diff --git a/man/man5/zfs-module-parameters.5 b/man/man5/zfs-module-parameters.5 index e41d6fd89b00..f4afe2525c89 100644 --- a/man/man5/zfs-module-parameters.5 +++ b/man/man5/zfs-module-parameters.5 @@ -1,4340 +1,4354 @@ '\" te .\" Copyright (c) 2013 by Turbo Fredriksson . All rights reserved. .\" Copyright (c) 2019, 2021 by Delphix. All rights reserved. .\" Copyright (c) 2019 Datto Inc. .\" The contents of this file are subject to the terms of the Common Development .\" and Distribution License (the "License"). You may not use this file except .\" in compliance with the License. You can obtain a copy of the license at .\" usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing. .\" .\" See the License for the specific language governing permissions and .\" limitations under the License. When distributing Covered Code, include this .\" CDDL HEADER in each file and include the License file at .\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this .\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your .\" own identifying information: .\" Portions Copyright [yyyy] [name of copyright owner] .TH ZFS-MODULE-PARAMETERS 5 "May 5, 2021" OpenZFS .SH NAME zfs\-module\-parameters \- ZFS module parameters .SH DESCRIPTION .sp .LP Description of the different parameters to the ZFS module. .SS "Module parameters" .sp .LP .sp .ne 2 .na \fBdbuf_cache_max_bytes\fR (ulong) .ad .RS 12n Maximum size in bytes of the dbuf cache. The target size is determined by the MIN versus \fB1/2^dbuf_cache_shift\fR (1/32) of the target ARC size. The behavior of the dbuf cache and its associated settings can be observed via the \fB/proc/spl/kstat/zfs/dbufstats\fR kstat. .sp Default value: \fBULONG_MAX\fR. .RE .sp .ne 2 .na \fBdbuf_metadata_cache_max_bytes\fR (ulong) .ad .RS 12n Maximum size in bytes of the metadata dbuf cache. The target size is determined by the MIN versus \fB1/2^dbuf_metadata_cache_shift\fR (1/64) of the target ARC size. The behavior of the metadata dbuf cache and its associated settings can be observed via the \fB/proc/spl/kstat/zfs/dbufstats\fR kstat. .sp Default value: \fBULONG_MAX\fR. .RE .sp .ne 2 .na \fBdbuf_cache_hiwater_pct\fR (uint) .ad .RS 12n The percentage over \fBdbuf_cache_max_bytes\fR when dbufs must be evicted directly. .sp Default value: \fB10\fR%. .RE .sp .ne 2 .na \fBdbuf_cache_lowater_pct\fR (uint) .ad .RS 12n The percentage below \fBdbuf_cache_max_bytes\fR when the evict thread stops evicting dbufs. .sp Default value: \fB10\fR%. .RE .sp .ne 2 .na \fBdbuf_cache_shift\fR (int) .ad .RS 12n Set the size of the dbuf cache, \fBdbuf_cache_max_bytes\fR, to a log2 fraction of the target ARC size. .sp Default value: \fB5\fR. .RE .sp .ne 2 .na \fBdbuf_metadata_cache_shift\fR (int) .ad .RS 12n Set the size of the dbuf metadata cache, \fBdbuf_metadata_cache_max_bytes\fR, to a log2 fraction of the target ARC size. .sp Default value: \fB6\fR. .RE .sp .ne 2 .na \fBdmu_object_alloc_chunk_shift\fR (int) .ad .RS 12n dnode slots allocated in a single operation as a power of 2. The default value minimizes lock contention for the bulk operation performed. .sp Default value: \fB7\fR (128). .RE .sp .ne 2 .na \fBdmu_prefetch_max\fR (int) .ad .RS 12n Limit the amount we can prefetch with one call to this amount (in bytes). This helps to limit the amount of memory that can be used by prefetching. .sp Default value: \fB134,217,728\fR (128MB). .RE .sp .ne 2 .na \fBignore_hole_birth\fR (int) .ad .RS 12n This is an alias for \fBsend_holes_without_birth_time\fR. .RE .sp .ne 2 .na \fBl2arc_feed_again\fR (int) .ad .RS 12n Turbo L2ARC warm-up. When the L2ARC is cold the fill interval will be set as fast as possible. .sp Use \fB1\fR for yes (default) and \fB0\fR to disable. .RE .sp .ne 2 .na \fBl2arc_feed_min_ms\fR (ulong) .ad .RS 12n Min feed interval in milliseconds. Requires \fBl2arc_feed_again=1\fR and only applicable in related situations. .sp Default value: \fB200\fR. .RE .sp .ne 2 .na \fBl2arc_feed_secs\fR (ulong) .ad .RS 12n Seconds between L2ARC writing .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBl2arc_headroom\fR (ulong) .ad .RS 12n How far through the ARC lists to search for L2ARC cacheable content, expressed as a multiplier of \fBl2arc_write_max\fR. ARC persistence across reboots can be achieved with persistent L2ARC by setting this parameter to \fB0\fR allowing the full length of ARC lists to be searched for cacheable content. .sp Default value: \fB2\fR. .RE .sp .ne 2 .na \fBl2arc_headroom_boost\fR (ulong) .ad .RS 12n Scales \fBl2arc_headroom\fR by this percentage when L2ARC contents are being successfully compressed before writing. A value of \fB100\fR disables this feature. .sp Default value: \fB200\fR%. .RE .sp .ne 2 .na \fBl2arc_mfuonly\fR (int) .ad .RS 12n Controls whether only MFU metadata and data are cached from ARC into L2ARC. This may be desired to avoid wasting space on L2ARC when reading/writing large amounts of data that are not expected to be accessed more than once. The default is \fB0\fR, meaning both MRU and MFU data and metadata are cached. When turning off (\fB0\fR) this feature some MRU buffers will still be present in ARC and eventually cached on L2ARC. If \fBl2arc_noprefetch\fR is set to 0, some prefetched buffers will be cached to L2ARC, and those might later transition to MRU, in which case the \fBl2arc_mru_asize\fR arcstat will not be 0. Regardless of \fBl2arc_noprefetch\fR, some MFU buffers might be evicted from ARC, accessed later on as prefetches and transition to MRU as prefetches. If accessed again they are counted as MRU and the \fBl2arc_mru_asize\fR arcstat will not be 0. The ARC status of L2ARC buffers when they were first cached in L2ARC can be seen in the \fBl2arc_mru_asize\fR, \fBl2arc_mfu_asize\fR and \fBl2arc_prefetch_asize\fR arcstats when importing the pool or onlining a cache device if persistent L2ARC is enabled. The \fBevicted_l2_eligible_mru\fR arcstat does not take into account if this option is enabled as the information provided by the evicted_l2_eligible_* arcstats can be used to decide if toggling this option is appropriate for the current workload. .sp Use \fB0\fR for no (default) and \fB1\fR for yes. .RE .sp .ne 2 .na \fBl2arc_meta_percent\fR (int) .ad .RS 12n Percent of ARC size allowed for L2ARC-only headers. Since L2ARC buffers are not evicted on memory pressure, too large amount of headers on system with irrationally large L2ARC can render it slow or unusable. This parameter limits L2ARC writes and rebuild to achieve it. .sp Default value: \fB33\fR%. .RE .sp .ne 2 .na \fBl2arc_trim_ahead\fR (ulong) .ad .RS 12n Trims ahead of the current write size (\fBl2arc_write_max\fR) on L2ARC devices by this percentage of write size if we have filled the device. If set to \fB100\fR we TRIM twice the space required to accommodate upcoming writes. A minimum of 64MB will be trimmed. It also enables TRIM of the whole L2ARC device upon creation or addition to an existing pool or if the header of the device is invalid upon importing a pool or onlining a cache device. A value of \fB0\fR disables TRIM on L2ARC altogether and is the default as it can put significant stress on the underlying storage devices. This will vary depending of how well the specific device handles these commands. .sp Default value: \fB0\fR%. .RE .sp .ne 2 .na \fBl2arc_noprefetch\fR (int) .ad .RS 12n Do not write buffers to L2ARC if they were prefetched but not used by applications. In case there are prefetched buffers in L2ARC and this option is later set to \fB1\fR, we do not read the prefetched buffers from L2ARC. Setting this option to \fB0\fR is useful for caching sequential reads from the disks to L2ARC and serve those reads from L2ARC later on. This may be beneficial in case the L2ARC device is significantly faster in sequential reads than the disks of the pool. .sp Use \fB1\fR to disable (default) and \fB0\fR to enable caching/reading prefetches to/from L2ARC.. .RE .sp .ne 2 .na \fBl2arc_norw\fR (int) .ad .RS 12n No reads during writes. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBl2arc_write_boost\fR (ulong) .ad .RS 12n Cold L2ARC devices will have \fBl2arc_write_max\fR increased by this amount while they remain cold. .sp Default value: \fB8,388,608\fR. .RE .sp .ne 2 .na \fBl2arc_write_max\fR (ulong) .ad .RS 12n Max write bytes per interval. .sp Default value: \fB8,388,608\fR. .RE .sp .ne 2 .na \fBl2arc_rebuild_enabled\fR (int) .ad .RS 12n Rebuild the L2ARC when importing a pool (persistent L2ARC). This can be disabled if there are problems importing a pool or attaching an L2ARC device (e.g. the L2ARC device is slow in reading stored log metadata, or the metadata has become somehow fragmented/unusable). .sp Use \fB1\fR for yes (default) and \fB0\fR for no. .RE .sp .ne 2 .na \fBl2arc_rebuild_blocks_min_l2size\fR (ulong) .ad .RS 12n Min size (in bytes) of an L2ARC device required in order to write log blocks in it. The log blocks are used upon importing the pool to rebuild the L2ARC (persistent L2ARC). Rationale: for L2ARC devices less than 1GB, the amount of data l2arc_evict() evicts is significant compared to the amount of restored L2ARC data. In this case do not write log blocks in L2ARC in order not to waste space. .sp Default value: \fB1,073,741,824\fR (1GB). .RE .sp .ne 2 .na \fBmetaslab_aliquot\fR (ulong) .ad .RS 12n Metaslab granularity, in bytes. This is roughly similar to what would be referred to as the "stripe size" in traditional RAID arrays. In normal operation, ZFS will try to write this amount of data to a top-level vdev before moving on to the next one. .sp Default value: \fB524,288\fR. .RE .sp .ne 2 .na \fBmetaslab_bias_enabled\fR (int) .ad .RS 12n Enable metaslab group biasing based on its vdev's over- or under-utilization relative to the pool. .sp Use \fB1\fR for yes (default) and \fB0\fR for no. .RE .sp .ne 2 .na \fBmetaslab_force_ganging\fR (ulong) .ad .RS 12n Make some blocks above a certain size be gang blocks. This option is used by the test suite to facilitate testing. .sp Default value: \fB16,777,217\fR. .RE .sp .ne 2 .na \fBzfs_history_output_max\fR (int) .ad .RS 12n When attempting to log the output nvlist of an ioctl in the on-disk history, the output will not be stored if it is larger than size (in bytes). This must be less than DMU_MAX_ACCESS (64MB). This applies primarily to zfs_ioc_channel_program(). .sp Default value: \fB1MB\fR. .RE .sp .ne 2 .na \fBzfs_keep_log_spacemaps_at_export\fR (int) .ad .RS 12n Prevent log spacemaps from being destroyed during pool exports and destroys. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_metaslab_segment_weight_enabled\fR (int) .ad .RS 12n Enable/disable segment-based metaslab selection. .sp Use \fB1\fR for yes (default) and \fB0\fR for no. .RE .sp .ne 2 .na \fBzfs_metaslab_switch_threshold\fR (int) .ad .RS 12n When using segment-based metaslab selection, continue allocating from the active metaslab until \fBzfs_metaslab_switch_threshold\fR worth of buckets have been exhausted. .sp Default value: \fB2\fR. .RE .sp .ne 2 .na \fBmetaslab_debug_load\fR (int) .ad .RS 12n Load all metaslabs during pool import. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBmetaslab_debug_unload\fR (int) .ad .RS 12n Prevent metaslabs from being unloaded. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBmetaslab_fragmentation_factor_enabled\fR (int) .ad .RS 12n Enable use of the fragmentation metric in computing metaslab weights. .sp Use \fB1\fR for yes (default) and \fB0\fR for no. .RE .sp .ne 2 .na \fBmetaslab_df_max_search\fR (int) .ad .RS 12n Maximum distance to search forward from the last offset. Without this limit, fragmented pools can see >100,000 iterations and metaslab_block_picker() becomes the performance limiting factor on high-performance storage. With the default setting of 16MB, we typically see less than 500 iterations, even with very fragmented, ashift=9 pools. The maximum number of iterations possible is: \fBmetaslab_df_max_search / (2 * (1< physical sector size on new top-level vdevs. .sp Default value: \fBASHIFT_MAX\fR (16). .RE .sp .ne 2 .na \fBzfs_vdev_min_auto_ashift\fR (ulong) .ad .RS 12n Minimum ashift used when creating new top-level vdevs. .sp Default value: \fBASHIFT_MIN\fR (9). .RE .sp .ne 2 .na \fBzfs_vdev_min_ms_count\fR (int) .ad .RS 12n Minimum number of metaslabs to create in a top-level vdev. .sp Default value: \fB16\fR. .RE .sp .ne 2 .na \fBvdev_validate_skip\fR (int) .ad .RS 12n Skip label validation steps during pool import. Changing is not recommended unless you know what you are doing and are recovering a damaged label. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_vdev_ms_count_limit\fR (int) .ad .RS 12n Practical upper limit of total metaslabs per top-level vdev. .sp Default value: \fB131,072\fR. .RE .sp .ne 2 .na \fBmetaslab_preload_enabled\fR (int) .ad .RS 12n Enable metaslab group preloading. .sp Use \fB1\fR for yes (default) and \fB0\fR for no. .RE .sp .ne 2 .na \fBmetaslab_lba_weighting_enabled\fR (int) .ad .RS 12n Give more weight to metaslabs with lower LBAs, assuming they have greater bandwidth as is typically the case on a modern constant angular velocity disk drive. .sp Use \fB1\fR for yes (default) and \fB0\fR for no. .RE .sp .ne 2 .na \fBmetaslab_unload_delay\fR (int) .ad .RS 12n After a metaslab is used, we keep it loaded for this many txgs, to attempt to reduce unnecessary reloading. Note that both this many txgs and \fBmetaslab_unload_delay_ms\fR milliseconds must pass before unloading will occur. .sp Default value: \fB32\fR. .RE .sp .ne 2 .na \fBmetaslab_unload_delay_ms\fR (int) .ad .RS 12n After a metaslab is used, we keep it loaded for this many milliseconds, to attempt to reduce unnecessary reloading. Note that both this many milliseconds and \fBmetaslab_unload_delay\fR txgs must pass before unloading will occur. .sp Default value: \fB600000\fR (ten minutes). .RE .sp .ne 2 .na \fBreference_history\fR (int) .ad .RS 12n Maximum reference holders being tracked when reference_tracking_enable is active. .sp Default value: \fB3\fR. .RE .sp .ne 2 .na \fBreference_tracking_enable\fR (int) .ad .RS 12n Track reference holders to refcount_t objects (debug builds only). .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBsend_holes_without_birth_time\fR (int) .ad .RS 12n When set, the hole_birth optimization will not be used, and all holes will always be sent on zfs send. This is useful if you suspect your datasets are affected by a bug in hole_birth. .sp Use \fB1\fR for on (default) and \fB0\fR for off. .RE .sp .ne 2 .na \fBspa_config_path\fR (charp) .ad .RS 12n SPA config file .sp Default value: \fB/etc/zfs/zpool.cache\fR. .RE .sp .ne 2 .na \fBspa_asize_inflation\fR (int) .ad .RS 12n Multiplication factor used to estimate actual disk consumption from the size of data being written. The default value is a worst case estimate, but lower values may be valid for a given pool depending on its configuration. Pool administrators who understand the factors involved may wish to specify a more realistic inflation factor, particularly if they operate close to quota or capacity limits. .sp Default value: \fB24\fR. .RE .sp .ne 2 .na \fBspa_load_print_vdev_tree\fR (int) .ad .RS 12n Whether to print the vdev tree in the debugging message buffer during pool import. Use 0 to disable and 1 to enable. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBspa_load_verify_data\fR (int) .ad .RS 12n Whether to traverse data blocks during an "extreme rewind" (\fB-X\fR) import. Use 0 to disable and 1 to enable. An extreme rewind import normally performs a full traversal of all blocks in the pool for verification. If this parameter is set to 0, the traversal skips non-metadata blocks. It can be toggled once the import has started to stop or start the traversal of non-metadata blocks. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBspa_load_verify_metadata\fR (int) .ad .RS 12n Whether to traverse blocks during an "extreme rewind" (\fB-X\fR) pool import. Use 0 to disable and 1 to enable. An extreme rewind import normally performs a full traversal of all blocks in the pool for verification. If this parameter is set to 0, the traversal is not performed. It can be toggled once the import has started to stop or start the traversal. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBspa_load_verify_shift\fR (int) .ad .RS 12n Sets the maximum number of bytes to consume during pool import to the log2 fraction of the target ARC size. .sp Default value: \fB4\fR. .RE .sp .ne 2 .na \fBspa_slop_shift\fR (int) .ad .RS 12n Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in the pool to be consumed. This ensures that we don't run the pool completely out of space, due to unaccounted changes (e.g. to the MOS). It also limits the worst-case time to allocate space. If we have less than this amount of free space, most ZPL operations (e.g. write, create) will return ENOSPC. .sp Default value: \fB5\fR. .RE .sp .ne 2 .na \fBvdev_removal_max_span\fR (int) .ad .RS 12n During top-level vdev removal, chunks of data are copied from the vdev which may include free space in order to trade bandwidth for IOPS. This parameter determines the maximum span of free space (in bytes) which will be included as "unnecessary" data in a chunk of copied data. The default value here was chosen to align with \fBzfs_vdev_read_gap_limit\fR, which is a similar concept when doing regular reads (but there's no reason it has to be the same). .sp Default value: \fB32,768\fR. .RE .sp .ne 2 .na \fBvdev_file_logical_ashift\fR (ulong) .ad .RS 12n Logical ashift for file-based devices. .sp Default value: \fB9\fR. .RE .sp .ne 2 .na \fBvdev_file_physical_ashift\fR (ulong) .ad .RS 12n Physical ashift for file-based devices. .sp Default value: \fB9\fR. .RE .sp .ne 2 .na \fBzap_iterate_prefetch\fR (int) .ad .RS 12n If this is set, when we start iterating over a ZAP object, zfs will prefetch the entire object (all leaf blocks). However, this is limited by \fBdmu_prefetch_max\fR. .sp Use \fB1\fR for on (default) and \fB0\fR for off. .RE .sp .ne 2 .na \fBzfetch_array_rd_sz\fR (ulong) .ad .RS 12n If prefetching is enabled, disable prefetching for reads larger than this size. .sp Default value: \fB1,048,576\fR. .RE .sp .ne 2 .na \fBzfetch_max_distance\fR (uint) .ad .RS 12n Max bytes to prefetch per stream. .sp Default value: \fB8,388,608\fR (8MB). .RE .sp .ne 2 .na \fBzfetch_max_idistance\fR (uint) .ad .RS 12n Max bytes to prefetch indirects for per stream. .sp Default value: \fB67,108,864\fR (64MB). .RE .sp .ne 2 .na \fBzfetch_max_streams\fR (uint) .ad .RS 12n Max number of streams per zfetch (prefetch streams per file). .sp Default value: \fB8\fR. .RE .sp .ne 2 .na \fBzfetch_min_sec_reap\fR (uint) .ad .RS 12n Min time before an active prefetch stream can be reclaimed .sp Default value: \fB2\fR. .RE .sp .ne 2 .na \fBzfs_abd_scatter_enabled\fR (int) .ad .RS 12n Enables ARC from using scatter/gather lists and forces all allocations to be linear in kernel memory. Disabling can improve performance in some code paths at the expense of fragmented kernel memory. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_abd_scatter_max_order\fR (iunt) .ad .RS 12n Maximum number of consecutive memory pages allocated in a single block for scatter/gather lists. Default value is specified by the kernel itself. .sp Default value: \fB10\fR at the time of this writing. .RE .sp .ne 2 .na \fBzfs_abd_scatter_min_size\fR (uint) .ad .RS 12n This is the minimum allocation size that will use scatter (page-based) ABD's. Smaller allocations will use linear ABD's. .sp Default value: \fB1536\fR (512B and 1KB allocations will be linear). .RE .sp .ne 2 .na \fBzfs_arc_dnode_limit\fR (ulong) .ad .RS 12n When the number of bytes consumed by dnodes in the ARC exceeds this number of bytes, try to unpin some of it in response to demand for non-metadata. This value acts as a ceiling to the amount of dnode metadata, and defaults to 0 which indicates that a percent which is based on \fBzfs_arc_dnode_limit_percent\fR of the ARC meta buffers that may be used for dnodes. See also \fBzfs_arc_meta_prune\fR which serves a similar purpose but is used when the amount of metadata in the ARC exceeds \fBzfs_arc_meta_limit\fR rather than in response to overall demand for non-metadata. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_arc_dnode_limit_percent\fR (ulong) .ad .RS 12n Percentage that can be consumed by dnodes of ARC meta buffers. .sp See also \fBzfs_arc_dnode_limit\fR which serves a similar purpose but has a higher priority if set to nonzero value. .sp Default value: \fB10\fR%. .RE .sp .ne 2 .na \fBzfs_arc_dnode_reduce_percent\fR (ulong) .ad .RS 12n Percentage of ARC dnodes to try to scan in response to demand for non-metadata when the number of bytes consumed by dnodes exceeds \fBzfs_arc_dnode_limit\fR. .sp Default value: \fB10\fR% of the number of dnodes in the ARC. .RE .sp .ne 2 .na \fBzfs_arc_average_blocksize\fR (int) .ad .RS 12n The ARC's buffer hash table is sized based on the assumption of an average block size of \fBzfs_arc_average_blocksize\fR (default 8K). This works out to roughly 1MB of hash table per 1GB of physical memory with 8-byte pointers. For configurations with a known larger average block size this value can be increased to reduce the memory footprint. .sp Default value: \fB8192\fR. .RE .sp .ne 2 .na \fBzfs_arc_eviction_pct\fR (int) .ad .RS 12n When \fBarc_is_overflowing()\fR, \fBarc_get_data_impl()\fR waits for this percent of the requested amount of data to be evicted. For example, by default for every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. Since this is above 100%, it ensures that progress is made towards getting \fBarc_size\fR under \fBarc_c\fR. Since this is finite, it ensures that allocations can still happen, even during the potentially long time that \fBarc_size\fR is more than \fBarc_c\fR. .sp Default value: \fB200\fR. .RE .sp .ne 2 .na \fBzfs_arc_evict_batch_limit\fR (int) .ad .RS 12n Number ARC headers to evict per sub-list before proceeding to another sub-list. This batch-style operation prevents entire sub-lists from being evicted at once but comes at a cost of additional unlocking and locking. .sp Default value: \fB10\fR. .RE .sp .ne 2 .na \fBzfs_arc_grow_retry\fR (int) .ad .RS 12n If set to a non zero value, it will replace the arc_grow_retry value with this value. The arc_grow_retry value (default 5) is the number of seconds the ARC will wait before trying to resume growth after a memory pressure event. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_arc_lotsfree_percent\fR (int) .ad .RS 12n Throttle I/O when free system memory drops below this percentage of total system memory. Setting this value to 0 will disable the throttle. .sp Default value: \fB10\fR%. .RE .sp .ne 2 .na \fBzfs_arc_max\fR (ulong) .ad .RS 12n Max size of ARC in bytes. If set to 0 then the max size of ARC is determined by the amount of system memory installed. For Linux, 1/2 of system memory will be used as the limit. For FreeBSD, the larger of all system memory - 1GB or 5/8 of system memory will be used as the limit. This value must be at least 67108864 (64 megabytes). .sp This value can be changed dynamically with some caveats. It cannot be set back to 0 while running and reducing it below the current ARC size will not cause the ARC to shrink without memory pressure to induce shrinking. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_arc_meta_adjust_restarts\fR (ulong) .ad .RS 12n The number of restart passes to make while scanning the ARC attempting the free buffers in order to stay below the \fBzfs_arc_meta_limit\fR. This value should not need to be tuned but is available to facilitate performance analysis. .sp Default value: \fB4096\fR. .RE .sp .ne 2 .na \fBzfs_arc_meta_limit\fR (ulong) .ad .RS 12n The maximum allowed size in bytes that meta data buffers are allowed to consume in the ARC. When this limit is reached meta data buffers will be reclaimed even if the overall arc_c_max has not been reached. This value defaults to 0 which indicates that a percent which is based on \fBzfs_arc_meta_limit_percent\fR of the ARC may be used for meta data. .sp This value my be changed dynamically except that it cannot be set back to 0 for a specific percent of the ARC; it must be set to an explicit value. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_arc_meta_limit_percent\fR (ulong) .ad .RS 12n Percentage of ARC buffers that can be used for meta data. See also \fBzfs_arc_meta_limit\fR which serves a similar purpose but has a higher priority if set to nonzero value. .sp Default value: \fB75\fR%. .RE .sp .ne 2 .na \fBzfs_arc_meta_min\fR (ulong) .ad .RS 12n The minimum allowed size in bytes that meta data buffers may consume in the ARC. This value defaults to 0 which disables a floor on the amount of the ARC devoted meta data. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_arc_meta_prune\fR (int) .ad .RS 12n The number of dentries and inodes to be scanned looking for entries which can be dropped. This may be required when the ARC reaches the \fBzfs_arc_meta_limit\fR because dentries and inodes can pin buffers in the ARC. Increasing this value will cause to dentry and inode caches to be pruned more aggressively. Setting this value to 0 will disable pruning the inode and dentry caches. .sp Default value: \fB10,000\fR. .RE .sp .ne 2 .na \fBzfs_arc_meta_strategy\fR (int) .ad .RS 12n Define the strategy for ARC meta data buffer eviction (meta reclaim strategy). A value of 0 (META_ONLY) will evict only the ARC meta data buffers. A value of 1 (BALANCED) indicates that additional data buffers may be evicted if that is required to in order to evict the required number of meta data buffers. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_arc_min\fR (ulong) .ad .RS 12n Min size of ARC in bytes. If set to 0 then arc_c_min will default to consuming the larger of 32M or 1/32 of total system memory. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_arc_min_prefetch_ms\fR (int) .ad .RS 12n Minimum time prefetched blocks are locked in the ARC, specified in ms. A value of \fB0\fR will default to 1000 ms. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_arc_min_prescient_prefetch_ms\fR (int) .ad .RS 12n Minimum time "prescient prefetched" blocks are locked in the ARC, specified in ms. These blocks are meant to be prefetched fairly aggressively ahead of the code that may use them. A value of \fB0\fR will default to 6000 ms. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_max_missing_tvds\fR (int) .ad .RS 12n Number of missing top-level vdevs which will be allowed during pool import (only in read-only mode). .sp Default value: \fB0\fR .RE .sp .ne 2 .na \fBzfs_max_nvlist_src_size\fR (ulong) .ad .RS 12n Maximum size in bytes allowed to be passed as zc_nvlist_src_size for ioctls on /dev/zfs. This prevents a user from causing the kernel to allocate an excessive amount of memory. When the limit is exceeded, the ioctl fails with EINVAL and a description of the error is sent to the zfs-dbgmsg log. This parameter should not need to be touched under normal circumstances. On FreeBSD, the default is based on the system limit on user wired memory. On Linux, the default is \fB128MB\fR. .sp Default value: \fB0\fR (kernel decides) .RE .sp .ne 2 .na \fBzfs_multilist_num_sublists\fR (int) .ad .RS 12n To allow more fine-grained locking, each ARC state contains a series of lists for both data and meta data objects. Locking is performed at the level of these "sub-lists". This parameters controls the number of sub-lists per ARC state, and also applies to other uses of the multilist data structure. .sp Default value: \fB4\fR or the number of online CPUs, whichever is greater .RE .sp .ne 2 .na \fBzfs_arc_overflow_shift\fR (int) .ad .RS 12n The ARC size is considered to be overflowing if it exceeds the current ARC target size (arc_c) by a threshold determined by this parameter. The threshold is calculated as a fraction of arc_c using the formula "arc_c >> \fBzfs_arc_overflow_shift\fR". The default value of 8 causes the ARC to be considered to be overflowing if it exceeds the target size by 1/256th (0.3%) of the target size. When the ARC is overflowing, new buffer allocations are stalled until the reclaim thread catches up and the overflow condition no longer exists. .sp Default value: \fB8\fR. .RE .sp .ne 2 .na \fBzfs_arc_p_min_shift\fR (int) .ad .RS 12n If set to a non zero value, this will update arc_p_min_shift (default 4) with the new value. arc_p_min_shift is used to shift of arc_c for calculating both min and max max arc_p .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_arc_p_dampener_disable\fR (int) .ad .RS 12n Disable arc_p adapt dampener .sp Use \fB1\fR for yes (default) and \fB0\fR to disable. .RE .sp .ne 2 .na \fBzfs_arc_shrink_shift\fR (int) .ad .RS 12n If set to a non zero value, this will update arc_shrink_shift (default 7) with the new value. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_arc_pc_percent\fR (uint) .ad .RS 12n Percent of pagecache to reclaim arc to This tunable allows ZFS arc to play more nicely with the kernel's LRU pagecache. It can guarantee that the ARC size won't collapse under scanning pressure on the pagecache, yet still allows arc to be reclaimed down to zfs_arc_min if necessary. This value is specified as percent of pagecache size (as measured by NR_FILE_PAGES) where that percent may exceed 100. This only operates during memory pressure/reclaim. .sp Default value: \fB0\fR% (disabled). .RE .sp .ne 2 .na \fBzfs_arc_shrinker_limit\fR (int) .ad .RS 12n This is a limit on how many pages the ARC shrinker makes available for eviction in response to one page allocation attempt. Note that in practice, the kernel's shrinker can ask us to evict up to about 4x this for one allocation attempt. .sp The default limit of 10,000 (in practice, 160MB per allocation attempt with 4K pages) limits the amount of time spent attempting to reclaim ARC memory to less than 100ms per allocation attempt, even with a small average compressed block size of ~8KB. .sp The parameter can be set to 0 (zero) to disable the limit. .sp This parameter only applies on Linux. .sp Default value: \fB10,000\fR. .RE .sp .ne 2 .na \fBzfs_arc_sys_free\fR (ulong) .ad .RS 12n The target number of bytes the ARC should leave as free memory on the system. Defaults to the larger of 1/64 of physical memory or 512K. Setting this option to a non-zero value will override the default. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_autoimport_disable\fR (int) .ad .RS 12n Disable pool import at module load by ignoring the cache file (typically \fB/etc/zfs/zpool.cache\fR). .sp Use \fB1\fR for yes (default) and \fB0\fR for no. .RE .sp .ne 2 .na \fBzfs_checksum_events_per_second\fR (uint) .ad .RS 12n Rate limit checksum events to this many per second. Note that this should not be set below the zed thresholds (currently 10 checksums over 10 sec) or else zed may not trigger any action. .sp Default value: 20 .RE .sp .ne 2 .na \fBzfs_commit_timeout_pct\fR (int) .ad .RS 12n This controls the amount of time that a ZIL block (lwb) will remain "open" when it isn't "full", and it has a thread waiting for it to be committed to stable storage. The timeout is scaled based on a percentage of the last lwb latency to avoid significantly impacting the latency of each individual transaction record (itx). .sp Default value: \fB5\fR%. .RE .sp .ne 2 .na \fBzfs_condense_indirect_commit_entry_delay_ms\fR (int) .ad .RS 12n Vdev indirection layer (used for device removal) sleeps for this many milliseconds during mapping generation. Intended for use with the test suite to throttle vdev removal speed. .sp Default value: \fB0\fR (no throttle). .RE .sp .ne 2 .na \fBzfs_condense_indirect_obsolete_pct\fR (int) .ad .RS 12n Minimum percent of obsolete bytes in vdev mapping required to attempt to condense (see \fBzfs_condense_indirect_vdevs_enable\fR). Intended for use with the test suite to facilitate triggering condensing as needed. .sp Default value: \fB25\fR%. .RE .sp .ne 2 .na \fBzfs_condense_indirect_vdevs_enable\fR (int) .ad .RS 12n Enable condensing indirect vdev mappings. When set to a non-zero value, attempt to condense indirect vdev mappings if the mapping uses more than \fBzfs_condense_min_mapping_bytes\fR bytes of memory and if the obsolete space map object uses more than \fBzfs_condense_max_obsolete_bytes\fR bytes on-disk. The condensing process is an attempt to save memory by removing obsolete mappings. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_condense_max_obsolete_bytes\fR (ulong) .ad .RS 12n Only attempt to condense indirect vdev mappings if the on-disk size of the obsolete space map object is greater than this number of bytes (see \fBfBzfs_condense_indirect_vdevs_enable\fR). .sp Default value: \fB1,073,741,824\fR. .RE .sp .ne 2 .na \fBzfs_condense_min_mapping_bytes\fR (ulong) .ad .RS 12n Minimum size vdev mapping to attempt to condense (see \fBzfs_condense_indirect_vdevs_enable\fR). .sp Default value: \fB131,072\fR. .RE .sp .ne 2 .na \fBzfs_dbgmsg_enable\fR (int) .ad .RS 12n Internally ZFS keeps a small log to facilitate debugging. By default the log is enabled, to disable it set this option to 0. The contents of the log can be accessed by reading the /proc/spl/kstat/zfs/dbgmsg file. Writing 0 to this proc file clears the log. .sp This setting does not influence debug prints due to \fBzfs_flags\fR settings. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_dbgmsg_maxsize\fR (int) .ad .RS 12n The maximum size in bytes of the internal ZFS debug log. .sp Default value: \fB4M\fR. .RE .sp .ne 2 .na \fBzfs_dbuf_state_index\fR (int) .ad .RS 12n This feature is currently unused. It is normally used for controlling what reporting is available under /proc/spl/kstat/zfs. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_deadman_enabled\fR (int) .ad .RS 12n When a pool sync operation takes longer than \fBzfs_deadman_synctime_ms\fR milliseconds, or when an individual I/O takes longer than \fBzfs_deadman_ziotime_ms\fR milliseconds, then the operation is considered to be "hung". If \fBzfs_deadman_enabled\fR is set then the deadman behavior is invoked as described by the \fBzfs_deadman_failmode\fR module option. By default the deadman is enabled and configured to \fBwait\fR which results in "hung" I/Os only being logged. The deadman is automatically disabled when a pool gets suspended. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_deadman_failmode\fR (charp) .ad .RS 12n Controls the failure behavior when the deadman detects a "hung" I/O. Valid values are \fBwait\fR, \fBcontinue\fR, and \fBpanic\fR. .sp \fBwait\fR - Wait for a "hung" I/O to complete. For each "hung" I/O a "deadman" event will be posted describing that I/O. .sp \fBcontinue\fR - Attempt to recover from a "hung" I/O by re-dispatching it to the I/O pipeline if possible. .sp \fBpanic\fR - Panic the system. This can be used to facilitate an automatic fail-over to a properly configured fail-over partner. .sp Default value: \fBwait\fR. .RE .sp .ne 2 .na \fBzfs_deadman_checktime_ms\fR (int) .ad .RS 12n Check time in milliseconds. This defines the frequency at which we check for hung I/O and potentially invoke the \fBzfs_deadman_failmode\fR behavior. .sp Default value: \fB60,000\fR. .RE .sp .ne 2 .na \fBzfs_deadman_synctime_ms\fR (ulong) .ad .RS 12n Interval in milliseconds after which the deadman is triggered and also the interval after which a pool sync operation is considered to be "hung". Once this limit is exceeded the deadman will be invoked every \fBzfs_deadman_checktime_ms\fR milliseconds until the pool sync completes. .sp Default value: \fB600,000\fR. .RE .sp .ne 2 .na \fBzfs_deadman_ziotime_ms\fR (ulong) .ad .RS 12n Interval in milliseconds after which the deadman is triggered and an individual I/O operation is considered to be "hung". As long as the I/O remains "hung" the deadman will be invoked every \fBzfs_deadman_checktime_ms\fR milliseconds until the I/O completes. .sp Default value: \fB300,000\fR. .RE .sp .ne 2 .na \fBzfs_dedup_prefetch\fR (int) .ad .RS 12n Enable prefetching dedup-ed blks .sp Use \fB1\fR for yes and \fB0\fR to disable (default). .RE .sp .ne 2 .na \fBzfs_delay_min_dirty_percent\fR (int) .ad .RS 12n Start to delay each transaction once there is this amount of dirty data, expressed as a percentage of \fBzfs_dirty_data_max\fR. This value should be >= zfs_vdev_async_write_active_max_dirty_percent. See the section "ZFS TRANSACTION DELAY". .sp Default value: \fB60\fR%. .RE .sp .ne 2 .na \fBzfs_delay_scale\fR (int) .ad .RS 12n This controls how quickly the transaction delay approaches infinity. Larger values cause longer delays for a given amount of dirty data. .sp For the smoothest delay, this value should be about 1 billion divided by the maximum number of operations per second. This will smoothly handle between 10x and 1/10th this number. .sp See the section "ZFS TRANSACTION DELAY". .sp Note: \fBzfs_delay_scale\fR * \fBzfs_dirty_data_max\fR must be < 2^64. .sp Default value: \fB500,000\fR. .RE .sp .ne 2 .na \fBzfs_disable_ivset_guid_check\fR (int) .ad .RS 12n Disables requirement for IVset guids to be present and match when doing a raw receive of encrypted datasets. Intended for users whose pools were created with OpenZFS pre-release versions and now have compatibility issues. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_key_max_salt_uses\fR (ulong) .ad .RS 12n Maximum number of uses of a single salt value before generating a new one for encrypted datasets. The default value is also the maximum that will be accepted. .sp Default value: \fB400,000,000\fR. .RE .sp .ne 2 .na \fBzfs_object_mutex_size\fR (uint) .ad .RS 12n Size of the znode hashtable used for holds. Due to the need to hold locks on objects that may not exist yet, kernel mutexes are not created per-object and instead a hashtable is used where collisions will result in objects waiting when there is not actually contention on the same object. .sp Default value: \fB64\fR. .RE .sp .ne 2 .na \fBzfs_slow_io_events_per_second\fR (int) .ad .RS 12n Rate limit delay and deadman zevents (which report slow I/Os) to this many per second. .sp Default value: 20 .RE .sp .ne 2 .na \fBzfs_unflushed_max_mem_amt\fR (ulong) .ad .RS 12n Upper-bound limit for unflushed metadata changes to be held by the log spacemap in memory (in bytes). .sp Default value: \fB1,073,741,824\fR (1GB). .RE .sp .ne 2 .na \fBzfs_unflushed_max_mem_ppm\fR (ulong) .ad .RS 12n Percentage of the overall system memory that ZFS allows to be used for unflushed metadata changes by the log spacemap. (value is calculated over 1000000 for finer granularity). .sp Default value: \fB1000\fR (which is divided by 1000000, resulting in the limit to be \fB0.1\fR% of memory) .RE .sp .ne 2 .na \fBzfs_unflushed_log_block_max\fR (ulong) .ad .RS 12n Describes the maximum number of log spacemap blocks allowed for each pool. The default value of 262144 means that the space in all the log spacemaps can add up to no more than 262144 blocks (which means 32GB of logical space before compression and ditto blocks, assuming that blocksize is 128k). .sp This tunable is important because it involves a trade-off between import time after an unclean export and the frequency of flushing metaslabs. The higher this number is, the more log blocks we allow when the pool is active which means that we flush metaslabs less often and thus decrease the number of I/Os for spacemap updates per TXG. At the same time though, that means that in the event of an unclean export, there will be more log spacemap blocks for us to read, inducing overhead in the import time of the pool. The lower the number, the amount of flushing increases destroying log blocks quicker as they become obsolete faster, which leaves less blocks to be read during import time after a crash. .sp Each log spacemap block existing during pool import leads to approximately one extra logical I/O issued. This is the reason why this tunable is exposed in terms of blocks rather than space used. .sp Default value: \fB262144\fR (256K). .RE .sp .ne 2 .na \fBzfs_unflushed_log_block_min\fR (ulong) .ad .RS 12n If the number of metaslabs is small and our incoming rate is high, we could get into a situation that we are flushing all our metaslabs every TXG. Thus we always allow at least this many log blocks. .sp Default value: \fB1000\fR. .RE .sp .ne 2 .na \fBzfs_unflushed_log_block_pct\fR (ulong) .ad .RS 12n Tunable used to determine the number of blocks that can be used for the spacemap log, expressed as a percentage of the total number of metaslabs in the pool. .sp Default value: \fB400\fR (read as \fB400\fR% - meaning that the number of log spacemap blocks are capped at 4 times the number of metaslabs in the pool). .RE .sp .ne 2 .na \fBzfs_unlink_suspend_progress\fR (uint) .ad .RS 12n When enabled, files will not be asynchronously removed from the list of pending unlinks and the space they consume will be leaked. Once this option has been disabled and the dataset is remounted, the pending unlinks will be processed and the freed space returned to the pool. This option is used by the test suite to facilitate testing. .sp Uses \fB0\fR (default) to allow progress and \fB1\fR to pause progress. .RE .sp .ne 2 .na \fBzfs_delete_blocks\fR (ulong) .ad .RS 12n This is the used to define a large file for the purposes of delete. Files containing more than \fBzfs_delete_blocks\fR will be deleted asynchronously while smaller files are deleted synchronously. Decreasing this value will reduce the time spent in an unlink(2) system call at the expense of a longer delay before the freed space is available. .sp Default value: \fB20,480\fR. .RE .sp .ne 2 .na \fBzfs_dirty_data_max\fR (int) .ad .RS 12n Determines the dirty space limit in bytes. Once this limit is exceeded, new writes are halted until space frees up. This parameter takes precedence over \fBzfs_dirty_data_max_percent\fR. See the section "ZFS TRANSACTION DELAY". .sp Default value: \fB10\fR% of physical RAM, capped at \fBzfs_dirty_data_max_max\fR. .RE .sp .ne 2 .na \fBzfs_dirty_data_max_max\fR (int) .ad .RS 12n Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed in bytes. This limit is only enforced at module load time, and will be ignored if \fBzfs_dirty_data_max\fR is later changed. This parameter takes precedence over \fBzfs_dirty_data_max_max_percent\fR. See the section "ZFS TRANSACTION DELAY". .sp Default value: \fB25\fR% of physical RAM. .RE .sp .ne 2 .na \fBzfs_dirty_data_max_max_percent\fR (int) .ad .RS 12n Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed as a percentage of physical RAM. This limit is only enforced at module load time, and will be ignored if \fBzfs_dirty_data_max\fR is later changed. The parameter \fBzfs_dirty_data_max_max\fR takes precedence over this one. See the section "ZFS TRANSACTION DELAY". .sp Default value: \fB25\fR%. .RE .sp .ne 2 .na \fBzfs_dirty_data_max_percent\fR (int) .ad .RS 12n Determines the dirty space limit, expressed as a percentage of all memory. Once this limit is exceeded, new writes are halted until space frees up. The parameter \fBzfs_dirty_data_max\fR takes precedence over this one. See the section "ZFS TRANSACTION DELAY". .sp Default value: \fB10\fR%, subject to \fBzfs_dirty_data_max_max\fR. .RE .sp .ne 2 .na \fBzfs_dirty_data_sync_percent\fR (int) .ad .RS 12n Start syncing out a transaction group if there's at least this much dirty data as a percentage of \fBzfs_dirty_data_max\fR. This should be less than \fBzfs_vdev_async_write_active_min_dirty_percent\fR. .sp Default value: \fB20\fR% of \fBzfs_dirty_data_max\fR. .RE .sp .ne 2 .na \fBzfs_fallocate_reserve_percent\fR (uint) .ad .RS 12n Since ZFS is a copy-on-write filesystem with snapshots, blocks cannot be preallocated for a file in order to guarantee that later writes will not run out of space. Instead, fallocate() space preallocation only checks that sufficient space is currently available in the pool or the user's project quota allocation, and then creates a sparse file of the requested size. The requested space is multiplied by \fBzfs_fallocate_reserve_percent\fR to allow additional space for indirect blocks and other internal metadata. Setting this value to 0 disables support for fallocate(2) and returns EOPNOTSUPP for fallocate() space preallocation again. .sp Default value: \fB110\fR% .RE .sp .ne 2 .na \fBzfs_fletcher_4_impl\fR (string) .ad .RS 12n Select a fletcher 4 implementation. .sp Supported selectors are: \fBfastest\fR, \fBscalar\fR, \fBsse2\fR, \fBssse3\fR, \fBavx2\fR, \fBavx512f\fR, \fBavx512bw\fR, and \fBaarch64_neon\fR. All of the selectors except \fBfastest\fR and \fBscalar\fR require instruction set extensions to be available and will only appear if ZFS detects that they are present at runtime. If multiple implementations of fletcher 4 are available, the \fBfastest\fR will be chosen using a micro benchmark. Selecting \fBscalar\fR results in the original, CPU based calculation, being used. Selecting any option other than \fBfastest\fR and \fBscalar\fR results in vector instructions from the respective CPU instruction set being used. .sp Default value: \fBfastest\fR. .RE .sp .ne 2 .na \fBzfs_free_bpobj_enabled\fR (int) .ad .RS 12n Enable/disable the processing of the free_bpobj object. