diff --git a/sys/netinet/tcp.h b/sys/netinet/tcp.h index 6dc7403aae28..6a3603287f5d 100644 --- a/sys/netinet/tcp.h +++ b/sys/netinet/tcp.h @@ -1,442 +1,442 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NETINET_TCP_H_ #define _NETINET_TCP_H_ #include #include #if __BSD_VISIBLE typedef u_int32_t tcp_seq; #define tcp6_seq tcp_seq /* for KAME src sync over BSD*'s */ #define tcp6hdr tcphdr /* for KAME src sync over BSD*'s */ /* * TCP header. * Per RFC 793, September, 1981. */ struct tcphdr { u_short th_sport; /* source port */ u_short th_dport; /* destination port */ tcp_seq th_seq; /* sequence number */ tcp_seq th_ack; /* acknowledgement number */ #if BYTE_ORDER == LITTLE_ENDIAN - u_char th_x2:4, /* (unused) */ + u_char th_x2:4, /* upper 4 (reserved) flags */ th_off:4; /* data offset */ #endif #if BYTE_ORDER == BIG_ENDIAN u_char th_off:4, /* data offset */ - th_x2:4; /* (unused) */ + th_x2:4; /* upper 4 (reserved) flags */ #endif u_char th_flags; #define TH_FIN 0x01 #define TH_SYN 0x02 #define TH_RST 0x04 #define TH_PUSH 0x08 #define TH_ACK 0x10 #define TH_URG 0x20 #define TH_ECE 0x40 #define TH_CWR 0x80 #define TH_AE 0x100 /* maps into th_x2 */ #define TH_FLAGS (TH_FIN|TH_SYN|TH_RST|TH_PUSH|TH_ACK|TH_URG|TH_ECE|TH_CWR) #define PRINT_TH_FLAGS "\20\1FIN\2SYN\3RST\4PUSH\5ACK\6URG\7ECE\10CWR\11AE" u_short th_win; /* window */ u_short th_sum; /* checksum */ u_short th_urp; /* urgent pointer */ }; #define PADTCPOLEN(len) ((((len) / 4) + !!((len) % 4)) * 4) #define TCPOPT_EOL 0 #define TCPOLEN_EOL 1 #define TCPOPT_PAD 0 /* padding after EOL */ #define TCPOLEN_PAD 1 #define TCPOPT_NOP 1 #define TCPOLEN_NOP 1 #define TCPOPT_MAXSEG 2 #define TCPOLEN_MAXSEG 4 #define TCPOPT_WINDOW 3 #define TCPOLEN_WINDOW 3 #define TCPOPT_SACK_PERMITTED 4 #define TCPOLEN_SACK_PERMITTED 2 #define TCPOPT_SACK 5 #define TCPOLEN_SACKHDR 2 #define TCPOLEN_SACK 8 /* 2*sizeof(tcp_seq) */ #define TCPOPT_TIMESTAMP 8 #define TCPOLEN_TIMESTAMP 10 #define TCPOLEN_TSTAMP_APPA (TCPOLEN_TIMESTAMP+2) /* appendix A */ #define TCPOPT_SIGNATURE 19 /* Keyed MD5: RFC 2385 */ #define TCPOLEN_SIGNATURE 18 #define TCPOPT_FAST_OPEN 34 #define TCPOLEN_FAST_OPEN_EMPTY 2 #define MAX_TCPOPTLEN 40 /* Absolute maximum TCP options len */ /* Miscellaneous constants */ #define MAX_SACK_BLKS 6 /* Max # SACK blocks stored at receiver side */ #define TCP_MAX_SACK 4 /* MAX # SACKs sent in any segment */ /* * The default maximum segment size (MSS) to be used for new TCP connections * when path MTU discovery is not enabled. * * RFC879 derives the default MSS from the largest datagram size hosts are * minimally required to handle directly or through IP reassembly minus the * size of the IP and TCP header. With IPv6 the minimum MTU is specified * in RFC2460. * * For IPv4 the MSS is 576 - sizeof(struct tcpiphdr) * For IPv6 the MSS is IPV6_MMTU - sizeof(struct ip6_hdr) - sizeof(struct tcphdr) * * We use explicit numerical definition here to avoid header pollution. */ #define TCP_MSS 536 #define TCP6_MSS 1220 /* * Limit the lowest MSS we accept for path MTU discovery and the TCP SYN MSS * option. Allowing low values of MSS can consume significant resources and * be used to mount a resource exhaustion attack. * Connections requesting lower MSS values will be rounded up to this value * and the IP_DF flag will be cleared to allow fragmentation along the path. * * See tcp_subr.c tcp_minmss SYSCTL declaration for more comments. Setting * it to "0" disables the minmss check. * * The default value is fine for TCP across the Internet's smallest official * link MTU (256 bytes for AX.25 packet radio). However, a connection is very * unlikely to come across such low MTU interfaces these days (anno domini 2003). */ #define TCP_MINMSS 216 #define TCP_MAXWIN 65535 /* largest value for (unscaled) window */ #define TTCP_CLIENT_SND_WND 4096 /* dflt send window for T/TCP client */ #define TCP_MAX_WINSHIFT 14 /* maximum window shift */ #define TCP_MAXBURST 4 /* maximum segments in a burst */ #define TCP_MAXHLEN (0xf<<2) /* max length of header in bytes */ #define TCP_MAXOLEN (TCP_MAXHLEN - sizeof(struct tcphdr)) /* max space left for options */ #define TCP_FASTOPEN_MIN_COOKIE_LEN 4 /* Per RFC7413 */ #define TCP_FASTOPEN_MAX_COOKIE_LEN 16 /* Per RFC7413 */ #define TCP_FASTOPEN_PSK_LEN 16 /* Same as TCP_FASTOPEN_KEY_LEN */ #endif /* __BSD_VISIBLE */ /* * User-settable options (used with setsockopt). These are discrete * values and are not masked together. Some values appear to be * bitmasks for historical reasons. */ #define TCP_NODELAY 1 /* don't delay send to coalesce packets */ #if __BSD_VISIBLE #define TCP_MAXSEG 2 /* set maximum segment size */ #define TCP_NOPUSH 4 /* don't push last block of write */ #define TCP_NOOPT 8 /* don't use TCP options */ #define TCP_MD5SIG 16 /* use MD5 digests (RFC2385) */ #define TCP_INFO 32 /* retrieve tcp_info structure */ #define TCP_STATS 33 /* retrieve stats blob structure */ #define TCP_LOG 34 /* configure event logging for connection */ #define TCP_LOGBUF 35 /* retrieve event log for connection */ #define TCP_LOGID 36 /* configure log ID to correlate connections */ #define TCP_LOGDUMP 37 /* dump connection log events to device */ #define TCP_LOGDUMPID 38 /* dump events from connections with same ID to device */ #define TCP_TXTLS_ENABLE 39 /* TLS framing and encryption for transmit */ #define TCP_TXTLS_MODE 40 /* Transmit TLS mode */ #define TCP_RXTLS_ENABLE 41 /* TLS framing and encryption for receive */ #define TCP_RXTLS_MODE 42 /* Receive TLS mode */ #define TCP_IWND_NB 43 /* Override initial window (units: bytes) */ #define TCP_IWND_NSEG 44 /* Override initial window (units: MSS segs) */ #define TCP_LOGID_CNT 46 /* get number of connections with the same ID */ #define TCP_LOG_TAG 47 /* configure tag for grouping logs */ #define TCP_USER_LOG 48 /* userspace log event */ #define TCP_CONGESTION 64 /* get/set congestion control algorithm */ #define TCP_CCALGOOPT 65 /* get/set cc algorithm specific options */ #define TCP_MAXUNACKTIME 68 /* maximum time without making progress (sec) */ #define TCP_MAXPEAKRATE 69 /* maximum peak rate allowed (kbps) */ #define TCP_IDLE_REDUCE 70 /* Reduce cwnd on idle input */ #define TCP_REMOTE_UDP_ENCAPS_PORT 71 /* Enable TCP over UDP tunneling via the specified port */ #define TCP_DELACK 72 /* socket option for delayed ack */ #define TCP_FIN_IS_RST 73 /* A fin from the peer is treated has a RST */ #define TCP_LOG_LIMIT 74 /* Limit to number of records in tcp-log */ #define TCP_SHARED_CWND_ALLOWED 75 /* Use of a shared cwnd is allowed */ #define TCP_PROC_ACCOUNTING 76 /* Do accounting on tcp cpu usage and counts */ #define TCP_USE_CMP_ACKS 77 /* The transport can handle the Compressed mbuf acks */ #define TCP_PERF_INFO 78 /* retrieve accounting counters */ #define TCP_LRD 79 /* toggle Lost Retransmission Detection for A/B testing */ #define TCP_KEEPINIT 128 /* N, time to establish connection */ #define TCP_KEEPIDLE 256 /* L,N,X start keeplives after this period */ #define TCP_KEEPINTVL 512 /* L,N interval between keepalives */ #define TCP_KEEPCNT 1024 /* L,N number of keepalives before close */ #define TCP_FASTOPEN 1025 /* enable TFO / was created via TFO */ #define TCP_PCAP_OUT 2048 /* number of output packets to keep */ #define TCP_PCAP_IN 4096 /* number of input packets to keep */ #define TCP_FUNCTION_BLK 8192 /* Set the tcp function pointers to the specified stack */ #define TCP_FUNCTION_ALIAS 8193 /* Get the current tcp function pointer name alias */ /* Options for Rack and BBR */ #define TCP_REUSPORT_LB_NUMA 1026 /* set listen socket numa domain */ #define TCP_RACK_MBUF_QUEUE 1050 /* Do we allow mbuf queuing if supported */ #define TCP_RACK_PROP 1051 /* RACK proportional rate reduction (bool) */ #define TCP_RACK_TLP_REDUCE 1052 /* RACK TLP cwnd reduction (bool) */ #define TCP_RACK_PACE_REDUCE 1053 /* RACK Pacingv reduction factor (divisor) */ #define TCP_RACK_PACE_MAX_SEG 1054 /* Max TSO size we will send */ #define TCP_RACK_PACE_ALWAYS 1055 /* Use the always pace method */ #define TCP_RACK_PROP_RATE 1056 /* The proportional reduction rate */ #define TCP_RACK_PRR_SENDALOT 1057 /* Allow PRR to send more than one seg */ #define TCP_RACK_MIN_TO 1058 /* Minimum time between rack t-o's in ms */ #define TCP_RACK_EARLY_RECOV 1059 /* Should recovery happen early (bool) */ #define TCP_RACK_EARLY_SEG 1060 /* If early recovery max segments */ #define TCP_RACK_REORD_THRESH 1061 /* RACK reorder threshold (shift amount) */ #define TCP_RACK_REORD_FADE 1062 /* Does reordering fade after ms time */ #define TCP_RACK_TLP_THRESH 1063 /* RACK TLP theshold i.e. srtt+(srtt/N) */ #define TCP_RACK_PKT_DELAY 1064 /* RACK added ms i.e. rack-rtt + reord + N */ #define TCP_RACK_TLP_INC_VAR 1065 /* Does TLP include rtt variance in t-o */ #define TCP_BBR_IWINTSO 1067 /* Initial TSO window for BBRs first sends */ #define TCP_BBR_RECFORCE 1068 /* Enter recovery force out a segment disregard pacer no longer valid */ #define TCP_BBR_STARTUP_PG 1069 /* Startup