diff --git a/sys/kern/vfs_vnops.c b/sys/kern/vfs_vnops.c
index fd78b692b088..d79707555ac1 100644
--- a/sys/kern/vfs_vnops.c
+++ b/sys/kern/vfs_vnops.c
@@ -1,4241 +1,4259 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1989, 1993
  *	The Regents of the University of California.  All rights reserved.
  * (c) UNIX System Laboratories, Inc.
  * All or some portions of this file are derived from material licensed
  * to the University of California by American Telephone and Telegraph
  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
  * the permission of UNIX System Laboratories, Inc.
  *
  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
  * Copyright (c) 2013, 2014 The FreeBSD Foundation
  *
  * Portions of this software were developed by Konstantin Belousov
  * under sponsorship from the FreeBSD Foundation.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 #include "opt_hwpmc_hooks.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/disk.h>
 #include <sys/fail.h>
 #include <sys/fcntl.h>
 #include <sys/file.h>
 #include <sys/kdb.h>
 #include <sys/ktr.h>
 #include <sys/stat.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/mman.h>
 #include <sys/mount.h>
 #include <sys/mutex.h>
 #include <sys/namei.h>
 #include <sys/vnode.h>
 #include <sys/dirent.h>
 #include <sys/bio.h>
 #include <sys/buf.h>
 #include <sys/filio.h>
 #include <sys/resourcevar.h>
 #include <sys/rwlock.h>
 #include <sys/prng.h>
 #include <sys/sx.h>
 #include <sys/sleepqueue.h>
 #include <sys/sysctl.h>
 #include <sys/ttycom.h>
 #include <sys/conf.h>
 #include <sys/syslog.h>
 #include <sys/unistd.h>
 #include <sys/user.h>
 #include <sys/ktrace.h>
 
 #include <security/audit/audit.h>
 #include <security/mac/mac_framework.h>
 
 #include <vm/vm.h>
 #include <vm/vm_extern.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_object.h>
 #include <vm/vm_page.h>
 #include <vm/vm_pager.h>
 #include <vm/vnode_pager.h>
 
 #ifdef HWPMC_HOOKS
 #include <sys/pmckern.h>
 #endif
 
 static fo_rdwr_t	vn_read;
 static fo_rdwr_t	vn_write;
 static fo_rdwr_t	vn_io_fault;
 static fo_truncate_t	vn_truncate;
 static fo_ioctl_t	vn_ioctl;
 static fo_poll_t	vn_poll;
 static fo_kqfilter_t	vn_kqfilter;
 static fo_close_t	vn_closefile;
 static fo_mmap_t	vn_mmap;
 static fo_fallocate_t	vn_fallocate;
 static fo_fspacectl_t	vn_fspacectl;
 
 struct 	fileops vnops = {
 	.fo_read = vn_io_fault,
 	.fo_write = vn_io_fault,
 	.fo_truncate = vn_truncate,
 	.fo_ioctl = vn_ioctl,
 	.fo_poll = vn_poll,
 	.fo_kqfilter = vn_kqfilter,
 	.fo_stat = vn_statfile,
 	.fo_close = vn_closefile,
 	.fo_chmod = vn_chmod,
 	.fo_chown = vn_chown,
 	.fo_sendfile = vn_sendfile,
 	.fo_seek = vn_seek,
 	.fo_fill_kinfo = vn_fill_kinfo,
 	.fo_mmap = vn_mmap,
 	.fo_fallocate = vn_fallocate,
 	.fo_fspacectl = vn_fspacectl,
 	.fo_cmp = vn_cmp,
 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
 };
 
 const u_int io_hold_cnt = 16;
 static int vn_io_fault_enable = 1;
 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
 static int vn_io_fault_prefault = 0;
 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
 static int vn_io_pgcache_read_enable = 1;
 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
     &vn_io_pgcache_read_enable, 0,
     "Enable copying from page cache for reads, avoiding fs");
 static u_long vn_io_faults_cnt;
 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
 
 static int vfs_allow_read_dir = 0;
 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
     &vfs_allow_read_dir, 0,
     "Enable read(2) of directory by root for filesystems that support it");
 
 /*
  * Returns true if vn_io_fault mode of handling the i/o request should
  * be used.
  */
 static bool
 do_vn_io_fault(struct vnode *vp, struct uio *uio)
 {
 	struct mount *mp;
 
 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
 	    (mp = vp->v_mount) != NULL &&
 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
 }
 
 /*
  * Structure used to pass arguments to vn_io_fault1(), to do either
  * file- or vnode-based I/O calls.
  */
 struct vn_io_fault_args {
 	enum {
 		VN_IO_FAULT_FOP,
 		VN_IO_FAULT_VOP
 	} kind;
 	struct ucred *cred;
 	int flags;
 	union {
 		struct fop_args_tag {
 			struct file *fp;
 			fo_rdwr_t *doio;
 		} fop_args;
 		struct vop_args_tag {
 			struct vnode *vp;
 		} vop_args;
 	} args;
 };
 
 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
     struct vn_io_fault_args *args, struct thread *td);
 
 int
 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
 {
 	struct thread *td = curthread;
 
 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
 }
 
 static uint64_t
 open2nameif(int fmode, u_int vn_open_flags)
 {
 	uint64_t res;
 
 	res = ISOPEN | LOCKLEAF;
 	if ((fmode & O_RESOLVE_BENEATH) != 0)
 		res |= RBENEATH;
 	if ((fmode & O_EMPTY_PATH) != 0)
 		res |= EMPTYPATH;
 	if ((fmode & FREAD) != 0)
 		res |= OPENREAD;
 	if ((fmode & FWRITE) != 0)
 		res |= OPENWRITE;
 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
 		res |= AUDITVNODE1;
 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
 		res |= NOCAPCHECK;
 	if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
 		res |= WANTIOCTLCAPS;
 	return (res);
 }
 
 /*
  * Common code for vnode open operations via a name lookup.
  * Lookup the vnode and invoke VOP_CREATE if needed.
  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  *
  * Note that this does NOT free nameidata for the successful case,
  * due to the NDINIT being done elsewhere.
  */
 int
 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
     struct ucred *cred, struct file *fp)
 {
 	struct vnode *vp;
 	struct mount *mp;
 	struct vattr vat;
 	struct vattr *vap = &vat;
 	int fmode, error;
 	bool first_open;
 
 restart:
 	first_open = false;
 	fmode = *flagp;
 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
 	    O_EXCL | O_DIRECTORY) ||
 	    (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
 		return (EINVAL);
 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
 		ndp->ni_cnd.cn_nameiop = CREATE;
 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
 		/*
 		 * Set NOCACHE to avoid flushing the cache when
 		 * rolling in many files at once.
 		 *
 		 * Set NC_KEEPPOSENTRY to keep positive entries if they already
 		 * exist despite NOCACHE.
 		 */
 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
 			ndp->ni_cnd.cn_flags |= FOLLOW;
 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
 			bwillwrite();
 		if ((error = namei(ndp)) != 0)
 			return (error);
 		if (ndp->ni_vp == NULL) {
 			VATTR_NULL(vap);
 			vap->va_type = VREG;
 			vap->va_mode = cmode;
 			if (fmode & O_EXCL)
 				vap->va_vaflags |= VA_EXCLUSIVE;
 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
 				NDFREE_PNBUF(ndp);
 				vput(ndp->ni_dvp);
 				if ((error = vn_start_write(NULL, &mp,
 				    V_XSLEEP | V_PCATCH)) != 0)
 					return (error);
 				NDREINIT(ndp);
 				goto restart;
 			}
 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
 #ifdef MAC
 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
 			    &ndp->ni_cnd, vap);
 			if (error == 0)
 #endif
 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
 				    &ndp->ni_cnd, vap);
 			vp = ndp->ni_vp;
 			if (error == 0 && (fmode & O_EXCL) != 0 &&
 			    (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
 				VI_LOCK(vp);
 				vp->v_iflag |= VI_FOPENING;
 				VI_UNLOCK(vp);
 				first_open = true;
 			}
 			VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
 			    false);
 			vn_finished_write(mp);
 			if (error) {
 				NDFREE_PNBUF(ndp);
 				if (error == ERELOOKUP) {
 					NDREINIT(ndp);
 					goto restart;
 				}
 				return (error);
 			}
 			fmode &= ~O_TRUNC;
 		} else {
 			if (ndp->ni_dvp == ndp->ni_vp)
 				vrele(ndp->ni_dvp);
 			else
 				vput(ndp->ni_dvp);
 			ndp->ni_dvp = NULL;
 			vp = ndp->ni_vp;
 			if (fmode & O_EXCL) {
 				error = EEXIST;
 				goto bad;
 			}
 			if (vp->v_type == VDIR) {
 				error = EISDIR;
 				goto bad;
 			}
 			fmode &= ~O_CREAT;
 		}
 	} else {
 		ndp->ni_cnd.cn_nameiop = LOOKUP;
 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
 		ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
 		    FOLLOW;
 		if ((fmode & FWRITE) == 0)
 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
 		if ((error = namei(ndp)) != 0)
 			return (error);
 		vp = ndp->ni_vp;
 	}
 	error = vn_open_vnode(vp, fmode, cred, curthread, fp);
 	if (first_open) {
 		VI_LOCK(vp);
 		vp->v_iflag &= ~VI_FOPENING;
 		wakeup(vp);
 		VI_UNLOCK(vp);
 	}
 	if (error)
 		goto bad;
 	*flagp = fmode;
 	return (0);
 bad:
 	NDFREE_PNBUF(ndp);
 	vput(vp);
 	*flagp = fmode;
 	ndp->ni_vp = NULL;
 	return (error);
 }
 
 static int
 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
 {
 	struct flock lf;
 	int error, lock_flags, type;
 
 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
 		return (0);
 	KASSERT(fp != NULL, ("open with flock requires fp"));
 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
 		return (EOPNOTSUPP);
 
 	lock_flags = VOP_ISLOCKED(vp);
 	VOP_UNLOCK(vp);
 
 	lf.l_whence = SEEK_SET;
 	lf.l_start = 0;
 	lf.l_len = 0;
 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
 	type = F_FLOCK;
 	if ((fmode & FNONBLOCK) == 0)
 		type |= F_WAIT;
 	if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
 		type |= F_FIRSTOPEN;
 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
 	if (error == 0)
 		fp->f_flag |= FHASLOCK;
 
 	vn_lock(vp, lock_flags | LK_RETRY);
 	return (error);
 }
 
 /*
  * Common code for vnode open operations once a vnode is located.
  * Check permissions, and call the VOP_OPEN routine.
  */
 int
 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
     struct thread *td, struct file *fp)
 {
 	accmode_t accmode;
 	int error;
 
 	if (vp->v_type == VLNK) {
 		if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
 			return (EMLINK);
 	}
 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
 		return (ENOTDIR);
 
 	accmode = 0;
 	if ((fmode & O_PATH) == 0) {
 		if (vp->v_type == VSOCK)
 			return (EOPNOTSUPP);
 		if ((fmode & (FWRITE | O_TRUNC)) != 0) {
 			if (vp->v_type == VDIR)
 				return (EISDIR);
 			accmode |= VWRITE;
 		}
 		if ((fmode & FREAD) != 0)
 			accmode |= VREAD;
 		if ((fmode & O_APPEND) && (fmode & FWRITE))
 			accmode |= VAPPEND;
 #ifdef MAC
 		if ((fmode & O_CREAT) != 0)
 			accmode |= VCREAT;
 #endif
 	}
 	if ((fmode & FEXEC) != 0)
 		accmode |= VEXEC;
 #ifdef MAC
 	if ((fmode & O_VERIFY) != 0)
 		accmode |= VVERIFY;
 	error = mac_vnode_check_open(cred, vp, accmode);
 	if (error != 0)
 		return (error);
 
 	accmode &= ~(VCREAT | VVERIFY);
 #endif
 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
 		error = VOP_ACCESS(vp, accmode, cred, td);
 		if (error != 0)
 			return (error);
 	}
 	if ((fmode & O_PATH) != 0) {
 		if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
 		    VOP_ACCESS(vp, VREAD, cred, td) == 0)
 			fp->f_flag |= FKQALLOWED;
 		return (0);
 	}
 
 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
 	error = VOP_OPEN(vp, fmode, cred, td, fp);
 	if (error != 0)
 		return (error);
 
 	error = vn_open_vnode_advlock(vp, fmode, fp);
 	if (error == 0 && (fmode & FWRITE) != 0) {
 		error = VOP_ADD_WRITECOUNT(vp, 1);
 		if (error == 0) {
 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
 			     __func__, vp, vp->v_writecount);
 		}
 	}
 
 	/*
 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
 	 */
 	if (error != 0) {
 		if (fp != NULL) {
 			/*
 			 * Arrange the call by having fdrop() to use
 			 * vn_closefile().  This is to satisfy
 			 * filesystems like devfs or tmpfs, which
 			 * override fo_close().
 			 */
 			fp->f_flag |= FOPENFAILED;
 			fp->f_vnode = vp;
 			if (fp->f_ops == &badfileops) {
 				fp->f_type = DTYPE_VNODE;
 				fp->f_ops = &vnops;
 			}
 			vref(vp);
 		} else {
 			/*
 			 * If there is no fp, due to kernel-mode open,
 			 * we can call VOP_CLOSE() now.
 			 */
 			if ((vp->v_type == VFIFO ||
 			    !MNT_EXTENDED_SHARED(vp->v_mount)) &&
 			    VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
 				vn_lock(vp, LK_UPGRADE | LK_RETRY);
 			(void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
 			    cred, td);
 		}
 	}
 
 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
 	return (error);
 
 }
 
 /*
  * Check for write permissions on the specified vnode.
  * Prototype text segments cannot be written.
  * It is racy.
  */
 int
 vn_writechk(struct vnode *vp)
 {
 
 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
 	/*
 	 * If there's shared text associated with
 	 * the vnode, try to free it up once.  If
 	 * we fail, we can't allow writing.
 	 */
 	if (VOP_IS_TEXT(vp))
 		return (ETXTBSY);
 
 	return (0);
 }
 
 /*
  * Vnode close call
  */
 static int
 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
     struct thread *td, bool keep_ref)
 {
 	struct mount *mp;
 	int error, lock_flags;
 
 	lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ?
 	    LK_SHARED : LK_EXCLUSIVE;
 
 	vn_start_write(vp, &mp, V_WAIT);
 	vn_lock(vp, lock_flags | LK_RETRY);
 	AUDIT_ARG_VNODE1(vp);
 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
 		    __func__, vp, vp->v_writecount);
 	}
 	error = VOP_CLOSE(vp, flags, file_cred, td);
 	if (keep_ref)
 		VOP_UNLOCK(vp);
 	else
 		vput(vp);
 	vn_finished_write(mp);
 	return (error);
 }
 
 int
 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
     struct thread *td)
 {
 
 	return (vn_close1(vp, flags, file_cred, td, false));
 }
 
 /*
  * Heuristic to detect sequential operation.
  */
 static int
 sequential_heuristic(struct uio *uio, struct file *fp)
 {
 	enum uio_rw rw;
 
