)
 {
   int dstoffs = lzss_current_offset(&rar->lzss);
   int srcoffs = (dstoffs - offset) & lzss_mask(&rar->lzss);
   int l, li, remaining;
   unsigned char *d, *s;
 
   remaining = length;
   while (remaining > 0) {
     l = remaining;
     if (dstoffs > srcoffs) {
       if (l > lzss_size(&rar->lzss) - dstoffs)
         l = lzss_size(&rar->lzss) - dstoffs;
     } else {
       if (l > lzss_size(&rar->lzss) - srcoffs)
         l = lzss_size(&rar->lzss) - srcoffs;
     }
     d = &(rar->lzss.window[dstoffs]);
     s = &(rar->lzss.window[srcoffs]);
     if ((dstoffs + l < srcoffs) || (srcoffs + l < dstoffs))
       memcpy(d, s, l);
     else {
       for (li = 0; li < l; li++)
         d[li] = s[li];
     }
     remaining -= l;
     dstoffs = (dstoffs + l) & lzss_mask(&(rar->lzss));
     srcoffs = (srcoffs + l) & lzss_mask(&(rar->lzss));
   }
   rar->lzss.position += length;
 }
 
 static Byte
 ppmd_read(void *p)
 {
   struct archive_read *a = ((IByteIn*)p)->a;
   struct rar *rar = (struct rar *)(a->format->data);
   struct rar_br *br = &(rar->br);
   Byte b;
   if (!rar_br_read_ahead(a, br, 8))
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Truncated RAR file data");
     rar->valid = 0;
     return 0;
   }
   b = rar_br_bits(br, 8);
   rar_br_consume(br, 8);
   return b;
 }
 
 int
 archive_read_support_format_rar(struct archive *_a)
 {
   struct archive_read *a = (struct archive_read *)_a;
   struct rar *rar;
   int r;
 
   archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
                       "archive_read_support_format_rar");
 
   rar = (struct rar *)calloc(sizeof(*rar), 1);
   if (rar == NULL)
   {
     archive_set_error(&a->archive, ENOMEM, "Can't allocate rar data");
     return (ARCHIVE_FATAL);
   }
 
 	/*
 	 * Until enough data has been read, we cannot tell about
 	 * any encrypted entries yet.
 	 */
 	rar->has_encrypted_entries = ARCHIVE_READ_FORMAT_ENCRYPTION_DONT_KNOW;
 
   r = __archive_read_register_format(a,
                                      rar,
                                      "rar",
                                      archive_read_format_rar_bid,
                                      archive_read_format_rar_options,
                                      archive_read_format_rar_read_header,
                                      archive_read_format_rar_read_data,
                                      archive_read_format_rar_read_data_skip,
                                      archive_read_format_rar_seek_data,
                                      archive_read_format_rar_cleanup,
                                      archive_read_support_format_rar_capabilities,
                                      archive_read_format_rar_has_encrypted_entries);
 
   if (r != ARCHIVE_OK)
     free(rar);
   return (r);
 }
 
 static int
 archive_read_support_format_rar_capabilities(struct archive_read * a)
 {
 	(void)a; /* UNUSED */
 	return (ARCHIVE_READ_FORMAT_CAPS_ENCRYPT_DATA
 			| ARCHIVE_READ_FORMAT_CAPS_ENCRYPT_METADATA);
 }
 
 static int
 archive_read_format_rar_has_encrypted_entries(struct archive_read *_a)
 {
 	if (_a && _a->format) {
 		struct rar * rar = (struct rar *)_a->format->data;
 		if (rar) {
 			return rar->has_encrypted_entries;
 		}
 	}
 	return ARCHIVE_READ_FORMAT_ENCRYPTION_DONT_KNOW;
 }
 
 
 static int
 archive_read_format_rar_bid(struct archive_read *a, int best_bid)
 {
   const char *p;
 
   /* If there's already a bid > 30, we'll never win. */
   if (best_bid > 30)
 	  return (-1);
 
   if ((p = __archive_read_ahead(a, 7, NULL)) == NULL)
     return (-1);
 
   if (memcmp(p, RAR_SIGNATURE, 7) == 0)
     return (30);
 
   if ((p[0] == 'M' && p[1] == 'Z') || memcmp(p, "\x7F\x45LF", 4) == 0) {
     /* This is a PE file */
     ssize_t offset = 0x10000;
     ssize_t window = 4096;
     ssize_t bytes_avail;
     while (offset + window <= (1024 * 128)) {
       const char *buff = __archive_read_ahead(a, offset + window, &bytes_avail);
       if (buff == NULL) {
         /* Remaining bytes are less than window. */
         window >>= 1;
         if (window < 0x40)
           return (0);
         continue;
       }
       p = buff + offset;
       while (p + 7 < buff + bytes_avail) {
         if (memcmp(p, RAR_SIGNATURE, 7) == 0)
           return (30);
         p += 0x10;
       }
       offset = p - buff;
     }
   }
   return (0);
 }
 
 static int
 skip_sfx(struct archive_read *a)
 {
   const void *h;
   const char *p, *q;
   size_t skip, total;
   ssize_t bytes, window;
 
   total = 0;
   window = 4096;
   while (total + window <= (1024 * 128)) {
     h = __archive_read_ahead(a, window, &bytes);
     if (h == NULL) {
       /* Remaining bytes are less than window. */
       window >>= 1;
       if (window < 0x40)
       	goto fatal;
       continue;
     }
     if (bytes < 0x40)
       goto fatal;
     p = h;
     q = p + bytes;
 
     /*
      * Scan ahead until we find something that looks
      * like the RAR header.
      */
     while (p + 7 < q) {
       if (memcmp(p, RAR_SIGNATURE, 7) == 0) {
       	skip = p - (const char *)h;
       	__archive_read_consume(a, skip);
       	return (ARCHIVE_OK);
       }
       p += 0x10;
     }
     skip = p - (const char *)h;
     __archive_read_consume(a, skip);
 	total += skip;
   }
 fatal:
   archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
       "Couldn't find out RAR header");
   return (ARCHIVE_FATAL);
 }
 
 static int
 archive_read_format_rar_options(struct archive_read *a,
     const char *key, const char *val)
 {
   struct rar *rar;
   int ret = ARCHIVE_FAILED;
 
   rar = (struct rar *)(a->format->data);
   if (strcmp(key, "hdrcharset")  == 0) {
     if (val == NULL || val[0] == 0)
       archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
           "rar: hdrcharset option needs a character-set name");
     else {
       rar->opt_sconv =
           archive_string_conversion_from_charset(
               &a->archive, val, 0);
       if (rar->opt_sconv != NULL)
         ret = ARCHIVE_OK;
       else
         ret = ARCHIVE_FATAL;
     }
     return (ret);
   }
 
   /* Note: The "warn" return is just to inform the options
    * supervisor that we didn't handle it.  It will generate
    * a suitable error if no one used this option. */
   return (ARCHIVE_WARN);
 }
 
 static int
 archive_read_format_rar_read_header(struct archive_read *a,
                                     struct archive_entry *entry)
 {
   const void *h;
   const char *p;
   struct rar *rar;
   size_t skip;
   char head_type;
   int ret;
   unsigned flags;
   unsigned long crc32_expected;
 
   a->archive.archive_format = ARCHIVE_FORMAT_RAR;
   if (a->archive.archive_format_name == NULL)
     a->archive.archive_format_name = "RAR";
 
   rar = (struct rar *)(a->format->data);
 
   /*
    * It should be sufficient to call archive_read_next_header() for
    * a reader to determine if an entry is encrypted or not. If the
    * encryption of an entry is only detectable when calling
    * archive_read_data(), so be it. We'll do the same check there
    * as well.
    */
   if (rar->has_encrypted_entries == ARCHIVE_READ_FORMAT_ENCRYPTION_DONT_KNOW) {
 	  rar->has_encrypted_entries = 0;
   }
 
   /* RAR files can be generated without EOF headers, so return ARCHIVE_EOF if
   * this fails.
   */
   if ((h = __archive_read_ahead(a, 7, NULL)) == NULL)
     return (ARCHIVE_EOF);
 
   p = h;
   if (rar->found_first_header == 0 &&
      ((p[0] == 'M' && p[1] == 'Z') || memcmp(p, "\x7F\x45LF", 4) == 0)) {
     /* This is an executable ? Must be self-extracting... */
     ret = skip_sfx(a);
     if (ret < ARCHIVE_WARN)
       return (ret);
   }
   rar->found_first_header = 1;
 
   while (1)
   {
     unsigned long crc32_val;
 
     if ((h = __archive_read_ahead(a, 7, NULL)) == NULL)
       return (ARCHIVE_FATAL);
     p = h;
 
     head_type = p[2];
     switch(head_type)
     {
     case MARK_HEAD:
       if (memcmp(p, RAR_SIGNATURE, 7) != 0) {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
           "Invalid marker header");
         return (ARCHIVE_FATAL);
       }
       __archive_read_consume(a, 7);
       break;
 
     case MAIN_HEAD:
       rar->main_flags = archive_le16dec(p + 3);
       skip = archive_le16dec(p + 5);
       if (skip < 7 + sizeof(rar->reserved1) + sizeof(rar->reserved2)) {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
           "Invalid header size");
         return (ARCHIVE_FATAL);
       }
       if ((h = __archive_read_ahead(a, skip, NULL)) == NULL)
         return (ARCHIVE_FATAL);
       p = h;
       memcpy(rar->reserved1, p + 7, sizeof(rar->reserved1));
       memcpy(rar->reserved2, p + 7 + sizeof(rar->reserved1),
              sizeof(rar->reserved2));
       if (rar->main_flags & MHD_ENCRYPTVER) {
         if (skip < 7 + sizeof(rar->reserved1) + sizeof(rar->reserved2)+1) {
           archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
             "Invalid header size");
           return (ARCHIVE_FATAL);
         }
         rar->encryptver = *(p + 7 + sizeof(rar->reserved1) +
                             sizeof(rar->reserved2));
       }
 
       /* Main header is password encrypted, so we cannot read any
          file names or any other info about files from the header. */
       if (rar->main_flags & MHD_PASSWORD)
       {
         archive_entry_set_is_metadata_encrypted(entry, 1);
         archive_entry_set_is_data_encrypted(entry, 1);
         rar->has_encrypted_entries = 1;
          archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                           "RAR encryption support unavailable.");
         return (ARCHIVE_FATAL);
       }
 
       crc32_val = crc32(0, (const unsigned char *)p + 2, (unsigned)skip - 2);
       if ((crc32_val & 0xffff) != archive_le16dec(p)) {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
           "Header CRC error");
         return (ARCHIVE_FATAL);
       }
       __archive_read_consume(a, skip);
       break;
 
     case FILE_HEAD:
       return read_header(a, entry, head_type);
 
     case COMM_HEAD:
     case AV_HEAD:
     case SUB_HEAD:
     case PROTECT_HEAD:
     case SIGN_HEAD:
     case ENDARC_HEAD:
       flags = archive_le16dec(p + 3);
       skip = archive_le16dec(p + 5);
       if (skip < 7) {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
           "Invalid header size too small");
         return (ARCHIVE_FATAL);
       }
       if (flags & HD_ADD_SIZE_PRESENT)
       {
         if (skip < 7 + 4) {
           archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
             "Invalid header size too small");
           return (ARCHIVE_FATAL);
         }
         if ((h = __archive_read_ahead(a, skip, NULL)) == NULL)
           return (ARCHIVE_FATAL);
         p = h;
         skip += archive_le32dec(p + 7);
       }
 
       /* Skip over the 2-byte CRC at the beginning of the header. */
       crc32_expected = archive_le16dec(p);
       __archive_read_consume(a, 2);
       skip -= 2;
 
