diff --git a/sys/fs/autofs/autofs_vnops.c b/sys/fs/autofs/autofs_vnops.c index a6ae0b440c4a..13daa950d75b 100644 --- a/sys/fs/autofs/autofs_vnops.c +++ b/sys/fs/autofs/autofs_vnops.c @@ -1,713 +1,714 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2014 The FreeBSD Foundation * * This software was developed by Edward Tomasz Napierala under sponsorship * from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int autofs_trigger_vn(struct vnode *vp, const char *path, int pathlen, struct vnode **newvp); extern struct autofs_softc *autofs_softc; static int autofs_access(struct vop_access_args *ap) { /* * Nothing to do here; the only kind of access control * needed is in autofs_mkdir(). */ return (0); } static int autofs_getattr(struct vop_getattr_args *ap) { struct vnode *vp, *newvp; struct autofs_node *anp; struct mount *mp; struct vattr *vap; int error; vp = ap->a_vp; anp = vp->v_data; mp = vp->v_mount; vap = ap->a_vap; KASSERT(ap->a_vp->v_type == VDIR, ("!VDIR")); /* * The reason we must do this is that some tree-walking software, * namely fts(3), assumes that stat(".") results will not change * between chdir("subdir") and chdir(".."), and fails with ENOENT * otherwise. */ if (autofs_mount_on_stat && autofs_cached(anp, NULL, 0) == false && autofs_ignore_thread(curthread) == false) { error = autofs_trigger_vn(vp, "", 0, &newvp); if (error != 0) return (error); if (newvp != NULL) { error = VOP_GETATTR(newvp, ap->a_vap, ap->a_cred); vput(newvp); return (error); } } vap->va_type = VDIR; vap->va_mode = 0755; vap->va_nlink = 3; /* XXX */ vap->va_uid = 0; vap->va_gid = 0; vap->va_rdev = NODEV; vap->va_fsid = mp->mnt_stat.f_fsid.val[0]; vap->va_fileid = anp->an_fileno; vap->va_size = S_BLKSIZE; vap->va_blocksize = S_BLKSIZE; vap->va_mtime = anp->an_ctime; vap->va_atime = anp->an_ctime; vap->va_ctime = anp->an_ctime; vap->va_birthtime = anp->an_ctime; vap->va_gen = 0; vap->va_flags = 0; vap->va_rdev = 0; vap->va_bytes = S_BLKSIZE; vap->va_filerev = 0; vap->va_spare = 0; return (0); } /* * Unlock the vnode, request automountd(8) action, and then lock it back. * If anything got mounted on top of the vnode, return the new filesystem's * root vnode in 'newvp', locked. */ static int autofs_trigger_vn(struct vnode *vp, const char *path, int pathlen, struct vnode **newvp) { struct autofs_node *anp; int error, lock_flags; anp = vp->v_data; /* * Release the vnode lock, so that other operations, in partcular * mounting a filesystem on top of it, can proceed. Increase use * count, to prevent the vnode from being deallocated and to prevent * filesystem from being unmounted. */ lock_flags = VOP_ISLOCKED(vp); vref(vp); VOP_UNLOCK(vp); sx_xlock(&autofs_softc->sc_lock); /* * XXX: Workaround for mounting the same thing multiple times; revisit. */ if (vp->v_mountedhere != NULL) { error = 0; goto mounted; } error = autofs_trigger(anp, path, pathlen); mounted: sx_xunlock(&autofs_softc->sc_lock); vn_lock(vp, lock_flags | LK_RETRY); vunref(vp); if (VN_IS_DOOMED(vp)) { AUTOFS_DEBUG("VIRF_DOOMED"); return (ENOENT); } if (error != 0) return (error); if (vp->v_mountedhere == NULL) { *newvp = NULL; return (0); } else { /* * If the operation that succeeded was mount, then mark * the node as non-cached. Otherwise, if someone unmounts * the filesystem before the cache times out, we will fail * to trigger. */ anp->an_cached = false; } error = VFS_ROOT(vp->v_mountedhere, lock_flags, newvp); if (error != 0) { AUTOFS_WARN("VFS_ROOT() failed with error %d", error); return (error); } return (0); } static int autofs_vget_callback(struct mount *mp, void *arg, int flags, struct vnode **vpp) { return (autofs_node_vn(arg, mp, flags, vpp)); } static int autofs_lookup(struct vop_lookup_args *ap) { struct vnode *dvp, *newvp, **vpp; struct mount *mp; struct autofs_mount *amp; struct autofs_node *anp, *child; struct componentname *cnp; int error; dvp = ap->a_dvp; vpp = ap->a_vpp; mp = dvp->v_mount; amp = VFSTOAUTOFS(mp); anp = dvp->v_data; cnp = ap->a_cnp; if (cnp->cn_flags & ISDOTDOT) { KASSERT(anp->an_parent != NULL, ("NULL parent")); /* * Note that in this case, dvp is the child vnode, and we * are looking up the parent vnode - exactly reverse from * normal operation. Unlocking dvp requires some rather * tricky unlock/relock dance to prevent mp from being freed; * use vn_vget_ino_gen() which takes care of all that. */ error = vn_vget_ino_gen(dvp, autofs_vget_callback, anp->an_parent, cnp->cn_lkflags, vpp); if (error != 0) { AUTOFS_WARN("vn_vget_ino_gen() failed with error %d", error); return (error); } return (error); } if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { vref(dvp); *vpp = dvp; return (0); } if (autofs_cached(anp, cnp->cn_nameptr, cnp->cn_namelen) == false && autofs_ignore_thread(cnp->cn_thread) == false) { error = autofs_trigger_vn(dvp, cnp->cn_nameptr, cnp->cn_namelen, &newvp); if (error != 0) return (error); if (newvp != NULL) { /* * The target filesystem got automounted. * Let the lookup(9) go around with the same * path component. */ vput(newvp); return (ERELOOKUP); } } AUTOFS_SLOCK(amp); error = autofs_node_find(anp, cnp->cn_nameptr, cnp->cn_namelen, &child); if (error != 0) { if ((cnp->cn_flags & ISLASTCN) && cnp->cn_nameiop == CREATE) { AUTOFS_SUNLOCK(amp); return (EJUSTRETURN); } AUTOFS_SUNLOCK(amp); return (ENOENT); } /* * XXX: Dropping the node here is ok, because we never remove nodes. */ AUTOFS_SUNLOCK(amp); error = autofs_node_vn(child, mp, cnp->cn_lkflags, vpp); if (error != 0) { if ((cnp->cn_flags & ISLASTCN) && cnp->cn_nameiop == CREATE) return (EJUSTRETURN); return (error); } return (0); } static int autofs_mkdir(struct vop_mkdir_args *ap) { struct vnode *vp; struct autofs_node *anp; struct autofs_mount *amp; struct autofs_node *child; int error; vp = ap->a_dvp; anp = vp->v_data; amp = VFSTOAUTOFS(vp->v_mount); /* * Do not allow mkdir() if the calling thread is not * automountd(8) descendant. */ if (autofs_ignore_thread(curthread) == false) return (EPERM); AUTOFS_XLOCK(amp); error = autofs_node_new(anp, amp, ap->a_cnp->cn_nameptr, ap->a_cnp->cn_namelen, &child); if (error != 0) { AUTOFS_XUNLOCK(amp); return (error); } AUTOFS_XUNLOCK(amp); error = autofs_node_vn(child, vp->v_mount, LK_EXCLUSIVE, ap->a_vpp); return (error); } static int autofs_print(struct vop_print_args *ap) { struct vnode *vp; struct autofs_node *anp; vp = ap->a_vp; anp = vp->v_data; printf(" name \"%s\", fileno %d, cached %d, wildcards %d\n", anp->an_name, anp->an_fileno, anp->an_cached, anp->an_wildcards); return (0); } /* * Write out a single 'struct dirent', based on 'name' and 'fileno' arguments. */ static int autofs_readdir_one(struct uio *uio, const char *name, int fileno, size_t *reclenp) { struct dirent dirent; size_t namlen, reclen; int error; namlen = strlen(name); reclen = _GENERIC_DIRLEN(namlen); if (reclenp != NULL) *reclenp = reclen; if (uio == NULL) return (0); if (uio->uio_resid < reclen) return (EINVAL); dirent.d_fileno = fileno; + dirent.d_off = uio->uio_offset + reclen; dirent.d_reclen = reclen; dirent.d_type = DT_DIR; dirent.d_namlen = namlen; memcpy(dirent.d_name, name, namlen); dirent_terminate(&dirent); error = uiomove(&dirent, reclen, uio); return (error); } static size_t autofs_dirent_reclen(const char *name) { size_t reclen; (void)autofs_readdir_one(NULL, name, -1, &reclen); return (reclen); } static int autofs_readdir(struct vop_readdir_args *ap) { struct vnode *vp, *newvp; struct autofs_mount *amp; struct autofs_node *anp, *child; struct uio *uio; size_t reclen, reclens; ssize_t initial_resid; int error; vp = ap->a_vp; amp = VFSTOAUTOFS(vp->v_mount); anp = vp->v_data; uio = ap->a_uio; initial_resid = ap->a_uio->uio_resid; KASSERT(vp->v_type == VDIR, ("!VDIR")); if (autofs_cached(anp, NULL, 0) == false && autofs_ignore_thread(curthread) == false) { error = autofs_trigger_vn(vp, "", 0, &newvp); if (error != 0) return (error); if (newvp != NULL) { error = VOP_READDIR(newvp, ap->a_uio, ap->a_cred, ap->a_eofflag, ap->a_ncookies, ap->a_cookies); vput(newvp); return (error); } } if (uio->uio_offset < 0) return (EINVAL); if (ap->a_eofflag != NULL) *ap->a_eofflag = FALSE; /* * Write out the directory entry for ".". This is conditional * on the current offset into the directory; same applies to the * other two cases below. */ if (uio->uio_offset == 0) { error = autofs_readdir_one(uio, ".", anp->an_fileno, &reclen); if (error != 0) goto out; } reclens = autofs_dirent_reclen("."); /* * Write out the directory entry for "..". */ if (uio->uio_offset <= reclens) { if (uio->uio_offset != reclens) return (EINVAL); if (anp->an_parent == NULL) { error = autofs_readdir_one(uio, "..", anp->an_fileno, &reclen); } else { error = autofs_readdir_one(uio, "..", anp->an_parent->an_fileno, &reclen); } if (error != 0) goto out; } reclens += autofs_dirent_reclen(".."); /* * Write out the directory entries for subdirectories. */ AUTOFS_SLOCK(amp); RB_FOREACH(child, autofs_node_tree, &anp->an_children) { /* * Check the offset to skip entries returned by previous * calls to getdents(). */ if (uio->uio_offset > reclens) { reclens += autofs_dirent_reclen(child->an_name); continue; } /* * Prevent seeking into the middle of dirent. */ if (uio->uio_offset != reclens) { AUTOFS_SUNLOCK(amp); return (EINVAL); } error = autofs_readdir_one(uio, child->an_name, child->an_fileno, &reclen); reclens += reclen; if (error != 0) { AUTOFS_SUNLOCK(amp); goto out; } } AUTOFS_SUNLOCK(amp); if (ap->a_eofflag != NULL) *ap->a_eofflag = TRUE; return (0); out: /* * Return error if the initial buffer was too small to do anything. */ if (uio->uio_resid == initial_resid) return (error); /* * Don't return an error if we managed to copy out some entries. */ if (uio->uio_resid < reclen) return (0); return (error); } static int autofs_reclaim(struct vop_reclaim_args *ap) { struct vnode *vp; struct autofs_node *anp; vp = ap->a_vp; anp = vp->v_data; /* * We do not free autofs_node here; instead we are * destroying them in autofs_node_delete(). */ sx_xlock(&anp->an_vnode_lock); anp->an_vnode = NULL; vp->v_data = NULL; sx_xunlock(&anp->an_vnode_lock); return (0); } struct vop_vector autofs_vnodeops = { .vop_default = &default_vnodeops, .vop_access = autofs_access, .vop_lookup = autofs_lookup, .vop_create = VOP_EOPNOTSUPP, .vop_getattr = autofs_getattr, .vop_link = VOP_EOPNOTSUPP, .vop_mkdir = autofs_mkdir, .vop_mknod = VOP_EOPNOTSUPP, .vop_print = autofs_print, .vop_read = VOP_EOPNOTSUPP, .vop_readdir = autofs_readdir, .vop_remove = VOP_EOPNOTSUPP, .vop_rename = VOP_EOPNOTSUPP, .vop_rmdir = VOP_EOPNOTSUPP, .vop_setattr = VOP_EOPNOTSUPP, .vop_symlink = VOP_EOPNOTSUPP, .vop_write = VOP_EOPNOTSUPP, .vop_reclaim = autofs_reclaim, }; VFS_VOP_VECTOR_REGISTER(autofs_vnodeops); int autofs_node_new(struct autofs_node *parent, struct autofs_mount *amp, const char *name, int namelen, struct autofs_node **anpp) { struct autofs_node *anp; if (parent != NULL) { AUTOFS_ASSERT_XLOCKED(parent->an_mount); KASSERT(autofs_node_find(parent, name, namelen, NULL) == ENOENT, ("node \"%s\" already exists", name)); } anp = uma_zalloc(autofs_node_zone, M_WAITOK | M_ZERO); if (namelen >= 0) anp->an_name = strndup(name, namelen, M_AUTOFS); else anp->an_name = strdup(name, M_AUTOFS); anp->an_fileno = atomic_fetchadd_int(&->am_last_fileno, 1); callout_init(&anp->an_callout, 1); /* * The reason for SX_NOWITNESS here is that witness(4) * cannot tell vnodes apart, so the following perfectly * valid lock order... * * vnode lock A -> autofsvlk B -> vnode lock B * * ... gets reported as a LOR. */ sx_init_flags(&anp->an_vnode_lock, "autofsvlk", SX_NOWITNESS); getnanotime(&anp->an_ctime); anp->an_parent = parent; anp->an_mount = amp; if (parent != NULL) RB_INSERT(autofs_node_tree, &parent->an_children, anp); RB_INIT(&anp->an_children); *anpp = anp; return (0); } int autofs_node_find(struct autofs_node *parent, const char *name, int namelen, struct autofs_node **anpp) { struct autofs_node *anp, find; int error; AUTOFS_ASSERT_LOCKED(parent->an_mount); if (namelen >= 0) find.an_name = strndup(name, namelen, M_AUTOFS); else find.an_name = strdup(name, M_AUTOFS); anp = RB_FIND(autofs_node_tree, &parent->an_children, &find); if (anp != NULL) { error = 0; if (anpp != NULL) *anpp = anp; } else { error = ENOENT; } free(find.an_name, M_AUTOFS); return (error); } void autofs_node_delete(struct autofs_node *anp) { struct autofs_node *parent; AUTOFS_ASSERT_XLOCKED(anp->an_mount); KASSERT(RB_EMPTY(&anp->an_children), ("have children")); callout_drain(&anp->an_callout); parent = anp->an_parent; if (parent != NULL) RB_REMOVE(autofs_node_tree, &parent->an_children, anp); sx_destroy(&anp->an_vnode_lock); free(anp->an_name, M_AUTOFS); uma_zfree(autofs_node_zone, anp); } int autofs_node_vn(struct autofs_node *anp, struct mount *mp, int flags, struct vnode **vpp) { struct vnode *vp; int error; AUTOFS_ASSERT_UNLOCKED(anp->an_mount); sx_xlock(&anp->an_vnode_lock); vp = anp->an_vnode; if (vp != NULL) { error = vget(vp, flags | LK_RETRY); if (error != 0) { AUTOFS_WARN("vget failed with error %d", error); sx_xunlock(&anp->an_vnode_lock); return (error); } if (VN_IS_DOOMED(vp)) { /* * We got forcibly unmounted. */ AUTOFS_DEBUG("doomed vnode"); sx_xunlock(&anp->an_vnode_lock); vput(vp); return (ENOENT); } *vpp = vp; sx_xunlock(&anp->an_vnode_lock); return (0); } error = getnewvnode("autofs", mp, &autofs_vnodeops, &vp); if (error != 0) { sx_xunlock(&anp->an_vnode_lock); return (error); } error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (error != 0) { sx_xunlock(&anp->an_vnode_lock); vdrop(vp); return (error); } vp->v_type = VDIR; if (anp->an_parent == NULL) vp->v_vflag |= VV_ROOT; vp->v_data = anp; VN_LOCK_ASHARE(vp); error = insmntque(vp, mp); if (error != 0) { AUTOFS_DEBUG("insmntque() failed with error %d", error); sx_xunlock(&anp->an_vnode_lock); return (error); } KASSERT(anp->an_vnode == NULL, ("lost race")); anp->an_vnode = vp; sx_xunlock(&anp->an_vnode_lock); *vpp = vp; return (0); } diff --git a/sys/fs/smbfs/smbfs_io.c b/sys/fs/smbfs/smbfs_io.c index 80c42f258cff..dd12d1276438 100644 --- a/sys/fs/smbfs/smbfs_io.c +++ b/sys/fs/smbfs/smbfs_io.c @@ -1,675 +1,677 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2000-2001 Boris Popov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #include */ #include #include #include #include #include #include /*#define SMBFS_RWGENERIC*/ extern uma_zone_t smbfs_pbuf_zone; static int smbfs_fastlookup = 1; SYSCTL_DECL(_vfs_smbfs); SYSCTL_INT(_vfs_smbfs, OID_AUTO, fastlookup, CTLFLAG_RW, &smbfs_fastlookup, 0, ""); #define DE_SIZE (sizeof(struct dirent)) static int smbfs_readvdir(struct vnode *vp, struct uio *uio, struct ucred *cred) { struct dirent de; struct componentname cn; struct smb_cred *scred; struct smbfs_fctx *ctx; struct vnode *newvp; struct smbnode *np = VTOSMB(vp); int error/*, *eofflag = ap->a_eofflag*/; long offset, limit; np = VTOSMB(vp); SMBVDEBUG("dirname='%s'\n", np->n_name); scred = smbfs_malloc_scred(); smb_makescred(scred, uio->uio_td, cred); offset = uio->uio_offset / DE_SIZE; /* offset in the directory */ limit = uio->uio_resid / DE_SIZE; if (uio->uio_resid < DE_SIZE || uio->uio_offset < 0) { error = EINVAL; goto out; } while (limit && offset < 2) { limit--; bzero((caddr_t)&de, DE_SIZE); de.d_reclen = DE_SIZE; de.d_fileno = (offset == 0) ? np->n_ino : (np->n_parent ? np->n_parentino : 2); if (de.d_fileno == 0) de.d_fileno = 0x7ffffffd + offset; + de.d_off = offset + 1; de.d_namlen = offset + 1; de.d_name[0] = '.'; de.d_name[1] = '.'; de.d_type = DT_DIR; dirent_terminate(&de); error = uiomove(&de, DE_SIZE, uio); if (error) goto out; offset++; uio->uio_offset += DE_SIZE; } if (limit == 0) { error = 0; goto out; } if (offset != np->n_dirofs || np->n_dirseq == NULL) { SMBVDEBUG("Reopening search %ld:%ld\n", offset, np->n_dirofs); if (np->n_dirseq) { smbfs_findclose(np->n_dirseq, scred); np->n_dirseq = NULL; } np->n_dirofs = 2; error = smbfs_findopen(np, "*", 1, SMB_FA_SYSTEM | SMB_FA_HIDDEN | SMB_FA_DIR, scred, &ctx); if (error) { SMBVDEBUG("can not open search, error = %d", error); goto out; } np->n_dirseq = ctx; } else ctx = np->n_dirseq; while (np->n_dirofs < offset) { error = smbfs_findnext(ctx, offset - np->n_dirofs++, scred); if (error) { smbfs_findclose(np->n_dirseq, scred); np->n_dirseq = NULL; error = ENOENT ? 