 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
 
 	rw = uio->uio_rw;
 	if (fp->f_flag & FRDAHEAD)
 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
 
 	/*
 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
 	 * that the first I/O is normally considered to be slightly
 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
 	 * unless previous seeks have reduced f_seqcount to 0, in which
 	 * case offset 0 is not special.
 	 */
 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
 	    uio->uio_offset == fp->f_nextoff[rw]) {
 		/*
 		 * f_seqcount is in units of fixed-size blocks so that it
 		 * depends mainly on the amount of sequential I/O and not
 		 * much on the number of sequential I/O's.  The fixed size
 		 * of 16384 is hard-coded here since it is (not quite) just
 		 * a magic size that works well here.  This size is more
 		 * closely related to the best I/O size for real disks than
 		 * to any block size used by software.
 		 */
 		if (uio->uio_resid >= IO_SEQMAX * 16384)
 			fp->f_seqcount[rw] = IO_SEQMAX;
 		else {
 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
 			if (fp->f_seqcount[rw] > IO_SEQMAX)
 				fp->f_seqcount[rw] = IO_SEQMAX;
 		}
 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
 	}
 
 	/* Not sequential.  Quickly draw-down sequentiality. */
 	if (fp->f_seqcount[rw] > 1)
 		fp->f_seqcount[rw] = 1;
 	else
 		fp->f_seqcount[rw] = 0;
 	return (0);
 }
 
 /*
  * Package up an I/O request on a vnode into a uio and do it.
  */
 int
 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
 {
 	struct uio auio;
 	struct iovec aiov;
 	struct mount *mp;
 	struct ucred *cred;
 	void *rl_cookie;
 	struct vn_io_fault_args args;
 	int error, lock_flags;
 
 	if (offset < 0 && vp->v_type != VCHR)
 		return (EINVAL);
 	auio.uio_iov = &aiov;
 	auio.uio_iovcnt = 1;
 	aiov.iov_base = base;
 	aiov.iov_len = len;
 	auio.uio_resid = len;
 	auio.uio_offset = offset;
 	auio.uio_segflg = segflg;
 	auio.uio_rw = rw;
 	auio.uio_td = td;
 	error = 0;
 
 	if ((ioflg & IO_NODELOCKED) == 0) {
 		if ((ioflg & IO_RANGELOCKED) == 0) {
 			if (rw == UIO_READ) {
 				rl_cookie = vn_rangelock_rlock(vp, offset,
 				    offset + len);
 			} else if ((ioflg & IO_APPEND) != 0) {
 				rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 			} else {
 				rl_cookie = vn_rangelock_wlock(vp, offset,
 				    offset + len);
 			}
 		} else
 			rl_cookie = NULL;
 		mp = NULL;
 		if (rw == UIO_WRITE) { 
 			if (vp->v_type != VCHR &&
 			    (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH))
 			    != 0)
 				goto out;
 			lock_flags = vn_lktype_write(mp, vp);
 		} else
 			lock_flags = LK_SHARED;
 		vn_lock(vp, lock_flags | LK_RETRY);
 	} else
 		rl_cookie = NULL;
 
 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 #ifdef MAC
 	if ((ioflg & IO_NOMACCHECK) == 0) {
 		if (rw == UIO_READ)
 			error = mac_vnode_check_read(active_cred, file_cred,
 			    vp);
 		else
 			error = mac_vnode_check_write(active_cred, file_cred,
 			    vp);
 	}
 #endif
 	if (error == 0) {
 		if (file_cred != NULL)
 			cred = file_cred;
 		else
 			cred = active_cred;
 		if (do_vn_io_fault(vp, &auio)) {
 			args.kind = VN_IO_FAULT_VOP;
 			args.cred = cred;
 			args.flags = ioflg;
 			args.args.vop_args.vp = vp;
 			error = vn_io_fault1(vp, &auio, &args, td);
 		} else if (rw == UIO_READ) {
 			error = VOP_READ(vp, &auio, ioflg, cred);
 		} else /* if (rw == UIO_WRITE) */ {
 			error = VOP_WRITE(vp, &auio, ioflg, cred);
 		}
 	}
 	if (aresid)
 		*aresid = auio.uio_resid;
 	else
 		if (auio.uio_resid && error == 0)
 			error = EIO;
 	if ((ioflg & IO_NODELOCKED) == 0) {
 		VOP_UNLOCK(vp);
 		if (mp != NULL)
 			vn_finished_write(mp);
 	}
  out:
 	if (rl_cookie != NULL)
 		vn_rangelock_unlock(vp, rl_cookie);
 	return (error);
 }
 
 /*
  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  * request is split up into smaller chunks and we try to avoid saturating
  * the buffer cache while potentially holding a vnode locked, so we 
  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  * to give other processes a chance to lock the vnode (either other processes
  * core'ing the same binary, or unrelated processes scanning the directory).
  */
 int
 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
     struct ucred *file_cred, size_t *aresid, struct thread *td)
 {
 	int error = 0;
 	ssize_t iaresid;
 
 	do {
 		int chunk;
 
 		/*
 		 * Force `offset' to a multiple of MAXBSIZE except possibly
 		 * for the first chunk, so that filesystems only need to
 		 * write full blocks except possibly for the first and last
 		 * chunks.
 		 */
 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
 
 		if (chunk > len)
 			chunk = len;
 		if (rw != UIO_READ && vp->v_type == VREG)
 			bwillwrite();
 		iaresid = 0;
 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
 		    ioflg, active_cred, file_cred, &iaresid, td);
 		len -= chunk;	/* aresid calc already includes length */
 		if (error)
 			break;
 		offset += chunk;
 		base = (char *)base + chunk;
 		kern_yield(PRI_USER);
 	} while (len);
 	if (aresid)
 		*aresid = len + iaresid;
 	return (error);
 }
 
 #if OFF_MAX <= LONG_MAX
 off_t
 foffset_lock(struct file *fp, int flags)
 {
 	volatile short *flagsp;
 	off_t res;
 	short state;
 
 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
 
 	if ((flags & FOF_NOLOCK) != 0)
 		return (atomic_load_long(&fp->f_offset));
 
 	/*
 	 * According to McKusick the vn lock was protecting f_offset here.
 	 * It is now protected by the FOFFSET_LOCKED flag.
 	 */
 	flagsp = &fp->f_vnread_flags;
 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
 		return (atomic_load_long(&fp->f_offset));
 
 	sleepq_lock(&fp->f_vnread_flags);
 	state = atomic_load_16(flagsp);
 	for (;;) {
 		if ((state & FOFFSET_LOCKED) == 0) {
 			if (!atomic_fcmpset_acq_16(flagsp, &state,
 			    FOFFSET_LOCKED))
 				continue;
 			break;
 		}
 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
 			if (!atomic_fcmpset_acq_16(flagsp, &state,
 			    state | FOFFSET_LOCK_WAITING))
 				continue;
 		}
 		DROP_GIANT();
 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
 		PICKUP_GIANT();
 		sleepq_lock(&fp->f_vnread_flags);
 		state = atomic_load_16(flagsp);
 	}
 	res = atomic_load_long(&fp->f_offset);
 	sleepq_release(&fp->f_vnread_flags);
 	return (res);
 }
 
 void
 foffset_unlock(struct file *fp, off_t val, int flags)
 {
 	volatile short *flagsp;
 	short state;
 
 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
 
 	if ((flags & FOF_NOUPDATE) == 0)
 		atomic_store_long(&fp->f_offset, val);
 	if ((flags & FOF_NEXTOFF_R) != 0)
 		fp->f_nextoff[UIO_READ] = val;
 	if ((flags & FOF_NEXTOFF_W) != 0)
 		fp->f_nextoff[UIO_WRITE] = val;
 
 	if ((flags & FOF_NOLOCK) != 0)
 		return;
 
 	flagsp = &fp->f_vnread_flags;
 	state = atomic_load_16(flagsp);
 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
 	    atomic_cmpset_rel_16(flagsp, state, 0))
 		return;
 
 	sleepq_lock(&fp->f_vnread_flags);
 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
 	fp->f_vnread_flags = 0;
 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
 	sleepq_release(&fp->f_vnread_flags);
 }
 
 static off_t
 foffset_read(struct file *fp)
 {
 
 	return (atomic_load_long(&fp->f_offset));
 }
 #else
 off_t
 foffset_lock(struct file *fp, int flags)
 {
 	struct mtx *mtxp;
 	off_t res;
 
 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
 
 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
 	mtx_lock(mtxp);
 	if ((flags & FOF_NOLOCK) == 0) {
 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
 			    "vofflock", 0);
 		}
 		fp->f_vnread_flags |= FOFFSET_LOCKED;
 	}
 	res = fp->f_offset;
 	mtx_unlock(mtxp);
 	return (res);
 }
 
 void
 foffset_unlock(struct file *fp, off_t val, int flags)
 {
 	struct mtx *mtxp;
 
 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
 
 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
 	mtx_lock(mtxp);
 	if ((flags & FOF_NOUPDATE) == 0)
 		fp->f_offset = val;
 	if ((flags & FOF_NEXTOFF_R) != 0)
 		fp->f_nextoff[UIO_READ] = val;
 	if ((flags & FOF_NEXTOFF_W) != 0)
 		fp->f_nextoff[UIO_WRITE] = val;
 	if ((flags & FOF_NOLOCK) == 0) {
 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
 		    ("Lost FOFFSET_LOCKED"));
 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
 			wakeup(&fp->f_vnread_flags);
 		fp->f_vnread_flags = 0;
 	}
 	mtx_unlock(mtxp);
 }
 
 static off_t
 foffset_read(struct file *fp)
 {
 
 	return (foffset_lock(fp, FOF_NOLOCK));
 }
 #endif
 
 void
 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
 {
 
 	if ((flags & FOF_OFFSET) == 0)
 		uio->uio_offset = foffset_lock(fp, flags);
 }
 
 void
 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
 {
 
 	if ((flags & FOF_OFFSET) == 0)
 		foffset_unlock(fp, uio->uio_offset, flags);
 }
 
 static int
 get_advice(struct file *fp, struct uio *uio)
 {
 	struct mtx *mtxp;
 	int ret;
 
 	ret = POSIX_FADV_NORMAL;
 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
 		return (ret);
 
 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
 	mtx_lock(mtxp);
 	if (fp->f_advice != NULL &&
 	    uio->uio_offset >= fp->f_advice->fa_start &&
 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
 		ret = fp->f_advice->fa_advice;
 	mtx_unlock(mtxp);
 	return (ret);
 }
 
 static int
 get_write_ioflag(struct file *fp)
 {
 	int ioflag;
 	struct mount *mp;
 	struct vnode *vp;
 
 	ioflag = 0;
 	vp = fp->f_vnode;
 	mp = atomic_load_ptr(&vp->v_mount);
 
 	if ((fp->f_flag & O_DIRECT) != 0)
 		ioflag |= IO_DIRECT;
 
 	if ((fp->f_flag & O_FSYNC) != 0 ||
 	    (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
 		ioflag |= IO_SYNC;
 
 	/*
 	 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
 	 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
 	 * fall back to full O_SYNC behavior.
 	 */
 	if ((fp->f_flag & O_DSYNC) != 0)
 		ioflag |= IO_SYNC | IO_DATASYNC;
 
 	return (ioflag);
 }
 
 int
 vn_read_from_obj(struct vnode *vp, struct uio *uio)
 {
 	vm_object_t obj;
 	vm_page_t ma[io_hold_cnt + 2];
 	off_t off, vsz;
 	ssize_t resid;
 	int error, i, j;
 
 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
 	obj = atomic_load_ptr(&vp->v_object);
 	if (obj == NULL)
 		return (EJUSTRETURN);
 
 	/*
 	 * Depends on type stability of vm_objects.
 	 */
 	vm_object_pip_add(obj, 1);
 	if ((obj->flags & OBJ_DEAD) != 0) {
 		/*
 		 * Note that object might be already reused from the
 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
 		 * we recheck for DOOMED vnode state after all pages
 		 * are busied, and retract then.
 		 *
 		 * But we check for OBJ_DEAD to ensure that we do not
 		 * busy pages while vm_object_terminate_pages()
 		 * processes the queue.
 		 */
 		error = EJUSTRETURN;
 		goto out_pip;
 	}
 
 	resid = uio->uio_resid;
 	off = uio->uio_offset;
 	for (i = 0; resid > 0; i++) {
 		MPASS(i < io_hold_cnt + 2);
 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
 		    VM_ALLOC_NOWAIT);
 		if (ma[i] == NULL)
 			break;
 
 		/*
 		 * Skip invalid pages.  Valid mask can be partial only
 		 * at EOF, and we clip later.
 		 */
 		if (vm_page_none_valid(ma[i])) {
 			vm_page_sunbusy(ma[i]);
 			break;
 		}
 
 		resid -= PAGE_SIZE;
 		off += PAGE_SIZE;
 	}
 	if (i == 0) {
 		error = EJUSTRETURN;
 		goto out_pip;
 	}
 
 	/*
 	 * Check VIRF_DOOMED after we busied our pages.  Since
 	 * vgonel() terminates the vnode' vm_object, it cannot
 	 * process past pages busied by us.
 	 */
 	if (VN_IS_DOOMED(vp)) {
 		error = EJUSTRETURN;
 		goto out;
 	}
 
 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
 	if (resid > uio->uio_resid)
 		resid = uio->uio_resid;
 
 	/*
 	 * Unlocked read of vnp_size is safe because truncation cannot
 	 * pass busied page.  But we load vnp_size into a local
 	 * variable so that possible concurrent extension does not
 	 * break calculation.
 	 */
 #if defined(__powerpc__) && !defined(__powerpc64__)
 	vsz = obj->un_pager.vnp.vnp_size;
 #else
 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
 #endif
 	if (uio->uio_offset >= vsz) {
 		error = EJUSTRETURN;
 		goto out;
 	}
 	if (uio->uio_offset + resid > vsz)
 		resid = vsz - uio->uio_offset;
 
 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
 
 out:
 	for (j = 0; j < i; j++) {
 		if (error == 0)
 			vm_page_reference(ma[j]);
 		vm_page_sunbusy(ma[j]);
 	}
 out_pip:
 	vm_object_pip_wakeup(obj);
 	if (error != 0)
 		return (error);
 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
 }
 
 /*
  * File table vnode read routine.
  */
 static int
 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
     struct thread *td)
 {
 	struct vnode *vp;
 	off_t orig_offset;
 	int error, ioflag;
 	int advice;
 
 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
 	    uio->uio_td, td));
 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
 	vp = fp->f_vnode;
 	ioflag = 0;
 	if (fp->f_flag & FNONBLOCK)
 		ioflag |= IO_NDELAY;
 	if (fp->f_flag & O_DIRECT)
 		ioflag |= IO_DIRECT;
 
