diff --git a/sys/netinet6/nd6.c b/sys/netinet6/nd6.c
index b772fb74b257..e4d657feed98 100644
--- a/sys/netinet6/nd6.c
+++ b/sys/netinet6/nd6.c
@@ -1,2797 +1,2751 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the project nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_inet.h"
 #include "opt_inet6.h"
 #include "opt_route.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/eventhandler.h>
 #include <sys/callout.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mbuf.h>
 #include <sys/mutex.h>
 #include <sys/socket.h>
 #include <sys/sockio.h>
 #include <sys/time.h>
 #include <sys/kernel.h>
 #include <sys/protosw.h>
 #include <sys/errno.h>
 #include <sys/syslog.h>
 #include <sys/rwlock.h>
 #include <sys/queue.h>
 #include <sys/sdt.h>
 #include <sys/sysctl.h>
 
 #include <net/if.h>
 #include <net/if_var.h>
 #include <net/if_dl.h>
 #include <net/if_types.h>
 #include <net/route.h>
 #include <net/route/route_ctl.h>
 #include <net/route/nhop.h>
 #include <net/vnet.h>
 
 #include <netinet/in.h>
 #include <netinet/in_kdtrace.h>
 #include <net/if_llatbl.h>
 #include <netinet/if_ether.h>
+#include <netinet6/in6_fib.h>
 #include <netinet6/in6_var.h>
 #include <netinet/ip6.h>
 #include <netinet6/ip6_var.h>
 #include <netinet6/scope6_var.h>
 #include <netinet6/nd6.h>
 #include <netinet6/in6_ifattach.h>
 #include <netinet/icmp6.h>
 #include <netinet6/send.h>
 
 #include <sys/limits.h>
 
 #include <security/mac/mac_framework.h>
 
 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
 
 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
 
 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
 
 /* timer values */
 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
 					 * local traffic */
 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
 					 * collection timer */
 
 /* preventing too many loops in ND option parsing */
 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
 
 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
 					 * layer hints */
 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved
 					 * ND entries */
 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
 
 #ifdef ND6_DEBUG
 VNET_DEFINE(int, nd6_debug) = 1;
 #else
 VNET_DEFINE(int, nd6_debug) = 0;
 #endif
 
 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh;
 
 VNET_DEFINE(struct nd_prhead, nd_prefix);
 VNET_DEFINE(struct rwlock, nd6_lock);
 VNET_DEFINE(uint64_t, nd6_list_genid);
 VNET_DEFINE(struct mtx, nd6_onlink_mtx);
 
 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
 
 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
 
-static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
+static bool nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
 	struct ifnet *);
 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
 static void nd6_slowtimo(void *);
 static int regen_tmpaddr(struct in6_ifaddr *);
 static void nd6_free(struct llentry **, int);
 static void nd6_free_redirect(const struct llentry *);
 static void nd6_llinfo_timer(void *);
 static void nd6_llinfo_settimer_locked(struct llentry *, long);
 static void clear_llinfo_pqueue(struct llentry *);
 static int nd6_resolve_slow(struct ifnet *, int, int, struct mbuf *,
     const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
 static int nd6_need_cache(struct ifnet *);
 
 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch);
 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
 
 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch);
 #define	V_nd6_timer_ch			VNET(nd6_timer_ch)
 
 SYSCTL_DECL(_net_inet6_icmp6);
 
 static void
 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
 {
 	struct rt_addrinfo rtinfo;
 	struct sockaddr_in6 dst;
 	struct sockaddr_dl gw;
 	struct ifnet *ifp;
 	int type;
 	int fibnum;
 
 	LLE_WLOCK_ASSERT(lle);
 
 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
 		return;
 
 	switch (evt) {
 	case LLENTRY_RESOLVED:
 		type = RTM_ADD;
 		KASSERT(lle->la_flags & LLE_VALID,
 		    ("%s: %p resolved but not valid?", __func__, lle));
 		break;
 	case LLENTRY_EXPIRED:
 		type = RTM_DELETE;
 		break;
 	default:
 		return;
 	}
 
 	ifp = lltable_get_ifp(lle->lle_tbl);
 
 	bzero(&dst, sizeof(dst));
 	bzero(&gw, sizeof(gw));
 	bzero(&rtinfo, sizeof(rtinfo));
 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
 	dst.sin6_scope_id = in6_getscopezone(ifp,
 	    in6_addrscope(&dst.sin6_addr));
 	gw.sdl_len = sizeof(struct sockaddr_dl);
 	gw.sdl_family = AF_LINK;
 	gw.sdl_alen = ifp->if_addrlen;
 	gw.sdl_index = ifp->if_index;
 	gw.sdl_type = ifp->if_type;
 	if (evt == LLENTRY_RESOLVED)
 		bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
 	fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib;
 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
 	    type == RTM_ADD ? RTF_UP: 0), 0, fibnum);
 }
 
 /*
  * A handler for interface link layer address change event.
  */
 static void
 nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
 {
 	if (ifp->if_afdata[AF_INET6] == NULL)
 		return;
 
 	lltable_update_ifaddr(LLTABLE6(ifp));
 }
 
 void
 nd6_init(void)
 {
 
 	mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF);
 	rw_init(&V_nd6_lock, "nd6 list");
 
 	LIST_INIT(&V_nd_prefix);
 	nd6_defrouter_init();
 
 	/* Start timers. */
 	callout_init(&V_nd6_slowtimo_ch, 1);
 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
 	    nd6_slowtimo, curvnet);
 
 	callout_init(&V_nd6_timer_ch, 1);
 	callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
 
 	nd6_dad_init();
 	if (IS_DEFAULT_VNET(curvnet)) {
 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
 		    NULL, EVENTHANDLER_PRI_ANY);
 		iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
 		    nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
 		ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event,
 		    nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY);
 	}
 }
 
 #ifdef VIMAGE
 void
 nd6_destroy(void)
 {
 
 	callout_drain(&V_nd6_slowtimo_ch);
 	callout_drain(&V_nd6_timer_ch);
 	if (IS_DEFAULT_VNET(curvnet)) {
 		EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh);
 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
 	}
 	rw_destroy(&V_nd6_lock);
 	mtx_destroy(&V_nd6_onlink_mtx);
 }
 #endif
 
 struct nd_ifinfo *
 nd6_ifattach(struct ifnet *ifp)
 {
 	struct nd_ifinfo *nd;
 
 	nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
 	nd->initialized = 1;
 
 	nd->chlim = IPV6_DEFHLIM;
 	nd->basereachable = REACHABLE_TIME;
 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
 	nd->retrans = RETRANS_TIMER;
 
 	nd->flags = ND6_IFF_PERFORMNUD;
 
 	/* Set IPv6 disabled on all interfaces but loopback by default. */
 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
 		nd->flags |= ND6_IFF_IFDISABLED;
 
 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
 	 * default regardless of the V_ip6_auto_linklocal configuration to
 	 * give a reasonable default behavior.
 	 */
 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE &&
 	    ifp->if_type != IFT_WIREGUARD) || (ifp->if_flags & IFF_LOOPBACK))
 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
 	/*
 	 * A loopback interface does not need to accept RTADV.
 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
 	 * default regardless of the V_ip6_accept_rtadv configuration to
 	 * prevent the interface from accepting RA messages arrived
 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
 	 */
 	if (V_ip6_accept_rtadv &&
 	    !(ifp->if_flags & IFF_LOOPBACK) &&
 	    (ifp->if_type != IFT_BRIDGE)) {
 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
 			/* If we globally accept rtadv, assume IPv6 on. */
 			nd->flags &= ~ND6_IFF_IFDISABLED;
 	}
 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
 		nd->flags |= ND6_IFF_NO_RADR;
 
 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
 	nd6_setmtu0(ifp, nd);
 
 	return nd;
 }
 
 void
 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
 {
 	struct epoch_tracker et;
 	struct ifaddr *ifa, *next;
 
 	NET_EPOCH_ENTER(et);
 	CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
 		if (ifa->ifa_addr->sa_family != AF_INET6)
 			continue;
 
 		/* stop DAD processing */
 		nd6_dad_stop(ifa);
 	}
 	NET_EPOCH_EXIT(et);
 
 	free(nd, M_IP6NDP);
 }
 
 /*
  * Reset ND level link MTU. This function is called when the physical MTU
  * changes, which means we might have to adjust the ND level MTU.
  */
 void
 nd6_setmtu(struct ifnet *ifp)
 {
 	if (ifp->if_afdata[AF_INET6] == NULL)
 		return;
 
 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
 }
 
 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
 void
 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
 {
 	u_int32_t omaxmtu;
 
 	omaxmtu = ndi->maxmtu;
 	ndi->maxmtu = ifp->if_mtu;
 
 	/*
 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
 	 * undesirable situation.  We thus notify the operator of the change
 	 * explicitly.  The check for omaxmtu is necessary to restrict the
 	 * log to the case of changing the MTU, not initializing it.
 	 */
 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
 		log(LOG_NOTICE, "nd6_setmtu0: "
 		    "new link MTU on %s (%lu) is too small for IPv6\n",
 		    if_name(ifp), (unsigned long)ndi->maxmtu);
 	}
 
 	if (ndi->maxmtu > V_in6_maxmtu)
 		in6_setmaxmtu(); /* check all interfaces just in case */
 
 }
 
 void
 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
 {
 
 	bzero(ndopts, sizeof(*ndopts));
 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
 	ndopts->nd_opts_last
 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
 
 	if (icmp6len == 0) {
 		ndopts->nd_opts_done = 1;
 		ndopts->nd_opts_search = NULL;
 	}
 }
 
 /*
  * Take one ND option.
  */
 struct nd_opt_hdr *
 nd6_option(union nd_opts *ndopts)
 {
 	struct nd_opt_hdr *nd_opt;
 	int olen;
 
 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
 	    __func__));
 	if (ndopts->nd_opts_search == NULL)
 		return NULL;
 	if (ndopts->nd_opts_done)
 		return NULL;
 
 	nd_opt = ndopts->nd_opts_search;
 
