diff --git a/sys/net/if_infiniband.c b/sys/net/if_infiniband.c index 6ca90ba1d8c7..b3cdd15c76f7 100644 --- a/sys/net/if_infiniband.c +++ b/sys/net/if_infiniband.c @@ -1,658 +1,658 @@ /*- * Copyright (c) 2020 Mellanox Technologies. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS `AS IS' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_inet.h" #include "opt_inet6.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* if_lagg(4) support */ struct mbuf *(*lagg_input_infiniband_p)(struct ifnet *, struct mbuf *); #ifdef INET static inline void infiniband_ipv4_multicast_map(uint32_t addr, const uint8_t *broadcast, uint8_t *buf) { uint8_t scope; addr = ntohl(addr); scope = broadcast[5] & 0xF; buf[0] = 0; buf[1] = 0xff; buf[2] = 0xff; buf[3] = 0xff; buf[4] = 0xff; buf[5] = 0x10 | scope; buf[6] = 0x40; buf[7] = 0x1b; buf[8] = broadcast[8]; buf[9] = broadcast[9]; buf[10] = 0; buf[11] = 0; buf[12] = 0; buf[13] = 0; buf[14] = 0; buf[15] = 0; buf[16] = (addr >> 24) & 0xff; buf[17] = (addr >> 16) & 0xff; buf[18] = (addr >> 8) & 0xff; buf[19] = addr & 0xff; } #endif #ifdef INET6 static inline void infiniband_ipv6_multicast_map(const struct in6_addr *addr, const uint8_t *broadcast, uint8_t *buf) { uint8_t scope; scope = broadcast[5] & 0xF; buf[0] = 0; buf[1] = 0xff; buf[2] = 0xff; buf[3] = 0xff; buf[4] = 0xff; buf[5] = 0x10 | scope; buf[6] = 0x60; buf[7] = 0x1b; buf[8] = broadcast[8]; buf[9] = broadcast[9]; memcpy(&buf[10], &addr->s6_addr[6], 10); } #endif /* * This is for clients that have an infiniband_header in the mbuf. */ void infiniband_bpf_mtap(struct ifnet *ifp, struct mbuf *mb) { struct infiniband_header *ibh; struct ether_header eh; if (!bpf_peers_present(ifp->if_bpf)) return; M_ASSERTVALID(mb); if (mb->m_len < sizeof(*ibh)) return; ibh = mtod(mb, struct infiniband_header *); eh.ether_type = ibh->ib_protocol; memset(eh.ether_shost, 0, ETHER_ADDR_LEN); memcpy(eh.ether_dhost, ibh->ib_hwaddr + 4, ETHER_ADDR_LEN); mb->m_data += sizeof(*ibh); mb->m_len -= sizeof(*ibh); mb->m_pkthdr.len -= sizeof(*ibh); bpf_mtap2(ifp->if_bpf, &eh, sizeof(eh), mb); mb->m_data -= sizeof(*ibh); mb->m_len += sizeof(*ibh); mb->m_pkthdr.len += sizeof(*ibh); } static void update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) { int csum_flags = 0; if (src->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); if (src->m_pkthdr.csum_flags & CSUM_SCTP) csum_flags |= CSUM_SCTP_VALID; dst->m_pkthdr.csum_flags |= csum_flags; if (csum_flags & CSUM_DATA_VALID) dst->m_pkthdr.csum_data = 0xffff; } /* * Handle link-layer encapsulation requests. */ static int infiniband_requestencap(struct ifnet *ifp, struct if_encap_req *req) { struct infiniband_header *ih; struct arphdr *ah; uint16_t etype; const uint8_t *lladdr; if (req->rtype != IFENCAP_LL) return (EOPNOTSUPP); if (req->bufsize < INFINIBAND_HDR_LEN) return (ENOMEM); ih = (struct infiniband_header *)req->buf; lladdr = req->lladdr; req->lladdr_off = 0; switch (req->family) { case AF_INET: etype = htons(ETHERTYPE_IP); break; case AF_INET6: etype = htons(ETHERTYPE_IPV6); break; case AF_ARP: ah = (struct arphdr *)req->hdata; ah->ar_hrd = htons(ARPHRD_INFINIBAND); switch (ntohs(ah->ar_op)) { case ARPOP_REVREQUEST: case ARPOP_REVREPLY: etype = htons(ETHERTYPE_REVARP); break; case ARPOP_REQUEST: case ARPOP_REPLY: default: etype = htons(ETHERTYPE_ARP); break; } if (req->flags & IFENCAP_FLAG_BROADCAST) lladdr = ifp->if_broadcastaddr; break; default: return (EAFNOSUPPORT); } ih->ib_protocol = etype; ih->ib_reserved = 0; memcpy(ih->ib_hwaddr, lladdr, INFINIBAND_ADDR_LEN); req->bufsize = sizeof(struct infiniband_header); return (0); } static int infiniband_resolve_addr(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro, uint8_t *phdr, uint32_t *pflags, struct llentry **plle) { #if defined(INET) || defined(INET6) struct infiniband_header *ih = (struct infiniband_header *)phdr; #endif uint32_t lleflags = 0; int error = 0; if (plle) *plle = NULL; switch (dst->sa_family) { #ifdef INET case AF_INET: if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) { error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, plle); } else { if (m->m_flags & M_BCAST) { memcpy(ih->ib_hwaddr, ifp->if_broadcastaddr, INFINIBAND_ADDR_LEN); } else { infiniband_ipv4_multicast_map( ((const struct sockaddr_in *)dst)->sin_addr.s_addr, ifp->if_broadcastaddr, ih->ib_hwaddr); } ih->ib_protocol = htons(ETHERTYPE_IP); ih->ib_reserved = 0; } break; #endif #ifdef INET6 case AF_INET6: if ((m->m_flags & M_MCAST) == 0) { int af = RO_GET_FAMILY(ro, dst); error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr, &lleflags, plle); } else { infiniband_ipv6_multicast_map( &((const struct sockaddr_in6 *)dst)->sin6_addr, ifp->if_broadcastaddr, ih->ib_hwaddr); ih->ib_protocol = htons(ETHERTYPE_IPV6); ih->ib_reserved = 0; } break; #endif default: if_printf(ifp, "can't handle af%d\n", dst->sa_family); if (m != NULL) m_freem(m); return (EAFNOSUPPORT); } if (error == EHOSTDOWN) { if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) error = EHOSTUNREACH; } if (error != 0) return (error); *pflags = RT_MAY_LOOP; if (lleflags & LLE_IFADDR) *pflags |= RT_L2_ME; return (0); } /* * Infiniband output routine. */ static int infiniband_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { uint8_t linkhdr[INFINIBAND_HDR_LEN]; uint8_t *phdr; struct llentry *lle = NULL; struct infiniband_header *ih; int error = 0; int hlen; /* link layer header length */ uint32_t pflags; bool addref; NET_EPOCH_ASSERT(); addref = false; phdr = NULL; pflags = 0; if (ro != NULL) { /* XXX BPF uses ro_prepend */ if (ro->ro_prepend != NULL) { phdr = ro->ro_prepend; hlen = ro->ro_plen; } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { if ((ro->ro_flags & RT_LLE_CACHE) != 0) { lle = ro->ro_lle; if (lle != NULL && (lle->la_flags & LLE_VALID) == 0) { LLE_FREE(lle); lle = NULL; /* redundant */ ro->ro_lle = NULL; } if (lle == NULL) { /* if we lookup, keep cache */ addref = 1; } else /* * Notify LLE code that * the entry was used * by datapath. */ llentry_provide_feedback(lle); } if (lle != NULL) { phdr = lle->r_linkdata; hlen = lle->r_hdrlen; pflags = lle->r_flags; } } } #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) goto bad; #endif M_PROFILE(m); if (ifp->if_flags & IFF_MONITOR) { error = ENETDOWN; goto bad; } if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) { error = ENETDOWN; goto bad; } if (phdr == NULL) { /* No prepend data supplied. Try to calculate ourselves. */ phdr = linkhdr; hlen = INFINIBAND_HDR_LEN; error = infiniband_resolve_addr(ifp, m, dst, ro, phdr, &pflags, addref ? &lle : NULL); if (addref && lle != NULL) ro->ro_lle = lle; if (error != 0) return (error == EWOULDBLOCK ? 0 : error); } if ((pflags & RT_L2_ME) != 0) { update_mbuf_csumflags(m, m); return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0)); } /* * Add local infiniband header. If no space in first mbuf, * allocate another. */ M_PREPEND(m, INFINIBAND_HDR_LEN, M_NOWAIT); if (m == NULL) { error = ENOBUFS; goto bad; } if ((pflags & RT_HAS_HEADER) == 0) { ih = mtod(m, struct infiniband_header *); memcpy(ih, phdr, hlen); } /* * Queue message on interface, update output statistics if * successful, and start output if interface not yet active. */ return (ifp->if_transmit(ifp, m)); bad: if (m != NULL) m_freem(m); return (error); } /* * Process a received Infiniband packet. */ static void infiniband_input(struct ifnet *ifp, struct mbuf *m) { struct infiniband_header *ibh; struct epoch_tracker et; int isr; CURVNET_SET_QUIET(ifp->if_vnet); + NET_EPOCH_ENTER(et); if ((ifp->if_flags & IFF_UP) == 0) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); goto done; } ibh = mtod(m, struct infiniband_header *); /* * Reset layer specific mbuf flags to avoid confusing upper * layers: */ m->m_flags &= ~M_VLANTAG; m_clrprotoflags(m); if (INFINIBAND_IS_MULTICAST(ibh->ib_hwaddr)) { if (memcmp(ibh->ib_hwaddr, ifp->if_broadcastaddr, ifp->if_addrlen) == 0) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); } /* Let BPF have it before we strip the header. */ infiniband_bpf_mtap(ifp, m); /* Allow monitor mode to claim this frame, after stats are updated. */ if (ifp->if_flags & IFF_MONITOR) { m_freem(m); goto done; } /* Direct packet to correct FIB based on interface config. */ M_SETFIB(m, ifp->if_fib); /* Handle input from a lagg port */ if (ifp->if_type == IFT_INFINIBANDLAG) { KASSERT(lagg_input_infiniband_p != NULL, ("%s: if_lagg not loaded!", __func__)); m = (*lagg_input_infiniband_p)(ifp, m); if (__predict_false(m == NULL)) goto done; ifp = m->m_pkthdr.rcvif; } /* * Dispatch frame to upper layer. */ switch (ibh->ib_protocol) { #ifdef INET case htons(ETHERTYPE_IP): isr = NETISR_IP; break; case htons(ETHERTYPE_ARP): if (ifp->if_flags & IFF_NOARP) { /* Discard packet if ARP is disabled on interface */ m_freem(m); goto done; } isr = NETISR_ARP; break; #endif #ifdef INET6 case htons(ETHERTYPE_IPV6): isr = NETISR_IPV6; break; #endif default: if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); goto done; } /* Strip