pacing gain */ #define TCP_BBR_DRAIN_PG 1070 /* Drain pacing gain */ #define TCP_BBR_RWND_IS_APP 1071 /* Rwnd limited is considered app limited */ #define TCP_BBR_PROBE_RTT_INT 1072 /* How long in useconds between probe-rtt */ #define TCP_BBR_ONE_RETRAN 1073 /* Is only one segment allowed out during retran */ #define TCP_BBR_STARTUP_LOSS_EXIT 1074 /* Do we exit a loss during startup if not 20% incr */ #define TCP_BBR_USE_LOWGAIN 1075 /* lower the gain in PROBE_BW enable */ #define TCP_BBR_LOWGAIN_THRESH 1076 /* Unused after 2.3 morphs to TSLIMITS >= 2.3 */ #define TCP_BBR_TSLIMITS 1076 /* Do we use experimental Timestamp limiting for our algo */ #define TCP_BBR_LOWGAIN_HALF 1077 /* Unused after 2.3 */ #define TCP_BBR_PACE_OH 1077 /* Reused in 4.2 for pacing overhead setting */ #define TCP_BBR_LOWGAIN_FD 1078 /* Unused after 2.3 */ #define TCP_BBR_HOLD_TARGET 1078 /* For 4.3 on */ #define TCP_BBR_USEDEL_RATE 1079 /* Enable use of delivery rate for loss recovery */ #define TCP_BBR_MIN_RTO 1080 /* Min RTO in milliseconds */ #define TCP_BBR_MAX_RTO 1081 /* Max RTO in milliseconds */ #define TCP_BBR_REC_OVER_HPTS 1082 /* Recovery override htps settings 0/1/3 */ #define TCP_BBR_UNLIMITED 1083 /* Not used before 2.3 and morphs to algorithm >= 2.3 */ #define TCP_BBR_ALGORITHM 1083 /* What measurement algo does BBR use netflix=0, google=1 */ #define TCP_BBR_DRAIN_INC_EXTRA 1084 /* Does the 3/4 drain target include the extra gain */ #define TCP_BBR_STARTUP_EXIT_EPOCH 1085 /* what epoch gets us out of startup */ #define TCP_BBR_PACE_PER_SEC 1086 #define TCP_BBR_PACE_DEL_TAR 1087 #define TCP_BBR_PACE_SEG_MAX 1088 #define TCP_BBR_PACE_SEG_MIN 1089 #define TCP_BBR_PACE_CROSS 1090 #define TCP_RACK_IDLE_REDUCE_HIGH 1092 /* Reduce the highest cwnd seen to IW on idle */ #define TCP_RACK_MIN_PACE 1093 /* Do we enforce rack min pace time */ #define TCP_RACK_MIN_PACE_SEG 1094 /* If so what is the seg threshould */ #define TCP_RACK_GP_INCREASE 1094 /* After 4.1 its the GP increase in older rack */ #define TCP_RACK_TLP_USE 1095 #define TCP_BBR_ACK_COMP_ALG 1096 /* Not used */ #define TCP_BBR_TMR_PACE_OH 1096 /* Recycled in 4.2 */ #define TCP_BBR_EXTRA_GAIN 1097 #define TCP_RACK_DO_DETECTION 1097 /* Recycle of extra gain for rack, attack detection */ #define TCP_BBR_RACK_RTT_USE 1098 /* what RTT should we use 0, 1, or 2? */ #define TCP_BBR_RETRAN_WTSO 1099 #define TCP_DATA_AFTER_CLOSE 1100 #define TCP_BBR_PROBE_RTT_GAIN 1101 #define TCP_BBR_PROBE_RTT_LEN 1102 #define TCP_BBR_SEND_IWND_IN_TSO 1103 /* Do we burst out whole iwin size chunks at start? */ #define TCP_BBR_USE_RACK_RR 1104 /* Do we use the rack rapid recovery for pacing rxt's */ #define TCP_BBR_USE_RACK_CHEAT TCP_BBR_USE_RACK_RR /* Compat. */ #define TCP_BBR_HDWR_PACE 1105 /* Enable/disable hardware pacing */ #define TCP_BBR_UTTER_MAX_TSO 1106 /* Do we enforce an utter max TSO size */ #define TCP_BBR_EXTRA_STATE 1107 /* Special exit-persist catch up */ #define TCP_BBR_FLOOR_MIN_TSO 1108 /* The min tso size */ #define TCP_BBR_MIN_TOPACEOUT 1109 /* Do we suspend pacing until */ #define TCP_BBR_TSTMP_RAISES 1110 /* Can a timestamp measurement raise the b/w */ #define TCP_BBR_POLICER_DETECT 1111 /* Turn on/off google mode policer detection */ #define TCP_BBR_RACK_INIT_RATE 1112 /* Set an initial pacing rate for when we have no b/w in kbits per sec */ #define TCP_RACK_RR_CONF 1113 /* Rack rapid recovery configuration control*/ #define TCP_RACK_CHEAT_NOT_CONF_RATE TCP_RACK_RR_CONF #define TCP_RACK_GP_INCREASE_CA 1114 /* GP increase for Congestion Avoidance */ #define TCP_RACK_GP_INCREASE_SS 1115 /* GP increase for Slow Start */ #define TCP_RACK_GP_INCREASE_REC 1116 /* GP increase for Recovery */ #define TCP_RACK_FORCE_MSEG 1117 /* Override to use the user set max-seg value */ #define TCP_RACK_PACE_RATE_CA 1118 /* Pacing rate for Congestion Avoidance */ #define TCP_RACK_PACE_RATE_SS 1119 /* Pacing rate for Slow Start */ #define TCP_RACK_PACE_RATE_REC 1120 /* Pacing rate for Recovery */ #define TCP_NO_PRR 1122 /* If pacing, don't use prr */ #define TCP_RACK_NONRXT_CFG_RATE 1123 /* In recovery does a non-rxt use the cfg rate */ #define TCP_SHARED_CWND_ENABLE 1124 /* Use a shared cwnd if allowed */ #define TCP_TIMELY_DYN_ADJ 1125 /* Do we attempt dynamic multipler adjustment with timely. */ #define TCP_RACK_NO_PUSH_AT_MAX 1126 /* For timely do not push if we are over max rtt */ #define TCP_RACK_PACE_TO_FILL 1127 /* If we are not in recovery, always pace to fill the cwnd in 1 RTT */ #define TCP_SHARED_CWND_TIME_LIMIT 1128 /* we should limit to low time values the scwnd life */ #define TCP_RACK_PROFILE 1129 /* Select a profile that sets multiple options */ #define TCP_HDWR_RATE_CAP 1130 /* Allow hardware rates to cap pacing rate */ #define TCP_PACING_RATE_CAP 1131 /* Highest rate allowed in pacing in bytes per second (uint64_t) */ #define TCP_HDWR_UP_ONLY 1132 /* Allow the pacing rate to climb but not descend (with the exception of fill-cw */ #define TCP_RACK_ABC_VAL 1133 /* Set a local ABC value different then the system default */ #define TCP_REC_ABC_VAL 1134 /* Do we use the ABC value for recovery or the override one from sysctl */ #define TCP_RACK_MEASURE_CNT 1135 /* How many measurements are required in GP pacing */ #define TCP_DEFER_OPTIONS 1136 /* Defer options until the proper number of measurements occur, does not defer TCP_RACK_MEASURE_CNT */ #define TCP_FAST_RSM_HACK 1137 /* Do we do the broken thing where we don't twiddle the TLP bits properly in fast_rsm_output? */ #define TCP_RACK_PACING_BETA 1138 /* Changing the beta for pacing */ #define TCP_RACK_PACING_BETA_ECN 1139 /* Changing the beta for ecn with pacing */ #define TCP_RACK_TIMER_SLOP 1140 /* Set or get the timer slop used */ #define TCP_RACK_DSACK_OPT 1141 /* How do we setup rack timer DSACK options bit 1/2 */ #define TCP_RACK_ENABLE_HYSTART 1142 /* Do we allow hystart in the CC modules */ /* Start of reserved space for third-party user-settable options. */ #define TCP_VENDOR SO_VENDOR #define TCP_CA_NAME_MAX 16 /* max congestion control name length */ #define TCPI_OPT_TIMESTAMPS 0x01 #define TCPI_OPT_SACK 0x02 #define TCPI_OPT_WSCALE 0x04 #define TCPI_OPT_ECN 0x08 #define TCPI_OPT_TOE 0x10 #define TCPI_OPT_TFO 0x20 /* Maximum length of log ID. */ #define TCP_LOG_ID_LEN 64 /* * The TCP_INFO socket option comes from the Linux 2.6 TCP API, and permits * the caller to query certain information about the state of a TCP * connection. We provide an overlapping set of fields with the Linux * implementation, but since this is a fixed size structure, room has been * left for growth. In order to maximize potential future compatibility with * the Linux API, the same variable names and order have been adopted, and * padding left to make room for omitted fields in case they are added later. * * XXX: This is currently an unstable ABI/API, in that it is expected to * change. */ struct tcp_info { u_int8_t tcpi_state; /* TCP FSM state. */ u_int8_t __tcpi_ca_state; u_int8_t __tcpi_retransmits; u_int8_t __tcpi_probes; u_int8_t __tcpi_backoff; u_int8_t tcpi_options; /* Options enabled on conn. */ u_int8_t tcpi_snd_wscale:4, /* RFC1323 send shift value. */ tcpi_rcv_wscale:4; /* RFC1323 recv shift value. */ u_int32_t tcpi_rto; /* Retransmission timeout (usec). */ u_int32_t __tcpi_ato; u_int32_t tcpi_snd_mss; /* Max segment size for send. */ u_int32_t tcpi_rcv_mss; /* Max segment size for receive. */ u_int32_t __tcpi_unacked; u_int32_t __tcpi_sacked; u_int32_t __tcpi_lost; u_int32_t __tcpi_retrans; u_int32_t __tcpi_fackets; /* Times; measurements in usecs. */ u_int32_t __tcpi_last_data_sent; u_int32_t __tcpi_last_ack_sent; /* Also unimpl. on Linux? */ u_int32_t tcpi_last_data_recv; /* Time since last recv data. */ u_int32_t __tcpi_last_ack_recv; /* Metrics; variable units. */ u_int32_t __tcpi_pmtu; u_int32_t __tcpi_rcv_ssthresh; u_int32_t tcpi_rtt; /* Smoothed RTT in usecs. */ u_int32_t tcpi_rttvar; /* RTT variance in usecs. */ u_int32_t tcpi_snd_ssthresh; /* Slow start threshold. */ u_int32_t tcpi_snd_cwnd; /* Send congestion window. */ u_int32_t __tcpi_advmss; u_int32_t __tcpi_reordering; u_int32_t __tcpi_rcv_rtt; u_int32_t tcpi_rcv_space; /* Advertised recv window. */ /* FreeBSD extensions to tcp_info. */ u_int32_t tcpi_snd_wnd; /* Advertised send window. */ u_int32_t tcpi_snd_bwnd; /* No longer used. */ u_int32_t tcpi_snd_nxt; /* Next egress seqno */ u_int32_t tcpi_rcv_nxt; /* Next ingress seqno */ u_int32_t tcpi_toe_tid; /* HWTID for TOE endpoints */ u_int32_t tcpi_snd_rexmitpack; /* Retransmitted packets */ u_int32_t tcpi_rcv_ooopack; /* Out-of-order packets */ u_int32_t tcpi_snd_zerowin; /* Zero-sized windows sent */ /* Padding to grow without breaking ABI. */ u_int32_t __tcpi_pad[26]; /* Padding. */ }; /* * If this structure is provided when setting the TCP_FASTOPEN socket * option, and the enable member is non-zero, a subsequent connect will use * pre-shared key (PSK) mode using the provided key. */ struct tcp_fastopen { int enable; uint8_t psk[TCP_FASTOPEN_PSK_LEN]; }; #endif #define TCP_FUNCTION_NAME_LEN_MAX 32 struct tcp_function_set { char function_set_name[TCP_FUNCTION_NAME_LEN_MAX]; uint32_t pcbcnt; }; /* TLS modes for TCP_TXTLS_MODE */ #define TCP_TLS_MODE_NONE 0 #define TCP_TLS_MODE_SW 1 #define TCP_TLS_MODE_IFNET 2 #define TCP_TLS_MODE_TOE 3 /* * TCP Control message types */ #define TLS_SET_RECORD_TYPE 1 #define TLS_GET_RECORD 2 /* * TCP specific variables of interest for tp->t_stats stats(9) accounting. */ #define VOI_TCP_TXPB 0 /* Transmit payload bytes */ #define VOI_TCP_RETXPB 1 /* Retransmit payload bytes */ #define VOI_TCP_FRWIN 2 /* Foreign receive window */ #define VOI_TCP_LCWIN 3 /* Local congesiton window */ #define VOI_TCP_RTT 4 /* Round trip time */ #define VOI_TCP_CSIG 5 /* Congestion signal */ #define VOI_TCP_GPUT 6 /* Goodput */ #define VOI_TCP_CALCFRWINDIFF 7 /* Congestion avoidance LCWIN - FRWIN */ #define VOI_TCP_GPUT_ND 8 /* Goodput normalised delta */ #define VOI_TCP_ACKLEN 9 /* Average ACKed bytes per ACK */ #define TCP_REUSPORT_LB_NUMA_NODOM (-2) /* remove numa binding */ #define TCP_REUSPORT_LB_NUMA_CURDOM (-1) /* bind to current domain */ #endif /* !