0 : error; goto out; } } error = 0; for (; limit; limit--, offset++) { error = smbfs_findnext(ctx, limit, scred); if (error) break; np->n_dirofs++; bzero((caddr_t)&de, DE_SIZE); de.d_reclen = DE_SIZE; de.d_fileno = ctx->f_attr.fa_ino; + de.d_off = offset + 1; de.d_type = (ctx->f_attr.fa_attr & SMB_FA_DIR) ? DT_DIR : DT_REG; de.d_namlen = ctx->f_nmlen; bcopy(ctx->f_name, de.d_name, de.d_namlen); dirent_terminate(&de); if (smbfs_fastlookup) { error = smbfs_nget(vp->v_mount, vp, ctx->f_name, ctx->f_nmlen, &ctx->f_attr, &newvp); if (!error) { cn.cn_nameptr = de.d_name; cn.cn_namelen = de.d_namlen; cache_enter(vp, newvp, &cn); vput(newvp); } } error = uiomove(&de, DE_SIZE, uio); if (error) break; } if (error == ENOENT) error = 0; uio->uio_offset = offset * DE_SIZE; out: smbfs_free_scred(scred); return error; } int smbfs_readvnode(struct vnode *vp, struct uio *uiop, struct ucred *cred) { struct smbmount *smp = VFSTOSMBFS(vp->v_mount); struct smbnode *np = VTOSMB(vp); struct thread *td; struct vattr vattr; struct smb_cred *scred; int error, lks; /* * Protect against method which is not supported for now */ if (uiop->uio_segflg == UIO_NOCOPY) return EOPNOTSUPP; if (vp->v_type != VREG && vp->v_type != VDIR) { SMBFSERR("vn types other than VREG or VDIR are unsupported !\n"); return EIO; } if (uiop->uio_resid == 0) return 0; if (uiop->uio_offset < 0) return EINVAL; /* if (uiop->uio_offset + uiop->uio_resid > smp->nm_maxfilesize) return EFBIG;*/ td = uiop->uio_td; if (vp->v_type == VDIR) { lks = LK_EXCLUSIVE; /* lockstatus(vp->v_vnlock); */ if (lks == LK_SHARED) vn_lock(vp, LK_UPGRADE | LK_RETRY); error = smbfs_readvdir(vp, uiop, cred); if (lks == LK_SHARED) vn_lock(vp, LK_DOWNGRADE | LK_RETRY); return error; } /* biosize = SSTOCN(smp->sm_share)->sc_txmax;*/ if (np->n_flag & NMODIFIED) { smbfs_attr_cacheremove(vp); error = VOP_GETATTR(vp, &vattr, cred); if (error) return error; np->n_mtime.tv_sec = vattr.va_mtime.tv_sec; } else { error = VOP_GETATTR(vp, &vattr, cred); if (error) return error; if (np->n_mtime.tv_sec != vattr.va_mtime.tv_sec) { error = smbfs_vinvalbuf(vp, td); if (error) return error; np->n_mtime.tv_sec = vattr.va_mtime.tv_sec; } } scred = smbfs_malloc_scred(); smb_makescred(scred, td, cred); error = smb_read(smp->sm_share, np->n_fid, uiop, scred); smbfs_free_scred(scred); return (error); } int smbfs_writevnode(struct vnode *vp, struct uio *uiop, struct ucred *cred, int ioflag) { struct smbmount *smp = VTOSMBFS(vp); struct smbnode *np = VTOSMB(vp); struct smb_cred *scred; struct thread *td; int error = 0; if (vp->v_type != VREG) { SMBERROR("vn types other than VREG unsupported !\n"); return EIO; } SMBVDEBUG("ofs=%jd,resid=%zd\n", (intmax_t)uiop->uio_offset, uiop->uio_resid); if (uiop->uio_offset < 0) return EINVAL; /* if (uiop->uio_offset + uiop->uio_resid > smp->nm_maxfilesize) return (EFBIG);*/ td = uiop->uio_td; if (ioflag & (IO_APPEND | IO_SYNC)) { if (np->n_flag & NMODIFIED) { smbfs_attr_cacheremove(vp); error = smbfs_vinvalbuf(vp, td); if (error) return error; } if (ioflag & IO_APPEND) { #ifdef notyet /* * File size can be changed by another client */ smbfs_attr_cacheremove(vp); error = VOP_GETATTR(vp, &vattr, cred); if (error) return (error); #endif uiop->uio_offset = np->n_size; } } if (uiop->uio_resid == 0) return 0; if (vn_rlimit_fsize(vp, uiop, td)) return (EFBIG); scred = smbfs_malloc_scred(); smb_makescred(scred, td, cred); error = smb_write(smp->sm_share, np->n_fid, uiop, scred); smbfs_free_scred(scred); SMBVDEBUG("after: ofs=%jd,resid=%zd\n", (intmax_t)uiop->uio_offset, uiop->uio_resid); if (!error) { if (uiop->uio_offset > np->n_size) { np->n_size = uiop->uio_offset; vnode_pager_setsize(vp, np->n_size); } } return error; } /* * Do an I/O operation to/from a cache block. */ int smbfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td) { struct smbmount *smp = VFSTOSMBFS(vp->v_mount); struct smbnode *np = VTOSMB(vp); struct uio *uiop; struct iovec io; struct smb_cred *scred; int error = 0; uiop = malloc(sizeof(struct uio), M_SMBFSDATA, M_WAITOK); uiop->uio_iov = &io; uiop->uio_iovcnt = 1; uiop->uio_segflg = UIO_SYSSPACE; uiop->uio_td = td; scred = smbfs_malloc_scred(); smb_makescred(scred, td, cr); if (bp->b_iocmd == BIO_READ) { io.iov_len = uiop->uio_resid = bp->b_bcount; io.iov_base = bp->b_data; uiop->uio_rw = UIO_READ; switch (vp->v_type) { case VREG: uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; error = smb_read(smp->sm_share, np->n_fid, uiop, scred); if (error) break; if (uiop->uio_resid) { int left = uiop->uio_resid; int nread = bp->b_bcount - left; if (left > 0) bzero((char *)bp->b_data + nread, left); } break; default: printf("smbfs_doio: type %x unexpected\n",vp->v_type); break; } if (error) { bp->b_error = error; bp->b_ioflags |= BIO_ERROR; } } else { /* write */ if (((bp->b_blkno * DEV_BSIZE) + bp->b_dirtyend) > np->n_size) bp->b_dirtyend = np->n_size - (bp->b_blkno * DEV_BSIZE); if (bp->b_dirtyend > bp->b_dirtyoff) { io.iov_len = uiop->uio_resid = bp->b_dirtyend - bp->b_dirtyoff; uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; uiop->uio_rw = UIO_WRITE; error = smb_write(smp->sm_share, np->n_fid, uiop, scred); /* * For an interrupted write, the buffer is still valid * and the write hasn't been pushed to the server yet, * so we can't set BIO_ERROR and report the interruption * by setting B_EINTR. For the B_ASYNC case, B_EINTR * is not relevant, so the rpc attempt is essentially * a noop. For the case of a V3 write rpc not being * committed to stable storage, the block is still * dirty and requires either a commit rpc or another * write rpc with iomode == NFSV3WRITE_FILESYNC before * the block is reused. This is indicated by setting * the B_DELWRI and B_NEEDCOMMIT flags. */ if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) { bp->b_flags &= ~(B_INVAL|B_NOCACHE); if ((bp->b_flags & B_ASYNC) == 0) bp->b_flags |= B_EINTR; if ((bp->b_flags & B_PAGING) == 0) { bdirty(bp); bp->b_flags &= ~B_DONE; } if ((bp->b_flags & B_ASYNC) == 0) bp->b_flags |= B_EINTR; } else { if (error) { bp->b_ioflags |= BIO_ERROR; bp->b_error = error; } bp->b_dirtyoff = bp->b_dirtyend = 0; } } else { bp->b_resid = 0; bufdone(bp); free(uiop, M_SMBFSDATA); smbfs_free_scred(scred); return 0; } } bp->b_resid = uiop->uio_resid; bufdone(bp); free(uiop, M_SMBFSDATA); smbfs_free_scred(scred); return error; } /* * Vnode op for VM getpages. * Wish wish .... get rid from multiple IO routines */ int smbfs_getpages(ap) struct vop_getpages_args /* { struct vnode *a_vp; vm_page_t *a_m; int a_count; int a_reqpage; } */ *ap; { #ifdef SMBFS_RWGENERIC return vop_stdgetpages(ap); #else int i, error, nextoff, size, toff, npages, count; struct uio uio; struct iovec iov; vm_offset_t kva; struct buf *bp; struct vnode *vp; struct thread *td; struct ucred *cred; struct smbmount *smp; struct smbnode *np; struct smb_cred *scred; vm_object_t object; vm_page_t *pages; vp = ap->a_vp; if ((object = vp->v_object) == NULL) { printf("smbfs_getpages: called with non-merged cache vnode??\n"); return VM_PAGER_ERROR; } td = curthread; /* XXX */ cred = td->td_ucred; /* XXX */ np = VTOSMB(vp); smp = VFSTOSMBFS(vp->v_mount); pages = ap->a_m; npages = ap->a_count; /* * If the requested page is partially valid, just return it and * allow the pager to zero-out the blanks. Partially valid pages * can only occur at the file EOF. * * XXXGL: is that true for SMB filesystem? */ VM_OBJECT_WLOCK(object); if (!vm_page_none_valid(pages[npages - 1]) && --npages == 0) goto out; VM_OBJECT_WUNLOCK(object); scred = smbfs_malloc_scred(); smb_makescred(scred, td, cred); bp = uma_zalloc(smbfs_pbuf_zone, M_WAITOK); kva = (vm_offset_t) bp->b_data; pmap_qenter(kva, pages, npages); VM_CNT_INC(v_vnodein); VM_CNT_ADD(v_vnodepgsin, npages); count = npages << PAGE_SHIFT; iov.iov_base = (caddr_t) kva; iov.iov_len = count; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); uio.uio_resid = count; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = td; error = smb_read(smp->sm_share, np->n_fid, &uio, scred); smbfs_free_scred(scred); pmap_qremove(kva, npages); uma_zfree(smbfs_pbuf_zone, bp); if (error && (uio.uio_resid == count)) { printf("smbfs_getpages: error %d\n",error); return VM_PAGER_ERROR; } size = count - uio.uio_resid; VM_OBJECT_WLOCK(object); for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { vm_page_t m; nextoff = toff + PAGE_SIZE; m = pages[i]; if (nextoff <= size) { /* * Read operation filled an entire page */ vm_page_valid(m); KASSERT(m->dirty == 0, ("smbfs_getpages: page %p is dirty", m)); } else if (size > toff) { /* * Read operation filled a partial page. */ vm_page_invalid(m); vm_page_set_valid_range(m, 0, size - toff); KASSERT(m->dirty == 0, ("smbfs_getpages: page %p is dirty", m)); } else { /* * Read operation was short. If no error occurred * we may have hit a zero-fill section. We simply * leave valid set to 0. */ ; } } out: VM_OBJECT_WUNLOCK(object); if (ap->a_rbehind) *ap->a_rbehind = 0; if (ap->a_rahead) *ap->a_rahead = 0; return (VM_PAGER_OK); #endif /* SMBFS_RWGENERIC */ } /* * Vnode op for VM putpages. * possible bug: all IO done in sync mode * Note that vop_close always invalidate pages before close, so it's * not necessary to open vnode. */ int smbfs_putpages(ap) struct vop_putpages_args /* { struct vnode *a_vp; vm_page_t *a_m; int a_count; int a_sync; int *a_rtvals; } */ *ap; { int error; struct vnode *vp = ap->a_vp; struct thread *td; struct ucred *cred; #ifdef SMBFS_RWGENERIC td = curthread; /* XXX */ cred = td->td_ucred; /* XXX */ VOP_OPEN(vp, FWRITE, cred, td, NULL); error = vop_stdputpages(ap); VOP_CLOSE(vp, FWRITE, cred, td); return error; #else struct uio uio; struct iovec iov; vm_offset_t kva; struct buf *bp; int i, npages, count; int *rtvals; struct smbmount *smp; struct smbnode *np; struct smb_cred *scred; vm_page_t *pages; td = curthread; /* XXX */ cred = td->td_ucred; /* XXX */ /* VOP_OPEN(vp, FWRITE, cred, td, NULL);*/ np = VTOSMB(vp); smp = VFSTOSMBFS(vp->v_mount); pages = ap->a_m; count = ap->a_count; rtvals = ap->a_rtvals; npages = btoc(count); for (i = 0; i < npages; i++) { rtvals[i] = VM_PAGER_ERROR; } bp = uma_zalloc(smbfs_pbuf_zone, M_WAITOK); kva = (vm_offset_t) bp->b_data; pmap_qenter(kva, pages, npages); VM_CNT_INC(v_vnodeout); VM_CNT_ADD(v_vnodepgsout, count); iov.iov_base = (caddr_t) kva; iov.iov_len = count; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); uio.uio_resid = count; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_WRITE; uio.uio_td = td; SMBVDEBUG("ofs=%jd,resid=%zd\n", (intmax_t)uio.uio_offset, uio.uio_resid); scred = smbfs_malloc_scred(); smb_makescred(scred, td, cred); error = smb_write(smp->sm_share, np->n_fid, &uio, scred); smbfs_free_scred(scred); /* VOP_CLOSE(vp, FWRITE, cred, td);*/ SMBVDEBUG("paged write done: %d\n", error); pmap_qremove(kva, npages); uma_zfree(smbfs_pbuf_zone, bp); if (error == 0) { vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid, npages * PAGE_SIZE, npages * PAGE_SIZE); } return (rtvals[0]); #endif /* SMBFS_RWGENERIC */ } /* * Flush and invalidate all dirty buffers. If another process is already * doing the flush, just wait for completion. */ int smbfs_vinvalbuf(struct vnode *vp, struct thread *td) { struct smbnode *np = VTOSMB(vp); int error = 0; if (VN_IS_DOOMED(vp)) return 0; while (np->n_flag & NFLUSHINPROG) { np->n_flag |= NFLUSHWANT; error = tsleep(&np->n_flag, PRIBIO + 2, "smfsvinv", 2 * hz); error = smb_td_intr(td); if (error == EINTR) return EINTR; } np->n_flag |= NFLUSHINPROG; if (vp->v_bufobj.bo_object != NULL) { VM_OBJECT_WLOCK(vp->v_bufobj.bo_object); vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object); } error = vinvalbuf(vp, V_SAVE, PCATCH, 0); while (error) { if (error == ERESTART || error == EINTR) { np->n_flag &= ~NFLUSHINPROG; if (np->n_flag & NFLUSHWANT) { np->n_flag &= ~NFLUSHWANT; wakeup(&np->n_flag); } return EINTR; } error = vinvalbuf(vp, V_SAVE, PCATCH, 0); } np->n_flag &= ~(NMODIFIED | NFLUSHINPROG); if (np->n_flag & NFLUSHWANT) { np->n_flag &= ~NFLUSHWANT; wakeup(&np->n_flag); } return (error); } diff --git a/sys/fs/tmpfs/tmpfs_subr.c b/sys/fs/tmpfs/tmpfs_subr.c index 156211e35186..c74981db0f58 100644 --- a/sys/fs/tmpfs/tmpfs_subr.c +++ b/sys/fs/tmpfs/tmpfs_subr.c @@ -1,1949 +1,1963 @@ /* $NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $ */ /*- * SPDX-License-Identifier: BSD-2-Clause-NetBSD * * Copyright (c) 2005 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Julio M. Merino Vidal, developed as part of Google's Summer of Code * 2005 program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Efficient memory file system supporting functions. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "tmpfs file system"); static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED; MALLOC_DEFINE(M_TMPFSDIR, "tmpfs dir", "tmpfs dirent structure"); static uma_zone_t tmpfs_node_pool; VFS_SMR_DECLARE; static int tmpfs_node_ctor(void *mem, int size, void *arg, int flags) { struct tmpfs_node *node; node = mem; node->tn_gen++; node->tn_size = 0; node->tn_status = 0; node->tn_accessed = false; node->tn_flags = 0; node->tn_links = 0; node->tn_vnode = NULL; node->tn_vpstate = 0; return (0); } static void tmpfs_node_dtor(void *mem, int size, void *arg) { struct tmpfs_node *node; node = mem; node->tn_type = VNON; } static int tmpfs_node_init(void *mem, int size, int flags) { struct tmpfs_node *node; node = mem; node->tn_id = 0; mtx_init(&node->tn_interlock, "tmpfsni", NULL, MTX_DEF); node->tn_gen = arc4random(); return (0); } static void tmpfs_node_fini(void *mem, int size) { struct tmpfs_node *node; node = mem; mtx_destroy(&node->tn_interlock); } void tmpfs_subr_init(void) { tmpfs_node_pool = uma_zcreate("TMPFS node", sizeof(struct tmpfs_node), tmpfs_node_ctor, tmpfs_node_dtor, tmpfs_node_init, tmpfs_node_fini, UMA_ALIGN_PTR, 0); VFS_SMR_ZONE_SET(tmpfs_node_pool); } void tmpfs_subr_uninit(void) { uma_zdestroy(tmpfs_node_pool); } static int sysctl_mem_reserved(SYSCTL_HANDLER_ARGS) { int error; long pages, bytes; pages = *(long *)arg1; bytes = pages * PAGE_SIZE; error = sysctl_handle_long(oidp, &bytes, 0, req); if (error || !req->newptr) return (error); pages = bytes / PAGE_SIZE; if (pages < TMPFS_PAGES_MINRESERVED) return (EINVAL); *(long *)arg1 = pages; return (0); } SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &tmpfs_pages_reserved, 0, sysctl_mem_reserved, "L", "Amount of available memory and swap below which tmpfs growth stops"); static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b); RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); size_t tmpfs_mem_avail(void) { size_t avail; long reserved; avail = swap_pager_avail + vm_free_count(); reserved = atomic_load_long(&tmpfs_pages_reserved); if (__predict_false(avail < reserved)) return (0); return (avail - reserved); } size_t tmpfs_pages_used(struct tmpfs_mount *tmp) { const size_t node_size = sizeof(struct tmpfs_node) + sizeof(struct tmpfs_dirent); size_t meta_pages; meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size, PAGE_SIZE); return (meta_pages + tmp->tm_pages_used); } static size_t tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages) { if (tmpfs_mem_avail() < req_pages) return (0); if (tmp->tm_pages_max != ULONG_MAX && tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp)) return (0); return (1); } void tmpfs_ref_node(struct tmpfs_node *node) { #ifdef INVARIANTS u_int old; old = #endif refcount_acquire(&node->tn_refcount); #ifdef INVARIANTS KASSERT(old > 0, ("node %p zero refcount", node)); #endif } /* * Allocates a new node of type 'type' inside the 'tmp' mount point, with * its owner set to 'uid', its group to 'gid' and its mode set to 'mode', * using the credentials of the process 'p'. * * If the node type is set to 'VDIR', then the parent parameter must point * to the parent directory of the node being created. It may only be NULL * while allocating the root node. * * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter * specifies the device the node represents. * * If the node type is set to 'VLNK', then the parameter target specifies * the file name of the target file for the symbolic link that is being * created. * * Note that new nodes are retrieved from the available list if it has * items or, if it is empty, from the node pool as long as there is enough * space to create them. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, enum vtype type, uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent, const char *target, dev_t rdev, struct tmpfs_node **node) { struct tmpfs_node *nnode; vm_object_t obj; /* If the root directory of the 'tmp' file system is not yet * allocated, this must be the request to do it. */ MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR)); MPASS(IFF(type == VLNK, target != NULL)); MPASS(IFF(type == VBLK || type == VCHR, rdev != VNOVAL)); if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max) return (ENOSPC); if (tmpfs_pages_check_avail(tmp, 1) == 0) return (ENOSPC); if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { /* * When a new tmpfs node is created for fully * constructed mount point, there must be a parent * node, which vnode is locked exclusively. As * consequence, if the unmount is executing in * parallel, vflush() cannot reclaim the parent vnode. * Due to this, the check for MNTK_UNMOUNT flag is not * racy: if we did not see MNTK_UNMOUNT flag, then tmp * cannot be destroyed until node construction is * finished and the parent vnode unlocked. * * Tmpfs does not need to instantiate new nodes during * unmount. */ return (EBUSY); } if ((mp->mnt_kern_flag & MNT_RDONLY) != 0) return (EROFS); nnode = uma_zalloc_smr(tmpfs_node_pool, M_WAITOK); /* Generic initialization. */ nnode->tn_type = type; vfs_timestamp(&nnode->tn_atime); nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime = nnode->tn_atime; nnode->tn_uid = uid; nnode->tn_gid = gid; nnode->tn_mode = mode; nnode->tn_id = alloc_unr64(&tmp->tm_ino_unr); nnode->tn_refcount = 1; /* Type-specific initialization. */ switch (nnode->tn_type) { case VBLK: case VCHR: nnode->tn_rdev = rdev; break; case VDIR: RB_INIT(&nnode->tn_dir.tn_dirhead); LIST_INIT(&nnode->tn_dir.tn_dupindex); MPASS(parent != nnode); MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL)); nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent; nnode->tn_dir.tn_readdir_lastn = 0; nnode->tn_dir.tn_readdir_lastp = NULL; nnode->tn_links++; TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent); nnode->tn_dir.tn_parent->tn_links++; TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent); break; case VFIFO: /* FALLTHROUGH */ case VSOCK: break; case VLNK: MPASS(strlen(target) < MAXPATHLEN); nnode->tn_size = strlen(target); nnode->tn_link = malloc(nnode->tn_size, M_TMPFSNAME, M_WAITOK); memcpy(nnode->tn_link, target, nnode->tn_size); break; case VREG: obj = nnode->tn_reg.tn_aobj = vm_pager_allocate(OBJT_SWAP, NULL, 0, VM_PROT_DEFAULT, 0, NULL /* XXXKIB - tmpfs needs swap reservation */); VM_OBJECT_WLOCK(obj); /* OBJ_TMPFS is set together with the setting of vp->v_object */ vm_object_set_flag(obj, OBJ_TMPFS_NODE); VM_OBJECT_WUNLOCK(obj); nnode->tn_reg.tn_tmp = tmp; break; default: panic("tmpfs_alloc_node: type %p %d", nnode, (int)nnode->tn_type); } TMPFS_LOCK(tmp); LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries); nnode->tn_attached = true; tmp->tm_nodes_inuse++; tmp->tm_refcount++; TMPFS_UNLOCK(tmp); *node = nnode; return (0); } /* * Destroys the node pointed to by node from the file system 'tmp'. * If the node references a directory, no entries are allowed. */ void tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node) { if (refcount_release_if_not_last(&node->tn_refcount)) return; TMPFS_LOCK(tmp); TMPFS_NODE_LOCK(node); if (!tmpfs_free_node_locked(tmp, node, false)) { TMPFS_NODE_UNLOCK(node); TMPFS_UNLOCK(tmp); } } bool tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node, bool detach) { vm_object_t uobj; bool last; TMPFS_MP_ASSERT_LOCKED(tmp); TMPFS_NODE_ASSERT_LOCKED(node); last = refcount_release(&node->tn_refcount); if (node->tn_attached && (detach || last)) { MPASS(tmp->tm_nodes_inuse > 0); tmp->tm_nodes_inuse--; LIST_REMOVE(node, tn_entries); node->tn_attached = false; } if (!last) return (false); #ifdef INVARIANTS MPASS(node->tn_vnode == NULL); MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0); #endif TMPFS_NODE_UNLOCK(node); TMPFS_UNLOCK(tmp); switch (node->tn_type) { case VBLK: /* FALLTHROUGH */ case VCHR: /* FALLTHROUGH */ case VDIR: /* FALLTHROUGH */ case VFIFO: /* FALLTHROUGH */ case VSOCK: break; case VLNK: free(node->tn_link, M_TMPFSNAME); break; case VREG: uobj = node->tn_reg.tn_aobj; if (uobj != NULL) { if (uobj->size != 0) atomic_subtract_long(&tmp->tm_pages_used, uobj->size); KASSERT((uobj->flags & OBJ_TMPFS) == 0, ("leaked OBJ_TMPFS node %p vm_obj %p", node, uobj)); vm_object_deallocate(uobj); } break; default: panic("tmpfs_free_node: type %p %d", node, (int)node->tn_type); } uma_zfree_smr(tmpfs_node_pool, node); TMPFS_LOCK(tmp); tmpfs_free_tmp(tmp); return (true); } static __inline uint32_t tmpfs_dirent_hash(const char *name, u_int len) { uint32_t hash; hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK; #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP hash &= 0xf; #endif if (hash < TMPFS_DIRCOOKIE_MIN) hash += TMPFS_DIRCOOKIE_MIN; return (hash); } static __inline off_t tmpfs_dirent_cookie(struct tmpfs_dirent *de) { if (de == NULL) return (TMPFS_DIRCOOKIE_EOF); MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN); return (de->td_cookie); } static __inline boolean_t tmpfs_dirent_dup(struct tmpfs_dirent *de) { return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0); } static __inline boolean_t tmpfs_dirent_duphead(struct tmpfs_dirent *de) { return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0); } void tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen) { de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen); memcpy(de->ud.td_name, name, namelen); de->td_namelen = namelen; } /* * Allocates a new directory entry for the node node with a name of name. * The new directory entry is returned in *de. * * The link count of node is increased by one to reflect the new object * referencing it. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node, const char *name, u_int len, struct tmpfs_dirent **de) { struct tmpfs_dirent *nde; nde = malloc(sizeof(*nde), M_TMPFSDIR, M_WAITOK); nde->td_node = node; if (name != NULL) { nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK); tmpfs_dirent_init(nde, name, len); } else nde->td_namelen = 0; if (node != NULL) node->tn_links++; *de = nde; return 0; } /* * Frees a directory entry. It is the caller's responsibility to destroy * the node referenced by it if needed. * * The link count of node is decreased by one to reflect the removal of an * object that referenced it. This only happens if 'node_exists' is true; * otherwise the function will not access the node referred to by the * directory entry, as it may already have been released from the outside. */ void tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de) { struct tmpfs_node *node; node = de->td_node; if (node != NULL) { MPASS(node->tn_links > 0); node->tn_links--; } if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL) free(de->ud.td_name, M_TMPFSNAME); free(de, M_TMPFSDIR); } void tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj) { ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject"); if (vp->v_type != VREG || obj == NULL) return; VM_OBJECT_WLOCK(obj); VI_LOCK(vp); vm_object_clear_flag(obj, OBJ_TMPFS); obj->un_pager.swp.swp_tmpfs = NULL; if (vp->v_writecount < 0) vp->v_writecount = 0; VI_UNLOCK(vp); VM_OBJECT_WUNLOCK(obj); } /* * Need to clear v_object for insmntque failure. */ static void tmpfs_insmntque_dtr(struct vnode *vp, void *dtr_arg) { tmpfs_destroy_vobject(vp, vp->v_object); vp->v_object = NULL; vp->v_data = NULL; vp->v_op = &dead_vnodeops; vgone(vp); vput(vp); } /* * Allocates a new vnode for the node node or returns a new reference to * an existing one if the node had already a vnode referencing it. The * resulting locked vnode is returned in *vpp. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag, struct vnode **vpp) { struct vnode *vp; enum vgetstate vs; struct tmpfs_mount *tm; vm_object_t object; int error; error = 0; tm = VFS_TO_TMPFS(mp); TMPFS_NODE_LOCK(node); tmpfs_ref_node(node); loop: TMPFS_NODE_ASSERT_LOCKED(node); if ((vp = node->tn_vnode) != NULL) { MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0); if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) || (VN_IS_DOOMED(vp) && (lkflag & LK_NOWAIT) != 0)) { TMPFS_NODE_UNLOCK(node); error = ENOENT; vp = NULL; goto out; } if (VN_IS_DOOMED(vp)) { node->tn_vpstate |= TMPFS_VNODE_WRECLAIM; while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) { msleep(&node->tn_vnode, TMPFS_NODE_MTX(node), 0, "tmpfsE", 0); } goto loop; } vs = vget_prep(vp); TMPFS_NODE_UNLOCK(node); error = vget_finish(vp, lkflag, vs); if (error == ENOENT) { TMPFS_NODE_LOCK(node); goto loop; } if (error != 0) { vp = NULL; goto out; } /* * Make sure the vnode is still there after * getting the interlock to avoid racing a free. */ if (node->tn_vnode == NULL || node->tn_vnode != vp) { vput(vp); TMPFS_NODE_LOCK(node); goto loop; } goto out; } if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) || (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) { TMPFS_NODE_UNLOCK(node); error = ENOENT; vp = NULL; goto out; } /* * otherwise lock the vp list while we call getnewvnode * since that can block. */ if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) { node->tn_vpstate |= TMPFS_VNODE_WANT; error = msleep((caddr_t) &node->tn_vpstate, TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0); if (error != 0) goto out; goto loop; } else node->tn_vpstate |= TMPFS_VNODE_ALLOCATING; TMPFS_NODE_UNLOCK(node); /* Get a new vnode and associate it with our node. */ error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ? &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp); if (error != 0) goto unlock; MPASS(vp != NULL); /* lkflag is ignored, the lock is exclusive */ (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); vp->v_data = node; vp->v_type = node->tn_type; /* Type-specific initialization. */ switch (node->tn_type) { case VBLK: /* FALLTHROUGH */ case VCHR: /* FALLTHROUGH */ case VLNK: /* FALLTHROUGH */ case VSOCK: break; case VFIFO: vp->v_op = &tmpfs_fifoop_entries; break; case VREG: object = node->tn_reg.tn_aobj; VM_OBJECT_WLOCK(object); VI_LOCK(vp); KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs")); vp->v_object = object; object->un_pager.swp.swp_tmpfs = vp; vm_object_set_flag(object, OBJ_TMPFS); vn_irflag_set_locked(vp, VIRF_PGREAD); VI_UNLOCK(vp); VM_OBJECT_WUNLOCK(object); break; case VDIR: MPASS(node->tn_dir.tn_parent != NULL); if (node->tn_dir.tn_parent == node) vp->v_vflag |= VV_ROOT; break; default: panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type); } if (vp->v_type != VFIFO) VN_LOCK_ASHARE(vp); error = insmntque1(vp, mp, tmpfs_insmntque_dtr, NULL); if (error != 0) vp = NULL; unlock: TMPFS_NODE_LOCK(node); MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING); node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING; node->tn_vnode = vp; if (node->tn_vpstate & TMPFS_VNODE_WANT) { node->tn_vpstate &= ~TMPFS_VNODE_WANT; TMPFS_NODE_UNLOCK(node); wakeup((caddr_t) &node->tn_vpstate); } else TMPFS_NODE_UNLOCK(node); out: if (error == 0) { *vpp = vp; #ifdef INVARIANTS MPASS(*vpp != NULL && VOP_ISLOCKED(*vpp)); TMPFS_NODE_LOCK(node); MPASS(*vpp == node->tn_vnode); TMPFS_NODE_UNLOCK(node); #endif } tmpfs_free_node(tm, node); return (error); } /* * Destroys the association between the vnode vp and the node it * references. */ void tmpfs_free_vp(struct vnode *vp) { struct tmpfs_node *node; node = VP_TO_TMPFS_NODE(vp); TMPFS_NODE_ASSERT_LOCKED(node); node->tn_vnode = NULL; if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) wakeup(&node->tn_vnode); node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM; vp->v_data = NULL; } /* * Allocates a new file of type 'type' and adds it to the parent directory * 'dvp'; this addition is done using the component name given in 'cnp'. * The ownership of the new file is automatically assigned based on the * credentials of the caller (through 'cnp'), the group is set based on * the parent directory and the mode is determined from the 'vap' argument. * If successful, *vpp holds a vnode to the newly created file and zero * is returned. Otherwise *vpp is NULL and the function returns an * appropriate error code. */ int tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, struct componentname *cnp, const char *target) { int error; struct tmpfs_dirent *de; struct tmpfs_mount *tmp; struct tmpfs_node *dnode; struct tmpfs_node *node; struct tmpfs_node *parent; ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file"); MPASS(cnp->cn_flags & HASBUF); tmp = VFS_TO_TMPFS(dvp->v_mount); dnode = VP_TO_TMPFS_DIR(dvp); *vpp = NULL; /* If the entry we are creating is a directory, we cannot overflow * the number of links of its parent, because it will get a new * link. */ if (vap->va_type == VDIR) { /* Ensure that we do not overflow the maximum number of links * imposed by the system. */ MPASS(dnode->tn_links <= TMPFS_LINK_MAX); if (dnode->tn_links == TMPFS_LINK_MAX) { return (EMLINK); } parent = dnode; MPASS(parent != NULL); } else parent = NULL; /* Allocate a node that represents the new file. */ error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type, cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent, target, vap->va_rdev, &node); if (error != 0) return (error); /* Allocate a directory entry that points to the new file. */ error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen, &de); if (error != 0) { tmpfs_free_node(tmp, node); return (error); } /* Allocate a vnode for the new file. */ error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp); if (error != 0) { tmpfs_free_dirent(tmp, de); tmpfs_free_node(tmp, node); return (error); } /* Now that all required items are allocated, we can proceed to * insert the new node into the directory, an operation that * cannot fail. */ if (cnp->cn_flags & ISWHITEOUT) tmpfs_dir_whiteout_remove(dvp, cnp); tmpfs_dir_attach(dvp, de); return (0); } struct tmpfs_dirent * tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) { struct tmpfs_dirent *de; de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead); dc->tdc_tree = de; if (de != NULL && tmpfs_dirent_duphead(de)) de = LIST_FIRST(&de->ud.td_duphead); dc->tdc_current = de; return (dc->tdc_current); } struct tmpfs_dirent * tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) { struct tmpfs_dirent *de; MPASS(dc->tdc_tree != NULL); if (tmpfs_dirent_dup(dc->tdc_current)) { dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries); if (dc->tdc_current != NULL) return (dc->tdc_current); } dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, dc->tdc_tree); if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) { dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); MPASS(dc->tdc_current != NULL); } return (dc->tdc_current); } /* Lookup directory entry in RB-Tree. Function may return duphead entry. */ static struct tmpfs_dirent * tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash) { struct tmpfs_dirent *de, dekey; dekey.td_hash = hash; de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey); return (de); } /* Lookup directory entry by cookie, initialize directory cursor accordingly. */ static struct tmpfs_dirent * tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie, struct tmpfs_dir_cursor *dc) { struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead; struct tmpfs_dirent *de, dekey; MPASS(cookie >= TMPFS_DIRCOOKIE_MIN); if (cookie == node->tn_dir.tn_readdir_lastn && (de = node->tn_dir.tn_readdir_lastp) != NULL) { /* Protect against possible race, tn_readdir_last[pn] * may be updated with only shared vnode lock held. */ if (cookie == tmpfs_dirent_cookie(de)) goto out; } if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) { LIST_FOREACH(de, &node->tn_dir.tn_dupindex, uh.td_dup.index_entries) { MPASS(tmpfs_dirent_dup(de)); if (de->td_cookie == cookie) goto out; /* dupindex list is sorted. */ if (de->td_cookie < cookie) { de = NULL; goto out; } } MPASS(de == NULL); goto out; } if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) { de = NULL; } else { dekey.td_hash = cookie; /* Recover if direntry for cookie was removed */ de = RB_NFIND(tmpfs_dir, dirhead, &dekey); } dc->tdc_tree = de; dc->tdc_current = de; if (de != NULL && tmpfs_dirent_duphead(de)) { dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); MPASS(dc->tdc_current != NULL); } return (dc->tdc_current); out: dc->tdc_tree = de; dc->tdc_current = de; if (de != NULL && tmpfs_dirent_dup(de)) dc->tdc_tree = tmpfs_dir_xlookup_hash(node, de->td_hash); return (dc->tdc_current); } /* * Looks for a directory entry in the directory represented by node. * 'cnp' describes the name of the entry to look for. Note that the . * and .. components are not allowed as they do not physically exist * within directories. * * Returns a pointer to the entry when found, otherwise NULL. */ struct tmpfs_dirent * tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f, struct componentname *cnp) { struct tmpfs_dir_duphead *duphead; struct tmpfs_dirent *de; uint32_t