diff --git a/contrib/llvm-project/lld/ELF/Writer.cpp b/contrib/llvm-project/lld/ELF/Writer.cpp
index 8a08b0fcc90d..0c1bd27bb1fe 100644
--- a/contrib/llvm-project/lld/ELF/Writer.cpp
+++ b/contrib/llvm-project/lld/ELF/Writer.cpp
@@ -1,3123 +1,3127 @@
 //===- Writer.cpp ---------------------------------------------------------===//
 //
 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 // See https://llvm.org/LICENSE.txt for license information.
 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 //
 //===----------------------------------------------------------------------===//
 
 #include "Writer.h"
 #include "AArch64ErrataFix.h"
 #include "ARMErrataFix.h"
 #include "CallGraphSort.h"
 #include "Config.h"
 #include "InputFiles.h"
 #include "LinkerScript.h"
 #include "MapFile.h"
 #include "OutputSections.h"
 #include "Relocations.h"
 #include "SymbolTable.h"
 #include "Symbols.h"
 #include "SyntheticSections.h"
 #include "Target.h"
 #include "lld/Common/Arrays.h"
 #include "lld/Common/CommonLinkerContext.h"
 #include "lld/Common/Filesystem.h"
 #include "lld/Common/Strings.h"
 #include "llvm/ADT/StringMap.h"
 #include "llvm/Support/BLAKE3.h"
 #include "llvm/Support/Parallel.h"
 #include "llvm/Support/RandomNumberGenerator.h"
 #include "llvm/Support/TimeProfiler.h"
 #include "llvm/Support/xxhash.h"
 #include <climits>
 
 #define DEBUG_TYPE "lld"
 
 using namespace llvm;
 using namespace llvm::ELF;
 using namespace llvm::object;
 using namespace llvm::support;
 using namespace llvm::support::endian;
 using namespace lld;
 using namespace lld::elf;
 
 namespace {
 // The writer writes a SymbolTable result to a file.
 template <class ELFT> class Writer {
 public:
   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
 
   Writer() : buffer(errorHandler().outputBuffer) {}
 
   void run();
 
 private:
   void addSectionSymbols();
   void sortSections();
   void resolveShfLinkOrder();
   void finalizeAddressDependentContent();
   void optimizeBasicBlockJumps();
   void sortInputSections();
   void sortOrphanSections();
   void finalizeSections();
   void checkExecuteOnly();
   void setReservedSymbolSections();
 
   SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part);
   void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
                          unsigned pFlags);
   void assignFileOffsets();
   void assignFileOffsetsBinary();
   void setPhdrs(Partition &part);
   void checkSections();
   void fixSectionAlignments();
   void openFile();
   void writeTrapInstr();
   void writeHeader();
   void writeSections();
   void writeSectionsBinary();
   void writeBuildId();
 
   std::unique_ptr<FileOutputBuffer> &buffer;
 
   void addRelIpltSymbols();
   void addStartEndSymbols();
   void addStartStopSymbols(OutputSection &osec);
 
   uint64_t fileSize;
   uint64_t sectionHeaderOff;
 };
 } // anonymous namespace
 
 static bool needsInterpSection() {
   return !config->relocatable && !config->shared &&
          !config->dynamicLinker.empty() && script->needsInterpSection();
 }
 
 template <class ELFT> void elf::writeResult() {
   Writer<ELFT>().run();
 }
 
 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) {
   auto it = std::stable_partition(
       phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
         if (p->p_type != PT_LOAD)
           return true;
         if (!p->firstSec)
           return false;
         uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
         return size != 0;
       });
 
   // Clear OutputSection::ptLoad for sections contained in removed
   // segments.
   DenseSet<PhdrEntry *> removed(it, phdrs.end());
   for (OutputSection *sec : outputSections)
     if (removed.count(sec->ptLoad))
       sec->ptLoad = nullptr;
   phdrs.erase(it, phdrs.end());
 }
 
 void elf::copySectionsIntoPartitions() {
   SmallVector<InputSectionBase *, 0> newSections;
   const size_t ehSize = ctx.ehInputSections.size();
   for (unsigned part = 2; part != partitions.size() + 1; ++part) {
     for (InputSectionBase *s : ctx.inputSections) {
       if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE)
         continue;
       auto *copy = make<InputSection>(cast<InputSection>(*s));
       copy->partition = part;
       newSections.push_back(copy);
     }
     for (size_t i = 0; i != ehSize; ++i) {
       assert(ctx.ehInputSections[i]->isLive());
       auto *copy = make<EhInputSection>(*ctx.ehInputSections[i]);
       copy->partition = part;
       ctx.ehInputSections.push_back(copy);
     }
   }
 
   ctx.inputSections.insert(ctx.inputSections.end(), newSections.begin(),
                            newSections.end());
 }
 
 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
                                    uint64_t val, uint8_t stOther = STV_HIDDEN) {
   Symbol *s = symtab.find(name);
   if (!s || s->isDefined() || s->isCommon())
     return nullptr;
 
   s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, stOther,
                      STT_NOTYPE, val,
                      /*size=*/0, sec});
   s->isUsedInRegularObj = true;
   return cast<Defined>(s);
 }
 
 // The linker is expected to define some symbols depending on
 // the linking result. This function defines such symbols.
 void elf::addReservedSymbols() {
   if (config->emachine == EM_MIPS) {
     auto addAbsolute = [](StringRef name) {
       Symbol *sym =
           symtab.addSymbol(Defined{ctx.internalFile, name, STB_GLOBAL,
                                    STV_HIDDEN, STT_NOTYPE, 0, 0, nullptr});
       sym->isUsedInRegularObj = true;
       return cast<Defined>(sym);
     };
     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
     // so that it points to an absolute address which by default is relative
     // to GOT. Default offset is 0x7ff0.
     // See "Global Data Symbols" in Chapter 6 in the following document:
     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
     ElfSym::mipsGp = addAbsolute("_gp");
 
     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
     // start of function and 'gp' pointer into GOT.
     if (symtab.find("_gp_disp"))
       ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
 
     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
     // pointer. This symbol is used in the code generated by .cpload pseudo-op
     // in case of using -mno-shared option.
     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
     if (symtab.find("__gnu_local_gp"))
       ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
   } else if (config->emachine == EM_PPC) {
     // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
     // support Small Data Area, define it arbitrarily as 0.
     addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
   } else if (config->emachine == EM_PPC64) {
     addPPC64SaveRestore();
   }
 
   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
   // combines the typical ELF GOT with the small data sections. It commonly
   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
   // represent the TOC base which is offset by 0x8000 bytes from the start of
   // the .got section.
   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
   // correctness of some relocations depends on its value.
   StringRef gotSymName =
       (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
 
   if (Symbol *s = symtab.find(gotSymName)) {
     if (s->isDefined()) {
       error(toString(s->file) + " cannot redefine linker defined symbol '" +
             gotSymName + "'");
       return;
     }
 
     uint64_t gotOff = 0;
     if (config->emachine == EM_PPC64)
       gotOff = 0x8000;
 
     s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, STV_HIDDEN,
                        STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
     ElfSym::globalOffsetTable = cast<Defined>(s);
   }
 
   // __ehdr_start is the location of ELF file headers. Note that we define
   // this symbol unconditionally even when using a linker script, which
   // differs from the behavior implemented by GNU linker which only define
   // this symbol if ELF headers are in the memory mapped segment.
   addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
 
   // __executable_start is not documented, but the expectation of at
   // least the Android libc is that it points to the ELF header.
   addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
 
   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
   // each DSO. The address of the symbol doesn't matter as long as they are
   // different in different DSOs, so we chose the start address of the DSO.
   addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
 
   // If linker script do layout we do not need to create any standard symbols.
   if (script->hasSectionsCommand)
     return;
 
   auto add = [](StringRef s, int64_t pos) {
     return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
   };
 
   ElfSym::bss = add("__bss_start", 0);
   ElfSym::end1 = add("end", -1);
   ElfSym::end2 = add("_end", -1);
   ElfSym::etext1 = add("etext", -1);
   ElfSym::etext2 = add("_etext", -1);
   ElfSym::edata1 = add("edata", -1);
   ElfSym::edata2 = add("_edata", -1);
 }
 
 static void demoteDefined(Defined &sym, DenseMap<SectionBase *, size_t> &map) {
   if (map.empty())
     for (auto [i, sec] : llvm::enumerate(sym.file->getSections()))
       map.try_emplace(sec, i);
   // Change WEAK to GLOBAL so that if a scanned relocation references sym,
   // maybeReportUndefined will report an error.
   uint8_t binding = sym.isWeak() ? uint8_t(STB_GLOBAL) : sym.binding;
   Undefined(sym.file, sym.getName(), binding, sym.stOther, sym.type,
             /*discardedSecIdx=*/map.lookup(sym.section))
       .overwrite(sym);
   // Eliminate from the symbol table, otherwise we would leave an undefined
   // symbol if the symbol is unreferenced in the absence of GC.
   sym.isUsedInRegularObj = false;
 }
 
 // If all references to a DSO happen to be weak, the DSO is not added to
 // DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid
 // dangling references to an unneeded DSO. Use a weak binding to avoid
 // --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols.
 //
 // In addition, demote symbols defined in discarded sections, so that
 // references to /DISCARD/ discarded symbols will lead to errors.
 static void demoteSymbolsAndComputeIsPreemptible() {
   llvm::TimeTraceScope timeScope("Demote symbols");
   DenseMap<InputFile *, DenseMap<SectionBase *, size_t>> sectionIndexMap;
   for (Symbol *sym : symtab.getSymbols()) {
     if (auto *d = dyn_cast<Defined>(sym)) {
       if (d->section && !d->section->isLive())
         demoteDefined(*d, sectionIndexMap[d->file]);
     } else {
       auto *s = dyn_cast<SharedSymbol>(sym);
       if (sym->isLazy() || (s && !cast<SharedFile>(s->file)->isNeeded)) {
         uint8_t binding = sym->isLazy() ? sym->binding : uint8_t(STB_WEAK);
         Undefined(ctx.internalFile, sym->getName(), binding, sym->stOther,
                   sym->type)
             .overwrite(*sym);
         sym->versionId = VER_NDX_GLOBAL;
       }
     }
 
     if (config->hasDynSymTab)
       sym->isPreemptible = computeIsPreemptible(*sym);
   }
 }
 
 bool elf::hasMemtag() {
   return config->emachine == EM_AARCH64 &&
          config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE;
 }
 
 // Fully static executables don't support MTE globals at this point in time, as
 // we currently rely on:
 //   - A dynamic loader to process relocations, and
 //   - Dynamic entries.
 // This restriction could be removed in future by re-using some of the ideas
 // that ifuncs use in fully static executables.
 bool elf::canHaveMemtagGlobals() {
   return hasMemtag() &&
          (config->relocatable || config->shared || needsInterpSection());
 }
 
 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
   for (SectionCommand *cmd : script->sectionCommands)
     if (auto *osd = dyn_cast<OutputDesc>(cmd))
       if (osd->osec.name == name && osd->osec.partition == partition)
         return &osd->osec;
   return nullptr;
 }
 
 template <class ELFT> void elf::createSyntheticSections() {
   // Initialize all pointers with NULL. This is needed because
   // you can call lld::elf::main more than once as a library.
   Out::tlsPhdr = nullptr;
   Out::preinitArray = nullptr;
   Out::initArray = nullptr;
   Out::finiArray = nullptr;
 
   // Add the .interp section first because it is not a SyntheticSection.
   // The removeUnusedSyntheticSections() function relies on the
   // SyntheticSections coming last.
   if (needsInterpSection()) {
     for (size_t i = 1; i <= partitions.size(); ++i) {
       InputSection *sec = createInterpSection();
       sec->partition = i;
       ctx.inputSections.push_back(sec);
     }
   }
 
   auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); };
 
   in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false);
 
   Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
   Out::programHeaders->addralign = config->wordsize;
 
   if (config->strip != StripPolicy::All) {
     in.strTab = std::make_unique<StringTableSection>(".strtab", false);
     in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab);
     in.symTabShndx = std::make_unique<SymtabShndxSection>();
   }
 
   in.bss = std::make_unique<BssSection>(".bss", 0, 1);
   add(*in.bss);
 
   // If there is a SECTIONS command and a .data.rel.ro section name use name
   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
   // This makes sure our relro is contiguous.
   bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro");
   in.bssRelRo = std::make_unique<BssSection>(
       hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
   add(*in.bssRelRo);
 
   // Add MIPS-specific sections.
   if (config->emachine == EM_MIPS) {
     if (!config->shared && config->hasDynSymTab) {
       in.mipsRldMap = std::make_unique<MipsRldMapSection>();
       add(*in.mipsRldMap);
     }
     if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create()))
       add(*in.mipsAbiFlags);
     if ((in.mipsOptions = MipsOptionsSection<ELFT>::create()))
       add(*in.mipsOptions);
     if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create()))
       add(*in.mipsReginfo);
   }
 
   StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
 
   const unsigned threadCount = config->threadCount;
   for (Partition &part : partitions) {
     auto add = [&](SyntheticSection &sec) {
       sec.partition = part.getNumber();
       ctx.inputSections.push_back(&sec);
     };
 
     if (!part.name.empty()) {
       part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>();
       part.elfHeader->name = part.name;
       add(*part.elfHeader);
 
       part.programHeaders =
           std::make_unique<PartitionProgramHeadersSection<ELFT>>();
       add(*part.programHeaders);
     }
 
     if (config->buildId != BuildIdKind::None) {
       part.buildId = std::make_unique<BuildIdSection>();
       add(*part.buildId);
     }
 
     part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true);
     part.dynSymTab =
         std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab);
     part.dynamic = std::make_unique<DynamicSection<ELFT>>();
 
     if (hasMemtag()) {
       part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>();
       add(*part.memtagAndroidNote);
       if (canHaveMemtagGlobals()) {
         part.memtagGlobalDescriptors =
             std::make_unique<MemtagGlobalDescriptors>();
         add(*part.memtagGlobalDescriptors);
       }
     }
 
     if (config->androidPackDynRelocs)
       part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>(
           relaDynName, threadCount);
     else
       part.relaDyn = std::make_unique<RelocationSection<ELFT>>(
           relaDynName, config->zCombreloc, threadCount);
 
     if (config->hasDynSymTab) {
       add(*part.dynSymTab);
 
       part.verSym = std::make_unique<VersionTableSection>();
       add(*part.verSym);
 
       if (!namedVersionDefs().empty()) {
         part.verDef = std::make_unique<VersionDefinitionSection>();
         add(*part.verDef);
       }
 
       part.verNeed = std::make_unique<VersionNeedSection<ELFT>>();
       add(*part.verNeed);
 
       if (config->gnuHash) {
         part.gnuHashTab = std::make_unique<GnuHashTableSection>();
         add(*part.gnuHashTab);
       }
 
       if (config->sysvHash) {
         part.hashTab = std::make_unique<HashTableSection>();
         add(*part.hashTab);
       }
 
       add(*part.dynamic);
       add(*part.dynStrTab);
       add(*part.relaDyn);
     }
 
     if (config->relrPackDynRelocs) {
       part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount);
       add(*part.relrDyn);
     }
 
     if (!config->relocatable) {
       if (config->ehFrameHdr) {
         part.ehFrameHdr = std::make_unique<EhFrameHeader>();
         add(*part.ehFrameHdr);
       }
       part.ehFrame = std::make_unique<EhFrameSection>();
       add(*part.ehFrame);
 
       if (config->emachine == EM_ARM) {
         // This section replaces all the individual .ARM.exidx InputSections.
         part.armExidx = std::make_unique<ARMExidxSyntheticSection>();
         add(*part.armExidx);
       }
     }
 
     if (!config->packageMetadata.empty()) {
       part.packageMetadataNote = std::make_unique<PackageMetadataNote>();
       add(*part.packageMetadataNote);
     }
   }
 
   if (partitions.size() != 1) {
     // Create the partition end marker. This needs to be in partition number 255
     // so that it is sorted after all other partitions. It also has other
     // special handling (see createPhdrs() and combineEhSections()).
     in.partEnd =
         std::make_unique<BssSection>(".part.end", config->maxPageSize, 1);
     in.partEnd->partition = 255;
     add(*in.partEnd);
 
     in.partIndex = std::make_unique<PartitionIndexSection>();
     addOptionalRegular("__part_index_begin", in.partIndex.get(), 0);
     addOptionalRegular("__part_index_end", in.partIndex.get(),
                        in.partIndex->getSize());
     add(*in.partIndex);
   }
 
   // Add .got. MIPS' .got is so different from the other archs,
   // it has its own class.
   if (config->emachine == EM_MIPS) {
     in.mipsGot = std::make_unique<MipsGotSection>();
     add(*in.mipsGot);
   } else {
     in.got = std::make_unique<GotSection>();
     add(*in.got);
   }
 
   if (config->emachine == EM_PPC) {
     in.ppc32Got2 = std::make_unique<PPC32Got2Section>();
     add(*in.ppc32Got2);
   }
 
   if (config->emachine == EM_PPC64) {
     in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>();
     add(*in.ppc64LongBranchTarget);
   }
 
   in.gotPlt = std::make_unique<GotPltSection>();
   add(*in.gotPlt);
   in.igotPlt = std::make_unique<IgotPltSection>();
   add(*in.igotPlt);
   // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the
   // section in the absence of PHDRS/SECTIONS commands.
   if (config->zRelro && ((script->phdrsCommands.empty() &&
         !script->hasSectionsCommand) || script->seenRelroEnd)) {
     in.relroPadding = std::make_unique<RelroPaddingSection>();
     add(*in.relroPadding);
   }
 
   if (config->emachine == EM_ARM) {
     in.armCmseSGSection = std::make_unique<ArmCmseSGSection>();
     add(*in.armCmseSGSection);
   }
 
   // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
   // it as a relocation and ensure the referenced section is created.
   if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
     if (target->gotBaseSymInGotPlt)
       in.gotPlt->hasGotPltOffRel = true;
     else
       in.got->hasGotOffRel = true;
   }
 
   if (config->gdbIndex)
     add(*GdbIndexSection::create<ELFT>());
 
   // We always need to add rel[a].plt to output if it has entries.
   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
   in.relaPlt = std::make_unique<RelocationSection<ELFT>>(
       config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false,
       /*threadCount=*/1);
   add(*in.relaPlt);
 
   // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
   // relocations are processed last by the dynamic loader. We cannot place the
   // iplt section in .rel.dyn when Android relocation packing is enabled because
   // that would cause a section type mismatch. However, because the Android
   // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
   // behaviour by placing the iplt section in .rel.plt.
   in.relaIplt = std::make_unique<RelocationSection<ELFT>>(
       config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
       /*sort=*/false, /*threadCount=*/1);
   add(*in.relaIplt);
 
   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
     in.ibtPlt = std::make_unique<IBTPltSection>();
     add(*in.ibtPlt);
   }
 
   if (config->emachine == EM_PPC)
     in.plt = std::make_unique<PPC32GlinkSection>();
   else
     in.plt = std::make_unique<PltSection>();
   add(*in.plt);
   in.iplt = std::make_unique<IpltSection>();
   add(*in.iplt);
 
   if (config->andFeatures)
     add(*make<GnuPropertySection>());
 
   // .note.GNU-stack is always added when we are creating a re-linkable
   // object file. Other linkers are using the presence of this marker
   // section to control the executable-ness of the stack area, but that
   // is irrelevant these days. Stack area should always be non-executable
   // by default. So we emit this section unconditionally.
   if (config->relocatable)
     add(*make<GnuStackSection>());
 
   if (in.symTab)
     add(*in.symTab);
   if (in.symTabShndx)
     add(*in.symTabShndx);
   add(*in.shStrTab);
   if (in.strTab)
     add(*in.strTab);
 }
 
 // The main function of the writer.
 template <class ELFT> void Writer<ELFT>::run() {
   // Now that we have a complete set of output sections. This function
   // completes section contents. For example, we need to add strings
   // to the string table, and add entries to .got and .plt.
   // finalizeSections does that.
   finalizeSections();
   checkExecuteOnly();
 
   // If --compressed-debug-sections is specified, compress .debug_* sections.
   // Do it right now because it changes the size of output sections.
   for (OutputSection *sec : outputSections)
     sec->maybeCompress<ELFT>();
 
   if (script->hasSectionsCommand)
     script->allocateHeaders(mainPart->phdrs);
 
   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
   // 0 sized region. This has to be done late since only after assignAddresses
   // we know the size of the sections.
   for (Partition &part : partitions)
     removeEmptyPTLoad(part.phdrs);
 
   if (!config->oFormatBinary)
     assignFileOffsets();
   else
     assignFileOffsetsBinary();
 
   for (Partition &part : partitions)
     setPhdrs(part);
 
   // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
   // because the files may be useful in case checkSections() or openFile()
   // fails, for example, due to an erroneous file size.
   writeMapAndCref();
 
   // Handle --print-memory-usage option.
   if (config->printMemoryUsage)
     script->printMemoryUsage(lld::outs());
 
   if (config->checkSections)
     checkSections();
 
   // It does not make sense try to open the file if we have error already.
   if (errorCount())
     return;
 
   {
     llvm::TimeTraceScope timeScope("Write output file");
     // Write the result down to a file.
     openFile();
     if (errorCount())
       return;
 
     if (!config->oFormatBinary) {
       if (config->zSeparate != SeparateSegmentKind::None)
         writeTrapInstr();
       writeHeader();
       writeSections();
     } else {
       writeSectionsBinary();
     }
 
     // Backfill .note.gnu.build-id section content. This is done at last
     // because the content is usually a hash value of the entire output file.
     writeBuildId();
     if (errorCount())
       return;
 
     if (auto e = buffer->commit())
       fatal("failed to write output '" + buffer->getPath() +
             "': " + toString(std::move(e)));
 
     if (!config->cmseOutputLib.empty())
       writeARMCmseImportLib<ELFT>();
   }
 }
 
 template <class ELFT, class RelTy>
 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
                                      llvm::ArrayRef<RelTy> rels) {
   for (const RelTy &rel : rels) {
     Symbol &sym = file->getRelocTargetSym(rel);
     if (sym.isLocal())
       sym.used = true;
   }
 }
 
 // The function ensures that the "used" field of local symbols reflects the fact
 // that the symbol is used in a relocation from a live section.
 template <class ELFT> static void markUsedLocalSymbols() {
   // With --gc-sections, the field is already filled.
   // See MarkLive<ELFT>::resolveReloc().
   if (config->gcSections)
     return;
   for (ELFFileBase *file : ctx.objectFiles) {
     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
     for (InputSectionBase *s : f->getSections()) {
       InputSection *isec = dyn_cast_or_null<InputSection>(s);
       if (!isec)
         continue;
       if (isec->type == SHT_REL)
         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
       else if (isec->type == SHT_RELA)
         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
     }
   }
 }
 
 static bool shouldKeepInSymtab(const Defined &sym) {
   if (sym.isSection())
     return false;
 
   // If --emit-reloc or -r is given, preserve symbols referenced by relocations
   // from live sections.
   if (sym.used && config->copyRelocs)
     return true;
 
   // Exclude local symbols pointing to .ARM.exidx sections.
   // They are probably mapping symbols "$d", which are optional for these
   // sections. After merging the .ARM.exidx sections, some of these symbols
   // may become dangling. The easiest way to avoid the issue is not to add
   // them to the symbol table from the beginning.
   if (config->emachine == EM_ARM && sym.section &&
       sym.section->type == SHT_ARM_EXIDX)
     return false;
 
   if (config->discard == DiscardPolicy::None)
     return true;
   if (config->discard == DiscardPolicy::All)
     return false;
 
   // In ELF assembly .L symbols are normally discarded by the assembler.
   // If the assembler fails to do so, the linker discards them if
   // * --discard-locals is used.
   // * The symbol is in a SHF_MERGE section, which is normally the reason for
   //   the assembler keeping the .L symbol.
   if (sym.getName().starts_with(".L") &&
       (config->discard == DiscardPolicy::Locals ||
        (sym.section && (sym.section->flags & SHF_MERGE))))
     return false;
   return true;
 }
 
 bool lld::elf::includeInSymtab(const Symbol &b) {
   if (auto *d = dyn_cast<Defined>(&b)) {
     // Always include absolute symbols.
     SectionBase *sec = d->section;
     if (!sec)
       return true;
     assert(sec->isLive());
 
     if (auto *s = dyn_cast<MergeInputSection>(sec))
       return s->getSectionPiece(d->value).live;
     return true;
   }
   return b.used || !config->gcSections;
 }
 
 // Scan local symbols to:
 //
 // - demote symbols defined relative to /DISCARD/ discarded input sections so
 //   that relocations referencing them will lead to errors.
 // - copy eligible symbols to .symTab
 static void demoteAndCopyLocalSymbols() {
   llvm::TimeTraceScope timeScope("Add local symbols");
   for (ELFFileBase *file : ctx.objectFiles) {
     DenseMap<SectionBase *, size_t> sectionIndexMap;
     for (Symbol *b : file->getLocalSymbols()) {
       assert(b->isLocal() && "should have been caught in initializeSymbols()");
       auto *dr = dyn_cast<Defined>(b);
       if (!dr)
         continue;
 
       if (dr->section && !dr->section->isLive())
         demoteDefined(*dr, sectionIndexMap);
       else if (in.symTab && includeInSymtab(*b) && shouldKeepInSymtab(*dr))
         in.symTab->addSymbol(b);
     }
   }
 }
 
 // Create a section symbol for each output section so that we can represent
 // relocations that point to the section. If we know that no relocation is
 // referring to a section (that happens if the section is a synthetic one), we
 // don't create a section symbol for that section.
 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
   for (SectionCommand *cmd : script->sectionCommands) {
     auto *osd = dyn_cast<OutputDesc>(cmd);
     if (!osd)
       continue;
     OutputSection &osec = osd->osec;
     InputSectionBase *isec = nullptr;
     // Iterate over all input sections and add a STT_SECTION symbol if any input
     // section may be a relocation target.
     for (SectionCommand *cmd : osec.commands) {
       auto *isd = dyn_cast<InputSectionDescription>(cmd);
       if (!isd)
         continue;
       for (InputSectionBase *s : isd->sections) {
         // Relocations are not using REL[A] section symbols.
         if (s->type == SHT_REL || s->type == SHT_RELA)
           continue;
 
         // Unlike other synthetic sections, mergeable output sections contain
         // data copied from input sections, and there may be a relocation
         // pointing to its contents if -r or --emit-reloc is given.
         if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE))
           continue;
 
         isec = s;
         break;
       }
     }
     if (!isec)
       continue;
 
