diff --git a/sys/dev/pci/pci.c b/sys/dev/pci/pci.c
index a2912f2a93ae..843f70a594a0 100644
--- a/sys/dev/pci/pci.c
+++ b/sys/dev/pci/pci.c
@@ -1,6936 +1,6934 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
  * Copyright (c) 2000, BSDi
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice unmodified, this list of conditions, and the following
  *    disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 #include "opt_acpi.h"
 #include "opt_iommu.h"
 #include "opt_bus.h"
 
 #include <sys/param.h>
 #include <sys/conf.h>
 #include <sys/endian.h>
 #include <sys/eventhandler.h>
 #include <sys/fcntl.h>
 #include <sys/kernel.h>
 #include <sys/limits.h>
 #include <sys/linker.h>
 #include <sys/malloc.h>
 #include <sys/module.h>
 #include <sys/queue.h>
 #include <sys/sbuf.h>
 #include <sys/sysctl.h>
 #include <sys/systm.h>
 #include <sys/taskqueue.h>
 #include <sys/tree.h>
 
 #include <vm/vm.h>
 #include <vm/pmap.h>
 #include <vm/vm_extern.h>
 
 #include <sys/bus.h>
 #include <machine/bus.h>
 #include <sys/rman.h>
 #include <machine/resource.h>
 #include <machine/stdarg.h>
 
 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
 #include <machine/intr_machdep.h>
 #endif
 
 #include <sys/pciio.h>
 #include <dev/pci/pcireg.h>
 #include <dev/pci/pcivar.h>
 #include <dev/pci/pci_private.h>
 
 #ifdef PCI_IOV
 #include <sys/nv.h>
 #include <dev/pci/pci_iov_private.h>
 #endif
 
 #include <dev/usb/controller/xhcireg.h>
 #include <dev/usb/controller/ehcireg.h>
 #include <dev/usb/controller/ohcireg.h>
 #include <dev/usb/controller/uhcireg.h>
 
 #include <dev/iommu/iommu.h>
 
 #include "pcib_if.h"
 #include "pci_if.h"
 
 #define	PCIR_IS_BIOS(cfg, reg)						\
 	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
 	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
 
 static device_probe_t	pci_probe;
 
 static bus_reset_post_t pci_reset_post;
 static bus_reset_prepare_t pci_reset_prepare;
 static bus_reset_child_t pci_reset_child;
 static bus_hint_device_unit_t pci_hint_device_unit;
 static bus_remap_intr_t pci_remap_intr_method;
 
 static pci_get_id_t	pci_get_id_method;
 
 static int		pci_has_quirk(uint32_t devid, int quirk);
 static pci_addr_t	pci_mapbase(uint64_t mapreg);
 static const char	*pci_maptype(uint64_t mapreg);
 static int		pci_maprange(uint64_t mapreg);
 static pci_addr_t	pci_rombase(uint64_t mapreg);
 static int		pci_romsize(uint64_t testval);
 static void		pci_fixancient(pcicfgregs *cfg);
 static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
 
 static int		pci_porten(device_t dev);
 static int		pci_memen(device_t dev);
 static void		pci_assign_interrupt(device_t bus, device_t dev,
 			    int force_route);
 static int		pci_add_map(device_t bus, device_t dev, int reg,
 			    struct resource_list *rl, int force, int prefetch);
 static void		pci_load_vendor_data(void);
 static int		pci_describe_parse_line(char **ptr, int *vendor,
 			    int *device, char **desc);
 static char		*pci_describe_device(device_t dev);
 static int		pci_modevent(module_t mod, int what, void *arg);
 static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
 			    pcicfgregs *cfg);
 static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
 static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
 			    int reg, uint32_t *data);
 #if 0
 static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
 			    int reg, uint32_t data);
 #endif
 static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
 static void		pci_mask_msix(device_t dev, u_int index);
 static void		pci_unmask_msix(device_t dev, u_int index);
 static int		pci_msi_blacklisted(void);
 static int		pci_msix_blacklisted(void);
 static void		pci_resume_msi(device_t dev);
 static void		pci_resume_msix(device_t dev);
 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
     int b, int s, int f, uint16_t vid, uint16_t did);
 
 static device_method_t pci_methods[] = {
 	/* Device interface */
 	DEVMETHOD(device_probe,		pci_probe),
 	DEVMETHOD(device_attach,	pci_attach),
 	DEVMETHOD(device_detach,	pci_detach),
 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
 	DEVMETHOD(device_suspend,	bus_generic_suspend),
 	DEVMETHOD(device_resume,	pci_resume),
 
 	/* Bus interface */
 	DEVMETHOD(bus_print_child,	pci_print_child),
 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
 	DEVMETHOD(bus_driver_added,	pci_driver_added),
 	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
 	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
 	DEVMETHOD(bus_reset_prepare,	pci_reset_prepare),
 	DEVMETHOD(bus_reset_post,	pci_reset_post),
 	DEVMETHOD(bus_reset_child,	pci_reset_child),
 
 	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
 	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
 	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
-#ifdef PCI_IOV
 	DEVMETHOD(bus_adjust_resource,	pci_adjust_resource),
-#else
-	DEVMETHOD(bus_adjust_resource,	bus_generic_adjust_resource),
-#endif
 	DEVMETHOD(bus_release_resource,	pci_release_resource),
 	DEVMETHOD(bus_activate_resource, pci_activate_resource),
 	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
-#ifdef PCI_IOV
 	DEVMETHOD(bus_map_resource,	pci_map_resource),
 	DEVMETHOD(bus_unmap_resource,	pci_unmap_resource),
-#endif
 	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
 	DEVMETHOD(bus_child_detached,	pci_child_detached),
 	DEVMETHOD(bus_child_pnpinfo,	pci_child_pnpinfo_method),
 	DEVMETHOD(bus_child_location,	pci_child_location_method),
 	DEVMETHOD(bus_get_device_path,	pci_get_device_path_method),
 	DEVMETHOD(bus_hint_device_unit,	pci_hint_device_unit),
 	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
 	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
 	DEVMETHOD(bus_resume_child,	pci_resume_child),
 	DEVMETHOD(bus_rescan,		pci_rescan_method),
 
 	/* PCI interface */
 	DEVMETHOD(pci_read_config,	pci_read_config_method),
 	DEVMETHOD(pci_write_config,	pci_write_config_method),
 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
 	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
 	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
 	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
 	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
 	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
 	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
 	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
 	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
 	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
 	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
 	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
 	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
 	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
 	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
 	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
 	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
 	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
 	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
 	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
 	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
 	DEVMETHOD(pci_get_id,		pci_get_id_method),
 	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
 	DEVMETHOD(pci_child_added,	pci_child_added_method),
 #ifdef PCI_IOV
 	DEVMETHOD(pci_iov_attach,	pci_iov_attach_method),
 	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
 	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
 #endif
 
 	DEVMETHOD_END
 };
 
 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
 
 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_modevent, NULL, BUS_PASS_BUS);
 MODULE_VERSION(pci, 1);
 
 static char	*pci_vendordata;
 static size_t	pci_vendordata_size;
 
 struct pci_quirk {
 	uint32_t devid;	/* Vendor/device of the card */
 	int	type;
 #define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
 #define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
 #define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
 #define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
 #define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
 #define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
 #define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
 	int	arg1;
 	int	arg2;
 };
 
 static const struct pci_quirk pci_quirks[] = {
 	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
 
 	/*
 	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
 	 * or the CMIC-SL (AKA ServerWorks GC_LE).
 	 */
 	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
 	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
 
 	/*
 	 * MSI doesn't work on earlier Intel chipsets including
 	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
 	 */
 	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
 	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
 	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
 	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
 	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
 	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
 	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
 
 	/*
 	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
 	 * bridge.
 	 */
 	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
 
 	/*
 	 * Some virtualization environments emulate an older chipset
 	 * but support MSI just fine.  QEMU uses the Intel 82440.
 	 */
 	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
 
 	/*
 	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
 	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
 	 * It prevents us from attaching hpet(4) when the bit is unset.
 	 * Note this quirk only affects SB600 revision A13 and earlier.
 	 * For SB600 A21 and later, firmware must set the bit to hide it.
 	 * For SB700 and later, it is unused and hardcoded to zero.
 	 */
 	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
 
 	/*
 	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
 	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
 	 * of the command register is set.
 	 */
 	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
 	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
 	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
 	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
 	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
 
 	/*
 	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
 	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
 	 */
 	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
 	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
 	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
 	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
 	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
 	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
 
 	/*
 	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
 	 * expected place.
 	 */
 	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
 	{ 0 }
 };
 
 /* map register information */
 #define	PCI_MAPMEM	0x01	/* memory map */
 #define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
 #define	PCI_MAPPORT	0x04	/* port map */
 
 struct devlist pci_devq;
 uint32_t pci_generation;
 uint32_t pci_numdevs = 0;
 static int pcie_chipset, pcix_chipset;
 
 /* sysctl vars */
 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "PCI bus tuning parameters");
 
 static int pci_enable_io_modes = 1;
 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
     &pci_enable_io_modes, 1,
     "Enable I/O and memory bits in the config register.  Some BIOSes do not"
     " enable these bits correctly.  We'd like to do this all the time, but"
     " there are some peripherals that this causes problems with.");
 
 static int pci_do_realloc_bars = 1;
 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
     &pci_do_realloc_bars, 0,
     "Attempt to allocate a new range for any BARs whose original "
     "firmware-assigned ranges fail to allocate during the initial device scan.");
 
 static int pci_do_power_nodriver = 0;
 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
     &pci_do_power_nodriver, 0,
     "Place a function into D3 state when no driver attaches to it.  0 means"
     " disable.  1 means conservatively place devices into D3 state.  2 means"
     " aggressively place devices into D3 state.  3 means put absolutely"
     " everything in D3 state.");
 
 int pci_do_power_resume = 1;
 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
     &pci_do_power_resume, 1,
   "Transition from D3 -> D0 on resume.");
 
 int pci_do_power_suspend = 1;
 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
     &pci_do_power_suspend, 1,
   "Transition from D0 -> D3 on suspend.");
 
 static int pci_do_msi = 1;
 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
     "Enable support for MSI interrupts");
 
 static int pci_do_msix = 1;
 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
     "Enable support for MSI-X interrupts");
 
 static int pci_msix_rewrite_table = 0;
 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
     &pci_msix_rewrite_table, 0,
     "Rewrite entire MSI-X table when updating MSI-X entries");
 
 static int pci_honor_msi_blacklist = 1;
 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
     &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
 
 #if defined(__i386__) || defined(__amd64__)
 static int pci_usb_takeover = 1;
 #else
 static int pci_usb_takeover = 0;
 #endif
 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
     &pci_usb_takeover, 1,
     "Enable early takeover of USB controllers. Disable this if you depend on"
     " BIOS emulation of USB devices, that is you use USB devices (like"
     " keyboard or mouse) but do not load USB drivers");
 
 static int pci_clear_bars;
 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
     "Ignore firmware-assigned resources for BARs.");
 
 static int pci_clear_buses;
 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
     "Ignore firmware-assigned bus numbers.");
 
 static int pci_enable_ari = 1;
 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
     0, "Enable support for PCIe Alternative RID Interpretation");
 
 int pci_enable_aspm = 1;
 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm,
     0, "Enable support for PCIe Active State Power Management");
 
 static int pci_clear_aer_on_attach = 0;
 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
     &pci_clear_aer_on_attach, 0,
     "Clear port and device AER state on driver attach");
 
 static bool pci_enable_mps_tune = true;
 SYSCTL_BOOL(_hw_pci, OID_AUTO, enable_mps_tune, CTLFLAG_RWTUN,
     &pci_enable_mps_tune, 1,
     "Enable tuning of MPS(maximum payload size)." );
 
 static int
 pci_has_quirk(uint32_t devid, int quirk)
 {
 	const struct pci_quirk *q;
 
 	for (q = &pci_quirks[0]; q->devid; q++) {
 		if (q->devid == devid && q->type == quirk)
 			return (1);
 	}
 	return (0);
 }
 
 /* Find a device_t by bus/slot/function in domain 0 */
 
 device_t
 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
 {
 
 	return (pci_find_dbsf(0, bus, slot, func));
 }
 
 /* Find a device_t by domain/bus/slot/function */
 
 device_t
 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
 {
 	struct pci_devinfo *dinfo = NULL;
 
 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
 		if ((dinfo->cfg.domain == domain) &&
 		    (dinfo->cfg.bus == bus) &&
 		    (dinfo->cfg.slot == slot) &&
 		    (dinfo->cfg.func == func)) {
 			break;
 		}
 	}
 
 	return (dinfo != NULL ? dinfo->cfg.dev : NULL);
 }
 
 /* Find a device_t by vendor/device ID */
 
 device_t
 pci_find_device(uint16_t vendor, uint16_t device)
 {
 	struct pci_devinfo *dinfo;
 
 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
 		if ((dinfo->cfg.vendor == vendor) &&
 		    (dinfo->cfg.device == device)) {
 			return (dinfo->cfg.dev);
 		}
 	}
 
 	return (NULL);
 }
 
 device_t
 pci_find_class(uint8_t class, uint8_t subclass)
 {
 	struct pci_devinfo *dinfo;
 
 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
 		if (dinfo->cfg.baseclass == class &&
 		    dinfo->cfg.subclass == subclass) {
 			return (dinfo->cfg.dev);
 		}
 	}
 
 	return (NULL);
 }
 
 device_t
 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from)
 {
 	struct pci_devinfo *dinfo;
 	bool found = false;
 
 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
 		if (from != NULL && found == false) {
 			if (from != dinfo->cfg.dev)
 				continue;
 			found = true;
 			continue;
 		}
 		if (dinfo->cfg.baseclass == class &&
 		    dinfo->cfg.subclass == subclass) {
 			return (dinfo->cfg.dev);
 		}
 	}
 
 	return (NULL);
 }
 
 static int
 pci_printf(pcicfgregs *cfg, const char *fmt, ...)
 {
 	va_list ap;
 	int retval;
 
 	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
 	    cfg->func);
 	va_start(ap, fmt);
 	retval += vprintf(fmt, ap);
 	va_end(ap);
 	return (retval);
 }
 
 /* return base address of memory or port map */
 
 static pci_addr_t
 pci_mapbase(uint64_t mapreg)
 {
 
 	if (PCI_BAR_MEM(mapreg))
 		return (mapreg & PCIM_BAR_MEM_BASE);
 	else
 		return (mapreg & PCIM_BAR_IO_BASE);
 }
 
 /* return map type of memory or port map */
 
 static const char *
 pci_maptype(uint64_t mapreg)
 {
 
 	if (PCI_BAR_IO(mapreg))
 		return ("I/O Port");
 	if (mapreg & PCIM_BAR_MEM_PREFETCH)
 		return ("Prefetchable Memory");
 	return ("Memory");
 }
 
 /* return log2 of map size decoded for memory or port map */
 
 int
 pci_mapsize(uint64_t testval)
 {
 	int ln2size;
 
 	testval = pci_mapbase(testval);
 	ln2size = 0;
 	if (testval != 0) {
 		while ((testval & 1) == 0)
 		{
 			ln2size++;
 			testval >>= 1;
 		}
 	}
 	return (ln2size);
 }
 
 /* return base address of device ROM */
 
 static pci_addr_t
 pci_rombase(uint64_t mapreg)
 {
 
 	return (mapreg & PCIM_BIOS_ADDR_MASK);
 }
 
 /* return log2 of map size decided for device ROM */
 
 static int
 pci_romsize(uint64_t testval)
 {
 	int ln2size;
 
 	testval = pci_rombase(testval);
 	ln2size = 0;
 	if (testval != 0) {
 		while ((testval & 1) == 0)
 		{
 			ln2size++;
 			testval >>= 1;
 		}
 	}
 	return (ln2size);
 }
 
 /* return log2 of address range supported by map register */
 
 static int
 pci_maprange(uint64_t mapreg)
 {
 	int ln2range = 0;
 
 	if (PCI_BAR_IO(mapreg))
 		ln2range = 32;
 	else
 		switch (mapreg & PCIM_BAR_MEM_TYPE) {
 		case PCIM_BAR_MEM_32:
 			ln2range = 32;
 			break;
 		case PCIM_BAR_MEM_1MB:
 			ln2range = 20;
 			break;
 		case PCIM_BAR_MEM_64:
 			ln2range = 64;
 			break;
 		}
 	return (ln2range);
 }
 
 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
 
 static void
 pci_fixancient(pcicfgregs *cfg)
 {
 	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
 		return;
 
 	/* PCI to PCI bridges use header type 1 */
 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
 		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
 }
 
 /* extract header type specific config data */
 
 static void
 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
 {
 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
 	case PCIM_HDRTYPE_NORMAL:
 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
 		cfg->mingnt         = REG(PCIR_MINGNT, 1);
 		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
 		cfg->nummaps	    = PCI_MAXMAPS_0;
 		break;
 	case PCIM_HDRTYPE_BRIDGE:
 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
 		cfg->nummaps	    = PCI_MAXMAPS_1;
 		break;
 	case PCIM_HDRTYPE_CARDBUS:
 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
 		cfg->nummaps	    = PCI_MAXMAPS_2;
 		break;
 	}
 #undef REG
 }
 
 /* read configuration header into pcicfgregs structure */
 struct pci_devinfo *
 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
 {
 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
 	uint16_t vid, did;
 
 	vid = REG(PCIR_VENDOR, 2);
 	if (vid == PCIV_INVALID)
 		return (NULL);
 
 	did = REG(PCIR_DEVICE, 2);
 
 	return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
 }
 
 struct pci_devinfo *
 pci_alloc_devinfo_method(device_t dev)
 {
 
 	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
 	    M_WAITOK | M_ZERO));
 }
 
 static struct pci_devinfo *
 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
     uint16_t vid, uint16_t did)
 {
 	struct pci_devinfo *devlist_entry;
 	pcicfgregs *cfg;
 
 	devlist_entry = PCI_ALLOC_DEVINFO(bus);
 
 	cfg = &devlist_entry->cfg;
 
 	cfg->domain		= d;
 	cfg->bus		= b;
 	cfg->slot		= s;
 	cfg->func		= f;
 	cfg->vendor		= vid;
 	cfg->device		= did;
 	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
 	cfg->statreg		= REG(PCIR_STATUS, 2);
 	cfg->baseclass		= REG(PCIR_CLASS, 1);
 	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
 	cfg->progif		= REG(PCIR_PROGIF, 1);
 	cfg->revid		= REG(PCIR_REVID, 1);
 	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
 	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
 	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
 	cfg->intpin		= REG(PCIR_INTPIN, 1);
 	cfg->intline		= REG(PCIR_INTLINE, 1);
 
 	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
 	cfg->hdrtype		&= ~PCIM_MFDEV;
 	STAILQ_INIT(&cfg->maps);
 
 	cfg->iov		= NULL;
 
 	pci_fixancient(cfg);
 	pci_hdrtypedata(pcib, b, s, f, cfg);
 
 	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
 		pci_read_cap(pcib, cfg);
 
 	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
 
 	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
 	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
 	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
 	devlist_entry->conf.pc_sel.pc_func = cfg->func;
 	devlist_entry->conf.pc_hdr = cfg->hdrtype;
 
 	devlist_entry->conf.pc_subvendor = cfg->subvendor;
 	devlist_entry->conf.pc_subdevice = cfg->subdevice;
 	devlist_entry->conf.pc_vendor = cfg->vendor;
 	devlist_entry->conf.pc_device = cfg->device;
 
 	devlist_entry->conf.pc_class = cfg->baseclass;
 	devlist_entry->conf.pc_subclass = cfg->subclass;
 	devlist_entry->conf.pc_progif = cfg->progif;
 	devlist_entry->conf.pc_revid = cfg->revid;
 
 	pci_numdevs++;
 	pci_generation++;
 
 	return (devlist_entry);
 }
 #undef REG
 
 static void
 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
 {
 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
     cfg->ea.ea_location + (n), w)
 	int num_ent;
 	int ptr;
 	int a, b;
 	uint32_t val;
 	int ent_size;
 	uint32_t dw[4];
 	uint64_t base, max_offset;
 	struct pci_ea_entry *eae;
 
 	if (cfg->ea.ea_location == 0)
 		return;
 
 	STAILQ_INIT(&cfg->ea.ea_entries);
 
 	/* Determine the number of entries */
 	num_ent = REG(PCIR_EA_NUM_ENT, 2);
 	num_ent &= PCIM_EA_NUM_ENT_MASK;
 
 	/* Find the first entry to care of */
 	ptr = PCIR_EA_FIRST_ENT;
 
 	/* Skip DWORD 2 for type 1 functions */
 	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
 		ptr += 4;
 
 	for (a = 0; a < num_ent; a++) {
 		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
 		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
 
 		/* Read a number of dwords in the entry */
 		val = REG(ptr, 4);
 		ptr += 4;
 		ent_size = (val & PCIM_EA_ES);
 
 		for (b = 0; b < ent_size; b++) {
 			dw[b] = REG(ptr, 4);
 			ptr += 4;
 		}
 
 		eae->eae_flags = val;
 		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
 
 		base = dw[0] & PCIM_EA_FIELD_MASK;
 		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
 		b = 2;
 		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
 			base |= (uint64_t)dw[b] << 32UL;
 			b++;
 		}
 		if (((dw[1] & PCIM_EA_IS_64) != 0)
 		    && (b < ent_size)) {
 			max_offset |= (uint64_t)dw[b] << 32UL;
 			b++;
 		}
 
 		eae->eae_base = base;
 		eae->eae_max_offset = max_offset;
 
 		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
 
 		if (bootverbose) {
 			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
 			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
 			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
 		}
 	}
 }
 #undef REG
 
 static void
 pci_read_cap(device_t pcib, pcicfgregs *cfg)
 {
 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
 #define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
 	uint64_t addr;
 #endif
 	uint32_t val;
 	int	ptr, nextptr, ptrptr;
 
 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
 	case PCIM_HDRTYPE_NORMAL:
 	case PCIM_HDRTYPE_BRIDGE:
 		ptrptr = PCIR_CAP_PTR;
 		break;
 	case PCIM_HDRTYPE_CARDBUS:
 		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
 		break;
 	default:
 		return;		/* no extended capabilities support */
 	}
 	nextptr = REG(ptrptr, 1);	/* sanity check? */
 
 	/*
 	 * Read capability entries.
 	 */
 	while (nextptr != 0) {
 		/* Sanity check */
 		if (nextptr > 255) {
 			printf("illegal PCI extended capability offset %d\n",
 			    nextptr);
 			return;
 		}
 		/* Find the next entry */
 		ptr = nextptr;
 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
 
 		/* Process this entry */
 		switch (REG(ptr + PCICAP_ID, 1)) {
 		case PCIY_PMG:		/* PCI power management */
 			if (cfg->pp.pp_cap == 0) {
 				cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
 				cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
 				cfg->pp.pp_bse = ptr + PCIR_POWER_BSE;
 				if ((nextptr - ptr) > PCIR_POWER_DATA)
 					cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
 			}
 			break;
 		case PCIY_HT:		/* HyperTransport */
 			/* Determine HT-specific capability type. */
 			val = REG(ptr + PCIR_HT_COMMAND, 2);
 
 			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
 				cfg->ht.ht_slave = ptr;
 