hash; MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.')); MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.'))); TMPFS_VALIDATE_DIR(node); hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen); de = tmpfs_dir_xlookup_hash(node, hash); if (de != NULL && tmpfs_dirent_duphead(de)) { duphead = &de->ud.td_duphead; LIST_FOREACH(de, duphead, uh.td_dup.entries) { if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, cnp->cn_namelen)) break; } } else if (de != NULL) { if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, cnp->cn_namelen)) de = NULL; } if (de != NULL && f != NULL && de->td_node != f) de = NULL; return (de); } /* * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex * list, allocate new cookie value. */ static void tmpfs_dir_attach_dup(struct tmpfs_node *dnode, struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde) { struct tmpfs_dir_duphead *dupindex; struct tmpfs_dirent *de, *pde; dupindex = &dnode->tn_dir.tn_dupindex; de = LIST_FIRST(dupindex); if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) { if (de == NULL) nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; else nde->td_cookie = de->td_cookie + 1; MPASS(tmpfs_dirent_dup(nde)); LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } /* * Cookie numbers are near exhaustion. Scan dupindex list for unused * numbers. dupindex list is sorted in descending order. Keep it so * after inserting nde. */ while (1) { pde = de; de = LIST_NEXT(de, uh.td_dup.index_entries); if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) { /* * Last element of the index doesn't have minimal cookie * value, use it. */ nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } else if (de == NULL) { /* * We are so lucky have 2^30 hash duplicates in single * directory :) Return largest possible cookie value. * It should be fine except possible issues with * VOP_READDIR restart. */ nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX; LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } if (de->td_cookie + 1 == pde->td_cookie || de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX) continue; /* No hole or invalid cookie. */ nde->td_cookie = de->td_cookie + 1; MPASS(tmpfs_dirent_dup(nde)); MPASS(pde->td_cookie > nde->td_cookie); MPASS(nde->td_cookie > de->td_cookie); LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } } /* * Attaches the directory entry de to the directory represented by vp. * Note that this does not change the link count of the node pointed by * the directory entry, as this is done by tmpfs_alloc_dirent. */ void tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de) { struct tmpfs_node *dnode; struct tmpfs_dirent *xde, *nde; ASSERT_VOP_ELOCKED(vp, __func__); MPASS(de->td_namelen > 0); MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN); MPASS(de->td_cookie == de->td_hash); dnode = VP_TO_TMPFS_DIR(vp); dnode->tn_dir.tn_readdir_lastn = 0; dnode->tn_dir.tn_readdir_lastp = NULL; MPASS(!tmpfs_dirent_dup(de)); xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); if (xde != NULL && tmpfs_dirent_duphead(xde)) tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); else if (xde != NULL) { /* * Allocate new duphead. Swap xde with duphead to avoid * adding/removing elements with the same hash. */ MPASS(!tmpfs_dirent_dup(xde)); tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0, &nde); /* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */ memcpy(nde, xde, sizeof(*xde)); xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD; LIST_INIT(&xde->ud.td_duphead); xde->td_namelen = 0; xde->td_node = NULL; tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde); tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); } dnode->tn_size += sizeof(struct tmpfs_dirent); dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; dnode->tn_accessed = true; tmpfs_update(vp); } /* * Detaches the directory entry de from the directory represented by vp. * Note that this does not change the link count of the node pointed by * the directory entry, as this is done by tmpfs_free_dirent. */ void tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de) { struct tmpfs_mount *tmp; struct tmpfs_dir *head; struct tmpfs_node *dnode; struct tmpfs_dirent *xde; ASSERT_VOP_ELOCKED(vp, __func__); dnode = VP_TO_TMPFS_DIR(vp); head = &dnode->tn_dir.tn_dirhead; dnode->tn_dir.tn_readdir_lastn = 0; dnode->tn_dir.tn_readdir_lastp = NULL; if (tmpfs_dirent_dup(de)) { /* Remove duphead if de was last entry. */ if (LIST_NEXT(de, uh.td_dup.entries) == NULL) { xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash); MPASS(tmpfs_dirent_duphead(xde)); } else xde = NULL; LIST_REMOVE(de, uh.td_dup.entries); LIST_REMOVE(de, uh.td_dup.index_entries); if (xde != NULL) { if (LIST_EMPTY(&xde->ud.td_duphead)) { RB_REMOVE(tmpfs_dir, head, xde); tmp = VFS_TO_TMPFS(vp->v_mount); MPASS(xde->td_node == NULL); tmpfs_free_dirent(tmp, xde); } } de->td_cookie = de->td_hash; } else RB_REMOVE(tmpfs_dir, head, de); dnode->tn_size -= sizeof(struct tmpfs_dirent); dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; dnode->tn_accessed = true; tmpfs_update(vp); } void tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode) { struct tmpfs_dirent *de, *dde, *nde; RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) { RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); /* Node may already be destroyed. */ de->td_node = NULL; if (tmpfs_dirent_duphead(de)) { while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) { LIST_REMOVE(dde, uh.td_dup.entries); dde->td_node = NULL; tmpfs_free_dirent(tmp, dde); } } tmpfs_free_dirent(tmp, de); } } /* * Helper function for tmpfs_readdir. Creates a '.' entry for the given * directory and returns it in the uio space. The function returns 0 * on success, -1 if there was not enough space in the uio structure to * hold the directory entry or an appropriate error code if another * error happens. */ static int tmpfs_dir_getdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node, struct uio *uio) { int error; struct dirent dent; TMPFS_VALIDATE_DIR(node); MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT); dent.d_fileno = node->tn_id; + dent.d_off = TMPFS_DIRCOOKIE_DOTDOT; dent.d_type = DT_DIR; dent.d_namlen = 1; dent.d_name[0] = '.'; dent.d_reclen = GENERIC_DIRSIZ(&dent); dirent_terminate(&dent); if (dent.d_reclen > uio->uio_resid) error = EJUSTRETURN; else error = uiomove(&dent, dent.d_reclen, uio); tmpfs_set_accessed(tm, node); return (error); } /* * Helper function for tmpfs_readdir. Creates a '..' entry for the given * directory and returns it in the uio space. The function returns 0 * on success, -1 if there was not enough space in the uio structure to * hold the directory entry or an appropriate error code if another * error happens. */ static int tmpfs_dir_getdotdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node, - struct uio *uio) + struct uio *uio, off_t next) { struct tmpfs_node *parent; struct dirent dent; int error; TMPFS_VALIDATE_DIR(node); MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT); /* * Return ENOENT if the current node is already removed. */ TMPFS_ASSERT_LOCKED(node); parent = node->tn_dir.tn_parent; if (parent == NULL) return (ENOENT); TMPFS_NODE_LOCK(parent); dent.d_fileno = parent->tn_id; TMPFS_NODE_UNLOCK(parent); + dent.d_off = next; dent.d_type = DT_DIR; dent.d_namlen = 2; dent.d_name[0] = '.'; dent.d_name[1] = '.'; dent.d_reclen = GENERIC_DIRSIZ(&dent); dirent_terminate(&dent); if (dent.d_reclen > uio->uio_resid) error = EJUSTRETURN; else error = uiomove(&dent, dent.d_reclen, uio); tmpfs_set_accessed(tm, node); return (error); } /* * Helper function for tmpfs_readdir. Returns as much directory entries * as can fit in the uio space. The read starts at uio->uio_offset. * The function returns 0 on success, -1 if there was not enough space * in the uio structure to hold the directory entry or an appropriate * error code if another error happens. */ int tmpfs_dir_getdents(struct tmpfs_mount *tm, struct tmpfs_node *node, struct uio *uio, int maxcookies, u_long *cookies, int *ncookies) { struct tmpfs_dir_cursor dc; - struct tmpfs_dirent *de; + struct tmpfs_dirent *de, *nde; off_t off; int error; TMPFS_VALIDATE_DIR(node); off = 0; /* * Lookup the node from the current offset. The starting offset of * 0 will lookup both '.' and '..', and then the first real entry, * or EOF if there are none. Then find all entries for the dir that * fit into the buffer. Once no more entries are found (de == NULL), * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next * call to return 0. */ switch (uio->uio_offset) { case TMPFS_DIRCOOKIE_DOT: error = tmpfs_dir_getdotdent(tm, node, uio); if (error != 0) return (error); - uio->uio_offset = TMPFS_DIRCOOKIE_DOTDOT; + uio->uio_offset = off = TMPFS_DIRCOOKIE_DOTDOT; if (cookies != NULL) - cookies[(*ncookies)++] = off = uio->uio_offset; + cookies[(*ncookies)++] = off; /* FALLTHROUGH */ case TMPFS_DIRCOOKIE_DOTDOT: - error = tmpfs_dir_getdotdotdent(tm, node, uio); + de = tmpfs_dir_first(node, &dc); + off = tmpfs_dirent_cookie(de); + error = tmpfs_dir_getdotdotdent(tm, node, uio, off); if (error != 0) return (error); - de = tmpfs_dir_first(node, &dc); - uio->uio_offset = tmpfs_dirent_cookie(de); + uio->uio_offset = off; if (cookies != NULL) - cookies[(*ncookies)++] = off = uio->uio_offset; + cookies[(*ncookies)++] = off; /* EOF. */ if (de == NULL) return (0); break; case TMPFS_DIRCOOKIE_EOF: return (0); default: de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc); if (de == NULL) return (EINVAL); if (cookies != NULL) off = tmpfs_dirent_cookie(de); } - /* Read as much entries as possible; i.e., until we reach the end of - * the directory or we exhaust uio space. */ + /* + * Read as much entries as possible; i.e., until we reach the end of the + * directory or we exhaust uio space. + */ do { struct dirent d; - /* Create a dirent structure representing the current - * tmpfs_node and fill it. */ + /* + * Create a dirent structure representing the current tmpfs_node + * and fill it. + */ if (de->td_node == NULL) { d.d_fileno = 1; d.d_type = DT_WHT; } else { d.d_fileno = de->td_node->tn_id; switch (de->td_node->tn_type) { case VBLK: d.d_type = DT_BLK; break; case VCHR: d.d_type = DT_CHR; break; case VDIR: d.d_type = DT_DIR; break; case VFIFO: d.d_type = DT_FIFO; break; case VLNK: d.d_type = DT_LNK; break; case VREG: d.d_type = DT_REG; break; case VSOCK: d.d_type = DT_SOCK; break; default: panic("tmpfs_dir_getdents: type %p %d", de->td_node, (int)de->td_node->tn_type); } } d.d_namlen = de->td_namelen; MPASS(de->td_namelen < sizeof(d.d_name)); (void)memcpy(d.d_name, de->ud.td_name, de->td_namelen); d.d_reclen = GENERIC_DIRSIZ(&d); - dirent_terminate(&d); - /* Stop reading if the directory entry we are treating is - * bigger than the amount of data that can be returned. */ + /* + * Stop reading if the directory entry we are treating is bigger + * than the amount of data that can be returned. + */ if (d.d_reclen > uio->uio_resid) { error = EJUSTRETURN; break; } - /* Copy the new dirent structure into the output buffer and - * advance pointers. */ + nde = tmpfs_dir_next(node, &dc); + d.d_off = tmpfs_dirent_cookie(nde); + dirent_terminate(&d); + + /* + * Copy the new dirent structure into the output buffer and + * advance pointers. + */ error = uiomove(&d, d.d_reclen, uio); if (error == 0) { - de = tmpfs_dir_next(node, &dc); + de = nde; if (cookies != NULL) { off = tmpfs_dirent_cookie(de); MPASS(*ncookies < maxcookies); cookies[(*ncookies)++] = off; } } } while (error == 0 && uio->uio_resid > 0 && de != NULL); /* Skip setting off when using cookies as it is already done above. */ if (cookies == NULL) off = tmpfs_dirent_cookie(de); /* Update the offset and cache. */ uio->uio_offset = off; node->tn_dir.tn_readdir_lastn = off; node->tn_dir.tn_readdir_lastp = de; tmpfs_set_accessed(tm, node); return (error); } int tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp) { struct tmpfs_dirent *de; int error; error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL, cnp->cn_nameptr, cnp->cn_namelen, &de); if (error != 0) return (error); tmpfs_dir_attach(dvp, de); return (0); } void tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp) { struct tmpfs_dirent *de; de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp); MPASS(de != NULL && de->td_node == NULL); tmpfs_dir_detach(dvp, de); tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de); } /* * Resizes the aobj associated with the regular file pointed to by 'vp' to the * size 'newsize'. 'vp' must point to a vnode that represents a regular file. * 'newsize' must be positive. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr) { struct tmpfs_mount *tmp; struct tmpfs_node *node; vm_object_t uobj; vm_page_t m; vm_pindex_t idx, newpages, oldpages; off_t oldsize; int base, rv; MPASS(vp->v_type == VREG); MPASS(newsize >= 0); node = VP_TO_TMPFS_NODE(vp); uobj = node->tn_reg.tn_aobj; tmp = VFS_TO_TMPFS(vp->v_mount); /* * Convert the old and new sizes to the number of pages needed to * store them. It may happen that we do not need to do anything * because the last allocated page can accommodate the change on * its own. */ oldsize = node->tn_size; oldpages = OFF_TO_IDX(oldsize + PAGE_MASK); MPASS(oldpages == uobj->size); newpages = OFF_TO_IDX(newsize + PAGE_MASK); if (__predict_true(newpages == oldpages && newsize >= oldsize)) { node->tn_size = newsize; return (0); } if (newpages > oldpages && tmpfs_pages_check_avail(tmp, newpages - oldpages) == 0) return (ENOSPC); VM_OBJECT_WLOCK(uobj); if (newsize < oldsize) { /* * Zero the truncated part of the last page. */ base = newsize & PAGE_MASK; if (base != 0) { idx = OFF_TO_IDX(newsize); retry: m = vm_page_grab(uobj, idx, VM_ALLOC_NOCREAT); if (m != NULL) { MPASS(vm_page_all_valid(m)); } else if (vm_pager_has_page(uobj, idx, NULL, NULL)) { m = vm_page_alloc(uobj, idx, VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL); if (m == NULL) goto retry; vm_object_pip_add(uobj, 1); VM_OBJECT_WUNLOCK(uobj); rv = vm_pager_get_pages(uobj, &m, 1, NULL, NULL); VM_OBJECT_WLOCK(uobj); vm_object_pip_wakeup(uobj); if (rv == VM_PAGER_OK) { /* * Since the page was not resident, * and therefore not recently * accessed, immediately enqueue it * for asynchronous laundering. The * current operation is not regarded * as an access. */ vm_page_launder(m); } else { vm_page_free(m); if (ignerr) m = NULL; else { VM_OBJECT_WUNLOCK(uobj); return (EIO); } } } if (m != NULL) { pmap_zero_page_area(m, base, PAGE_SIZE - base); vm_page_set_dirty(m); vm_page_xunbusy(m); } } /* * Release any swap space and free any whole pages. */ if (newpages < oldpages) vm_object_page_remove(uobj, newpages, 0, 0); } uobj->size = newpages; VM_OBJECT_WUNLOCK(uobj); atomic_add_long(&tmp->tm_pages_used, newpages - oldpages); node->tn_size = newsize; return (0); } void tmpfs_check_mtime(struct vnode *vp) { struct tmpfs_node *node; struct vm_object *obj; ASSERT_VOP_ELOCKED(vp, "check_mtime"); if (vp->v_type != VREG) return; obj = vp->v_object; KASSERT((obj->flags & (OBJ_TMPFS_NODE | OBJ_TMPFS)) == (OBJ_TMPFS_NODE | OBJ_TMPFS), ("non-tmpfs obj")); /* unlocked read */ if (obj->generation != obj->cleangeneration) { VM_OBJECT_WLOCK(obj); if (obj->generation != obj->cleangeneration) { obj->cleangeneration = obj->generation; node = VP_TO_TMPFS_NODE(vp); node->tn_status |= TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED; } VM_OBJECT_WUNLOCK(obj); } } /* * Change flags of the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; ASSERT_VOP_ELOCKED(vp, "chflags"); node = VP_TO_TMPFS_NODE(vp); if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK | UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP | UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE | UF_SPARSE | UF_SYSTEM)) != 0) return (EOPNOTSUPP); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* * Callers may only modify the file flags on objects they * have VADMIN rights for. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) return (error); /* * Unprivileged processes are not permitted to unset system * flags, or modify flags if any system flags are set. */ if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) { if (node->tn_flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) { error = securelevel_gt(cred, 0); if (error) return (error); } } else { if (node->tn_flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) || ((flags ^ node->tn_flags) & SF_SETTABLE)) return (EPERM); } node->tn_flags = flags; node->tn_status |= TMPFS_NODE_CHANGED; ASSERT_VOP_ELOCKED(vp, "chflags2"); return (0); } /* * Change access mode on the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; mode_t newmode; ASSERT_VOP_ELOCKED(vp, "chmod"); ASSERT_VOP_IN_SEQC(vp); node = VP_TO_TMPFS_NODE(vp); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return EPERM; /* * To modify the permissions on a file, must possess VADMIN * for that file. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) return (error); /* * Privileged processes may set the sticky bit on non-directories, * as well as set the setgid bit on a file with a group that the * process is not a member of. */ if (vp->v_type != VDIR && (mode & S_ISTXT)) { if (priv_check_cred(cred, PRIV_VFS_STICKYFILE)) return (EFTYPE); } if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) { error = priv_check_cred(cred, PRIV_VFS_SETGID); if (error) return (error); } newmode = node->tn_mode & ~ALLPERMS; newmode |= mode & ALLPERMS; atomic_store_short(&node->tn_mode, newmode); node->tn_status |= TMPFS_NODE_CHANGED; ASSERT_VOP_ELOCKED(vp, "chmod2"); return (0); } /* * Change ownership of the given vnode. At least one of uid or gid must * be different than VNOVAL. If one is set to that value, the attribute * is unchanged. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; uid_t ouid; gid_t ogid; mode_t newmode; ASSERT_VOP_ELOCKED(vp, "chown"); ASSERT_VOP_IN_SEQC(vp); node = VP_TO_TMPFS_NODE(vp); /* Assign default values if they are unknown. */ MPASS(uid != VNOVAL || gid != VNOVAL); if (uid == VNOVAL) uid = node->tn_uid; if (gid == VNOVAL) gid = node->tn_gid; MPASS(uid != VNOVAL && gid != VNOVAL); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return (EPERM); /* * To modify the ownership of a file, must possess VADMIN for that * file. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) return (error); /* * To change the owner of a file, or change the group of a file to a * group of which we are not a member, the caller must have * privilege. */ if ((uid != node->tn_uid || (gid != node->tn_gid && !groupmember(gid, cred))) && (error = priv_check_cred(cred, PRIV_VFS_CHOWN))) return (error); ogid = node->tn_gid; ouid = node->tn_uid; node->tn_uid = uid; node->tn_gid = gid; node->tn_status |= TMPFS_NODE_CHANGED; if ((node->tn_mode & (S_ISUID | S_ISGID)) && (ouid != uid || ogid != gid)) { if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) { newmode = node->tn_mode & ~(S_ISUID | S_ISGID); atomic_store_short(&node->tn_mode, newmode); } } ASSERT_VOP_ELOCKED(vp, "chown2"); return (0); } /* * Change size of the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; ASSERT_VOP_ELOCKED(vp, "chsize"); node = VP_TO_TMPFS_NODE(vp); /* Decide whether this is a valid operation based on the file type. */ error = 0; switch (vp->v_type) { case VDIR: return (EISDIR); case VREG: if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); break; case VBLK: /* FALLTHROUGH */ case VCHR: /* FALLTHROUGH */ case VFIFO: /* * Allow modifications of special files even if in the file * system is mounted read-only (we are not modifying the * files themselves, but the objects they represent). */ return (0); default: /* Anything else is unsupported. */ return (EOPNOTSUPP); } /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return (EPERM); error = tmpfs_truncate(vp, size); /* * tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents * for us, as will update tn_status; no need to do that here. */ ASSERT_VOP_ELOCKED(vp, "chsize2"); return (error); } /* * Change access and modification times of the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chtimes(struct vnode *vp, struct vattr *vap, struct ucred *cred, struct thread *l) { int error; struct tmpfs_node *node; ASSERT_VOP_ELOCKED(vp, "chtimes"); node = VP_TO_TMPFS_NODE(vp); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return (EPERM); error = vn_utimes_perm(vp, vap, cred, l); if (error != 0) return (error); if (vap->va_atime.tv_sec != VNOVAL) node->tn_accessed = true; if (vap->va_mtime.tv_sec != VNOVAL) node->tn_status |= TMPFS_NODE_MODIFIED; if (vap->va_birthtime.tv_sec != VNOVAL) node->tn_status |= TMPFS_NODE_MODIFIED; tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime); if (vap->va_birthtime.tv_sec != VNOVAL) node->tn_birthtime = vap->va_birthtime; ASSERT_VOP_ELOCKED(vp, "chtimes2"); return (0); } void tmpfs_set_status(struct tmpfs_mount *tm, struct tmpfs_node *node, int status) { if ((node->tn_status & status) == status || tm->tm_ronly) return; TMPFS_NODE_LOCK(node); node->tn_status |= status; TMPFS_NODE_UNLOCK(node); } void tmpfs_set_accessed(struct tmpfs_mount *tm, struct tmpfs_node *node) { if (node->tn_accessed || tm->tm_ronly) return; atomic_store_8(&node->tn_accessed, true); } /* Sync timestamps */ void tmpfs_itimes(struct vnode *vp, const struct timespec *acc, const struct timespec *mod) { struct tmpfs_node *node; struct timespec now; ASSERT_VOP_LOCKED(vp, "tmpfs_itimes"); node = VP_TO_TMPFS_NODE(vp); if (!node->tn_accessed && (node->tn_status & (TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0) return; vfs_timestamp(&now); TMPFS_NODE_LOCK(node); if (node->tn_accessed) { if (acc == NULL) acc = &now; node->tn_atime = *acc; } if (node->tn_status & TMPFS_NODE_MODIFIED) { if (mod == NULL) mod = &now; node->tn_mtime = *mod; } if (node->tn_status & TMPFS_NODE_CHANGED) node->tn_ctime = now; node->tn_status &= ~(TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED); node->tn_accessed = false; TMPFS_NODE_UNLOCK(node); /* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */ random_harvest_queue(node, sizeof(*node), RANDOM_FS_ATIME); } int tmpfs_truncate(struct vnode *vp, off_t length) { int error; struct tmpfs_node *node; node = VP_TO_TMPFS_NODE(vp); if (length < 0) { error = EINVAL; goto out; } if (node->tn_size == length) { error = 0; goto out; } if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize) return (EFBIG); error = tmpfs_reg_resize(vp, length, FALSE); if (error == 0) node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; out: tmpfs_update(vp); return (error); } static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b) { if (a->td_hash > b->td_hash) return (1); else if (a->td_hash < b->td_hash) return (-1); return (0); } RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); diff --git a/sys/kern/uipc_mqueue.c b/sys/kern/uipc_mqueue.c index 72af4bc07144..fc888023a40f 100644 --- a/sys/kern/uipc_mqueue.c +++ b/sys/kern/uipc_mqueue.c @@ -1,2944 +1,2945 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005 David Xu * Copyright (c) 2016-2017 Robert N. M. Watson * All rights reserved. * * Portions of this software were developed by BAE Systems, the University of * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent * Computing (TC) research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * POSIX message queue implementation. * * 1) A mqueue filesystem can be mounted, each message queue appears * in mounted directory, user can change queue's permission and * ownership, or remove a queue. Manually creating a file in the * directory causes a message queue to be created in the kernel with * default message queue attributes applied and same name used, this * method is not advocated since mq_open syscall allows user to specify * different attributes. Also the file system can be mounted multiple * times at different mount points but shows same contents. * * 2) Standard POSIX message queue API. The syscalls do not use vfs layer, * but directly operate on internal data structure, this allows user to * use the IPC facility without having to mount mqueue file system. */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(p1003_1b_mqueue, "POSIX P1003.1B message queues support"); /* * Limits and constants */ #define MQFS_NAMELEN NAME_MAX #define MQFS_DELEN (8 + MQFS_NAMELEN) /* node types */ typedef enum { mqfstype_none = 0, mqfstype_root, mqfstype_dir, mqfstype_this, mqfstype_parent, mqfstype_file, mqfstype_symlink, } mqfs_type_t; struct mqfs_node; /* * mqfs_info: describes a mqfs instance */ struct mqfs_info { struct sx mi_lock; struct mqfs_node *mi_root; struct unrhdr *mi_unrhdr; }; struct mqfs_vdata { LIST_ENTRY(mqfs_vdata) mv_link; struct mqfs_node *mv_node; struct vnode *mv_vnode; struct task mv_task; }; /* * mqfs_node: describes a node (file or directory) within a mqfs */ struct mqfs_node { char mn_name[MQFS_NAMELEN+1]; struct mqfs_info *mn_info; struct mqfs_node *mn_parent; LIST_HEAD(,mqfs_node) mn_children; LIST_ENTRY(mqfs_node) mn_sibling; LIST_HEAD(,mqfs_vdata) mn_vnodes; const void *mn_pr_root; int mn_refcount; mqfs_type_t mn_type; int mn_deleted; uint32_t mn_fileno; void *mn_data; struct timespec mn_birth; struct timespec mn_ctime; struct timespec mn_atime; struct timespec mn_mtime; uid_t mn_uid; gid_t mn_gid; int mn_mode; }; #define VTON(vp) (((struct mqfs_vdata *)((vp)->v_data))->mv_node) #define VTOMQ(vp) ((struct mqueue *)(VTON(vp)->mn_data)) #define VFSTOMQFS(m) ((struct mqfs_info *)((m)->mnt_data)) #define FPTOMQ(fp) ((struct mqueue *)(((struct mqfs_node *) \ (fp)->f_data)->mn_data)) TAILQ_HEAD(msgq, mqueue_msg); struct mqueue; struct mqueue_notifier { LIST_ENTRY(mqueue_notifier) nt_link; struct sigevent nt_sigev; ksiginfo_t nt_ksi; struct proc *nt_proc; }; struct mqueue { struct mtx mq_mutex; int mq_flags; long mq_maxmsg; long mq_msgsize; long mq_curmsgs; long mq_totalbytes; struct msgq mq_msgq; int mq_receivers; int mq_senders; struct selinfo mq_rsel; struct selinfo mq_wsel; struct mqueue_notifier *mq_notifier; }; #define MQ_RSEL 0x01 #define MQ_WSEL 0x02 struct mqueue_msg { TAILQ_ENTRY(mqueue_msg) msg_link; unsigned int msg_prio; unsigned int msg_size; /* following real data... */ }; static SYSCTL_NODE(_kern, OID_AUTO, mqueue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "POSIX real time message queue"); static int default_maxmsg = 10; static int default_msgsize = 1024; static int maxmsg = 100; SYSCTL_INT(_kern_mqueue, OID_AUTO, maxmsg, CTLFLAG_RW, &maxmsg, 0, "Default maximum messages in queue"); static int maxmsgsize = 16384; SYSCTL_INT(_kern_mqueue, OID_AUTO, maxmsgsize, CTLFLAG_RW, &maxmsgsize, 0, "Default maximum message size"); static int maxmq = 100; SYSCTL_INT(_kern_mqueue, OID_AUTO, maxmq, CTLFLAG_RW, &maxmq, 0, "maximum message queues"); static int curmq = 0; SYSCTL_INT(_kern_mqueue, OID_AUTO, curmq, CTLFLAG_RW, &curmq, 0, "current message queue number"); static int unloadable = 0; static MALLOC_DEFINE(M_MQUEUEDATA, "mqdata", "mqueue data"); static eventhandler_tag exit_tag; /* Only one instance per-system */ static struct mqfs_info mqfs_data; static uma_zone_t mqnode_zone; static uma_zone_t mqueue_zone; static uma_zone_t mvdata_zone; static uma_zone_t mqnoti_zone; static struct vop_vector mqfs_vnodeops; static struct fileops mqueueops; static unsigned mqfs_osd_jail_slot; /* * Directory structure construction and manipulation */ #ifdef notyet static struct mqfs_node *mqfs_create_dir(struct mqfs_node *parent, const char *name, int namelen, struct ucred *cred, int mode); static struct mqfs_node *mqfs_create_link(struct mqfs_node *parent, const char *name, int namelen, struct ucred *cred, int mode); #endif static struct mqfs_node *mqfs_create_file(struct mqfs_node *parent, const char *name, int namelen, struct ucred *cred, int mode); static int mqfs_destroy(struct mqfs_node *mn); static void mqfs_fileno_alloc(struct mqfs_info *mi, struct mqfs_node *mn); static void mqfs_fileno_free(struct mqfs_info *mi, struct mqfs_node *mn); static int mqfs_allocv(struct mount *mp, struct vnode **vpp, struct mqfs_node *pn); static int mqfs_prison_remove(void *obj, void *data); /* * Message queue construction and maniplation */ static struct mqueue *mqueue_alloc(const struct mq_attr *attr); static void mqueue_free(struct mqueue *mq); static int mqueue_send(struct mqueue *mq, const char *msg_ptr, size_t msg_len, unsigned msg_prio, int waitok, const struct timespec *abs_timeout); static int mqueue_receive(struct mqueue *mq, char *msg_ptr, size_t msg_len, unsigned *msg_prio, int waitok, const struct timespec *abs_timeout); static int _mqueue_send(struct mqueue *mq, struct mqueue_msg *msg, int timo); static int _mqueue_recv(struct mqueue *mq, struct mqueue_msg **msg, int timo); static void mqueue_send_notification(struct mqueue *mq); static void mqueue_fdclose(struct thread *td, int fd, struct file *fp); static void mq_proc_exit(void *arg, struct proc *p); /* * kqueue filters */ static void filt_mqdetach(struct knote *kn); static int filt_mqread(struct knote *kn, long hint); static int filt_mqwrite(struct knote *kn, long hint); struct filterops mq_rfiltops = { .f_isfd = 1, .f_detach = filt_mqdetach, .f_event = filt_mqread, }; struct filterops mq_wfiltops = { .f_isfd = 1, .f_detach = filt_mqdetach, .f_event = filt_mqwrite, }; /* * Initialize fileno bitmap */ static void mqfs_fileno_init(struct mqfs_info *mi) { struct unrhdr *up; up = new_unrhdr(1, INT_MAX, NULL); mi->mi_unrhdr = up; } /* * Tear down fileno bitmap */ static void mqfs_fileno_uninit(struct mqfs_info *mi) { struct unrhdr *up; up = mi->mi_unrhdr; mi->mi_unrhdr = NULL; delete_unrhdr(up); } /* * Allocate a file number */ static void mqfs_fileno_alloc(struct mqfs_info *mi, struct mqfs_node *mn) { /* make sure our parent has a file number */ if (mn->mn_parent && !mn->mn_parent->mn_fileno) mqfs_fileno_alloc(mi, mn->mn_parent); switch (mn->mn_type) { case mqfstype_root: case mqfstype_dir: case mqfstype_file: case mqfstype_symlink: mn->mn_fileno = alloc_unr(mi->mi_unrhdr); break; case mqfstype_this: KASSERT(mn->mn_parent != NULL, ("mqfstype_this node has no parent")); mn->mn_fileno = mn->mn_parent->mn_fileno; break; case mqfstype_parent: KASSERT(mn->mn_parent != NULL, ("mqfstype_parent node has no parent")); if (mn->mn_parent == mi->mi_root) { mn->mn_fileno = mn->mn_parent->mn_fileno; break; } KASSERT(mn->mn_parent->mn_parent != NULL, ("mqfstype_parent node has no grandparent")); mn->mn_fileno = mn->mn_parent->mn_parent->mn_fileno; break; default: KASSERT(0, ("mqfs_fileno_alloc() called for unknown type node: %d", mn->mn_type)); break; } } /* * Release a file number */ static void mqfs_fileno_free(struct mqfs_info *mi, struct mqfs_node *mn) { switch (mn->mn_type) { case mqfstype_root: case mqfstype_dir: case mqfstype_file: case mqfstype_symlink: free_unr(mi->mi_unrhdr, mn->mn_fileno); break; case mqfstype_this: case mqfstype_parent: /* ignore these, as they don't "own" their file number */ break; default: KASSERT(0, ("mqfs_fileno_free() called for unknown type node: %d", mn->mn_type)); break; } } static __inline struct mqfs_node * mqnode_alloc(void) { return uma_zalloc(mqnode_zone, M_WAITOK | M_ZERO); } static __inline void mqnode_free(struct mqfs_node *node) { uma_zfree(mqnode_zone, node); } static __inline void mqnode_addref(struct mqfs_node *node) { atomic_add_int(&node->mn_refcount, 1); } static __inline void mqnode_release(struct mqfs_node *node) { struct mqfs_info *mqfs; int old, exp; mqfs = node->mn_info; old = atomic_fetchadd_int(&node->mn_refcount, -1); if (node->mn_type == mqfstype_dir || node->mn_type == mqfstype_root) exp = 3; /* include . and .. */ else exp = 1; if (old == exp) { int locked = sx_xlocked(&mqfs->mi_lock); if (!locked) sx_xlock(&mqfs->mi_lock); mqfs_destroy(node); if (!locked) sx_xunlock(&mqfs->mi_lock); } } /* * Add a node to a directory */ static int mqfs_add_node(struct mqfs_node *parent, struct mqfs_node *node) { KASSERT(parent != NULL, ("%s(): parent is NULL", __func__)); KASSERT(parent->mn_info != NULL, ("%s(): parent has no mn_info", __func__)); KASSERT(parent->mn_type == mqfstype_dir || parent->mn_type == mqfstype_root, ("%s(): parent is not a directory", __func__)); node->mn_info = parent->mn_info; node->mn_parent = parent; LIST_INIT(&node->mn_children); LIST_INIT(&node->mn_vnodes); LIST_INSERT_HEAD(&parent->mn_children, node, mn_sibling); mqnode_addref(parent); return (0); } static struct mqfs_node * mqfs_create_node(const char *name, int namelen, struct ucred *cred, int mode, int nodetype) { struct mqfs_node *node; node = mqnode_alloc(); strncpy(node->mn_name, name, namelen); node->mn_pr_root = cred->cr_prison->pr_root; node->mn_type = nodetype; node->mn_refcount = 1; vfs_timestamp(&node->mn_birth); node->mn_ctime = node->mn_atime = node->mn_mtime = node->mn_birth; node->mn_uid = cred->cr_uid; node->mn_gid = cred->cr_gid; node->mn_mode = mode; return (node); } /* * Create a file */ static struct mqfs_node * mqfs_create_file(struct mqfs_node *parent, const char *name, int namelen, struct ucred *cred, int mode) { struct mqfs_node *node; node = mqfs_create_node(name, namelen, cred, mode, mqfstype_file); if (mqfs_add_node(parent, node) != 0) { mqnode_free(node); return (NULL); } return (node); } /* * Add . and .. to a directory */ static int mqfs_fixup_dir(struct mqfs_node *parent) { struct mqfs_node *dir; dir = mqnode_alloc(); dir->mn_name[0] = '.'; dir->mn_type = mqfstype_this; dir->mn_refcount = 1; if (mqfs_add_node(parent, dir) != 0) { mqnode_free(dir); return (-1); } dir = mqnode_alloc(); dir->mn_name[0] = dir->mn_name[1] = '.'; dir->mn_type = mqfstype_parent; dir->mn_refcount = 1; if (mqfs_add_node(parent, dir) != 0) { mqnode_free(dir); return (-1); } return (0); } #ifdef notyet /* * Create a directory */ static struct mqfs_node * mqfs_create_dir(struct mqfs_node *parent, const char *name, int namelen, struct ucred *cred, int mode) { struct mqfs_node *node; node = mqfs_create_node(name, namelen, cred, mode, mqfstype_dir); if (mqfs_add_node(parent, node) != 0) { mqnode_free(node); return (NULL); } if (mqfs_fixup_dir(node) != 0) { mqfs_destroy(node); return (NULL); } return (node); } /* * Create a symlink */ static struct mqfs_node * mqfs_create_link(struct mqfs_node *parent, const char *name, int namelen, struct ucred *cred, int mode) { struct mqfs_node *node; node = mqfs_create_node(name, namelen, cred, mode, mqfstype_symlink); if (mqfs_add_node(parent, node) != 0) { mqnode_free(node); return (NULL); } return (node); } #endif /* * Destroy a node or a tree of nodes */ static int mqfs_destroy(struct mqfs_node *node) { struct mqfs_node *parent; KASSERT(node != NULL, ("%s(): node is NULL", __func__)); KASSERT(node->mn_info != NULL, ("%s(): node has no mn_info", __func__)); /* destroy children */ if (node->mn_type == mqfstype_dir || node->mn_type == mqfstype_root) while (! LIST_EMPTY(&node->mn_children)) mqfs_destroy(LIST_FIRST(&node->mn_children)); /* unlink from parent */ if ((parent = node->mn_parent) != NULL) { KASSERT(parent->mn_info == node->mn_info, ("%s(): parent has different mn_info", __func__)); LIST_REMOVE(node, mn_sibling); } if (node->mn_fileno != 0) mqfs_fileno_free(node->mn_info, node); if (node->mn_data != NULL) mqueue_free(node->mn_data); mqnode_free(node); return (0); } /* * Mount a mqfs instance */ static int mqfs_mount(struct mount *mp) { struct statfs *sbp; if (mp->mnt_flag & MNT_UPDATE) return (EOPNOTSUPP); mp->mnt_data = &mqfs_data; MNT_ILOCK(mp); mp->mnt_flag |= MNT_LOCAL; MNT_IUNLOCK(mp); vfs_getnewfsid(mp); sbp = &mp->mnt_stat; vfs_mountedfrom(mp, "mqueue"); sbp->f_bsize = PAGE_SIZE; sbp->f_iosize = PAGE_SIZE; sbp->f_blocks = 1; sbp->f_bfree = 0; sbp->f_bavail = 0; sbp->f_files = 1; sbp->f_ffree = 0; return (0); } /* * Unmount a mqfs instance */ static int mqfs_unmount(struct mount *mp, int mntflags) { int error; error = vflush(mp, 0, (mntflags & MNT_FORCE) ? FORCECLOSE : 0, curthread); return (error); } /* * Return a root vnode */ static int mqfs_root(struct mount *mp, int flags, struct vnode **vpp) { struct mqfs_info *mqfs; int ret; mqfs = VFSTOMQFS(mp); ret = mqfs_allocv(mp, vpp, mqfs->mi_root); return (ret); } /* * Return filesystem stats */ static int mqfs_statfs(struct mount *mp, struct statfs *sbp) { /* XXX update statistics */ return (0); } /* * Initialize a mqfs instance */ static int mqfs_init(struct vfsconf *vfc) { struct mqfs_node *root; struct mqfs_info *mi; osd_method_t methods[PR_MAXMETHOD] = { [PR_METHOD_REMOVE] = mqfs_prison_remove, }; mqnode_zone = uma_zcreate("mqnode", sizeof(struct mqfs_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); mqueue_zone = uma_zcreate("mqueue", sizeof(struct mqueue), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); mvdata_zone = uma_zcreate("mvdata", sizeof(struct mqfs_vdata), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); mqnoti_zone = uma_zcreate("mqnotifier", sizeof(struct mqueue_notifier), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); mi = &mqfs_data; sx_init(&mi->mi_lock, "mqfs lock"); /* set up the root diretory */ root = mqfs_create_node("/", 1, curthread->td_ucred, 01777, mqfstype_root); root->mn_info = mi; LIST_INIT(&root->mn_children); LIST_INIT(&root->mn_vnodes); mi->mi_root = root; mqfs_fileno_init(mi); mqfs_fileno_alloc(mi, root); mqfs_fixup_dir(root); exit_tag = EVENTHANDLER_REGISTER(process_exit, mq_proc_exit, NULL, EVENTHANDLER_PRI_ANY); mq_fdclose = mqueue_fdclose; p31b_setcfg(CTL_P1003_1B_MESSAGE_PASSING, _POSIX_MESSAGE_PASSING); mqfs_osd_jail_slot = osd_jail_register(NULL, methods); return (0); } /* * Destroy a mqfs instance */ static int mqfs_uninit(struct vfsconf *vfc) { struct mqfs_info *mi; if (!unloadable) return (EOPNOTSUPP); osd_jail_deregister(mqfs_osd_jail_slot); EVENTHANDLER_DEREGISTER(process_exit, exit_tag); mi = &mqfs_data; mqfs_destroy(mi->mi_root); mi->mi_root = NULL; mqfs_fileno_uninit(mi); sx_destroy(&mi->mi_lock); uma_zdestroy(mqnode_zone); uma_zdestroy(mqueue_zone); uma_zdestroy(mvdata_zone); uma_zdestroy(mqnoti_zone); return (0); } /* * task routine */ static void do_recycle(void *context, int pending __unused) { struct vnode *vp = (struct vnode *)context; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); vrecycle(vp); VOP_UNLOCK(vp); vdrop(vp); } /* * Allocate a vnode */ static int mqfs_allocv(struct mount *mp, struct vnode **vpp, struct mqfs_node *pn) { struct mqfs_vdata *vd; struct mqfs_info *mqfs; struct vnode *newvpp; int error; mqfs = pn->mn_info; *vpp = NULL; sx_xlock(&mqfs->mi_lock); LIST_FOREACH(vd, &pn->mn_vnodes, mv_link) { if (vd->mv_vnode->v_mount == mp) { vhold(vd->mv_vnode); break; } } if (vd != NULL) { found: *vpp = vd->mv_vnode; sx_xunlock(&mqfs->mi_lock); error = vget(*vpp, LK_RETRY | LK_EXCLUSIVE); vdrop(*vpp); return (error); } sx_xunlock(&mqfs->mi_lock); error = getnewvnode("mqueue", mp, &mqfs_vnodeops, &newvpp); if (error) return (error); vn_lock(newvpp, LK_EXCLUSIVE | LK_RETRY); error = insmntque(newvpp, mp); if (error != 0) return (error); sx_xlock(&mqfs->mi_lock); /* * Check if it has already been allocated * while we were blocked. */ LIST_FOREACH(vd, &pn->mn_vnodes, mv_link) { if (vd->mv_vnode->v_mount == mp) { vhold(vd->mv_vnode); sx_xunlock(&mqfs->mi_lock); vgone(newvpp); vput(newvpp); goto found; } } *vpp = newvpp; vd = uma_zalloc(mvdata_zone, M_WAITOK); (*vpp)->v_data = vd; vd->mv_vnode = *vpp; vd->mv_node = pn; TASK_INIT(&vd->mv_task, 0, do_recycle, *vpp); LIST_INSERT_HEAD(&pn->mn_vnodes, vd, mv_link); mqnode_addref(pn); switch (pn->mn_type) { case mqfstype_root: (*vpp)->v_vflag = VV_ROOT; /* fall through */ case mqfstype_dir: case mqfstype_this: case mqfstype_parent: (*vpp)->v_type = VDIR; break; case mqfstype_file: (*vpp)->v_type = VREG; break; case mqfstype_symlink: (*vpp)->v_type = VLNK; break; case mqfstype_none: KASSERT(0, ("mqfs_allocf called for null node\n")); default: panic("%s has unexpected type: %d", pn->mn_name, pn->mn_type); } sx_xunlock(&mqfs->mi_lock); return (0); } /* * Search a directory entry */ static struct mqfs_node * mqfs_search(struct mqfs_node *pd, const char *name, int len, struct ucred *cred) { struct mqfs_node *pn; const void *pr_root; sx_assert(&pd->mn_info->mi_lock, SX_LOCKED); pr_root = cred->cr_prison->pr_root; LIST_FOREACH(pn, &pd->mn_children, mn_sibling) { /* Only match names within the same prison root directory */ if ((pn->mn_pr_root == NULL || pn->mn_pr_root == pr_root) && strncmp(pn->mn_name, name, len) == 0 && pn->mn_name[len] == '\0') return (pn); } return (NULL); } /* * Look up a file or directory. */ static int mqfs_lookupx(struct vop_cachedlookup_args *ap) { struct componentname *cnp; struct vnode *dvp, **vpp; struct mqfs_node *pd; struct mqfs_node *pn; struct mqfs_info *mqfs; int nameiop, flags, error, namelen; char *pname; struct thread *td; cnp = ap->a_cnp; vpp = ap->a_vpp; dvp = ap->a_dvp; pname = cnp->cn_nameptr; namelen = cnp->cn_namelen; td = cnp->cn_thread; flags = cnp->cn_flags; nameiop = cnp->cn_nameiop; pd = VTON(dvp); pn = NULL; mqfs = pd->mn_info; *vpp = NULLVP; if (dvp->v_type != VDIR) return (ENOTDIR); error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, cnp->cn_thread); if (error) return (error); /* shortcut: check if the name is too long */ if (cnp->cn_namelen >= MQFS_NAMELEN) return (ENOENT); /* self */ if (namelen == 1 && pname[0] == '.') { if ((flags & ISLASTCN) && nameiop != LOOKUP) return (EINVAL); pn = pd; *vpp = dvp; VREF(dvp); return (0); } /* parent */ if (cnp->cn_flags & ISDOTDOT) { if (dvp->v_vflag & VV_ROOT) return (EIO); if ((flags & ISLASTCN) && nameiop != LOOKUP) return (EINVAL); VOP_UNLOCK(dvp); KASSERT(pd->mn_parent, ("non-root directory has no parent")); pn = pd->mn_parent; error = mqfs_allocv(dvp->v_mount, vpp, pn); vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); return (error); } /* named node */ sx_xlock(&mqfs->mi_lock); pn = mqfs_search(pd, pname, namelen, cnp->cn_cred); if (pn != NULL) mqnode_addref(pn); sx_xunlock(&mqfs->mi_lock); /* found */ if (pn != NULL) { /* DELETE */ if (nameiop == DELETE && (flags & ISLASTCN)) { error = VOP_ACCESS(dvp, VWRITE, cnp->cn_cred, td); if (error) { mqnode_release(pn); return (error); } if (*vpp == dvp) { VREF(dvp); *vpp = dvp; mqnode_release(pn); return (0); } } /* allocate vnode */ error = mqfs_allocv(dvp->v_mount, vpp, pn); mqnode_release(pn); if (error == 0 && cnp->cn_flags & MAKEENTRY) cache_enter(dvp, *vpp, cnp); return (error); } /* not found */ /* will create a new entry in the directory ? */ if ((nameiop == CREATE || nameiop == RENAME) && (flags & LOCKPARENT) && (flags & ISLASTCN)) { error = VOP_ACCESS(dvp, VWRITE, cnp->cn_cred, td); if (error) return (error); cnp->cn_flags |= SAVENAME; return (EJUSTRETURN); } return (ENOENT); } #if 0 struct vop_lookup_args { struct vop_generic_args a_gen; struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; }; #endif /* * vnode lookup operation */ static int mqfs_lookup(struct vop_cachedlookup_args *ap) { int rc; rc = mqfs_lookupx(ap); return (rc); } #if 0 struct vop_create_args { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; }; #endif /* * vnode creation operation */ static int mqfs_create(struct vop_create_args *ap) { struct mqfs_info *mqfs = VFSTOMQFS(ap->a_dvp->v_mount); struct componentname *cnp = ap->a_cnp; struct mqfs_node *pd; struct mqfs_node *pn; struct mqueue *mq; int error; pd = VTON(ap->a_dvp); if (pd->mn_type != mqfstype_root && pd->mn_type != mqfstype_dir) return (ENOTDIR); mq = mqueue_alloc(NULL); if (mq == NULL) return (EAGAIN); sx_xlock(&mqfs->mi_lock); if ((cnp->cn_flags & HASBUF) == 0) panic("%s: no name", __func__); pn = mqfs_create_file(pd, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, ap->a_vap->va_mode); if (pn == NULL) { sx_xunlock(&mqfs->mi_lock); error = ENOSPC; } else { mqnode_addref(pn); sx_xunlock(&mqfs->mi_lock); error = mqfs_allocv(ap->a_dvp->v_mount, ap->a_vpp, pn); mqnode_release(pn); if (error) mqfs_destroy(pn); else pn->mn_data = mq; } if (error) mqueue_free(mq); return (error); } /* * Remove an entry */ static int do_unlink(struct mqfs_node *pn, struct ucred *ucred) { struct mqfs_node *parent; struct mqfs_vdata *vd; int error = 0; sx_assert(&pn->mn_info->mi_lock, SX_LOCKED); if (ucred->cr_uid != pn->mn_uid && (error = priv_check_cred(ucred, PRIV_MQ_ADMIN)) != 0) error = EACCES; else if (!pn->mn_deleted) { parent = pn->mn_parent; pn->mn_parent = NULL; pn->mn_deleted = 1; LIST_REMOVE(pn, mn_sibling); LIST_FOREACH(vd, &pn->mn_vnodes, mv_link) { cache_purge(vd->mv_vnode); vhold(vd->mv_vnode); taskqueue_enqueue(taskqueue_thread, &vd->mv_task); } mqnode_release(pn); mqnode_release(parent); } else error = ENOENT; return (error); } #if 0 struct vop_remove_args { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; }; #endif /* * vnode removal operation */ static int mqfs_remove(struct vop_remove_args *ap) { struct mqfs_info *mqfs = VFSTOMQFS(ap->a_dvp->v_mount); struct mqfs_node *pn; int error; if (ap->a_vp->v_type == VDIR) return (EPERM); pn = VTON(ap->a_vp); sx_xlock(&mqfs->mi_lock); error = do_unlink(pn, ap->a_cnp->cn_cred); sx_xunlock(&mqfs->mi_lock); return (error); } #if 0 struct vop_inactive_args { struct vnode *a_vp; struct thread *a_td; }; #endif static int mqfs_inactive(struct vop_inactive_args *ap) { struct mqfs_node *pn = VTON(ap->a_vp); if (pn->mn_deleted) vrecycle(ap->a_vp); return (0); } #if 0 struct vop_reclaim_args { struct vop_generic_args a_gen; struct vnode *a_vp; }; #endif static int mqfs_reclaim(struct vop_reclaim_args *ap) { struct mqfs_info *mqfs = VFSTOMQFS(ap->a_vp->v_mount); struct vnode *vp = ap->a_vp; struct mqfs_node *pn; struct mqfs_vdata *vd; vd = vp->v_data; pn = vd->mv_node; sx_xlock(&mqfs->mi_lock); vp->v_data = NULL; LIST_REMOVE(vd, mv_link); uma_zfree(mvdata_zone, vd); mqnode_release(pn); sx_xunlock(&mqfs->mi_lock); return (0); } #if 0 struct vop_open_args { struct vop_generic_args a_gen; struct vnode *a_vp; int a_mode; struct ucred *a_cred; struct thread *a_td; struct file *a_fp; }; #endif static int mqfs_open(struct vop_open_args *ap) { return (0); } #if 0 struct vop_close_args { struct vop_generic_args a_gen; struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct thread *a_td; }; #endif static int mqfs_close(struct vop_close_args *ap) { return (0); } #if 0 struct vop_access_args { struct vop_generic_args a_gen; struct vnode *a_vp; accmode_t a_accmode; struct ucred *a_cred; struct thread *a_td; }; #endif /* * Verify permissions */ static int mqfs_access(struct vop_access_args *ap) { struct vnode *vp = ap->a_vp; struct vattr vattr; int error; error = VOP_GETATTR(vp, &vattr, ap->a_cred); if (error) return (error); error = vaccess(vp->v_type, vattr.va_mode, vattr.va_uid, vattr.va_gid, ap->a_accmode, ap->a_cred); return (error); } #if 0 struct vop_getattr_args { struct vop_generic_args a_gen; struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; }; #endif /* * Get file attributes */ static int mqfs_getattr(struct vop_getattr_args *ap) { struct vnode *vp = ap->a_vp; struct mqfs_node *pn = VTON(vp); struct vattr *vap = ap->a_vap; int error = 0; vap->va_type = vp->v_type; vap->va_mode = pn->mn_mode; vap->va_nlink = 1; vap->va_uid = pn->mn_uid; vap->va_gid = pn->mn_gid; vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; vap->va_fileid = pn->mn_fileno; vap->va_size = 0; vap->va_blocksize = PAGE_SIZE; vap->va_bytes = vap->va_size = 0; vap->va_atime = pn->mn_atime; vap->va_mtime = pn->mn_mtime; vap->va_ctime = pn->mn_ctime; vap->va_birthtime = pn->mn_birth; vap->va_gen = 0; vap->va_flags = 0; vap->va_rdev = NODEV; vap->va_bytes = 0; vap->va_filerev = 0; return (error); } #if 0 struct vop_setattr_args { struct vop_generic_args a_gen; struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; }; #endif /* * Set attributes */ static int mqfs_setattr(struct vop_setattr_args *ap) { struct mqfs_node *pn; struct vattr *vap; struct vnode *vp; struct thread *td; int c, error; uid_t uid; gid_t gid; td = curthread; vap = ap->a_vap; vp = ap->a_vp; if ((vap->va_type != VNON) || (vap->va_nlink != VNOVAL) || (vap->va_fsid != VNOVAL) || (vap->va_fileid != VNOVAL) || (vap->va_blocksize != VNOVAL) || (vap->va_flags != VNOVAL && vap->va_flags != 0) || (vap->va_rdev != VNOVAL) || ((int)vap->va_bytes != VNOVAL) || (vap->va_gen != VNOVAL)) { return (EINVAL); } pn = VTON(vp); error = c = 0; if (vap->va_uid == (uid_t)VNOVAL) uid = pn->mn_uid; else uid = vap->va_uid; if (vap->va_gid == (gid_t)VNOVAL) gid = pn->mn_gid; else gid = vap->va_gid; if (uid != pn->mn_uid || gid != pn->mn_gid) { /* * To modify the ownership of a file, must possess VADMIN * for that file. */ if ((error = VOP_ACCESS(vp, VADMIN, ap->a_cred, td))) return (error); /* * XXXRW: Why is there a privilege check here: shouldn't the * check in VOP_ACCESS() be enough? Also, are the group bits * below definitely right? */ if (((ap->a_cred->cr_uid != pn->mn_uid) || uid != pn->mn_uid || (gid != pn->mn_gid && !groupmember(gid, ap->a_cred))) && (error = priv_check(td, PRIV_MQ_ADMIN)) != 0) return (error); pn->mn_uid = uid; pn->mn_gid = gid; c = 1; } if (vap->va_mode != (mode_t)VNOVAL) { if ((ap->a_cred->cr_uid != pn->mn_uid) && (error = priv_check(td, PRIV_MQ_ADMIN))) return (error); pn->mn_mode = vap->va_mode; c = 1; } if (vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL) { /* See the comment in ufs_vnops::ufs_setattr(). */ if ((error = VOP_ACCESS(vp, VADMIN, ap->a_cred, td)) && ((vap->va_vaflags & VA_UTIMES_NULL) == 0 || (error = VOP_ACCESS(vp, VWRITE, ap->a_cred, td)))) return (error); if (vap->va_atime.tv_sec != VNOVAL) { pn->mn_atime = vap->va_atime; } if (vap->va_mtime.tv_sec != VNOVAL) { pn->mn_mtime = vap->va_mtime; } c = 1; } if (c) { vfs_timestamp(&pn->mn_ctime); } return (0); } #if 0 struct vop_read_args { struct vop_generic_args