     // Set the symbol to be relative to the output section so that its st_value
     // equals the output section address. Note, there may be a gap between the
     // start of the output section and isec.
     in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0,
                                      STT_SECTION,
                                      /*value=*/0, /*size=*/0, &osec));
   }
 }
 
 // Today's loaders have a feature to make segments read-only after
 // processing dynamic relocations to enhance security. PT_GNU_RELRO
 // is defined for that.
 //
 // This function returns true if a section needs to be put into a
 // PT_GNU_RELRO segment.
 static bool isRelroSection(const OutputSection *sec) {
   if (!config->zRelro)
     return false;
   if (sec->relro)
     return true;
 
   uint64_t flags = sec->flags;
 
   // Non-allocatable or non-writable sections don't need RELRO because
   // they are not writable or not even mapped to memory in the first place.
   // RELRO is for sections that are essentially read-only but need to
   // be writable only at process startup to allow dynamic linker to
   // apply relocations.
   if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
     return false;
 
   // Once initialized, TLS data segments are used as data templates
   // for a thread-local storage. For each new thread, runtime
   // allocates memory for a TLS and copy templates there. No thread
   // are supposed to use templates directly. Thus, it can be in RELRO.
   if (flags & SHF_TLS)
     return true;
 
   // .init_array, .preinit_array and .fini_array contain pointers to
   // functions that are executed on process startup or exit. These
   // pointers are set by the static linker, and they are not expected
   // to change at runtime. But if you are an attacker, you could do
   // interesting things by manipulating pointers in .fini_array, for
   // example. So they are put into RELRO.
   uint32_t type = sec->type;
   if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
       type == SHT_PREINIT_ARRAY)
     return true;
 
   // .got contains pointers to external symbols. They are resolved by
   // the dynamic linker when a module is loaded into memory, and after
   // that they are not expected to change. So, it can be in RELRO.
   if (in.got && sec == in.got->getParent())
     return true;
 
   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
   // through r2 register, which is reserved for that purpose. Since r2 is used
   // for accessing .got as well, .got and .toc need to be close enough in the
   // virtual address space. Usually, .toc comes just after .got. Since we place
   // .got into RELRO, .toc needs to be placed into RELRO too.
   if (sec->name.equals(".toc"))
     return true;
 
   // .got.plt contains pointers to external function symbols. They are
   // by default resolved lazily, so we usually cannot put it into RELRO.
   // However, if "-z now" is given, the lazy symbol resolution is
   // disabled, which enables us to put it into RELRO.
   if (sec == in.gotPlt->getParent())
     return config->zNow;
 
   if (in.relroPadding && sec == in.relroPadding->getParent())
     return true;
 
   // .dynamic section contains data for the dynamic linker, and
   // there's no need to write to it at runtime, so it's better to put
   // it into RELRO.
   if (sec->name == ".dynamic")
     return true;
 
   // Sections with some special names are put into RELRO. This is a
   // bit unfortunate because section names shouldn't be significant in
   // ELF in spirit. But in reality many linker features depend on
   // magic section names.
   StringRef s = sec->name;
   return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
          s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
          s == ".fini_array" || s == ".init_array" ||
          s == ".openbsd.randomdata" || s == ".preinit_array";
 }
 
 // We compute a rank for each section. The rank indicates where the
 // section should be placed in the file.  Instead of using simple
 // numbers (0,1,2...), we use a series of flags. One for each decision
 // point when placing the section.
 // Using flags has two key properties:
 // * It is easy to check if a give branch was taken.
 // * It is easy two see how similar two ranks are (see getRankProximity).
 enum RankFlags {
   RF_NOT_ADDR_SET = 1 << 27,
   RF_NOT_ALLOC = 1 << 26,
   RF_PARTITION = 1 << 18, // Partition number (8 bits)
   RF_NOT_SPECIAL = 1 << 17,
   RF_WRITE = 1 << 16,
   RF_EXEC_WRITE = 1 << 15,
   RF_EXEC = 1 << 14,
   RF_RODATA = 1 << 13,
   RF_LARGE = 1 << 12,
   RF_NOT_RELRO = 1 << 9,
   RF_NOT_TLS = 1 << 8,
   RF_BSS = 1 << 7,
 };
 
 static unsigned getSectionRank(OutputSection &osec) {
   unsigned rank = osec.partition * RF_PARTITION;
 
   // We want to put section specified by -T option first, so we
   // can start assigning VA starting from them later.
   if (config->sectionStartMap.count(osec.name))
     return rank;
   rank |= RF_NOT_ADDR_SET;
 
   // Allocatable sections go first to reduce the total PT_LOAD size and
   // so debug info doesn't change addresses in actual code.
   if (!(osec.flags & SHF_ALLOC))
     return rank | RF_NOT_ALLOC;
 
   if (osec.type == SHT_LLVM_PART_EHDR)
     return rank;
   if (osec.type == SHT_LLVM_PART_PHDR)
     return rank | 1;
 
   // Put .interp first because some loaders want to see that section
   // on the first page of the executable file when loaded into memory.
   if (osec.name == ".interp")
     return rank | 2;
 
   // Put .note sections at the beginning so that they are likely to be included
   // in a truncate core file. In particular, .note.gnu.build-id, if available,
   // can identify the object file.
   if (osec.type == SHT_NOTE)
     return rank | 3;
 
   rank |= RF_NOT_SPECIAL;
 
   // Sort sections based on their access permission in the following
   // order: R, RX, RXW, RW(RELRO), RW(non-RELRO).
   //
   // Read-only sections come first such that they go in the PT_LOAD covering the
   // program headers at the start of the file.
   //
   // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro
   // .bss.rel.ro) | .data .bss), where | marks where page alignment happens.
   // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro
   // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment
   // places.
   bool isExec = osec.flags & SHF_EXECINSTR;
   bool isWrite = osec.flags & SHF_WRITE;
 
   if (!isWrite && !isExec) {
     // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to
     // alleviate relocation overflow pressure. Large special sections such as
     // .dynstr and .dynsym can be away from .text.
     if (osec.type == SHT_PROGBITS)
       rank |= RF_RODATA;
     // Among PROGBITS sections, place .lrodata further from .text.
     if (!(osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64))
       rank |= RF_LARGE;
   } else if (isExec) {
     rank |= isWrite ? RF_EXEC_WRITE : RF_EXEC;
   } else {
     rank |= RF_WRITE;
     // The TLS initialization block needs to be a single contiguous block. Place
     // TLS sections directly before the other RELRO sections.
     if (!(osec.flags & SHF_TLS))
       rank |= RF_NOT_TLS;
     if (isRelroSection(&osec))
       osec.relro = true;
     else
       rank |= RF_NOT_RELRO;
     // Place .ldata and .lbss after .bss. Making .bss closer to .text alleviates
     // relocation overflow pressure.
     if (osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64)
       rank |= RF_LARGE;
   }
 
   // Within TLS sections, or within other RelRo sections, or within non-RelRo
   // sections, place non-NOBITS sections first.
   if (osec.type == SHT_NOBITS)
     rank |= RF_BSS;
 
   // Some architectures have additional ordering restrictions for sections
   // within the same PT_LOAD.
   if (config->emachine == EM_PPC64) {
     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
     // that we would like to make sure appear is a specific order to maximize
     // their coverage by a single signed 16-bit offset from the TOC base
     // pointer.
     StringRef name = osec.name;
     if (name == ".got")
       rank |= 1;
     else if (name == ".toc")
       rank |= 2;
   }
 
   if (config->emachine == EM_MIPS) {
     if (osec.name != ".got")
       rank |= 1;
     // All sections with SHF_MIPS_GPREL flag should be grouped together
     // because data in these sections is addressable with a gp relative address.
     if (osec.flags & SHF_MIPS_GPREL)
       rank |= 2;
   }
 
   if (config->emachine == EM_RISCV) {
     // .sdata and .sbss are placed closer to make GP relaxation more profitable
     // and match GNU ld.
     StringRef name = osec.name;
     if (name == ".sdata" || (osec.type == SHT_NOBITS && name != ".sbss"))
       rank |= 1;
   }
 
   return rank;
 }
 
 static bool compareSections(const SectionCommand *aCmd,
                             const SectionCommand *bCmd) {
   const OutputSection *a = &cast<OutputDesc>(aCmd)->osec;
   const OutputSection *b = &cast<OutputDesc>(bCmd)->osec;
 
   if (a->sortRank != b->sortRank)
     return a->sortRank < b->sortRank;
 
   if (!(a->sortRank & RF_NOT_ADDR_SET))
     return config->sectionStartMap.lookup(a->name) <
            config->sectionStartMap.lookup(b->name);
   return false;
 }
 
 void PhdrEntry::add(OutputSection *sec) {
   lastSec = sec;
   if (!firstSec)
     firstSec = sec;
   p_align = std::max(p_align, sec->addralign);
   if (p_type == PT_LOAD)
     sec->ptLoad = this;
 }
 
 // The beginning and the ending of .rel[a].plt section are marked
 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
 // executable. The runtime needs these symbols in order to resolve
 // all IRELATIVE relocs on startup. For dynamic executables, we don't
 // need these symbols, since IRELATIVE relocs are resolved through GOT
 // and PLT. For details, see http://www.airs.com/blog/archives/403.
 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
   if (config->isPic)
     return;
 
   // By default, __rela_iplt_{start,end} belong to a dummy section 0
   // because .rela.plt might be empty and thus removed from output.
   // We'll override Out::elfHeader with In.relaIplt later when we are
   // sure that .rela.plt exists in output.
   ElfSym::relaIpltStart = addOptionalRegular(
       config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
       Out::elfHeader, 0, STV_HIDDEN);
 
   ElfSym::relaIpltEnd = addOptionalRegular(
       config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
       Out::elfHeader, 0, STV_HIDDEN);
 }
 
 // This function generates assignments for predefined symbols (e.g. _end or
 // _etext) and inserts them into the commands sequence to be processed at the
 // appropriate time. This ensures that the value is going to be correct by the
 // time any references to these symbols are processed and is equivalent to
 // defining these symbols explicitly in the linker script.
 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
   if (ElfSym::globalOffsetTable) {
     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
     // to the start of the .got or .got.plt section.
     InputSection *sec = in.gotPlt.get();
     if (!target->gotBaseSymInGotPlt)
       sec = in.mipsGot ? cast<InputSection>(in.mipsGot.get())
                        : cast<InputSection>(in.got.get());
     ElfSym::globalOffsetTable->section = sec;
   }
 
   // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
   if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
     ElfSym::relaIpltStart->section = in.relaIplt.get();
     ElfSym::relaIpltEnd->section = in.relaIplt.get();
     ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
   }
 
   PhdrEntry *last = nullptr;
   PhdrEntry *lastRO = nullptr;
 
   for (Partition &part : partitions) {
     for (PhdrEntry *p : part.phdrs) {
       if (p->p_type != PT_LOAD)
         continue;
       last = p;
       if (!(p->p_flags & PF_W))
         lastRO = p;
     }
   }
 
   if (lastRO) {
     // _etext is the first location after the last read-only loadable segment.
     if (ElfSym::etext1)
       ElfSym::etext1->section = lastRO->lastSec;
     if (ElfSym::etext2)
       ElfSym::etext2->section = lastRO->lastSec;
   }
 
   if (last) {
     // _edata points to the end of the last mapped initialized section.
     OutputSection *edata = nullptr;
     for (OutputSection *os : outputSections) {
       if (os->type != SHT_NOBITS)
         edata = os;
       if (os == last->lastSec)
         break;
     }
 
     if (ElfSym::edata1)
       ElfSym::edata1->section = edata;
     if (ElfSym::edata2)
       ElfSym::edata2->section = edata;
 
     // _end is the first location after the uninitialized data region.
     if (ElfSym::end1)
       ElfSym::end1->section = last->lastSec;
     if (ElfSym::end2)
       ElfSym::end2->section = last->lastSec;
   }
 
   if (ElfSym::bss) {
     // On RISC-V, set __bss_start to the start of .sbss if present.
     OutputSection *sbss =
         config->emachine == EM_RISCV ? findSection(".sbss") : nullptr;
     ElfSym::bss->section = sbss ? sbss : findSection(".bss");
   }
 
   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
   // be equal to the _gp symbol's value.
   if (ElfSym::mipsGp) {
     // Find GP-relative section with the lowest address
     // and use this address to calculate default _gp value.
     for (OutputSection *os : outputSections) {
       if (os->flags & SHF_MIPS_GPREL) {
         ElfSym::mipsGp->section = os;
         ElfSym::mipsGp->value = 0x7ff0;
         break;
       }
     }
   }
 }
 
 // We want to find how similar two ranks are.
 // The more branches in getSectionRank that match, the more similar they are.
 // Since each branch corresponds to a bit flag, we can just use
 // countLeadingZeros.
 static int getRankProximity(OutputSection *a, SectionCommand *b) {
   auto *osd = dyn_cast<OutputDesc>(b);
   return (osd && osd->osec.hasInputSections)
              ? llvm::countl_zero(a->sortRank ^ osd->osec.sortRank)
              : -1;
 }
 
