diff --git a/sys/dev/usb/net/if_muge.c b/sys/dev/usb/net/if_muge.c index c705fcd56eed..3087eb40b40a 100644 --- a/sys/dev/usb/net/if_muge.c +++ b/sys/dev/usb/net/if_muge.c @@ -1,2274 +1,2274 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2012 Ben Gray . * Copyright (C) 2018 The FreeBSD Foundation. * * This software was developed by Arshan Khanifar * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); /* * USB-To-Ethernet adapter driver for Microchip's LAN78XX and related families. * * USB 3.1 to 10/100/1000 Mbps Ethernet * LAN7800 http://www.microchip.com/wwwproducts/en/LAN7800 * * USB 2.0 to 10/100/1000 Mbps Ethernet * LAN7850 http://www.microchip.com/wwwproducts/en/LAN7850 * * USB 2 to 10/100/1000 Mbps Ethernet with built-in USB hub * LAN7515 (no datasheet available, but probes and functions as LAN7800) * * This driver is based on the if_smsc driver, with lan78xx-specific * functionality modelled on Microchip's Linux lan78xx driver. * * UNIMPLEMENTED FEATURES * ------------------ * A number of features supported by the lan78xx are not yet implemented in * this driver: * * - TX checksum offloading: Nothing has been implemented yet. * - Direct address translation filtering: Implemented but untested. * - VLAN tag removal. * - Support for USB interrupt endpoints. * - Latency Tolerance Messaging (LTM) support. * - TCP LSO support. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_platform.h" #ifdef FDT #include #include #include #include #endif #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR lan78xx_debug #include #include #include #include #include "miibus_if.h" #ifdef USB_DEBUG static int muge_debug = 0; SYSCTL_NODE(_hw_usb, OID_AUTO, muge, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Microchip LAN78xx USB-GigE"); SYSCTL_INT(_hw_usb_muge, OID_AUTO, debug, CTLFLAG_RWTUN, &muge_debug, 0, "Debug level"); #endif #define MUGE_DEFAULT_TX_CSUM_ENABLE (false) #define MUGE_DEFAULT_TSO_ENABLE (false) /* Supported Vendor and Product IDs. */ static const struct usb_device_id lan78xx_devs[] = { #define MUGE_DEV(p,i) { USB_VPI(USB_VENDOR_SMC2, USB_PRODUCT_SMC2_##p, i) } MUGE_DEV(LAN7800_ETH, 0), MUGE_DEV(LAN7801_ETH, 0), MUGE_DEV(LAN7850_ETH, 0), #undef MUGE_DEV }; #ifdef USB_DEBUG #define muge_dbg_printf(sc, fmt, args...) \ do { \ if (muge_debug > 0) \ device_printf((sc)->sc_ue.ue_dev, "debug: " fmt, ##args); \ } while(0) #else #define muge_dbg_printf(sc, fmt, args...) do { } while (0) #endif #define muge_warn_printf(sc, fmt, args...) \ device_printf((sc)->sc_ue.ue_dev, "warning: " fmt, ##args) #define muge_err_printf(sc, fmt, args...) \ device_printf((sc)->sc_ue.ue_dev, "error: " fmt, ##args) #define ETHER_IS_VALID(addr) \ (!ETHER_IS_MULTICAST(addr) && !ETHER_IS_ZERO(addr)) /* USB endpoints. */ enum { MUGE_BULK_DT_RD, MUGE_BULK_DT_WR, #if 0 /* Ignore interrupt endpoints for now as we poll on MII status. */ MUGE_INTR_DT_WR, MUGE_INTR_DT_RD, #endif MUGE_N_TRANSFER, }; struct muge_softc { struct usb_ether sc_ue; struct mtx sc_mtx; struct usb_xfer *sc_xfer[MUGE_N_TRANSFER]; int sc_phyno; uint32_t sc_leds; uint16_t sc_led_modes; uint16_t sc_led_modes_mask; /* Settings for the mac control (MAC_CSR) register. */ uint32_t sc_rfe_ctl; uint32_t sc_mdix_ctl; uint16_t chipid; uint16_t chiprev; uint32_t sc_mchash_table[ETH_DP_SEL_VHF_HASH_LEN]; uint32_t sc_pfilter_table[MUGE_NUM_PFILTER_ADDRS_][2]; uint32_t sc_flags; #define MUGE_FLAG_LINK 0x0001 #define MUGE_FLAG_INIT_DONE 0x0002 }; #define MUGE_IFACE_IDX 0 #define MUGE_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define MUGE_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define MUGE_LOCK_ASSERT(_sc, t) mtx_assert(&(_sc)->sc_mtx, t) static device_probe_t muge_probe; static device_attach_t muge_attach; static device_detach_t muge_detach; static usb_callback_t muge_bulk_read_callback; static usb_callback_t muge_bulk_write_callback; static miibus_readreg_t lan78xx_miibus_readreg; static miibus_writereg_t lan78xx_miibus_writereg; static miibus_statchg_t lan78xx_miibus_statchg; static int muge_attach_post_sub(struct usb_ether *ue); static uether_fn_t muge_attach_post; static uether_fn_t muge_init; static uether_fn_t muge_stop; static uether_fn_t muge_start; static uether_fn_t muge_tick; static uether_fn_t muge_setmulti; static uether_fn_t muge_setpromisc; static int muge_ifmedia_upd(struct ifnet *); static void muge_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int lan78xx_chip_init(struct muge_softc *sc); static int muge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); static const struct usb_config muge_config[MUGE_N_TRANSFER] = { [MUGE_BULK_DT_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .frames = 16, .bufsize = 16 * (MCLBYTES + 16), .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = muge_bulk_write_callback, .timeout = 10000, /* 10 seconds */ }, [MUGE_BULK_DT_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = 20480, /* bytes */ .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = muge_bulk_read_callback, .timeout = 0, /* no timeout */ }, /* * The chip supports interrupt endpoints, however they aren't * needed as we poll on the MII status. */ }; static const struct usb_ether_methods muge_ue_methods = { .ue_attach_post = muge_attach_post, .ue_attach_post_sub = muge_attach_post_sub, .ue_start = muge_start, .ue_ioctl = muge_ioctl, .ue_init = muge_init, .ue_stop = muge_stop, .ue_tick = muge_tick, .ue_setmulti = muge_setmulti, .ue_setpromisc = muge_setpromisc, .ue_mii_upd = muge_ifmedia_upd, .ue_mii_sts = muge_ifmedia_sts, }; /** * lan78xx_read_reg - Read a 32-bit register on the device * @sc: driver soft context * @off: offset of the register * @data: pointer a value that will be populated with the register value * * LOCKING: * The device lock must be held before calling this function. * * RETURNS: * 0 on success, a USB_ERR_?? error code on failure. */ static int lan78xx_read_reg(struct muge_softc *sc, uint32_t off, uint32_t *data) { struct usb_device_request req; uint32_t buf; usb_error_t err; MUGE_LOCK_ASSERT(sc, MA_OWNED); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = UVR_READ_REG; USETW(req.wValue, 0); USETW(req.wIndex, off); USETW(req.wLength, 4); err = uether_do_request(&sc->sc_ue, &req, &buf, 1000); if (err != 0) muge_warn_printf(sc, "Failed to read register 0x%0x\n", off); *data = le32toh(buf); return (err); } /** * lan78xx_write_reg - Write a 32-bit register on the device * @sc: driver soft context * @off: offset of the register * @data: the 32-bit value to write into the register * * LOCKING: * The device lock must be held before calling this function. * * RETURNS: * 0 on success, a USB_ERR_?? error code on failure. */ static int lan78xx_write_reg(struct muge_softc *sc, uint32_t off, uint32_t data) { struct usb_device_request req; uint32_t buf; usb_error_t err; MUGE_LOCK_ASSERT(sc, MA_OWNED); buf = htole32(data); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = UVR_WRITE_REG; USETW(req.wValue, 0); USETW(req.wIndex, off); USETW(req.wLength, 4); err = uether_do_request(&sc->sc_ue, &req, &buf, 1000); if (err != 0) muge_warn_printf(sc, "Failed to write register 0x%0x\n", off); return (err); } /** * lan78xx_wait_for_bits - Poll on a register value until bits are cleared * @sc: soft context * @reg: offset of the register * @bits: if the bits are clear the function returns * * LOCKING: * The device lock must be held before calling this function. * * RETURNS: * 0 on success, or a USB_ERR_?? error code on failure. */ static int lan78xx_wait_for_bits(struct muge_softc *sc, uint32_t reg, uint32_t bits) { usb_ticks_t start_ticks; const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000); uint32_t val; int err; MUGE_LOCK_ASSERT(sc, MA_OWNED); start_ticks = (usb_ticks_t)ticks; do { if ((err = lan78xx_read_reg(sc, reg, &val)) != 0) return (err); if (!(val & bits)) return (0); uether_pause(&sc->sc_ue, hz / 100); } while (((usb_ticks_t)(ticks - start_ticks)) < max_ticks); return (USB_ERR_TIMEOUT); } /** * lan78xx_eeprom_read_raw - Read the attached EEPROM * @sc: soft context * @off: the eeprom address offset * @buf: stores the bytes * @buflen: the number of bytes to read * * Simply reads bytes from an attached eeprom. * * LOCKING: * The function takes and releases the device lock if not already held. * * RETURNS: * 0 on success, or a USB_ERR_?? error code on failure. */ static int lan78xx_eeprom_read_raw(struct muge_softc *sc, uint16_t off, uint8_t *buf, uint16_t buflen) { usb_ticks_t start_ticks; const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000); int err; uint32_t val, saved; uint16_t i; bool locked; locked = mtx_owned(&sc->sc_mtx); /* XXX */ if (!locked) MUGE_LOCK(sc); if (sc->chipid == ETH_ID_REV_CHIP_ID_7800_) { /* EEDO/EECLK muxed with LED0/LED1 on LAN7800. */ err = lan78xx_read_reg(sc, ETH_HW_CFG, &val); saved = val; val &= ~(ETH_HW_CFG_LEDO_EN_ | ETH_HW_CFG_LED1_EN_); err = lan78xx_write_reg(sc, ETH_HW_CFG, val); } err = lan78xx_wait_for_bits(sc, ETH_E2P_CMD, ETH_E2P_CMD_BUSY_); if (err != 0) { muge_warn_printf(sc, "eeprom busy, failed to read data\n"); goto done; } /* Start reading the bytes, one at a time. */ for (i = 0; i < buflen; i++) { val = ETH_E2P_CMD_BUSY_ | ETH_E2P_CMD_READ_; val |= (ETH_E2P_CMD_ADDR_MASK_ & (off + i)); if ((err = lan78xx_write_reg(sc, ETH_E2P_CMD, val)) != 0) goto done; start_ticks = (usb_ticks_t)ticks; do { if ((err = lan78xx_read_reg(sc, ETH_E2P_CMD, &val)) != 0) goto done; if (!(val & ETH_E2P_CMD_BUSY_) || (val & ETH_E2P_CMD_TIMEOUT_)) break; uether_pause(&sc->sc_ue, hz / 100); } while (((usb_ticks_t)(ticks - start_ticks)) < max_ticks); if (val & (ETH_E2P_CMD_BUSY_ | ETH_E2P_CMD_TIMEOUT_)) { muge_warn_printf(sc, "eeprom command failed\n"); err = USB_ERR_IOERROR; break; } if ((err = lan78xx_read_reg(sc, ETH_E2P_DATA, &val)) != 0) goto done; buf[i] = (val & 0xff); } done: if (!locked) MUGE_UNLOCK(sc); if (sc->chipid == ETH_ID_REV_CHIP_ID_7800_) { /* Restore saved LED configuration. */ lan78xx_write_reg(sc, ETH_HW_CFG, saved); } return (err); } static bool lan78xx_eeprom_present(struct muge_softc *sc) { int ret; uint8_t sig; ret = lan78xx_eeprom_read_raw(sc, ETH_E2P_INDICATOR_OFFSET, &sig, 1); return (ret == 0 && sig == ETH_E2P_INDICATOR); } /** * lan78xx_otp_read_raw * @sc: soft context * @off: the otp address offset * @buf: stores the bytes * @buflen: the number of bytes to read * * Simply reads bytes from the OTP. * * LOCKING: * The function takes and releases the device lock if not already held. * * RETURNS: * 0 on success, or a USB_ERR_?? error code on failure. * */ static int lan78xx_otp_read_raw(struct muge_softc *sc, uint16_t off, uint8_t *buf, uint16_t buflen) { int err; uint32_t val; uint16_t i; bool locked; locked = mtx_owned(&sc->sc_mtx); if (!locked) MUGE_LOCK(sc); err = lan78xx_read_reg(sc, OTP_PWR_DN, &val); /* Checking if bit is set. */ if (val & OTP_PWR_DN_PWRDN_N) { /* Clear it, then wait for it to be cleared. */ lan78xx_write_reg(sc, OTP_PWR_DN, 0); err = lan78xx_wait_for_bits(sc, OTP_PWR_DN, OTP_PWR_DN_PWRDN_N); if (err != 0) { muge_warn_printf(sc, "OTP off? failed to read data\n"); goto done; } } /* Start reading the bytes, one at a time. */ for (i = 0; i < buflen; i++) { err = lan78xx_write_reg(sc, OTP_ADDR1, ((off + i) >> 8) & OTP_ADDR1_15_11); err = lan78xx_write_reg(sc, OTP_ADDR2, ((off + i) & OTP_ADDR2_10_3)); err = lan78xx_write_reg(sc, OTP_FUNC_CMD, OTP_FUNC_CMD_READ_); err = lan78xx_write_reg(sc, OTP_CMD_GO, OTP_CMD_GO_GO_); err = lan78xx_wait_for_bits(sc, OTP_STATUS, OTP_STATUS_BUSY_); if (err != 0) { muge_warn_printf(sc, "OTP busy failed to read data\n"); goto done; } if ((err = lan78xx_read_reg(sc, OTP_RD_DATA, &val)) != 0) goto done; buf[i] = (uint8_t)(val & 0xff); } done: if (!locked) MUGE_UNLOCK(sc); return (err); } /** * lan78xx_otp_read * @sc: soft context * @off: the otp address offset * @buf: stores the bytes * @buflen: the number of bytes to read * * Simply reads bytes from the otp. * * LOCKING: * The function takes and releases device lock if it is not already held. * * RETURNS: * 0 on success, or a USB_ERR_?? error code on failure. */ static int lan78xx_otp_read(struct muge_softc *sc, uint16_t off, uint8_t *buf, uint16_t buflen) { uint8_t sig; int err; err = lan78xx_otp_read_raw(sc, OTP_INDICATOR_OFFSET, &sig, 1); if (err == 0) { if (sig == OTP_INDICATOR_1) { } else if (sig == OTP_INDICATOR_2) { off += 0x100; /* XXX */ } else { err = -EINVAL; } if (!err) err = lan78xx_otp_read_raw(sc, off, buf, buflen); } return (err); } /** * lan78xx_setmacaddress - Set the mac address in the device * @sc: driver soft context * @addr: pointer to array contain at least 6 bytes of the mac * * LOCKING: * Should be called with the MUGE lock held. * * RETURNS: * Returns 0 on success or a negative error code. */ static int lan78xx_setmacaddress(struct muge_softc *sc, const uint8_t *addr) { int err; uint32_t val; muge_dbg_printf(sc, "setting mac address to %02x:%02x:%02x:%02x:%02x:%02x\n", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); MUGE_LOCK_ASSERT(sc, MA_OWNED); val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; if ((err = lan78xx_write_reg(sc, ETH_RX_ADDRL, val)) != 0) goto done; val = (addr[5] << 8) | addr[4]; err = lan78xx_write_reg(sc, ETH_RX_ADDRH, val); done: return (err); } /** * lan78xx_set_rx_max_frame_length * @sc: driver soft context * @size: pointer to array contain at least 6 bytes of the mac * * Sets the maximum frame length to be received. Frames bigger than * this size are aborted. * * RETURNS: * Returns 0 on success or a negative error code. */ static int lan78xx_set_rx_max_frame_length(struct muge_softc *sc, int size) { uint32_t buf; bool rxenabled; /* First we have to disable rx before changing the length. */ lan78xx_read_reg(sc, ETH_MAC_RX, &buf); rxenabled = ((buf & ETH_MAC_RX_EN_) != 0); if (rxenabled) { buf &= ~ETH_MAC_RX_EN_; lan78xx_write_reg(sc, ETH_MAC_RX, buf); } /* Setting max frame length. */ buf &= ~ETH_MAC_RX_MAX_FR_SIZE_MASK_; buf |= (((size + 4) << ETH_MAC_RX_MAX_FR_SIZE_SHIFT_) & ETH_MAC_RX_MAX_FR_SIZE_MASK_); lan78xx_write_reg(sc, ETH_MAC_RX, buf); /* If it were enabled before, we enable it back. */ if (rxenabled) { buf |= ETH_MAC_RX_EN_; lan78xx_write_reg(sc, ETH_MAC_RX, buf); } return (0); } /** * lan78xx_miibus_readreg - Read a MII/MDIO register * @dev: usb ether device * @phy: the number of phy reading from * @reg: the register address * * LOCKING: * Takes and releases the device mutex lock if not already held. * * RETURNS: * Returns the 16-bits read from the MII register, if this function fails * 0 is returned. */ static int lan78xx_miibus_readreg(device_t dev, int phy, int reg) { struct muge_softc *sc = device_get_softc(dev); uint32_t addr, val; bool locked; val = 0; locked = mtx_owned(&sc->sc_mtx); if (!locked) MUGE_LOCK(sc); if (lan78xx_wait_for_bits(sc, ETH_MII_ACC, ETH_MII_ACC_MII_BUSY_) != 0) { muge_warn_printf(sc, "MII is busy\n"); goto done; } addr = (phy << 11) | (reg << 6) | ETH_MII_ACC_MII_READ_ | ETH_MII_ACC_MII_BUSY_; lan78xx_write_reg(sc, ETH_MII_ACC, addr); if (lan78xx_wait_for_bits(sc, ETH_MII_ACC, ETH_MII_ACC_MII_BUSY_) != 