diff --git a/sys/opencrypto/ktls_ocf.c b/sys/opencrypto/ktls_ocf.c index 71f6339e02ad..f33af68dde8f 100644 --- a/sys/opencrypto/ktls_ocf.c +++ b/sys/opencrypto/ktls_ocf.c @@ -1,794 +1,793 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2019 Netflix Inc. - * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include struct ocf_session { crypto_session_t sid; crypto_session_t mac_sid; int mac_len; struct mtx lock; bool implicit_iv; /* Only used for TLS 1.0 with the implicit IV. */ #ifdef INVARIANTS bool in_progress; uint64_t next_seqno; #endif char iv[AES_BLOCK_LEN]; }; struct ocf_operation { struct ocf_session *os; bool done; }; static MALLOC_DEFINE(M_KTLS_OCF, "ktls_ocf", "OCF KTLS"); SYSCTL_DECL(_kern_ipc_tls); SYSCTL_DECL(_kern_ipc_tls_stats); static SYSCTL_NODE(_kern_ipc_tls_stats, OID_AUTO, ocf, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Kernel TLS offload via OCF stats"); static COUNTER_U64_DEFINE_EARLY(ocf_tls10_cbc_crypts); SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls10_cbc_crypts, CTLFLAG_RD, &ocf_tls10_cbc_crypts, "Total number of OCF TLS 1.0 CBC encryption operations"); static COUNTER_U64_DEFINE_EARLY(ocf_tls11_cbc_crypts); SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls11_cbc_crypts, CTLFLAG_RD, &ocf_tls11_cbc_crypts, "Total number of OCF TLS 1.1/1.2 CBC encryption operations"); static COUNTER_U64_DEFINE_EARLY(ocf_tls12_gcm_crypts); SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls12_gcm_crypts, CTLFLAG_RD, &ocf_tls12_gcm_crypts, "Total number of OCF TLS 1.2 GCM encryption operations"); static COUNTER_U64_DEFINE_EARLY(ocf_tls12_chacha20_crypts); SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls12_chacha20_crypts, CTLFLAG_RD, &ocf_tls12_chacha20_crypts, "Total number of OCF TLS 1.2 Chacha20-Poly1305 encryption operations"); static COUNTER_U64_DEFINE_EARLY(ocf_tls13_gcm_crypts); SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls13_gcm_crypts, CTLFLAG_RD, &ocf_tls13_gcm_crypts, "Total number of OCF TLS 1.3 GCM encryption operations"); static COUNTER_U64_DEFINE_EARLY(ocf_tls13_chacha20_crypts); SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls13_chacha20_crypts, CTLFLAG_RD, &ocf_tls13_chacha20_crypts, "Total number of OCF TLS 1.3 Chacha20-Poly1305 encryption operations"); static COUNTER_U64_DEFINE_EARLY(ocf_inplace); SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, inplace, CTLFLAG_RD, &ocf_inplace, "Total number of OCF in-place operations"); static COUNTER_U64_DEFINE_EARLY(ocf_separate_output); SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, separate_output, CTLFLAG_RD, &ocf_separate_output, "Total number of OCF operations with a separate output buffer"); static COUNTER_U64_DEFINE_EARLY(ocf_retries); SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, retries, CTLFLAG_RD, &ocf_retries, "Number of OCF encryption operation retries"); static int ktls_ocf_callback(struct cryptop *crp) { struct ocf_operation *oo; oo = crp->crp_opaque; mtx_lock(&oo->os->lock); oo->done = true; mtx_unlock(&oo->os->lock); wakeup(oo); return (0); } static int ktls_ocf_dispatch(struct ocf_session *os, struct cryptop *crp) { struct ocf_operation oo; int error; oo.os = os; oo.done = false; crp->crp_opaque = &oo; crp->crp_callback = ktls_ocf_callback; for (;;) { error = crypto_dispatch(crp); if (error) break; mtx_lock(&os->lock); while (!oo.done) mtx_sleep(&oo, &os->lock, 0, "ocfktls", 0); mtx_unlock(&os->lock); if (crp->crp_etype != EAGAIN) { error = crp->crp_etype; break; } crp->crp_etype = 0; crp->crp_flags &= ~CRYPTO_F_DONE; oo.done = false; counter_u64_add(ocf_retries, 1); } return (error); } static int ktls_ocf_tls_cbc_encrypt(struct ktls_session *tls, const struct tls_record_layer *hdr, uint8_t *trailer, struct iovec *iniov, struct iovec *outiov, int iovcnt, uint64_t seqno, uint8_t record_type __unused) { struct uio uio, out_uio; struct tls_mac_data ad; struct cryptop crp; struct ocf_session *os; struct iovec iov[iovcnt + 2]; struct iovec out_iov[iovcnt + 1]; int i, error; uint16_t tls_comp_len; uint8_t pad; bool inplace; os = tls->cipher; #ifdef INVARIANTS if (os->implicit_iv) { mtx_lock(&os->lock); KASSERT(!os->in_progress, ("concurrent implicit IV encryptions")); if (os->next_seqno != seqno) { printf("KTLS CBC: TLS records out of order. " "Expected %ju, got %ju\n", (uintmax_t)os->next_seqno, (uintmax_t)seqno); mtx_unlock(&os->lock); return (EINVAL); } os->in_progress = true; mtx_unlock(&os->lock); } #endif /* * Compute the payload length. * * XXX: This could be easily computed O(1) from the mbuf * fields, but we don't have those accessible here. Can * at least compute inplace as well while we are here. */ tls_comp_len = 0; inplace = true; for (i = 0; i < iovcnt; i++) { tls_comp_len += iniov[i].iov_len; if (iniov[i].iov_base != outiov[i].iov_base) inplace = false; } /* Initialize the AAD. */ ad.seq = htobe64(seqno); ad.type = hdr->tls_type; ad.tls_vmajor = hdr->tls_vmajor; ad.tls_vminor = hdr->tls_vminor; ad.tls_length = htons(tls_comp_len); /* First, compute the MAC. */ iov[0].iov_base = &ad; iov[0].iov_len = sizeof(ad); memcpy(&iov[1], iniov, sizeof(*iniov) * iovcnt); iov[iovcnt + 1].iov_base = trailer; iov[iovcnt + 1].iov_len = os->mac_len; uio.uio_iov = iov; uio.uio_iovcnt = iovcnt + 2; uio.uio_offset = 0; uio.uio_segflg = UIO_SYSSPACE; uio.uio_td = curthread; uio.uio_resid = sizeof(ad) + tls_comp_len + os->mac_len; crypto_initreq(&crp, os->mac_sid); crp.crp_payload_start = 0; crp.crp_payload_length = sizeof(ad) + tls_comp_len; crp.crp_digest_start = crp.crp_payload_length; crp.crp_op = CRYPTO_OP_COMPUTE_DIGEST; crp.crp_flags = CRYPTO_F_CBIMM; crypto_use_uio(&crp, &uio); error = ktls_ocf_dispatch(os, &crp); crypto_destroyreq(&crp); if (error) { #ifdef INVARIANTS if (os->implicit_iv) { mtx_lock(&os->lock); os->in_progress = false; mtx_unlock(&os->lock); } #endif return (error); } /* Second, add the padding. */ pad = (unsigned)(AES_BLOCK_LEN - (tls_comp_len + os->mac_len + 1)) % AES_BLOCK_LEN; for (i = 0; i < pad + 1; i++) trailer[os->mac_len + i] = pad; /* Finally, encrypt the record. */ /* * Don't recopy the input iovec, instead just adjust the * trailer length and skip over the AAD vector in the uio. */ iov[iovcnt + 1].iov_len += pad + 1; uio.uio_iov = iov + 1; uio.uio_iovcnt = iovcnt + 1; uio.uio_resid = tls_comp_len + iov[iovcnt + 1].iov_len; KASSERT(uio.uio_resid % AES_BLOCK_LEN == 0, ("invalid encryption size")); crypto_initreq(&crp, os->sid); crp.crp_payload_start = 0; crp.crp_payload_length = uio.uio_resid; crp.crp_op = CRYPTO_OP_ENCRYPT; crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE; if (os->implicit_iv) memcpy(crp.crp_iv, os->iv, AES_BLOCK_LEN); else memcpy(crp.crp_iv, hdr + 1, AES_BLOCK_LEN); crypto_use_uio(&crp, &uio); if (!inplace) { memcpy(out_iov, outiov, sizeof(*iniov) * iovcnt); out_iov[iovcnt] = iov[iovcnt + 1]; out_uio.uio_iov = out_iov; out_uio.uio_iovcnt = iovcnt + 1; out_uio.uio_offset = 0; out_uio.uio_segflg = UIO_SYSSPACE; out_uio.uio_td = curthread; out_uio.uio_resid = uio.uio_resid; crypto_use_output_uio(&crp, &out_uio); } if (os->implicit_iv) counter_u64_add(ocf_tls10_cbc_crypts, 1); else counter_u64_add(ocf_tls11_cbc_crypts, 1); if (inplace) counter_u64_add(ocf_inplace, 1); else counter_u64_add(ocf_separate_output, 1); error = ktls_ocf_dispatch(os, &crp); crypto_destroyreq(&crp); if (os->implicit_iv) { KASSERT(os->mac_len + pad + 1 >= AES_BLOCK_LEN, ("trailer too short to read IV")); memcpy(os->iv, trailer + os->mac_len + pad + 1 - AES_BLOCK_LEN, AES_BLOCK_LEN); #ifdef INVARIANTS mtx_lock(&os->lock); os->next_seqno = seqno + 1; os->in_progress = false; mtx_unlock(&os->lock); #endif } return (error); } static int ktls_ocf_tls12_aead_encrypt(struct ktls_session *tls, const struct tls_record_layer *hdr, uint8_t *trailer, struct iovec *iniov, struct iovec *outiov, int iovcnt, uint64_t seqno, uint8_t record_type __unused) { struct uio uio, out_uio, *tag_uio; struct tls_aead_data ad; struct cryptop crp; struct ocf_session *os; struct iovec iov[iovcnt + 1]; int i, error; uint16_t tls_comp_len; bool inplace; os = tls->cipher; uio.uio_iov = iniov; uio.uio_iovcnt = iovcnt; uio.uio_offset = 0; uio.uio_segflg = UIO_SYSSPACE; uio.uio_td = curthread; out_uio.uio_iov = outiov; out_uio.uio_iovcnt = iovcnt; out_uio.uio_offset = 0; out_uio.uio_segflg = UIO_SYSSPACE; out_uio.uio_td = curthread; crypto_initreq(&crp, os->sid); /* Setup the IV. */ if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) { memcpy(crp.crp_iv, tls->params.iv, TLS_AEAD_GCM_LEN); memcpy(crp.crp_iv + TLS_AEAD_GCM_LEN, hdr + 1, sizeof(uint64_t)); } else { /* * Chacha20-Poly1305 constructs the IV for TLS 1.2 * identically to constructing the IV for AEAD in TLS * 1.3. */ memcpy(crp.crp_iv, tls->params.iv, tls->params.iv_len); *(uint64_t *)(crp.crp_iv + 4) ^= htobe64(seqno); } /* Setup the AAD. */ if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) tls_comp_len = ntohs(hdr->tls_length) - (AES_GMAC_HASH_LEN + sizeof(uint64_t)); else tls_comp_len = ntohs(hdr->tls_length) - POLY1305_HASH_LEN; ad.seq = htobe64(seqno); ad.type = hdr->tls_type; ad.tls_vmajor = hdr->tls_vmajor; ad.tls_vminor = hdr->tls_vminor; ad.tls_length = htons(tls_comp_len); crp.crp_aad = &ad; crp.crp_aad_length = sizeof(ad); /* Compute payload length and determine if encryption is in place. */ inplace = true; crp.crp_payload_start = 0; for (i = 0; i < iovcnt; i++) { if (iniov[i].iov_base != outiov[i].iov_base) inplace = false; crp.crp_payload_length += iniov[i].iov_len; } uio.uio_resid = crp.crp_payload_length; out_uio.uio_resid = crp.crp_payload_length; if (inplace) tag_uio = &uio; else tag_uio = &out_uio; /* Duplicate iovec and append vector for tag. */ memcpy(iov, tag_uio->uio_iov, iovcnt * sizeof(struct iovec)); iov[iovcnt].iov_base = trailer; iov[iovcnt].iov_len = tls->params.tls_tlen; tag_uio->uio_iov = iov; tag_uio->uio_iovcnt++; crp.crp_digest_start = tag_uio->uio_resid; tag_uio->uio_resid += tls->params.tls_tlen; crp.crp_op = CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST; crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE; crypto_use_uio(&crp, &uio); if (!inplace) crypto_use_output_uio(&crp, &out_uio); if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) counter_u64_add(ocf_tls12_gcm_crypts, 1); else counter_u64_add(ocf_tls12_chacha20_crypts, 1); if (inplace) counter_u64_add(ocf_inplace, 1); else counter_u64_add(ocf_separate_output, 1); error = ktls_ocf_dispatch(os, &crp); crypto_destroyreq(&crp); return (error); } static int ktls_ocf_tls12_aead_decrypt(struct ktls_session *tls, const struct tls_record_layer *hdr, struct mbuf *m, uint64_t seqno, int *trailer_len) { struct tls_aead_data ad; struct cryptop crp; struct ocf_session *os; struct ocf_operation oo; int error; uint16_t tls_comp_len; os = tls->cipher; oo.os = os; oo.done = false; crypto_initreq(&crp, os->sid); /* Setup the IV. */ if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) { memcpy(crp.crp_iv, tls->params.iv, TLS_AEAD_GCM_LEN); memcpy(crp.crp_iv + TLS_AEAD_GCM_LEN, hdr + 1, sizeof(uint64_t)); } else { /* * Chacha20-Poly1305 constructs the IV for TLS 1.2 * identically to constructing the IV for AEAD in TLS * 1.3. */ memcpy(crp.crp_iv, tls->params.iv, tls->params.iv_len); *(uint64_t *)(crp.crp_iv + 4) ^= htobe64(seqno); } /* Setup the AAD. */ if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) tls_comp_len = ntohs(hdr->tls_length) - (AES_GMAC_HASH_LEN + sizeof(uint64_t)); else tls_comp_len = ntohs(hdr->tls_length) - POLY1305_HASH_LEN; ad.seq = htobe64(seqno); ad.type = hdr->tls_type; ad.tls_vmajor = hdr->tls_vmajor; ad.tls_vminor = hdr->tls_vminor; ad.tls_length = htons(tls_comp_len); crp.crp_aad = &ad; crp.crp_aad_length = sizeof(ad); crp.crp_payload_start = tls->params.tls_hlen; crp.crp_payload_length = tls_comp_len; crp.crp_digest_start = crp.crp_payload_start + crp.crp_payload_length; crp.crp_op = CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST; crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE; crypto_use_mbuf(&crp, m); if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) counter_u64_add(ocf_tls12_gcm_crypts, 1); else counter_u64_add(ocf_tls12_chacha20_crypts, 1); error = ktls_ocf_dispatch(os, &crp); crypto_destroyreq(&crp); *trailer_len = tls->params.tls_tlen; return (error); } static int ktls_ocf_tls13_aead_encrypt(struct ktls_session *tls, const struct tls_record_layer *hdr, uint8_t *trailer, struct iovec *iniov, struct iovec *outiov, int iovcnt, uint64_t seqno, uint8_t record_type) { struct uio uio, out_uio; struct tls_aead_data_13 ad; char nonce[12]; struct cryptop crp; struct ocf_session *os; struct iovec iov[iovcnt + 1], out_iov[iovcnt + 1]; int i, error; bool inplace; os = tls->cipher; crypto_initreq(&crp, os->sid); /* Setup the nonce. */ memcpy(nonce, tls->params.iv, tls->params.iv_len); *(uint64_t *)(nonce + 4) ^= htobe64(seqno); /* Setup the AAD. */ ad.type = hdr->tls_type; ad.tls_vmajor = hdr->tls_vmajor; ad.tls_vminor = hdr->tls_vminor; ad.tls_length = hdr->tls_length; crp.crp_aad = &ad; crp.crp_aad_length = sizeof(ad); /* Compute payload length and determine if encryption is in place. */ inplace = true; crp.crp_payload_start = 0; for (i = 0; i < iovcnt; i++) { if (iniov[i].iov_base != outiov[i].iov_base) inplace = false; crp.crp_payload_length += iniov[i].iov_len; } /* Store the record type as the first byte of the trailer. */ trailer[0] = record_type; crp.crp_payload_length++; crp.crp_digest_start = crp.crp_payload_length; /* * Duplicate the input iov to append the trailer. Always * include the full trailer as input to get the record_type * even if only the first byte is used. */ memcpy(iov, iniov, iovcnt * sizeof(*iov)); iov[iovcnt].iov_base = trailer; iov[iovcnt].iov_len = tls->params.tls_tlen; uio.uio_iov = iov; uio.uio_iovcnt = iovcnt + 1; uio.uio_offset = 0; uio.uio_resid = crp.crp_payload_length + tls->params.tls_tlen - 1; uio.uio_segflg = UIO_SYSSPACE; uio.uio_td = curthread; crypto_use_uio(&crp, &uio); if (!inplace) { /* Duplicate the output iov to append the trailer. */ memcpy(out_iov, outiov, iovcnt * sizeof(*out_iov)); out_iov[iovcnt] = iov[iovcnt]; out_uio.uio_iov = out_iov; out_uio.uio_iovcnt = iovcnt + 1; out_uio.uio_offset = 0; out_uio.uio_resid = crp.crp_payload_length + tls->params.tls_tlen - 1; out_uio.uio_segflg = UIO_SYSSPACE; out_uio.uio_td = curthread; crypto_use_output_uio(&crp, &out_uio); } crp.crp_op = CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST; crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE; memcpy(crp.crp_iv, nonce, sizeof(nonce)); if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) counter_u64_add(ocf_tls13_gcm_crypts, 1); else counter_u64_add(ocf_tls13_chacha20_crypts, 1); if (inplace) counter_u64_add(ocf_inplace, 1); else counter_u64_add(ocf_separate_output, 1); error = ktls_ocf_dispatch(os, &crp); crypto_destroyreq(&crp); return (error); } static void ktls_ocf_free(struct ktls_session *tls) { struct ocf_session *os; os = tls->cipher; crypto_freesession(os->sid); mtx_destroy(&os->lock); zfree(os, M_KTLS_OCF); } static int ktls_ocf_try(struct socket *so, struct ktls_session *tls, int direction) { struct crypto_session_params csp, mac_csp; struct ocf_session *os; int error, mac_len; memset(&csp, 0, sizeof(csp)); memset(&mac_csp, 0, sizeof(mac_csp)); mac_csp.csp_mode = CSP_MODE_NONE; mac_len = 0; switch (tls->params.cipher_algorithm) { case CRYPTO_AES_NIST_GCM_16: switch (tls->params.cipher_key_len) { case 128 / 8: case 256 / 8: break; default: return (EINVAL); } /* Only TLS 1.2 and 1.3 are supported. */ if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE || tls->params.tls_vminor < TLS_MINOR_VER_TWO || tls->params.tls_vminor > TLS_MINOR_VER_THREE) return (EPROTONOSUPPORT); /* TLS 1.3 is not yet supported for receive. */ if (direction == KTLS_RX && tls->params.tls_vminor == TLS_MINOR_VER_THREE) return (EPROTONOSUPPORT); csp.csp_flags |= CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD; csp.csp_mode = CSP_MODE_AEAD; csp.csp_cipher_alg = CRYPTO_AES_NIST_GCM_16; csp.csp_cipher_key = tls->params.cipher_key; csp.csp_cipher_klen = tls->params.cipher_key_len; csp.csp_ivlen = AES_GCM_IV_LEN; break; case CRYPTO_AES_CBC: switch (tls->params.cipher_key_len) { case 128 / 8: case 256 / 8: break; default: return (EINVAL); } switch (tls->params.auth_algorithm) { case CRYPTO_SHA1_HMAC: mac_len = SHA1_HASH_LEN; break; case CRYPTO_SHA2_256_HMAC: mac_len = SHA2_256_HASH_LEN; break; case CRYPTO_SHA2_384_HMAC: mac_len = SHA2_384_HASH_LEN; break; default: return (EINVAL); } /* Only TLS 