       /* Skim the entire header and compute the CRC. */
       crc32_val = 0;
       while (skip > 0) {
 	      size_t to_read = skip;
 	      if (to_read > 32 * 1024)
 		      to_read = 32 * 1024;
 	      if ((h = __archive_read_ahead(a, to_read, NULL)) == NULL) {
 		      archive_set_error(&a->archive,  ARCHIVE_ERRNO_FILE_FORMAT,
 			  "Bad RAR file");
 		      return (ARCHIVE_FATAL);
 	      }
 	      p = h;
 	      crc32_val = crc32(crc32_val, (const unsigned char *)p, to_read);
 	      __archive_read_consume(a, to_read);
 	      skip -= to_read;
       }
       if ((crc32_val & 0xffff) != crc32_expected) {
 	      archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
 		  "Header CRC error");
 	      return (ARCHIVE_FATAL);
       }
       if (head_type == ENDARC_HEAD)
 	      return (ARCHIVE_EOF);
       break;
 
     case NEWSUB_HEAD:
       if ((ret = read_header(a, entry, head_type)) < ARCHIVE_WARN)
         return ret;
       break;
 
     default:
       archive_set_error(&a->archive,  ARCHIVE_ERRNO_FILE_FORMAT,
                         "Bad RAR file");
       return (ARCHIVE_FATAL);
     }
   }
 }
 
 static int
 archive_read_format_rar_read_data(struct archive_read *a, const void **buff,
                                   size_t *size, int64_t *offset)
 {
   struct rar *rar = (struct rar *)(a->format->data);
   int ret;
 
   if (rar->has_encrypted_entries == ARCHIVE_READ_FORMAT_ENCRYPTION_DONT_KNOW) {
 	  rar->has_encrypted_entries = 0;
   }
 
   if (rar->bytes_unconsumed > 0) {
       /* Consume as much as the decompressor actually used. */
       __archive_read_consume(a, rar->bytes_unconsumed);
       rar->bytes_unconsumed = 0;
   }
 
   *buff = NULL;
   if (rar->entry_eof || rar->offset_seek >= rar->unp_size) {
     *size = 0;
     *offset = rar->offset;
     if (*offset < rar->unp_size)
       *offset = rar->unp_size;
     return (ARCHIVE_EOF);
   }
 
   switch (rar->compression_method)
   {
   case COMPRESS_METHOD_STORE:
     ret = read_data_stored(a, buff, size, offset);
     break;
 
   case COMPRESS_METHOD_FASTEST:
   case COMPRESS_METHOD_FAST:
   case COMPRESS_METHOD_NORMAL:
   case COMPRESS_METHOD_GOOD:
   case COMPRESS_METHOD_BEST:
     ret = read_data_compressed(a, buff, size, offset, 0);
     if (ret != ARCHIVE_OK && ret != ARCHIVE_WARN) {
       __archive_ppmd7_functions.Ppmd7_Free(&rar->ppmd7_context);
       rar->start_new_table = 1;
       rar->ppmd_valid = 0;
     }
     break;
 
   default:
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Unsupported compression method for RAR file.");
     ret = ARCHIVE_FATAL;
     break;
   }
   return (ret);
 }
 
 static int
 archive_read_format_rar_read_data_skip(struct archive_read *a)
 {
   struct rar *rar;
   int64_t bytes_skipped;
   int ret;
 
   rar = (struct rar *)(a->format->data);
 
   if (rar->bytes_unconsumed > 0) {
       /* Consume as much as the decompressor actually used. */
       __archive_read_consume(a, rar->bytes_unconsumed);
       rar->bytes_unconsumed = 0;
   }
 
   if (rar->bytes_remaining > 0) {
     bytes_skipped = __archive_read_consume(a, rar->bytes_remaining);
     if (bytes_skipped < 0)
       return (ARCHIVE_FATAL);
   }
 
   /* Compressed data to skip must be read from each header in a multivolume
    * archive.
    */
   if (rar->main_flags & MHD_VOLUME && rar->file_flags & FHD_SPLIT_AFTER)
   {
     ret = archive_read_format_rar_read_header(a, a->entry);
     if (ret == (ARCHIVE_EOF))
       ret = archive_read_format_rar_read_header(a, a->entry);
     if (ret != (ARCHIVE_OK))
       return ret;
     return archive_read_format_rar_read_data_skip(a);
   }
 
   return (ARCHIVE_OK);
 }
 
 static int64_t
 archive_read_format_rar_seek_data(struct archive_read *a, int64_t offset,
     int whence)
 {
   int64_t client_offset, ret;
   unsigned int i;
   struct rar *rar = (struct rar *)(a->format->data);
 
   if (rar->compression_method == COMPRESS_METHOD_STORE)
   {
     /* Modify the offset for use with SEEK_SET */
     switch (whence)
     {
       case SEEK_CUR:
         client_offset = rar->offset_seek;
         break;
       case SEEK_END:
         client_offset = rar->unp_size;
         break;
       case SEEK_SET:
       default:
         client_offset = 0;
     }
     client_offset += offset;
     if (client_offset < 0)
     {
       /* Can't seek past beginning of data block */
       return -1;
     }
     else if (client_offset > rar->unp_size)
     {
       /*
        * Set the returned offset but only seek to the end of
        * the data block.
        */
       rar->offset_seek = client_offset;
       client_offset = rar->unp_size;
     }
 
     client_offset += rar->dbo[0].start_offset;
     i = 0;
     while (i < rar->cursor)
     {
       i++;
       client_offset += rar->dbo[i].start_offset - rar->dbo[i-1].end_offset;
     }
     if (rar->main_flags & MHD_VOLUME)
     {
       /* Find the appropriate offset among the multivolume archive */
       while (1)
       {
         if (client_offset < rar->dbo[rar->cursor].start_offset &&
           rar->file_flags & FHD_SPLIT_BEFORE)
         {
           /* Search backwards for the correct data block */
           if (rar->cursor == 0)
           {
             archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
               "Attempt to seek past beginning of RAR data block");
             return (ARCHIVE_FAILED);
           }
           rar->cursor--;
           client_offset -= rar->dbo[rar->cursor+1].start_offset -
             rar->dbo[rar->cursor].end_offset;
           if (client_offset < rar->dbo[rar->cursor].start_offset)
             continue;
           ret = __archive_read_seek(a, rar->dbo[rar->cursor].start_offset -
             rar->dbo[rar->cursor].header_size, SEEK_SET);
           if (ret < (ARCHIVE_OK))
             return ret;
           ret = archive_read_format_rar_read_header(a, a->entry);
           if (ret != (ARCHIVE_OK))
           {
             archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
               "Error during seek of RAR file");
             return (ARCHIVE_FAILED);
           }
           rar->cursor--;
           break;
         }
         else if (client_offset > rar->dbo[rar->cursor].end_offset &&
           rar->file_flags & FHD_SPLIT_AFTER)
         {
           /* Search forward for the correct data block */
           rar->cursor++;
           if (rar->cursor < rar->nodes &&
             client_offset > rar->dbo[rar->cursor].end_offset)
           {
             client_offset += rar->dbo[rar->cursor].start_offset -
               rar->dbo[rar->cursor-1].end_offset;
             continue;
           }
           rar->cursor--;
           ret = __archive_read_seek(a, rar->dbo[rar->cursor].end_offset,
                                     SEEK_SET);
           if (ret < (ARCHIVE_OK))
             return ret;
           ret = archive_read_format_rar_read_header(a, a->entry);
           if (ret == (ARCHIVE_EOF))
           {
             rar->has_endarc_header = 1;
             ret = archive_read_format_rar_read_header(a, a->entry);
           }
           if (ret != (ARCHIVE_OK))
           {
             archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
               "Error during seek of RAR file");
             return (ARCHIVE_FAILED);
           }
           client_offset += rar->dbo[rar->cursor].start_offset -
             rar->dbo[rar->cursor-1].end_offset;
           continue;
         }
         break;
       }
     }
 
     ret = __archive_read_seek(a, client_offset, SEEK_SET);
     if (ret < (ARCHIVE_OK))
       return ret;
     rar->bytes_remaining = rar->dbo[rar->cursor].end_offset - ret;
     i = rar->cursor;
     while (i > 0)
     {
       i--;
       ret -= rar->dbo[i+1].start_offset - rar->dbo[i].end_offset;
     }
     ret -= rar->dbo[0].start_offset;
 
     /* Always restart reading the file after a seek */
     __archive_reset_read_data(&a->archive);
 
     rar->bytes_unconsumed = 0;
     rar->offset = 0;
 
     /*
      * If a seek past the end of file was requested, return the requested
      * offset.
      */
     if (ret == rar->unp_size && rar->offset_seek > rar->unp_size)
       return rar->offset_seek;
 
     /* Return the new offset */
     rar->offset_seek = ret;
     return rar->offset_seek;
   }
   else
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
       "Seeking of compressed RAR files is unsupported");
   }
   return (ARCHIVE_FAILED);
 }
 
 static int
 archive_read_format_rar_cleanup(struct archive_read *a)
 {
   struct rar *rar;
 
   rar = (struct rar *)(a->format->data);
   free_codes(a);
   clear_filters(&rar->filters);
   free(rar->filename);
   free(rar->filename_save);
   free(rar->dbo);
   free(rar->unp_buffer);
   free(rar->lzss.window);
   __archive_ppmd7_functions.Ppmd7_Free(&rar->ppmd7_context);
   free(rar);
   (a->format->data) = NULL;
   return (ARCHIVE_OK);
 }
 
 static int
 read_header(struct archive_read *a, struct archive_entry *entry,
             char head_type)
 {
   const void *h;
   const char *p, *endp;
   struct rar *rar;
   struct rar_header rar_header;
   struct rar_file_header file_header;
   int64_t header_size;
   unsigned filename_size, end;
   char *filename;
   char *strp;
   char packed_size[8];
   char unp_size[8];
   int ttime;
   struct archive_string_conv *sconv, *fn_sconv;
   unsigned long crc32_val;
   int ret = (ARCHIVE_OK), ret2;
 
   rar = (struct rar *)(a->format->data);
 
   /* Setup a string conversion object for non-rar-unicode filenames. */
   sconv = rar->opt_sconv;
   if (sconv == NULL) {
     if (!rar->init_default_conversion) {
       rar->sconv_default =
           archive_string_default_conversion_for_read(
             &(a->archive));
       rar->init_default_conversion = 1;
     }
     sconv = rar->sconv_default;
   }
 
 
   if ((h = __archive_read_ahead(a, 7, NULL)) == NULL)
     return (ARCHIVE_FATAL);
   p = h;
   memcpy(&rar_header, p, sizeof(rar_header));
   rar->file_flags = archive_le16dec(rar_header.flags);
   header_size = archive_le16dec(rar_header.size);
   if (header_size < (int64_t)sizeof(file_header) + 7) {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
       "Invalid header size");
     return (ARCHIVE_FATAL);
   }
   crc32_val = crc32(0, (const unsigned char *)p + 2, 7 - 2);
   __archive_read_consume(a, 7);
 
   if (!(rar->file_flags & FHD_SOLID))
   {
     rar->compression_method = 0;
     rar->packed_size = 0;
     rar->unp_size = 0;
     rar->mtime = 0;
     rar->ctime = 0;
     rar->atime = 0;
     rar->arctime = 0;
     rar->mode = 0;
     memset(&rar->salt, 0, sizeof(rar->salt));
     rar->atime = 0;
     rar->ansec = 0;
     rar->ctime = 0;
     rar->cnsec = 0;
     rar->mtime = 0;
     rar->mnsec = 0;
     rar->arctime = 0;
     rar->arcnsec = 0;
   }
   else
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "RAR solid archive support unavailable.");
     return (ARCHIVE_FATAL);
   }
 
   if ((h = __archive_read_ahead(a, (size_t)header_size - 7, NULL)) == NULL)
     return (ARCHIVE_FATAL);
 