 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
 			switch (val & PCIM_HTCMD_CAP_MASK) {
 			case PCIM_HTCAP_MSI_MAPPING:
 				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
 					/* Sanity check the mapping window. */
 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
 					    4);
 					addr <<= 32;
 					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
 					    4);
 					if (addr != MSI_INTEL_ADDR_BASE)
 						device_printf(pcib,
 	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
 						    cfg->domain, cfg->bus,
 						    cfg->slot, cfg->func,
 						    (long long)addr);
 				} else
 					addr = MSI_INTEL_ADDR_BASE;
 
 				cfg->ht.ht_msimap = ptr;
 				cfg->ht.ht_msictrl = val;
 				cfg->ht.ht_msiaddr = addr;
 				break;
 			}
 #endif
 			break;
 		case PCIY_MSI:		/* PCI MSI */
 			cfg->msi.msi_location = ptr;
 			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
 			cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
 						     PCIM_MSICTRL_MMC_MASK)>>1);
 			break;
 		case PCIY_MSIX:		/* PCI MSI-X */
 			cfg->msix.msix_location = ptr;
 			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
 			cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
 			    PCIM_MSIXCTRL_TABLE_SIZE) + 1;
 			val = REG(ptr + PCIR_MSIX_TABLE, 4);
 			cfg->msix.msix_table_bar = PCIR_BAR(val &
 			    PCIM_MSIX_BIR_MASK);
 			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
 			val = REG(ptr + PCIR_MSIX_PBA, 4);
 			cfg->msix.msix_pba_bar = PCIR_BAR(val &
 			    PCIM_MSIX_BIR_MASK);
 			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
 			break;
 		case PCIY_VPD:		/* PCI Vital Product Data */
 			cfg->vpd.vpd_reg = ptr;
 			break;
 		case PCIY_SUBVENDOR:
 			/* Should always be true. */
 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
 			    PCIM_HDRTYPE_BRIDGE) {
 				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
 				cfg->subvendor = val & 0xffff;
 				cfg->subdevice = val >> 16;
 			}
 			break;
 		case PCIY_PCIX:		/* PCI-X */
 			/*
 			 * Assume we have a PCI-X chipset if we have
 			 * at least one PCI-PCI bridge with a PCI-X
 			 * capability.  Note that some systems with
 			 * PCI-express or HT chipsets might match on
 			 * this check as well.
 			 */
 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
 			    PCIM_HDRTYPE_BRIDGE)
 				pcix_chipset = 1;
 			cfg->pcix.pcix_location = ptr;
 			break;
 		case PCIY_EXPRESS:	/* PCI-express */
 			/*
 			 * Assume we have a PCI-express chipset if we have
 			 * at least one PCI-express device.
 			 */
 			pcie_chipset = 1;
 			cfg->pcie.pcie_location = ptr;
 			val = REG(ptr + PCIER_FLAGS, 2);
 			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
 			break;
 		case PCIY_EA:		/* Enhanced Allocation */
 			cfg->ea.ea_location = ptr;
 			pci_ea_fill_info(pcib, cfg);
 			break;
 		default:
 			break;
 		}
 	}
 
 #if defined(__powerpc__)
 	/*
 	 * Enable the MSI mapping window for all HyperTransport
 	 * slaves.  PCI-PCI bridges have their windows enabled via
 	 * PCIB_MAP_MSI().
 	 */
 	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
 	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
 		device_printf(pcib,
 	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
 		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
 		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
 		     2);
 	}
 #endif
 /* REG and WREG use carry through to next functions */
 }
 
 /*
  * PCI Vital Product Data
  */
 
 #define	PCI_VPD_TIMEOUT		1000000
 
 static int
 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
 {
 	int count = PCI_VPD_TIMEOUT;
 
 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
 
 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
 
 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
 		if (--count < 0)
 			return (ENXIO);
 		DELAY(1);	/* limit looping */
 	}
 	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
 
 	return (0);
 }
 
 #if 0
 static int
 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
 {
 	int count = PCI_VPD_TIMEOUT;
 
 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
 
 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
 		if (--count < 0)
 			return (ENXIO);
 		DELAY(1);	/* limit looping */
 	}
 
 	return (0);
 }
 #endif
 
 #undef PCI_VPD_TIMEOUT
 
 struct vpd_readstate {
 	device_t	pcib;
 	pcicfgregs	*cfg;
 	uint32_t	val;
 	int		bytesinval;
 	int		off;
 	uint8_t		cksum;
 };
 
 /* return 0 and one byte in *data if no read error, -1 else */
 static int
 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
 {
 	uint32_t reg;
 	uint8_t byte;
 
 	if (vrs->bytesinval == 0) {
 		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
 			return (-1);
 		vrs->val = le32toh(reg);
 		vrs->off += 4;
 		byte = vrs->val & 0xff;
 		vrs->bytesinval = 3;
 	} else {
 		vrs->val = vrs->val >> 8;
 		byte = vrs->val & 0xff;
 		vrs->bytesinval--;
 	}
 
 	vrs->cksum += byte;
 	*data = byte;
 	return (0);
 }
 
 /* return 0 on match, -1 and "unget" byte on no match */
 static int
 vpd_expectbyte(struct vpd_readstate *vrs, uint8_t expected)
 {
 	uint8_t data;
 
 	if (vpd_nextbyte(vrs, &data) != 0)
 		return (-1);
 
 	if (data == expected)
 		return (0);
 
 	vrs->cksum -= data;
 	vrs->val = (vrs->val << 8) + data;
 	vrs->bytesinval++;
 	return (-1);
 }
 
 /* return size if tag matches, -1 on no match, -2 on read error */
 static int
 vpd_read_tag_size(struct vpd_readstate *vrs, uint8_t vpd_tag)
 {
 	uint8_t byte1, byte2;
 
 	if (vpd_expectbyte(vrs, vpd_tag) != 0)
 		return (-1);
 
 	if ((vpd_tag & 0x80) == 0)
 		return (vpd_tag & 0x07);
 
 	if (vpd_nextbyte(vrs, &byte1) != 0)
 		return (-2);
 	if (vpd_nextbyte(vrs, &byte2) != 0)
 		return (-2);
 
 	return ((byte2 << 8) + byte1);
 }
 
 /* (re)allocate buffer in multiples of 8 elements */
 static void*
 alloc_buffer(void* buffer, size_t element_size, int needed)
 {
 	int alloc, new_alloc;
 
 	alloc = roundup2(needed, 8);
 	new_alloc = roundup2(needed + 1, 8);
 	if (alloc != new_alloc) {
 		buffer = reallocf(buffer,
 		    new_alloc * element_size, M_DEVBUF, M_WAITOK | M_ZERO);
 	}
 
 	return (buffer);
 }
 
 /* read VPD keyword and return element size, return -1 on read error */
 static int
 vpd_read_elem_head(struct vpd_readstate *vrs, char keyword[2])
 {
 	uint8_t data;
 
 	if (vpd_nextbyte(vrs, &keyword[0]) != 0)
 		return (-1);
 	if (vpd_nextbyte(vrs, &keyword[1]) != 0)
 		return (-1);
 	if (vpd_nextbyte(vrs, &data) != 0)
 		return (-1);
 
 	return (data);
 }
 
 /* read VPD data element of given size into allocated buffer */
 static char *
 vpd_read_value(struct vpd_readstate *vrs, int size)
 {
 	int i;
 	char char1;
 	char *value;
 
 	value = malloc(size + 1, M_DEVBUF, M_WAITOK);
 	for (i = 0; i < size; i++) {
 		if (vpd_nextbyte(vrs, &char1) != 0) {
 			free(value, M_DEVBUF);
 			return (NULL);
 		}
 		value[i] = char1;
 	}
 	value[size] = '\0';
 
 	return (value);
 }
 
 /* read VPD into *keyword and *value, return length of data element */
 static int
 vpd_read_elem_data(struct vpd_readstate *vrs, char keyword[2], char **value, int maxlen)
 {
 	int len;
 
 	len = vpd_read_elem_head(vrs, keyword);
 	if (len < 0 || len > maxlen)
 		return (-1);
 	*value = vpd_read_value(vrs, len);
 
 	return (len);
 }
 
 /* subtract all data following first byte from checksum of RV element */
 static void
 vpd_fixup_cksum(struct vpd_readstate *vrs, char *rvstring, int len)
 {
 	int i;
 	uint8_t fixup;
 
 	fixup = 0;
 	for (i = 1; i < len; i++)
 		fixup += rvstring[i];
 	vrs->cksum -= fixup;
 }
 
 /* fetch one read-only element and return size of heading + data */
 static int
 next_vpd_ro_elem(struct vpd_readstate *vrs, int maxsize)
 {
 	struct pcicfg_vpd *vpd;
 	pcicfgregs *cfg;
 	struct vpd_readonly *vpd_ros;
 	int len;
 
 	cfg = vrs->cfg;
 	vpd = &cfg->vpd;
 
 	if (maxsize < 3)
 		return (-1);
 	vpd->vpd_ros = alloc_buffer(vpd->vpd_ros, sizeof(*vpd->vpd_ros), vpd->vpd_rocnt);
 	vpd_ros = &vpd->vpd_ros[vpd->vpd_rocnt];
 	maxsize -= 3;
 	len = vpd_read_elem_data(vrs, vpd_ros->keyword, &vpd_ros->value, maxsize);
 	if (vpd_ros->value == NULL)
 		return (-1);
 	vpd_ros->len = len;
 	if (vpd_ros->keyword[0] == 'R' && vpd_ros->keyword[1] == 'V') {
 		vpd_fixup_cksum(vrs, vpd_ros->value, len);
 		if (vrs->cksum != 0) {
 			pci_printf(cfg,
 			    "invalid VPD checksum %#hhx\n", vrs->cksum);
 			return (-1);
 		}
 	}
 	vpd->vpd_rocnt++;
 
 	return (len + 3);
 }
 
 /* fetch one writable element and return size of heading + data */
 static int
 next_vpd_rw_elem(struct vpd_readstate *vrs, int maxsize)
 {
 	struct pcicfg_vpd *vpd;
 	pcicfgregs *cfg;
 	struct vpd_write *vpd_w;
 	int len;
 
 	cfg = vrs->cfg;
 	vpd = &cfg->vpd;
 
 	if (maxsize < 3)
 		return (-1);
 	vpd->vpd_w = alloc_buffer(vpd->vpd_w, sizeof(*vpd->vpd_w), vpd->vpd_wcnt);
 	if (vpd->vpd_w == NULL) {
 		pci_printf(cfg, "out of memory");
 		return (-1);
 	}
 	vpd_w = &vpd->vpd_w[vpd->vpd_wcnt];
 	maxsize -= 3;
 	vpd_w->start = vrs->off + 3 - vrs->bytesinval;
 	len = vpd_read_elem_data(vrs, vpd_w->keyword, &vpd_w->value, maxsize);
 	if (vpd_w->value == NULL)
 		return (-1);
 	vpd_w->len = len;
 	vpd->vpd_wcnt++;
 
 	return (len + 3);
 }
 
 /* free all memory allocated for VPD data */
 static void
 vpd_free(struct pcicfg_vpd *vpd)
 {
 	int i;
 
 	free(vpd->vpd_ident, M_DEVBUF);
 	for (i = 0; i < vpd->vpd_rocnt; i++)
 		free(vpd->vpd_ros[i].value, M_DEVBUF);
 	free(vpd->vpd_ros, M_DEVBUF);
 	vpd->vpd_rocnt = 0;
 	for (i = 0; i < vpd->vpd_wcnt; i++)
 		free(vpd->vpd_w[i].value, M_DEVBUF);
 	free(vpd->vpd_w, M_DEVBUF);
 	vpd->vpd_wcnt = 0;
 }
 
 #define VPD_TAG_END	((0x0f << 3) | 0)	/* small tag, len == 0 */
 #define VPD_TAG_IDENT	(0x02 | 0x80)		/* large tag */
 #define VPD_TAG_RO	(0x10 | 0x80)		/* large tag */
 #define VPD_TAG_RW	(0x11 | 0x80)		/* large tag */
 
 static int
 pci_parse_vpd(device_t pcib, pcicfgregs *cfg)
 {
 	struct vpd_readstate vrs;
 	int cksumvalid;
 	int size, elem_size;
 
 	/* init vpd reader */
 	vrs.bytesinval = 0;
 	vrs.off = 0;
 	vrs.pcib = pcib;
 	vrs.cfg = cfg;
 	vrs.cksum = 0;
 
 	/* read VPD ident element - mandatory */
 	size = vpd_read_tag_size(&vrs, VPD_TAG_IDENT);
 	if (size <= 0) {
 		pci_printf(cfg, "no VPD ident found\n");
 		return (0);
 	}
 	cfg->vpd.vpd_ident = vpd_read_value(&vrs, size);
 	if (cfg->vpd.vpd_ident == NULL) {
 		pci_printf(cfg, "error accessing VPD ident data\n");
 		return (0);
 	}
 
 	/* read VPD RO elements - mandatory */
 	size = vpd_read_tag_size(&vrs, VPD_TAG_RO);
 	if (size <= 0) {
 		pci_printf(cfg, "no read-only VPD data found\n");
 		return (0);
 	}
 	while (size > 0) {
 		elem_size = next_vpd_ro_elem(&vrs, size);
 		if (elem_size < 0) {
 			pci_printf(cfg, "error accessing read-only VPD data\n");
 			return (-1);
 		}
 		size -= elem_size;
 	}
 	cksumvalid = (vrs.cksum == 0);
 	if (!cksumvalid)
 		return (-1);
 
 	/* read VPD RW elements - optional */
 	size = vpd_read_tag_size(&vrs, VPD_TAG_RW);
 	if (size == -2)
 		return (-1);
 	while (size > 0) {
 		elem_size = next_vpd_rw_elem(&vrs, size);
 		if (elem_size < 0) {
 			pci_printf(cfg, "error accessing writeable VPD data\n");
 			return (-1);
 		}
 		size -= elem_size;
 	}
 
 	/* read empty END tag - mandatory */
 	size = vpd_read_tag_size(&vrs, VPD_TAG_END);
 	if (size != 0) {
 		pci_printf(cfg, "No valid VPD end tag found\n");
 	}
 	return (0);
 }
 
 static void
 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
 {
 	int status;
 
 	status = pci_parse_vpd(pcib, cfg);
 	if (status < 0)
 		vpd_free(&cfg->vpd);
 	cfg->vpd.vpd_cached = 1;
 #undef REG
 #undef WREG
 }
 
 int
 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 
 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
 		pci_read_vpd(device_get_parent(dev), cfg);
 
 	*identptr = cfg->vpd.vpd_ident;
 
 	if (*identptr == NULL)
 		return (ENXIO);
 
 	return (0);
 }
 
 int
 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
 	const char **vptr)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 	int i;
 
 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
 		pci_read_vpd(device_get_parent(dev), cfg);
 
 	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
 		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
 		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
 			*vptr = cfg->vpd.vpd_ros[i].value;
 			return (0);
 		}
 
 	*vptr = NULL;
 	return (ENXIO);
 }
 
 struct pcicfg_vpd *
 pci_fetch_vpd_list(device_t dev)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	pcicfgregs *cfg = &dinfo->cfg;
 
 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
 		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
 	return (&cfg->vpd);
 }
 
 /*
  * Find the requested HyperTransport capability and return the offset
  * in configuration space via the pointer provided.  The function
  * returns 0 on success and an error code otherwise.
  */
 int
 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
 {
 	int ptr, error;
 	uint16_t val;
 
 	error = pci_find_cap(child, PCIY_HT, &ptr);
 	if (error)
 		return (error);
 
 	/*
 	 * Traverse the capabilities list checking each HT capability
 	 * to see if it matches the requested HT capability.
 	 */
 	for (;;) {
 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
 		if (capability == PCIM_HTCAP_SLAVE ||
 		    capability == PCIM_HTCAP_HOST)
 			val &= 0xe000;
 		else
 			val &= PCIM_HTCMD_CAP_MASK;
 		if (val == capability) {
 			if (capreg != NULL)
 				*capreg = ptr;
 			return (0);
 		}
 
 		/* Skip to the next HT capability. */
 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
 			break;
 	}
 
 	return (ENOENT);
 }
 
 /*
  * Find the next requested HyperTransport capability after start and return
  * the offset in configuration space via the pointer provided.  The function
  * returns 0 on success and an error code otherwise.
  */
 int
 pci_find_next_htcap_method(device_t dev, device_t child, int capability,
     int start, int *capreg)
 {
 	int ptr;
 	uint16_t val;
 
 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
 	    ("start capability is not HyperTransport capability"));
 	ptr = start;
 
 	/*
 	 * Traverse the capabilities list checking each HT capability
 	 * to see if it matches the requested HT capability.
 	 */
 	for (;;) {
 		/* Skip to the next HT capability. */
 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
 			break;
 
 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
 		if (capability == PCIM_HTCAP_SLAVE ||
 		    capability == PCIM_HTCAP_HOST)
 			val &= 0xe000;
 		else
 			val &= PCIM_HTCMD_CAP_MASK;
 		if (val == capability) {
 			if (capreg != NULL)
 				*capreg = ptr;
 			return (0);
 		}
 	}
 
 	return (ENOENT);
 }
 
 /*
  * Find the requested capability and return the offset in
  * configuration space via the pointer provided.  The function returns
  * 0 on success and an error code otherwise.
  */
 int
 pci_find_cap_method(device_t dev, device_t child, int capability,
     int *capreg)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 	uint32_t status;
 	uint8_t ptr;
 
 	/*
 	 * Check the CAP_LIST bit of the PCI status register first.
 	 */
 	status = pci_read_config(child, PCIR_STATUS, 2);
 	if (!(status & PCIM_STATUS_CAPPRESENT))
 		return (ENXIO);
 
 	/*
 	 * Determine the start pointer of the capabilities list.
 	 */
 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
 	case PCIM_HDRTYPE_NORMAL:
 	case PCIM_HDRTYPE_BRIDGE:
 		ptr = PCIR_CAP_PTR;
 		break;
 	case PCIM_HDRTYPE_CARDBUS:
 		ptr = PCIR_CAP_PTR_2;
 		break;
 	default:
 		/* XXX: panic? */
 		return (ENXIO);		/* no extended capabilities support */
 	}
 	ptr = pci_read_config(child, ptr, 1);
 
 	/*
 	 * Traverse the capabilities list.
 	 */
 	while (ptr != 0) {
 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
 			if (capreg != NULL)
 				*capreg = ptr;
 			return (0);
 		}
 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
 	}
 
 	return (ENOENT);
 }
 
 /*
  * Find the next requested capability after start and return the offset in
  * configuration space via the pointer provided.  The function returns
  * 0 on success and an error code otherwise.
  */
 int
 pci_find_next_cap_method(device_t dev, device_t child, int capability,
     int start, int *capreg)
 {
 	uint8_t ptr;
 
 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
 	    ("start capability is not expected capability"));
 
 	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
 	while (ptr != 0) {
 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
 			if (capreg != NULL)
 				*capreg = ptr;
 			return (0);
 		}
 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
 	}
 
 	return (ENOENT);
 }
 
 /*
  * Find the requested extended capability and return the offset in
  * configuration space via the pointer provided.  The function returns
  * 0 on success and an error code otherwise.
  */
 int
 pci_find_extcap_method(device_t dev, device_t child, int capability,
     int *capreg)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 	uint32_t ecap;
 	uint16_t ptr;
 
 	/* Only supported for PCI-express devices. */
 	if (cfg->pcie.pcie_location == 0)
 		return (ENXIO);
 
 	ptr = PCIR_EXTCAP;
 	ecap = pci_read_config(child, ptr, 4);
 	if (ecap == 0xffffffff || ecap == 0)
 		return (ENOENT);
 	for (;;) {
 		if (PCI_EXTCAP_ID(ecap) == capability) {
 			if (capreg != NULL)
 				*capreg = ptr;
 			return (0);
 		}
 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
 		if (ptr == 0)
 			break;
 		ecap = pci_read_config(child, ptr, 4);
 	}
 
 	return (ENOENT);
 }
 
 /*
  * Find the next requested extended capability after start and return the
  * offset in configuration space via the pointer provided.  The function
  * returns 0 on success and an error code otherwise.
  */
 int
 pci_find_next_extcap_method(device_t dev, device_t child, int capability,
     int start, int *capreg)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 	uint32_t ecap;
 	uint16_t ptr;
 
 	/* Only supported for PCI-express devices. */
 	if (cfg->pcie.pcie_location == 0)
 		return (ENXIO);
 
 	ecap = pci_read_config(child, start, 4);
 	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
 	    ("start extended capability is not expected capability"));
 	ptr = PCI_EXTCAP_NEXTPTR(ecap);
 	while (ptr != 0) {
 		ecap = pci_read_config(child, ptr, 4);
 		if (PCI_EXTCAP_ID(ecap) == capability) {
 			if (capreg != NULL)
 				*capreg = ptr;
 			return (0);
 		}
 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
 	}
 
 	return (ENOENT);
 }
 
 /*
  * Support for MSI-X message interrupts.
  */
 static void
 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
 	uint32_t offset;
 
 	KASSERT(msix->msix_table_len > index, ("bogus index"));
 	offset = msix->msix_table_offset + index * 16;
 	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
 	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
 	bus_write_4(msix->msix_table_res, offset + 8, data);
 }
 
 void
 pci_enable_msix_method(device_t dev, device_t child, u_int index,
     uint64_t address, uint32_t data)
 {
 
 	if (pci_msix_rewrite_table) {
 		struct pci_devinfo *dinfo = device_get_ivars(child);
 		struct pcicfg_msix *msix = &dinfo->cfg.msix;
 
 		/*
 		 * Some VM hosts require MSIX to be disabled in the
 		 * control register before updating the MSIX table
 		 * entries are allowed. It is not enough to only
 		 * disable MSIX while updating a single entry. MSIX
 		 * must be disabled while updating all entries in the
 		 * table.
 		 */
 		pci_write_config(child,
 		    msix->msix_location + PCIR_MSIX_CTRL,
 		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
 		pci_resume_msix(child);
 	} else
 		pci_write_msix_entry(child, index, address, data);
 
 	/* Enable MSI -> HT mapping. */
 	pci_ht_map_msi(child, address);
 }
 
 void
 pci_mask_msix(device_t dev, u_int index)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
 	uint32_t offset, val;
 
 	KASSERT(msix->msix_msgnum > index, ("bogus index"));
 	offset = msix->msix_table_offset + index * 16 + 12;
 	val = bus_read_4(msix->msix_table_res, offset);
 	val |= PCIM_MSIX_VCTRL_MASK;
 
 	/*
 	 * Some devices (e.g. Samsung PM961) do not support reads of this
 	 * register, so always write the new value.
 	 */
 	bus_write_4(msix->msix_table_res, offset, val);
 }
 
 void
 pci_unmask_msix(device_t dev, u_int index)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
 	uint32_t offset, val;
 
 	KASSERT(msix->msix_table_len > index, ("bogus index"));
 	offset = msix->msix_table_offset + index * 16 + 12;
 	val = bus_read_4(msix->msix_table_res, offset);
 	val &= ~PCIM_MSIX_VCTRL_MASK;
 