 	/* make sure nd_opt_len is inside the buffer */
 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
 		bzero(ndopts, sizeof(*ndopts));
 		return NULL;
 	}
 
 	olen = nd_opt->nd_opt_len << 3;
 	if (olen == 0) {
 		/*
 		 * Message validation requires that all included
 		 * options have a length that is greater than zero.
 		 */
 		bzero(ndopts, sizeof(*ndopts));
 		return NULL;
 	}
 
 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
 		/* option overruns the end of buffer, invalid */
 		bzero(ndopts, sizeof(*ndopts));
 		return NULL;
 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
 		/* reached the end of options chain */
 		ndopts->nd_opts_done = 1;
 		ndopts->nd_opts_search = NULL;
 	}
 	return nd_opt;
 }
 
 /*
  * Parse multiple ND options.
  * This function is much easier to use, for ND routines that do not need
  * multiple options of the same type.
  */
 int
 nd6_options(union nd_opts *ndopts)
 {
 	struct nd_opt_hdr *nd_opt;
 	int i = 0;
 
 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
 	    __func__));
 	if (ndopts->nd_opts_search == NULL)
 		return 0;
 
 	while (1) {
 		nd_opt = nd6_option(ndopts);
 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
 			/*
 			 * Message validation requires that all included
 			 * options have a length that is greater than zero.
 			 */
 			ICMP6STAT_INC(icp6s_nd_badopt);
 			bzero(ndopts, sizeof(*ndopts));
 			return -1;
 		}
 
 		if (nd_opt == NULL)
 			goto skip1;
 
 		switch (nd_opt->nd_opt_type) {
 		case ND_OPT_SOURCE_LINKADDR:
 		case ND_OPT_TARGET_LINKADDR:
 		case ND_OPT_MTU:
 		case ND_OPT_REDIRECTED_HEADER:
 		case ND_OPT_NONCE:
 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
 				nd6log((LOG_INFO,
 				    "duplicated ND6 option found (type=%d)\n",
 				    nd_opt->nd_opt_type));
 				/* XXX bark? */
 			} else {
 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
 					= nd_opt;
 			}
 			break;
 		case ND_OPT_PREFIX_INFORMATION:
 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
 					= nd_opt;
 			}
 			ndopts->nd_opts_pi_end =
 				(struct nd_opt_prefix_info *)nd_opt;
 			break;
 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
 		case ND_OPT_RDNSS:	/* RFC 6106 */
 		case ND_OPT_DNSSL:	/* RFC 6106 */
 			/*
 			 * Silently ignore options we know and do not care about
 			 * in the kernel.
 			 */
 			break;
 		default:
 			/*
 			 * Unknown options must be silently ignored,
 			 * to accommodate future extension to the protocol.
 			 */
 			nd6log((LOG_DEBUG,
 			    "nd6_options: unsupported option %d - "
 			    "option ignored\n", nd_opt->nd_opt_type));
 		}
 
 skip1:
 		i++;
 		if (i > V_nd6_maxndopt) {
 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
 			break;
 		}
 
 		if (ndopts->nd_opts_done)
 			break;
 	}
 
 	return 0;
 }
 
 /*
  * ND6 timer routine to handle ND6 entries
  */
 static void
 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
 {
 	int canceled;
 
 	LLE_WLOCK_ASSERT(ln);
 
 	/* Do not schedule timers for child LLEs. */
 	if (ln->la_flags & LLE_CHILD)
 		return;
 
 	if (tick < 0) {
 		ln->la_expire = 0;
 		ln->ln_ntick = 0;
 		canceled = callout_stop(&ln->lle_timer);
 	} else {
 		ln->la_expire = time_uptime + tick / hz;
 		LLE_ADDREF(ln);
 		if (tick > INT_MAX) {
 			ln->ln_ntick = tick - INT_MAX;
 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
 			    nd6_llinfo_timer, ln);
 		} else {
 			ln->ln_ntick = 0;
 			canceled = callout_reset(&ln->lle_timer, tick,
 			    nd6_llinfo_timer, ln);
 		}
 	}
 	if (canceled > 0)
 		LLE_REMREF(ln);
 }
 
 /*
  * Gets source address of the first packet in hold queue
  * and stores it in @src.
  * Returns pointer to @src (if hold queue is not empty) or NULL.
  *
  * Set noinline to be dtrace-friendly
  */
 static __noinline struct in6_addr *
 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
 {
 	struct ip6_hdr hdr;
 	struct mbuf *m;
 
 	if (ln->la_hold == NULL)
 		return (NULL);
 
 	/*
 	 * assume every packet in la_hold has the same IP header
 	 */
 	m = ln->la_hold;
 	if (sizeof(hdr) > m->m_len)
 		return (NULL);
 
 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
 	*src = hdr.ip6_src;
 
 	return (src);
 }
 
 /*
  * Checks if we need to switch from STALE state.
  *
  * RFC 4861 requires switching from STALE to DELAY state
  * on first packet matching entry, waiting V_nd6_delay and
  * transition to PROBE state (if upper layer confirmation was
  * not received).
  *
  * This code performs a bit differently:
  * On packet hit we don't change state (but desired state
  * can be guessed by control plane). However, after V_nd6_delay
  * seconds code will transition to PROBE state (so DELAY state
  * is kinda skipped in most situations).
  *
  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
  * we perform the following upon entering STALE state:
  *
  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
  * if packet was transmitted at the start of given interval, we
  * would be able to switch to PROBE state in V_nd6_delay seconds
  * as user expects.
  *
  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
  * lle in STALE state (remaining timer value stored in lle_remtime).
  *
  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
  * seconds ago.
  *
  * Returns non-zero value if the entry is still STALE (storing
  * the next timer interval in @pdelay).
  *
  * Returns zero value if original timer expired or we need to switch to
  * PROBE (store that in @do_switch variable).
  */
 static int
 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
 {
 	int nd_delay, nd_gctimer;
 	time_t lle_hittime;
 	long delay;
 
 	*do_switch = 0;
 	nd_gctimer = V_nd6_gctimer;
 	nd_delay = V_nd6_delay;
 
 	lle_hittime = llentry_get_hittime(lle);
 
 	if (lle_hittime == 0) {
 		/*
 		 * Datapath feedback has been requested upon entering
 		 * STALE state. No packets has been passed using this lle.
 		 * Ask for the timer reschedule and keep STALE state.
 		 */
 		delay = (long)(MIN(nd_gctimer, nd_delay));
 		delay *= hz;
 		if (lle->lle_remtime > delay)
 			lle->lle_remtime -= delay;
 		else {
 			delay = lle->lle_remtime;
 			lle->lle_remtime = 0;
 		}
 
 		if (delay == 0) {
 			/*
 			 * The original ng6_gctime timeout ended,
 			 * no more rescheduling.
 			 */
 			return (0);
 		}
 
 		*pdelay = delay;
 		return (1);
 	}
 
 	/*
 	 * Packet received. Verify timestamp
 	 */
 	delay = (long)(time_uptime - lle_hittime);
 	if (delay < nd_delay) {
 		/*
 		 * V_nd6_delay still not passed since the first
 		 * hit in STALE state.
 		 * Reschedule timer and return.
 		 */
 		*pdelay = (long)(nd_delay - delay) * hz;
 		return (1);
 	}
 
 	/* Request switching to probe */
 	*do_switch = 1;
 	return (0);
 }
 
 /*
  * Switch @lle state to new state optionally arming timers.
  *
  * Set noinline to be dtrace-friendly
  */
 __noinline void
 nd6_llinfo_setstate(struct llentry *lle, int newstate)
 {
 	struct ifnet *ifp;
 	int nd_gctimer, nd_delay;
 	long delay, remtime;
 
 	delay = 0;
 	remtime = 0;
 
 	switch (newstate) {
 	case ND6_LLINFO_INCOMPLETE:
 		ifp = lle->lle_tbl->llt_ifp;
 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
 		break;
 	case ND6_LLINFO_REACHABLE:
 		if (!ND6_LLINFO_PERMANENT(lle)) {
 			ifp = lle->lle_tbl->llt_ifp;
 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
 		}
 		break;
 	case ND6_LLINFO_STALE:
 
 		llentry_request_feedback(lle);
 		nd_delay = V_nd6_delay;
 		nd_gctimer = V_nd6_gctimer;
 
 		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
 		remtime = (long)nd_gctimer * hz - delay;
 		break;
 	case ND6_LLINFO_DELAY:
 		lle->la_asked = 0;
 		delay = (long)V_nd6_delay * hz;
 		break;
 	}
 
 	if (delay > 0)
 		nd6_llinfo_settimer_locked(lle, delay);
 
 	lle->lle_remtime = remtime;
 	lle->ln_state = newstate;
 }
 
 /*
  * Timer-dependent part of nd state machine.
  *
  * Set noinline to be dtrace-friendly
  */
 static __noinline void
 nd6_llinfo_timer(void *arg)
 {
 	struct epoch_tracker et;
 	struct llentry *ln;
 	struct in6_addr *dst, *pdst, *psrc, src;
 	struct ifnet *ifp;
 	struct nd_ifinfo *ndi;
 	int do_switch, send_ns;
 	long delay;
 
 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
 	ln = (struct llentry *)arg;
 	ifp = lltable_get_ifp(ln->lle_tbl);
 	CURVNET_SET(ifp->if_vnet);
 
