diff --git a/usr.sbin/diskinfo/diskinfo.8 b/usr.sbin/diskinfo/diskinfo.8 index 72fd1df4eb08..970bafd4f8e5 100644 --- a/usr.sbin/diskinfo/diskinfo.8 +++ b/usr.sbin/diskinfo/diskinfo.8 @@ -1,95 +1,112 @@ .\" .\" Copyright (c) 2003 Poul-Henning Kamp .\" Copyright (c) 2017 Alexander Motin .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. The names of the authors may not be used to endorse or promote .\" products derived from this software without specific prior written .\" permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" -.Dd July 4, 2017 +.Dd March 5, 2024 .Dt DISKINFO 8 .Os .Sh NAME .Nm diskinfo .Nd get information about disk device .Sh SYNOPSIS .Nm .Op Fl citSvw .Ar disk ... .Nm -.Op Fl p +.Op Fl l +.Fl p .Ar disk ... .Nm -.Op Fl s +.Op Fl l +.Fl s .Ar disk ... .Sh DESCRIPTION The .Nm utility prints out information about a disk device, and optionally runs a naive performance test on the device. .Pp The following options are available: .Bl -tag -width ".Fl v" .It Fl v Print fields one per line with a descriptive comment. .It Fl c Perform a simple measurement of the I/O read command overhead. .It Fl i Perform a simple IOPS benchmark. +.It Fl l +In case of +.Fl p +or +.Fl s +modes prepend each line of an output with a device name using a tab +character as a separator. .It Fl p Return the physical path of the disk. This is a string that identifies the physical path to the disk in the storage enclosure. .It Fl s Return the disk ident, usually the serial number. .It Fl S Perform synchronous random write test (ZFS SLOG test), measuring time required to write data blocks of different size and flush disk cache. Blocks of more then 128KB are written with multiple parallel operations. .It Fl t Perform a simple and rather naive benchmark of the disks seek and transfer performance. .It Fl w Allow disruptive write tests. .El .Pp If given no arguments, the output will be a single line per specified device with the following fields: device name, sectorsize, media size in bytes, media size in sectors, stripe size, stripe offset, firmware cylinders, firmware heads, and firmware sectors. The last three fields are only present if the information is available. +.Sh EXAMPLES +List first ten (at most) +.Xr da 4 +devices with corresponding serial numbers: +.Pp +.Dl diskinfo -ls /dev/da? +.Sh SEE ALSO +.Xr da 4 .Sh HISTORY The .Nm command appeared in .Fx 5.1 . .Sh AUTHORS The .Nm utility was written by .An Poul-Henning Kamp Aq Mt phk@FreeBSD.org . .Sh BUGS There are in order of increasing severity: lies, damn lies, statistics, and computer benchmarks. diff --git a/usr.sbin/diskinfo/diskinfo.c b/usr.sbin/diskinfo/diskinfo.c index 4cc4517a1f26..f091d0ccfbea 100644 --- a/usr.sbin/diskinfo/diskinfo.c +++ b/usr.sbin/diskinfo/diskinfo.c @@ -1,750 +1,759 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2003 Poul-Henning Kamp * Copyright (c) 2015 Spectra Logic Corporation * Copyright (c) 2017 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NAIO 128 #define MAXTX (8*1024*1024) #define MEGATX (1024*1024) static void usage(void) { - fprintf(stderr, "usage: diskinfo [-cipsStvw] disk ...\n"); + fprintf(stderr, "usage: diskinfo [-ciStvw] disk ...\n" + " diskinfo [-l] -p disk ...\n" + " diskinfo [-l] -s disk ...