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_async_block_max_blocks\fR (ulong) .ad .RS 12n Maximum number of blocks freed in a single txg. .sp Default value: \fBULONG_MAX\fR (unlimited). .RE .sp .ne 2 .na \fBzfs_max_async_dedup_frees\fR (ulong) .ad .RS 12n Maximum number of dedup blocks freed in a single txg. .sp Default value: \fB100,000\fR. .RE .sp .ne 2 .na \fBzfs_override_estimate_recordsize\fR (ulong) .ad .RS 12n Record size calculation override for zfs send estimates. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_vdev_async_read_max_active\fR (int) .ad .RS 12n Maximum asynchronous read I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB3\fR. .RE .sp .ne 2 .na \fBzfs_vdev_async_read_min_active\fR (int) .ad .RS 12n Minimum asynchronous read I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_vdev_async_write_active_max_dirty_percent\fR (int) .ad .RS 12n When the pool has more than \fBzfs_vdev_async_write_active_max_dirty_percent\fR dirty data, use \fBzfs_vdev_async_write_max_active\fR to limit active async writes. If the dirty data is between min and max, the active I/O limit is linearly interpolated. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB60\fR%. .RE .sp .ne 2 .na \fBzfs_vdev_async_write_active_min_dirty_percent\fR (int) .ad .RS 12n When the pool has less than \fBzfs_vdev_async_write_active_min_dirty_percent\fR dirty data, use \fBzfs_vdev_async_write_min_active\fR to limit active async writes. If the dirty data is between min and max, the active I/O limit is linearly interpolated. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB30\fR%. .RE .sp .ne 2 .na \fBzfs_vdev_async_write_max_active\fR (int) .ad .RS 12n Maximum asynchronous write I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB10\fR. .RE .sp .ne 2 .na \fBzfs_vdev_async_write_min_active\fR (int) .ad .RS 12n Minimum asynchronous write I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Lower values are associated with better latency on rotational media but poorer resilver performance. The default value of 2 was chosen as a compromise. A value of 3 has been shown to improve resilver performance further at a cost of further increasing latency. .sp Default value: \fB2\fR. .RE .sp .ne 2 .na \fBzfs_vdev_initializing_max_active\fR (int) .ad .RS 12n Maximum initializing I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_vdev_initializing_min_active\fR (int) .ad .RS 12n Minimum initializing I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_vdev_max_active\fR (int) .ad .RS 12n The maximum number of I/Os active to each device. Ideally, this will be >= the sum of each queue's max_active. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB1,000\fR. .RE .sp .ne 2 .na \fBzfs_vdev_rebuild_max_active\fR (int) .ad .RS 12n Maximum sequential resilver I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB3\fR. .RE .sp .ne 2 .na \fBzfs_vdev_rebuild_min_active\fR (int) .ad .RS 12n Minimum sequential resilver I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_vdev_removal_max_active\fR (int) .ad .RS 12n Maximum removal I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB2\fR. .RE .sp .ne 2 .na \fBzfs_vdev_removal_min_active\fR (int) .ad .RS 12n Minimum removal I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_vdev_scrub_max_active\fR (int) .ad .RS 12n Maximum scrub I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB2\fR. .RE .sp .ne 2 .na \fBzfs_vdev_scrub_min_active\fR (int) .ad .RS 12n Minimum scrub I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_vdev_sync_read_max_active\fR (int) .ad .RS 12n Maximum synchronous read I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB10\fR. .RE .sp .ne 2 .na \fBzfs_vdev_sync_read_min_active\fR (int) .ad .RS 12n Minimum synchronous read I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB10\fR. .RE .sp .ne 2 .na \fBzfs_vdev_sync_write_max_active\fR (int) .ad .RS 12n Maximum synchronous write I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB10\fR. .RE .sp .ne 2 .na \fBzfs_vdev_sync_write_min_active\fR (int) .ad .RS 12n Minimum synchronous write I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB10\fR. .RE .sp .ne 2 .na \fBzfs_vdev_trim_max_active\fR (int) .ad .RS 12n Maximum trim/discard I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB2\fR. .RE .sp .ne 2 .na \fBzfs_vdev_trim_min_active\fR (int) .ad .RS 12n Minimum trim/discard I/Os active to each device. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_vdev_nia_delay\fR (int) .ad .RS 12n For non-interactive I/O (scrub, resilver, removal, initialize and rebuild), the number of concurrently-active I/O's is limited to *_min_active, unless the vdev is "idle". When there are no interactive I/Os active (sync or async), and zfs_vdev_nia_delay I/Os have completed since the last interactive I/O, then the vdev is considered to be "idle", and the number of concurrently-active non-interactive I/O's is increased to *_max_active. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB5\fR. .RE .sp .ne 2 .na \fBzfs_vdev_nia_credit\fR (int) .ad .RS 12n Some HDDs tend to prioritize sequential I/O so high, that concurrent random I/O latency reaches several seconds. On some HDDs it happens even if sequential I/Os are submitted one at a time, and so setting *_max_active to 1 does not help. To prevent non-interactive I/Os, like scrub, from monopolizing the device no more than zfs_vdev_nia_credit I/Os can be sent while there are outstanding incomplete interactive I/Os. This enforced wait ensures the HDD services the interactive I/O within a reasonable amount of time. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB5\fR. .RE .sp .ne 2 .na \fBzfs_vdev_queue_depth_pct\fR (int) .ad .RS 12n Maximum number of queued allocations per top-level vdev expressed as a percentage of \fBzfs_vdev_async_write_max_active\fR which allows the system to detect devices that are more capable of handling allocations and to allocate more blocks to those devices. It allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. See also \fBzio_dva_throttle_enabled\fR. .sp Default value: \fB1000\fR%. .RE .sp .ne 2 .na \fBzfs_expire_snapshot\fR (int) .ad .RS 12n Seconds to expire .zfs/snapshot .sp Default value: \fB300\fR. .RE .sp .ne 2 .na \fBzfs_admin_snapshot\fR (int) .ad .RS 12n Allow the creation, removal, or renaming of entries in the .zfs/snapshot directory to cause the creation, destruction, or renaming of snapshots. When enabled this functionality works both locally and over NFS exports which have the 'no_root_squash' option set. This functionality is disabled by default. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_flags\fR (int) .ad .RS 12n Set additional debugging flags. The following flags may be bitwise-or'd together. .sp .TS box; rB lB lB lB r l. Value Symbolic Name Description _ 1 ZFS_DEBUG_DPRINTF Enable dprintf entries in the debug log. _ 2 ZFS_DEBUG_DBUF_VERIFY * Enable extra dbuf verifications. _ 4 ZFS_DEBUG_DNODE_VERIFY * Enable extra dnode verifications. _ 8 ZFS_DEBUG_SNAPNAMES Enable snapshot name verification. _ 16 ZFS_DEBUG_MODIFY Check for illegally modified ARC buffers. _ 64 ZFS_DEBUG_ZIO_FREE Enable verification of block frees. _ 128 ZFS_DEBUG_HISTOGRAM_VERIFY Enable extra spacemap histogram verifications. _ 256 ZFS_DEBUG_METASLAB_VERIFY Verify space accounting on disk matches in-core range_trees. _ 512 ZFS_DEBUG_SET_ERROR Enable SET_ERROR and dprintf entries in the debug log. _ 1024 ZFS_DEBUG_INDIRECT_REMAP Verify split blocks created by device removal. _ 2048 ZFS_DEBUG_TRIM Verify TRIM ranges are always within the allocatable range tree. _ 4096 ZFS_DEBUG_LOG_SPACEMAP Verify that the log summary is consistent with the spacemap log and enable zfs_dbgmsgs for metaslab loading and flushing. .TE .sp * Requires debug build. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_free_leak_on_eio\fR (int) .ad .RS 12n If destroy encounters an EIO while reading metadata (e.g. indirect blocks), space referenced by the missing metadata can not be freed. Normally this causes the background destroy to become "stalled", as it is unable to make forward progress. While in this stalled state, all remaining space to free from the error-encountering filesystem is "temporarily leaked". Set this flag to cause it to ignore the EIO, permanently leak the space from indirect blocks that can not be read, and continue to free everything else that it can. The default, "stalling" behavior is useful if the storage partially fails (i.e. some but not all i/os fail), and then later recovers. In this case, we will be able to continue pool operations while it is partially failed, and when it recovers, we can continue to free the space, with no leaks. However, note that this case is actually fairly rare. Typically pools either (a) fail completely (but perhaps temporarily, e.g. a top-level vdev going offline), or (b) have localized, permanent errors (e.g. disk returns the wrong data due to bit flip or firmware bug). In case (a), this setting does not matter because the pool will be suspended and the sync thread will not be able to make forward progress regardless. In case (b), because the error is permanent, the best we can do is leak the minimum amount of space, which is what setting this flag will do. Therefore, it is reasonable for this flag to normally be set, but we chose the more conservative approach of not setting it, so that there is no possibility of leaking space in the "partial temporary" failure case. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_free_min_time_ms\fR (int) .ad .RS 12n During a \fBzfs destroy\fR operation using \fBfeature@async_destroy\fR a minimum of this much time will be spent working on freeing blocks per txg. .sp Default value: \fB1,000\fR. .RE .sp .ne 2 .na \fBzfs_obsolete_min_time_ms\fR (int) .ad .RS 12n Similar to \fBzfs_free_min_time_ms\fR but for cleanup of old indirection records for removed vdevs. .sp Default value: \fB500\fR. .RE .sp .ne 2 .na \fBzfs_immediate_write_sz\fR (long) .ad .RS 12n Largest data block to write to zil. Larger blocks will be treated as if the dataset being written to had the property setting \fBlogbias=throughput\fR. .sp Default value: \fB32,768\fR. .RE .sp .ne 2 .na \fBzfs_initialize_value\fR (ulong) .ad .RS 12n Pattern written to vdev free space by \fBzpool initialize\fR. .sp Default value: \fB16,045,690,984,833,335,022\fR (0xdeadbeefdeadbeee). .RE .sp .ne 2 .na \fBzfs_initialize_chunk_size\fR (ulong) .ad .RS 12n Size of writes used by \fBzpool initialize\fR. This option is used by the test suite to facilitate testing. .sp Default value: \fB1,048,576\fR .RE .sp .ne 2 .na \fBzfs_livelist_max_entries\fR (ulong) .ad .RS 12n The threshold size (in block pointers) at which we create a new sub-livelist. Larger sublists are more costly from a memory perspective but the fewer sublists there are, the lower the cost of insertion. .sp Default value: \fB500,000\fR. .RE .sp .ne 2 .na \fBzfs_livelist_min_percent_shared\fR (int) .ad .RS 12n If the amount of shared space between a snapshot and its clone drops below this threshold, the clone turns off the livelist and reverts to the old deletion method. This is in place because once a clone has been overwritten enough livelists no long give us a benefit. .sp Default value: \fB75\fR. .RE .sp .ne 2 .na \fBzfs_livelist_condense_new_alloc\fR (int) .ad .RS 12n Incremented each time an extra ALLOC blkptr is added to a livelist entry while it is being condensed. This option is used by the test suite to track race conditions. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_livelist_condense_sync_cancel\fR (int) .ad .RS 12n Incremented each time livelist condensing is canceled while in spa_livelist_condense_sync. This option is used by the test suite to track race conditions. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_livelist_condense_sync_pause\fR (int) .ad .RS 12n When set, the livelist condense process pauses indefinitely before executing the synctask - spa_livelist_condense_sync. This option is used by the test suite to trigger race conditions. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_livelist_condense_zthr_cancel\fR (int) .ad .RS 12n Incremented each time livelist condensing is canceled while in spa_livelist_condense_cb. This option is used by the test suite to track race conditions. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_livelist_condense_zthr_pause\fR (int) .ad .RS 12n When set, the livelist condense process pauses indefinitely before executing the open context condensing work in spa_livelist_condense_cb. This option is used by the test suite to trigger race conditions. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_lua_max_instrlimit\fR (ulong) .ad .RS 12n The maximum execution time limit that can be set for a ZFS channel program, specified as a number of Lua instructions. .sp Default value: \fB100,000,000\fR. .RE .sp .ne 2 .na \fBzfs_lua_max_memlimit\fR (ulong) .ad .RS 12n The maximum memory limit that can be set for a ZFS channel program, specified in bytes. .sp Default value: \fB104,857,600\fR. .RE .sp .ne 2 .na \fBzfs_max_dataset_nesting\fR (int) .ad .RS 12n The maximum depth of nested datasets. This value can be tuned temporarily to fix existing datasets that exceed the predefined limit. .sp Default value: \fB50\fR. .RE .sp .ne 2 .na \fBzfs_max_log_walking\fR (ulong) .ad .RS 12n The number of past TXGs that the flushing algorithm of the log spacemap feature uses to estimate incoming log blocks. .sp Default value: \fB5\fR. .RE .sp .ne 2 .na \fBzfs_max_logsm_summary_length\fR (ulong) .ad .RS 12n Maximum number of rows allowed in the summary of the spacemap log. .sp Default value: \fB10\fR. .RE .sp .ne 2 .na \fBzfs_max_recordsize\fR (int) .ad .RS 12n We currently support block sizes from 512 bytes to 16MB. The benefits of larger blocks, and thus larger I/O, need to be weighed against the cost of COWing a giant block to modify one byte. Additionally, very large blocks can have an impact on i/o latency, and also potentially on the memory allocator. Therefore, we do not allow the recordsize to be set larger than zfs_max_recordsize (default 1MB). Larger blocks can be created by changing this tunable, and pools with larger blocks can always be imported and used, regardless of this setting. .sp Default value: \fB1,048,576\fR. .RE .sp .ne 2 .na \fBzfs_allow_redacted_dataset_mount\fR (int) .ad .RS 12n Allow datasets received with redacted send/receive to be mounted. Normally disabled because these datasets may be missing key data. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_min_metaslabs_to_flush\fR (ulong) .ad .RS 12n Minimum number of metaslabs to flush per dirty TXG .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_metaslab_fragmentation_threshold\fR (int) .ad .RS 12n Allow metaslabs to keep their active state as long as their fragmentation percentage is less than or equal to this value. An active metaslab that exceeds this threshold will no longer keep its active status allowing better metaslabs to be selected. .sp Default value: \fB70\fR. .RE .sp .ne 2 .na \fBzfs_mg_fragmentation_threshold\fR (int) .ad .RS 12n Metaslab groups are considered eligible for allocations if their fragmentation metric (measured as a percentage) is less than or equal to this value. If a metaslab group exceeds this threshold then it will be skipped unless all metaslab groups within the metaslab class have also crossed this threshold. .sp Default value: \fB95\fR. .RE .sp .ne 2 .na \fBzfs_mg_noalloc_threshold\fR (int) .ad .RS 12n Defines a threshold at which metaslab groups should be eligible for allocations. The value is expressed as a percentage of free space beyond which a metaslab group is always eligible for allocations. If a metaslab group's free space is less than or equal to the threshold, the allocator will avoid allocating to that group unless all groups in the pool have reached the threshold. Once all groups have reached the threshold, all groups are allowed to accept allocations. The default value of 0 disables the feature and causes all metaslab groups to be eligible for allocations. This parameter allows one to deal with pools having heavily imbalanced vdevs such as would be the case when a new vdev has been added. Setting the threshold to a non-zero percentage will stop allocations from being made to vdevs that aren't filled to the specified percentage and allow lesser filled vdevs to acquire more allocations than they otherwise would under the old \fBzfs_mg_alloc_failures\fR facility. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_ddt_data_is_special\fR (int) .ad .RS 12n If enabled, ZFS will place DDT data into the special allocation class. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_user_indirect_is_special\fR (int) .ad .RS 12n If enabled, ZFS will place user data (both file and zvol) indirect blocks into the special allocation class. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_multihost_history\fR (int) .ad .RS 12n Historical statistics for the last N multihost updates will be available in \fB/proc/spl/kstat/zfs//multihost\fR .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_multihost_interval\fR (ulong) .ad .RS 12n Used to control the frequency of multihost writes which are performed when the \fBmultihost\fR pool property is on. This is one factor used to determine the length of the activity check during import. .sp The multihost write period is \fBzfs_multihost_interval / leaf-vdevs\fR milliseconds. On average a multihost write will be issued for each leaf vdev every \fBzfs_multihost_interval\fR milliseconds. In practice, the observed period can vary with the I/O load and this observed value is the delay which is stored in the uberblock. .sp Default value: \fB1000\fR. .RE .sp .ne 2 .na \fBzfs_multihost_import_intervals\fR (uint) .ad .RS 12n Used to control the duration of the activity test on import. Smaller values of \fBzfs_multihost_import_intervals\fR will reduce the import time but increase the risk of failing to detect an active pool. The total activity check time is never allowed to drop below one second. .sp On import the activity check waits a minimum amount of time determined by \fBzfs_multihost_interval * zfs_multihost_import_intervals\fR, or the same product computed on the host which last had the pool imported (whichever is greater). The activity check time may be further extended if the value of mmp delay found in the best uberblock indicates actual multihost updates happened at longer intervals than \fBzfs_multihost_interval\fR. A minimum value of \fB100ms\fR is enforced. .sp A value of 0 is ignored and treated as if it was set to 1. .sp Default value: \fB20\fR. .RE .sp .ne 2 .na \fBzfs_multihost_fail_intervals\fR (uint) .ad .RS 12n Controls the behavior of the pool when multihost write failures or delays are detected. .sp When \fBzfs_multihost_fail_intervals = 0\fR, multihost write failures or delays are ignored. The failures will still be reported to the ZED which depending on its configuration may take action such as suspending the pool or offlining a device. .sp When \fBzfs_multihost_fail_intervals > 0\fR, the pool will be suspended if \fBzfs_multihost_fail_intervals * zfs_multihost_interval\fR milliseconds pass without a successful mmp write. This guarantees the activity test will see mmp writes if the pool is imported. A value of 1 is ignored and treated as if it was set to 2. This is necessary to prevent the pool from being suspended due to normal, small I/O latency variations. .sp Default value: \fB10\fR. .RE .sp .ne 2 .na \fBzfs_no_scrub_io\fR (int) .ad .RS 12n Set for no scrub I/O. This results in scrubs not actually scrubbing data and simply doing a metadata crawl of the pool instead. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_no_scrub_prefetch\fR (int) .ad .RS 12n Set to disable block prefetching for scrubs. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_nocacheflush\fR (int) .ad .RS 12n Disable cache flush operations on disks when writing. Setting this will cause pool corruption on power loss if a volatile out-of-order write cache is enabled. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_nopwrite_enabled\fR (int) .ad .RS 12n Enable NOP writes .sp Use \fB1\fR for yes (default) and \fB0\fR to disable. .RE .sp .ne 2 .na \fBzfs_dmu_offset_next_sync\fR (int) .ad .RS 12n Enable forcing txg sync to find holes. When enabled forces ZFS to act like prior versions when SEEK_HOLE or SEEK_DATA flags are used, which when a dnode is dirty causes txg's to be synced so that this data can be found. .sp Use \fB1\fR for yes and \fB0\fR to disable (default). .RE .sp .ne 2 .na \fBzfs_pd_bytes_max\fR (int) .ad .RS 12n The number of bytes which should be prefetched during a pool traversal (eg: \fBzfs send\fR or other data crawling operations) .sp Default value: \fB52,428,800\fR. .RE .sp .ne 2 .na \fBzfs_traverse_indirect_prefetch_limit\fR (int) .ad .RS 12n The number of blocks pointed by indirect (non-L0) block, which should be prefetched during a pool traversal (eg: \fBzfs send\fR or other data crawling operations) .sp Default value: \fB32\fR. .RE .sp .ne 2 .na \fBzfs_per_txg_dirty_frees_percent \fR (ulong) .ad .RS 12n Tunable to control percentage of dirtied indirect blocks from frees allowed into one TXG. After this threshold is crossed, additional frees will wait until the next TXG. A value of zero will disable this throttle. .sp Default value: \fB5\fR, set to \fB0\fR to disable. .RE .sp .ne 2 .na \fBzfs_prefetch_disable\fR (int) .ad .RS 12n This tunable disables predictive prefetch. Note that it leaves "prescient" prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch, prescient prefetch never issues i/os that end up not being needed, so it can't hurt performance. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_qat_checksum_disable\fR (int) .ad .RS 12n This tunable disables qat hardware acceleration for sha256 checksums. It may be set after the zfs modules have been loaded to initialize the qat hardware as long as support is compiled in and the qat driver is present. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_qat_compress_disable\fR (int) .ad .RS 12n This tunable disables qat hardware acceleration for gzip compression. It may be set after the zfs modules have been loaded to initialize the qat hardware as long as support is compiled in and the qat driver is present. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_qat_encrypt_disable\fR (int) .ad .RS 12n This tunable disables qat hardware acceleration for AES-GCM encryption. It may be set after the zfs modules have been loaded to initialize the qat hardware as long as support is compiled in and the qat driver is present. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_read_chunk_size\fR (long) .ad .RS 12n Bytes to read per chunk .sp Default value: \fB1,048,576\fR. .RE .sp .ne 2 .na \fBzfs_read_history\fR (int) .ad .RS 12n Historical statistics for the last N reads will be available in \fB/proc/spl/kstat/zfs//reads\fR .sp Default value: \fB0\fR (no data is kept). .RE .sp .ne 2 .na \fBzfs_read_history_hits\fR (int) .ad .RS 12n Include cache hits in read history .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_rebuild_max_segment\fR (ulong) .ad .RS 12n Maximum read segment size to issue when sequentially resilvering a top-level vdev. .sp Default value: \fB1,048,576\fR. .RE .sp .ne 2 .na \fBzfs_rebuild_scrub_enabled\fR (int) .ad .RS 12n Automatically start a pool scrub when the last active sequential resilver completes in order to verify the checksums of all blocks which have been resilvered. This option is enabled by default and is strongly recommended. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_rebuild_vdev_limit\fR (ulong) .ad .RS 12n Maximum amount of i/o that can be concurrently issued for a sequential resilver per leaf device, given in bytes. .sp Default value: \fB33,554,432\fR. .RE .sp .ne 2 .na \fBzfs_reconstruct_indirect_combinations_max\fR (int) .ad .RS 12na If an indirect split block contains more than this many possible unique combinations when being reconstructed, consider it too computationally expensive to check them all. Instead, try at most \fBzfs_reconstruct_indirect_combinations_max\fR randomly-selected combinations each time the block is accessed. This allows all segment copies to participate fairly in the reconstruction when all combinations cannot be checked and prevents repeated use of one bad copy. .sp Default value: \fB4096\fR. .RE .sp .ne 2 .na \fBzfs_recover\fR (int) .ad .RS 12n Set to attempt to recover from fatal errors. This should only be used as a last resort, as it typically results in leaked space, or worse. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_removal_ignore_errors\fR (int) .ad .RS 12n .sp Ignore hard IO errors during device removal. When set, if a device encounters a hard IO error during the removal process the removal will not be cancelled. This can result in a normally recoverable block becoming permanently damaged and is not recommended. This should only be used as a last resort when the pool cannot be returned to a healthy state prior to removing the device. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_removal_suspend_progress\fR (int) .ad .RS 12n .sp This is used by the test suite so that it can ensure that certain actions happen while in the middle of a removal. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_remove_max_segment\fR (int) .ad .RS 12n .sp The largest contiguous segment that we will attempt to allocate when removing a device. This can be no larger than 16MB. If there is a performance problem with attempting to allocate large blocks, consider decreasing this. .sp Default value: \fB16,777,216\fR (16MB). .RE .sp .ne 2 .na \fBzfs_resilver_disable_defer\fR (int) .ad .RS 12n Disables the \fBresilver_defer\fR feature, causing an operation that would start a resilver to restart one in progress immediately. .sp Default value: \fB0\fR (feature enabled). .RE .sp .ne 2 .na \fBzfs_resilver_min_time_ms\fR (int) .ad .RS 12n Resilvers are processed by the sync thread. While resilvering it will spend at least this much time working on a resilver between txg flushes. .sp Default value: \fB3,000\fR. .RE .sp .ne 2 .na \fBzfs_scan_ignore_errors\fR (int) .ad .RS 12n If set to a nonzero value, remove the DTL (dirty time list) upon completion of a pool scan (scrub) even if there were unrepairable errors. It is intended to be used during pool repair or recovery to stop resilvering when the pool is next imported. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_scrub_min_time_ms\fR (int) .ad .RS 12n Scrubs are processed by the sync thread. While scrubbing it will spend at least this much time working on a scrub between txg flushes. .sp Default value: \fB1,000\fR. .RE .sp .ne 2 .na \fBzfs_scan_checkpoint_intval\fR (int) .ad .RS 12n To preserve progress across reboots the sequential scan algorithm periodically needs to stop metadata scanning and issue all the verifications I/Os to disk. The frequency of this flushing is determined by the \fBzfs_scan_checkpoint_intval\fR tunable. .sp Default value: \fB7200\fR seconds (every 2 hours). .RE .sp .ne 2 .na \fBzfs_scan_fill_weight\fR (int) .ad .RS 12n This tunable affects how scrub and resilver I/O segments are ordered. A higher number indicates that we care more about how filled in a segment is, while a lower number indicates we care more about the size of the extent without considering the gaps within a segment. This value is only tunable upon module insertion. Changing the value afterwards will have no affect on scrub or resilver performance. .sp Default value: \fB3\fR. .RE .sp .ne 2 .na \fBzfs_scan_issue_strategy\fR (int) .ad .RS 12n Determines the order that data will be verified while scrubbing or resilvering. If set to \fB1\fR, data will be verified as sequentially as possible, given the amount of memory reserved for scrubbing (see \fBzfs_scan_mem_lim_fact\fR). This may improve scrub performance if the pool's data is very fragmented. If set to \fB2\fR, the largest mostly-contiguous chunk of found data will be verified first. By deferring scrubbing of small segments, we may later find adjacent data to coalesce and increase the segment size. If set to \fB0\fR, zfs will use strategy \fB1\fR during normal verification and strategy \fB2\fR while taking a checkpoint. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_scan_legacy\fR (int) .ad .RS 12n A value of 0 indicates that scrubs and resilvers will gather metadata in memory before issuing sequential I/O. A value of 1 indicates that the legacy algorithm will be used where I/O is initiated as soon as it is discovered. Changing this value to 0 will not affect scrubs or resilvers that are already in progress. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_scan_max_ext_gap\fR (int) .ad .RS 12n Indicates the largest gap in bytes between scrub / resilver I/Os that will still be considered sequential for sorting purposes. Changing this value will not affect scrubs or resilvers that are already in progress. .sp Default value: \fB2097152 (2 MB)\fR. .RE .sp .ne 2 .na \fBzfs_scan_mem_lim_fact\fR (int) .ad .RS 12n Maximum fraction of RAM used for I/O sorting by sequential scan algorithm. This tunable determines the hard limit for I/O sorting memory usage. When the hard limit is reached we stop scanning metadata and start issuing data verification I/O. This is done until we get below the soft limit. .sp Default value: \fB20\fR which is 5% of RAM (1/20). .RE .sp .ne 2 .na \fBzfs_scan_mem_lim_soft_fact\fR (int) .ad .RS 12n The fraction of the hard limit used to determined the soft limit for I/O sorting by the sequential scan algorithm. When we cross this limit from below no action is taken. When we cross this limit from above it is because we are issuing verification I/O. In this case (unless the metadata scan is done) we stop issuing verification I/O and start scanning metadata again until we get to the hard limit. .sp Default value: \fB20\fR which is 5% of the hard limit (1/20). .RE .sp .ne 2 .na \fBzfs_scan_strict_mem_lim\fR (int) .ad .RS 12n Enforces tight memory limits on pool scans when a sequential scan is in progress. When disabled the memory limit may be exceeded by fast disks. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_scan_suspend_progress\fR (int) .ad .RS 12n Freezes a scrub/resilver in progress without actually pausing it. Intended for testing/debugging. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_scan_vdev_limit\fR (int) .ad .RS 12n Maximum amount of data that can be concurrently issued at once for scrubs and resilvers per leaf device, given in bytes. .sp Default value: \fB41943040\fR. .RE .sp .ne 2 .na \fBzfs_send_corrupt_data\fR (int) .ad .RS 12n Allow sending of corrupt data (ignore read/checksum errors when sending data) .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzfs_send_unmodified_spill_blocks\fR (int) .ad .RS 12n Include unmodified spill blocks in the send stream. Under certain circumstances previous versions of ZFS could incorrectly remove the spill block from an existing object. Including unmodified copies of the spill blocks creates a backwards compatible stream which will recreate a spill block if it was incorrectly removed. .sp Use \fB1\fR for yes (default) and \fB0\fR for no. .RE .sp .ne 2 .na \fBzfs_send_no_prefetch_queue_ff\fR (int) .ad .RS 12n The fill fraction of the \fBzfs send\fR internal queues. The fill fraction controls the timing with which internal threads are woken up. .sp Default value: \fB20\fR. .RE .sp .ne 2 .na \fBzfs_send_no_prefetch_queue_length\fR (int) .ad .RS 12n The maximum number of bytes allowed in \fBzfs send\fR's internal queues. .sp Default value: \fB1,048,576\fR. .RE .sp .ne 2 .na \fBzfs_send_queue_ff\fR (int) .ad .RS 12n The fill fraction of the \fBzfs send\fR prefetch queue. The fill fraction controls the timing with which internal threads are woken up. .sp Default value: \fB20\fR. .RE .sp .ne 2 .na \fBzfs_send_queue_length\fR (int) .ad .RS 12n The maximum number of bytes allowed that will be prefetched by \fBzfs send\fR. This value must be at least twice the maximum block size in use. .sp Default value: \fB16,777,216\fR. .RE .sp .ne 2 .na \fBzfs_recv_queue_ff\fR (int) .ad .RS 12n The fill fraction of the \fBzfs receive\fR queue. The fill fraction controls the timing with which internal threads are woken up. .sp Default value: \fB20\fR. .RE .sp .ne 2 .na \fBzfs_recv_queue_length\fR (int) .ad .RS 12n The maximum number of bytes allowed in the \fBzfs receive\fR queue. This value must be at least twice the maximum block size in use. .sp Default value: \fB16,777,216\fR. .RE .sp .ne 2 .na \fBzfs_recv_write_batch_size\fR (int) .ad .RS 12n The maximum amount of data (in bytes) that \fBzfs receive\fR will write in one DMU transaction. This is the uncompressed size, even when receiving a compressed send stream. This setting will not reduce the write size below a single block. Capped at a maximum of 32MB .sp Default value: \fB1MB\fR. .RE .sp .ne 2 .na \fBzfs_override_estimate_recordsize\fR (ulong) .ad .RS 12n Setting this variable overrides the default logic for estimating block sizes when doing a zfs send. The default heuristic is that the average block size will be the current recordsize. Override this value if most data in your dataset is not of that size and you require accurate zfs send size estimates. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_sync_pass_deferred_free\fR (int) .ad .RS 12n Flushing of data to disk is done in passes. Defer frees starting in this pass .sp Default value: \fB2\fR. .RE .sp .ne 2 .na \fBzfs_spa_discard_memory_limit\fR (int) .ad .RS 12n Maximum memory used for prefetching a checkpoint's space map on each vdev while discarding the checkpoint. .sp Default value: \fB16,777,216\fR. .RE .sp .ne 2 .na \fBzfs_special_class_metadata_reserve_pct\fR (int) .ad .RS 12n Only allow small data blocks to be allocated on the special and dedup vdev types when the available free space percentage on these vdevs exceeds this value. This ensures reserved space is available for pool meta data as the special vdevs approach capacity. .sp Default value: \fB25\fR. .RE .sp .ne 2 .na \fBzfs_sync_pass_dont_compress\fR (int) .ad .RS 12n Starting in this sync pass, we disable compression (including of metadata). With the default setting, in practice, we don't have this many sync passes, so this has no effect. .sp The original intent was that disabling compression would help the sync passes to converge. However, in practice disabling compression increases the average number of sync passes, because when we turn compression off, a lot of block's size will change and thus we have to re-allocate (not overwrite) them. It also increases the number of 128KB allocations (e.g. for indirect blocks and spacemaps) because these will not be compressed. The 128K allocations are especially detrimental to performance on highly fragmented systems, which may have very few free segments of this size, and may need to load new metaslabs to satisfy 128K allocations. .sp Default value: \fB8\fR. .RE .sp .ne 2 .na \fBzfs_sync_pass_rewrite\fR (int) .ad .RS 12n Rewrite new block pointers starting in this pass .sp Default value: \fB2\fR. .RE .sp .ne 2 .na \fBzfs_sync_taskq_batch_pct\fR (int) .ad .RS 12n This controls the number of threads used by the dp_sync_taskq. The default value of 75% will create a maximum of one thread per cpu. .sp Default value: \fB75\fR%. .RE .sp .ne 2 .na \fBzfs_trim_extent_bytes_max\fR (uint) .ad .RS 12n Maximum size of TRIM command. Ranges larger than this will be split in to chunks no larger than \fBzfs_trim_extent_bytes_max\fR bytes before being issued to the device. .sp Default value: \fB134,217,728\fR. .RE .sp .ne 2 .na \fBzfs_trim_extent_bytes_min\fR (uint) .ad .RS 12n Minimum size of TRIM commands. TRIM ranges smaller than this will be skipped unless they're part of a larger range which was broken in to chunks. This is done because it's common for these small TRIMs to negatively impact overall performance. This value can be set to 0 to TRIM all unallocated space. .sp Default value: \fB32,768\fR. .RE .sp .ne 2 .na \fBzfs_trim_metaslab_skip\fR (uint) .ad .RS 12n Skip uninitialized metaslabs during the TRIM process. This option is useful for pools constructed from large thinly-provisioned devices where TRIM operations are slow. As a pool ages an increasing fraction of the pools metaslabs will be initialized progressively degrading the usefulness of this option. This setting is stored when starting a manual TRIM and will persist for the duration of the requested TRIM. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_trim_queue_limit\fR (uint) .ad .RS 12n Maximum number of queued TRIMs outstanding per leaf vdev. The number of concurrent TRIM commands issued to the device is controlled by the \fBzfs_vdev_trim_min_active\fR and \fBzfs_vdev_trim_max_active\fR module options. .sp Default value: \fB10\fR. .RE .sp .ne 2 .na \fBzfs_trim_txg_batch\fR (uint) .ad .RS 12n The number of transaction groups worth of frees which should be aggregated before TRIM operations are issued to the device. This setting represents a trade-off between issuing larger, more efficient TRIM operations and the delay before the recently trimmed space is available for use by the device. .sp Increasing this value will allow frees to be aggregated for a longer time. This will result is larger TRIM operations and potentially increased memory usage. Decreasing this value will have the opposite effect. The default value of 32 was determined to be a reasonable compromise. .sp Default value: \fB32\fR. .RE .sp .ne 2 .na \fBzfs_txg_history\fR (int) .ad .RS 12n Historical statistics for the last N txgs will be available in \fB/proc/spl/kstat/zfs//txgs\fR .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_txg_timeout\fR (int) .ad .RS 12n Flush dirty data to disk at least every N seconds (maximum txg duration) .sp Default value: \fB5\fR. .RE .sp .ne 2 .na \fBzfs_vdev_aggregate_trim\fR (int) .ad .RS 12n Allow TRIM I/Os to be aggregated. This is normally not helpful because the extents to be trimmed will have been already been aggregated by the metaslab. This option is provided for debugging and performance analysis. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_vdev_aggregation_limit\fR (int) .ad .RS 12n Max vdev I/O aggregation size .sp Default value: \fB1,048,576\fR. .RE .sp .ne 2 .na \fBzfs_vdev_aggregation_limit_non_rotating\fR (int) .ad .RS 12n Max vdev I/O aggregation size for non-rotating media .sp Default value: \fB131,072\fR. .RE .sp .ne 2 .na \fBzfs_vdev_cache_bshift\fR (int) .ad .RS 12n Shift size to inflate reads too .sp Default value: \fB16\fR (effectively 65536). .RE .sp .ne 2 .na \fBzfs_vdev_cache_max\fR (int) .ad .RS 12n Inflate reads smaller than this value to meet the \fBzfs_vdev_cache_bshift\fR size (default 64k). .sp Default value: \fB16384\fR. .RE .sp .ne 2 .na \fBzfs_vdev_cache_size\fR (int) .ad .RS 12n Total size of the per-disk cache in bytes. .sp Currently this feature is disabled as it has been found to not be helpful for performance and in some cases harmful. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_vdev_mirror_rotating_inc\fR (int) .ad .RS 12n A number by which the balancing algorithm increments the load calculation for the purpose of selecting the least busy mirror member when an I/O immediately follows its predecessor on rotational vdevs for the purpose of making decisions based on load. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_vdev_mirror_rotating_seek_inc\fR (int) .ad .RS 12n A number by which the balancing algorithm increments the load calculation for the purpose of selecting the least busy mirror member when an I/O lacks locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within this that are not immediately following the previous I/O are incremented by half. .sp Default value: \fB5\fR. .RE .sp .ne 2 .na \fBzfs_vdev_mirror_rotating_seek_offset\fR (int) .ad .RS 12n The maximum distance for the last queued I/O in which the balancing algorithm considers an I/O to have locality. See the section "ZFS I/O SCHEDULER". .sp Default value: \fB1048576\fR. .RE .sp .ne 2 .na \fBzfs_vdev_mirror_non_rotating_inc\fR (int) .ad .RS 12n A number by which the balancing algorithm increments the load calculation for the purpose of selecting the least busy mirror member on non-rotational vdevs when I/Os do not immediately follow one another. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzfs_vdev_mirror_non_rotating_seek_inc\fR (int) .ad .RS 12n A number by which the balancing algorithm increments the load calculation for the purpose of selecting the least busy mirror member when an I/O lacks locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within this that are not immediately following the previous I/O are incremented by half. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzfs_vdev_read_gap_limit\fR (int) .ad .RS 12n Aggregate read I/O operations if the gap on-disk between them is within this threshold. .sp Default value: \fB32,768\fR. .RE .sp .ne 2 .na \fBzfs_vdev_write_gap_limit\fR (int) .ad .RS 12n Aggregate write I/O over gap .sp Default value: \fB4,096\fR. .RE .sp .ne 2 .na \fBzfs_vdev_raidz_impl\fR (string) .ad .RS 12n Parameter for selecting raidz parity implementation to use. Options marked (always) below may be selected on module load as they are supported on all systems. The remaining options may only be set after the module is loaded, as they are available only if the implementations are compiled in and supported on the running system. Once the module is loaded, the content of /sys/module/zfs/parameters/zfs_vdev_raidz_impl will show available options with the currently selected one enclosed in []. Possible options are: fastest - (always) implementation selected using built-in benchmark original - (always) original raidz implementation scalar - (always) scalar raidz implementation sse2 - implementation using SSE2 instruction set (64bit x86 only) ssse3 - implementation using SSSE3 instruction set (64bit x86 only) avx2 - implementation using AVX2 instruction set (64bit x86 only) avx512f - implementation using AVX512F instruction set (64bit x86 only) avx512bw - implementation using AVX512F & AVX512BW instruction sets (64bit x86 only) aarch64_neon - implementation using NEON (Aarch64/64 bit ARMv8 only) aarch64_neonx2 - implementation using NEON with more unrolling (Aarch64/64 bit ARMv8 only) powerpc_altivec - implementation using Altivec (PowerPC only) .sp Default value: \fBfastest\fR. .RE .sp .ne 2 .na \fBzfs_vdev_scheduler\fR (charp) .ad .RS 12n \fBDEPRECATED\fR: This option exists for compatibility with older user configurations. It does nothing except print a warning to the kernel log if set. .sp .RE .sp .ne 2 .na \fBzfs_zevent_len_max\fR (int) .ad .RS 12n Max event queue length. Events in the queue can be viewed with the \fBzpool events\fR command. .sp Default value: \fB512\fR. .RE .sp .ne 2 .na \fBzfs_zevent_retain_max\fR (int) .ad .RS 12n Maximum recent zevent records to retain for duplicate checking. Setting this value to zero disables duplicate detection. .sp Default value: \fB2000\fR. .RE .sp .ne 2 .na \fBzfs_zevent_retain_expire_secs\fR (int) .ad .RS 12n Lifespan for a recent ereport that was retained for duplicate checking. .sp Default value: \fB900\fR. .RE .na \fBzfs_zil_clean_taskq_maxalloc\fR (int) .ad .RS 12n The maximum number of taskq entries that are allowed to be cached. When this limit is exceeded transaction records (itxs) will be cleaned synchronously. .sp Default value: \fB1048576\fR. .RE .sp .ne 2 .na \fBzfs_zil_clean_taskq_minalloc\fR (int) .ad .RS 12n The number of taskq entries that are pre-populated when the taskq is first created and are immediately available for use. .sp Default value: \fB1024\fR. .RE .sp .ne 2 .na \fBzfs_zil_clean_taskq_nthr_pct\fR (int) .ad .RS 12n This controls the number of threads used by the dp_zil_clean_taskq. The default value of 100% will create a maximum of one thread per cpu. .sp Default value: \fB100\fR%. .RE .sp .ne 2 .na \fBzil_maxblocksize\fR (int) .ad .RS 12n This sets the maximum block size used by the ZIL. On very fragmented pools, lowering this (typically to 36KB) can improve performance. .sp Default value: \fB131072\fR (128KB). .RE .sp .ne 2 .na \fBzil_nocacheflush\fR (int) .ad .RS 12n Disable the cache flush commands that are normally sent to the disk(s) by the ZIL after an LWB write has completed. Setting this will cause ZIL corruption on power loss if a volatile out-of-order write cache is enabled. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzil_replay_disable\fR (int) .ad .RS 12n Disable intent logging replay. Can be disabled for recovery from corrupted ZIL .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzil_slog_bulk\fR (ulong) .ad .RS 12n Limit SLOG write size per commit executed with synchronous priority. Any writes above that will be executed with lower (asynchronous) priority to limit potential SLOG device abuse by single active ZIL writer. .sp Default value: \fB786,432\fR. .RE .sp .ne 2 .na \fBzfs_embedded_slog_min_ms\fR (int) .ad .RS 12n Usually, one metaslab from each (normal-class) vdev is dedicated for use by the ZIL (to log synchronous writes). However, if there are fewer than zfs_embedded_slog_min_ms metaslabs in the vdev, this functionality is disabled. This ensures that we don't set aside an unreasonable amount of space for the ZIL. .sp Default value: \fB64\fR. .RE .sp .ne 2 .na \fBzio_deadman_log_all\fR (int) .ad .RS 12n If non-zero, the zio deadman will produce debugging messages (see \fBzfs_dbgmsg_enable\fR) for all zios, rather than only for leaf zios possessing a vdev. This is meant to be used by developers to gain diagnostic information for hang conditions which don't involve a mutex or other locking primitive; typically conditions in which a thread in the zio pipeline is looping indefinitely. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzio_decompress_fail_fraction\fR (int) .ad .RS 12n If non-zero, this value represents the denominator of the probability that zfs should induce a decompression failure. For instance, for a 5% decompression failure rate, this value should be set to 20. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzio_slow_io_ms\fR (int) .ad .RS 12n When an I/O operation takes more than \fBzio_slow_io_ms\fR milliseconds to complete is marked as a slow I/O. Each slow I/O causes a delay zevent. Slow I/O counters can be seen with "zpool status -s". .sp Default value: \fB30,000\fR. .RE .sp .ne 2 .na \fBzio_dva_throttle_enabled\fR (int) .ad .RS 12n Throttle block allocations in the I/O pipeline. This allows for dynamic allocation distribution when devices are imbalanced. When enabled, the maximum number of pending allocations per top-level vdev is limited by \fBzfs_vdev_queue_depth_pct\fR. .sp Default value: \fB1\fR. .RE .sp .ne 2 .na \fBzio_requeue_io_start_cut_in_line\fR (int) .ad .RS 12n Prioritize requeued I/O .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzio_taskq_batch_pct\fR (uint) .ad .RS 12n Percentage of online CPUs (or CPU cores, etc) which will run a worker thread for I/O. These workers are responsible for I/O work such as compression and checksum calculations. Fractional number of CPUs will be rounded down. .sp -The default value of 75 was chosen to avoid using all CPUs which can result in -latency issues and inconsistent application performance, especially when high -compression is enabled. +The default value of 80 was chosen to avoid using all CPUs which can result in +latency issues and inconsistent application performance, especially when slower +compression and/or checksumming is enabled. .sp -Default value: \fB75\fR. +Default value: \fB80\fR. +.RE + +.sp +.ne 2 +.na +\fBzio_taskq_batch_tpq\fR (uint) +.ad +.RS 12n +Number of worker threads per taskq. Lower value improves I/O ordering and +CPU utilization, while higher reduces lock contention. +.sp +By default about 6 worker threads per taskq, depending on system size. +.sp +Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzvol_inhibit_dev\fR (uint) .ad .RS 12n Do not create zvol device nodes. This may slightly improve startup time on systems with a very large number of zvols. .sp Use \fB1\fR for yes and \fB0\fR for no (default). .RE .sp .ne 2 .na \fBzvol_major\fR (uint) .ad .RS 12n Major number for zvol block devices .sp Default value: \fB230\fR. .RE .sp .ne 2 .na \fBzvol_max_discard_blocks\fR (ulong) .ad .RS 12n Discard (aka TRIM) operations done on zvols will be done in batches of this many blocks, where block size is determined by the \fBvolblocksize\fR property of a zvol. .sp Default value: \fB16,384\fR. .RE .sp .ne 2 .na \fBzvol_prefetch_bytes\fR (uint) .ad .RS 12n When adding a zvol to the system prefetch \fBzvol_prefetch_bytes\fR from the start and end of the volume. Prefetching these regions of the volume is desirable because they are likely to be accessed immediately by \fBblkid(8)\fR or by the kernel scanning for a partition table. .sp Default value: \fB131,072\fR. .RE .sp .ne 2 .na \fBzvol_request_sync\fR (uint) .ad .RS 12n When processing I/O requests for a zvol submit them synchronously. This effectively limits the queue depth to 1 for each I/O submitter. When set to 0 requests are handled asynchronously by a thread pool. The number of requests which can be handled concurrently is controller by \fBzvol_threads\fR. .sp Default value: \fB0\fR. .RE .sp .ne 2 .na \fBzvol_threads\fR (uint) .ad .RS 12n Max number of threads which can handle zvol I/O requests concurrently. .sp Default value: \fB32\fR. .RE .sp .ne 2 .na \fBzvol_volmode\fR (uint) .ad .RS 12n Defines zvol block devices behaviour when \fBvolmode\fR is set to \fBdefault\fR. Valid values are \fB1\fR (full), \fB2\fR (dev) and \fB3\fR (none). .sp Default value: \fB1\fR. .RE .SH ZFS I/O SCHEDULER ZFS issues I/O operations to leaf vdevs to satisfy and complete I/Os. The I/O scheduler determines when and in what order those operations are issued. The I/O scheduler divides operations into five I/O classes prioritized in the following order: sync read, sync write, async read, async write, and scrub/resilver. Each queue defines the minimum and maximum number of concurrent operations that may be issued to the device. In addition, the device has an aggregate maximum, \fBzfs_vdev_max_active\fR. Note that the sum of the per-queue minimums must not exceed the aggregate maximum. If the sum of the per-queue maximums exceeds the aggregate maximum, then the number of active I/Os may reach \fBzfs_vdev_max_active\fR, in which case no further I/Os will be issued regardless of whether all per-queue minimums have been met. .sp For many physical devices, throughput increases with the number of concurrent operations, but latency typically suffers. Further, physical devices typically have a limit at which more concurrent operations have no effect on throughput or can actually cause it to decrease. .sp The scheduler selects the next operation to issue by first looking for an I/O class whose minimum has not been satisfied. Once all are satisfied and the aggregate maximum has not been hit, the scheduler looks for classes whose maximum has not been satisfied. Iteration through the I/O classes is done in the order specified above. No further operations are issued if the aggregate maximum number of concurrent operations has been hit or if there are no operations queued for an I/O class that has not hit its maximum. Every time an I/O is queued or an operation completes, the I/O scheduler looks for new operations to issue. .sp In general, smaller max_active's will lead to lower latency of synchronous operations. Larger max_active's may lead to higher overall throughput, depending on underlying storage. .sp The ratio of the queues' max_actives determines the balance of performance between reads, writes, and scrubs. E.g., increasing \fBzfs_vdev_scrub_max_active\fR will cause the scrub or resilver to complete more quickly, but reads and writes to have higher latency and lower throughput. .sp All I/O classes have a fixed maximum number of outstanding operations except for the async write class. Asynchronous writes represent the data that is committed to stable storage during the syncing stage for transaction groups. Transaction groups enter the syncing state periodically so the number of queued async writes will quickly burst up and then bleed down to zero. Rather than servicing them as quickly as possible, the I/O scheduler changes the maximum number of active async write I/Os according to the amount of dirty data in the pool. Since both throughput and latency typically increase with the number of concurrent operations issued to physical devices, reducing the burstiness in the number of concurrent operations also stabilizes the response time of operations from other -- and in particular synchronous -- queues. In broad strokes, the I/O scheduler will issue more concurrent operations from the async write queue as there's more dirty data in the pool. .sp Async Writes .sp The number of concurrent operations issued for the async write I/O class follows a piece-wise linear function defined by a few adjustable points. .nf | o---------| <-- zfs_vdev_async_write_max_active ^ | /^ | | | / | | active | / | | I/O | / | | count | / | | | / | | |-------o | | <-- zfs_vdev_async_write_min_active 0|_______^______|_________| 0% | | 100% of zfs_dirty_data_max | | | `-- zfs_vdev_async_write_active_max_dirty_percent `--------- zfs_vdev_async_write_active_min_dirty_percent .fi Until the amount of dirty data exceeds a minimum percentage of the dirty data allowed in the pool, the I/O scheduler will limit the number of concurrent operations to the minimum. As that threshold is crossed, the number of concurrent operations issued increases linearly to the maximum at the specified maximum percentage of the dirty data allowed in the pool. .sp Ideally, the amount of dirty data on a busy pool will stay in the sloped part of the function between \fBzfs_vdev_async_write_active_min_dirty_percent\fR and \fBzfs_vdev_async_write_active_max_dirty_percent\fR. If it exceeds the maximum percentage, this indicates that the rate of incoming data is greater than the rate that the backend storage can handle. In this case, we must further throttle incoming writes, as described in the next section. .SH ZFS TRANSACTION DELAY We delay transactions when we've determined that the backend storage isn't able to accommodate the rate of incoming writes. .sp If there is already a transaction waiting, we delay relative to when that transaction will finish waiting. This way the calculated delay time is independent of the number of threads concurrently executing transactions. .sp If we are the only waiter, wait relative to when the transaction started, rather than the current time. This credits the transaction for "time already served", e.g. reading indirect blocks. .sp The minimum time for a transaction to take is calculated as: .nf min_time = zfs_delay_scale * (dirty - min) / (max - dirty) min_time is then capped at 100 milliseconds. .fi .sp The delay has two degrees of freedom that can be adjusted via tunables. The percentage of dirty data at which we start to delay is defined by \fBzfs_delay_min_dirty_percent\fR. This should typically be at or above \fBzfs_vdev_async_write_active_max_dirty_percent\fR so that we only start to delay after writing at full speed has failed to keep up with the incoming write rate. The scale of the curve is defined by \fBzfs_delay_scale\fR. Roughly speaking, this variable determines the amount of delay at the midpoint of the curve. .sp .nf delay 10ms +-------------------------------------------------------------*+ | *| 9ms + *+ | *| 8ms + *+ | * | 7ms + * + | * | 6ms + * + | * | 5ms + * + | * | 4ms + * + | * | 3ms + * + | * | 2ms + (midpoint) * + | | ** | 1ms + v *** + | zfs_delay_scale ----------> ******** | 0 +-------------------------------------*********----------------+ 0% <- zfs_dirty_data_max -> 100% .fi .sp Note that since the delay is added to the outstanding time remaining on the most recent transaction, the delay is effectively the inverse of IOPS. Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve was chosen such that small changes in the amount of accumulated dirty data in the first 3/4 of the curve yield relatively small differences in the amount of delay. .sp The effects can be easier to understand when the amount of delay is represented on a log scale: .sp .nf delay 100ms +-------------------------------------------------------------++ + + | | + *+ 10ms + *+ + ** + | (midpoint) ** | + | ** + 1ms + v **** + + zfs_delay_scale ----------> ***** + | **** | + **** + 100us + ** + + * + | * | + * + 10us + * + + + | | + + +--------------------------------------------------------------+ 0% <- zfs_dirty_data_max -> 100% .fi .sp Note here that only as the amount of dirty data approaches its limit does the delay start to increase rapidly. The goal of a properly tuned system should be to keep the amount of dirty data out of that range by first ensuring that the appropriate limits are set for the I/O scheduler to reach optimal throughput on the backend storage, and then by changing the value of \fBzfs_delay_scale\fR to increase the steepness of the curve. diff --git a/module/zfs/spa.c b/module/zfs/spa.c index a30821e045fa..26995575adaa 100644 --- a/module/zfs/spa.c +++ b/module/zfs/spa.c @@ -1,9885 +1,9929 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright (c) 2016 Actifio, Inc. All rights reserved. * Copyright 2018 Joyent, Inc. * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. * Copyright 2017 Joyent, Inc. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2021, Colm Buckley */ /* * SPA: Storage Pool Allocator * * This file contains all the routines used when modifying on-disk SPA state. * This includes opening, importing, destroying, exporting a pool, and syncing a * pool. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include #endif /* _KERNEL */ #include "zfs_prop.h" #include "zfs_comutil.h" /* * The interval, in seconds, at which failed configuration cache file writes * should be retried. */ int zfs_ccw_retry_interval = 300; typedef enum zti_modes { ZTI_MODE_FIXED, /* value is # of threads (min 1) */ ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ + ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ ZTI_MODE_NULL, /* don't create a taskq */ ZTI_NMODES } zti_modes_t; #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } +#define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } #define ZTI_N(n) ZTI_P(n, 1) #define ZTI_ONE ZTI_N(1) typedef struct zio_taskq_info { zti_modes_t zti_mode; uint_t zti_value; uint_t zti_count; } zio_taskq_info_t; static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { "iss", "iss_h", "int", "int_h" }; /* * This table defines the taskq settings for each ZFS I/O type. When * initializing a pool, we use this table to create an appropriately sized * taskq. Some operations are low volume and therefore have a small, static * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE * macros. Other operations process a large amount of data; the ZTI_BATCH * macro causes us to create a taskq oriented for throughput. Some operations * are so high frequency and short-lived that the taskq itself can become a * point of lock contention. The ZTI_P(#, #) macro indicates that we need an * additional degree of parallelism specified by the number of threads per- * taskq and the number of taskqs; when dispatching an event in this case, the - * particular taskq is chosen at random. + * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH, + * but with number of taskqs also scaling with number of CPUs. * * The different taskq priorities are to handle the different contexts (issue * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that * need to be handled with minimum delay. */ const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ - { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ - { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */ - { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ + { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ + { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ + { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ }; static void spa_sync_version(void *arg, dmu_tx_t *tx); static void spa_sync_props(void *arg, dmu_tx_t *tx); static boolean_t spa_has_active_shared_spare(spa_t *spa); static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); static void spa_vdev_resilver_done(spa_t *spa); -uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ +uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ +uint_t zio_taskq_batch_tpq; /* threads per taskq */ boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ uint_t zio_taskq_basedc = 80; /* base duty cycle */ boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ /* * Report any spa_load_verify errors found, but do not fail spa_load. * This is used by zdb to analyze non-idle pools. */ boolean_t spa_load_verify_dryrun = B_FALSE; /* * This (illegal) pool name is used when temporarily importing a spa_t in order * to get the vdev stats associated with the imported devices. */ #define TRYIMPORT_NAME "$import" /* * For debugging purposes: print out vdev tree during pool import. */ int spa_load_print_vdev_tree = B_FALSE; /* * A non-zero value for zfs_max_missing_tvds means that we allow importing * pools with missing top-level vdevs. This is strictly intended for advanced * pool recovery cases since missing data is almost inevitable. Pools with * missing devices can only be imported read-only for safety reasons, and their * fail-mode will be automatically set to "continue". * * With 1 missing vdev we should be able to import the pool and mount all * datasets. User data that was not modified after the missing device has been * added should be recoverable. This means that snapshots created prior to the * addition of that device should be completely intact. * * With 2 missing vdevs, some datasets may fail to mount since there are * dataset statistics that are stored as regular metadata. Some data might be * recoverable if those vdevs were added recently. * * With 3 or more missing vdevs, the pool is severely damaged and MOS entries * may be missing entirely. Chances of data recovery are very low. Note that * there are also risks of performing an inadvertent rewind as we might be * missing all the vdevs with the latest uberblocks. */ unsigned long zfs_max_missing_tvds = 0; /* * The parameters below are similar to zfs_max_missing_tvds but are only * intended for a preliminary open of the pool with an untrusted config which * might be incomplete or out-dated. * * We are more tolerant for pools opened from a cachefile since we could have * an out-dated cachefile where a device removal was not registered. * We could have set the limit arbitrarily high but in the case where devices * are really missing we would want to return the proper error codes; we chose * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available * and we get a chance to retrieve the trusted config. */ uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; /* * In the case where config was assembled by scanning device paths (/dev/dsks * by default) we are less tolerant since all the existing devices should have * been detected and we want spa_load to return the right error codes. */ uint64_t zfs_max_missing_tvds_scan = 0; /* * Debugging aid that pauses spa_sync() towards the end. */ boolean_t zfs_pause_spa_sync = B_FALSE; /* * Variables to indicate the livelist condense zthr func should wait at certain * points for the livelist to be removed - used to test condense/destroy races */ int zfs_livelist_condense_zthr_pause = 0; int zfs_livelist_condense_sync_pause = 0; /* * Variables to track whether or not condense cancellation has been * triggered in testing. */ int zfs_livelist_condense_sync_cancel = 0; int zfs_livelist_condense_zthr_cancel = 0; /* * Variable to track whether or not extra ALLOC blkptrs were added to a * livelist entry while it was being condensed (caused by the way we track * remapped blkptrs in dbuf_remap_impl) */ int zfs_livelist_condense_new_alloc = 0; /* * ========================================================================== * SPA properties routines * ========================================================================== */ /* * Add a (source=src, propname=propval) list to an nvlist. */ static void spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, uint64_t intval, zprop_source_t src) { const char *propname = zpool_prop_to_name(prop); nvlist_t *propval; VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); if (strval != NULL) VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); else VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); nvlist_free(propval); } /* * Get property values from the spa configuration. */ static void spa_prop_get_config(spa_t *spa, nvlist_t **nvp) { vdev_t *rvd = spa->spa_root_vdev; dsl_pool_t *pool = spa->spa_dsl_pool; uint64_t size, alloc, cap, version; const zprop_source_t src = ZPROP_SRC_NONE; spa_config_dirent_t *dp; metaslab_class_t *mc = spa_normal_class(spa); ASSERT(MUTEX_HELD(&spa->spa_props_lock)); if (rvd != NULL) { alloc = metaslab_class_get_alloc(mc); alloc += metaslab_class_get_alloc(spa_special_class(spa)); alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); size = metaslab_class_get_space(mc); size += metaslab_class_get_space(spa_special_class(spa)); size += metaslab_class_get_space(spa_dedup_class(spa)); size += metaslab_class_get_space(spa_embedded_log_class(spa)); spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, size - alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, spa->spa_checkpoint_info.sci_dspace, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, metaslab_class_fragmentation(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, metaslab_class_expandable_space(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, (spa_mode(spa) == SPA_MODE_READ), src); cap = (size == 0) ? 0 : (alloc * 100 / size); spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, ddt_get_pool_dedup_ratio(spa), src); spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, rvd->vdev_state, src); version = spa_version(spa); if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, ZPROP_SRC_DEFAULT); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, ZPROP_SRC_LOCAL); } spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, NULL, spa_load_guid(spa), src); } if (pool != NULL) { /* * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, * when opening pools before this version freedir will be NULL. */ if (pool->dp_free_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 0, src); } if (pool->dp_leak_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 0, src); } } spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); if (spa->spa_comment != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 0, ZPROP_SRC_LOCAL); } if (spa->spa_compatibility != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY, spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); } if (spa->spa_root != NULL) spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 0, ZPROP_SRC_LOCAL); if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); } if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, DNODE_MAX_SIZE, ZPROP_SRC_NONE); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, DNODE_MIN_SIZE, ZPROP_SRC_NONE); } if ((dp = list_head(&spa->spa_config_list)) != NULL) { if (dp->scd_path == NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, "none", 0, ZPROP_SRC_LOCAL); } else if (strcmp(dp->scd_path, spa_config_path) != 0) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, dp->scd_path, 0, ZPROP_SRC_LOCAL); } } } /* * Get zpool property values. */ int spa_prop_get(spa_t *spa, nvlist_t **nvp) { objset_t *mos = spa->spa_meta_objset; zap_cursor_t zc; zap_attribute_t za; dsl_pool_t *dp; int err; err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); if (err) return (err); dp = spa_get_dsl(spa); dsl_pool_config_enter(dp, FTAG); mutex_enter(&spa->spa_props_lock); /* * Get properties from the spa config. */ spa_prop_get_config(spa, nvp); /* If no pool property object, no more prop to get. */ if (mos == NULL || spa->spa_pool_props_object == 0) goto out; /* * Get properties from the MOS pool property object. */ for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); (err = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { uint64_t intval = 0; char *strval = NULL; zprop_source_t src = ZPROP_SRC_DEFAULT; zpool_prop_t prop; if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) continue; switch (za.za_integer_length) { case 8: /* integer property */ if (za.za_first_integer != zpool_prop_default_numeric(prop)) src = ZPROP_SRC_LOCAL; if (prop == ZPOOL_PROP_BOOTFS) { dsl_dataset_t *ds = NULL; err = dsl_dataset_hold_obj(dp, za.za_first_integer, FTAG, &ds); if (err != 0) break; strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); dsl_dataset_name(ds, strval); dsl_dataset_rele(ds, FTAG); } else { strval = NULL; intval = za.za_first_integer; } spa_prop_add_list(*nvp, prop, strval, intval, src); if (strval != NULL) kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); break; case 1: /* string property */ strval = kmem_alloc(za.za_num_integers, KM_SLEEP); err = zap_lookup(mos, spa->spa_pool_props_object, za.za_name, 1, za.za_num_integers, strval); if (err) { kmem_free(strval, za.za_num_integers); break; } spa_prop_add_list(*nvp, prop, strval, 0, src); kmem_free(strval, za.za_num_integers); break; default: break; } } zap_cursor_fini(&zc); out: mutex_exit(&spa->spa_props_lock); dsl_pool_config_exit(dp, FTAG); if (err && err != ENOENT) { nvlist_free(*nvp); *nvp = NULL; return (err); } return (0); } /* * Validate the given pool properties nvlist and modify the list * for the property values to be set. */ static int spa_prop_validate(spa_t *spa, nvlist_t *props) { nvpair_t *elem; int error = 0, reset_bootfs = 0; uint64_t objnum = 0; boolean_t has_feature = B_FALSE; elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { uint64_t intval; char *strval, *slash, *check, *fname; const char *propname = nvpair_name(elem); zpool_prop_t prop = zpool_name_to_prop(propname); switch (prop) { case ZPOOL_PROP_INVAL: if (!zpool_prop_feature(propname)) { error = SET_ERROR(EINVAL); break; } /* * Sanitize the input. */ if (nvpair_type(elem) != DATA_TYPE_UINT64) { error = SET_ERROR(EINVAL); break; } if (nvpair_value_uint64(elem, &intval) != 0) { error = SET_ERROR(EINVAL); break; } if (intval != 0) { error = SET_ERROR(EINVAL); break; } fname = strchr(propname, '@') + 1; if (zfeature_lookup_name(fname, NULL) != 0) { error = SET_ERROR(EINVAL); break; } has_feature = B_TRUE; break; case ZPOOL_PROP_VERSION: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < spa_version(spa) || intval > SPA_VERSION_BEFORE_FEATURES || has_feature)) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_DELEGATION: case ZPOOL_PROP_AUTOREPLACE: case ZPOOL_PROP_LISTSNAPS: case ZPOOL_PROP_AUTOEXPAND: case ZPOOL_PROP_AUTOTRIM: error = nvpair_value_uint64(elem, &intval); if (!error && intval > 1) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_MULTIHOST: error = nvpair_value_uint64(elem, &intval); if (!error && intval > 1) error = SET_ERROR(EINVAL); if (!error) { uint32_t hostid = zone_get_hostid(NULL); if (hostid) spa->spa_hostid = hostid; else error = SET_ERROR(ENOTSUP); } break; case ZPOOL_PROP_BOOTFS: /* * If the pool version is less than SPA_VERSION_BOOTFS, * or the pool is still being created (version == 0), * the bootfs property cannot be set. */ if (spa_version(spa) < SPA_VERSION_BOOTFS) { error = SET_ERROR(ENOTSUP); break; } /* * Make sure the vdev config is bootable */ if (!vdev_is_bootable(spa->spa_root_vdev)) { error = SET_ERROR(ENOTSUP); break; } reset_bootfs = 1; error = nvpair_value_string(elem, &strval); if (!error) { objset_t *os; if (strval == NULL || strval[0] == '\0') { objnum = zpool_prop_default_numeric( ZPOOL_PROP_BOOTFS); break; } error = dmu_objset_hold(strval, FTAG, &os); if (error != 0) break; /* Must be ZPL. */ if (dmu_objset_type(os) != DMU_OST_ZFS) { error = SET_ERROR(ENOTSUP); } else { objnum = dmu_objset_id(os); } dmu_objset_rele(os, FTAG); } break; case ZPOOL_PROP_FAILUREMODE: error = nvpair_value_uint64(elem, &intval); if (!error && intval > ZIO_FAILURE_MODE_PANIC) error = SET_ERROR(EINVAL); /* * This is a special case which only occurs when * the pool has completely failed. This allows * the user to change the in-core failmode property * without syncing it out to disk (I/Os might * currently be blocked). We do this by returning * EIO to the caller (spa_prop_set) to trick it * into thinking we encountered a property validation * error. */ if (!error && spa_suspended(spa)) { spa->spa_failmode = intval; error = SET_ERROR(EIO); } break; case ZPOOL_PROP_CACHEFILE: if ((error = nvpair_value_string(elem, &strval)) != 0) break; if (strval[0] == '\0') break; if (strcmp(strval, "none") == 0) break; if (strval[0] != '/') { error = SET_ERROR(EINVAL); break; } slash = strrchr(strval, '/'); ASSERT(slash != NULL); if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || strcmp(slash, "/..") == 0) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_COMMENT: if ((error = nvpair_value_string(elem, &strval)) != 0) break; for (check = strval; *check != '\0'; check++) { if (!isprint(*check)) { error = SET_ERROR(EINVAL); break; } } if (strlen(strval) > ZPROP_MAX_COMMENT) error = SET_ERROR(E2BIG); break; default: break; } if (error) break; } (void) nvlist_remove_all(props, zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); if (!error && reset_bootfs) { error = nvlist_remove(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); if (!error) { error = nvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); } } return (error); } void spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) { char *cachefile; spa_config_dirent_t *dp; if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), &cachefile) != 0) return; dp = kmem_alloc(sizeof (spa_config_dirent_t), KM_SLEEP); if (cachefile[0] == '\0') dp->scd_path = spa_strdup(spa_config_path); else if (strcmp(cachefile, "none") == 0) dp->scd_path = NULL; else dp->scd_path = spa_strdup(cachefile); list_insert_head(&spa->spa_config_list, dp); if (need_sync) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } int spa_prop_set(spa_t *spa, nvlist_t *nvp) { int error; nvpair_t *elem = NULL; boolean_t need_sync = B_FALSE; if ((error = spa_prop_validate(spa, nvp)) != 0) return (error); while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT || prop == ZPOOL_PROP_READONLY) continue; if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { uint64_t ver; if (prop == ZPOOL_PROP_VERSION) { VERIFY(nvpair_value_uint64(elem, &ver) == 0); } else { ASSERT(zpool_prop_feature(nvpair_name(elem))); ver = SPA_VERSION_FEATURES; need_sync = B_TRUE; } /* Save time if the version is already set. */ if (ver == spa_version(spa)) continue; /* * In addition to the pool directory object, we might * create the pool properties object, the features for * read object, the features for write object, or the * feature descriptions object. */ error = dsl_sync_task(spa->spa_name, NULL, spa_sync_version, &ver, 6, ZFS_SPACE_CHECK_RESERVED); if (error) return (error); continue; } need_sync = B_TRUE; break; } if (need_sync) { return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, nvp, 6, ZFS_SPACE_CHECK_RESERVED)); } return (0); } /* * If the bootfs property value is dsobj, clear it. */ void spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) { if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { VERIFY(zap_remove(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); spa->spa_bootfs = 0; } } /*ARGSUSED*/ static int spa_change_guid_check(void *arg, dmu_tx_t *tx) { uint64_t *newguid __maybe_unused = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; vdev_t *rvd = spa->spa_root_vdev; uint64_t vdev_state; if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { int error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (SET_ERROR(error)); } spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); vdev_state = rvd->vdev_state; spa_config_exit(spa, SCL_STATE, FTAG); if (vdev_state != VDEV_STATE_HEALTHY) return (SET_ERROR(ENXIO)); ASSERT3U(spa_guid(spa), !=, *newguid); return (0); } static void spa_change_guid_sync(void *arg, dmu_tx_t *tx) { uint64_t *newguid = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; uint64_t oldguid; vdev_t *rvd = spa->spa_root_vdev; oldguid = spa_guid(spa); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); rvd->vdev_guid = *newguid; rvd->vdev_guid_sum += (*newguid - oldguid); vdev_config_dirty(rvd); spa_config_exit(spa, SCL_STATE, FTAG); spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", (u_longlong_t)oldguid, (u_longlong_t)*newguid); } /* * Change the GUID for the pool. This is done so that we can later * re-import a pool built from a clone of our own vdevs. We will modify * the root vdev's guid, our own pool guid, and then mark all of our * vdevs dirty. Note that we must make sure that all our vdevs are * online when we do this, or else any vdevs that weren't present * would be orphaned from our pool. We are also going to issue a * sysevent to update any watchers. */ int spa_change_guid(spa_t *spa) { int error; uint64_t guid; mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); guid = spa_generate_guid(NULL); error = dsl_sync_task(spa->spa_name, spa_change_guid_check, spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); if (error == 0) { spa_write_cachefile(spa, B_FALSE, B_TRUE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); } mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * ========================================================================== * SPA state manipulation (open/create/destroy/import/export) * ========================================================================== */ static int spa_error_entry_compare(const void *a, const void *b) { const spa_error_entry_t *sa = (const spa_error_entry_t *)a; const spa_error_entry_t *sb = (const spa_error_entry_t *)b; int ret; ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, sizeof (zbookmark_phys_t)); return (TREE_ISIGN(ret)); } /* * Utility function which retrieves copies of the current logs and * re-initializes them in the process. */ void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) { ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } static void spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; enum zti_modes mode = ztip->zti_mode; uint_t value = ztip->zti_value; uint_t count = ztip->zti_count; spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; - uint_t flags = 0; + uint_t cpus, flags = TASKQ_DYNAMIC; boolean_t batch = B_FALSE; - if (mode == ZTI_MODE_NULL) { - tqs->stqs_count = 0; - tqs->stqs_taskq = NULL; - return; - } - - ASSERT3U(count, >, 0); - - tqs->stqs_count = count; - tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); - switch (mode) { case ZTI_MODE_FIXED: - ASSERT3U(value, >=, 1); - value = MAX(value, 1); - flags |= TASKQ_DYNAMIC; + ASSERT3U(value, >, 0); break; case ZTI_MODE_BATCH: batch = B_TRUE; flags |= TASKQ_THREADS_CPU_PCT; value = MIN(zio_taskq_batch_pct, 100); break; + case ZTI_MODE_SCALE: + flags |= TASKQ_THREADS_CPU_PCT; + /* + * We want more taskqs to reduce lock contention, but we want + * less for better request ordering and CPU utilization. + */ + cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); + if (zio_taskq_batch_tpq > 0) { + count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / + zio_taskq_batch_tpq); + } else { + /* + * Prefer 6 threads per taskq, but no more taskqs + * than threads in them on large systems. For 80%: + * + * taskq taskq total + * cpus taskqs percent threads threads + * ------- ------- ------- ------- ------- + * 1 1 80% 1 1 + * 2 1 80% 1 1 + * 4 1 80% 3 3 + * 8 2 40% 3 6 + * 16 3 27% 4 12 + * 32 5 16% 5 25 + * 64 7 11% 7 49 + * 128 10 8% 10 100 + * 256 14 6% 15 210 + */ + count = 1 + cpus / 6; + while (count * count > cpus) + count--; + } + /* Limit each taskq within 100% to not trigger assertion. */ + count = MAX(count, (zio_taskq_batch_pct + 99) / 100); + value = (zio_taskq_batch_pct + count / 2) / count; + break; + + case ZTI_MODE_NULL: + tqs->stqs_count = 0; + tqs->stqs_taskq = NULL; + return; + default: panic("unrecognized mode for %s_%s taskq (%u:%u) in " "spa_activate()", zio_type_name[t], zio_taskq_types[q], mode, value); break; } + ASSERT3U(count, >, 0); + tqs->stqs_count = count; + tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); + for (uint_t i = 0; i < count; i++) { taskq_t *tq; char name[32]; - (void) snprintf(name, sizeof (name), "%s_%s", - zio_type_name[t], zio_taskq_types[q]); + if (count > 1) + (void) snprintf(name, sizeof (name), "%s_%s_%u", + zio_type_name[t], zio_taskq_types[q], i); + else + (void) snprintf(name, sizeof (name), "%s_%s", + zio_type_name[t], zio_taskq_types[q]); if (zio_taskq_sysdc && spa->spa_proc != &p0) { if (batch) flags |= TASKQ_DC_BATCH; tq = taskq_create_sysdc(name, value, 50, INT_MAX, spa->spa_proc, zio_taskq_basedc, flags); } else { pri_t pri = maxclsyspri; /* * The write issue taskq can be extremely CPU * intensive. Run it at slightly less important * priority than the other taskqs. * * Under Linux and FreeBSD this means incrementing * the priority value as opposed to platforms like * illumos where it should be decremented. * * On FreeBSD, if priorities divided by four (RQ_PPQ) * are equal then a difference between them is * insignificant. */ if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { #if defined(__linux__) pri++; #elif defined(__FreeBSD__) pri += 4; #else #error "unknown OS" #endif } tq = taskq_create_proc(name, value, pri, 50, INT_MAX, spa->spa_proc, flags); } tqs->stqs_taskq[i] = tq; } } static void spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; if (tqs->stqs_taskq == NULL) { ASSERT3U(tqs->stqs_count, ==, 0); return; } for (uint_t i = 0; i < tqs->stqs_count; i++) { ASSERT3P(tqs->stqs_taskq[i], !