   /* File Header CRC check. */
   crc32_val = crc32(crc32_val, h, (unsigned)(header_size - 7));
   if ((crc32_val & 0xffff) != archive_le16dec(rar_header.crc)) {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
       "Header CRC error");
     return (ARCHIVE_FATAL);
   }
   /* If no CRC error, Go on parsing File Header. */
   p = h;
   endp = p + header_size - 7;
   memcpy(&file_header, p, sizeof(file_header));
   p += sizeof(file_header);
 
   rar->compression_method = file_header.method;
 
   ttime = archive_le32dec(file_header.file_time);
   rar->mtime = get_time(ttime);
 
   rar->file_crc = archive_le32dec(file_header.file_crc);
 
   if (rar->file_flags & FHD_PASSWORD)
   {
 	archive_entry_set_is_data_encrypted(entry, 1);
 	rar->has_encrypted_entries = 1;
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "RAR encryption support unavailable.");
     /* Since it is only the data part itself that is encrypted we can at least
        extract information about the currently processed entry and don't need
        to return ARCHIVE_FATAL here. */
     /*return (ARCHIVE_FATAL);*/
   }
 
   if (rar->file_flags & FHD_LARGE)
   {
     memcpy(packed_size, file_header.pack_size, 4);
     memcpy(packed_size + 4, p, 4); /* High pack size */
     p += 4;
     memcpy(unp_size, file_header.unp_size, 4);
     memcpy(unp_size + 4, p, 4); /* High unpack size */
     p += 4;
     rar->packed_size = archive_le64dec(&packed_size);
     rar->unp_size = archive_le64dec(&unp_size);
   }
   else
   {
     rar->packed_size = archive_le32dec(file_header.pack_size);
     rar->unp_size = archive_le32dec(file_header.unp_size);
   }
 
   if (rar->packed_size < 0 || rar->unp_size < 0)
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Invalid sizes specified.");
     return (ARCHIVE_FATAL);
   }
 
   rar->bytes_remaining = rar->packed_size;
 
   /* TODO: RARv3 subblocks contain comments. For now the complete block is
    * consumed at the end.
    */
   if (head_type == NEWSUB_HEAD) {
     size_t distance = p - (const char *)h;
     header_size += rar->packed_size;
     /* Make sure we have the extended data. */
     if ((h = __archive_read_ahead(a, (size_t)header_size - 7, NULL)) == NULL)
         return (ARCHIVE_FATAL);
     p = h;
     endp = p + header_size - 7;
     p += distance;
   }
 
   filename_size = archive_le16dec(file_header.name_size);
   if (p + filename_size > endp) {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
       "Invalid filename size");
     return (ARCHIVE_FATAL);
   }
   if (rar->filename_allocated < filename_size * 2 + 2) {
     char *newptr;
     size_t newsize = filename_size * 2 + 2;
     newptr = realloc(rar->filename, newsize);
     if (newptr == NULL) {
       archive_set_error(&a->archive, ENOMEM,
                         "Couldn't allocate memory.");
       return (ARCHIVE_FATAL);
     }
     rar->filename = newptr;
     rar->filename_allocated = newsize;
   }
   filename = rar->filename;
   memcpy(filename, p, filename_size);
   filename[filename_size] = '\0';
   if (rar->file_flags & FHD_UNICODE)
   {
     if (filename_size != strlen(filename))
     {
       unsigned char highbyte, flagbits, flagbyte;
       unsigned fn_end, offset;
 
       end = filename_size;
       fn_end = filename_size * 2;
       filename_size = 0;
       offset = (unsigned)strlen(filename) + 1;
       highbyte = *(p + offset++);
       flagbits = 0;
       flagbyte = 0;
       while (offset < end && filename_size < fn_end)
       {
         if (!flagbits)
         {
           flagbyte = *(p + offset++);
           flagbits = 8;
         }
 
         flagbits -= 2;
         switch((flagbyte >> flagbits) & 3)
         {
           case 0:
             filename[filename_size++] = '\0';
             filename[filename_size++] = *(p + offset++);
             break;
           case 1:
             filename[filename_size++] = highbyte;
             filename[filename_size++] = *(p + offset++);
             break;
           case 2:
             filename[filename_size++] = *(p + offset + 1);
             filename[filename_size++] = *(p + offset);
             offset += 2;
             break;
           case 3:
           {
             char extra, high;
             uint8_t length = *(p + offset++);
 
             if (length & 0x80) {
               extra = *(p + offset++);
               high = (char)highbyte;
             } else
               extra = high = 0;
             length = (length & 0x7f) + 2;
             while (length && filename_size < fn_end) {
               unsigned cp = filename_size >> 1;
               filename[filename_size++] = high;
               filename[filename_size++] = p[cp] + extra;
               length--;
             }
           }
           break;
         }
       }
       if (filename_size > fn_end) {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
           "Invalid filename");
         return (ARCHIVE_FATAL);
       }
       filename[filename_size++] = '\0';
       /*
        * Do not increment filename_size here as the computations below
        * add the space for the terminating NUL explicitly.
        */
       filename[filename_size] = '\0';
 
       /* Decoded unicode form is UTF-16BE, so we have to update a string
        * conversion object for it. */
       if (rar->sconv_utf16be == NULL) {
         rar->sconv_utf16be = archive_string_conversion_from_charset(
            &a->archive, "UTF-16BE", 1);
         if (rar->sconv_utf16be == NULL)
           return (ARCHIVE_FATAL);
       }
       fn_sconv = rar->sconv_utf16be;
 
       strp = filename;
       while (memcmp(strp, "\x00\x00", 2))
       {
         if (!memcmp(strp, "\x00\\", 2))
           *(strp + 1) = '/';
         strp += 2;
       }
       p += offset;
     } else {
       /*
        * If FHD_UNICODE is set but no unicode data, this file name form
        * is UTF-8, so we have to update a string conversion object for
        * it accordingly.
        */
       if (rar->sconv_utf8 == NULL) {
         rar->sconv_utf8 = archive_string_conversion_from_charset(
            &a->archive, "UTF-8", 1);
         if (rar->sconv_utf8 == NULL)
           return (ARCHIVE_FATAL);
       }
       fn_sconv = rar->sconv_utf8;
       while ((strp = strchr(filename, '\\')) != NULL)
         *strp = '/';
       p += filename_size;
     }
   }
   else
   {
     fn_sconv = sconv;
     while ((strp = strchr(filename, '\\')) != NULL)
       *strp = '/';
     p += filename_size;
   }
 
   /* Split file in multivolume RAR. No more need to process header. */
   if (rar->filename_save &&
     filename_size == rar->filename_save_size &&
     !memcmp(rar->filename, rar->filename_save, filename_size + 1))
   {
     __archive_read_consume(a, header_size - 7);
     rar->cursor++;
     if (rar->cursor >= rar->nodes)
     {
       rar->nodes++;
       if ((rar->dbo =
         realloc(rar->dbo, sizeof(*rar->dbo) * rar->nodes)) == NULL)
       {
         archive_set_error(&a->archive, ENOMEM, "Couldn't allocate memory.");
         return (ARCHIVE_FATAL);
       }
       rar->dbo[rar->cursor].header_size = header_size;
       rar->dbo[rar->cursor].start_offset = -1;
       rar->dbo[rar->cursor].end_offset = -1;
     }
     if (rar->dbo[rar->cursor].start_offset < 0)
     {
       rar->dbo[rar->cursor].start_offset = a->filter->position;
       rar->dbo[rar->cursor].end_offset = rar->dbo[rar->cursor].start_offset +
         rar->packed_size;
     }
     return ret;
   }
   else if (rar->filename_must_match)
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
       "Mismatch of file parts split across multi-volume archive");
     return (ARCHIVE_FATAL);
   }
 
   rar->filename_save = (char*)realloc(rar->filename_save,
                                       filename_size + 1);
   memcpy(rar->filename_save, rar->filename, filename_size + 1);
   rar->filename_save_size = filename_size;
 
   /* Set info for seeking */
   free(rar->dbo);
   if ((rar->dbo = calloc(1, sizeof(*rar->dbo))) == NULL)
   {
     archive_set_error(&a->archive, ENOMEM, "Couldn't allocate memory.");
     return (ARCHIVE_FATAL);
   }
   rar->dbo[0].header_size = header_size;
   rar->dbo[0].start_offset = -1;
   rar->dbo[0].end_offset = -1;
   rar->cursor = 0;
   rar->nodes = 1;
 
   if (rar->file_flags & FHD_SALT)
   {
     if (p + 8 > endp) {
       archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
         "Invalid header size");
       return (ARCHIVE_FATAL);
     }
     memcpy(rar->salt, p, 8);
     p += 8;
   }
 
   if (rar->file_flags & FHD_EXTTIME) {
     if (read_exttime(p, rar, endp) < 0) {
       archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
         "Invalid header size");
       return (ARCHIVE_FATAL);
     }
   }
 
   __archive_read_consume(a, header_size - 7);
   rar->dbo[0].start_offset = a->filter->position;
   rar->dbo[0].end_offset = rar->dbo[0].start_offset + rar->packed_size;
 
   switch(file_header.host_os)
   {
   case OS_MSDOS:
   case OS_OS2:
   case OS_WIN32:
     rar->mode = archive_le32dec(file_header.file_attr);
     if (rar->mode & FILE_ATTRIBUTE_DIRECTORY)
       rar->mode = AE_IFDIR | S_IXUSR | S_IXGRP | S_IXOTH;
     else
       rar->mode = AE_IFREG;
     rar->mode |= S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
     break;
 
   case OS_UNIX:
   case OS_MAC_OS:
   case OS_BEOS:
     rar->mode = archive_le32dec(file_header.file_attr);
     break;
 
   default:
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Unknown file attributes from RAR file's host OS");
     return (ARCHIVE_FATAL);
   }
 
   rar->bytes_uncopied = rar->bytes_unconsumed = 0;
   rar->lzss.position = rar->offset = 0;
   rar->offset_seek = 0;
   rar->dictionary_size = 0;
   rar->offset_outgoing = 0;
   rar->br.cache_avail = 0;
   rar->br.avail_in = 0;
   rar->crc_calculated = 0;
   rar->entry_eof = 0;
   rar->valid = 1;
   rar->is_ppmd_block = 0;
   rar->start_new_table = 1;
   free(rar->unp_buffer);
   rar->unp_buffer = NULL;
   rar->unp_offset = 0;
   rar->unp_buffer_size = UNP_BUFFER_SIZE;
   memset(rar->lengthtable, 0, sizeof(rar->lengthtable));
   __archive_ppmd7_functions.Ppmd7_Free(&rar->ppmd7_context);
   rar->ppmd_valid = rar->ppmd_eod = 0;
   rar->filters.filterstart = INT64_MAX;
 
   /* Don't set any archive entries for non-file header types */
   if (head_type == NEWSUB_HEAD)
     return ret;
 
   archive_entry_set_mtime(entry, rar->mtime, rar->mnsec);
   archive_entry_set_ctime(entry, rar->ctime, rar->cnsec);
   archive_entry_set_atime(entry, rar->atime, rar->ansec);
   archive_entry_set_size(entry, rar->unp_size);
   archive_entry_set_mode(entry, rar->mode);
 
   if (archive_entry_copy_pathname_l(entry, filename, filename_size, fn_sconv))
   {
     if (errno == ENOMEM)
     {
       archive_set_error(&a->archive, ENOMEM,
                         "Can't allocate memory for Pathname");
       return (ARCHIVE_FATAL);
     }
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Pathname cannot be converted from %s to current locale.",
                       archive_string_conversion_charset_name(fn_sconv));
     ret = (ARCHIVE_WARN);
   }
 
   if (((rar->mode) & AE_IFMT) == AE_IFLNK)
   {
     /* Make sure a symbolic-link file does not have its body. */
     rar->bytes_remaining = 0;
     archive_entry_set_size(entry, 0);
 