a_gen; struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; }; #endif /* * Read from a file */ static int mqfs_read(struct vop_read_args *ap) { char buf[80]; struct vnode *vp = ap->a_vp; struct uio *uio = ap->a_uio; struct mqueue *mq; int len, error; if (vp->v_type != VREG) return (EINVAL); mq = VTOMQ(vp); snprintf(buf, sizeof(buf), "QSIZE:%-10ld MAXMSG:%-10ld CURMSG:%-10ld MSGSIZE:%-10ld\n", mq->mq_totalbytes, mq->mq_maxmsg, mq->mq_curmsgs, mq->mq_msgsize); buf[sizeof(buf)-1] = '\0'; len = strlen(buf); error = uiomove_frombuf(buf, len, uio); return (error); } #if 0 struct vop_readdir_args { struct vop_generic_args a_gen; struct vnode *a_vp; struct uio *a_uio; struct ucred *a_cred; int *a_eofflag; int *a_ncookies; u_long **a_cookies; }; #endif /* * Return directory entries. */ static int mqfs_readdir(struct vop_readdir_args *ap) { struct vnode *vp; struct mqfs_info *mi; struct mqfs_node *pd; struct mqfs_node *pn; struct dirent entry; struct uio *uio; const void *pr_root; int *tmp_ncookies = NULL; off_t offset; int error, i; vp = ap->a_vp; mi = VFSTOMQFS(vp->v_mount); pd = VTON(vp); uio = ap->a_uio; if (vp->v_type != VDIR) return (ENOTDIR); if (uio->uio_offset < 0) return (EINVAL); if (ap->a_ncookies != NULL) { tmp_ncookies = ap->a_ncookies; *ap->a_ncookies = 0; ap->a_ncookies = NULL; } error = 0; offset = 0; pr_root = ap->a_cred->cr_prison->pr_root; sx_xlock(&mi->mi_lock); LIST_FOREACH(pn, &pd->mn_children, mn_sibling) { entry.d_reclen = sizeof(entry); /* * Only show names within the same prison root directory * (or not associated with a prison, e.g. "." and ".."). */ if (pn->mn_pr_root != NULL && pn->mn_pr_root != pr_root) continue; if (!pn->mn_fileno) mqfs_fileno_alloc(mi, pn); entry.d_fileno = pn->mn_fileno; + entry.d_off = offset + entry.d_reclen; for (i = 0; i < MQFS_NAMELEN - 1 && pn->mn_name[i] != '\0'; ++i) entry.d_name[i] = pn->mn_name[i]; entry.d_namlen = i; switch (pn->mn_type) { case mqfstype_root: case mqfstype_dir: case mqfstype_this: case mqfstype_parent: entry.d_type = DT_DIR; break; case mqfstype_file: entry.d_type = DT_REG; break; case mqfstype_symlink: entry.d_type = DT_LNK; break; default: panic("%s has unexpected node type: %d", pn->mn_name, pn->mn_type); } dirent_terminate(&entry); if (entry.d_reclen > uio->uio_resid) break; if (offset >= uio->uio_offset) { error = vfs_read_dirent(ap, &entry, offset); if (error) break; } offset += entry.d_reclen; } sx_xunlock(&mi->mi_lock); uio->uio_offset = offset; if (tmp_ncookies != NULL) ap->a_ncookies = tmp_ncookies; return (error); } #ifdef notyet #if 0 struct vop_mkdir_args { struct vnode *a_dvp; struvt vnode **a_vpp; struvt componentname *a_cnp; struct vattr *a_vap; }; #endif /* * Create a directory. */ static int mqfs_mkdir(struct vop_mkdir_args *ap) { struct mqfs_info *mqfs = VFSTOMQFS(ap->a_dvp->v_mount); struct componentname *cnp = ap->a_cnp; struct mqfs_node *pd = VTON(ap->a_dvp); struct mqfs_node *pn; int error; if (pd->mn_type != mqfstype_root && pd->mn_type != mqfstype_dir) return (ENOTDIR); sx_xlock(&mqfs->mi_lock); if ((cnp->cn_flags & HASBUF) == 0) panic("%s: no name", __func__); pn = mqfs_create_dir(pd, cnp->cn_nameptr, cnp->cn_namelen, ap->a_vap->cn_cred, ap->a_vap->va_mode); if (pn != NULL) mqnode_addref(pn); sx_xunlock(&mqfs->mi_lock); if (pn == NULL) { error = ENOSPC; } else { error = mqfs_allocv(ap->a_dvp->v_mount, ap->a_vpp, pn); mqnode_release(pn); } return (error); } #if 0 struct vop_rmdir_args { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; }; #endif /* * Remove a directory. */ static int mqfs_rmdir(struct vop_rmdir_args *ap) { struct mqfs_info *mqfs = VFSTOMQFS(ap->a_dvp->v_mount); struct mqfs_node *pn = VTON(ap->a_vp); struct mqfs_node *pt; if (pn->mn_type != mqfstype_dir) return (ENOTDIR); sx_xlock(&mqfs->mi_lock); if (pn->mn_deleted) { sx_xunlock(&mqfs->mi_lock); return (ENOENT); } pt = LIST_FIRST(&pn->mn_children); pt = LIST_NEXT(pt, mn_sibling); pt = LIST_NEXT(pt, mn_sibling); if (pt != NULL) { sx_xunlock(&mqfs->mi_lock); return (ENOTEMPTY); } pt = pn->mn_parent; pn->mn_parent = NULL; pn->mn_deleted = 1; LIST_REMOVE(pn, mn_sibling); mqnode_release(pn); mqnode_release(pt); sx_xunlock(&mqfs->mi_lock); cache_purge(ap->a_vp); return (0); } #endif /* notyet */ /* * See if this prison root is obsolete, and clean up associated queues if it is. */ static int mqfs_prison_remove(void *obj, void *data __unused) { const struct prison *pr = obj; const struct prison *tpr; struct mqfs_node *pn, *tpn; int found; found = 0; TAILQ_FOREACH(tpr, &allprison, pr_list) { if (tpr->pr_root == pr->pr_root && tpr != pr && tpr->pr_ref > 0) found = 1; } if (!found) { /* * No jails are rooted in this directory anymore, * so no queues should be either. */ sx_xlock(&mqfs_data.mi_lock); LIST_FOREACH_SAFE(pn, &mqfs_data.mi_root->mn_children, mn_sibling, tpn) { if (pn->mn_pr_root == pr->pr_root) (void)do_unlink(pn, curthread->td_ucred); } sx_xunlock(&mqfs_data.mi_lock); } return (0); } /* * Allocate a message queue */ static struct mqueue * mqueue_alloc(const struct mq_attr *attr) { struct mqueue *mq; if (curmq >= maxmq) return (NULL); mq = uma_zalloc(mqueue_zone, M_WAITOK | M_ZERO); TAILQ_INIT(&mq->mq_msgq); if (attr != NULL) { mq->mq_maxmsg = attr->mq_maxmsg; mq->mq_msgsize = attr->mq_msgsize; } else { mq->mq_maxmsg = default_maxmsg; mq->mq_msgsize = default_msgsize; } mtx_init(&mq->mq_mutex, "mqueue lock", NULL, MTX_DEF); knlist_init_mtx(&mq->mq_rsel.si_note, &mq->mq_mutex); knlist_init_mtx(&mq->mq_wsel.si_note, &mq->mq_mutex); atomic_add_int(&curmq, 1); return (mq); } /* * Destroy a message queue */ static void mqueue_free(struct mqueue *mq) { struct mqueue_msg *msg; while ((msg = TAILQ_FIRST(&mq->mq_msgq)) != NULL) { TAILQ_REMOVE(&mq->mq_msgq, msg, msg_link); free(msg, M_MQUEUEDATA); } mtx_destroy(&mq->mq_mutex); seldrain(&mq->mq_rsel); seldrain(&mq->mq_wsel); knlist_destroy(&mq->mq_rsel.si_note); knlist_destroy(&mq->mq_wsel.si_note); uma_zfree(mqueue_zone, mq); atomic_add_int(&curmq, -1); } /* * Load a message from user space */ static struct mqueue_msg * mqueue_loadmsg(const char *msg_ptr, size_t msg_size, int msg_prio) { struct mqueue_msg *msg; size_t len; int error; len = sizeof(struct mqueue_msg) + msg_size; msg = malloc(len, M_MQUEUEDATA, M_WAITOK); error = copyin(msg_ptr, ((char *)msg) + sizeof(struct mqueue_msg), msg_size); if (error) { free(msg, M_MQUEUEDATA); msg = NULL; } else { msg->msg_size = msg_size; msg->msg_prio = msg_prio; } return (msg); } /* * Save a message to user space */ static int mqueue_savemsg(struct mqueue_msg *msg, char *msg_ptr, int *msg_prio) { int error; error = copyout(((char *)msg) + sizeof(*msg), msg_ptr, msg->msg_size); if (error == 0 && msg_prio != NULL) error = copyout(&msg->msg_prio, msg_prio, sizeof(int)); return (error); } /* * Free a message's memory */ static __inline void mqueue_freemsg(struct mqueue_msg *msg) { free(msg, M_MQUEUEDATA); } /* * Send a message. if waitok is false, thread will not be * blocked if there is no data in queue, otherwise, absolute * time will be checked. */ int mqueue_send(struct mqueue *mq, const char *msg_ptr, size_t msg_len, unsigned msg_prio, int waitok, const struct timespec *abs_timeout) { struct mqueue_msg *msg; struct timespec ts, ts2; struct timeval tv; int error; if (msg_prio >= MQ_PRIO_MAX) return (EINVAL); if (msg_len > mq->mq_msgsize) return (EMSGSIZE); msg = mqueue_loadmsg(msg_ptr, msg_len, msg_prio); if (msg == NULL) return (EFAULT); /* O_NONBLOCK case */ if (!waitok) { error = _mqueue_send(mq, msg, -1); if (error) goto bad; return (0); } /* we allow a null timeout (wait forever) */ if (abs_timeout == NULL) { error = _mqueue_send(mq, msg, 0); if (error) goto bad; return (0); } /* send it before checking time */ error = _mqueue_send(mq, msg, -1); if (error == 0) return (0); if (error != EAGAIN) goto bad; if (abs_timeout->tv_nsec >= 1000000000 || abs_timeout->tv_nsec < 0) { error = EINVAL; goto bad; } for (;;) { getnanotime(&ts); timespecsub(abs_timeout, &ts, &ts2); if (ts2.tv_sec < 0 || (ts2.tv_sec == 0 && ts2.tv_nsec <= 0)) { error = ETIMEDOUT; break; } TIMESPEC_TO_TIMEVAL(&tv, &ts2); error = _mqueue_send(mq, msg, tvtohz(&tv)); if (error != ETIMEDOUT) break; } if (error == 0) return (0); bad: mqueue_freemsg(msg); return (error); } /* * Common routine to send a message */ static int _mqueue_send(struct mqueue *mq, struct mqueue_msg *msg, int timo) { struct mqueue_msg *msg2; int error = 0; mtx_lock(&mq->mq_mutex); while (mq->mq_curmsgs >= mq->mq_maxmsg && error == 0) { if (timo < 0) { mtx_unlock(&mq->mq_mutex); return (EAGAIN); } mq->mq_senders++; error = msleep(&mq->mq_senders, &mq->mq_mutex, PCATCH, "mqsend", timo); mq->mq_senders--; if (error == EAGAIN) error = ETIMEDOUT; } if (mq->mq_curmsgs >= mq->mq_maxmsg) { mtx_unlock(&mq->mq_mutex); return (error); } error = 0; if (TAILQ_EMPTY(&mq->mq_msgq)) { TAILQ_INSERT_HEAD(&mq->mq_msgq, msg, msg_link); } else { if (msg->msg_prio <= TAILQ_LAST(&mq->mq_msgq, msgq)->msg_prio) { TAILQ_INSERT_TAIL(&mq->mq_msgq, msg, msg_link); } else { TAILQ_FOREACH(msg2, &mq->mq_msgq, msg_link) { if (msg2->msg_prio < msg->msg_prio) break; } TAILQ_INSERT_BEFORE(msg2, msg, msg_link); } } mq->mq_curmsgs++; mq->mq_totalbytes += msg->msg_size; if (mq->mq_receivers) wakeup_one(&mq->mq_receivers); else if (mq->mq_notifier != NULL) mqueue_send_notification(mq); if (mq->mq_flags & MQ_RSEL) { mq->mq_flags &= ~MQ_RSEL; selwakeup(&mq->mq_rsel); } KNOTE_LOCKED(&mq->mq_rsel.si_note, 0); mtx_unlock(&mq->mq_mutex); return (0); } /* * Send realtime a signal to process which registered itself * successfully by mq_notify. */ static void mqueue_send_notification(struct mqueue *mq) { struct mqueue_notifier *nt; struct thread *td; struct proc *p; int error; mtx_assert(&mq->mq_mutex, MA_OWNED); nt = mq->mq_notifier; if (nt->nt_sigev.sigev_notify != SIGEV_NONE) { p = nt->nt_proc; error = sigev_findtd(p, &nt->nt_sigev, &td); if (error) { mq->mq_notifier = NULL; return; } if (!KSI_ONQ(&nt->nt_ksi)) { ksiginfo_set_sigev(&nt->nt_ksi, &nt->nt_sigev); tdsendsignal(p, td, nt->nt_ksi.ksi_signo, &nt->nt_ksi); } PROC_UNLOCK(p); } mq->mq_notifier = NULL; } /* * Get a message. if waitok is false, thread will not be * blocked if there is no data in queue, otherwise, absolute * time will be checked. */ int mqueue_receive(struct mqueue *mq, char *msg_ptr, size_t msg_len, unsigned *msg_prio, int waitok, const struct timespec *abs_timeout) { struct mqueue_msg *msg; struct timespec ts, ts2; struct timeval tv; int error; if (msg_len < mq->mq_msgsize) return (EMSGSIZE); /* O_NONBLOCK case */ if (!waitok) { error = _mqueue_recv(mq, &msg, -1); if (error) return (error); goto received; } /* we allow a null timeout (wait forever). */ if (abs_timeout == NULL) { error = _mqueue_recv(mq, &msg, 0); if (error) return (error); goto received; } /* try to get a message before checking time */ error = _mqueue_recv(mq, &msg, -1); if (error == 0) goto received; if (error != EAGAIN) return (error); if (abs_timeout->tv_nsec >= 1000000000 || abs_timeout->tv_nsec < 0) { error = EINVAL; return (error); } for (;;) { getnanotime(&ts); timespecsub(abs_timeout, &ts, &ts2); if (ts2.tv_sec < 0 || (ts2.tv_sec == 0 && ts2.tv_nsec <= 0)) { error = ETIMEDOUT; return (error); } TIMESPEC_TO_TIMEVAL(&tv, &ts2); error = _mqueue_recv(mq, &msg, tvtohz(&tv)); if (error == 0) break; if (error != ETIMEDOUT) return (error); } received: error = mqueue_savemsg(msg, msg_ptr, msg_prio); if (error == 0) { curthread->td_retval[0] = msg->msg_size; curthread->td_retval[1] = 0; } mqueue_freemsg(msg); return (error); } /* * Common routine to receive a message */ static int _mqueue_recv(struct mqueue *mq, struct mqueue_msg **msg, int timo) { int error = 0; mtx_lock(&mq->mq_mutex); while ((*msg = TAILQ_FIRST(&mq->mq_msgq)) == NULL && error == 0) { if (timo < 0) { mtx_unlock(&mq->mq_mutex); return (EAGAIN); } mq->mq_receivers++; error = msleep(&mq->mq_receivers, &mq->mq_mutex, PCATCH, "mqrecv", timo); mq->mq_receivers--; if (error == EAGAIN) error = ETIMEDOUT; } if (*msg != NULL) { error = 0; TAILQ_REMOVE(&mq->mq_msgq, *msg, msg_link); mq->mq_curmsgs--; mq->mq_totalbytes -= (*msg)->msg_size; if (mq->mq_senders) wakeup_one(&mq->mq_senders); if (mq->mq_flags & MQ_WSEL) { mq->mq_flags &= ~MQ_WSEL; selwakeup(&mq->mq_wsel); } KNOTE_LOCKED(&mq->mq_wsel.si_note, 0); } if (mq->mq_notifier != NULL && mq->mq_receivers == 0 && !TAILQ_EMPTY(&mq->mq_msgq)) { mqueue_send_notification(mq); } mtx_unlock(&mq->mq_mutex); return (error); } static __inline struct mqueue_notifier * notifier_alloc(void) { return (uma_zalloc(mqnoti_zone, M_WAITOK | M_ZERO)); } static __inline void notifier_free(struct mqueue_notifier *p) { uma_zfree(mqnoti_zone, p); } static struct mqueue_notifier * notifier_search(struct proc *p, int fd) { struct mqueue_notifier *nt; LIST_FOREACH(nt, &p->p_mqnotifier, nt_link) { if (nt->nt_ksi.ksi_mqd == fd) break; } return (nt); } static __inline void notifier_insert(struct proc *p, struct mqueue_notifier *nt) { LIST_INSERT_HEAD(&p->p_mqnotifier, nt, nt_link); } static __inline void notifier_delete(struct proc *p, struct mqueue_notifier *nt) { LIST_REMOVE(nt, nt_link); notifier_free(nt); } static void notifier_remove(struct proc *p, struct mqueue *mq, int fd) { struct mqueue_notifier *nt; mtx_assert(&mq->mq_mutex, MA_OWNED); PROC_LOCK(p); nt = notifier_search(p, fd); if (nt != NULL) { if (mq->mq_notifier == nt) mq->mq_notifier = NULL; sigqueue_take(&nt->nt_ksi); notifier_delete(p, nt); } PROC_UNLOCK(p); } static int kern_kmq_open(struct thread *td, const char *upath, int flags, mode_t mode, const struct mq_attr *attr) { char path[MQFS_NAMELEN + 1]; struct mqfs_node *pn; struct pwddesc *pdp; struct file *fp; struct mqueue *mq; int fd, error, len, cmode; AUDIT_ARG_FFLAGS(flags); AUDIT_ARG_MODE(mode); pdp = td->td_proc->p_pd; cmode = (((mode & ~pdp->pd_cmask) & ALLPERMS) & ~S_ISTXT); mq = NULL; if ((flags & O_CREAT) != 0 && attr != NULL) { if (attr->mq_maxmsg <= 0 || attr->mq_maxmsg > maxmsg) return (EINVAL); if (attr->mq_msgsize <= 0 || attr->mq_msgsize > maxmsgsize) return (EINVAL); } error = copyinstr(upath, path, MQFS_NAMELEN + 1, NULL); if (error) return (error); /* * The first character of name must be a slash (/) character * and the remaining characters of name cannot include any slash * characters. */ len = strlen(path); if (len < 2 || path[0] != '/' || strchr(path + 1, '/') != NULL) return (EINVAL); /* * "." and ".." are magic directories, populated on the fly, and cannot * be opened as queues. */ if (strcmp(path, "/.") == 0 || strcmp(path, "/..") == 0) return (EINVAL); AUDIT_ARG_UPATH1_CANON(path); error = falloc(td, &fp, &fd, O_CLOEXEC); if (error) return (error); sx_xlock(&mqfs_data.mi_lock); pn = mqfs_search(mqfs_data.mi_root, path + 1, len - 1, td->td_ucred); if (pn == NULL) { if (!