 	ND6_RLOCK();
 	LLE_WLOCK(ln);
 	if (callout_pending(&ln->lle_timer)) {
 		/*
 		 * Here we are a bit odd here in the treatment of 
 		 * active/pending. If the pending bit is set, it got
 		 * rescheduled before I ran. The active
 		 * bit we ignore, since if it was stopped
 		 * in ll_tablefree() and was currently running
 		 * it would have return 0 so the code would
 		 * not have deleted it since the callout could
 		 * not be stopped so we want to go through
 		 * with the delete here now. If the callout
 		 * was restarted, the pending bit will be back on and
 		 * we just want to bail since the callout_reset would
 		 * return 1 and our reference would have been removed
 		 * by nd6_llinfo_settimer_locked above since canceled
 		 * would have been 1.
 		 */
 		LLE_WUNLOCK(ln);
 		ND6_RUNLOCK();
 		CURVNET_RESTORE();
 		return;
 	}
 	NET_EPOCH_ENTER(et);
 	ndi = ND_IFINFO(ifp);
 	send_ns = 0;
 	dst = &ln->r_l3addr.addr6;
 	pdst = dst;
 
 	if (ln->ln_ntick > 0) {
 		if (ln->ln_ntick > INT_MAX) {
 			ln->ln_ntick -= INT_MAX;
 			nd6_llinfo_settimer_locked(ln, INT_MAX);
 		} else {
 			ln->ln_ntick = 0;
 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
 		}
 		goto done;
 	}
 
 	if (ln->la_flags & LLE_STATIC) {
 		goto done;
 	}
 
 	if (ln->la_flags & LLE_DELETED) {
 		nd6_free(&ln, 0);
 		goto done;
 	}
 
 	switch (ln->ln_state) {
 	case ND6_LLINFO_INCOMPLETE:
 		if (ln->la_asked < V_nd6_mmaxtries) {
 			ln->la_asked++;
 			send_ns = 1;
 			/* Send NS to multicast address */
 			pdst = NULL;
 		} else {
 			struct mbuf *m = ln->la_hold;
 			if (m) {
 				struct mbuf *m0;
 
 				/*
 				 * assuming every packet in la_hold has the
 				 * same IP header.  Send error after unlock.
 				 */
 				m0 = m->m_nextpkt;
 				m->m_nextpkt = NULL;
 				ln->la_hold = m0;
 				clear_llinfo_pqueue(ln);
 			}
 			nd6_free(&ln, 0);
 			if (m != NULL) {
 				struct mbuf *n = m;
 
 				/*
 				 * if there are any ummapped mbufs, we
 				 * must free them, rather than using
 				 * them for an ICMP, as they cannot be
 				 * checksummed.
 				 */
 				while ((n = n->m_next) != NULL) {
 					if (n->m_flags & M_EXTPG)
 						break;
 				}
 				if (n != NULL) {
 					m_freem(m);
 					m = NULL;
 				} else {
 					icmp6_error2(m, ICMP6_DST_UNREACH,
 					    ICMP6_DST_UNREACH_ADDR, 0, ifp);
 				}
 			}
 		}
 		break;
 	case ND6_LLINFO_REACHABLE:
 		if (!ND6_LLINFO_PERMANENT(ln))
 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
 		break;
 
 	case ND6_LLINFO_STALE:
 		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
 			/*
 			 * No packet has used this entry and GC timeout
 			 * has not been passed. Reschedule timer and
 			 * return.
 			 */
 			nd6_llinfo_settimer_locked(ln, delay);
 			break;
 		}
 
 		if (do_switch == 0) {
 			/*
 			 * GC timer has ended and entry hasn't been used.
 			 * Run Garbage collector (RFC 4861, 5.3)
 			 */
 			if (!ND6_LLINFO_PERMANENT(ln))
 				nd6_free(&ln, 1);
 			break;
 		}
 
 		/* Entry has been used AND delay timer has ended. */
 
 		/* FALLTHROUGH */
 
 	case ND6_LLINFO_DELAY:
 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
 			/* We need NUD */
 			ln->la_asked = 1;
 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
 			send_ns = 1;
 		} else
 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
 		break;
 	case ND6_LLINFO_PROBE:
 		if (ln->la_asked < V_nd6_umaxtries) {
 			ln->la_asked++;
 			send_ns = 1;
 		} else {
 			nd6_free(&ln, 0);
 		}
 		break;
 	default:
 		panic("%s: paths in a dark night can be confusing: %d",
 		    __func__, ln->ln_state);
 	}
 done:
 	if (ln != NULL)
 		ND6_RUNLOCK();
 	if (send_ns != 0) {
 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
 		LLE_FREE_LOCKED(ln);
 		ln = NULL;
 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
 	}
 
 	if (ln != NULL)
 		LLE_FREE_LOCKED(ln);
 	NET_EPOCH_EXIT(et);
 	CURVNET_RESTORE();
 }
 
 /*
  * ND6 timer routine to expire default route list and prefix list
  */
 void
 nd6_timer(void *arg)
 {
 	CURVNET_SET((struct vnet *) arg);
 	struct epoch_tracker et;
 	struct nd_prhead prl;
 	struct nd_prefix *pr, *npr;
 	struct ifnet *ifp;
 	struct in6_ifaddr *ia6, *nia6;
 	uint64_t genid;
 
 	LIST_INIT(&prl);
 
 	NET_EPOCH_ENTER(et);
 	nd6_defrouter_timer();
 
 	/*
 	 * expire interface addresses.
 	 * in the past the loop was inside prefix expiry processing.
 	 * However, from a stricter speci-confrmance standpoint, we should
 	 * rather separate address lifetimes and prefix lifetimes.
 	 *
 	 * XXXRW: in6_ifaddrhead locking.
 	 */
   addrloop:
 	CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
 		/* check address lifetime */
 		if (IFA6_IS_INVALID(ia6)) {
 			int regen = 0;
 
 			/*
 			 * If the expiring address is temporary, try
 			 * regenerating a new one.  This would be useful when
 			 * we suspended a laptop PC, then turned it on after a
 			 * period that could invalidate all temporary
 			 * addresses.  Although we may have to restart the
 			 * loop (see below), it must be after purging the
 			 * address.  Otherwise, we'd see an infinite loop of
 			 * regeneration.
 			 */
 			if (V_ip6_use_tempaddr &&
 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
 				if (regen_tmpaddr(ia6) == 0)
 					regen = 1;
 			}
 
 			in6_purgeaddr(&ia6->ia_ifa);
 
 			if (regen)
 				goto addrloop; /* XXX: see below */
 		} else if (IFA6_IS_DEPRECATED(ia6)) {
 			int oldflags = ia6->ia6_flags;
 
 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
 
 			/*
 			 * If a temporary address has just become deprecated,
 			 * regenerate a new one if possible.
 			 */
 			if (V_ip6_use_tempaddr &&
 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
 				if (regen_tmpaddr(ia6) == 0) {
 					/*
 					 * A new temporary address is
 					 * generated.
 					 * XXX: this means the address chain
 					 * has changed while we are still in
 					 * the loop.  Although the change
 					 * would not cause disaster (because
 					 * it's not a deletion, but an
 					 * addition,) we'd rather restart the
 					 * loop just for safety.  Or does this
 					 * significantly reduce performance??
 					 */
 					goto addrloop;
 				}
 			}
 		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
 			/*
 			 * Schedule DAD for a tentative address.  This happens
 			 * if the interface was down or not running
 			 * when the address was configured.
 			 */
 			int delay;
 
 			delay = arc4random() %
 			    (MAX_RTR_SOLICITATION_DELAY * hz);
 			nd6_dad_start((struct ifaddr *)ia6, delay);
 		} else {
 			/*
 			 * Check status of the interface.  If it is down,
 			 * mark the address as tentative for future DAD.
 			 */
 			ifp = ia6->ia_ifp;
 			if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 &&
 			    ((ifp->if_flags & IFF_UP) == 0 ||
 			    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
 			    (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){
 				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
 				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
 			}
 
 			/*
 			 * A new RA might have made a deprecated address
 			 * preferred.
 			 */
 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
 		}
 	}
 	NET_EPOCH_EXIT(et);
 
 	ND6_WLOCK();
 restart:
 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
 		/*
 		 * Expire prefixes. Since the pltime is only used for
 		 * autoconfigured addresses, pltime processing for prefixes is
 		 * not necessary.
 		 *
 		 * Only unlink after all derived addresses have expired. This
 		 * may not occur until two hours after the prefix has expired
 		 * per RFC 4862. If the prefix expires before its derived
 		 * addresses, mark it off-link. This will be done automatically
 		 * after unlinking if no address references remain.
 		 */
 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME ||
 		    time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime)
 			continue;
 
 		if (pr->ndpr_addrcnt == 0) {
 			nd6_prefix_unlink(pr, &prl);
 			continue;
 		}
 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) {
 			genid = V_nd6_list_genid;
 			nd6_prefix_ref(pr);
 			ND6_WUNLOCK();
 			ND6_ONLINK_LOCK();
 			(void)nd6_prefix_offlink(pr);
 			ND6_ONLINK_UNLOCK();
 			ND6_WLOCK();
 			nd6_prefix_rele(pr);
 			if (genid != V_nd6_list_genid)
 				goto restart;
 		}
 	}
 	ND6_WUNLOCK();
 
 	while ((pr = LIST_FIRST(&prl)) != NULL) {
 		LIST_REMOVE(pr, ndpr_entry);
 		nd6_prefix_del(pr);
 	}
 
 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
 	    nd6_timer, curvnet);
 
 	CURVNET_RESTORE();
 }
 
 /*
  * ia6 - deprecated/invalidated temporary address
  */
 static int
 regen_tmpaddr(struct in6_ifaddr *ia6)
 {
 	struct ifaddr *ifa;
 	struct ifnet *ifp;
 	struct in6_ifaddr *public_ifa6 = NULL;
 
 	NET_EPOCH_ASSERT();
 
 	ifp = ia6->ia_ifa.ifa_ifp;
 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 		struct in6_ifaddr *it6;
 
 		if (ifa->ifa_addr->sa_family != AF_INET6)
 			continue;
 
 		it6 = (struct in6_ifaddr *)ifa;
 
 		/* ignore no autoconf addresses. */
 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
 			continue;
 
 		/* ignore autoconf addresses with different prefixes. */
 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
 			continue;
 
 		/*
 		 * Now we are looking at an autoconf address with the same
 		 * prefix as ours.  If the address is temporary and is still
 		 * preferred, do not create another one.  It would be rare, but
 		 * could happen, for example, when we resume a laptop PC after
 		 * a long period.
 		 */
 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
 		    !IFA6_IS_DEPRECATED(it6)) {
 			public_ifa6 = NULL;
 			break;
 		}
 