_NETINET_TCP_H_ */ diff --git a/sys/netinet/tcp_lro.c b/sys/netinet/tcp_lro.c index b973c788d23e..c1d3b0d4f13f 100644 --- a/sys/netinet/tcp_lro.c +++ b/sys/netinet/tcp_lro.c @@ -1,1973 +1,1973 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007, Myricom Inc. * Copyright (c) 2008, Intel Corporation. * Copyright (c) 2012 The FreeBSD Foundation * Copyright (c) 2016-2021 Mellanox Technologies. * All rights reserved. * * Portions of this software were developed by Bjoern Zeeb * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures"); #define TCP_LRO_TS_OPTION \ ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP) static void tcp_lro_rx_done(struct lro_ctrl *lc); static int tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash); #ifdef TCPHPTS static bool do_bpf_strip_and_compress(struct inpcb *, struct lro_ctrl *, struct lro_entry *, struct mbuf **, struct mbuf **, struct mbuf **, bool *, bool); #endif SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "TCP LRO"); static long tcplro_stacks_wanting_mbufq; counter_u64_t tcp_inp_lro_direct_queue; counter_u64_t tcp_inp_lro_wokeup_queue; counter_u64_t tcp_inp_lro_compressed; counter_u64_t tcp_inp_lro_locks_taken; counter_u64_t tcp_extra_mbuf; counter_u64_t tcp_would_have_but; counter_u64_t tcp_comp_total; counter_u64_t tcp_uncomp_total; counter_u64_t tcp_bad_csums; static unsigned tcp_lro_entries = TCP_LRO_ENTRIES; SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries, CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0, "default number of LRO entries"); static uint32_t tcp_lro_cpu_set_thresh = TCP_LRO_CPU_DECLARATION_THRESH; SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_cpu_threshold, CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_cpu_set_thresh, 0, "Number of interrups in a row on the same CPU that will make us declare an 'affinity' cpu?"); SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD, &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport"); SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD, &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts"); SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD, &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport"); SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD, &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken"); SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD, &tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp"); SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD, &tcp_would_have_but, "Number of times we would have had an extra compressed, but mget failed"); SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD, &tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set"); SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD, &tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP"); SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lro_badcsum, CTLFLAG_RD, &tcp_bad_csums, "Number of packets that the common code saw with bad csums"); void tcp_lro_reg_mbufq(void) { atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1); } void tcp_lro_dereg_mbufq(void) { atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1); } static __inline void tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket, struct lro_entry *le) { LIST_INSERT_HEAD(&lc->lro_active, le, next); LIST_INSERT_HEAD(bucket, le, hash_next); } static __inline void tcp_lro_active_remove(struct lro_entry *le) { LIST_REMOVE(le, next); /* active list */ LIST_REMOVE(le, hash_next); /* hash bucket */ } int tcp_lro_init(struct lro_ctrl *lc) { return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0)); } int tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp, unsigned lro_entries, unsigned lro_mbufs) { struct lro_entry *le; size_t size; unsigned i, elements; lc->lro_bad_csum = 0; lc->lro_queued = 0; lc->lro_flushed = 0; lc->lro_mbuf_count = 0; lc->lro_mbuf_max = lro_mbufs; lc->lro_cnt = lro_entries; lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX; lc->lro_length_lim = TCP_LRO_LENGTH_MAX; lc->ifp = ifp; LIST_INIT(&lc->lro_free); LIST_INIT(&lc->lro_active); /* create hash table to accelerate entry lookup */ if (lro_entries > lro_mbufs) elements = lro_entries; else elements = lro_mbufs; lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz, HASH_NOWAIT); if (lc->lro_hash == NULL) { memset(lc, 0, sizeof(*lc)); return (ENOMEM); } /* compute size to allocate */ size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) + (lro_entries * sizeof(*le)); lc->lro_mbuf_data = (struct lro_mbuf_sort *) malloc(size, M_LRO, M_NOWAIT | M_ZERO); /* check for out of memory */ if (lc->lro_mbuf_data == NULL) { free(lc->lro_hash, M_LRO); memset(lc, 0, sizeof(*lc)); return (ENOMEM); } /* compute offset for LRO entries */ le = (struct lro_entry *) (lc->lro_mbuf_data + lro_mbufs); /* setup linked list */ for (i = 0; i != lro_entries; i++) LIST_INSERT_HEAD(&lc->lro_free, le + i, next); return (0); } struct vxlan_header { uint32_t vxlh_flags; uint32_t vxlh_vni; }; static inline void * tcp_lro_low_level_parser(void *ptr, struct lro_parser *parser, bool update_data, bool is_vxlan, int mlen) { const struct ether_vlan_header *eh; void *old; uint16_t eth_type; if (update_data) memset(parser, 0, sizeof(*parser)); old = ptr; if (is_vxlan) { const struct vxlan_header *vxh; vxh = ptr; ptr = (uint8_t *)ptr + sizeof(*vxh); if (update_data) { parser->data.vxlan_vni = vxh->vxlh_vni & htonl(0xffffff00); } } eh = ptr; if (__predict_false(eh->evl_encap_proto == htons(ETHERTYPE_VLAN))) { eth_type = eh->evl_proto; if (update_data) { /* strip priority and keep VLAN ID only */ parser->data.vlan_id = eh->evl_tag & htons(EVL_VLID_MASK); } /* advance to next header */ ptr = (uint8_t *)ptr + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; mlen -= (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); } else { eth_type = eh->evl_encap_proto; /* advance to next header */ mlen -= ETHER_HDR_LEN; ptr = (uint8_t *)ptr + ETHER_HDR_LEN; } if (__predict_false(mlen <= 0)) return (NULL); switch (eth_type) { #ifdef INET case htons(ETHERTYPE_IP): parser->ip4 = ptr; if (__predict_false(mlen < sizeof(struct ip))) return (NULL); /* Ensure there are no IPv4 options. */ if ((parser->ip4->ip_hl << 2) != sizeof (*parser->ip4)) break; /* .. and the packet is not fragmented. */ if (parser->ip4->ip_off & htons(IP_MF|IP_OFFMASK)) break; ptr = (uint8_t *)ptr + (parser->ip4->ip_hl << 2); mlen -= sizeof(struct ip); if (update_data) { parser->data.s_addr.v4 = parser->ip4->ip_src; parser->data.d_addr.v4 = parser->ip4->ip_dst; } switch (parser->ip4->ip_p) { case IPPROTO_UDP: if (__predict_false(mlen < sizeof(struct udphdr))) return (NULL); parser->udp = ptr; if (update_data) { parser->data.lro_type = LRO_TYPE_IPV4_UDP; parser->data.s_port = parser->udp->uh_sport; parser->data.d_port = parser->udp->uh_dport; } else { MPASS(parser->data.lro_type == LRO_TYPE_IPV4_UDP); } ptr = ((uint8_t *)ptr + sizeof(*parser->udp)); parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; return (ptr); case IPPROTO_TCP: parser->tcp = ptr; if (__predict_false(mlen < sizeof(struct tcphdr))) return (NULL); if (update_data) { parser->data.lro_type = LRO_TYPE_IPV4_TCP; parser->data.s_port = parser->tcp->th_sport; parser->data.d_port = parser->tcp->th_dport; } else { MPASS(parser->data.lro_type == LRO_TYPE_IPV4_TCP); } if (__predict_false(mlen < (parser->tcp->th_off << 2))) return (NULL); ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; return (ptr); default: break; } break; #endif #ifdef INET6 case htons(ETHERTYPE_IPV6): parser->ip6 = ptr; if (__predict_false(mlen < sizeof(struct ip6_hdr))) return (NULL); ptr = (uint8_t *)ptr + sizeof(*parser->ip6); if (update_data) { parser->data.s_addr.v6 = parser->ip6->ip6_src; parser->data.d_addr.v6 = parser->ip6->ip6_dst; } mlen -= sizeof(struct ip6_hdr); switch (parser->ip6->ip6_nxt) { case IPPROTO_UDP: if (__predict_false(mlen < sizeof(struct udphdr))) return (NULL); parser->udp = ptr; if (update_data) { parser->data.lro_type = LRO_TYPE_IPV6_UDP; parser->data.s_port = parser->udp->uh_sport; parser->data.d_port = parser->udp->uh_dport; } else { MPASS(parser->data.lro_type == LRO_TYPE_IPV6_UDP); } ptr = (uint8_t *)ptr + sizeof(*parser->udp); parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; return (ptr); case IPPROTO_TCP: if (__predict_false(mlen < sizeof(struct tcphdr))) return (NULL); parser->tcp = ptr; if (update_data) { parser->data.lro_type = LRO_TYPE_IPV6_TCP; parser->data.s_port = parser->tcp->th_sport; parser->data.d_port = parser->tcp->th_dport; } else { MPASS(parser->data.lro_type == LRO_TYPE_IPV6_TCP); } if (__predict_false(mlen < (parser->tcp->th_off << 2))) return (NULL); ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; return (ptr); default: break; } break; #endif default: break; } /* Invalid packet - cannot parse */ return (NULL); } static const int vxlan_csum = CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID; static inline struct lro_parser * tcp_lro_parser(struct mbuf *m, struct lro_parser *po, struct lro_parser *pi, bool update_data) { void *data_ptr; /* Try to parse outer headers first. */ data_ptr = tcp_lro_low_level_parser(m->m_data, po, update_data, false, m->m_len); if (data_ptr == NULL || po->total_hdr_len > m->m_len) return (NULL); if (update_data) { /* Store VLAN ID, if any. */ if (__predict_false(m->m_flags & M_VLANTAG)) { po->data.vlan_id = htons(m->m_pkthdr.ether_vtag) & htons(EVL_VLID_MASK); } /* Store decrypted flag, if any. */ if (__predict_false((m->m_pkthdr.csum_flags & CSUM_TLS_MASK) == CSUM_TLS_DECRYPTED)) po->data.lro_flags |= LRO_FLAG_DECRYPTED; } switch (po->data.lro_type) { case LRO_TYPE_IPV4_UDP: case LRO_TYPE_IPV6_UDP: /* Check for VXLAN headers. */ if ((m->m_pkthdr.csum_flags & vxlan_csum) != vxlan_csum) break; /* Try to parse inner headers. */ data_ptr = tcp_lro_low_level_parser(data_ptr, pi, update_data, true, (m->m_len - ((caddr_t)data_ptr - m->m_data))); if (data_ptr == NULL || (pi->total_hdr_len + po->total_hdr_len) > m->m_len) break; /* Verify supported header types. */ switch (pi->data.lro_type) { case LRO_TYPE_IPV4_TCP: case LRO_TYPE_IPV6_TCP: return (pi); default: break; } break; case LRO_TYPE_IPV4_TCP: case LRO_TYPE_IPV6_TCP: if (update_data) memset(pi, 0, sizeof(*pi)); return (po); default: break; } return (NULL); } static inline int tcp_lro_trim_mbuf_chain(struct mbuf *m, const struct lro_parser *po) { int len; switch (po->data.lro_type) { #ifdef INET case LRO_TYPE_IPV4_TCP: len = ((uint8_t *)po->ip4 - (uint8_t *)m->m_data) + ntohs(po->ip4->ip_len); break; #endif #ifdef INET6 case LRO_TYPE_IPV6_TCP: len = ((uint8_t *)po->ip6 - (uint8_t *)m->m_data) + ntohs(po->ip6->ip6_plen) + sizeof(*po->ip6); break; #endif default: return (TCP_LRO_CANNOT); } /* * If the frame is padded beyond the end of the IP packet, * then trim the extra bytes off: */ if (__predict_true(m->m_pkthdr.len == len)) { return (0); } else if (m->m_pkthdr.len > len) { m_adj(m, len - m->m_pkthdr.len); return (0); } return (TCP_LRO_CANNOT); } static struct tcphdr * tcp_lro_get_th(struct mbuf *m) { return ((struct tcphdr *)((uint8_t *)m->m_data + m->m_pkthdr.lro_tcp_h_off)); } static void lro_free_mbuf_chain(struct mbuf *m) { struct mbuf *save; while (m) { save = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); m = save; } } void tcp_lro_free(struct lro_ctrl *lc) { struct lro_entry *le; unsigned x; /* reset LRO free list */ LIST_INIT(&lc->lro_free); /* free active mbufs, if any */ while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { tcp_lro_active_remove(le); lro_free_mbuf_chain(le->m_head); } /* free hash table */ free(lc->lro_hash, M_LRO); lc->lro_hash = NULL; lc->lro_hashsz = 0; /* free mbuf array, if any */ for (x = 0; x != lc->lro_mbuf_count; x++) m_freem(lc->lro_mbuf_data[x].mb); lc->lro_mbuf_count = 0; /* free allocated memory, if any */ free(lc->lro_mbuf_data, M_LRO); lc->lro_mbuf_data = NULL; } static uint16_t tcp_lro_rx_csum_tcphdr(const struct tcphdr *th) { const uint16_t *ptr; uint32_t csum; uint16_t len; csum = -th->th_sum; /* exclude checksum field */ len = th->th_off; ptr = (const uint16_t *)th; while (len--) { csum += *ptr; ptr++; csum += *ptr; ptr++; } while (csum > 0xffff) csum = (csum >> 16) + (csum & 0xffff); return (csum); } static uint16_t tcp_lro_rx_csum_data(const struct lro_parser *pa, uint16_t tcp_csum) { uint32_t c; uint16_t cs; c = tcp_csum; switch (pa->data.lro_type) { #ifdef INET6 case LRO_TYPE_IPV6_TCP: /* Compute full pseudo IPv6 header checksum. */ cs = in6_cksum_pseudo(pa->ip6, ntohs(pa->ip6->ip6_plen), pa->ip6->ip6_nxt, 0); break; #endif #ifdef INET case LRO_TYPE_IPV4_TCP: /* Compute full pseudo IPv4 header checsum. */ cs = in_addword(ntohs(pa->ip4->ip_len) - sizeof(*pa->ip4), IPPROTO_TCP); cs = in_pseudo(pa->ip4->ip_src.s_addr, pa->ip4->ip_dst.s_addr, htons(cs)); break; #endif default: cs = 0; /* Keep compiler happy. */ break; } /* Complement checksum. */ cs = ~cs; c += cs; /* Remove TCP header checksum. */ cs = ~tcp_lro_rx_csum_tcphdr(pa->tcp); c += cs; /* Compute checksum remainder. */ while (c > 0xffff) c = (c >> 16) + (c & 0xffff); return (c); } static void tcp_lro_rx_done(struct lro_ctrl *lc) { struct lro_entry *le; while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { tcp_lro_active_remove(le); tcp_lro_flush(lc, le); } } void tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout) { struct lro_entry *le, *le_tmp; uint64_t now, tov; struct bintime bt; NET_EPOCH_ASSERT(); if (LIST_EMPTY(&lc->lro_active)) return; /* get timeout time and current time in ns */ binuptime(&bt); now = bintime2ns(&bt); tov = ((timeout->tv_sec * 1000000000) + (timeout->tv_usec * 1000)); LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) { if (now >= (bintime2ns(&le->alloc_time) + tov)) { tcp_lro_active_remove(le); tcp_lro_flush(lc, le); } } } #ifdef INET static int tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4) { uint16_t csum; /* Legacy IP has a header checksum that needs to be correct. */ if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { if (__predict_false((m->m_pkthdr.csum_flags & CSUM_IP_VALID) == 0)) { lc->lro_bad_csum++; return (TCP_LRO_CANNOT); } } else { csum = in_cksum_hdr(ip4); if (__predict_false(csum != 0)) { lc->lro_bad_csum++; return (TCP_LRO_CANNOT); } } return (0); } #endif #ifdef TCPHPTS static void tcp_lro_log(struct tcpcb *tp, const struct lro_ctrl *lc, const struct lro_entry *le, const struct mbuf *m, int frm, int32_t tcp_data_len, uint32_t th_seq, uint32_t th_ack, uint16_t th_win) { if (tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv, btv; uint32_t cts; cts = tcp_get_usecs(&tv); memset(&log, 0, sizeof(union tcp_log_stackspecific)); log.u_bbr.flex8 = frm; log.u_bbr.flex1 = tcp_data_len; if (m) log.u_bbr.flex2 = m->m_pkthdr.len; else log.u_bbr.flex2 = 0; log.u_bbr.flex3 = le->m_head->m_pkthdr.lro_nsegs; log.u_bbr.flex4 = le->m_head->m_pkthdr.lro_tcp_d_len; if (le->m_head) { log.u_bbr.flex5 = le->m_head->m_pkthdr.len; log.u_bbr.delRate = le->m_head->m_flags; log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp; } log.u_bbr.inflight = th_seq; log.u_bbr.delivered = th_ack; log.u_bbr.timeStamp = cts; log.u_bbr.epoch = le->next_seq; log.u_bbr.lt_epoch = le->ack_seq; log.u_bbr.pacing_gain = th_win; log.u_bbr.cwnd_gain = le->window; log.u_bbr.lost = curcpu; log.u_bbr.cur_del_rate = (uintptr_t)m; log.u_bbr.bw_inuse = (uintptr_t)le->m_head; bintime2timeval(&lc->lro_last_queue_time, &btv); log.u_bbr.flex6 = tcp_tv_to_usectick(&btv); log.u_bbr.flex7 = le->compressed; log.u_bbr.pacing_gain = le->uncompressed; if (in_epoch(net_epoch_preempt)) log.u_bbr.inhpts = 1; else log.u_bbr.inhpts = 0; TCP_LOG_EVENTP(tp, NULL, &tp->t_inpcb->inp_socket->so_rcv, &tp->t_inpcb->inp_socket->so_snd, TCP_LOG_LRO, 0, 0, &log, false, &tv); } } #endif static inline void tcp_lro_assign_and_checksum_16(uint16_t *ptr, uint16_t value, uint16_t *psum) { uint32_t csum; csum = 0xffff - *ptr + value; while (csum > 0xffff) csum = (csum >> 16) + (csum & 0xffff); *ptr = value; *psum = csum; } static uint16_t tcp_lro_update_checksum(const struct lro_parser *pa, const struct lro_entry *le, uint16_t payload_len, uint16_t delta_sum) { uint32_t csum; uint16_t tlen; uint16_t temp[5] = {}; switch (pa->data.lro_type) { case LRO_TYPE_IPV4_TCP: /* Compute new IPv4 length. */ tlen = (pa->ip4->ip_hl << 2) + (pa->tcp->th_off << 2) + payload_len; tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); /* Subtract delta from current IPv4 checksum. */ csum = pa->ip4->ip_sum + 0xffff - temp[0]; while (csum > 0xffff) csum = (csum >> 16) + (csum & 0xffff); tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); goto update_tcp_header; case LRO_TYPE_IPV6_TCP: /* Compute new IPv6 length. */ tlen = (pa->tcp->th_off << 2) + payload_len; tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); goto