 	/*
 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
 	 * allows us to avoid unneeded work outright.
 	 */
 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
 	    (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
 		if (error == 0) {
 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
 			return (0);
 		}
 		if (error != EJUSTRETURN)
 			return (error);
 	}
 
 	advice = get_advice(fp, uio);
 	vn_lock(vp, LK_SHARED | LK_RETRY);
 
 	switch (advice) {
 	case POSIX_FADV_NORMAL:
 	case POSIX_FADV_SEQUENTIAL:
 	case POSIX_FADV_NOREUSE:
 		ioflag |= sequential_heuristic(uio, fp);
 		break;
 	case POSIX_FADV_RANDOM:
 		/* Disable read-ahead for random I/O. */
 		break;
 	}
 	orig_offset = uio->uio_offset;
 
 #ifdef MAC
 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
 	if (error == 0)
 #endif
 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
 	VOP_UNLOCK(vp);
 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
 	    orig_offset != uio->uio_offset)
 		/*
 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
 		 * for the backing file after a POSIX_FADV_NOREUSE
 		 * read(2).
 		 */
 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
 		    POSIX_FADV_DONTNEED);
 	return (error);
 }
 
 /*
  * File table vnode write routine.
  */
 static int
 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
     struct thread *td)
 {
 	struct vnode *vp;
 	struct mount *mp;
 	off_t orig_offset;
 	int error, ioflag;
 	int advice;
 	bool need_finished_write;
 
 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
 	    uio->uio_td, td));
 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
 	vp = fp->f_vnode;
 	if (vp->v_type == VREG)
 		bwillwrite();
 	ioflag = IO_UNIT;
 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
 		ioflag |= IO_APPEND;
 	if ((fp->f_flag & FNONBLOCK) != 0)
 		ioflag |= IO_NDELAY;
 	ioflag |= get_write_ioflag(fp);
 
 	mp = NULL;
 	need_finished_write = false;
 	if (vp->v_type != VCHR) {
 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
 		if (error != 0)
 			goto unlock;
 		need_finished_write = true;
 	}
 
 	advice = get_advice(fp, uio);
 
 	vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
 	switch (advice) {
 	case POSIX_FADV_NORMAL:
 	case POSIX_FADV_SEQUENTIAL:
 	case POSIX_FADV_NOREUSE:
 		ioflag |= sequential_heuristic(uio, fp);
 		break;
 	case POSIX_FADV_RANDOM:
 		/* XXX: Is this correct? */
 		break;
 	}
 	orig_offset = uio->uio_offset;
 
 #ifdef MAC
 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 	if (error == 0)
 #endif
 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
 	VOP_UNLOCK(vp);
 	if (need_finished_write)
 		vn_finished_write(mp);
 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
 	    orig_offset != uio->uio_offset)
 		/*
 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
 		 * for the backing file after a POSIX_FADV_NOREUSE
 		 * write(2).
 		 */
 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
 		    POSIX_FADV_DONTNEED);
 unlock:
 	return (error);
 }
 
 /*
  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
  * prevent the following deadlock:
  *
  * Assume that the thread A reads from the vnode vp1 into userspace
  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
  * currently not resident, then system ends up with the call chain
  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
  * backed by the pages of vnode vp1, and some page in buf2 is not
  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
  *
  * To prevent the lock order reversal and deadlock, vn_io_fault() does
  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
  * Instead, it first tries to do the whole range i/o with pagefaults
  * disabled. If all pages in the i/o buffer are resident and mapped,
  * VOP will succeed (ignoring the genuine filesystem errors).
  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
  * i/o in chunks, with all pages in the chunk prefaulted and held
  * using vm_fault_quick_hold_pages().
  *
  * Filesystems using this deadlock avoidance scheme should use the
  * array of the held pages from uio, saved in the curthread->td_ma,
  * instead of doing uiomove().  A helper function
  * vn_io_fault_uiomove() converts uiomove request into
  * uiomove_fromphys() over td_ma array.
  *
  * Since vnode locks do not cover the whole i/o anymore, rangelocks
  * make the current i/o request atomic with respect to other i/os and
  * truncations.
  */
 
 /*
  * Decode vn_io_fault_args and perform the corresponding i/o.
  */
 static int
 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
     struct thread *td)
 {
 	int error, save;
 
 	error = 0;
 	save = vm_fault_disable_pagefaults();
 	switch (args->kind) {
 	case VN_IO_FAULT_FOP:
 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
 		    uio, args->cred, args->flags, td);
 		break;
 	case VN_IO_FAULT_VOP:
 		if (uio->uio_rw == UIO_READ) {
 			error = VOP_READ(args->args.vop_args.vp, uio,
 			    args->flags, args->cred);
 		} else if (uio->uio_rw == UIO_WRITE) {
 			error = VOP_WRITE(args->args.vop_args.vp, uio,
 			    args->flags, args->cred);
 		}
 		break;
 	default:
 		panic("vn_io_fault_doio: unknown kind of io %d %d",
 		    args->kind, uio->uio_rw);
 	}
 	vm_fault_enable_pagefaults(save);
 	return (error);
 }
 
 static int
 vn_io_fault_touch(char *base, const struct uio *uio)
 {
 	int r;
 
 	r = fubyte(base);
 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
 		return (EFAULT);
 	return (0);
 }
 
 static int
 vn_io_fault_prefault_user(const struct uio *uio)
 {
 	char *base;
 	const struct iovec *iov;
 	size_t len;
 	ssize_t resid;
 	int error, i;
 
 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
 	    ("vn_io_fault_prefault userspace"));
 
 	error = i = 0;
 	iov = uio->uio_iov;
 	resid = uio->uio_resid;
 	base = iov->iov_base;
 	len = iov->iov_len;
 	while (resid > 0) {
 		error = vn_io_fault_touch(base, uio);
 		if (error != 0)
 			break;
 		if (len < PAGE_SIZE) {
 			if (len != 0) {
 				error = vn_io_fault_touch(base + len - 1, uio);
 				if (error != 0)
 					break;
 				resid -= len;
 			}
 			if (++i >= uio->uio_iovcnt)
 				break;
 			iov = uio->uio_iov + i;
 			base = iov->iov_base;
 			len = iov->iov_len;
 		} else {
 			len -= PAGE_SIZE;
 			base += PAGE_SIZE;
 			resid -= PAGE_SIZE;
 		}
 	}
 	return (error);
 }
 
 /*
  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
  * into args and call vn_io_fault1() to handle faults during the user
  * mode buffer accesses.
  */
 static int
 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
     struct thread *td)
 {
 	vm_page_t ma[io_hold_cnt + 2];
 	struct uio *uio_clone, short_uio;
 	struct iovec short_iovec[1];
 	vm_page_t *prev_td_ma;
 	vm_prot_t prot;
 	vm_offset_t addr, end;
 	size_t len, resid;
 	ssize_t adv;
 	int error, cnt, saveheld, prev_td_ma_cnt;
 
 	if (vn_io_fault_prefault) {
 		error = vn_io_fault_prefault_user(uio);
 		if (error != 0)
 			return (error); /* Or ignore ? */
 	}
 
 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
 
 	/*
 	 * The UFS follows IO_UNIT directive and replays back both
 	 * uio_offset and uio_resid if an error is encountered during the
 	 * operation.  But, since the iovec may be already advanced,
 	 * uio is still in an inconsistent state.
 	 *
 	 * Cache a copy of the original uio, which is advanced to the redo
 	 * point using UIO_NOCOPY below.
 	 */
 	uio_clone = cloneuio(uio);
 	resid = uio->uio_resid;
 
 	short_uio.uio_segflg = UIO_USERSPACE;
 	short_uio.uio_rw = uio->uio_rw;
 	short_uio.uio_td = uio->uio_td;
 
 	error = vn_io_fault_doio(args, uio, td);
 	if (error != EFAULT)
 		goto out;
 
 	atomic_add_long(&vn_io_faults_cnt, 1);
 	uio_clone->uio_segflg = UIO_NOCOPY;
 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
 	uio_clone->uio_segflg = uio->uio_segflg;
 
 	saveheld = curthread_pflags_set(TDP_UIOHELD);
 	prev_td_ma = td->td_ma;
 	prev_td_ma_cnt = td->td_ma_cnt;
 
 	while (uio_clone->uio_resid != 0) {
 		len = uio_clone->uio_iov->iov_len;
 		if (len == 0) {
 			KASSERT(uio_clone->uio_iovcnt >= 1,
 			    ("iovcnt underflow"));
 			uio_clone->uio_iov++;
 			uio_clone->uio_iovcnt--;
 			continue;
 		}
 		if (len > ptoa(io_hold_cnt))
 			len = ptoa(io_hold_cnt);
 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
 		end = round_page(addr + len);
 		if (end < addr) {
 			error = EFAULT;
 			break;
 		}
 		/*
 		 * A perfectly misaligned address and length could cause
 		 * both the start and the end of the chunk to use partial
 		 * page.  +2 accounts for such a situation.
 		 */
 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
 		    addr, len, prot, ma, io_hold_cnt + 2);
 		if (cnt == -1) {
 			error = EFAULT;
 			break;
 		}
 		short_uio.uio_iov = &short_iovec[0];
 		short_iovec[0].iov_base = (void *)addr;
 		short_uio.uio_iovcnt = 1;
 		short_uio.uio_resid = short_iovec[0].iov_len = len;
 		short_uio.uio_offset = uio_clone->uio_offset;
 		td->td_ma = ma;
 		td->td_ma_cnt = cnt;
 
 		error = vn_io_fault_doio(args, &short_uio, td);
 		vm_page_unhold_pages(ma, cnt);
 		adv = len - short_uio.uio_resid;
 
 		uio_clone->uio_iov->iov_base =
 		    (char *)uio_clone->uio_iov->iov_base + adv;
 		uio_clone->uio_iov->iov_len -= adv;
 		uio_clone->uio_resid -= adv;
 		uio_clone->uio_offset += adv;
 
 		uio->uio_resid -= adv;
 		uio->uio_offset += adv;
 
 		if (error != 0 || adv == 0)
 			break;
 	}
 	td->td_ma = prev_td_ma;
 	td->td_ma_cnt = prev_td_ma_cnt;
 	curthread_pflags_restore(saveheld);
 out:
 	freeuio(uio_clone);
 	return (error);
 }
 
 static int
 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
     int flags, struct thread *td)
 {
 	fo_rdwr_t *doio;
 	struct vnode *vp;
 	void *rl_cookie;
 	struct vn_io_fault_args args;
 	int error;
 	bool do_io_fault, do_rangelock;
 
 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
 	vp = fp->f_vnode;
 
 	/*
 	 * The ability to read(2) on a directory has historically been
 	 * allowed for all users, but this can and has been the source of
 	 * at least one security issue in the past.  As such, it is now hidden
 	 * away behind a sysctl for those that actually need it to use it, and
 	 * restricted to root when it's turned on to make it relatively safe to
 	 * leave on for longer sessions of need.
 	 */
 	if (vp->v_type == VDIR) {
 		KASSERT(uio->uio_rw == UIO_READ,
 		    ("illegal write attempted on a directory"));
 		if (!vfs_allow_read_dir)
 			return (EISDIR);
 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
 			return (EISDIR);
 	}
 
 	do_io_fault = do_vn_io_fault(vp, uio);
 	do_rangelock = do_io_fault || (vn_irflag_read(vp) & VIRF_PGREAD) != 0;
 	foffset_lock_uio(fp, uio, flags);
 	if (do_rangelock) {
 		if (uio->uio_rw == UIO_READ) {
 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
 			    uio->uio_offset + uio->uio_resid);
 		} else if ((fp->f_flag & O_APPEND) != 0 ||
 		    (flags & FOF_OFFSET) == 0) {
 			/* For appenders, punt and lock the whole range. */
 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 		} else {
 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
 			    uio->uio_offset + uio->uio_resid);
 		}
 	}
 	if (do_io_fault) {
 		args.kind = VN_IO_FAULT_FOP;
 		args.args.fop_args.fp = fp;
 		args.args.fop_args.doio = doio;
 		args.cred = active_cred;
 		args.flags = flags | FOF_OFFSET;
 		error = vn_io_fault1(vp, uio, &args, td);
 	} else {
 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
 	}
 	if (do_rangelock)
 		vn_rangelock_unlock(vp, rl_cookie);
 	foffset_unlock_uio(fp, uio, flags);
 	return (error);
 }
 
 /*
  * Helper function to perform the requested uiomove operation using
  * the held pages for io->uio_iov[0].iov_base buffer instead of
  * copyin/copyout.  Access to the pages with uiomove_fromphys()
  * instead of iov_base prevents page faults that could occur due to
  * pmap_collect() invalidating the mapping created by
  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
  * object cleanup revoking the write access from page mappings.
  *
  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
  * instead of plain uiomove().
  */
 int
 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 {
 	struct uio transp_uio;
 	struct iovec transp_iov[1];
 	struct thread *td;
 	size_t adv;
 	int error, pgadv;
 
 	td = curthread;
 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 	    uio->uio_segflg != UIO_USERSPACE)
 		return (uiomove(data, xfersize, uio));
 
 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 	transp_iov[0].iov_base = data;
 	transp_uio.uio_iov = &transp_iov[0];
 	transp_uio.uio_iovcnt = 1;
 	if (xfersize > uio->uio_resid)
 		xfersize = uio->uio_resid;
 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 	transp_uio.uio_offset = 0;
 	transp_uio.uio_segflg = UIO_SYSSPACE;
 	/*
 	 * Since transp_iov points to data, and td_ma page array
 	 * corresponds to original uio->uio_iov, we need to invert the
 	 * direction of the i/o operation as passed to
 	 * uiomove_fromphys().
 	 */
 	switch (uio->uio_rw) {
 	case UIO_WRITE:
 		transp_uio.uio_rw = UIO_READ;
 		break;
 	case UIO_READ:
 		transp_uio.uio_rw = UIO_WRITE;
 		break;
 	}
 	transp_uio.uio_td = uio->uio_td;
 	error = uiomove_fromphys(td->td_ma,
 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 	    xfersize, &transp_uio);
 	adv = xfersize - transp_uio.uio_resid;
 	pgadv =
 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 	td->td_ma += pgadv;
 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 	    pgadv));
 	td->td_ma_cnt -= pgadv;
 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 	uio->uio_iov->iov_len -= adv;
 	uio->uio_resid -= adv;
 	uio->uio_offset += adv;
 	return (error);
 }
 
 int
 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
     struct uio *uio)
 {
 	struct thread *td;
 	vm_offset_t iov_base;
 	int cnt, pgadv;
 
 	td = curthread;
 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 	    uio->uio_segflg != UIO_USERSPACE)
 		return (uiomove_fromphys(ma, offset, xfersize, uio));
 