off the Infiniband header. */ m_adj(m, INFINIBAND_HDR_LEN); #ifdef MAC /* * Tag the mbuf with an appropriate MAC label before any other * consumers can get to it. */ mac_ifnet_create_mbuf(ifp, m); #endif /* Allow monitor mode to claim this frame, after stats are updated. */ - NET_EPOCH_ENTER(et); netisr_dispatch(isr, m); - NET_EPOCH_EXIT(et); done: + NET_EPOCH_EXIT(et); CURVNET_RESTORE(); } static int infiniband_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, struct sockaddr *sa) { struct sockaddr_dl *sdl; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif uint8_t *e_addr; switch (sa->sa_family) { case AF_LINK: /* * No mapping needed. Just check that it's a valid MC address. */ sdl = (struct sockaddr_dl *)sa; e_addr = LLADDR(sdl); if (!INFINIBAND_IS_MULTICAST(e_addr)) return (EADDRNOTAVAIL); *llsa = NULL; return 0; #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return (EADDRNOTAVAIL); sdl = link_init_sdl(ifp, *llsa, IFT_INFINIBAND); sdl->sdl_alen = INFINIBAND_ADDR_LEN; e_addr = LLADDR(sdl); infiniband_ipv4_multicast_map( sin->sin_addr.s_addr, ifp->if_broadcastaddr, e_addr); *llsa = (struct sockaddr *)sdl; return (0); #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; /* * An IP6 address of 0 means listen to all of the * multicast address used for IP6. This has no meaning * in infiniband. */ if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) return (EADDRNOTAVAIL); if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return (EADDRNOTAVAIL); sdl = link_init_sdl(ifp, *llsa, IFT_INFINIBAND); sdl->sdl_alen = INFINIBAND_ADDR_LEN; e_addr = LLADDR(sdl); infiniband_ipv6_multicast_map( &sin6->sin6_addr, ifp->if_broadcastaddr, e_addr); *llsa = (struct sockaddr *)sdl; return (0); #endif default: return (EAFNOSUPPORT); } } void infiniband_ifattach(struct ifnet *ifp, const uint8_t *lla, const uint8_t *llb) { struct sockaddr_dl *sdl; struct ifaddr *ifa; int i; ifp->if_addrlen = INFINIBAND_ADDR_LEN; ifp->if_hdrlen = INFINIBAND_HDR_LEN; ifp->if_mtu = INFINIBAND_MTU; if_attach(ifp); ifp->if_output = infiniband_output; ifp->if_input = infiniband_input; ifp->if_resolvemulti = infiniband_resolvemulti; ifp->if_requestencap = infiniband_requestencap; if (ifp->if_baudrate == 0) ifp->if_baudrate = IF_Gbps(10); /* default value */ if (llb != NULL) ifp->if_broadcastaddr = llb; ifa = ifp->if_addr; KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_INFINIBAND; sdl->sdl_alen = ifp->if_addrlen; if (lla != NULL) { memcpy(LLADDR(sdl), lla, ifp->if_addrlen); if (ifp->if_hw_addr != NULL) memcpy(ifp->if_hw_addr, lla, ifp->if_addrlen); } else { lla = LLADDR(sdl); } /* Attach ethernet compatible network device */ bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); /* Announce Infiniband MAC address if non-zero. */ for (i = 0; i < ifp->if_addrlen; i++) if (lla[i] != 0) break; if (i != ifp->if_addrlen) if_printf(ifp, "Infiniband address: %20D\n", lla, ":"); /* Add necessary bits are setup; announce it now. */ EVENTHANDLER_INVOKE(infiniband_ifattach_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("INFINIBAND", ifp->if_xname, "IFATTACH", NULL); } /* * Perform common duties while detaching an Infiniband interface */ void infiniband_ifdetach(struct ifnet *ifp) { bpfdetach(ifp); if_detach(ifp); } static int infiniband_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: case MOD_UNLOAD: return (0); default: return (EOPNOTSUPP); } } static moduledata_t infiniband_mod = { .name = "if_infiniband", .evhand = &infiniband_modevent, }; DECLARE_MODULE(if_infiniband, infiniband_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); MODULE_VERSION(if_infiniband, 1); diff --git a/sys/net/if_lagg.c b/sys/net/if_lagg.c index cf78b55f4c34..b3475839a2c1 100644 --- a/sys/net/if_lagg.c +++ b/sys/net/if_lagg.c @@ -1,2707 +1,2704 @@ /* $OpenBSD: if_trunk.c,v 1.30 2007/01/31 06:20:19 reyk Exp $ */ /* * Copyright (c) 2005, 2006 Reyk Floeter * Copyright (c) 2007 Andrew Thompson * Copyright (c) 2014, 2016 Marcelo Araujo * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_kern_tls.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #endif #ifdef INET #include #include #endif #ifdef INET6 #include #include #include #endif #include #include #include #ifdef DEV_NETMAP MODULE_DEPEND(if_lagg, netmap, 1, 1, 1); #endif #define LAGG_SX_INIT(_sc) sx_init(&(_sc)->sc_sx, "if_lagg sx") #define LAGG_SX_DESTROY(_sc) sx_destroy(&(_sc)->sc_sx) #define LAGG_XLOCK(_sc) sx_xlock(&(_sc)->sc_sx) #define LAGG_XUNLOCK(_sc) sx_xunlock(&(_sc)->sc_sx) #define LAGG_SXLOCK_ASSERT(_sc) sx_assert(&(_sc)->sc_sx, SA_LOCKED) #define LAGG_XLOCK_ASSERT(_sc) sx_assert(&(_sc)->sc_sx, SA_XLOCKED) /* Special flags we should propagate to the lagg ports. */ static struct { int flag; int (*func)(struct ifnet *, int); } lagg_pflags[] = { {IFF_PROMISC, ifpromisc}, {IFF_ALLMULTI, if_allmulti}, {0, NULL} }; struct lagg_snd_tag { struct m_snd_tag com; struct m_snd_tag *tag; }; VNET_DEFINE_STATIC(SLIST_HEAD(__trhead, lagg_softc), lagg_list); /* list of laggs */ #define V_lagg_list VNET(lagg_list) VNET_DEFINE_STATIC(struct mtx, lagg_list_mtx); #define V_lagg_list_mtx VNET(lagg_list_mtx) #define LAGG_LIST_LOCK_INIT(x) mtx_init(&V_lagg_list_mtx, \ "if_lagg list", NULL, MTX_DEF) #define LAGG_LIST_LOCK_DESTROY(x) mtx_destroy(&V_lagg_list_mtx) #define LAGG_LIST_LOCK(x) mtx_lock(&V_lagg_list_mtx) #define LAGG_LIST_UNLOCK(x) mtx_unlock(&V_lagg_list_mtx) static eventhandler_tag lagg_detach_cookie = NULL; static int lagg_clone_create(struct if_clone *, char *, size_t, struct ifc_data *, struct ifnet **); static int lagg_clone_destroy(struct if_clone *, struct ifnet *, uint32_t); VNET_DEFINE_STATIC(struct if_clone *, lagg_cloner); #define V_lagg_cloner VNET(lagg_cloner) static const char laggname[] = "lagg"; static MALLOC_DEFINE(M_LAGG, laggname, "802.3AD Link Aggregation Interface"); static void lagg_capabilities(struct lagg_softc *); static int lagg_port_create(struct lagg_softc *, struct ifnet *); static int lagg_port_destroy(struct lagg_port *, int); static struct mbuf *lagg_input_ethernet(struct ifnet *, struct mbuf *); static struct mbuf *lagg_input_infiniband(struct ifnet *, struct mbuf *); static void lagg_linkstate(struct lagg_softc *); static void lagg_port_state(struct ifnet *, int); static int lagg_port_ioctl(struct ifnet *, u_long, caddr_t); static int lagg_port_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static void lagg_port_ifdetach(void *arg __unused, struct ifnet *); #ifdef LAGG_PORT_STACKING static int lagg_port_checkstacking(struct lagg_softc *); #endif static void lagg_port2req(struct lagg_port *, struct lagg_reqport *); static void lagg_init(void *); static void lagg_stop(struct lagg_softc *); static int lagg_ioctl(struct ifnet *, u_long, caddr_t); #if defined(KERN_TLS) || defined(RATELIMIT) static int lagg_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); static int lagg_snd_tag_modify(struct m_snd_tag *, union if_snd_tag_modify_params *); static int lagg_snd_tag_query(struct m_snd_tag *, union if_snd_tag_query_params *); static void lagg_snd_tag_free(struct m_snd_tag *); static struct m_snd_tag *lagg_next_snd_tag(struct m_snd_tag *); static void lagg_ratelimit_query(struct ifnet *, struct if_ratelimit_query_results *); #endif static int lagg_setmulti(struct lagg_port *); static int lagg_clrmulti(struct lagg_port *); static void lagg_setcaps(struct lagg_port *, int cap, int cap2); static int lagg_setflag(struct lagg_port *, int, int, int (*func)(struct ifnet *, int)); static int lagg_setflags(struct lagg_port *, int status); static uint64_t lagg_get_counter(struct ifnet *ifp, ift_counter cnt); static int lagg_transmit_ethernet(struct ifnet *, struct mbuf *); static int lagg_transmit_infiniband(struct ifnet *, struct mbuf *); static void lagg_qflush(struct ifnet *); static int lagg_media_change(struct ifnet *); static void lagg_media_status(struct ifnet *, struct ifmediareq *); static struct lagg_port *lagg_link_active(struct lagg_softc *, struct lagg_port *); /* Simple round robin */ static void lagg_rr_attach(struct lagg_softc *); static int lagg_rr_start(struct lagg_softc *, struct mbuf *); /* Active failover */ static int lagg_fail_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_fail_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* Loadbalancing */ static void lagg_lb_attach(struct lagg_softc *); static void lagg_lb_detach(struct lagg_softc *); static int lagg_lb_port_create(struct lagg_port *); static void lagg_lb_port_destroy(struct lagg_port *); static int lagg_lb_start(struct lagg_softc *, struct mbuf *); static int lagg_lb_porttable(struct lagg_softc *, struct lagg_port *); /* Broadcast */ static int lagg_bcast_start(struct lagg_softc *, struct mbuf *); /* 802.3ad LACP */ static void lagg_lacp_attach(struct lagg_softc *); static void lagg_lacp_detach(struct lagg_softc *); static int lagg_lacp_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_lacp_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); static void lagg_lacp_lladdr(struct lagg_softc *); /* Default input */ static struct mbuf *lagg_default_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* lagg protocol table */ static const struct lagg_proto { lagg_proto pr_num; void (*pr_attach)(struct lagg_softc *); void (*pr_detach)(struct lagg_softc *); int (*pr_start)(struct lagg_softc *, struct mbuf *); struct mbuf * (*pr_input)(struct lagg_softc *, struct lagg_port *, struct mbuf *); int (*pr_addport)(struct lagg_port *); void (*pr_delport)(struct lagg_port *); void (*pr_linkstate)(struct lagg_port *); void (*pr_init)(struct lagg_softc *); void (*pr_stop)(struct lagg_softc *); void (*pr_lladdr)(struct lagg_softc *); void (*pr_request)(struct lagg_softc *, void *); void (*pr_portreq)(struct lagg_port *, void *); } lagg_protos[] = { { .pr_num = LAGG_PROTO_NONE }, { .pr_num = LAGG_PROTO_ROUNDROBIN, .pr_attach = lagg_rr_attach, .pr_start = lagg_rr_start, .pr_input = lagg_default_input, }, { .pr_num = LAGG_PROTO_FAILOVER, .pr_start = lagg_fail_start, .pr_input = lagg_fail_input, }, { .pr_num = LAGG_PROTO_LOADBALANCE, .pr_attach = lagg_lb_attach, .pr_detach = lagg_lb_detach, .pr_start = lagg_lb_start, .pr_input = lagg_default_input, .pr_addport = lagg_lb_port_create, .pr_delport = lagg_lb_port_destroy, }, { .pr_num = LAGG_PROTO_LACP, .pr_attach = lagg_lacp_attach, .pr_detach = lagg_lacp_detach, .pr_start = lagg_lacp_start, .pr_input = lagg_lacp_input, .pr_addport = lacp_port_create, .pr_delport = lacp_port_destroy, .pr_linkstate = lacp_linkstate, .pr_init = lacp_init, .pr_stop = lacp_stop, .pr_lladdr = lagg_lacp_lladdr, .pr_request = lacp_req, .pr_portreq = lacp_portreq, }, { .pr_num = LAGG_PROTO_BROADCAST, .pr_start = lagg_bcast_start, .pr_input = lagg_default_input, }, }; SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, OID_AUTO, lagg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Link Aggregation"); /* Allow input on any failover links */ VNET_DEFINE_STATIC(int, lagg_failover_rx_all); #define V_lagg_failover_rx_all VNET(lagg_failover_rx_all) SYSCTL_INT(_net_link_lagg, OID_AUTO, failover_rx_all, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(lagg_failover_rx_all), 0, "Accept input from any interface in a failover lagg"); /* Default value for using flowid */ VNET_DEFINE_STATIC(int, def_use_flowid) = 0; #define V_def_use_flowid VNET(def_use_flowid) SYSCTL_INT(_net_link_lagg, OID_AUTO, default_use_flowid, CTLFLAG_RWTUN, &VNET_NAME(def_use_flowid), 0, "Default setting for using flow id for load sharing"); /* Default value for using numa */ VNET_DEFINE_STATIC(int, def_use_numa) = 1; #define V_def_use_numa VNET(def_use_numa) SYSCTL_INT(_net_link_lagg, OID_AUTO, default_use_numa, CTLFLAG_RWTUN, &VNET_NAME(def_use_numa), 0, "Use numa to steer flows"); /* Default value for flowid shift */ VNET_DEFINE_STATIC(int, def_flowid_shift) = 16; #define V_def_flowid_shift VNET(def_flowid_shift) SYSCTL_INT(_net_link_lagg, OID_AUTO, default_flowid_shift, CTLFLAG_RWTUN, &VNET_NAME(def_flowid_shift), 0, "Default setting for flowid shift for load sharing"); static void vnet_lagg_init(const void *unused __unused) { LAGG_LIST_LOCK_INIT(); SLIST_INIT(&V_lagg_list); struct if_clone_addreq req = { .create_f = lagg_clone_create, .destroy_f = lagg_clone_destroy, .flags = IFC_F_AUTOUNIT, }; V_lagg_cloner = ifc_attach_cloner(laggname, &req); } VNET_SYSINIT(vnet_lagg_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_lagg_init, NULL); static void vnet_lagg_uninit(const void *unused __unused) { ifc_detach_cloner(V_lagg_cloner); LAGG_LIST_LOCK_DESTROY(); } VNET_SYSUNINIT(vnet_lagg_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, vnet_lagg_uninit, NULL); static int lagg_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: lagg_input_ethernet_p = lagg_input_ethernet; lagg_input_infiniband_p = lagg_input_infiniband; lagg_linkstate_p = lagg_port_state; lagg_detach_cookie = EVENTHANDLER_REGISTER( ifnet_departure_event, lagg_port_ifdetach, NULL, EVENTHANDLER_PRI_ANY); break; case MOD_UNLOAD: EVENTHANDLER_DEREGISTER(ifnet_departure_event, lagg_detach_cookie); lagg_input_ethernet_p = NULL; lagg_input_infiniband_p = NULL; lagg_linkstate_p = NULL; break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t lagg_mod = { "if_lagg", lagg_modevent, 0 }; DECLARE_MODULE(if_lagg, lagg_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_lagg, 1); MODULE_DEPEND(if_lagg, if_infiniband, 1, 1, 1); static void lagg_proto_attach(struct lagg_softc *sc, lagg_proto pr) { LAGG_XLOCK_ASSERT(sc); KASSERT(sc->sc_proto == LAGG_PROTO_NONE, ("%s: sc %p has proto", __func__, sc)); if (sc->sc_ifflags & IFF_DEBUG) if_printf(sc->sc_ifp, "using proto %u\n", pr); if (lagg_protos[pr].pr_attach != NULL) lagg_protos[pr].pr_attach(sc); sc->sc_proto = pr; } static void lagg_proto_detach(struct lagg_softc *sc) { lagg_proto pr; LAGG_XLOCK_ASSERT(sc); pr = sc->sc_proto; sc->sc_proto = LAGG_PROTO_NONE; if (lagg_protos[pr].pr_detach != NULL) lagg_protos[pr].pr_detach(sc); } static inline int lagg_proto_start(struct lagg_softc *sc, struct mbuf *m) { return (lagg_protos[sc->sc_proto].pr_start(sc, m)); } static inline struct mbuf * lagg_proto_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { return (lagg_protos[sc->sc_proto].pr_input(sc, lp, m)); } static int lagg_proto_addport(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_addport == NULL) return (0); else return (lagg_protos[sc->sc_proto].pr_addport(lp)); } static void lagg_proto_delport(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_delport != NULL) lagg_protos[sc->sc_proto].pr_delport(lp); } static void lagg_proto_linkstate(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_linkstate != NULL) lagg_protos[sc->sc_proto].pr_linkstate(lp); } static void lagg_proto_init(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_init != NULL) lagg_protos[sc->sc_proto].pr_init(sc); } static void lagg_proto_stop(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_stop != NULL) lagg_protos[sc->sc_proto].pr_stop(sc); } static void lagg_proto_lladdr(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_lladdr != NULL) lagg_protos[sc->sc_proto].pr_lladdr(sc); } static void lagg_proto_request(struct lagg_softc *sc, void *v) { if (lagg_protos[sc->sc_proto].pr_request != NULL) lagg_protos[sc->sc_proto].pr_request(sc, v); } static void lagg_proto_portreq(struct lagg_softc *sc, struct lagg_port *lp, void *v) { if (lagg_protos[sc->sc_proto].pr_portreq != NULL) lagg_protos[sc->sc_proto].pr_portreq(lp, v); } /* * This routine is run via an vlan * config EVENT */ static void lagg_register_vlan(void *arg, struct ifnet *ifp, u_int16_t vtag) { struct lagg_softc *sc = ifp->if_softc; struct lagg_port *lp; if (ifp->if_softc != arg) /* Not our event */ return; LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) EVENTHANDLER_INVOKE(vlan_config, lp->lp_ifp, vtag); LAGG_XUNLOCK(sc); } /* * This routine is run via an vlan * unconfig EVENT */ static void lagg_unregister_vlan(void *arg, struct ifnet *ifp, u_int16_t vtag) { struct lagg_softc *sc = ifp->if_softc; struct lagg_port *lp; if (ifp->if_softc != arg) /* Not our event */ return; LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) EVENTHANDLER_INVOKE(vlan_unconfig, lp->lp_ifp, vtag); LAGG_XUNLOCK(sc); } static int lagg_clone_create(struct if_clone *ifc, char *name, size_t len, struct ifc_data *ifd, struct ifnet **ifpp) { struct iflaggparam iflp; struct lagg_softc *sc; struct ifnet *ifp; int if_type; int error; static const uint8_t eaddr[LAGG_ADDR_LEN]; if (ifd->params != NULL) { error = ifc_copyin(ifd, &iflp, sizeof(iflp)); if (error) return (error); switch (iflp.lagg_type) { case LAGG_TYPE_ETHERNET: if_type = IFT_ETHER; break; case LAGG_TYPE_INFINIBAND: if_type = IFT_INFINIBAND; break; default: return (EINVAL); } } else { if_type = IFT_ETHER; } sc = malloc(sizeof(*sc), M_LAGG, M_WAITOK | M_ZERO); ifp = sc->sc_ifp = if_alloc(if_type); if (ifp == NULL) { free(sc, M_LAGG); return (ENOSPC); } LAGG_SX_INIT(sc); mtx_init(&sc->sc_mtx, "lagg-mtx", NULL, MTX_DEF); callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0); LAGG_XLOCK(sc); if (V_def_use_flowid) sc->sc_opts |= LAGG_OPT_USE_FLOWID; if (V_def_use_numa) sc->sc_opts |= LAGG_OPT_USE_NUMA; sc->flowid_shift = V_def_flowid_shift; /* Hash all layers by default */ sc->sc_flags = MBUF_HASHFLAG_L2 | MBUF_HASHFLAG_L3 | MBUF_HASHFLAG_L4; lagg_proto_attach(sc, LAGG_PROTO_DEFAULT); CK_SLIST_INIT(&sc->sc_ports); switch (if_type) { case IFT_ETHER: /* Initialise pseudo media types */ ifmedia_init(&sc->sc_media, 0, lagg_media_change, lagg_media_status); ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); if_initname(ifp, laggname, ifd->unit); ifp->if_transmit = lagg_transmit_ethernet; break; case IFT_INFINIBAND: if_initname(ifp, laggname, ifd->unit); ifp->if_transmit = lagg_transmit_infiniband; break; default: break; } ifp->if_softc = sc; ifp->if_qflush = lagg_qflush; ifp->if_init = lagg_init; ifp->if_ioctl = lagg_ioctl; ifp->if_get_counter = lagg_get_counter; ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; #if