0) { muge_warn_printf(sc, "MII read timeout\n"); goto done; } lan78xx_read_reg(sc, ETH_MII_DATA, &val); val = le32toh(val); done: if (!locked) MUGE_UNLOCK(sc); return (val & 0xFFFF); } /** * lan78xx_miibus_writereg - Writes a MII/MDIO register * @dev: usb ether device * @phy: the number of phy writing to * @reg: the register address * @val: the value to write * * Attempts to write a PHY register through the usb controller registers. * * LOCKING: * Takes and releases the device mutex lock if not already held. * * RETURNS: * Always returns 0 regardless of success or failure. */ static int lan78xx_miibus_writereg(device_t dev, int phy, int reg, int val) { struct muge_softc *sc = device_get_softc(dev); uint32_t addr; bool locked; if (sc->sc_phyno != phy) return (0); locked = mtx_owned(&sc->sc_mtx); if (!locked) MUGE_LOCK(sc); if (lan78xx_wait_for_bits(sc, ETH_MII_ACC, ETH_MII_ACC_MII_BUSY_) != 0) { muge_warn_printf(sc, "MII is busy\n"); goto done; } val = htole32(val); lan78xx_write_reg(sc, ETH_MII_DATA, val); addr = (phy << 11) | (reg << 6) | ETH_MII_ACC_MII_WRITE_ | ETH_MII_ACC_MII_BUSY_; lan78xx_write_reg(sc, ETH_MII_ACC, addr); if (lan78xx_wait_for_bits(sc, ETH_MII_ACC, ETH_MII_ACC_MII_BUSY_) != 0) muge_warn_printf(sc, "MII write timeout\n"); done: if (!locked) MUGE_UNLOCK(sc); return (0); } /* * lan78xx_miibus_statchg - Called to detect phy status change * @dev: usb ether device * * This function is called periodically by the system to poll for status * changes of the link. * * LOCKING: * Takes and releases the device mutex lock if not already held. */ static void lan78xx_miibus_statchg(device_t dev) { struct muge_softc *sc = device_get_softc(dev); struct mii_data *mii = uether_getmii(&sc->sc_ue); struct ifnet *ifp; int err; uint32_t flow = 0; uint32_t fct_flow = 0; bool locked; locked = mtx_owned(&sc->sc_mtx); if (!locked) MUGE_LOCK(sc); ifp = uether_getifp(&sc->sc_ue); if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) goto done; /* Use the MII status to determine link status */ sc->sc_flags &= ~MUGE_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { muge_dbg_printf(sc, "media is active\n"); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->sc_flags |= MUGE_FLAG_LINK; muge_dbg_printf(sc, "10/100 ethernet\n"); break; case IFM_1000_T: sc->sc_flags |= MUGE_FLAG_LINK; muge_dbg_printf(sc, "Gigabit ethernet\n"); break; default: break; } } /* Lost link, do nothing. */ if ((sc->sc_flags & MUGE_FLAG_LINK) == 0) { muge_dbg_printf(sc, "link flag not set\n"); goto done; } err = lan78xx_read_reg(sc, ETH_FCT_FLOW, &fct_flow); if (err) { muge_warn_printf(sc, "failed to read initial flow control thresholds, error %d\n", err); goto done; } /* Enable/disable full duplex operation and TX/RX pause. */ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { muge_dbg_printf(sc, "full duplex operation\n"); /* Enable transmit MAC flow control function. */ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) flow |= ETH_FLOW_CR_TX_FCEN_ | 0xFFFF; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) flow |= ETH_FLOW_CR_RX_FCEN_; } /* XXX Flow control settings obtained from Microchip's driver. */ switch(usbd_get_speed(sc->sc_ue.ue_udev)) { case USB_SPEED_SUPER: fct_flow = 0x817; break; case USB_SPEED_HIGH: fct_flow = 0x211; break; default: break; } err += lan78xx_write_reg(sc, ETH_FLOW, flow); err += lan78xx_write_reg(sc, ETH_FCT_FLOW, fct_flow); if (err) muge_warn_printf(sc, "media change failed, error %d\n", err); done: if (!locked) MUGE_UNLOCK(sc); } /* * lan78xx_set_mdix_auto - Configure the device to enable automatic * crossover and polarity detection. LAN7800 provides HP Auto-MDIX * functionality for seamless crossover and polarity detection. * * @sc: driver soft context * * LOCKING: * Takes and releases the device mutex lock if not already held. */ static void lan78xx_set_mdix_auto(struct muge_softc *sc) { uint32_t buf, err; err = lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MUGE_EXT_PAGE_ACCESS, MUGE_EXT_PAGE_SPACE_1); buf = lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MUGE_EXT_MODE_CTRL); buf &= ~MUGE_EXT_MODE_CTRL_MDIX_MASK_; buf |= MUGE_EXT_MODE_CTRL_AUTO_MDIX_; lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR); err += lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MUGE_EXT_MODE_CTRL, buf); err += lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MUGE_EXT_PAGE_ACCESS, MUGE_EXT_PAGE_SPACE_0); if (err != 0) muge_warn_printf(sc, "error setting PHY's MDIX status\n"); sc->sc_mdix_ctl = buf; } /** * lan78xx_phy_init - Initialises the in-built MUGE phy * @sc: driver soft context * * Resets the PHY part of the chip and then initialises it to default * values. The 'link down' and 'auto-negotiation complete' interrupts * from the PHY are also enabled, however we don't monitor the interrupt * endpoints for the moment. * * RETURNS: * Returns 0 on success or EIO if failed to reset the PHY. */ static int lan78xx_phy_init(struct muge_softc *sc) { muge_dbg_printf(sc, "Initializing PHY.\n"); uint16_t bmcr, lmsr; usb_ticks_t start_ticks; uint32_t hw_reg; const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000); MUGE_LOCK_ASSERT(sc, MA_OWNED); /* Reset phy and wait for reset to complete. */ lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR, BMCR_RESET); start_ticks = ticks; do { uether_pause(&sc->sc_ue, hz / 100); bmcr = lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR); } while ((bmcr & BMCR_RESET) && ((ticks - start_ticks) < max_ticks)); if (((usb_ticks_t)(ticks - start_ticks)) >= max_ticks) { muge_err_printf(sc, "PHY reset timed-out\n"); return (EIO); } /* Setup phy to interrupt upon link down or autoneg completion. */ lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MUGE_PHY_INTR_STAT); lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MUGE_PHY_INTR_MASK, (MUGE_PHY_INTR_ANEG_COMP | MUGE_PHY_INTR_LINK_CHANGE)); /* Enable Auto-MDIX for crossover and polarity detection. */ lan78xx_set_mdix_auto(sc); /* Enable all modes. */ lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_ANAR, ANAR_10 | ANAR_10_FD | ANAR_TX | ANAR_TX_FD | ANAR_CSMA | ANAR_FC | ANAR_PAUSE_ASYM); /* Restart auto-negotiation. */ bmcr |= BMCR_STARTNEG; bmcr |= BMCR_AUTOEN; lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR, bmcr); bmcr = lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR); /* Configure LED Modes. */ if (sc->sc_led_modes_mask != 0) { lmsr = lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MUGE_PHY_LED_MODE); lmsr &= ~sc->sc_led_modes_mask; lmsr |= sc->sc_led_modes; lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MUGE_PHY_LED_MODE, lmsr); } /* Enable appropriate LEDs. */ if (sc->sc_leds != 0 && lan78xx_read_reg(sc, ETH_HW_CFG, &hw_reg) == 0) { hw_reg &= ~(ETH_HW_CFG_LEDO_EN_ | ETH_HW_CFG_LED1_EN_ | ETH_HW_CFG_LED2_EN_ | ETH_HW_CFG_LED3_EN_ ); hw_reg |= sc->sc_leds; lan78xx_write_reg(sc, ETH_HW_CFG, hw_reg); } return (0); } /** * lan78xx_chip_init - Initialises the chip after power on * @sc: driver soft context * * This initialisation sequence is modelled on the procedure in the Linux * driver. * * RETURNS: * Returns 0 on success or an error code on failure. */ static int lan78xx_chip_init(struct muge_softc *sc) { int err; uint32_t buf; uint32_t burst_cap; MUGE_LOCK_ASSERT(sc, MA_OWNED); /* Enter H/W config mode. */ lan78xx_write_reg(sc, ETH_HW_CFG, ETH_HW_CFG_LRST_); if ((err = lan78xx_wait_for_bits(sc, ETH_HW_CFG, ETH_HW_CFG_LRST_)) != 0) { muge_warn_printf(sc, "timed-out waiting for lite reset to complete\n"); goto init_failed; } /* Set the mac address. */ if ((err = lan78xx_setmacaddress(sc, sc->sc_ue.ue_eaddr)) != 0) { muge_warn_printf(sc, "failed to set the MAC address\n"); goto init_failed; } /* Read and display the revision register. */ if ((err = lan78xx_read_reg(sc, ETH_ID_REV, &buf)) < 0) { muge_warn_printf(sc, "failed to read ETH_ID_REV (err = %d)\n", err); goto init_failed; } sc->chipid = (buf & ETH_ID_REV_CHIP_ID_MASK_) >> 16; sc->chiprev = buf & ETH_ID_REV_CHIP_REV_MASK_; switch (sc->chipid) { case ETH_ID_REV_CHIP_ID_7800_: case ETH_ID_REV_CHIP_ID_7850_: break; default: muge_warn_printf(sc, "Chip ID 0x%04x not yet supported\n", sc->chipid); goto init_failed; } device_printf(sc->sc_ue.ue_dev, "Chip ID 0x%04x rev %04x\n", sc->chipid, sc->chiprev); /* Respond to BULK-IN tokens with a NAK when RX FIFO is empty. */ if ((err = lan78xx_read_reg(sc, ETH_USB_CFG0, &buf)) != 0) { muge_warn_printf(sc, "failed to read ETH_USB_CFG0 (err=%d)\n", err); goto init_failed; } buf |= ETH_USB_CFG_BIR_; lan78xx_write_reg(sc, ETH_USB_CFG0, buf); /* * XXX LTM support will go here. */ /* Configuring the burst cap. */ switch (usbd_get_speed(sc->sc_ue.ue_udev)) { case USB_SPEED_SUPER: burst_cap = MUGE_DEFAULT_BURST_CAP_SIZE/MUGE_SS_USB_PKT_SIZE; break; case USB_SPEED_HIGH: burst_cap = MUGE_DEFAULT_BURST_CAP_SIZE/MUGE_HS_USB_PKT_SIZE; break; default: burst_cap = MUGE_DEFAULT_BURST_CAP_SIZE/MUGE_FS_USB_PKT_SIZE; } lan78xx_write_reg(sc, ETH_BURST_CAP, burst_cap); /* Set the default bulk in delay (same value from Linux driver). */ lan78xx_write_reg(sc, ETH_BULK_IN_DLY, MUGE_DEFAULT_BULK_IN_DELAY); /* Multiple ethernet frames per USB packets. */ err = lan78xx_read_reg(sc, ETH_HW_CFG, &buf); buf |= ETH_HW_CFG_MEF_; err = lan78xx_write_reg(sc, ETH_HW_CFG, buf); /* Enable burst cap. */ if ((err = lan78xx_read_reg(sc, ETH_USB_CFG0, &buf)) < 0) { muge_warn_printf(sc, "failed to read ETH_USB_CFG0 (err=%d)\n", err); goto init_failed; } buf |= ETH_USB_CFG_BCE_; err = lan78xx_write_reg(sc, ETH_USB_CFG0, buf); /* * Set FCL's RX and TX FIFO sizes: according to data sheet this is * already the default value. But we initialize it to the same value * anyways, as that's what the Linux driver does. * */ buf = (MUGE_MAX_RX_FIFO_SIZE - 512) / 512; err = lan78xx_write_reg(sc, ETH_FCT_RX_FIFO_END, buf); buf = (MUGE_MAX_TX_FIFO_SIZE - 512) / 512; err = lan78xx_write_reg(sc, ETH_FCT_TX_FIFO_END, buf); /* Enabling interrupts. (Not using them for now) */ err = lan78xx_write_reg(sc, ETH_INT_STS, ETH_INT_STS_CLEAR_ALL_); /* * Initializing flow control registers to 0. These registers are * properly set is handled in link-reset function in the Linux driver. */ err = lan78xx_write_reg(sc, ETH_FLOW, 0); err = lan78xx_write_reg(sc, ETH_FCT_FLOW, 0); /* * Settings for the RFE, we enable broadcast and destination address * perfect filtering. */ err = lan78xx_read_reg(sc, ETH_RFE_CTL, &buf); buf |= ETH_RFE_CTL_BCAST_EN_ | ETH_RFE_CTL_DA_PERFECT_; err = lan78xx_write_reg(sc, ETH_RFE_CTL, buf); /* * At this point the Linux driver writes multicast tables, and enables * checksum engines. But in FreeBSD that gets done in muge_init, * which gets called when the interface is brought up. */ /* Reset the PHY. */ lan78xx_write_reg(sc, ETH_PMT_CTL, ETH_PMT_CTL_PHY_RST_); if ((err = lan78xx_wait_for_bits(sc, ETH_PMT_CTL, ETH_PMT_CTL_PHY_RST_)) != 0) { muge_warn_printf(sc, "timed-out waiting for phy reset to complete\n"); goto init_failed; } err = lan78xx_read_reg(sc, ETH_MAC_CR, &buf); if (sc->chipid == ETH_ID_REV_CHIP_ID_7800_ && !lan78xx_eeprom_present(sc)) { /* Set automatic duplex and speed on LAN7800 without EEPROM. */ buf |= ETH_MAC_CR_AUTO_DUPLEX_ | ETH_MAC_CR_AUTO_SPEED_; } err = lan78xx_write_reg(sc, ETH_MAC_CR, buf); /* * Enable PHY interrupts (Not really getting used for now) * ETH_INT_EP_CTL: interrupt endpoint control register * phy events cause interrupts to be issued */ err = lan78xx_read_reg(sc, ETH_INT_EP_CTL, &buf); buf |= ETH_INT_ENP_PHY_INT; err = lan78xx_write_reg(sc, ETH_INT_EP_CTL, buf); /* * Enables mac's transmitter. It will transmit frames from the buffer * onto the cable. */ err = lan78xx_read_reg(sc, ETH_MAC_TX, &buf); buf |= ETH_MAC_TX_TXEN_; err = lan78xx_write_reg(sc, ETH_MAC_TX, buf); /* FIFO is capable of transmitting frames to MAC. */ err = lan78xx_read_reg(sc, ETH_FCT_TX_CTL, &buf); buf |= ETH_FCT_TX_CTL_EN_; err = lan78xx_write_reg(sc, ETH_FCT_TX_CTL, buf); /* * Set max frame length. In linux this is dev->mtu (which by default * is 1500) + VLAN_ETH_HLEN = 1518. */ err = lan78xx_set_rx_max_frame_length(sc, ETHER_MAX_LEN); /* Initialise the PHY. */ if ((err = lan78xx_phy_init(sc)) != 0) goto init_failed; /* Enable MAC RX. */ err = lan78xx_read_reg(sc, ETH_MAC_RX, &buf); buf |= ETH_MAC_RX_EN_; err = lan78xx_write_reg(sc, ETH_MAC_RX, buf); /* Enable FIFO controller RX. */ err = lan78xx_read_reg(sc, ETH_FCT_RX_CTL, &buf); buf |= ETH_FCT_TX_CTL_EN_; err = lan78xx_write_reg(sc, ETH_FCT_RX_CTL, buf); sc->sc_flags |= MUGE_FLAG_INIT_DONE; return (0); init_failed: muge_err_printf(sc, "lan78xx_chip_init failed (err=%d)\n", err); return (err); } static void muge_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct muge_softc *sc = usbd_xfer_softc(xfer); struct usb_ether *ue = &sc->sc_ue; struct ifnet *ifp = uether_getifp(ue); struct mbuf *m; struct usb_page_cache *pc; uint32_t rx_cmd_a, rx_cmd_b; uint16_t rx_cmd_c; int pktlen; int off; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); muge_dbg_printf(sc, "rx : actlen %d\n", actlen); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: /* * There is always a zero length frame after bringing the * interface up. */ if (actlen < (sizeof(rx_cmd_a) + ETHER_CRC_LEN)) goto tr_setup; /* * There may be multiple packets in the USB frame. Each will * have a header and each needs to have its own mbuf allocated * and populated for it. */ pc = usbd_xfer_get_frame(xfer, 0); off = 0; while (off < actlen) { /* The frame header is aligned on a 4 byte boundary. */ off = ((off + 0x3) & ~0x3); /* Extract RX CMD A. */ if (off + sizeof(rx_cmd_a) > actlen) goto tr_setup; usbd_copy_out(pc, off, &rx_cmd_a, sizeof(rx_cmd_a)); off += (sizeof(rx_cmd_a)); rx_cmd_a = le32toh(rx_cmd_a); /* Extract RX CMD B. */ if (off + sizeof(rx_cmd_b) > actlen) goto tr_setup; usbd_copy_out(pc, off, &rx_cmd_b, sizeof(rx_cmd_b)); off += (sizeof(rx_cmd_b)); rx_cmd_b = le32toh(rx_cmd_b); /* Extract RX CMD C. */ if (off + sizeof(rx_cmd_c) > actlen) goto tr_setup; usbd_copy_out(pc, off, &rx_cmd_c, sizeof(rx_cmd_c)); off += (sizeof(rx_cmd_c)); rx_cmd_c = le16toh(rx_cmd_c); if (off > actlen) goto tr_setup; pktlen = (rx_cmd_a & RX_CMD_A_LEN_MASK_); muge_dbg_printf(sc, "rx_cmd_a 0x%08x rx_cmd_b 0x%08x rx_cmd_c 0x%04x " " pktlen %d actlen %d off %d\n", rx_cmd_a, rx_cmd_b, rx_cmd_c, pktlen, actlen, off); if (rx_cmd_a & RX_CMD_A_RED_) { muge_dbg_printf(sc, "rx error (hdr 0x%08x)\n", rx_cmd_a); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); } else { /* Ethernet frame too big or too small? */ if ((pktlen < ETHER_HDR_LEN) || (pktlen > (actlen - off))) goto tr_setup; /* Create a new mbuf to store the packet. */ m = uether_newbuf(); if (m == NULL) { muge_warn_printf(sc, "failed to create new mbuf\n"); if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); goto tr_setup; } if (pktlen > m->m_len) { muge_dbg_printf(sc, "buffer too small %d vs %d bytes", pktlen, m->m_len); if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); m_freem(m); goto tr_setup; } usbd_copy_out(pc, off, mtod(m, uint8_t *), pktlen); /* * Check if RX checksums are computed, and * offload them */ if ((ifp->if_capenable & IFCAP_RXCSUM) && !