 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 	switch (uio->uio_rw) {
 	case UIO_WRITE:
 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 		    offset, cnt);
 		break;
 	case UIO_READ:
 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 		    cnt);
 		break;
 	}
 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 	td->td_ma += pgadv;
 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 	    pgadv));
 	td->td_ma_cnt -= pgadv;
 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 	uio->uio_iov->iov_len -= cnt;
 	uio->uio_resid -= cnt;
 	uio->uio_offset += cnt;
 	return (0);
 }
 
 /*
  * File table truncate routine.
  */
 static int
 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
     struct thread *td)
 {
 	struct mount *mp;
 	struct vnode *vp;
 	void *rl_cookie;
 	int error;
 
 	vp = fp->f_vnode;
 
 retry:
 	/*
 	 * Lock the whole range for truncation.  Otherwise split i/o
 	 * might happen partly before and partly after the truncation.
 	 */
 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 	error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
 	if (error)
 		goto out1;
 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 	AUDIT_ARG_VNODE1(vp);
 	if (vp->v_type == VDIR) {
 		error = EISDIR;
 		goto out;
 	}
 #ifdef MAC
 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 	if (error)
 		goto out;
 #endif
 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
 	    fp->f_cred);
 out:
 	VOP_UNLOCK(vp);
 	vn_finished_write(mp);
 out1:
 	vn_rangelock_unlock(vp, rl_cookie);
 	if (error == ERELOOKUP)
 		goto retry;
 	return (error);
 }
 
 /*
  * Truncate a file that is already locked.
  */
 int
 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
     struct ucred *cred)
 {
 	struct vattr vattr;
 	int error;
 
 	error = VOP_ADD_WRITECOUNT(vp, 1);
 	if (error == 0) {
 		VATTR_NULL(&vattr);
 		vattr.va_size = length;
 		if (sync)
 			vattr.va_vaflags |= VA_SYNC;
 		error = VOP_SETATTR(vp, &vattr, cred);
 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
 	}
 	return (error);
 }
 
 /*
  * File table vnode stat routine.
  */
 int
 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
 {
 	struct vnode *vp = fp->f_vnode;
 	int error;
 
 	vn_lock(vp, LK_SHARED | LK_RETRY);
 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
 	VOP_UNLOCK(vp);
 
 	return (error);
 }
 
 /*
  * File table vnode ioctl routine.
  */
 static int
 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
     struct thread *td)
 {
 	struct vnode *vp;
 	struct fiobmap2_arg *bmarg;
 	off_t size;
 	int error;
 
 	vp = fp->f_vnode;
 	switch (vp->v_type) {
 	case VDIR:
 	case VREG:
 		switch (com) {
 		case FIONREAD:
 			error = vn_getsize(vp, &size, active_cred);
 			if (error == 0)
 				*(int *)data = size - fp->f_offset;
 			return (error);
 		case FIOBMAP2:
 			bmarg = (struct fiobmap2_arg *)data;
 			vn_lock(vp, LK_SHARED | LK_RETRY);
 #ifdef MAC
 			error = mac_vnode_check_read(active_cred, fp->f_cred,
 			    vp);
 			if (error == 0)
 #endif
 				error = VOP_BMAP(vp, bmarg->bn, NULL,
 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
 			VOP_UNLOCK(vp);
 			return (error);
 		case FIONBIO:
 		case FIOASYNC:
 			return (0);
 		default:
 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
 			    active_cred, td));
 		}
 		break;
 	case VCHR:
 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
 		    active_cred, td));
 	default:
 		return (ENOTTY);
 	}
 }
 
 /*
  * File table vnode poll routine.
  */
 static int
 vn_poll(struct file *fp, int events, struct ucred *active_cred,
     struct thread *td)
 {
 	struct vnode *vp;
 	int error;
 
 	vp = fp->f_vnode;
 #if defined(MAC) || defined(AUDIT)
 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 		AUDIT_ARG_VNODE1(vp);
 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 		VOP_UNLOCK(vp);
 		if (error != 0)
 			return (error);
 	}
 #endif
 	error = VOP_POLL(vp, events, fp->f_cred, td);
 	return (error);
 }
 
 /*
  * Acquire the requested lock and then check for validity.  LK_RETRY
  * permits vn_lock to return doomed vnodes.
  */
 static int __noinline
 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
     int error)
 {
 
 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
 
 	if (error == 0)
 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
 
 	if ((flags & LK_RETRY) == 0) {
 		if (error == 0) {
 			VOP_UNLOCK(vp);
 			error = ENOENT;
 		}
 		return (error);
 	}
 
 	/*
 	 * LK_RETRY case.
 	 *
 	 * Nothing to do if we got the lock.
 	 */
 	if (error == 0)
 		return (0);
 
 	/*
 	 * Interlock was dropped by the call in _vn_lock.
 	 */
 	flags &= ~LK_INTERLOCK;
 	do {
 		error = VOP_LOCK1(vp, flags, file, line);
 	} while (error != 0);
 	return (0);
 }
 
 int
 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
 {
 	int error;
 
 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 	    ("vn_lock: no locktype (%d passed)", flags));
 	VNPASS(vp->v_holdcnt > 0, vp);
 	error = VOP_LOCK1(vp, flags, file, line);
 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
 		return (_vn_lock_fallback(vp, flags, file, line, error));
 	return (0);
 }
 
 /*
  * File table vnode close routine.
  */
 static int
 vn_closefile(struct file *fp, struct thread *td)
 {
 	struct vnode *vp;
 	struct flock lf;
 	int error;
 	bool ref;
 
 	vp = fp->f_vnode;
 	fp->f_ops = &badfileops;
 	ref = (fp->f_flag & FHASLOCK) != 0;
 
 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
 
 	if (__predict_false(ref)) {
 		lf.l_whence = SEEK_SET;
 		lf.l_start = 0;
 		lf.l_len = 0;
 		lf.l_type = F_UNLCK;
 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 		vrele(vp);
 	}
 	return (error);
 }
 
 /*
  * Preparing to start a filesystem write operation. If the operation is
  * permitted, then we bump the count of operations in progress and
  * proceed. If a suspend request is in progress, we wait until the
  * suspension is over, and then proceed.
  */
 static int
 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
 {
 	struct mount_pcpu *mpcpu;
 	int error, mflags;
 
 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
 	    vfs_op_thread_enter(mp, mpcpu)) {
 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
 		vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
 		vfs_op_thread_exit(mp, mpcpu);
 		return (0);
 	}
 
 	if (mplocked)
 		mtx_assert(MNT_MTX(mp), MA_OWNED);
 	else
 		MNT_ILOCK(mp);
 
 	error = 0;
 
 	/*
 	 * Check on status of suspension.
 	 */
 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 	    mp->mnt_susp_owner != curthread) {
 		mflags = 0;
 		if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
 			if (flags & V_PCATCH)
 				mflags |= PCATCH;
 		}
 		mflags |= (PUSER - 1);
 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 			if ((flags & V_NOWAIT) != 0) {
 				error = EWOULDBLOCK;
 				goto unlock;
 			}
 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
 			    "suspfs", 0);
 			if (error != 0)
 				goto unlock;
 		}
 	}
 	if ((flags & V_XSLEEP) != 0)
 		goto unlock;
 	mp->mnt_writeopcount++;
 unlock:
 	if (error != 0 || (flags & V_XSLEEP) != 0)
 		MNT_REL(mp);
 	MNT_IUNLOCK(mp);
 	return (error);
 }
 
 int
 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
 {
 	struct mount *mp;
 	int error;
 
 	KASSERT((flags & ~V_VALID_FLAGS) == 0,
 	    ("%s: invalid flags passed %d\n", __func__, flags));
 
 	error = 0;
 	/*
 	 * If a vnode is provided, get and return the mount point that
 	 * to which it will write.
 	 */
 	if (vp != NULL) {
 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 			*mpp = NULL;
 			if (error != EOPNOTSUPP)
 				return (error);
 			return (0);
 		}
 	}
 	if ((mp = *mpp) == NULL)
 		return (0);
 
 	/*
 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 	 * a vfs_ref().
 	 * As long as a vnode is not provided we need to acquire a
 	 * refcount for the provided mountpoint too, in order to
 	 * emulate a vfs_ref().
 	 */
 	if (vp == NULL)
 		vfs_ref(mp);
 
 	error = vn_start_write_refed(mp, flags, false);
 	if (error != 0 && (flags & V_NOWAIT) == 0)
 		*mpp = NULL;
 	return (error);
 }
 
 /*
  * Secondary suspension. Used by operations such as vop_inactive
  * routines that are needed by the higher level functions. These
  * are allowed to proceed until all the higher level functions have
  * completed (indicated by mnt_writeopcount dropping to zero). At that
  * time, these operations are halted until the suspension is over.
  */
 int
 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
 {
 	struct mount *mp;
 	int error, mflags;
 
 	KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0,
 	    ("%s: invalid flags passed %d\n", __func__, flags));
 
  retry:
 	if (vp != NULL) {
 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 			*mpp = NULL;
 			if (error != EOPNOTSUPP)
 				return (error);
 			return (0);
 		}
 	}
 	/*
 	 * If we are not suspended or have not yet reached suspended
 	 * mode, then let the operation proceed.
 	 */
 	if ((mp = *mpp) == NULL)
 		return (0);
 
 	/*
 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 	 * a vfs_ref().
 	 * As long as a vnode is not provided we need to acquire a
 	 * refcount for the provided mountpoint too, in order to
 	 * emulate a vfs_ref().
 	 */
 	MNT_ILOCK(mp);
 	if (vp == NULL)
 		MNT_REF(mp);
 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 		mp->mnt_secondary_writes++;
 		mp->mnt_secondary_accwrites++;
 		MNT_IUNLOCK(mp);
 		return (0);
 	}
 	if ((flags & V_NOWAIT) != 0) {
 		MNT_REL(mp);
 		MNT_IUNLOCK(mp);
 		*mpp = NULL;
 		return (EWOULDBLOCK);
 	}
 	/*
 	 * Wait for the suspension to finish.
 	 */
 	mflags = 0;
 	if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
 		if ((flags & V_PCATCH) != 0)
 			mflags |= PCATCH;
 	}
 	mflags |= (PUSER - 1) | PDROP;
 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0);
 	vfs_rel(mp);
 	if (error == 0)
 		goto retry;
 	*mpp = NULL;
 	return (error);
 }
 
 /*
  * Filesystem write operation has completed. If we are suspending and this
  * operation is the last one, notify the suspender that the suspension is
  * now in effect.
  */
 void
 vn_finished_write(struct mount *mp)
 {
 	struct mount_pcpu *mpcpu;
 	int c;
 
 	if (mp == NULL)
 		return;
 
 	if (vfs_op_thread_enter(mp, mpcpu)) {
 		vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
 		vfs_op_thread_exit(mp, mpcpu);
 		return;
 	}
 
 	MNT_ILOCK(mp);
 	vfs_assert_mount_counters(mp);
 	MNT_REL(mp);
 	c = --mp->mnt_writeopcount;
 	if (mp->mnt_vfs_ops == 0) {
 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
 		MNT_IUNLOCK(mp);
 		return;
 	}
 	if (c < 0)
 		vfs_dump_mount_counters(mp);
 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
 		wakeup(&mp->mnt_writeopcount);
 	MNT_IUNLOCK(mp);
 }
 
 /*
  * Filesystem secondary write operation has completed. If we are
  * suspending and this operation is the last one, notify the suspender
  * that the suspension is now in effect.
  */
 void
 vn_finished_secondary_write(struct mount *mp)
 {
 	if (mp == NULL)
 		return;
 	MNT_ILOCK(mp);
 	MNT_REL(mp);
 	mp->mnt_secondary_writes--;
 	if (mp->mnt_secondary_writes < 0)
 		panic("vn_finished_secondary_write: neg cnt");
 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 	    mp->mnt_secondary_writes <= 0)
 		wakeup(&mp->mnt_secondary_writes);
 	MNT_IUNLOCK(mp);
 }
 
 /*
  * Request a filesystem to suspend write operations.
  */
 int
 vfs_write_suspend(struct mount *mp, int flags)
 {
 	int error;
 
 	vfs_op_enter(mp);
 
 	MNT_ILOCK(mp);
 	vfs_assert_mount_counters(mp);
 	if (mp->mnt_susp_owner == curthread) {
 		vfs_op_exit_locked(mp);
 		MNT_IUNLOCK(mp);
 		return (EALREADY);
 	}
 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 
 	/*
 	 * Unmount holds a write reference on the mount point.  If we
 	 * own busy reference and drain for writers, we deadlock with
 	 * the reference draining in the unmount path.  Callers of
 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
 	 * vfs_busy() reference is owned and caller is not in the
 	 * unmount context.
 	 */
 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
 		vfs_op_exit_locked(mp);
 		MNT_IUNLOCK(mp);
 		return (EBUSY);
 	}
 
 	mp->mnt_kern_flag |= MNTK_SUSPEND;
 	mp->mnt_susp_owner = curthread;
 	if (mp->mnt_writeopcount > 0)
 		(void) msleep(&mp->mnt_writeopcount, 
 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 	else
 		MNT_IUNLOCK(mp);
 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
 		vfs_write_resume(mp, 0);
 		/* vfs_write_resume does vfs_op_exit() for us */
 	}
 	return (error);
 }
 
 /*
  * Request a filesystem to resume write operations.
  */
 void
 vfs_write_resume(struct mount *mp, int flags)
 {
 
 	MNT_ILOCK(mp);
 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 				       MNTK_SUSPENDED);
 		mp->mnt_susp_owner = NULL;
 		wakeup(&mp->mnt_writeopcount);
 		wakeup(&mp->mnt_flag);
 		curthread->td_pflags &= ~TDP_IGNSUSP;
 		if ((flags & VR_START_WRITE) != 0) {
 			MNT_REF(mp);
 			mp->mnt_writeopcount++;
 		}
 		MNT_IUNLOCK(mp);
 		if ((flags & VR_NO_SUSPCLR) == 0)
 			VFS_SUSP_CLEAN(mp);
 		vfs_op_exit(mp);
 	} else if ((flags & VR_START_WRITE) != 0) {
 		MNT_REF(mp);
 		vn_start_write_refed(mp, 0, true);
 	} else {
 		MNT_IUNLOCK(mp);
 	}
 }
 
 /*
  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
  * methods.
  */
 int
 vfs_write_suspend_umnt(struct mount *mp)
 {
 	int error;
 
 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
 	    ("vfs_write_suspend_umnt: recursed"));
 
 	/* dounmount() already called vn_start_write(). */
 	for (;;) {
 		vn_finished_write(mp);
 		error = vfs_write_suspend(mp, 0);
 		if (error != 0) {
 			vn_start_write(NULL, &mp, V_WAIT);
 			return (error);
 		}
 		MNT_ILOCK(mp);
 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
 			break;
 		MNT_IUNLOCK(mp);
 		vn_start_write(NULL, &mp, V_WAIT);
 	}
 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
 	wakeup(&mp->mnt_flag);
 	MNT_IUNLOCK(mp);
 	curthread->td_pflags |= TDP_IGNSUSP;
 	return (0);
 }
 