     /* Read a symbolic-link name. */
     if ((ret2 = read_symlink_stored(a, entry, sconv)) < (ARCHIVE_WARN))
       return ret2;
     if (ret > ret2)
       ret = ret2;
   }
 
   if (rar->bytes_remaining == 0)
     rar->entry_eof = 1;
 
   return ret;
 }
 
 static time_t
 get_time(int ttime)
 {
   struct tm tm;
   tm.tm_sec = 2 * (ttime & 0x1f);
   tm.tm_min = (ttime >> 5) & 0x3f;
   tm.tm_hour = (ttime >> 11) & 0x1f;
   tm.tm_mday = (ttime >> 16) & 0x1f;
   tm.tm_mon = ((ttime >> 21) & 0x0f) - 1;
   tm.tm_year = ((ttime >> 25) & 0x7f) + 80;
   tm.tm_isdst = -1;
   return mktime(&tm);
 }
 
 static int
 read_exttime(const char *p, struct rar *rar, const char *endp)
 {
   unsigned rmode, flags, rem, j, count;
   int ttime, i;
   struct tm *tm;
   time_t t;
   long nsec;
 #if defined(HAVE_LOCALTIME_R) || defined(HAVE__LOCALTIME64_S)
   struct tm tmbuf;
 #endif
 #if defined(HAVE__LOCALTIME64_S)
   errno_t terr;
   __time64_t tmptime;
 #endif
 
   if (p + 2 > endp)
     return (-1);
   flags = archive_le16dec(p);
   p += 2;
 
   for (i = 3; i >= 0; i--)
   {
     t = 0;
     if (i == 3)
       t = rar->mtime;
     rmode = flags >> i * 4;
     if (rmode & 8)
     {
       if (!t)
       {
         if (p + 4 > endp)
           return (-1);
         ttime = archive_le32dec(p);
         t = get_time(ttime);
         p += 4;
       }
       rem = 0;
       count = rmode & 3;
       if (p + count > endp)
         return (-1);
       for (j = 0; j < count; j++)
       {
         rem = (((unsigned)(unsigned char)*p) << 16) | (rem >> 8);
         p++;
       }
 #if defined(HAVE_LOCALTIME_R)
       tm = localtime_r(&t, &tmbuf);
 #elif defined(HAVE__LOCALTIME64_S)
       tmptime = t;
       terr = _localtime64_s(&tmbuf, &tmptime);
       if (terr)
         tm = NULL;
       else
         tm = &tmbuf;
 #else
       tm = localtime(&t);
 #endif
       nsec = tm->tm_sec + rem / NS_UNIT;
       if (rmode & 4)
       {
         tm->tm_sec++;
         t = mktime(tm);
       }
       if (i == 3)
       {
         rar->mtime = t;
         rar->mnsec = nsec;
       }
       else if (i == 2)
       {
         rar->ctime = t;
         rar->cnsec = nsec;
       }
       else if (i == 1)
       {
         rar->atime = t;
         rar->ansec = nsec;
       }
       else
       {
         rar->arctime = t;
         rar->arcnsec = nsec;
       }
     }
   }
   return (0);
 }
 
 static int
 read_symlink_stored(struct archive_read *a, struct archive_entry *entry,
                     struct archive_string_conv *sconv)
 {
   const void *h;
   const char *p;
   struct rar *rar;
   int ret = (ARCHIVE_OK);
 
   rar = (struct rar *)(a->format->data);
   if ((h = rar_read_ahead(a, (size_t)rar->packed_size, NULL)) == NULL)
     return (ARCHIVE_FATAL);
   p = h;
 
   if (archive_entry_copy_symlink_l(entry,
       p, (size_t)rar->packed_size, sconv))
   {
     if (errno == ENOMEM)
     {
       archive_set_error(&a->archive, ENOMEM,
                         "Can't allocate memory for link");
       return (ARCHIVE_FATAL);
     }
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "link cannot be converted from %s to current locale.",
                       archive_string_conversion_charset_name(sconv));
     ret = (ARCHIVE_WARN);
   }
   __archive_read_consume(a, rar->packed_size);
   return ret;
 }
 
 static int
 read_data_stored(struct archive_read *a, const void **buff, size_t *size,
                  int64_t *offset)
 {
   struct rar *rar;
   ssize_t bytes_avail;
 
   rar = (struct rar *)(a->format->data);
   if (rar->bytes_remaining == 0 &&
     !(rar->main_flags & MHD_VOLUME && rar->file_flags & FHD_SPLIT_AFTER))
   {
     *buff = NULL;
     *size = 0;
     *offset = rar->offset;
     if (rar->file_crc != rar->crc_calculated) {
       archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                         "File CRC error");
       return (ARCHIVE_FATAL);
     }
     rar->entry_eof = 1;
     return (ARCHIVE_EOF);
   }
 
   *buff = rar_read_ahead(a, 1, &bytes_avail);
   if (bytes_avail <= 0)
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Truncated RAR file data");
     return (ARCHIVE_FATAL);
   }
 
   *size = bytes_avail;
   *offset = rar->offset;
   rar->offset += bytes_avail;
   rar->offset_seek += bytes_avail;
   rar->bytes_remaining -= bytes_avail;
   rar->bytes_unconsumed = bytes_avail;
   /* Calculate File CRC. */
   rar->crc_calculated = crc32(rar->crc_calculated, *buff,
     (unsigned)bytes_avail);
   return (ARCHIVE_OK);
 }
 
 static int
 read_data_compressed(struct archive_read *a, const void **buff, size_t *size,
                      int64_t *offset, size_t looper)
 {
   if (looper++ > MAX_COMPRESS_DEPTH)
     return (ARCHIVE_FATAL);
 
   struct rar *rar;
   int64_t start, end;
   size_t bs;
   int ret = (ARCHIVE_OK), sym, code, lzss_offset, length, i;
 
   rar = (struct rar *)(a->format->data);
 
   do {
     if (!rar->valid)
       return (ARCHIVE_FATAL);
 
     if (rar->filters.bytes_ready > 0)
     {
       /* Flush unp_buffer first */
       if (rar->unp_offset > 0)
       {
         *buff = rar->unp_buffer;
         *size = rar->unp_offset;
         rar->unp_offset = 0;
         *offset = rar->offset_outgoing;
         rar->offset_outgoing += *size;
       }
       else
       {
         *buff = rar->filters.bytes;
         *size = rar->filters.bytes_ready;
 
         rar->offset += *size;
         *offset = rar->offset_outgoing;
         rar->offset_outgoing += *size;
 
         rar->filters.bytes_ready -= *size;
         rar->filters.bytes += *size;
       }
       goto ending_block;
     }
 
     if (rar->ppmd_eod ||
        (rar->dictionary_size && rar->offset >= rar->unp_size))
     {
       if (rar->unp_offset > 0) {
         /*
          * We have unprocessed extracted data. write it out.
          */
         *buff = rar->unp_buffer;
         *size = rar->unp_offset;
         *offset = rar->offset_outgoing;
         rar->offset_outgoing += *size;
         /* Calculate File CRC. */
         rar->crc_calculated = crc32(rar->crc_calculated, *buff,
           (unsigned)*size);
         rar->unp_offset = 0;
         return (ARCHIVE_OK);
       }
       *buff = NULL;
       *size = 0;
       *offset = rar->offset;
       if (rar->file_crc != rar->crc_calculated) {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                           "File CRC error");
         return (ARCHIVE_FATAL);
       }
       rar->entry_eof = 1;
       return (ARCHIVE_EOF);
     }
 
     if (!rar->is_ppmd_block && rar->dictionary_size && rar->bytes_uncopied > 0)
     {
       if (rar->bytes_uncopied > (rar->unp_buffer_size - rar->unp_offset))
         bs = rar->unp_buffer_size - rar->unp_offset;
       else
         bs = (size_t)rar->bytes_uncopied;
       ret = copy_from_lzss_window_to_unp(a, buff, rar->offset, (int)bs);
       if (ret != ARCHIVE_OK)
         return (ret);
       rar->offset += bs;
       rar->bytes_uncopied -= bs;
       if (*buff != NULL) {
         rar->unp_offset = 0;
         *size = rar->unp_buffer_size;
         *offset = rar->offset_outgoing;
         rar->offset_outgoing += *size;
         /* Calculate File CRC. */
         rar->crc_calculated = crc32(rar->crc_calculated, *buff,
           (unsigned)*size);
         return (ret);
       }
       continue;
     }
 
     if (rar->filters.lastend == rar->filters.filterstart)
     {
       if (!run_filters(a))
         return (ARCHIVE_FATAL);
       continue;
     }
 
     if (!rar->br.next_in &&
       (ret = rar_br_preparation(a, &(rar->br))) < ARCHIVE_WARN)
       return (ret);
     if (rar->start_new_table && ((ret = parse_codes(a)) < (ARCHIVE_WARN)))
       return (ret);
 
     if (rar->is_ppmd_block)
     {
       if ((sym = __archive_ppmd7_functions.Ppmd7_DecodeSymbol(
         &rar->ppmd7_context, &rar->range_dec.p)) < 0)
       {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                           "Invalid symbol");
         return (ARCHIVE_FATAL);
       }
       if(sym != rar->ppmd_escape)
       {
         lzss_emit_literal(rar, sym);
         rar->bytes_uncopied++;
       }
       else
       {
         if ((code = __archive_ppmd7_functions.Ppmd7_DecodeSymbol(
           &rar->ppmd7_context, &rar->range_dec.p)) < 0)
         {
           archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                             "Invalid symbol");
           return (ARCHIVE_FATAL);
         }
 
         switch(code)
         {
           case 0:
             rar->start_new_table = 1;
             return read_data_compressed(a, buff, size, offset, looper);
 
           case 2:
             rar->ppmd_eod = 1;/* End Of ppmd Data. */
             continue;
 
           case 3:
             archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
                               "Parsing filters is unsupported.");
             return (ARCHIVE_FAILED);
 
           case 4:
             lzss_offset = 0;
             for (i = 2; i >= 0; i--)
             {
               if ((code = __archive_ppmd7_functions.Ppmd7_DecodeSymbol(
                 &rar->ppmd7_context, &rar->range_dec.p)) < 0)
               {
                 archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                                   "Invalid symbol");
                 return (ARCHIVE_FATAL);
               }
               lzss_offset |= code << (i * 8);
             }
             if ((length = __archive_ppmd7_functions.Ppmd7_DecodeSymbol(
               &rar->ppmd7_context, &rar->range_dec.p)) < 0)
             {
               archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                                 "Invalid symbol");
               return (ARCHIVE_FATAL);
             }
             lzss_emit_match(rar, lzss_offset + 2, length + 32);
             rar->bytes_uncopied += length + 32;
             break;
 
           case 5:
             if ((length = __archive_ppmd7_functions.Ppmd7_DecodeSymbol(
               &rar->ppmd7_context, &rar->range_dec.p)) < 0)
             {
               archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                                 "Invalid symbol");
               return (ARCHIVE_FATAL);
             }
             lzss_emit_match(rar, 1, length + 4);
             rar->bytes_uncopied += length + 4;
             break;
 
          default:
            lzss_emit_literal(rar, sym);
            rar->bytes_uncopied++;
         }
       }
     }
     else
     {
       start = rar->offset;
       end = start + rar->dictionary_size;
       if (rar->filters.filterstart < end) {
         end = rar->filters.filterstart;
       }
 
       ret = expand(a, &end);
       if (ret != ARCHIVE_OK)
 	      return (ret);
 
       rar->bytes_uncopied = end - start;
       rar->filters.lastend = end;
       if (rar->filters.lastend != rar->filters.filterstart && rar->bytes_uncopied == 0) {
           /* Broken RAR files cause this case.
           * NOTE: If this case were possible on a normal RAR file
           * we would find out where it was actually bad and
           * what we would do to solve it. */
           archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                             "Internal error extracting RAR file");
           return (ARCHIVE_FATAL);
       }
     }
     if (rar->bytes_uncopied > (rar->unp_buffer_size - rar->unp_offset))
       bs = rar->unp_buffer_size - rar->unp_offset;
     else
       bs = (size_t)rar->bytes_uncopied;
     ret = copy_from_lzss_window_to_unp(a, buff, rar->offset, (int)bs);
     if (ret != ARCHIVE_OK)
       return (ret);
     rar->offset += bs;
     rar->bytes_uncopied -= bs;
     /*
      * If *buff is NULL, it means unp_buffer is not full.
      * So we have to continue extracting a RAR file.
      */
   } while (*buff == NULL);
 
   rar->unp_offset = 0;
   *size = rar->unp_buffer_size;
   *offset = rar->offset_outgoing;
   rar->offset_outgoing += *size;
 ending_block:
   /* Calculate File CRC. */
   rar->crc_calculated = crc32(rar->crc_calculated, *buff, (unsigned)*size);
   return ret;
 }
 
 static int
 parse_codes(struct archive_read *a)
 {
   int i, j, val, n, r;
   unsigned char bitlengths[MAX_SYMBOLS], zerocount, ppmd_flags;
   unsigned int maxorder;
   struct huffman_code precode;
   struct rar *rar = (struct rar *)(a->format->data);
   struct rar_br *br = &(rar->br);
 
   free_codes(a);
 