(rx_cmd_a & RX_CMD_A_ICSM_)) { /* * Remove the extra 2 bytes of the csum * * The checksum appears to be * simplistically calculated over the * protocol headers up to the end of the * eth frame. Which means if the eth * frame is padded the csum calculation * is incorrectly performed over the * padding bytes as well. Therefore to * be safe we ignore the H/W csum on * frames less than or equal to * 64 bytes. * * Protocols checksummed: * TCP, UDP, ICMP, IGMP, IP */ if (pktlen > ETHER_MIN_LEN) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; /* * Copy the checksum from the * last 2 bytes of the transfer * and put in the csum_data * field. */ usbd_copy_out(pc, (off + pktlen), &m->m_pkthdr.csum_data, 2); /* * The data is copied in network * order, but the csum algorithm * in the kernel expects it to * be in host network order. */ m->m_pkthdr.csum_data = ntohs(0xffff); muge_dbg_printf(sc, "RX checksum offloaded (0x%04x)\n", m->m_pkthdr.csum_data); } } /* Enqueue the mbuf on the receive queue. */ if (pktlen < (4 + ETHER_HDR_LEN)) { m_freem(m); goto tr_setup; } /* Remove 4 trailing bytes */ uether_rxmbuf(ue, m, pktlen - 4); } /* * Update the offset to move to the next potential * packet. */ off += pktlen; } /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); uether_rxflush(ue); return; default: if (error != USB_ERR_CANCELLED) { muge_warn_printf(sc, "bulk read error, %s\n", usbd_errstr(error)); usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } /** * muge_bulk_write_callback - Write callback used to send ethernet frame(s) * @xfer: the USB transfer * @error: error code if the transfers is in an errored state * * The main write function that pulls ethernet frames off the queue and * sends them out. * */ static void muge_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct muge_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = uether_getifp(&sc->sc_ue); struct usb_page_cache *pc; struct mbuf *m; int nframes; uint32_t frm_len = 0, tx_cmd_a = 0, tx_cmd_b = 0; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: muge_dbg_printf(sc, "USB TRANSFER status: USB_ST_TRANSFERRED\n"); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* FALLTHROUGH */ case USB_ST_SETUP: muge_dbg_printf(sc, "USB TRANSFER status: USB_ST_SETUP\n"); tr_setup: if ((sc->sc_flags & MUGE_FLAG_LINK) == 0 || (ifp->if_drv_flags & IFF_DRV_OACTIVE) != 0) { muge_dbg_printf(sc, "sc->sc_flags & MUGE_FLAG_LINK: %d\n", (sc->sc_flags & MUGE_FLAG_LINK)); muge_dbg_printf(sc, "ifp->if_drv_flags & IFF_DRV_OACTIVE: %d\n", (ifp->if_drv_flags & IFF_DRV_OACTIVE)); muge_dbg_printf(sc, "USB TRANSFER not sending: no link or controller is busy \n"); /* * Don't send anything if there is no link or * controller is busy. */ return; } for (nframes = 0; nframes < 16 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd); nframes++) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; usbd_xfer_set_frame_offset(xfer, nframes * MCLBYTES, nframes); frm_len = 0; pc = usbd_xfer_get_frame(xfer, nframes); /* * Each frame is prefixed with two 32-bit values * describing the length of the packet and buffer. */ tx_cmd_a = (m->m_pkthdr.len & TX_CMD_A_LEN_MASK_) | TX_CMD_A_FCS_; tx_cmd_a = htole32(tx_cmd_a); usbd_copy_in(pc, 0, &tx_cmd_a, sizeof(tx_cmd_a)); tx_cmd_b = 0; /* TCP LSO Support will probably be implemented here. */ tx_cmd_b = htole32(tx_cmd_b); usbd_copy_in(pc, 4, &tx_cmd_b, sizeof(tx_cmd_b)); frm_len += 8; /* Next copy in the actual packet */ usbd_m_copy_in(pc, frm_len, m, 0, m->m_pkthdr.len); frm_len += m->m_pkthdr.len; if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); /* * If there's a BPF listener, bounce a copy of this * frame to it. */ BPF_MTAP(ifp, m); m_freem(m); /* Set frame length. */ usbd_xfer_set_frame_len(xfer, nframes, frm_len); } muge_dbg_printf(sc, "USB TRANSFER nframes: %d\n", nframes); if (nframes != 0) { muge_dbg_printf(sc, "USB TRANSFER submit attempt\n"); usbd_xfer_set_frames(xfer, nframes); usbd_transfer_submit(xfer); ifp->if_drv_flags |= IFF_DRV_OACTIVE; } return; default: if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (error != USB_ERR_CANCELLED) { muge_err_printf(sc, "usb error on tx: %s\n", usbd_errstr(error)); usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } /** * muge_set_mac_addr - Initiailizes NIC MAC address * @ue: the USB ethernet device * * Tries to obtain MAC address from number of sources: registers, * EEPROM, DTB blob. If all sources fail - generates random MAC. */ static void muge_set_mac_addr(struct usb_ether *ue) { struct muge_softc *sc = uether_getsc(ue); uint32_t mac_h, mac_l; memset(ue->ue_eaddr, 0xff, ETHER_ADDR_LEN); uint32_t val; lan78xx_read_reg(sc, 0, &val); /* Read current MAC address from RX_ADDRx registers. */ if ((lan78xx_read_reg(sc, ETH_RX_ADDRL, &mac_l) == 0) && (lan78xx_read_reg(sc, ETH_RX_ADDRH, &mac_h) == 0)) { ue->ue_eaddr[5] = (uint8_t)((mac_h >> 8) & 0xff); ue->ue_eaddr[4] = (uint8_t)((mac_h) & 0xff); ue->ue_eaddr[3] = (uint8_t)((mac_l >> 24) & 0xff); ue->ue_eaddr[2] = (uint8_t)((mac_l >> 16) & 0xff); ue->ue_eaddr[1] = (uint8_t)((mac_l >> 8) & 0xff); ue->ue_eaddr[0] = (uint8_t)((mac_l) & 0xff); } /* * If RX_ADDRx did not provide a valid MAC address, try EEPROM. If that * doesn't work, try OTP. Whether any of these methods work or not, try * FDT data, because it is allowed to override the EEPROM/OTP values. */ if (ETHER_IS_VALID(ue->ue_eaddr)) { muge_dbg_printf(sc, "MAC assigned from registers\n"); } else if (lan78xx_eeprom_present(sc) && lan78xx_eeprom_read_raw(sc, ETH_E2P_MAC_OFFSET, ue->ue_eaddr, ETHER_ADDR_LEN) == 0 && ETHER_IS_VALID(ue->ue_eaddr)) { muge_dbg_printf(sc, "MAC assigned from EEPROM\n"); } else if (lan78xx_otp_read(sc, OTP_MAC_OFFSET, ue->ue_eaddr, ETHER_ADDR_LEN) == 0 && ETHER_IS_VALID(ue->ue_eaddr)) { muge_dbg_printf(sc, "MAC assigned from OTP\n"); } #ifdef FDT /* ue->ue_eaddr modified only if config exists for this dev instance. */ usb_fdt_get_mac_addr(ue->ue_dev, ue); if (ETHER_IS_VALID(ue->ue_eaddr)) { muge_dbg_printf(sc, "MAC assigned from FDT data\n"); } #endif if (!ETHER_IS_VALID(ue->ue_eaddr)) { muge_dbg_printf(sc, "MAC assigned randomly\n"); arc4rand(ue->ue_eaddr, ETHER_ADDR_LEN, 0); ue->ue_eaddr[0] &= ~0x01; /* unicast */ ue->ue_eaddr[0] |= 0x02; /* locally administered */ } } /** * muge_set_leds - Initializes NIC LEDs pattern * @ue: the USB ethernet device * * Tries to store the LED modes. * Supports only DTB blob like the Linux driver does. */ static void muge_set_leds(struct usb_ether *ue) { #ifdef FDT struct muge_softc *sc = uether_getsc(ue); phandle_t node; pcell_t modes[4]; /* 4 LEDs are possible */ ssize_t proplen; uint32_t count; if ((node = usb_fdt_get_node(ue->ue_dev, ue->ue_udev)) != -1 && (proplen = OF_getencprop(node, "microchip,led-modes", modes, sizeof(modes))) > 0) { count = proplen / sizeof( uint32_t ); sc->sc_leds = (count > 0) * ETH_HW_CFG_LEDO_EN_ | (count > 1) * ETH_HW_CFG_LED1_EN_ | (count > 2) * ETH_HW_CFG_LED2_EN_ | (count > 3) * ETH_HW_CFG_LED3_EN_; while (count-- > 0) { sc->sc_led_modes |= (modes[count] & 0xf) << (4 * count); sc->sc_led_modes_mask |= 0xf << (4 * count); } muge_dbg_printf(sc, "LED modes set from FDT data\n"); } #endif } /** * muge_attach_post - Called after the driver attached to the USB interface * @ue: the USB ethernet device * * This is where the chip is intialised for the first time. This is - * different from the muge_init() function in that one is designed to + * different from the muge_init() function in that that one is designed to * setup the H/W to match the UE settings and can be called after a reset. * */ static void muge_attach_post(struct usb_ether *ue) { struct muge_softc *sc = uether_getsc(ue); muge_dbg_printf(sc, "Calling muge_attach_post.\n"); /* Setup some of the basics */ sc->sc_phyno = 1; muge_set_mac_addr(ue); muge_set_leds(ue); /* Initialise the chip for the first time */ lan78xx_chip_init(sc); } /** * muge_attach_post_sub - Called after attach to the USB interface * @ue: the USB ethernet device * * Most of this is boilerplate code and copied from the base USB ethernet * driver. It has been overridden so that we can indicate to the system * that the chip supports H/W checksumming. * * RETURNS: * Returns 0 on success or a negative error code. */ static int muge_attach_post_sub(struct usb_ether *ue) { struct muge_softc *sc; struct ifnet *ifp; sc = uether_getsc(ue); muge_dbg_printf(sc, "Calling muge_attach_post_sub.\n"); ifp = ue->ue_ifp; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = uether_start; ifp->if_ioctl = muge_ioctl; ifp->if_init = uether_init; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); /* * The chip supports TCP/UDP checksum offloading on TX and RX paths, * however currently only RX checksum is supported in the driver * (see top of file). */ ifp->if_capabilities |= IFCAP_VLAN_MTU; ifp->if_hwassist = 0; ifp->if_capabilities |= IFCAP_RXCSUM; if (MUGE_DEFAULT_TX_CSUM_ENABLE) ifp->if_capabilities |= IFCAP_TXCSUM; /* * In the Linux driver they also enable scatter/gather (NETIF_F_SG) * here, that's something related to socket buffers used in Linux. * FreeBSD doesn't have that as an interface feature. */ if (MUGE_DEFAULT_TSO_ENABLE) ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_TSO6; #if 0 /* TX checksuming is disabled since not yet implemented. */ ifp->if_capabilities |= IFCAP_TXCSUM; ifp->if_capenable |= IFCAP_TXCSUM; ifp->if_hwassist = CSUM_TCP | CSUM_UDP; #endif ifp->if_capenable = ifp->if_capabilities; bus_topo_lock(); mii_attach(ue->ue_dev, &ue->ue_miibus, ifp, uether_ifmedia_upd, ue->ue_methods->ue_mii_sts, BMSR_DEFCAPMASK, sc->sc_phyno, MII_OFFSET_ANY, 0); bus_topo_unlock(); return (0); } /** * muge_start - Starts communication with the LAN78xx chip * @ue: USB ether interface */ static void muge_start(struct usb_ether *ue) { struct muge_softc *sc = uether_getsc(ue); /* * Start the USB transfers, if not already started. */ usbd_transfer_start(sc->sc_xfer[MUGE_BULK_DT_RD]); usbd_transfer_start(sc->sc_xfer[MUGE_BULK_DT_WR]); } /** * muge_ioctl - ioctl function for the device * @ifp: interface pointer * @cmd: the ioctl command * @data: data passed in the ioctl call, typically a pointer to struct * ifreq. * * The ioctl routine is overridden to detect change requests for the H/W * checksum capabilities. * * RETURNS: * 0 on success and an error code on failure. */ static int muge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct usb_ether *ue = ifp->if_softc; struct muge_softc *sc; struct ifreq *ifr; int rc; int mask; int reinit; if (cmd == SIOCSIFCAP) { sc = uether_getsc(ue); ifr = (struct ifreq *)data; MUGE_LOCK(sc); rc = 0; reinit = 0; mask = ifr->ifr_reqcap ^ ifp->if_capenable; /* Modify the RX CSUM enable bits. */ if ((mask & IFCAP_RXCSUM) != 0 && (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { ifp->if_capenable ^= IFCAP_RXCSUM; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; reinit = 1; } } MUGE_UNLOCK(sc); if (reinit) uether_init(ue); } else { rc = uether_ioctl(ifp, cmd, data); } return (rc); } /** * muge_reset - Reset the SMSC chip * @sc: device soft context * * LOCKING: * Should be called with the SMSC lock held. */ static void muge_reset(struct muge_softc *sc) { struct usb_config_descriptor *cd; usb_error_t err; cd = usbd_get_config_descriptor(sc->sc_ue.ue_udev); err = usbd_req_set_config(sc->sc_ue.ue_udev, &sc->sc_mtx, cd->bConfigurationValue); if (err) muge_warn_printf(sc, "reset failed (ignored)\n"); /* Wait a little while for the chip to get its brains in order. */ uether_pause(&sc->sc_ue, hz / 100); /* Reinitialize controller to achieve full reset. */ lan78xx_chip_init(sc); } /** * muge_set_addr_filter * * @sc: device soft context * @index: index of the entry to the perfect address table * @addr: address to be written * */ static void muge_set_addr_filter(struct muge_softc *sc, int index, uint8_t addr[ETHER_ADDR_LEN]) { uint32_t tmp; if ((sc) && (index > 0) && (index < MUGE_NUM_PFILTER_ADDRS_)) { tmp = addr[3]; tmp |= addr[2] | (tmp << 8); tmp |= addr[1] | (tmp << 8); tmp |= addr[0] | (tmp << 8); sc->sc_pfilter_table[index][1] = tmp; tmp = addr[5]; tmp |= addr[4] | (tmp << 8); tmp |= ETH_MAF_HI_VALID_ | ETH_MAF_HI_TYPE_DST_; sc->sc_pfilter_table[index][0] = tmp; } } /** * lan78xx_dataport_write - write to the selected RAM * @sc: The device soft context. * @ram_select: Select which RAM to access. * @addr: Starting address to write to. * @buf: word-sized buffer to write to RAM, starting at @addr. * @length: length of @buf * * * RETURNS: * 0 if write successful. */ static int lan78xx_dataport_write(struct muge_softc *sc, uint32_t ram_select, uint32_t addr, uint32_t length, uint32_t *buf) { uint32_t dp_sel; int i, ret; MUGE_LOCK_ASSERT(sc, MA_OWNED); ret = lan78xx_wait_for_bits(sc, ETH_DP_SEL, ETH_DP_SEL_DPRDY_); if (ret < 0) goto done; ret = lan78xx_read_reg(sc, ETH_DP_SEL, &dp_sel); dp_sel &= ~ETH_DP_SEL_RSEL_MASK_; dp_sel |= ram_select; ret = lan78xx_write_reg(sc, ETH_DP_SEL, dp_sel); for (i = 0; i < length; i++) { ret = lan78xx_write_reg(sc, ETH_DP_ADDR, addr + i); ret = lan78xx_write_reg(sc, ETH_DP_DATA, buf[i]); ret = lan78xx_write_reg(sc, ETH_DP_CMD, ETH_DP_CMD_WRITE_); ret = lan78xx_wait_for_bits(sc, ETH_DP_SEL, ETH_DP_SEL_DPRDY_); if (ret != 0) goto done; } done: return (ret); } /** * muge_multicast_write * @sc: device's soft context * * Writes perfect addres filters and hash address filters to their * corresponding registers and RAMs. * */ static void muge_multicast_write(struct muge_softc *sc) { int i; lan78xx_dataport_write(sc, ETH_DP_SEL_RSEL_VLAN_DA_, ETH_DP_SEL_VHF_VLAN_LEN, ETH_DP_SEL_VHF_HASH_LEN, sc->sc_mchash_table); for (i = 1; i < MUGE_NUM_PFILTER_ADDRS_; i++) { lan78xx_write_reg(sc, PFILTER_HI(i), 0); lan78xx_write_reg(sc, PFILTER_LO(i), sc->sc_pfilter_table[i][1]); lan78xx_write_reg(sc, PFILTER_HI(i), sc->sc_pfilter_table[i][0]); } } /** * muge_hash - Calculate the hash of a mac address * @addr: The mac address to calculate the hash on * * This function is used when configuring a range of multicast mac * addresses to filter on. The hash of the mac address is put in the * device's mac hash table. * * RETURNS: * Returns a value from 0-63 value which is the hash of the mac address. */ static inline uint32_t muge_hash(uint8_t addr[ETHER_ADDR_LEN]) { return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 23) & 0x1ff; } static u_int muge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { struct muge_softc *sc = arg; uint32_t bitnum; /* First fill up the perfect address table. */ if (cnt < 32 /* XXX */) muge_set_addr_filter(sc, cnt + 1, LLADDR(sdl)); else { bitnum = muge_hash(LLADDR(sdl)); sc->sc_mchash_table[bitnum / 32] |= (1 << (bitnum % 32)); sc->sc_rfe_ctl |= ETH_RFE_CTL_MCAST_HASH_; } return (1); } /** * muge_setmulti - Setup multicast * @ue: usb ethernet device context * * Tells the device to either accept frames with a multicast mac address, * a select group of m'cast mac addresses or just the devices mac address. * * LOCKING: * Should be called with the MUGE lock held. */ static void muge_setmulti(struct usb_ether *ue) { struct