 // When placing orphan sections, we want to place them after symbol assignments
 // so that an orphan after
 //   begin_foo = .;
 //   foo : { *(foo) }
 //   end_foo = .;
 // doesn't break the intended meaning of the begin/end symbols.
 // We don't want to go over sections since findOrphanPos is the
 // one in charge of deciding the order of the sections.
 // We don't want to go over changes to '.', since doing so in
 //  rx_sec : { *(rx_sec) }
 //  . = ALIGN(0x1000);
 //  /* The RW PT_LOAD starts here*/
 //  rw_sec : { *(rw_sec) }
 // would mean that the RW PT_LOAD would become unaligned.
 static bool shouldSkip(SectionCommand *cmd) {
   if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
     return assign->name != ".";
   return false;
 }
 
 // We want to place orphan sections so that they share as much
 // characteristics with their neighbors as possible. For example, if
 // both are rw, or both are tls.
 static SmallVectorImpl<SectionCommand *>::iterator
 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b,
               SmallVectorImpl<SectionCommand *>::iterator e) {
   OutputSection *sec = &cast<OutputDesc>(*e)->osec;
 
   // As a special case, place .relro_padding before the SymbolAssignment using
   // DATA_SEGMENT_RELRO_END, if present.
   if (in.relroPadding && sec == in.relroPadding->getParent()) {
     auto i = std::find_if(b, e, [=](SectionCommand *a) {
       if (auto *assign = dyn_cast<SymbolAssignment>(a))
         return assign->dataSegmentRelroEnd;
       return false;
     });
     if (i != e)
       return i;
   }
 
   // Find the first element that has as close a rank as possible.
   auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) {
     return getRankProximity(sec, a) < getRankProximity(sec, b);
   });
   if (i == e)
     return e;
   if (!isa<OutputDesc>(*i))
     return e;
   auto foundSec = &cast<OutputDesc>(*i)->osec;
 
   // Consider all existing sections with the same proximity.
   int proximity = getRankProximity(sec, *i);
   unsigned sortRank = sec->sortRank;
   if (script->hasPhdrsCommands() || !script->memoryRegions.empty())
     // Prevent the orphan section to be placed before the found section. If
     // custom program headers are defined, that helps to avoid adding it to a
     // previous segment and changing flags of that segment, for example, making
     // a read-only segment writable. If memory regions are defined, an orphan
     // section should continue the same region as the found section to better
     // resemble the behavior of GNU ld.
     sortRank = std::max(sortRank, foundSec->sortRank);
   for (; i != e; ++i) {
     auto *curSecDesc = dyn_cast<OutputDesc>(*i);
     if (!curSecDesc || !curSecDesc->osec.hasInputSections)
       continue;
     if (getRankProximity(sec, curSecDesc) != proximity ||
         sortRank < curSecDesc->osec.sortRank)
       break;
   }
 
   auto isOutputSecWithInputSections = [](SectionCommand *cmd) {
     auto *osd = dyn_cast<OutputDesc>(cmd);
     return osd && osd->osec.hasInputSections;
   };
   auto j =
       std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b),
                    isOutputSecWithInputSections);
   i = j.base();
 
   // As a special case, if the orphan section is the last section, put
   // it at the very end, past any other commands.
   // This matches bfd's behavior and is convenient when the linker script fully
   // specifies the start of the file, but doesn't care about the end (the non
   // alloc sections for example).
   auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
   if (nextSec == e)
     return e;
 
   while (i != e && shouldSkip(*i))
     ++i;
   return i;
 }
 
 // Adds random priorities to sections not already in the map.
 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
   if (config->shuffleSections.empty())
     return;
 
   SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections;
   matched.reserve(sections.size());
   for (const auto &patAndSeed : config->shuffleSections) {
     matched.clear();
     for (InputSectionBase *sec : sections)
       if (patAndSeed.first.match(sec->name))
         matched.push_back(sec);
     const uint32_t seed = patAndSeed.second;
     if (seed == UINT32_MAX) {
       // If --shuffle-sections <section-glob>=-1, reverse the section order. The
       // section order is stable even if the number of sections changes. This is
       // useful to catch issues like static initialization order fiasco
       // reliably.
       std::reverse(matched.begin(), matched.end());
     } else {
       std::mt19937 g(seed ? seed : std::random_device()());
       llvm::shuffle(matched.begin(), matched.end(), g);
     }
     size_t i = 0;
     for (InputSectionBase *&sec : sections)
       if (patAndSeed.first.match(sec->name))
         sec = matched[i++];
   }
 
   // Existing priorities are < 0, so use priorities >= 0 for the missing
   // sections.
   int prio = 0;
   for (InputSectionBase *sec : sections) {
     if (order.try_emplace(sec, prio).second)
       ++prio;
   }
 }
 
 // Builds section order for handling --symbol-ordering-file.
 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
   DenseMap<const InputSectionBase *, int> sectionOrder;
   // Use the rarely used option --call-graph-ordering-file to sort sections.
   if (!config->callGraphProfile.empty())
     return computeCallGraphProfileOrder();
 
   if (config->symbolOrderingFile.empty())
     return sectionOrder;
 
   struct SymbolOrderEntry {
     int priority;
     bool present;
   };
 
   // Build a map from symbols to their priorities. Symbols that didn't
   // appear in the symbol ordering file have the lowest priority 0.
   // All explicitly mentioned symbols have negative (higher) priorities.
   DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder;
   int priority = -config->symbolOrderingFile.size();
   for (StringRef s : config->symbolOrderingFile)
     symbolOrder.insert({CachedHashStringRef(s), {priority++, false}});
 
   // Build a map from sections to their priorities.
   auto addSym = [&](Symbol &sym) {
     auto it = symbolOrder.find(CachedHashStringRef(sym.getName()));
     if (it == symbolOrder.end())
       return;
     SymbolOrderEntry &ent = it->second;
     ent.present = true;
 
     maybeWarnUnorderableSymbol(&sym);
 
     if (auto *d = dyn_cast<Defined>(&sym)) {
       if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
         int &priority = sectionOrder[cast<InputSectionBase>(sec)];
         priority = std::min(priority, ent.priority);
       }
     }
   };
 
   // We want both global and local symbols. We get the global ones from the
   // symbol table and iterate the object files for the local ones.
   for (Symbol *sym : symtab.getSymbols())
     addSym(*sym);
 
   for (ELFFileBase *file : ctx.objectFiles)
     for (Symbol *sym : file->getLocalSymbols())
       addSym(*sym);
 
   if (config->warnSymbolOrdering)
     for (auto orderEntry : symbolOrder)
       if (!orderEntry.second.present)
         warn("symbol ordering file: no such symbol: " + orderEntry.first.val());
 
   return sectionOrder;
 }
 
 // Sorts the sections in ISD according to the provided section order.
 static void
 sortISDBySectionOrder(InputSectionDescription *isd,
                       const DenseMap<const InputSectionBase *, int> &order,
                       bool executableOutputSection) {
   SmallVector<InputSection *, 0> unorderedSections;
   SmallVector<std::pair<InputSection *, int>, 0> orderedSections;
   uint64_t unorderedSize = 0;
   uint64_t totalSize = 0;
 
   for (InputSection *isec : isd->sections) {
     if (executableOutputSection)
       totalSize += isec->getSize();
     auto i = order.find(isec);
     if (i == order.end()) {
       unorderedSections.push_back(isec);
       unorderedSize += isec->getSize();
       continue;
     }
     orderedSections.push_back({isec, i->second});
   }
   llvm::sort(orderedSections, llvm::less_second());
 
   // Find an insertion point for the ordered section list in the unordered
   // section list. On targets with limited-range branches, this is the mid-point
   // of the unordered section list. This decreases the likelihood that a range
   // extension thunk will be needed to enter or exit the ordered region. If the
   // ordered section list is a list of hot functions, we can generally expect
   // the ordered functions to be called more often than the unordered functions,
   // making it more likely that any particular call will be within range, and
   // therefore reducing the number of thunks required.
   //
   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
   // If the layout is:
   //
   // 8MB hot
   // 32MB cold
   //
   // only the first 8-16MB of the cold code (depending on which hot function it
   // is actually calling) can call the hot code without a range extension thunk.
   // However, if we use this layout:
   //
   // 16MB cold
   // 8MB hot
   // 16MB cold
   //
   // both the last 8-16MB of the first block of cold code and the first 8-16MB
   // of the second block of cold code can call the hot code without a thunk. So
   // we effectively double the amount of code that could potentially call into
   // the hot code without a thunk.
   //
   // The above is not necessary if total size of input sections in this "isd"
   // is small. Note that we assume all input sections are executable if the
   // output section is executable (which is not always true but supposed to
   // cover most cases).
   size_t insPt = 0;
   if (executableOutputSection && !orderedSections.empty() &&
       target->getThunkSectionSpacing() &&
       totalSize >= target->getThunkSectionSpacing()) {
     uint64_t unorderedPos = 0;
     for (; insPt != unorderedSections.size(); ++insPt) {
       unorderedPos += unorderedSections[insPt]->getSize();
       if (unorderedPos > unorderedSize / 2)
         break;
     }
   }
 
   isd->sections.clear();
   for (InputSection *isec : ArrayRef(unorderedSections).slice(0, insPt))
     isd->sections.push_back(isec);
   for (std::pair<InputSection *, int> p : orderedSections)
     isd->sections.push_back(p.first);
   for (InputSection *isec : ArrayRef(unorderedSections).slice(insPt))
     isd->sections.push_back(isec);
 }
 
 static void sortSection(OutputSection &osec,
                         const DenseMap<const InputSectionBase *, int> &order) {
   StringRef name = osec.name;
 
   // Never sort these.
   if (name == ".init" || name == ".fini")
     return;
 
   // IRelative relocations that usually live in the .rel[a].dyn section should
   // be processed last by the dynamic loader. To achieve that we add synthetic
   // sections in the required order from the beginning so that the in.relaIplt
   // section is placed last in an output section. Here we just do not apply
   // sorting for an output section which holds the in.relaIplt section.
   if (in.relaIplt->getParent() == &osec)
     return;
 
   // Sort input sections by priority using the list provided by
   // --symbol-ordering-file or --shuffle-sections=. This is a least significant
   // digit radix sort. The sections may be sorted stably again by a more
   // significant key.
   if (!order.empty())
     for (SectionCommand *b : osec.commands)
       if (auto *isd = dyn_cast<InputSectionDescription>(b))
         sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR);
 
   if (script->hasSectionsCommand)
     return;
 
   if (name == ".init_array" || name == ".fini_array") {
     osec.sortInitFini();
   } else if (name == ".ctors" || name == ".dtors") {
     osec.sortCtorsDtors();
   } else if (config->emachine == EM_PPC64 && name == ".toc") {
     // .toc is allocated just after .got and is accessed using GOT-relative
     // relocations. Object files compiled with small code model have an
     // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
     // To reduce the risk of relocation overflow, .toc contents are sorted so
     // that sections having smaller relocation offsets are at beginning of .toc
     assert(osec.commands.size() == 1);
     auto *isd = cast<InputSectionDescription>(osec.commands[0]);
     llvm::stable_sort(isd->sections,
                       [](const InputSection *a, const InputSection *b) -> bool {
                         return a->file->ppc64SmallCodeModelTocRelocs &&
                                !b->file->ppc64SmallCodeModelTocRelocs;
                       });
   }
 }
 
 // If no layout was provided by linker script, we want to apply default
 // sorting for special input sections. This also handles --symbol-ordering-file.
 template <class ELFT> void Writer<ELFT>::sortInputSections() {
   // Build the order once since it is expensive.
   DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
   maybeShuffle(order);
   for (SectionCommand *cmd : script->sectionCommands)
     if (auto *osd = dyn_cast<OutputDesc>(cmd))
       sortSection(osd->osec, order);
 }
 
 template <class ELFT> void Writer<ELFT>::sortSections() {
   llvm::TimeTraceScope timeScope("Sort sections");
 
   // Don't sort if using -r. It is not necessary and we want to preserve the
   // relative order for SHF_LINK_ORDER sections.
   if (config->relocatable) {
     script->adjustOutputSections();
     return;
   }
 
   sortInputSections();
 
   for (SectionCommand *cmd : script->sectionCommands)
     if (auto *osd = dyn_cast<OutputDesc>(cmd))
       osd->osec.sortRank = getSectionRank(osd->osec);
   if (!script->hasSectionsCommand) {
     // OutputDescs are mostly contiguous, but may be interleaved with
     // SymbolAssignments in the presence of INSERT commands.
     auto mid = std::stable_partition(
         script->sectionCommands.begin(), script->sectionCommands.end(),
         [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); });
     std::stable_sort(script->sectionCommands.begin(), mid, compareSections);
   }
 