 /*
  * Implement kqueues for files by translating it to vnode operation.
  */
 static int
 vn_kqfilter(struct file *fp, struct knote *kn)
 {
 
 	return (VOP_KQFILTER(fp->f_vnode, kn));
 }
 
 int
 vn_kqfilter_opath(struct file *fp, struct knote *kn)
 {
 	if ((fp->f_flag & FKQALLOWED) == 0)
 		return (EBADF);
 	return (vn_kqfilter(fp, kn));
 }
 
 /*
  * Simplified in-kernel wrapper calls for extended attribute access.
  * Both calls pass in a NULL credential, authorizing as "kernel" access.
  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
  */
 int
 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
     const char *attrname, int *buflen, char *buf, struct thread *td)
 {
 	struct uio	auio;
 	struct iovec	iov;
 	int	error;
 
 	iov.iov_len = *buflen;
 	iov.iov_base = buf;
 
 	auio.uio_iov = &iov;
 	auio.uio_iovcnt = 1;
 	auio.uio_rw = UIO_READ;
 	auio.uio_segflg = UIO_SYSSPACE;
 	auio.uio_td = td;
 	auio.uio_offset = 0;
 	auio.uio_resid = *buflen;
 
 	if ((ioflg & IO_NODELOCKED) == 0)
 		vn_lock(vp, LK_SHARED | LK_RETRY);
 
 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 
 	/* authorize attribute retrieval as kernel */
 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 	    td);
 
 	if ((ioflg & IO_NODELOCKED) == 0)
 		VOP_UNLOCK(vp);
 
 	if (error == 0) {
 		*buflen = *buflen - auio.uio_resid;
 	}
 
 	return (error);
 }
 
 /*
  * XXX failure mode if partially written?
  */
 int
 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
     const char *attrname, int buflen, char *buf, struct thread *td)
 {
 	struct uio	auio;
 	struct iovec	iov;
 	struct mount	*mp;
 	int	error;
 
 	iov.iov_len = buflen;
 	iov.iov_base = buf;
 
 	auio.uio_iov = &iov;
 	auio.uio_iovcnt = 1;
 	auio.uio_rw = UIO_WRITE;
 	auio.uio_segflg = UIO_SYSSPACE;
 	auio.uio_td = td;
 	auio.uio_offset = 0;
 	auio.uio_resid = buflen;
 
 	if ((ioflg & IO_NODELOCKED) == 0) {
 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 			return (error);
 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 	}
 
 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 
 	/* authorize attribute setting as kernel */
 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 
 	if ((ioflg & IO_NODELOCKED) == 0) {
 		vn_finished_write(mp);
 		VOP_UNLOCK(vp);
 	}
 
 	return (error);
 }
 
 int
 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
     const char *attrname, struct thread *td)
 {
 	struct mount	*mp;
 	int	error;
 
 	if ((ioflg & IO_NODELOCKED) == 0) {
 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 			return (error);
 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 	}
 
 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 
 	/* authorize attribute removal as kernel */
 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 	if (error == EOPNOTSUPP)
 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 		    NULL, td);
 
 	if ((ioflg & IO_NODELOCKED) == 0) {
 		vn_finished_write(mp);
 		VOP_UNLOCK(vp);
 	}
 
 	return (error);
 }
 
 static int
 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
     struct vnode **rvp)
 {
 
 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
 }
 
 int
 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 {
 
 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
 	    lkflags, rvp));
 }
 
 int
 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
     int lkflags, struct vnode **rvp)
 {
 	struct mount *mp;
 	int ltype, error;
 
 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
 	mp = vp->v_mount;
 	ltype = VOP_ISLOCKED(vp);
 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 	    ("vn_vget_ino: vp not locked"));
 	error = vfs_busy(mp, MBF_NOWAIT);
 	if (error != 0) {
 		vfs_ref(mp);
 		VOP_UNLOCK(vp);
 		error = vfs_busy(mp, 0);
 		vn_lock(vp, ltype | LK_RETRY);
 		vfs_rel(mp);
 		if (error != 0)
 			return (ENOENT);
 		if (VN_IS_DOOMED(vp)) {
 			vfs_unbusy(mp);
 			return (ENOENT);
 		}
 	}
 	VOP_UNLOCK(vp);
 	error = alloc(mp, alloc_arg, lkflags, rvp);
 	vfs_unbusy(mp);
 	if (error != 0 || *rvp != vp)
 		vn_lock(vp, ltype | LK_RETRY);
 	if (VN_IS_DOOMED(vp)) {
 		if (error == 0) {
 			if (*rvp == vp)
 				vunref(vp);
 			else
 				vput(*rvp);
 		}
 		error = ENOENT;
 	}
 	return (error);
 }
 
 static void
 vn_send_sigxfsz(struct proc *p)
 {
 	PROC_LOCK(p);
 	kern_psignal(p, SIGXFSZ);
 	PROC_UNLOCK(p);
 }
 
 int
 vn_rlimit_trunc(u_quad_t size, struct thread *td)
 {
 	if (size <= lim_cur(td, RLIMIT_FSIZE))
 		return (0);
 	vn_send_sigxfsz(td->td_proc);
 	return (EFBIG);
 }
 
 static int
 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
     bool adj, struct thread *td)
 {
 	off_t lim;
 	bool ktr_write;
 
 	if (vp->v_type != VREG)
 		return (0);
 
 	/*
 	 * Handle file system maximum file size.
 	 */
 	if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
 		if (!adj || uio->uio_offset >= maxfsz)
 			return (EFBIG);
 		uio->uio_resid = maxfsz - uio->uio_offset;
 	}
 
 	/*
 	 * This is kernel write (e.g. vnode_pager) or accounting
 	 * write, ignore limit.
 	 */
 	if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
 		return (0);
 
 	/*
 	 * Calculate file size limit.
 	 */
 	ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
 	lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
 	    lim_cur(td, RLIMIT_FSIZE);
 
 	/*
 	 * Is the limit reached?
 	 */
 	if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
 		return (0);
 
 	/*
 	 * Prepared filesystems can handle writes truncated to the
 	 * file size limit.
 	 */
 	if (adj && (uoff_t)uio->uio_offset < lim) {
 		uio->uio_resid = lim - (uoff_t)uio->uio_offset;
 		return (0);
 	}
 
 	if (!ktr_write || ktr_filesize_limit_signal)
 		vn_send_sigxfsz(td->td_proc);
 	return (EFBIG);
 }
 
 /*
  * Helper for VOP_WRITE() implementations, the common code to
  * handle maximum supported file size on the filesystem, and
  * RLIMIT_FSIZE, except for special writes from accounting subsystem
  * and ktrace.
  *
  * For maximum file size (maxfsz argument):
  * - return EFBIG if uio_offset is beyond it
  * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
  *
  * For RLIMIT_FSIZE:
  * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
  * - otherwise, clamp uio_resid if write would extend file beyond limit.
  *
  * If clamping occured, the adjustment for uio_resid is stored in
  * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
  * from the VOP.
  */
 int
 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
     ssize_t *resid_adj, struct thread *td)
 {
 	ssize_t resid_orig;
 	int error;
 	bool adj;
 
 	resid_orig = uio->uio_resid;
 	adj = resid_adj != NULL;
 	error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
 	if (adj)
 		*resid_adj = resid_orig - uio->uio_resid;
 	return (error);
 }
 
 void
 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
 {
 	uio->uio_resid += resid_adj;
 }
 
 int
 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
     struct thread *td)
 {
 	return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
 	    td));
 }
 
 int
 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
     struct thread *td)
 {
 	struct vnode *vp;
 
 	vp = fp->f_vnode;
 #ifdef AUDIT
 	vn_lock(vp, LK_SHARED | LK_RETRY);
 	AUDIT_ARG_VNODE1(vp);
 	VOP_UNLOCK(vp);
 #endif
 	return (setfmode(td, active_cred, vp, mode));
 }
 
 int
 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
     struct thread *td)
 {
 	struct vnode *vp;
 
 	vp = fp->f_vnode;
 #ifdef AUDIT
 	vn_lock(vp, LK_SHARED | LK_RETRY);
 	AUDIT_ARG_VNODE1(vp);
 	VOP_UNLOCK(vp);
 #endif
 	return (setfown(td, active_cred, vp, uid, gid));
 }
 
 /*
  * Remove pages in the range ["start", "end") from the vnode's VM object.  If
  * "end" is 0, then the range extends to the end of the object.
  */
 void
 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 {
 	vm_object_t object;
 
 	if ((object = vp->v_object) == NULL)
 		return;
 	VM_OBJECT_WLOCK(object);
 	vm_object_page_remove(object, start, end, 0);
 	VM_OBJECT_WUNLOCK(object);
 }
 
 /*
  * Like vn_pages_remove(), but skips invalid pages, which by definition are not
  * mapped into any process' address space.  Filesystems may use this in
  * preference to vn_pages_remove() to avoid blocking on pages busied in
  * preparation for a VOP_GETPAGES.
  */
 void
 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 {
 	vm_object_t object;
 
 	if ((object = vp->v_object) == NULL)
 		return;
 	VM_OBJECT_WLOCK(object);
 	vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
 	VM_OBJECT_WUNLOCK(object);
 }
 
 int
 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
     struct ucred *cred)
 {
 	off_t size;
 	daddr_t bn, bnp;
 	uint64_t bsize;
 	off_t noff;
 	int error;
 
 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 	    ("%s: Wrong command %lu", __func__, cmd));
 	ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked");
 
 	if (vp->v_type != VREG) {
 		error = ENOTTY;
 		goto out;
 	}
 	error = vn_getsize_locked(vp, &size, cred);
 	if (error != 0)
 		goto out;
 	noff = *off;
 	if (noff < 0 || noff >= size) {
 		error = ENXIO;
 		goto out;
 	}
 
 	/* See the comment in ufs_bmap_seekdata(). */
 	vnode_pager_clean_sync(vp);
 
 	bsize = vp->v_mount->mnt_stat.f_iosize;
 	for (bn = noff / bsize; noff < size; bn++, noff += bsize -
 	    noff % bsize) {
 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 		if (error == EOPNOTSUPP) {
 			error = ENOTTY;
 			goto out;
 		}
 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
 			noff = bn * bsize;
 			if (noff < *off)
 				noff = *off;
 			goto out;
 		}
 	}
 	if (noff > size)
 		noff = size;
 	/* noff == size. There is an implicit hole at the end of file. */
 	if (cmd == FIOSEEKDATA)
 		error = ENXIO;
 out:
 	if (error == 0)
 		*off = noff;
 	return (error);
 }
 
 int
 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 {
 	int error;
 
 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 	    ("%s: Wrong command %lu", __func__, cmd));
 
 	if (vn_lock(vp, LK_EXCLUSIVE) != 0)
 		return (EBADF);
 	error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
 	VOP_UNLOCK(vp);
 	return (error);
 }
 
 int
 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 {
 	struct ucred *cred;
 	struct vnode *vp;
 	off_t foffset, fsize, size;
 	int error, noneg;
 
 	cred = td->td_ucred;
 	vp = fp->f_vnode;
 	noneg = (vp->v_type != VCHR);
 	/*
 	 * Try to dodge locking for common case of querying the offset.
 	 */
 	if (whence == L_INCR && offset == 0) {
 		foffset = foffset_read(fp);
 		if (__predict_false(foffset < 0 && noneg)) {
 			return (EOVERFLOW);
 		}
 		td->td_uretoff.tdu_off = foffset;
 		return (0);
 	}
 	foffset = foffset_lock(fp, 0);
 	error = 0;
 	switch (whence) {
 	case L_INCR:
 		if (noneg &&
 		    (foffset < 0 ||
 		    (offset > 0 && foffset > OFF_MAX - offset))) {
 			error = EOVERFLOW;
 			break;
 		}
 		offset += foffset;
 		break;
 	case L_XTND:
 		error = vn_getsize(vp, &fsize, cred);
 		if (error != 0)
 			break;
 
 		/*
 		 * If the file references a disk device, then fetch
 		 * the media size and use that to determine the ending
 		 * offset.
 		 */
 		if (fsize == 0 && vp->v_type == VCHR &&
 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
 			fsize = size;
 		if (noneg && offset > 0 && fsize > OFF_MAX - offset) {
 			error = EOVERFLOW;
 			break;
 		}
 		offset += fsize;
 		break;
 	case L_SET:
 		break;
 	case SEEK_DATA:
 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
 		if (error == ENOTTY)
 			error = EINVAL;
 		break;
 	case SEEK_HOLE:
 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
 		if (error == ENOTTY)
 			error = EINVAL;
 		break;
 	default:
 		error = EINVAL;
 	}
 	if (error == 0 && noneg && offset < 0)
 		error = EINVAL;
 	if (error != 0)
 		goto drop;
 	VFS_KNOTE_UNLOCKED(vp, 0);
 	td->td_uretoff.tdu_off = offset;
 drop:
 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 	return (error);
 }
 
 int
 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
     struct thread *td)
 {
 	int error;
 
 	/*
 	 * Grant permission if the caller is the owner of the file, or
 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
 	 * on the file.  If the time pointer is null, then write
 	 * permission on the file is also sufficient.
 	 *
 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
 	 * will be allowed to set the times [..] to the current
 	 * server time.
 	 */
 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
 		error = VOP_ACCESS(vp, VWRITE, cred, td);
 	return (error);
 }
 
 int
 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 {
 	struct vnode *vp;
 	int error;
 
 	if (fp->f_type == DTYPE_FIFO)
 		kif->kf_type = KF_TYPE_FIFO;
 	else
 		kif->kf_type = KF_TYPE_VNODE;
 	vp = fp->f_vnode;
 	vref(vp);
 	FILEDESC_SUNLOCK(fdp);
 	error = vn_fill_kinfo_vnode(vp, kif);
 	vrele(vp);
 	FILEDESC_SLOCK(fdp);
 	return (error);
 }
 
 static inline void
 vn_fill_junk(struct kinfo_file *kif)
 {
 	size_t len, olen;
 
 	/*
 	 * Simulate vn_fullpath returning changing values for a given
 	 * vp during e.g. coredump.
 	 */
 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
 	olen = strlen(kif->kf_path);
 	if (len < olen)
 		strcpy(&kif->kf_path[len - 1], "$");
 	else
 		for (; olen < len; olen++)
 			strcpy(&kif->kf_path[olen], "A");
 }
 
 int
 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
 {
 	struct vattr va;
 	char *fullpath, *freepath;
 	int error;
 
 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
 	freepath = NULL;
 	fullpath = "-";
 	error = vn_fullpath(vp, &fullpath, &freepath);
 	if (error == 0) {
 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
 	}
 	if (freepath != NULL)
 		free(freepath, M_TEMP);
 