=, NULL); taskq_destroy(tqs->stqs_taskq[i]); } kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); tqs->stqs_taskq = NULL; } /* * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. * Note that a type may have multiple discrete taskqs to avoid lock contention * on the taskq itself. In that case we choose which taskq at random by using * the low bits of gethrtime(). */ void spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; taskq_t *tq; ASSERT3P(tqs->stqs_taskq, !=, NULL); ASSERT3U(tqs->stqs_count, !=, 0); if (tqs->stqs_count == 1) { tq = tqs->stqs_taskq[0]; } else { tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; } taskq_dispatch_ent(tq, func, arg, flags, ent); } /* * Same as spa_taskq_dispatch_ent() but block on the task until completion. */ void spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; taskq_t *tq; taskqid_t id; ASSERT3P(tqs->stqs_taskq, !=, NULL); ASSERT3U(tqs->stqs_count, !=, 0); if (tqs->stqs_count == 1) { tq = tqs->stqs_taskq[0]; } else { tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; } id = taskq_dispatch(tq, func, arg, flags); if (id) taskq_wait_id(tq, id); } static void spa_create_zio_taskqs(spa_t *spa) { for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_init(spa, t, q); } } } /* * Disabled until spa_thread() can be adapted for Linux. */ #undef HAVE_SPA_THREAD #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) static void spa_thread(void *arg) { psetid_t zio_taskq_psrset_bind = PS_NONE; callb_cpr_t cprinfo; spa_t *spa = arg; user_t *pu = PTOU(curproc); CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, spa->spa_name); ASSERT(curproc != &p0); (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), "zpool-%s", spa->spa_name); (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); /* bind this thread to the requested psrset */ if (zio_taskq_psrset_bind != PS_NONE) { pool_lock(); mutex_enter(&cpu_lock); mutex_enter(&pidlock); mutex_enter(&curproc->p_lock); if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 0, NULL, NULL) == 0) { curthread->t_bind_pset = zio_taskq_psrset_bind; } else { cmn_err(CE_WARN, "Couldn't bind process for zfs pool \"%s\" to " "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); } mutex_exit(&curproc->p_lock); mutex_exit(&pidlock); mutex_exit(&cpu_lock); pool_unlock(); } if (zio_taskq_sysdc) { sysdc_thread_enter(curthread, 100, 0); } spa->spa_proc = curproc; spa->spa_did = curthread->t_did; spa_create_zio_taskqs(spa); mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); spa->spa_proc_state = SPA_PROC_ACTIVE; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_SAFE_BEGIN(&cprinfo); while (spa->spa_proc_state == SPA_PROC_ACTIVE) cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); spa->spa_proc_state = SPA_PROC_GONE; spa->spa_proc = &p0; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ mutex_enter(&curproc->p_lock); lwp_exit(); } #endif /* * Activate an uninitialized pool. */ static void spa_activate(spa_t *spa, spa_mode_t mode) { ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); spa->spa_state = POOL_STATE_ACTIVE; spa->spa_mode = mode; spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); spa->spa_embedded_log_class = metaslab_class_create(spa, zfs_metaslab_ops); spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops); spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops); /* Try to create a covering process */ mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_NONE); ASSERT(spa->spa_proc == &p0); spa->spa_did = 0; #ifdef HAVE_SPA_THREAD /* Only create a process if we're going to be around a while. */ if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, NULL, 0) == 0) { spa->spa_proc_state = SPA_PROC_CREATED; while (spa->spa_proc_state == SPA_PROC_CREATED) { cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); ASSERT(spa->spa_proc != &p0); ASSERT(spa->spa_did != 0); } else { #ifdef _KERNEL cmn_err(CE_WARN, "Couldn't create process for zfs pool \"%s\"\n", spa->spa_name); #endif } } #endif /* HAVE_SPA_THREAD */ mutex_exit(&spa->spa_proc_lock); /* If we didn't create a process, we need to create our taskqs. */ if (spa->spa_proc == &p0) { spa_create_zio_taskqs(spa); } for (size_t i = 0; i < TXG_SIZE; i++) { spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); } list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_config_dirty_node)); list_create(&spa->spa_evicting_os_list, sizeof (objset_t), offsetof(objset_t, os_evicting_node)); list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_state_dirty_node)); txg_list_create(&spa->spa_vdev_txg_list, spa, offsetof(struct vdev, vdev_txg_node)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); spa_keystore_init(&spa->spa_keystore); /* * This taskq is used to perform zvol-minor-related tasks * asynchronously. This has several advantages, including easy * resolution of various deadlocks. * * The taskq must be single threaded to ensure tasks are always * processed in the order in which they were dispatched. * * A taskq per pool allows one to keep the pools independent. * This way if one pool is suspended, it will not impact another. * * The preferred location to dispatch a zvol minor task is a sync * task. In this context, there is easy access to the spa_t and minimal * error handling is required because the sync task must succeed. */ spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1, INT_MAX, 0); /* * Taskq dedicated to prefetcher threads: this is used to prevent the * pool traverse code from monopolizing the global (and limited) * system_taskq by inappropriately scheduling long running tasks on it. */ spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); /* * The taskq to upgrade datasets in this pool. Currently used by * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. */ spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); } /* * Opposite of spa_activate(). */ static void spa_deactivate(spa_t *spa) { ASSERT(spa->spa_sync_on == B_FALSE); ASSERT(spa->spa_dsl_pool == NULL); ASSERT(spa->spa_root_vdev == NULL); ASSERT(spa->spa_async_zio_root == NULL); ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); spa_evicting_os_wait(spa); if (spa->spa_zvol_taskq) { taskq_destroy(spa->spa_zvol_taskq); spa->spa_zvol_taskq = NULL; } if (spa->spa_prefetch_taskq) { taskq_destroy(spa->spa_prefetch_taskq); spa->spa_prefetch_taskq = NULL; } if (spa->spa_upgrade_taskq) { taskq_destroy(spa->spa_upgrade_taskq); spa->spa_upgrade_taskq = NULL; } txg_list_destroy(&spa->spa_vdev_txg_list); list_destroy(&spa->spa_config_dirty_list); list_destroy(&spa->spa_evicting_os_list); list_destroy(&spa->spa_state_dirty_list); taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_fini(spa, t, q); } } for (size_t i = 0; i < TXG_SIZE; i++) { ASSERT3P(spa->spa_txg_zio[i], !=, NULL); VERIFY0(zio_wait(spa->spa_txg_zio[i])); spa->spa_txg_zio[i] = NULL; } metaslab_class_destroy(spa->spa_normal_class); spa->spa_normal_class = NULL; metaslab_class_destroy(spa->spa_log_class); spa->spa_log_class = NULL; metaslab_class_destroy(spa->spa_embedded_log_class); spa->spa_embedded_log_class = NULL; metaslab_class_destroy(spa->spa_special_class); spa->spa_special_class = NULL; metaslab_class_destroy(spa->spa_dedup_class); spa->spa_dedup_class = NULL; /* * If this was part of an import or the open otherwise failed, we may * still have errors left in the queues. Empty them just in case. */ spa_errlog_drain(spa); avl_destroy(&spa->spa_errlist_scrub); avl_destroy(&spa->spa_errlist_last); spa_keystore_fini(&spa->spa_keystore); spa->spa_state = POOL_STATE_UNINITIALIZED; mutex_enter(&spa->spa_proc_lock); if (spa->spa_proc_state != SPA_PROC_NONE) { ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); spa->spa_proc_state = SPA_PROC_DEACTIVATE; cv_broadcast(&spa->spa_proc_cv); while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { ASSERT(spa->spa_proc != &p0); cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_GONE); spa->spa_proc_state = SPA_PROC_NONE; } ASSERT(spa->spa_proc == &p0); mutex_exit(&spa->spa_proc_lock); /* * We want to make sure spa_thread() has actually exited the ZFS * module, so that the module can't be unloaded out from underneath * it. */ if (spa->spa_did != 0) { thread_join(spa->spa_did); spa->spa_did = 0; } } /* * Verify a pool configuration, and construct the vdev tree appropriately. This * will create all the necessary vdevs in the appropriate layout, with each vdev * in the CLOSED state. This will prep the pool before open/creation/import. * All vdev validation is done by the vdev_alloc() routine. */ int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int atype) { nvlist_t **child; uint_t children; int error; if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) return (error); if ((*vdp)->vdev_ops->vdev_op_leaf) return (0); error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children); if (error == ENOENT) return (0); if (error) { vdev_free(*vdp); *vdp = NULL; return (SET_ERROR(EINVAL)); } for (int c = 0; c < children; c++) { vdev_t *vd; if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, atype)) != 0) { vdev_free(*vdp); *vdp = NULL; return (error); } } ASSERT(*vdp != NULL); return (0); } static boolean_t spa_should_flush_logs_on_unload(spa_t *spa) { if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) return (B_FALSE); if (!spa_writeable(spa)) return (B_FALSE); if (!spa->spa_sync_on) return (B_FALSE); if (spa_state(spa) != POOL_STATE_EXPORTED) return (B_FALSE); if (zfs_keep_log_spacemaps_at_export) return (B_FALSE); return (B_TRUE); } /* * Opens a transaction that will set the flag that will instruct * spa_sync to attempt to flush all the metaslabs for that txg. */ static void spa_unload_log_sm_flush_all(spa_t *spa) { dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); ASSERT3U(spa->spa_log_flushall_txg, ==, 0); spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); dmu_tx_commit(tx); txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); } static void spa_unload_log_sm_metadata(spa_t *spa) { void *cookie = NULL; spa_log_sm_t *sls; while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, &cookie)) != NULL) { VERIFY0(sls->sls_mscount); kmem_free(sls, sizeof (spa_log_sm_t)); } for (log_summary_entry_t *e = list_head(&spa->spa_log_summary); e != NULL; e = list_head(&spa->spa_log_summary)) { VERIFY0(e->lse_mscount); list_remove(&spa->spa_log_summary, e); kmem_free(e, sizeof (log_summary_entry_t)); } spa->spa_unflushed_stats.sus_nblocks = 0; spa->spa_unflushed_stats.sus_memused = 0; spa->spa_unflushed_stats.sus_blocklimit = 0; } static void spa_destroy_aux_threads(spa_t *spa) { if (spa->spa_condense_zthr != NULL) { zthr_destroy(spa->spa_condense_zthr); spa->spa_condense_zthr = NULL; } if (spa->spa_checkpoint_discard_zthr != NULL) { zthr_destroy(spa->spa_checkpoint_discard_zthr); spa->spa_checkpoint_discard_zthr = NULL; } if (spa->spa_livelist_delete_zthr != NULL) { zthr_destroy(spa->spa_livelist_delete_zthr); spa->spa_livelist_delete_zthr = NULL; } if (spa->spa_livelist_condense_zthr != NULL) { zthr_destroy(spa->spa_livelist_condense_zthr); spa->spa_livelist_condense_zthr = NULL; } } /* * Opposite of spa_load(). */ static void spa_unload(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); spa_import_progress_remove(spa_guid(spa)); spa_load_note(spa, "UNLOADING"); spa_wake_waiters(spa); /* * If the log space map feature is enabled and the pool is getting * exported (but not destroyed), we want to spend some time flushing * as many metaslabs as we can in an attempt to destroy log space * maps and save import time. */ if (spa_should_flush_logs_on_unload(spa)) spa_unload_log_sm_flush_all(spa); /* * Stop async tasks. */ spa_async_suspend(spa); if (spa->spa_root_vdev) { vdev_t *root_vdev = spa->spa_root_vdev; vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE); vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); vdev_autotrim_stop_all(spa); vdev_rebuild_stop_all(spa); } /* * Stop syncing. */ if (spa->spa_sync_on) { txg_sync_stop(spa->spa_dsl_pool); spa->spa_sync_on = B_FALSE; } /* * This ensures that there is no async metaslab prefetching * while we attempt to unload the spa. */ if (spa->spa_root_vdev != NULL) { for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) { vdev_t *vc = spa->spa_root_vdev->vdev_child[c]; if (vc->vdev_mg != NULL) taskq_wait(vc->vdev_mg->mg_taskq); } } if (spa->spa_mmp.mmp_thread) mmp_thread_stop(spa); /* * Wait for any outstanding async I/O to complete. */ if (spa->spa_async_zio_root != NULL) { for (int i = 0; i < max_ncpus; i++) (void) zio_wait(spa->spa_async_zio_root[i]); kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); spa->spa_async_zio_root = NULL; } if (spa->spa_vdev_removal != NULL) { spa_vdev_removal_destroy(spa->spa_vdev_removal); spa->spa_vdev_removal = NULL; } spa_destroy_aux_threads(spa); spa_condense_fini(spa); bpobj_close(&spa->spa_deferred_bpobj); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); /* * Close all vdevs. */ if (spa->spa_root_vdev) vdev_free(spa->spa_root_vdev); ASSERT(spa->spa_root_vdev == NULL); /* * Close the dsl pool. */ if (spa->spa_dsl_pool) { dsl_pool_close(spa->spa_dsl_pool); spa->spa_dsl_pool = NULL; spa->spa_meta_objset = NULL; } ddt_unload(spa); spa_unload_log_sm_metadata(spa); /* * Drop and purge level 2 cache */ spa_l2cache_drop(spa); for (int i = 0; i < spa->spa_spares.sav_count; i++) vdev_free(spa->spa_spares.sav_vdevs[i]); if (spa->spa_spares.sav_vdevs) { kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); spa->spa_spares.sav_vdevs = NULL; } if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; } spa->spa_spares.sav_count = 0; for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); vdev_free(spa->spa_l2cache.sav_vdevs[i]); } if (spa->spa_l2cache.sav_vdevs) { kmem_free(spa->spa_l2cache.sav_vdevs, spa->spa_l2cache.sav_count * sizeof (void *)); spa->spa_l2cache.sav_vdevs = NULL; } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; } spa->spa_l2cache.sav_count = 0; spa->spa_async_suspended = 0; spa->spa_indirect_vdevs_loaded = B_FALSE; if (spa->spa_comment != NULL) { spa_strfree(spa->spa_comment); spa->spa_comment = NULL; } if (spa->spa_compatibility != NULL) { spa_strfree(spa->spa_compatibility); spa->spa_compatibility = NULL; } spa_config_exit(spa, SCL_ALL, spa); } /* * Load (or re-load) the current list of vdevs describing the active spares for * this pool. When this is called, we have some form of basic information in * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. */ void spa_load_spares(spa_t *spa) { nvlist_t **spares; uint_t nspares; int i; vdev_t *vd, *tvd; #ifndef _KERNEL /* * zdb opens both the current state of the pool and the * checkpointed state (if present), with a different spa_t. * * As spare vdevs are shared among open pools, we skip loading * them when we load the checkpointed state of the pool. */ if (!spa_writeable(spa)) return; #endif ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * First, close and free any existing spare vdevs. */ for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; /* Undo the call to spa_activate() below */ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL && tvd->vdev_isspare) spa_spare_remove(tvd); vdev_close(vd); vdev_free(vd); } if (spa->spa_spares.sav_vdevs) kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); if (spa->spa_spares.sav_config == NULL) nspares = 0; else VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); spa->spa_spares.sav_count = (int)nspares; spa->spa_spares.sav_vdevs = NULL; if (nspares == 0) return; /* * Construct the array of vdevs, opening them to get status in the * process. For each spare, there is potentially two different vdev_t * structures associated with it: one in the list of spares (used only * for basic validation purposes) and one in the active vdev * configuration (if it's spared in). During this phase we open and * validate each vdev on the spare list. If the vdev also exists in the * active configuration, then we also mark this vdev as an active spare. */ spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) { VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, VDEV_ALLOC_SPARE) == 0); ASSERT(vd != NULL); spa->spa_spares.sav_vdevs[i] = vd; if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL) { if (!tvd->vdev_isspare) spa_spare_add(tvd); /* * We only mark the spare active if we were successfully * able to load the vdev. Otherwise, importing a pool * with a bad active spare would result in strange * behavior, because multiple pool would think the spare * is actively in use. * * There is a vulnerability here to an equally bizarre * circumstance, where a dead active spare is later * brought back to life (onlined or otherwise). Given * the rarity of this scenario, and the extra complexity * it adds, we ignore the possibility. */ if (!vdev_is_dead(tvd)) spa_spare_activate(tvd); } vd->vdev_top = vd; vd->vdev_aux = &spa->spa_spares; if (vdev_open(vd) != 0) continue; if (vdev_validate_aux(vd) == 0) spa_spare_add(vd); } /* * Recompute the stashed list of spares, with status information * this time. */ VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) spares[i] = vdev_config_generate(spa, spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); for (i = 0; i < spa->spa_spares.sav_count; i++) nvlist_free(spares[i]); kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); } /* * Load (or re-load) the current list of vdevs describing the active l2cache for * this pool. When this is called, we have some form of basic information in * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. * Devices which are already active have their details maintained, and are * not re-opened. */ void spa_load_l2cache(spa_t *spa) { nvlist_t **l2cache = NULL; uint_t nl2cache; int i, j, oldnvdevs; uint64_t guid; vdev_t *vd, **oldvdevs, **newvdevs; spa_aux_vdev_t *sav = &spa->spa_l2cache; #ifndef _KERNEL /* * zdb opens both the current state of the pool and the * checkpointed state (if present), with a different spa_t. * * As L2 caches are part of the ARC which is shared among open * pools, we skip loading them when we load the checkpointed * state of the pool. */ if (!spa_writeable(spa)) return; #endif ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); oldvdevs = sav->sav_vdevs; oldnvdevs = sav->sav_count; sav->sav_vdevs = NULL; sav->sav_count = 0; if (sav->sav_config == NULL) { nl2cache = 0; newvdevs = NULL; goto out; } VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); /* * Process new nvlist of vdevs. */ for (i = 0; i < nl2cache; i++) { VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &guid) == 0); newvdevs[i] = NULL; for (j = 0; j < oldnvdevs; j++) { vd = oldvdevs[j]; if (vd != NULL && guid == vd->vdev_guid) { /* * Retain previous vdev for add/remove ops. */ newvdevs[i] = vd; oldvdevs[j] = NULL; break; } } if (newvdevs[i] == NULL) { /* * Create new vdev */ VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, VDEV_ALLOC_L2CACHE) == 0); ASSERT(vd != NULL); newvdevs[i] = vd; /* * Commit this vdev as an l2cache device, * even if it fails to open. */ spa_l2cache_add(vd); vd->vdev_top = vd; vd->vdev_aux = sav; spa_l2cache_activate(vd); if (vdev_open(vd) != 0) continue; (void) vdev_validate_aux(vd); if (!vdev_is_dead(vd)) l2arc_add_vdev(spa, vd); /* * Upon cache device addition to a pool or pool * creation with a cache device or if the header * of the device is invalid we issue an async * TRIM command for the whole device which will * execute if l2arc_trim_ahead > 0. */ spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); } } sav->sav_vdevs = newvdevs; sav->sav_count = (int)nl2cache; /* * Recompute the stashed list of l2cache devices, with status * information this time. */ VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); if (sav->sav_count > 0) l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) l2cache[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); VERIFY(nvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); out: /* * Purge vdevs that were dropped */ for (i = 0; i < oldnvdevs; i++) { uint64_t pool; vd = oldvdevs[i]; if (vd != NULL) { ASSERT(vd->vdev_isl2cache); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); vdev_clear_stats(vd); vdev_free(vd); } } if (oldvdevs) kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); for (i = 0; i < sav->sav_count; i++) nvlist_free(l2cache[i]); if (sav->sav_count) kmem_free(l2cache, sav->sav_count * sizeof (void *)); } static int load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) { dmu_buf_t *db; char *packed = NULL; size_t nvsize = 0; int error; *value = NULL; error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); if (error) return (error); nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); packed = vmem_alloc(nvsize, KM_SLEEP); error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, DMU_READ_PREFETCH); if (error == 0) error = nvlist_unpack(packed, nvsize, value, 0); vmem_free(packed, nvsize); return (error); } /* * Concrete top-level vdevs that are not missing and are not logs. At every * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. */ static uint64_t spa_healthy_core_tvds(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; uint64_t tvds = 0; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *vd = rvd->vdev_child[i]; if (vd->vdev_islog) continue; if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) tvds++; } return (tvds); } /* * Checks to see if the given vdev could not be opened, in which case we post a * sysevent to notify the autoreplace code that the device has been removed. */ static void spa_check_removed(vdev_t *vd) { for (uint64_t c = 0; c < vd->vdev_children; c++) spa_check_removed(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && vdev_is_concrete(vd)) { zfs_post_autoreplace(vd->vdev_spa, vd); spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); } } static int spa_check_for_missing_logs(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; /* * If we're doing a normal import, then build up any additional * diagnostic information about missing log devices. * We'll pass this up to the user for further processing. */ if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { nvlist_t **child, *nv; uint64_t idx = 0; child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), KM_SLEEP); VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; /* * We consider a device as missing only if it failed * to open (i.e. offline or faulted is not considered * as missing). */ if (tvd->vdev_islog && tvd->vdev_state == VDEV_STATE_CANT_OPEN) { child[idx++] = vdev_config_generate(spa, tvd, B_FALSE, VDEV_CONFIG_MISSING); } } if (idx > 0) { fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, child, idx); fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_MISSING_DEVICES, nv); for (uint64_t i = 0; i < idx; i++) nvlist_free(child[i]); } nvlist_free(nv); kmem_free(child, rvd->vdev_children * sizeof (char **)); if (idx > 0) { spa_load_failed(spa, "some log devices are missing"); vdev_dbgmsg_print_tree(rvd, 2); return (SET_ERROR(ENXIO)); } } else { for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_islog && tvd->vdev_state == VDEV_STATE_CANT_OPEN) { spa_set_log_state(spa, SPA_LOG_CLEAR); spa_load_note(spa, "some log devices are " "missing, ZIL is dropped."); vdev_dbgmsg_print_tree(rvd, 2); break; } } } return (0); } /* * Check for missing log devices */ static boolean_t spa_check_logs(spa_t *spa) { boolean_t rv = B_FALSE; dsl_pool_t *dp = spa_get_dsl(spa); switch (spa->spa_log_state) { default: break; case SPA_LOG_MISSING: /* need to recheck in case slog has been restored */ case SPA_LOG_UNKNOWN: rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); if (rv) spa_set_log_state(spa, SPA_LOG_MISSING); break; } return (rv); } /* * Passivate any log vdevs (note, does not apply to embedded log metaslabs). */ static boolean_t spa_passivate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; boolean_t slog_found = B_FALSE; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_islog) { ASSERT3P(tvd->vdev_log_mg, ==, NULL); metaslab_group_passivate(tvd->vdev_mg); slog_found = B_TRUE; } } return (slog_found); } /* * Activate any log vdevs (note, does not apply to embedded log metaslabs). */ static void spa_activate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_islog) { ASSERT3P(tvd->vdev_log_mg, ==, NULL); metaslab_group_activate(tvd->vdev_mg); } } } int spa_reset_logs(spa_t *spa) { int error; error = dmu_objset_find(spa_name(spa), zil_reset, NULL, DS_FIND_CHILDREN); if (error == 0) { /* * We successfully offlined the log device, sync out the * current txg so that the "stubby" block can be removed * by zil_sync(). */ txg_wait_synced(spa->spa_dsl_pool, 0); } return (error); } static void spa_aux_check_removed(spa_aux_vdev_t *sav) { for (int i = 0; i < sav->sav_count; i++) spa_check_removed(sav->sav_vdevs[i]); } void spa_claim_notify(zio_t *zio) { spa_t *spa = zio->io_spa; if (zio->io_error) return; mutex_enter(&spa->spa_props_lock); /* any mutex will do */ if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) spa->spa_claim_max_txg = zio->io_bp->blk_birth; mutex_exit(&spa->spa_props_lock); } typedef struct spa_load_error { uint64_t sle_meta_count; uint64_t sle_data_count; } spa_load_error_t; static void spa_load_verify_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; spa_load_error_t *sle = zio->io_private; dmu_object_type_t type = BP_GET_TYPE(bp); int error = zio->io_error; spa_t *spa = zio->io_spa; abd_free(zio->io_abd); if (error) { if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && type != DMU_OT_INTENT_LOG) atomic_inc_64(&sle->sle_meta_count); else atomic_inc_64(&sle->sle_data_count); } mutex_enter(&spa->spa_scrub_lock); spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); } /* * Maximum number of inflight bytes is the log2 fraction of the arc size. * By default, we set it to 1/16th of the arc. */ int spa_load_verify_shift = 4; int spa_load_verify_metadata = B_TRUE; int spa_load_verify_data = B_TRUE; /*ARGSUSED*/ static int spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) return (0); /* * Note: normally this routine will not be called if * spa_load_verify_metadata is not set. However, it may be useful * to manually set the flag after the traversal has begun. */ if (!spa_load_verify_metadata) return (0); if (!BP_IS_METADATA(bp) && !spa_load_verify_data) return (0); uint64_t maxinflight_bytes = arc_target_bytes() >> spa_load_verify_shift; zio_t *rio = arg; size_t size = BP_GET_PSIZE(bp); mutex_enter(&spa->spa_scrub_lock); while (spa->spa_load_verify_bytes >= maxinflight_bytes) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_load_verify_bytes += size; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); return (0); } /* ARGSUSED */ static int verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) return (SET_ERROR(ENAMETOOLONG)); return (0); } static int spa_load_verify(spa_t *spa) { zio_t *rio; spa_load_error_t sle = { 0 }; zpool_load_policy_t policy; boolean_t verify_ok = B_FALSE; int error = 0; zpool_get_load_policy(spa->spa_config, &policy); if (policy.zlp_rewind & ZPOOL_NEVER_REWIND) return (0); dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); error = dmu_objset_find_dp(spa->spa_dsl_pool, spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, DS_FIND_CHILDREN); dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); if (error != 0) return (error); rio = zio_root(spa, NULL, &sle, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); if (spa_load_verify_metadata) { if (spa->spa_extreme_rewind) { spa_load_note(spa, "performing a complete scan of the " "pool since extreme rewind is on. This may take " "a very long time.\n (spa_load_verify_data=%u, " "spa_load_verify_metadata=%u)", spa_load_verify_data, spa_load_verify_metadata); } error = traverse_pool(spa, spa->spa_verify_min_txg, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); } (void) zio_wait(rio); ASSERT0(spa->spa_load_verify_bytes); spa->spa_load_meta_errors = sle.sle_meta_count; spa->spa_load_data_errors = sle.sle_data_count; if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { spa_load_note(spa, "spa_load_verify found %llu metadata errors " "and %llu data errors", (u_longlong_t)sle.sle_meta_count, (u_longlong_t)sle.sle_data_count); } if (spa_load_verify_dryrun || (!error && sle.sle_meta_count <= policy.zlp_maxmeta && sle.sle_data_count <= policy.zlp_maxdata)) { int64_t loss = 0; verify_ok = B_TRUE; spa->spa_load_txg = spa->spa_uberblock.ub_txg; spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; VERIFY(nvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); VERIFY(nvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, loss) == 0); VERIFY(nvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); } else { spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; } if (spa_load_verify_dryrun) return (0); if (error) { if (error != ENXIO && error != EIO) error = SET_ERROR(EIO); return (error); } return (verify_ok ? 0 : EIO); } /* * Find a value in the pool props object. */ static void spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) { (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); } /* * Find a value in the pool directory object. */ static int spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) { int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, val); if (error != 0 && (error != ENOENT || log_enoent)) { spa_load_failed(spa, "couldn't get '%s' value in MOS directory " "[error=%d]", name, error); } return (error); } static int spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) { vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); return (SET_ERROR(err)); } boolean_t spa_livelist_delete_check(spa_t *spa) { return (spa->spa_livelists_to_delete != 0); } /* ARGSUSED */ static boolean_t spa_livelist_delete_cb_check(void *arg, zthr_t *z) { spa_t *spa = arg; return (spa_livelist_delete_check(spa)); } static int delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { spa_t *spa = arg; zio_free(spa, tx->tx_txg, bp); dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, -bp_get_dsize_sync(spa, bp), -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); return (0); } static int dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) { int err; zap_cursor_t zc; zap_attribute_t za; zap_cursor_init(&zc, os, zap_obj); err = zap_cursor_retrieve(&zc, &za); zap_cursor_fini(&zc); if (err == 0) *llp = za.za_first_integer; return (err); } /* * Components of livelist deletion that must be performed in syncing * context: freeing block pointers and updating the pool-wide data * structures to indicate how much work is left to do */ typedef struct sublist_delete_arg { spa_t *spa; dsl_deadlist_t *ll; uint64_t key; bplist_t *to_free; } sublist_delete_arg_t; static void sublist_delete_sync(void *arg, dmu_tx_t *tx) { sublist_delete_arg_t *sda = arg; spa_t *spa = sda->spa; dsl_deadlist_t *ll = sda->ll; uint64_t key = sda->key; bplist_t *to_free = sda->to_free; bplist_iterate(to_free, delete_blkptr_cb, spa, tx); dsl_deadlist_remove_entry(ll, key, tx); } typedef struct livelist_delete_arg { spa_t *spa; uint64_t ll_obj; uint64_t zap_obj; } livelist_delete_arg_t; static void livelist_delete_sync(void *arg, dmu_tx_t *tx) { livelist_delete_arg_t *lda = arg; spa_t *spa = lda->spa; uint64_t ll_obj = lda->ll_obj; uint64_t zap_obj = lda->zap_obj; objset_t *mos = spa->spa_meta_objset; uint64_t count; /* free the livelist and decrement the feature count */ VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); dsl_deadlist_free(mos, ll_obj, tx); spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); VERIFY0(zap_count(mos, zap_obj, &count)); if (count == 0) { /* no more livelists to delete */ VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DELETED_CLONES, tx)); VERIFY0(zap_destroy(mos, zap_obj, tx)); spa->spa_livelists_to_delete = 0; spa_notify_waiters(spa); } } /* * Load in the value for the livelist to be removed and open it. Then, * load its first sublist and determine which block pointers should actually * be freed. Then, call a synctask which performs the actual frees and updates * the pool-wide livelist data. */ /* ARGSUSED */ static void spa_livelist_delete_cb(void *arg, zthr_t *z) { spa_t *spa = arg; uint64_t ll_obj = 0, count; objset_t *mos = spa->spa_meta_objset; uint64_t zap_obj = spa->spa_livelists_to_delete; /* * Determine the next livelist to delete. This function should only * be called if there is at least one deleted clone. */ VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); VERIFY0(zap_count(mos, ll_obj, &count)); if (count > 0) { dsl_deadlist_t *ll; dsl_deadlist_entry_t *dle; bplist_t to_free; ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); dsl_deadlist_open(ll, mos, ll_obj); dle = dsl_deadlist_first(ll); ASSERT3P(dle, !=, NULL); bplist_create(&to_free); int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, z, NULL); if (err == 0) { sublist_delete_arg_t sync_arg = { .spa = spa, .ll = ll, .key = dle->dle_mintxg, .to_free = &to_free }; zfs_dbgmsg("deleting sublist (id %llu) from" " livelist %llu, %d remaining", dle->dle_bpobj.bpo_object, ll_obj, count - 1); VERIFY0(dsl_sync_task(spa_name(spa), NULL, sublist_delete_sync, &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); } else { VERIFY3U(err, ==, EINTR); } bplist_clear(&to_free); bplist_destroy(&to_free); dsl_deadlist_close(ll); kmem_free(ll, sizeof (dsl_deadlist_t)); } else { livelist_delete_arg_t sync_arg = { .spa = spa, .ll_obj = ll_obj, .zap_obj = zap_obj }; zfs_dbgmsg("deletion of livelist %llu completed", ll_obj); VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); } } static void spa_start_livelist_destroy_thread(spa_t *spa) { ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); spa->spa_livelist_delete_zthr = zthr_create("z_livelist_destroy", spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa); } typedef struct livelist_new_arg { bplist_t *allocs; bplist_t *frees; } livelist_new_arg_t; static int livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { ASSERT(tx == NULL); livelist_new_arg_t *lna = arg; if (bp_freed) { bplist_append(lna->frees, bp); } else { bplist_append(lna->allocs, bp); zfs_livelist_condense_new_alloc++; } return (0); } typedef struct livelist_condense_arg { spa_t *spa; bplist_t to_keep; uint64_t first_size; uint64_t next_size; } livelist_condense_arg_t; static void spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) { livelist_condense_arg_t *lca = arg; spa_t *spa = lca->spa; bplist_t new_frees; dsl_dataset_t *ds = spa->spa_to_condense.ds; /* Have we been cancelled? */ if (spa->spa_to_condense.cancelled) { zfs_livelist_condense_sync_cancel++; goto out; } dsl_deadlist_entry_t *first = spa->spa_to_condense.first; dsl_deadlist_entry_t *next = spa->spa_to_condense.next; dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; /* * It's possible that the livelist was changed while the zthr was * running. Therefore, we need to check for new blkptrs in the two * entries being condensed and continue to track them in the livelist. * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), * it's possible that the newly added blkptrs are FREEs or ALLOCs so * we need to sort them into two different bplists. */ uint64_t first_obj = first->dle_bpobj.bpo_object; uint64_t next_obj = next->dle_bpobj.bpo_object; uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; bplist_create(&new_frees); livelist_new_arg_t new_bps = { .allocs = &lca->to_keep, .frees = &new_frees, }; if (cur_first_size > lca->first_size) { VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, livelist_track_new_cb, &new_bps, lca->first_size)); } if (cur_next_size > lca->next_size) { VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, livelist_track_new_cb, &new_bps, lca->next_size)); } dsl_deadlist_clear_entry(first, ll, tx); ASSERT(bpobj_is_empty(&first->dle_bpobj)); dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); bplist_destroy(&new_frees); char dsname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(ds, dsname); zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj, cur_first_size, next_obj, cur_next_size, first->dle_bpobj.bpo_object, first->dle_bpobj.bpo_phys->bpo_num_blkptrs); out: dmu_buf_rele(ds->ds_dbuf, spa); spa->spa_to_condense.ds = NULL; bplist_clear(&lca->to_keep); bplist_destroy(&lca->to_keep); kmem_free(lca, sizeof (livelist_condense_arg_t)); spa->spa_to_condense.syncing = B_FALSE; } static void spa_livelist_condense_cb(void *arg, zthr_t *t) { while (zfs_livelist_condense_zthr_pause && !(zthr_has_waiters(t) || zthr_iscancelled(t))) delay(1); spa_t *spa = arg; dsl_deadlist_entry_t *first = spa->spa_to_condense.first; dsl_deadlist_entry_t *next = spa->spa_to_condense.next; uint64_t first_size, next_size; livelist_condense_arg_t *lca = kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); bplist_create(&lca->to_keep); /* * Process the livelists (matching FREEs and ALLOCs) in open context * so we have minimal work in syncing context to condense. * * We save bpobj sizes (first_size and next_size) to use later in * syncing context to determine if entries were added to these sublists * while in open context. This is possible because the clone is still * active and open for normal writes and we want to make sure the new, * unprocessed blockpointers are inserted into the livelist normally. * * Note that dsl_process_sub_livelist() both stores the size number of * blockpointers and iterates over them while the bpobj's lock held, so * the sizes returned to us are consistent which what was actually * processed. */ int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, &first_size); if (err == 0) err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, t, &next_size); if (err == 0) { while (zfs_livelist_condense_sync_pause && !