   // Process INSERT commands and update output section attributes. From this
   // point onwards the order of script->sectionCommands is fixed.
   script->processInsertCommands();
   script->adjustOutputSections();
 
   if (script->hasSectionsCommand)
     sortOrphanSections();
 
   script->adjustSectionsAfterSorting();
 }
 
 template <class ELFT> void Writer<ELFT>::sortOrphanSections() {
   // Orphan sections are sections present in the input files which are
   // not explicitly placed into the output file by the linker script.
   //
   // The sections in the linker script are already in the correct
   // order. We have to figuere out where to insert the orphan
   // sections.
   //
   // The order of the sections in the script is arbitrary and may not agree with
   // compareSections. This means that we cannot easily define a strict weak
   // ordering. To see why, consider a comparison of a section in the script and
   // one not in the script. We have a two simple options:
   // * Make them equivalent (a is not less than b, and b is not less than a).
   //   The problem is then that equivalence has to be transitive and we can
   //   have sections a, b and c with only b in a script and a less than c
   //   which breaks this property.
   // * Use compareSectionsNonScript. Given that the script order doesn't have
   //   to match, we can end up with sections a, b, c, d where b and c are in the
   //   script and c is compareSectionsNonScript less than b. In which case d
   //   can be equivalent to c, a to b and d < a. As a concrete example:
   //   .a (rx) # not in script
   //   .b (rx) # in script
   //   .c (ro) # in script
   //   .d (ro) # not in script
   //
   // The way we define an order then is:
   // *  Sort only the orphan sections. They are in the end right now.
   // *  Move each orphan section to its preferred position. We try
   //    to put each section in the last position where it can share
   //    a PT_LOAD.
   //
   // There is some ambiguity as to where exactly a new entry should be
   // inserted, because Commands contains not only output section
   // commands but also other types of commands such as symbol assignment
   // expressions. There's no correct answer here due to the lack of the
   // formal specification of the linker script. We use heuristics to
   // determine whether a new output command should be added before or
   // after another commands. For the details, look at shouldSkip
   // function.
 
   auto i = script->sectionCommands.begin();
   auto e = script->sectionCommands.end();
   auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) {
     if (auto *osd = dyn_cast<OutputDesc>(cmd))
       return osd->osec.sectionIndex == UINT32_MAX;
     return false;
   });
 
   // Sort the orphan sections.
   std::stable_sort(nonScriptI, e, compareSections);
 
   // As a horrible special case, skip the first . assignment if it is before any
   // section. We do this because it is common to set a load address by starting
   // the script with ". = 0xabcd" and the expectation is that every section is
   // after that.
   auto firstSectionOrDotAssignment =
       std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); });
   if (firstSectionOrDotAssignment != e &&
       isa<SymbolAssignment>(**firstSectionOrDotAssignment))
     ++firstSectionOrDotAssignment;
   i = firstSectionOrDotAssignment;
 
   while (nonScriptI != e) {
     auto pos = findOrphanPos(i, nonScriptI);
     OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec;
 
     // As an optimization, find all sections with the same sort rank
     // and insert them with one rotate.
     unsigned rank = orphan->sortRank;
     auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) {
       return cast<OutputDesc>(cmd)->osec.sortRank != rank;
     });
     std::rotate(pos, nonScriptI, end);
     nonScriptI = end;
   }
 }
 
 static bool compareByFilePosition(InputSection *a, InputSection *b) {
   InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
   InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
   // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
   // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
   if (!la || !lb)
     return la && !lb;
   OutputSection *aOut = la->getParent();
   OutputSection *bOut = lb->getParent();
 
   if (aOut != bOut)
     return aOut->addr < bOut->addr;
   return la->outSecOff < lb->outSecOff;
 }
 
 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
   llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
   for (OutputSection *sec : outputSections) {
     if (!(sec->flags & SHF_LINK_ORDER))
       continue;
 
     // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
     // this processing inside the ARMExidxsyntheticsection::finalizeContents().
     if (!config->relocatable && config->emachine == EM_ARM &&
         sec->type == SHT_ARM_EXIDX)
       continue;
 
     // Link order may be distributed across several InputSectionDescriptions.
     // Sorting is performed separately.
     SmallVector<InputSection **, 0> scriptSections;
     SmallVector<InputSection *, 0> sections;
     for (SectionCommand *cmd : sec->commands) {
       auto *isd = dyn_cast<InputSectionDescription>(cmd);
       if (!isd)
         continue;
       bool hasLinkOrder = false;
       scriptSections.clear();
       sections.clear();
       for (InputSection *&isec : isd->sections) {
         if (isec->flags & SHF_LINK_ORDER) {
           InputSection *link = isec->getLinkOrderDep();
           if (link && !link->getParent())
             error(toString(isec) + ": sh_link points to discarded section " +
                   toString(link));
           hasLinkOrder = true;
         }
         scriptSections.push_back(&isec);
         sections.push_back(isec);
       }
       if (hasLinkOrder && errorCount() == 0) {
         llvm::stable_sort(sections, compareByFilePosition);
         for (int i = 0, n = sections.size(); i != n; ++i)
           *scriptSections[i] = sections[i];
       }
     }
   }
 }
 
 static void finalizeSynthetic(SyntheticSection *sec) {
   if (sec && sec->isNeeded() && sec->getParent()) {
     llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
     sec->finalizeContents();
   }
 }
 
 // We need to generate and finalize the content that depends on the address of
 // InputSections. As the generation of the content may also alter InputSection
 // addresses we must converge to a fixed point. We do that here. See the comment
 // in Writer<ELFT>::finalizeSections().
 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
   llvm::TimeTraceScope timeScope("Finalize address dependent content");
   ThunkCreator tc;
   AArch64Err843419Patcher a64p;
   ARMErr657417Patcher a32p;
   script->assignAddresses();
   // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
   // do require the relative addresses of OutputSections because linker scripts
   // can assign Virtual Addresses to OutputSections that are not monotonically
   // increasing.
   for (Partition &part : partitions)
     finalizeSynthetic(part.armExidx.get());
   resolveShfLinkOrder();
 
   // Converts call x@GDPLT to call __tls_get_addr
   if (config->emachine == EM_HEXAGON)
     hexagonTLSSymbolUpdate(outputSections);
 
   uint32_t pass = 0, assignPasses = 0;
   for (;;) {
     bool changed = target->needsThunks ? tc.createThunks(pass, outputSections)
                                        : target->relaxOnce(pass);
     ++pass;
 
     // With Thunk Size much smaller than branch range we expect to
     // converge quickly; if we get to 30 something has gone wrong.
     if (changed && pass >= 30) {
       error(target->needsThunks ? "thunk creation not converged"
                                 : "relaxation not converged");
       break;
     }
 
     if (config->fixCortexA53Errata843419) {
       if (changed)
         script->assignAddresses();
       changed |= a64p.createFixes();
     }
     if (config->fixCortexA8) {
       if (changed)
         script->assignAddresses();
       changed |= a32p.createFixes();
     }
 
     finalizeSynthetic(in.got.get());
     if (in.mipsGot)
       in.mipsGot->updateAllocSize();
 
     for (Partition &part : partitions) {
       changed |= part.relaDyn->updateAllocSize();
       if (part.relrDyn)
         changed |= part.relrDyn->updateAllocSize();
       if (part.memtagGlobalDescriptors)
         changed |= part.memtagGlobalDescriptors->updateAllocSize();
     }
 
     const Defined *changedSym = script->assignAddresses();
     if (!changed) {
       // Some symbols may be dependent on section addresses. When we break the
       // loop, the symbol values are finalized because a previous
       // assignAddresses() finalized section addresses.
       if (!changedSym)
         break;
       if (++assignPasses == 5) {
         errorOrWarn("assignment to symbol " + toString(*changedSym) +
                     " does not converge");
         break;
       }
     }
   }
   if (!config->relocatable)
     target->finalizeRelax(pass);
 
   if (config->relocatable)
     for (OutputSection *sec : outputSections)
       sec->addr = 0;
 
   // If addrExpr is set, the address may not be a multiple of the alignment.
   // Warn because this is error-prone.
   for (SectionCommand *cmd : script->sectionCommands)
     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
       OutputSection *osec = &osd->osec;
       if (osec->addr % osec->addralign != 0)
         warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " +
              osec->name + " is not a multiple of alignment (" +
              Twine(osec->addralign) + ")");
     }
 }
 
 // If Input Sections have been shrunk (basic block sections) then
 // update symbol values and sizes associated with these sections.  With basic
 // block sections, input sections can shrink when the jump instructions at
 // the end of the section are relaxed.
 static void fixSymbolsAfterShrinking() {
   for (InputFile *File : ctx.objectFiles) {
     parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
       auto *def = dyn_cast<Defined>(Sym);
       if (!def)
         return;
 
       const SectionBase *sec = def->section;
       if (!sec)
         return;
 
       const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec);
       if (!inputSec || !inputSec->bytesDropped)
         return;
 
       const size_t OldSize = inputSec->content().size();
       const size_t NewSize = OldSize - inputSec->bytesDropped;
 
       if (def->value > NewSize && def->value <= OldSize) {
         LLVM_DEBUG(llvm::dbgs()
                    << "Moving symbol " << Sym->getName() << " from "
                    << def->value << " to "
                    << def->value - inputSec->bytesDropped << " bytes\n");
         def->value -= inputSec->bytesDropped;
         return;
       }
 
       if (def->value + def->size > NewSize && def->value <= OldSize &&
           def->value + def->size <= OldSize) {
         LLVM_DEBUG(llvm::dbgs()
                    << "Shrinking symbol " << Sym->getName() << " from "
                    << def->size << " to " << def->size - inputSec->bytesDropped
                    << " bytes\n");
         def->size -= inputSec->bytesDropped;
       }
     });
   }
 }
 
 // If basic block sections exist, there are opportunities to delete fall thru
 // jumps and shrink jump instructions after basic block reordering.  This
 // relaxation pass does that.  It is only enabled when --optimize-bb-jumps
 // option is used.
 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
   assert(config->optimizeBBJumps);
   SmallVector<InputSection *, 0> storage;
 
   script->assignAddresses();
   // For every output section that has executable input sections, this
   // does the following:
   //   1. Deletes all direct jump instructions in input sections that
   //      jump to the following section as it is not required.
   //   2. If there are two consecutive jump instructions, it checks
   //      if they can be flipped and one can be deleted.
   for (OutputSection *osec : outputSections) {
     if (!(osec->flags & SHF_EXECINSTR))
       continue;
     ArrayRef<InputSection *> sections = getInputSections(*osec, storage);
     size_t numDeleted = 0;
     // Delete all fall through jump instructions.  Also, check if two
     // consecutive jump instructions can be flipped so that a fall
     // through jmp instruction can be deleted.
     for (size_t i = 0, e = sections.size(); i != e; ++i) {
       InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
       InputSection &sec = *sections[i];
       numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next);
     }
     if (numDeleted > 0) {
       script->assignAddresses();
       LLVM_DEBUG(llvm::dbgs()
                  << "Removing " << numDeleted << " fall through jumps\n");
     }
   }
 
   fixSymbolsAfterShrinking();
 
   for (OutputSection *osec : outputSections)
     for (InputSection *is : getInputSections(*osec, storage))
       is->trim();
 }
 
 // In order to allow users to manipulate linker-synthesized sections,
 // we had to add synthetic sections to the input section list early,
 // even before we make decisions whether they are needed. This allows
 // users to write scripts like this: ".mygot : { .got }".
 //
 // Doing it has an unintended side effects. If it turns out that we
 // don't need a .got (for example) at all because there's no
 // relocation that needs a .got, we don't want to emit .got.
 //
 // To deal with the above problem, this function is called after
 // scanRelocations is called to remove synthetic sections that turn
 // out to be empty.
 static void removeUnusedSyntheticSections() {
   // All input synthetic sections that can be empty are placed after
   // all regular ones. Reverse iterate to find the first synthetic section
   // after a non-synthetic one which will be our starting point.
   auto start =
       llvm::find_if(llvm::reverse(ctx.inputSections), [](InputSectionBase *s) {
         return !isa<SyntheticSection>(s);
       }).base();
 
   // Remove unused synthetic sections from ctx.inputSections;
   DenseSet<InputSectionBase *> unused;
   auto end =
       std::remove_if(start, ctx.inputSections.end(), [&](InputSectionBase *s) {
         auto *sec = cast<SyntheticSection>(s);
         if (sec->getParent() && sec->isNeeded())
           return false;
         unused.insert(sec);
         return true;
       });
   ctx.inputSections.erase(end, ctx.inputSections.end());
 
   // Remove unused synthetic sections from the corresponding input section
   // description and orphanSections.
   for (auto *sec : unused)
     if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent())
       for (SectionCommand *cmd : osec->commands)
         if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
           llvm::erase_if(isd->sections, [&](InputSection *isec) {
             return unused.count(isec);
           });
   llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) {
     return unused.count(sec);
   });
 }
 
 // Create output section objects and add them to OutputSections.
 template <class ELFT> void Writer<ELFT>::finalizeSections() {
   if (!config->relocatable) {
     Out::preinitArray = findSection(".preinit_array");
     Out::initArray = findSection(".init_array");
     Out::finiArray = findSection(".fini_array");
 
     // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
     // symbols for sections, so that the runtime can get the start and end
     // addresses of each section by section name. Add such symbols.
     addStartEndSymbols();
     for (SectionCommand *cmd : script->sectionCommands)
       if (auto *osd = dyn_cast<OutputDesc>(cmd))
         addStartStopSymbols(osd->osec);
 
     // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
     // It should be okay as no one seems to care about the type.
     // Even the author of gold doesn't remember why gold behaves that way.
     // https://sourceware.org/ml/binutils/2002-03/msg00360.html
     if (mainPart->dynamic->parent) {
       Symbol *s = symtab.addSymbol(Defined{
           ctx.internalFile, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE,
           /*value=*/0, /*size=*/0, mainPart->dynamic.get()});
       s->isUsedInRegularObj = true;
     }
 
     // Define __rel[a]_iplt_{start,end} symbols if needed.
     addRelIpltSymbols();
 
     // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
     // should only be defined in an executable. If .sdata does not exist, its
     // value/section does not matter but it has to be relative, so set its
     // st_shndx arbitrarily to 1 (Out::elfHeader).
     if (config->emachine == EM_RISCV) {
       ElfSym::riscvGlobalPointer = nullptr;
       if (!config->shared) {
         OutputSection *sec = findSection(".sdata");
         addOptionalRegular(
             "__global_pointer$", sec ? sec : Out::elfHeader, 0x800, STV_DEFAULT);
         // Set riscvGlobalPointer to be used by the optional global pointer
         // relaxation.
         if (config->relaxGP) {
           Symbol *s = symtab.find("__global_pointer$");
           if (s && s->isDefined())
             ElfSym::riscvGlobalPointer = cast<Defined>(s);
         }
       }
     }
 
     if (config->emachine == EM_386 || config->emachine == EM_X86_64) {
       // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
       // way that:
       //
       // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
       // computes 0.
       // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address
       // in the TLS block).
       //
       // 2) is special cased in @tpoff computation. To satisfy 1), we define it
       // as an absolute symbol of zero. This is different from GNU linkers which
       // define _TLS_MODULE_BASE_ relative to the first TLS section.
       Symbol *s = symtab.find("_TLS_MODULE_BASE_");
       if (s && s->isUndefined()) {
         s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL,
                            STV_HIDDEN, STT_TLS, /*value=*/0, 0,
                            /*section=*/nullptr});
         ElfSym::tlsModuleBase = cast<Defined>(s);
       }
     }
 
     // This responsible for splitting up .eh_frame section into
     // pieces. The relocation scan uses those pieces, so this has to be
     // earlier.
     {
       llvm::TimeTraceScope timeScope("Finalize .eh_frame");
       for (Partition &part : partitions)
         finalizeSynthetic(part.ehFrame.get());
     }
   }
 
   demoteSymbolsAndComputeIsPreemptible();
 
   if (config->copyRelocs && config->discard != DiscardPolicy::None)
     markUsedLocalSymbols<ELFT>();
   demoteAndCopyLocalSymbols();
 
   if (config->copyRelocs)
     addSectionSymbols();
 
   // Change values of linker-script-defined symbols from placeholders (assigned
   // by declareSymbols) to actual definitions.
   script->processSymbolAssignments();
 
   if (!config->relocatable) {
     llvm::TimeTraceScope timeScope("Scan relocations");
     // Scan relocations. This must be done after every symbol is declared so
     // that we can correctly decide if a dynamic relocation is needed. This is
     // called after processSymbolAssignments() because it needs to know whether
     // a linker-script-defined symbol is absolute.
     ppc64noTocRelax.clear();
     scanRelocations<ELFT>();
     reportUndefinedSymbols();
     postScanRelocations();
 
     if (in.plt && in.plt->isNeeded())
       in.plt->addSymbols();
     if (in.iplt && in.iplt->isNeeded())
       in.iplt->addSymbols();
 
     if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
       auto diagnose =
           config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
               ? errorOrWarn
               : warn;
       // Error on undefined symbols in a shared object, if all of its DT_NEEDED
       // entries are seen. These cases would otherwise lead to runtime errors
       // reported by the dynamic linker.
       //
       // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker
       // to catch more cases. That is too much for us. Our approach resembles
       // the one used in ld.gold, achieves a good balance to be useful but not
       // too smart.
       //
       // If a DSO reference is resolved by a SharedSymbol, but the SharedSymbol
       // is overridden by a hidden visibility Defined (which is later discarded
       // due to GC), don't report the diagnostic. However, this may indicate an
       // unintended SharedSymbol.
       for (SharedFile *file : ctx.sharedFiles) {
         bool allNeededIsKnown =
             llvm::all_of(file->dtNeeded, [&](StringRef needed) {
               return symtab.soNames.count(CachedHashStringRef(needed));
             });
         if (!allNeededIsKnown)
           continue;
         for (Symbol *sym : file->requiredSymbols) {
           if (sym->dsoDefined)
             continue;
           if (sym->isUndefined() && !sym->isWeak()) {
             diagnose("undefined reference due to --no-allow-shlib-undefined: " +
                      toString(*sym) + "\n>>> referenced by " + toString(file));
           } else if (sym->isDefined() && sym->computeBinding() == STB_LOCAL) {
             diagnose("non-exported symbol '" + toString(*sym) + "' in '" +
                      toString(sym->file) + "' is referenced by DSO '" +
                      toString(file) + "'");
           }
         }
       }
     }
   }
 
   {
     llvm::TimeTraceScope timeScope("Add symbols to symtabs");
     // Now that we have defined all possible global symbols including linker-
     // synthesized ones. Visit all symbols to give the finishing touches.
     for (Symbol *sym : symtab.getSymbols()) {
       if (!sym->isUsedInRegularObj || !includeInSymtab(*sym))
         continue;
       if (!config->relocatable)
         sym->binding = sym->computeBinding();
       if (in.symTab)
         in.symTab->addSymbol(sym);
 
       if (sym->includeInDynsym()) {
         partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
         if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
           if (file->isNeeded && !sym->isUndefined())
             addVerneed(sym);
       }
     }
 
     // We also need to scan the dynamic relocation tables of the other
     // partitions and add any referenced symbols to the partition's dynsym.
     for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
       DenseSet<Symbol *> syms;
       for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
         syms.insert(e.sym);
       for (DynamicReloc &reloc : part.relaDyn->relocs)
         if (reloc.sym && reloc.needsDynSymIndex() &&
             syms.insert(reloc.sym).second)
           part.dynSymTab->addSymbol(reloc.sym);
     }
   }
 
   if (in.mipsGot)
     in.mipsGot->build();
 
   removeUnusedSyntheticSections();
   script->diagnoseOrphanHandling();
   script->diagnoseMissingSGSectionAddress();
 
   sortSections();
 
   // Create a list of OutputSections, assign sectionIndex, and populate
   // in.shStrTab.
   for (SectionCommand *cmd : script->sectionCommands)
     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
       OutputSection *osec = &osd->osec;
       outputSections.push_back(osec);
       osec->sectionIndex = outputSections.size();
       osec->shName = in.shStrTab->addString(osec->name);
     }
 
   // Prefer command line supplied address over other constraints.
   for (OutputSection *sec : outputSections) {
     auto i = config->sectionStartMap.find(sec->name);
     if (i != config->sectionStartMap.end())
       sec->addrExpr = [=] { return i->second; };
   }
 
   // With the outputSections available check for GDPLT relocations
   // and add __tls_get_addr symbol if needed.
   if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
     Symbol *sym =
         symtab.addSymbol(Undefined{ctx.internalFile, "__tls_get_addr",
                                    STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
     sym->isPreemptible = true;
     partitions[0].dynSymTab->addSymbol(sym);
   }
 
   // This is a bit of a hack. A value of 0 means undef, so we set it
   // to 1 to make __ehdr_start defined. The section number is not
   // particularly relevant.
   Out::elfHeader->sectionIndex = 1;
   Out::elfHeader->size = sizeof(typename ELFT::Ehdr);
 
   // Binary and relocatable output does not have PHDRS.
   // The headers have to be created before finalize as that can influence the
   // image base and the dynamic section on mips includes the image base.
   if (!config->relocatable && !config->oFormatBinary) {
     for (Partition &part : partitions) {
       part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
                                               : createPhdrs(part);
       if (config->emachine == EM_ARM) {
         // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
         addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
       }
       if (config->emachine == EM_MIPS) {
         // Add separate segments for MIPS-specific sections.
         addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
         addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
         addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
       }
+#if 0
+      // XXX: This stops elftoolchain strip adjusting .riscv.attributes,
+      // leaving large holes in binaries.
       if (config->emachine == EM_RISCV)
         addPhdrForSection(part, SHT_RISCV_ATTRIBUTES, PT_RISCV_ATTRIBUTES,
                           PF_R);
+#endif
     }
     Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
 
     // Find the TLS segment. This happens before the section layout loop so that
     // Android relocation packing can look up TLS symbol addresses. We only need
     // to care about the main partition here because all TLS symbols were moved
     // to the main partition (see MarkLive.cpp).
     for (PhdrEntry *p : mainPart->phdrs)
       if (p->p_type == PT_TLS)
         Out::tlsPhdr = p;
   }
 
   // Some symbols are defined in term of program headers. Now that we
   // have the headers, we can find out which sections they point to.
   setReservedSymbolSections();
 
   {
     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
 
     finalizeSynthetic(in.bss.get());
     finalizeSynthetic(in.bssRelRo.get());
     finalizeSynthetic(in.symTabShndx.get());
     finalizeSynthetic(in.shStrTab.get());
     finalizeSynthetic(in.strTab.get());
     finalizeSynthetic(in.got.get());
     finalizeSynthetic(in.mipsGot.get());
     finalizeSynthetic(in.igotPlt.get());
     finalizeSynthetic(in.gotPlt.get());
     finalizeSynthetic(in.relaIplt.get());
     finalizeSynthetic(in.relaPlt.get());
     finalizeSynthetic(in.plt.get());
     finalizeSynthetic(in.iplt.get());
     finalizeSynthetic(in.ppc32Got2.get());
     finalizeSynthetic(in.partIndex.get());
 
     // Dynamic section must be the last one in this list and dynamic
     // symbol table section (dynSymTab) must be the first one.
     for (Partition &part : partitions) {
       if (part.relaDyn) {
         part.relaDyn->mergeRels();
         // Compute DT_RELACOUNT to be used by part.dynamic.
         part.relaDyn->partitionRels();
         finalizeSynthetic(part.relaDyn.get());
       }
       if (part.relrDyn) {
         part.relrDyn->mergeRels();
         finalizeSynthetic(part.relrDyn.get());
       }
 
       finalizeSynthetic(part.dynSymTab.get());
       finalizeSynthetic(part.gnuHashTab.get());
       finalizeSynthetic(part.hashTab.get());
       finalizeSynthetic(part.verDef.get());
       finalizeSynthetic(part.ehFrameHdr.get());
       finalizeSynthetic(part.verSym.get());
       finalizeSynthetic(part.verNeed.get());
       finalizeSynthetic(part.dynamic.get());
     }
   }
 
   if (!script->hasSectionsCommand && !config->relocatable)
     fixSectionAlignments();
 
   // This is used to:
   // 1) Create "thunks":
   //    Jump instructions in many ISAs have small displacements, and therefore
   //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
   //    JAL instruction can target only +-1 MiB from PC. It is a linker's
   //    responsibility to create and insert small pieces of code between
   //    sections to extend the ranges if jump targets are out of range. Such
   //    code pieces are called "thunks".
   //
   //    We add thunks at this stage. We couldn't do this before this point
   //    because this is the earliest point where we know sizes of sections and
   //    their layouts (that are needed to determine if jump targets are in
   //    range).
   //
   // 2) Update the sections. We need to generate content that depends on the
   //    address of InputSections. For example, MIPS GOT section content or
   //    android packed relocations sections content.
   //
   // 3) Assign the final values for the linker script symbols. Linker scripts
   //    sometimes using forward symbol declarations. We want to set the correct
   //    values. They also might change after adding the thunks.
   finalizeAddressDependentContent();
 
   // All information needed for OutputSection part of Map file is available.
   if (errorCount())
     return;
 
   {
     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
     // finalizeAddressDependentContent may have added local symbols to the
     // static symbol table.
     finalizeSynthetic(in.symTab.get());
     finalizeSynthetic(in.ppc64LongBranchTarget.get());
     finalizeSynthetic(in.armCmseSGSection.get());
   }
 
   // Relaxation to delete inter-basic block jumps created by basic block
   // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
   // can relax jump instructions based on symbol offset.
   if (config->optimizeBBJumps)
     optimizeBasicBlockJumps();
 
   // Fill other section headers. The dynamic table is finalized
   // at the end because some tags like RELSZ depend on result
   // of finalizing other sections.
   for (OutputSection *sec : outputSections)
     sec->finalize();
 
   script->checkFinalScriptConditions();
 
   if (config->emachine == EM_ARM && !config->isLE && config->armBe8) {
     addArmInputSectionMappingSymbols();
     sortArmMappingSymbols();
   }
 }
 
 // Ensure data sections are not mixed with executable sections when
 // --execute-only is used. --execute-only make pages executable but not
 // readable.
 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
   if (!config->executeOnly)
     return;
 
   SmallVector<InputSection *, 0> storage;
   for (OutputSection *osec : outputSections)
     if (osec->flags & SHF_EXECINSTR)
       for (InputSection *isec : getInputSections(*osec, storage))
         if (!(isec->flags & SHF_EXECINSTR))
           error("cannot place " + toString(isec) + " into " +
                 toString(osec->name) +
                 ": --execute-only does not support intermingling data and code");
 }
 