 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
 		vn_fill_junk(kif);
 	);
 
 	/*
 	 * Retrieve vnode attributes.
 	 */
 	va.va_fsid = VNOVAL;
 	va.va_rdev = NODEV;
 	vn_lock(vp, LK_SHARED | LK_RETRY);
 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
 	VOP_UNLOCK(vp);
 	if (error != 0)
 		return (error);
 	if (va.va_fsid != VNOVAL)
 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
 	else
 		kif->kf_un.kf_file.kf_file_fsid =
 		    vp->v_mount->mnt_stat.f_fsid.val[0];
 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
 	kif->kf_un.kf_file.kf_file_size = va.va_size;
 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
 	kif->kf_un.kf_file.kf_file_nlink = va.va_nlink;
 	return (0);
 }
 
 int
 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
     struct thread *td)
 {
 #ifdef HWPMC_HOOKS
 	struct pmckern_map_in pkm;
 #endif
 	struct mount *mp;
 	struct vnode *vp;
 	vm_object_t object;
 	vm_prot_t maxprot;
 	boolean_t writecounted;
 	int error;
 
 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
 	/*
 	 * POSIX shared-memory objects are defined to have
 	 * kernel persistence, and are not defined to support
 	 * read(2)/write(2) -- or even open(2).  Thus, we can
 	 * use MAP_ASYNC to trade on-disk coherence for speed.
 	 * The shm_open(3) library routine turns on the FPOSIXSHM
 	 * flag to request this behavior.
 	 */
 	if ((fp->f_flag & FPOSIXSHM) != 0)
 		flags |= MAP_NOSYNC;
 #endif
 	vp = fp->f_vnode;
 
 	/*
 	 * Ensure that file and memory protections are
 	 * compatible.  Note that we only worry about
 	 * writability if mapping is shared; in this case,
 	 * current and max prot are dictated by the open file.
 	 * XXX use the vnode instead?  Problem is: what
 	 * credentials do we use for determination? What if
 	 * proc does a setuid?
 	 */
 	mp = vp->v_mount;
 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
 		maxprot = VM_PROT_NONE;
 		if ((prot & VM_PROT_EXECUTE) != 0)
 			return (EACCES);
 	} else
 		maxprot = VM_PROT_EXECUTE;
 	if ((fp->f_flag & FREAD) != 0)
 		maxprot |= VM_PROT_READ;
 	else if ((prot & VM_PROT_READ) != 0)
 		return (EACCES);
 
 	/*
 	 * If we are sharing potential changes via MAP_SHARED and we
 	 * are trying to get write permission although we opened it
 	 * without asking for it, bail out.
 	 */
 	if ((flags & MAP_SHARED) != 0) {
 		if ((fp->f_flag & FWRITE) != 0)
 			maxprot |= VM_PROT_WRITE;
 		else if ((prot & VM_PROT_WRITE) != 0)
 			return (EACCES);
 	} else {
 		maxprot |= VM_PROT_WRITE;
 		cap_maxprot |= VM_PROT_WRITE;
 	}
 	maxprot &= cap_maxprot;
 
 	/*
 	 * For regular files and shared memory, POSIX requires that
 	 * the value of foff be a legitimate offset within the data
 	 * object.  In particular, negative offsets are invalid.
 	 * Blocking negative offsets and overflows here avoids
 	 * possible wraparound or user-level access into reserved
 	 * ranges of the data object later.  In contrast, POSIX does
 	 * not dictate how offsets are used by device drivers, so in
 	 * the case of a device mapping a negative offset is passed
 	 * on.
 	 */
 	if (
 #ifdef _LP64
 	    size > OFF_MAX ||
 #endif
 	    foff > OFF_MAX - size)
 		return (EINVAL);
 
 	writecounted = FALSE;
 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
 	    &foff, &object, &writecounted);
 	if (error != 0)
 		return (error);
 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
 	    foff, writecounted, td);
 	if (error != 0) {
 		/*
 		 * If this mapping was accounted for in the vnode's
 		 * writecount, then undo that now.
 		 */
 		if (writecounted)
 			vm_pager_release_writecount(object, 0, size);
 		vm_object_deallocate(object);
 	}
 #ifdef HWPMC_HOOKS
 	/* Inform hwpmc(4) if an executable is being mapped. */
 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
 			pkm.pm_file = vp;
 			pkm.pm_address = (uintptr_t) *addr;
 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
 		}
 	}
 #endif
 	return (error);
 }
 
 void
 vn_fsid(struct vnode *vp, struct vattr *va)
 {
 	fsid_t *f;
 
 	f = &vp->v_mount->mnt_stat.f_fsid;
 	va->va_fsid = (uint32_t)f->val[1];
 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
 	va->va_fsid += (uint32_t)f->val[0];
 }
 
 int
 vn_fsync_buf(struct vnode *vp, int waitfor)
 {
 	struct buf *bp, *nbp;
 	struct bufobj *bo;
 	struct mount *mp;
 	int error, maxretry;
 
 	error = 0;
 	maxretry = 10000;     /* large, arbitrarily chosen */
 	mp = NULL;
 	if (vp->v_type == VCHR) {
 		VI_LOCK(vp);
 		mp = vp->v_rdev->si_mountpt;
 		VI_UNLOCK(vp);
 	}
 	bo = &vp->v_bufobj;
 	BO_LOCK(bo);
 loop1:
 	/*
 	 * MARK/SCAN initialization to avoid infinite loops.
 	 */
         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
 		bp->b_vflags &= ~BV_SCANNED;
 		bp->b_error = 0;
 	}
 
 	/*
 	 * Flush all dirty buffers associated with a vnode.
 	 */
 loop2:
 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
 		if ((bp->b_vflags & BV_SCANNED) != 0)
 			continue;
 		bp->b_vflags |= BV_SCANNED;
 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
 			if (waitfor != MNT_WAIT)
 				continue;
 			if (BUF_LOCK(bp,
 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
 			    BO_LOCKPTR(bo)) != 0) {
 				BO_LOCK(bo);
 				goto loop1;
 			}
 			BO_LOCK(bo);
 		}
 		BO_UNLOCK(bo);
 		KASSERT(bp->b_bufobj == bo,
 		    ("bp %p wrong b_bufobj %p should be %p",
 		    bp, bp->b_bufobj, bo));
 		if ((bp->b_flags & B_DELWRI) == 0)
 			panic("fsync: not dirty");
 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
 			vfs_bio_awrite(bp);
 		} else {
 			bremfree(bp);
 			bawrite(bp);
 		}
 		if (maxretry < 1000)
 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
 		BO_LOCK(bo);
 		goto loop2;
 	}
 
 	/*
 	 * If synchronous the caller expects us to completely resolve all
 	 * dirty buffers in the system.  Wait for in-progress I/O to
 	 * complete (which could include background bitmap writes), then
 	 * retry if dirty blocks still exist.
 	 */
 	if (waitfor == MNT_WAIT) {
 		bufobj_wwait(bo, 0, 0);
 		if (bo->bo_dirty.bv_cnt > 0) {
 			/*
 			 * If we are unable to write any of these buffers
 			 * then we fail now rather than trying endlessly
 			 * to write them out.
 			 */
 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
 				if ((error = bp->b_error) != 0)
 					break;
 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
 			    (error == 0 && --maxretry >= 0))
 				goto loop1;
 			if (error == 0)
 				error = EAGAIN;
 		}
 	}
 	BO_UNLOCK(bo);
 	if (error != 0)
 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
 
 	return (error);
 }
 
 /*
  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
  * to do the actual copy.
  * vn_generic_copy_file_range() is factored out, so it can be called
  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
  * different file systems.
  */
 int
 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
     struct ucred *outcred, struct thread *fsize_td)
 {
 	struct mount *inmp, *outmp;
 	struct vnode *invpl, *outvpl;
 	int error;
 	size_t len;
 	uint64_t uval;
 
 	invpl = outvpl = NULL;
 	len = *lenp;
 	*lenp = 0;		/* For error returns. */
 	error = 0;
 
 	/* Do some sanity checks on the arguments. */
 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
 		error = EISDIR;
 	else if (*inoffp < 0 || *outoffp < 0 ||
 	    invp->v_type != VREG || outvp->v_type != VREG)
 		error = EINVAL;
 	if (error != 0)
 		goto out;
 
 	/* Ensure offset + len does not wrap around. */
 	uval = *inoffp;
 	uval += len;
 	if (uval > INT64_MAX)
 		len = INT64_MAX - *inoffp;
 	uval = *outoffp;
 	uval += len;
 	if (uval > INT64_MAX)
 		len = INT64_MAX - *outoffp;
 	if (len == 0)
 		goto out;
 
 	error = VOP_GETLOWVNODE(invp, &invpl, FREAD);
 	if (error != 0)
 		goto out;
 	error = VOP_GETLOWVNODE(outvp, &outvpl, FWRITE);
 	if (error != 0)
 		goto out1;
 
 	inmp = invpl->v_mount;
 	outmp = outvpl->v_mount;
 	if (inmp == NULL || outmp == NULL)
 		goto out2;
 
 	for (;;) {
 		error = vfs_busy(inmp, 0);
 		if (error != 0)
 			goto out2;
 		if (inmp == outmp)
 			break;
 		error = vfs_busy(outmp, MBF_NOWAIT);
 		if (error != 0) {
 			vfs_unbusy(inmp);
 			error = vfs_busy(outmp, 0);
 			if (error == 0) {
 				vfs_unbusy(outmp);
 				continue;
 			}
 			goto out2;
 		}
 		break;
 	}
 
 	/*
 	 * If the two vnodes are for the same file system type, call
 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
 	 * which can handle copies across multiple file system types.
 	 */
 	*lenp = len;
 	if (inmp == outmp || inmp->mnt_vfc == outmp->mnt_vfc)
 		error = VOP_COPY_FILE_RANGE(invpl, inoffp, outvpl, outoffp,
 		    lenp, flags, incred, outcred, fsize_td);
 	else
 		error = ENOSYS;
 	if (error == ENOSYS)
 		error = vn_generic_copy_file_range(invpl, inoffp, outvpl,
 		    outoffp, lenp, flags, incred, outcred, fsize_td);
 	vfs_unbusy(outmp);
 	if (inmp != outmp)
 		vfs_unbusy(inmp);
 out2:
 	if (outvpl != NULL)
 		vrele(outvpl);
 out1:
 	if (invpl != NULL)
 		vrele(invpl);
 out:
 	return (error);
 }
 
 /*
  * Test len bytes of data starting at dat for all bytes == 0.
  * Return true if all bytes are zero, false otherwise.
  * Expects dat to be well aligned.
  */
 static bool
 mem_iszero(void *dat, int len)
 {
 	int i;
 	const u_int *p;
 	const char *cp;
 
 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
 		if (len >= sizeof(*p)) {
 			if (*p != 0)
 				return (false);
 		} else {
 			cp = (const char *)p;
 			for (i = 0; i < len; i++, cp++)
 				if (*cp != '\0')
 					return (false);
 		}
 	}
 	return (true);
 }
 
 /*
  * Look for a hole in the output file and, if found, adjust *outoffp
  * and *xferp to skip past the hole.
  * *xferp is the entire hole length to be written and xfer2 is how many bytes
  * to be written as 0's upon return.
  */
 static off_t
 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
 {
 	int error;
 	off_t delta;
 
 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
 		*dataoffp = *outoffp;
 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
 		    curthread);
 		if (error == 0) {
 			*holeoffp = *dataoffp;
 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
 			    curthread);
 		}
 		if (error != 0 || *holeoffp == *dataoffp) {
 			/*
 			 * Since outvp is unlocked, it may be possible for
 			 * another thread to do a truncate(), lseek(), write()
 			 * creating a hole at startoff between the above
 			 * VOP_IOCTL() calls, if the other thread does not do
 			 * rangelocking.
 			 * If that happens, *holeoffp == *dataoffp and finding
 			 * the hole has failed, so disable vn_skip_hole().
 			 */
 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
 			return (xfer2);
 		}
 		KASSERT(*dataoffp >= *outoffp,
 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
 		KASSERT(*holeoffp > *dataoffp,
 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
 	}
 
 	/*
 	 * If there is a hole before the data starts, advance *outoffp and
 	 * *xferp past the hole.
 	 */
 	if (*dataoffp > *outoffp) {
 		delta = *dataoffp - *outoffp;
 		if (delta >= *xferp) {
 			/* Entire *xferp is a hole. */
 			*outoffp += *xferp;
 			*xferp = 0;
 			return (0);
 		}
 		*xferp -= delta;
 		*outoffp += delta;
 		xfer2 = MIN(xfer2, *xferp);
 	}
 
 	/*
 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
 	 * that the write ends at the start of the hole.
 	 * *holeoffp should always be greater than *outoffp, but for the
 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
 	 * value.
 	 */
 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
 		xfer2 = *holeoffp - *outoffp;
 	return (xfer2);
 }
 
 /*
  * Write an xfer sized chunk to outvp in blksize blocks from dat.
  * dat is a maximum of blksize in length and can be written repeatedly in
  * the chunk.
  * If growfile == true, just grow the file via vn_truncate_locked() instead
  * of doing actual writes.
  * If checkhole == true, a hole is being punched, so skip over any hole
  * already in the output file.
  */
 static int
 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
 {
 	struct mount *mp;
 	off_t dataoff, holeoff, xfer2;
 	int error;
 
 	/*
 	 * Loop around doing writes of blksize until write has been completed.
 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
 	 * done for each iteration, since the xfer argument can be very
 	 * large if there is a large hole to punch in the output file.
 	 */
 	error = 0;
 	holeoff = 0;
 	do {
 		xfer2 = MIN(xfer, blksize);
 		if (checkhole) {
 			/*
 			 * Punching a hole.  Skip writing if there is
 			 * already a hole in the output file.
 			 */
 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
 			    &dataoff, &holeoff, cred);
 			if (xfer == 0)
 				break;
 			if (holeoff < 0)
 				checkhole = false;
 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
 			    (intmax_t)xfer2));
 		}
 		bwillwrite();
 		mp = NULL;
 		error = vn_start_write(outvp, &mp, V_WAIT);
 		if (error != 0)
 			break;
 		if (growfile) {
 			error = vn_lock(outvp, LK_EXCLUSIVE);
 			if (error == 0) {
 				error = vn_truncate_locked(outvp, outoff + xfer,
 				    false, cred);
 				VOP_UNLOCK(outvp);
 			}
 		} else {
 			error = vn_lock(outvp, vn_lktype_write(mp, outvp));
 			if (error == 0) {
 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
 				    curthread->td_ucred, cred, NULL, curthread);
 				outoff += xfer2;
 				xfer -= xfer2;
 				VOP_UNLOCK(outvp);
 			}
 		}
 		if (mp != NULL)
 			vn_finished_write(mp);
 	} while (!growfile && xfer > 0 && error == 0);
 	return (error);
 }
 