(flags & O_CREAT)) { error = ENOENT; } else { mq = mqueue_alloc(attr); if (mq == NULL) { error = ENFILE; } else { pn = mqfs_create_file(mqfs_data.mi_root, path + 1, len - 1, td->td_ucred, cmode); if (pn == NULL) { error = ENOSPC; mqueue_free(mq); } } } if (error == 0) { pn->mn_data = mq; } } else { if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) { error = EEXIST; } else { accmode_t accmode = 0; if (flags & FREAD) accmode |= VREAD; if (flags & FWRITE) accmode |= VWRITE; error = vaccess(VREG, pn->mn_mode, pn->mn_uid, pn->mn_gid, accmode, td->td_ucred); } } if (error) { sx_xunlock(&mqfs_data.mi_lock); fdclose(td, fp, fd); fdrop(fp, td); return (error); } mqnode_addref(pn); sx_xunlock(&mqfs_data.mi_lock); finit(fp, flags & (FREAD | FWRITE | O_NONBLOCK), DTYPE_MQUEUE, pn, &mqueueops); td->td_retval[0] = fd; fdrop(fp, td); return (0); } /* * Syscall to open a message queue. */ int sys_kmq_open(struct thread *td, struct kmq_open_args *uap) { struct mq_attr attr; int flags, error; if ((uap->flags & O_ACCMODE) == O_ACCMODE || uap->flags & O_EXEC) return (EINVAL); flags = FFLAGS(uap->flags); if ((flags & O_CREAT) != 0 && uap->attr != NULL) { error = copyin(uap->attr, &attr, sizeof(attr)); if (error) return (error); } return (kern_kmq_open(td, uap->path, flags, uap->mode, uap->attr != NULL ? &attr : NULL)); } /* * Syscall to unlink a message queue. */ int sys_kmq_unlink(struct thread *td, struct kmq_unlink_args *uap) { char path[MQFS_NAMELEN+1]; struct mqfs_node *pn; int error, len; error = copyinstr(uap->path, path, MQFS_NAMELEN + 1, NULL); if (error) return (error); len = strlen(path); if (len < 2 || path[0] != '/' || strchr(path + 1, '/') != NULL) return (EINVAL); if (strcmp(path, "/.") == 0 || strcmp(path, "/..") == 0) return (EINVAL); AUDIT_ARG_UPATH1_CANON(path); sx_xlock(&mqfs_data.mi_lock); pn = mqfs_search(mqfs_data.mi_root, path + 1, len - 1, td->td_ucred); if (pn != NULL) error = do_unlink(pn, td->td_ucred); else error = ENOENT; sx_xunlock(&mqfs_data.mi_lock); return (error); } typedef int (*_fgetf)(struct thread *, int, cap_rights_t *, struct file **); /* * Get message queue by giving file slot */ static int _getmq(struct thread *td, int fd, cap_rights_t *rightsp, _fgetf func, struct file **fpp, struct mqfs_node **ppn, struct mqueue **pmq) { struct mqfs_node *pn; int error; error = func(td, fd, rightsp, fpp); if (error) return (error); if (&mqueueops != (*fpp)->f_ops) { fdrop(*fpp, td); return (EBADF); } pn = (*fpp)->f_data; if (ppn) *ppn = pn; if (pmq) *pmq = pn->mn_data; return (0); } static __inline int getmq(struct thread *td, int fd, struct file **fpp, struct mqfs_node **ppn, struct mqueue **pmq) { return _getmq(td, fd, &cap_event_rights, fget, fpp, ppn, pmq); } static __inline int getmq_read(struct thread *td, int fd, struct file **fpp, struct mqfs_node **ppn, struct mqueue **pmq) { return _getmq(td, fd, &cap_read_rights, fget_read, fpp, ppn, pmq); } static __inline int getmq_write(struct thread *td, int fd, struct file **fpp, struct mqfs_node **ppn, struct mqueue **pmq) { return _getmq(td, fd, &cap_write_rights, fget_write, fpp, ppn, pmq); } static int kern_kmq_setattr(struct thread *td, int mqd, const struct mq_attr *attr, struct mq_attr *oattr) { struct mqueue *mq; struct file *fp; u_int oflag, flag; int error; AUDIT_ARG_FD(mqd); if (attr != NULL && (attr->mq_flags & ~O_NONBLOCK) != 0) return (EINVAL); error = getmq(td, mqd, &fp, NULL, &mq); if (error) return (error); oattr->mq_maxmsg = mq->mq_maxmsg; oattr->mq_msgsize = mq->mq_msgsize; oattr->mq_curmsgs = mq->mq_curmsgs; if (attr != NULL) { do { oflag = flag = fp->f_flag; flag &= ~O_NONBLOCK; flag |= (attr->mq_flags & O_NONBLOCK); } while (atomic_cmpset_int(&fp->f_flag, oflag, flag) == 0); } else oflag = fp->f_flag; oattr->mq_flags = (O_NONBLOCK & oflag); fdrop(fp, td); return (error); } int sys_kmq_setattr(struct thread *td, struct kmq_setattr_args *uap) { struct mq_attr attr, oattr; int error; if (uap->attr != NULL) { error = copyin(uap->attr, &attr, sizeof(attr)); if (error != 0) return (error); } error = kern_kmq_setattr(td, uap->mqd, uap->attr != NULL ? &attr : NULL, &oattr); if (error == 0 && uap->oattr != NULL) { bzero(oattr.__reserved, sizeof(oattr.__reserved)); error = copyout(&oattr, uap->oattr, sizeof(oattr)); } return (error); } int sys_kmq_timedreceive(struct thread *td, struct kmq_timedreceive_args *uap) { struct mqueue *mq; struct file *fp; struct timespec *abs_timeout, ets; int error; int waitok; AUDIT_ARG_FD(uap->mqd); error = getmq_read(td, uap->mqd, &fp, NULL, &mq); if (error) return (error); if (uap->abs_timeout != NULL) { error = copyin(uap->abs_timeout, &ets, sizeof(ets)); if (error != 0) goto out; abs_timeout = &ets; } else abs_timeout = NULL; waitok = !(fp->f_flag & O_NONBLOCK); error = mqueue_receive(mq, uap->msg_ptr, uap->msg_len, uap->msg_prio, waitok, abs_timeout); out: fdrop(fp, td); return (error); } int sys_kmq_timedsend(struct thread *td, struct kmq_timedsend_args *uap) { struct mqueue *mq; struct file *fp; struct timespec *abs_timeout, ets; int error, waitok; AUDIT_ARG_FD(uap->mqd); error = getmq_write(td, uap->mqd, &fp, NULL, &mq); if (error) return (error); if (uap->abs_timeout != NULL) { error = copyin(uap->abs_timeout, &ets, sizeof(ets)); if (error != 0) goto out; abs_timeout = &ets; } else abs_timeout = NULL; waitok = !(fp->f_flag & O_NONBLOCK); error = mqueue_send(mq, uap->msg_ptr, uap->msg_len, uap->msg_prio, waitok, abs_timeout); out: fdrop(fp, td); return (error); } static int kern_kmq_notify(struct thread *td, int mqd, struct sigevent *sigev) { struct filedesc *fdp; struct proc *p; struct mqueue *mq; struct file *fp, *fp2; struct mqueue_notifier *nt, *newnt = NULL; int error; AUDIT_ARG_FD(mqd); if (sigev != NULL) { if (sigev->sigev_notify != SIGEV_SIGNAL && sigev->sigev_notify != SIGEV_THREAD_ID && sigev->sigev_notify != SIGEV_NONE) return (EINVAL); if ((sigev->sigev_notify == SIGEV_SIGNAL || sigev->sigev_notify == SIGEV_THREAD_ID) && !_SIG_VALID(sigev->sigev_signo)) return (EINVAL); } p = td->td_proc; fdp = td->td_proc->p_fd; error = getmq(td, mqd, &fp, NULL, &mq); if (error) return (error); again: FILEDESC_SLOCK(fdp); fp2 = fget_locked(fdp, mqd); if (fp2 == NULL) { FILEDESC_SUNLOCK(fdp); error = EBADF; goto out; } #ifdef CAPABILITIES error = cap_check(cap_rights(fdp, mqd), &cap_event_rights); if (error) { FILEDESC_SUNLOCK(fdp); goto out; } #endif if (fp2 != fp) { FILEDESC_SUNLOCK(fdp); error = EBADF; goto out; } mtx_lock(&mq->mq_mutex); FILEDESC_SUNLOCK(fdp); if (sigev != NULL) { if (mq->mq_notifier != NULL) { error = EBUSY; } else { PROC_LOCK(p); nt = notifier_search(p, mqd); if (nt == NULL) { if (newnt == NULL) { PROC_UNLOCK(p); mtx_unlock(&mq->mq_mutex); newnt = notifier_alloc(); goto again; } } if (nt != NULL) { sigqueue_take(&nt->nt_ksi); if (newnt != NULL) { notifier_free(newnt); newnt = NULL; } } else { nt = newnt; newnt = NULL; ksiginfo_init(&nt->nt_ksi); nt->nt_ksi.ksi_flags |= KSI_INS | KSI_EXT; nt->nt_ksi.ksi_code = SI_MESGQ; nt->nt_proc = p; nt->nt_ksi.ksi_mqd = mqd; notifier_insert(p, nt); } nt->nt_sigev = *sigev; mq->mq_notifier = nt; PROC_UNLOCK(p); /* * if there is no receivers and message queue * is not empty, we should send notification * as soon as possible. */ if (mq->mq_receivers == 0 && !TAILQ_EMPTY(&mq->mq_msgq)) mqueue_send_notification(mq); } } else { notifier_remove(p, mq, mqd); } mtx_unlock(&mq->mq_mutex); out: fdrop(fp, td); if (newnt != NULL) notifier_free(newnt); return (error); } int sys_kmq_notify(struct thread *td, struct kmq_notify_args *uap) { struct sigevent ev, *evp; int error; if (uap->sigev == NULL) { evp = NULL; } else { error = copyin(uap->sigev, &ev, sizeof(ev)); if (error != 0) return (error); evp = &ev; } return (kern_kmq_notify(td, uap->mqd, evp)); } static void mqueue_fdclose(struct thread *td, int fd, struct file *fp) { struct mqueue *mq; #ifdef INVARIANTS struct filedesc *fdp; fdp = td->td_proc->p_fd; FILEDESC_LOCK_ASSERT(fdp); #endif if (fp->f_ops == &mqueueops) { mq = FPTOMQ(fp); mtx_lock(&mq->mq_mutex); notifier_remove(td->td_proc, mq, fd); /* have to wakeup thread in same process */ if (mq->mq_flags & MQ_RSEL) { mq->mq_flags &= ~MQ_RSEL; selwakeup(&mq->mq_rsel); } if (mq->mq_flags & MQ_WSEL) { mq->mq_flags &= ~MQ_WSEL; selwakeup(&mq->mq_wsel); } mtx_unlock(&mq->mq_mutex); } } static void mq_proc_exit(void *arg __unused, struct proc *p) { struct filedesc *fdp; struct file *fp; struct mqueue *mq; int i; fdp = p->p_fd; FILEDESC_SLOCK(fdp); for (i = 0; i < fdp->fd_nfiles; ++i) { fp = fget_locked(fdp, i); if (fp != NULL && fp->f_ops == &mqueueops) { mq = FPTOMQ(fp); mtx_lock(&mq->mq_mutex); notifier_remove(p, FPTOMQ(fp), i); mtx_unlock(&mq->mq_mutex); } } FILEDESC_SUNLOCK(fdp); KASSERT(LIST_EMPTY(&p->p_mqnotifier), ("mq notifiers left")); } static int mqf_poll(struct file *fp, int events, struct ucred *active_cred, struct thread *td) { struct mqueue *mq = FPTOMQ(fp); int revents = 0; mtx_lock(&mq->mq_mutex); if (events & (POLLIN | POLLRDNORM)) { if (mq->mq_curmsgs) { revents |= events & (POLLIN | POLLRDNORM); } else { mq->mq_flags |= MQ_RSEL; selrecord(td, &mq->mq_rsel); } } if (events & POLLOUT) { if (mq->mq_curmsgs < mq->mq_maxmsg) revents |= POLLOUT; else { mq->mq_flags |= MQ_WSEL; selrecord(td, &mq->mq_wsel); } } mtx_unlock(&mq->mq_mutex); return (revents); } static int mqf_close(struct file *fp, struct thread *td) { struct mqfs_node *pn; fp->f_ops = &badfileops; pn = fp->f_data; fp->f_data = NULL; sx_xlock(&mqfs_data.mi_lock); mqnode_release(pn); sx_xunlock(&mqfs_data.mi_lock); return (0); } static int mqf_stat(struct file *fp, struct stat *st, struct ucred *active_cred, struct thread *td) { struct mqfs_node *pn = fp->f_data; bzero(st, sizeof *st); sx_xlock(&mqfs_data.mi_lock); st->st_atim = pn->mn_atime; st->st_mtim = pn->mn_mtime; st->st_ctim = pn->mn_ctime; st->st_birthtim = pn->mn_birth; st->st_uid = pn->mn_uid; st->st_gid = pn->mn_gid; st->st_mode = S_IFIFO | pn->mn_mode; sx_xunlock(&mqfs_data.mi_lock); return (0); } static int mqf_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td) { struct mqfs_node *pn; int error; error = 0; pn = fp->f_data; sx_xlock(&mqfs_data.mi_lock); error = vaccess(VREG, pn->mn_mode, pn->mn_uid, pn->mn_gid, VADMIN, active_cred); if (error != 0) goto out; pn->mn_mode = mode & ACCESSPERMS; out: sx_xunlock(&mqfs_data.mi_lock); return (error); } static int mqf_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, struct thread *td) { struct mqfs_node *pn; int error; error = 0; pn = fp->f_data; sx_xlock(&mqfs_data.mi_lock); if (uid == (uid_t)-1) uid = pn->mn_uid; if (gid == (gid_t)-1) gid = pn->mn_gid; if (((uid != pn->mn_uid && uid != active_cred->cr_uid) || (gid != pn->mn_gid && !groupmember(gid, active_cred))) && (error = priv_check_cred(active_cred, PRIV_VFS_CHOWN))) goto out; pn->mn_uid = uid; pn->mn_gid = gid; out: sx_xunlock(&mqfs_data.mi_lock); return (error); } static int mqf_kqfilter(struct file *fp, struct knote *kn) { struct mqueue *mq = FPTOMQ(fp); int error = 0; if (kn->kn_filter == EVFILT_READ) { kn->kn_fop = &mq_rfiltops; knlist_add(&mq->mq_rsel.si_note, kn, 0); } else if (kn->kn_filter == EVFILT_WRITE) { kn->kn_fop = &mq_wfiltops; knlist_add(&mq->mq_wsel.si_note, kn, 0); } else error = EINVAL; return (error); } static void filt_mqdetach(struct knote *kn) { struct mqueue *mq = FPTOMQ(kn->kn_fp); if (kn->kn_filter == EVFILT_READ) knlist_remove(&mq->mq_rsel.si_note, kn, 0); else if (kn->kn_filter == EVFILT_WRITE) knlist_remove(&mq->mq_wsel.si_note, kn, 0); else panic("filt_mqdetach"); } static int filt_mqread(struct knote *kn, long hint) { struct mqueue *mq = FPTOMQ(kn->kn_fp); mtx_assert(&mq->mq_mutex, MA_OWNED); return (mq->mq_curmsgs != 0); } static int filt_mqwrite(struct knote *kn, long hint) { struct mqueue *mq = FPTOMQ(kn->kn_fp); mtx_assert(&mq->mq_mutex, MA_OWNED); return (mq->mq_curmsgs < mq->mq_maxmsg); } static int mqf_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) { kif->kf_type = KF_TYPE_MQUEUE; return (0); } static struct fileops mqueueops = { .fo_read = invfo_rdwr, .fo_write = invfo_rdwr, .fo_truncate = invfo_truncate, .fo_ioctl = invfo_ioctl, .fo_poll = mqf_poll, .fo_kqfilter = mqf_kqfilter, .fo_stat = mqf_stat, .fo_close = mqf_close, .fo_chmod = mqf_chmod, .fo_chown = mqf_chown, .fo_sendfile = invfo_sendfile, .fo_fill_kinfo = mqf_fill_kinfo, .fo_flags = DFLAG_PASSABLE, }; static struct vop_vector mqfs_vnodeops = { .vop_default = &default_vnodeops, .vop_access = mqfs_access, .vop_cachedlookup = mqfs_lookup, .vop_lookup = vfs_cache_lookup, .vop_reclaim = mqfs_reclaim, .vop_create = mqfs_create, .vop_remove = mqfs_remove, .vop_inactive = mqfs_inactive, .vop_open = mqfs_open, .vop_close = mqfs_close, .vop_getattr = mqfs_getattr, .vop_setattr = mqfs_setattr, .vop_read = mqfs_read, .vop_write = VOP_EOPNOTSUPP, .vop_readdir = mqfs_readdir, .vop_mkdir = VOP_EOPNOTSUPP, .vop_rmdir = VOP_EOPNOTSUPP }; VFS_VOP_VECTOR_REGISTER(mqfs_vnodeops); static struct vfsops mqfs_vfsops = { .vfs_init = mqfs_init, .vfs_uninit = mqfs_uninit, .vfs_mount = mqfs_mount, .vfs_unmount = mqfs_unmount, .vfs_root = mqfs_root, .vfs_statfs = mqfs_statfs, }; static struct vfsconf mqueuefs_vfsconf = { .vfc_version = VFS_VERSION, .vfc_name = "mqueuefs", .vfc_vfsops = &mqfs_vfsops, .vfc_typenum = -1, .vfc_flags = VFCF_SYNTHETIC }; static struct syscall_helper_data mq_syscalls[] = { SYSCALL_INIT_HELPER(kmq_open), SYSCALL_INIT_HELPER_F(kmq_setattr, SYF_CAPENABLED), SYSCALL_INIT_HELPER_F(kmq_timedsend, SYF_CAPENABLED), SYSCALL_INIT_HELPER_F(kmq_timedreceive, SYF_CAPENABLED), SYSCALL_INIT_HELPER_F(kmq_notify, SYF_CAPENABLED), SYSCALL_INIT_HELPER(kmq_unlink), SYSCALL_INIT_LAST }; #ifdef COMPAT_FREEBSD32 #include #include #include #include #include static void mq_attr_from32(const struct mq_attr32 *from, struct mq_attr *to) { to->mq_flags = from->mq_flags; to->mq_maxmsg = from->mq_maxmsg; to->mq_msgsize = from->mq_msgsize; to->mq_curmsgs = from->mq_curmsgs; } static void mq_attr_to32(const struct mq_attr *from, struct mq_attr32 *to) { to->mq_flags = from->mq_flags; to->mq_maxmsg = from->mq_maxmsg; to->mq_msgsize = from->mq_msgsize; to->mq_curmsgs = from->mq_curmsgs; } int freebsd32_kmq_open(struct thread *td, struct freebsd32_kmq_open_args *uap) { struct mq_attr attr; struct mq_attr32 attr32; int flags, error; if ((uap->flags & O_ACCMODE) == O_ACCMODE || uap->flags & O_EXEC) return (EINVAL); flags = FFLAGS(uap->flags); if ((flags & O_CREAT) != 0 && uap->attr != NULL) { error = copyin(uap->attr, &attr32, sizeof(attr32)); if (error) return (error); mq_attr_from32(&attr32, &attr); } return (kern_kmq_open(td, uap->path, flags, uap->mode, uap->attr != NULL ? &attr : NULL)); } int freebsd32_kmq_setattr(struct thread *td, struct freebsd32_kmq_setattr_args *uap) { struct mq_attr attr, oattr; struct mq_attr32 attr32, oattr32; int error; if (uap->attr != NULL) { error = copyin(uap->attr, &attr32, sizeof(attr32)); if (error != 0) return (error); mq_attr_from32(&attr32, &attr); } error = kern_kmq_setattr(td, uap->mqd, uap->attr != NULL ? &attr : NULL, &oattr); if (error == 0 && uap->oattr != NULL) { mq_attr_to32(&oattr, &oattr32); bzero(oattr32.__reserved, sizeof(oattr32.__reserved)); error = copyout(&oattr32, uap->oattr, sizeof(oattr32)); } return (error); } int freebsd32_kmq_timedsend(struct thread *td, struct freebsd32_kmq_timedsend_args *uap) { struct mqueue *mq; struct file *fp; struct timespec32 ets32; struct timespec *abs_timeout, ets; int error; int waitok; AUDIT_ARG_FD(uap->mqd); error = getmq_write(td, uap->mqd, &fp, NULL, &mq); if (error) return (error); if (uap->abs_timeout != NULL) { error = copyin(uap->abs_timeout, &ets32, sizeof(ets32)); if (error != 0) goto out; CP(ets32, ets, tv_sec); CP(ets32, ets, tv_nsec); abs_timeout = &ets; } else abs_timeout = NULL; waitok = !(fp->f_flag & O_NONBLOCK); error = mqueue_send(mq, uap->msg_ptr, uap->msg_len, uap->msg_prio, waitok, abs_timeout); out: fdrop(fp, td); return (error); } int freebsd32_kmq_timedreceive(struct thread *td, struct freebsd32_kmq_timedreceive_args *uap) { struct mqueue *mq; struct file *fp; struct timespec32 ets32; struct timespec *abs_timeout, ets; int error, waitok; AUDIT_ARG_FD(uap->mqd); error = getmq_read(td, uap->mqd, &fp, NULL, &mq); if (error) return (error); if (uap->abs_timeout != NULL) { error = copyin(uap->abs_timeout, &ets32, sizeof(ets32)); if (error != 0) goto out; CP(ets32, ets, tv_sec); CP(ets32, ets, tv_nsec); abs_timeout = &ets; } else abs_timeout = NULL; waitok = !(fp->f_flag & O_NONBLOCK); error = mqueue_receive(mq, uap->msg_ptr, uap->msg_len, uap->msg_prio, waitok, abs_timeout); out: fdrop(fp, td); return (error); } int freebsd32_kmq_notify(struct thread *td, struct freebsd32_kmq_notify_args *uap) { struct sigevent ev, *evp; struct sigevent32 ev32; int error; if (uap->sigev == NULL) { evp = NULL; } else { error = copyin(uap->sigev, &ev32, sizeof(ev32)); if (error != 0) return (error); error = convert_sigevent32(&ev32, &ev); if (error != 0) return (error); evp = &ev; } return (kern_kmq_notify(td, uap->mqd, evp)); } static struct syscall_helper_data mq32_syscalls[] = { SYSCALL32_INIT_HELPER(freebsd32_kmq_open), SYSCALL32_INIT_HELPER_F(freebsd32_kmq_setattr, SYF_CAPENABLED), SYSCALL32_INIT_HELPER_F(freebsd32_kmq_timedsend, SYF_CAPENABLED), SYSCALL32_INIT_HELPER_F(freebsd32_kmq_timedreceive, SYF_CAPENABLED), SYSCALL32_INIT_HELPER_F(freebsd32_kmq_notify, SYF_CAPENABLED), SYSCALL32_INIT_HELPER_COMPAT(kmq_unlink), SYSCALL_INIT_LAST }; #endif static int mqinit(void) { int error; error = syscall_helper_register(mq_syscalls, SY_THR_STATIC_KLD); if (error != 0) return (error); #ifdef COMPAT_FREEBSD32 error = syscall32_helper_register(mq32_syscalls, SY_THR_STATIC_KLD); if (error != 0) return (error); #endif return (0); } static int mqunload(void) { #ifdef COMPAT_FREEBSD32 syscall32_helper_unregister(mq32_syscalls); #endif syscall_helper_unregister(mq_syscalls); return (0); } static int mq_modload(struct module *module, int cmd, void *arg) { int error = 0; error = vfs_modevent(module, cmd, arg); if (error != 0) return (error); switch (cmd) { case MOD_LOAD: error = mqinit(); if (error != 0) mqunload(); break; case MOD_UNLOAD: error = mqunload(); break; default: break; } return (error); } static moduledata_t mqueuefs_mod = { "mqueuefs", mq_modload, &mqueuefs_vfsconf }; DECLARE_MODULE(mqueuefs, mqueuefs_mod, SI_SUB_VFS, SI_ORDER_MIDDLE); MODULE_VERSION(mqueuefs, 1);