1.0-1.2 are supported. */ if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE || tls->params.tls_vminor < TLS_MINOR_VER_ZERO || tls->params.tls_vminor > TLS_MINOR_VER_TWO) return (EPROTONOSUPPORT); /* AES-CBC is not supported for receive. */ if (direction == KTLS_RX) return (EPROTONOSUPPORT); csp.csp_flags |= CSP_F_SEPARATE_OUTPUT; csp.csp_mode = CSP_MODE_CIPHER; csp.csp_cipher_alg = CRYPTO_AES_CBC; csp.csp_cipher_key = tls->params.cipher_key; csp.csp_cipher_klen = tls->params.cipher_key_len; csp.csp_ivlen = AES_BLOCK_LEN; mac_csp.csp_flags |= CSP_F_SEPARATE_OUTPUT; mac_csp.csp_mode = CSP_MODE_DIGEST; mac_csp.csp_auth_alg = tls->params.auth_algorithm; mac_csp.csp_auth_key = tls->params.auth_key; mac_csp.csp_auth_klen = tls->params.auth_key_len; break; case CRYPTO_CHACHA20_POLY1305: switch (tls->params.cipher_key_len) { case 256 / 8: break; default: return (EINVAL); } /* Only TLS 1.2 and 1.3 are supported. */ if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE || tls->params.tls_vminor < TLS_MINOR_VER_TWO || tls->params.tls_vminor > TLS_MINOR_VER_THREE) return (EPROTONOSUPPORT); /* TLS 1.3 is not yet supported for receive. */ if (direction == KTLS_RX && tls->params.tls_vminor == TLS_MINOR_VER_THREE) return (EPROTONOSUPPORT); csp.csp_flags |= CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD; csp.csp_mode = CSP_MODE_AEAD; csp.csp_cipher_alg = CRYPTO_CHACHA20_POLY1305; csp.csp_cipher_key = tls->params.cipher_key; csp.csp_cipher_klen = tls->params.cipher_key_len; csp.csp_ivlen = CHACHA20_POLY1305_IV_LEN; break; default: return (EPROTONOSUPPORT); } os = malloc(sizeof(*os), M_KTLS_OCF, M_NOWAIT | M_ZERO); if (os == NULL) return (ENOMEM); error = crypto_newsession(&os->sid, &csp, CRYPTO_FLAG_HARDWARE | CRYPTO_FLAG_SOFTWARE); if (error) { free(os, M_KTLS_OCF); return (error); } if (mac_csp.csp_mode != CSP_MODE_NONE) { error = crypto_newsession(&os->mac_sid, &mac_csp, CRYPTO_FLAG_HARDWARE | CRYPTO_FLAG_SOFTWARE); if (error) { crypto_freesession(os->sid); free(os, M_KTLS_OCF); return (error); } os->mac_len = mac_len; } mtx_init(&os->lock, "ktls_ocf", NULL, MTX_DEF); tls->cipher = os; if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 || tls->params.cipher_algorithm == CRYPTO_CHACHA20_POLY1305) { if (direction == KTLS_TX) { if (tls->params.tls_vminor == TLS_MINOR_VER_THREE) tls->sw_encrypt = ktls_ocf_tls13_aead_encrypt; else tls->sw_encrypt = ktls_ocf_tls12_aead_encrypt; } else { tls->sw_decrypt = ktls_ocf_tls12_aead_decrypt; } } else { tls->sw_encrypt = ktls_ocf_tls_cbc_encrypt; if (tls->params.tls_vminor == TLS_MINOR_VER_ZERO) { os->implicit_iv = true; memcpy(os->iv, tls->params.iv, AES_BLOCK_LEN); #ifdef INVARIANTS os->next_seqno = tls->next_seqno; #endif } } tls->free = ktls_ocf_free; return (0); } struct ktls_crypto_backend ocf_backend = { .name = "OCF", .prio = 5, .api_version = KTLS_API_VERSION, .try = ktls_ocf_try, }; static int ktls_ocf_modevent(module_t mod, int what, void *arg) { switch (what) { case MOD_LOAD: return (ktls_crypto_backend_register(&ocf_backend)); case MOD_UNLOAD: return (ktls_crypto_backend_deregister(&ocf_backend)); default: return (EOPNOTSUPP); } } static moduledata_t ktls_ocf_moduledata = { "ktls_ocf", ktls_ocf_modevent, NULL }; DECLARE_MODULE(ktls_ocf, ktls_ocf_moduledata, SI_SUB_PROTO_END, SI_ORDER_ANY);