   /* Skip to the next byte */
   rar_br_consume_unalined_bits(br);
 
   /* PPMd block flag */
   if (!rar_br_read_ahead(a, br, 1))
     goto truncated_data;
   if ((rar->is_ppmd_block = rar_br_bits(br, 1)) != 0)
   {
     rar_br_consume(br, 1);
     if (!rar_br_read_ahead(a, br, 7))
       goto truncated_data;
     ppmd_flags = rar_br_bits(br, 7);
     rar_br_consume(br, 7);
 
     /* Memory is allocated in MB */
     if (ppmd_flags & 0x20)
     {
       if (!rar_br_read_ahead(a, br, 8))
         goto truncated_data;
       rar->dictionary_size = (rar_br_bits(br, 8) + 1) << 20;
       rar_br_consume(br, 8);
     }
 
     if (ppmd_flags & 0x40)
     {
       if (!rar_br_read_ahead(a, br, 8))
         goto truncated_data;
       rar->ppmd_escape = rar->ppmd7_context.InitEsc = rar_br_bits(br, 8);
       rar_br_consume(br, 8);
     }
     else
       rar->ppmd_escape = 2;
 
     if (ppmd_flags & 0x20)
     {
       maxorder = (ppmd_flags & 0x1F) + 1;
       if(maxorder > 16)
         maxorder = 16 + (maxorder - 16) * 3;
 
       if (maxorder == 1)
       {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                           "Truncated RAR file data");
         return (ARCHIVE_FATAL);
       }
 
       /* Make sure ppmd7_contest is freed before Ppmd7_Construct
        * because reading a broken file cause this abnormal sequence. */
       __archive_ppmd7_functions.Ppmd7_Free(&rar->ppmd7_context);
 
       rar->bytein.a = a;
       rar->bytein.Read = &ppmd_read;
       __archive_ppmd7_functions.PpmdRAR_RangeDec_CreateVTable(&rar->range_dec);
       rar->range_dec.Stream = &rar->bytein;
       __archive_ppmd7_functions.Ppmd7_Construct(&rar->ppmd7_context);
 
       if (rar->dictionary_size == 0) {
 	      archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                           "Invalid zero dictionary size");
 	      return (ARCHIVE_FATAL);
       }
 
       if (!__archive_ppmd7_functions.Ppmd7_Alloc(&rar->ppmd7_context,
         rar->dictionary_size))
       {
         archive_set_error(&a->archive, ENOMEM,
                           "Out of memory");
         return (ARCHIVE_FATAL);
       }
       if (!__archive_ppmd7_functions.PpmdRAR_RangeDec_Init(&rar->range_dec))
       {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                           "Unable to initialize PPMd range decoder");
         return (ARCHIVE_FATAL);
       }
       __archive_ppmd7_functions.Ppmd7_Init(&rar->ppmd7_context, maxorder);
       rar->ppmd_valid = 1;
     }
     else
     {
       if (!rar->ppmd_valid) {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                           "Invalid PPMd sequence");
         return (ARCHIVE_FATAL);
       }
       if (!__archive_ppmd7_functions.PpmdRAR_RangeDec_Init(&rar->range_dec))
       {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                           "Unable to initialize PPMd range decoder");
         return (ARCHIVE_FATAL);
       }
     }
   }
   else
   {
     rar_br_consume(br, 1);
 
     /* Keep existing table flag */
     if (!rar_br_read_ahead(a, br, 1))
       goto truncated_data;
     if (!rar_br_bits(br, 1))
       memset(rar->lengthtable, 0, sizeof(rar->lengthtable));
     rar_br_consume(br, 1);
 
     memset(&bitlengths, 0, sizeof(bitlengths));
     for (i = 0; i < MAX_SYMBOLS;)
     {
       if (!rar_br_read_ahead(a, br, 4))
         goto truncated_data;
       bitlengths[i++] = rar_br_bits(br, 4);
       rar_br_consume(br, 4);
       if (bitlengths[i-1] == 0xF)
       {
         if (!rar_br_read_ahead(a, br, 4))
           goto truncated_data;
         zerocount = rar_br_bits(br, 4);
         rar_br_consume(br, 4);
         if (zerocount)
         {
           i--;
           for (j = 0; j < zerocount + 2 && i < MAX_SYMBOLS; j++)
             bitlengths[i++] = 0;
         }
       }
     }
 
     memset(&precode, 0, sizeof(precode));
     r = create_code(a, &precode, bitlengths, MAX_SYMBOLS, MAX_SYMBOL_LENGTH);
     if (r != ARCHIVE_OK) {
       free(precode.tree);
       free(precode.table);
       return (r);
     }
 
     for (i = 0; i < HUFFMAN_TABLE_SIZE;)
     {
       if ((val = read_next_symbol(a, &precode)) < 0) {
         free(precode.tree);
         free(precode.table);
         return (ARCHIVE_FATAL);
       }
       if (val < 16)
       {
         rar->lengthtable[i] = (rar->lengthtable[i] + val) & 0xF;
         i++;
       }
       else if (val < 18)
       {
         if (i == 0)
         {
           free(precode.tree);
           free(precode.table);
           archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                             "Internal error extracting RAR file.");
           return (ARCHIVE_FATAL);
         }
 
         if(val == 16) {
           if (!rar_br_read_ahead(a, br, 3)) {
             free(precode.tree);
             free(precode.table);
             goto truncated_data;
           }
           n = rar_br_bits(br, 3) + 3;
           rar_br_consume(br, 3);
         } else {
           if (!rar_br_read_ahead(a, br, 7)) {
             free(precode.tree);
             free(precode.table);
             goto truncated_data;
           }
           n = rar_br_bits(br, 7) + 11;
           rar_br_consume(br, 7);
         }
 
         for (j = 0; j < n && i < HUFFMAN_TABLE_SIZE; j++)
         {
           rar->lengthtable[i] = rar->lengthtable[i-1];
           i++;
         }
       }
       else
       {
         if(val == 18) {
           if (!rar_br_read_ahead(a, br, 3)) {
             free(precode.tree);
             free(precode.table);
             goto truncated_data;
           }
           n = rar_br_bits(br, 3) + 3;
           rar_br_consume(br, 3);
         } else {
           if (!rar_br_read_ahead(a, br, 7)) {
             free(precode.tree);
             free(precode.table);
             goto truncated_data;
           }
           n = rar_br_bits(br, 7) + 11;
           rar_br_consume(br, 7);
         }
 
         for(j = 0; j < n && i < HUFFMAN_TABLE_SIZE; j++)
           rar->lengthtable[i++] = 0;
       }
     }
     free(precode.tree);
     free(precode.table);
 
     r = create_code(a, &rar->maincode, &rar->lengthtable[0], MAINCODE_SIZE,
                 MAX_SYMBOL_LENGTH);
     if (r != ARCHIVE_OK)
       return (r);
     r = create_code(a, &rar->offsetcode, &rar->lengthtable[MAINCODE_SIZE],
                 OFFSETCODE_SIZE, MAX_SYMBOL_LENGTH);
     if (r != ARCHIVE_OK)
       return (r);
     r = create_code(a, &rar->lowoffsetcode,
                 &rar->lengthtable[MAINCODE_SIZE + OFFSETCODE_SIZE],
                 LOWOFFSETCODE_SIZE, MAX_SYMBOL_LENGTH);
     if (r != ARCHIVE_OK)
       return (r);
     r = create_code(a, &rar->lengthcode,
                 &rar->lengthtable[MAINCODE_SIZE + OFFSETCODE_SIZE +
                 LOWOFFSETCODE_SIZE], LENGTHCODE_SIZE, MAX_SYMBOL_LENGTH);
     if (r != ARCHIVE_OK)
       return (r);
   }
 
   if (!rar->dictionary_size || !rar->lzss.window)
   {
     /* Seems as though dictionary sizes are not used. Even so, minimize
      * memory usage as much as possible.
      */
     void *new_window;
     unsigned int new_size;
 
     if (rar->unp_size >= DICTIONARY_MAX_SIZE)
       new_size = DICTIONARY_MAX_SIZE;
     else
       new_size = rar_fls((unsigned int)rar->unp_size) << 1;
     if (new_size == 0) {
       archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                         "Zero window size is invalid.");
       return (ARCHIVE_FATAL);
     }
     new_window = realloc(rar->lzss.window, new_size);
     if (new_window == NULL) {
       archive_set_error(&a->archive, ENOMEM,
                         "Unable to allocate memory for uncompressed data.");
       return (ARCHIVE_FATAL);
     }
     rar->lzss.window = (unsigned char *)new_window;
     rar->dictionary_size = new_size;
     memset(rar->lzss.window, 0, rar->dictionary_size);
     rar->lzss.mask = rar->dictionary_size - 1;
   }
 
   rar->start_new_table = 0;
   return (ARCHIVE_OK);
 truncated_data:
   archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                     "Truncated RAR file data");
   rar->valid = 0;
   return (ARCHIVE_FATAL);
 }
 
 static void
 free_codes(struct archive_read *a)
 {
   struct rar *rar = (struct rar *)(a->format->data);
   free(rar->maincode.tree);
   free(rar->offsetcode.tree);
   free(rar->lowoffsetcode.tree);
   free(rar->lengthcode.tree);
   free(rar->maincode.table);
   free(rar->offsetcode.table);
   free(rar->lowoffsetcode.table);
   free(rar->lengthcode.table);
   memset(&rar->maincode, 0, sizeof(rar->maincode));
   memset(&rar->offsetcode, 0, sizeof(rar->offsetcode));
   memset(&rar->lowoffsetcode, 0, sizeof(rar->lowoffsetcode));
   memset(&rar->lengthcode, 0, sizeof(rar->lengthcode));
 }
 
 
 static int
 read_next_symbol(struct archive_read *a, struct huffman_code *code)
 {
   unsigned char bit;
   unsigned int bits;
   int length, value, node;
   struct rar *rar;
   struct rar_br *br;
 
   if (!code->table)
   {
     if (make_table(a, code) != (ARCHIVE_OK))
       return -1;
   }
 
   rar = (struct rar *)(a->format->data);
   br = &(rar->br);
 
   /* Look ahead (peek) at bits */
   if (!rar_br_read_ahead(a, br, code->tablesize)) {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Truncated RAR file data");
     rar->valid = 0;
     return -1;
   }
   bits = rar_br_bits(br, code->tablesize);
 
   length = code->table[bits].length;
   value = code->table[bits].value;
 
   if (length < 0)
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Invalid prefix code in bitstream");
     return -1;
   }
 
   if (length <= code->tablesize)
   {
     /* Skip length bits */
     rar_br_consume(br, length);
     return value;
   }
 
   /* Skip tablesize bits */
   rar_br_consume(br, code->tablesize);
 
   node = value;
   while (!(code->tree[node].branches[0] ==
     code->tree[node].branches[1]))
   {
     if (!rar_br_read_ahead(a, br, 1)) {
       archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                         "Truncated RAR file data");
       rar->valid = 0;
       return -1;
     }
     bit = rar_br_bits(br, 1);
     rar_br_consume(br, 1);
 
     if (code->tree[node].branches[bit] < 0)
     {
       archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                         "Invalid prefix code in bitstream");
       return -1;
     }
     node = code->tree[node].branches[bit];
   }
 
   return code->tree[node].branches[0];
 }
 
 static int
 create_code(struct archive_read *a, struct huffman_code *code,
             unsigned char *lengths, int numsymbols, char maxlength)
 {
   int i, j, codebits = 0, symbolsleft = numsymbols;
 
   code->numentries = 0;
   code->numallocatedentries = 0;
   if (new_node(code) < 0) {
     archive_set_error(&a->archive, ENOMEM,
                       "Unable to allocate memory for node data.");
     return (ARCHIVE_FATAL);
   }
   code->numentries = 1;
   code->minlength = INT_MAX;
   code->maxlength = INT_MIN;
   codebits = 0;
   for(i = 1; i <= maxlength; i++)
   {
     for(j = 0; j < numsymbols; j++)
     {
       if (lengths[j] != i) continue;
       if (add_value(a, code, j, codebits, i) != ARCHIVE_OK)
         return (ARCHIVE_FATAL);
       codebits++;
       if (--symbolsleft <= 0)
         break;
     }
     if (symbolsleft <= 0)
       break;
     codebits <<= 1;
   }
   return (ARCHIVE_OK);
 }
 
 static int
 add_value(struct archive_read *a, struct huffman_code *code, int value,
           int codebits, int length)
 {
   int lastnode, bitpos, bit;
   /* int repeatpos, repeatnode, nextnode; */
 
   free(code->table);
   code->table = NULL;
 
   if(length > code->maxlength)
     code->maxlength = length;
   if(length < code->minlength)
     code->minlength = length;
 