update_tcp_header; case LRO_TYPE_IPV4_UDP: /* Compute new IPv4 length. */ tlen = (pa->ip4->ip_hl << 2) + sizeof(*pa->udp) + payload_len; tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); /* Subtract delta from current IPv4 checksum. */ csum = pa->ip4->ip_sum + 0xffff - temp[0]; while (csum > 0xffff) csum = (csum >> 16) + (csum & 0xffff); tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); goto update_udp_header; case LRO_TYPE_IPV6_UDP: /* Compute new IPv6 length. */ tlen = sizeof(*pa->udp) + payload_len; tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); goto update_udp_header; default: return (0); } update_tcp_header: /* Compute current TCP header checksum. */ temp[2] = tcp_lro_rx_csum_tcphdr(pa->tcp); /* Incorporate the latest ACK into the TCP header. */ pa->tcp->th_ack = le->ack_seq; pa->tcp->th_win = le->window; /* Incorporate latest timestamp into the TCP header. */ if (le->timestamp != 0) { uint32_t *ts_ptr; ts_ptr = (uint32_t *)(pa->tcp + 1); ts_ptr[1] = htonl(le->tsval); ts_ptr[2] = le->tsecr; } /* Compute new TCP header checksum. */ temp[3] = tcp_lro_rx_csum_tcphdr(pa->tcp); /* Compute new TCP checksum. */ csum = pa->tcp->th_sum + 0xffff - delta_sum + 0xffff - temp[0] + 0xffff - temp[3] + temp[2]; while (csum > 0xffff) csum = (csum >> 16) + (csum & 0xffff); /* Assign new TCP checksum. */ tcp_lro_assign_and_checksum_16(&pa->tcp->th_sum, csum, &temp[4]); /* Compute all modififications affecting next checksum. */ csum = temp[0] + temp[1] + 0xffff - temp[2] + temp[3] + temp[4] + delta_sum; while (csum > 0xffff) csum = (csum >> 16) + (csum & 0xffff); /* Return delta checksum to next stage, if any. */ return (csum); update_udp_header: tlen = sizeof(*pa->udp) + payload_len; /* Assign new UDP length and compute checksum delta. */ tcp_lro_assign_and_checksum_16(&pa->udp->uh_ulen, htons(tlen), &temp[2]); /* Check if there is a UDP checksum. */ if (__predict_false(pa->udp->uh_sum != 0)) { /* Compute new UDP checksum. */ csum = pa->udp->uh_sum + 0xffff - delta_sum + 0xffff - temp[0] + 0xffff - temp[2]; while (csum > 0xffff) csum = (csum >> 16) + (csum & 0xffff); /* Assign new UDP checksum. */ tcp_lro_assign_and_checksum_16(&pa->udp->uh_sum, csum, &temp[3]); } /* Compute all modififications affecting next checksum. */ csum = temp[0] + temp[1] + temp[2] + temp[3] + delta_sum; while (csum > 0xffff) csum = (csum >> 16) + (csum & 0xffff); /* Return delta checksum to next stage, if any. */ return (csum); } static void tcp_flush_out_entry(struct lro_ctrl *lc, struct lro_entry *le) { /* Check if we need to recompute any checksums. */ if (le->needs_merge) { uint16_t csum; switch (le->inner.data.lro_type) { case LRO_TYPE_IPV4_TCP: csum = tcp_lro_update_checksum(&le->inner, le, le->m_head->m_pkthdr.lro_tcp_d_len, le->m_head->m_pkthdr.lro_tcp_d_csum); csum = tcp_lro_update_checksum(&le->outer, NULL, le->m_head->m_pkthdr.lro_tcp_d_len + le->inner.total_hdr_len, csum); le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; le->m_head->m_pkthdr.csum_data = 0xffff; if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; break; case LRO_TYPE_IPV6_TCP: csum = tcp_lro_update_checksum(&le->inner, le, le->m_head->m_pkthdr.lro_tcp_d_len, le->m_head->m_pkthdr.lro_tcp_d_csum); csum = tcp_lro_update_checksum(&le->outer, NULL, le->m_head->m_pkthdr.lro_tcp_d_len + le->inner.total_hdr_len, csum); le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR; le->m_head->m_pkthdr.csum_data = 0xffff; if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; break; case LRO_TYPE_NONE: switch (le->outer.data.lro_type) { case LRO_TYPE_IPV4_TCP: csum = tcp_lro_update_checksum(&le->outer, le, le->m_head->m_pkthdr.lro_tcp_d_len, le->m_head->m_pkthdr.lro_tcp_d_csum); le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; le->m_head->m_pkthdr.csum_data = 0xffff; if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; break; case LRO_TYPE_IPV6_TCP: csum = tcp_lro_update_checksum(&le->outer, le, le->m_head->m_pkthdr.lro_tcp_d_len, le->m_head->m_pkthdr.lro_tcp_d_csum); le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR; le->m_head->m_pkthdr.csum_data = 0xffff; if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; break; default: break; } break; default: break; } } /* * Break any chain, this is not set to NULL on the singleton * case m_nextpkt points to m_head. Other case set them * m_nextpkt to NULL in push_and_replace. */ le->m_head->m_nextpkt = NULL; lc->lro_queued += le->m_head->m_pkthdr.lro_nsegs; (*lc->ifp->if_input)(lc->ifp, le->m_head); } static void tcp_set_entry_to_mbuf(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m, struct tcphdr *th) { uint32_t *ts_ptr; uint16_t tcp_data_len; uint16_t tcp_opt_len; ts_ptr = (uint32_t *)(th + 1); tcp_opt_len = (th->th_off << 2); tcp_opt_len -= sizeof(*th); /* Check if there is a timestamp option. */ if (tcp_opt_len == 0 || __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || *ts_ptr != TCP_LRO_TS_OPTION)) { /* We failed to find the timestamp option. */ le->timestamp = 0; } else { le->timestamp = 1; le->tsval = ntohl(*(ts_ptr + 1)); le->tsecr = *(ts_ptr + 2); } tcp_data_len = m->m_pkthdr.lro_tcp_d_len; /* Pull out TCP sequence numbers and window size. */ le->next_seq = ntohl(th->th_seq) + tcp_data_len; le->ack_seq = th->th_ack; le->window = th->th_win; - le->flags = th->th_flags; + le->flags = (th->th_x2 << 8) | th->th_flags; le->needs_merge = 0; /* Setup new data pointers. */ le->m_head = m; le->m_tail = m_last(m); } static void tcp_push_and_replace(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m) { struct lro_parser *pa; /* * Push up the stack of the current entry * and replace it with "m". */ struct mbuf *msave; /* Grab off the next and save it */ msave = le->m_head->m_nextpkt; le->m_head->m_nextpkt = NULL; /* Now push out the old entry */ tcp_flush_out_entry(lc, le); /* Re-parse new header, should not fail. */ pa = tcp_lro_parser(m, &le->outer, &le->inner, false); KASSERT(pa != NULL, ("tcp_push_and_replace: LRO parser failed on m=%p\n", m)); /* * Now to replace the data properly in the entry * we have to reset the TCP header and * other fields. */ tcp_set_entry_to_mbuf(lc, le, m, pa->tcp); /* Restore the next list */ m->m_nextpkt = msave; } static void tcp_lro_mbuf_append_pkthdr(struct lro_entry *le, const struct mbuf *p) { struct mbuf *m; uint32_t csum; m = le->m_head; if (m->m_pkthdr.lro_nsegs == 1) { /* Compute relative checksum. */ csum = p->m_pkthdr.lro_tcp_d_csum; } else { /* Merge TCP data checksums. */ csum = (uint32_t)m->m_pkthdr.lro_tcp_d_csum + (uint32_t)p->m_pkthdr.lro_tcp_d_csum; while (csum > 0xffff) csum = (csum >> 16) + (csum & 0xffff); } /* Update various counters. */ m->m_pkthdr.len += p->m_pkthdr.lro_tcp_d_len; m->m_pkthdr.lro_tcp_d_csum = csum; m->m_pkthdr.lro_tcp_d_len += p->m_pkthdr.lro_tcp_d_len; m->m_pkthdr.lro_nsegs += p->m_pkthdr.lro_nsegs; le->needs_merge = 1; } static void tcp_lro_condense(struct lro_ctrl *lc, struct lro_entry *le) { /* * Walk through the mbuf chain we * have on tap and compress/condense * as required. */ uint32_t *ts_ptr; struct mbuf *m; struct tcphdr *th; uint32_t tcp_data_len_total; uint32_t tcp_data_seg_total; uint16_t tcp_data_len; uint16_t tcp_opt_len; /* * First we must check the lead (m_head) * we must make sure that it is *not* * something that should be sent up * right away (sack etc). */ again: m = le->m_head->m_nextpkt; if (m == NULL) { /* Just one left. */ return; } th = tcp_lro_get_th(m); tcp_opt_len = (th->th_off << 2); tcp_opt_len -= sizeof(*th); ts_ptr = (uint32_t *)(th + 1); if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || *ts_ptr != TCP_LRO_TS_OPTION)) { /* * Its not the timestamp. We can't * use this guy as the head. */ le->m_head->m_nextpkt = m->m_nextpkt; tcp_push_and_replace(lc, le, m); goto again; } - if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) { + if ((((th->th_x2 << 8) | th->th_flags) & ~(TH_ACK | TH_PUSH)) != 0) { /* * Make sure that previously seen segments/ACKs are delivered * before this segment, e.g. FIN. */ le->m_head->m_nextpkt = m->m_nextpkt; tcp_push_and_replace(lc, le, m); goto again; } while((m = le->m_head->m_nextpkt) != NULL) { /* * condense m into le, first * pull m out of the list. */ le->m_head->m_nextpkt = m->m_nextpkt; m->m_nextpkt = NULL; /* Setup my data */ tcp_data_len = m->m_pkthdr.lro_tcp_d_len; th = tcp_lro_get_th(m); ts_ptr = (uint32_t *)(th + 1); tcp_opt_len = (th->th_off << 2); tcp_opt_len -= sizeof(*th); tcp_data_len_total = le->m_head->m_pkthdr.lro_tcp_d_len + tcp_data_len; tcp_data_seg_total = le->m_head->m_pkthdr.lro_nsegs + m->m_pkthdr.lro_nsegs; if (tcp_data_seg_total >= lc->lro_ackcnt_lim || tcp_data_len_total >= lc->lro_length_lim) { /* Flush now if appending will result in overflow. */ tcp_push_and_replace(lc, le, m); goto again; } if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || *ts_ptr != TCP_LRO_TS_OPTION)) { /* * Maybe a sack in the new one? We need to * start all over after flushing the * current