 /*
  * Copy a byte range of one file to another.  This function can handle the
  * case where invp and outvp are on different file systems.
  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
  * is no better file system specific way to do it.
  */
 int
 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
 {
+	struct vattr inva;
 	struct mount *mp;
 	off_t startoff, endoff, xfer, xfer2;
 	u_long blksize;
 	int error, interrupted;
-	bool cantseek, readzeros, eof, lastblock, holetoeof;
+	bool cantseek, readzeros, eof, lastblock, holetoeof, sparse;
 	ssize_t aresid, r = 0;
 	size_t copylen, len, savlen;
-	off_t insize, outsize;
+	off_t outsize;
 	char *dat;
 	long holein, holeout;
 	struct timespec curts, endts;
 
 	holein = holeout = 0;
 	savlen = len = *lenp;
 	error = 0;
 	interrupted = 0;
 	dat = NULL;
 
 	error = vn_lock(invp, LK_SHARED);
 	if (error != 0)
 		goto out;
 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
 		holein = 0;
-	error = vn_getsize_locked(invp, &insize, incred);
+	error = VOP_GETATTR(invp, &inva, incred);
+	if (error == 0 && inva.va_size > OFF_MAX)
+		error = EFBIG;
 	VOP_UNLOCK(invp);
 	if (error != 0)
 		goto out;
 
+	/*
+	 * Use va_bytes >= va_size as a hint that the file does not have
+	 * sufficient holes to justify the overhead of doing FIOSEEKHOLE.
+	 * This hint does not work well for file systems doing compression
+	 * and may fail when allocations for extended attributes increases
+	 * the value of va_bytes to >= va_size.
+	 */
+	sparse = true;
+	if (holein != 0 && inva.va_bytes >= inva.va_size) {
+		holein = 0;
+		sparse = false;
+	}
+
 	mp = NULL;
 	error = vn_start_write(outvp, &mp, V_WAIT);
 	if (error == 0)
 		error = vn_lock(outvp, LK_EXCLUSIVE);
 	if (error == 0) {
 		/*
 		 * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
 		 * now that outvp is locked.
 		 */
 		if (fsize_td != NULL) {
 			struct uio io;
 
 			io.uio_offset = *outoffp;
 			io.uio_resid = len;
 			error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
 			len = savlen = io.uio_resid;
 			/*
 			 * No need to call vn_rlimit_fsizex_res before return,
 			 * since the uio is local.
 			 */
 		}
 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
 			holeout = 0;
 		/*
 		 * Holes that are past EOF do not need to be written as a block
 		 * of zero bytes.  So, truncate the output file as far as
 		 * possible and then use size to decide if writing 0
 		 * bytes is necessary in the loop below.
 		 */
 		if (error == 0)
 			error = vn_getsize_locked(outvp, &outsize, outcred);
 		if (error == 0 && outsize > *outoffp &&
 		    *outoffp <= OFF_MAX - len && outsize <= *outoffp + len &&
-		    *inoffp < insize &&
-		    *outoffp <= OFF_MAX - (insize - *inoffp) &&
-		    outsize <= *outoffp + (insize - *inoffp)) {
+		    *inoffp < inva.va_size &&
+		    *outoffp <= OFF_MAX - (inva.va_size - *inoffp) &&
+		    outsize <= *outoffp + (inva.va_size - *inoffp)) {
 #ifdef MAC
 			error = mac_vnode_check_write(curthread->td_ucred,
 			    outcred, outvp);
 			if (error == 0)
 #endif
 				error = vn_truncate_locked(outvp, *outoffp,
 				    false, outcred);
 			if (error == 0)
 				outsize = *outoffp;
 		}
 		VOP_UNLOCK(outvp);
 	}
 	if (mp != NULL)
 		vn_finished_write(mp);
 	if (error != 0)
 		goto out;
 
-	if (holein == 0 && holeout > 0) {
+	if (sparse && holein == 0 && holeout > 0) {
 		/*
 		 * For this special case, the input data will be scanned
 		 * for blocks of all 0 bytes.  For these blocks, the
 		 * write can be skipped for the output file to create
 		 * an unallocated region.
 		 * Therefore, use the appropriate size for the output file.
 		 */
 		blksize = holeout;
 		if (blksize <= 512) {
 			/*
 			 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
 			 * of 512, although it actually only creates
 			 * unallocated regions for blocks >= f_iosize.
 			 */
 			blksize = outvp->v_mount->mnt_stat.f_iosize;
 		}
 	} else {
 		/*
 		 * Use the larger of the two f_iosize values.  If they are
 		 * not the same size, one will normally be an exact multiple of
 		 * the other, since they are both likely to be a power of 2.
 		 */
 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
 		    outvp->v_mount->mnt_stat.f_iosize);
 	}
 
 	/* Clip to sane limits. */
 	if (blksize < 4096)
 		blksize = 4096;
 	else if (blksize > maxphys)
 		blksize = maxphys;
 	dat = malloc(blksize, M_TEMP, M_WAITOK);
 
 	/*
 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
 	 * to find holes.  Otherwise, just scan the read block for all 0s
 	 * in the inner loop where the data copying is done.
 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
 	 * support holes on the server, but do not support FIOSEEKHOLE.
 	 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
 	 * that this function should return after 1second with a partial
 	 * completion.
 	 */
 	if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
 		getnanouptime(&endts);
 		endts.tv_sec++;
 	} else
 		timespecclear(&endts);
 	holetoeof = eof = false;
 	while (len > 0 && error == 0 && !eof && interrupted == 0) {
 		endoff = 0;			/* To shut up compilers. */
 		cantseek = true;
 		startoff = *inoffp;
 		copylen = len;
 
 		/*
 		 * Find the next data area.  If there is just a hole to EOF,
 		 * FIOSEEKDATA should fail with ENXIO.
 		 * (I do not know if any file system will report a hole to
 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
 		 *  will fail for those file systems.)
 		 *
 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
 		 * the code just falls through to the inner copy loop.
 		 */
 		error = EINVAL;
 		if (holein > 0) {
 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
 			    incred, curthread);
 			if (error == ENXIO) {
-				startoff = endoff = insize;
+				startoff = endoff = inva.va_size;
 				eof = holetoeof = true;
 				error = 0;
 			}
 		}
 		if (error == 0 && !holetoeof) {
 			endoff = startoff;
 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
 			    incred, curthread);
 			/*
 			 * Since invp is unlocked, it may be possible for
 			 * another thread to do a truncate(), lseek(), write()
 			 * creating a hole at startoff between the above
 			 * VOP_IOCTL() calls, if the other thread does not do
 			 * rangelocking.
 			 * If that happens, startoff == endoff and finding
 			 * the hole has failed, so set an error.
 			 */
 			if (error == 0 && startoff == endoff)
 				error = EINVAL; /* Any error. Reset to 0. */
 		}
 		if (error == 0) {
 			if (startoff > *inoffp) {
 				/* Found hole before data block. */
 				xfer = MIN(startoff - *inoffp, len);
 				if (*outoffp < outsize) {
 					/* Must write 0s to punch hole. */
 					xfer2 = MIN(outsize - *outoffp,
 					    xfer);
 					memset(dat, 0, MIN(xfer2, blksize));
 					error = vn_write_outvp(outvp, dat,
 					    *outoffp, xfer2, blksize, false,
 					    holeout > 0, outcred);
 				}
 
 				if (error == 0 && *outoffp + xfer >
 				    outsize && (xfer == len || holetoeof)) {
 					/* Grow output file (hole at end). */
 					error = vn_write_outvp(outvp, dat,
 					    *outoffp, xfer, blksize, true,
 					    false, outcred);
 				}
 				if (error == 0) {
 					*inoffp += xfer;
 					*outoffp += xfer;
 					len -= xfer;
 					if (len < savlen) {
 						interrupted = sig_intr();
 						if (timespecisset(&endts) &&
 						    interrupted == 0) {
 							getnanouptime(&curts);
 							if (timespeccmp(&curts,
 							    &endts, >=))
 								interrupted =
 								    EINTR;
 						}
 					}
 				}
 			}
 			copylen = MIN(len, endoff - startoff);
 			cantseek = false;
 		} else {
 			cantseek = true;
+			if (!sparse)
+				cantseek = false;
 			startoff = *inoffp;
 			copylen = len;
 			error = 0;
 		}
 
 		xfer = blksize;
 		if (cantseek) {
 			/*
 			 * Set first xfer to end at a block boundary, so that
 			 * holes are more likely detected in the loop below via
 			 * the for all bytes 0 method.
 			 */
 			xfer -= (*inoffp % blksize);
 		}
 		/* Loop copying the data block. */
 		while (copylen > 0 && error == 0 && !eof && interrupted == 0) {
 			if (copylen < xfer)
 				xfer = copylen;
 			error = vn_lock(invp, LK_SHARED);
 			if (error != 0)
 				goto out;
 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
 			    curthread->td_ucred, incred, &aresid,
 			    curthread);
 			VOP_UNLOCK(invp);
 			lastblock = false;
 			if (error == 0 && aresid > 0) {
 				/* Stop the copy at EOF on the input file. */
 				xfer -= aresid;
 				eof = true;
 				lastblock = true;
 			}
 			if (error == 0) {
 				/*
 				 * Skip the write for holes past the initial EOF
 				 * of the output file, unless this is the last
 				 * write of the output file at EOF.
 				 */
 				readzeros = cantseek ? mem_iszero(dat, xfer) :
 				    false;
 				if (xfer == len)
 					lastblock = true;
 				if (!cantseek || *outoffp < outsize ||
 				    lastblock || !readzeros)
 					error = vn_write_outvp(outvp, dat,
 					    *outoffp, xfer, blksize,
 					    readzeros && lastblock &&
 					    *outoffp >= outsize, false,
 					    outcred);
 				if (error == 0) {
 					*inoffp += xfer;
 					startoff += xfer;
 					*outoffp += xfer;
 					copylen -= xfer;
 					len -= xfer;
 					if (len < savlen) {
 						interrupted = sig_intr();
 						if (timespecisset(&endts) &&
 						    interrupted == 0) {
 							getnanouptime(&curts);
 							if (timespeccmp(&curts,
 							    &endts, >=))
 								interrupted =
 								    EINTR;
 						}
 					}
 				}
 			}
 			xfer = blksize;
 		}
 	}
 out:
 	*lenp = savlen - len;
 	free(dat, M_TEMP);
 	return (error);
 }
 
 static int
 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
 {
 	struct mount *mp;
 	struct vnode *vp;
 	off_t olen, ooffset;
 	int error;
 #ifdef AUDIT
 	int audited_vnode1 = 0;
 #endif
 
 	vp = fp->f_vnode;
 	if (vp->v_type != VREG)
 		return (ENODEV);
 
 	/* Allocating blocks may take a long time, so iterate. */
 	for (;;) {
 		olen = len;
 		ooffset = offset;
 
 		bwillwrite();
 		mp = NULL;
 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
 		if (error != 0)
 			break;
 		error = vn_lock(vp, LK_EXCLUSIVE);
 		if (error != 0) {
 			vn_finished_write(mp);
 			break;
 		}
 #ifdef AUDIT
 		if (!audited_vnode1) {
 			AUDIT_ARG_VNODE1(vp);
 			audited_vnode1 = 1;
 		}
 #endif
 #ifdef MAC
 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
 		if (error == 0)
 #endif
 			error = VOP_ALLOCATE(vp, &offset, &len, 0,
 			    td->td_ucred);
 		VOP_UNLOCK(vp);
 		vn_finished_write(mp);
 
 		if (olen + ooffset != offset + len) {
 			panic("offset + len changed from %jx/%jx to %jx/%jx",
 			    ooffset, olen, offset, len);
 		}
 		if (error != 0 || len == 0)
 			break;
 		KASSERT(olen > len, ("Iteration did not make progress?"));
 		maybe_yield();
 	}
 
 	return (error);
 }
 
 static int
 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
     int ioflag, struct ucred *cred, struct ucred *active_cred,
     struct ucred *file_cred)
 {
 	struct mount *mp;
 	void *rl_cookie;
 	off_t off, len;
 	int error;
 #ifdef AUDIT
 	bool audited_vnode1 = false;
 #endif
 
 	rl_cookie = NULL;
 	error = 0;
 	mp = NULL;
 	off = *offset;
 	len = *length;
 
 	if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
 		rl_cookie = vn_rangelock_wlock(vp, off, off + len);
 	while (len > 0 && error == 0) {
 		/*
 		 * Try to deallocate the longest range in one pass.
 		 * In case a pass takes too long to be executed, it returns
 		 * partial result. The residue will be proceeded in the next
 		 * pass.
 		 */
 
 		if ((ioflag & IO_NODELOCKED) == 0) {
 			bwillwrite();
 			if ((error = vn_start_write(vp, &mp,
 			    V_WAIT | V_PCATCH)) != 0)
 				goto out;
 			vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
 		}
 #ifdef AUDIT
 		if (!audited_vnode1) {
 			AUDIT_ARG_VNODE1(vp);
 			audited_vnode1 = true;
 		}
 #endif
 
 #ifdef MAC
 		if ((ioflag & IO_NOMACCHECK) == 0)
 			error = mac_vnode_check_write(active_cred, file_cred,
 			    vp);
 #endif
 		if (error == 0)
 			error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
 			    cred);
 
 		if ((ioflag & IO_NODELOCKED) == 0) {
 			VOP_UNLOCK(vp);
 			if (mp != NULL) {
 				vn_finished_write(mp);
 				mp = NULL;
 			}
 		}
 		if (error == 0 && len != 0)
 			maybe_yield();
 	}
 out:
 	if (rl_cookie != NULL)
 		vn_rangelock_unlock(vp, rl_cookie);
 	*offset = off;
 	*length = len;
 	return (error);
 }
 
 /*
  * This function is supposed to be used in the situations where the deallocation
  * is not triggered by a user request.
  */
 int
 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
     int ioflag, struct ucred *active_cred, struct ucred *file_cred)
 {
 	struct ucred *cred;
 
 	if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
 	    flags != 0)
 		return (EINVAL);
 	if (vp->v_type != VREG)
 		return (ENODEV);
 
 	cred = file_cred != NOCRED ? file_cred : active_cred;
 	return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
 	    active_cred, file_cred));
 }
 
 static int
 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
     struct ucred *active_cred, struct thread *td)
 {
 	int error;
 	struct vnode *vp;
 	int ioflag;
 