 // The linker is expected to define SECNAME_start and SECNAME_end
 // symbols for a few sections. This function defines them.
 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
   // If a section does not exist, there's ambiguity as to how we
   // define _start and _end symbols for an init/fini section. Since
   // the loader assume that the symbols are always defined, we need to
   // always define them. But what value? The loader iterates over all
   // pointers between _start and _end to run global ctors/dtors, so if
   // the section is empty, their symbol values don't actually matter
   // as long as _start and _end point to the same location.
   //
   // That said, we don't want to set the symbols to 0 (which is
   // probably the simplest value) because that could cause some
   // program to fail to link due to relocation overflow, if their
   // program text is above 2 GiB. We use the address of the .text
   // section instead to prevent that failure.
   //
   // In rare situations, the .text section may not exist. If that's the
   // case, use the image base address as a last resort.
   OutputSection *Default = findSection(".text");
   if (!Default)
     Default = Out::elfHeader;
 
   auto define = [=](StringRef start, StringRef end, OutputSection *os) {
     if (os && !script->isDiscarded(os)) {
       addOptionalRegular(start, os, 0);
       addOptionalRegular(end, os, -1);
     } else {
       addOptionalRegular(start, Default, 0);
       addOptionalRegular(end, Default, 0);
     }
   };
 
   define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
   define("__init_array_start", "__init_array_end", Out::initArray);
   define("__fini_array_start", "__fini_array_end", Out::finiArray);
 
   if (OutputSection *sec = findSection(".ARM.exidx"))
     define("__exidx_start", "__exidx_end", sec);
 }
 
 // If a section name is valid as a C identifier (which is rare because of
 // the leading '.'), linkers are expected to define __start_<secname> and
 // __stop_<secname> symbols. They are at beginning and end of the section,
 // respectively. This is not requested by the ELF standard, but GNU ld and
 // gold provide the feature, and used by many programs.
 template <class ELFT>
 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) {
   StringRef s = osec.name;
   if (!isValidCIdentifier(s))
     return;
   addOptionalRegular(saver().save("__start_" + s), &osec, 0,
                      config->zStartStopVisibility);
   addOptionalRegular(saver().save("__stop_" + s), &osec, -1,
                      config->zStartStopVisibility);
 }
 
 static bool needsPtLoad(OutputSection *sec) {
   if (!(sec->flags & SHF_ALLOC))
     return false;
 
   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
   // responsible for allocating space for them, not the PT_LOAD that
   // contains the TLS initialization image.
   if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
     return false;
   return true;
 }
 
 // Linker scripts are responsible for aligning addresses. Unfortunately, most
 // linker scripts are designed for creating two PT_LOADs only, one RX and one
 // RW. This means that there is no alignment in the RO to RX transition and we
 // cannot create a PT_LOAD there.
 static uint64_t computeFlags(uint64_t flags) {
   if (config->omagic)
     return PF_R | PF_W | PF_X;
   if (config->executeOnly && (flags & PF_X))
     return flags & ~PF_R;
   if (config->singleRoRx && !(flags & PF_W))
     return flags | PF_X;
   return flags;
 }
 
 // Decide which program headers to create and which sections to include in each
 // one.
 template <class ELFT>
 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) {
   SmallVector<PhdrEntry *, 0> ret;
   auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
     ret.push_back(make<PhdrEntry>(type, flags));
     return ret.back();
   };
 
   unsigned partNo = part.getNumber();
   bool isMain = partNo == 1;
 
   // Add the first PT_LOAD segment for regular output sections.
   uint64_t flags = computeFlags(PF_R);
   PhdrEntry *load = nullptr;
 
   // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
   // PT_LOAD.
   if (!config->nmagic && !config->omagic) {
     // The first phdr entry is PT_PHDR which describes the program header
     // itself.
     if (isMain)
       addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
     else
       addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
 
     // PT_INTERP must be the second entry if exists.
     if (OutputSection *cmd = findSection(".interp", partNo))
       addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
 
     // Add the headers. We will remove them if they don't fit.
     // In the other partitions the headers are ordinary sections, so they don't
     // need to be added here.
     if (isMain) {
       load = addHdr(PT_LOAD, flags);
       load->add(Out::elfHeader);
       load->add(Out::programHeaders);
     }
   }
 
   // PT_GNU_RELRO includes all sections that should be marked as
   // read-only by dynamic linker after processing relocations.
   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
   // an error message if more than one PT_GNU_RELRO PHDR is required.
   PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
   bool inRelroPhdr = false;
   OutputSection *relroEnd = nullptr;
   for (OutputSection *sec : outputSections) {
     if (sec->partition != partNo || !needsPtLoad(sec))
       continue;
     if (isRelroSection(sec)) {
       inRelroPhdr = true;
       if (!relroEnd)
         relRo->add(sec);
       else
         error("section: " + sec->name + " is not contiguous with other relro" +
               " sections");
     } else if (inRelroPhdr) {
       inRelroPhdr = false;
       relroEnd = sec;
     }
   }
   relRo->p_align = 1;
 
   for (OutputSection *sec : outputSections) {
     if (!needsPtLoad(sec))
       continue;
 
     // Normally, sections in partitions other than the current partition are
     // ignored. But partition number 255 is a special case: it contains the
     // partition end marker (.part.end). It needs to be added to the main
     // partition so that a segment is created for it in the main partition,
     // which will cause the dynamic loader to reserve space for the other
     // partitions.
     if (sec->partition != partNo) {
       if (isMain && sec->partition == 255)
         addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
       continue;
     }
 
     // Segments are contiguous memory regions that has the same attributes
     // (e.g. executable or writable). There is one phdr for each segment.
     // Therefore, we need to create a new phdr when the next section has
     // different flags or is loaded at a discontiguous address or memory region
     // using AT or AT> linker script command, respectively.
     //
     // As an exception, we don't create a separate load segment for the ELF
     // headers, even if the first "real" output has an AT or AT> attribute.
     //
     // In addition, NOBITS sections should only be placed at the end of a LOAD
     // segment (since it's represented as p_filesz < p_memsz). If we have a
     // not-NOBITS section after a NOBITS, we create a new LOAD for the latter
     // even if flags match, so as not to require actually writing the
     // supposed-to-be-NOBITS section to the output file. (However, we cannot do
     // so when hasSectionsCommand, since we cannot introduce the extra alignment
     // needed to create a new LOAD)
     uint64_t newFlags = computeFlags(sec->getPhdrFlags());
     bool sameLMARegion =
         load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
     if (!(load && newFlags == flags && sec != relroEnd &&
           sec->memRegion == load->firstSec->memRegion &&
           (sameLMARegion || load->lastSec == Out::programHeaders) &&
           (script->hasSectionsCommand || sec->type == SHT_NOBITS ||
            load->lastSec->type != SHT_NOBITS))) {
       load = addHdr(PT_LOAD, newFlags);
       flags = newFlags;
     }
 
     load->add(sec);
   }
 
   // Add a TLS segment if any.
   PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
   for (OutputSection *sec : outputSections)
     if (sec->partition == partNo && sec->flags & SHF_TLS)
       tlsHdr->add(sec);
   if (tlsHdr->firstSec)
     ret.push_back(tlsHdr);
 
   // Add an entry for .dynamic.
   if (OutputSection *sec = part.dynamic->getParent())
     addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
 
   if (relRo->firstSec)
     ret.push_back(relRo);
 
   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
   if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
       part.ehFrame->getParent() && part.ehFrameHdr->getParent())
     addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
         ->add(part.ehFrameHdr->getParent());
 
   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
   // the dynamic linker fill the segment with random data.
   if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
     addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
 
   if (config->zGnustack != GnuStackKind::None) {
     // PT_GNU_STACK is a special section to tell the loader to make the
     // pages for the stack non-executable. If you really want an executable
     // stack, you can pass -z execstack, but that's not recommended for
     // security reasons.
     unsigned perm = PF_R | PF_W;
     if (config->zGnustack == GnuStackKind::Exec)
       perm |= PF_X;
     addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
   }
 
   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
   // is expected to perform W^X violations, such as calling mprotect(2) or
   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
   // OpenBSD.
   if (config->zWxneeded)
     addHdr(PT_OPENBSD_WXNEEDED, PF_X);
 
   if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
     addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
 
   // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
   // same alignment.
   PhdrEntry *note = nullptr;
   for (OutputSection *sec : outputSections) {
     if (sec->partition != partNo)
       continue;
     if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
       if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign)
         note = addHdr(PT_NOTE, PF_R);
       note->add(sec);
     } else {
       note = nullptr;
     }
   }
   return ret;
 }
 
 template <class ELFT>
 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
                                      unsigned pType, unsigned pFlags) {
   unsigned partNo = part.getNumber();
   auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
     return cmd->partition == partNo && cmd->type == shType;
   });
   if (i == outputSections.end())
     return;
 
   PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
   entry->add(*i);
   part.phdrs.push_back(entry);
 }
 
 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
 // This is achieved by assigning an alignment expression to addrExpr of each
 // such section.
 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
   const PhdrEntry *prev;
   auto pageAlign = [&](const PhdrEntry *p) {
     OutputSection *cmd = p->firstSec;
     if (!cmd)
       return;
     cmd->alignExpr = [align = cmd->addralign]() { return align; };
     if (!cmd->addrExpr) {
       // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
       // padding in the file contents.
       //
       // When -z separate-code is used we must not have any overlap in pages
       // between an executable segment and a non-executable segment. We align to
       // the next maximum page size boundary on transitions between executable
       // and non-executable segments.
       //
       // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
       // sections will be extracted to a separate file. Align to the next
       // maximum page size boundary so that we can find the ELF header at the
       // start. We cannot benefit from overlapping p_offset ranges with the
       // previous segment anyway.
       if (config->zSeparate == SeparateSegmentKind::Loadable ||
           (config->zSeparate == SeparateSegmentKind::Code && prev &&
            (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
           cmd->type == SHT_LLVM_PART_EHDR)
         cmd->addrExpr = [] {
           return alignToPowerOf2(script->getDot(), config->maxPageSize);
         };
       // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
       // it must be the RW. Align to p_align(PT_TLS) to make sure
       // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
       // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
       // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
       // be congruent to 0 modulo p_align(PT_TLS).
       //
       // Technically this is not required, but as of 2019, some dynamic loaders
       // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
       // x86-64) doesn't make runtime address congruent to p_vaddr modulo
       // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
       // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
       // blocks correctly. We need to keep the workaround for a while.
       else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
         cmd->addrExpr = [] {
           return alignToPowerOf2(script->getDot(), config->maxPageSize) +
                  alignToPowerOf2(script->getDot() % config->maxPageSize,
                                  Out::tlsPhdr->p_align);
         };
       else
         cmd->addrExpr = [] {
           return alignToPowerOf2(script->getDot(), config->maxPageSize) +
                  script->getDot() % config->maxPageSize;
         };
     }
   };
 
   for (Partition &part : partitions) {
     prev = nullptr;
     for (const PhdrEntry *p : part.phdrs)
       if (p->p_type == PT_LOAD && p->firstSec) {
         pageAlign(p);
         prev = p;
       }
   }
 }
 
 // Compute an in-file position for a given section. The file offset must be the
 // same with its virtual address modulo the page size, so that the loader can
 // load executables without any address adjustment.
 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
   // The first section in a PT_LOAD has to have congruent offset and address
   // modulo the maximum page size.
   if (os->ptLoad && os->ptLoad->firstSec == os)
     return alignTo(off, os->ptLoad->p_align, os->addr);
 
   // File offsets are not significant for .bss sections other than the first one
   // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
   // increasing rather than setting to zero.
   if (os->type == SHT_NOBITS &&
       (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os))
      return off;
 
   // If the section is not in a PT_LOAD, we just have to align it.
   if (!os->ptLoad)
      return alignToPowerOf2(off, os->addralign);
 
   // If two sections share the same PT_LOAD the file offset is calculated
   // using this formula: Off2 = Off1 + (VA2 - VA1).
   OutputSection *first = os->ptLoad->firstSec;
   return first->offset + os->addr - first->addr;
 }
 
 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
   // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
   auto needsOffset = [](OutputSection &sec) {
     return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
   };
   uint64_t minAddr = UINT64_MAX;
   for (OutputSection *sec : outputSections)
     if (needsOffset(*sec)) {
       sec->offset = sec->getLMA();
       minAddr = std::min(minAddr, sec->offset);
     }
 
   // Sections are laid out at LMA minus minAddr.
   fileSize = 0;
   for (OutputSection *sec : outputSections)
     if (needsOffset(*sec)) {
       sec->offset -= minAddr;
       fileSize = std::max(fileSize, sec->offset + sec->size);
     }
 }
 
 static std::string rangeToString(uint64_t addr, uint64_t len) {
   return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
 }
 
 // Assign file offsets to output sections.
 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
   Out::programHeaders->offset = Out::elfHeader->size;
   uint64_t off = Out::elfHeader->size + Out::programHeaders->size;
 
   PhdrEntry *lastRX = nullptr;
   for (Partition &part : partitions)
     for (PhdrEntry *p : part.phdrs)
       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
         lastRX = p;
 
   // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
   // will not occupy file offsets contained by a PT_LOAD.
   for (OutputSection *sec : outputSections) {
     if (!(sec->flags & SHF_ALLOC))
       continue;
     off = computeFileOffset(sec, off);
     sec->offset = off;
     if (sec->type != SHT_NOBITS)
       off += sec->size;
 
     // If this is a last section of the last executable segment and that
     // segment is the last loadable segment, align the offset of the
     // following section to avoid loading non-segments parts of the file.
     if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
         lastRX->lastSec == sec)
       off = alignToPowerOf2(off, config->maxPageSize);
   }
   for (OutputSection *osec : outputSections)
     if (!(osec->flags & SHF_ALLOC)) {
       osec->offset = alignToPowerOf2(off, osec->addralign);
       off = osec->offset + osec->size;
     }
 
   sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
   fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
 