 	/*
 	 * Some devices (e.g. Samsung PM961) do not support reads of this
 	 * register, so always write the new value.
 	 */
 	bus_write_4(msix->msix_table_res, offset, val);
 }
 
 int
 pci_pending_msix(device_t dev, u_int index)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
 	uint32_t offset, bit;
 
 	KASSERT(msix->msix_table_len > index, ("bogus index"));
 	offset = msix->msix_pba_offset + (index / 32) * 4;
 	bit = 1 << index % 32;
 	return (bus_read_4(msix->msix_pba_res, offset) & bit);
 }
 
 /*
  * Restore MSI-X registers and table during resume.  If MSI-X is
  * enabled then walk the virtual table to restore the actual MSI-X
  * table.
  */
 static void
 pci_resume_msix(device_t dev)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
 	struct msix_table_entry *mte;
 	struct msix_vector *mv;
 	int i;
 
 	if (msix->msix_alloc > 0) {
 		/* First, mask all vectors. */
 		for (i = 0; i < msix->msix_msgnum; i++)
 			pci_mask_msix(dev, i);
 
 		/* Second, program any messages with at least one handler. */
 		for (i = 0; i < msix->msix_table_len; i++) {
 			mte = &msix->msix_table[i];
 			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
 				continue;
 			mv = &msix->msix_vectors[mte->mte_vector - 1];
 			pci_write_msix_entry(dev, i, mv->mv_address,
 			    mv->mv_data);
 			pci_unmask_msix(dev, i);
 		}
 	}
 	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
 	    msix->msix_ctrl, 2);
 }
 
 /*
  * Attempt to allocate *count MSI-X messages.  The actual number allocated is
  * returned in *count.  After this function returns, each message will be
  * available to the driver as SYS_RES_IRQ resources starting at rid 1.
  */
 int
 pci_alloc_msix_method(device_t dev, device_t child, int *count)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 	struct resource_list_entry *rle;
 	int actual, error, i, irq, max;
 
 	/* Don't let count == 0 get us into trouble. */
 	if (*count == 0)
 		return (EINVAL);
 
 	/* If rid 0 is allocated, then fail. */
 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
 	if (rle != NULL && rle->res != NULL)
 		return (ENXIO);
 
 	/* Already have allocated messages? */
 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
 		return (ENXIO);
 
 	/* If MSI-X is blacklisted for this system, fail. */
 	if (pci_msix_blacklisted())
 		return (ENXIO);
 
 	/* MSI-X capability present? */
 	if (cfg->msix.msix_location == 0 || !pci_do_msix)
 		return (ENODEV);
 
 	/* Make sure the appropriate BARs are mapped. */
 	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
 	    cfg->msix.msix_table_bar);
 	if (rle == NULL || rle->res == NULL ||
 	    !(rman_get_flags(rle->res) & RF_ACTIVE))
 		return (ENXIO);
 	cfg->msix.msix_table_res = rle->res;
 	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
 		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
 		    cfg->msix.msix_pba_bar);
 		if (rle == NULL || rle->res == NULL ||
 		    !(rman_get_flags(rle->res) & RF_ACTIVE))
 			return (ENXIO);
 	}
 	cfg->msix.msix_pba_res = rle->res;
 
 	if (bootverbose)
 		device_printf(child,
 		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
 		    *count, cfg->msix.msix_msgnum);
 	max = min(*count, cfg->msix.msix_msgnum);
 	for (i = 0; i < max; i++) {
 		/* Allocate a message. */
 		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
 		if (error) {
 			if (i == 0)
 				return (error);
 			break;
 		}
 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
 		    irq, 1);
 	}
 	actual = i;
 
 	if (bootverbose) {
 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
 		if (actual == 1)
 			device_printf(child, "using IRQ %ju for MSI-X\n",
 			    rle->start);
 		else {
 			int run;
 
 			/*
 			 * Be fancy and try to print contiguous runs of
 			 * IRQ values as ranges.  'irq' is the previous IRQ.
 			 * 'run' is true if we are in a range.
 			 */
 			device_printf(child, "using IRQs %ju", rle->start);
 			irq = rle->start;
 			run = 0;
 			for (i = 1; i < actual; i++) {
 				rle = resource_list_find(&dinfo->resources,
 				    SYS_RES_IRQ, i + 1);
 
 				/* Still in a run? */
 				if (rle->start == irq + 1) {
 					run = 1;
 					irq++;
 					continue;
 				}
 
 				/* Finish previous range. */
 				if (run) {
 					printf("-%d", irq);
 					run = 0;
 				}
 
 				/* Start new range. */
 				printf(",%ju", rle->start);
 				irq = rle->start;
 			}
 
 			/* Unfinished range? */
 			if (run)
 				printf("-%d", irq);
 			printf(" for MSI-X\n");
 		}
 	}
 
 	/* Mask all vectors. */
 	for (i = 0; i < cfg->msix.msix_msgnum; i++)
 		pci_mask_msix(child, i);
 
 	/* Allocate and initialize vector data and virtual table. */
 	cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
 	    M_DEVBUF, M_WAITOK | M_ZERO);
 	cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
 	    M_DEVBUF, M_WAITOK | M_ZERO);
 	for (i = 0; i < actual; i++) {
 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
 		cfg->msix.msix_vectors[i].mv_irq = rle->start;
 		cfg->msix.msix_table[i].mte_vector = i + 1;
 	}
 
 	/* Update control register to enable MSI-X. */
 	cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
 	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
 	    cfg->msix.msix_ctrl, 2);
 
 	/* Update counts of alloc'd messages. */
 	cfg->msix.msix_alloc = actual;
 	cfg->msix.msix_table_len = actual;
 	*count = actual;
 	return (0);
 }
 
 /*
  * By default, pci_alloc_msix() will assign the allocated IRQ
  * resources consecutively to the first N messages in the MSI-X table.
  * However, device drivers may want to use different layouts if they
  * either receive fewer messages than they asked for, or they wish to
  * populate the MSI-X table sparsely.  This method allows the driver
  * to specify what layout it wants.  It must be called after a
  * successful pci_alloc_msix() but before any of the associated
  * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
  *
  * The 'vectors' array contains 'count' message vectors.  The array
  * maps directly to the MSI-X table in that index 0 in the array
  * specifies the vector for the first message in the MSI-X table, etc.
  * The vector value in each array index can either be 0 to indicate
  * that no vector should be assigned to a message slot, or it can be a
  * number from 1 to N (where N is the count returned from a
  * succcessful call to pci_alloc_msix()) to indicate which message
  * vector (IRQ) to be used for the corresponding message.
  *
  * On successful return, each message with a non-zero vector will have
  * an associated SYS_RES_IRQ whose rid is equal to the array index +
  * 1.  Additionally, if any of the IRQs allocated via the previous
  * call to pci_alloc_msix() are not used in the mapping, those IRQs
  * will be freed back to the system automatically.
  *
  * For example, suppose a driver has a MSI-X table with 6 messages and
  * asks for 6 messages, but pci_alloc_msix() only returns a count of
  * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
  * C.  After the call to pci_alloc_msix(), the device will be setup to
  * have an MSI-X table of ABC--- (where - means no vector assigned).
  * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
  * then the MSI-X table will look like A-AB-B, and the 'C' vector will
  * be freed back to the system.  This device will also have valid
  * SYS_RES_IRQ rids of 1, 3, 4, and 6.
  *
  * In any case, the SYS_RES_IRQ rid X will always map to the message
  * at MSI-X table index X - 1 and will only be valid if a vector is
  * assigned to that table entry.
  */
 int
 pci_remap_msix_method(device_t dev, device_t child, int count,
     const u_int *vectors)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
 	struct resource_list_entry *rle;
 	int i, irq, j, *used;
 
 	/*
 	 * Have to have at least one message in the table but the
 	 * table can't be bigger than the actual MSI-X table in the
 	 * device.
 	 */
 	if (count == 0 || count > msix->msix_msgnum)
 		return (EINVAL);
 
 	/* Sanity check the vectors. */
 	for (i = 0; i < count; i++)
 		if (vectors[i] > msix->msix_alloc)
 			return (EINVAL);
 
 	/*
 	 * Make sure there aren't any holes in the vectors to be used.
 	 * It's a big pain to support it, and it doesn't really make
 	 * sense anyway.  Also, at least one vector must be used.
 	 */
 	used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
 	    M_ZERO);
 	for (i = 0; i < count; i++)
 		if (vectors[i] != 0)
 			used[vectors[i] - 1] = 1;
 	for (i = 0; i < msix->msix_alloc - 1; i++)
 		if (used[i] == 0 && used[i + 1] == 1) {
 			free(used, M_DEVBUF);
 			return (EINVAL);
 		}
 	if (used[0] != 1) {
 		free(used, M_DEVBUF);
 		return (EINVAL);
 	}
 
 	/* Make sure none of the resources are allocated. */
 	for (i = 0; i < msix->msix_table_len; i++) {
 		if (msix->msix_table[i].mte_vector == 0)
 			continue;
 		if (msix->msix_table[i].mte_handlers > 0) {
 			free(used, M_DEVBUF);
 			return (EBUSY);
 		}
 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
 		KASSERT(rle != NULL, ("missing resource"));
 		if (rle->res != NULL) {
 			free(used, M_DEVBUF);
 			return (EBUSY);
 		}
 	}
 
 	/* Free the existing resource list entries. */
 	for (i = 0; i < msix->msix_table_len; i++) {
 		if (msix->msix_table[i].mte_vector == 0)
 			continue;
 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
 	}
 
 	/*
 	 * Build the new virtual table keeping track of which vectors are
 	 * used.
 	 */
 	free(msix->msix_table, M_DEVBUF);
 	msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
 	    M_DEVBUF, M_WAITOK | M_ZERO);
 	for (i = 0; i < count; i++)
 		msix->msix_table[i].mte_vector = vectors[i];
 	msix->msix_table_len = count;
 
 	/* Free any unused IRQs and resize the vectors array if necessary. */
 	j = msix->msix_alloc - 1;
 	if (used[j] == 0) {
 		struct msix_vector *vec;
 
 		while (used[j] == 0) {
 			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
 			    msix->msix_vectors[j].mv_irq);
 			j--;
 		}
 		vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
 		    M_WAITOK);
 		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
 		    (j + 1));
 		free(msix->msix_vectors, M_DEVBUF);
 		msix->msix_vectors = vec;
 		msix->msix_alloc = j + 1;
 	}
 	free(used, M_DEVBUF);
 
 	/* Map the IRQs onto the rids. */
 	for (i = 0; i < count; i++) {
 		if (vectors[i] == 0)
 			continue;
 		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
 		    irq, 1);
 	}
 
 	if (bootverbose) {
 		device_printf(child, "Remapped MSI-X IRQs as: ");
 		for (i = 0; i < count; i++) {
 			if (i != 0)
 				printf(", ");
 			if (vectors[i] == 0)
 				printf("---");
 			else
 				printf("%d",
 				    msix->msix_vectors[vectors[i] - 1].mv_irq);
 		}
 		printf("\n");
 	}
 
 	return (0);
 }
 
 static int
 pci_release_msix(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
 	struct resource_list_entry *rle;
 	int i;
 
 	/* Do we have any messages to release? */
 	if (msix->msix_alloc == 0)
 		return (ENODEV);
 
 	/* Make sure none of the resources are allocated. */
 	for (i = 0; i < msix->msix_table_len; i++) {
 		if (msix->msix_table[i].mte_vector == 0)
 			continue;
 		if (msix->msix_table[i].mte_handlers > 0)
 			return (EBUSY);
 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
 		KASSERT(rle != NULL, ("missing resource"));
 		if (rle->res != NULL)
 			return (EBUSY);
 	}
 
 	/* Update control register to disable MSI-X. */
 	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
 	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
 	    msix->msix_ctrl, 2);
 
 	/* Free the resource list entries. */
 	for (i = 0; i < msix->msix_table_len; i++) {
 		if (msix->msix_table[i].mte_vector == 0)
 			continue;
 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
 	}
 	free(msix->msix_table, M_DEVBUF);
 	msix->msix_table_len = 0;
 
 	/* Release the IRQs. */
 	for (i = 0; i < msix->msix_alloc; i++)
 		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
 		    msix->msix_vectors[i].mv_irq);
 	free(msix->msix_vectors, M_DEVBUF);
 	msix->msix_alloc = 0;
 	return (0);
 }
 
 /*
  * Return the max supported MSI-X messages this device supports.
  * Basically, assuming the MD code can alloc messages, this function
  * should return the maximum value that pci_alloc_msix() can return.
  * Thus, it is subject to the tunables, etc.
  */
 int
 pci_msix_count_method(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
 
 	if (pci_do_msix && msix->msix_location != 0)
 		return (msix->msix_msgnum);
 	return (0);
 }
 
 int
 pci_msix_pba_bar_method(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
 
 	if (pci_do_msix && msix->msix_location != 0)
 		return (msix->msix_pba_bar);
 	return (-1);
 }
 
 int
 pci_msix_table_bar_method(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
 
 	if (pci_do_msix && msix->msix_location != 0)
 		return (msix->msix_table_bar);
 	return (-1);
 }
 
 /*
  * HyperTransport MSI mapping control
  */
 void
 pci_ht_map_msi(device_t dev, uint64_t addr)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	struct pcicfg_ht *ht = &dinfo->cfg.ht;
 
 	if (!ht->ht_msimap)
 		return;
 
 	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
 	    ht->ht_msiaddr >> 20 == addr >> 20) {
 		/* Enable MSI -> HT mapping. */
 		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
 		    ht->ht_msictrl, 2);
 	}
 
 	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
 		/* Disable MSI -> HT mapping. */
 		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
 		    ht->ht_msictrl, 2);
 	}
 }
 
 int
 pci_get_relaxed_ordering_enabled(device_t dev)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	int cap;
 	uint16_t val;
 
 	cap = dinfo->cfg.pcie.pcie_location;
 	if (cap == 0)
 		return (0);
 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
 	val &= PCIEM_CTL_RELAXED_ORD_ENABLE;
 	return (val != 0);
 }
 
 int
 pci_get_max_payload(device_t dev)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	int cap;
 	uint16_t val;
 
 	cap = dinfo->cfg.pcie.pcie_location;
 	if (cap == 0)
 		return (0);
 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
 	val &= PCIEM_CTL_MAX_PAYLOAD;
 	val >>= 5;
 	return (1 << (val + 7));
 }
 
 int
 pci_get_max_read_req(device_t dev)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	int cap;
 	uint16_t val;
 
 	cap = dinfo->cfg.pcie.pcie_location;
 	if (cap == 0)
 		return (0);
 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
 	val &= PCIEM_CTL_MAX_READ_REQUEST;
 	val >>= 12;
 	return (1 << (val + 7));
 }
 
 int
 pci_set_max_read_req(device_t dev, int size)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	int cap;
 	uint16_t val;
 
 	cap = dinfo->cfg.pcie.pcie_location;
 	if (cap == 0)
 		return (0);
 	if (size < 128)
 		size = 128;
 	if (size > 4096)
 		size = 4096;
 	size = (1 << (fls(size) - 1));
 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
 	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
 	val |= (fls(size) - 8) << 12;
 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
 	return (size);
 }
 
 uint32_t
 pcie_read_config(device_t dev, int reg, int width)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	int cap;
 
 	cap = dinfo->cfg.pcie.pcie_location;
 	if (cap == 0) {
 		if (width == 2)
 			return (0xffff);
 		return (0xffffffff);
 	}
 
 	return (pci_read_config(dev, cap + reg, width));
 }
 
 void
 pcie_write_config(device_t dev, int reg, uint32_t value, int width)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	int cap;
 
 	cap = dinfo->cfg.pcie.pcie_location;
 	if (cap == 0)
 		return;
 	pci_write_config(dev, cap + reg, value, width);
 }
 
 /*
  * Adjusts a PCI-e capability register by clearing the bits in mask
  * and setting the bits in (value & mask).  Bits not set in mask are
  * not adjusted.
  *
  * Returns the old value on success or all ones on failure.
  */
 uint32_t
 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
     int width)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	uint32_t old, new;
 	int cap;
 
 	cap = dinfo->cfg.pcie.pcie_location;
 	if (cap == 0) {
 		if (width == 2)
 			return (0xffff);
 		return (0xffffffff);
 	}
 
 	old = pci_read_config(dev, cap + reg, width);
 	new = old & ~mask;
 	new |= (value & mask);
 	pci_write_config(dev, cap + reg, new, width);
 	return (old);
 }
 
 /*
  * Support for MSI message signalled interrupts.
  */
 void
 pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
     uint16_t data)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
 
 	/* Write data and address values. */
 	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
 	    address & 0xffffffff, 4);
 	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
 		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
 		    address >> 32, 4);
 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
 		    data, 2);
 	} else
 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
 		    2);
 
 	/* Enable MSI in the control register. */
 	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
 	    msi->msi_ctrl, 2);
 
 	/* Enable MSI -> HT mapping. */
 	pci_ht_map_msi(child, address);
 }
 
 void
 pci_disable_msi_method(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
 
 	/* Disable MSI -> HT mapping. */
 	pci_ht_map_msi(child, 0);
 
 	/* Disable MSI in the control register. */
 	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
 	    msi->msi_ctrl, 2);
 }
 
 /*
  * Restore MSI registers during resume.  If MSI is enabled then
  * restore the data and address registers in addition to the control
  * register.
  */
 static void
 pci_resume_msi(device_t dev)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
 	uint64_t address;
 	uint16_t data;
 
 	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
 		address = msi->msi_addr;
 		data = msi->msi_data;
 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
 		    address & 0xffffffff, 4);
 		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
 			pci_write_config(dev, msi->msi_location +
 			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
 			pci_write_config(dev, msi->msi_location +
 			    PCIR_MSI_DATA_64BIT, data, 2);
 		} else
 			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
 			    data, 2);
 	}
 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
 	    2);
 }
 
 static int
 pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	pcicfgregs *cfg = &dinfo->cfg;
 	struct resource_list_entry *rle;
 	struct msix_table_entry *mte;
 	struct msix_vector *mv;
 	uint64_t addr;
 	uint32_t data;
 	int error, i, j;
 
 	/*
 	 * Handle MSI first.  We try to find this IRQ among our list
 	 * of MSI IRQs.  If we find it, we request updated address and
 	 * data registers and apply the results.
 	 */
 	if (cfg->msi.msi_alloc > 0) {
 		/* If we don't have any active handlers, nothing to do. */
 		if (cfg->msi.msi_handlers == 0)
 			return (0);
 		for (i = 0; i < cfg->msi.msi_alloc; i++) {
 			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
 			    i + 1);
 			if (rle->start == irq) {
 				error = PCIB_MAP_MSI(device_get_parent(bus),
 				    dev, irq, &addr, &data);
 				if (error)
 					return (error);
 				pci_disable_msi(dev);
 				dinfo->cfg.msi.msi_addr = addr;
 				dinfo->cfg.msi.msi_data = data;
 				pci_enable_msi(dev, addr, data);
 				return (0);
 			}
 		}
 		return (ENOENT);
 	}
 
 	/*
 	 * For MSI-X, we check to see if we have this IRQ.  If we do,
 	 * we request the updated mapping info.  If that works, we go
 	 * through all the slots that use this IRQ and update them.
 	 */
 	if (cfg->msix.msix_alloc > 0) {
 		bool found = false;
 
 		for (i = 0; i < cfg->msix.msix_alloc; i++) {
 			mv = &cfg->msix.msix_vectors[i];
 			if (mv->mv_irq == irq) {
 				error = PCIB_MAP_MSI(device_get_parent(bus),
 				    dev, irq, &addr, &data);
 				if (error)
 					return (error);
 				mv->mv_address = addr;
 				mv->mv_data = data;
 				for (j = 0; j < cfg->msix.msix_table_len; j++) {
 					mte = &cfg->msix.msix_table[j];
 					if (mte->mte_vector != i + 1)
 						continue;
 					if (mte->mte_handlers == 0)
 						continue;
 					pci_mask_msix(dev, j);
 					pci_enable_msix(dev, j, addr, data);
 					pci_unmask_msix(dev, j);
 				}
 				found = true;
 			}
 		}
 		return (found ? 0 : ENOENT);
 	}
 
 	return (ENOENT);
 }
 
 /*
  * Returns true if the specified device is blacklisted because MSI
  * doesn't work.
  */
 int
 pci_msi_device_blacklisted(device_t dev)
 {
 
 	if (!pci_honor_msi_blacklist)
 		return (0);
 
 	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
 }
 
 /*
  * Determine if MSI is blacklisted globally on this system.  Currently,
  * we just check for blacklisted chipsets as represented by the
  * host-PCI bridge at device 0:0:0.  In the future, it may become
  * necessary to check other system attributes, such as the kenv values
  * that give the motherboard manufacturer and model number.
  */
 static int
 pci_msi_blacklisted(void)
 {
 	device_t dev;
 
 	if (!pci_honor_msi_blacklist)
 		return (0);
 
 	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
 	if (!(pcie_chipset || pcix_chipset)) {
 		if (vm_guest != VM_GUEST_NO) {
 			/*
 			 * Whitelist older chipsets in virtual
 			 * machines known to support MSI.
 			 */
 			dev = pci_find_bsf(0, 0, 0);
 			if (dev != NULL)
 				return (!pci_has_quirk(pci_get_devid(dev),
 					PCI_QUIRK_ENABLE_MSI_VM));
 		}
 		return (1);
 	}
 
 	dev = pci_find_bsf(0, 0, 0);
 	if (dev != NULL)
 		return (pci_msi_device_blacklisted(dev));
 	return (0);
 }
 
 /*
  * Returns true if the specified device is blacklisted because MSI-X
  * doesn't work.  Note that this assumes that if MSI doesn't work,
  * MSI-X doesn't either.
  */
 int
 pci_msix_device_blacklisted(device_t dev)
 {
 
 	if (!pci_honor_msi_blacklist)
 		return (0);
 
 	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
 		return (1);
 
 	return (pci_msi_device_blacklisted(dev));
 }
 
 /*
  * Determine if MSI-X is blacklisted globally on this system.  If MSI
  * is blacklisted, assume that MSI-X is as well.  Check for additional
  * chipsets where MSI works but MSI-X does not.
  */
 static int
 pci_msix_blacklisted(void)
 {
 	device_t dev;
 
 	if (!pci_honor_msi_blacklist)
 		return (0);
 
 	dev = pci_find_bsf(0, 0, 0);
 	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
 	    PCI_QUIRK_DISABLE_MSIX))
 		return (1);
 
 	return (pci_msi_blacklisted());
 }
 
 /*
  * Attempt to allocate *count MSI messages.  The actual number allocated is
  * returned in *count.  After this function returns, each message will be
  * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
  */
 int
 pci_alloc_msi_method(device_t dev, device_t child, int *count)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 	struct resource_list_entry *rle;
 	int actual, error, i, irqs[32];
 	uint16_t ctrl;
 
 	/* Don't let count == 0 get us into trouble. */
 	if (*count == 0)
 		return (EINVAL);
 
 	/* If rid 0 is allocated, then fail. */
 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
 	if (rle != NULL && rle->res != NULL)
 		return (ENXIO);
 
 	/* Already have allocated messages? */
 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
 		return (ENXIO);
 
 	/* If MSI is blacklisted for this system, fail. */
 	if (pci_msi_blacklisted())
 		return (ENXIO);
 