\n" + ); exit (1); } -static int opt_c, opt_i, opt_p, opt_s, opt_S, opt_t, opt_v, opt_w; +static int opt_c, opt_i, opt_l, opt_p, opt_s, opt_S, opt_t, opt_v, opt_w; static bool candelete(int fd); static void speeddisk(int fd, off_t mediasize, u_int sectorsize); static void commandtime(int fd, off_t mediasize, u_int sectorsize); static void iopsbench(int fd, off_t mediasize, u_int sectorsize); static void rotationrate(int fd, char *buf, size_t buflen); static void slogbench(int fd, int isreg, off_t mediasize, u_int sectorsize); static int zonecheck(int fd, uint32_t *zone_mode, char *zone_str, size_t zone_str_len); static uint8_t *buf; int main(int argc, char **argv) { struct stat sb; int i, ch, fd, error, exitval = 0; char tstr[BUFSIZ], ident[DISK_IDENT_SIZE], physpath[MAXPATHLEN]; char zone_desc[64]; char rrate[64]; struct diocgattr_arg arg; off_t mediasize, stripesize, stripeoffset; u_int sectorsize, fwsectors, fwheads, zoned = 0, isreg; uint32_t zone_mode; - while ((ch = getopt(argc, argv, "cipsStvw")) != -1) { + while ((ch = getopt(argc, argv, "cilpsStvw")) != -1) { switch (ch) { case 'c': opt_c = 1; opt_v = 1; break; case 'i': opt_i = 1; opt_v = 1; break; + case 'l': + opt_l = 1; + break; case 'p': opt_p = 1; break; case 's': opt_s = 1; break; case 'S': opt_S = 1; opt_v = 1; break; case 't': opt_t = 1; opt_v = 1; break; case 'v': opt_v = 1; break; case 'w': opt_w = 1; break; default: usage(); } } argc -= optind; argv += optind; if (argc < 1) usage(); if ((opt_p && opt_s) || ((opt_p || opt_s) && (opt_c || opt_i || opt_t || opt_v))) { warnx("-p or -s cannot be used with other options"); usage(); } if (opt_S && !opt_w) { warnx("-S require also -w"); usage(); } if (posix_memalign((void **)&buf, PAGE_SIZE, MAXTX)) errx(1, "Can't allocate memory buffer"); for (i = 0; i < argc; i++) { fd = open(argv[i], (opt_w ? O_RDWR : O_RDONLY) | O_DIRECT); if (fd < 0 && errno == ENOENT && *argv[i] != '/') { snprintf(tstr, sizeof(tstr), "%s%s", _PATH_DEV, argv[i]); fd = open(tstr, O_RDONLY); } if (fd < 0) { warn("%s", argv[i]); exit(1); } error = fstat(fd, &sb); if (error != 0) { warn("cannot stat %s", argv[i]); exitval = 1; goto out; } isreg = S_ISREG(sb.st_mode); if (isreg) { mediasize = sb.st_size; sectorsize = S_BLKSIZE; fwsectors = 0; fwheads = 0; stripesize = sb.st_blksize; stripeoffset = 0; if (opt_p || opt_s) { warnx("-p and -s only operate on physical devices: %s", argv[i]); goto out; } } else { + if (opt_l && (opt_p || opt_s)) { + printf("%s\t", argv[i]); + } if (opt_p) { if (ioctl(fd, DIOCGPHYSPATH, physpath) == 0) { printf("%s\n", physpath); } else { warnx("Failed to determine physpath for: %s", argv[i]); } goto out; } if (opt_s) { if (ioctl(fd, DIOCGIDENT, ident) == 0) { printf("%s\n", ident); } else { warnx("Failed to determine serial number for: %s", argv[i]); } goto out; } error = ioctl(fd, DIOCGMEDIASIZE, &mediasize); if (error) { warnx("%s: ioctl(DIOCGMEDIASIZE) failed, probably not a disk.", argv[i]); exitval = 1; goto out; } error = ioctl(fd, DIOCGSECTORSIZE, §orsize); if (error) { warnx("%s: ioctl(DIOCGSECTORSIZE) failed, probably not a disk.", argv[i]); exitval = 1; goto out; } error = ioctl(fd, DIOCGFWSECTORS, &fwsectors); if (error) fwsectors = 0; error = ioctl(fd, DIOCGFWHEADS, &fwheads); if (error) fwheads = 0; error = ioctl(fd, DIOCGSTRIPESIZE, &stripesize); if (error) stripesize = 0; error = ioctl(fd, DIOCGSTRIPEOFFSET, &stripeoffset); if (error) stripeoffset = 0; error = zonecheck(fd, &zone_mode, zone_desc, sizeof(zone_desc)); if (error == 0) zoned = 1; } if (!opt_v) { printf("%s", argv[i]); printf("\t%u", sectorsize); printf("\t%jd", (intmax_t)mediasize); printf("\t%jd", (intmax_t)mediasize/sectorsize); printf("\t%jd", (intmax_t)stripesize); printf("\t%jd", (intmax_t)stripeoffset); if (fwsectors != 0 && fwheads != 0) { printf("\t%jd", (intmax_t)mediasize / (fwsectors * fwheads * sectorsize)); printf("\t%u", fwheads); printf("\t%u", fwsectors); } } else { humanize_number(tstr, 5, (int64_t)mediasize, "", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); printf("%s\n", argv[i]); printf("\t%-12u\t# sectorsize\n", sectorsize); printf("\t%-12jd\t# mediasize in bytes (%s)\n", (intmax_t)mediasize, tstr); printf("\t%-12jd\t# mediasize in sectors\n", (intmax_t)mediasize/sectorsize); printf("\t%-12jd\t# stripesize\n", stripesize); printf("\t%-12jd\t# stripeoffset\n", stripeoffset); if (fwsectors != 0 && fwheads != 0) { printf("\t%-12jd\t# Cylinders according to firmware.\n", (intmax_t)mediasize / (fwsectors * fwheads * sectorsize)); printf("\t%-12u\t# Heads according to firmware.\n", fwheads); printf("\t%-12u\t# Sectors according to firmware.\n", fwsectors); } strlcpy(arg.name, "GEOM::descr", sizeof(arg.name)); arg.len = sizeof(arg.value.str); if (ioctl(fd, DIOCGATTR, &arg) == 0) printf("\t%-12s\t# Disk descr.\n", arg.value.str); if (ioctl(fd, DIOCGIDENT, ident) == 0) printf("\t%-12s\t# Disk ident.\n", ident); strlcpy(arg.name, "GEOM::attachment", sizeof(arg.name)); arg.len = sizeof(arg.value.str); if (ioctl(fd, DIOCGATTR, &arg) == 0) printf("\t%-12s\t# Attachment\n", arg.value.str); if (ioctl(fd, DIOCGPHYSPATH, physpath) == 0) printf("\t%-12s\t# Physical path\n", physpath); printf("\t%-12s\t# TRIM/UNMAP support\n", candelete(fd) ? "Yes" : "No"); rotationrate(fd, rrate, sizeof(rrate)); printf("\t%-12s\t# Rotation rate in RPM\n", rrate); if (zoned != 0) printf("\t%-12s\t# Zone Mode\n", zone_desc); } printf("\n"); if (opt_c) commandtime(fd, mediasize, sectorsize); if (opt_t) speeddisk(fd, mediasize, sectorsize); if (opt_i) iopsbench(fd, mediasize, sectorsize); if (opt_S) slogbench(fd, isreg, mediasize, sectorsize); out: close(fd); } free(buf); exit (exitval); } static bool candelete(int fd) { struct diocgattr_arg arg; strlcpy(arg.name, "GEOM::candelete", sizeof(arg.name)); arg.len = sizeof(arg.value.i); if (ioctl(fd, DIOCGATTR, &arg) == 0) return (arg.value.i != 0); else return (false); } static void rotationrate(int fd, char *rate, size_t buflen) { struct diocgattr_arg arg; int ret; strlcpy(arg.name, "GEOM::rotation_rate", sizeof(arg.name)); arg.len = sizeof(arg.value.u16); ret = ioctl(fd, DIOCGATTR, &arg); if (ret < 0 || arg.value.u16 == DISK_RR_UNKNOWN) snprintf(rate, buflen, "Unknown"); else if (arg.value.u16 == DISK_RR_NON_ROTATING) snprintf(rate, buflen, "%d", 0); else if (arg.value.u16 >= DISK_RR_MIN && arg.value.u16 <= DISK_RR_MAX) snprintf(rate, buflen, "%d", arg.value.u16); else snprintf(rate, buflen, "Invalid"); } static void rdsect(int fd, off_t blockno, u_int sectorsize) { int error; if (lseek(fd, (off_t)blockno * sectorsize, SEEK_SET) == -1) err(1, "lseek"); error = read(fd, buf, sectorsize); if (error == -1) err(1, "read"); if (error != (int)sectorsize) errx(1, "disk too small for test."); } static void rdmega(int fd) { int error; error = read(fd, buf, MEGATX); if (error == -1) err(1, "read"); if (error != MEGATX) errx(1, "disk too small for test."); } static struct timeval tv1, tv2; static void T0(void) { fflush(stdout); sync(); sleep(1); sync(); sync(); gettimeofday(&tv1, NULL); } static double delta_t(void) { double dt; gettimeofday(&tv2, NULL); dt = (tv2.tv_usec - tv1.tv_usec) / 1e6; dt += (tv2.tv_sec - tv1.tv_sec); return (dt); } static void TN(int count) { double dt; dt = delta_t(); printf("%5d iter in %10.6f