le. We will go up to the beginning * and flush it (calling the replace again possibly * or just returning). */ tcp_push_and_replace(lc, le, m); goto again; } - if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) { + if ((((th->th_x2 << 8) | th->th_flags) & ~(TH_ACK | TH_PUSH)) != 0) { tcp_push_and_replace(lc, le, m); goto again; } if (tcp_opt_len != 0) { uint32_t tsval = ntohl(*(ts_ptr + 1)); /* Make sure timestamp values are increasing. */ if (TSTMP_GT(le->tsval, tsval)) { tcp_push_and_replace(lc, le, m); goto again; } le->tsval = tsval; le->tsecr = *(ts_ptr + 2); } /* Try to append the new segment. */ if (__predict_false(ntohl(th->th_seq) != le->next_seq || ((th->th_flags & TH_ACK) != (le->flags & TH_ACK)) || (tcp_data_len == 0 && le->ack_seq == th->th_ack && le->window == th->th_win))) { /* Out of order packet, non-ACK + ACK or dup ACK. */ tcp_push_and_replace(lc, le, m); goto again; } if (tcp_data_len != 0 || SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) { le->next_seq += tcp_data_len; le->ack_seq = th->th_ack; le->window = th->th_win; le->needs_merge = 1; } else if (th->th_ack == le->ack_seq) { if (WIN_GT(th->th_win, le->window)) { le->window = th->th_win; le->needs_merge = 1; } } if (tcp_data_len == 0) { m_freem(m); continue; } /* Merge TCP data checksum and length to head mbuf. */ tcp_lro_mbuf_append_pkthdr(le, m); /* * Adjust the mbuf so that m_data points to the first byte of * the ULP payload. Adjust the mbuf to avoid complications and * append new segment to existing mbuf chain. */ m_adj(m, m->m_pkthdr.len - tcp_data_len); m_demote_pkthdr(m); le->m_tail->m_next = m; le->m_tail = m_last(m); } } #ifdef TCPHPTS static void tcp_queue_pkts(struct inpcb *inp, struct tcpcb *tp, struct lro_entry *le) { INP_WLOCK_ASSERT(inp); if (tp->t_in_pkt == NULL) { /* Nothing yet there */ tp->t_in_pkt = le->m_head; tp->t_tail_pkt = le->m_last_mbuf; } else { /* Already some there */ tp->t_tail_pkt->m_nextpkt = le->m_head; tp->t_tail_pkt = le->m_last_mbuf; } le->m_head = NULL; le->m_last_mbuf = NULL; } static struct mbuf * tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le, struct inpcb *inp, int32_t *new_m) { struct tcpcb *tp; struct mbuf *m; tp = intotcpcb(inp); if (__predict_false(tp == NULL)) return (NULL); /* Look at the last mbuf if any in queue */ m = tp->t_tail_pkt; if (m != NULL && (m->m_flags & M_ACKCMP) != 0) { if (M_TRAILINGSPACE(m) >= sizeof(struct tcp_ackent)) { tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0); *new_m = 0; counter_u64_add(tcp_extra_mbuf, 1); return (m); } else { /* Mark we ran out of space */ inp->inp_flags2 |= INP_MBUF_L_ACKS; } } /* Decide mbuf size. */ if (inp->inp_flags2 & INP_MBUF_L_ACKS) m = m_getcl(M_NOWAIT, MT_DATA, M_ACKCMP | M_PKTHDR); else m = m_gethdr(M_NOWAIT, MT_DATA); if (__predict_false(m == NULL)) { counter_u64_add(tcp_would_have_but, 1); return (NULL); } counter_u64_add(tcp_comp_total, 1); m->m_flags |= M_ACKCMP; *new_m = 1; return (m); } static struct inpcb * tcp_lro_lookup(struct ifnet *ifp, struct lro_parser *pa) { struct inpcb *inp; switch (pa->data.lro_type) { #ifdef INET6 case LRO_TYPE_IPV6_TCP: inp = in6_pcblookup(&V_tcbinfo, &pa->data.s_addr.v6, pa->data.s_port, &pa->data.d_addr.v6, pa->data.d_port, INPLOOKUP_WLOCKPCB, ifp); break; #endif #ifdef INET case LRO_TYPE_IPV4_TCP: inp = in_pcblookup(&V_tcbinfo, pa->data.s_addr.v4, pa->data.s_port, pa->data.d_addr.v4, pa->data.d_port, INPLOOKUP_WLOCKPCB, ifp); break; #endif default: inp = NULL; break; } return (inp); } static inline bool tcp_lro_ack_valid(struct mbuf *m, struct tcphdr *th, uint32_t **ppts, bool *other_opts) { /* * This function returns two bits of valuable information. * a) Is what is present capable of being ack-compressed, * we can ack-compress if there is no options or just * a timestamp option, and of course the th_flags must * be correct as well. * b) Our other options present such as SACK. This is * used to determine if we want to wakeup or not. */ bool ret = true; switch (th->th_off << 2) { case (sizeof(*th) + TCPOLEN_TSTAMP_APPA): *ppts = (uint32_t *)(th + 1); /* Check if we have only one timestamp option. */ if (**ppts == TCP_LRO_TS_OPTION) *other_opts = false; else { *other_opts = true; ret = false; } break; case (sizeof(*th)): /* No options. */ *ppts = NULL; *other_opts = false; break; default: *ppts = NULL; *other_opts = true; ret = false; break; } /* For ACKCMP we only accept ACK, PUSH, ECE and CWR. */ - if ((th->th_flags & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0) + if ((((th->th_x2 << 8) | th->th_flags) & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0) ret = false; /* If it has data on it we cannot compress it */ if (m->m_pkthdr.lro_tcp_d_len) ret = false; /* ACK flag must be set. */ if (!(th->th_flags & TH_ACK)) ret = false; return (ret); } static int tcp_lro_flush_tcphpts(struct lro_ctrl *lc, struct lro_entry *le) { struct inpcb *inp; struct tcpcb *tp; struct mbuf **pp, *cmp, *mv_to; bool bpf_req, should_wake; /* Check if packet doesn't belongs to our network interface. */ if ((tcplro_stacks_wanting_mbufq == 0) || (le->outer.data.vlan_id != 0) || (le->inner.data.lro_type != LRO_TYPE_NONE)) return (TCP_LRO_CANNOT); #ifdef INET6 /* * Be proactive about unspecified IPv6 address in source. As * we use all-zero to indicate unbounded/unconnected pcb, * unspecified IPv6 address can be used to confuse us. * * Note that packets with unspecified IPv6 destination is * already dropped in ip6_input. */ if (__predict_false(le->outer.data.lro_type == LRO_TYPE_IPV6_TCP && IN6_IS_ADDR_UNSPECIFIED(&le->outer.data.s_addr.v6))) return (TCP_LRO_CANNOT); if (__predict_false(le->inner.data.lro_type == LRO_TYPE_IPV6_TCP && IN6_IS_ADDR_UNSPECIFIED(&le->inner.data.s_addr.v6))) return (TCP_LRO_CANNOT); #endif /* Lookup inp, if any. */ inp = tcp_lro_lookup(lc->ifp, (le->inner.data.lro_type == LRO_TYPE_NONE) ? &le->outer : &le->inner); if (inp == NULL) return (TCP_LRO_CANNOT); counter_u64_add(tcp_inp_lro_locks_taken, 1); /* Get TCP control structure. */ tp = intotcpcb(inp); /* Check if the inp is dead, Jim. */ if (tp == NULL || (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { INP_WUNLOCK(inp); return (TCP_LRO_CANNOT); } if ((inp->inp_irq_cpu_set == 0) && (lc->lro_cpu_is_set == 1)) { inp->inp_irq_cpu = lc->lro_last_cpu; inp->inp_irq_cpu_set = 1; } /* Check if the transport doesn't support the needed optimizations. */ if ((inp->inp_flags2 & (INP_SUPPORTS_MBUFQ | INP_MBUF_ACKCMP)) == 0) { INP_WUNLOCK(inp); return (TCP_LRO_CANNOT); } if (inp->inp_flags2 & INP_MBUF_QUEUE_READY) should_wake = false; else should_wake = true; /* Check if packets should be tapped to BPF. */ bpf_req = bpf_peers_present(lc->ifp->if_bpf); /* Strip and compress all the incoming packets. */ cmp = NULL; for (pp = &le->m_head; *pp != NULL; ) { mv_to = NULL; if (do_bpf_strip_and_compress(inp, lc, le, pp, &cmp, &mv_to, &should_wake, bpf_req ) == false) { /* Advance to next mbuf. */ pp = &(*pp)->m_nextpkt; } else if (mv_to != NULL) { /* We are asked to move pp up */ pp = &mv_to->m_nextpkt; } } /* Update "m_last_mbuf", if any. */ if (pp == &le->m_head) le->m_last_mbuf = *pp; else le->m_last_mbuf = __containerof(pp, struct mbuf, m_nextpkt); /* Check if any data mbufs left. */ if (le->m_head != NULL) { counter_u64_add(tcp_inp_lro_direct_queue, 1); tcp_lro_log(tp, lc, le, NULL, 22, 1, inp->inp_flags2, 0, 1); tcp_queue_pkts(inp, tp, le); } if (should_wake) { /* Wakeup */ counter_u64_add(tcp_inp_lro_wokeup_queue, 1); if ((*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0)) inp = NULL; } if (inp != NULL) INP_WUNLOCK(inp); return (0); /* Success. */ } #endif void tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le) { /* Only optimise if there are multiple packets waiting. */ #ifdef TCPHPTS int error; #endif NET_EPOCH_ASSERT(); #ifdef TCPHPTS CURVNET_SET(lc->ifp->if_vnet); error = tcp_lro_flush_tcphpts(lc, le); CURVNET_RESTORE(); if (error != 0) { #endif tcp_lro_condense(lc, le); tcp_flush_out_entry(lc, le); #ifdef TCPHPTS } #endif lc->lro_flushed++; bzero(le, sizeof(*le)); LIST_INSERT_HEAD(&lc->lro_free, le, next); } #ifdef HAVE_INLINE_FLSLL #define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1)) #else static inline uint64_t tcp_lro_msb_64(uint64_t x) { x |= (x >> 1); x |= (x >> 2); x |= (x >> 4); x |= (x >> 8); x |= (x >> 16); x |= (x >> 32); return (x & ~(x >> 1)); } #endif /* * The tcp_lro_sort() routine is comparable to qsort(), except it has * a worst case complexity limit of O(MIN(N,64)*N), where N is the * number of elements to sort and 64 is the number of sequence bits * available. The algorithm is bit-slicing the 64-bit sequence number, * sorting one bit at a time from the most significant bit until the * least significant one, skipping the constant bits. This is * typically called a radix sort. */ static void tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size) { struct lro_mbuf_sort temp; uint64_t ones; uint64_t zeros; uint32_t x; uint32_t y; repeat: /* for small arrays