 	/* MSI capability present? */
 	if (cfg->msi.msi_location == 0 || !pci_do_msi)
 		return (ENODEV);
 
 	if (bootverbose)
 		device_printf(child,
 		    "attempting to allocate %d MSI vectors (%d supported)\n",
 		    *count, cfg->msi.msi_msgnum);
 
 	/* Don't ask for more than the device supports. */
 	actual = min(*count, cfg->msi.msi_msgnum);
 
 	/* Don't ask for more than 32 messages. */
 	actual = min(actual, 32);
 
 	/* MSI requires power of 2 number of messages. */
 	if (!powerof2(actual))
 		return (EINVAL);
 
 	for (;;) {
 		/* Try to allocate N messages. */
 		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
 		    actual, irqs);
 		if (error == 0)
 			break;
 		if (actual == 1)
 			return (error);
 
 		/* Try N / 2. */
 		actual >>= 1;
 	}
 
 	/*
 	 * We now have N actual messages mapped onto SYS_RES_IRQ
 	 * resources in the irqs[] array, so add new resources
 	 * starting at rid 1.
 	 */
 	for (i = 0; i < actual; i++)
 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
 		    irqs[i], irqs[i], 1);
 
 	if (bootverbose) {
 		if (actual == 1)
 			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
 		else {
 			int run;
 
 			/*
 			 * Be fancy and try to print contiguous runs
 			 * of IRQ values as ranges.  'run' is true if
 			 * we are in a range.
 			 */
 			device_printf(child, "using IRQs %d", irqs[0]);
 			run = 0;
 			for (i = 1; i < actual; i++) {
 				/* Still in a run? */
 				if (irqs[i] == irqs[i - 1] + 1) {
 					run = 1;
 					continue;
 				}
 
 				/* Finish previous range. */
 				if (run) {
 					printf("-%d", irqs[i - 1]);
 					run = 0;
 				}
 
 				/* Start new range. */
 				printf(",%d", irqs[i]);
 			}
 
 			/* Unfinished range? */
 			if (run)
 				printf("-%d", irqs[actual - 1]);
 			printf(" for MSI\n");
 		}
 	}
 
 	/* Update control register with actual count. */
 	ctrl = cfg->msi.msi_ctrl;
 	ctrl &= ~PCIM_MSICTRL_MME_MASK;
 	ctrl |= (ffs(actual) - 1) << 4;
 	cfg->msi.msi_ctrl = ctrl;
 	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
 
 	/* Update counts of alloc'd messages. */
 	cfg->msi.msi_alloc = actual;
 	cfg->msi.msi_handlers = 0;
 	*count = actual;
 	return (0);
 }
 
 /* Release the MSI messages associated with this device. */
 int
 pci_release_msi_method(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
 	struct resource_list_entry *rle;
 	int error, i, irqs[32];
 
 	/* Try MSI-X first. */
 	error = pci_release_msix(dev, child);
 	if (error != ENODEV)
 		return (error);
 
 	/* Do we have any messages to release? */
 	if (msi->msi_alloc == 0)
 		return (ENODEV);
 	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
 
 	/* Make sure none of the resources are allocated. */
 	if (msi->msi_handlers > 0)
 		return (EBUSY);
 	for (i = 0; i < msi->msi_alloc; i++) {
 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
 		KASSERT(rle != NULL, ("missing MSI resource"));
 		if (rle->res != NULL)
 			return (EBUSY);
 		irqs[i] = rle->start;
 	}
 
 	/* Update control register with 0 count. */
 	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
 	    ("%s: MSI still enabled", __func__));
 	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
 	    msi->msi_ctrl, 2);
 
 	/* Release the messages. */
 	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
 	for (i = 0; i < msi->msi_alloc; i++)
 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
 
 	/* Update alloc count. */
 	msi->msi_alloc = 0;
 	msi->msi_addr = 0;
 	msi->msi_data = 0;
 	return (0);
 }
 
 /*
  * Return the max supported MSI messages this device supports.
  * Basically, assuming the MD code can alloc messages, this function
  * should return the maximum value that pci_alloc_msi() can return.
  * Thus, it is subject to the tunables, etc.
  */
 int
 pci_msi_count_method(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
 
 	if (pci_do_msi && msi->msi_location != 0)
 		return (msi->msi_msgnum);
 	return (0);
 }
 
 /* free pcicfgregs structure and all depending data structures */
 
 int
 pci_freecfg(struct pci_devinfo *dinfo)
 {
 	struct devlist *devlist_head;
 	struct pci_map *pm, *next;
 
 	devlist_head = &pci_devq;
 
 	if (dinfo->cfg.vpd.vpd_reg)
 		vpd_free(&dinfo->cfg.vpd);
 
 	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
 		free(pm, M_DEVBUF);
 	}
 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
 	free(dinfo, M_DEVBUF);
 
 	/* increment the generation count */
 	pci_generation++;
 
 	/* we're losing one device */
 	pci_numdevs--;
 	return (0);
 }
 
 /*
  * PCI power manangement
  */
 int
 pci_set_powerstate_method(device_t dev, device_t child, int state)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 	uint16_t status;
 	int oldstate, highest, delay;
 
 	if (cfg->pp.pp_cap == 0)
 		return (EOPNOTSUPP);
 
 	/*
 	 * Optimize a no state change request away.  While it would be OK to
 	 * write to the hardware in theory, some devices have shown odd
 	 * behavior when going from D3 -> D3.
 	 */
 	oldstate = pci_get_powerstate(child);
 	if (oldstate == state)
 		return (0);
 
 	/*
 	 * The PCI power management specification states that after a state
 	 * transition between PCI power states, system software must
 	 * guarantee a minimal delay before the function accesses the device.
 	 * Compute the worst case delay that we need to guarantee before we
 	 * access the device.  Many devices will be responsive much more
 	 * quickly than this delay, but there are some that don't respond
 	 * instantly to state changes.  Transitions to/from D3 state require
 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
 	 * is done below with DELAY rather than a sleeper function because
 	 * this function can be called from contexts where we cannot sleep.
 	 */
 	highest = (oldstate > state) ? oldstate : state;
 	if (highest == PCI_POWERSTATE_D3)
 	    delay = 10000;
 	else if (highest == PCI_POWERSTATE_D2)
 	    delay = 200;
 	else
 	    delay = 0;
 	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
 	    & ~PCIM_PSTAT_DMASK;
 	switch (state) {
 	case PCI_POWERSTATE_D0:
 		status |= PCIM_PSTAT_D0;
 		break;
 	case PCI_POWERSTATE_D1:
 		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
 			return (EOPNOTSUPP);
 		status |= PCIM_PSTAT_D1;
 		break;
 	case PCI_POWERSTATE_D2:
 		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
 			return (EOPNOTSUPP);
 		status |= PCIM_PSTAT_D2;
 		break;
 	case PCI_POWERSTATE_D3:
 		status |= PCIM_PSTAT_D3;
 		break;
 	default:
 		return (EINVAL);
 	}
 
 	if (bootverbose)
 		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
 		    state);
 
 	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
 	if (delay)
 		DELAY(delay);
 	return (0);
 }
 
 int
 pci_get_powerstate_method(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 	uint16_t status;
 	int result;
 
 	if (cfg->pp.pp_cap != 0) {
 		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
 		switch (status & PCIM_PSTAT_DMASK) {
 		case PCIM_PSTAT_D0:
 			result = PCI_POWERSTATE_D0;
 			break;
 		case PCIM_PSTAT_D1:
 			result = PCI_POWERSTATE_D1;
 			break;
 		case PCIM_PSTAT_D2:
 			result = PCI_POWERSTATE_D2;
 			break;
 		case PCIM_PSTAT_D3:
 			result = PCI_POWERSTATE_D3;
 			break;
 		default:
 			result = PCI_POWERSTATE_UNKNOWN;
 			break;
 		}
 	} else {
 		/* No support, device is always at D0 */
 		result = PCI_POWERSTATE_D0;
 	}
 	return (result);
 }
 
 /*
  * Some convenience functions for PCI device drivers.
  */
 
 static __inline void
 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
 {
 	uint16_t	command;
 
 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
 	command |= bit;
 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
 }
 
 static __inline void
 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
 {
 	uint16_t	command;
 
 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
 	command &= ~bit;
 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
 }
 
 int
 pci_enable_busmaster_method(device_t dev, device_t child)
 {
 	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
 	return (0);
 }
 
 int
 pci_disable_busmaster_method(device_t dev, device_t child)
 {
 	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
 	return (0);
 }
 
 int
 pci_enable_io_method(device_t dev, device_t child, int space)
 {
 	uint16_t bit;
 
 	switch(space) {
 	case SYS_RES_IOPORT:
 		bit = PCIM_CMD_PORTEN;
 		break;
 	case SYS_RES_MEMORY:
 		bit = PCIM_CMD_MEMEN;
 		break;
 	default:
 		return (EINVAL);
 	}
 	pci_set_command_bit(dev, child, bit);
 	return (0);
 }
 
 int
 pci_disable_io_method(device_t dev, device_t child, int space)
 {
 	uint16_t bit;
 
 	switch(space) {
 	case SYS_RES_IOPORT:
 		bit = PCIM_CMD_PORTEN;
 		break;
 	case SYS_RES_MEMORY:
 		bit = PCIM_CMD_MEMEN;
 		break;
 	default:
 		return (EINVAL);
 	}
 	pci_clear_command_bit(dev, child, bit);
 	return (0);
 }
 
 /*
  * New style pci driver.  Parent device is either a pci-host-bridge or a
  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
  */
 
 void
 pci_print_verbose(struct pci_devinfo *dinfo)
 {
 
 	if (bootverbose) {
 		pcicfgregs *cfg = &dinfo->cfg;
 
 		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
 		    cfg->vendor, cfg->device, cfg->revid);
 		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
 		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
 		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
 		    cfg->mfdev);
 		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
 		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
 		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
 		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
 		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
 		if (cfg->intpin > 0)
 			printf("\tintpin=%c, irq=%d\n",
 			    cfg->intpin +'a' -1, cfg->intline);
 		if (cfg->pp.pp_cap) {
 			uint16_t status;
 
 			status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
 			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
 			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
 			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
 			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
 			    status & PCIM_PSTAT_DMASK);
 		}
 		if (cfg->msi.msi_location) {
 			int ctrl;
 
 			ctrl = cfg->msi.msi_ctrl;
 			printf("\tMSI supports %d message%s%s%s\n",
 			    cfg->msi.msi_msgnum,
 			    (cfg->msi.msi_msgnum == 1) ? "" : "s",
 			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
 			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
 		}
 		if (cfg->msix.msix_location) {
 			printf("\tMSI-X supports %d message%s ",
 			    cfg->msix.msix_msgnum,
 			    (cfg->msix.msix_msgnum == 1) ? "" : "s");
 			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
 				printf("in map 0x%x\n",
 				    cfg->msix.msix_table_bar);
 			else
 				printf("in maps 0x%x and 0x%x\n",
 				    cfg->msix.msix_table_bar,
 				    cfg->msix.msix_pba_bar);
 		}
 	}
 }
 
 static int
 pci_porten(device_t dev)
 {
 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
 }
 
 static int
 pci_memen(device_t dev)
 {
 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
 }
 
 void
 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
     int *bar64)
 {
 	struct pci_devinfo *dinfo;
 	pci_addr_t map, testval;
 	int ln2range;
 	uint16_t cmd;
 
 	/*
 	 * The device ROM BAR is special.  It is always a 32-bit
 	 * memory BAR.  Bit 0 is special and should not be set when
 	 * sizing the BAR.
 	 */
 	dinfo = device_get_ivars(dev);
 	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
 		map = pci_read_config(dev, reg, 4);
 		pci_write_config(dev, reg, 0xfffffffe, 4);
 		testval = pci_read_config(dev, reg, 4);
 		pci_write_config(dev, reg, map, 4);
 		*mapp = map;
 		*testvalp = testval;
 		if (bar64 != NULL)
 			*bar64 = 0;
 		return;
 	}
 
 	map = pci_read_config(dev, reg, 4);
 	ln2range = pci_maprange(map);
 	if (ln2range == 64)
 		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
 
 	/*
 	 * Disable decoding via the command register before
 	 * determining the BAR's length since we will be placing it in
 	 * a weird state.
 	 */
 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
 	pci_write_config(dev, PCIR_COMMAND,
 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
 
 	/*
 	 * Determine the BAR's length by writing all 1's.  The bottom
 	 * log_2(size) bits of the BAR will stick as 0 when we read
 	 * the value back.
 	 *
 	 * NB: according to the PCI Local Bus Specification, rev. 3.0:
 	 * "Software writes 0FFFFFFFFh to both registers, reads them back,
 	 * and combines the result into a 64-bit value." (section 6.2.5.1)
 	 *
 	 * Writes to both registers must be performed before attempting to
 	 * read back the size value.
 	 */
 	testval = 0;
 	pci_write_config(dev, reg, 0xffffffff, 4);
 	if (ln2range == 64) {
 		pci_write_config(dev, reg + 4, 0xffffffff, 4);
 		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
 	}
 	testval |= pci_read_config(dev, reg, 4);
 
 	/*
 	 * Restore the original value of the BAR.  We may have reprogrammed
 	 * the BAR of the low-level console device and when booting verbose,
 	 * we need the console device addressable.
 	 */
 	pci_write_config(dev, reg, map, 4);
 	if (ln2range == 64)
 		pci_write_config(dev, reg + 4, map >> 32, 4);
 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
 
 	*mapp = map;
 	*testvalp = testval;
 	if (bar64 != NULL)
 		*bar64 = (ln2range == 64);
 }
 
 static void
 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
 {
 	struct pci_devinfo *dinfo;
 	int ln2range;
 
 	/* The device ROM BAR is always a 32-bit memory BAR. */
 	dinfo = device_get_ivars(dev);
 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
 		ln2range = 32;
 	else
 		ln2range = pci_maprange(pm->pm_value);
 	pci_write_config(dev, pm->pm_reg, base, 4);
 	if (ln2range == 64)
 		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
 	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
 	if (ln2range == 64)
 		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
 		    pm->pm_reg + 4, 4) << 32;
 }
 
 struct pci_map *
 pci_find_bar(device_t dev, int reg)
 {
 	struct pci_devinfo *dinfo;
 	struct pci_map *pm;
 
 	dinfo = device_get_ivars(dev);
 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
 		if (pm->pm_reg == reg)
 			return (pm);
 	}
 	return (NULL);
 }
 
 struct pci_map *
 pci_first_bar(device_t dev)
 {
 	struct pci_devinfo *dinfo;
 
 	dinfo = device_get_ivars(dev);
 	return (STAILQ_FIRST(&dinfo->cfg.maps));
 }
 
 struct pci_map *
 pci_next_bar(struct pci_map *pm)
 {
 	return (STAILQ_NEXT(pm, pm_link));
 }
 
 int
 pci_bar_enabled(device_t dev, struct pci_map *pm)
 {
 	struct pci_devinfo *dinfo;
 	uint16_t cmd;
 
 	dinfo = device_get_ivars(dev);
 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
 	    !(pm->pm_value & PCIM_BIOS_ENABLE))
 		return (0);
 #ifdef PCI_IOV
 	if ((dinfo->cfg.flags & PCICFG_VF) != 0) {
 		struct pcicfg_iov *iov;
 
 		iov = dinfo->cfg.iov;
 		cmd = pci_read_config(iov->iov_pf,
 		    iov->iov_pos + PCIR_SRIOV_CTL, 2);
 		return ((cmd & PCIM_SRIOV_VF_MSE) != 0);
 	}
 #endif
 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
 		return ((cmd & PCIM_CMD_MEMEN) != 0);
 	else
 		return ((cmd & PCIM_CMD_PORTEN) != 0);
 }
 
 struct pci_map *
 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
 {
 	struct pci_devinfo *dinfo;
 	struct pci_map *pm, *prev;
 
 	dinfo = device_get_ivars(dev);
 	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
 	pm->pm_reg = reg;
 	pm->pm_value = value;
 	pm->pm_size = size;
 	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
 		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
 		    reg));
 		if (STAILQ_NEXT(prev, pm_link) == NULL ||
 		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
 			break;
 	}
 	if (prev != NULL)
 		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
 	else
 		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
 	return (pm);
 }
 
 static void
 pci_restore_bars(device_t dev)
 {
 	struct pci_devinfo *dinfo;
 	struct pci_map *pm;
 	int ln2range;
 
 	dinfo = device_get_ivars(dev);
 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
 		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
 			ln2range = 32;
 		else
 			ln2range = pci_maprange(pm->pm_value);
 		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
 		if (ln2range == 64)
 			pci_write_config(dev, pm->pm_reg + 4,
 			    pm->pm_value >> 32, 4);
 	}
 }
 
 /*
  * Add a resource based on a pci map register. Return 1 if the map
  * register is a 32bit map register or 2 if it is a 64bit register.
  */
 static int
 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
     int force, int prefetch)
 {
 	struct pci_map *pm;
 	pci_addr_t base, map, testval;
 	pci_addr_t start, end, count;
 	int barlen, basezero, flags, maprange, mapsize, type;
 	uint16_t cmd;
 	struct resource *res;
 
 	/*
 	 * The BAR may already exist if the device is a CardBus card
 	 * whose CIS is stored in this BAR.
 	 */
 	pm = pci_find_bar(dev, reg);
 	if (pm != NULL) {
 		maprange = pci_maprange(pm->pm_value);
 		barlen = maprange == 64 ? 2 : 1;
 		return (barlen);
 	}
 
 	pci_read_bar(dev, reg, &map, &testval, NULL);
 	if (PCI_BAR_MEM(map)) {
 		type = SYS_RES_MEMORY;
 		if (map & PCIM_BAR_MEM_PREFETCH)
 			prefetch = 1;
 	} else
 		type = SYS_RES_IOPORT;
 	mapsize = pci_mapsize(testval);
 	base = pci_mapbase(map);
 #ifdef __PCI_BAR_ZERO_VALID
 	basezero = 0;
 #else
 	basezero = base == 0;
 #endif
 	maprange = pci_maprange(map);
 	barlen = maprange == 64 ? 2 : 1;
 
 	/*
 	 * For I/O registers, if bottom bit is set, and the next bit up
 	 * isn't clear, we know we have a BAR that doesn't conform to the
 	 * spec, so ignore it.  Also, sanity check the size of the data
 	 * areas to the type of memory involved.  Memory must be at least
 	 * 16 bytes in size, while I/O ranges must be at least 4.
 	 */
 	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
 		return (barlen);
 	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
 	    (type == SYS_RES_IOPORT && mapsize < 2))
 		return (barlen);
 
 	/* Save a record of this BAR. */
 	pm = pci_add_bar(dev, reg, map, mapsize);
 	if (bootverbose) {
 		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
 		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
 			printf(", port disabled\n");
 		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
 			printf(", memory disabled\n");
 		else
 			printf(", enabled\n");
 	}
 
 	/*
 	 * If base is 0, then we have problems if this architecture does
 	 * not allow that.  It is best to ignore such entries for the
 	 * moment.  These will be allocated later if the driver specifically
 	 * requests them.  However, some removable buses look better when
 	 * all resources are allocated, so allow '0' to be overridden.
 	 *
 	 * Similarly treat maps whose values is the same as the test value
 	 * read back.  These maps have had all f's written to them by the
 	 * BIOS in an attempt to disable the resources.
 	 */
 	if (!force && (basezero || map == testval))
 		return (barlen);
 	if ((u_long)base != base) {
 		device_printf(bus,
 		    "pci%d:%d:%d:%d bar %#x too many address bits",
 		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
 		    pci_get_function(dev), reg);
 		return (barlen);
 	}
 
 	/*
 	 * This code theoretically does the right thing, but has
 	 * undesirable side effects in some cases where peripherals
 	 * respond oddly to having these bits enabled.  Let the user
 	 * be able to turn them off (since pci_enable_io_modes is 1 by
 	 * default).
 	 */
 	if (pci_enable_io_modes) {
 		/* Turn on resources that have been left off by a lazy BIOS */
 		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
 			cmd |= PCIM_CMD_PORTEN;
 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
 		}
 		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
 			cmd |= PCIM_CMD_MEMEN;
 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
 		}
 	} else {
 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
 			return (barlen);
 		if (type == SYS_RES_MEMORY && !pci_memen(dev))
 			return (barlen);
 	}
 
 	count = (pci_addr_t)1 << mapsize;
 	flags = RF_ALIGNMENT_LOG2(mapsize);
 	if (prefetch)
 		flags |= RF_PREFETCHABLE;
 	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
 		start = 0;	/* Let the parent decide. */
 		end = ~0;
 	} else {
 		start = base;
 		end = base + count - 1;
 	}
 	resource_list_add(rl, type, reg, start, end, count);
 
 	/*
 	 * Try to allocate the resource for this BAR from our parent
 	 * so that this resource range is already reserved.  The
 	 * driver for this device will later inherit this resource in
 	 * pci_alloc_resource().
 	 */
 	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
 	    flags);
 	if ((pci_do_realloc_bars
 		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
 	    && res == NULL && (start != 0 || end != ~0)) {
 		/*
 		 * If the allocation fails, try to allocate a resource for
 		 * this BAR using any available range.  The firmware felt
 		 * it was important enough to assign a resource, so don't
 		 * disable decoding if we can help it.
 		 */
 		resource_list_delete(rl, type, reg);
 		resource_list_add(rl, type, reg, 0, ~0, count);
 		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
 		    count, flags);
 	}
 	if (res == NULL) {
 		/*
 		 * If the allocation fails, delete the resource list entry
 		 * and disable decoding for this device.
 		 *
 		 * If the driver requests this resource in the future,
 		 * pci_reserve_map() will try to allocate a fresh
 		 * resource range.
 		 */
 		resource_list_delete(rl, type, reg);
 		pci_disable_io(dev, type);
 		if (bootverbose)
 			device_printf(bus,
 			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
 			    pci_get_domain(dev), pci_get_bus(dev),
 			    pci_get_slot(dev), pci_get_function(dev), reg);
 	} else {
 		start = rman_get_start(res);
 		pci_write_bar(dev, pm, start);
 	}
 	return (barlen);
 }
 
 /*
  * For ATA devices we need to decide early what addressing mode to use.
  * Legacy demands that the primary and secondary ATA ports sits on the
  * same addresses that old ISA hardware did. This dictates that we use
  * those addresses and ignore the BAR's if we cannot set PCI native
  * addressing mode.
  */
 static void
 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
     uint32_t prefetchmask)
 {
 	int rid, type, progif;
 #if 0
 	/* if this device supports PCI native addressing use it */
 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
 	if ((progif & 0x8a) == 0x8a) {
 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
 			printf("Trying ATA native PCI addressing mode\n");
 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
 		}
 	}
 #endif
 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
 	type = SYS_RES_IOPORT;
 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
 		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
 		    prefetchmask & (1 << 0));
 		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
 		    prefetchmask & (1 << 1));
 	} else {
 		rid = PCIR_BAR(0);
 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
 		    0x1f7, 8, 0);
 		rid = PCIR_BAR(1);
 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
 		    0x3f6, 1, 0);
 	}
 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
 		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
 		    prefetchmask & (1 << 2));
 		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
 		    prefetchmask & (1 << 3));
 	} else {
 		rid = PCIR_BAR(2);
 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
 		    0x177, 8, 0);
 		rid = PCIR_BAR(3);
 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
 		    0x376, 1, 0);
 	}
 	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
 	    prefetchmask & (1 << 4));
 	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
 	    prefetchmask & (1 << 5));
 }
 
 static void
 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	pcicfgregs *cfg = &dinfo->cfg;
 	char tunable_name[64];
 	int irq;
 