(zthr_has_waiters(t) || zthr_iscancelled(t))) delay(1); dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); dmu_tx_mark_netfree(tx); dmu_tx_hold_space(tx, 1); err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); if (err == 0) { /* * Prevent the condense zthr restarting before * the synctask completes. */ spa->spa_to_condense.syncing = B_TRUE; lca->spa = spa; lca->first_size = first_size; lca->next_size = next_size; dsl_sync_task_nowait(spa_get_dsl(spa), spa_livelist_condense_sync, lca, tx); dmu_tx_commit(tx); return; } } /* * Condensing can not continue: either it was externally stopped or * we were unable to assign to a tx because the pool has run out of * space. In the second case, we'll just end up trying to condense * again in a later txg. */ ASSERT(err != 0); bplist_clear(&lca->to_keep); bplist_destroy(&lca->to_keep); kmem_free(lca, sizeof (livelist_condense_arg_t)); dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); spa->spa_to_condense.ds = NULL; if (err == EINTR) zfs_livelist_condense_zthr_cancel++; } /* ARGSUSED */ /* * Check that there is something to condense but that a condense is not * already in progress and that condensing has not been cancelled. */ static boolean_t spa_livelist_condense_cb_check(void *arg, zthr_t *z) { spa_t *spa = arg; if ((spa->spa_to_condense.ds != NULL) && (spa->spa_to_condense.syncing == B_FALSE) && (spa->spa_to_condense.cancelled == B_FALSE)) { return (B_TRUE); } return (B_FALSE); } static void spa_start_livelist_condensing_thread(spa_t *spa) { spa->spa_to_condense.ds = NULL; spa->spa_to_condense.first = NULL; spa->spa_to_condense.next = NULL; spa->spa_to_condense.syncing = B_FALSE; spa->spa_to_condense.cancelled = B_FALSE; ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); spa->spa_livelist_condense_zthr = zthr_create("z_livelist_condense", spa_livelist_condense_cb_check, spa_livelist_condense_cb, spa); } static void spa_spawn_aux_threads(spa_t *spa) { ASSERT(spa_writeable(spa)); ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_start_indirect_condensing_thread(spa); spa_start_livelist_destroy_thread(spa); spa_start_livelist_condensing_thread(spa); ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); spa->spa_checkpoint_discard_zthr = zthr_create("z_checkpoint_discard", spa_checkpoint_discard_thread_check, spa_checkpoint_discard_thread, spa); } /* * Fix up config after a partly-completed split. This is done with the * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off * pool have that entry in their config, but only the splitting one contains * a list of all the guids of the vdevs that are being split off. * * This function determines what to do with that list: either rejoin * all the disks to the pool, or complete the splitting process. To attempt * the rejoin, each disk that is offlined is marked online again, and * we do a reopen() call. If the vdev label for every disk that was * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) * then we call vdev_split() on each disk, and complete the split. * * Otherwise we leave the config alone, with all the vdevs in place in * the original pool. */ static void spa_try_repair(spa_t *spa, nvlist_t *config) { uint_t extracted; uint64_t *glist; uint_t i, gcount; nvlist_t *nvl; vdev_t **vd; boolean_t attempt_reopen; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) return; /* check that the config is complete */ if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, &glist, &gcount) != 0) return; vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); /* attempt to online all the vdevs & validate */ attempt_reopen = B_TRUE; for (i = 0; i < gcount; i++) { if (glist[i] == 0) /* vdev is hole */ continue; vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); if (vd[i] == NULL) { /* * Don't bother attempting to reopen the disks; * just do the split. */ attempt_reopen = B_FALSE; } else { /* attempt to re-online it */ vd[i]->vdev_offline = B_FALSE; } } if (attempt_reopen) { vdev_reopen(spa->spa_root_vdev); /* check each device to see what state it's in */ for (extracted = 0, i = 0; i < gcount; i++) { if (vd[i] != NULL && vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) break; ++extracted; } } /* * If every disk has been moved to the new pool, or if we never * even attempted to look at them, then we split them off for * good. */ if (!attempt_reopen || gcount == extracted) { for (i = 0; i < gcount; i++) if (vd[i] != NULL) vdev_split(vd[i]); vdev_reopen(spa->spa_root_vdev); } kmem_free(vd, gcount * sizeof (vdev_t *)); } static int spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) { char *ereport = FM_EREPORT_ZFS_POOL; int error; spa->spa_load_state = state; (void) spa_import_progress_set_state(spa_guid(spa), spa_load_state(spa)); gethrestime(&spa->spa_loaded_ts); error = spa_load_impl(spa, type, &ereport); /* * Don't count references from objsets that are already closed * and are making their way through the eviction process. */ spa_evicting_os_wait(spa); spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); if (error) { if (error != EEXIST) { spa->spa_loaded_ts.tv_sec = 0; spa->spa_loaded_ts.tv_nsec = 0; } if (error != EBADF) { (void) zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0); } } spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; spa->spa_ena = 0; (void) spa_import_progress_set_state(spa_guid(spa), spa_load_state(spa)); return (error); } #ifdef ZFS_DEBUG /* * Count the number of per-vdev ZAPs associated with all of the vdevs in the * vdev tree rooted in the given vd, and ensure that each ZAP is present in the * spa's per-vdev ZAP list. */ static uint64_t vdev_count_verify_zaps(vdev_t *vd) { spa_t *spa = vd->vdev_spa; uint64_t total = 0; if (vd->vdev_top_zap != 0) { total++; ASSERT0(zap_lookup_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, vd->vdev_top_zap)); } if (vd->vdev_leaf_zap != 0) { total++; ASSERT0(zap_lookup_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); } for (uint64_t i = 0; i < vd->vdev_children; i++) { total += vdev_count_verify_zaps(vd->vdev_child[i]); } return (total); } #endif /* * Determine whether the activity check is required. */ static boolean_t spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, nvlist_t *config) { uint64_t state = 0; uint64_t hostid = 0; uint64_t tryconfig_txg = 0; uint64_t tryconfig_timestamp = 0; uint16_t tryconfig_mmp_seq = 0; nvlist_t *nvinfo; if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, &tryconfig_txg); (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, &tryconfig_timestamp); (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, &tryconfig_mmp_seq); } (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); /* * Disable the MMP activity check - This is used by zdb which * is intended to be used on potentially active pools. */ if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) return (B_FALSE); /* * Skip the activity check when the MMP feature is disabled. */ if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) return (B_FALSE); /* * If the tryconfig_ values are nonzero, they are the results of an * earlier tryimport. If they all match the uberblock we just found, * then the pool has not changed and we return false so we do not test * a second time. */ if (tryconfig_txg && tryconfig_txg == ub->ub_txg && tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && tryconfig_mmp_seq && tryconfig_mmp_seq == (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) return (B_FALSE); /* * Allow the activity check to be skipped when importing the pool * on the same host which last imported it. Since the hostid from * configuration may be stale use the one read from the label. */ if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); if (hostid == spa_get_hostid(spa)) return (B_FALSE); /* * Skip the activity test when the pool was cleanly exported. */ if (state != POOL_STATE_ACTIVE) return (B_FALSE); return (B_TRUE); } /* * Nanoseconds the activity check must watch for changes on-disk. */ static uint64_t spa_activity_check_duration(spa_t *spa, uberblock_t *ub) { uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); uint64_t multihost_interval = MSEC2NSEC( MMP_INTERVAL_OK(zfs_multihost_interval)); uint64_t import_delay = MAX(NANOSEC, import_intervals * multihost_interval); /* * Local tunables determine a minimum duration except for the case * where we know when the remote host will suspend the pool if MMP * writes do not land. * * See Big Theory comment at the top of mmp.c for the reasoning behind * these cases and times. */ ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && MMP_FAIL_INT(ub) > 0) { /* MMP on remote host will suspend pool after failed writes */ import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * MMP_IMPORT_SAFETY_FACTOR / 100; zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " "mmp_fails=%llu ub_mmp mmp_interval=%llu " "import_intervals=%u", import_delay, MMP_FAIL_INT(ub), MMP_INTERVAL(ub), import_intervals); } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && MMP_FAIL_INT(ub) == 0) { /* MMP on remote host will never suspend pool */ import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + ub->ub_mmp_delay) * import_intervals); zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " "mmp_interval=%llu ub_mmp_delay=%llu " "import_intervals=%u", import_delay, MMP_INTERVAL(ub), ub->ub_mmp_delay, import_intervals); } else if (MMP_VALID(ub)) { /* * zfs-0.7 compatibility case */ import_delay = MAX(import_delay, (multihost_interval + ub->ub_mmp_delay) * import_intervals); zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " "import_intervals=%u leaves=%u", import_delay, ub->ub_mmp_delay, import_intervals, vdev_count_leaves(spa)); } else { /* Using local tunings is the only reasonable option */ zfs_dbgmsg("pool last imported on non-MMP aware " "host using import_delay=%llu multihost_interval=%llu " "import_intervals=%u", import_delay, multihost_interval, import_intervals); } return (import_delay); } /* * Perform the import activity check. If the user canceled the import or * we detected activity then fail. */ static int spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) { uint64_t txg = ub->ub_txg; uint64_t timestamp = ub->ub_timestamp; uint64_t mmp_config = ub->ub_mmp_config; uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; uint64_t import_delay; hrtime_t import_expire; nvlist_t *mmp_label = NULL; vdev_t *rvd = spa->spa_root_vdev; kcondvar_t cv; kmutex_t mtx; int error = 0; cv_init(&cv, NULL, CV_DEFAULT, NULL); mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); mutex_enter(&mtx); /* * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed * during the earlier tryimport. If the txg recorded there is 0 then * the pool is known to be active on another host. * * Otherwise, the pool might be in use on another host. Check for * changes in the uberblocks on disk if necessary. */ if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { vdev_uberblock_load(rvd, ub, &mmp_label); error = SET_ERROR(EREMOTEIO); goto out; } } import_delay = spa_activity_check_duration(spa, ub); /* Add a small random factor in case of simultaneous imports (0-25%) */ import_delay += import_delay * spa_get_random(250) / 1000; import_expire = gethrtime() + import_delay; while (gethrtime() < import_expire) { (void) spa_import_progress_set_mmp_check(spa_guid(spa), NSEC2SEC(import_expire - gethrtime())); vdev_uberblock_load(rvd, ub, &mmp_label); if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { zfs_dbgmsg("multihost activity detected " "txg %llu ub_txg %llu " "timestamp %llu ub_timestamp %llu " "mmp_config %#llx ub_mmp_config %#llx", txg, ub->ub_txg, timestamp, ub->ub_timestamp, mmp_config, ub->ub_mmp_config); error = SET_ERROR(EREMOTEIO); break; } if (mmp_label) { nvlist_free(mmp_label); mmp_label = NULL; } error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); if (error != -1) { error = SET_ERROR(EINTR); break; } error = 0; } out: mutex_exit(&mtx); mutex_destroy(&mtx); cv_destroy(&cv); /* * If the pool is determined to be active store the status in the * spa->spa_load_info nvlist. If the remote hostname or hostid are * available from configuration read from disk store them as well. * This allows 'zpool import' to generate a more useful message. * * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool */ if (error == EREMOTEIO) { char *hostname = ""; uint64_t hostid = 0; if (mmp_label) { if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { hostname = fnvlist_lookup_string(mmp_label, ZPOOL_CONFIG_HOSTNAME); fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_MMP_HOSTNAME, hostname); } if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { hostid = fnvlist_lookup_uint64(mmp_label, ZPOOL_CONFIG_HOSTID); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_HOSTID, hostid); } } fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_TXG, 0); error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); } if (mmp_label) nvlist_free(mmp_label); return (error); } static int spa_verify_host(spa_t *spa, nvlist_t *mos_config) { uint64_t hostid; char *hostname; uint64_t myhostid = 0; if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { hostname = fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME); myhostid = zone_get_hostid(NULL); if (hostid != 0 && myhostid != 0 && hostid != myhostid) { cmn_err(CE_WARN, "pool '%s' could not be " "loaded as it was last accessed by " "another system (host: %s hostid: 0x%llx). " "See: https://openzfs.github.io/openzfs-docs/msg/" "ZFS-8000-EY", spa_name(spa), hostname, (u_longlong_t)hostid); spa_load_failed(spa, "hostid verification failed: pool " "last accessed by host: %s (hostid: 0x%llx)", hostname, (u_longlong_t)hostid); return (SET_ERROR(EBADF)); } } return (0); } static int spa_ld_parse_config(spa_t *spa, spa_import_type_t type) { int error = 0; nvlist_t *nvtree, *nvl, *config = spa->spa_config; int parse; vdev_t *rvd; uint64_t pool_guid; char *comment; char *compatibility; /* * Versioning wasn't explicitly added to the label until later, so if * it's not present treat it as the initial version. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &spa->spa_ubsync.ub_version) != 0) spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { spa_load_failed(spa, "invalid config provided: '%s' missing", ZPOOL_CONFIG_POOL_GUID); return (SET_ERROR(EINVAL)); } /* * If we are doing an import, ensure that the pool is not already * imported by checking if its pool guid already exists in the * spa namespace. * * The only case that we allow an already imported pool to be * imported again, is when the pool is checkpointed and we want to * look at its checkpointed state from userland tools like zdb. */ #ifdef _KERNEL if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) { #else if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0) && !spa_importing_readonly_checkpoint(spa)) { #endif spa_load_failed(spa, "a pool with guid %llu is already open", (u_longlong_t)pool_guid); return (SET_ERROR(EEXIST)); } spa->spa_config_guid = pool_guid; nvlist_free(spa->spa_load_info); spa->spa_load_info = fnvlist_alloc(); ASSERT(spa->spa_comment == NULL); if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) spa->spa_comment = spa_strdup(comment); ASSERT(spa->spa_compatibility == NULL); if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, &compatibility) == 0) spa->spa_compatibility = spa_strdup(compatibility); (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &spa->spa_config_txg); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) spa->spa_config_splitting = fnvlist_dup(nvl); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { spa_load_failed(spa, "invalid config provided: '%s' missing", ZPOOL_CONFIG_VDEV_TREE); return (SET_ERROR(EINVAL)); } /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Parse the configuration into a vdev tree. We explicitly set the * value that will be returned by spa_version() since parsing the * configuration requires knowing the version number. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); parse = (type == SPA_IMPORT_EXISTING ? VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "unable to parse config [error=%d]", error); return (error); } ASSERT(spa->spa_root_vdev == rvd); ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); if (type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_guid(spa) == pool_guid); } return (0); } /* * Recursively open all vdevs in the vdev tree. This function is called twice: * first with the untrusted config, then with the trusted config. */ static int spa_ld_open_vdevs(spa_t *spa) { int error = 0; /* * spa_missing_tvds_allowed defines how many top-level vdevs can be * missing/unopenable for the root vdev to be still considered openable. */ if (spa->spa_trust_config) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; } else { spa->spa_missing_tvds_allowed = 0; } spa->spa_missing_tvds_allowed = MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_open(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); if (spa->spa_missing_tvds != 0) { spa_load_note(spa, "vdev tree has %lld missing top-level " "vdevs.", (u_longlong_t)spa->spa_missing_tvds); if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { /* * Although theoretically we could allow users to open * incomplete pools in RW mode, we'd need to add a lot * of extra logic (e.g. adjust pool space to account * for missing vdevs). * This limitation also prevents users from accidentally * opening the pool in RW mode during data recovery and * damaging it further. */ spa_load_note(spa, "pools with missing top-level " "vdevs can only be opened in read-only mode."); error = SET_ERROR(ENXIO); } else { spa_load_note(spa, "current settings allow for maximum " "%lld missing top-level vdevs at this stage.", (u_longlong_t)spa->spa_missing_tvds_allowed); } } if (error != 0) { spa_load_failed(spa, "unable to open vdev tree [error=%d]", error); } if (spa->spa_missing_tvds != 0 || error != 0) vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); return (error); } /* * We need to validate the vdev labels against the configuration that * we have in hand. This function is called twice: first with an untrusted * config, then with a trusted config. The validation is more strict when the * config is trusted. */ static int spa_ld_validate_vdevs(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_validate(rvd); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "vdev_validate failed [error=%d]", error); return (error); } if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { spa_load_failed(spa, "cannot open vdev tree after invalidating " "some vdevs"); vdev_dbgmsg_print_tree(rvd, 2); return (SET_ERROR(ENXIO)); } return (0); } static void spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) { spa->spa_state = POOL_STATE_ACTIVE; spa->spa_ubsync = spa->spa_uberblock; spa->spa_verify_min_txg = spa->spa_extreme_rewind ? TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; spa->spa_first_txg = spa->spa_last_ubsync_txg ? spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; spa->spa_claim_max_txg = spa->spa_first_txg; spa->spa_prev_software_version = ub->ub_software_version; } static int spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) { vdev_t *rvd = spa->spa_root_vdev; nvlist_t *label; uberblock_t *ub = &spa->spa_uberblock; boolean_t activity_check = B_FALSE; /* * If we are opening the checkpointed state of the pool by * rewinding to it, at this point we will have written the * checkpointed uberblock to the vdev labels, so searching * the labels will find the right uberblock. However, if * we are opening the checkpointed state read-only, we have * not modified the labels. Therefore, we must ignore the * labels and continue using the spa_uberblock that was set * by spa_ld_checkpoint_rewind. * * Note that it would be fine to ignore the labels when * rewinding (opening writeable) as well. However, if we * crash just after writing the labels, we will end up * searching the labels. Doing so in the common case means * that this code path gets exercised normally, rather than * just in the edge case. */ if (ub->ub_checkpoint_txg != 0 && spa_importing_readonly_checkpoint(spa)) { spa_ld_select_uberblock_done(spa, ub); return (0); } /* * Find the best uberblock. */ vdev_uberblock_load(rvd, ub, &label); /* * If we weren't able to find a single valid uberblock, return failure. */ if (ub->ub_txg == 0) { nvlist_free(label); spa_load_failed(spa, "no valid uberblock found"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } if (spa->spa_load_max_txg != UINT64_MAX) { (void) spa_import_progress_set_max_txg(spa_guid(spa), (u_longlong_t)spa->spa_load_max_txg); } spa_load_note(spa, "using uberblock with txg=%llu", (u_longlong_t)ub->ub_txg); /* * For pools which have the multihost property on determine if the * pool is truly inactive and can be safely imported. Prevent * hosts which don't have a hostid set from importing the pool. */ activity_check = spa_activity_check_required(spa, ub, label, spa->spa_config); if (activity_check) { if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && spa_get_hostid(spa) == 0) { nvlist_free(label); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); } int error = spa_activity_check(spa, ub, spa->spa_config); if (error) { nvlist_free(label); return (error); } fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); fnvlist_add_uint16(spa->spa_load_info, ZPOOL_CONFIG_MMP_SEQ, (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); } /* * If the pool has an unsupported version we can't open it. */ if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { nvlist_free(label); spa_load_failed(spa, "version %llu is not supported", (u_longlong_t)ub->ub_version); return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); } if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *features; /* * If we weren't able to find what's necessary for reading the * MOS in the label, return failure. */ if (label == NULL) { spa_load_failed(spa, "label config unavailable"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { nvlist_free(label); spa_load_failed(spa, "invalid label: '%s' missing", ZPOOL_CONFIG_FEATURES_FOR_READ); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } /* * Update our in-core representation with the definitive values * from the label. */ nvlist_free(spa->spa_label_features); VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); } nvlist_free(label); /* * Look through entries in the label nvlist's features_for_read. If * there is a feature listed there which we don't understand then we * cannot open a pool. */ if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *unsup_feat; VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, NULL); nvp != NULL; nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { if (!zfeature_is_supported(nvpair_name(nvp))) { VERIFY(nvlist_add_string(unsup_feat, nvpair_name(nvp), "") == 0); } } if (!nvlist_empty(unsup_feat)) { VERIFY(nvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); nvlist_free(unsup_feat); spa_load_failed(spa, "some features are unsupported"); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } nvlist_free(unsup_feat); } if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_try_repair(spa, spa->spa_config); spa_config_exit(spa, SCL_ALL, FTAG); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; } /* * Initialize internal SPA structures. */ spa_ld_select_uberblock_done(spa, ub); return (0); } static int spa_ld_open_rootbp(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); if (error != 0) { spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; return (0); } static int spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, boolean_t reloading) { vdev_t *mrvd, *rvd = spa->spa_root_vdev; nvlist_t *nv, *mos_config, *policy; int error = 0, copy_error; uint64_t healthy_tvds, healthy_tvds_mos; uint64_t mos_config_txg; if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * If we're assembling a pool from a split, the config provided is * already trusted so there is nothing to do. */ if (type == SPA_IMPORT_ASSEMBLE) return (0); healthy_tvds = spa_healthy_core_tvds(spa); if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { spa_load_failed(spa, "unable to retrieve MOS config"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * If we are doing an open, pool owner wasn't verified yet, thus do * the verification here. */ if (spa->spa_load_state == SPA_LOAD_OPEN) { error = spa_verify_host(spa, mos_config); if (error != 0) { nvlist_free(mos_config); return (error); } } nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Build a new vdev tree from the trusted config */ error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); if (error != 0) { nvlist_free(mos_config); spa_config_exit(spa, SCL_ALL, FTAG); spa_load_failed(spa, "spa_config_parse failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } /* * Vdev paths in the MOS may be obsolete. If the untrusted config was * obtained by scanning /dev/dsk, then it will have the right vdev * paths. We update the trusted MOS config with this information. * We first try to copy the paths with vdev_copy_path_strict, which * succeeds only when both configs have exactly the same vdev tree. * If that fails, we fall back to a more flexible method that has a * best effort policy. */ copy_error = vdev_copy_path_strict(rvd, mrvd); if (copy_error != 0 || spa_load_print_vdev_tree) { spa_load_note(spa, "provided vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); spa_load_note(spa, "MOS vdev tree:"); vdev_dbgmsg_print_tree(mrvd, 2); } if (copy_error != 0) { spa_load_note(spa, "vdev_copy_path_strict failed, falling " "back to vdev_copy_path_relaxed"); vdev_copy_path_relaxed(rvd, mrvd); } vdev_close(rvd); vdev_free(rvd); spa->spa_root_vdev = mrvd; rvd = mrvd; spa_config_exit(spa, SCL_ALL, FTAG); /* * We will use spa_config if we decide to reload the spa or if spa_load * fails and we rewind. We must thus regenerate the config using the * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to * pass settings on how to load the pool and is not stored in the MOS. * We copy it over to our new, trusted config. */ mos_config_txg = fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_POOL_TXG); nvlist_free(mos_config); mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, &policy) == 0) fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); spa_config_set(spa, mos_config); spa->spa_config_source = SPA_CONFIG_SRC_MOS; /* * Now that we got the config from the MOS, we should be more strict * in checking blkptrs and can make assumptions about the consistency * of the vdev tree. spa_trust_config must be set to true before opening * vdevs in order for them to be writeable. */ spa->spa_trust_config = B_TRUE; /* * Open and validate the new vdev tree */ error = spa_ld_open_vdevs(spa); if (error != 0) return (error); error = spa_ld_validate_vdevs(spa); if (error != 0) return (error); if (copy_error != 0 || spa_load_print_vdev_tree) { spa_load_note(spa, "final vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); } if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { /* * Sanity check to make sure that we are indeed loading the * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds * in the config provided and they happened to be the only ones * to have the latest uberblock, we could involuntarily perform * an extreme rewind. */ healthy_tvds_mos = spa_healthy_core_tvds(spa); if (healthy_tvds_mos - healthy_tvds >= SPA_SYNC_MIN_VDEVS) { spa_load_note(spa, "config provided misses too many " "top-level vdevs compared to MOS (%lld vs %lld). ", (u_longlong_t)healthy_tvds, (u_longlong_t)healthy_tvds_mos); spa_load_note(spa, "vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); if (reloading) { spa_load_failed(spa, "config was already " "provided from MOS. Aborting."); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_load_note(spa, "spa must be reloaded using MOS " "config"); return (SET_ERROR(EAGAIN)); } } error = spa_check_for_missing_logs(spa); if (error != 0) return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { spa_load_failed(spa, "uberblock guid sum doesn't match MOS " "guid sum (%llu != %llu)", (u_longlong_t)spa->spa_uberblock.ub_guid_sum, (u_longlong_t)rvd->vdev_guid_sum); return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); } return (0); } static int spa_ld_open_indirect_vdev_metadata(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * Everything that we read before spa_remove_init() must be stored * on concreted vdevs. Therefore we do this as early as possible. */ error = spa_remove_init(spa); if (error != 0) { spa_load_failed(spa, "spa_remove_init failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Retrieve information needed to condense indirect vdev mappings. */ error = spa_condense_init(spa); if (error != 0) { spa_load_failed(spa, "spa_condense_init failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } return (0); } static int spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; if (spa_version(spa) >= SPA_VERSION_FEATURES) { boolean_t missing_feat_read = B_FALSE; nvlist_t *unsup_feat, *enabled_feat; if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, &spa->spa_feat_for_read_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, &spa->spa_feat_for_write_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, &spa->spa_feat_desc_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } enabled_feat = fnvlist_alloc(); unsup_feat = fnvlist_alloc(); if (!spa_features_check(spa, B_FALSE, unsup_feat, enabled_feat)) missing_feat_read = B_TRUE; if (spa_writeable(spa) || spa->spa_load_state == SPA_LOAD_TRYIMPORT) { if (!spa_features_check(spa, B_TRUE, unsup_feat, enabled_feat)) { *missing_feat_writep = B_TRUE; } } fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); if (!nvlist_empty(unsup_feat)) { fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); } fnvlist_free(enabled_feat); fnvlist_free(unsup_feat); if (!missing_feat_read) { fnvlist_add_boolean(spa->spa_load_info, ZPOOL_CONFIG_CAN_RDONLY); } /* * If the state is SPA_LOAD_TRYIMPORT, our objective is * twofold: to determine whether the pool is available for * import in read-write mode and (if it is not) whether the * pool is available for import in read-only mode. If the pool * is available for import in read-write mode, it is displayed * as available in userland; if it is not available for import * in read-only mode, it is displayed as unavailable in * userland. If the pool is available for import in read-only * mode but not read-write mode, it is displayed as unavailable * in userland with a special note that the pool is actually * available for open in read-only mode. * * As a result, if the state is SPA_LOAD_TRYIMPORT and we are * missing a feature for write, we must first determine whether * the pool can be opened read-only before returning to * userland in order to know whether to display the * abovementioned note. */ if (missing_feat_read || (*missing_feat_writep && spa_writeable(spa))) { spa_load_failed(spa, "pool uses unsupported features"); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Load refcounts for ZFS features from disk into an in-memory * cache during SPA initialization. */ for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { uint64_t refcount; error = feature_get_refcount_from_disk(spa, &spa_feature_table[i], &refcount); if (error == 0) { spa->spa_feat_refcount_cache[i] = refcount; } else if (error == ENOTSUP) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } else { spa_load_failed(spa, "error getting refcount " "for feature %s [error=%d]", spa_feature_table[i].fi_guid, error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } } } if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Encryption was added before bookmark_v2, even though bookmark_v2 * is now a dependency. If this pool has encryption enabled without * bookmark_v2, trigger an errata message. */ if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; } return (0); } static int spa_ld_load_special_directories(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; spa->spa_is_initializing = B_TRUE; error = dsl_pool_open(spa->spa_dsl_pool); spa->spa_is_initializing = B_FALSE; if (error != 0) { spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int spa_ld_get_props(spa_t *spa) { int error = 0; uint64_t obj; vdev_t *rvd = spa->spa_root_vdev; /* Grab the checksum salt from the MOS. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes); if (error == ENOENT) { /* Generate a new salt for subsequent use */ (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, sizeof (spa->spa_cksum_salt.zcs_bytes)); } else if (error != 0) { spa_load_failed(spa, "unable to retrieve checksum salt from " "MOS [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); if (error != 0) { spa_load_failed(spa, "error opening deferred-frees bpobj " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Load the bit that tells us to use the new accounting function * (raid-z deflation). If we have an older pool, this will not * be present. */ error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, &spa->spa_creation_version, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the persistent error log. If we have an older pool, this will * not be present. */ error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, &spa->spa_errlog_scrub, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the livelist deletion field. If a livelist is queued for * deletion, indicate that in the spa */ error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, &spa->spa_livelists_to_delete, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the history object. If we have an older pool, this * will not be present. */ error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the per-vdev ZAP map. If we have an older pool, this will not * be present; in this case, defer its creation to a later time to * avoid dirtying the MOS this early / out of sync context. See * spa_sync_config_object. */ /* The sentinel is only available in the MOS config. */ nvlist_t *mos_config; if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { spa_load_failed(spa, "unable to retrieve MOS config"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, &spa->spa_all_vdev_zaps, B_FALSE); if (error == ENOENT) { VERIFY(!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); spa->spa_avz_action = AVZ_ACTION_INITIALIZE; ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); } else if (error != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { /* * An older version of ZFS overwrote the sentinel value, so * we have orphaned per-vdev ZAPs in the MOS. Defer their * destruction to later; see spa_sync_config_object. */ spa->spa_avz_action = AVZ_ACTION_DESTROY; /* * We're assuming that no vdevs have had their ZAPs created * before this. Better be sure of it. */ ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); } nvlist_free(mos_config); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, B_FALSE); if (error && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0) { uint64_t autoreplace; spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); spa->spa_autoreplace = (autoreplace != 0); } /* * If we are importing a pool with missing top-level vdevs, * we enforce that the pool doesn't panic or get suspended on * error since the likelihood of missing data is extremely high. */ if (spa->spa_missing_tvds > 0 && spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { spa_load_note(spa, "forcing failmode to 'continue' " "as some top level vdevs are missing"); spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; } return (0); } static int spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * If we're assembling the pool from the split-off vdevs of * an existing pool, we don't want to attach the spares & cache * devices. */ /* * Load any hot spares for this pool. */ error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); if (load_nvlist(spa, spa->spa_spares.sav_object, &spa->spa_spares.sav_config) != 0) { spa_load_failed(spa, "error loading spares nvlist"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_spares.sav_sync = B_TRUE; } /* * Load any level 2 ARC devices for this pool. */ error = spa_dir_prop(spa, DMU_POOL_L2CACHE, &spa->spa_l2cache.sav_object, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); if (load_nvlist(spa, spa->spa_l2cache.sav_object, &spa->spa_l2cache.sav_config) != 0) { spa_load_failed(spa, "error loading l2cache nvlist"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_l2cache.sav_sync = B_TRUE; } return (0); } static int spa_ld_load_vdev_metadata(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * If the 'multihost' property is set, then never allow a pool to * be imported when the system hostid is zero. The exception to * this rule is zdb which is always allowed to access pools. */ if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); } /* * If the 'autoreplace' property is set, then post a resource notifying * the ZFS DE that it should not issue any faults for unopenable * devices. We also iterate over the vdevs, and post a sysevent for any * unopenable vdevs so that the normal autoreplace handler can take * over. */ if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { spa_check_removed(spa->spa_root_vdev); /* * For the import case, this is done in spa_import(), because * at this point we're using the spare definitions from * the MOS config, not necessarily from the userland config. */ if (spa->spa_load_state != SPA_LOAD_IMPORT) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } } /* * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. */ error = vdev_load(rvd); if (error != 0) { spa_load_failed(spa, "vdev_load failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } error = spa_ld_log_spacemaps(spa); if (error != 0) { spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } /* * Propagate the leaf DTLs we just loaded all the way up the vdev tree. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); spa_config_exit(spa, SCL_ALL, FTAG); return (0); } static int spa_ld_load_dedup_tables(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; error = ddt_load(spa); if (error != 0) { spa_load_failed(spa, "ddt_load failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) { vdev_t *rvd = spa->spa_root_vdev; if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { boolean_t missing = spa_check_logs(spa); if (missing) { if (spa->spa_missing_tvds != 0) { spa_load_note(spa, "spa_check_logs failed " "so dropping the logs"); } else { *ereport = FM_EREPORT_ZFS_LOG_REPLAY; spa_load_failed(spa, "spa_check_logs failed"); return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); } } } return (0); } static int spa_ld_verify_pool_data(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * We've successfully opened the pool, verify that we're ready * to start pushing transactions. */ if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { error = spa_load_verify(spa); if (error != 0) { spa_load_failed(spa, "spa_load_verify failed " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } } return (0); } static void spa_ld_claim_log_blocks(spa_t *spa) { dmu_tx_t *tx; dsl_pool_t *dp = spa_get_dsl(spa); /* * Claim log blocks that haven't been committed yet. * This must all happen in a single txg. * Note: spa_claim_max_txg is updated by spa_claim_notify(), * invoked from zil_claim_log_block()'s i/o done callback. * Price of rollback is that we abandon the log. */ spa->spa_claiming = B_TRUE; tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, zil_claim, tx, DS_FIND_CHILDREN); dmu_tx_commit(tx); spa->spa_claiming = B_FALSE; spa_set_log_state(spa, SPA_LOG_GOOD); } static void spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, boolean_t update_config_cache) { vdev_t *rvd = spa->spa_root_vdev; int need_update = B_FALSE; /* * If the config cache is stale, or we have uninitialized * metaslabs (see spa_vdev_add()), then update the config. * * If this is a verbatim import, trust the current * in-core spa_config and update the disk labels. */ if (update_config_cache || config_cache_txg != spa->spa_config_txg || spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_RECOVER || (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) need_update = B_TRUE; for (int c = 0; c < rvd->vdev_children; c++) if (rvd->vdev_child[c]->vdev_ms_array == 0) need_update = B_TRUE; /* * Update the config cache asynchronously in case we're the * root pool, in which case the config cache isn't writable yet. */ if (need_update) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } static void spa_ld_prepare_for_reload(spa_t *spa) { spa_mode_t mode = spa->spa_mode; int async_suspended = spa->spa_async_suspended; spa_unload(spa); spa_deactivate(spa); spa_activate(spa, mode); /* * We save the value of spa_async_suspended as it gets reset to 0 by * spa_unload(). We want to restore it back to the original value before * returning as we might be calling spa_async_resume() later. */ spa->spa_async_suspended = async_suspended; } static int spa_ld_read_checkpoint_txg(spa_t *spa) { uberblock_t checkpoint; int error = 0; ASSERT0(spa->spa_checkpoint_txg); ASSERT(MUTEX_HELD(&spa_namespace_lock)); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); if (error == ENOENT) return (0); if (error != 0) return (error); ASSERT3U(checkpoint.ub_txg, !=, 0); ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); ASSERT3U(checkpoint.ub_timestamp, !