 		/*
 		 * This is a public autoconf address that has the same prefix
 		 * as ours.  If it is preferred, keep it.  We can't break the
 		 * loop here, because there may be a still-preferred temporary
 		 * address with the prefix.
 		 */
 		if (!IFA6_IS_DEPRECATED(it6))
 			public_ifa6 = it6;
 	}
 	if (public_ifa6 != NULL)
 		ifa_ref(&public_ifa6->ia_ifa);
 
 	if (public_ifa6 != NULL) {
 		int e;
 
 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
 			ifa_free(&public_ifa6->ia_ifa);
 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
 			    " tmp addr,errno=%d\n", e);
 			return (-1);
 		}
 		ifa_free(&public_ifa6->ia_ifa);
 		return (0);
 	}
 
 	return (-1);
 }
 
 /*
  * Remove prefix and default router list entries corresponding to ifp. Neighbor
  * cache entries are freed in in6_domifdetach().
  */
 void
 nd6_purge(struct ifnet *ifp)
 {
 	struct nd_prhead prl;
 	struct nd_prefix *pr, *npr;
 
 	LIST_INIT(&prl);
 
 	/* Purge default router list entries toward ifp. */
 	nd6_defrouter_purge(ifp);
 
 	ND6_WLOCK();
 	/*
 	 * Remove prefixes on ifp. We should have already removed addresses on
 	 * this interface, so no addresses should be referencing these prefixes.
 	 */
 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
 		if (pr->ndpr_ifp == ifp)
 			nd6_prefix_unlink(pr, &prl);
 	}
 	ND6_WUNLOCK();
 
 	/* Delete the unlinked prefix objects. */
 	while ((pr = LIST_FIRST(&prl)) != NULL) {
 		LIST_REMOVE(pr, ndpr_entry);
 		nd6_prefix_del(pr);
 	}
 
 	/* cancel default outgoing interface setting */
 	if (V_nd6_defifindex == ifp->if_index)
 		nd6_setdefaultiface(0);
 
 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
 		/* Refresh default router list. */
 		defrouter_select_fib(ifp->if_fib);
 	}
 }
 
 /* 
  * the caller acquires and releases the lock on the lltbls
  * Returns the llentry locked
  */
 struct llentry *
 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
 {
 	struct sockaddr_in6 sin6;
 	struct llentry *ln;
 
 	bzero(&sin6, sizeof(sin6));
 	sin6.sin6_len = sizeof(struct sockaddr_in6);
 	sin6.sin6_family = AF_INET6;
 	sin6.sin6_addr = *addr6;
 
 	IF_AFDATA_LOCK_ASSERT(ifp);
 
 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
 
 	return (ln);
 }
 
 static struct llentry *
 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
 {
 	struct sockaddr_in6 sin6;
 	struct llentry *ln;
 
 	bzero(&sin6, sizeof(sin6));
 	sin6.sin6_len = sizeof(struct sockaddr_in6);
 	sin6.sin6_family = AF_INET6;
 	sin6.sin6_addr = *addr6;
 
 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
 	if (ln != NULL)
 		ln->ln_state = ND6_LLINFO_NOSTATE;
 
 	return (ln);
 }
 
 /*
- * Test whether a given IPv6 address is a neighbor or not, ignoring
- * the actual neighbor cache.  The neighbor cache is ignored in order
- * to not reenter the routing code from within itself.
+ * Test whether a given IPv6 address can be a neighbor.
  */
-static int
+static bool
 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
 {
-	struct nd_prefix *pr;
-	struct ifaddr *ifa;
-	struct rt_addrinfo info;
-	struct sockaddr_in6 rt_key;
-	const struct sockaddr *dst6;
-	uint64_t genid;
-	int error, fibnum;
 
 	/*
 	 * A link-local address is always a neighbor.
 	 * XXX: a link does not necessarily specify a single interface.
 	 */
 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
 		struct sockaddr_in6 sin6_copy;
 		u_int32_t zone;
 
 		/*
 		 * We need sin6_copy since sa6_recoverscope() may modify the
 		 * content (XXX).
 		 */
 		sin6_copy = *addr;
 		if (sa6_recoverscope(&sin6_copy))
 			return (0); /* XXX: should be impossible */
 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
 			return (0);
 		if (sin6_copy.sin6_scope_id == zone)
 			return (1);
 		else
 			return (0);
 	}
+	/* Checking global unicast */
 
-	bzero(&rt_key, sizeof(rt_key));
-	bzero(&info, sizeof(info));
-	info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
+	/* If an address is directly reachable, it is a neigbor */
+	struct nhop_object *nh;
+	nh = fib6_lookup(ifp->if_fib, &addr->sin6_addr, 0, NHR_NONE, 0);
+	if (nh != NULL && nh->nh_aifp == ifp && (nh->nh_flags & NHF_GATEWAY) == 0)
+		return (true);
 
 	/*
-	 * If the address matches one of our addresses,
-	 * it should be a neighbor.
-	 * If the address matches one of our on-link prefixes, it should be a
-	 * neighbor.
+	 * Check prefixes with desired on-link state, as some may be not
+	 * installed in the routing table.
 	 */
+	bool matched = false;
+	struct nd_prefix *pr;
 	ND6_RLOCK();
-restart:
 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
 		if (pr->ndpr_ifp != ifp)
 			continue;
-
-		if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) {
-			dst6 = (const struct sockaddr *)&pr->ndpr_prefix;
-
-			/*
-			 * We only need to check all FIBs if add_addr_allfibs
-			 * is unset. If set, checking any FIB will suffice.
-			 */
-			fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0;
-			for (; fibnum < rt_numfibs; fibnum++) {
-				genid = V_nd6_list_genid;
-				ND6_RUNLOCK();
-
-				/*
-				 * Restore length field before
-				 * retrying lookup
-				 */
-				rt_key.sin6_len = sizeof(rt_key);
-				error = rib_lookup_info(fibnum, dst6, 0, 0,
-						        &info);
-
-				ND6_RLOCK();
-				if (genid != V_nd6_list_genid)
-					goto restart;
-				if (error == 0)
-					break;
-			}
-			if (error != 0)
-				continue;
-
-			/*
-			 * This is the case where multiple interfaces
-			 * have the same prefix, but only one is installed 
-			 * into the routing table and that prefix entry
-			 * is not the one being examined here.
-			 */
-			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
-			    &rt_key.sin6_addr))
-				continue;
-		}
-
+		if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0)
+			continue;
 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
 		    &addr->sin6_addr, &pr->ndpr_mask)) {
-			ND6_RUNLOCK();
-			return (1);
+			matched = true;
+			break;
 		}
 	}
 	ND6_RUNLOCK();
+	if (matched)
+		return (true);
 
 	/*
 	 * If the address is assigned on the node of the other side of
 	 * a p2p interface, the address should be a neighbor.
 	 */
 	if (ifp->if_flags & IFF_POINTOPOINT) {
-		struct epoch_tracker et;
+		struct ifaddr *ifa;
 
-		NET_EPOCH_ENTER(et);
 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 			if (ifa->ifa_addr->sa_family != addr->sin6_family)
 				continue;
 			if (ifa->ifa_dstaddr != NULL &&
 			    sa_equal(addr, ifa->ifa_dstaddr)) {
-				NET_EPOCH_EXIT(et);
-				return 1;
+				return (true);
 			}
 		}
-		NET_EPOCH_EXIT(et);
 	}
 
 	/*
 	 * If the default router list is empty, all addresses are regarded
 	 * as on-link, and thus, as a neighbor.
 	 */
 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
 	    nd6_defrouter_list_empty() &&
 	    V_nd6_defifindex == ifp->if_index) {
 		return (1);
 	}
 
 	return (0);
 }
 
 /*
  * Detect if a given IPv6 address identifies a neighbor on a given link.
  * XXX: should take care of the destination of a p2p link?
  */
 int
 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
 {
 	struct llentry *lle;
 	int rc = 0;
 
 	NET_EPOCH_ASSERT();
 	IF_AFDATA_UNLOCK_ASSERT(ifp);
 	if (nd6_is_new_addr_neighbor(addr, ifp))
 		return (1);
 
 	/*
 	 * Even if the address matches none of our addresses, it might be
 	 * in the neighbor cache.
 	 */
 	if ((lle = nd6_lookup(&addr->sin6_addr, LLE_SF(AF_INET6, 0), ifp)) != NULL) {
 		LLE_RUNLOCK(lle);
 		rc = 1;
 	}
 	return (rc);
 }
 
 static __noinline void
 nd6_free_children(struct llentry *lle)
 {
 	struct llentry *child_lle;
 
 	NET_EPOCH_ASSERT();
 	LLE_WLOCK_ASSERT(lle);
 
 	while ((child_lle = CK_SLIST_FIRST(&lle->lle_children)) != NULL) {
 		LLE_WLOCK(child_lle);
 		lltable_unlink_child_entry(child_lle);
 		llentry_free(child_lle);
 	}
 }
 
 /*
  * Tries to update @lle address/prepend data with new @lladdr.
  *
  * Returns true on success.
  * In any case, @lle is returned wlocked.
  */
 static __noinline bool
 nd6_try_set_entry_addr_locked(struct ifnet *ifp, struct llentry *lle, char *lladdr)
 {
 	u_char buf[LLE_MAX_LINKHDR];
 	int fam, off;
 	size_t sz;
 
 	sz = sizeof(buf);
 	if (lltable_calc_llheader(ifp, AF_INET6, lladdr, buf, &sz, &off) != 0)
 		return (false);
 