muge_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); uint8_t i; MUGE_LOCK_ASSERT(sc, MA_OWNED); sc->sc_rfe_ctl &= ~(ETH_RFE_CTL_UCAST_EN_ | ETH_RFE_CTL_MCAST_EN_ | ETH_RFE_CTL_DA_PERFECT_ | ETH_RFE_CTL_MCAST_HASH_); /* Initialize hash filter table. */ for (i = 0; i < ETH_DP_SEL_VHF_HASH_LEN; i++) sc->sc_mchash_table[i] = 0; /* Initialize perfect filter table. */ for (i = 1; i < MUGE_NUM_PFILTER_ADDRS_; i++) { sc->sc_pfilter_table[i][0] = sc->sc_pfilter_table[i][1] = 0; } sc->sc_rfe_ctl |= ETH_RFE_CTL_BCAST_EN_; if (ifp->if_flags & IFF_PROMISC) { muge_dbg_printf(sc, "promiscuous mode enabled\n"); sc->sc_rfe_ctl |= ETH_RFE_CTL_MCAST_EN_ | ETH_RFE_CTL_UCAST_EN_; } else if (ifp->if_flags & IFF_ALLMULTI) { muge_dbg_printf(sc, "receive all multicast enabled\n"); sc->sc_rfe_ctl |= ETH_RFE_CTL_MCAST_EN_; } else { if_foreach_llmaddr(ifp, muge_hash_maddr, sc); muge_multicast_write(sc); } lan78xx_write_reg(sc, ETH_RFE_CTL, sc->sc_rfe_ctl); } /** * muge_setpromisc - Enables/disables promiscuous mode * @ue: usb ethernet device context * * LOCKING: * Should be called with the MUGE lock held. */ static void muge_setpromisc(struct usb_ether *ue) { struct muge_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); muge_dbg_printf(sc, "promiscuous mode %sabled\n", (ifp->if_flags & IFF_PROMISC) ? "en" : "dis"); MUGE_LOCK_ASSERT(sc, MA_OWNED); if (ifp->if_flags & IFF_PROMISC) sc->sc_rfe_ctl |= ETH_RFE_CTL_MCAST_EN_ | ETH_RFE_CTL_UCAST_EN_; else sc->sc_rfe_ctl &= ~(ETH_RFE_CTL_MCAST_EN_); lan78xx_write_reg(sc, ETH_RFE_CTL, sc->sc_rfe_ctl); } /** * muge_sethwcsum - Enable or disable H/W UDP and TCP checksumming * @sc: driver soft context * * LOCKING: * Should be called with the MUGE lock held. * * RETURNS: * Returns 0 on success or a negative error code. */ static int muge_sethwcsum(struct muge_softc *sc) { struct ifnet *ifp = uether_getifp(&sc->sc_ue); int err; if (!ifp) return (-EIO); MUGE_LOCK_ASSERT(sc, MA_OWNED); if (ifp->if_capenable & IFCAP_RXCSUM) { sc->sc_rfe_ctl |= ETH_RFE_CTL_IGMP_COE_ | ETH_RFE_CTL_ICMP_COE_; sc->sc_rfe_ctl |= ETH_RFE_CTL_TCPUDP_COE_ | ETH_RFE_CTL_IP_COE_; } else { sc->sc_rfe_ctl &= ~(ETH_RFE_CTL_IGMP_COE_ | ETH_RFE_CTL_ICMP_COE_); sc->sc_rfe_ctl &= ~(ETH_RFE_CTL_TCPUDP_COE_ | ETH_RFE_CTL_IP_COE_); } sc->sc_rfe_ctl &= ~ETH_RFE_CTL_VLAN_FILTER_; err = lan78xx_write_reg(sc, ETH_RFE_CTL, sc->sc_rfe_ctl); if (err != 0) { muge_warn_printf(sc, "failed to write ETH_RFE_CTL (err=%d)\n", err); return (err); } return (0); } /** * muge_ifmedia_upd - Set media options * @ifp: interface pointer * * Basically boilerplate code that simply calls the mii functions to set * the media options. * * LOCKING: * The device lock must be held before this function is called. * * RETURNS: * Returns 0 on success or a negative error code. */ static int muge_ifmedia_upd(struct ifnet *ifp) { struct muge_softc *sc = ifp->if_softc; muge_dbg_printf(sc, "Calling muge_ifmedia_upd.\n"); struct mii_data *mii = uether_getmii(&sc->sc_ue); struct mii_softc *miisc; int err; MUGE_LOCK_ASSERT(sc, MA_OWNED); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); err = mii_mediachg(mii); return (err); } /** * muge_init - Initialises the LAN95xx chip * @ue: USB ether interface * * Called when the interface is brought up (i.e. ifconfig ue0 up), this * initialise the interface and the rx/tx pipes. * * LOCKING: * Should be called with the MUGE lock held. */ static void muge_init(struct usb_ether *ue) { struct muge_softc *sc = uether_getsc(ue); muge_dbg_printf(sc, "Calling muge_init.\n"); struct ifnet *ifp = uether_getifp(ue); MUGE_LOCK_ASSERT(sc, MA_OWNED); if (lan78xx_setmacaddress(sc, IF_LLADDR(ifp))) muge_dbg_printf(sc, "setting MAC address failed\n"); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* Cancel pending I/O. */ muge_stop(ue); /* Reset the ethernet interface. */ muge_reset(sc); /* Load the multicast filter. */ muge_setmulti(ue); /* TCP/UDP checksum offload engines. */ muge_sethwcsum(sc); usbd_xfer_set_stall(sc->sc_xfer[MUGE_BULK_DT_WR]); /* Indicate we are up and running. */ ifp->if_drv_flags |= IFF_DRV_RUNNING; /* Switch to selected media. */ muge_ifmedia_upd(ifp); muge_start(ue); } /** * muge_stop - Stops communication with the LAN78xx chip * @ue: USB ether interface */ static void muge_stop(struct usb_ether *ue) { struct muge_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); MUGE_LOCK_ASSERT(sc, MA_OWNED); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->sc_flags &= ~MUGE_FLAG_LINK; /* * Stop all the transfers, if not already stopped. */ usbd_transfer_stop(sc->sc_xfer[MUGE_BULK_DT_WR]); usbd_transfer_stop(sc->sc_xfer[MUGE_BULK_DT_RD]); } /** * muge_tick - Called periodically to monitor the state of the LAN95xx chip * @ue: USB ether interface * * Simply calls the mii status functions to check the state of the link. * * LOCKING: * Should be called with the MUGE lock held. */ static void muge_tick(struct usb_ether *ue) { struct muge_softc *sc = uether_getsc(ue); struct mii_data *mii = uether_getmii(&sc->sc_ue); MUGE_LOCK_ASSERT(sc, MA_OWNED); mii_tick(mii); if ((sc->sc_flags & MUGE_FLAG_LINK) == 0) { lan78xx_miibus_statchg(ue->ue_dev); if ((sc->sc_flags & MUGE_FLAG_LINK) != 0) muge_start(ue); } } /** * muge_ifmedia_sts - Report current media status * @ifp: inet interface pointer * @ifmr: interface media request * * Call the mii functions to get the media status. * * LOCKING: * Internally takes and releases the device lock. */ static void muge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct muge_softc *sc = ifp->if_softc; struct mii_data *mii = uether_getmii(&sc->sc_ue); MUGE_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; MUGE_UNLOCK(sc); } /** * muge_probe - Probe the interface. * @dev: muge device handle * * Checks if the device is a match for this driver. * * RETURNS: * Returns 0 on success or an error code on failure. */ static int muge_probe(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != MUGE_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != MUGE_IFACE_IDX) return (ENXIO); return (usbd_lookup_id_by_uaa(lan78xx_devs, sizeof(lan78xx_devs), uaa)); } /** * muge_attach - Attach the interface. * @dev: muge device handle * * Allocate softc structures, do ifmedia setup and ethernet/BPF attach. * * RETURNS: * Returns 0 on success or a negative error code. */ static int muge_attach(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); struct muge_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; uint8_t iface_index; int err; sc->sc_flags = USB_GET_DRIVER_INFO(uaa); device_set_usb_desc(dev); mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF); /* Setup the endpoints for the Microchip LAN78xx device. */ iface_index = MUGE_IFACE_IDX; err = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, muge_config, MUGE_N_TRANSFER, sc, &sc->sc_mtx); if (err) { device_printf(dev, "error: allocating USB transfers failed\n"); goto err; } ue->ue_sc = sc; ue->ue_dev = dev; ue->ue_udev = uaa->device; ue->ue_mtx = &sc->sc_mtx; ue->ue_methods = &muge_ue_methods; err = uether_ifattach(ue); if (err) { device_printf(dev, "error: could not attach interface\n"); goto err_usbd; } /* Wait for lan78xx_chip_init from post-attach callback to complete. */ uether_ifattach_wait(ue); if (!(sc->sc_flags & MUGE_FLAG_INIT_DONE)) goto err_attached; return (0); err_attached: uether_ifdetach(ue); err_usbd: usbd_transfer_unsetup(sc->sc_xfer, MUGE_N_TRANSFER); err: mtx_destroy(&sc->sc_mtx); return (ENXIO); } /** * muge_detach - Detach the interface. * @dev: muge device handle * * RETURNS: * Returns 0. */ static int muge_detach(device_t dev) { struct muge_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; usbd_transfer_unsetup(sc->sc_xfer, MUGE_N_TRANSFER); uether_ifdetach(ue); mtx_destroy(&sc->sc_mtx); return (0); } static device_method_t muge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, muge_probe), DEVMETHOD(device_attach, muge_attach), DEVMETHOD(device_detach, muge_detach), /* Bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, lan78xx_miibus_readreg), DEVMETHOD(miibus_writereg, lan78xx_miibus_writereg), DEVMETHOD(miibus_statchg, lan78xx_miibus_statchg), DEVMETHOD_END }; static driver_t muge_driver = { .name = "muge", .methods = muge_methods, .size = sizeof(struct muge_softc), }; DRIVER_MODULE(muge, uhub, muge_driver, NULL, NULL); DRIVER_MODULE(miibus, muge, miibus_driver, NULL, NULL); MODULE_DEPEND(muge, uether, 1, 1, 1); MODULE_DEPEND(muge, usb, 1, 1, 1); MODULE_DEPEND(muge, ether, 1, 1, 1); MODULE_DEPEND(muge, miibus, 1, 1, 1); MODULE_VERSION(muge, 1); USB_PNP_HOST_INFO(lan78xx_devs); diff --git a/sys/dev/usb/net/if_smsc.c b/sys/dev/usb/net/if_smsc.c index c34cc85269cc..e3b4ae9a5cbd 100644 --- a/sys/dev/usb/net/if_smsc.c +++ b/sys/dev/usb/net/if_smsc.c @@ -1,1779 +1,1779 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 * Ben Gray . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * SMSC LAN9xxx devices (http://www.smsc.com/) * * The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that * support USB 2.0 and 10/100 Mbps Ethernet. * * The LAN951x devices are an integrated USB hub and USB to Ethernet adapter. * The driver only covers the Ethernet part, the standard USB hub driver * supports the hub part. * * This driver is closely modelled on the Linux driver written and copyrighted * by SMSC. * * * * * H/W TCP & UDP Checksum Offloading * --------------------------------- * The chip supports both tx and rx offloading of UDP & TCP checksums, this * feature can be dynamically enabled/disabled. * * RX checksuming is performed across bytes after the IPv4 header to the end of * the Ethernet frame, this means if the frame is padded with non-zero values * the H/W checksum will be incorrect, however the rx code compensates for this. * * TX checksuming is more complicated, the device requires a special header to * be prefixed onto the start of the frame which indicates the start and end * positions of the UDP or TCP frame. This requires the driver to manually * go through the packet data and decode the headers prior to sending. * On Linux they generally provide cues to the location of the csum and the * area to calculate it over, on FreeBSD we seem to have to do it all ourselves, * hence this is not as optimal and therefore h/w tX checksum is currently not * implemented. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_platform.h" #ifdef FDT #include #include #include #include #endif #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR smsc_debug #include #include #include #include #include "miibus_if.h" SYSCTL_NODE(_hw_usb, OID_AUTO, smsc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "USB smsc"); static bool smsc_rx_packet_batching = 1; SYSCTL_BOOL(_hw_usb_smsc, OID_AUTO, smsc_rx_packet_batching, CTLFLAG_RDTUN, &smsc_rx_packet_batching, 0, "If set, allows packet batching to increase throughput and latency. " "Else throughput and latency is decreased."); #ifdef USB_DEBUG static int smsc_debug = 0; SYSCTL_INT(_hw_usb_smsc, OID_AUTO, debug, CTLFLAG_RWTUN, &smsc_debug, 0, "Debug level"); #endif /* * Various supported device vendors/products. */ static const struct usb_device_id smsc_devs[] = { #define SMSC_DEV(p,i) { USB_VPI(USB_VENDOR_SMC2, USB_PRODUCT_SMC2_##p, i) } SMSC_DEV(LAN89530_ETH, 0), SMSC_DEV(LAN9500_ETH, 0), SMSC_DEV(LAN9500_ETH_2, 0), SMSC_DEV(LAN9500A_ETH, 0), SMSC_DEV(LAN9500A_ETH_2, 0), SMSC_DEV(LAN9505_ETH, 0), SMSC_DEV(LAN9505A_ETH, 0), SMSC_DEV(LAN9514_ETH, 0), SMSC_DEV(LAN9514_ETH_2, 0), SMSC_DEV(LAN9530_ETH, 0), SMSC_DEV(LAN9730_ETH, 0), SMSC_DEV(LAN9500_SAL10, 0), SMSC_DEV(LAN9505_SAL10, 0), SMSC_DEV(LAN9500A_SAL10, 0), SMSC_DEV(LAN9505A_SAL10, 0), SMSC_DEV(LAN9514_SAL10, 0), SMSC_DEV(LAN9500A_HAL, 0), SMSC_DEV(LAN9505A_HAL, 0), #undef SMSC_DEV }; #ifdef USB_DEBUG #define smsc_dbg_printf(sc, fmt, args...) \ do { \ if (smsc_debug > 0) \ device_printf((sc)->sc_ue.ue_dev, "debug: " fmt, ##args); \ } while(0) #else #define smsc_dbg_printf(sc, fmt, args...) do { } while (0) #endif #define smsc_warn_printf(sc, fmt, args...) \ device_printf((sc)->sc_ue.ue_dev, "warning: " fmt, ##args) #define smsc_err_printf(sc, fmt, args...) \ device_printf((sc)->sc_ue.ue_dev, "error: " fmt, ##args) #define ETHER_IS_VALID(addr) \ (!ETHER_IS_MULTICAST(addr) && !ETHER_IS_ZERO(addr)) static device_probe_t smsc_probe; static device_attach_t smsc_attach; static device_detach_t smsc_detach; static usb_callback_t smsc_bulk_read_callback; static usb_callback_t smsc_bulk_write_callback; static miibus_readreg_t smsc_miibus_readreg; static miibus_writereg_t smsc_miibus_writereg; static miibus_statchg_t smsc_miibus_statchg; static int smsc_attach_post_sub(struct usb_ether *ue); static uether_fn_t smsc_attach_post; static uether_fn_t smsc_init; static uether_fn_t smsc_stop; static uether_fn_t smsc_start; static uether_fn_t smsc_tick; static uether_fn_t smsc_setmulti; static uether_fn_t smsc_setpromisc; static int smsc_ifmedia_upd(struct ifnet *); static void smsc_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int smsc_chip_init(struct smsc_softc *sc); static int smsc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); static const struct usb_config smsc_config[SMSC_N_TRANSFER] = { [SMSC_BULK_DT_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .frames = 16, .bufsize = 16 * (MCLBYTES + 16), .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = smsc_bulk_write_callback, .timeout = 10000, /* 10 seconds */ }, [SMSC_BULK_DT_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = 20480, /* bytes */ .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = smsc_bulk_read_callback, .timeout = 0, /* no timeout */ }, /* The SMSC chip supports an interrupt endpoints, however they aren't * needed as we poll on the MII status. */ }; static const struct usb_ether_methods smsc_ue_methods = { .ue_attach_post = smsc_attach_post, .ue_attach_post_sub = smsc_attach_post_sub, .ue_start = smsc_start, .ue_ioctl = smsc_ioctl, .ue_init = smsc_init, .ue_stop = smsc_stop, .ue_tick = smsc_tick, .ue_setmulti = smsc_setmulti, .ue_setpromisc = smsc_setpromisc, .ue_mii_upd = smsc_ifmedia_upd, .ue_mii_sts = smsc_ifmedia_sts, }; /** * smsc_read_reg - Reads a 32-bit register on the device * @sc: driver soft context * @off: offset of the register * @data: pointer a value that will be populated with the register value * * LOCKING: * The device lock must be held before calling this function. * * RETURNS: * 0 on success, a USB_ERR_?? error code on failure. */ static int smsc_read_reg(struct smsc_softc *sc, uint32_t off, uint32_t *data) { struct usb_device_request req; uint32_t buf; usb_error_t err; SMSC_LOCK_ASSERT(sc, MA_OWNED); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = SMSC_UR_READ_REG; USETW(req.wValue, 0); USETW(req.wIndex, off); USETW(req.wLength, 4); err = uether_do_request(&sc->sc_ue, &req, &buf, 1000); if (err != 0) smsc_warn_printf(sc, "Failed to read register 0x%0x\n", off); *data = le32toh(buf); return (err); } /** * smsc_write_reg - Writes a 32-bit register on the device * @sc: driver soft context * @off: offset of the register * @data: the 32-bit value to write into the register * * LOCKING: * The device lock must be held before calling this function. * * RETURNS: * 0 on success, a USB_ERR_?? error code on failure. */ static int smsc_write_reg(struct smsc_softc *sc, uint32_t off, uint32_t data) { struct usb_device_request req; uint32_t buf; usb_error_t err; SMSC_LOCK_ASSERT(sc, MA_OWNED); buf = htole32(data); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = SMSC_UR_WRITE_REG; USETW(req.wValue, 0); USETW(req.wIndex, off); USETW(req.wLength, 4); err = uether_do_request(&sc->sc_ue, &req, &buf, 1000); if (err != 0) smsc_warn_printf(sc, "Failed to write register 0x%0x\n", off); return (err); } /** * smsc_wait_for_bits - Polls on a register value until bits are cleared * @sc: soft context * @reg: offset of the register * @bits: if the bits are clear the function returns * * LOCKING: * The device lock must be held before calling this function. * * RETURNS: * 0 on success, or a USB_ERR_?? error code on failure. */ static int smsc_wait_for_bits(struct smsc_softc *sc, uint32_t reg, uint32_t bits) { usb_ticks_t start_ticks; const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000); uint32_t val; int err; SMSC_LOCK_ASSERT(sc, MA_OWNED); start_ticks = (usb_ticks_t)ticks; do { if ((err = smsc_read_reg(sc, reg, &val)) != 0) return (err); if (!