defined(KERN_TLS) || defined(RATELIMIT) ifp->if_snd_tag_alloc = lagg_snd_tag_alloc; ifp->if_ratelimit_query = lagg_ratelimit_query; #endif ifp->if_capenable = ifp->if_capabilities = IFCAP_HWSTATS; /* * Attach as an ordinary ethernet device, children will be attached * as special device IFT_IEEE8023ADLAG or IFT_INFINIBANDLAG. */ switch (if_type) { case IFT_ETHER: ether_ifattach(ifp, eaddr); break; case IFT_INFINIBAND: infiniband_ifattach(ifp, eaddr, sc->sc_bcast_addr); break; default: break; } sc->vlan_attach = EVENTHANDLER_REGISTER(vlan_config, lagg_register_vlan, sc, EVENTHANDLER_PRI_FIRST); sc->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, lagg_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); /* Insert into the global list of laggs */ LAGG_LIST_LOCK(); SLIST_INSERT_HEAD(&V_lagg_list, sc, sc_entries); LAGG_LIST_UNLOCK(); LAGG_XUNLOCK(sc); *ifpp = ifp; return (0); } static int lagg_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_port *lp; LAGG_XLOCK(sc); sc->sc_destroying = 1; lagg_stop(sc); ifp->if_flags &= ~IFF_UP; EVENTHANDLER_DEREGISTER(vlan_config, sc->vlan_attach); EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vlan_detach); /* Shutdown and remove lagg ports */ while ((lp = CK_SLIST_FIRST(&sc->sc_ports)) != NULL) lagg_port_destroy(lp, 1); /* Unhook the aggregation protocol */ lagg_proto_detach(sc); LAGG_XUNLOCK(sc); switch (ifp->if_type) { case IFT_ETHER: ifmedia_removeall(&sc->sc_media); ether_ifdetach(ifp); break; case IFT_INFINIBAND: infiniband_ifdetach(ifp); break; default: break; } if_free(ifp); LAGG_LIST_LOCK(); SLIST_REMOVE(&V_lagg_list, sc, lagg_softc, sc_entries); LAGG_LIST_UNLOCK(); mtx_destroy(&sc->sc_mtx); LAGG_SX_DESTROY(sc); free(sc, M_LAGG); return (0); } static void lagg_capabilities(struct lagg_softc *sc) { struct lagg_port *lp; int cap, cap2, ena, ena2, pena, pena2; uint64_t hwa; struct ifnet_hw_tsomax hw_tsomax; LAGG_XLOCK_ASSERT(sc); /* Get common enabled capabilities for the lagg ports */ ena = ena2 = ~0; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { ena &= lp->lp_ifp->if_capenable; ena2 &= lp->lp_ifp->if_capenable2; } if (CK_SLIST_FIRST(&sc->sc_ports) == NULL) ena = ena2 = 0; /* * Apply common enabled capabilities back to the lagg ports. * May require several iterations if they are dependent. */ do { pena = ena; pena2 = ena2; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { lagg_setcaps(lp, ena, ena2); ena &= lp->lp_ifp->if_capenable; ena2 &= lp->lp_ifp->if_capenable2; } } while (pena != ena || pena2 != ena2); /* Get other capabilities from the lagg ports */ cap = cap2 = ~0; hwa = ~(uint64_t)0; memset(&hw_tsomax, 0, sizeof(hw_tsomax)); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { cap &= lp->lp_ifp->if_capabilities; cap2 &= lp->lp_ifp->if_capabilities2; hwa &= lp->lp_ifp->if_hwassist; if_hw_tsomax_common(lp->lp_ifp, &hw_tsomax); } if (CK_SLIST_FIRST(&sc->sc_ports) == NULL) cap = cap2 = hwa = 0; if (sc->sc_ifp->if_capabilities != cap || sc->sc_ifp->if_capenable != ena || sc->sc_ifp->if_capenable2 != ena2 || sc->sc_ifp->if_hwassist != hwa || if_hw_tsomax_update(sc->sc_ifp, &hw_tsomax) != 0) { sc->sc_ifp->if_capabilities = cap; sc->sc_ifp->if_capabilities2 = cap2; sc->sc_ifp->if_capenable = ena; sc->sc_ifp->if_capenable2 = ena2; sc->sc_ifp->if_hwassist = hwa; getmicrotime(&sc->sc_ifp->if_lastchange); if (sc->sc_ifflags & IFF_DEBUG) if_printf(sc->sc_ifp, "capabilities 0x%08x enabled 0x%08x\n", cap, ena); } } static int lagg_port_create(struct lagg_softc *sc, struct ifnet *ifp) { struct lagg_softc *sc_ptr; struct lagg_port *lp, *tlp; struct ifreq ifr; int error, i, oldmtu; int if_type; uint64_t *pval; LAGG_XLOCK_ASSERT(sc); if (sc->sc_ifp == ifp) { if_printf(sc->sc_ifp, "cannot add a lagg to itself as a port\n"); return (EINVAL); } if (sc->sc_destroying == 1) return (ENXIO); /* Limit the maximal number of lagg ports */ if (sc->sc_count >= LAGG_MAX_PORTS) return (ENOSPC); /* Check if port has already been associated to a lagg */ if (ifp->if_lagg != NULL) { /* Port is already in the current lagg? */ lp = (struct lagg_port *)ifp->if_lagg; if (lp->lp_softc == sc) return (EEXIST); return (EBUSY); } switch (sc->sc_ifp->if_type) { case IFT_ETHER: /* XXX Disallow non-ethernet interfaces (this should be any of 802) */ if (ifp->if_type != IFT_ETHER && ifp->if_type != IFT_L2VLAN) return (EPROTONOSUPPORT); if_type = IFT_IEEE8023ADLAG; break; case IFT_INFINIBAND: /* XXX Disallow non-infiniband interfaces */ if (ifp->if_type != IFT_INFINIBAND) return (EPROTONOSUPPORT); if_type = IFT_INFINIBANDLAG; break; default: break; } /* Allow the first Ethernet member to define the MTU */ oldmtu = -1; if (CK_SLIST_EMPTY(&sc->sc_ports)) { sc->sc_ifp->if_mtu = ifp->if_mtu; } else if (sc->sc_ifp->if_mtu != ifp->if_mtu) { if (ifp->if_ioctl == NULL) { if_printf(sc->sc_ifp, "cannot change MTU for %s\n", ifp->if_xname); return (EINVAL); } oldmtu = ifp->if_mtu; strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)); ifr.ifr_mtu = sc->sc_ifp->if_mtu; error = (*ifp->if_ioctl)(ifp, SIOCSIFMTU, (caddr_t)&ifr); if (error != 0) { if_printf(sc->sc_ifp, "invalid MTU for %s\n", ifp->if_xname); return (error); } ifr.ifr_mtu = oldmtu; } lp = malloc(sizeof(struct lagg_port), M_LAGG, M_WAITOK | M_ZERO); lp->lp_softc = sc; /* Check if port is a stacked lagg */ LAGG_LIST_LOCK(); SLIST_FOREACH(sc_ptr, &V_lagg_list, sc_entries) { if (ifp == sc_ptr->sc_ifp) { LAGG_LIST_UNLOCK(); free(lp, M_LAGG); if (oldmtu != -1) (*ifp->if_ioctl)(ifp, SIOCSIFMTU, (caddr_t)&ifr); return (EINVAL); /* XXX disable stacking for the moment, its untested */ #ifdef LAGG_PORT_STACKING lp->lp_flags |= LAGG_PORT_STACK; if (lagg_port_checkstacking(sc_ptr) >= LAGG_MAX_STACKING) { LAGG_LIST_UNLOCK(); free(lp, M_LAGG); if (oldmtu != -1) (*ifp->if_ioctl)(ifp, SIOCSIFMTU, (caddr_t)&ifr); return (E2BIG); } #endif } } LAGG_LIST_UNLOCK(); if_ref(ifp); lp->lp_ifp = ifp; bcopy(IF_LLADDR(ifp), lp->lp_lladdr, ifp->if_addrlen); lp->lp_ifcapenable = ifp->if_capenable; if (CK_SLIST_EMPTY(&sc->sc_ports)) { bcopy(IF_LLADDR(ifp), IF_LLADDR(sc->sc_ifp), ifp->if_addrlen); lagg_proto_lladdr(sc); EVENTHANDLER_INVOKE(iflladdr_event, sc->sc_ifp); } else { if_setlladdr(ifp, IF_LLADDR(sc->sc_ifp), ifp->if_addrlen); } lagg_setflags(lp, 1); if (CK_SLIST_EMPTY(&sc->sc_ports)) sc->sc_primary = lp; /* Change the interface type */ lp->lp_iftype = ifp->if_type; ifp->if_type = if_type; ifp->if_lagg = lp; lp->lp_ioctl = ifp->if_ioctl; ifp->if_ioctl = lagg_port_ioctl; lp->lp_output = ifp->if_output; ifp->if_output = lagg_port_output; /* Read port counters */ pval = lp->port_counters.val; for (i = 0; i < IFCOUNTERS; i++, pval++) *pval = ifp->if_get_counter(ifp, i); /* * Insert into the list of ports. * Keep ports sorted by if_index. It is handy, when configuration * is predictable and `ifconfig laggN create ...` command * will lead to the same result each time. */ CK_SLIST_FOREACH(tlp, &sc->sc_ports, lp_entries) { if (tlp->lp_ifp->if_index < ifp->if_index && ( CK_SLIST_NEXT(tlp, lp_entries) == NULL || ((struct lagg_port*)CK_SLIST_NEXT(tlp, lp_entries))->lp_ifp->if_index > ifp->if_index)) break; } if (tlp != NULL) CK_SLIST_INSERT_AFTER(tlp, lp, lp_entries); else CK_SLIST_INSERT_HEAD(&sc->sc_ports, lp, lp_entries); sc->sc_count++; lagg_setmulti(lp); if ((error = lagg_proto_addport(sc, lp)) != 0) { /* Remove the port, without calling pr_delport. */ lagg_port_destroy(lp, 0); if (oldmtu != -1) (*ifp->if_ioctl)(ifp, SIOCSIFMTU, (caddr_t)&ifr); return (error); } /* Update lagg capabilities */ lagg_capabilities(sc); lagg_linkstate(sc); return (0); } #ifdef LAGG_PORT_STACKING static int lagg_port_checkstacking(struct lagg_softc *sc) { struct lagg_softc *sc_ptr; struct lagg_port *lp; int m = 0; LAGG_SXLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_flags & LAGG_PORT_STACK) { sc_ptr = (struct lagg_softc *)lp->lp_ifp->if_softc; m = MAX(m, lagg_port_checkstacking(sc_ptr)); } } return (m + 1); } #endif static void lagg_port_destroy_cb(epoch_context_t ec) { struct lagg_port *lp; struct ifnet *ifp; lp = __containerof(ec, struct lagg_port, lp_epoch_ctx); ifp = lp->lp_ifp; if_rele(ifp); free(lp, M_LAGG); } static int lagg_port_destroy(struct lagg_port *lp, int rundelport) { struct lagg_softc *sc = lp->lp_softc; struct lagg_port *lp_ptr, *lp0; struct ifnet *ifp = lp->lp_ifp; uint64_t *pval, vdiff; int i; LAGG_XLOCK_ASSERT(sc); if (rundelport) lagg_proto_delport(sc, lp); if (lp->lp_detaching == 0) lagg_clrmulti(lp); /* Restore interface */ ifp->if_type = lp->lp_iftype; ifp->if_ioctl = lp->lp_ioctl; ifp->if_output = lp->lp_output; ifp->if_lagg = NULL; /* Update detached port counters */ pval = lp->port_counters.val; for (i = 0; i < IFCOUNTERS; i++, pval++) { vdiff = ifp->if_get_counter(ifp, i) - *pval; sc->detached_counters.val[i] += vdiff; } /* Finally, remove the port from the lagg */ CK_SLIST_REMOVE(&sc->sc_ports, lp, lagg_port, lp_entries); sc->sc_count--; /* Update the primary interface */ if (lp == sc->sc_primary) { uint8_t lladdr[LAGG_ADDR_LEN]; if ((lp0 = CK_SLIST_FIRST(&sc->sc_ports)) == NULL) bzero(&lladdr, LAGG_ADDR_LEN); else