 	/* Update data */
 	lltable_set_entry_addr(ifp, lle, buf, sz, off);
 
 	struct llentry *child_lle;
 	CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) {
 		LLE_WLOCK(child_lle);
 		fam = child_lle->r_family;
 		sz = sizeof(buf);
 		if (lltable_calc_llheader(ifp, fam, lladdr, buf, &sz, &off) == 0) {
 			/* success */
 			lltable_set_entry_addr(ifp, child_lle, buf, sz, off);
 			child_lle->ln_state = ND6_LLINFO_REACHABLE;
 		}
 		LLE_WUNLOCK(child_lle);
 	}
 
 	return (true);
 }
 
 bool
 nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr)
 {
 	NET_EPOCH_ASSERT();
 	LLE_WLOCK_ASSERT(lle);
 
 	if (!lltable_acquire_wlock(ifp, lle))
 		return (false);
 	bool ret = nd6_try_set_entry_addr_locked(ifp, lle, lladdr);
 	IF_AFDATA_WUNLOCK(ifp);
 
 	return (ret);
 }
 
 /*
  * Free an nd6 llinfo entry.
  * Since the function would cause significant changes in the kernel, DO NOT
  * make it global, unless you have a strong reason for the change, and are sure
  * that the change is safe.
  *
  * Set noinline to be dtrace-friendly
  */
 static __noinline void
 nd6_free(struct llentry **lnp, int gc)
 {
 	struct ifnet *ifp;
 	struct llentry *ln;
 	struct nd_defrouter *dr;
 
 	ln = *lnp;
 	*lnp = NULL;
 
 	LLE_WLOCK_ASSERT(ln);
 	ND6_RLOCK_ASSERT();
 
 	KASSERT((ln->la_flags & LLE_CHILD) == 0, ("child lle"));
 
 	ifp = lltable_get_ifp(ln->lle_tbl);
 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
 		dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
 	else
 		dr = NULL;
 	ND6_RUNLOCK();
 
 	if ((ln->la_flags & LLE_DELETED) == 0)
 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
 
 	/*
 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
 	 * even though it is not harmful, it was not really necessary.
 	 */
 
 	/* cancel timer */
 	nd6_llinfo_settimer_locked(ln, -1);
 
 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
 		if (dr != NULL && dr->expire &&
 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
 			/*
 			 * If the reason for the deletion is just garbage
 			 * collection, and the neighbor is an active default
 			 * router, do not delete it.  Instead, reset the GC
 			 * timer using the router's lifetime.
 			 * Simply deleting the entry would affect default
 			 * router selection, which is not necessarily a good
 			 * thing, especially when we're using router preference
 			 * values.
 			 * XXX: the check for ln_state would be redundant,
 			 *      but we intentionally keep it just in case.
 			 */
 			if (dr->expire > time_uptime)
 				nd6_llinfo_settimer_locked(ln,
 				    (dr->expire - time_uptime) * hz);
 			else
 				nd6_llinfo_settimer_locked(ln,
 				    (long)V_nd6_gctimer * hz);
 
 			LLE_REMREF(ln);
 			LLE_WUNLOCK(ln);
 			defrouter_rele(dr);
 			return;
 		}
 
 		if (dr) {
 			/*
 			 * Unreachability of a router might affect the default
 			 * router selection and on-link detection of advertised
 			 * prefixes.
 			 */
 
 			/*
 			 * Temporarily fake the state to choose a new default
 			 * router and to perform on-link determination of
 			 * prefixes correctly.
 			 * Below the state will be set correctly,
 			 * or the entry itself will be deleted.
 			 */
 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
 		}
 
 		if (ln->ln_router || dr) {
 			/*
 			 * We need to unlock to avoid a LOR with rt6_flush() with the
 			 * rnh and for the calls to pfxlist_onlink_check() and
 			 * defrouter_select_fib() in the block further down for calls
 			 * into nd6_lookup().  We still hold a ref.
 			 */
 			LLE_WUNLOCK(ln);
 
 			/*
 			 * rt6_flush must be called whether or not the neighbor
 			 * is in the Default Router List.
 			 * See a corresponding comment in nd6_na_input().
 			 */
 			rt6_flush(&ln->r_l3addr.addr6, ifp);
 		}
 
 		if (dr) {
 			/*
 			 * Since defrouter_select_fib() does not affect the
 			 * on-link determination and MIP6 needs the check
 			 * before the default router selection, we perform
 			 * the check now.
 			 */
 			pfxlist_onlink_check();
 
 			/*
 			 * Refresh default router list.
 			 */
 			defrouter_select_fib(dr->ifp->if_fib);
 		}
 
 		/*
 		 * If this entry was added by an on-link redirect, remove the
 		 * corresponding host route.
 		 */
 		if (ln->la_flags & LLE_REDIRECT)
 			nd6_free_redirect(ln);
 
 		if (ln->ln_router || dr)
 			LLE_WLOCK(ln);
 	}
 
 	/*
 	 * Save to unlock. We still hold an extra reference and will not
 	 * free(9) in llentry_free() if someone else holds one as well.
 	 */
 	LLE_WUNLOCK(ln);
 	IF_AFDATA_LOCK(ifp);
 	LLE_WLOCK(ln);
 	/* Guard against race with other llentry_free(). */
 	if (ln->la_flags & LLE_LINKED) {
 		/* Remove callout reference */
 		LLE_REMREF(ln);
 		lltable_unlink_entry(ln->lle_tbl, ln);
 	}
 	IF_AFDATA_UNLOCK(ifp);
 
 	nd6_free_children(ln);
 
 	llentry_free(ln);
 	if (dr != NULL)
 		defrouter_rele(dr);
 }
 
 static int
 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap)
 {
 
 	if (nh->nh_flags & NHF_REDIRECT)
 		return (1);
 
 	return (0);
 }
 
 /*
  * Remove the rtentry for the given llentry,
  * both of which were installed by a redirect.
  */
 static void
 nd6_free_redirect(const struct llentry *ln)
 {
 	int fibnum;
 	struct sockaddr_in6 sin6;
 	struct rt_addrinfo info;
 	struct rib_cmd_info rc;
 	struct epoch_tracker et;
 
 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
 	memset(&info, 0, sizeof(info));
 	info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
 	info.rti_filter = nd6_isdynrte;
 
 	NET_EPOCH_ENTER(et);
 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
 		rib_action(fibnum, RTM_DELETE, &info, &rc);
 	NET_EPOCH_EXIT(et);
 }
 
 /*
  * Updates status of the default router route.
  */
 static void
 check_release_defrouter(struct rib_cmd_info *rc, void *_cbdata)
 {
 	struct nd_defrouter *dr;
 	struct nhop_object *nh;
 
 	nh = rc->rc_nh_old;
 
 	if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) {
 		dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp);
 		if (dr != NULL) {
 			dr->installed = 0;
 			defrouter_rele(dr);
 		}
 	}
 }
 
 void
 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg)
 {
 
 #ifdef ROUTE_MPATH
 	rib_decompose_notification(rc, check_release_defrouter, NULL);
 #else
 	check_release_defrouter(rc, NULL);
 #endif
 }
 
 int
 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
 {
 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
 	struct epoch_tracker et;
 	int error = 0;
 
 	if (ifp->if_afdata[AF_INET6] == NULL)
 		return (EPFNOSUPPORT);
 	switch (cmd) {
 	case OSIOCGIFINFO_IN6:
 #define ND	ndi->ndi
 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
 		bzero(&ND, sizeof(ND));
 		ND.linkmtu = IN6_LINKMTU(ifp);
 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
 		ND.reachable = ND_IFINFO(ifp)->reachable;
 		ND.retrans = ND_IFINFO(ifp)->retrans;
 		ND.flags = ND_IFINFO(ifp)->flags;
 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
 		ND.chlim = ND_IFINFO(ifp)->chlim;
 		break;
 	case SIOCGIFINFO_IN6:
 		ND = *ND_IFINFO(ifp);
 		break;
 	case SIOCSIFINFO_IN6:
 		/*
 		 * used to change host variables from userland.
 		 * intended for a use on router to reflect RA configurations.
 		 */
 		/* 0 means 'unspecified' */
 		if (ND.linkmtu != 0) {
 			if (ND.linkmtu < IPV6_MMTU ||
 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
 				error = EINVAL;
 				break;
 			}
 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
 		}
 
 		if (ND.basereachable != 0) {
 			int obasereachable = ND_IFINFO(ifp)->basereachable;
 
 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
 			if (ND.basereachable != obasereachable)
 				ND_IFINFO(ifp)->reachable =
 				    ND_COMPUTE_RTIME(ND.basereachable);
 		}
 		if (ND.retrans != 0)
 			ND_IFINFO(ifp)->retrans = ND.retrans;
 		if (ND.chlim != 0)
 			ND_IFINFO(ifp)->chlim = ND.chlim;
 		/* FALLTHROUGH */
 	case SIOCSIFINFO_FLAGS:
 	{
 		struct ifaddr *ifa;
 		struct in6_ifaddr *ia;
 
 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
 			/* ifdisabled 1->0 transision */
 
 			/*
 			 * If the interface is marked as ND6_IFF_IFDISABLED and
 			 * has an link-local address with IN6_IFF_DUPLICATED,
 			 * do not clear ND6_IFF_IFDISABLED.
 			 * See RFC 4862, Section 5.4.5.
 			 */
 			NET_EPOCH_ENTER(et);
 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 				if (ifa->ifa_addr->sa_family != AF_INET6)
 					continue;
 				ia = (struct in6_ifaddr *)ifa;
 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
 					break;
 			}
 			NET_EPOCH_EXIT(et);
 
 			if (ifa != NULL) {
 				/* LLA is duplicated. */
 				ND.flags |= ND6_IFF_IFDISABLED;
 				log(LOG_ERR, "Cannot enable an interface"
 				    " with a link-local address marked"
 				    " duplicate.\n");
 			} else {
 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
 				if (ifp->if_flags & IFF_UP)
 					in6_if_up(ifp);
 			}
 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
 			    (ND.flags & ND6_IFF_IFDISABLED)) {
 			/* ifdisabled 0->1 transision */
 			/* Mark all IPv6 address as tentative. */
 
 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
 			if (V_ip6_dad_count > 0 &&
 			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
 				NET_EPOCH_ENTER(et);
 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
 				    ifa_link) {
 					if (ifa->ifa_addr->sa_family !=
 					    AF_INET6)
 						continue;
 					ia = (struct in6_ifaddr *)ifa;
 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
 				}
 				NET_EPOCH_EXIT(et);
 			}
 		}
 