 	/* Has to have an intpin to have an interrupt. */
 	if (cfg->intpin == 0)
 		return;
 
 	/* Let the user override the IRQ with a tunable. */
 	irq = PCI_INVALID_IRQ;
 	snprintf(tunable_name, sizeof(tunable_name),
 	    "hw.pci%d.%d.%d.INT%c.irq",
 	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
 	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
 		irq = PCI_INVALID_IRQ;
 
 	/*
 	 * If we didn't get an IRQ via the tunable, then we either use the
 	 * IRQ value in the intline register or we ask the bus to route an
 	 * interrupt for us.  If force_route is true, then we only use the
 	 * value in the intline register if the bus was unable to assign an
 	 * IRQ.
 	 */
 	if (!PCI_INTERRUPT_VALID(irq)) {
 		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
 			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
 		if (!PCI_INTERRUPT_VALID(irq))
 			irq = cfg->intline;
 	}
 
 	/* If after all that we don't have an IRQ, just bail. */
 	if (!PCI_INTERRUPT_VALID(irq))
 		return;
 
 	/* Update the config register if it changed. */
 	if (irq != cfg->intline) {
 		cfg->intline = irq;
 		pci_write_config(dev, PCIR_INTLINE, irq, 1);
 	}
 
 	/* Add this IRQ as rid 0 interrupt resource. */
 	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
 }
 
 /* Perform early OHCI takeover from SMM. */
 static void
 ohci_early_takeover(device_t self)
 {
 	struct resource *res;
 	uint32_t ctl;
 	int rid;
 	int i;
 
 	rid = PCIR_BAR(0);
 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
 	if (res == NULL)
 		return;
 
 	ctl = bus_read_4(res, OHCI_CONTROL);
 	if (ctl & OHCI_IR) {
 		if (bootverbose)
 			printf("ohci early: "
 			    "SMM active, request owner change\n");
 		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
 		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
 			DELAY(1000);
 			ctl = bus_read_4(res, OHCI_CONTROL);
 		}
 		if (ctl & OHCI_IR) {
 			if (bootverbose)
 				printf("ohci early: "
 				    "SMM does not respond, resetting\n");
 			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
 		}
 		/* Disable interrupts */
 		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
 	}
 
 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
 }
 
 /* Perform early UHCI takeover from SMM. */
 static void
 uhci_early_takeover(device_t self)
 {
 	struct resource *res;
 	int rid;
 
 	/*
 	 * Set the PIRQD enable bit and switch off all the others. We don't
 	 * want legacy support to interfere with us XXX Does this also mean
 	 * that the BIOS won't touch the keyboard anymore if it is connected
 	 * to the ports of the root hub?
 	 */
 	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
 
 	/* Disable interrupts */
 	rid = PCI_UHCI_BASE_REG;
 	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
 	if (res != NULL) {
 		bus_write_2(res, UHCI_INTR, 0);
 		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
 	}
 }
 
 /* Perform early EHCI takeover from SMM. */
 static void
 ehci_early_takeover(device_t self)
 {
 	struct resource *res;
 	uint32_t cparams;
 	uint32_t eec;
 	uint8_t eecp;
 	uint8_t bios_sem;
 	uint8_t offs;
 	int rid;
 	int i;
 
 	rid = PCIR_BAR(0);
 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
 	if (res == NULL)
 		return;
 
 	cparams = bus_read_4(res, EHCI_HCCPARAMS);
 
 	/* Synchronise with the BIOS if it owns the controller. */
 	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
 	    eecp = EHCI_EECP_NEXT(eec)) {
 		eec = pci_read_config(self, eecp, 4);
 		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
 			continue;
 		}
 		bios_sem = pci_read_config(self, eecp +
 		    EHCI_LEGSUP_BIOS_SEM, 1);
 		if (bios_sem == 0) {
 			continue;
 		}
 		if (bootverbose)
 			printf("ehci early: "
 			    "SMM active, request owner change\n");
 
 		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
 
 		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
 			DELAY(1000);
 			bios_sem = pci_read_config(self, eecp +
 			    EHCI_LEGSUP_BIOS_SEM, 1);
 		}
 
 		if (bios_sem != 0) {
 			if (bootverbose)
 				printf("ehci early: "
 				    "SMM does not respond\n");
 		}
 		/* Disable interrupts */
 		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
 		bus_write_4(res, offs + EHCI_USBINTR, 0);
 	}
 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
 }
 
 /* Perform early XHCI takeover from SMM. */
 static void
 xhci_early_takeover(device_t self)
 {
 	struct resource *res;
 	uint32_t cparams;
 	uint32_t eec;
 	uint8_t eecp;
 	uint8_t bios_sem;
 	uint8_t offs;
 	int rid;
 	int i;
 
 	rid = PCIR_BAR(0);
 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
 	if (res == NULL)
 		return;
 
 	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
 
 	eec = -1;
 
 	/* Synchronise with the BIOS if it owns the controller. */
 	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
 	    eecp += XHCI_XECP_NEXT(eec) << 2) {
 		eec = bus_read_4(res, eecp);
 
 		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
 			continue;
 
 		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
 		if (bios_sem == 0)
 			continue;
 
 		if (bootverbose)
 			printf("xhci early: "
 			    "SMM active, request owner change\n");
 
 		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
 
 		/* wait a maximum of 5 second */
 
 		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
 			DELAY(1000);
 			bios_sem = bus_read_1(res, eecp +
 			    XHCI_XECP_BIOS_SEM);
 		}
 
 		if (bios_sem != 0) {
 			if (bootverbose)
 				printf("xhci early: "
 				    "SMM does not respond\n");
 		}
 
 		/* Disable interrupts */
 		offs = bus_read_1(res, XHCI_CAPLENGTH);
 		bus_write_4(res, offs + XHCI_USBCMD, 0);
 		bus_read_4(res, offs + XHCI_USBSTS);
 	}
 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
 }
 
 static void
 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
     struct resource_list *rl)
 {
 	struct resource *res;
 	char *cp;
 	rman_res_t start, end, count;
 	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
 
 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
 	case PCIM_HDRTYPE_BRIDGE:
 		sec_reg = PCIR_SECBUS_1;
 		sub_reg = PCIR_SUBBUS_1;
 		break;
 	case PCIM_HDRTYPE_CARDBUS:
 		sec_reg = PCIR_SECBUS_2;
 		sub_reg = PCIR_SUBBUS_2;
 		break;
 	default:
 		return;
 	}
 
 	/*
 	 * If the existing bus range is valid, attempt to reserve it
 	 * from our parent.  If this fails for any reason, clear the
 	 * secbus and subbus registers.
 	 *
 	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
 	 * This would at least preserve the existing sec_bus if it is
 	 * valid.
 	 */
 	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
 	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
 
 	/* Quirk handling. */
 	switch (pci_get_devid(dev)) {
 	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
 		sup_bus = pci_read_config(dev, 0x41, 1);
 		if (sup_bus != 0xff) {
 			sec_bus = sup_bus + 1;
 			sub_bus = sup_bus + 1;
 			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
 		}
 		break;
 
 	case 0x00dd10de:
 		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
 		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
 			break;
 		if (strncmp(cp, "Compal", 6) != 0) {
 			freeenv(cp);
 			break;
 		}
 		freeenv(cp);
 		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
 			break;
 		if (strncmp(cp, "08A0", 4) != 0) {
 			freeenv(cp);
 			break;
 		}
 		freeenv(cp);
 		if (sub_bus < 0xa) {
 			sub_bus = 0xa;
 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
 		}
 		break;
 	}
 
 	if (bootverbose)
 		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
 	if (sec_bus > 0 && sub_bus >= sec_bus) {
 		start = sec_bus;
 		end = sub_bus;
 		count = end - start + 1;
 
 		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
 
 		/*
 		 * If requested, clear secondary bus registers in
 		 * bridge devices to force a complete renumbering
 		 * rather than reserving the existing range.  However,
 		 * preserve the existing size.
 		 */
 		if (pci_clear_buses)
 			goto clear;
 
 		rid = 0;
 		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
 		    start, end, count, 0);
 		if (res != NULL)
 			return;
 
 		if (bootverbose)
 			device_printf(bus,
 			    "pci%d:%d:%d:%d secbus failed to allocate\n",
 			    pci_get_domain(dev), pci_get_bus(dev),
 			    pci_get_slot(dev), pci_get_function(dev));
 	}
 
 clear:
 	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
 	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
 }
 
 static struct resource *
 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
     rman_res_t end, rman_res_t count, u_int flags)
 {
 	struct pci_devinfo *dinfo;
 	pcicfgregs *cfg;
 	struct resource_list *rl;
 	struct resource *res;
 	int sec_reg, sub_reg;
 
 	dinfo = device_get_ivars(child);
 	cfg = &dinfo->cfg;
 	rl = &dinfo->resources;
 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
 	case PCIM_HDRTYPE_BRIDGE:
 		sec_reg = PCIR_SECBUS_1;
 		sub_reg = PCIR_SUBBUS_1;
 		break;
 	case PCIM_HDRTYPE_CARDBUS:
 		sec_reg = PCIR_SECBUS_2;
 		sub_reg = PCIR_SUBBUS_2;
 		break;
 	default:
 		return (NULL);
 	}
 
 	if (*rid != 0)
 		return (NULL);
 
 	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
 		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
 	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
 		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
 		    start, end, count, flags & ~RF_ACTIVE);
 		if (res == NULL) {
 			resource_list_delete(rl, PCI_RES_BUS, *rid);
 			device_printf(child, "allocating %ju bus%s failed\n",
 			    count, count == 1 ? "" : "es");
 			return (NULL);
 		}
 		if (bootverbose)
 			device_printf(child,
 			    "Lazy allocation of %ju bus%s at %ju\n", count,
 			    count == 1 ? "" : "es", rman_get_start(res));
 		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
 		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
 	}
 	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
 	    end, count, flags));
 }
 
 static int
 pci_ea_bei_to_rid(device_t dev, int bei)
 {
 #ifdef PCI_IOV
 	struct pci_devinfo *dinfo;
 	int iov_pos;
 	struct pcicfg_iov *iov;
 
 	dinfo = device_get_ivars(dev);
 	iov = dinfo->cfg.iov;
 	if (iov != NULL)
 		iov_pos = iov->iov_pos;
 	else
 		iov_pos = 0;
 #endif
 
 	/* Check if matches BAR */
 	if ((bei >= PCIM_EA_BEI_BAR_0) &&
 	    (bei <= PCIM_EA_BEI_BAR_5))
 		return (PCIR_BAR(bei));
 
 	/* Check ROM */
 	if (bei == PCIM_EA_BEI_ROM)
 		return (PCIR_BIOS);
 
 #ifdef PCI_IOV
 	/* Check if matches VF_BAR */
 	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
 	    (bei <= PCIM_EA_BEI_VF_BAR_5))
 		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
 		    iov_pos);
 #endif
 
 	return (-1);
 }
 
 int
 pci_ea_is_enabled(device_t dev, int rid)
 {
 	struct pci_ea_entry *ea;
 	struct pci_devinfo *dinfo;
 
 	dinfo = device_get_ivars(dev);
 
 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
 		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
 			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
 	}
 
 	return (0);
 }
 
 void
 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
 {
 	struct pci_ea_entry *ea;
 	struct pci_devinfo *dinfo;
 	pci_addr_t start, end, count;
 	struct resource_list *rl;
 	int type, flags, rid;
 	struct resource *res;
 	uint32_t tmp;
 #ifdef PCI_IOV
 	struct pcicfg_iov *iov;
 #endif
 
 	dinfo = device_get_ivars(dev);
 	rl = &dinfo->resources;
 	flags = 0;
 
 #ifdef PCI_IOV
 	iov = dinfo->cfg.iov;
 #endif
 
 	if (dinfo->cfg.ea.ea_location == 0)
 		return;
 
 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
 		/*
 		 * TODO: Ignore EA-BAR if is not enabled.
 		 *   Currently the EA implementation supports
 		 *   only situation, where EA structure contains
 		 *   predefined entries. In case they are not enabled
 		 *   leave them unallocated and proceed with
 		 *   a legacy-BAR mechanism.
 		 */
 		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
 			continue;
 
 		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
 		case PCIM_EA_P_MEM_PREFETCH:
 		case PCIM_EA_P_VF_MEM_PREFETCH:
 			flags = RF_PREFETCHABLE;
 			/* FALLTHROUGH */
 		case PCIM_EA_P_VF_MEM:
 		case PCIM_EA_P_MEM:
 			type = SYS_RES_MEMORY;
 			break;
 		case PCIM_EA_P_IO:
 			type = SYS_RES_IOPORT;
 			break;
 		default:
 			continue;
 		}
 
 		if (alloc_iov != 0) {
 #ifdef PCI_IOV
 			/* Allocating IOV, confirm BEI matches */
 			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
 			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
 				continue;
 #else
 			continue;
 #endif
 		} else {
 			/* Allocating BAR, confirm BEI matches */
 			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
 			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
 			    (ea->eae_bei != PCIM_EA_BEI_ROM))
 				continue;
 		}
 
 		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
 		if (rid < 0)
 			continue;
 
 		/* Skip resources already allocated by EA */
 		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
 		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
 			continue;
 
 		start = ea->eae_base;
 		count = ea->eae_max_offset + 1;
 #ifdef PCI_IOV
 		if (iov != NULL)
 			count = count * iov->iov_num_vfs;
 #endif
 		end = start + count - 1;
 		if (count == 0)
 			continue;
 
 		resource_list_add(rl, type, rid, start, end, count);
 		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
 		    flags);
 		if (res == NULL) {
 			resource_list_delete(rl, type, rid);
 
 			/*
 			 * Failed to allocate using EA, disable entry.
 			 * Another attempt to allocation will be performed
 			 * further, but this time using legacy BAR registers
 			 */
 			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
 			tmp &= ~PCIM_EA_ENABLE;
 			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
 
 			/*
 			 * Disabling entry might fail in case it is hardwired.
 			 * Read flags again to match current status.
 			 */
 			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
 
 			continue;
 		}
 
 		/* As per specification, fill BAR with zeros */
 		pci_write_config(dev, rid, 0, 4);
 	}
 }
 
 void
 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
 {
 	struct pci_devinfo *dinfo;
 	pcicfgregs *cfg;
 	struct resource_list *rl;
 	const struct pci_quirk *q;
 	uint32_t devid;
 	int i;
 
 	dinfo = device_get_ivars(dev);
 	cfg = &dinfo->cfg;
 	rl = &dinfo->resources;
 	devid = (cfg->device << 16) | cfg->vendor;
 
 	/* Allocate resources using Enhanced Allocation */
 	pci_add_resources_ea(bus, dev, 0);
 
 	/* ATA devices needs special map treatment */
 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
 		pci_ata_maps(bus, dev, rl, force, prefetchmask);
 	else
 		for (i = 0; i < cfg->nummaps;) {
 			/* Skip resources already managed by EA */
 			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
 			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
 			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
 				i++;
 				continue;
 			}
 
 			/*
 			 * Skip quirked resources.
 			 */
 			for (q = &pci_quirks[0]; q->devid != 0; q++)
 				if (q->devid == devid &&
 				    q->type == PCI_QUIRK_UNMAP_REG &&
 				    q->arg1 == PCIR_BAR(i))
 					break;
 			if (q->devid != 0) {
 				i++;
 				continue;
 			}
 			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
 			    prefetchmask & (1 << i));
 		}
 
 	/*
 	 * Add additional, quirked resources.
 	 */
 	for (q = &pci_quirks[0]; q->devid != 0; q++)
 		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
 			pci_add_map(bus, dev, q->arg1, rl, force, 0);
 
 	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
 #ifdef __PCI_REROUTE_INTERRUPT
 		/*
 		 * Try to re-route interrupts. Sometimes the BIOS or
 		 * firmware may leave bogus values in these registers.
 		 * If the re-route fails, then just stick with what we
 		 * have.
 		 */
 		pci_assign_interrupt(bus, dev, 1);
 #else
 		pci_assign_interrupt(bus, dev, 0);
 #endif
 	}
 
 	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
 	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
 		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
 			xhci_early_takeover(dev);
 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
 			ehci_early_takeover(dev);
 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
 			ohci_early_takeover(dev);
 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
 			uhci_early_takeover(dev);
 	}
 
 	/*
 	 * Reserve resources for secondary bus ranges behind bridge
 	 * devices.
 	 */
 	pci_reserve_secbus(bus, dev, cfg, rl);
 }
 
 static struct pci_devinfo *
 pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
     int slot, int func)
 {
 	struct pci_devinfo *dinfo;
 
 	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
 	if (dinfo != NULL)
 		pci_add_child(dev, dinfo);
 
 	return (dinfo);
 }
 
 void
 pci_add_children(device_t dev, int domain, int busno)
 {
 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
 	device_t pcib = device_get_parent(dev);
 	struct pci_devinfo *dinfo;
 	int maxslots;
 	int s, f, pcifunchigh;
 	uint8_t hdrtype;
 	int first_func;
 
 	/*
 	 * Try to detect a device at slot 0, function 0.  If it exists, try to
 	 * enable ARI.  We must enable ARI before detecting the rest of the
 	 * functions on this bus as ARI changes the set of slots and functions
 	 * that are legal on this bus.
 	 */
 	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
 	if (dinfo != NULL && pci_enable_ari)
 		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
 
 	/*
 	 * Start looking for new devices on slot 0 at function 1 because we
 	 * just identified the device at slot 0, function 0.
 	 */
 	first_func = 1;
 
 	maxslots = PCIB_MAXSLOTS(pcib);
 	for (s = 0; s <= maxslots; s++, first_func = 0) {
 		pcifunchigh = 0;
 		f = 0;
 		DELAY(1);
 
 		/* If function 0 is not present, skip to the next slot. */
 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
 			continue;
 		hdrtype = REG(PCIR_HDRTYPE, 1);
 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
 			continue;
 		if (hdrtype & PCIM_MFDEV)
 			pcifunchigh = PCIB_MAXFUNCS(pcib);
 		for (f = first_func; f <= pcifunchigh; f++)
 			pci_identify_function(pcib, dev, domain, busno, s, f);
 	}
 #undef REG
 }
 
 int
 pci_rescan_method(device_t dev)
 {
 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
 	device_t pcib = device_get_parent(dev);
 	device_t child, *devlist, *unchanged;
 	int devcount, error, i, j, maxslots, oldcount;
 	int busno, domain, s, f, pcifunchigh;
 	uint8_t hdrtype;
 
 	/* No need to check for ARI on a rescan. */
 	error = device_get_children(dev, &devlist, &devcount);
 	if (error)
 		return (error);
 	if (devcount != 0) {
 		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
 		    M_NOWAIT | M_ZERO);
 		if (unchanged == NULL) {
 			free(devlist, M_TEMP);
 			return (ENOMEM);
 		}
 	} else
 		unchanged = NULL;
 
 	domain = pcib_get_domain(dev);
 	busno = pcib_get_bus(dev);
 	maxslots = PCIB_MAXSLOTS(pcib);
 	for (s = 0; s <= maxslots; s++) {
 		/* If function 0 is not present, skip to the next slot. */
 		f = 0;
 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
 			continue;
 		pcifunchigh = 0;
 		hdrtype = REG(PCIR_HDRTYPE, 1);
 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
 			continue;
 		if (hdrtype & PCIM_MFDEV)
 			pcifunchigh = PCIB_MAXFUNCS(pcib);
 		for (f = 0; f <= pcifunchigh; f++) {
 			if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
 				continue;
 
 			/*
 			 * Found a valid function.  Check if a
 			 * device_t for this device already exists.
 			 */
 			for (i = 0; i < devcount; i++) {
 				child = devlist[i];
 				if (child == NULL)
 					continue;
 				if (pci_get_slot(child) == s &&
 				    pci_get_function(child) == f) {
 					unchanged[i] = child;
 					goto next_func;
 				}
 			}
 
 			pci_identify_function(pcib, dev, domain, busno, s, f);
 		next_func:;
 		}
 	}
 
 	/* Remove devices that are no longer present. */
 	for (i = 0; i < devcount; i++) {
 		if (unchanged[i] != NULL)
 			continue;
 		device_delete_child(dev, devlist[i]);
 	}
 
 	free(devlist, M_TEMP);
 	oldcount = devcount;
 
 	/* Try to attach the devices just added. */
 	error = device_get_children(dev, &devlist, &devcount);
 	if (error) {
 		free(unchanged, M_TEMP);
 		return (error);
 	}
 
 	for (i = 0; i < devcount; i++) {
 		for (j = 0; j < oldcount; j++) {
 			if (devlist[i] == unchanged[j])
 				goto next_device;
 		}
 
 		device_probe_and_attach(devlist[i]);
 	next_device:;
 	}
 
 	free(unchanged, M_TEMP);
 	free(devlist, M_TEMP);
 	return (0);
 #undef REG
 }
 
 #ifdef PCI_IOV
 device_t
 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
     uint16_t did)
 {
 	struct pci_devinfo *vf_dinfo;
 	device_t pcib;
 	int busno, slot, func;
 
 	pcib = device_get_parent(bus);
 
 	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
 
 	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
 	    slot, func, vid, did);
 
 	vf_dinfo->cfg.flags |= PCICFG_VF;
 	pci_add_child(bus, vf_dinfo);
 
 	return (vf_dinfo->cfg.dev);
 }
 
 device_t
 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
     uint16_t vid, uint16_t did)
 {
 
 	return (pci_add_iov_child(bus, pf, rid, vid, did));
 }
 #endif
 
 /*
  * For PCIe device set Max_Payload_Size to match PCIe root's.
  */
 static void
 pcie_setup_mps(device_t dev)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	device_t root;
 	uint16_t rmps, mmps, mps;
 
 	if (dinfo->cfg.pcie.pcie_location == 0)
 		return;
 	root = pci_find_pcie_root_port(dev);
 	if (root == NULL)
 		return;
 	/* Check whether the MPS is already configured. */
 	rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) &
 	    PCIEM_CTL_MAX_PAYLOAD;
 	mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) &
 	    PCIEM_CTL_MAX_PAYLOAD;
 	if (mps == rmps)
 		return;
 	/* Check whether the device is capable of the root's MPS. */
 	mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) &
 	    PCIEM_CAP_MAX_PAYLOAD) << 5;
 	if (rmps > mmps) {
 		/*
 		 * The device is unable to handle root's MPS.  Limit root.
 		 * XXX: We should traverse through all the tree, applying
 		 * it to all the devices.
 		 */
 		pcie_adjust_config(root, PCIER_DEVICE_CTL,
 		    PCIEM_CTL_MAX_PAYLOAD, mmps, 2);
 	} else {
 		pcie_adjust_config(dev, PCIER_DEVICE_CTL,
 		    PCIEM_CTL_MAX_PAYLOAD, rmps, 2);
 	}
 }
 
 static void
 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
 {
 	int aer;
 	uint32_t r;
 	uint16_t r2;
 
 	if (dinfo->cfg.pcie.pcie_location != 0 &&
 	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
 		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
 		    PCIER_ROOT_CTL, 2);
 		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
 		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
 		    PCIER_ROOT_CTL, r2, 2);
 	}
 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
 		if (r != 0 && bootverbose) {
 			pci_printf(&dinfo->cfg,
 			    "clearing AER UC 0x%08x -> 0x%08x\n",
 			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
 			    4));
 		}
 