=, 0); spa->spa_checkpoint_txg = checkpoint.ub_txg; spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; return (0); } static int spa_ld_mos_init(spa_t *spa, spa_import_type_t type) { int error = 0; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); /* * Never trust the config that is provided unless we are assembling * a pool following a split. * This means don't trust blkptrs and the vdev tree in general. This * also effectively puts the spa in read-only mode since * spa_writeable() checks for spa_trust_config to be true. * We will later load a trusted config from the MOS. */ if (type != SPA_IMPORT_ASSEMBLE) spa->spa_trust_config = B_FALSE; /* * Parse the config provided to create a vdev tree. */ error = spa_ld_parse_config(spa, type); if (error != 0) return (error); spa_import_progress_add(spa); /* * Now that we have the vdev tree, try to open each vdev. This involves * opening the underlying physical device, retrieving its geometry and * probing the vdev with a dummy I/O. The state of each vdev will be set * based on the success of those operations. After this we'll be ready * to read from the vdevs. */ error = spa_ld_open_vdevs(spa); if (error != 0) return (error); /* * Read the label of each vdev and make sure that the GUIDs stored * there match the GUIDs in the config provided. * If we're assembling a new pool that's been split off from an * existing pool, the labels haven't yet been updated so we skip * validation for now. */ if (type != SPA_IMPORT_ASSEMBLE) { error = spa_ld_validate_vdevs(spa); if (error != 0) return (error); } /* * Read all vdev labels to find the best uberblock (i.e. latest, * unless spa_load_max_txg is set) and store it in spa_uberblock. We * get the list of features required to read blkptrs in the MOS from * the vdev label with the best uberblock and verify that our version * of zfs supports them all. */ error = spa_ld_select_uberblock(spa, type); if (error != 0) return (error); /* * Pass that uberblock to the dsl_pool layer which will open the root * blkptr. This blkptr points to the latest version of the MOS and will * allow us to read its contents. */ error = spa_ld_open_rootbp(spa); if (error != 0) return (error); return (0); } static int spa_ld_checkpoint_rewind(spa_t *spa) { uberblock_t checkpoint; int error = 0; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); if (error != 0) { spa_load_failed(spa, "unable to retrieve checkpointed " "uberblock from the MOS config [error=%d]", error); if (error == ENOENT) error = ZFS_ERR_NO_CHECKPOINT; return (error); } ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); /* * We need to update the txg and timestamp of the checkpointed * uberblock to be higher than the latest one. This ensures that * the checkpointed uberblock is selected if we were to close and * reopen the pool right after we've written it in the vdev labels. * (also see block comment in vdev_uberblock_compare) */ checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; checkpoint.ub_timestamp = gethrestime_sec(); /* * Set current uberblock to be the checkpointed uberblock. */ spa->spa_uberblock = checkpoint; /* * If we are doing a normal rewind, then the pool is open for * writing and we sync the "updated" checkpointed uberblock to * disk. Once this is done, we've basically rewound the whole * pool and there is no way back. * * There are cases when we don't want to attempt and sync the * checkpointed uberblock to disk because we are opening a * pool as read-only. Specifically, verifying the checkpointed * state with zdb, and importing the checkpointed state to get * a "preview" of its content. */ if (spa_writeable(spa)) { vdev_t *rvd = spa->spa_root_vdev; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; int svdcount = 0; int children = rvd->vdev_children; int c0 = spa_get_random(children); for (int c = 0; c < children; c++) { vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; /* Stop when revisiting the first vdev */ if (c > 0 && svd[0] == vd) break; if (vd->vdev_ms_array == 0 || vd->vdev_islog || !vdev_is_concrete(vd)) continue; svd[svdcount++] = vd; if (svdcount == SPA_SYNC_MIN_VDEVS) break; } error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); if (error == 0) spa->spa_last_synced_guid = rvd->vdev_guid; spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "failed to write checkpointed " "uberblock to the vdev labels [error=%d]", error); return (error); } } return (0); } static int spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, boolean_t *update_config_cache) { int error; /* * Parse the config for pool, open and validate vdevs, * select an uberblock, and use that uberblock to open * the MOS. */ error = spa_ld_mos_init(spa, type); if (error != 0) return (error); /* * Retrieve the trusted config stored in the MOS and use it to create * a new, exact version of the vdev tree, then reopen all vdevs. */ error = spa_ld_trusted_config(spa, type, B_FALSE); if (error == EAGAIN) { if (update_config_cache != NULL) *update_config_cache = B_TRUE; /* * Redo the loading process with the trusted config if it is * too different from the untrusted config. */ spa_ld_prepare_for_reload(spa); spa_load_note(spa, "RELOADING"); error = spa_ld_mos_init(spa, type); if (error != 0) return (error); error = spa_ld_trusted_config(spa, type, B_TRUE); if (error != 0) return (error); } else if (error != 0) { return (error); } return (0); } /* * Load an existing storage pool, using the config provided. This config * describes which vdevs are part of the pool and is later validated against * partial configs present in each vdev's label and an entire copy of the * config stored in the MOS. */ static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) { int error = 0; boolean_t missing_feat_write = B_FALSE; boolean_t checkpoint_rewind = (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); boolean_t update_config_cache = B_FALSE; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); spa_load_note(spa, "LOADING"); error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); if (error != 0) return (error); /* * If we are rewinding to the checkpoint then we need to repeat * everything we've done so far in this function but this time * selecting the checkpointed uberblock and using that to open * the MOS. */ if (checkpoint_rewind) { /* * If we are rewinding to the checkpoint update config cache * anyway. */ update_config_cache = B_TRUE; /* * Extract the checkpointed uberblock from the current MOS * and use this as the pool's uberblock from now on. If the * pool is imported as writeable we also write the checkpoint * uberblock to the labels, making the rewind permanent. */ error = spa_ld_checkpoint_rewind(spa); if (error != 0) return (error); /* * Redo the loading process again with the * checkpointed uberblock. */ spa_ld_prepare_for_reload(spa); spa_load_note(spa, "LOADING checkpointed uberblock"); error = spa_ld_mos_with_trusted_config(spa, type, NULL); if (error != 0) return (error); } /* * Retrieve the checkpoint txg if the pool has a checkpoint. */ error = spa_ld_read_checkpoint_txg(spa); if (error != 0) return (error); /* * Retrieve the mapping of indirect vdevs. Those vdevs were removed * from the pool and their contents were re-mapped to other vdevs. Note * that everything that we read before this step must have been * rewritten on concrete vdevs after the last device removal was * initiated. Otherwise we could be reading from indirect vdevs before * we have loaded their mappings. */ error = spa_ld_open_indirect_vdev_metadata(spa); if (error != 0) return (error); /* * Retrieve the full list of active features from the MOS and check if * they are all supported. */ error = spa_ld_check_features(spa, &missing_feat_write); if (error != 0) return (error); /* * Load several special directories from the MOS needed by the dsl_pool * layer. */ error = spa_ld_load_special_directories(spa); if (error != 0) return (error); /* * Retrieve pool properties from the MOS. */ error = spa_ld_get_props(spa); if (error != 0) return (error); /* * Retrieve the list of auxiliary devices - cache devices and spares - * and open them. */ error = spa_ld_open_aux_vdevs(spa, type); if (error != 0) return (error); /* * Load the metadata for all vdevs. Also check if unopenable devices * should be autoreplaced. */ error = spa_ld_load_vdev_metadata(spa); if (error != 0) return (error); error = spa_ld_load_dedup_tables(spa); if (error != 0) return (error); /* * Verify the logs now to make sure we don't have any unexpected errors * when we claim log blocks later. */ error = spa_ld_verify_logs(spa, type, ereport); if (error != 0) return (error); if (missing_feat_write) { ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); /* * At this point, we know that we can open the pool in * read-only mode but not read-write mode. We now have enough * information and can return to userland. */ return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Traverse the last txgs to make sure the pool was left off in a safe * state. When performing an extreme rewind, we verify the whole pool, * which can take a very long time. */ error = spa_ld_verify_pool_data(spa); if (error != 0) return (error); /* * Calculate the deflated space for the pool. This must be done before * we write anything to the pool because we'd need to update the space * accounting using the deflated sizes. */ spa_update_dspace(spa); /* * We have now retrieved all the information we needed to open the * pool. If we are importing the pool in read-write mode, a few * additional steps must be performed to finish the import. */ if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || spa->spa_load_max_txg == UINT64_MAX)) { uint64_t config_cache_txg = spa->spa_config_txg; ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); /* * In case of a checkpoint rewind, log the original txg * of the checkpointed uberblock. */ if (checkpoint_rewind) { spa_history_log_internal(spa, "checkpoint rewind", NULL, "rewound state to txg=%llu", (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); } /* * Traverse the ZIL and claim all blocks. */ spa_ld_claim_log_blocks(spa); /* * Kick-off the syncing thread. */ spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); mmp_thread_start(spa); /* * Wait for all claims to sync. We sync up to the highest * claimed log block birth time so that claimed log blocks * don't appear to be from the future. spa_claim_max_txg * will have been set for us by ZIL traversal operations * performed above. */ txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); /* * Check if we need to request an update of the config. On the * next sync, we would update the config stored in vdev labels * and the cachefile (by default /etc/zfs/zpool.cache). */ spa_ld_check_for_config_update(spa, config_cache_txg, update_config_cache); /* * Check if a rebuild was in progress and if so resume it. * Then check all DTLs to see if anything needs resilvering. * The resilver will be deferred if a rebuild was started. */ if (vdev_rebuild_active(spa->spa_root_vdev)) { vdev_rebuild_restart(spa); } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { spa_async_request(spa, SPA_ASYNC_RESILVER); } /* * Log the fact that we booted up (so that we can detect if * we rebooted in the middle of an operation). */ spa_history_log_version(spa, "open", NULL); spa_restart_removal(spa); spa_spawn_aux_threads(spa); /* * Delete any inconsistent datasets. * * Note: * Since we may be issuing deletes for clones here, * we make sure to do so after we've spawned all the * auxiliary threads above (from which the livelist * deletion zthr is part of). */ (void) dmu_objset_find(spa_name(spa), dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); /* * Clean up any stale temporary dataset userrefs. */ dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_initialize_restart(spa->spa_root_vdev); vdev_trim_restart(spa->spa_root_vdev); vdev_autotrim_restart(spa); spa_config_exit(spa, SCL_CONFIG, FTAG); } spa_import_progress_remove(spa_guid(spa)); spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); spa_load_note(spa, "LOADED"); return (0); } static int spa_load_retry(spa_t *spa, spa_load_state_t state) { spa_mode_t mode = spa->spa_mode; spa_unload(spa); spa_deactivate(spa); spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; spa_activate(spa, mode); spa_async_suspend(spa); spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", (u_longlong_t)spa->spa_load_max_txg); return (spa_load(spa, state, SPA_IMPORT_EXISTING)); } /* * If spa_load() fails this function will try loading prior txg's. If * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this * function will not rewind the pool and will return the same error as * spa_load(). */ static int spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, int rewind_flags) { nvlist_t *loadinfo = NULL; nvlist_t *config = NULL; int load_error, rewind_error; uint64_t safe_rewind_txg; uint64_t min_txg; if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { spa->spa_load_max_txg = spa->spa_load_txg; spa_set_log_state(spa, SPA_LOG_CLEAR); } else { spa->spa_load_max_txg = max_request; if (max_request != UINT64_MAX) spa->spa_extreme_rewind = B_TRUE; } load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); if (load_error == 0) return (0); if (load_error == ZFS_ERR_NO_CHECKPOINT) { /* * When attempting checkpoint-rewind on a pool with no * checkpoint, we should not attempt to load uberblocks * from previous txgs when spa_load fails. */ ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); spa_import_progress_remove(spa_guid(spa)); return (load_error); } if (spa->spa_root_vdev != NULL) config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; if (rewind_flags & ZPOOL_NEVER_REWIND) { nvlist_free(config); spa_import_progress_remove(spa_guid(spa)); return (load_error); } if (state == SPA_LOAD_RECOVER) { /* Price of rolling back is discarding txgs, including log */ spa_set_log_state(spa, SPA_LOG_CLEAR); } else { /* * If we aren't rolling back save the load info from our first * import attempt so that we can restore it after attempting * to rewind. */ loadinfo = spa->spa_load_info; spa->spa_load_info = fnvlist_alloc(); } spa->spa_load_max_txg = spa->spa_last_ubsync_txg; safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? TXG_INITIAL : safe_rewind_txg; /* * Continue as long as we're finding errors, we're still within * the acceptable rewind range, and we're still finding uberblocks */ while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { if (spa->spa_load_max_txg < safe_rewind_txg) spa->spa_extreme_rewind = B_TRUE; rewind_error = spa_load_retry(spa, state); } spa->spa_extreme_rewind = B_FALSE; spa->spa_load_max_txg = UINT64_MAX; if (config && (rewind_error || state != SPA_LOAD_RECOVER)) spa_config_set(spa, config); else nvlist_free(config); if (state == SPA_LOAD_RECOVER) { ASSERT3P(loadinfo, ==, NULL); spa_import_progress_remove(spa_guid(spa)); return (rewind_error); } else { /* Store the rewind info as part of the initial load info */ fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, spa->spa_load_info); /* Restore the initial load info */ fnvlist_free(spa->spa_load_info); spa->spa_load_info = loadinfo; spa_import_progress_remove(spa_guid(spa)); return (load_error); } } /* * Pool Open/Import * * The import case is identical to an open except that the configuration is sent * down from userland, instead of grabbed from the configuration cache. For the * case of an open, the pool configuration will exist in the * POOL_STATE_UNINITIALIZED state. * * The stats information (gen/count/ustats) is used to gather vdev statistics at * the same time open the pool, without having to keep around the spa_t in some * ambiguous state. */ static int spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, nvlist_t **config) { spa_t *spa; spa_load_state_t state = SPA_LOAD_OPEN; int error; int locked = B_FALSE; int firstopen = B_FALSE; *spapp = NULL; /* * As disgusting as this is, we need to support recursive calls to this * function because dsl_dir_open() is called during spa_load(), and ends * up calling spa_open() again. The real fix is to figure out how to * avoid dsl_dir_open() calling this in the first place. */ if (MUTEX_NOT_HELD(&spa_namespace_lock)) { mutex_enter(&spa_namespace_lock); locked = B_TRUE; } if ((spa = spa_lookup(pool)) == NULL) { if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (spa->spa_state == POOL_STATE_UNINITIALIZED) { zpool_load_policy_t policy; firstopen = B_TRUE; zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, &policy); if (policy.zlp_rewind & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; spa_activate(spa, spa_mode_global); if (state != SPA_LOAD_RECOVER) spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; zfs_dbgmsg("spa_open_common: opening %s", pool); error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); if (error == EBADF) { /* * If vdev_validate() returns failure (indicated by * EBADF), it indicates that one of the vdevs indicates * that the pool has been exported or destroyed. If * this is the case, the config cache is out of sync and * we should remove the pool from the namespace. */ spa_unload(spa); spa_deactivate(spa); spa_write_cachefile(spa, B_TRUE, B_TRUE); spa_remove(spa); if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (error) { /* * We can't open the pool, but we still have useful * information: the state of each vdev after the * attempted vdev_open(). Return this to the user. */ if (config != NULL && spa->spa_config) { VERIFY(nvlist_dup(spa->spa_config, config, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); } spa_unload(spa); spa_deactivate(spa); spa->spa_last_open_failed = error; if (locked) mutex_exit(&spa_namespace_lock); *spapp = NULL; return (error); } } spa_open_ref(spa, tag); if (config != NULL) *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); /* * If we've recovered the pool, pass back any information we * gathered while doing the load. */ if (state == SPA_LOAD_RECOVER) { VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); } if (locked) { spa->spa_last_open_failed = 0; spa->spa_last_ubsync_txg = 0; spa->spa_load_txg = 0; mutex_exit(&spa_namespace_lock); } if (firstopen) zvol_create_minors_recursive(spa_name(spa)); *spapp = spa; return (0); } int spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, nvlist_t **config) { return (spa_open_common(name, spapp, tag, policy, config)); } int spa_open(const char *name, spa_t **spapp, void *tag) { return (spa_open_common(name, spapp, tag, NULL, NULL)); } /* * Lookup the given spa_t, incrementing the inject count in the process, * preventing it from being exported or destroyed. */ spa_t * spa_inject_addref(char *name) { spa_t *spa; mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(name)) == NULL) { mutex_exit(&spa_namespace_lock); return (NULL); } spa->spa_inject_ref++; mutex_exit(&spa_namespace_lock); return (spa); } void spa_inject_delref(spa_t *spa) { mutex_enter(&spa_namespace_lock); spa->spa_inject_ref--; mutex_exit(&spa_namespace_lock); } /* * Add spares device information to the nvlist. */ static void spa_add_spares(spa_t *spa, nvlist_t *config) { nvlist_t **spares; uint_t i, nspares; nvlist_t *nvroot; uint64_t guid; vdev_stat_t *vs; uint_t vsc; uint64_t pool; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_spares.sav_count == 0) return; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); if (nspares != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); /* * Go through and find any spares which have since been * repurposed as an active spare. If this is the case, update * their status appropriately. */ for (i = 0; i < nspares; i++) { VERIFY(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &guid) == 0); if (spa_spare_exists(guid, &pool, NULL) && pool != 0ULL) { VERIFY(nvlist_lookup_uint64_array( spares[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); vs->vs_state = VDEV_STATE_CANT_OPEN; vs->vs_aux = VDEV_AUX_SPARED; } } } } /* * Add l2cache device information to the nvlist, including vdev stats. */ static void spa_add_l2cache(spa_t *spa, nvlist_t *config) { nvlist_t **l2cache; uint_t i, j, nl2cache; nvlist_t *nvroot; uint64_t guid; vdev_t *vd; vdev_stat_t *vs; uint_t vsc; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_l2cache.sav_count == 0) return; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); if (nl2cache != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); /* * Update level 2 cache device stats. */ for (i = 0; i < nl2cache; i++) { VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &guid) == 0); vd = NULL; for (j = 0; j < spa->spa_l2cache.sav_count; j++) { if (guid == spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { vd = spa->spa_l2cache.sav_vdevs[j]; break; } } ASSERT(vd != NULL); VERIFY(nvlist_lookup_uint64_array(l2cache[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); vdev_get_stats(vd, vs); vdev_config_generate_stats(vd, l2cache[i]); } } } static void spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) { zap_cursor_t zc; zap_attribute_t za; if (spa->spa_feat_for_read_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_read_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY0(nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } if (spa->spa_feat_for_write_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_write_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY0(nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } } static void spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) { int i; for (i = 0; i < SPA_FEATURES; i++) { zfeature_info_t feature = spa_feature_table[i]; uint64_t refcount; if (feature_get_refcount(spa, &feature, &refcount) != 0) continue; VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); } } /* * Store a list of pool features and their reference counts in the * config. * * The first time this is called on a spa, allocate a new nvlist, fetch * the pool features and reference counts from disk, then save the list * in the spa. In subsequent calls on the same spa use the saved nvlist * and refresh its values from the cached reference counts. This * ensures we don't block here on I/O on a suspended pool so 'zpool * clear' can resume the pool. */ static void spa_add_feature_stats(spa_t *spa, nvlist_t *config) { nvlist_t *features; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); mutex_enter(&spa->spa_feat_stats_lock); features = spa->spa_feat_stats; if (features != NULL) { spa_feature_stats_from_cache(spa, features); } else { VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); spa->spa_feat_stats = features; spa_feature_stats_from_disk(spa, features); } VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, features)); mutex_exit(&spa->spa_feat_stats_lock); } int spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) { int error; spa_t *spa; *config = NULL; error = spa_open_common(name, &spa, FTAG, NULL, config); if (spa != NULL) { /* * This still leaves a window of inconsistency where the spares * or l2cache devices could change and the config would be * self-inconsistent. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); if (*config != NULL) { uint64_t loadtimes[2]; loadtimes[0] = spa->spa_loaded_ts.tv_sec; loadtimes[1] = spa->spa_loaded_ts.tv_nsec; VERIFY(nvlist_add_uint64_array(*config, ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, spa_get_errlog_size(spa)) == 0); if (spa_suspended(spa)) { VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode) == 0); VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_SUSPENDED_REASON, spa->spa_suspended) == 0); } spa_add_spares(spa, *config); spa_add_l2cache(spa, *config); spa_add_feature_stats(spa, *config); } } /* * We want to get the alternate root even for faulted pools, so we cheat * and call spa_lookup() directly. */ if (altroot) { if (spa == NULL) { mutex_enter(&spa_namespace_lock); spa = spa_lookup(name); if (spa) spa_altroot(spa, altroot, buflen); else altroot[0] = '\0'; spa = NULL; mutex_exit(&spa_namespace_lock); } else { spa_altroot(spa, altroot, buflen); } } if (spa != NULL) { spa_config_exit(spa, SCL_CONFIG, FTAG); spa_close(spa, FTAG); } return (error); } /* * Validate that the auxiliary device array is well formed. We must have an * array of nvlists, each which describes a valid leaf vdev. If this is an * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be * specified, as long as they are well-formed. */ static int spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, spa_aux_vdev_t *sav, const char *config, uint64_t version, vdev_labeltype_t label) { nvlist_t **dev; uint_t i, ndev; vdev_t *vd; int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * It's acceptable to have no devs specified. */ if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) return (0); if (ndev == 0) return (SET_ERROR(EINVAL)); /* * Make sure the pool is formatted with a version that supports this * device type. */ if (spa_version(spa) < version) return (SET_ERROR(ENOTSUP)); /* * Set the pending device list so we correctly handle device in-use * checking. */ sav->sav_pending = dev; sav->sav_npending = ndev; for (i = 0; i < ndev; i++) { if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, mode)) != 0) goto out; if (!vd->vdev_ops->vdev_op_leaf) { vdev_free(vd); error = SET_ERROR(EINVAL); goto out; } vd->vdev_top = vd; if ((error = vdev_open(vd)) == 0 && (error = vdev_label_init(vd, crtxg, label)) == 0) { VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); } vdev_free(vd); if (error && (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) goto out; else error = 0; } out: sav->sav_pending = NULL; sav->sav_npending = 0; return (error); } static int spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) { int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, VDEV_LABEL_SPARE)) != 0) { return (error); } return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, VDEV_LABEL_L2CACHE)); } static void spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, const char *config) { int i; if (sav->sav_config != NULL) { nvlist_t **olddevs; uint_t oldndevs; nvlist_t **newdevs; /* * Generate new dev list by concatenating with the * current dev list. */ VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, &olddevs, &oldndevs) == 0); newdevs = kmem_alloc(sizeof (void *) * (ndevs + oldndevs), KM_SLEEP); for (i = 0; i < oldndevs; i++) VERIFY(nvlist_dup(olddevs[i], &newdevs[i], KM_SLEEP) == 0); for (i = 0; i < ndevs; i++) VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], KM_SLEEP) == 0); VERIFY(nvlist_remove(sav->sav_config, config, DATA_TYPE_NVLIST_ARRAY) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, newdevs, ndevs + oldndevs) == 0); for (i = 0; i < oldndevs + ndevs; i++) nvlist_free(newdevs[i]); kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); } else { /* * Generate a new dev list. */ VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, devs, ndevs) == 0); } } /* * Stop and drop level 2 ARC devices */ void spa_l2cache_drop(spa_t *spa) { vdev_t *vd; int i; spa_aux_vdev_t *sav = &spa->spa_l2cache; for (i = 0; i < sav->sav_count; i++) { uint64_t pool; vd = sav->sav_vdevs[i]; ASSERT(vd != NULL); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); } } /* * Verify encryption parameters for spa creation. If we are encrypting, we must * have the encryption feature flag enabled. */ static int spa_create_check_encryption_params(dsl_crypto_params_t *dcp, boolean_t has_encryption) { if (dcp->cp_crypt != ZIO_CRYPT_OFF && dcp->cp_crypt != ZIO_CRYPT_INHERIT && !has_encryption) return (SET_ERROR(ENOTSUP)); return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); } /* * Pool Creation */ int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, nvlist_t *zplprops, dsl_crypto_params_t *dcp) { spa_t *spa; char *altroot = NULL; vdev_t *rvd; dsl_pool_t *dp; dmu_tx_t *tx; int error = 0; uint64_t txg = TXG_INITIAL; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; uint64_t version, obj, ndraid = 0; boolean_t has_features; boolean_t has_encryption; boolean_t has_allocclass; spa_feature_t feat; char *feat_name; char *poolname; nvlist_t *nvl; if (props == NULL || nvlist_lookup_string(props, "tname", &poolname) != 0) poolname = (char *)pool; /* * If this pool already exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(poolname) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Allocate a new spa_t structure. */ nvl = fnvlist_alloc(); fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); spa = spa_add(poolname, nvl, altroot); fnvlist_free(nvl); spa_activate(spa, spa_mode_global); if (props && (error = spa_prop_validate(spa, props))) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Temporary pool names should never be written to disk. */ if (poolname != pool) spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; has_features = B_FALSE; has_encryption = B_FALSE; has_allocclass = B_FALSE; for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); elem != NULL; elem = nvlist_next_nvpair(props, elem)) { if (zpool_prop_feature(nvpair_name(elem))) { has_features = B_TRUE; feat_name = strchr(nvpair_name(elem), '@') + 1; VERIFY0(zfeature_lookup_name(feat_name, &feat)); if (feat == SPA_FEATURE_ENCRYPTION) has_encryption = B_TRUE; if (feat == SPA_FEATURE_ALLOCATION_CLASSES) has_allocclass = B_TRUE; } } /* verify encryption params, if they were provided */ if (dcp != NULL) { error = spa_create_check_encryption_params(dcp, has_encryption); if (error != 0) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } } if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (ENOTSUP); } if (has_features || nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { version = SPA_VERSION; } ASSERT(SPA_VERSION_IS_SUPPORTED(version)); spa->spa_first_txg = txg; spa->spa_uberblock.ub_txg = txg - 1; spa->spa_uberblock.ub_version = version; spa->spa_ubsync = spa->spa_uberblock; spa->spa_load_state = SPA_LOAD_CREATE; spa->spa_removing_phys.sr_state = DSS_NONE; spa->spa_removing_phys.sr_removing_vdev = -1; spa->spa_removing_phys.sr_prev_indirect_vdev = -1; spa->spa_indirect_vdevs_loaded = B_TRUE; /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Create the root vdev. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); ASSERT(error != 0 || rvd != NULL); ASSERT(error != 0 || spa->spa_root_vdev == rvd); if (error == 0 && !zfs_allocatable_devs(nvroot)) error = SET_ERROR(EINVAL); if (error == 0 && (error = vdev_create(rvd, txg, B_FALSE)) == 0 && (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { /* * instantiate the metaslab groups (this will dirty the vdevs) * we can no longer error exit past this point */ for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; vdev_metaslab_set_size(vd); vdev_expand(vd, txg); } } spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Get the list of spares, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } /* * Get the list of level 2 cache devices, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } spa->spa_is_initializing = B_TRUE; spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); spa->spa_is_initializing = B_FALSE; /* * Create DDTs (dedup tables). */ ddt_create(spa); spa_update_dspace(spa); tx = dmu_tx_create_assigned(dp, txg); /* * Create the pool's history object. */ if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) spa_history_create_obj(spa, tx); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); spa_history_log_version(spa, "create", tx); /* * Create the pool config object. */ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool config"); } if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, sizeof (uint64_t), 1, &version, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool version"); } /* Newly created pools with the right version are always deflated. */ if (version >= SPA_VERSION_RAIDZ_DEFLATE) { spa->spa_deflate = TRUE; if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { cmn_err(CE_PANIC, "failed to add deflate"); } } /* * Create the deferred-free bpobj. Turn off compression * because sync-to-convergence takes longer if the blocksize * keeps changing. */ obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); dmu_object_set_compress(spa->spa_meta_objset, obj, ZIO_COMPRESS_OFF, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, sizeof (uint64_t), 1, &obj, tx) != 0) { cmn_err(CE_PANIC, "failed to add bpobj"); } VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj)); /* * Generate some random noise for salted checksums to operate on. */ (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, sizeof (spa->spa_cksum_salt.zcs_bytes)); /* * Set pool properties. */ spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); if (props != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_sync_props(props, tx); } for (int i = 0; i < ndraid; i++) spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(dp); mmp_thread_start(spa); txg_wait_synced(dp, txg); spa_spawn_aux_threads(spa); spa_write_cachefile(spa, B_FALSE, B_TRUE); /* * Don't count references from objsets that are already closed * and are making their way through the eviction process. */ spa_evicting_os_wait(spa); spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); spa->spa_load_state = SPA_LOAD_NONE; mutex_exit(&spa_namespace_lock); return (0); } /* * Import a non-root pool into the system. */ int spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) { spa_t *spa; char *altroot = NULL; spa_load_state_t state = SPA_LOAD_IMPORT; zpool_load_policy_t policy; spa_mode_t mode = spa_mode_global; uint64_t readonly = B_FALSE; int error; nvlist_t *nvroot; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; /* * If a pool with this name exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Create and initialize the spa structure. */ (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); if (readonly) mode = SPA_MODE_READ; spa = spa_add(pool, config, altroot); spa->spa_import_flags = flags; /* * Verbatim import - Take a pool and insert it into the namespace * as if it had been loaded at boot. */ if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { if (props != NULL) spa_configfile_set(spa, props, B_FALSE); spa_write_cachefile(spa, B_FALSE, B_TRUE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); zfs_dbgmsg("spa_import: verbatim import of %s", pool); mutex_exit(&spa_namespace_lock); return (0); } spa_activate(spa, mode); /* * Don't start async tasks until we know everything is healthy. */ spa_async_suspend(spa); zpool_get_load_policy(config, &policy); if (policy.zlp_rewind & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; if (state != SPA_LOAD_RECOVER) { spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; zfs_dbgmsg("spa_import: importing %s", pool); } else { zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); } error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); /* * Propagate anything learned while loading the pool and pass it * back to caller (i.e. rewind info, missing devices, etc). */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Toss any existing sparelist, as it doesn't have any validity * anymore, and conflicts with spa_has_spare(). */ if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; spa_load_spares(spa); } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; spa_load_l2cache(spa); } VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); spa_config_exit(spa, SCL_ALL, FTAG); if (props != NULL) spa_configfile_set(spa, props, B_FALSE); if (error != 0 || (props && spa_writeable(spa) && (error = spa_prop_set(spa, props)))) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } spa_async_resume(spa); /* * Override any spares and level 2 cache devices as specified by * the user, as these may have correct device names/devids, etc. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { if (spa->spa_spares.sav_config) VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { if (spa->spa_l2cache.sav_config) VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } /* * Check for any removed devices. */ if (spa->spa_autoreplace) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } if (spa_writeable(spa)) { /* * Update the config cache to include the newly-imported pool. */ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); } /* * It's possible that the pool was expanded while it was exported. * We kick off an async task to handle this for us. */ spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); spa_history_log_version(spa, "import", NULL); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); mutex_exit(&spa_namespace_lock); zvol_create_minors_recursive(pool); return (0); } nvlist_t * spa_tryimport(nvlist_t *tryconfig) { nvlist_t *config = NULL; char *poolname, *cachefile; spa_t *spa; uint64_t state; int error; zpool_load_policy_t policy; if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) return (NULL); if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) return (NULL); /* * Create and initialize the spa structure. */ mutex_enter(&spa_namespace_lock); spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); spa_activate(spa, SPA_MODE_READ); /* * Rewind pool if a max txg was provided. */ zpool_get_load_policy(spa->spa_config, &policy); if (policy.zlp_txg != UINT64_MAX) { spa->spa_load_max_txg = policy.zlp_txg; spa->spa_extreme_rewind = B_TRUE; zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", poolname, (longlong_t)policy.zlp_txg); } else { zfs_dbgmsg("spa_tryimport: importing %s", poolname); } if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) == 0) { zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; } else { spa->spa_config_source = SPA_CONFIG_SRC_SCAN; } error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); /* * If 'tryconfig' was at least parsable, return the current config. */ if (spa->spa_root_vdev != NULL) { config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, spa->spa_uberblock.ub_timestamp) == 0); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, spa->spa_errata) == 0); /* * If the bootfs property exists on this pool then we * copy it out so that external consumers can tell which * pools are bootable. */ if ((!error || error == EEXIST) && spa->spa_bootfs) { char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); /* * We have to play games with the name since the * pool was opened as TRYIMPORT_NAME. */ if (dsl_dsobj_to_dsname(spa_name(spa), spa->spa_bootfs, tmpname) == 0) { char *cp; char *dsname; dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); cp = strchr(tmpname, '/'); if (cp == NULL) { (void) strlcpy(dsname, tmpname, MAXPATHLEN); } else { (void) snprintf(dsname, MAXPATHLEN, "%s/%s", poolname, ++cp); } VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, dsname) == 0); kmem_free(dsname, MAXPATHLEN); } kmem_free(tmpname, MAXPATHLEN); } /* * Add the list of hot spares and level 2 cache devices. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_add_spares(spa, config); spa_add_l2cache(spa, config); spa_config_exit(spa, SCL_CONFIG, FTAG); } spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (config); } /* * Pool export/destroy * * The act of destroying or exporting a pool is very simple. We make sure there * is no more pending I/O and any references to the pool are gone. Then, we * update the pool state and sync all the labels to disk, removing the * configuration from the cache afterwards. If the 'hardforce' flag is set, then * we don't sync the labels or remove the configuration cache. */ static int spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { int error; spa_t *spa; if (oldconfig) *oldconfig = NULL; if (!(spa_mode_global & SPA_MODE_WRITE)) return (SET_ERROR(EROFS)); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pool)) == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (spa->spa_is_exporting) { /* the pool is being exported by another thread */ mutex_exit(&spa_namespace_lock); return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); } spa->spa_is_exporting = B_TRUE; /* * Put a hold on the pool, drop the namespace lock, stop async tasks, * reacquire the namespace lock, and see if we can export. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); if (spa->spa_zvol_taskq) { zvol_remove_minors(spa, spa_name(spa), B_TRUE); taskq_wait(spa->spa_zvol_taskq); } mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state == POOL_STATE_UNINITIALIZED) goto export_spa; /* * The pool will be in core if it's openable, in which case we can * modify its state. Objsets may be open only because they're dirty, * so we have to force it to sync before checking spa_refcnt. */ if (spa->spa_sync_on) { txg_wait_synced(spa->spa_dsl_pool, 0); spa_evicting_os_wait(spa); } /* * A pool cannot be exported or destroyed if there are active * references. If we are resetting a pool, allow references by * fault injection handlers. */ if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { error = SET_ERROR(EBUSY); goto fail; } if (spa->spa_sync_on) { /* * A pool cannot be exported if it has an active shared spare. * This is to prevent other pools stealing the active spare * from an exported pool. At user's own will, such pool can * be forcedly exported. */ if (!force && new_state == POOL_STATE_EXPORTED && spa_has_active_shared_spare(spa)) { error = SET_ERROR(EXDEV); goto fail; } /* * We're about to export or destroy this pool. Make sure * we stop all initialization and trim activity here before * we set the spa_final_txg. This will ensure that all * dirty data resulting from the initialization is * committed to disk before we unload the pool. */ if (spa->spa_root_vdev != NULL) { vdev_t *rvd = spa->spa_root_vdev; vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); vdev_autotrim_stop_all(spa); vdev_rebuild_stop_all(spa); } /* * We want this to be reflected on every label, * so mark them all dirty. spa_unload() will do the * final sync that pushes these changes out. */ if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa->spa_state = new_state; spa->spa_final_txg = spa_last_synced_txg(spa) + TXG_DEFER_SIZE + 1; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); } } export_spa: if (new_state == POOL_STATE_DESTROYED) spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); else if (new_state == POOL_STATE_EXPORTED) spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } if (oldconfig && spa->spa_config) VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); if (new_state != POOL_STATE_UNINITIALIZED) { if (!hardforce) spa_write_cachefile(spa, B_TRUE, B_TRUE); spa_remove(spa); } else { /* * If spa_remove() is not called for this spa_t and * there is any possibility that it can be reused, * we make sure to reset the exporting flag. */ spa->spa_is_exporting = B_FALSE; } mutex_exit(&spa_namespace_lock); return (0); fail: spa->spa_is_exporting = B_FALSE; spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Destroy a storage pool. */ int spa_destroy(const char *pool) { return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE, B_FALSE)); } /* * Export a storage pool. */ int spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force, hardforce)); } /* * Similar to spa_export(), this unloads the spa_t without actually removing it * from the namespace in any way. */ int spa_reset(const char *pool) { return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, B_FALSE, B_FALSE)); } /* * ========================================================================== * Device manipulation * ========================================================================== */ /* * This is called as a synctask to increment the draid feature flag */ static void spa_draid_feature_incr(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; int draid = (int)(uintptr_t)arg; for (int c = 0; c < draid; c++) spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); } /* * Add a device to a storage pool. */ int spa_vdev_add(spa_t *spa, nvlist_t *nvroot) { uint64_t txg, ndraid = 0; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *tvd; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, NULL, txg, error)); spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) != 0) nl2cache = 0; if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) return (spa_vdev_exit(spa, vd, txg, EINVAL)); if (vd->vdev_children != 0 && (error = vdev_create(vd, txg, B_FALSE)) != 0) { return (spa_vdev_exit(spa, vd, txg, error)); } /* * The virtual dRAID spares must be added after vdev tree is created * and the vdev guids are generated. The guid of their associated * dRAID is stored in the config and used when opening the spare. */ if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, rvd->vdev_children)) == 0) { if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; } else { return (spa_vdev_exit(spa, vd, txg, error)); } /* * We must validate the spares and l2cache devices after checking the * children. Otherwise, vdev_inuse() will blindly overwrite the spare. */ if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, vd, txg, error)); /* * If we are in the middle of a device removal, we can only add * devices which match the existing devices in the pool. * If we are in the middle of a removal, or have some indirect * vdevs, we can not add raidz or dRAID top levels. */ if (spa->spa_vdev_removal != NULL || spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { for (int c = 0; c < vd->vdev_children; c++) { tvd = vd->vdev_child[c]; if (spa->spa_vdev_removal != NULL && tvd->vdev_ashift != spa->spa_max_ashift) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } /* Fail if top level vdev is raidz or a dRAID */ if (vdev_get_nparity(tvd) != 0) return (spa_vdev_exit(spa, vd, txg, EINVAL)); /* * Need the top level mirror to be * a mirror of leaf vdevs only */ if (tvd->vdev_ops == &vdev_mirror_ops) { for (uint64_t cid = 0; cid < tvd->vdev_children; cid++) { vdev_t *cvd = tvd->vdev_child[cid]; if (!cvd->vdev_ops->vdev_op_leaf) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } } } } } for (int c = 0; c < vd->vdev_children; c++) { tvd = vd->vdev_child[c]; vdev_remove_child(vd, tvd); tvd->vdev_id = rvd->vdev_children; vdev_add_child(rvd, tvd); vdev_config_dirty(tvd); } if (nspares != 0) { spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, ZPOOL_CONFIG_SPARES); spa_load_spares(spa); spa->spa_spares.sav_sync = B_TRUE; } if (nl2cache != 0) { spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, ZPOOL_CONFIG_L2CACHE); spa_load_l2cache(spa); spa->spa_l2cache.sav_sync = B_TRUE; } /* * We can't increment a feature while holding spa_vdev so we * have to do it in a synctask. */ if (ndraid != 0) { dmu_tx_t *tx; tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, (void *)(uintptr_t)ndraid, tx); dmu_tx_commit(tx); } /* * We have to be careful when adding new vdevs to an existing pool. * If other threads start allocating from these vdevs before we * sync the config cache, and we lose power, then upon reboot we may * fail to open the pool because there are DVAs that the config cache * can't translate. Therefore, we first add the vdevs without * initializing metaslabs; sync the config cache (via spa_vdev_exit()); * and then let spa_config_update() initialize the new metaslabs. * * spa_load() checks for added-but-not-initialized vdevs, so that * if we lose power at any point in this sequence, the remaining * steps will be completed the next time we load the pool. */ (void) spa_vdev_exit(spa, vd, txg, 0); mutex_enter(&spa_namespace_lock); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); mutex_exit(&spa_namespace_lock); return (0); } /* * Attach a device to a mirror. The arguments are the path to any device * in the mirror, and the nvroot for the new device. If the path specifies * a device that is not mirrored, we automatically insert the mirror vdev. * * If 'replacing' is specified, the new device is intended to replace the * existing device; in this case the two devices are made into their own * mirror using the 'replacing' vdev, which is functionally identical to * the mirror vdev (it actually reuses all the same ops) but has a few * extra rules: you can't attach to it after it's been created, and upon * completion of resilvering, the first disk (the one being replaced) * is automatically detached. * * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) * should be performed instead of traditional healing reconstruction. From * an administrators perspective these are both resilver operations. */ int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, int rebuild) { uint64_t txg, dtl_max_txg; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; vdev_ops_t *pvops; char *oldvdpath, *newvdpath; int newvd_isspare; int error; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } if (rebuild) { if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); if (dsl_scan_resilvering(spa_get_dsl(spa))) return (spa_vdev_exit(spa, NULL, txg, ZFS_ERR_RESILVER_IN_PROGRESS)); } else { if (vdev_rebuild_active(rvd)) return (spa_vdev_exit(spa, NULL, txg, ZFS_ERR_REBUILD_IN_PROGRESS)); } if (spa->spa_vdev_removal != NULL) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); if (oldvd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!oldvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = oldvd->vdev_parent; if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, VDEV_ALLOC_ATTACH)) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); if (newrootvd->vdev_children != 1) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); newvd = newrootvd->vdev_child[0]; if (!newvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); if ((error = vdev_create(newrootvd, txg, replacing)) != 0) return (spa_vdev_exit(spa, newrootvd, txg, error)); /* * Spares can't replace logs */ if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * A dRAID spare can only replace a child of its parent dRAID vdev. */ if (newvd->vdev_ops == &vdev_draid_spare_ops && oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } if (rebuild) { /* * For rebuilds, the top vdev must support reconstruction * using only space maps. This means the only allowable * vdevs types are the root vdev, a mirror, or dRAID. */ tvd = pvd; if (pvd->vdev_top != NULL) tvd = pvd->vdev_top; if (tvd->vdev_ops != &vdev_mirror_ops && tvd->vdev_ops != &vdev_root_ops && tvd->vdev_ops != &vdev_draid_ops) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } } if (!replacing) { /* * For attach, the only allowable parent is a mirror or the root * vdev. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); pvops = &vdev_mirror_ops; } else { /* * Active hot spares can only be replaced by inactive hot * spares. */ if (pvd->vdev_ops == &vdev_spare_ops && oldvd->vdev_isspare && !spa_has_spare(spa, newvd->vdev_guid)) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If the source is a hot spare, and the parent isn't already a * spare, then we want to create a new hot spare. Otherwise, we * want to create a replacing vdev. The user is not allowed to * attach to a spared vdev child unless the 'isspare' state is * the same (spare replaces spare, non-spare replaces * non-spare). */ if (pvd->vdev_ops == &vdev_replacing_ops && spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } else if (pvd->vdev_ops == &vdev_spare_ops && newvd->vdev_isspare != oldvd->vdev_isspare) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } if (newvd->vdev_isspare) pvops = &vdev_spare_ops; else pvops = &vdev_replacing_ops; } /* * Make sure the new device is big enough. */ if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); /* * The new device cannot have a higher alignment requirement * than the top-level vdev. */ if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If this is an in-place replacement, update oldvd's path and devid * to make it distinguishable from newvd, and unopenable from now on. */ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { spa_strfree(oldvd->vdev_path); oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, KM_SLEEP); (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5, "%s/%s", newvd->vdev_path, "old"); if (oldvd->vdev_devid != NULL) { spa_strfree(oldvd->vdev_devid); oldvd->vdev_devid = NULL; } } /* * If the parent is not a mirror, or if we're replacing, insert the new * mirror/replacing/spare vdev above oldvd. */ if (pvd->vdev_ops != pvops) pvd = vdev_add_parent(oldvd, pvops); ASSERT(pvd->vdev_top->vdev_parent == rvd); ASSERT(pvd->vdev_ops == pvops); ASSERT(oldvd->vdev_parent == pvd); /* * Extract the new device from its root and add it to pvd. */ vdev_remove_child(newrootvd, newvd); newvd->vdev_id = pvd->vdev_children; newvd->vdev_crtxg = oldvd->vdev_crtxg; vdev_add_child(pvd, newvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(pvd); tvd = newvd->vdev_top; ASSERT(pvd->vdev_top == tvd); ASSERT(tvd->vdev_parent == rvd); vdev_config_dirty(tvd); /* * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account * for any dmu_sync-ed blocks. It will propagate upward when * spa_vdev_exit() calls vdev_dtl_reassess(). */ dtl_max_txg = txg + TXG_CONCURRENT_STATES; vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, dtl_max_txg - TXG_INITIAL); if (newvd->vdev_isspare) { spa_spare_activate(newvd); spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); } oldvdpath = spa_strdup(oldvd->vdev_path); newvdpath = spa_strdup(newvd->vdev_path); newvd_isspare = newvd->vdev_isspare; /* * Mark newvd's DTL dirty in this txg. */ vdev_dirty(tvd, VDD_DTL, newvd, txg); /* * Schedule the resilver or rebuild to restart in the future. We do * this to ensure that dmu_sync-ed blocks have been stitched into the * respective datasets. */ if (rebuild) { newvd->vdev_rebuild_txg = txg; vdev_rebuild(tvd); } else { newvd->vdev_resilver_txg = txg; if (dsl_scan_resilvering(spa_get_dsl(spa)) && spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) { vdev_defer_resilver(newvd); } else { dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg); } } if (spa->spa_bootfs) spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); /* * Commit the config */ (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); spa_history_log_internal(spa, "vdev attach", NULL, "%s vdev=%s %s vdev=%s", replacing && newvd_isspare ? "spare in" : replacing ? "replace" : "attach", newvdpath, replacing ? "for" : "to", oldvdpath); spa_strfree(oldvdpath); spa_strfree(newvdpath); return (0); } /* * Detach a device from a mirror or replacing vdev. * * If 'replace_done' is specified, only detach if the parent * is a replacing vdev. */ int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) { uint64_t txg; int error; vdev_t *rvd __maybe_unused = spa->spa_root_vdev; vdev_t *vd, *pvd, *cvd, *tvd; boolean_t unspare = B_FALSE; uint64_t unspare_guid = 0; char *vdpath; ASSERT(spa_writeable(spa)); txg = spa_vdev_detach_enter(spa, guid); vd = spa_lookup_by_guid(spa, guid, B_FALSE); /* * Besides being called directly from the userland through the * ioctl interface, spa_vdev_detach() can be potentially called * at the end of spa_vdev_resilver_done(). * * In the regular case, when we have a checkpoint this shouldn't * happen as we never empty the DTLs of a vdev during the scrub * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() * should never get here when we have a checkpoint. * * That said, even in a case when we checkpoint the pool exactly * as spa_vdev_resilver_done() calls this function everything * should be fine as the resilver will return right away. */ ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } if (vd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = vd->vdev_parent; /* * If the parent/child relationship is not as expected, don't do it. * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing * vdev that's replacing B with C. The user's intent in replacing * is to go from M(A,B) to M(A,C). If the user decides to cancel * the replace by detaching C, the expected behavior is to end up * M(A,B). But suppose that right after deciding to detach C, * the replacement of B completes. We would have M(A,C), and then * ask to detach C, which would leave us with just A -- not what * the user wanted. To prevent this, we make sure that the * parent/child relationship hasn't changed -- in this example, * that C's parent is still the replacing vdev R. */ if (pvd->vdev_guid != pguid && pguid != 0) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * Only 'replacing' or 'spare' vdevs can be replaced. */ if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); ASSERT(pvd->vdev_ops != &vdev_spare_ops || spa_version(spa) >= SPA_VERSION_SPARES); /* * Only mirror, replacing, and spare vdevs support detach. */ if (pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); /* * If this device has the only valid copy of some data, * we cannot safely detach it. */ if (vdev_dtl_required(vd)) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); ASSERT(pvd->vdev_children >= 2); /* * If we are detaching the second disk from a replacing vdev, then * check to see if we changed the original vdev's path to have "/old" * at the end in spa_vdev_attach(). If so, undo that change now. */ if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && vd->vdev_path != NULL) { size_t len = strlen(vd->vdev_path); for (int c = 0; c < pvd->vdev_children; c++) { cvd = pvd->vdev_child[c]; if (cvd == vd || cvd->vdev_path == NULL) continue; if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && strcmp(cvd->vdev_path + len, "/old") == 0) { spa_strfree(cvd->vdev_path); cvd->vdev_path = spa_strdup(vd->vdev_path); break; } } } /* * If we are detaching the original disk from a normal spare, then it * implies that the spare should become a real disk, and be removed * from the active spare list for the pool. dRAID spares on the * other hand are coupled to the pool and thus should never be removed * from the spares list. */ if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; if (last_cvd->vdev_isspare && last_cvd->vdev_ops != &vdev_draid_spare_ops) { unspare = B_TRUE; } } /* * Erase the disk labels so the disk can be used for other things. * This must be done after all other error cases are handled, * but before we disembowel vd (so we can still do I/O to it). * But if we can't do it, don't treat the error as fatal -- * it may be that the unwritability of the disk is the reason * it's being detached! */ error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); /* * Remove vd from its parent and compact the parent's children. */ vdev_remove_child(pvd, vd); vdev_compact_children(pvd); /* * Remember one of the remaining children so we can get tvd below. */ cvd = pvd->vdev_child[pvd->vdev_children - 1]; /* * If we need to remove the remaining child from the list of hot spares, * do it now, marking the vdev as no longer a spare in the process. * We must do this before vdev_remove_parent(), because that can * change the GUID if it creates a new toplevel GUID. For a similar * reason, we must remove the spare now, in the same txg as the detach; * otherwise someone could attach a new sibling, change the GUID, and * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. */ if (unspare) { ASSERT(cvd->vdev_isspare); spa_spare_remove(cvd); unspare_guid = cvd->vdev_guid; (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); cvd->vdev_unspare = B_TRUE; } /* * If the parent mirror/replacing vdev only has one child, * the parent is no longer needed. Remove it from the tree. */ if (pvd->vdev_children == 1) { if (pvd->vdev_ops == &vdev_spare_ops) cvd->vdev_unspare = B_FALSE; vdev_remove_parent(cvd); } /* * We don't set tvd until now because the parent we just removed * may have been the previous top-level vdev. */ tvd = cvd->vdev_top; ASSERT(tvd->vdev_parent == rvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(cvd); /* * If the 'autoexpand' property is set on the pool then automatically * try to expand the size of the pool. For example if the device we * just detached was smaller than the others, it may be possible to * add metaslabs (i.e. grow the pool). We need to reopen the vdev * first so that we can obtain the updated sizes of the leaf vdevs. */ if (spa->spa_autoexpand) { vdev_reopen(tvd); vdev_expand(tvd, txg); } vdev_config_dirty(tvd); /* * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that * vd->vdev_detached is set and free vd's DTL object in syncing context. * But first make sure we're not on any *other* txg's DTL list, to * prevent vd from being accessed after it's freed. */ vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); for (int t = 0; t < TXG_SIZE; t++) (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); vd->vdev_detached = B_TRUE; vdev_dirty(tvd, VDD_DTL, vd, txg); spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); spa_notify_waiters(spa); /* hang on to the spa before we release the lock */ spa_open_ref(spa, FTAG); error = spa_vdev_exit(spa, vd, txg, 0); spa_history_log_internal(spa, "detach", NULL, "vdev=%s", vdpath); spa_strfree(vdpath); /* * If this was the removal of the original device in a hot spare vdev, * then we want to go through and remove the device from the hot spare * list of every other pool. */ if (unspare) { spa_t *altspa = NULL; mutex_enter(&spa_namespace_lock); while ((altspa = spa_next(altspa)) != NULL) { if (altspa->spa_state != POOL_STATE_ACTIVE || altspa == spa) continue; spa_open_ref(altspa, FTAG); mutex_exit(&spa_namespace_lock); (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); mutex_enter(&spa_namespace_lock); spa_close(altspa, FTAG); } mutex_exit(&spa_namespace_lock); /* search the rest of the vdevs for spares to remove */ spa_vdev_resilver_done(spa); } /* all done with the spa; OK to release */ mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); mutex_exit(&spa_namespace_lock); return (error); } static int spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, list_t *vd_list) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); /* Look up vdev and ensure it's a leaf. */ vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL || vd->vdev_detached) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(ENODEV)); } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EINVAL)); } else if (!vdev_writeable(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EROFS)); } mutex_enter(&vd->vdev_initialize_lock); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); /* * When we activate an initialize action we check to see * if the vdev_initialize_thread is NULL. We do this instead * of using the vdev_initialize_state since there might be * a previous initialization process which has completed but * the thread is not exited. */ if (cmd_type == POOL_INITIALIZE_START && (vd->vdev_initialize_thread != NULL || vd->vdev_top->vdev_removing)) { mutex_exit(&vd->vdev_initialize_lock); return (SET_ERROR(EBUSY)); } else if (cmd_type == POOL_INITIALIZE_CANCEL && (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { mutex_exit(&vd->vdev_initialize_lock); return (SET_ERROR(ESRCH)); } else if (cmd_type == POOL_INITIALIZE_SUSPEND && vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { mutex_exit(&vd->vdev_initialize_lock); return (SET_ERROR(ESRCH)); } switch (cmd_type) { case POOL_INITIALIZE_START: vdev_initialize(vd); break; case POOL_INITIALIZE_CANCEL: vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); break; case POOL_INITIALIZE_SUSPEND: vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); break; default: panic("invalid cmd_type %llu", (unsigned long long)cmd_type); } mutex_exit(&vd->vdev_initialize_lock); return (0); } int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, nvlist_t *vdev_errlist) { int total_errors = 0; list_t vd_list; list_create(&vd_list, sizeof (vdev_t), offsetof(vdev_t, vdev_initialize_node)); /* * We hold the namespace lock through the whole function * to prevent any changes to the pool while we're starting or * stopping initialization. The config and state locks are held so that * we can properly assess the vdev state before we commit to * the initializing operation. */ mutex_enter(&spa_namespace_lock); for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { uint64_t vdev_guid = fnvpair_value_uint64(pair); int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, &vd_list); if (error != 0) { char guid_as_str[MAXNAMELEN]; (void) snprintf(guid_as_str, sizeof (guid_as_str), "%llu", (unsigned long long)vdev_guid); fnvlist_add_int64(vdev_errlist, guid_as_str, error); total_errors++; } } /* Wait for all initialize threads to stop. */ vdev_initialize_stop_wait(spa, &vd_list); /* Sync out the initializing state */ txg_wait_synced(spa->spa_dsl_pool, 0); mutex_exit(&spa_namespace_lock); list_destroy(&vd_list); return (total_errors); } static int spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); /* Look up vdev and ensure it's a leaf. */ vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL || vd->vdev_detached) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(ENODEV)); } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EINVAL)); } else if (!vdev_writeable(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EROFS)); } else if (!vd->vdev_has_trim) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EOPNOTSUPP)); } else if (secure && !vd->vdev_has_securetrim) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EOPNOTSUPP)); } mutex_enter(&vd->vdev_trim_lock); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); /* * When we activate a TRIM action we check to see if the * vdev_trim_thread is NULL. We do this instead of using the * vdev_trim_state since there might be a previous TRIM process * which has completed but the thread is not exited. */ if (cmd_type == POOL_TRIM_START && (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) { mutex_exit(&vd->vdev_trim_lock); return (SET_ERROR(EBUSY)); } else if (cmd_type == POOL_TRIM_CANCEL && (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { mutex_exit(&vd->vdev_trim_lock); return (SET_ERROR(ESRCH)); } else if (cmd_type == POOL_TRIM_SUSPEND && vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { mutex_exit(&vd->vdev_trim_lock); return (SET_ERROR(ESRCH)); } switch (cmd_type) { case POOL_TRIM_START: vdev_trim(vd, rate, partial, secure); break; case POOL_TRIM_CANCEL: vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); break; case POOL_TRIM_SUSPEND: vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); break; default: panic("invalid cmd_type %llu", (unsigned long long)cmd_type); } mutex_exit(&vd->vdev_trim_lock); return (0); } /* * Initiates a manual TRIM for the requested vdevs. This kicks off individual * TRIM threads for each child vdev. These threads pass over all of the free * space in the vdev's metaslabs and issues TRIM commands for that space. */ int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) { int total_errors = 0; list_t vd_list; list_create(&vd_list, sizeof (vdev_t), offsetof(vdev_t, vdev_trim_node)); /* * We hold the namespace lock through the whole function * to prevent any changes to the pool while we're starting or * stopping TRIM. The config and state locks are held so that * we can properly assess the vdev state before we commit to * the TRIM operation. */ mutex_enter(&spa_namespace_lock); for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { uint64_t vdev_guid = fnvpair_value_uint64(pair); int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, rate, partial, secure, &vd_list); if (error != 0) { char guid_as_str[MAXNAMELEN]; (void) snprintf(guid_as_str, sizeof (guid_as_str), "%llu", (unsigned long long)vdev_guid); fnvlist_add_int64(vdev_errlist, guid_as_str, error); total_errors++; } } /* Wait for all TRIM threads to stop. */ vdev_trim_stop_wait(spa, &vd_list); /* Sync out the TRIM state */ txg_wait_synced(spa->spa_dsl_pool, 0); mutex_exit(&spa_namespace_lock); list_destroy(&vd_list); return (total_errors); } /* * Split a set of devices from their mirrors, and create a new pool from them. */ int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, nvlist_t *props, boolean_t exp) { int error = 0; uint64_t txg, *glist; spa_t *newspa; uint_t c, children, lastlog; nvlist_t **child, *nvl, *tmp; dmu_tx_t *tx; char *altroot = NULL; vdev_t *rvd, **vml = NULL; /* vdev modify list */ boolean_t activate_slog; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } /* clear the log and flush everything up to now */ activate_slog = spa_passivate_log(spa); (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); error = spa_reset_logs(spa); txg = spa_vdev_config_enter(spa); if (activate_slog) spa_activate_log(spa); if (error != 0) return (spa_vdev_exit(spa, NULL, txg, error)); /* check new spa name before going any further */ if (spa_lookup(newname) != NULL) return (spa_vdev_exit(spa, NULL, txg, EEXIST)); /* * scan through all the children to ensure they're all mirrors */ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* first, check to ensure we've got the right child count */ rvd = spa->spa_root_vdev; lastlog = 0; for (c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; /* don't count the holes & logs as children */ if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && !vdev_is_concrete(vd))) { if (lastlog == 0) lastlog = c; continue; } lastlog = 0; } if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* next, ensure no spare or cache devices are part of the split */ if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); /* then, loop over each vdev and validate it */ for (c = 0; c < children; c++) { uint64_t is_hole = 0; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &is_hole); if (is_hole != 0) { if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || spa->spa_root_vdev->vdev_child[c]->vdev_islog) { continue; } else { error = SET_ERROR(EINVAL); break; } } /* deal with indirect vdevs */ if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == &vdev_indirect_ops) continue; /* which disk is going to be split? */ if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, &glist[c]) != 0) { error = SET_ERROR(EINVAL); break; } /* look it up in the spa */ vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); if (vml[c] == NULL) { error = SET_ERROR(ENODEV); break; } /* make sure there's nothing stopping the split */ if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || vml[c]->vdev_islog || !vdev_is_concrete(vml[c]) || vml[c]->vdev_isspare || vml[c]->vdev_isl2cache || !vdev_writeable(vml[c]) || vml[c]->vdev_children != 0 || vml[c]->vdev_state != VDEV_STATE_HEALTHY || c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { error = SET_ERROR(EINVAL); break; } if (vdev_dtl_required(vml[c]) || vdev_resilver_needed(vml[c], NULL, NULL)) { error = SET_ERROR(EBUSY); break; } /* we need certain info from the top level */ VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, vml[c]->vdev_top->vdev_ms_array) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, vml[c]->vdev_top->vdev_ms_shift) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, vml[c]->vdev_top->vdev_asize) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, vml[c]->vdev_top->vdev_ashift) == 0); /* transfer per-vdev ZAPs */ ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); VERIFY0(nvlist_add_uint64(child[c], ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); VERIFY0(nvlist_add_uint64(child[c], ZPOOL_CONFIG_VDEV_TOP_ZAP, vml[c]->vdev_parent->vdev_top_zap)); } if (error != 0) { kmem_free(vml, children * sizeof (vdev_t *)); kmem_free(glist, children * sizeof (uint64_t)); return (spa_vdev_exit(spa, NULL, txg, error)); } /* stop writers from using the disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_TRUE; } vdev_reopen(spa->spa_root_vdev); /* * Temporarily record the splitting vdevs in the spa config. This * will disappear once the config is regenerated. */ VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children) == 0); kmem_free(glist, children * sizeof (uint64_t)); mutex_enter(&spa->spa_props_lock); VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl) == 0); mutex_exit(&spa->spa_props_lock); spa->spa_config_splitting = nvl; vdev_config_dirty(spa->spa_root_vdev); /* configure and create the new pool */ VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_generate_guid(NULL)) == 0); VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); /* add the new pool to the namespace */ newspa = spa_add(newname, config, altroot); newspa->spa_avz_action = AVZ_ACTION_REBUILD; newspa->spa_config_txg = spa->spa_config_txg; spa_set_log_state(newspa, SPA_LOG_CLEAR); /* release the spa config lock, retaining the namespace lock */ spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 1); spa_activate(newspa, spa_mode_global); spa_async_suspend(newspa); /* * Temporarily stop the initializing and TRIM activity. We set the * state to ACTIVE so that we know to resume initializing or TRIM * once the split has completed. */ list_t vd_initialize_list; list_create(&vd_initialize_list, sizeof (vdev_t), offsetof(vdev_t, vdev_initialize_node)); list_t vd_trim_list; list_create(&vd_trim_list, sizeof (vdev_t), offsetof(vdev_t, vdev_trim_node)); for (c = 0; c < children; c++) { if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { mutex_enter(&vml[c]->vdev_initialize_lock); vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); mutex_exit(&vml[c]->vdev_initialize_lock); mutex_enter(&vml[c]->vdev_trim_lock); vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); mutex_exit(&vml[c]->vdev_trim_lock); } } vdev_initialize_stop_wait(spa, &vd_initialize_list); vdev_trim_stop_wait(spa, &vd_trim_list); list_destroy(&vd_initialize_list); list_destroy(&vd_trim_list); newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; newspa->spa_is_splitting = B_TRUE; /* create the new pool from the disks of the original pool */ error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); if (error) goto out; /* if that worked, generate a real config for the new pool */ if (newspa->spa_root_vdev != NULL) { VERIFY(nvlist_alloc(&newspa->spa_config_splitting, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, B_TRUE)); } /* set the props */ if (props != NULL) { spa_configfile_set(newspa, props, B_FALSE); error = spa_prop_set(newspa, props); if (error) goto out; } /* flush everything */ txg = spa_vdev_config_enter(newspa); vdev_config_dirty(newspa->spa_root_vdev); (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 2); spa_async_resume(newspa); /* finally, update the original pool's config */ txg = spa_vdev_config_enter(spa); tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) dmu_tx_abort(tx); for (c = 0; c < children; c++) { if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { vdev_t *tvd = vml[c]->vdev_top; /* * Need to be sure the detachable VDEV is not * on any *other* txg's DTL list to prevent it * from being accessed after it's freed. */ for (int t = 0; t < TXG_SIZE; t++) { (void) txg_list_remove_this( &tvd->vdev_dtl_list, vml[c], t); } vdev_split(vml[c]); if (error == 0) spa_history_log_internal(spa, "detach", tx, "vdev=%s", vml[c]->vdev_path); vdev_free(vml[c]); } } spa->spa_avz_action = AVZ_ACTION_REBUILD; vdev_config_dirty(spa->spa_root_vdev); spa->spa_config_splitting = NULL; nvlist_free(nvl); if (error == 0) dmu_tx_commit(tx); (void) spa_vdev_exit(spa, NULL, txg, 0); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 3); /* split is complete; log a history record */ spa_history_log_internal(newspa, "split", NULL, "from pool %s", spa_name(spa)); newspa->spa_is_splitting = B_FALSE; kmem_free(vml, children * sizeof (vdev_t *)); /* if we're not going to mount the filesystems in userland, export */ if (exp) error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, B_FALSE, B_FALSE); return (error); out: spa_unload(newspa); spa_deactivate(newspa); spa_remove(newspa); txg = spa_vdev_config_enter(spa); /* re-online all offlined disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_FALSE; } /* restart initializing or trimming disks as necessary */ spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); vdev_reopen(spa->spa_root_vdev); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; (void) spa_vdev_exit(spa, NULL, txg, error); kmem_free(vml, children * sizeof (vdev_t *)); return (error); } /* * Find any device that's done replacing, or a vdev marked 'unspare' that's * currently spared, so we can detach it. */ static vdev_t * spa_vdev_resilver_done_hunt(vdev_t *vd) { vdev_t *newvd, *oldvd; for (int c = 0; c < vd->vdev_children; c++) { oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); if (oldvd != NULL) return (oldvd); } /* * Check for a completed replacement. We always consider the first * vdev in the list to be the oldest vdev, and the last one to be * the newest (see spa_vdev_attach() for how that works). In * the case where the newest vdev is faulted, we will not automatically * remove it after a resilver completes. This is OK as it will require * user intervention to determine which disk the admin wishes to keep. */ if (vd->vdev_ops == &vdev_replacing_ops) { ASSERT(vd->vdev_children > 1); newvd = vd->vdev_child[vd->vdev_children - 1]; oldvd = vd->vdev_child[0]; if (vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); } /* * Check for a completed resilver with the 'unspare' flag set. * Also potentially update faulted state. */ if (vd->vdev_ops == &vdev_spare_ops) { vdev_t *first = vd->vdev_child[0]; vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; if (last->vdev_unspare) { oldvd = first; newvd = last; } else if (first->vdev_unspare) { oldvd = last; newvd = first; } else { oldvd = NULL; } if (oldvd != NULL && vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); vdev_propagate_state(vd); /* * If there are more than two spares attached to a disk, * and those spares are not required, then we want to * attempt to free them up now so that they can be used * by other pools. Once we're back down to a single * disk+spare, we stop removing them. */ if (vd->vdev_children > 2) { newvd = vd->vdev_child[1]; if (newvd->vdev_isspare && last->vdev_isspare && vdev_dtl_empty(last, DTL_MISSING) && vdev_dtl_empty(last, DTL_OUTAGE) && !vdev_dtl_required(newvd)) return (newvd); } } return (NULL); } static void spa_vdev_resilver_done(spa_t *spa) { vdev_t *vd, *pvd, *ppvd; uint64_t guid, sguid, pguid, ppguid; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { pvd = vd->vdev_parent; ppvd = pvd->vdev_parent; guid = vd->vdev_guid; pguid = pvd->vdev_guid; ppguid = ppvd->vdev_guid; sguid = 0; /* * If we have just finished replacing a hot spared device, then * we need to detach the parent's first child (the original hot * spare) as well. */ if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && ppvd->vdev_children == 2) { ASSERT(pvd->vdev_ops == &vdev_replacing_ops); sguid = ppvd->vdev_child[1]->vdev_guid; } ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); spa_config_exit(spa, SCL_ALL, FTAG); if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) return; if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) return; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); } spa_config_exit(spa, SCL_ALL, FTAG); /* * If a detach was not performed above replace waiters will not have * been notified. In which case we must do so now. */ spa_notify_waiters(spa); } /* * Update the stored path or FRU for this vdev. */ static int spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, boolean_t ispath) { vdev_t *vd; boolean_t sync = B_FALSE; ASSERT(spa_writeable(spa)); spa_vdev_state_enter(spa, SCL_ALL); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENOENT)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); if (ispath) { if (strcmp(value, vd->vdev_path) != 0) { spa_strfree(vd->vdev_path); vd->vdev_path = spa_strdup(value); sync = B_TRUE; } } else { if (vd->vdev_fru == NULL) { vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } else if (strcmp(value, vd->vdev_fru) != 0) { spa_strfree(vd->vdev_fru); vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } } return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); } int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) { return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); } int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) { return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); } /* * ========================================================================== * SPA Scanning * ========================================================================== */ int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); } int spa_scan_stop(spa_t *spa) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scan_cancel(spa->spa_dsl_pool)); } int spa_scan(spa_t *spa, pool_scan_func_t func) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) return (SET_ERROR(ENOTSUP)); if (func == POOL_SCAN_RESILVER && !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) return (SET_ERROR(ENOTSUP)); /* * If a resilver was requested, but there is no DTL on a * writeable leaf device, we have nothing to do. */ if (func == POOL_SCAN_RESILVER && !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); return (0); } return (dsl_scan(spa->spa_dsl_pool, func)); } /* * ========================================================================== * SPA async task processing * ========================================================================== */ static void spa_async_remove(spa_t *spa, vdev_t *vd) { if (vd->vdev_remove_wanted) { vd->vdev_remove_wanted = B_FALSE; vd->vdev_delayed_close = B_FALSE; vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); /* * We want to clear the stats, but we don't want to do a full * vdev_clear() as that will cause us to throw away * degraded/faulted state as well as attempt to reopen the * device, all of which is a waste. */ vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; vdev_state_dirty(vd->vdev_top); /* Tell userspace that the vdev is gone. */ zfs_post_remove(spa, vd); } for (int c = 0; c < vd->vdev_children; c++) spa_async_remove(spa, vd->vdev_child[c]); } static void spa_async_probe(spa_t *spa, vdev_t *vd) { if (vd->vdev_probe_wanted) { vd->vdev_probe_wanted = B_FALSE; vdev_reopen(vd); /* vdev_open() does the actual probe */ } for (int c = 0; c < vd->vdev_children; c++) spa_async_probe(spa, vd->vdev_child[c]); } static void spa_async_autoexpand(spa_t *spa, vdev_t *vd) { if (!spa->spa_autoexpand) return; for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; spa_async_autoexpand(spa, cvd); } if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) return; spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); } static void spa_async_thread(void *arg) { spa_t *spa = (spa_t *)arg; dsl_pool_t *dp = spa->spa_dsl_pool; int tasks; ASSERT(spa->spa_sync_on); mutex_enter(&spa->spa_async_lock); tasks = spa->spa_async_tasks; spa->spa_async_tasks = 0; mutex_exit(&spa->spa_async_lock); /* * See if the config needs to be updated. */ if (tasks & SPA_ASYNC_CONFIG_UPDATE) { uint64_t old_space, new_space; mutex_enter(&spa_namespace_lock); old_space = metaslab_class_get_space(spa_normal_class(spa)); old_space += metaslab_class_get_space(spa_special_class(spa)); old_space += metaslab_class_get_space(spa_dedup_class(spa)); old_space += metaslab_class_get_space( spa_embedded_log_class(spa)); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); new_space = metaslab_class_get_space(spa_normal_class(spa)); new_space += metaslab_class_get_space(spa_special_class(spa)); new_space += metaslab_class_get_space(spa_dedup_class(spa)); new_space += metaslab_class_get_space( spa_embedded_log_class(spa)); mutex_exit(&spa_namespace_lock); /* * If the pool grew as a result of the config update, * then log an internal history event. */ if (new_space != old_space) { spa_history_log_internal(spa, "vdev online", NULL, "pool '%s' size: %llu(+%llu)", spa_name(spa), (u_longlong_t)new_space, (u_longlong_t)(new_space - old_space)); } } /* * See if any devices need to be marked REMOVED. */ if (tasks & SPA_ASYNC_REMOVE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_remove(spa, spa->spa_root_vdev); for (int i = 0; i < spa->spa_l2cache.sav_count; i++) spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); for (int i = 0; i < spa->spa_spares.sav_count; i++) spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); (void) spa_vdev_state_exit(spa, NULL, 0); } if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_async_autoexpand(spa, spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); } /* * See if any devices need to be probed. */ if (tasks & SPA_ASYNC_PROBE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_probe(spa, spa->spa_root_vdev); (void) spa_vdev_state_exit(spa, NULL, 0); } /* * If any devices are done replacing, detach them. */ if (tasks & SPA_ASYNC_RESILVER_DONE || tasks & SPA_ASYNC_REBUILD_DONE) { spa_vdev_resilver_done(spa); } /* * Kick off a resilver. */ if (tasks & SPA_ASYNC_RESILVER && !vdev_rebuild_active(spa->spa_root_vdev) && (!dsl_scan_resilvering(dp) || !