(val & bits)) return (0); uether_pause(&sc->sc_ue, hz / 100); } while (((usb_ticks_t)(ticks - start_ticks)) < max_ticks); return (USB_ERR_TIMEOUT); } /** * smsc_eeprom_read - Reads the attached EEPROM * @sc: soft context * @off: the eeprom address offset * @buf: stores the bytes * @buflen: the number of bytes to read * * Simply reads bytes from an attached eeprom. * * LOCKING: * The function takes and releases the device lock if it is not already held. * * RETURNS: * 0 on success, or a USB_ERR_?? error code on failure. */ static int smsc_eeprom_read(struct smsc_softc *sc, uint16_t off, uint8_t *buf, uint16_t buflen) { usb_ticks_t start_ticks; const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000); int err; int locked; uint32_t val; uint16_t i; locked = mtx_owned(&sc->sc_mtx); if (!locked) SMSC_LOCK(sc); err = smsc_wait_for_bits(sc, SMSC_EEPROM_CMD, SMSC_EEPROM_CMD_BUSY); if (err != 0) { smsc_warn_printf(sc, "eeprom busy, failed to read data\n"); goto done; } /* start reading the bytes, one at a time */ for (i = 0; i < buflen; i++) { val = SMSC_EEPROM_CMD_BUSY | (SMSC_EEPROM_CMD_ADDR_MASK & (off + i)); if ((err = smsc_write_reg(sc, SMSC_EEPROM_CMD, val)) != 0) goto done; start_ticks = (usb_ticks_t)ticks; do { if ((err = smsc_read_reg(sc, SMSC_EEPROM_CMD, &val)) != 0) goto done; if (!(val & SMSC_EEPROM_CMD_BUSY) || (val & SMSC_EEPROM_CMD_TIMEOUT)) break; uether_pause(&sc->sc_ue, hz / 100); } while (((usb_ticks_t)(ticks - start_ticks)) < max_ticks); if (val & (SMSC_EEPROM_CMD_BUSY | SMSC_EEPROM_CMD_TIMEOUT)) { smsc_warn_printf(sc, "eeprom command failed\n"); err = USB_ERR_IOERROR; break; } if ((err = smsc_read_reg(sc, SMSC_EEPROM_DATA, &val)) != 0) goto done; buf[i] = (val & 0xff); } done: if (!locked) SMSC_UNLOCK(sc); return (err); } /** * smsc_miibus_readreg - Reads a MII/MDIO register * @dev: usb ether device * @phy: the number of phy reading from * @reg: the register address * * Attempts to read a phy register over the MII bus. * * LOCKING: * Takes and releases the device mutex lock if not already held. * * RETURNS: * Returns the 16-bits read from the MII register, if this function fails 0 * is returned. */ static int smsc_miibus_readreg(device_t dev, int phy, int reg) { struct smsc_softc *sc = device_get_softc(dev); int locked; uint32_t addr; uint32_t val = 0; locked = mtx_owned(&sc->sc_mtx); if (!locked) SMSC_LOCK(sc); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) { smsc_warn_printf(sc, "MII is busy\n"); goto done; } addr = (phy << 11) | (reg << 6) | SMSC_MII_READ | SMSC_MII_BUSY; smsc_write_reg(sc, SMSC_MII_ADDR, addr); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) smsc_warn_printf(sc, "MII read timeout\n"); smsc_read_reg(sc, SMSC_MII_DATA, &val); val = le32toh(val); done: if (!locked) SMSC_UNLOCK(sc); return (val & 0xFFFF); } /** * smsc_miibus_writereg - Writes a MII/MDIO register * @dev: usb ether device * @phy: the number of phy writing to * @reg: the register address * @val: the value to write * * Attempts to write a phy register over the MII bus. * * LOCKING: * Takes and releases the device mutex lock if not already held. * * RETURNS: * Always returns 0 regardless of success or failure. */ static int smsc_miibus_writereg(device_t dev, int phy, int reg, int val) { struct smsc_softc *sc = device_get_softc(dev); int locked; uint32_t addr; if (sc->sc_phyno != phy) return (0); locked = mtx_owned(&sc->sc_mtx); if (!locked) SMSC_LOCK(sc); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) { smsc_warn_printf(sc, "MII is busy\n"); goto done; } val = htole32(val); smsc_write_reg(sc, SMSC_MII_DATA, val); addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE | SMSC_MII_BUSY; smsc_write_reg(sc, SMSC_MII_ADDR, addr); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) smsc_warn_printf(sc, "MII write timeout\n"); done: if (!locked) SMSC_UNLOCK(sc); return (0); } /** * smsc_miibus_statchg - Called to detect phy status change * @dev: usb ether device * * This function is called periodically by the system to poll for status * changes of the link. * * LOCKING: * Takes and releases the device mutex lock if not already held. */ static void smsc_miibus_statchg(device_t dev) { struct smsc_softc *sc = device_get_softc(dev); struct mii_data *mii = uether_getmii(&sc->sc_ue); struct ifnet *ifp; int locked; int err; uint32_t flow; uint32_t afc_cfg; locked = mtx_owned(&sc->sc_mtx); if (!locked) SMSC_LOCK(sc); ifp = uether_getifp(&sc->sc_ue); if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) goto done; /* Use the MII status to determine link status */ sc->sc_flags &= ~SMSC_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->sc_flags |= SMSC_FLAG_LINK; break; case IFM_1000_T: /* Gigabit ethernet not supported by chipset */ break; default: break; } } /* Lost link, do nothing. */ if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) { smsc_dbg_printf(sc, "link flag not set\n"); goto done; } err = smsc_read_reg(sc, SMSC_AFC_CFG, &afc_cfg); if (err) { smsc_warn_printf(sc, "failed to read initial AFC_CFG, error %d\n", err); goto done; } /* Enable/disable full duplex operation and TX/RX pause */ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { smsc_dbg_printf(sc, "full duplex operation\n"); sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN; sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) flow = 0xffff0002; else flow = 0; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) afc_cfg |= 0xf; else afc_cfg &= ~0xf; } else { smsc_dbg_printf(sc, "half duplex operation\n"); sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX; sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN; flow = 0; afc_cfg |= 0xf; } err = smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); err += smsc_write_reg(sc, SMSC_FLOW, flow); err += smsc_write_reg(sc, SMSC_AFC_CFG, afc_cfg); if (err) smsc_warn_printf(sc, "media change failed, error %d\n", err); done: if (!locked) SMSC_UNLOCK(sc); } /** * smsc_ifmedia_upd - Set media options * @ifp: interface pointer * * Basically boilerplate code that simply calls the mii functions to set the * media options. * * LOCKING: * The device lock must be held before this function is called. * * RETURNS: * Returns 0 on success or a negative error code. */ static int smsc_ifmedia_upd(struct ifnet *ifp) { struct smsc_softc *sc = ifp->if_softc; struct mii_data *mii = uether_getmii(&sc->sc_ue); struct mii_softc *miisc; int err; SMSC_LOCK_ASSERT(sc, MA_OWNED); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); err = mii_mediachg(mii); return (err); } /** * smsc_ifmedia_sts - Report current media status * @ifp: inet interface pointer * @ifmr: interface media request * * Basically boilerplate code that simply calls the mii functions to get the * media status. * * LOCKING: * Internally takes and releases the device lock. */ static void smsc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct smsc_softc *sc = ifp->if_softc; struct mii_data *mii = uether_getmii(&sc->sc_ue); SMSC_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; SMSC_UNLOCK(sc); } /** * smsc_hash - Calculate the hash of a mac address * @addr: The mac address to calculate the hash on * * This function is used when configuring a range of m'cast mac addresses to * filter on. The hash of the mac address is put in the device's mac hash * table. * * RETURNS: * Returns a value from 0-63 value which is the hash of the mac address. */ static inline uint32_t smsc_hash(uint8_t addr[ETHER_ADDR_LEN]) { return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f; } static u_int smsc_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { uint32_t hash, *hashtbl = arg; hash = smsc_hash(LLADDR(sdl)); hashtbl[hash >> 5] |= 1 << (hash & 0x1F); return (1); } /** * smsc_setmulti - Setup multicast * @ue: usb ethernet device context * * Tells the device to either accept frames with a multicast mac address, a * select group of m'cast mac addresses or just the devices mac address. * * LOCKING: * Should be called with the SMSC lock held. */ static void smsc_setmulti(struct usb_ether *ue) { struct smsc_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); uint32_t hashtbl[2] = { 0, 0 }; SMSC_LOCK_ASSERT(sc, MA_OWNED); if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { smsc_dbg_printf(sc, "receive all multicast enabled\n"); sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS; sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT; } else { if (if_foreach_llmaddr(ifp, smsc_hash_maddr, &hashtbl) > 0) { /* We are filtering on a set of address so calculate * hashes of each of the address and set the * corresponding bits in the register. */ sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT; sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS); } else { /* Only receive packets with destination set to * our mac address */ sc->sc_mac_csr &= ~(SMSC_MAC_CSR_MCPAS | SMSC_MAC_CSR_HPFILT); } /* Debug */ if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) smsc_dbg_printf(sc, "receive select group of macs\n"); else smsc_dbg_printf(sc, "receive own packets only\n"); } /* Write the hash table and mac control registers */ smsc_write_reg(sc, SMSC_HASHH, hashtbl[1]); smsc_write_reg(sc, SMSC_HASHL, hashtbl[0]); smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); } /** * smsc_setpromisc - Enables/disables promiscuous mode * @ue: usb ethernet device context * * LOCKING: * Should be called with the SMSC lock held. */ static void smsc_setpromisc(struct usb_ether *ue) { struct smsc_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); smsc_dbg_printf(sc, "promiscuous mode %sabled\n", (ifp->if_flags & IFF_PROMISC) ? "en" : "dis"); SMSC_LOCK_ASSERT(sc, MA_OWNED); if (ifp->if_flags & IFF_PROMISC) sc->sc_mac_csr |= SMSC_MAC_CSR_PRMS; else sc->sc_mac_csr &= ~SMSC_MAC_CSR_PRMS; smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); } /** * smsc_sethwcsum - Enable or disable H/W UDP and TCP checksumming * @sc: driver soft context * * LOCKING: * Should be called with the SMSC lock held. * * RETURNS: * Returns 0 on success or a negative error code. */ static int smsc_sethwcsum(struct smsc_softc *sc) { struct ifnet *ifp = uether_getifp(&sc->sc_ue); uint32_t val; int err; if (!ifp) return (-EIO); SMSC_LOCK_ASSERT(sc, MA_OWNED); err = smsc_read_reg(sc, SMSC_COE_CTRL, &val); if (err != 0) { smsc_warn_printf(sc, "failed to read SMSC_COE_CTRL (err=%d)\n", err); return (err); } /* Enable/disable the Rx checksum */ if ((ifp->if_capabilities & ifp->if_capenable) & IFCAP_RXCSUM) val |= SMSC_COE_CTRL_RX_EN; else val &= ~SMSC_COE_CTRL_RX_EN; /* Enable/disable the Tx checksum (currently not supported) */ if ((ifp->if_capabilities & ifp->if_capenable) & IFCAP_TXCSUM) val |= SMSC_COE_CTRL_TX_EN; else val &= ~SMSC_COE_CTRL_TX_EN; err = smsc_write_reg(sc, SMSC_COE_CTRL, val); if (err != 0) { smsc_warn_printf(sc, "failed to write SMSC_COE_CTRL (err=%d)\n", err); return (err); } return (0); } /** * smsc_setmacaddress - Sets the mac address in the device * @sc: driver soft context * @addr: pointer to array contain at least 6 bytes of the mac * * Writes the MAC address into the device, usually the MAC is programmed with * values from the EEPROM. * * LOCKING: * Should be called with the SMSC lock held. * * RETURNS: * Returns 0 on success or a negative error code. */ static int smsc_setmacaddress(struct smsc_softc *sc, const uint8_t *addr) { int err; uint32_t val; smsc_dbg_printf(sc, "setting mac address to %02x:%02x:%02x:%02x:%02x:%02x\n", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); SMSC_LOCK_ASSERT(sc, MA_OWNED); val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; if ((err = smsc_write_reg(sc, SMSC_MAC_ADDRL, val)) != 0) goto done; val = (addr[5] << 8) | addr[4]; err = smsc_write_reg(sc, SMSC_MAC_ADDRH, val); done: return (err); } /** * smsc_reset - Reset the SMSC chip * @sc: device soft context * * LOCKING: * Should be called with the SMSC lock held. */ static void smsc_reset(struct smsc_softc *sc) { struct usb_config_descriptor *cd; usb_error_t err; cd = usbd_get_config_descriptor(sc->sc_ue.ue_udev); err = usbd_req_set_config(sc->sc_ue.ue_udev, &sc->sc_mtx, cd->bConfigurationValue); if (err) smsc_warn_printf(sc, "reset failed (ignored)\n"); /* Wait a little while for the chip to get its brains in order. */ uether_pause(&sc->sc_ue, hz / 100); /* Reinitialize controller to achieve full reset. */ smsc_chip_init(sc); } /** * smsc_init - Initialises the LAN95xx chip * @ue: USB ether interface * * Called when the interface is brought up (i.e. ifconfig ue0 up), this * initialise the interface and the rx/tx pipes. * * LOCKING: * Should be called with the SMSC lock held. */ static void smsc_init(struct usb_ether *ue) { struct smsc_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); SMSC_LOCK_ASSERT(sc, MA_OWNED); if (smsc_setmacaddress(sc, IF_LLADDR(ifp))) smsc_dbg_printf(sc, "setting MAC address failed\n"); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* Cancel pending I/O */ smsc_stop(ue); /* Reset the ethernet interface. */ smsc_reset(sc); /* Load the multicast filter. */ smsc_setmulti(ue); /* TCP/UDP checksum offload engines. */ smsc_sethwcsum(sc); usbd_xfer_set_stall(sc->sc_xfer[SMSC_BULK_DT_WR]); /* Indicate we are up and running. */ ifp->if_drv_flags |= IFF_DRV_RUNNING; /* Switch to selected media. */ smsc_ifmedia_upd(ifp); smsc_start(ue); } /** * smsc_bulk_read_callback - Read callback used to process the USB URB * @xfer: the USB transfer * @error: * * Reads the URB data which can contain one or more ethernet frames, the * frames are copyed into a mbuf and given to the system. * * LOCKING: * No locking required, doesn't access internal driver settings. */ static void smsc_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct smsc_softc *sc = usbd_xfer_softc(xfer); struct usb_ether *ue = &sc->sc_ue; struct ifnet *ifp = uether_getifp(ue); struct mbuf *m; struct usb_page_cache *pc; uint32_t rxhdr; int pktlen; int off; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); smsc_dbg_printf(sc, "rx : actlen %d\n", actlen); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: /* There is always a zero length frame after bringing the IF up */ if (actlen < (sizeof(rxhdr) + ETHER_CRC_LEN)) goto tr_setup; /* There maybe multiple packets in the USB frame, each will have a * header and each needs to have it's own mbuf allocated and populated * for it. */ pc = usbd_xfer_get_frame(xfer, 0); off = 0; while (off < actlen) { /* The frame header is always aligned on a 4 byte boundary */ off = ((off + 0x3) & ~0x3); if ((off + sizeof(rxhdr)) > actlen) goto tr_setup; usbd_copy_out(pc, off, &rxhdr, sizeof(rxhdr)); off += (sizeof(rxhdr) + ETHER_ALIGN); rxhdr = le32toh(rxhdr); pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr); smsc_dbg_printf(sc, "rx : rxhdr 0x%08x : pktlen %d : actlen %d : " "off %d\n", rxhdr, pktlen, actlen, off); if (rxhdr & SMSC_RX_STAT_ERROR) { smsc_dbg_printf(sc, "rx error (hdr 0x%08x)\n", rxhdr); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); if (rxhdr & SMSC_RX_STAT_COLLISION) if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); } else { /* Check if the ethernet frame is too big or too small */ if ((pktlen < ETHER_HDR_LEN) || (pktlen > (actlen - off))) goto tr_setup; /* Create a new mbuf to store the packet in */ m = uether_newbuf(); if (m == NULL) { smsc_warn_printf(sc, "failed to create new mbuf\n"); if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); goto tr_setup; } if (pktlen > m->m_len) { smsc_dbg_printf(sc, "buffer too small %d vs %d bytes", pktlen, m->m_len); if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); m_freem(m); goto tr_setup; } usbd_copy_out(pc, off, mtod(m, uint8_t *), pktlen); /* Check if RX TCP/UDP checksumming is being offloaded */ if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) { struct ether_header *eh; eh = mtod(m, struct ether_header *); /* Remove the extra 2 bytes of the csum */ pktlen -= 2; /* The checksum appears to be simplistically calculated * over the udp/tcp header and data up to the end of the * eth frame. Which means if the eth frame is padded * the csum calculation is incorrectly performed over * the padding bytes as well. Therefore to be safe we * ignore the H/W csum on frames less than or equal to * 64 bytes. * * Ignore H/W csum for non-IPv4 packets. */ if ((be16toh(eh->ether_type) == ETHERTYPE_IP) && (pktlen > ETHER_MIN_LEN)) { struct ip *ip; ip = (struct ip *)(eh + 1); if ((ip->ip_v == IPVERSION) && ((ip->ip_p == IPPROTO_TCP) || (ip->ip_p == IPPROTO_UDP))) { /* Indicate the UDP/TCP csum has been calculated */ m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; /* Copy the TCP/UDP checksum from the last 2 bytes * of the transfer and put in the csum_data field. */ usbd_copy_out(pc, (off + pktlen), &m->m_pkthdr.csum_data, 2); /* The data is copied in network order, but the * csum algorithm in the kernel expects it to be * in host network order. */ m->m_pkthdr.csum_data = ntohs(m->m_pkthdr.csum_data); smsc_dbg_printf(sc, "RX checksum offloaded (0x%04x)\n", m->m_pkthdr.csum_data); } } /* Need to adjust the offset as well or we'll be off * by 2 because the csum is removed from the packet * length. */ off += 2; } /* Finally enqueue the mbuf on the receive queue */ /* Remove 4 trailing bytes */ if (pktlen < (4 + ETHER_HDR_LEN)) { m_freem(m); goto tr_setup; } uether_rxmbuf(ue, m, pktlen - 4); } /* Update the offset to move to the next potential packet */ off += pktlen; } /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); uether_rxflush(ue); return; default: if (error != USB_ERR_CANCELLED) { smsc_warn_printf(sc, "bulk read error, %s\n", usbd_errstr(error)); usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } /** * smsc_bulk_write_callback - Write callback used to send ethernet frame(s) * @xfer: the USB transfer * @error: error code if the transfers is in an errored state * * The main write function that pulls ethernet frames off the queue and sends * them out. * * LOCKING: * */ static void smsc_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct smsc_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = uether_getifp(&sc->sc_ue); struct usb_page_cache *pc; struct mbuf *m; uint32_t txhdr; uint32_t frm_len = 0; int nframes; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: if ((sc->sc_flags & SMSC_FLAG_LINK) == 0 || (ifp->if_drv_flags & IFF_DRV_OACTIVE) != 0) { /* Don't send anything if there is no link or controller is busy. */ return; } for (nframes = 0; nframes < 16 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd); nframes++) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; usbd_xfer_set_frame_offset(xfer, nframes * MCLBYTES, nframes); frm_len = 0; pc = usbd_xfer_get_frame(xfer, nframes); /* Each frame is prefixed with two 32-bit values describing the * length of the packet and buffer. */ txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) | SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG; txhdr = htole32(txhdr); usbd_copy_in(pc, 0, &txhdr, sizeof(txhdr)); txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len); txhdr = htole32(txhdr); usbd_copy_in(pc, 4, &txhdr, sizeof(txhdr)); frm_len += 8; /* Next copy in the actual packet */ usbd_m_copy_in(pc, frm_len, m, 0, m->m_pkthdr.len); frm_len += m->m_pkthdr.len; if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); /* If there's a BPF listener, bounce a copy of this frame to him */ BPF_MTAP(ifp, m); m_freem(m); /* Set frame length. */ usbd_xfer_set_frame_len(xfer, nframes, frm_len); } if (nframes != 0) { usbd_xfer_set_frames(xfer, nframes); usbd_transfer_submit(xfer); ifp->if_drv_flags |= IFF_DRV_OACTIVE; } return; default: if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (error != USB_ERR_CANCELLED) { smsc_err_printf(sc, "usb error on tx: %s\n", usbd_errstr(error)); usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } /** * smsc_tick - Called periodically to monitor the state of the LAN95xx chip * @ue: USB ether interface * * Simply calls the mii status functions to check the state of the link. * * LOCKING: * Should be called with the SMSC lock held. */ static void smsc_tick(struct usb_ether *ue) { struct smsc_softc *sc = uether_getsc(ue); struct mii_data *mii = uether_getmii(&sc->sc_ue); SMSC_LOCK_ASSERT(sc, MA_OWNED); mii_tick(mii); if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) { smsc_miibus_statchg(ue->ue_dev); if ((sc->sc_flags & SMSC_FLAG_LINK) != 0) smsc_start(ue); } } /** * smsc_start - Starts communication with the LAN95xx chip * @ue: USB ether interface * * * */ static void smsc_start(struct usb_ether *ue) { struct smsc_softc *sc = uether_getsc(ue); /* * start the USB transfers, if not already started: */ usbd_transfer_start(sc->sc_xfer[SMSC_BULK_DT_RD]); usbd_transfer_start(sc->sc_xfer[SMSC_BULK_DT_WR]); } /** * smsc_stop - Stops communication with the LAN95xx chip * @ue: USB ether interface * * * */ static void smsc_stop(struct usb_ether *ue) { struct smsc_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); SMSC_LOCK_ASSERT(sc, MA_OWNED); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->sc_flags &= ~SMSC_FLAG_LINK; /* * stop all the transfers, if not already stopped: */ usbd_transfer_stop(sc->sc_xfer[SMSC_BULK_DT_WR]); usbd_transfer_stop(sc->sc_xfer[SMSC_BULK_DT_RD]); } /** * smsc_phy_init - Initialises the in-built SMSC phy * @sc: driver soft context * * Resets the PHY part of the chip and then initialises it to default * values. The 'link down' and 'auto-negotiation complete' interrupts * from the PHY are also enabled, however we don't monitor the interrupt * endpoints for the moment. * * RETURNS: * Returns 0 on success or EIO if failed to reset the PHY. */ static int smsc_phy_init(struct smsc_softc *sc) { int bmcr; usb_ticks_t start_ticks; const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000); SMSC_LOCK_ASSERT(sc, MA_OWNED); /* Reset phy and wait for reset to complete */ smsc_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR, BMCR_RESET); start_ticks = ticks; do { uether_pause(&sc->sc_ue, hz / 100); bmcr = smsc_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR); } while ((bmcr & BMCR_RESET) && ((ticks - start_ticks) < max_ticks)); if (((usb_ticks_t)(ticks - start_ticks)) >= max_ticks) { smsc_err_printf(sc, "PHY reset timed-out"); return (EIO); } smsc_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_ANAR, ANAR_10 | ANAR_10_FD | ANAR_TX | ANAR_TX_FD | /* all modes */ ANAR_CSMA | ANAR_FC | ANAR_PAUSE_ASYM); /* Setup the phy to interrupt when the link goes down or autoneg completes */ smsc_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, SMSC_PHY_INTR_STAT); smsc_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, SMSC_PHY_INTR_MASK, (SMSC_PHY_INTR_ANEG_COMP | SMSC_PHY_INTR_LINK_DOWN)); /* Restart auto-negotiation */ bmcr = smsc_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR); bmcr |= BMCR_STARTNEG; smsc_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR, bmcr); return (0); } /** * smsc_chip_init - Initialises the chip after power on * @sc: driver soft context * * This initialisation sequence is modelled on the procedure in the Linux * driver. * * RETURNS: * Returns 0 on success or an error code on failure. */ static int smsc_chip_init(struct smsc_softc *sc) { int err; int locked; uint32_t reg_val; int burst_cap; locked = mtx_owned(&sc->sc_mtx); if (!locked) SMSC_LOCK(sc); /* Enter H/W config mode */ smsc_write_reg(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST); if ((err = smsc_wait_for_bits(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST)) != 0) { smsc_warn_printf(sc, "timed-out waiting for reset to complete\n"); goto init_failed; } /* Reset the PHY */ smsc_write_reg(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST); if ((err = smsc_wait_for_bits(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST)) != 0) { smsc_warn_printf(sc, "timed-out waiting for phy reset to complete\n"); goto init_failed; } /* Set the mac address */ if ((err = smsc_setmacaddress(sc, sc->sc_ue.ue_eaddr)) != 0) { smsc_warn_printf(sc, "failed to set the MAC address\n"); goto init_failed; } /* Don't know what the HW_CFG_BIR bit is, but following the reset sequence * as used in the Linux driver. */ if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) != 0) { smsc_warn_printf(sc, "failed to read HW_CFG: %d\n", err); goto init_failed; } reg_val |= SMSC_HW_CFG_BIR; smsc_write_reg(sc, SMSC_HW_CFG, reg_val); /* There is a so called 'turbo mode' that the linux driver supports, it * seems to allow you to jam multiple frames per Rx transaction. By default * this driver supports that and therefore allows multiple frames per URB. * * The xfer buffer size needs to reflect this as well, therefore based on * the calculations in the Linux driver the RX bufsize is set to 18944, * bufsz = (16 * 1024 + 5 * 512) * * Burst capability is the number of URBs that can be in a burst of data/ * ethernet frames. */ if (!smsc_rx_packet_batching) burst_cap = 0; else if (usbd_get_speed(sc->sc_ue.ue_udev) == USB_SPEED_HIGH) burst_cap = 37; else burst_cap = 128; smsc_write_reg(sc, SMSC_BURST_CAP, burst_cap); /* Set the default bulk in delay (magic value from Linux driver) */ smsc_write_reg(sc, SMSC_BULK_IN_DLY, 0x00002000); /* * Initialise the RX interface */ if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) < 0) { smsc_warn_printf(sc, "failed to read HW_CFG: (err = %d)\n", err); goto init_failed; } /* Adjust the packet offset in the buffer (designed to try and align IP * header on 4 byte boundary) */ reg_val &= ~SMSC_HW_CFG_RXDOFF; reg_val |= (ETHER_ALIGN << 9) & SMSC_HW_CFG_RXDOFF; /* The following settings are used for 'turbo mode', a.k.a multiple frames * per Rx transaction (again info taken form Linux driver). */ if (smsc_rx_packet_batching) reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE); smsc_write_reg(sc, SMSC_HW_CFG, reg_val); /* Clear the status register ? */ smsc_write_reg(sc, SMSC_INTR_STATUS, 0xffffffff); /* Read and display the revision register */ if ((err = smsc_read_reg(sc, SMSC_ID_REV, &sc->sc_rev_id)) < 0) { smsc_warn_printf(sc, "failed to read ID_REV (err = %d)\n", err); goto init_failed; } device_printf(sc->sc_ue.ue_dev, "chip 0x%04lx, rev. %04lx\n", (sc->sc_rev_id & SMSC_ID_REV_CHIP_ID_MASK) >> 16, (sc->sc_rev_id & SMSC_ID_REV_CHIP_REV_MASK)); /* GPIO/LED setup */ reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED | SMSC_LED_GPIO_CFG_FDX_LED; smsc_write_reg(sc, SMSC_LED_GPIO_CFG, reg_val); /* * Initialise the TX interface */ smsc_write_reg(sc, SMSC_FLOW, 0); smsc_write_reg(sc, SMSC_AFC_CFG, AFC_CFG_DEFAULT); /* Read the current MAC configuration */ if ((err = smsc_read_reg(sc, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) { smsc_warn_printf(sc, "failed to read MAC_CSR (err=%d)\n", err); goto init_failed; } /* Vlan */ smsc_write_reg(sc, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN); /* * Initialise the PHY */ if ((err = smsc_phy_init(sc)) != 0) goto init_failed; /* * Start TX */ sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN; smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); smsc_write_reg(sc, SMSC_TX_CFG, SMSC_TX_CFG_ON); /* * Start RX */ sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN; smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); if (!locked) SMSC_UNLOCK(sc); return (0); init_failed: if (!locked) SMSC_UNLOCK(sc); smsc_err_printf(sc, "smsc_chip_init failed (err=%d)\n", err); return (err); } /** * smsc_ioctl - ioctl function for the device * @ifp: interface pointer * @cmd: the ioctl command * @data: data passed in the ioctl call, typically a pointer to struct ifreq. * * The ioctl routine is overridden to detect change requests for the H/W * checksum capabilities. * * RETURNS: * 0 on success and an error code on failure. */ static int smsc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct usb_ether *ue = ifp->if_softc; struct smsc_softc *sc; struct ifreq *ifr; int rc; int mask; int reinit; if (cmd == SIOCSIFCAP) { sc = uether_getsc(ue); ifr = (struct ifreq *)data; SMSC_LOCK(sc); rc = 0; reinit = 0; mask = ifr->ifr_reqcap ^ ifp->if_capenable; /* Modify the RX CSUM enable bits */ if ((mask & IFCAP_RXCSUM) != 0 && (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { ifp->if_capenable ^= IFCAP_RXCSUM; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; reinit = 1; } } SMSC_UNLOCK(sc); if (reinit) uether_init(ue); } else { rc = uether_ioctl(ifp, cmd, data); } return (rc); } /** * smsc_attach_post - Called after the driver attached to the USB interface * @ue: the USB ethernet device * * This is where the chip is intialised for the first time. This is different - * from the smsc_init() function in that one is designed to setup the + * from the smsc_init() function in that that one is designed to setup the * H/W to match the UE settings and can be called after a reset. * * */ static void smsc_attach_post(struct usb_ether *ue) { struct smsc_softc *sc = uether_getsc(ue); uint32_t mac_h, mac_l; int err; smsc_dbg_printf(sc, "smsc_attach_post\n"); /* Setup some of the basics */ sc->sc_phyno = 1; /* Attempt to get the mac address, if an EEPROM is not attached this * will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC * address based on urandom. */ memset(sc->sc_ue.ue_eaddr, 0xff, ETHER_ADDR_LEN); /* Check if there is already a MAC address in the register */ if ((smsc_read_reg(sc, SMSC_MAC_ADDRL, &mac_l) == 0) && (smsc_read_reg(sc, SMSC_MAC_ADDRH, &mac_h) == 0)) { sc->sc_ue.ue_eaddr[5] = (uint8_t)((mac_h >> 8) & 0xff); sc->sc_ue.ue_eaddr[4] = (uint8_t)((mac_h) & 0xff); sc->sc_ue.ue_eaddr[3] = (uint8_t)((mac_l >> 24) & 0xff); sc->sc_ue.ue_eaddr[2] = (uint8_t)((mac_l >> 16) & 0xff); sc->sc_ue.ue_eaddr[1] = (uint8_t)((mac_l >> 8) & 0xff); sc->sc_ue.ue_eaddr[0] = (uint8_t)((mac_l) & 0xff); } /* MAC address is not set so try to read from EEPROM, if that fails generate * a random MAC address. */ if (!ETHER_IS_VALID(sc->sc_ue.ue_eaddr)) { err = smsc_eeprom_read(sc, 0x01, sc->sc_ue.ue_eaddr, ETHER_ADDR_LEN); #ifdef FDT if ((err != 0) || (!ETHER_IS_VALID(sc->sc_ue.ue_eaddr))) err = usb_fdt_get_mac_addr(sc->sc_ue.ue_dev, &sc->sc_ue); #endif if ((err != 0) || (!ETHER_IS_VALID(sc->sc_ue.ue_eaddr))) { read_random(sc->sc_ue.ue_eaddr, ETHER_ADDR_LEN); sc->sc_ue.ue_eaddr[0] &= ~0x01; /* unicast */ sc->sc_ue.ue_eaddr[0] |= 0x02; /* locally administered */ } } /* Initialise the chip for the first time */ smsc_chip_init(sc); } /** * smsc_attach_post_sub - Called after the driver attached to the USB interface * @ue: the USB ethernet device * * Most of this is boilerplate code and copied from the base USB ethernet * driver. It has been overridden so that we can indicate to the system that * the chip supports H/W checksumming. * * RETURNS: * Returns 0 on success or a negative error code. */ static int smsc_attach_post_sub(struct usb_ether *ue) { struct smsc_softc *sc; struct ifnet *ifp; int error; sc = uether_getsc(ue); ifp = ue->ue_ifp; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = uether_start; ifp->if_ioctl = smsc_ioctl; ifp->if_init = uether_init; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); /* The chip supports TCP/UDP checksum offloading on TX and RX paths, however * currently only RX checksum is supported in the driver (see top of file). */ ifp->if_capabilities |= IFCAP_RXCSUM | IFCAP_VLAN_MTU; ifp->if_hwassist = 0; /* TX checksuming is disabled (for now?) ifp->if_capabilities |= IFCAP_TXCSUM; ifp->if_capenable |= IFCAP_TXCSUM; ifp->if_hwassist = CSUM_TCP | CSUM_UDP; */ ifp->if_capenable = ifp->if_capabilities; bus_topo_lock(); error = mii_attach(ue->ue_dev, &ue->ue_miibus, ifp, uether_ifmedia_upd, ue->ue_methods->ue_mii_sts, BMSR_DEFCAPMASK, sc->sc_phyno, MII_OFFSET_ANY, 0); bus_topo_unlock(); return (error); } /** * smsc_probe - Probe the interface. * @dev: smsc device handle * * Checks if the device is a match for this driver. * * RETURNS: * Returns 0 on success or an error code on failure. */ static int smsc_probe(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != SMSC_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != SMSC_IFACE_IDX) return (ENXIO); return (usbd_lookup_id_by_uaa(smsc_devs, sizeof(smsc_devs), uaa)); } /** * smsc_attach - Attach the interface. * @dev: smsc device handle * * Allocate softc structures, do ifmedia setup and ethernet/BPF attach. * * RETURNS: * Returns 0 on success or a negative error code. */ static int smsc_attach(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); struct smsc_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; uint8_t iface_index; int err; sc->sc_flags = USB_GET_DRIVER_INFO(uaa); device_set_usb_desc(dev); mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF); /* Setup the endpoints for the SMSC LAN95xx device(s) */ iface_index = SMSC_IFACE_IDX; err = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, smsc_config, SMSC_N_TRANSFER, sc, &sc->sc_mtx); if (err) { device_printf(dev, "error: allocating USB transfers failed\n"); goto detach; } ue->ue_sc = sc; ue->ue_dev = dev; ue->ue_udev = uaa->device; ue->ue_mtx = &sc->sc_mtx; ue->ue_methods = &smsc_ue_methods; err = uether_ifattach(ue); if (err) { device_printf(dev, "error: could not attach interface\n"); goto detach; } return (0); /* success */ detach: smsc_detach(dev); return (ENXIO); /* failure */ } /** * smsc_detach - Detach the interface. * @dev: smsc device handle * * RETURNS: * Returns 0. */ static int smsc_detach(device_t dev) { struct smsc_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; usbd_transfer_unsetup(sc->sc_xfer, SMSC_N_TRANSFER); uether_ifdetach(ue); mtx_destroy(&sc->sc_mtx); return (0); } static device_method_t smsc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, smsc_probe), DEVMETHOD(device_attach, smsc_attach), DEVMETHOD(device_detach, smsc_detach), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, smsc_miibus_readreg), DEVMETHOD(miibus_writereg, smsc_miibus_writereg), DEVMETHOD(miibus_statchg, smsc_miibus_statchg), DEVMETHOD_END }; static driver_t smsc_driver = { .name = "smsc", .methods = smsc_methods, .size = sizeof(struct smsc_softc), }; DRIVER_MODULE(smsc, uhub, smsc_driver, NULL, NULL); DRIVER_MODULE(miibus, smsc, miibus_driver, 0, 0); MODULE_DEPEND(smsc, uether, 1, 1, 1); MODULE_DEPEND(smsc, usb, 1, 1, 1); MODULE_DEPEND(smsc, ether, 1, 1, 1); MODULE_DEPEND(smsc, miibus, 1, 1, 1); MODULE_VERSION(smsc, 1); USB_PNP_HOST_INFO(smsc_devs); diff --git a/sys/dev/usb/usb_busdma.c b/sys/dev/usb/usb_busdma.c index 69d9ea292523..62e22805b39c 100644 --- a/sys/dev/usb/usb_busdma.c +++ b/sys/dev/usb/usb_busdma.c @@ -1,1111 +1,1111 @@ /* $FreeBSD$ */ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef USB_GLOBAL_INCLUDE_FILE #include USB_GLOBAL_INCLUDE_FILE #else #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define USB_DEBUG_VAR usb_debug #include #include #include #include #include #include #include #include #include #endif /* USB_GLOBAL_INCLUDE_FILE */ #if USB_HAVE_BUSDMA static void usb_dma_tag_create(struct usb_dma_tag *, usb_size_t, usb_size_t); static void usb_dma_tag_destroy(struct usb_dma_tag *); static void usb_dma_lock_cb(void *, bus_dma_lock_op_t); static void usb_pc_alloc_mem_cb(void *, bus_dma_segment_t *, int, int); static void usb_pc_load_mem_cb(void *, bus_dma_segment_t *, int, int); static void usb_pc_common_mem_cb(void *, bus_dma_segment_t *, int, int, uint8_t); #endif /*------------------------------------------------------------------------* * usbd_get_page - lookup DMA-able memory for the given offset * * NOTE: Only call this function when the "page_cache" structure has * been properly initialized ! *------------------------------------------------------------------------*/ void usbd_get_page(struct usb_page_cache *pc, usb_frlength_t offset, struct usb_page_search *res) { #if USB_HAVE_BUSDMA struct usb_page *page; if (pc->page_start) { /* Case 1 - something has been loaded into DMA */ if (pc->buffer) { /* Case 1a - Kernel Virtual Address */ res->buffer = USB_ADD_BYTES(pc->buffer, offset); } offset += pc->page_offset_buf; /* compute destination page */ page = pc->page_start; if (pc->ismultiseg) { page += (offset / USB_PAGE_SIZE); offset %= USB_PAGE_SIZE; res->length = USB_PAGE_SIZE - offset; res->physaddr = page->physaddr + offset; } else { res->length = (usb_size_t)-1; res->physaddr = page->physaddr + offset; } if (!pc->buffer) { /* Case 1b - Non Kernel Virtual Address */ res->buffer = USB_ADD_BYTES(page->buffer, offset); } return; } #endif /* Case 2 - Plain PIO */ res->buffer = USB_ADD_BYTES(pc->buffer, offset); res->length = (usb_size_t)-1; #if USB_HAVE_BUSDMA res->physaddr = 0; #endif } /*------------------------------------------------------------------------* * usb_pc_buffer_is_aligned - verify alignment * * This function is used to check if a page cache buffer is properly * aligned to reduce the use of bounce buffers in PIO mode. *------------------------------------------------------------------------*/ uint8_t usb_pc_buffer_is_aligned(struct usb_page_cache *pc, usb_frlength_t offset, usb_frlength_t len, usb_frlength_t mask) { struct usb_page_search buf_res; while (len != 0) { usbd_get_page(pc, offset, &buf_res); if (buf_res.length > len) buf_res.length = len; if (USB_P2U(buf_res.buffer) & mask) return (0); if (buf_res.length & mask) return (0); offset += buf_res.length; len -= buf_res.length; } return (1); } /*------------------------------------------------------------------------* * usbd_copy_in - copy directly to DMA-able memory *------------------------------------------------------------------------*/ void usbd_copy_in(struct usb_page_cache *cache, usb_frlength_t offset, const void *ptr, usb_frlength_t len) { struct usb_page_search buf_res; while (len != 0) { usbd_get_page(cache, offset, &buf_res); if (buf_res.length > len) { buf_res.length = len; } memcpy(buf_res.buffer, ptr, buf_res.length); offset += buf_res.length; len -= buf_res.length; ptr = USB_ADD_BYTES(ptr, buf_res.length); } } /*------------------------------------------------------------------------* * usbd_copy_in_user - copy directly to DMA-able memory from userland * * Return values: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ #if USB_HAVE_USER_IO int usbd_copy_in_user(struct usb_page_cache *cache, usb_frlength_t offset, const void *ptr, usb_frlength_t len) { struct usb_page_search buf_res; int error; while (len != 0) { usbd_get_page(cache, offset, &buf_res); if (buf_res.length > len) { buf_res.length = len; } error = copyin(ptr, buf_res.buffer, buf_res.length); if (error) return (error); offset += buf_res.length; len -= buf_res.length; ptr = USB_ADD_BYTES(ptr, buf_res.length); } return (0); /* success */ } #endif /*------------------------------------------------------------------------* * usbd_m_copy_in - copy a mbuf chain directly into DMA-able memory *------------------------------------------------------------------------*/ #if USB_HAVE_MBUF struct usb_m_copy_in_arg { struct usb_page_cache *cache; usb_frlength_t dst_offset; }; static int usbd_m_copy_in_cb(void *arg, void *src, uint32_t count) { struct usb_m_copy_in_arg *ua = arg; usbd_copy_in(ua->cache, ua->dst_offset, src, count); ua->dst_offset += count; return (0); } void usbd_m_copy_in(struct usb_page_cache *cache, usb_frlength_t dst_offset, struct mbuf *m, usb_size_t src_offset, usb_frlength_t src_len) { struct usb_m_copy_in_arg arg = {cache, dst_offset}; (void) m_apply(m, src_offset, src_len, &usbd_m_copy_in_cb, &arg); } #endif /*------------------------------------------------------------------------* * usb_uiomove - factored out code *------------------------------------------------------------------------*/ #if USB_HAVE_USER_IO int usb_uiomove(struct usb_page_cache *pc, struct uio *uio, usb_frlength_t pc_offset, usb_frlength_t len) { struct usb_page_search res; int error = 0; while (len != 0) { usbd_get_page(pc, pc_offset, &res); if (res.length > len) { res.length = len; } /* * "uiomove()" can sleep so one needs to make a wrapper, * exiting the mutex and checking things */ error = uiomove(res.buffer, res.length, uio); if (error) { break; } pc_offset += res.length; len -= res.length; } return (error); } #endif /*------------------------------------------------------------------------* * usbd_copy_out - copy directly from DMA-able memory *------------------------------------------------------------------------*/ void usbd_copy_out(struct usb_page_cache *cache, usb_frlength_t offset, void *ptr, usb_frlength_t len) { struct usb_page_search res; while (len != 0) { usbd_get_page(cache, offset, &res); if (res.length > len) { res.length = len; } memcpy(ptr, res.buffer, res.length); offset += res.length; len -= res.length; ptr = USB_ADD_BYTES(ptr, res.length); } } /*------------------------------------------------------------------------* * usbd_copy_out_user - copy directly from DMA-able memory to userland * * Return values: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ #if USB_HAVE_USER_IO int usbd_copy_out_user(struct usb_page_cache *cache, usb_frlength_t offset, void *ptr, usb_frlength_t len) { struct usb_page_search res; int error; while (len != 0) { usbd_get_page(cache, offset, &res); if (res.length > len) { res.length = len; } error = copyout(res.buffer, ptr, res.length); if (error) return (error); offset += res.length; len -= res.length; ptr = USB_ADD_BYTES(ptr, res.length); } return (0); /* success */ } #endif /*------------------------------------------------------------------------* * usbd_frame_zero - zero DMA-able memory *------------------------------------------------------------------------*/ void usbd_frame_zero(struct usb_page_cache *cache, usb_frlength_t offset, usb_frlength_t len) { struct usb_page_search res; while (len != 0) { usbd_get_page(cache, offset, &res); if (res.length > len) { res.length = len; } memset(res.buffer, 0, res.length); offset += res.length; len -= res.length; } } #if USB_HAVE_BUSDMA /*------------------------------------------------------------------------* * usb_dma_lock_cb - dummy callback *------------------------------------------------------------------------*/ static void usb_dma_lock_cb(void *arg, bus_dma_lock_op_t op) { /* we use "mtx_owned()" instead of this function */ } /*------------------------------------------------------------------------* * usb_dma_tag_create - allocate a DMA tag * * NOTE: If the "align" parameter has a value of 1 the DMA-tag will * allow multi-segment mappings. Else all mappings are single-segment. *------------------------------------------------------------------------*/ static void usb_dma_tag_create(struct usb_dma_tag *udt, usb_size_t size, usb_size_t align) { bus_dma_tag_t tag; if (bus_dma_tag_create ( /* parent */ udt->tag_parent->tag, /* alignment */ align, /* boundary */ 0, /* lowaddr */ (2ULL << (udt->tag_parent->dma_bits - 1)) - 1, /* highaddr */ BUS_SPACE_MAXADDR, /* filter */ NULL, /* filterarg */ NULL, /* maxsize */ size, /* nsegments */ (align == 1 && size > 1) ? (2 + (size / USB_PAGE_SIZE)) : 1, /* maxsegsz */ (align == 1 && size > USB_PAGE_SIZE) ? USB_PAGE_SIZE : size, /* flags */ BUS_DMA_KEEP_PG_OFFSET, /* lockfn */ &usb_dma_lock_cb, /* lockarg */ NULL, &tag)) { tag = NULL; } udt->tag = tag; } /*------------------------------------------------------------------------* * usb_dma_tag_free - free a DMA tag *------------------------------------------------------------------------*/ static void usb_dma_tag_destroy(struct usb_dma_tag *udt) { bus_dma_tag_destroy(udt->tag); } /*------------------------------------------------------------------------* * usb_pc_alloc_mem_cb - BUS-DMA callback function *------------------------------------------------------------------------*/ static void usb_pc_alloc_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { usb_pc_common_mem_cb(arg, segs, nseg, error, 0); } /*------------------------------------------------------------------------* * usb_pc_load_mem_cb - BUS-DMA callback function *------------------------------------------------------------------------*/ static void usb_pc_load_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { usb_pc_common_mem_cb(arg, segs, nseg, error, 1); } /*------------------------------------------------------------------------* * usb_pc_common_mem_cb - BUS-DMA callback function *------------------------------------------------------------------------*/ static void usb_pc_common_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error, uint8_t isload) { struct usb_dma_parent_tag *uptag; struct usb_page_cache *pc; struct usb_page *pg; usb_size_t rem; bus_size_t off; uint8_t owned; pc = arg; uptag = pc->tag_parent; /* * XXX There is sometimes recursive locking here. * XXX We should try to find a better solution. * XXX Until further the "owned" variable does * XXX the trick. */ if (error) { goto done; } off = 0; pg = pc->page_start; pg->physaddr = rounddown2(segs->ds_addr, USB_PAGE_SIZE); rem = segs->ds_addr & (USB_PAGE_SIZE - 1); pc->page_offset_buf = rem; pc->page_offset_end += rem; #ifdef USB_DEBUG if (nseg > 1) { int x; for (x = 0; x != nseg - 1; x++) { if (((segs[x].ds_addr + segs[x].ds_len) & (USB_PAGE_SIZE - 1)) == ((segs[x + 1].ds_addr & (USB_PAGE_SIZE - 1)))) continue; /* * This check verifies there is no page offset * hole between any of the segments. See the * BUS_DMA_KEEP_PG_OFFSET flag. */ DPRINTFN(0, "Page offset was not preserved\n"); error = 1; goto done; } } #endif while (pc->ismultiseg) { off += USB_PAGE_SIZE; if (off >= (segs->ds_len + rem)) { /* page crossing */ nseg--; segs++; off = 0; rem = 0; if (nseg == 0) break; } pg++; pg->physaddr = rounddown2(segs->ds_addr + off, USB_PAGE_SIZE); } done: owned = mtx_owned(uptag->mtx); if (!owned) USB_MTX_LOCK(uptag->mtx); uptag->dma_error = (error ? 