sec = %8.3f msec\n", count, dt, dt * 1000.0 / count); } static void TR(double count) { double dt; dt = delta_t(); printf("%8.0f kbytes in %10.6f sec = %8.0f kbytes/sec\n", count, dt, count / dt); } static void TI(double count) { double dt; dt = delta_t(); printf("%8.0f ops in %10.6f sec = %8.0f IOPS\n", count, dt, count / dt); } static void TS(u_int size, int count) { double dt; dt = delta_t(); printf("%8.1f usec/IO = %8.1f Mbytes/s\n", dt * 1000000.0 / count, (double)size * count / dt / (1024 * 1024)); } static void speeddisk(int fd, off_t mediasize, u_int sectorsize) { int bulk, i; off_t b0, b1, sectorcount, step; /* * Drives smaller than 1MB produce negative sector numbers, * as do 2048 or fewer sectors. */ sectorcount = mediasize / sectorsize; if (mediasize < 1024 * 1024 || sectorcount < 2048) return; step = 1ULL << (flsll(sectorcount / (4 * 200)) - 1); if (step > 16384) step = 16384; bulk = mediasize / (1024 * 1024); if (bulk > 100) bulk = 100; printf("Seek times:\n"); printf("\tFull stroke:\t"); b0 = 0; b1 = sectorcount - step; T0(); for (i = 0; i < 125; i++) { rdsect(fd, b0, sectorsize); b0 += step; rdsect(fd, b1, sectorsize); b1 -= step; } TN(250); printf("\tHalf stroke:\t"); b0 = sectorcount / 4; b1 = b0 + sectorcount / 2; T0(); for (i = 0; i < 125; i++) { rdsect(fd, b0, sectorsize); b0 += step; rdsect(fd, b1, sectorsize); b1 += step; } TN(250); printf("\tQuarter stroke:\t"); b0 = sectorcount / 4; b1 = b0 + sectorcount / 4; T0(); for (i = 0; i < 250; i++) { rdsect(fd, b0, sectorsize); b0 += step; rdsect(fd, b1, sectorsize); b1 += step; } TN(500); printf("\tShort forward:\t"); b0 = sectorcount / 2; T0(); for (i = 0; i < 400; i++) { rdsect(fd, b0, sectorsize); b0 += step; } TN(400); printf("\tShort backward:\t"); b0 = sectorcount / 2; T0(); for (i = 0; i < 400; i++) { rdsect(fd, b0, sectorsize); b0 -= step; } TN(400); printf("\tSeq outer:\t"); b0 = 0; T0(); for (i = 0; i < 2048; i++) { rdsect(fd, b0, sectorsize); b0++; } TN(2048); printf("\tSeq inner:\t"); b0 = sectorcount - 2048; T0(); for (i = 0; i < 2048; i++) { rdsect(fd, b0, sectorsize); b0++; } TN(2048); printf("\nTransfer rates:\n"); printf("\toutside: "); rdsect(fd, 0, sectorsize); T0(); for (i = 0; i < bulk; i++) { rdmega(fd); } TR(bulk * 1024); printf("\tmiddle: "); b0 = sectorcount / 2 - bulk * (1024*1024 / sectorsize) / 2 - 1; rdsect(fd, b0, sectorsize); T0(); for (i = 0; i < bulk; i++) { rdmega(fd); } TR(bulk * 1024); printf("\tinside: "); b0 = sectorcount - bulk * (1024*1024 / sectorsize) - 1; rdsect(fd, b0, sectorsize); T0(); for (i = 0; i < bulk; i++) { rdmega(fd); } TR(bulk * 1024); printf("\n"); } static void commandtime(int fd, off_t mediasize, u_int sectorsize) { double dtmega, dtsector; int i; printf("I/O command overhead:\n"); i = mediasize; rdsect(fd, 0, sectorsize); T0(); for (i = 0; i < 10; i++) rdmega(fd); dtmega = delta_t(); printf("\ttime to read 10MB block %10.6f sec\t= %8.3f msec/sector\n", dtmega, dtmega*100/2048); rdsect(fd, 0, sectorsize); T0(); for (i = 0; i < 20480; i++) rdsect(fd, 0, sectorsize); dtsector = delta_t(); printf("\ttime to read 20480 sectors %10.6f sec\t= %8.3f msec/sector\n", dtsector, dtsector*100/2048); printf("\tcalculated command overhead\t\t\t= %8.3f msec/sector\n", (dtsector - dtmega)*100/2048); printf("\n"); } static void iops(int fd, off_t mediasize, u_int sectorsize) { struct aiocb aios[NAIO], *aiop; ssize_t ret; off_t sectorcount; int error, i, queued, completed; sectorcount = mediasize / sectorsize; for (i = 0; i < NAIO; i++) { aiop = &(aios[i]); bzero(aiop, sizeof(*aiop)); aiop->aio_buf = malloc(sectorsize); if (aiop->aio_buf == NULL) err(1, "malloc"); } T0(); for (i = 0; i < NAIO; i++) { aiop = &(aios[i]); aiop->aio_fildes = fd; aiop->aio_offset = (random() % (sectorcount)) * sectorsize; aiop->aio_nbytes = sectorsize; error = aio_read(aiop); if (error != 0) err(1, "aio_read"); } queued = i; completed = 0; for (;;) { ret = aio_waitcomplete(&aiop, NULL); if (ret < 0) err(1, "aio_waitcomplete"); if (ret != (ssize_t)sectorsize) errx(1, "short read"); completed++; if (delta_t() < 3.0) { aiop->aio_fildes = fd; aiop->aio_offset = (random() % (sectorcount)) * sectorsize; aiop->aio_nbytes = sectorsize; error = aio_read(aiop); if (error != 0) err(1, "aio_read"); queued++; } else if (completed == queued) { break; } } TI(completed); } static void iopsbench(int fd, off_t mediasize, u_int sectorsize) { printf("Asynchronous random reads:\n"); printf("\tsectorsize: "); iops(fd, mediasize, sectorsize); if (sectorsize != 4096) { printf("\t4 kbytes: "); iops(fd, mediasize, 4096); } printf("\t32 kbytes: "); iops(fd, mediasize, 32 * 1024); printf("\t128 kbytes: "); iops(fd, mediasize, 128 * 1024); printf("\t1024 kbytes: "); iops(fd, mediasize, 1024 * 1024); printf("\n"); } #define MAXIO (128*1024) #define MAXIOS (MAXTX / MAXIO) static void parwrite(int fd, size_t size, off_t off) { struct aiocb aios[MAXIOS]; off_t o; int n, error; struct aiocb *aiop; // if size > MAXIO, use AIO to write n - 1 pieces in parallel for (n = 0, o = 0; size > MAXIO; n++, size -= MAXIO, o += MAXIO) { aiop = &aios[n]; bzero(aiop, sizeof(*aiop)); aiop->aio_buf = &buf[o]; aiop->aio_fildes = fd; aiop->aio_offset = off + o; aiop->aio_nbytes = MAXIO; error = aio_write(aiop); if (error != 0) err(EX_IOERR, "AIO write submit error"); } // Use synchronous writes for the runt of size <= MAXIO error = pwrite(fd, &buf[o], size, off + o); if (error < 0) err(EX_IOERR, "Sync write error"); for (; n > 0; n--) { error = aio_waitcomplete(&aiop, NULL); if (error < 0) err(EX_IOERR, "AIO write wait error"); } } static void slogbench(int fd, int isreg, off_t mediasize, u_int sectorsize) { off_t off; u_int size; int error, n, N, nowritecache = 0; printf("Synchronous random writes:\n"); for (size = sectorsize; size <= MAXTX; size *= 2) { printf("\t%4.4g kbytes: ", (double)size / 1024); N = 0; T0(); do { for (n = 0; n < 250; n++) { off = random() % (mediasize / size); parwrite(fd, size, off * size); if (nowritecache) continue; if (isreg) error = fsync(fd); else error = ioctl(fd, DIOCGFLUSH); if (error < 0) { if (errno == ENOTSUP) nowritecache = 1; else err(EX_IOERR, "Flush error"); } } N += 250; } while (delta_t() < 1.0); TS(size, N); } } static int zonecheck(int fd, uint32_t *zone_mode, char *zone_str, size_t zone_str_len) { struct disk_zone_args zone_args; int error; bzero(&zone_args, sizeof(zone_args)); zone_args.zone_cmd = DISK_ZONE_GET_PARAMS; error = ioctl(fd, DIOCZONECMD, &zone_args); if (error == 0) { *zone_mode = zone_args.zone_params.disk_params.zone_mode; switch (*zone_mode) { case DISK_ZONE_MODE_NONE: snprintf(zone_str, zone_str_len, "Not_Zoned"); break; case DISK_ZONE_MODE_HOST_AWARE: snprintf(zone_str, zone_str_len, "Host_Aware"); break; case DISK_ZONE_MODE_DRIVE_MANAGED: snprintf(zone_str, zone_str_len, "Drive_Managed"); break; case DISK_ZONE_MODE_HOST_MANAGED: snprintf(zone_str, zone_str_len, "Host_Managed"); break; default: snprintf(zone_str, zone_str_len, "Unknown_zone_mode_%u", *zone_mode); break; } } return (error); }