   /*
    * Dead code, repeatpos was is -1
    *
   repeatpos = -1;
   if (repeatpos == 0 || (repeatpos >= 0
     && (((codebits >> (repeatpos - 1)) & 3) == 0
     || ((codebits >> (repeatpos - 1)) & 3) == 3)))
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Invalid repeat position");
     return (ARCHIVE_FATAL);
   }
   */
 
   lastnode = 0;
   for (bitpos = length - 1; bitpos >= 0; bitpos--)
   {
     bit = (codebits >> bitpos) & 1;
 
     /* Leaf node check */
     if (code->tree[lastnode].branches[0] ==
       code->tree[lastnode].branches[1])
     {
       archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                         "Prefix found");
       return (ARCHIVE_FATAL);
     }
 
     /*
      * Dead code, repeatpos was -1, bitpos >=0
      *
     if (bitpos == repeatpos)
     {
       * Open branch check *
       if (!(code->tree[lastnode].branches[bit] < 0))
       {
         archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                           "Invalid repeating code");
         return (ARCHIVE_FATAL);
       }
 
       if ((repeatnode = new_node(code)) < 0) {
         archive_set_error(&a->archive, ENOMEM,
                           "Unable to allocate memory for node data.");
         return (ARCHIVE_FATAL);
       }
       if ((nextnode = new_node(code)) < 0) {
         archive_set_error(&a->archive, ENOMEM,
                           "Unable to allocate memory for node data.");
         return (ARCHIVE_FATAL);
       }
 
       * Set branches *
       code->tree[lastnode].branches[bit] = repeatnode;
       code->tree[repeatnode].branches[bit] = repeatnode;
       code->tree[repeatnode].branches[bit^1] = nextnode;
       lastnode = nextnode;
 
       bitpos++; * terminating bit already handled, skip it *
     }
     else
     {
     */
       /* Open branch check */
       if (code->tree[lastnode].branches[bit] < 0)
       {
         if (new_node(code) < 0) {
           archive_set_error(&a->archive, ENOMEM,
                             "Unable to allocate memory for node data.");
           return (ARCHIVE_FATAL);
         }
         code->tree[lastnode].branches[bit] = code->numentries++;
       }
 
       /* set to branch */
       lastnode = code->tree[lastnode].branches[bit];
  /* } */
   }
 
   if (!(code->tree[lastnode].branches[0] == -1
     && code->tree[lastnode].branches[1] == -2))
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Prefix found");
     return (ARCHIVE_FATAL);
   }
 
   /* Set leaf value */
   code->tree[lastnode].branches[0] = value;
   code->tree[lastnode].branches[1] = value;
 
   return (ARCHIVE_OK);
 }
 
 static int
 new_node(struct huffman_code *code)
 {
   void *new_tree;
   if (code->numallocatedentries == code->numentries) {
     int new_num_entries = 256;
     if (code->numentries > 0) {
         new_num_entries = code->numentries * 2;
     }
     new_tree = realloc(code->tree, new_num_entries * sizeof(*code->tree));
     if (new_tree == NULL)
         return (-1);
     code->tree = (struct huffman_tree_node *)new_tree;
     code->numallocatedentries = new_num_entries;
   }
   code->tree[code->numentries].branches[0] = -1;
   code->tree[code->numentries].branches[1] = -2;
   return 1;
 }
 
 static int
 make_table(struct archive_read *a, struct huffman_code *code)
 {
   if (code->maxlength < code->minlength || code->maxlength > 10)
     code->tablesize = 10;
   else
     code->tablesize = code->maxlength;
 
   code->table =
     (struct huffman_table_entry *)calloc(1, sizeof(*code->table)
     * ((size_t)1 << code->tablesize));
 
   return make_table_recurse(a, code, 0, code->table, 0, code->tablesize);
 }
 
 static int
 make_table_recurse(struct archive_read *a, struct huffman_code *code, int node,
                    struct huffman_table_entry *table, int depth,
                    int maxdepth)
 {
   int currtablesize, i, ret = (ARCHIVE_OK);
 
   if (!code->tree)
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Huffman tree was not created.");
     return (ARCHIVE_FATAL);
   }
   if (node < 0 || node >= code->numentries)
   {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Invalid location to Huffman tree specified.");
     return (ARCHIVE_FATAL);
   }
 
   currtablesize = 1 << (maxdepth - depth);
 
   if (code->tree[node].branches[0] ==
     code->tree[node].branches[1])
   {
     for(i = 0; i < currtablesize; i++)
     {
       table[i].length = depth;
       table[i].value = code->tree[node].branches[0];
     }
   }
   /*
    * Dead code, node >= 0
    *
   else if (node < 0)
   {
     for(i = 0; i < currtablesize; i++)
       table[i].length = -1;
   }
    */
   else
   {
     if(depth == maxdepth)
     {
       table[0].length = maxdepth + 1;
       table[0].value = node;
     }
     else
     {
       ret |= make_table_recurse(a, code, code->tree[node].branches[0], table,
                                 depth + 1, maxdepth);
       ret |= make_table_recurse(a, code, code->tree[node].branches[1],
                          table + currtablesize / 2, depth + 1, maxdepth);
     }
   }
   return ret;
 }
 
 static int
 expand(struct archive_read *a, int64_t *end)
 {
   static const unsigned char lengthbases[] =
     {   0,   1,   2,   3,   4,   5,   6,
         7,   8,  10,  12,  14,  16,  20,
        24,  28,  32,  40,  48,  56,  64,
        80,  96, 112, 128, 160, 192, 224 };
   static const unsigned char lengthbits[] =
     { 0, 0, 0, 0, 0, 0, 0,
       0, 1, 1, 1, 1, 2, 2,
       2, 2, 3, 3, 3, 3, 4,
       4, 4, 4, 5, 5, 5, 5 };
   static const int lengthb_min = minimum(
     (int)(sizeof(lengthbases)/sizeof(lengthbases[0])),
     (int)(sizeof(lengthbits)/sizeof(lengthbits[0]))
   );
   static const unsigned int offsetbases[] =
     {       0,       1,       2,       3,       4,       6,
             8,      12,      16,      24,      32,      48,
            64,      96,     128,     192,     256,     384,
           512,     768,    1024,    1536,    2048,    3072,
          4096,    6144,    8192,   12288,   16384,   24576,
         32768,   49152,   65536,   98304,  131072,  196608,
        262144,  327680,  393216,  458752,  524288,  589824,
        655360,  720896,  786432,  851968,  917504,  983040,
       1048576, 1310720, 1572864, 1835008, 2097152, 2359296,
       2621440, 2883584, 3145728, 3407872, 3670016, 3932160 };
   static const unsigned char offsetbits[] =
     {  0,  0,  0,  0,  1,  1,  2,  2,  3,  3,  4,  4,
        5,  5,  6,  6,  7,  7,  8,  8,  9,  9, 10, 10,
       11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16,
       16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
       18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18 };
   static const int offsetb_min = minimum(
     (int)(sizeof(offsetbases)/sizeof(offsetbases[0])),
     (int)(sizeof(offsetbits)/sizeof(offsetbits[0]))
   );
   static const unsigned char shortbases[] =
     { 0, 4, 8, 16, 32, 64, 128, 192 };
   static const unsigned char shortbits[] =
     { 2, 2, 3, 4, 5, 6, 6, 6 };
 
   int symbol, offs, len, offsindex, lensymbol, i, offssymbol, lowoffsetsymbol;
   unsigned char newfile;
   struct rar *rar = (struct rar *)(a->format->data);
   struct rar_br *br = &(rar->br);
 
   if (rar->filters.filterstart < *end)
     *end = rar->filters.filterstart;
 
   while (1)
   {
     if(lzss_position(&rar->lzss) >= *end) {
       return (ARCHIVE_OK);
     }
 
     if(rar->is_ppmd_block) {
       *end = lzss_position(&rar->lzss);
       return (ARCHIVE_OK);
     }
 
     if ((symbol = read_next_symbol(a, &rar->maincode)) < 0)
       return (ARCHIVE_FATAL);
 
     if (symbol < 256)
     {
       lzss_emit_literal(rar, symbol);
       continue;
     }
     else if (symbol == 256)
     {
       if (!rar_br_read_ahead(a, br, 1))
         goto truncated_data;
       newfile = !rar_br_bits(br, 1);
       rar_br_consume(br, 1);
 
       if(newfile)
       {
         rar->start_new_block = 1;
         if (!rar_br_read_ahead(a, br, 1))
           goto truncated_data;
         rar->start_new_table = rar_br_bits(br, 1);
         rar_br_consume(br, 1);
         *end = lzss_position(&rar->lzss);
         return (ARCHIVE_OK);
       }
       else
       {
         if (parse_codes(a) != ARCHIVE_OK)
           return (ARCHIVE_FATAL);
         continue;
       }
     }
     else if(symbol==257)
     {
       if (!read_filter(a, end))
           return (ARCHIVE_FATAL);
       continue;
     }
     else if(symbol==258)
     {
       if(rar->lastlength == 0)
         continue;
 
       offs = rar->lastoffset;
       len = rar->lastlength;
     }
     else if (symbol <= 262)
     {
       offsindex = symbol - 259;
       offs = rar->oldoffset[offsindex];
 
       if ((lensymbol = read_next_symbol(a, &rar->lengthcode)) < 0)
         goto bad_data;
       if (lensymbol > lengthb_min)
         goto bad_data;
       len = lengthbases[lensymbol] + 2;
       if (lengthbits[lensymbol] > 0) {
         if (!rar_br_read_ahead(a, br, lengthbits[lensymbol]))
           goto truncated_data;
         len += rar_br_bits(br, lengthbits[lensymbol]);
         rar_br_consume(br, lengthbits[lensymbol]);
       }
 
       for (i = offsindex; i > 0; i--)
         rar->oldoffset[i] = rar->oldoffset[i-1];
       rar->oldoffset[0] = offs;
     }
     else if(symbol<=270)
     {
       offs = shortbases[symbol-263] + 1;
       if(shortbits[symbol-263] > 0) {
         if (!rar_br_read_ahead(a, br, shortbits[symbol-263]))
           goto truncated_data;
         offs += rar_br_bits(br, shortbits[symbol-263]);
         rar_br_consume(br, shortbits[symbol-263]);
       }
 
       len = 2;
 
       for(i = 3; i > 0; i--)
         rar->oldoffset[i] = rar->oldoffset[i-1];
       rar->oldoffset[0] = offs;
     }
     else
     {
       if (symbol-271 > lengthb_min)
         goto bad_data;
       len = lengthbases[symbol-271]+3;
       if(lengthbits[symbol-271] > 0) {
         if (!rar_br_read_ahead(a, br, lengthbits[symbol-271]))
           goto truncated_data;
         len += rar_br_bits(br, lengthbits[symbol-271]);
         rar_br_consume(br, lengthbits[symbol-271]);
       }
 
       if ((offssymbol = read_next_symbol(a, &rar->offsetcode)) < 0)
         goto bad_data;
       if (offssymbol > offsetb_min)
         goto bad_data;
       offs = offsetbases[offssymbol]+1;
       if(offsetbits[offssymbol] > 0)
       {
         if(offssymbol > 9)
         {
           if(offsetbits[offssymbol] > 4) {
             if (!rar_br_read_ahead(a, br, offsetbits[offssymbol] - 4))
               goto truncated_data;
             offs += rar_br_bits(br, offsetbits[offssymbol] - 4) << 4;
             rar_br_consume(br, offsetbits[offssymbol] - 4);
           }
 