 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
 				/* auto_linklocal 0->1 transision */
 
 				/* If no link-local address on ifp, configure */
 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
 				in6_ifattach(ifp, NULL);
 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
 			    ifp->if_flags & IFF_UP) {
 				/*
 				 * When the IF already has
 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
 				 * address is assigned, and IFF_UP, try to
 				 * assign one.
 				 */
 				NET_EPOCH_ENTER(et);
 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
 				    ifa_link) {
 					if (ifa->ifa_addr->sa_family !=
 					    AF_INET6)
 						continue;
 					ia = (struct in6_ifaddr *)ifa;
 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
 						break;
 				}
 				NET_EPOCH_EXIT(et);
 				if (ifa != NULL)
 					/* No LLA is configured. */
 					in6_ifattach(ifp, NULL);
 			}
 		}
 		ND_IFINFO(ifp)->flags = ND.flags;
 		break;
 	}
 #undef ND
 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
 		/* sync kernel routing table with the default router list */
 		defrouter_reset();
 		defrouter_select_fib(RT_ALL_FIBS);
 		break;
 	case SIOCSPFXFLUSH_IN6:
 	{
 		/* flush all the prefix advertised by routers */
 		struct in6_ifaddr *ia, *ia_next;
 		struct nd_prefix *pr, *next;
 		struct nd_prhead prl;
 
 		LIST_INIT(&prl);
 
 		ND6_WLOCK();
 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
 			if (pr->ndpr_raf_ra_derived)
 				nd6_prefix_unlink(pr, &prl);
 		}
 		ND6_WUNLOCK();
 
 		while ((pr = LIST_FIRST(&prl)) != NULL) {
 			LIST_REMOVE(pr, ndpr_entry);
 			/* XXXRW: in6_ifaddrhead locking. */
 			CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
 			    ia_next) {
 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
 					continue;
 
 				if (ia->ia6_ndpr == pr)
 					in6_purgeaddr(&ia->ia_ifa);
 			}
 			nd6_prefix_del(pr);
 		}
 		break;
 	}
 	case SIOCSRTRFLUSH_IN6:
 	{
 		/* flush all the default routers */
 
 		defrouter_reset();
 		nd6_defrouter_flush_all();
 		defrouter_select_fib(RT_ALL_FIBS);
 		break;
 	}
 	case SIOCGNBRINFO_IN6:
 	{
 		struct llentry *ln;
 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
 
 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
 			return (error);
 
 		NET_EPOCH_ENTER(et);
 		ln = nd6_lookup(&nb_addr, LLE_SF(AF_INET6, 0), ifp);
 		NET_EPOCH_EXIT(et);
 
 		if (ln == NULL) {
 			error = EINVAL;
 			break;
 		}
 		nbi->state = ln->ln_state;
 		nbi->asked = ln->la_asked;
 		nbi->isrouter = ln->ln_router;
 		if (ln->la_expire == 0)
 			nbi->expire = 0;
 		else
 			nbi->expire = ln->la_expire + ln->lle_remtime / hz +
 			    (time_second - time_uptime);
 		LLE_RUNLOCK(ln);
 		break;
 	}
 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
 		ndif->ifindex = V_nd6_defifindex;
 		break;
 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
 		return (nd6_setdefaultiface(ndif->ifindex));
 	}
 	return (error);
 }
 
 /*
  * Calculates new isRouter value based on provided parameters and
  * returns it.
  */
 static int
 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
     int ln_router)
 {
 
 	/*
 	 * ICMP6 type dependent behavior.
 	 *
 	 * NS: clear IsRouter if new entry
 	 * RS: clear IsRouter
 	 * RA: set IsRouter if there's lladdr
 	 * redir: clear IsRouter if new entry
 	 *
 	 * RA case, (1):
 	 * The spec says that we must set IsRouter in the following cases:
 	 * - If lladdr exist, set IsRouter.  This means (1-5).
 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
 	 * neighbor cache, this is similar to (6).
 	 * This case is rare but we figured that we MUST NOT set IsRouter.
 	 *
 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
 	 *							D R
 	 *	0	n	n	(1)	c   ?     s
 	 *	0	y	n	(2)	c   s     s
 	 *	0	n	y	(3)	c   s     s
 	 *	0	y	y	(4)	c   s     s
 	 *	0	y	y	(5)	c   s     s
 	 *	1	--	n	(6) c	c	c s
 	 *	1	--	y	(7) c	c   s	c s
 	 *
 	 *					(c=clear s=set)
 	 */
 	switch (type & 0xff) {
 	case ND_NEIGHBOR_SOLICIT:
 		/*
 		 * New entry must have is_router flag cleared.
 		 */
 		if (is_new)					/* (6-7) */
 			ln_router = 0;
 		break;
 	case ND_REDIRECT:
 		/*
 		 * If the icmp is a redirect to a better router, always set the
 		 * is_router flag.  Otherwise, if the entry is newly created,
 		 * clear the flag.  [RFC 2461, sec 8.3]
 		 */
 		if (code == ND_REDIRECT_ROUTER)
 			ln_router = 1;
 		else {
 			if (is_new)				/* (6-7) */
 				ln_router = 0;
 		}
 		break;
 	case ND_ROUTER_SOLICIT:
 		/*
 		 * is_router flag must always be cleared.
 		 */
 		ln_router = 0;
 		break;
 	case ND_ROUTER_ADVERT:
 		/*
 		 * Mark an entry with lladdr as a router.
 		 */
 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
 		    (is_new && new_addr)) {			/* (7) */
 			ln_router = 1;
 		}
 		break;
 	}
 
 	return (ln_router);
 }
 
 /*
  * Create neighbor cache entry and cache link-layer address,
  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
  *
  * type - ICMP6 type
  * code - type dependent information
  *
  */
 void
 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
     int lladdrlen, int type, int code)
 {
 	struct llentry *ln = NULL, *ln_tmp;
 	int is_newentry;
 	int do_update;
 	int olladdr;
 	int llchange;
 	int flags;
 	uint16_t router = 0;
 	struct mbuf *chain = NULL;
 	u_char linkhdr[LLE_MAX_LINKHDR];
 	size_t linkhdrsize;
 	int lladdr_off;
 
 	NET_EPOCH_ASSERT();
 	IF_AFDATA_UNLOCK_ASSERT(ifp);
 
 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
 
 	/* nothing must be updated for unspecified address */
 	if (IN6_IS_ADDR_UNSPECIFIED(from))
 		return;
 
 	/*
 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
 	 * the caller.
 	 *
 	 * XXX If the link does not have link-layer adderss, what should
 	 * we do? (ifp->if_addrlen == 0)
 	 * Spec says nothing in sections for RA, RS and NA.  There's small
 	 * description on it in NS section (RFC 2461 7.2.3).
 	 */
 	flags = lladdr ? LLE_EXCLUSIVE : 0;
 	ln = nd6_lookup(from, LLE_SF(AF_INET6, flags), ifp);
 	is_newentry = 0;
 	if (ln == NULL) {
 		flags |= LLE_EXCLUSIVE;
 		ln = nd6_alloc(from, 0, ifp);
 		if (ln == NULL)
 			return;
 
 		/*
 		 * Since we already know all the data for the new entry,
 		 * fill it before insertion.
 		 */
 		if (lladdr != NULL) {
 			linkhdrsize = sizeof(linkhdr);
 			if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
 			    linkhdr, &linkhdrsize, &lladdr_off) != 0) {
 				lltable_free_entry(LLTABLE6(ifp), ln);
 				return;
 			}
 			lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
 			    lladdr_off);
 		}
 
 		IF_AFDATA_WLOCK(ifp);
 		LLE_WLOCK(ln);
 		/* Prefer any existing lle over newly-created one */
 		ln_tmp = nd6_lookup(from, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp);
 		if (ln_tmp == NULL)
 			lltable_link_entry(LLTABLE6(ifp), ln);
 		IF_AFDATA_WUNLOCK(ifp);
 		if (ln_tmp == NULL) {
 			/* No existing lle, mark as new entry (6,7) */
 			is_newentry = 1;
 			if (lladdr != NULL) {	/* (7) */
 				nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
 				EVENTHANDLER_INVOKE(lle_event, ln,
 				    LLENTRY_RESOLVED);
 			}
 		} else {
 			lltable_free_entry(LLTABLE6(ifp), ln);
 			ln = ln_tmp;
 			ln_tmp = NULL;
 		}
 	} 
 	/* do nothing if static ndp is set */
 	if ((ln->la_flags & LLE_STATIC)) {
 		if (flags & LLE_EXCLUSIVE)
 			LLE_WUNLOCK(ln);
 		else
 			LLE_RUNLOCK(ln);
 		return;
 	}
 
 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
 	if (olladdr && lladdr) {
 		llchange = bcmp(lladdr, ln->ll_addr,
 		    ifp->if_addrlen);
 	} else if (!olladdr && lladdr)
 		llchange = 1;
 	else
 		llchange = 0;
 
 	/*
 	 * newentry olladdr  lladdr  llchange	(*=record)
 	 *	0	n	n	--	(1)
 	 *	0	y	n	--	(2)
 	 *	0	n	y	y	(3) * STALE
 	 *	0	y	y	n	(4) *
 	 *	0	y	y	y	(5) * STALE
 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
 	 *	1	--	y	--	(7) * STALE
 	 */
 
 	do_update = 0;
 	if (is_newentry == 0 && llchange != 0) {
 		do_update = 1;	/* (3,5) */
 
 		/*
 		 * Record source link-layer address
 		 * XXX is it dependent to ifp->if_type?
 		 */
 		if (!nd6_try_set_entry_addr(ifp, ln, lladdr)) {
 			/* Entry was deleted */
 			LLE_WUNLOCK(ln);
 			return;
 		}
 