bcopy(lp0->lp_lladdr, lladdr, LAGG_ADDR_LEN); sc->sc_primary = lp0; if (sc->sc_destroying == 0) { bcopy(lladdr, IF_LLADDR(sc->sc_ifp), sc->sc_ifp->if_addrlen); lagg_proto_lladdr(sc); EVENTHANDLER_INVOKE(iflladdr_event, sc->sc_ifp); /* * Update lladdr for each port (new primary needs update * as well, to switch from old lladdr to its 'real' one). * We can skip this if the lagg is being destroyed. */ CK_SLIST_FOREACH(lp_ptr, &sc->sc_ports, lp_entries) if_setlladdr(lp_ptr->lp_ifp, lladdr, lp_ptr->lp_ifp->if_addrlen); } } if (lp->lp_ifflags) if_printf(ifp, "%s: lp_ifflags unclean\n", __func__); if (lp->lp_detaching == 0) { lagg_setflags(lp, 0); lagg_setcaps(lp, lp->lp_ifcapenable, lp->lp_ifcapenable2); if_setlladdr(ifp, lp->lp_lladdr, ifp->if_addrlen); } /* * free port and release it's ifnet reference after a grace period has * elapsed. */ NET_EPOCH_CALL(lagg_port_destroy_cb, &lp->lp_epoch_ctx); /* Update lagg capabilities */ lagg_capabilities(sc); lagg_linkstate(sc); return (0); } static int lagg_port_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct epoch_tracker et; struct lagg_reqport *rp = (struct lagg_reqport *)data; struct lagg_softc *sc; struct lagg_port *lp = NULL; int error = 0; /* Should be checked by the caller */ switch (ifp->if_type) { case IFT_IEEE8023ADLAG: case IFT_INFINIBANDLAG: if ((lp = ifp->if_lagg) == NULL || (sc = lp->lp_softc) == NULL) goto fallback; break; default: goto fallback; } switch (cmd) { case SIOCGLAGGPORT: if (rp->rp_portname[0] == '\0' || ifunit(rp->rp_portname) != ifp) { error = EINVAL; break; } NET_EPOCH_ENTER(et); if ((lp = ifp->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; NET_EPOCH_EXIT(et); break; } lagg_port2req(lp, rp); NET_EPOCH_EXIT(et); break; case SIOCSIFCAP: case SIOCSIFCAPNV: if (lp->lp_ioctl == NULL) { error = EINVAL; break; } error = (*lp->lp_ioctl)(ifp, cmd, data); if (error) break; /* Update lagg interface capabilities */ LAGG_XLOCK(sc); lagg_capabilities(sc); LAGG_XUNLOCK(sc); VLAN_CAPABILITIES(sc->sc_ifp); break; case SIOCSIFMTU: /* Do not allow the MTU to be changed once joined */ error = EINVAL; break; default: goto fallback; } return (error); fallback: if (lp != NULL && lp->lp_ioctl != NULL) return ((*lp->lp_ioctl)(ifp, cmd, data)); return (EINVAL); } /* * Requests counter @cnt data. * * Counter value is calculated the following way: * 1) for each port, sum difference between current and "initial" measurements. * 2) add lagg logical interface counters. * 3) add data from detached_counters array. * * We also do the following things on ports attach/detach: * 1) On port attach we store all counters it has into port_counter array. * 2) On port detach we add the different between "initial" and * current counters data to detached_counters array. */ static uint64_t lagg_get_counter(struct ifnet *ifp, ift_counter cnt) { struct epoch_tracker et; struct lagg_softc *sc; struct lagg_port *lp; struct ifnet *lpifp; uint64_t newval, oldval, vsum; /* Revise this when we've got non-generic counters. */ KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); sc = (struct lagg_softc *)ifp->if_softc; vsum = 0; NET_EPOCH_ENTER(et); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { /* Saved attached value */ oldval = lp->port_counters.val[cnt]; /* current value */ lpifp = lp->lp_ifp; newval = lpifp->if_get_counter(lpifp, cnt); /* Calculate diff and save new */ vsum += newval - oldval; } NET_EPOCH_EXIT(et); /* * Add counter data which might be added by upper * layer protocols operating on logical interface. */ vsum += if_get_counter_default(ifp, cnt); /* * Add counter data from detached ports counters */ vsum += sc->detached_counters.val[cnt]; return (vsum); } /* * For direct output to child ports. */ static int lagg_port_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { struct lagg_port *lp = ifp->if_lagg; switch (dst->sa_family) { case pseudo_AF_HDRCMPLT: case AF_UNSPEC: if (lp != NULL) return ((*lp->lp_output)(ifp, m, dst, ro)); } /* drop any other frames */ m_freem(m); return (ENETDOWN); } static void lagg_port_ifdetach(void *arg __unused, struct ifnet *ifp) { struct lagg_port *lp; struct lagg_softc *sc; if ((lp = ifp->if_lagg) == NULL) return; /* If the ifnet is just being renamed, don't do anything. */ if (ifp->if_flags & IFF_RENAMING) return; sc = lp->lp_softc; LAGG_XLOCK(sc); lp->lp_detaching = 1; lagg_port_destroy(lp, 1); LAGG_XUNLOCK(sc); VLAN_CAPABILITIES(sc->sc_ifp); } static void lagg_port2req(struct lagg_port *lp, struct lagg_reqport *rp) { struct lagg_softc *sc = lp->lp_softc; strlcpy(rp->rp_ifname, sc->sc_ifname, sizeof(rp->rp_ifname)); strlcpy(rp->rp_portname, lp->lp_ifp->if_xname, sizeof(rp->rp_portname)); rp->rp_prio = lp->lp_prio; rp->rp_flags = lp->lp_flags; lagg_proto_portreq(sc, lp, &rp->rp_psc); /* Add protocol specific flags */ switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: if (lp == sc->sc_primary) rp->rp_flags |= LAGG_PORT_MASTER; if (lp == lagg_link_active(sc, sc->sc_primary)) rp->rp_flags |= LAGG_PORT_ACTIVE; break; case LAGG_PROTO_ROUNDROBIN: case LAGG_PROTO_LOADBALANCE: case LAGG_PROTO_BROADCAST: if (LAGG_PORTACTIVE(lp)) rp->rp_flags |= LAGG_PORT_ACTIVE; break; case LAGG_PROTO_LACP: /* LACP has a different definition of active */ if (lacp_isactive(lp)) rp->rp_flags |= LAGG_PORT_ACTIVE; if (lacp_iscollecting(lp)) rp->rp_flags |= LAGG_PORT_COLLECTING; if (lacp_isdistributing(lp)) rp->rp_flags |= LAGG_PORT_DISTRIBUTING; break; } } static void lagg_watchdog_infiniband(void *arg) { struct epoch_tracker et; struct lagg_softc *sc; struct lagg_port *lp; struct ifnet *ifp; struct ifnet *lp_ifp; sc = arg; /* * Because infiniband nodes have a fixed MAC address, which is * generated by the so-called GID, we need to regularly update * the link level address of the parent lagg device when * the active port changes. Possibly we could piggy-back on * link up/down events aswell, but using a timer also provides * a guarantee against too frequent events. This operation * does not have to be atomic. */ NET_EPOCH_ENTER(et); lp = lagg_link_active(sc, sc->sc_primary); if (lp != NULL) { ifp = sc->sc_ifp; lp_ifp = lp->lp_ifp; if (ifp != NULL && lp_ifp != NULL && (memcmp(IF_LLADDR(ifp), IF_LLADDR(lp_ifp), ifp->if_addrlen) != 0 || memcmp(sc->sc_bcast_addr, lp_ifp->if_broadcastaddr, ifp->if_addrlen) != 0)) { memcpy(IF_LLADDR(ifp), IF_LLADDR(lp_ifp), ifp->if_addrlen); memcpy(sc->sc_bcast_addr, lp_ifp->if_broadcastaddr, ifp->if_addrlen); CURVNET_SET(ifp->if_vnet); EVENTHANDLER_INVOKE(iflladdr_event, ifp); CURVNET_RESTORE(); } } NET_EPOCH_EXIT(et); callout_reset(&sc->sc_watchdog, hz, &lagg_watchdog_infiniband, arg); } static void lagg_init(void *xsc) { struct lagg_softc *sc = (struct lagg_softc *)xsc; struct ifnet *ifp = sc->sc_ifp; struct lagg_port *lp; LAGG_XLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { LAGG_XUNLOCK(sc); return; } ifp->if_drv_flags |= IFF_DRV_RUNNING; /* * Update the port lladdrs if needed. * This might be if_setlladdr() notification * that lladdr has been changed. */ CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (memcmp(IF_LLADDR(ifp), IF_LLADDR(lp->lp_ifp), ifp->if_addrlen) != 0) if_setlladdr(lp->lp_ifp, IF_LLADDR(ifp), ifp->if_addrlen); } lagg_proto_init(sc); if (ifp->if_type == IFT_INFINIBAND) { mtx_lock(&sc->sc_mtx); lagg_watchdog_infiniband(sc); mtx_unlock(&sc->sc_mtx); } LAGG_XUNLOCK(sc); } static void lagg_stop(struct lagg_softc *sc) { struct ifnet *ifp = sc->sc_ifp; LAGG_XLOCK_ASSERT(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; lagg_proto_stop(sc); mtx_lock(&sc->sc_mtx); callout_stop(&sc->sc_watchdog); mtx_unlock(&sc->sc_mtx); callout_drain(&sc->sc_watchdog); } static int lagg_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct epoch_tracker et; struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_reqall *ra = (struct lagg_reqall *)data; struct lagg_reqopts *ro = (struct lagg_reqopts *)data; struct lagg_reqport *rp = (struct lagg_reqport *)data, rpbuf; struct lagg_reqflags *rf = (struct lagg_reqflags *)data; struct ifreq *ifr = (struct ifreq *)data; struct lagg_port *lp; struct ifnet *tpif; struct thread *td = curthread; char *buf, *outbuf; int count, buflen, len, error = 0, oldmtu; bzero(&rpbuf, sizeof(rpbuf)); /* XXX: This can race with lagg_clone_destroy. */ switch (cmd) { case SIOCGLAGG: LAGG_XLOCK(sc); buflen = sc->sc_count * sizeof(struct lagg_reqport); outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); ra->ra_proto = sc->sc_proto; lagg_proto_request(sc, &ra->ra_psc); count = 0; buf = outbuf; len = min(ra->ra_size, buflen); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (len < sizeof(rpbuf)) break; lagg_port2req(lp, &rpbuf); memcpy(buf, &rpbuf, sizeof(rpbuf)); count++; buf += sizeof(rpbuf); len -= sizeof(rpbuf); } LAGG_XUNLOCK(sc); ra->ra_ports = count; ra->ra_size = count * sizeof(rpbuf); error = copyout(outbuf, ra->ra_port, ra->ra_size); free(outbuf, M_TEMP); break; case SIOCSLAGG: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (ra->ra_proto >= LAGG_PROTO_MAX) { error = EPROTONOSUPPORT; break; } /* Infiniband only supports the failover protocol. */ if (ra->ra_proto != LAGG_PROTO_FAILOVER && ifp->if_type == IFT_INFINIBAND) { error = EPROTONOSUPPORT; break; } LAGG_XLOCK(sc); lagg_proto_detach(sc); lagg_proto_attach(sc, ra->ra_proto); LAGG_XUNLOCK(sc); break; case SIOCGLAGGOPTS: LAGG_XLOCK(sc); ro->ro_opts = sc->sc_opts; if (sc->sc_proto == LAGG_PROTO_LACP) { struct lacp_softc *lsc; lsc = (struct lacp_softc *)sc->sc_psc; if (lsc->lsc_debug.lsc_tx_test != 0) ro->ro_opts |= LAGG_OPT_LACP_TXTEST; if (lsc->lsc_debug.lsc_rx_test != 0) ro->ro_opts |= LAGG_OPT_LACP_RXTEST; if (lsc->lsc_strict_mode != 0) ro->ro_opts |= LAGG_OPT_LACP_STRICT; if (lsc->lsc_fast_timeout != 0) ro->ro_opts |= LAGG_OPT_LACP_FAST_TIMO; ro->ro_active = sc->sc_active; } else { ro->ro_active = 0; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) ro->ro_active += LAGG_PORTACTIVE(lp); } ro->ro_bkt = sc->sc_stride; ro->ro_flapping = sc->sc_flapping; ro->ro_flowid_shift = sc->flowid_shift; LAGG_XUNLOCK(sc); break; case SIOCSLAGGOPTS: error = priv_check(td, PRIV_NET_LAGG); if (error) break; /* * The stride option was added without defining a corresponding * LAGG_OPT flag, so handle a non-zero value before checking * anything else to preserve compatibility. */ LAGG_XLOCK(sc); if (ro->ro_opts == 0 && ro->ro_bkt != 0) { if (sc->sc_proto != LAGG_PROTO_ROUNDROBIN) { LAGG_XUNLOCK(sc); error = EINVAL; break; } sc->sc_stride = ro->ro_bkt; } if (ro->ro_opts == 0) { LAGG_XUNLOCK(sc); break; } /* * Set options. LACP options are stored in sc->sc_psc, * not in sc_opts. */ int valid, lacp; switch (ro->ro_opts) { case LAGG_OPT_USE_FLOWID: case -LAGG_OPT_USE_FLOWID: case LAGG_OPT_USE_NUMA: case -LAGG_OPT_USE_NUMA: case LAGG_OPT_FLOWIDSHIFT: case LAGG_OPT_RR_LIMIT: valid = 1; lacp = 0; break; case LAGG_OPT_LACP_TXTEST: case -LAGG_OPT_LACP_TXTEST: case LAGG_OPT_LACP_RXTEST: case -LAGG_OPT_LACP_RXTEST: case LAGG_OPT_LACP_STRICT: case -LAGG_OPT_LACP_STRICT: case LAGG_OPT_LACP_FAST_TIMO: case -LAGG_OPT_LACP_FAST_TIMO: valid = lacp = 1; break; default: valid = lacp = 0; break; } if (valid == 0 || (lacp == 1 && sc->sc_proto != LAGG_PROTO_LACP)) { /* Invalid combination of options specified. */ error = EINVAL; LAGG_XUNLOCK(sc); break; /* Return from SIOCSLAGGOPTS. */ } /* * Store new options into sc->sc_opts except for * FLOWIDSHIFT, RR and LACP options. */ if (lacp == 0) { if (ro->ro_opts == LAGG_OPT_FLOWIDSHIFT) sc->flowid_shift = ro->ro_flowid_shift; else if (ro->ro_opts == LAGG_OPT_RR_LIMIT) { if (sc->sc_proto != LAGG_PROTO_ROUNDROBIN || ro->ro_bkt == 0) { error = EINVAL; LAGG_XUNLOCK(sc); break; } sc->sc_stride = ro->ro_bkt; } else if (ro->ro_opts > 0) sc->sc_opts |= ro->ro_opts; else sc->sc_opts &= ~ro->ro_opts; } else { struct lacp_softc *lsc; struct lacp_port *lp; lsc = (struct lacp_softc *)sc->sc_psc; switch (ro->ro_opts) { case LAGG_OPT_LACP_TXTEST: lsc->lsc_debug.lsc_tx_test = 1; break; case -LAGG_OPT_LACP_TXTEST: lsc->lsc_debug.lsc_tx_test = 0; break; case LAGG_OPT_LACP_RXTEST: lsc->lsc_debug.lsc_rx_test = 1; break; case -LAGG_OPT_LACP_RXTEST: lsc->lsc_debug.lsc_rx_test = 0; break; case LAGG_OPT_LACP_STRICT: lsc->lsc_strict_mode = 1; break; case -LAGG_OPT_LACP_STRICT: lsc->lsc_strict_mode = 0; break; case LAGG_OPT_LACP_FAST_TIMO: LACP_LOCK(lsc); LIST_FOREACH(lp, &lsc->lsc_ports, lp_next) lp->lp_state |= LACP_STATE_TIMEOUT; LACP_UNLOCK(lsc); lsc->lsc_fast_timeout = 1; break; case -LAGG_OPT_LACP_FAST_TIMO: LACP_LOCK(lsc); LIST_FOREACH(lp, &lsc->lsc_ports, lp_next) lp->lp_state &= ~LACP_STATE_TIMEOUT; LACP_UNLOCK(lsc); lsc->lsc_fast_timeout = 0; break; } } LAGG_XUNLOCK(sc); break; case SIOCGLAGGFLAGS: rf->rf_flags = 0; LAGG_XLOCK(sc); if (sc->sc_flags & MBUF_HASHFLAG_L2) rf->rf_flags |= LAGG_F_HASHL2; if (sc->sc_flags & MBUF_HASHFLAG_L3) rf->rf_flags |= LAGG_F_HASHL3; if (sc->sc_flags & MBUF_HASHFLAG_L4) rf->rf_flags |= LAGG_F_HASHL4; LAGG_XUNLOCK(sc); break; case SIOCSLAGGHASH: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if ((rf->rf_flags & LAGG_F_HASHMASK) == 0) { error = EINVAL; break; } LAGG_XLOCK(sc); sc->sc_flags = 0; if (rf->rf_flags & LAGG_F_HASHL2) sc->sc_flags |= MBUF_HASHFLAG_L2; if (rf->rf_flags & LAGG_F_HASHL3) sc->sc_flags |= MBUF_HASHFLAG_L3; if (rf->rf_flags & LAGG_F_HASHL4) sc->sc_flags |= MBUF_HASHFLAG_L4; LAGG_XUNLOCK(sc); break; case SIOCGLAGGPORT: if (rp->rp_portname[0] == '\0' || (tpif = ifunit_ref(rp->rp_portname)) == NULL) { error = EINVAL; break; } NET_EPOCH_ENTER(et); if ((lp = (struct lagg_port *)tpif->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; NET_EPOCH_EXIT(et); if_rele(tpif); break; } lagg_port2req(lp, rp); NET_EPOCH_EXIT(et); if_rele(tpif); break; case SIOCSLAGGPORT: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (rp->rp_portname[0] == '\0' || (tpif = ifunit_ref(rp->rp_portname)) == NULL) { error = EINVAL; break; } #ifdef INET6 /* * A laggport interface should not have inet6 address * because two interfaces with a valid link-local * scope zone must not be merged in any form. This * restriction is needed to prevent violation of * link-local scope zone. Attempts to add a laggport * interface which has inet6 addresses triggers * removal of all inet6 addresses on the member * interface. */ if (in6ifa_llaonifp(tpif)) { in6_ifdetach(tpif); if_printf(sc->sc_ifp, "IPv6 addresses on %s have been removed " "before adding it as a member to prevent " "IPv6 address scope violation.\n", tpif->if_xname); } #endif oldmtu = ifp->if_mtu; LAGG_XLOCK(sc); error = lagg_port_create(sc, tpif); LAGG_XUNLOCK(sc); if_rele(tpif); /* * LAGG MTU may change during addition of the first port. * If it did, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) if_notifymtu(ifp); VLAN_CAPABILITIES(ifp); break; case SIOCSLAGGDELPORT: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (rp->rp_portname[0] == '\0' || (tpif = ifunit_ref(rp->rp_portname)) == NULL) { error = EINVAL; break; } LAGG_XLOCK(sc); if ((lp = (struct lagg_port *)tpif->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; LAGG_XUNLOCK(sc); if_rele(tpif); break; } error = lagg_port_destroy(lp, 1); LAGG_XUNLOCK(sc); if_rele(tpif); VLAN_CAPABILITIES(ifp); break; case SIOCSIFFLAGS: /* Set flags on ports too */ LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { lagg_setflags(lp, 1); } if (!(ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked down and it is running, * then stop and disable it. */ lagg_stop(sc); LAGG_XUNLOCK(sc); } else if ((ifp->if_flags & IFF_UP) && !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked up and it is stopped, then * start it. */ LAGG_XUNLOCK(sc); (*ifp->if_init)(sc); } else LAGG_XUNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { lagg_clrmulti(lp); lagg_setmulti(lp); } LAGG_XUNLOCK(sc); error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: if (ifp->if_type == IFT_INFINIBAND) error = EINVAL; else error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; case SIOCSIFCAP: case SIOCSIFCAPNV: LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ioctl != NULL) (*lp->lp_ioctl)(lp->lp_ifp, cmd, data); } lagg_capabilities(sc); LAGG_XUNLOCK(sc); VLAN_CAPABILITIES(ifp); error = 0; break; case SIOCGIFCAPNV: error = 0; break; case SIOCSIFMTU: LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ioctl != NULL) error = (*lp->lp_ioctl)(lp->lp_ifp, cmd, data); else error = EINVAL; if (error != 0) { if_printf(ifp, "failed to change MTU to %d on port %s, " "reverting all ports to original MTU (%d)\n", ifr->ifr_mtu, lp->lp_ifp->if_xname, ifp->if_mtu); break; } } if (error == 0) { ifp->if_mtu = ifr->ifr_mtu; } else { /* set every port back to the original MTU */ ifr->ifr_mtu = ifp->if_mtu; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ioctl != NULL) (*lp->lp_ioctl)(lp->lp_ifp, cmd, data); } } lagg_capabilities(sc); LAGG_XUNLOCK(sc); VLAN_CAPABILITIES(ifp); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } #if defined(KERN_TLS) || defined(RATELIMIT) #ifdef RATELIMIT static const struct if_snd_tag_sw lagg_snd_tag_ul_sw = { .snd_tag_modify = lagg_snd_tag_modify, .snd_tag_query = lagg_snd_tag_query, .snd_tag_free = lagg_snd_tag_free, .next_snd_tag = lagg_next_snd_tag, .type = IF_SND_TAG_TYPE_UNLIMITED }; static const struct if_snd_tag_sw lagg_snd_tag_rl_sw = { .snd_tag_modify = lagg_snd_tag_modify, .snd_tag_query = lagg_snd_tag_query, .snd_tag_free = lagg_snd_tag_free, .next_snd_tag = lagg_next_snd_tag, .type = IF_SND_TAG_TYPE_RATE_LIMIT }; #endif #ifdef KERN_TLS static const struct if_snd_tag_sw lagg_snd_tag_tls_sw = { .snd_tag_modify = lagg_snd_tag_modify, .snd_tag_query = lagg_snd_tag_query, .snd_tag_free = lagg_snd_tag_free, .next_snd_tag = lagg_next_snd_tag, .type = IF_SND_TAG_TYPE_TLS }; #ifdef RATELIMIT static const struct if_snd_tag_sw lagg_snd_tag_tls_rl_sw = { .snd_tag_modify = lagg_snd_tag_modify, .snd_tag_query = lagg_snd_tag_query, .snd_tag_free = lagg_snd_tag_free, .next_snd_tag = lagg_next_snd_tag, .type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT }; #endif #endif static inline struct