           if(rar->numlowoffsetrepeats > 0)
           {
             rar->numlowoffsetrepeats--;
             offs += rar->lastlowoffset;
           }
           else
           {
             if ((lowoffsetsymbol =
               read_next_symbol(a, &rar->lowoffsetcode)) < 0)
               return (ARCHIVE_FATAL);
             if(lowoffsetsymbol == 16)
             {
               rar->numlowoffsetrepeats = 15;
               offs += rar->lastlowoffset;
             }
             else
             {
               offs += lowoffsetsymbol;
               rar->lastlowoffset = lowoffsetsymbol;
             }
           }
         }
         else {
           if (!rar_br_read_ahead(a, br, offsetbits[offssymbol]))
             goto truncated_data;
           offs += rar_br_bits(br, offsetbits[offssymbol]);
           rar_br_consume(br, offsetbits[offssymbol]);
         }
       }
 
       if (offs >= 0x40000)
         len++;
       if (offs >= 0x2000)
         len++;
 
       for(i = 3; i > 0; i--)
         rar->oldoffset[i] = rar->oldoffset[i-1];
       rar->oldoffset[0] = offs;
     }
 
     rar->lastoffset = offs;
     rar->lastlength = len;
 
     lzss_emit_match(rar, rar->lastoffset, rar->lastlength);
   }
 truncated_data:
   archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                     "Truncated RAR file data");
   rar->valid = 0;
   return (ARCHIVE_FATAL);
 bad_data:
   archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                     "Bad RAR file data");
   return (ARCHIVE_FATAL);
 }
 
 static int
 copy_from_lzss_window(struct archive_read *a, void *buffer,
                       int64_t startpos, int length)
 {
   int windowoffs, firstpart;
   struct rar *rar = (struct rar *)(a->format->data);
 
   windowoffs = lzss_offset_for_position(&rar->lzss, startpos);
   firstpart = lzss_size(&rar->lzss) - windowoffs;
   if (firstpart < 0) {
     archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                       "Bad RAR file data");
     return (ARCHIVE_FATAL);
   }
   if (firstpart < length) {
     memcpy(buffer, &rar->lzss.window[windowoffs], firstpart);
     memcpy(buffer, &rar->lzss.window[0], length - firstpart);
   } else {
     memcpy(buffer, &rar->lzss.window[windowoffs], length);
   }
   return (ARCHIVE_OK);
 }
 
 static int
 copy_from_lzss_window_to_unp(struct archive_read *a, const void **buffer,
                              int64_t startpos, int length)
 {
   int windowoffs, firstpart;
   struct rar *rar = (struct rar *)(a->format->data);
 
   if (!rar->unp_buffer)
   {
     if ((rar->unp_buffer = malloc(rar->unp_buffer_size)) == NULL)
     {
       archive_set_error(&a->archive, ENOMEM,
                         "Unable to allocate memory for uncompressed data.");
       return (ARCHIVE_FATAL);
     }
   }
 
   windowoffs = lzss_offset_for_position(&rar->lzss, startpos);
   if(windowoffs + length <= lzss_size(&rar->lzss)) {
     memcpy(&rar->unp_buffer[rar->unp_offset], &rar->lzss.window[windowoffs],
            length);
   } else if (length <= lzss_size(&rar->lzss)) {
     firstpart = lzss_size(&rar->lzss) - windowoffs;
     if (firstpart < 0) {
       archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                         "Bad RAR file data");
       return (ARCHIVE_FATAL);
     }
     if (firstpart < length) {
       memcpy(&rar->unp_buffer[rar->unp_offset],
              &rar->lzss.window[windowoffs], firstpart);
       memcpy(&rar->unp_buffer[rar->unp_offset + firstpart],
              &rar->lzss.window[0], length - firstpart);
     } else {
       memcpy(&rar->unp_buffer[rar->unp_offset],
              &rar->lzss.window[windowoffs], length);
     }
   } else {
       archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
                         "Bad RAR file data");
       return (ARCHIVE_FATAL);
   }
   rar->unp_offset += length;
   if (rar->unp_offset >= rar->unp_buffer_size)
     *buffer = rar->unp_buffer;
   else
     *buffer = NULL;
   return (ARCHIVE_OK);
 }
 
 static const void *
 rar_read_ahead(struct archive_read *a, size_t min, ssize_t *avail)
 {
   struct rar *rar = (struct rar *)(a->format->data);
   const void *h = __archive_read_ahead(a, min, avail);
   int ret;
   if (avail)
   {
     if (a->archive.read_data_is_posix_read && *avail > (ssize_t)a->archive.read_data_requested)
       *avail = a->archive.read_data_requested;
     if (*avail > rar->bytes_remaining)
       *avail = (ssize_t)rar->bytes_remaining;
     if (*avail < 0)
       return NULL;
     else if (*avail == 0 && rar->main_flags & MHD_VOLUME &&
       rar->file_flags & FHD_SPLIT_AFTER)
     {
       rar->filename_must_match = 1;
       ret = archive_read_format_rar_read_header(a, a->entry);
       if (ret == (ARCHIVE_EOF))
       {
         rar->has_endarc_header = 1;
         ret = archive_read_format_rar_read_header(a, a->entry);
       }
       rar->filename_must_match = 0;
       if (ret != (ARCHIVE_OK))
         return NULL;
       return rar_read_ahead(a, min, avail);
     }
   }
   return h;
 }
 
 static int
 parse_filter(struct archive_read *a, const uint8_t *bytes, uint16_t length, uint8_t flags)
 {
   struct rar *rar = (struct rar *)(a->format->data);
   struct rar_filters *filters = &rar->filters;
 
   struct memory_bit_reader br = { 0 };
   struct rar_program_code *prog;
   struct rar_filter *filter, **nextfilter;
 
   uint32_t numprogs, num, blocklength, globaldatalen;
   uint8_t *globaldata;
   size_t blockstartpos;
   uint32_t registers[8] = { 0 };
   uint32_t i;
 
   br.bytes = bytes;
   br.length = length;
 
   numprogs = 0;
   for (prog = filters->progs; prog; prog = prog->next)
     numprogs++;
 
   if ((flags & 0x80))
   {
     num = membr_next_rarvm_number(&br);
     if (num == 0)
     {
       delete_filter(filters->stack);
       filters->stack = NULL;
       delete_program_code(filters->progs);
       filters->progs = NULL;
     }
     else
       num--;
     if (num > numprogs) {
       return 0;
     }
     filters->lastfilternum = num;
   }
   else
     num = filters->lastfilternum;
 
   prog = filters->progs;
   for (i = 0; i < num; i++)
     prog = prog->next;
   if (prog)
     prog->usagecount++;
 
   blockstartpos = membr_next_rarvm_number(&br) + (size_t)lzss_position(&rar->lzss);
   if ((flags & 0x40))
     blockstartpos += 258;
   if ((flags & 0x20))
     blocklength = membr_next_rarvm_number(&br);
   else
     blocklength = prog ? prog->oldfilterlength : 0;
 
   registers[3] = PROGRAM_SYSTEM_GLOBAL_ADDRESS;
   registers[4] = blocklength;
   registers[5] = prog ? prog->usagecount : 0;
   registers[7] = VM_MEMORY_SIZE;
 
   if ((flags & 0x10))
   {
     uint8_t mask = (uint8_t)membr_bits(&br, 7);
     for (i = 0; i < 7; i++)
       if ((mask & (1 << i)))
         registers[i] = membr_next_rarvm_number(&br);
   }
 
   if (!prog)
   {
     uint32_t len = membr_next_rarvm_number(&br);
     uint8_t *bytecode;
     struct rar_program_code **next;
 
     if (len == 0 || len > 0x10000)
       return 0;
     bytecode = malloc(len);
     if (!bytecode)
       return 0;
     for (i = 0; i < len; i++)
       bytecode[i] = (uint8_t)membr_bits(&br, 8);
     prog = compile_program(bytecode, len);
     if (!prog) {
       free(bytecode);
       return 0;
     }
     free(bytecode);
     next = &filters->progs;
     while (*next)
       next = &(*next)->next;
     *next = prog;
   }
   prog->oldfilterlength = blocklength;
 
   globaldata = NULL;
   globaldatalen = 0;
   if ((flags & 0x08))
   {
     globaldatalen = membr_next_rarvm_number(&br);
     if (globaldatalen > PROGRAM_USER_GLOBAL_SIZE)
       return 0;
     globaldata = malloc(globaldatalen + PROGRAM_SYSTEM_GLOBAL_SIZE);
     if (!globaldata)
       return 0;
     for (i = 0; i < globaldatalen; i++)
       globaldata[i + PROGRAM_SYSTEM_GLOBAL_SIZE] = (uint8_t)membr_bits(&br, 8);
   }
 
   if (br.at_eof)
   {
       free(globaldata);
       return 0;
   }
 
   filter = create_filter(prog, globaldata, globaldatalen, registers, blockstartpos, blocklength);
   free(globaldata);
   if (!filter)
     return 0;
 
   for (i = 0; i < 7; i++)
     archive_le32enc(&filter->globaldata[i * 4], registers[i]);
   archive_le32enc(&filter->globaldata[0x1C], blocklength);
   archive_le32enc(&filter->globaldata[0x20], 0);
   archive_le32enc(&filter->globaldata[0x2C], prog->usagecount);
 
   nextfilter = &filters->stack;
   while (*nextfilter)
     nextfilter = &(*nextfilter)->next;
   *nextfilter = filter;
 
   if (!filters->stack->next)
     filters->filterstart = blockstartpos;
 
   return 1;
 }
 
 static struct rar_filter *
 create_filter(struct rar_program_code *prog, const uint8_t *globaldata, uint32_t globaldatalen, uint32_t registers[8], size_t startpos, uint32_t length)
 {
   struct rar_filter *filter;
 
   filter = calloc(1, sizeof(*filter));
   if (!filter)
     return NULL;
   filter->prog = prog;
   filter->globaldatalen = globaldatalen > PROGRAM_SYSTEM_GLOBAL_SIZE ? globaldatalen : PROGRAM_SYSTEM_GLOBAL_SIZE;
   filter->globaldata = calloc(1, filter->globaldatalen);
   if (!filter->globaldata)
     return NULL;
   if (globaldata)
     memcpy(filter->globaldata, globaldata, globaldatalen);
   if (registers)
     memcpy(filter->initialregisters, registers, sizeof(filter->initialregisters));
   filter->blockstartpos = startpos;
   filter->blocklength = length;
 
   return filter;
 }
 
 static int
 run_filters(struct archive_read *a)
 {
   struct rar *rar = (struct rar *)(a->format->data);
   struct rar_filters *filters = &rar->filters;
   struct rar_filter *filter = filters->stack;
+  struct rar_filter *f;
   size_t start, end;
   int64_t tend;
   uint32_t lastfilteraddress;
   uint32_t lastfilterlength;
   int ret;
 
   if (filters == NULL || filter == NULL)
     return (0);
 
   start = filters->filterstart;
   end = start + filter->blocklength;
 
   filters->filterstart = INT64_MAX;
   tend = (int64_t)end;
   ret = expand(a, &tend);
   if (ret != ARCHIVE_OK)
     return 0;
+
+  /* Check if filter stack was modified in expand() */
+  ret = ARCHIVE_FATAL;
+  f = filters->stack;
+  while (f)
+  {
+    if (f == filter)
+    {
+      ret = ARCHIVE_OK;
+      break;
+    }
+    f = f->next;
+  }
+  if (ret != ARCHIVE_OK)
+    return 0;
+
   if (tend < 0)
     return 0;
   end = (size_t)tend;
   if (end != start + filter->blocklength)
     return 0;
 
   if (!filters->vm)
   {
     filters->vm = calloc(1, sizeof(*filters->vm));
     if (!filters->vm)
       return 0;
   }
 
   ret = copy_from_lzss_window(a, filters->vm->memory, start, filter->blocklength);
   if (ret != ARCHIVE_OK)
     return 0;
   if (!execute_filter(a, filter, filters->vm, rar->offset))
     return 0;
 
   lastfilteraddress = filter->filteredblockaddress;
   lastfilterlength = filter->filteredblocklength;
   filters->stack = filter->next;
   filter->next = NULL;
   delete_filter(filter);
 