 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
 
 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
 
 		if (ln->la_hold != NULL)
 			chain = nd6_grab_holdchain(ln);
 	}
 
 	/* Calculates new router status */
 	router = nd6_is_router(type, code, is_newentry, olladdr,
 	    lladdr != NULL ? 1 : 0, ln->ln_router);
 
 	ln->ln_router = router;
 	/* Mark non-router redirects with special flag */
 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
 		ln->la_flags |= LLE_REDIRECT;
 
 	if (flags & LLE_EXCLUSIVE)
 		LLE_WUNLOCK(ln);
 	else
 		LLE_RUNLOCK(ln);
 
 	if (chain != NULL)
 		nd6_flush_holdchain(ifp, ln, chain);
 	if (do_update)
 		nd6_flush_children_holdchain(ifp, ln);
 
 	/*
 	 * When the link-layer address of a router changes, select the
 	 * best router again.  In particular, when the neighbor entry is newly
 	 * created, it might affect the selection policy.
 	 * Question: can we restrict the first condition to the "is_newentry"
 	 * case?
 	 * XXX: when we hear an RA from a new router with the link-layer
 	 * address option, defrouter_select_fib() is called twice, since
 	 * defrtrlist_update called the function as well.  However, I believe
 	 * we can compromise the overhead, since it only happens the first
 	 * time.
 	 * XXX: although defrouter_select_fib() should not have a bad effect
 	 * for those are not autoconfigured hosts, we explicitly avoid such
 	 * cases for safety.
 	 */
 	if ((do_update || is_newentry) && router &&
 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
 		/*
 		 * guaranteed recursion
 		 */
 		defrouter_select_fib(ifp->if_fib);
 	}
 }
 
 static void
 nd6_slowtimo(void *arg)
 {
 	struct epoch_tracker et;
 	CURVNET_SET((struct vnet *) arg);
 	struct nd_ifinfo *nd6if;
 	struct ifnet *ifp;
 
 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
 	    nd6_slowtimo, curvnet);
 	NET_EPOCH_ENTER(et);
 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 		if (ifp->if_afdata[AF_INET6] == NULL)
 			continue;
 		nd6if = ND_IFINFO(ifp);
 		if (nd6if->basereachable && /* already initialized */
 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
 			/*
 			 * Since reachable time rarely changes by router
 			 * advertisements, we SHOULD insure that a new random
 			 * value gets recomputed at least once every few hours.
 			 * (RFC 2461, 6.3.4)
 			 */
 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
 		}
 	}
 	NET_EPOCH_EXIT(et);
 	CURVNET_RESTORE();
 }
 
 struct mbuf *
 nd6_grab_holdchain(struct llentry *ln)
 {
 	struct mbuf *chain;
 
 	LLE_WLOCK_ASSERT(ln);
 
 	chain = ln->la_hold;
 	ln->la_hold = NULL;
 
 	if (ln->ln_state == ND6_LLINFO_STALE) {
 		/*
 		 * The first time we send a packet to a
 		 * neighbor whose entry is STALE, we have
 		 * to change the state to DELAY and a sets
 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
 		 * seconds to ensure do neighbor unreachability
 		 * detection on expiration.
 		 * (RFC 2461 7.3.3)
 		 */
 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
 	}
 
 	return (chain);
 }
 
 int
 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
     struct sockaddr_in6 *dst, struct route *ro)
 {
 	int error;
 	int ip6len;
 	struct ip6_hdr *ip6;
 	struct m_tag *mtag;
 
 #ifdef MAC
 	mac_netinet6_nd6_send(ifp, m);
 #endif
 
 	/*
 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
 	 * to be diverted to user space.  When re-injected into the kernel,
 	 * send_output() will directly dispatch them to the outgoing interface.
 	 */
 	if (send_sendso_input_hook != NULL) {
 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
 		if (mtag != NULL) {
 			ip6 = mtod(m, struct ip6_hdr *);
 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
 			/* Use the SEND socket */
 			error = send_sendso_input_hook(m, ifp, SND_OUT,
 			    ip6len);
 			/* -1 == no app on SEND socket */
 			if (error == 0 || error != -1)
 			    return (error);
 		}
 	}
 
 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
 	    mtod(m, struct ip6_hdr *));
 
 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
 		origifp = ifp;
 
 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
 	return (error);
 }
 
 /*
  * Lookup link headerfor @sa_dst address. Stores found
  * data in @desten buffer. Copy of lle ln_flags can be also
  * saved in @pflags if @pflags is non-NULL.
  *
  * If destination LLE does not exists or lle state modification
  * is required, call "slow" version.
  *
  * Return values:
  * - 0 on success (address copied to buffer).
  * - EWOULDBLOCK (no local error, but address is still unresolved)
  * - other errors (alloc failure, etc)
  */
 int
 nd6_resolve(struct ifnet *ifp, int gw_flags, struct mbuf *m,
     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
     struct llentry **plle)
 {
 	struct llentry *ln = NULL;
 	const struct sockaddr_in6 *dst6;
 
 	NET_EPOCH_ASSERT();
 
 	if (pflags != NULL)
 		*pflags = 0;
 
 	dst6 = (const struct sockaddr_in6 *)sa_dst;
 
 	/* discard the packet if IPv6 operation is disabled on the interface */
 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
 		m_freem(m);
 		return (ENETDOWN); /* better error? */
 	}
 
 	if (m != NULL && m->m_flags & M_MCAST) {
 		switch (ifp->if_type) {
 		case IFT_ETHER:
 		case IFT_L2VLAN:
 		case IFT_BRIDGE:
 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
 						 desten);
 			return (0);
 		default:
 			m_freem(m);
 			return (EAFNOSUPPORT);
 		}
 	}
 
 	int family = gw_flags >> 16;
 	int lookup_flags = plle ? LLE_EXCLUSIVE : LLE_UNLOCKED;
 	ln = nd6_lookup(&dst6->sin6_addr, LLE_SF(family, lookup_flags), ifp);
 	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
 		/* Entry found, let's copy lle info */
 		bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
 		if (pflags != NULL)
 			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
 		llentry_provide_feedback(ln);
 		if (plle) {
 			LLE_ADDREF(ln);
 			*plle = ln;
 			LLE_WUNLOCK(ln);
 		}
 		return (0);
 	} else if (plle && ln)
 		LLE_WUNLOCK(ln);
 
 	return (nd6_resolve_slow(ifp, family, 0, m, dst6, desten, pflags, plle));
 }
 
 /*
  * Finds or creates a new llentry for @addr and @family.
  * Returns wlocked llentry or NULL.
  *
  *
  * Child LLEs.
  *
  * Do not have their own state machine (gets marked as static)
  *  settimer bails out for child LLEs just in case.
  *
  * Locking order: parent lle gets locked first, chen goes the child.
  */
 static __noinline struct llentry *
 nd6_get_llentry(struct ifnet *ifp, const struct in6_addr *addr, int family)
 {
 	struct llentry *child_lle = NULL;
 	struct llentry *lle, *lle_tmp;
 
 	lle = nd6_alloc(addr, 0, ifp);
 	if (lle != NULL && family != AF_INET6) {
 		child_lle = nd6_alloc(addr, 0, ifp);
 		if (child_lle == NULL) {
 			lltable_free_entry(LLTABLE6(ifp), lle);
 			return (NULL);
 		}
 		child_lle->r_family = family;
 		child_lle->la_flags |= LLE_CHILD | LLE_STATIC;
 		child_lle->ln_state = ND6_LLINFO_INCOMPLETE;
 	}
 
 	if (lle == NULL) {
 		char ip6buf[INET6_ADDRSTRLEN];
 		log(LOG_DEBUG,
 		    "nd6_get_llentry: can't allocate llinfo for %s "
 		    "(ln=%p)\n",
 		    ip6_sprintf(ip6buf, addr), lle);
 		return (NULL);
 	}
 
 	IF_AFDATA_WLOCK(ifp);
 	LLE_WLOCK(lle);
 	/* Prefer any existing entry over newly-created one */
 	lle_tmp = nd6_lookup(addr, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp);
 	if (lle_tmp == NULL)
 		lltable_link_entry(LLTABLE6(ifp), lle);
 	else {
 		lltable_free_entry(LLTABLE6(ifp), lle);
 		lle = lle_tmp;
 	}
 	if (child_lle != NULL) {
 		/* Check if child lle for the same family exists */
 		lle_tmp = llentry_lookup_family(lle, child_lle->r_family);
 		LLE_WLOCK(child_lle);
 		if (lle_tmp == NULL) {
 			/* Attach */
 			lltable_link_child_entry(lle, child_lle);
 		} else {
 			/* child lle already exists, free newly-created one */
 			lltable_free_entry(LLTABLE6(ifp), child_lle);
 			child_lle = lle_tmp;
 		}
 		LLE_WUNLOCK(lle);
 		lle = child_lle;
 	}
 	IF_AFDATA_WUNLOCK(ifp);
 	return (lle);
 }
 
 /*
  * Do L2 address resolution for @sa_dst address. Stores found
  * address in @desten buffer. Copy of lle ln_flags can be also
  * saved in @pflags if @pflags is non-NULL.
  *
  * Heavy version.
  * Function assume that destination LLE does not exist,
  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
  *
  * Set noinline to be dtrace-friendly
  */
 static __noinline int
 nd6_resolve_slow(struct ifnet *ifp, int family, int flags, struct mbuf *m,
     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
     struct llentry **plle)
 {
 	struct llentry *lle = NULL;
 	struct in6_addr *psrc, src;
 	int send_ns, ll_len;
 	char *lladdr;
 
 	NET_EPOCH_ASSERT();
 
 	/*
 	 * Address resolution or Neighbor Unreachability Detection
 	 * for the next hop.
 	 * At this point, the destination of the packet must be a unicast
 	 * or an anycast address(i.e. not a multicast).
 	 */
 	lle = nd6_lookup(&dst->sin6_addr, LLE_SF(family, LLE_EXCLUSIVE), ifp);
 	if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
 		/*
 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
 		 * the condition below is not very efficient.  But we believe
 		 * it is tolerable, because this should be a rare case.
 		 */
 		lle = nd6_get_llentry(ifp, &dst->sin6_addr, family);
 	}
 
 	if (lle == NULL) {
 		m_freem(m);
 		return (ENOBUFS);
 	}
 
 	LLE_WLOCK_ASSERT(lle);
 