 		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
 		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
 		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
 		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
 		    PCIM_AER_UC_POISONED_TLP |
 		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
 		    PCIM_AER_UC_COMPLETION_TIMEOUT |
 		    PCIM_AER_UC_COMPLETER_ABORT |
 		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
 		    PCIM_AER_UC_RECEIVER_OVERFLOW |
 		    PCIM_AER_UC_MALFORMED_TLP |
 		    PCIM_AER_UC_ECRC_ERROR |
 		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
 		    PCIM_AER_UC_ACS_VIOLATION |
 		    PCIM_AER_UC_INTERNAL_ERROR |
 		    PCIM_AER_UC_MC_BLOCKED_TLP |
 		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
 		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
 		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
 
 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
 		if (r != 0 && bootverbose) {
 			pci_printf(&dinfo->cfg,
 			    "clearing AER COR 0x%08x -> 0x%08x\n",
 			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
 			    4));
 		}
 
 		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
 		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
 		    PCIM_AER_COR_BAD_TLP |
 		    PCIM_AER_COR_BAD_DLLP |
 		    PCIM_AER_COR_REPLAY_ROLLOVER |
 		    PCIM_AER_COR_REPLAY_TIMEOUT |
 		    PCIM_AER_COR_ADVISORY_NF_ERROR |
 		    PCIM_AER_COR_INTERNAL_ERROR |
 		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
 		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
 
 		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
 		    PCIER_DEVICE_CTL, 2);
 		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
 		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
 		    PCIER_DEVICE_CTL, r, 2);
 	}
 }
 
 void
 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
 {
 	device_t dev;
 
 	dinfo->cfg.dev = dev = device_add_child(bus, NULL, DEVICE_UNIT_ANY);
 	device_set_ivars(dev, dinfo);
 	resource_list_init(&dinfo->resources);
 	pci_cfg_save(dev, dinfo, 0);
 	pci_cfg_restore(dev, dinfo);
 	pci_print_verbose(dinfo);
 	pci_add_resources(bus, dev, 0, 0);
 	if (pci_enable_mps_tune)
 		pcie_setup_mps(dev);
 	pci_child_added(dinfo->cfg.dev);
 
 	if (pci_clear_aer_on_attach)
 		pci_add_child_clear_aer(dev, dinfo);
 
 	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
 }
 
 void
 pci_child_added_method(device_t dev, device_t child)
 {
 
 }
 
 static int
 pci_probe(device_t dev)
 {
 
 	device_set_desc(dev, "PCI bus");
 
 	/* Allow other subclasses to override this driver. */
 	return (BUS_PROBE_GENERIC);
 }
 
 int
 pci_attach_common(device_t dev)
 {
 	struct pci_softc *sc;
 	int busno, domain;
 	int rid;
 
 	sc = device_get_softc(dev);
 	domain = pcib_get_domain(dev);
 	busno = pcib_get_bus(dev);
 	rid = 0;
 	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
 	    1, 0);
 	if (sc->sc_bus == NULL) {
 		device_printf(dev, "failed to allocate bus number\n");
 		return (ENXIO);
 	}
 	if (bootverbose)
 		device_printf(dev, "domain=%d, physical bus=%d\n",
 		    domain, busno);
 	sc->sc_dma_tag = bus_get_dma_tag(dev);
 	return (0);
 }
 
 int
 pci_attach(device_t dev)
 {
 	int busno, domain, error;
 
 	error = pci_attach_common(dev);
 	if (error)
 		return (error);
 
 	/*
 	 * Since there can be multiple independently numbered PCI
 	 * buses on systems with multiple PCI domains, we can't use
 	 * the unit number to decide which bus we are probing. We ask
 	 * the parent pcib what our domain and bus numbers are.
 	 */
 	domain = pcib_get_domain(dev);
 	busno = pcib_get_bus(dev);
 	pci_add_children(dev, domain, busno);
 	return (bus_generic_attach(dev));
 }
 
 int
 pci_detach(device_t dev)
 {
 	struct pci_softc *sc;
 	int error;
 
 	error = bus_generic_detach(dev);
 	if (error)
 		return (error);
 	sc = device_get_softc(dev);
 	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
 	if (error)
 		return (error);
 	return (device_delete_children(dev));
 }
 
 static void
 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
 {
 	int line, unit;
 	const char *at;
 	char me1[24], me2[32];
 	uint8_t b, s, f;
 	uint32_t d;
 	device_location_cache_t *cache;
 
 	d = pci_get_domain(child);
 	b = pci_get_bus(child);
 	s = pci_get_slot(child);
 	f = pci_get_function(child);
 	snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
 	snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
 	line = 0;
 	cache = dev_wired_cache_init();
 	while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
 		resource_string_value(name, unit, "at", &at);
 		if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) {
 			*unitp = unit;
 			break;
 		}
 		if (dev_wired_cache_match(cache, child, at)) {
 			*unitp = unit;
 			break;
 		}
 	}
 	dev_wired_cache_fini(cache);
 }
 
 static void
 pci_set_power_child(device_t dev, device_t child, int state)
 {
 	device_t pcib;
 	int dstate;
 
 	/*
 	 * Set the device to the given state.  If the firmware suggests
 	 * a different power state, use it instead.  If power management
 	 * is not present, the firmware is responsible for managing
 	 * device power.  Skip children who aren't attached since they
 	 * are handled separately.
 	 */
 	pcib = device_get_parent(dev);
 	dstate = state;
 	if (device_is_attached(child) &&
 	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
 		pci_set_powerstate(child, dstate);
 }
 
 int
 pci_suspend_child(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo;
 	struct resource_list_entry *rle;
 	int error;
 
 	dinfo = device_get_ivars(child);
 
 	/*
 	 * Save the PCI configuration space for the child and set the
 	 * device in the appropriate power state for this sleep state.
 	 */
 	pci_cfg_save(child, dinfo, 0);
 
 	/* Suspend devices before potentially powering them down. */
 	error = bus_generic_suspend_child(dev, child);
 
 	if (error)
 		return (error);
 
 	if (pci_do_power_suspend) {
 		/*
 		 * Make sure this device's interrupt handler is not invoked
 		 * in the case the device uses a shared interrupt that can
 		 * be raised by some other device.
 		 * This is applicable only to regular (legacy) PCI interrupts
 		 * as MSI/MSI-X interrupts are never shared.
 		 */
 		rle = resource_list_find(&dinfo->resources,
 		    SYS_RES_IRQ, 0);
 		if (rle != NULL && rle->res != NULL)
 			(void)bus_suspend_intr(child, rle->res);
 		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
 	}
 
 	return (0);
 }
 
 int
 pci_resume_child(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo;
 	struct resource_list_entry *rle;
 
 	if (pci_do_power_resume)
 		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
 
 	dinfo = device_get_ivars(child);
 	pci_cfg_restore(child, dinfo);
 	if (!device_is_attached(child))
 		pci_cfg_save(child, dinfo, 1);
 
 	bus_generic_resume_child(dev, child);
 
 	/*
 	 * Allow interrupts only after fully resuming the driver and hardware.
 	 */
 	if (pci_do_power_suspend) {
 		/* See pci_suspend_child for details. */
 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
 		if (rle != NULL && rle->res != NULL)
 			(void)bus_resume_intr(child, rle->res);
 	}
 
 	return (0);
 }
 
 int
 pci_resume(device_t dev)
 {
 	device_t child, *devlist;
 	int error, i, numdevs;
 
 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
 		return (error);
 
 	/*
 	 * Resume critical devices first, then everything else later.
 	 */
 	for (i = 0; i < numdevs; i++) {
 		child = devlist[i];
 		switch (pci_get_class(child)) {
 		case PCIC_DISPLAY:
 		case PCIC_MEMORY:
 		case PCIC_BRIDGE:
 		case PCIC_BASEPERIPH:
 			BUS_RESUME_CHILD(dev, child);
 			break;
 		}
 	}
 	for (i = 0; i < numdevs; i++) {
 		child = devlist[i];
 		switch (pci_get_class(child)) {
 		case PCIC_DISPLAY:
 		case PCIC_MEMORY:
 		case PCIC_BRIDGE:
 		case PCIC_BASEPERIPH:
 			break;
 		default:
 			BUS_RESUME_CHILD(dev, child);
 		}
 	}
 	free(devlist, M_TEMP);
 	return (0);
 }
 
 static void
 pci_load_vendor_data(void)
 {
 	caddr_t data;
 	void *ptr;
 	size_t sz;
 
 	data = preload_search_by_type("pci_vendor_data");
 	if (data != NULL) {
 		ptr = preload_fetch_addr(data);
 		sz = preload_fetch_size(data);
 		if (ptr != NULL && sz != 0) {
 			pci_vendordata = ptr;
 			pci_vendordata_size = sz;
 			/* terminate the database */
 			pci_vendordata[pci_vendordata_size] = '\n';
 		}
 	}
 }
 
 void
 pci_driver_added(device_t dev, driver_t *driver)
 {
 	int numdevs;
 	device_t *devlist;
 	device_t child;
 	struct pci_devinfo *dinfo;
 	int i;
 
 	if (bootverbose)
 		device_printf(dev, "driver added\n");
 	DEVICE_IDENTIFY(driver, dev);
 	if (device_get_children(dev, &devlist, &numdevs) != 0)
 		return;
 	for (i = 0; i < numdevs; i++) {
 		child = devlist[i];
 		if (device_get_state(child) != DS_NOTPRESENT)
 			continue;
 		dinfo = device_get_ivars(child);
 		pci_print_verbose(dinfo);
 		if (bootverbose)
 			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
 		pci_cfg_restore(child, dinfo);
 		if (device_probe_and_attach(child) != 0)
 			pci_child_detached(dev, child);
 	}
 	free(devlist, M_TEMP);
 }
 
 int
 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 {
 	struct pci_devinfo *dinfo;
 	struct msix_table_entry *mte;
 	struct msix_vector *mv;
 	uint64_t addr;
 	uint32_t data;
 	void *cookie;
 	int error, rid;
 
 	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
 	    arg, &cookie);
 	if (error)
 		return (error);
 
 	/* If this is not a direct child, just bail out. */
 	if (device_get_parent(child) != dev) {
 		*cookiep = cookie;
 		return(0);
 	}
 
 	rid = rman_get_rid(irq);
 	if (rid == 0) {
 		/* Make sure that INTx is enabled */
 		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
 	} else {
 		/*
 		 * Check to see if the interrupt is MSI or MSI-X.
 		 * Ask our parent to map the MSI and give
 		 * us the address and data register values.
 		 * If we fail for some reason, teardown the
 		 * interrupt handler.
 		 */
 		dinfo = device_get_ivars(child);
 		if (dinfo->cfg.msi.msi_alloc > 0) {
 			if (dinfo->cfg.msi.msi_addr == 0) {
 				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
 			    ("MSI has handlers, but vectors not mapped"));
 				error = PCIB_MAP_MSI(device_get_parent(dev),
 				    child, rman_get_start(irq), &addr, &data);
 				if (error)
 					goto bad;
 				dinfo->cfg.msi.msi_addr = addr;
 				dinfo->cfg.msi.msi_data = data;
 			}
 			if (dinfo->cfg.msi.msi_handlers == 0)
 				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
 				    dinfo->cfg.msi.msi_data);
 			dinfo->cfg.msi.msi_handlers++;
 		} else {
 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
 			    ("No MSI or MSI-X interrupts allocated"));
 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
 			    ("MSI-X index too high"));
 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
 			KASSERT(mte->mte_vector != 0, ("no message vector"));
 			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
 			KASSERT(mv->mv_irq == rman_get_start(irq),
 			    ("IRQ mismatch"));
 			if (mv->mv_address == 0) {
 				KASSERT(mte->mte_handlers == 0,
 		    ("MSI-X table entry has handlers, but vector not mapped"));
 				error = PCIB_MAP_MSI(device_get_parent(dev),
 				    child, rman_get_start(irq), &addr, &data);
 				if (error)
 					goto bad;
 				mv->mv_address = addr;
 				mv->mv_data = data;
 			}
 
 			/*
 			 * The MSIX table entry must be made valid by
 			 * incrementing the mte_handlers before
 			 * calling pci_enable_msix() and
 			 * pci_resume_msix(). Else the MSIX rewrite
 			 * table quirk will not work as expected.
 			 */
 			mte->mte_handlers++;
 			if (mte->mte_handlers == 1) {
 				pci_enable_msix(child, rid - 1, mv->mv_address,
 				    mv->mv_data);
 				pci_unmask_msix(child, rid - 1);
 			}
 		}
 
 		/*
 		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
 		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
 		 * in which case we "enable" INTx so MSI/MSI-X actually works.
 		 */
 		if (!pci_has_quirk(pci_get_devid(child),
 		    PCI_QUIRK_MSI_INTX_BUG))
 			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
 		else
 			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
 	bad:
 		if (error) {
 			(void)bus_generic_teardown_intr(dev, child, irq,
 			    cookie);
 			return (error);
 		}
 	}
 	*cookiep = cookie;
 	return (0);
 }
 
 int
 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
     void *cookie)
 {
 	struct msix_table_entry *mte;
 	struct resource_list_entry *rle;
 	struct pci_devinfo *dinfo;
 	int error, rid;
 
 	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
 		return (EINVAL);
 
 	/* If this isn't a direct child, just bail out */
 	if (device_get_parent(child) != dev)
 		return(bus_generic_teardown_intr(dev, child, irq, cookie));
 
 	rid = rman_get_rid(irq);
 	if (rid == 0) {
 		/* Mask INTx */
 		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
 	} else {
 		/*
 		 * Check to see if the interrupt is MSI or MSI-X.  If so,
 		 * decrement the appropriate handlers count and mask the
 		 * MSI-X message, or disable MSI messages if the count
 		 * drops to 0.
 		 */
 		dinfo = device_get_ivars(child);
 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
 		if (rle->res != irq)
 			return (EINVAL);
 		if (dinfo->cfg.msi.msi_alloc > 0) {
 			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
 			    ("MSI-X index too high"));
 			if (dinfo->cfg.msi.msi_handlers == 0)
 				return (EINVAL);
 			dinfo->cfg.msi.msi_handlers--;
 			if (dinfo->cfg.msi.msi_handlers == 0)
 				pci_disable_msi(child);
 		} else {
 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
 			    ("No MSI or MSI-X interrupts allocated"));
 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
 			    ("MSI-X index too high"));
 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
 			if (mte->mte_handlers == 0)
 				return (EINVAL);
 			mte->mte_handlers--;
 			if (mte->mte_handlers == 0)
 				pci_mask_msix(child, rid - 1);
 		}
 	}
 	error = bus_generic_teardown_intr(dev, child, irq, cookie);
 	if (rid > 0)
 		KASSERT(error == 0,
 		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
 	return (error);
 }
 
 int
 pci_print_child(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo;
 	struct resource_list *rl;
 	int retval = 0;
 
 	dinfo = device_get_ivars(child);
 	rl = &dinfo->resources;
 
 	retval += bus_print_child_header(dev, child);
 
 	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
 	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
 	if (device_get_flags(dev))
 		retval += printf(" flags %#x", device_get_flags(dev));
 
 	retval += printf(" at device %d.%d", pci_get_slot(child),
 	    pci_get_function(child));
 
 	retval += bus_print_child_domain(dev, child);
 	retval += bus_print_child_footer(dev, child);
 
 	return (retval);
 }
 
 static const struct
 {
 	int		class;
 	int		subclass;
 	int		report; /* 0 = bootverbose, 1 = always */
 	const char	*desc;
 } pci_nomatch_tab[] = {
 	{PCIC_OLD,		-1,			1, "old"},
 	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
 	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
 	{PCIC_STORAGE,		-1,			1, "mass storage"},
 	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
 	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
 	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
 	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
 	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
 	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
 	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
 	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
 	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
 	{PCIC_NETWORK,		-1,			1, "network"},
 	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
 	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
 	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
 	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
 	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
 	{PCIC_DISPLAY,		-1,			1, "display"},
 	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
 	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
 	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
 	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
 	{PCIC_MEMORY,		-1,			1, "memory"},
 	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
 	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
 	{PCIC_BRIDGE,		-1,			1, "bridge"},
 	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
 	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
 	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
 	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
 	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
 	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
 	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
 	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
 	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
 	{PCIC_INPUTDEV,		-1,			1, "input device"},
 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
 	{PCIC_DOCKING,		-1,			1, "docking station"},
 	{PCIC_PROCESSOR,	-1,			1, "processor"},
 	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
 	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
 	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
 	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
 	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
 	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
 	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
 	{PCIC_SATCOM,		-1,			1, "satellite communication"},
 	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
 	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
 	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
 	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
 	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
 	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
 	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
 	{PCIC_DASP,		-1,			0, "dasp"},
 	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
 	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
 	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
 	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
 	{PCIC_INSTRUMENT,	-1,			0, "non-essential instrumentation"},
 	{0, 0, 0,		NULL}
 };
 
 void
 pci_probe_nomatch(device_t dev, device_t child)
 {
 	int i, report;
 	const char *cp, *scp;
 	char *device;
 
 	/*
 	 * Look for a listing for this device in a loaded device database.
 	 */
 	report = 1;
 	if ((device = pci_describe_device(child)) != NULL) {
 		device_printf(dev, "<%s>", device);
 		free(device, M_DEVBUF);
 	} else {
 		/*
 		 * Scan the class/subclass descriptions for a general
 		 * description.
 		 */
 		cp = "unknown";
 		scp = NULL;
 		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
 			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
 				if (pci_nomatch_tab[i].subclass == -1) {
 					cp = pci_nomatch_tab[i].desc;
 					report = pci_nomatch_tab[i].report;
 				} else if (pci_nomatch_tab[i].subclass ==
 				    pci_get_subclass(child)) {
 					scp = pci_nomatch_tab[i].desc;
 					report = pci_nomatch_tab[i].report;
 				}
 			}
 		}
 		if (report || bootverbose) {
 			device_printf(dev, "<%s%s%s>",
 			    cp ? cp : "",
 			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
 			    scp ? scp : "");
 		}
 	}
 	if (report || bootverbose) {
 		printf(" at device %d.%d (no driver attached)\n",
 		    pci_get_slot(child), pci_get_function(child));
 	}
 	pci_cfg_save(child, device_get_ivars(child), 1);
 }
 
 void
 pci_child_detached(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo;
 	struct resource_list *rl;
 
 	dinfo = device_get_ivars(child);
 	rl = &dinfo->resources;
 
 	/*
 	 * Have to deallocate IRQs before releasing any MSI messages and
 	 * have to release MSI messages before deallocating any memory
 	 * BARs.
 	 */
 	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
 		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
 	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
 		if (dinfo->cfg.msi.msi_alloc != 0)
 			pci_printf(&dinfo->cfg, "Device leaked %d MSI "
 			    "vectors\n", dinfo->cfg.msi.msi_alloc);
 		else
 			pci_printf(&dinfo->cfg, "Device leaked %d MSI-X "
 			    "vectors\n", dinfo->cfg.msix.msix_alloc);
 		(void)pci_release_msi(child);
 	}
 	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
 		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
 	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
 		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
 	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
 		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
 
 	pci_cfg_save(child, dinfo, 1);
 }
 
 /*
  * Parse the PCI device database, if loaded, and return a pointer to a
  * description of the device.
  *
  * The database is flat text formatted as follows:
  *
  * Any line not in a valid format is ignored.
  * Lines are terminated with newline '\n' characters.
  *
  * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
  * the vendor name.
  *
  * A DEVICE line is entered immediately below the corresponding VENDOR ID.
  * - devices cannot be listed without a corresponding VENDOR line.
  * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
  * another TAB, then the device name.
  */
 
 /*
  * Assuming (ptr) points to the beginning of a line in the database,
  * return the vendor or device and description of the next entry.
  * The value of (vendor) or (device) inappropriate for the entry type
  * is set to -1.  Returns nonzero at the end of the database.
  *
  * Note that this is slightly unrobust in the face of corrupt data;
  * we attempt to safeguard against this by spamming the end of the
  * database with a newline when we initialise.
  */
 static int
 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
 {
 	char	*cp = *ptr;
 	int	left;
 
 	*device = -1;
 	*vendor = -1;
 	**desc = '\0';
 	for (;;) {
 		left = pci_vendordata_size - (cp - pci_vendordata);
 		if (left <= 0) {
 			*ptr = cp;
 			return(1);
 		}
 
 		/* vendor entry? */
 		if (*cp != '\t' &&
 		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
 			break;
 		/* device entry? */
 		if (*cp == '\t' &&
 		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
 			break;
 
 		/* skip to next line */
 		while (*cp != '\n' && left > 0) {
 			cp++;
 			left--;
 		}
 		if (*cp == '\n') {
 			cp++;
 			left--;
 		}
 	}
 	/* skip to next line */
 	while (*cp != '\n' && left > 0) {
 		cp++;
 		left--;
 	}
 	if (*cp == '\n' && left > 0)
 		cp++;
 	*ptr = cp;
 	return(0);
 }
 
 static char *
 pci_describe_device(device_t dev)
 {
 	int	vendor, device;
 	char	*desc, *vp, *dp, *line;
 
 	desc = vp = dp = NULL;
 
 	/*
 	 * If we have no vendor data, we can't do anything.
 	 */
 	if (pci_vendordata == NULL)
 		goto out;
 