   // Our logic assumes that sections have rising VA within the same segment.
   // With use of linker scripts it is possible to violate this rule and get file
   // offset overlaps or overflows. That should never happen with a valid script
   // which does not move the location counter backwards and usually scripts do
   // not do that. Unfortunately, there are apps in the wild, for example, Linux
   // kernel, which control segment distribution explicitly and move the counter
   // backwards, so we have to allow doing that to support linking them. We
   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
   // we want to prevent file size overflows because it would crash the linker.
   for (OutputSection *sec : outputSections) {
     if (sec->type == SHT_NOBITS)
       continue;
     if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
       error("unable to place section " + sec->name + " at file offset " +
             rangeToString(sec->offset, sec->size) +
             "; check your linker script for overflows");
   }
 }
 
 // Finalize the program headers. We call this function after we assign
 // file offsets and VAs to all sections.
 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
   for (PhdrEntry *p : part.phdrs) {
     OutputSection *first = p->firstSec;
     OutputSection *last = p->lastSec;
 
     // .ARM.exidx sections may not be within a single .ARM.exidx
     // output section. We always want to describe just the
     // SyntheticSection.
     if (part.armExidx && p->p_type == PT_ARM_EXIDX) {
       p->p_filesz = part.armExidx->getSize();
       p->p_memsz = part.armExidx->getSize();
       p->p_offset = first->offset + part.armExidx->outSecOff;
       p->p_vaddr = first->addr + part.armExidx->outSecOff;
       p->p_align = part.armExidx->addralign;
       if (part.elfHeader)
         p->p_offset -= part.elfHeader->getParent()->offset;
 
       if (!p->hasLMA)
         p->p_paddr = first->getLMA() + part.armExidx->outSecOff;
       return;
     }
 
     if (first) {
       p->p_filesz = last->offset - first->offset;
       if (last->type != SHT_NOBITS)
         p->p_filesz += last->size;
 
       p->p_memsz = last->addr + last->size - first->addr;
       p->p_offset = first->offset;
       p->p_vaddr = first->addr;
 
       // File offsets in partitions other than the main partition are relative
       // to the offset of the ELF headers. Perform that adjustment now.
       if (part.elfHeader)
         p->p_offset -= part.elfHeader->getParent()->offset;
 
       if (!p->hasLMA)
         p->p_paddr = first->getLMA();
     }
   }
 }
 
 // A helper struct for checkSectionOverlap.
 namespace {
 struct SectionOffset {
   OutputSection *sec;
   uint64_t offset;
 };
 } // namespace
 
 // Check whether sections overlap for a specific address range (file offsets,
 // load and virtual addresses).
 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
                          bool isVirtualAddr) {
   llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
     return a.offset < b.offset;
   });
 
   // Finding overlap is easy given a vector is sorted by start position.
   // If an element starts before the end of the previous element, they overlap.
   for (size_t i = 1, end = sections.size(); i < end; ++i) {
     SectionOffset a = sections[i - 1];
     SectionOffset b = sections[i];
     if (b.offset >= a.offset + a.sec->size)
       continue;
 
     // If both sections are in OVERLAY we allow the overlapping of virtual
     // addresses, because it is what OVERLAY was designed for.
     if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
       continue;
 
     errorOrWarn("section " + a.sec->name + " " + name +
                 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
                 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
                 b.sec->name + " range is " +
                 rangeToString(b.offset, b.sec->size));
   }
 }
 
 // Check for overlapping sections and address overflows.
 //
 // In this function we check that none of the output sections have overlapping
 // file offsets. For SHF_ALLOC sections we also check that the load address
 // ranges and the virtual address ranges don't overlap
 template <class ELFT> void Writer<ELFT>::checkSections() {
   // First, check that section's VAs fit in available address space for target.
   for (OutputSection *os : outputSections)
     if ((os->addr + os->size < os->addr) ||
         (!ELFT::Is64Bits && os->addr + os->size > uint64_t(UINT32_MAX) + 1))
       errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
                   " of size 0x" + utohexstr(os->size) +
                   " exceeds available address space");
 
   // Check for overlapping file offsets. In this case we need to skip any
   // section marked as SHT_NOBITS. These sections don't actually occupy space in
   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
   // binary is specified only add SHF_ALLOC sections are added to the output
   // file so we skip any non-allocated sections in that case.
   std::vector<SectionOffset> fileOffs;
   for (OutputSection *sec : outputSections)
     if (sec->size > 0 && sec->type != SHT_NOBITS &&
         (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
       fileOffs.push_back({sec, sec->offset});
   checkOverlap("file", fileOffs, false);
 
   // When linking with -r there is no need to check for overlapping virtual/load
   // addresses since those addresses will only be assigned when the final
   // executable/shared object is created.
   if (config->relocatable)
     return;
 
   // Checking for overlapping virtual and load addresses only needs to take
   // into account SHF_ALLOC sections since others will not be loaded.
   // Furthermore, we also need to skip SHF_TLS sections since these will be
   // mapped to other addresses at runtime and can therefore have overlapping
   // ranges in the file.
   std::vector<SectionOffset> vmas;
   for (OutputSection *sec : outputSections)
     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
       vmas.push_back({sec, sec->addr});
   checkOverlap("virtual address", vmas, true);
 
   // Finally, check that the load addresses don't overlap. This will usually be
   // the same as the virtual addresses but can be different when using a linker
   // script with AT().
   std::vector<SectionOffset> lmas;
   for (OutputSection *sec : outputSections)
     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
       lmas.push_back({sec, sec->getLMA()});
   checkOverlap("load address", lmas, false);
 }
 
 // The entry point address is chosen in the following ways.
 //
 // 1. the '-e' entry command-line option;
 // 2. the ENTRY(symbol) command in a linker control script;
 // 3. the value of the symbol _start, if present;
 // 4. the number represented by the entry symbol, if it is a number;
 // 5. the address 0.
 static uint64_t getEntryAddr() {
   // Case 1, 2 or 3
   if (Symbol *b = symtab.find(config->entry))
     return b->getVA();
 
   // Case 4
   uint64_t addr;
   if (to_integer(config->entry, addr))
     return addr;
 
   // Case 5
   if (config->warnMissingEntry)
     warn("cannot find entry symbol " + config->entry +
          "; not setting start address");
   return 0;
 }
 
 static uint16_t getELFType() {
   if (config->isPic)
     return ET_DYN;
   if (config->relocatable)
     return ET_REL;
   return ET_EXEC;
 }
 
 template <class ELFT> void Writer<ELFT>::writeHeader() {
   writeEhdr<ELFT>(Out::bufferStart, *mainPart);
   writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
 
   auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
   eHdr->e_type = getELFType();
   eHdr->e_entry = getEntryAddr();
   eHdr->e_shoff = sectionHeaderOff;
 
   // Write the section header table.
   //
   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
   // and e_shstrndx fields. When the value of one of these fields exceeds
   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
   // use fields in the section header at index 0 to store
   // the value. The sentinel values and fields are:
   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
   auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
   size_t num = outputSections.size() + 1;
   if (num >= SHN_LORESERVE)
     sHdrs->sh_size = num;
   else
     eHdr->e_shnum = num;
 
   uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
   if (strTabIndex >= SHN_LORESERVE) {
     sHdrs->sh_link = strTabIndex;
     eHdr->e_shstrndx = SHN_XINDEX;
   } else {
     eHdr->e_shstrndx = strTabIndex;
   }
 
   for (OutputSection *sec : outputSections)
     sec->writeHeaderTo<ELFT>(++sHdrs);
 }
 
 // Open a result file.
 template <class ELFT> void Writer<ELFT>::openFile() {
   uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
   if (fileSize != size_t(fileSize) || maxSize < fileSize) {
     std::string msg;
     raw_string_ostream s(msg);
     s << "output file too large: " << Twine(fileSize) << " bytes\n"
       << "section sizes:\n";
     for (OutputSection *os : outputSections)
       s << os->name << ' ' << os->size << "\n";
     error(s.str());
     return;
   }
 
   unlinkAsync(config->outputFile);
   unsigned flags = 0;
   if (!config->relocatable)
     flags |= FileOutputBuffer::F_executable;
   if (!config->mmapOutputFile)
     flags |= FileOutputBuffer::F_no_mmap;
   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
       FileOutputBuffer::create(config->outputFile, fileSize, flags);
 
   if (!bufferOrErr) {
     error("failed to open " + config->outputFile + ": " +
           llvm::toString(bufferOrErr.takeError()));
     return;
   }
   buffer = std::move(*bufferOrErr);
   Out::bufferStart = buffer->getBufferStart();
 }
 
 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
   parallel::TaskGroup tg;
   for (OutputSection *sec : outputSections)
     if (sec->flags & SHF_ALLOC)
       sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
 }
 
 static void fillTrap(uint8_t *i, uint8_t *end) {
   for (; i + 4 <= end; i += 4)
     memcpy(i, &target->trapInstr, 4);
 }
 
 // Fill the last page of executable segments with trap instructions
 // instead of leaving them as zero. Even though it is not required by any
 // standard, it is in general a good thing to do for security reasons.
 //
 // We'll leave other pages in segments as-is because the rest will be
 // overwritten by output sections.
 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
   for (Partition &part : partitions) {
     // Fill the last page.
     for (PhdrEntry *p : part.phdrs)
       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
         fillTrap(Out::bufferStart +
                      alignDown(p->firstSec->offset + p->p_filesz, 4),
                  Out::bufferStart +
                      alignToPowerOf2(p->firstSec->offset + p->p_filesz,
                                      config->maxPageSize));
 
     // Round up the file size of the last segment to the page boundary iff it is
     // an executable segment to ensure that other tools don't accidentally
     // trim the instruction padding (e.g. when stripping the file).
     PhdrEntry *last = nullptr;
     for (PhdrEntry *p : part.phdrs)
       if (p->p_type == PT_LOAD)
         last = p;
 
     if (last && (last->p_flags & PF_X))
       last->p_memsz = last->p_filesz =
           alignToPowerOf2(last->p_filesz, config->maxPageSize);
   }
 }
 
 // Write section contents to a mmap'ed file.
 template <class ELFT> void Writer<ELFT>::writeSections() {
   llvm::TimeTraceScope timeScope("Write sections");
 
   {
     // In -r or --emit-relocs mode, write the relocation sections first as in
     // ELf_Rel targets we might find out that we need to modify the relocated
     // section while doing it.
     parallel::TaskGroup tg;
     for (OutputSection *sec : outputSections)
       if (sec->type == SHT_REL || sec->type == SHT_RELA)
         sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
   }
   {
     parallel::TaskGroup tg;
     for (OutputSection *sec : outputSections)
       if (sec->type != SHT_REL && sec->type != SHT_RELA)
         sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
   }
 
   // Finally, check that all dynamic relocation addends were written correctly.
   if (config->checkDynamicRelocs && config->writeAddends) {
     for (OutputSection *sec : outputSections)
       if (sec->type == SHT_REL || sec->type == SHT_RELA)
         sec->checkDynRelAddends(Out::bufferStart);
   }
 }
 
 // Computes a hash value of Data using a given hash function.
 // In order to utilize multiple cores, we first split data into 1MB
 // chunks, compute a hash for each chunk, and then compute a hash value
 // of the hash values.
 static void
 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
             llvm::ArrayRef<uint8_t> data,
             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
   const size_t hashesSize = chunks.size() * hashBuf.size();
   std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]);
 
   // Compute hash values.
   parallelFor(0, chunks.size(), [&](size_t i) {
     hashFn(hashes.get() + i * hashBuf.size(), chunks[i]);
   });
 
   // Write to the final output buffer.
   hashFn(hashBuf.data(), ArrayRef(hashes.get(), hashesSize));
 }
 
 template <class ELFT> void Writer<ELFT>::writeBuildId() {
   if (!mainPart->buildId || !mainPart->buildId->getParent())
     return;
 
   if (config->buildId == BuildIdKind::Hexstring) {
     for (Partition &part : partitions)
       part.buildId->writeBuildId(config->buildIdVector);
     return;
   }
 
   // Compute a hash of all sections of the output file.
   size_t hashSize = mainPart->buildId->hashSize;
   std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]);
   MutableArrayRef<uint8_t> output(buildId.get(), hashSize);
   llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)};
 
   // Fedora introduced build ID as "approximation of true uniqueness across all
   // binaries that might be used by overlapping sets of people". It does not
   // need some security goals that some hash algorithms strive to provide, e.g.
   // (second-)preimage and collision resistance. In practice people use 'md5'
   // and 'sha1' just for different lengths. Implement them with the more
   // efficient BLAKE3.
   switch (config->buildId) {
   case BuildIdKind::Fast:
     computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
       write64le(dest, xxh3_64bits(arr));
     });
     break;
   case BuildIdKind::Md5:
     computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
       memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize);
     });
     break;
   case BuildIdKind::Sha1:
     computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
       memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize);
     });
     break;
   case BuildIdKind::Uuid:
     if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize))
       error("entropy source failure: " + ec.message());
     break;
   default:
     llvm_unreachable("unknown BuildIdKind");
   }
   for (Partition &part : partitions)
     part.buildId->writeBuildId(output);
 }
 
 template void elf::createSyntheticSections<ELF32LE>();
 template void elf::createSyntheticSections<ELF32BE>();
 template void elf::createSyntheticSections<ELF64LE>();
 template void elf::createSyntheticSections<ELF64BE>();
 
 template void elf::writeResult<ELF32LE>();
 template void elf::writeResult<ELF32BE>();
 template void elf::writeResult<ELF64LE>();
 template void elf::writeResult<ELF64BE>();