 	/*
 	 * The first time we send a packet to a neighbor whose entry is
 	 * STALE, we have to change the state to DELAY and a sets a timer to
 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
 	 * neighbor unreachability detection on expiration.
 	 * (RFC 2461 7.3.3)
 	 */
 	if ((!(lle->la_flags & LLE_CHILD)) && (lle->ln_state == ND6_LLINFO_STALE))
 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
 
 	/*
 	 * If the neighbor cache entry has a state other than INCOMPLETE
 	 * (i.e. its link-layer address is already resolved), just
 	 * send the packet.
 	 */
 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
 		if (flags & LLE_ADDRONLY) {
 			lladdr = lle->ll_addr;
 			ll_len = ifp->if_addrlen;
 		} else {
 			lladdr = lle->r_linkdata;
 			ll_len = lle->r_hdrlen;
 		}
 		bcopy(lladdr, desten, ll_len);
 		if (pflags != NULL)
 			*pflags = lle->la_flags;
 		if (plle) {
 			LLE_ADDREF(lle);
 			*plle = lle;
 		}
 		LLE_WUNLOCK(lle);
 		return (0);
 	}
 
 	/*
 	 * There is a neighbor cache entry, but no ethernet address
 	 * response yet.  Append this latest packet to the end of the
 	 * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
 	 * the oldest packet in the queue will be removed.
 	 */
 
 	if (lle->la_hold != NULL) {
 		struct mbuf *m_hold;
 		int i;
 		
 		i = 0;
 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
 			i++;
 			if (m_hold->m_nextpkt == NULL) {
 				m_hold->m_nextpkt = m;
 				break;
 			}
 		}
 		while (i >= V_nd6_maxqueuelen) {
 			m_hold = lle->la_hold;
 			lle->la_hold = lle->la_hold->m_nextpkt;
 			m_freem(m_hold);
 			i--;
 		}
 	} else {
 		lle->la_hold = m;
 	}
 
 	/*
 	 * If there has been no NS for the neighbor after entering the
 	 * INCOMPLETE state, send the first solicitation.
 	 * Note that for newly-created lle la_asked will be 0,
 	 * so we will transition from ND6_LLINFO_NOSTATE to
 	 * ND6_LLINFO_INCOMPLETE state here.
 	 */
 	psrc = NULL;
 	send_ns = 0;
 
 	/* If we have child lle, switch to the parent to send NS */
 	if (lle->la_flags & LLE_CHILD) {
 		struct llentry *lle_parent = lle->lle_parent;
 		LLE_WUNLOCK(lle);
 		lle = lle_parent;
 		LLE_WLOCK(lle);
 	}
 	if (lle->la_asked == 0) {
 		lle->la_asked++;
 		send_ns = 1;
 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
 
 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
 	}
 	LLE_WUNLOCK(lle);
 	if (send_ns != 0)
 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
 
 	return (EWOULDBLOCK);
 }
 
 /*
  * Do L2 address resolution for @sa_dst address. Stores found
  * address in @desten buffer. Copy of lle ln_flags can be also
  * saved in @pflags if @pflags is non-NULL.
  *
  * Return values:
  * - 0 on success (address copied to buffer).
  * - EWOULDBLOCK (no local error, but address is still unresolved)
  * - other errors (alloc failure, etc)
  */
 int
 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
     char *desten, uint32_t *pflags)
 {
 	int error;
 
 	flags |= LLE_ADDRONLY;
 	error = nd6_resolve_slow(ifp, AF_INET6, flags, NULL,
 	    (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
 	return (error);
 }
 
 int
 nd6_flush_holdchain(struct ifnet *ifp, struct llentry *lle, struct mbuf *chain)
 {
 	struct mbuf *m, *m_head;
 	struct sockaddr_in6 dst6;
 	int error = 0;
 
 	NET_EPOCH_ASSERT();
 
 	struct route_in6 ro = {
 		.ro_prepend = lle->r_linkdata,
 		.ro_plen = lle->r_hdrlen,
 	};
 
 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst6);
 	m_head = chain;
 
 	while (m_head) {
 		m = m_head;
 		m_head = m_head->m_nextpkt;
 		m->m_nextpkt = NULL;
 		error = nd6_output_ifp(ifp, ifp, m, &dst6, (struct route *)&ro);
 	}
 
 	/*
 	 * XXX
 	 * note that intermediate errors are blindly ignored
 	 */
 	return (error);
 }
 
 __noinline void
 nd6_flush_children_holdchain(struct ifnet *ifp, struct llentry *lle)
 {
 	struct llentry *child_lle;
 	struct mbuf *chain;
 
 	NET_EPOCH_ASSERT();
 
 	CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) {
 		LLE_WLOCK(child_lle);
 		chain = nd6_grab_holdchain(child_lle);
 		LLE_WUNLOCK(child_lle);
 		nd6_flush_holdchain(ifp, child_lle, chain);
 	}
 }
 
 static int
 nd6_need_cache(struct ifnet *ifp)
 {
 	/*
 	 * XXX: we currently do not make neighbor cache on any interface
 	 * other than Ethernet and GIF.
 	 *
 	 * RFC2893 says:
 	 * - unidirectional tunnels needs no ND
 	 */
 	switch (ifp->if_type) {
 	case IFT_ETHER:
 	case IFT_IEEE1394:
 	case IFT_L2VLAN:
 	case IFT_INFINIBAND:
 	case IFT_BRIDGE:
 	case IFT_PROPVIRTUAL:
 		return (1);
 	default:
 		return (0);
 	}
 }
 
 /*
  * Add pernament ND6 link-layer record for given
  * interface address.
  *
  * Very similar to IPv4 arp_ifinit(), but:
  * 1) IPv6 DAD is performed in different place
  * 2) It is called by IPv6 protocol stack in contrast to
  * arp_ifinit() which is typically called in SIOCSIFADDR
  * driver ioctl handler.
  *
  */
 int
 nd6_add_ifa_lle(struct in6_ifaddr *ia)
 {
 	struct ifnet *ifp;
 	struct llentry *ln, *ln_tmp;
 	struct sockaddr *dst;
 
 	ifp = ia->ia_ifa.ifa_ifp;
 	if (nd6_need_cache(ifp) == 0)
 		return (0);
 
 	dst = (struct sockaddr *)&ia->ia_addr;
 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
 	if (ln == NULL)
 		return (ENOBUFS);
 
 	IF_AFDATA_WLOCK(ifp);
 	LLE_WLOCK(ln);
 	/* Unlink any entry if exists */
 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_SF(AF_INET6, LLE_EXCLUSIVE), dst);
 	if (ln_tmp != NULL)
 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
 	lltable_link_entry(LLTABLE6(ifp), ln);
 	IF_AFDATA_WUNLOCK(ifp);
 
 	if (ln_tmp != NULL)
 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
 
 	LLE_WUNLOCK(ln);
 	if (ln_tmp != NULL)
 		llentry_free(ln_tmp);
 
 	return (0);
 }
 
 /*
  * Removes either all lle entries for given @ia, or lle
  * corresponding to @ia address.
  */
 void
 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
 {
 	struct sockaddr_in6 mask, addr;
 	struct sockaddr *saddr, *smask;
 	struct ifnet *ifp;
 
 	ifp = ia->ia_ifa.ifa_ifp;
 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
 	saddr = (struct sockaddr *)&addr;
 	smask = (struct sockaddr *)&mask;
 
 	if (all != 0)
 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
 	else
 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
 }
 
 static void 
 clear_llinfo_pqueue(struct llentry *ln)
 {
 	struct mbuf *m_hold, *m_hold_next;
 
 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
 		m_hold_next = m_hold->m_nextpkt;
 		m_freem(m_hold);
 	}
 
 	ln->la_hold = NULL;
 }
 
 static int
 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
 {
 	struct in6_prefix p;
 	struct sockaddr_in6 s6;
 	struct nd_prefix *pr;
 	struct nd_pfxrouter *pfr;
 	time_t maxexpire;
 	int error;
 	char ip6buf[INET6_ADDRSTRLEN];
 
 	if (req->newptr)
 		return (EPERM);
 
 	error = sysctl_wire_old_buffer(req, 0);
 	if (error != 0)
 		return (error);
 
 	bzero(&p, sizeof(p));
 	p.origin = PR_ORIG_RA;
 	bzero(&s6, sizeof(s6));
 	s6.sin6_family = AF_INET6;
 	s6.sin6_len = sizeof(s6);
 
 	ND6_RLOCK();
 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
 		if (!pr->ndpr_raf_ra_derived)
 			continue;
 		p.prefix = pr->ndpr_prefix;
 		if (sa6_recoverscope(&p.prefix)) {
 			log(LOG_ERR, "scope error in prefix list (%s)\n",
 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
 			/* XXX: press on... */
 		}
 		p.raflags = pr->ndpr_raf;
 		p.prefixlen = pr->ndpr_plen;
 		p.vltime = pr->ndpr_vltime;
 		p.pltime = pr->ndpr_pltime;
 		p.if_index = pr->ndpr_ifp->if_index;
 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
 			p.expire = 0;
 		else {
 			/* XXX: we assume time_t is signed. */
 			maxexpire = (-1) &
 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
 				p.expire = pr->ndpr_lastupdate +
 				    pr->ndpr_vltime +
 				    (time_second - time_uptime);
 			else
 				p.expire = maxexpire;
 		}
 		p.refcnt = pr->ndpr_addrcnt;
 		p.flags = pr->ndpr_stateflags;
 		p.advrtrs = 0;
 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
 			p.advrtrs++;
 		error = SYSCTL_OUT(req, &p, sizeof(p));
 		if (error != 0)
 			break;
 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
 			s6.sin6_addr = pfr->router->rtaddr;
 			if (sa6_recoverscope(&s6))
 				log(LOG_ERR,
 				    "scope error in prefix list (%s)\n",
 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
 			if (error != 0)
 				goto out;
 		}
 	}
 out:
 	ND6_RUNLOCK();
 	return (error);
 }
 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
 	NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
 	"NDP prefix list");
 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");