 	/*
 	 * Scan the vendor data looking for this device
 	 */
 	line = pci_vendordata;
 	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
 		goto out;
 	for (;;) {
 		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
 			goto out;
 		if (vendor == pci_get_vendor(dev))
 			break;
 	}
 	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
 		goto out;
 	for (;;) {
 		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
 			*dp = 0;
 			break;
 		}
 		if (vendor != -1) {
 			*dp = 0;
 			break;
 		}
 		if (device == pci_get_device(dev))
 			break;
 	}
 	if (dp[0] == '\0')
 		snprintf(dp, 80, "0x%x", pci_get_device(dev));
 	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
 	    NULL)
 		sprintf(desc, "%s, %s", vp, dp);
 out:
 	if (vp != NULL)
 		free(vp, M_DEVBUF);
 	if (dp != NULL)
 		free(dp, M_DEVBUF);
 	return(desc);
 }
 
 int
 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
 {
 	struct pci_devinfo *dinfo;
 	pcicfgregs *cfg;
 
 	dinfo = device_get_ivars(child);
 	cfg = &dinfo->cfg;
 
 	switch (which) {
 	case PCI_IVAR_ETHADDR:
 		/*
 		 * The generic accessor doesn't deal with failure, so
 		 * we set the return value, then return an error.
 		 */
 		*((uint8_t **) result) = NULL;
 		return (EINVAL);
 	case PCI_IVAR_SUBVENDOR:
 		*result = cfg->subvendor;
 		break;
 	case PCI_IVAR_SUBDEVICE:
 		*result = cfg->subdevice;
 		break;
 	case PCI_IVAR_VENDOR:
 		*result = cfg->vendor;
 		break;
 	case PCI_IVAR_DEVICE:
 		*result = cfg->device;
 		break;
 	case PCI_IVAR_DEVID:
 		*result = (cfg->device << 16) | cfg->vendor;
 		break;
 	case PCI_IVAR_CLASS:
 		*result = cfg->baseclass;
 		break;
 	case PCI_IVAR_SUBCLASS:
 		*result = cfg->subclass;
 		break;
 	case PCI_IVAR_PROGIF:
 		*result = cfg->progif;
 		break;
 	case PCI_IVAR_REVID:
 		*result = cfg->revid;
 		break;
 	case PCI_IVAR_INTPIN:
 		*result = cfg->intpin;
 		break;
 	case PCI_IVAR_IRQ:
 		*result = cfg->intline;
 		break;
 	case PCI_IVAR_DOMAIN:
 		*result = cfg->domain;
 		break;
 	case PCI_IVAR_BUS:
 		*result = cfg->bus;
 		break;
 	case PCI_IVAR_SLOT:
 		*result = cfg->slot;
 		break;
 	case PCI_IVAR_FUNCTION:
 		*result = cfg->func;
 		break;
 	case PCI_IVAR_CMDREG:
 		*result = cfg->cmdreg;
 		break;
 	case PCI_IVAR_CACHELNSZ:
 		*result = cfg->cachelnsz;
 		break;
 	case PCI_IVAR_MINGNT:
 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
 			*result = -1;
 			return (EINVAL);
 		}
 		*result = cfg->mingnt;
 		break;
 	case PCI_IVAR_MAXLAT:
 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
 			*result = -1;
 			return (EINVAL);
 		}
 		*result = cfg->maxlat;
 		break;
 	case PCI_IVAR_LATTIMER:
 		*result = cfg->lattimer;
 		break;
 	default:
 		return (ENOENT);
 	}
 	return (0);
 }
 
 int
 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
 {
 	struct pci_devinfo *dinfo;
 
 	dinfo = device_get_ivars(child);
 
 	switch (which) {
 	case PCI_IVAR_INTPIN:
 		dinfo->cfg.intpin = value;
 		return (0);
 	case PCI_IVAR_ETHADDR:
 	case PCI_IVAR_SUBVENDOR:
 	case PCI_IVAR_SUBDEVICE:
 	case PCI_IVAR_VENDOR:
 	case PCI_IVAR_DEVICE:
 	case PCI_IVAR_DEVID:
 	case PCI_IVAR_CLASS:
 	case PCI_IVAR_SUBCLASS:
 	case PCI_IVAR_PROGIF:
 	case PCI_IVAR_REVID:
 	case PCI_IVAR_IRQ:
 	case PCI_IVAR_DOMAIN:
 	case PCI_IVAR_BUS:
 	case PCI_IVAR_SLOT:
 	case PCI_IVAR_FUNCTION:
 		return (EINVAL);	/* disallow for now */
 
 	default:
 		return (ENOENT);
 	}
 }
 
 #include "opt_ddb.h"
 #ifdef DDB
 #include <ddb/ddb.h>
 #include <sys/cons.h>
 
 /*
  * List resources based on pci map registers, used for within ddb
  */
 
 DB_SHOW_COMMAND_FLAGS(pciregs, db_pci_dump, DB_CMD_MEMSAFE)
 {
 	struct pci_devinfo *dinfo;
 	struct devlist *devlist_head;
 	struct pci_conf *p;
 	const char *name;
 	int i, error, none_count;
 
 	none_count = 0;
 	/* get the head of the device queue */
 	devlist_head = &pci_devq;
 
 	/*
 	 * Go through the list of devices and print out devices
 	 */
 	for (error = 0, i = 0,
 	     dinfo = STAILQ_FIRST(devlist_head);
 	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
 	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
 		/* Populate pd_name and pd_unit */
 		name = NULL;
 		if (dinfo->cfg.dev)
 			name = device_get_name(dinfo->cfg.dev);
 
 		p = &dinfo->conf;
 		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
 			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
 			(name && *name) ? name : "none",
 			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
 			none_count++,
 			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
 			p->pc_sel.pc_func, (p->pc_class << 16) |
 			(p->pc_subclass << 8) | p->pc_progif,
 			(p->pc_subdevice << 16) | p->pc_subvendor,
 			(p->pc_device << 16) | p->pc_vendor,
 			p->pc_revid, p->pc_hdr);
 	}
 }
 #endif /* DDB */
 
 struct resource *
 pci_reserve_map(device_t dev, device_t child, int type, int *rid,
     rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
     u_int flags)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	struct resource_list *rl = &dinfo->resources;
 	struct resource *res;
 	struct pci_map *pm;
 	uint16_t cmd;
 	pci_addr_t map, testval;
 	int mapsize;
 
 	res = NULL;
 
 	/* If rid is managed by EA, ignore it */
 	if (pci_ea_is_enabled(child, *rid))
 		goto out;
 
 	pm = pci_find_bar(child, *rid);
 	if (pm != NULL) {
 		/* This is a BAR that we failed to allocate earlier. */
 		mapsize = pm->pm_size;
 		map = pm->pm_value;
 	} else {
 		/*
 		 * Weed out the bogons, and figure out how large the
 		 * BAR/map is.  BARs that read back 0 here are bogus
 		 * and unimplemented.  Note: atapci in legacy mode are
 		 * special and handled elsewhere in the code.  If you
 		 * have a atapci device in legacy mode and it fails
 		 * here, that other code is broken.
 		 */
 		pci_read_bar(child, *rid, &map, &testval, NULL);
 
 		/*
 		 * Determine the size of the BAR and ignore BARs with a size
 		 * of 0.  Device ROM BARs use a different mask value.
 		 */
 		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
 			mapsize = pci_romsize(testval);
 		else
 			mapsize = pci_mapsize(testval);
 		if (mapsize == 0)
 			goto out;
 		pm = pci_add_bar(child, *rid, map, mapsize);
 	}
 
 	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
 		if (type != SYS_RES_MEMORY) {
 			if (bootverbose)
 				device_printf(dev,
 				    "child %s requested type %d for rid %#x,"
 				    " but the BAR says it is an memio\n",
 				    device_get_nameunit(child), type, *rid);
 			goto out;
 		}
 	} else {
 		if (type != SYS_RES_IOPORT) {
 			if (bootverbose)
 				device_printf(dev,
 				    "child %s requested type %d for rid %#x,"
 				    " but the BAR says it is an ioport\n",
 				    device_get_nameunit(child), type, *rid);
 			goto out;
 		}
 	}
 
 	/*
 	 * For real BARs, we need to override the size that
 	 * the driver requests, because that's what the BAR
 	 * actually uses and we would otherwise have a
 	 * situation where we might allocate the excess to
 	 * another driver, which won't work.
 	 */
 	count = ((pci_addr_t)1 << mapsize) * num;
 	if (RF_ALIGNMENT(flags) < mapsize)
 		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
 	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
 		flags |= RF_PREFETCHABLE;
 
 	/*
 	 * Allocate enough resource, and then write back the
 	 * appropriate BAR for that resource.
 	 */
 	resource_list_add(rl, type, *rid, start, end, count);
 	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
 	    count, flags & ~RF_ACTIVE);
 	if (res == NULL) {
 		resource_list_delete(rl, type, *rid);
 		device_printf(child,
 		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
 		    count, *rid, type, start, end);
 		goto out;
 	}
 	if (bootverbose)
 		device_printf(child,
 		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
 		    count, *rid, type, rman_get_start(res));
 
 	/* Disable decoding via the CMD register before updating the BAR */
 	cmd = pci_read_config(child, PCIR_COMMAND, 2);
 	pci_write_config(child, PCIR_COMMAND,
 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
 
 	map = rman_get_start(res);
 	pci_write_bar(child, pm, map);
 
 	/* Restore the original value of the CMD register */
 	pci_write_config(child, PCIR_COMMAND, cmd, 2);
 out:
 	return (res);
 }
 
 struct resource *
 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
     rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
     u_int flags)
 {
 	struct pci_devinfo *dinfo;
 	struct resource_list *rl;
 	struct resource_list_entry *rle;
 	struct resource *res;
 	pcicfgregs *cfg;
 
 	/*
 	 * Perform lazy resource allocation
 	 */
 	dinfo = device_get_ivars(child);
 	rl = &dinfo->resources;
 	cfg = &dinfo->cfg;
 	switch (type) {
 	case PCI_RES_BUS:
 		return (pci_alloc_secbus(dev, child, rid, start, end, count,
 		    flags));
 	case SYS_RES_IRQ:
 		/*
 		 * Can't alloc legacy interrupt once MSI messages have
 		 * been allocated.
 		 */
 		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
 		    cfg->msix.msix_alloc > 0))
 			return (NULL);
 
 		/*
 		 * If the child device doesn't have an interrupt
 		 * routed and is deserving of an interrupt, try to
 		 * assign it one.
 		 */
 		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
 		    (cfg->intpin != 0))
 			pci_assign_interrupt(dev, child, 0);
 		break;
 	case SYS_RES_IOPORT:
 	case SYS_RES_MEMORY:
 		/*
 		 * PCI-PCI bridge I/O window resources are not BARs.
 		 * For those allocations just pass the request up the
 		 * tree.
 		 */
 		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
 			switch (*rid) {
 			case PCIR_IOBASEL_1:
 			case PCIR_MEMBASE_1:
 			case PCIR_PMBASEL_1:
 				/*
 				 * XXX: Should we bother creating a resource
 				 * list entry?
 				 */
 				return (bus_generic_alloc_resource(dev, child,
 				    type, rid, start, end, count, flags));
 			}
 		}
 		/* Reserve resources for this BAR if needed. */
 		rle = resource_list_find(rl, type, *rid);
 		if (rle == NULL) {
 			res = pci_reserve_map(dev, child, type, rid, start, end,
 			    count, num, flags);
 			if (res == NULL)
 				return (NULL);
 		}
 	}
 	return (resource_list_alloc(rl, dev, child, type, rid,
 	    start, end, count, flags));
 }
 
 struct resource *
 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 {
 #ifdef PCI_IOV
 	struct pci_devinfo *dinfo;
 #endif
 
 	if (device_get_parent(child) != dev)
 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
 		    type, rid, start, end, count, flags));
 
 #ifdef PCI_IOV
 	dinfo = device_get_ivars(child);
 	if (dinfo->cfg.flags & PCICFG_VF) {
 		switch (type) {
 		/* VFs can't have I/O BARs. */
 		case SYS_RES_IOPORT:
 			return (NULL);
 		case SYS_RES_MEMORY:
 			return (pci_vf_alloc_mem_resource(dev, child, rid,
 			    start, end, count, flags));
 		}
 
 		/* Fall through for other types of resource allocations. */
 	}
 #endif
 
 	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
 	    count, 1, flags));
 }
 
 int
 pci_release_resource(device_t dev, device_t child, struct resource *r)
 {
 	struct pci_devinfo *dinfo;
 	struct resource_list *rl;
 	pcicfgregs *cfg __unused;
 
 	if (device_get_parent(child) != dev)
 		return (bus_generic_release_resource(dev, child, r));
 
 	dinfo = device_get_ivars(child);
 	cfg = &dinfo->cfg;
 
 #ifdef PCI_IOV
 	if (cfg->flags & PCICFG_VF) {
 		switch (rman_get_type(r)) {
 		/* VFs can't have I/O BARs. */
 		case SYS_RES_IOPORT:
 			return (EDOOFUS);
 		case SYS_RES_MEMORY:
 			return (pci_vf_release_mem_resource(dev, child, r));
 		}
 
 		/* Fall through for other types of resource allocations. */
 	}
 #endif
 
 	/*
 	 * PCI-PCI bridge I/O window resources are not BARs.  For
 	 * those allocations just pass the request up the tree.
 	 */
 	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
 	    (rman_get_type(r) == SYS_RES_IOPORT ||
 	    rman_get_type(r) == SYS_RES_MEMORY)) {
 		switch (rman_get_rid(r)) {
 		case PCIR_IOBASEL_1:
 		case PCIR_MEMBASE_1:
 		case PCIR_PMBASEL_1:
 			return (bus_generic_release_resource(dev, child, r));
 		}
 	}
 
 	rl = &dinfo->resources;
 	return (resource_list_release(rl, dev, child, r));
 }
 
 int
 pci_activate_resource(device_t dev, device_t child, struct resource *r)
 {
 	struct pci_devinfo *dinfo;
 	int error, rid, type;
 
 	if (device_get_parent(child) != dev)
 		return (bus_generic_activate_resource(dev, child, r));
 
 	dinfo = device_get_ivars(child);
 #ifdef PCI_IOV
 	if (dinfo->cfg.flags & PCICFG_VF) {
 		switch (rman_get_type(r)) {
 		/* VFs can't have I/O BARs. */
 		case SYS_RES_IOPORT:
 			error = EINVAL;
 			break;
 		case SYS_RES_MEMORY:
 			error = pci_vf_activate_mem_resource(dev, child, r);
 			break;
 		default:
 			error = bus_generic_activate_resource(dev, child, r);
 			break;
 		}
 	} else
 #endif
 		error = bus_generic_activate_resource(dev, child, r);
 	if (error)
 		return (error);
 
 	rid = rman_get_rid(r);
 	type = rman_get_type(r);
 
 	/* Device ROMs need their decoding explicitly enabled. */
 	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
 		pci_write_bar(child, pci_find_bar(child, rid),
 		    rman_get_start(r) | PCIM_BIOS_ENABLE);
 
 	/* Enable decoding in the command register when activating BARs. */
 	switch (type) {
 	case SYS_RES_IOPORT:
 	case SYS_RES_MEMORY:
 		error = PCI_ENABLE_IO(dev, child, type);
 		break;
 	}
 	return (error);
 }
 
 int
 pci_deactivate_resource(device_t dev, device_t child, struct resource *r)
 {
 	struct pci_devinfo *dinfo;
 	int error, rid, type;
 
 	if (device_get_parent(child) != dev)
 		return (bus_generic_deactivate_resource(dev, child, r));
 
 	dinfo = device_get_ivars(child);
 #ifdef PCI_IOV
 	if (dinfo->cfg.flags & PCICFG_VF) {
 		switch (rman_get_type(r)) {
 		/* VFs can't have I/O BARs. */
 		case SYS_RES_IOPORT:
 			error = EINVAL;
 			break;
 		case SYS_RES_MEMORY:
 			error = pci_vf_deactivate_mem_resource(dev, child, r);
 			break;
 		default:
 			error = bus_generic_deactivate_resource(dev, child, r);
 			break;
 		}
 	} else
 #endif
 		error = bus_generic_deactivate_resource(dev, child, r);
 	if (error)
 		return (error);
 
 	/* Disable decoding for device ROMs. */
 	rid = rman_get_rid(r);
 	type = rman_get_type(r);
 	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
 		pci_write_bar(child, pci_find_bar(child, rid),
 		    rman_get_start(r));
 	return (0);
 }
 
-#ifdef PCI_IOV
 int
 pci_adjust_resource(device_t dev, device_t child, struct resource *r,
     rman_res_t start, rman_res_t end)
 {
+#ifdef PCI_IOV
 	struct pci_devinfo *dinfo;
 
 	if (device_get_parent(child) != dev)
 		return (bus_generic_adjust_resource(dev, child, r, start,
 		    end));
 
 	dinfo = device_get_ivars(child);
 	if (dinfo->cfg.flags & PCICFG_VF) {
 		switch (rman_get_type(r)) {
 		/* VFs can't have I/O BARs. */
 		case SYS_RES_IOPORT:
 			return (EINVAL);
 		case SYS_RES_MEMORY:
 			return (pci_vf_adjust_mem_resource(dev, child, r,
 			    start, end));
 		}
 
 		/* Fall through for other types of resource allocations. */
 	}
+#endif
 
 	return (bus_generic_adjust_resource(dev, child, r, start, end));
 }
 
 int
 pci_map_resource(device_t dev, device_t child, struct resource *r,
     struct resource_map_request *argsp, struct resource_map *map)
 {
+#ifdef PCI_IOV
 	struct pci_devinfo *dinfo;
 
 	if (device_get_parent(child) != dev)
 		return (bus_generic_map_resource(dev, child, r, argsp,
 		    map));
 
 	dinfo = device_get_ivars(child);
 	if (dinfo->cfg.flags & PCICFG_VF) {
 		switch (rman_get_type(r)) {
 		/* VFs can't have I/O BARs. */
 		case SYS_RES_IOPORT:
 			return (EINVAL);
 		case SYS_RES_MEMORY:
 			return (pci_vf_map_mem_resource(dev, child, r, argsp,
 			    map));
 		}
 
 		/* Fall through for other types of resource allocations. */
 	}
+#endif
 
 	return (bus_generic_map_resource(dev, child, r, argsp, map));
 }
 
 int
 pci_unmap_resource(device_t dev, device_t child, struct resource *r,
     struct resource_map *map)
 {
+#ifdef PCI_IOV
 	struct pci_devinfo *dinfo;
 
 	if (device_get_parent(child) != dev)
 		return (bus_generic_unmap_resource(dev, child, r, map));
 
 	dinfo = device_get_ivars(child);
 	if (dinfo->cfg.flags & PCICFG_VF) {
 		switch (rman_get_type(r)) {
 		/* VFs can't have I/O BARs. */
 		case SYS_RES_IOPORT:
 			return (EINVAL);
 		case SYS_RES_MEMORY:
 			return (pci_vf_unmap_mem_resource(dev, child, r, map));
 		}
 
 		/* Fall through for other types of resource allocations. */
 	}
+#endif
 
 	return (bus_generic_unmap_resource(dev, child, r, map));
 }
-#endif
 
 void
 pci_child_deleted(device_t dev, device_t child)
 {
 	struct resource_list_entry *rle;
 	struct resource_list *rl;
 	struct pci_devinfo *dinfo;
 
 	dinfo = device_get_ivars(child);
 	rl = &dinfo->resources;
 
 	EVENTHANDLER_INVOKE(pci_delete_device, child);
 
 	/* Turn off access to resources we're about to free */
 	if (bus_child_present(child) != 0) {
 		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
 		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
 
 		pci_disable_busmaster(child);
 	}
 
 	/* Free all allocated resources */
 	STAILQ_FOREACH(rle, rl, link) {
 		if (rle->res) {
 			if (rman_get_flags(rle->res) & RF_ACTIVE ||
 			    resource_list_busy(rl, rle->type, rle->rid)) {
 				pci_printf(&dinfo->cfg,
 				    "Resource still owned, oops. "
 				    "(type=%d, rid=%d, addr=%lx)\n",
 				    rle->type, rle->rid,
 				    rman_get_start(rle->res));
 				bus_release_resource(child, rle->type, rle->rid,
 				    rle->res);
 			}
 			resource_list_unreserve(rl, dev, child, rle->type,
 			    rle->rid);
 		}
 	}
 	resource_list_free(rl);
 
 	pci_freecfg(dinfo);
 }
 
 void
 pci_delete_resource(device_t dev, device_t child, int type, int rid)
 {
 	struct pci_devinfo *dinfo;
 	struct resource_list *rl;
 	struct resource_list_entry *rle;
 
 	if (device_get_parent(child) != dev)
 		return;
 
 	dinfo = device_get_ivars(child);
 	rl = &dinfo->resources;
 	rle = resource_list_find(rl, type, rid);
 	if (rle == NULL)
 		return;
 
 	if (rle->res) {
 		if (rman_get_flags(rle->res) & RF_ACTIVE ||
 		    resource_list_busy(rl, type, rid)) {
 			device_printf(dev, "delete_resource: "
 			    "Resource still owned by child, oops. "
 			    "(type=%d, rid=%d, addr=%jx)\n",
 			    type, rid, rman_get_start(rle->res));
 			return;
 		}
 		resource_list_unreserve(rl, dev, child, type, rid);
 	}
 	resource_list_delete(rl, type, rid);
 }
 
 struct resource_list *
 pci_get_resource_list (device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 
 	return (&dinfo->resources);
 }
 
 #ifdef IOMMU
 bus_dma_tag_t
 pci_get_dma_tag(device_t bus, device_t dev)
 {
 	bus_dma_tag_t tag;
 	struct pci_softc *sc;
 
 	if (device_get_parent(dev) == bus) {
 		/* try iommu and return if it works */
 		tag = iommu_get_dma_tag(bus, dev);
 	} else
 		tag = NULL;
 	if (tag == NULL) {
 		sc = device_get_softc(bus);
 		tag = sc->sc_dma_tag;
 	}
 	return (tag);
 }
 #else
 bus_dma_tag_t
 pci_get_dma_tag(device_t bus, device_t dev)
 {
 	struct pci_softc *sc = device_get_softc(bus);
 
 	return (sc->sc_dma_tag);
 }
 #endif
 
 uint32_t
 pci_read_config_method(device_t dev, device_t child, int reg, int width)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 
 #ifdef PCI_IOV
 	/*
 	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
 	 * emulate them here.
 	 */
 	if (cfg->flags & PCICFG_VF) {
 		if (reg == PCIR_VENDOR) {
 			switch (width) {
 			case 4:
 				return (cfg->device << 16 | cfg->vendor);
 			case 2:
 				return (cfg->vendor);
 			case 1:
 				return (cfg->vendor & 0xff);
 			default:
 				return (0xffffffff);
 			}
 		} else if (reg == PCIR_DEVICE) {
 			switch (width) {
 			/* Note that an unaligned 4-byte read is an error. */
 			case 2:
 				return (cfg->device);
 			case 1:
 				return (cfg->device & 0xff);
 			default:
 				return (0xffffffff);
 			}
 		}
 	}
 #endif
 
 	return (PCIB_READ_CONFIG(device_get_parent(dev),
 	    cfg->bus, cfg->slot, cfg->func, reg, width));
 }
 
 void
 pci_write_config_method(device_t dev, device_t child, int reg,
     uint32_t val, int width)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 
 	PCIB_WRITE_CONFIG(device_get_parent(dev),
 	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
 }
 
 int
 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb)
 {
 
 	sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
 	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
 	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
 	return (0);
 }
 
 int
 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
 {
 	struct pci_devinfo *dinfo;
 	pcicfgregs *cfg;
 
 	dinfo = device_get_ivars(child);
 	cfg = &dinfo->cfg;
 	sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
 	    cfg->progif);
 	return (0);
 }
 
 int
 pci_get_device_path_method(device_t bus, device_t child, const char *locator,
     struct sbuf *sb)
 {
 	device_t parent = device_get_parent(bus);
 	int rv;
 
 	if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
 		rv = bus_generic_get_device_path(parent, bus, locator, sb);
 		if (rv == 0) {
 			sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child),
 			    pci_get_function(child));
 		}
 		return (0);
 	}
 	return (bus_generic_get_device_path(bus, child, locator, sb));
 }
 
 int
 pci_assign_interrupt_method(device_t dev, device_t child)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(child);
 	pcicfgregs *cfg = &dinfo->cfg;
 
 	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
 	    cfg->intpin));
 }
 
 static void
 pci_lookup(void *arg, const char *name, device_t *dev)
 {
 	long val;
 	char *end;
 	int domain, bus, slot, func;
 
 	if (*dev != NULL)
 		return;
 