 	KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd"));
 	KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
 	    ("vn_fspacectl: non-zero flags"));
 	KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
 	    ("vn_fspacectl: offset/length overflow or underflow"));
 	vp = fp->f_vnode;
 
 	if (vp->v_type != VREG)
 		return (ENODEV);
 
 	ioflag = get_write_ioflag(fp);
 
 	switch (cmd) {
 	case SPACECTL_DEALLOC:
 		error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
 		    active_cred, active_cred, fp->f_cred);
 		break;
 	default:
 		panic("vn_fspacectl: unknown cmd %d", cmd);
 	}
 
 	return (error);
 }
 
 /*
  * Keep this assert as long as sizeof(struct dirent) is used as the maximum
  * entry size.
  */
 _Static_assert(_GENERIC_MAXDIRSIZ == sizeof(struct dirent),
     "'struct dirent' size must be a multiple of its alignment "
     "(see _GENERIC_DIRLEN())");
 
 /*
  * Returns successive directory entries through some caller's provided buffer.
  *
  * This function automatically refills the provided buffer with calls to
  * VOP_READDIR() (after MAC permission checks).
  *
  * 'td' is used for credentials and passed to uiomove().  'dirbuf' is the
  * caller's buffer to fill and 'dirbuflen' its allocated size.  'dirbuf' must
  * be properly aligned to access 'struct dirent' structures and 'dirbuflen'
  * must be greater than GENERIC_MAXDIRSIZ to avoid VOP_READDIR() returning
  * EINVAL (the latter is not a strong guarantee (yet); but EINVAL will always
  * be returned if this requirement is not verified).  '*dpp' points to the
  * current directory entry in the buffer and '*len' contains the remaining
  * valid bytes in 'dirbuf' after 'dpp' (including the pointed entry).
  *
  * At first call (or when restarting the read), '*len' must have been set to 0,
  * '*off' to 0 (or any valid start offset) and '*eofflag' to 0.  There are no
  * more entries as soon as '*len' is 0 after a call that returned 0.  Calling
  * again this function after such a condition is considered an error and EINVAL
  * will be returned.  Other possible error codes are those of VOP_READDIR(),
  * EINTEGRITY if the returned entries do not pass coherency tests, or EINVAL
  * (bad call).  All errors are unrecoverable, i.e., the state ('*len', '*off'
  * and '*eofflag') must be re-initialized before a subsequent call.  On error
  * or at end of directory, '*dpp' is reset to NULL.
  *
  * '*len', '*off' and '*eofflag' are internal state the caller should not
  * tamper with except as explained above.  '*off' is the next directory offset
  * to read from to refill the buffer.  '*eofflag' is set to 0 or 1 by the last
  * internal call to VOP_READDIR() that returned without error, indicating
  * whether it reached the end of the directory, and to 2 by this function after
  * all entries have been read.
  */
 int
 vn_dir_next_dirent(struct vnode *vp, struct thread *td,
     char *dirbuf, size_t dirbuflen,
     struct dirent **dpp, size_t *len, off_t *off, int *eofflag)
 {
 	struct dirent *dp = NULL;
 	int reclen;
 	int error;
 	struct uio uio;
 	struct iovec iov;
 
 	ASSERT_VOP_LOCKED(vp, "vnode not locked");
 	VNASSERT(vp->v_type == VDIR, vp, ("vnode is not a directory"));
 	MPASS2((uintptr_t)dirbuf < (uintptr_t)dirbuf + dirbuflen,
 	    "Address space overflow");
 
 	if (__predict_false(dirbuflen < GENERIC_MAXDIRSIZ)) {
 		/* Don't take any chances in this case */
 		error = EINVAL;
 		goto out;
 	}
 
 	if (*len != 0) {
 		dp = *dpp;
 
 		/*
 		 * The caller continued to call us after an error (we set dp to
 		 * NULL in a previous iteration).  Bail out right now.
 		 */
 		if (__predict_false(dp == NULL))
 			return (EINVAL);
 
 		MPASS(*len <= dirbuflen);
 		MPASS2((uintptr_t)dirbuf <= (uintptr_t)dp &&
 		    (uintptr_t)dp + *len <= (uintptr_t)dirbuf + dirbuflen,
 		    "Filled range not inside buffer");
 
 		reclen = dp->d_reclen;
 		if (reclen >= *len) {
 			/* End of buffer reached */
 			*len = 0;
 		} else {
 			dp = (struct dirent *)((char *)dp + reclen);
 			*len -= reclen;
 		}
 	}
 
 	if (*len == 0) {
 		dp = NULL;
 
 		/* Have to refill. */
 		switch (*eofflag) {
 		case 0:
 			break;
 
 		case 1:
 			/* Nothing more to read. */
 			*eofflag = 2; /* Remember the caller reached EOF. */
 			goto success;
 
 		default:
 			/* The caller didn't test for EOF. */
 			error = EINVAL;
 			goto out;
 		}
 
 		iov.iov_base = dirbuf;
 		iov.iov_len = dirbuflen;
 
 		uio.uio_iov = &iov;
 		uio.uio_iovcnt = 1;
 		uio.uio_offset = *off;
 		uio.uio_resid = dirbuflen;
 		uio.uio_segflg = UIO_SYSSPACE;
 		uio.uio_rw = UIO_READ;
 		uio.uio_td = td;
 
 #ifdef MAC
 		error = mac_vnode_check_readdir(td->td_ucred, vp);
 		if (error == 0)
 #endif
 			error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag,
 			    NULL, NULL);
 		if (error != 0)
 			goto out;
 
 		*len = dirbuflen - uio.uio_resid;
 		*off = uio.uio_offset;
 
 		if (*len == 0) {
 			/* Sanity check on INVARIANTS. */
 			MPASS(*eofflag != 0);
 			*eofflag = 1;
 			goto success;
 		}
 
 		/*
 		 * Normalize the flag returned by VOP_READDIR(), since we use 2
 		 * as a sentinel value.
 		 */
 		if (*eofflag != 0)
 			*eofflag = 1;
 
 		dp = (struct dirent *)dirbuf;
 	}
 
 	if (__predict_false(*len < GENERIC_MINDIRSIZ ||
 	    dp->d_reclen < GENERIC_MINDIRSIZ)) {
 		error = EINTEGRITY;
 		dp = NULL;
 		goto out;
 	}
 
 success:
 	error = 0;
 out:
 	*dpp = dp;
 	return (error);
 }
 
 /*
  * Checks whether a directory is empty or not.
  *
  * If the directory is empty, returns 0, and if it is not, ENOTEMPTY.  Other
  * values are genuine errors preventing the check.
  */
 int
 vn_dir_check_empty(struct vnode *vp)
 {
 	struct thread *const td = curthread;
 	char *dirbuf;
 	size_t dirbuflen, len;
 	off_t off;
 	int eofflag, error;
 	struct dirent *dp;
 	struct vattr va;
 
 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
 	VNPASS(vp->v_type == VDIR, vp);
 
 	error = VOP_GETATTR(vp, &va, td->td_ucred);
 	if (error != 0)
 		return (error);
 
 	dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
 	if (dirbuflen < va.va_blocksize)
 		dirbuflen = va.va_blocksize;
 	dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
 
 	len = 0;
 	off = 0;
 	eofflag = 0;
 
 	for (;;) {
 		error = vn_dir_next_dirent(vp, td, dirbuf, dirbuflen,
 		    &dp, &len, &off, &eofflag);
 		if (error != 0)
 			goto end;
 
 		if (len == 0) {
 			/* EOF */
 			error = 0;
 			goto end;
 		}
 
 		/*
 		 * Skip whiteouts.  Unionfs operates on filesystems only and
 		 * not on hierarchies, so these whiteouts would be shadowed on
 		 * the system hierarchy but not for a union using the
 		 * filesystem of their directories as the upper layer.
 		 * Additionally, unionfs currently transparently exposes
 		 * union-specific metadata of its upper layer, meaning that
 		 * whiteouts can be seen through the union view in empty
 		 * directories.  Taking into account these whiteouts would then
 		 * prevent mounting another filesystem on such effectively
 		 * empty directories.
 		 */
 		if (dp->d_type == DT_WHT)
 			continue;
 
 		/*
 		 * Any file in the directory which is not '.' or '..' indicates
 		 * the directory is not empty.
 		 */
 		switch (dp->d_namlen) {
 		case 2:
 			if (dp->d_name[1] != '.') {
 				/* Can't be '..' (nor '.') */
 				error = ENOTEMPTY;
 				goto end;
 			}
 			/* FALLTHROUGH */
 		case 1:
 			if (dp->d_name[0] != '.') {
 				/* Can't be '..' nor '.' */
 				error = ENOTEMPTY;
 				goto end;
 			}
 			break;
 
 		default:
 			error = ENOTEMPTY;
 			goto end;
 		}
 	}
 
 end:
 	free(dirbuf, M_TEMP);
 	return (error);
 }
 
 
 static u_long vn_lock_pair_pause_cnt;
 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
     &vn_lock_pair_pause_cnt, 0,
     "Count of vn_lock_pair deadlocks");
 
 u_int vn_lock_pair_pause_max;
 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
     &vn_lock_pair_pause_max, 0,
     "Max ticks for vn_lock_pair deadlock avoidance sleep");
 
 static void
 vn_lock_pair_pause(const char *wmesg)
 {
 	atomic_add_long(&vn_lock_pair_pause_cnt, 1);
 	pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
 }
 
 /*
  * Lock pair of (possibly same) vnodes vp1, vp2, avoiding lock order
  * reversal.  vp1_locked indicates whether vp1 is locked; if not, vp1
  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
  * can be NULL.
  *
  * The function returns with both vnodes exclusively or shared locked,
  * according to corresponding lkflags, and guarantees that it does not
  * create lock order reversal with other threads during its execution.
  * Both vnodes could be unlocked temporary (and reclaimed).
  *
  * If requesting shared locking, locked vnode lock must not be recursed.
  *
  * Only one of LK_SHARED and LK_EXCLUSIVE must be specified.
  * LK_NODDLKTREAT can be optionally passed.
  *
  * If vp1 == vp2, only one, most exclusive, lock is obtained on it.
  */
 void
 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1,
     struct vnode *vp2, bool vp2_locked, int lkflags2)
 {
 	int error, locked1;
 
 	MPASS((((lkflags1 & LK_SHARED) != 0) ^ ((lkflags1 & LK_EXCLUSIVE) != 0)) ||
 	    (vp1 == NULL && lkflags1 == 0));
 	MPASS((lkflags1 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
 	MPASS((((lkflags2 & LK_SHARED) != 0) ^ ((lkflags2 & LK_EXCLUSIVE) != 0)) ||
 	    (vp2 == NULL && lkflags2 == 0));
 	MPASS((lkflags2 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
 
 	if (vp1 == NULL && vp2 == NULL)
 		return;
 
 	if (vp1 == vp2) {
 		MPASS(vp1_locked == vp2_locked);
 
 		/* Select the most exclusive mode for lock. */
 		if ((lkflags1 & LK_TYPE_MASK) != (lkflags2 & LK_TYPE_MASK))
 			lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
 
 		if (vp1_locked) {
 			ASSERT_VOP_LOCKED(vp1, "vp1");
 
 			/* No need to relock if any lock is exclusive. */
 			if ((vp1->v_vnlock->lock_object.lo_flags &
 			    LK_NOSHARE) != 0)
 				return;
 
 			locked1 = VOP_ISLOCKED(vp1);
 			if (((lkflags1 & LK_SHARED) != 0 &&
 			    locked1 != LK_EXCLUSIVE) ||
 			    ((lkflags1 & LK_EXCLUSIVE) != 0 &&
 			    locked1 == LK_EXCLUSIVE))
 				return;
 			VOP_UNLOCK(vp1);
 		}
 
 		ASSERT_VOP_UNLOCKED(vp1, "vp1");
 		vn_lock(vp1, lkflags1 | LK_RETRY);
 		return;
 	}		
 
 	if (vp1 != NULL) {
 		if ((lkflags1 & LK_SHARED) != 0 &&
 		    (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
 			lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
 		if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) {
 			ASSERT_VOP_LOCKED(vp1, "vp1");
 			if ((lkflags1 & LK_EXCLUSIVE) != 0) {
 				VOP_UNLOCK(vp1);
 				ASSERT_VOP_UNLOCKED(vp1,
 				    "vp1 shared recursed");
 				vp1_locked = false;
 			}
 		} else if (!vp1_locked)
 			ASSERT_VOP_UNLOCKED(vp1, "vp1");
 	} else {
 		vp1_locked = true;
 	}
 
 	if (vp2 != NULL) {
 		if ((lkflags2 & LK_SHARED) != 0 &&
 		    (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
 			lkflags2 = (lkflags2 & ~LK_SHARED) | LK_EXCLUSIVE;
 		if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) {
 			ASSERT_VOP_LOCKED(vp2, "vp2");
 			if ((lkflags2 & LK_EXCLUSIVE) != 0) {
 				VOP_UNLOCK(vp2);
 				ASSERT_VOP_UNLOCKED(vp2,
 				    "vp2 shared recursed");
 				vp2_locked = false;
 			}
 		} else if (!vp2_locked)
 			ASSERT_VOP_UNLOCKED(vp2, "vp2");
 	} else {
 		vp2_locked = true;
 	}
 
 	if (!vp1_locked && !vp2_locked) {
 		vn_lock(vp1, lkflags1 | LK_RETRY);
 		vp1_locked = true;
 	}
 
 	while (!vp1_locked || !vp2_locked) {
 		if (vp1_locked && vp2 != NULL) {
 			if (vp1 != NULL) {
 				error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT,
 				    __FILE__, __LINE__);
 				if (error == 0)
 					break;
 				VOP_UNLOCK(vp1);
 				vp1_locked = false;
 				vn_lock_pair_pause("vlp1");
 			}
 			vn_lock(vp2, lkflags2 | LK_RETRY);
 			vp2_locked = true;
 		}
 		if (vp2_locked && vp1 != NULL) {
 			if (vp2 != NULL) {
 				error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT,
 				    __FILE__, __LINE__);
 				if (error == 0)
 					break;
 				VOP_UNLOCK(vp2);
 				vp2_locked = false;
 				vn_lock_pair_pause("vlp2");
 			}
 			vn_lock(vp1, lkflags1 | LK_RETRY);
 			vp1_locked = true;
 		}
 	}
 	if (vp1 != NULL) {
 		if (lkflags1 == LK_EXCLUSIVE)
 			ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
 		else
 			ASSERT_VOP_LOCKED(vp1, "vp1 ret");
 	}
 	if (vp2 != NULL) {
 		if (lkflags2 == LK_EXCLUSIVE)
 			ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
 		else
 			ASSERT_VOP_LOCKED(vp2, "vp2 ret");
 	}
 }
 
 int
 vn_lktype_write(struct mount *mp, struct vnode *vp)
 {
 	if (MNT_SHARED_WRITES(mp) ||
 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
 		return (LK_SHARED);
 	return (LK_EXCLUSIVE);
 }
 
 int
 vn_cmp(struct file *fp1, struct file *fp2, struct thread *td)
 {
 	if (fp2->f_type != DTYPE_VNODE)
 		return (3);
 	return (kcmp_cmp((uintptr_t)fp1->f_vnode, (uintptr_t)fp2->f_vnode));
 }