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) dsl_scan_restart_resilver(dp, 0); if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_initialize_restart(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } if (tasks & SPA_ASYNC_TRIM_RESTART) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_trim_restart(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_autotrim_restart(spa); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } /* * Kick off L2 cache whole device TRIM. */ if (tasks & SPA_ASYNC_L2CACHE_TRIM) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_trim_l2arc(spa); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } /* * Kick off L2 cache rebuilding. */ if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); l2arc_spa_rebuild_start(spa); spa_config_exit(spa, SCL_L2ARC, FTAG); mutex_exit(&spa_namespace_lock); } /* * Let the world know that we're done. */ mutex_enter(&spa->spa_async_lock); spa->spa_async_thread = NULL; cv_broadcast(&spa->spa_async_cv); mutex_exit(&spa->spa_async_lock); thread_exit(); } void spa_async_suspend(spa_t *spa) { mutex_enter(&spa->spa_async_lock); spa->spa_async_suspended++; while (spa->spa_async_thread != NULL) cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); mutex_exit(&spa->spa_async_lock); spa_vdev_remove_suspend(spa); zthr_t *condense_thread = spa->spa_condense_zthr; if (condense_thread != NULL) zthr_cancel(condense_thread); zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; if (discard_thread != NULL) zthr_cancel(discard_thread); zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; if (ll_delete_thread != NULL) zthr_cancel(ll_delete_thread); zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; if (ll_condense_thread != NULL) zthr_cancel(ll_condense_thread); } void spa_async_resume(spa_t *spa) { mutex_enter(&spa->spa_async_lock); ASSERT(spa->spa_async_suspended != 0); spa->spa_async_suspended--; mutex_exit(&spa->spa_async_lock); spa_restart_removal(spa); zthr_t *condense_thread = spa->spa_condense_zthr; if (condense_thread != NULL) zthr_resume(condense_thread); zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; if (discard_thread != NULL) zthr_resume(discard_thread); zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; if (ll_delete_thread != NULL) zthr_resume(ll_delete_thread); zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; if (ll_condense_thread != NULL) zthr_resume(ll_condense_thread); } static boolean_t spa_async_tasks_pending(spa_t *spa) { uint_t non_config_tasks; uint_t config_task; boolean_t config_task_suspended; non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; if (spa->spa_ccw_fail_time == 0) { config_task_suspended = B_FALSE; } else { config_task_suspended = (gethrtime() - spa->spa_ccw_fail_time) < ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); } return (non_config_tasks || (config_task && !config_task_suspended)); } static void spa_async_dispatch(spa_t *spa) { mutex_enter(&spa->spa_async_lock); if (spa_async_tasks_pending(spa) && !spa->spa_async_suspended && spa->spa_async_thread == NULL) spa->spa_async_thread = thread_create(NULL, 0, spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); mutex_exit(&spa->spa_async_lock); } void spa_async_request(spa_t *spa, int task) { zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); mutex_enter(&spa->spa_async_lock); spa->spa_async_tasks |= task; mutex_exit(&spa->spa_async_lock); } int spa_async_tasks(spa_t *spa) { return (spa->spa_async_tasks); } /* * ========================================================================== * SPA syncing routines * ========================================================================== */ static int bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { bpobj_t *bpo = arg; bpobj_enqueue(bpo, bp, bp_freed, tx); return (0); } int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); } int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); } static int spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zio_t *pio = arg; zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, pio->io_flags)); return (0); } static int bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { ASSERT(!bp_freed); return (spa_free_sync_cb(arg, bp, tx)); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing frees. */ static void spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) { zio_t *zio = zio_root(spa, NULL, NULL, 0); bplist_iterate(bpl, spa_free_sync_cb, zio, tx); VERIFY(zio_wait(zio) == 0); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing deferred frees. */ static void spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) { if (spa_sync_pass(spa) != 1) return; /* * Note: * If the log space map feature is active, we stop deferring * frees to the next TXG and therefore running this function * would be considered a no-op as spa_deferred_bpobj should * not have any entries. * * That said we run this function anyway (instead of returning * immediately) for the edge-case scenario where we just * activated the log space map feature in this TXG but we have * deferred frees from the previous TXG. */ zio_t *zio = zio_root(spa, NULL, NULL, 0); VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, bpobj_spa_free_sync_cb, zio, tx), ==, 0); VERIFY0(zio_wait(zio)); } static void spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) { char *packed = NULL; size_t bufsize; size_t nvsize = 0; dmu_buf_t *db; VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); /* * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration * information. This avoids the dmu_buf_will_dirty() path and * saves us a pre-read to get data we don't actually care about. */ bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); packed = vmem_alloc(bufsize, KM_SLEEP); VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, KM_SLEEP) == 0); bzero(packed + nvsize, bufsize - nvsize); dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); vmem_free(packed, bufsize); VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); dmu_buf_will_dirty(db, tx); *(uint64_t *)db->db_data = nvsize; dmu_buf_rele(db, FTAG); } static void spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, const char *config, const char *entry) { nvlist_t *nvroot; nvlist_t **list; int i; if (!sav->sav_sync) return; /* * Update the MOS nvlist describing the list of available devices. * spa_validate_aux() will have already made sure this nvlist is * valid and the vdevs are labeled appropriately. */ if (sav->sav_object == 0) { sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); VERIFY(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, &sav->sav_object, tx) == 0); } VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (sav->sav_count == 0) { VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); } else { list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_FALSE, VDEV_CONFIG_L2CACHE); VERIFY(nvlist_add_nvlist_array(nvroot, config, list, sav->sav_count) == 0); for (i = 0; i < sav->sav_count; i++) nvlist_free(list[i]); kmem_free(list, sav->sav_count * sizeof (void *)); } spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); nvlist_free(nvroot); sav->sav_sync = B_FALSE; } /* * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. * The all-vdev ZAP must be empty. */ static void spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) { spa_t *spa = vd->vdev_spa; if (vd->vdev_top_zap != 0) { VERIFY0(zap_add_int(spa->spa_meta_objset, avz, vd->vdev_top_zap, tx)); } if (vd->vdev_leaf_zap != 0) { VERIFY0(zap_add_int(spa->spa_meta_objset, avz, vd->vdev_leaf_zap, tx)); } for (uint64_t i = 0; i < vd->vdev_children; i++) { spa_avz_build(vd->vdev_child[i], avz, tx); } } static void spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) { nvlist_t *config; /* * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, * its config may not be dirty but we still need to build per-vdev ZAPs. * Similarly, if the pool is being assembled (e.g. after a split), we * need to rebuild the AVZ although the config may not be dirty. */ if (list_is_empty(&spa->spa_config_dirty_list) && spa->spa_avz_action == AVZ_ACTION_NONE) return; spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || spa->spa_avz_action == AVZ_ACTION_INITIALIZE || spa->spa_all_vdev_zaps != 0); if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { /* Make and build the new AVZ */ uint64_t new_avz = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); spa_avz_build(spa->spa_root_vdev, new_avz, tx); /* Diff old AVZ with new one */ zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_all_vdev_zaps); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t vdzap = za.za_first_integer; if (zap_lookup_int(spa->spa_meta_objset, new_avz, vdzap) == ENOENT) { /* * ZAP is listed in old AVZ but not in new one; * destroy it */ VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, tx)); } } zap_cursor_fini(&zc); /* Destroy the old AVZ */ VERIFY0(zap_destroy(spa->spa_meta_objset, spa->spa_all_vdev_zaps, tx)); /* Replace the old AVZ in the dir obj with the new one */ VERIFY0(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, sizeof (new_avz), 1, &new_avz, tx)); spa->spa_all_vdev_zaps = new_avz; } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { zap_cursor_t zc; zap_attribute_t za; /* Walk through the AVZ and destroy all listed ZAPs */ for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_all_vdev_zaps); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t zap = za.za_first_integer; VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); } zap_cursor_fini(&zc); /* Destroy and unlink the AVZ itself */ VERIFY0(zap_destroy(spa->spa_meta_objset, spa->spa_all_vdev_zaps, tx)); VERIFY0(zap_remove(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); spa->spa_all_vdev_zaps = 0; } if (spa->spa_all_vdev_zaps == 0) { spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx); } spa->spa_avz_action = AVZ_ACTION_NONE; /* Create ZAPs for vdevs that don't have them. */ vdev_construct_zaps(spa->spa_root_vdev, tx); config = spa_config_generate(spa, spa->spa_root_vdev, dmu_tx_get_txg(tx), B_FALSE); /* * If we're upgrading the spa version then make sure that * the config object gets updated with the correct version. */ if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa->spa_uberblock.ub_version); spa_config_exit(spa, SCL_STATE, FTAG); nvlist_free(spa->spa_config_syncing); spa->spa_config_syncing = config; spa_sync_nvlist(spa, spa->spa_config_object, config, tx); } static void spa_sync_version(void *arg, dmu_tx_t *tx) { uint64_t *versionp = arg; uint64_t version = *versionp; spa_t *spa = dmu_tx_pool(tx)->dp_spa; /* * Setting the version is special cased when first creating the pool. */ ASSERT(tx->tx_txg != TXG_INITIAL); ASSERT(SPA_VERSION_IS_SUPPORTED(version)); ASSERT(version >= spa_version(spa)); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "version=%lld", (longlong_t)version); } /* * Set zpool properties. */ static void spa_sync_props(void *arg, dmu_tx_t *tx) { nvlist_t *nvp = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = spa->spa_meta_objset; nvpair_t *elem = NULL; mutex_enter(&spa->spa_props_lock); while ((elem = nvlist_next_nvpair(nvp, elem))) { uint64_t intval; char *strval, *fname; zpool_prop_t prop; const char *propname; zprop_type_t proptype; spa_feature_t fid; switch (prop = zpool_name_to_prop(nvpair_name(elem))) { case ZPOOL_PROP_INVAL: /* * We checked this earlier in spa_prop_validate(). */ ASSERT(zpool_prop_feature(nvpair_name(elem))); fname = strchr(nvpair_name(elem), '@') + 1; VERIFY0(zfeature_lookup_name(fname, &fid)); spa_feature_enable(spa, fid, tx); spa_history_log_internal(spa, "set", tx, "%s=enabled", nvpair_name(elem)); break; case ZPOOL_PROP_VERSION: intval = fnvpair_value_uint64(elem); /* * The version is synced separately before other * properties and should be correct by now. */ ASSERT3U(spa_version(spa), >=, intval); break; case ZPOOL_PROP_ALTROOT: /* * 'altroot' is a non-persistent property. It should * have been set temporarily at creation or import time. */ ASSERT(spa->spa_root != NULL); break; case ZPOOL_PROP_READONLY: case ZPOOL_PROP_CACHEFILE: /* * 'readonly' and 'cachefile' are also non-persistent * properties. */ break; case ZPOOL_PROP_COMMENT: strval = fnvpair_value_string(elem); if (spa->spa_comment != NULL) spa_strfree(spa->spa_comment); spa->spa_comment = spa_strdup(strval); /* * We need to dirty the configuration on all the vdevs * so that their labels get updated. It's unnecessary * to do this for pool creation since the vdev's * configuration has already been dirtied. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); break; case ZPOOL_PROP_COMPATIBILITY: strval = fnvpair_value_string(elem); if (spa->spa_compatibility != NULL) spa_strfree(spa->spa_compatibility); spa->spa_compatibility = spa_strdup(strval); /* * Dirty the configuration on vdevs as above. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); break; default: /* * Set pool property values in the poolprops mos object. */ if (spa->spa_pool_props_object == 0) { spa->spa_pool_props_object = zap_create_link(mos, DMU_OT_POOL_PROPS, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, tx); } /* normalize the property name */ propname = zpool_prop_to_name(prop); proptype = zpool_prop_get_type(prop); if (nvpair_type(elem) == DATA_TYPE_STRING) { ASSERT(proptype == PROP_TYPE_STRING); strval = fnvpair_value_string(elem); VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 1, strlen(strval) + 1, strval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { intval = fnvpair_value_uint64(elem); if (proptype == PROP_TYPE_INDEX) { const char *unused; VERIFY0(zpool_prop_index_to_string( prop, intval, &unused)); } VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 8, 1, &intval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%lld", nvpair_name(elem), (longlong_t)intval); } else { ASSERT(0); /* not allowed */ } switch (prop) { case ZPOOL_PROP_DELEGATION: spa->spa_delegation = intval; break; case ZPOOL_PROP_BOOTFS: spa->spa_bootfs = intval; break; case ZPOOL_PROP_FAILUREMODE: spa->spa_failmode = intval; break; case ZPOOL_PROP_AUTOTRIM: spa->spa_autotrim = intval; spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); break; case ZPOOL_PROP_AUTOEXPAND: spa->spa_autoexpand = intval; if (tx->tx_txg != TXG_INITIAL) spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); break; case ZPOOL_PROP_MULTIHOST: spa->spa_multihost = intval; break; default: break; } } } mutex_exit(&spa->spa_props_lock); } /* * Perform one-time upgrade on-disk changes. spa_version() does not * reflect the new version this txg, so there must be no changes this * txg to anything that the upgrade code depends on after it executes. * Therefore this must be called after dsl_pool_sync() does the sync * tasks. */ static void spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) { if (spa_sync_pass(spa) != 1) return; dsl_pool_t *dp = spa->spa_dsl_pool; rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { dsl_pool_create_origin(dp, tx); /* Keeping the origin open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { dsl_pool_upgrade_clones(dp, tx); } if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { dsl_pool_upgrade_dir_clones(dp, tx); /* Keeping the freedir open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { spa_feature_create_zap_objects(spa, tx); } /* * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable * when possibility to use lz4 compression for metadata was added * Old pools that have this feature enabled must be upgraded to have * this feature active */ if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { boolean_t lz4_en = spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS); boolean_t lz4_ac = spa_feature_is_active(spa, SPA_FEATURE_LZ4_COMPRESS); if (lz4_en && !lz4_ac) spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); } /* * If we haven't written the salt, do so now. Note that the * feature may not be activated yet, but that's fine since * the presence of this ZAP entry is backwards compatible. */ if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT) == ENOENT) { VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes, tx)); } rrw_exit(&dp->dp_config_rwlock, FTAG); } static void vdev_indirect_state_sync_verify(vdev_t *vd) { vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; if (vd->vdev_ops == &vdev_indirect_ops) { ASSERT(vim != NULL); ASSERT(vib != NULL); } uint64_t obsolete_sm_object = 0; ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); if (obsolete_sm_object != 0) { ASSERT(vd->vdev_obsolete_sm != NULL); ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); ASSERT3U(obsolete_sm_object, ==, space_map_object(vd->vdev_obsolete_sm)); ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, space_map_allocated(vd->vdev_obsolete_sm)); } ASSERT(vd->vdev_obsolete_segments != NULL); /* * Since frees / remaps to an indirect vdev can only * happen in syncing context, the obsolete segments * tree must be empty when we start syncing. */ ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); } /* * Set the top-level vdev's max queue depth. Evaluate each top-level's * async write queue depth in case it changed. The max queue depth will * not change in the middle of syncing out this txg. */ static void spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) { ASSERT(spa_writeable(spa)); vdev_t *rvd = spa->spa_root_vdev; uint32_t max_queue_depth = zfs_vdev_async_write_max_active * zfs_vdev_queue_depth_pct / 100; metaslab_class_t *normal = spa_normal_class(spa); metaslab_class_t *special = spa_special_class(spa); metaslab_class_t *dedup = spa_dedup_class(spa); uint64_t slots_per_allocator = 0; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (mg == NULL || !metaslab_group_initialized(mg)) continue; metaslab_class_t *mc = mg->mg_class; if (mc != normal && mc != special && mc != dedup) continue; /* * It is safe to do a lock-free check here because only async * allocations look at mg_max_alloc_queue_depth, and async * allocations all happen from spa_sync(). */ for (int i = 0; i < mg->mg_allocators; i++) { ASSERT0(zfs_refcount_count( &(mg->mg_allocator[i].mga_alloc_queue_depth))); } mg->mg_max_alloc_queue_depth = max_queue_depth; for (int i = 0; i < mg->mg_allocators; i++) { mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = zfs_vdev_def_queue_depth; } slots_per_allocator += zfs_vdev_def_queue_depth; } for (int i = 0; i < spa->spa_alloc_count; i++) { ASSERT0(zfs_refcount_count(&normal->mc_allocator[i]. mca_alloc_slots)); ASSERT0(zfs_refcount_count(&special->mc_allocator[i]. mca_alloc_slots)); ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i]. mca_alloc_slots)); normal->mc_allocator[i].mca_alloc_max_slots = slots_per_allocator; special->mc_allocator[i].mca_alloc_max_slots = slots_per_allocator; dedup->mc_allocator[i].mca_alloc_max_slots = slots_per_allocator; } normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; } static void spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) { ASSERT(spa_writeable(spa)); vdev_t *rvd = spa->spa_root_vdev; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; vdev_indirect_state_sync_verify(vd); if (vdev_indirect_should_condense(vd)) { spa_condense_indirect_start_sync(vd, tx); break; } } } static void spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) { objset_t *mos = spa->spa_meta_objset; dsl_pool_t *dp = spa->spa_dsl_pool; uint64_t txg = tx->tx_txg; bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; do { int pass = ++spa->spa_sync_pass; spa_sync_config_object(spa, tx); spa_sync_aux_dev(spa, &spa->spa_spares, tx, ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); spa_errlog_sync(spa, txg); dsl_pool_sync(dp, txg); if (pass < zfs_sync_pass_deferred_free || spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { /* * If the log space map feature is active we don't * care about deferred frees and the deferred bpobj * as the log space map should effectively have the * same results (i.e. appending only to one object). */ spa_sync_frees(spa, free_bpl, tx); } else { /* * We can not defer frees in pass 1, because * we sync the deferred frees later in pass 1. */ ASSERT3U(pass, >, 1); bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, &spa->spa_deferred_bpobj, tx); } ddt_sync(spa, txg); dsl_scan_sync(dp, tx); svr_sync(spa, tx); spa_sync_upgrades(spa, tx); spa_flush_metaslabs(spa, tx); vdev_t *vd = NULL; while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) != NULL) vdev_sync(vd, txg); /* * Note: We need to check if the MOS is dirty because we could * have marked the MOS dirty without updating the uberblock * (e.g. if we have sync tasks but no dirty user data). We need * to check the uberblock's rootbp because it is updated if we * have synced out dirty data (though in this case the MOS will * most likely also be dirty due to second order effects, we * don't want to rely on that here). */ if (pass == 1 && spa->spa_uberblock.ub_rootbp.blk_birth < txg && !dmu_objset_is_dirty(mos, txg)) { /* * Nothing changed on the first pass, therefore this * TXG is a no-op. Avoid syncing deferred frees, so * that we can keep this TXG as a no-op. */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); break; } spa_sync_deferred_frees(spa, tx); } while (dmu_objset_is_dirty(mos, txg)); } /* * Rewrite the vdev configuration (which includes the uberblock) to * commit the transaction group. * * If there are no dirty vdevs, we sync the uberblock to a few random * top-level vdevs that are known to be visible in the config cache * (see spa_vdev_add() for a complete description). If there *are* dirty * vdevs, sync the uberblock to all vdevs. */ static void spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) { vdev_t *rvd = spa->spa_root_vdev; uint64_t txg = tx->tx_txg; for (;;) { int error = 0; /* * We hold SCL_STATE to prevent vdev open/close/etc. * while we're attempting to write the vdev labels. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (list_is_empty(&spa->spa_config_dirty_list)) { vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; int svdcount = 0; int children = rvd->vdev_children; int c0 = spa_get_random(children); for (int c = 0; c < children; c++) { vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; /* Stop when revisiting the first vdev */ if (c > 0 && svd[0] == vd) break; if (vd->vdev_ms_array == 0 || vd->vdev_islog || !vdev_is_concrete(vd)) continue; svd[svdcount++] = vd; if (svdcount == SPA_SYNC_MIN_VDEVS) break; } error = vdev_config_sync(svd, svdcount, txg); } else { error = vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg); } if (error == 0) spa->spa_last_synced_guid = rvd->vdev_guid; spa_config_exit(spa, SCL_STATE, FTAG); if (error == 0) break; zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); zio_resume_wait(spa); } } /* * Sync the specified transaction group. New blocks may be dirtied as * part of the process, so we iterate until it converges. */ void spa_sync(spa_t *spa, uint64_t txg) { vdev_t *vd = NULL; VERIFY(spa_writeable(spa)); /* * Wait for i/os issued in open context that need to complete * before this txg syncs. */ (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); /* * Lock out configuration changes. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa->spa_syncing_txg = txg; spa->spa_sync_pass = 0; for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_enter(&spa->spa_alloc_locks[i]); VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); mutex_exit(&spa->spa_alloc_locks[i]); } /* * If there are any pending vdev state changes, convert them * into config changes that go out with this transaction group. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); while (list_head(&spa->spa_state_dirty_list) != NULL) { /* * We need the write lock here because, for aux vdevs, * calling vdev_config_dirty() modifies sav_config. * This is ugly and will become unnecessary when we * eliminate the aux vdev wart by integrating all vdevs * into the root vdev tree. */ spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { vdev_state_clean(vd); vdev_config_dirty(vd); } spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); } spa_config_exit(spa, SCL_STATE, FTAG); dsl_pool_t *dp = spa->spa_dsl_pool; dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); spa->spa_sync_starttime = gethrtime(); taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + NSEC_TO_TICK(spa->spa_deadman_synctime)); /* * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, * set spa_deflate if we have no raid-z vdevs. */ if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { vdev_t *rvd = spa->spa_root_vdev; int i; for (i = 0; i < rvd->vdev_children; i++) { vd = rvd->vdev_child[i]; if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) break; } if (i == rvd->vdev_children) { spa->spa_deflate = TRUE; VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx)); } } spa_sync_adjust_vdev_max_queue_depth(spa); spa_sync_condense_indirect(spa, tx); spa_sync_iterate_to_convergence(spa, tx); #ifdef ZFS_DEBUG if (!list_is_empty(&spa->spa_config_dirty_list)) { /* * Make sure that the number of ZAPs for all the vdevs matches * the number of ZAPs in the per-vdev ZAP list. This only gets * called if the config is dirty; otherwise there may be * outstanding AVZ operations that weren't completed in * spa_sync_config_object. */ uint64_t all_vdev_zap_entry_count; ASSERT0(zap_count(spa->spa_meta_objset, spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, all_vdev_zap_entry_count); } #endif if (spa->spa_vdev_removal != NULL) { ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); } spa_sync_rewrite_vdev_config(spa, tx); dmu_tx_commit(tx); taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); spa->spa_deadman_tqid = 0; /* * Clear the dirty config list. */ while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) vdev_config_clean(vd); /* * Now that the new config has synced transactionally, * let it become visible to the config cache. */ if (spa->spa_config_syncing != NULL) { spa_config_set(spa, spa->spa_config_syncing); spa->spa_config_txg = txg; spa->spa_config_syncing = NULL; } dsl_pool_sync_done(dp, txg); for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_enter(&spa->spa_alloc_locks[i]); VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); mutex_exit(&spa->spa_alloc_locks[i]); } /* * Update usable space statistics. */ while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) != NULL) vdev_sync_done(vd, txg); metaslab_class_evict_old(spa->spa_normal_class, txg); metaslab_class_evict_old(spa->spa_log_class, txg); spa_sync_close_syncing_log_sm(spa); spa_update_dspace(spa); /* * It had better be the case that we didn't dirty anything * since vdev_config_sync(). */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); while (zfs_pause_spa_sync) delay(1); spa->spa_sync_pass = 0; /* * Update the last synced uberblock here. We want to do this at * the end of spa_sync() so that consumers of spa_last_synced_txg() * will be guaranteed that all the processing associated with * that txg has been completed. */ spa->spa_ubsync = spa->spa_uberblock; spa_config_exit(spa, SCL_CONFIG, FTAG); spa_handle_ignored_writes(spa); /* * If any async tasks have been requested, kick them off. */ spa_async_dispatch(spa); } /* * Sync all pools. We don't want to hold the namespace lock across these * operations, so we take a reference on the spa_t and drop the lock during the * sync. */ void spa_sync_allpools(void) { spa_t *spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa_state(spa) != POOL_STATE_ACTIVE || !spa_writeable(spa) || spa_suspended(spa)) continue; spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); txg_wait_synced(spa_get_dsl(spa), 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); } mutex_exit(&spa_namespace_lock); } /* * ========================================================================== * Miscellaneous routines * ========================================================================== */ /* * Remove all pools in the system. */ void spa_evict_all(void) { spa_t *spa; /* * Remove all cached state. All pools should be closed now, * so every spa in the AVL tree should be unreferenced. */ mutex_enter(&spa_namespace_lock); while ((spa = spa_next(NULL)) != NULL) { /* * Stop async tasks. The async thread may need to detach * a device that's been replaced, which requires grabbing * spa_namespace_lock, so we must drop it here. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } spa_remove(spa); } mutex_exit(&spa_namespace_lock); } vdev_t * spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) { vdev_t *vd; int i; if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) return (vd); if (aux) { for (i = 0; i < spa->spa_l2cache.sav_count; i++) { vd = spa->spa_l2cache.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } } return (NULL); } void spa_upgrade(spa_t *spa, uint64_t version) { ASSERT(spa_writeable(spa)); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * This should only be called for a non-faulted pool, and since a * future version would result in an unopenable pool, this shouldn't be * possible. */ ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); ASSERT3U(version, >=, spa->spa_uberblock.ub_version); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); } boolean_t spa_has_spare(spa_t *spa, uint64_t guid) { int i; uint64_t spareguid; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) if (sav->sav_vdevs[i]->vdev_guid == guid) return (B_TRUE); for (i = 0; i < sav->sav_npending; i++) { if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, &spareguid) == 0 && spareguid == guid) return (B_TRUE); } return (B_FALSE); } /* * Check if a pool has an active shared spare device. * Note: reference count of an active spare is 2, as a spare and as a replace */ static boolean_t spa_has_active_shared_spare(spa_t *spa) { int i, refcnt; uint64_t pool; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) { if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, &refcnt) && pool != 0ULL && pool == spa_guid(spa) && refcnt > 2) return (B_TRUE); } return (B_FALSE); } uint64_t spa_total_metaslabs(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; uint64_t m = 0; for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; if (!vdev_is_concrete(vd)) continue; m += vd->vdev_ms_count; } return (m); } /* * Notify any waiting threads that some activity has switched from being in- * progress to not-in-progress so that the thread can wake up and determine * whether it is finished waiting. */ void spa_notify_waiters(spa_t *spa) { /* * Acquiring spa_activities_lock here prevents the cv_broadcast from * happening between the waiting thread's check and cv_wait. */ mutex_enter(&spa->spa_activities_lock); cv_broadcast(&spa->spa_activities_cv); mutex_exit(&spa->spa_activities_lock); } /* * Notify any waiting threads that the pool is exporting, and then block until * they are finished using the spa_t. */ void spa_wake_waiters(spa_t *spa) { mutex_enter(&spa->spa_activities_lock); spa->spa_waiters_cancel = B_TRUE; cv_broadcast(&spa->spa_activities_cv); while (spa->spa_waiters != 0) cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); spa->spa_waiters_cancel = B_FALSE; mutex_exit(&spa->spa_activities_lock); } /* Whether the vdev or any of its descendants are being initialized/trimmed. */ static boolean_t spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); ASSERT(activity == ZPOOL_WAIT_INITIALIZE || activity == ZPOOL_WAIT_TRIM); kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? &vd->vdev_initialize_lock : &vd->vdev_trim_lock; mutex_exit(&spa->spa_activities_lock); mutex_enter(lock); mutex_enter(&spa->spa_activities_lock); boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); mutex_exit(lock); if (in_progress) return (B_TRUE); for (int i = 0; i < vd->vdev_children; i++) { if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], activity)) return (B_TRUE); } return (B_FALSE); } /* * If use_guid is true, this checks whether the vdev specified by guid is * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool * is being initialized/trimmed. The caller must hold the config lock and * spa_activities_lock. */ static int spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, zpool_wait_activity_t activity, boolean_t *in_progress) { mutex_exit(&spa->spa_activities_lock); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); mutex_enter(&spa->spa_activities_lock); vdev_t *vd; if (use_guid) { vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (EINVAL); } } else { vd = spa->spa_root_vdev; } *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (0); } /* * Locking for waiting threads * --------------------------- * * Waiting threads need a way to check whether a given activity is in progress, * and then, if it is, wait for it to complete. Each activity will have some * in-memory representation of the relevant on-disk state which can be used to * determine whether or not the activity is in progress. The in-memory state and * the locking used to protect it will be different for each activity, and may * not be suitable for use with a cvar (e.g., some state is protected by the * config lock). To allow waiting threads to wait without any races, another * lock, spa_activities_lock, is used. * * When the state is checked, both the activity-specific lock (if there is one) * and spa_activities_lock are held. In some cases, the activity-specific lock * is acquired explicitly (e.g. the config lock). In others, the locking is * internal to some check (e.g. bpobj_is_empty). After checking, the waiting * thread releases the activity-specific lock and, if the activity is in * progress, then cv_waits using spa_activities_lock. * * The waiting thread is woken when another thread, one completing some * activity, updates the state of the activity and then calls * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only * needs to hold its activity-specific lock when updating the state, and this * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. * * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, * and because it is held when the waiting thread checks the state of the * activity, it can never be the case that the completing thread both updates * the activity state and cv_broadcasts in between the waiting thread's check * and cv_wait. Thus, a waiting thread can never miss a wakeup. * * In order to prevent deadlock, when the waiting thread does its check, in some * cases it will temporarily drop spa_activities_lock in order to acquire the * activity-specific lock. The order in which spa_activities_lock and the * activity specific lock are acquired in the waiting thread is determined by * the order in which they are acquired in the completing thread; if the * completing thread calls spa_notify_waiters with the activity-specific lock * held, then the waiting thread must also acquire the activity-specific lock * first. */ static int spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, boolean_t use_tag, uint64_t tag, boolean_t *in_progress) { int error = 0; ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); switch (activity) { case ZPOOL_WAIT_CKPT_DISCARD: *in_progress = (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == ENOENT); break; case ZPOOL_WAIT_FREE: *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || spa_livelist_delete_check(spa)); break; case ZPOOL_WAIT_INITIALIZE: case ZPOOL_WAIT_TRIM: error = spa_vdev_activity_in_progress(spa, use_tag, tag, activity, in_progress); break; case ZPOOL_WAIT_REPLACE: mutex_exit(&spa->spa_activities_lock); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); mutex_enter(&spa->spa_activities_lock); *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); break; case ZPOOL_WAIT_REMOVE: *in_progress = (spa->spa_removing_phys.sr_state == DSS_SCANNING); break; case ZPOOL_WAIT_RESILVER: if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev))) break; /* fall through */ case ZPOOL_WAIT_SCRUB: { boolean_t scanning, paused, is_scrub; dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); scanning = (scn->scn_phys.scn_state == DSS_SCANNING); paused = dsl_scan_is_paused_scrub(scn); *in_progress = (scanning && !paused && is_scrub == (activity == ZPOOL_WAIT_SCRUB)); break; } default: panic("unrecognized value for activity %d", activity); } return (error); } static int spa_wait_common(const char *pool, zpool_wait_activity_t activity, boolean_t use_tag, uint64_t tag, boolean_t *waited) { /* * The tag is used to distinguish between instances of an activity. * 'initialize' and 'trim' are the only activities that we use this for. * The other activities can only have a single instance in progress in a * pool at one time, making the tag unnecessary. * * There can be multiple devices being replaced at once, but since they * all finish once resilvering finishes, we don't bother keeping track * of them individually, we just wait for them all to finish. */ if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && activity != ZPOOL_WAIT_TRIM) return (EINVAL); if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) return (EINVAL); spa_t *spa; int error = spa_open(pool, &spa, FTAG); if (error != 0) return (error); /* * Increment the spa's waiter count so that we can call spa_close and * still ensure that the spa_t doesn't get freed before this thread is * finished with it when the pool is exported. We want to call spa_close * before we start waiting because otherwise the additional ref would * prevent the pool from being exported or destroyed throughout the * potentially long wait. */ mutex_enter(&spa->spa_activities_lock); spa->spa_waiters++; spa_close(spa, FTAG); *waited = B_FALSE; for (;;) { boolean_t in_progress; error = spa_activity_in_progress(spa, activity, use_tag, tag, &in_progress); if (error || !in_progress || spa->spa_waiters_cancel) break; *waited = B_TRUE; if (cv_wait_sig(&spa->spa_activities_cv, &spa->spa_activities_lock) == 0) { error = EINTR; break; } } spa->spa_waiters--; cv_signal(&spa->spa_waiters_cv); mutex_exit(&spa->spa_activities_lock); return (error); } /* * Wait for a particular instance of the specified activity to complete, where * the instance is identified by 'tag' */ int spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, boolean_t *waited) { return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); } /* * Wait for all instances of the specified activity complete */ int spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) { return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); } sysevent_t * spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) { sysevent_t *ev = NULL; #ifdef _KERNEL nvlist_t *resource; resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); if (resource) { ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); ev->resource = resource; } #endif return (ev); } void spa_event_post(sysevent_t *ev) { #ifdef _KERNEL if (ev) { zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); kmem_free(ev, sizeof (*ev)); } #endif } /* * Post a zevent corresponding to the given sysevent. The 'name' must be one * of the event definitions in sys/sysevent/eventdefs.h. The payload will be * filled in from the spa and (optionally) the vdev. This doesn't do anything * in the userland libzpool, as we don't want consumers to misinterpret ztest * or zdb as real changes. */ void spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) { spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); } /* state manipulation functions */ EXPORT_SYMBOL(spa_open); EXPORT_SYMBOL(spa_open_rewind); EXPORT_SYMBOL(spa_get_stats); EXPORT_SYMBOL(spa_create); EXPORT_SYMBOL(spa_import); EXPORT_SYMBOL(spa_tryimport); EXPORT_SYMBOL(spa_destroy); EXPORT_SYMBOL(spa_export); EXPORT_SYMBOL(spa_reset); EXPORT_SYMBOL(spa_async_request); EXPORT_SYMBOL(spa_async_suspend); EXPORT_SYMBOL(spa_async_resume); EXPORT_SYMBOL(spa_inject_addref); EXPORT_SYMBOL(spa_inject_delref); EXPORT_SYMBOL(spa_scan_stat_init); EXPORT_SYMBOL(spa_scan_get_stats); /* device manipulation */ EXPORT_SYMBOL(spa_vdev_add); EXPORT_SYMBOL(spa_vdev_attach); EXPORT_SYMBOL(spa_vdev_detach); EXPORT_SYMBOL(spa_vdev_setpath); EXPORT_SYMBOL(spa_vdev_setfru); EXPORT_SYMBOL(spa_vdev_split_mirror); /* spare statech is global across all pools) */ EXPORT_SYMBOL(spa_spare_add); EXPORT_SYMBOL(spa_spare_remove); EXPORT_SYMBOL(spa_spare_exists); EXPORT_SYMBOL(spa_spare_activate); /* L2ARC statech is global across all pools) */ EXPORT_SYMBOL(spa_l2cache_add); EXPORT_SYMBOL(spa_l2cache_remove); EXPORT_SYMBOL(spa_l2cache_exists); EXPORT_SYMBOL(spa_l2cache_activate); EXPORT_SYMBOL(spa_l2cache_drop); /* scanning */ EXPORT_SYMBOL(spa_scan); EXPORT_SYMBOL(spa_scan_stop); /* spa syncing */ EXPORT_SYMBOL(spa_sync); /* only for DMU use */ EXPORT_SYMBOL(spa_sync_allpools); /* properties */ EXPORT_SYMBOL(spa_prop_set); EXPORT_SYMBOL(spa_prop_get); EXPORT_SYMBOL(spa_prop_clear_bootfs); /* asynchronous event notification */ EXPORT_SYMBOL(spa_event_notify); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW, "log2 fraction of arc that can be used by inflight I/Os when " "verifying pool during import"); ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, "Set to traverse metadata on pool import"); ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, "Set to traverse data on pool import"); ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, "Print vdev tree to zfs_dbgmsg during pool import"); ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD, "Percentage of CPUs to run an IO worker thread"); +ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD, + "Number of threads per IO worker taskqueue"); + ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW, "Allow importing pool with up to this number of missing top-level " "vdevs (in read-only mode)"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW, "Set the livelist condense zthr to pause"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW, "Set the livelist condense synctask to pause"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW, "Whether livelist condensing was canceled in the synctask"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW, "Whether livelist condensing was canceled in the zthr function"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW, "Whether extra ALLOC blkptrs were added to a livelist entry while it " "was being condensed"); /* END CSTYLED */