insertion sort is faster */ if (size <= 12) { for (x = 1; x < size; x++) { temp = parray[x]; for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--) parray[y] = parray[y - 1]; parray[y] = temp; } return; } /* compute sequence bits which are constant */ ones = 0; zeros = 0; for (x = 0; x != size; x++) { ones |= parray[x].seq; zeros |= ~parray[x].seq; } /* compute bits which are not constant into "ones" */ ones &= zeros; if (ones == 0) return; /* pick the most significant bit which is not constant */ ones = tcp_lro_msb_64(ones); /* * Move entries having cleared sequence bits to the beginning * of the array: */ for (x = y = 0; y != size; y++) { /* skip set bits */ if (parray[y].seq & ones) continue; /* swap entries */ temp = parray[x]; parray[x] = parray[y]; parray[y] = temp; x++; } KASSERT(x != 0 && x != size, ("Memory is corrupted\n")); /* sort zeros */ tcp_lro_sort(parray, x); /* sort ones */ parray += x; size -= x; goto repeat; } void tcp_lro_flush_all(struct lro_ctrl *lc) { uint64_t seq; uint64_t nseq; unsigned x; NET_EPOCH_ASSERT(); /* check if no mbufs to flush */ if (lc->lro_mbuf_count == 0) goto done; if (lc->lro_cpu_is_set == 0) { if (lc->lro_last_cpu == curcpu) { lc->lro_cnt_of_same_cpu++; /* Have we reached the threshold to declare a cpu? */ if (lc->lro_cnt_of_same_cpu > tcp_lro_cpu_set_thresh) lc->lro_cpu_is_set = 1; } else { lc->lro_last_cpu = curcpu; lc->lro_cnt_of_same_cpu = 0; } } CURVNET_SET(lc->ifp->if_vnet); /* get current time */ binuptime(&lc->lro_last_queue_time); /* sort all mbufs according to stream */ tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count); /* input data into LRO engine, stream by stream */ seq = 0; for (x = 0; x != lc->lro_mbuf_count; x++) { struct mbuf *mb; /* get mbuf */ mb = lc->lro_mbuf_data[x].mb; /* get sequence number, masking away the packet index */ nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24); /* check for new stream */ if (seq != nseq) { seq = nseq; /* flush active streams */ tcp_lro_rx_done(lc); } /* add packet to LRO engine */ if (tcp_lro_rx_common(lc, mb, 0, false) != 0) { /* input packet to network layer */ (*lc->ifp->if_input)(lc->ifp, mb); lc->lro_queued++; lc->lro_flushed++; } } CURVNET_RESTORE(); done: /* flush active streams */ tcp_lro_rx_done(lc); #ifdef TCPHPTS tcp_run_hpts(); #endif lc->lro_mbuf_count = 0; } #ifdef TCPHPTS static void build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m, uint32_t *ts_ptr, uint16_t iptos) { /* * Given a TCP ACK, summarize it down into the small TCP ACK * entry. */ ae->timestamp = m->m_pkthdr.rcv_tstmp; if (m->m_flags & M_TSTMP_LRO) ae->flags = TSTMP_LRO; else if (m->m_flags & M_TSTMP) ae->flags = TSTMP_HDWR; ae->seq = ntohl(th->th_seq); ae->ack = ntohl(th->th_ack); - ae->flags |= th->th_flags; + ae->flags |= (th->th_x2 << 8) | th->th_flags; if (ts_ptr != NULL) { ae->ts_value = ntohl(ts_ptr[1]); ae->ts_echo = ntohl(ts_ptr[2]); ae->flags |= HAS_TSTMP; } ae->win = ntohs(th->th_win); ae->codepoint = iptos; } /* * Do BPF tap for either ACK_CMP packets or MBUF QUEUE type packets * and strip all, but the IPv4/IPv6 header. */ static bool do_bpf_strip_and_compress(struct inpcb *inp, struct lro_ctrl *lc, struct lro_entry *le, struct mbuf **pp, struct mbuf **cmp, struct mbuf **mv_to, bool *should_wake, bool bpf_req) { union { void *ptr; struct ip *ip4; struct ip6_hdr *ip6; } l3; struct mbuf *m; struct mbuf *nm; struct tcphdr *th; struct tcp_ackent *ack_ent; uint32_t *ts_ptr; int32_t n_mbuf; bool other_opts, can_compress; uint8_t lro_type; uint16_t iptos; int tcp_hdr_offset; int idx; /* Get current mbuf. */ m = *pp; /* Let the BPF see the packet */ if (__predict_false(bpf_req)) ETHER_BPF_MTAP(lc->ifp, m); tcp_hdr_offset = m->m_pkthdr.lro_tcp_h_off; lro_type = le->inner.data.lro_type; switch (lro_type) { case LRO_TYPE_NONE: lro_type = le->outer.data.lro_type; switch (lro_type) { case LRO_TYPE_IPV4_TCP: tcp_hdr_offset -= sizeof(*le->outer.ip4); m->m_pkthdr.lro_etype = ETHERTYPE_IP; break; case LRO_TYPE_IPV6_TCP: tcp_hdr_offset -= sizeof(*le->outer.ip6); m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; break; default: goto compressed; } break; case LRO_TYPE_IPV4_TCP: tcp_hdr_offset -= sizeof(*le->outer.ip4); m->m_pkthdr.lro_etype = ETHERTYPE_IP; break; case LRO_TYPE_IPV6_TCP: tcp_hdr_offset -= sizeof(*le->outer.ip6); m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; break; default: goto compressed; } MPASS(tcp_hdr_offset >= 0); m_adj(m, tcp_hdr_offset); m->m_flags |= M_LRO_EHDRSTRP; m->m_flags &= ~M_ACKCMP; m->m_pkthdr.lro_tcp_h_off -= tcp_hdr_offset; th = tcp_lro_get_th(m); th->th_sum = 0; /* TCP checksum is valid. */ /* Check if ACK can be compressed */ can_compress = tcp_lro_ack_valid(m, th, &ts_ptr, &other_opts); /* Now lets look at the should wake states */ if ((other_opts == true) && ((inp->inp_flags2 & INP_DONT_SACK_QUEUE) == 0)) { /* * If there are other options (SACK?) and the * tcp endpoint has not expressly told us it does * not care about SACKS, then we should wake up. */ *should_wake = true; } /* Is the ack compressable? */ if (can_compress == false) goto done; /* Does the TCP endpoint support ACK compression? */ if ((inp->inp_flags2 & INP_MBUF_ACKCMP) == 0) goto done; /* Lets get the TOS/traffic class field */ l3.ptr = mtod(m, void *); switch (lro_type) { case LRO_TYPE_IPV4_TCP: iptos = l3.ip4->ip_tos; break; case LRO_TYPE_IPV6_TCP: iptos = IPV6_TRAFFIC_CLASS(l3.ip6); break; default: iptos = 0; /* Keep compiler happy. */ break; } /* Now lets get space if we don't have some already */ if (*cmp == NULL) { new_one: nm = tcp_lro_get_last_if_ackcmp(lc, le, inp, &n_mbuf); if (__predict_false(nm == NULL)) goto done; *cmp = nm; if (n_mbuf) { /* * Link in the new cmp ack to our in-order place, * first set our cmp ack's next to where we are. */ nm->m_nextpkt = m; (*pp) = nm; /* * Set it up so mv_to is advanced to our * compressed ack. This way the caller can * advance pp to the right place. */ *mv_to = nm; /* * Advance it here locally as well. */ pp = &nm->m_nextpkt; } } else { /* We have one already we are working on */ nm = *cmp; if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) { /* We ran out of space */ inp->inp_flags2 |= INP_MBUF_L_ACKS; goto new_one; } } MPASS(M_TRAILINGSPACE(nm) >= sizeof(struct tcp_ackent)); counter_u64_add(tcp_inp_lro_compressed, 1); le->compressed++; /* We can add in to the one on the tail */ ack_ent = mtod(nm, struct tcp_ackent *); idx = (nm->m_len / sizeof(struct tcp_ackent)); build_ack_entry(&ack_ent[idx], th, m, ts_ptr, iptos); /* Bump the size of both pkt-hdr and len */ nm->m_len += sizeof(struct tcp_ackent); nm->m_pkthdr.len += sizeof(struct tcp_ackent); compressed: /* Advance to next mbuf before freeing. */ *pp = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); return (true); done: counter_u64_add(tcp_uncomp_total, 1); le->uncompressed++; return (false); } #endif static struct lro_head * tcp_lro_rx_get_bucket(struct lro_ctrl *lc, struct mbuf *m, struct lro_parser *parser) { u_long hash; if (M_HASHTYPE_ISHASH(m)) { hash = m->m_pkthdr.flowid; } else { for (unsigned i = hash = 0; i != LRO_RAW_ADDRESS_MAX; i++) hash += parser->data.raw[i]; } return (&lc->lro_hash[hash % lc->lro_hashsz]); } static int tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash) { struct lro_parser pi; /* inner address data */ struct lro_parser po; /* outer address data */ struct lro_parser *pa; /* current parser for TCP stream */ struct lro_entry *le; struct lro_head *bucket; struct tcphdr *th; int tcp_data_len; int tcp_opt_len; int error; uint16_t tcp_data_sum; #ifdef INET /* Quickly decide if packet cannot be LRO'ed */ if (__predict_false(V_ipforwarding != 0)) return (TCP_LRO_CANNOT); #endif #ifdef INET6 /* Quickly decide if packet cannot be LRO'ed */ if (__predict_false(V_ip6_forwarding != 0)) return (TCP_LRO_CANNOT); #endif if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || (m->m_pkthdr.csum_data != 0xffff)) { /* * The checksum either did not have hardware offload * or it was a bad checksum. We can't LRO such * a packet. */ counter_u64_add(tcp_bad_csums, 1); return (TCP_LRO_CANNOT); } /* We expect a contiguous header [eh, ip, tcp]. */ pa = tcp_lro_parser(m, &po, &pi, true); if (__predict_false(pa == NULL)) return (TCP_LRO_NOT_SUPPORTED); /* We don't expect any padding. */ error = tcp_lro_trim_mbuf_chain(m, pa); if (__predict_false(error != 0)) return (error); #ifdef INET switch (pa->data.lro_type) { case LRO_TYPE_IPV4_TCP: error = tcp_lro_rx_ipv4(lc, m, pa->ip4); if (__predict_false(error != 0)) return (error); break; default: break; } #endif /* If no hardware or arrival stamp on the packet add timestamp */ if ((m->m_flags & (M_TSTMP_LRO | M_TSTMP)) == 0) { m->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); m->m_flags |= M_TSTMP_LRO; } /* Get pointer to TCP header. */ th = pa->tcp; /* Don't process SYN packets. */ if (__predict_false(th->th_flags & TH_SYN)) return (TCP_LRO_CANNOT); /* Get total TCP header length and compute payload length. */ tcp_opt_len = (th->th_off << 2); tcp_data_len = m->m_pkthdr.len - ((uint8_t *)th - (uint8_t *)m->m_data) - tcp_opt_len; tcp_opt_len -= sizeof(*th); /* Don't process invalid TCP headers. */ if (__predict_false(tcp_opt_len < 0 || tcp_data_len < 0)) return (TCP_LRO_CANNOT); /* Compute TCP data only checksum. */ if (tcp_data_len == 0) tcp_data_sum = 0; /* no data, no checksum */ else if (__predict_false(csum != 0)) tcp_data_sum = tcp_lro_rx_csum_data(pa, ~csum); else tcp_data_sum = tcp_lro_rx_csum_data(pa, ~th->th_sum); /* Save TCP info in mbuf. */ m->m_nextpkt = NULL; m->m_pkthdr.rcvif = lc->ifp; m->m_pkthdr.lro_tcp_d_csum = tcp_data_sum; m->m_pkthdr.lro_tcp_d_len = tcp_data_len; m->m_pkthdr.lro_tcp_h_off = ((uint8_t *)th - (uint8_t *)m->m_data); m->m_pkthdr.lro_nsegs = 1; /* Get hash bucket. */ if (!use_hash) { bucket = &lc->lro_hash[0]; } else { bucket = tcp_lro_rx_get_bucket(lc, m, pa); } /* Try to find a matching previous segment. */ LIST_FOREACH(le, bucket, hash_next) { /* Compare addresses and ports. */ if (lro_address_compare(&po.data, &le->outer.data) == false || lro_address_compare(&pi.data, &le->inner.data) == false) continue; /* Check if no data and old ACK. */ if (tcp_data_len == 0 && SEQ_LT(ntohl(th->th_ack), ntohl(le->ack_seq))) { m_freem(m); return (0); } /* Mark "m" in the last spot. */ le->m_last_mbuf->m_nextpkt = m; /* Now set the tail to "m". */ le->m_last_mbuf = m; return (0); } /* Try to find an empty slot. */ if (LIST_EMPTY(&lc->lro_free)) return (TCP_LRO_NO_ENTRIES); /* Start a new segment chain. */ le = LIST_FIRST(&lc->lro_free); LIST_REMOVE(le, next); tcp_lro_active_insert(lc, bucket, le); /* Make sure the headers are set. */ le->inner = pi; le->outer = po; /* Store time this entry was allocated. */ le->alloc_time = lc->lro_last_queue_time; tcp_set_entry_to_mbuf(lc, le, m, th); /* Now set the tail to "m". */ le->m_last_mbuf = m; return (0); } int tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum) { int error; if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || (m->m_pkthdr.csum_data != 0xffff)) { /* * The checksum either did not have hardware offload * or it was a bad checksum. We can't LRO such * a packet. */ counter_u64_add(tcp_bad_csums, 1); return (TCP_LRO_CANNOT); } /* get current time */ binuptime(&lc->lro_last_queue_time); CURVNET_SET(lc->ifp->if_vnet); error = tcp_lro_rx_common(lc, m, csum, true); CURVNET_RESTORE(); return (error); } void tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb) { NET_EPOCH_ASSERT(); /* sanity checks */ if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL || lc->lro_mbuf_max == 0)) { /* packet drop */ m_freem(mb); return; } /* check if packet is not LRO capable */ if (__predict_false((lc->ifp->if_capenable & IFCAP_LRO) == 0)) { /* input packet to network layer */ (*lc->ifp->if_input) (lc->ifp, mb); return; } /* create sequence number */ lc->lro_mbuf_data[lc->lro_mbuf_count].seq = (((uint64_t)M_HASHTYPE_GET(mb)) << 56) | (((uint64_t)mb->m_pkthdr.flowid) << 24) | ((uint64_t)lc->lro_mbuf_count); /* enter mbuf */ lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb; /* flush if array is full */ if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max)) tcp_lro_flush_all(lc); } /* end */ diff --git a/sys/netinet/tcp_lro.h b/sys/netinet/tcp_lro.h index b8abc2fa1ab3..dd2aa1148822 100644 --- a/sys/netinet/tcp_lro.h +++ b/sys/netinet/tcp_lro.h @@ -1,220 +1,221 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006, Myricom Inc. * Copyright (c) 2008, Intel Corporation. * Copyright (c) 2016-2021 Mellanox Technologies. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _TCP_LRO_H_ #define _TCP_LRO_H_ #include #ifndef TCP_LRO_ENTRIES /* Define default number of LRO entries per RX queue */ #define TCP_LRO_ENTRIES 8 #endif /* * Flags for ACK entry for compression - * the bottom 8 bits has the th_flags. + * the bottom 12 bits has the th_x2|th_flags. * LRO itself adds only the TSTMP flags * to indicate if either of the types * of timestamps are filled and the * HAS_TSTMP option to indicate if the * TCP timestamp option is valid. * - * The other 5 flag bits are for processing + * The other 1 flag bits are for processing * by a stack. * */ -#define TSTMP_LRO 0x0100 -#define TSTMP_HDWR 0x0200 -#define HAS_TSTMP 0x0400 +#define TSTMP_LRO 0x1000 +#define TSTMP_HDWR 0x2000 +#define HAS_TSTMP 0x4000 /* * Default number of interrupts on the same cpu in a row * that will cause us to declare a "affinity cpu". */ #define TCP_LRO_CPU_DECLARATION_THRESH 50 struct inpcb; union lro_address { u_long raw[1]; struct { uint8_t lro_type; /* internal */ #define LRO_TYPE_NONE 0 #define LRO_TYPE_IPV4_TCP 1 #define LRO_TYPE_IPV6_TCP 2 #define LRO_TYPE_IPV4_UDP 3 #define LRO_TYPE_IPV6_UDP 4 uint8_t lro_flags; #define LRO_FLAG_DECRYPTED 1 uint16_t vlan_id; /* VLAN identifier */ uint16_t s_port; /* source TCP/UDP port */ uint16_t d_port; /* destination TCP/UDP port */ uint32_t vxlan_vni; /* VXLAN virtual network identifier */ union { #ifdef INET struct in_addr v4; #endif #ifdef INET6 struct in6_addr v6; #endif } s_addr; /* source IPv4/IPv6 address */ union { #ifdef INET struct in_addr v4; #endif #ifdef INET6 struct in6_addr v6; #endif } d_addr; /* destination IPv4/IPv6 address */ }; } __aligned(sizeof(u_long)); #define LRO_RAW_ADDRESS_MAX \ (sizeof(union lro_address) / sizeof(u_long)) /* Optimize address comparison by comparing one unsigned long at a time: */ static inline bool lro_address_compare(const union lro_address *pa, const union lro_address *pb) { if (pa->lro_type == LRO_TYPE_NONE && pb->lro_type == LRO_TYPE_NONE) { return (true); } else for (unsigned i = 0; i < LRO_RAW_ADDRESS_MAX; i++) { if (pa->raw[i] != pb->raw[i]) return (false); } return (true); } struct lro_parser { union lro_address data; union { uint8_t *l3; struct ip *ip4; struct ip6_hdr *ip6; }; union { uint8_t *l4; struct tcphdr *tcp; struct udphdr *udp; }; uint16_t total_hdr_len; }; /* This structure is zeroed frequently, try to keep it small. */ struct lro_entry { LIST_ENTRY(lro_entry) next; LIST_ENTRY(lro_entry) hash_next; struct mbuf *m_head; struct mbuf *m_tail; struct mbuf *m_last_mbuf; struct lro_parser outer; struct lro_parser inner; uint32_t next_seq; /* tcp_seq */ uint32_t ack_seq; /* tcp_seq */ uint32_t tsval; uint32_t tsecr; uint16_t compressed; uint16_t uncompressed; uint16_t window; - uint8_t flags; - uint8_t timestamp : 1; - uint8_t needs_merge : 1; + uint16_t flags : 12, /* 12 TCP header bits */ + timestamp : 1, + needs_merge : 1, + reserved : 2; /* unused */ struct bintime alloc_time; /* time when entry was allocated */ }; LIST_HEAD(lro_head, lro_entry); struct lro_mbuf_sort { uint64_t seq; struct mbuf *mb; }; /* NB: This is part of driver structs. */ struct lro_ctrl { struct ifnet *ifp; struct lro_mbuf_sort *lro_mbuf_data; struct bintime lro_last_queue_time; /* last time data was queued */ uint64_t lro_queued; uint64_t lro_flushed; uint64_t lro_bad_csum; unsigned lro_cnt; unsigned lro_mbuf_count; unsigned lro_mbuf_max; unsigned short lro_ackcnt_lim; /* max # of aggregated ACKs */ unsigned short lro_cpu; /* Guess at the cpu we have affinity too */ unsigned lro_length_lim; /* max len of aggregated data */ u_long lro_hashsz; uint32_t lro_last_cpu; uint32_t lro_cnt_of_same_cpu; struct lro_head *lro_hash; struct lro_head lro_active; struct lro_head lro_free; uint8_t lro_cpu_is_set; /* Flag to say its ok to set the CPU on the inp */ }; struct tcp_ackent { uint64_t timestamp; /* hardware or sofware timestamp, valid if TSTMP_LRO or TSTMP_HDRW set */ uint32_t seq; /* th_seq value */ uint32_t ack; /* th_ack value */ uint32_t ts_value; /* If ts option value, valid if HAS_TSTMP is set */ uint32_t ts_echo; /* If ts option echo, valid if HAS_TSTMP is set */ uint16_t win; /* TCP window */ uint16_t flags; /* Flags to say if TS is present and type of timestamp and th_flags */ uint8_t codepoint; /* IP level codepoint including ECN bits */ uint8_t ack_val_set; /* Classification of ack used by the stack */ uint8_t pad[2]; /* To 32 byte boundary */ }; /* We use two M_PROTO on the mbuf */ #define M_ACKCMP M_PROTO4 /* Indicates LRO is sending in a Ack-compression mbuf */ #define M_LRO_EHDRSTRP M_PROTO6 /* Indicates that LRO has stripped the etherenet header */ #define TCP_LRO_LENGTH_MAX (65535 - 255) /* safe value with room for outer headers */ #define TCP_LRO_ACKCNT_MAX 65535 /* unlimited */ int tcp_lro_init(struct lro_ctrl *); int tcp_lro_init_args(struct lro_ctrl *, struct ifnet *, unsigned, unsigned); void tcp_lro_free(struct lro_ctrl *); void tcp_lro_flush_inactive(struct lro_ctrl *, const struct timeval *); void tcp_lro_flush(struct lro_ctrl *, struct lro_entry *); void tcp_lro_flush_all(struct lro_ctrl *); int tcp_lro_rx(struct lro_ctrl *, struct mbuf *, uint32_t); void tcp_lro_queue_mbuf(struct lro_ctrl *, struct mbuf *); void tcp_lro_reg_mbufq(void); void tcp_lro_dereg_mbufq(void); #define TCP_LRO_NO_ENTRIES -2 #define TCP_LRO_CANNOT -1 #define TCP_LRO_NOT_SUPPORTED 1 #endif /* _TCP_LRO_H_ */