 	/*
 	 * Accept pciconf-style selectors of either pciD:B:S:F or
 	 * pciB:S:F.  In the latter case, the domain is assumed to
 	 * be zero.
 	 */
 	if (strncmp(name, "pci", 3) != 0)
 		return;
 	val = strtol(name + 3, &end, 10);
 	if (val < 0 || val > INT_MAX || *end != ':')
 		return;
 	domain = val;
 	val = strtol(end + 1, &end, 10);
 	if (val < 0 || val > INT_MAX || *end != ':')
 		return;
 	bus = val;
 	val = strtol(end + 1, &end, 10);
 	if (val < 0 || val > INT_MAX)
 		return;
 	slot = val;
 	if (*end == ':') {
 		val = strtol(end + 1, &end, 10);
 		if (val < 0 || val > INT_MAX || *end != '\0')
 			return;
 		func = val;
 	} else if (*end == '\0') {
 		func = slot;
 		slot = bus;
 		bus = domain;
 		domain = 0;
 	} else
 		return;
 
 	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
 	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
 		return;
 
 	*dev = pci_find_dbsf(domain, bus, slot, func);
 }
 
 static int
 pci_modevent(module_t mod, int what, void *arg)
 {
 	static struct cdev *pci_cdev;
 	static eventhandler_tag tag;
 
 	switch (what) {
 	case MOD_LOAD:
 		STAILQ_INIT(&pci_devq);
 		pci_generation = 0;
 		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
 		    "pci");
 		pci_load_vendor_data();
 		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
 		    1000);
 		break;
 
 	case MOD_UNLOAD:
 		if (tag != NULL)
 			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
 		destroy_dev(pci_cdev);
 		break;
 	}
 
 	return (0);
 }
 
 static void
 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
 {
 #define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
 	struct pcicfg_pcie *cfg;
 	int version, pos;
 
 	cfg = &dinfo->cfg.pcie;
 	pos = cfg->pcie_location;
 
 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
 
 	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
 
 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
 		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
 
 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
 		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
 
 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
 		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
 
 	if (version > 1) {
 		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
 		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
 		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
 	}
 #undef WREG
 }
 
 static void
 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
 {
 	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
 	    dinfo->cfg.pcix.pcix_command,  2);
 }
 
 void
 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
 {
 
 	/*
 	 * Restore the device to full power mode.  We must do this
 	 * before we restore the registers because moving from D3 to
 	 * D0 will cause the chip's BARs and some other registers to
 	 * be reset to some unknown power on reset values.  Cut down
 	 * the noise on boot by doing nothing if we are already in
 	 * state D0.
 	 */
 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
 	case PCIM_HDRTYPE_NORMAL:
 		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
 		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
 		break;
 	case PCIM_HDRTYPE_BRIDGE:
 		pci_write_config(dev, PCIR_SECLAT_1,
 		    dinfo->cfg.bridge.br_seclat, 1);
 		pci_write_config(dev, PCIR_SUBBUS_1,
 		    dinfo->cfg.bridge.br_subbus, 1);
 		pci_write_config(dev, PCIR_SECBUS_1,
 		    dinfo->cfg.bridge.br_secbus, 1);
 		pci_write_config(dev, PCIR_PRIBUS_1,
 		    dinfo->cfg.bridge.br_pribus, 1);
 		pci_write_config(dev, PCIR_BRIDGECTL_1,
 		    dinfo->cfg.bridge.br_control, 2);
 		break;
 	case PCIM_HDRTYPE_CARDBUS:
 		pci_write_config(dev, PCIR_SECLAT_2,
 		    dinfo->cfg.bridge.br_seclat, 1);
 		pci_write_config(dev, PCIR_SUBBUS_2,
 		    dinfo->cfg.bridge.br_subbus, 1);
 		pci_write_config(dev, PCIR_SECBUS_2,
 		    dinfo->cfg.bridge.br_secbus, 1);
 		pci_write_config(dev, PCIR_PRIBUS_2,
 		    dinfo->cfg.bridge.br_pribus, 1);
 		pci_write_config(dev, PCIR_BRIDGECTL_2,
 		    dinfo->cfg.bridge.br_control, 2);
 		break;
 	}
 	pci_restore_bars(dev);
 
 	if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE)
 		pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
 
 	/*
 	 * Restore extended capabilities for PCI-Express and PCI-X
 	 */
 	if (dinfo->cfg.pcie.pcie_location != 0)
 		pci_cfg_restore_pcie(dev, dinfo);
 	if (dinfo->cfg.pcix.pcix_location != 0)
 		pci_cfg_restore_pcix(dev, dinfo);
 
 	/* Restore MSI and MSI-X configurations if they are present. */
 	if (dinfo->cfg.msi.msi_location != 0)
 		pci_resume_msi(dev);
 	if (dinfo->cfg.msix.msix_location != 0)
 		pci_resume_msix(dev);
 
 #ifdef PCI_IOV
 	if (dinfo->cfg.iov != NULL)
 		pci_iov_cfg_restore(dev, dinfo);
 #endif
 }
 
 static void
 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
 {
 #define	RREG(n)	pci_read_config(dev, pos + (n), 2)
 	struct pcicfg_pcie *cfg;
 	int version, pos;
 
 	cfg = &dinfo->cfg.pcie;
 	pos = cfg->pcie_location;
 
 	cfg->pcie_flags = RREG(PCIER_FLAGS);
 
 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
 
 	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
 
 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
 		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
 
 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
 		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
 
 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
 		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
 
 	if (version > 1) {
 		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
 		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
 		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
 	}
 #undef RREG
 }
 
 static void
 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
 {
 	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
 	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
 }
 
 void
 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
 {
 	uint32_t cls;
 	int ps;
 
 	/*
 	 * Some drivers apparently write to these registers w/o updating our
 	 * cached copy.  No harm happens if we update the copy, so do so here
 	 * so we can restore them.  The COMMAND register is modified by the
 	 * bus w/o updating the cache.  This should represent the normally
 	 * writable portion of the 'defined' part of type 0/1/2 headers.
 	 */
 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
 	case PCIM_HDRTYPE_NORMAL:
 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
 		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
 		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
 		break;
 	case PCIM_HDRTYPE_BRIDGE:
 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
 		    PCIR_SECLAT_1, 1);
 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
 		    PCIR_SUBBUS_1, 1);
 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
 		    PCIR_SECBUS_1, 1);
 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
 		    PCIR_PRIBUS_1, 1);
 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
 		    PCIR_BRIDGECTL_1, 2);
 		break;
 	case PCIM_HDRTYPE_CARDBUS:
 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
 		    PCIR_SECLAT_2, 1);
 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
 		    PCIR_SUBBUS_2, 1);
 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
 		    PCIR_SECBUS_2, 1);
 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
 		    PCIR_PRIBUS_2, 1);
 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
 		    PCIR_BRIDGECTL_2, 2);
 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
 		break;
 	}
 
 	if (dinfo->cfg.pcie.pcie_location != 0)
 		pci_cfg_save_pcie(dev, dinfo);
 
 	if (dinfo->cfg.pcix.pcix_location != 0)
 		pci_cfg_save_pcix(dev, dinfo);
 
 #ifdef PCI_IOV
 	if (dinfo->cfg.iov != NULL)
 		pci_iov_cfg_save(dev, dinfo);
 #endif
 
 	/*
 	 * don't set the state for display devices, base peripherals and
 	 * memory devices since bad things happen when they are powered down.
 	 * We should (a) have drivers that can easily detach and (b) use
 	 * generic drivers for these devices so that some device actually
 	 * attaches.  We need to make sure that when we implement (a) we don't
 	 * power the device down on a reattach.
 	 */
 	cls = pci_get_class(dev);
 	if (!setstate)
 		return;
 	switch (pci_do_power_nodriver)
 	{
 		case 0:		/* NO powerdown at all */
 			return;
 		case 1:		/* Conservative about what to power down */
 			if (cls == PCIC_STORAGE)
 				return;
 			/*FALLTHROUGH*/
 		case 2:		/* Aggressive about what to power down */
 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
 			    cls == PCIC_BASEPERIPH)
 				return;
 			/*FALLTHROUGH*/
 		case 3:		/* Power down everything */
 			break;
 	}
 	/*
 	 * PCI spec says we can only go into D3 state from D0 state.
 	 * Transition from D[12] into D0 before going to D3 state.
 	 */
 	ps = pci_get_powerstate(dev);
 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
 }
 
 /* Wrapper APIs suitable for device driver use. */
 void
 pci_save_state(device_t dev)
 {
 	struct pci_devinfo *dinfo;
 
 	dinfo = device_get_ivars(dev);
 	pci_cfg_save(dev, dinfo, 0);
 }
 
 void
 pci_restore_state(device_t dev)
 {
 	struct pci_devinfo *dinfo;
 
 	dinfo = device_get_ivars(dev);
 	pci_cfg_restore(dev, dinfo);
 }
 
 static int
 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
     uintptr_t *id)
 {
 
 	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
 }
 
 /* Find the upstream port of a given PCI device in a root complex. */
 device_t
 pci_find_pcie_root_port(device_t dev)
 {
 	struct pci_devinfo *dinfo;
 	devclass_t pci_class;
 	device_t pcib, bus;
 
 	pci_class = devclass_find("pci");
 	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
 	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
 
 	/*
 	 * Walk the bridge hierarchy until we find a PCI-e root
 	 * port or a non-PCI device.
 	 */
 	for (;;) {
 		bus = device_get_parent(dev);
 		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
 		    device_get_nameunit(dev)));
 
 		pcib = device_get_parent(bus);
 		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
 		    device_get_nameunit(bus)));
 
 		/*
 		 * pcib's parent must be a PCI bus for this to be a
 		 * PCI-PCI bridge.
 		 */
 		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
 			return (NULL);
 
 		dinfo = device_get_ivars(pcib);
 		if (dinfo->cfg.pcie.pcie_location != 0 &&
 		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
 			return (pcib);
 
 		dev = pcib;
 	}
 }
 
 /*
  * Wait for pending transactions to complete on a PCI-express function.
  *
  * The maximum delay is specified in milliseconds in max_delay.  Note
  * that this function may sleep.
  *
  * Returns true if the function is idle and false if the timeout is
  * exceeded.  If dev is not a PCI-express function, this returns true.
  */
 bool
 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	uint16_t sta;
 	int cap;
 
 	cap = dinfo->cfg.pcie.pcie_location;
 	if (cap == 0)
 		return (true);
 
 	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
 	while (sta & PCIEM_STA_TRANSACTION_PND) {
 		if (max_delay == 0)
 			return (false);
 
 		/* Poll once every 100 milliseconds up to the timeout. */
 		if (max_delay > 100) {
 			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
 			max_delay -= 100;
 		} else {
 			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
 			    C_HARDCLOCK);
 			max_delay = 0;
 		}
 		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
 	}
 
 	return (true);
 }
 
 /*
  * Determine the maximum Completion Timeout in microseconds.
  *
  * For non-PCI-express functions this returns 0.
  */
 int
 pcie_get_max_completion_timeout(device_t dev)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	int cap;
 
 	cap = dinfo->cfg.pcie.pcie_location;
 	if (cap == 0)
 		return (0);
 
 	/*
 	 * Functions using the 1.x spec use the default timeout range of
 	 * 50 microseconds to 50 milliseconds.  Functions that do not
 	 * support programmable timeouts also use this range.
 	 */
 	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
 	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
 	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
 		return (50 * 1000);
 
 	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
 	    PCIEM_CTL2_COMP_TIMO_VAL) {
 	case PCIEM_CTL2_COMP_TIMO_100US:
 		return (100);
 	case PCIEM_CTL2_COMP_TIMO_10MS:
 		return (10 * 1000);
 	case PCIEM_CTL2_COMP_TIMO_55MS:
 		return (55 * 1000);
 	case PCIEM_CTL2_COMP_TIMO_210MS:
 		return (210 * 1000);
 	case PCIEM_CTL2_COMP_TIMO_900MS:
 		return (900 * 1000);
 	case PCIEM_CTL2_COMP_TIMO_3500MS:
 		return (3500 * 1000);
 	case PCIEM_CTL2_COMP_TIMO_13S:
 		return (13 * 1000 * 1000);
 	case PCIEM_CTL2_COMP_TIMO_64S:
 		return (64 * 1000 * 1000);
 	default:
 		return (50 * 1000);
 	}
 }
 
 void
 pcie_apei_error(device_t dev, int sev, uint8_t *aerp)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	const char *s;
 	int aer;
 	uint32_t r, r1;
 	uint16_t rs;
 
 	if (sev == PCIEM_STA_CORRECTABLE_ERROR)
 		s = "Correctable";
 	else if (sev == PCIEM_STA_NON_FATAL_ERROR)
 		s = "Uncorrectable (Non-Fatal)";
 	else
 		s = "Uncorrectable (Fatal)";
 	device_printf(dev, "%s PCIe error reported by APEI\n", s);
 	if (aerp) {
 		if (sev == PCIEM_STA_CORRECTABLE_ERROR) {
 			r = le32dec(aerp + PCIR_AER_COR_STATUS);
 			r1 = le32dec(aerp + PCIR_AER_COR_MASK);
 		} else {
 			r = le32dec(aerp + PCIR_AER_UC_STATUS);
 			r1 = le32dec(aerp + PCIR_AER_UC_MASK);
 		}
 		device_printf(dev, "status 0x%08x mask 0x%08x", r, r1);
 		if (sev != PCIEM_STA_CORRECTABLE_ERROR) {
 			r = le32dec(aerp + PCIR_AER_UC_SEVERITY);
 			rs = le16dec(aerp + PCIR_AER_CAP_CONTROL);
 			printf(" severity 0x%08x first %d\n",
 			    r, rs & 0x1f);
 		} else
 			printf("\n");
 	}
 
 	/* As kind of recovery just report and clear the error statuses. */
 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
 		if (r != 0) {
 			pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
 			device_printf(dev, "Clearing UC AER errors 0x%08x\n", r);
 		}
 
 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
 		if (r != 0) {
 			pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
 			device_printf(dev, "Clearing COR AER errors 0x%08x\n", r);
 		}
 	}
 	if (dinfo->cfg.pcie.pcie_location != 0) {
 		rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
 		    PCIER_DEVICE_STA, 2);
 		if ((rs & (PCIEM_STA_CORRECTABLE_ERROR |
 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
 		    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
 			pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
 			    PCIER_DEVICE_STA, rs, 2);
 			device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs);
 		}
 	}
 }
 
 /*
  * Perform a Function Level Reset (FLR) on a device.
  *
  * This function first waits for any pending transactions to complete
  * within the timeout specified by max_delay.  If transactions are
  * still pending, the function will return false without attempting a
  * reset.
  *
  * If dev is not a PCI-express function or does not support FLR, this
  * function returns false.
  *
  * Note that no registers are saved or restored.  The caller is
  * responsible for saving and restoring any registers including
  * PCI-standard registers via pci_save_state() and
  * pci_restore_state().
  */
 bool
 pcie_flr(device_t dev, u_int max_delay, bool force)
 {
 	struct pci_devinfo *dinfo = device_get_ivars(dev);
 	uint16_t cmd, ctl;
 	int compl_delay;
 	int cap;
 
 	cap = dinfo->cfg.pcie.pcie_location;
 	if (cap == 0)
 		return (false);
 
 	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
 		return (false);
 
 	/*
 	 * Disable busmastering to prevent generation of new
 	 * transactions while waiting for the device to go idle.  If
 	 * the idle timeout fails, the command register is restored
 	 * which will re-enable busmastering.
 	 */
 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
 	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
 	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
 		if (!force) {
 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
 			return (false);
 		}
 		pci_printf(&dinfo->cfg,
 		    "Resetting with transactions pending after %d ms\n",
 		    max_delay);
 
 		/*
 		 * Extend the post-FLR delay to cover the maximum
 		 * Completion Timeout delay of anything in flight
 		 * during the FLR delay.  Enforce a minimum delay of
 		 * at least 10ms.
 		 */
 		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
 		if (compl_delay < 10)
 			compl_delay = 10;
 	} else
 		compl_delay = 0;
 
 	/* Initiate the reset. */
 	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
 	    PCIEM_CTL_INITIATE_FLR, 2);
 
 	/* Wait for 100ms. */
 	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
 
 	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
 	    PCIEM_STA_TRANSACTION_PND)
 		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
 	return (true);
 }
 
 /*
  * Attempt a power-management reset by cycling the device in/out of D3
  * state.  PCI spec says we can only go into D3 state from D0 state.
  * Transition from D[12] into D0 before going to D3 state.
  */
 int
 pci_power_reset(device_t dev)
 {
 	int ps;
 
 	ps = pci_get_powerstate(dev);
 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
 	pci_set_powerstate(dev, PCI_POWERSTATE_D3);
 	pci_set_powerstate(dev, ps);
 	return (0);
 }
 
 /*
  * Try link drop and retrain of the downstream port of upstream
  * switch, for PCIe.  According to the PCIe 3.0 spec 6.6.1, this must
  * cause Conventional Hot reset of the device in the slot.
  * Alternative, for PCIe, could be the secondary bus reset initiatied
  * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
  */
 int
 pcie_link_reset(device_t port, int pcie_location)
 {
 	uint16_t v;
 
 	v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
 	v |= PCIEM_LINK_CTL_LINK_DIS;
 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
 	pause_sbt("pcier1", mstosbt(20), 0, 0);
 	v &= ~PCIEM_LINK_CTL_LINK_DIS;
 	v |= PCIEM_LINK_CTL_RETRAIN_LINK;
 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
 	pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
 	v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
 	return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
 }
 
 static int
 pci_reset_post(device_t dev, device_t child)
 {
 
 	if (dev == device_get_parent(child))
 		pci_restore_state(child);
 	return (0);
 }
 
 static int
 pci_reset_prepare(device_t dev, device_t child)
 {
 
 	if (dev == device_get_parent(child))
 		pci_save_state(child);
 	return (0);
 }
 
 static int
 pci_reset_child(device_t dev, device_t child, int flags)
 {
 	int error;
 
 	if (dev == NULL || device_get_parent(child) != dev)
 		return (0);
 	if ((flags & DEVF_RESET_DETACH) != 0) {
 		error = device_get_state(child) == DS_ATTACHED ?
 		    device_detach(child) : 0;
 	} else {
 		error = BUS_SUSPEND_CHILD(dev, child);
 	}
 	if (error == 0) {
 		if (!pcie_flr(child, 1000, false)) {
 			error = BUS_RESET_PREPARE(dev, child);
 			if (error == 0)
 				pci_power_reset(child);
 			BUS_RESET_POST(dev, child);
 		}
 		if ((flags & DEVF_RESET_DETACH) != 0)
 			device_probe_and_attach(child);
 		else
 			BUS_RESUME_CHILD(dev, child);
 	}
 	return (error);
 }
 
 const struct pci_device_table *
 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
 {
 	bool match;
 	uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
 
 	vendor = pci_get_vendor(child);
 	device = pci_get_device(child);
 	subvendor = pci_get_subvendor(child);
 	subdevice = pci_get_subdevice(child);
 	class = pci_get_class(child);
 	subclass = pci_get_subclass(child);
 	revid = pci_get_revid(child);
 	while (nelt-- > 0) {
 		match = true;
 		if (id->match_flag_vendor)
 			match &= vendor == id->vendor;
 		if (id->match_flag_device)
 			match &= device == id->device;
 		if (id->match_flag_subvendor)
 			match &= subvendor == id->subvendor;
 		if (id->match_flag_subdevice)
 			match &= subdevice == id->subdevice;
 		if (id->match_flag_class)
 			match &= class == id->class_id;
 		if (id->match_flag_subclass)
 			match &= subclass == id->subclass;
 		if (id->match_flag_revid)
 			match &= revid == id->revid;
 		if (match)
 			return (id);
 		id++;
 	}
 	return (NULL);
 }
 
 static void
 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
 {
 	const char *dev_name;
 	device_t dev;
 
 	dev = dinfo->cfg.dev;
 	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
 	    dinfo->cfg.slot, dinfo->cfg.func);
 	dev_name = device_get_name(dev);
 	if (dev_name != NULL)
 		printf(" (%s%d)", dev_name, device_get_unit(dev));
 }
 
 void
 pci_print_faulted_dev(void)
 {
 	struct pci_devinfo *dinfo;
 	device_t dev;
 	int aer, i;
 	uint32_t r1, r2;
 	uint16_t status;
 
 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
 		dev = dinfo->cfg.dev;
 		status = pci_read_config(dev, PCIR_STATUS, 2);
 		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
 		if (status != 0) {
 			pci_print_faulted_dev_name(dinfo);
 			printf(" error 0x%04x\n", status);
 		}
 		if (dinfo->cfg.pcie.pcie_location != 0) {
 			status = pci_read_config(dev,
 			    dinfo->cfg.pcie.pcie_location +
 			    PCIER_DEVICE_STA, 2);
 			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
 			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
 			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
 				pci_print_faulted_dev_name(dinfo);
 				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
 				    pci_read_config(dev,
 				    dinfo->cfg.pcie.pcie_location +
 				    PCIER_DEVICE_CTL, 2),
 				    status);
 			}
 		}
 		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
 			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
 			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
 			if (r1 != 0 || r2 != 0) {
 				pci_print_faulted_dev_name(dinfo);
 				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
 				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
 				    r1, pci_read_config(dev, aer +
 				    PCIR_AER_UC_MASK, 4),
 				    pci_read_config(dev, aer +
 				    PCIR_AER_UC_SEVERITY, 4),
 				    r2, pci_read_config(dev, aer +
 				    PCIR_AER_COR_MASK, 4),
 				    pci_read_config(dev, aer +
 				    PCIR_AER_CAP_CONTROL, 4));
 				for (i = 0; i < 4; i++) {
 					r1 = pci_read_config(dev, aer +
 					    PCIR_AER_HEADER_LOG + i * 4, 4);
 					printf("    HL%d: 0x%08x\n", i, r1);
 				}
 			}
 		}
 	}
 }
 
 #ifdef DDB
 DB_SHOW_COMMAND_FLAGS(pcierr, pci_print_faulted_dev_db, DB_CMD_MEMSAFE)
 {
 
 	pci_print_faulted_dev();
 }
 
 static void
 db_clear_pcie_errors(const struct pci_devinfo *dinfo)
 {
 	device_t dev;
 	int aer;
 	uint32_t r;
 
 	dev = dinfo->cfg.dev;
 	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
 	    PCIER_DEVICE_STA, 2);
 	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
 	    PCIER_DEVICE_STA, r, 2);
 
 	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
 		return;
 	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
 	if (r != 0)
 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
 	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
 	if (r != 0)
 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
 }
 
 DB_COMMAND_FLAGS(pci_clearerr, db_pci_clearerr, DB_CMD_MEMSAFE)
 {
 	struct pci_devinfo *dinfo;
 	device_t dev;
 	uint16_t status, status1;
 
 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
 		dev = dinfo->cfg.dev;
 		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
 		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
 		if (status1 != 0) {
 			status &= ~status1;
 			pci_write_config(dev, PCIR_STATUS, status, 2);
 		}
 		if (dinfo->cfg.pcie.pcie_location != 0)
 			db_clear_pcie_errors(dinfo);
 	}
 }
 #endif