   while ((filter = filters->stack) != NULL && (int64_t)filter->blockstartpos == filters->filterstart && filter->blocklength == lastfilterlength)
   {
     memmove(&filters->vm->memory[0], &filters->vm->memory[lastfilteraddress], lastfilterlength);
     if (!execute_filter(a, filter, filters->vm, rar->offset))
       return 0;
 
     lastfilteraddress = filter->filteredblockaddress;
     lastfilterlength = filter->filteredblocklength;
     filters->stack = filter->next;
     filter->next = NULL;
     delete_filter(filter);
   }
 
   if (filters->stack)
   {
     if (filters->stack->blockstartpos < end)
       return 0;
     filters->filterstart = filters->stack->blockstartpos;
   }
 
   filters->lastend = end;
   filters->bytes = &filters->vm->memory[lastfilteraddress];
   filters->bytes_ready = lastfilterlength;
 
   return 1;
 }
 
 static struct rar_program_code *
 compile_program(const uint8_t *bytes, size_t length)
 {
   struct memory_bit_reader br = { 0 };
   struct rar_program_code *prog;
   // uint32_t instrcount = 0;
   uint8_t xor;
   size_t i;
 
   xor = 0;
   for (i = 1; i < length; i++)
     xor ^= bytes[i];
   if (!length || xor != bytes[0])
     return NULL;
 
   br.bytes = bytes;
   br.length = length;
   br.offset = 1;
 
   prog = calloc(1, sizeof(*prog));
   if (!prog)
     return NULL;
   prog->fingerprint = crc32(0, bytes, length) | ((uint64_t)length << 32);
 
   if (membr_bits(&br, 1))
   {
     prog->staticdatalen = membr_next_rarvm_number(&br) + 1;
     prog->staticdata = malloc(prog->staticdatalen);
     if (!prog->staticdata)
     {
       delete_program_code(prog);
       return NULL;
     }
     for (i = 0; i < prog->staticdatalen; i++)
       prog->staticdata[i] = (uint8_t)membr_bits(&br, 8);
   }
 
   return prog;
 }
 
 static void
 delete_filter(struct rar_filter *filter)
 {
   while (filter)
   {
     struct rar_filter *next = filter->next;
     free(filter->globaldata);
     free(filter);
     filter = next;
   }
 }
 
 static void
 clear_filters(struct rar_filters *filters)
 {
   delete_filter(filters->stack);
   delete_program_code(filters->progs);
   free(filters->vm);
 }
 
 static void
 delete_program_code(struct rar_program_code *prog)
 {
   while (prog)
   {
     struct rar_program_code *next = prog->next;
     free(prog->staticdata);
     free(prog->globalbackup);
     free(prog);
     prog = next;
   }
 }
 
 static uint32_t
 membr_next_rarvm_number(struct memory_bit_reader *br)
 {
   uint32_t val;
   switch (membr_bits(br, 2))
   {
     case 0:
       return membr_bits(br, 4);
     case 1:
       val = membr_bits(br, 8);
       if (val >= 16)
         return val;
       return 0xFFFFFF00 | (val << 4) | membr_bits(br, 4);
     case 2:
       return membr_bits(br, 16);
     default:
       return membr_bits(br, 32);
   }
 }
 
 static inline uint32_t
 membr_bits(struct memory_bit_reader *br, int bits)
 {
   if (bits > br->available && (br->at_eof || !membr_fill(br, bits)))
     return 0;
   return (uint32_t)((br->bits >> (br->available -= bits)) & (((uint64_t)1 << bits) - 1));
 }
 
 static int
 membr_fill(struct memory_bit_reader *br, int bits)
 {
   while (br->available < bits && br->offset < br->length)
   {
     br->bits = (br->bits << 8) | br->bytes[br->offset++];
     br->available += 8;
   }
   if (bits > br->available)
   {
     br->at_eof = 1;
     return 0;
   }
   return 1;
 }
 
 static int
 read_filter(struct archive_read *a, int64_t *end)
 {
   struct rar *rar = (struct rar *)(a->format->data);
   uint8_t flags, val, *code;
   uint16_t length, i;
 
   if (!rar_decode_byte(a, &flags))
     return 0;
   length = (flags & 0x07) + 1;
   if (length == 7)
   {
     if (!rar_decode_byte(a, &val))
       return 0;
     length = val + 7;
   }
   else if (length == 8)
   {
     if (!rar_decode_byte(a, &val))
       return 0;
     length = val << 8;
     if (!rar_decode_byte(a, &val))
       return 0;
     length |= val;
   }
 
   code = malloc(length);
   if (!code)
     return 0;
   for (i = 0; i < length; i++)
   {
     if (!rar_decode_byte(a, &code[i]))
     {
       free(code);
       return 0;
     }
   }
   if (!parse_filter(a, code, length, flags))
   {
     free(code);
     return 0;
   }
   free(code);
 
   if (rar->filters.filterstart < *end)
     *end = rar->filters.filterstart;
 
   return 1;
 }
 
 static int
 execute_filter_delta(struct rar_filter *filter, struct rar_virtual_machine *vm)
 {
   uint32_t length = filter->initialregisters[4];
   uint32_t numchannels = filter->initialregisters[0];
   uint8_t *src, *dst;
   uint32_t i, idx;
 
   if (length > PROGRAM_WORK_SIZE / 2)
     return 0;
 
   src = &vm->memory[0];
   dst = &vm->memory[length];
   for (i = 0; i < numchannels; i++)
   {
     uint8_t lastbyte = 0;
     for (idx = i; idx < length; idx += numchannels)
       lastbyte = dst[idx] = lastbyte - *src++;
   }
 
   filter->filteredblockaddress = length;
   filter->filteredblocklength = length;
 
   return 1;
 }
 
 static int
 execute_filter_e8(struct rar_filter *filter, struct rar_virtual_machine *vm, size_t pos, int e9also)
 {
   uint32_t length = filter->initialregisters[4];
   uint32_t filesize = 0x1000000;
   uint32_t i;
 
   if (length > PROGRAM_WORK_SIZE || length < 4)
     return 0;
 
   for (i = 0; i <= length - 5; i++)
   {
     if (vm->memory[i] == 0xE8 || (e9also && vm->memory[i] == 0xE9))
     {
       uint32_t currpos = (uint32_t)pos + i + 1;
       int32_t address = (int32_t)vm_read_32(vm, i + 1);
       if (address < 0 && currpos >= (uint32_t)-address)
         vm_write_32(vm, i + 1, address + filesize);
       else if (address >= 0 && (uint32_t)address < filesize)
         vm_write_32(vm, i + 1, address - currpos);
       i += 4;
     }
   }
 
   filter->filteredblockaddress = 0;
   filter->filteredblocklength = length;
 
   return 1;
 }
 
 static int
 execute_filter_rgb(struct rar_filter *filter, struct rar_virtual_machine *vm)
 {
   uint32_t stride = filter->initialregisters[0];
   uint32_t byteoffset = filter->initialregisters[1];
   uint32_t blocklength = filter->initialregisters[4];
   uint8_t *src, *dst;
   uint32_t i, j;
 
   if (blocklength > PROGRAM_WORK_SIZE / 2 || stride > blocklength)
     return 0;
 
   src = &vm->memory[0];
   dst = &vm->memory[blocklength];
   for (i = 0; i < 3; i++) {
     uint8_t byte = 0;
     uint8_t *prev = dst + i - stride;
     for (j = i; j < blocklength; j += 3)
     {
       if (prev >= dst)
       {
         uint32_t delta1 = abs(prev[3] - prev[0]);
         uint32_t delta2 = abs(byte - prev[0]);
         uint32_t delta3 = abs(prev[3] - prev[0] + byte - prev[0]);
         if (delta1 > delta2 || delta1 > delta3)
           byte = delta2 <= delta3 ? prev[3] : prev[0];
       }
       byte -= *src++;
       dst[j] = byte;
       prev += 3;
     }
   }
   for (i = byteoffset; i < blocklength - 2; i += 3)
   {
     dst[i] += dst[i + 1];
     dst[i + 2] += dst[i + 1];
   }
 
   filter->filteredblockaddress = blocklength;
   filter->filteredblocklength = blocklength;
 
   return 1;
 }
 
 static int
 execute_filter_audio(struct rar_filter *filter, struct rar_virtual_machine *vm)
 {
   uint32_t length = filter->initialregisters[4];
   uint32_t numchannels = filter->initialregisters[0];
   uint8_t *src, *dst;
   uint32_t i, j;
 
   if (length > PROGRAM_WORK_SIZE / 2)
     return 0;
 
   src = &vm->memory[0];
   dst = &vm->memory[length];
   for (i = 0; i < numchannels; i++)
   {
     struct audio_state state;
     memset(&state, 0, sizeof(state));
     for (j = i; j < length; j += numchannels)
     {
       int8_t delta = (int8_t)*src++;
       uint8_t predbyte, byte;
       int prederror;
       state.delta[2] = state.delta[1];
       state.delta[1] = state.lastdelta - state.delta[0];
       state.delta[0] = state.lastdelta;
       predbyte = ((8 * state.lastbyte + state.weight[0] * state.delta[0] + state.weight[1] * state.delta[1] + state.weight[2] * state.delta[2]) >> 3) & 0xFF;
       byte = (predbyte - delta) & 0xFF;
       prederror = delta << 3;
       state.error[0] += abs(prederror);
       state.error[1] += abs(prederror - state.delta[0]); state.error[2] += abs(prederror + state.delta[0]);
       state.error[3] += abs(prederror - state.delta[1]); state.error[4] += abs(prederror + state.delta[1]);
       state.error[5] += abs(prederror - state.delta[2]); state.error[6] += abs(prederror + state.delta[2]);
       state.lastdelta = (int8_t)(byte - state.lastbyte);
       dst[j] = state.lastbyte = byte;
       if (!(state.count++ & 0x1F))
       {
         uint8_t k, idx = 0;
         for (k = 1; k < 7; k++)
         {
           if (state.error[k] < state.error[idx])
             idx = k;
         }
         memset(state.error, 0, sizeof(state.error));
         switch (idx)
         {
           case 1: if (state.weight[0] >= -16) state.weight[0]--; break;
           case 2: if (state.weight[0] < 16) state.weight[0]++; break;
           case 3: if (state.weight[1] >= -16) state.weight[1]--; break;
           case 4: if (state.weight[1] < 16) state.weight[1]++; break;
           case 5: if (state.weight[2] >= -16) state.weight[2]--; break;
           case 6: if (state.weight[2] < 16) state.weight[2]++; break;
         }
       }
     }
   }
 
   filter->filteredblockaddress = length;
   filter->filteredblocklength = length;
 
   return 1;
 }
 
 
 static int
 execute_filter(struct archive_read *a, struct rar_filter *filter, struct rar_virtual_machine *vm, size_t pos)
 {
   if (filter->prog->fingerprint == 0x1D0E06077D)
     return execute_filter_delta(filter, vm);
   if (filter->prog->fingerprint == 0x35AD576887)
     return execute_filter_e8(filter, vm, pos, 0);
   if (filter->prog->fingerprint == 0x393CD7E57E)
     return execute_filter_e8(filter, vm, pos, 1);
   if (filter->prog->fingerprint == 0x951C2C5DC8)
     return execute_filter_rgb(filter, vm);
   if (filter->prog->fingerprint == 0xD8BC85E701)
     return execute_filter_audio(filter, vm);
 
   archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "No support for RAR VM program filter");
   return 0;
 }
 
 static int
 rar_decode_byte(struct archive_read *a, uint8_t *byte)
 {
   struct rar *rar = (struct rar *)(a->format->data);
   struct rar_br *br = &(rar->br);
   if (!rar_br_read_ahead(a, br, 8))
     return 0;
   *byte = (uint8_t)rar_br_bits(br, 8);
   rar_br_consume(br, 8);
   return 1;
 }
 
 static inline void
 vm_write_32(struct rar_virtual_machine* vm, size_t offset, uint32_t u32)
 {
   archive_le32enc(vm->memory + offset, u32);
 }
 
 static inline uint32_t
 vm_read_32(struct rar_virtual_machine* vm, size_t offset)
 {
   return archive_le32dec(vm->memory + offset);
 }