1 : 0); if (isload) { (uptag->func) (uptag); } else { cv_broadcast(uptag->cv); } if (!owned) USB_MTX_UNLOCK(uptag->mtx); } /*------------------------------------------------------------------------* * usb_pc_alloc_mem - allocate DMA'able memory * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ uint8_t usb_pc_alloc_mem(struct usb_page_cache *pc, struct usb_page *pg, usb_size_t size, usb_size_t align) { struct usb_dma_parent_tag *uptag; struct usb_dma_tag *utag; bus_dmamap_t map; void *ptr; int err; uptag = pc->tag_parent; if (align != 1) { /* * The alignment must be greater or equal to the * "size" else the object can be split between two * memory pages and we get a problem! */ while (align < size) { align *= 2; if (align == 0) { goto error; } } #if 1 /* * XXX BUS-DMA workaround - FIXME later: * - * We assume that the alignment at this point of + * We assume that that the alignment at this point of * the code is greater than or equal to the size and * less than two times the size, so that if we double * the size, the size will be greater than the * alignment. * * The bus-dma system has a check for "alignment" * being less than "size". If that check fails we end * up using contigmalloc which is page based even for * small allocations. Try to avoid that to save * memory, hence we sometimes to a large number of * small allocations! */ if (size <= (USB_PAGE_SIZE / 2)) { size *= 2; } #endif } /* get the correct DMA tag */ utag = usb_dma_tag_find(uptag, size, align); if (utag == NULL) { goto error; } /* allocate memory */ if (bus_dmamem_alloc( utag->tag, &ptr, (BUS_DMA_WAITOK | BUS_DMA_COHERENT), &map)) { goto error; } /* setup page cache */ pc->buffer = ptr; pc->page_start = pg; pc->page_offset_buf = 0; pc->page_offset_end = size; pc->map = map; pc->tag = utag->tag; pc->ismultiseg = (align == 1); USB_MTX_LOCK(uptag->mtx); /* load memory into DMA */ err = bus_dmamap_load( utag->tag, map, ptr, size, &usb_pc_alloc_mem_cb, pc, (BUS_DMA_WAITOK | BUS_DMA_COHERENT)); if (err == EINPROGRESS) { cv_wait(uptag->cv, uptag->mtx); err = 0; } USB_MTX_UNLOCK(uptag->mtx); if (err || uptag->dma_error) { bus_dmamem_free(utag->tag, ptr, map); goto error; } pc->isloaded = 1; memset(ptr, 0, size); usb_pc_cpu_flush(pc); return (0); error: /* reset most of the page cache */ pc->buffer = NULL; pc->page_start = NULL; pc->page_offset_buf = 0; pc->page_offset_end = 0; pc->isloaded = 0; pc->map = NULL; pc->tag = NULL; return (1); } /*------------------------------------------------------------------------* * usb_pc_free_mem - free DMA memory * * This function is NULL safe. *------------------------------------------------------------------------*/ void usb_pc_free_mem(struct usb_page_cache *pc) { if (pc && pc->buffer) { if (pc->isloaded) bus_dmamap_unload(pc->tag, pc->map); bus_dmamem_free(pc->tag, pc->buffer, pc->map); pc->buffer = NULL; pc->isloaded = 0; } } /*------------------------------------------------------------------------* * usb_pc_load_mem - load virtual memory into DMA * * Return values: * 0: Success * Else: Error *------------------------------------------------------------------------*/ uint8_t usb_pc_load_mem(struct usb_page_cache *pc, usb_size_t size, uint8_t sync) { /* setup page cache */ pc->page_offset_buf = 0; pc->page_offset_end = size; pc->ismultiseg = 1; USB_MTX_ASSERT(pc->tag_parent->mtx, MA_OWNED); if (size > 0) { if (sync) { struct usb_dma_parent_tag *uptag; int err; uptag = pc->tag_parent; /* * We have to unload the previous loaded DMA * pages before trying to load a new one! */ if (pc->isloaded) bus_dmamap_unload(pc->tag, pc->map); /* * Try to load memory into DMA. */ err = bus_dmamap_load( pc->tag, pc->map, pc->buffer, size, &usb_pc_alloc_mem_cb, pc, BUS_DMA_WAITOK); if (err == EINPROGRESS) { cv_wait(uptag->cv, uptag->mtx); err = 0; } if (err || uptag->dma_error) { pc->isloaded = 0; return (1); } } else { /* * We have to unload the previous loaded DMA * pages before trying to load a new one! */ if (pc->isloaded) bus_dmamap_unload(pc->tag, pc->map); /* * Try to load memory into DMA. The callback * will be called in all cases: */ if (bus_dmamap_load( pc->tag, pc->map, pc->buffer, size, &usb_pc_load_mem_cb, pc, BUS_DMA_WAITOK)) { } } pc->isloaded = 1; } else { if (!sync) { /* * Call callback so that refcount is decremented * properly: */ pc->tag_parent->dma_error = 0; (pc->tag_parent->func) (pc->tag_parent); } } return (0); } /*------------------------------------------------------------------------* * usb_pc_cpu_invalidate - invalidate CPU cache *------------------------------------------------------------------------*/ void usb_pc_cpu_invalidate(struct usb_page_cache *pc) { if (pc->page_offset_end == pc->page_offset_buf) { /* nothing has been loaded into this page cache! */ return; } /* * TODO: We currently do XXX_POSTREAD and XXX_PREREAD at the * same time, but in the future we should try to isolate the * different cases to optimise the code. --HPS */ bus_dmamap_sync(pc->tag, pc->map, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(pc->tag, pc->map, BUS_DMASYNC_PREREAD); } /*------------------------------------------------------------------------* * usb_pc_cpu_flush - flush CPU cache *------------------------------------------------------------------------*/ void usb_pc_cpu_flush(struct usb_page_cache *pc) { if (pc->page_offset_end == pc->page_offset_buf) { /* nothing has been loaded into this page cache! */ return; } bus_dmamap_sync(pc->tag, pc->map, BUS_DMASYNC_PREWRITE); } /*------------------------------------------------------------------------* * usb_pc_dmamap_create - create a DMA map * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ uint8_t usb_pc_dmamap_create(struct usb_page_cache *pc, usb_size_t size) { struct usb_xfer_root *info; struct usb_dma_tag *utag; /* get info */ info = USB_DMATAG_TO_XROOT(pc->tag_parent); /* sanity check */ if (info == NULL) { goto error; } utag = usb_dma_tag_find(pc->tag_parent, size, 1); if (utag == NULL) { goto error; } /* create DMA map */ if (bus_dmamap_create(utag->tag, 0, &pc->map)) { goto error; } pc->tag = utag->tag; return 0; /* success */ error: pc->map = NULL; pc->tag = NULL; return 1; /* failure */ } /*------------------------------------------------------------------------* * usb_pc_dmamap_destroy * * This function is NULL safe. *------------------------------------------------------------------------*/ void usb_pc_dmamap_destroy(struct usb_page_cache *pc) { if (pc && pc->tag) { if (pc->isloaded) bus_dmamap_unload(pc->tag, pc->map); bus_dmamap_destroy(pc->tag, pc->map); pc->tag = NULL; pc->map = NULL; } } /*------------------------------------------------------------------------* * usb_dma_tag_find - factored out code *------------------------------------------------------------------------*/ struct usb_dma_tag * usb_dma_tag_find(struct usb_dma_parent_tag *udpt, usb_size_t size, usb_size_t align) { struct usb_dma_tag *udt; uint8_t nudt; USB_ASSERT(align > 0, ("Invalid parameter align = 0\n")); USB_ASSERT(size > 0, ("Invalid parameter size = 0\n")); udt = udpt->utag_first; nudt = udpt->utag_max; while (nudt--) { if (udt->align == 0) { usb_dma_tag_create(udt, size, align); if (udt->tag == NULL) { return (NULL); } udt->align = align; udt->size = size; return (udt); } if ((udt->align == align) && (udt->size == size)) { return (udt); } udt++; } return (NULL); } /*------------------------------------------------------------------------* * usb_dma_tag_setup - initialise USB DMA tags *------------------------------------------------------------------------*/ void usb_dma_tag_setup(struct usb_dma_parent_tag *udpt, struct usb_dma_tag *udt, bus_dma_tag_t dmat, struct mtx *mtx, usb_dma_callback_t *func, uint8_t ndmabits, uint8_t nudt) { memset(udpt, 0, sizeof(*udpt)); /* sanity checking */ if ((nudt == 0) || (ndmabits == 0) || (mtx == NULL)) { /* something is corrupt */ return; } /* initialise condition variable */ cv_init(udpt->cv, "USB DMA CV"); /* store some information */ udpt->mtx = mtx; udpt->func = func; udpt->tag = dmat; udpt->utag_first = udt; udpt->utag_max = nudt; udpt->dma_bits = ndmabits; while (nudt--) { memset(udt, 0, sizeof(*udt)); udt->tag_parent = udpt; udt++; } } /*------------------------------------------------------------------------* * usb_bus_tag_unsetup - factored out code *------------------------------------------------------------------------*/ void usb_dma_tag_unsetup(struct usb_dma_parent_tag *udpt) { struct usb_dma_tag *udt; uint8_t nudt; udt = udpt->utag_first; nudt = udpt->utag_max; while (nudt--) { if (udt->align) { /* destroy the USB DMA tag */ usb_dma_tag_destroy(udt); udt->align = 0; } udt++; } if (udpt->utag_max) { /* destroy the condition variable */ cv_destroy(udpt->cv); } } /*------------------------------------------------------------------------* * usb_bdma_work_loop * * This function handles loading of virtual buffers into DMA and is * only called when "dma_refcount" is zero. *------------------------------------------------------------------------*/ void usb_bdma_work_loop(struct usb_xfer_queue *pq) { struct usb_xfer_root *info; struct usb_xfer *xfer; usb_frcount_t nframes; xfer = pq->curr; info = xfer->xroot; USB_MTX_ASSERT(info->xfer_mtx, MA_OWNED); if (xfer->error) { /* some error happened */ USB_BUS_LOCK(info->bus); usbd_transfer_done(xfer, 0); USB_BUS_UNLOCK(info->bus); return; } if (!xfer->flags_int.bdma_setup) { struct usb_page *pg; usb_frlength_t frlength_0; uint8_t isread; xfer->flags_int.bdma_setup = 1; /* reset BUS-DMA load state */ info->dma_error = 0; if (xfer->flags_int.isochronous_xfr) { /* only one frame buffer */ nframes = 1; frlength_0 = xfer->sumlen; } else { /* can be multiple frame buffers */ nframes = xfer->nframes; frlength_0 = xfer->frlengths[0]; } /* * Set DMA direction first. This is needed to * select the correct cache invalidate and cache * flush operations. */ isread = USB_GET_DATA_ISREAD(xfer); pg = xfer->dma_page_ptr; if (xfer->flags_int.control_xfr && xfer->flags_int.control_hdr) { /* special case */ if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { /* The device controller writes to memory */ xfer->frbuffers[0].isread = 1; } else { /* The host controller reads from memory */ xfer->frbuffers[0].isread = 0; } } else { /* default case */ xfer->frbuffers[0].isread = isread; } /* * Setup the "page_start" pointer which points to an array of * USB pages where information about the physical address of a * page will be stored. Also initialise the "isread" field of * the USB page caches. */ xfer->frbuffers[0].page_start = pg; info->dma_nframes = nframes; info->dma_currframe = 0; info->dma_frlength_0 = frlength_0; pg += (frlength_0 / USB_PAGE_SIZE); pg += 2; while (--nframes > 0) { xfer->frbuffers[nframes].isread = isread; xfer->frbuffers[nframes].page_start = pg; pg += (xfer->frlengths[nframes] / USB_PAGE_SIZE); pg += 2; } } if (info->dma_error) { USB_BUS_LOCK(info->bus); usbd_transfer_done(xfer, USB_ERR_DMA_LOAD_FAILED); USB_BUS_UNLOCK(info->bus); return; } if (info->dma_currframe != info->dma_nframes) { if (info->dma_currframe == 0) { /* special case */ usb_pc_load_mem(xfer->frbuffers, info->dma_frlength_0, 0); } else { /* default case */ nframes = info->dma_currframe; usb_pc_load_mem(xfer->frbuffers + nframes, xfer->frlengths[nframes], 0); } /* advance frame index */ info->dma_currframe++; return; } /* go ahead */ usb_bdma_pre_sync(xfer); /* start loading next USB transfer, if any */ usb_command_wrapper(pq, NULL); /* finally start the hardware */ usbd_pipe_enter(xfer); } /*------------------------------------------------------------------------* * usb_bdma_done_event * * This function is called when the BUS-DMA has loaded virtual memory * into DMA, if any. *------------------------------------------------------------------------*/ void usb_bdma_done_event(struct usb_dma_parent_tag *udpt) { struct usb_xfer_root *info; info = USB_DMATAG_TO_XROOT(udpt); USB_MTX_ASSERT(info->xfer_mtx, MA_OWNED); /* copy error */ info->dma_error = udpt->dma_error; /* enter workloop again */ usb_command_wrapper(&info->dma_q, info->dma_q.curr); } /*------------------------------------------------------------------------* * usb_bdma_pre_sync * * This function handles DMA synchronisation that must be done before * an USB transfer is started. *------------------------------------------------------------------------*/ void usb_bdma_pre_sync(struct usb_xfer *xfer) { struct usb_page_cache *pc; usb_frcount_t nframes; if (xfer->flags_int.isochronous_xfr) { /* only one frame buffer */ nframes = 1; } else { /* can be multiple frame buffers */ nframes = xfer->nframes; } pc = xfer->frbuffers; while (nframes--) { if (pc->isread) { usb_pc_cpu_invalidate(pc); } else { usb_pc_cpu_flush(pc); } pc++; } } /*------------------------------------------------------------------------* * usb_bdma_post_sync * * This function handles DMA synchronisation that must be done after * an USB transfer is complete. *------------------------------------------------------------------------*/ void usb_bdma_post_sync(struct usb_xfer *xfer) { struct usb_page_cache *pc; usb_frcount_t nframes; if (xfer->flags_int.isochronous_xfr) { /* only one frame buffer */ nframes = 1; } else { /* can be multiple frame buffers */ nframes = xfer->nframes; } pc = xfer->frbuffers; while (nframes--) { if (pc->isread) { usb_pc_cpu_invalidate(pc); } pc++; } } #endif