lagg_snd_tag * mst_to_lst(struct m_snd_tag *mst) { return (__containerof(mst, struct lagg_snd_tag, com)); } /* * Look up the port used by a specific flow. This only works for lagg * protocols with deterministic port mappings (e.g. not roundrobin). * In addition protocols which use a hash to map flows to ports must * be configured to use the mbuf flowid rather than hashing packet * contents. */ static struct lagg_port * lookup_snd_tag_port(struct ifnet *ifp, uint32_t flowid, uint32_t flowtype, uint8_t numa_domain) { struct lagg_softc *sc; struct lagg_port *lp; struct lagg_lb *lb; uint32_t hash, p; int err; sc = ifp->if_softc; switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: return (lagg_link_active(sc, sc->sc_primary)); case LAGG_PROTO_LOADBALANCE: if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) == 0 || flowtype == M_HASHTYPE_NONE) return (NULL); p = flowid >> sc->flowid_shift; p %= sc->sc_count; lb = (struct lagg_lb *)sc->sc_psc; lp = lb->lb_ports[p]; return (lagg_link_active(sc, lp)); case LAGG_PROTO_LACP: if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) == 0 || flowtype == M_HASHTYPE_NONE) return (NULL); hash = flowid >> sc->flowid_shift; return (lacp_select_tx_port_by_hash(sc, hash, numa_domain, &err)); default: return (NULL); } } static int lagg_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, struct m_snd_tag **ppmt) { struct epoch_tracker et; const struct if_snd_tag_sw *sw; struct lagg_snd_tag *lst; struct lagg_port *lp; struct ifnet *lp_ifp; struct m_snd_tag *mst; int error; switch (params->hdr.type) { #ifdef RATELIMIT case IF_SND_TAG_TYPE_UNLIMITED: sw = &lagg_snd_tag_ul_sw; break; case IF_SND_TAG_TYPE_RATE_LIMIT: sw = &lagg_snd_tag_rl_sw; break; #endif #ifdef KERN_TLS case IF_SND_TAG_TYPE_TLS: sw = &lagg_snd_tag_tls_sw; break; case IF_SND_TAG_TYPE_TLS_RX: /* Return tag from port interface directly. */ sw = NULL; break; #ifdef RATELIMIT case IF_SND_TAG_TYPE_TLS_RATE_LIMIT: sw = &lagg_snd_tag_tls_rl_sw; break; #endif #endif default: return (EOPNOTSUPP); } NET_EPOCH_ENTER(et); lp = lookup_snd_tag_port(ifp, params->hdr.flowid, params->hdr.flowtype, params->hdr.numa_domain); if (lp == NULL) { NET_EPOCH_EXIT(et); return (EOPNOTSUPP); } if (lp->lp_ifp == NULL) { NET_EPOCH_EXIT(et); return (EOPNOTSUPP); } lp_ifp = lp->lp_ifp; if_ref(lp_ifp); NET_EPOCH_EXIT(et); if (sw != NULL) { lst = malloc(sizeof(*lst), M_LAGG, M_NOWAIT); if (lst == NULL) { if_rele(lp_ifp); return (ENOMEM); } } else lst = NULL; error = m_snd_tag_alloc(lp_ifp, params, &mst); if_rele(lp_ifp); if (error) { free(lst, M_LAGG); return (error); } if (sw != NULL) { m_snd_tag_init(&lst->com, ifp, sw); lst->tag = mst; *ppmt = &lst->com; } else *ppmt = mst; return (0); } static struct m_snd_tag * lagg_next_snd_tag(struct m_snd_tag *mst) { struct lagg_snd_tag *lst; lst = mst_to_lst(mst); return (lst->tag); } static int lagg_snd_tag_modify(struct m_snd_tag *mst, union if_snd_tag_modify_params *params) { struct lagg_snd_tag *lst; lst = mst_to_lst(mst); return (lst->tag->sw->snd_tag_modify(lst->tag, params)); } static int lagg_snd_tag_query(struct m_snd_tag *mst, union if_snd_tag_query_params *params) { struct lagg_snd_tag *lst; lst = mst_to_lst(mst); return (lst->tag->sw->snd_tag_query(lst->tag, params)); } static void lagg_snd_tag_free(struct m_snd_tag *mst) { struct lagg_snd_tag *lst; lst = mst_to_lst(mst); m_snd_tag_rele(lst->tag); free(lst, M_LAGG); } static void lagg_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q) { /* * For lagg, we have an indirect * interface. The caller needs to * get a ratelimit tag on the actual * interface the flow will go on. */ q->rate_table = NULL; q->flags = RT_IS_INDIRECT; q->max_flows = 0; q->number_of_rates = 0; } #endif static int lagg_setmulti(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; struct ifnet *ifp = lp->lp_ifp; struct ifnet *scifp = sc->sc_ifp; struct lagg_mc *mc; struct ifmultiaddr *ifma; int error; IF_ADDR_WLOCK(scifp); CK_STAILQ_FOREACH(ifma, &scifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mc = malloc(sizeof(struct lagg_mc), M_LAGG, M_NOWAIT); if (mc == NULL) { IF_ADDR_WUNLOCK(scifp); return (ENOMEM); } bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); mc->mc_addr.sdl_index = ifp->if_index; mc->mc_ifma = NULL; SLIST_INSERT_HEAD(&lp->lp_mc_head, mc, mc_entries); } IF_ADDR_WUNLOCK(scifp); SLIST_FOREACH (mc, &lp->lp_mc_head, mc_entries) { error = if_addmulti(ifp, (struct sockaddr *)&mc->mc_addr, &mc->mc_ifma); if (error) return (error); } return (0); } static int lagg_clrmulti(struct lagg_port *lp) { struct lagg_mc *mc; LAGG_XLOCK_ASSERT(lp->lp_softc); while ((mc = SLIST_FIRST(&lp->lp_mc_head)) != NULL) { SLIST_REMOVE(&lp->lp_mc_head, mc, lagg_mc, mc_entries); if (mc->mc_ifma && lp->lp_detaching == 0) if_delmulti_ifma(mc->mc_ifma); free(mc, M_LAGG); } return (0); } static void lagg_setcaps(struct lagg_port *lp, int cap, int cap2) { struct ifreq ifr; struct siocsifcapnv_driver_data drv_ioctl_data; if (lp->lp_ifp->if_capenable == cap && lp->lp_ifp->if_capenable2 == cap2) return; if (lp->lp_ioctl == NULL) return; /* XXX */ if ((lp->lp_ifp->if_capabilities & IFCAP_NV) != 0) { drv_ioctl_data.reqcap = cap; drv_ioctl_data.reqcap2 = cap2; drv_ioctl_data.nvcap = NULL; (*lp->lp_ioctl)(lp->lp_ifp, SIOCSIFCAPNV, (caddr_t)&drv_ioctl_data); } else { ifr.ifr_reqcap = cap; (*lp->lp_ioctl)(lp->lp_ifp, SIOCSIFCAP, (caddr_t)&ifr); } } /* Handle a ref counted flag that should be set on the lagg port as well */ static int lagg_setflag(struct lagg_port *lp, int flag, int status, int (*func)(struct ifnet *, int)) { struct lagg_softc *sc = lp->lp_softc; struct ifnet *scifp = sc->sc_ifp; struct ifnet *ifp = lp->lp_ifp; int error; LAGG_XLOCK_ASSERT(sc); status = status ? (scifp->if_flags & flag) : 0; /* Now "status" contains the flag value or 0 */ /* * See if recorded ports status is different from what * we want it to be. If it is, flip it. We record ports * status in lp_ifflags so that we won't clear ports flag * we haven't set. In fact, we don't clear or set ports * flags directly, but get or release references to them. * That's why we can be sure that recorded flags still are * in accord with actual ports flags. */ if (status != (lp->lp_ifflags & flag)) { error = (*func)(ifp, status); if (error) return (error); lp->lp_ifflags &= ~flag; lp->lp_ifflags |= status; } return (0); } /* * Handle IFF_* flags that require certain changes on the lagg port * if "status" is true, update ports flags respective to the lagg * if "status" is false, forcedly clear the flags set on port. */ static int lagg_setflags(struct lagg_port *lp, int status) { int error, i; for (i = 0; lagg_pflags[i].flag; i++) { error = lagg_setflag(lp, lagg_pflags[i].flag, status, lagg_pflags[i].func); if (error) return (error); } return (0); } static int lagg_transmit_ethernet(struct ifnet *ifp, struct mbuf *m) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; NET_EPOCH_ASSERT(); #if defined(KERN_TLS) || defined(RATELIMIT) if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) MPASS(m->m_pkthdr.snd_tag->ifp == ifp); #endif /* We need a Tx algorithm and at least one port */ if (sc->sc_proto == LAGG_PROTO_NONE || sc->sc_count == 0) { m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENXIO); } ETHER_BPF_MTAP(ifp, m); return (lagg_proto_start(sc, m)); } static int lagg_transmit_infiniband(struct ifnet *ifp, struct mbuf *m) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; NET_EPOCH_ASSERT(); #if defined(KERN_TLS) || defined(RATELIMIT) if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) MPASS(m->m_pkthdr.snd_tag->ifp == ifp); #endif /* We need a Tx algorithm and at least one port */ if (sc->sc_proto == LAGG_PROTO_NONE || sc->sc_count == 0) { m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENXIO); } infiniband_bpf_mtap(ifp, m); return (lagg_proto_start(sc, m)); } /* * The ifp->if_qflush entry point for lagg(4) is no-op. */ static void lagg_qflush(struct ifnet *ifp __unused) { } static struct mbuf * lagg_input_ethernet(struct ifnet *ifp, struct mbuf *m) { struct lagg_port *lp = ifp->if_lagg; struct lagg_softc *sc = lp->lp_softc; struct ifnet *scifp = sc->sc_ifp; NET_EPOCH_ASSERT(); if ((scifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || lp->lp_detaching != 0 || sc->sc_proto == LAGG_PROTO_NONE) { m_freem(m); return (NULL); } ETHER_BPF_MTAP(scifp, m); m = lagg_proto_input(sc, lp, m); if (m != NULL && (scifp->if_flags & IFF_MONITOR) != 0) { m_freem(m); m = NULL; } #ifdef DEV_NETMAP if (m != NULL && scifp->if_capenable & IFCAP_NETMAP) { scifp->if_input(scifp, m); m = NULL; } #endif /* DEV_NETMAP */ return (m); } static struct mbuf * lagg_input_infiniband(struct ifnet *ifp, struct mbuf *m) { - struct epoch_tracker et; struct lagg_port *lp = ifp->if_lagg; struct lagg_softc *sc = lp->lp_softc; struct ifnet *scifp = sc->sc_ifp; - NET_EPOCH_ENTER(et); + NET_EPOCH_ASSERT(); if ((scifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || lp->lp_detaching != 0 || sc->sc_proto == LAGG_PROTO_NONE) { - NET_EPOCH_EXIT(et); m_freem(m); return (NULL); } infiniband_bpf_mtap(scifp, m); m = lagg_proto_input(sc, lp, m); if (m != NULL && (scifp->if_flags & IFF_MONITOR) != 0) { m_freem(m); m = NULL; } - NET_EPOCH_EXIT(et); return (m); } static int lagg_media_change(struct ifnet *ifp) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; if (sc->sc_ifflags & IFF_DEBUG) printf("%s\n", __func__); /* Ignore */ return (0); } static void lagg_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct epoch_tracker et; struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_port *lp; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_ETHER | IFM_AUTO; NET_EPOCH_ENTER(et); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (LAGG_PORTACTIVE(lp)) imr->ifm_status |= IFM_ACTIVE; } NET_EPOCH_EXIT(et); } static void lagg_linkstate(struct lagg_softc *sc) { struct epoch_tracker et; struct lagg_port *lp; int new_link = LINK_STATE_DOWN; uint64_t speed; LAGG_XLOCK_ASSERT(sc); /* LACP handles link state itself */ if (sc->sc_proto == LAGG_PROTO_LACP) return; /* Our link is considered up if at least one of our ports is active */ NET_EPOCH_ENTER(et); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ifp->if_link_state == LINK_STATE_UP) { new_link = LINK_STATE_UP; break; } } NET_EPOCH_EXIT(et); if_link_state_change(sc->sc_ifp, new_link); /* Update if_baudrate to reflect the max possible speed */ switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: sc->sc_ifp->if_baudrate = sc->sc_primary != NULL ? sc->sc_primary->lp_ifp->if_baudrate : 0; break; case LAGG_PROTO_ROUNDROBIN: case LAGG_PROTO_LOADBALANCE: case LAGG_PROTO_BROADCAST: speed = 0; NET_EPOCH_ENTER(et); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) speed += lp->lp_ifp->if_baudrate; NET_EPOCH_EXIT(et); sc->sc_ifp->if_baudrate = speed; break; case LAGG_PROTO_LACP: /* LACP updates if_baudrate itself */ break; } } static void lagg_port_state(struct ifnet *ifp, int state) { struct lagg_port *lp = (struct lagg_port *)ifp->if_lagg; struct lagg_softc *sc = NULL; if (lp != NULL) sc = lp->lp_softc; if (sc == NULL) return; LAGG_XLOCK(sc); lagg_linkstate(sc); lagg_proto_linkstate(sc, lp); LAGG_XUNLOCK(sc); } struct lagg_port * lagg_link_active(struct lagg_softc *sc, struct lagg_port *lp) { struct lagg_port *lp_next, *rval = NULL; /* * Search a port which reports an active link state. */ #ifdef INVARIANTS /* * This is called with either in the network epoch * or with LAGG_XLOCK(sc) held. */ if (!in_epoch(net_epoch_preempt)) LAGG_XLOCK_ASSERT(sc); #endif if (lp == NULL) goto search; if (LAGG_PORTACTIVE(lp)) { rval = lp; goto found; } if ((lp_next = CK_SLIST_NEXT(lp, lp_entries)) != NULL && LAGG_PORTACTIVE(lp_next)) { rval = lp_next; goto found; } search: CK_SLIST_FOREACH(lp_next, &sc->sc_ports, lp_entries) { if (LAGG_PORTACTIVE(lp_next)) { return (lp_next); } } found: return (rval); } int lagg_enqueue(struct ifnet *ifp, struct mbuf *m) { #if defined(KERN_TLS) || defined(RATELIMIT) if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { struct lagg_snd_tag *lst; struct m_snd_tag *mst; mst = m->m_pkthdr.snd_tag; lst = mst_to_lst(mst); if (lst->tag->ifp != ifp) { m_freem(m); return (EAGAIN); } m->m_pkthdr.snd_tag = m_snd_tag_ref(lst->tag); m_snd_tag_rele(mst); } #endif return (ifp->if_transmit)(ifp, m); } /* * Simple round robin aggregation */ static void lagg_rr_attach(struct lagg_softc *sc) { sc->sc_seq = 0; sc->sc_stride = 1; } static int lagg_rr_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; uint32_t p; p = atomic_fetchadd_32(&sc->sc_seq, 1); p /= sc->sc_stride; p %= sc->sc_count; lp = CK_SLIST_FIRST(&sc->sc_ports); while (p--) lp = CK_SLIST_NEXT(lp, lp_entries); /* * Check the port's link state. This will return the next active * port if the link is down or the port is NULL. */ if ((lp = lagg_link_active(sc, lp)) == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } /* * Broadcast mode */ static int lagg_bcast_start(struct lagg_softc *sc, struct mbuf *m) { int errors = 0; int ret; struct lagg_port *lp, *last = NULL; struct mbuf *m0; NET_EPOCH_ASSERT(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (!LAGG_PORTACTIVE(lp)) continue; if (last != NULL) { m0 = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (m0 == NULL) { ret = ENOBUFS; errors++; break; } lagg_enqueue(last->lp_ifp, m0); } last = lp; } if (last == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); m_freem(m); return (ENOENT); } if ((last = lagg_link_active(sc, last)) == NULL) { errors++; if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, errors); m_freem(m); return (ENETDOWN); } ret = lagg_enqueue(last->lp_ifp, m); if (errors != 0) if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, errors); return (ret); } /* * Active failover */ static int lagg_fail_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; /* Use the master port if active or the next available port */ if ((lp = lagg_link_active(sc, sc->sc_primary)) == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_fail_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; struct lagg_port *tmp_tp; if (lp == sc->sc_primary || V_lagg_failover_rx_all) { m->m_pkthdr.rcvif = ifp; return (m); } if (!LAGG_PORTACTIVE(sc->sc_primary)) { tmp_tp = lagg_link_active(sc, sc->sc_primary); /* * If tmp_tp is null, we've received a packet when all * our links are down. Weird, but process it anyways. */ if (tmp_tp == NULL || tmp_tp == lp) { m->m_pkthdr.rcvif = ifp; return (m); } } m_freem(m); return (NULL); } /* * Loadbalancing */ static void lagg_lb_attach(struct lagg_softc *sc) { struct lagg_port *lp; struct lagg_lb *lb; LAGG_XLOCK_ASSERT(sc); lb = malloc(sizeof(struct lagg_lb), M_LAGG, M_WAITOK | M_ZERO); lb->lb_key = m_ether_tcpip_hash_init(); sc->sc_psc = lb; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lagg_lb_port_create(lp); } static void lagg_lb_detach(struct lagg_softc *sc) { struct lagg_lb *lb; lb = (struct lagg_lb *)sc->sc_psc; if (lb != NULL) free(lb, M_LAGG); } static int lagg_lb_porttable(struct lagg_softc *sc, struct lagg_port *lp) { struct lagg_lb *lb = (struct lagg_lb *)sc->sc_psc; struct lagg_port *lp_next; int i = 0, rv; rv = 0; bzero(&lb->lb_ports, sizeof(lb->lb_ports)); LAGG_XLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp_next, &sc->sc_ports, lp_entries) { if (lp_next == lp) continue; if (i >= LAGG_MAX_PORTS) { rv = EINVAL; break; } if (sc->sc_ifflags & IFF_DEBUG) printf("%s: port %s at index %d\n", sc->sc_ifname, lp_next->lp_ifp->if_xname, i); lb->lb_ports[i++] = lp_next; } return (rv); } static int lagg_lb_port_create(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; return (lagg_lb_porttable(sc, NULL)); } static void lagg_lb_port_destroy(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; lagg_lb_porttable(sc, lp); } static int lagg_lb_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_lb *lb = (struct lagg_lb *)sc->sc_psc; struct lagg_port *lp = NULL; uint32_t p = 0; if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) p = m->m_pkthdr.flowid >> sc->flowid_shift; else p = m_ether_tcpip_hash(sc->sc_flags, m, lb->lb_key); p %= sc->sc_count; lp = lb->lb_ports[p]; /* * Check the port's link state. This will return the next active * port if the link is down or the port is NULL. */ if ((lp = lagg_link_active(sc, lp)) == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } /* * 802.3ad LACP */ static void lagg_lacp_attach(struct lagg_softc *sc) { struct lagg_port *lp; lacp_attach(sc); LAGG_XLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_create(lp); } static void lagg_lacp_detach(struct lagg_softc *sc) { struct lagg_port *lp; void *psc; LAGG_XLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_destroy(lp); psc = sc->sc_psc; sc->sc_psc = NULL; lacp_detach(psc); } static void lagg_lacp_lladdr(struct lagg_softc *sc) { struct lagg_port *lp; LAGG_SXLOCK_ASSERT(sc); /* purge all the lacp ports */ CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_destroy(lp); /* add them back in */ CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_create(lp); } static int lagg_lacp_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; int err; lp = lacp_select_tx_port(sc, m, &err); if (lp == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); m_freem(m); return (err); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_lacp_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; struct ether_header *eh; u_short etype; eh = mtod(m, struct ether_header *); etype = ntohs(eh->ether_type); /* Tap off LACP control messages */ if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_SLOW) { m = lacp_input(lp, m); if (m == NULL) return (NULL); } /* * If the port is not collecting or not in the active aggregator then * free and return. */ if (!lacp_iscollecting(lp) || !lacp_isactive(lp)) { m_freem(m); return (NULL); } m->m_pkthdr.rcvif = ifp; return (m); } /* Default input */ static struct mbuf * lagg_default_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; /* Just pass in the packet to our lagg device */ m->m_pkthdr.rcvif = ifp; return (m); }