diff --git a/sys/dev/sound/pci/hda/hda_reg.h b/sys/dev/sound/pci/hda/hda_reg.h index 91099caf083d..59fe92dd6d7e 100644 --- a/sys/dev/sound/pci/hda/hda_reg.h +++ b/sys/dev/sound/pci/hda/hda_reg.h @@ -1,1367 +1,1367 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006 Stephane E. Potvin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _HDA_REG_H_ #define _HDA_REG_H_ /**************************************************************************** * HDA Device Verbs ****************************************************************************/ /* HDA Command */ #define HDA_CMD_VERB_MASK 0x000fffff #define HDA_CMD_VERB_SHIFT 0 #define HDA_CMD_NID_MASK 0x0ff00000 #define HDA_CMD_NID_SHIFT 20 #define HDA_CMD_CAD_MASK 0xf0000000 #define HDA_CMD_CAD_SHIFT 28 #define HDA_CMD_VERB_4BIT_SHIFT 16 #define HDA_CMD_VERB_12BIT_SHIFT 8 #define HDA_CMD_VERB_4BIT(verb, payload) \ (((verb) << HDA_CMD_VERB_4BIT_SHIFT) | (payload)) #define HDA_CMD_4BIT(cad, nid, verb, payload) \ (((cad) << HDA_CMD_CAD_SHIFT) | \ ((nid) << HDA_CMD_NID_SHIFT) | \ (HDA_CMD_VERB_4BIT((verb), (payload)))) #define HDA_CMD_VERB_12BIT(verb, payload) \ (((verb) << HDA_CMD_VERB_12BIT_SHIFT) | (payload)) #define HDA_CMD_12BIT(cad, nid, verb, payload) \ (((cad) << HDA_CMD_CAD_SHIFT) | \ ((nid) << HDA_CMD_NID_SHIFT) | \ (HDA_CMD_VERB_12BIT((verb), (payload)))) /* Get Parameter */ #define HDA_CMD_VERB_GET_PARAMETER 0xf00 #define HDA_CMD_GET_PARAMETER(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_PARAMETER, (payload))) /* Connection Select Control */ #define HDA_CMD_VERB_GET_CONN_SELECT_CONTROL 0xf01 #define HDA_CMD_VERB_SET_CONN_SELECT_CONTROL 0x701 #define HDA_CMD_GET_CONN_SELECT_CONTROL(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_CONN_SELECT_CONTROL, 0x0)) #define HDA_CMD_SET_CONNECTION_SELECT_CONTROL(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_CONN_SELECT_CONTROL, (payload))) /* Connection List Entry */ #define HDA_CMD_VERB_GET_CONN_LIST_ENTRY 0xf02 #define HDA_CMD_GET_CONN_LIST_ENTRY(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_CONN_LIST_ENTRY, (payload))) #define HDA_CMD_GET_CONN_LIST_ENTRY_SIZE_SHORT 1 #define HDA_CMD_GET_CONN_LIST_ENTRY_SIZE_LONG 2 /* Processing State */ #define HDA_CMD_VERB_GET_PROCESSING_STATE 0xf03 #define HDA_CMD_VERB_SET_PROCESSING_STATE 0x703 #define HDA_CMD_GET_PROCESSING_STATE(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_PROCESSING_STATE, 0x0)) #define HDA_CMD_SET_PROCESSING_STATE(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_PROCESSING_STATE, (payload))) #define HDA_CMD_GET_PROCESSING_STATE_STATE_OFF 0x00 #define HDA_CMD_GET_PROCESSING_STATE_STATE_ON 0x01 #define HDA_CMD_GET_PROCESSING_STATE_STATE_BENIGN 0x02 /* Coefficient Index */ #define HDA_CMD_VERB_GET_COEFF_INDEX 0xd #define HDA_CMD_VERB_SET_COEFF_INDEX 0x5 #define HDA_CMD_GET_COEFF_INDEX(cad, nid) \ (HDA_CMD_4BIT((cad), (nid), \ HDA_CMD_VERB_GET_COEFF_INDEX, 0x0)) #define HDA_CMD_SET_COEFF_INDEX(cad, nid, payload) \ (HDA_CMD_4BIT((cad), (nid), \ HDA_CMD_VERB_SET_COEFF_INDEX, (payload))) /* Processing Coefficient */ #define HDA_CMD_VERB_GET_PROCESSING_COEFF 0xc #define HDA_CMD_VERB_SET_PROCESSING_COEFF 0x4 #define HDA_CMD_GET_PROCESSING_COEFF(cad, nid) \ (HDA_CMD_4BIT((cad), (nid), \ HDA_CMD_VERB_GET_PROCESSING_COEFF, 0x0)) #define HDA_CMD_SET_PROCESSING_COEFF(cad, nid, payload) \ (HDA_CMD_4BIT((cad), (nid), \ HDA_CMD_VERB_SET_PROCESSING_COEFF, (payload))) /* Amplifier Gain/Mute */ #define HDA_CMD_VERB_GET_AMP_GAIN_MUTE 0xb #define HDA_CMD_VERB_SET_AMP_GAIN_MUTE 0x3 #define HDA_CMD_GET_AMP_GAIN_MUTE(cad, nid, payload) \ (HDA_CMD_4BIT((cad), (nid), \ HDA_CMD_VERB_GET_AMP_GAIN_MUTE, (payload))) #define HDA_CMD_SET_AMP_GAIN_MUTE(cad, nid, payload) \ (HDA_CMD_4BIT((cad), (nid), \ HDA_CMD_VERB_SET_AMP_GAIN_MUTE, (payload))) #define HDA_CMD_GET_AMP_GAIN_MUTE_INPUT 0x0000 #define HDA_CMD_GET_AMP_GAIN_MUTE_OUTPUT 0x8000 #define HDA_CMD_GET_AMP_GAIN_MUTE_RIGHT 0x0000 #define HDA_CMD_GET_AMP_GAIN_MUTE_LEFT 0x2000 #define HDA_CMD_GET_AMP_GAIN_MUTE_MUTE_MASK 0x00000008 #define HDA_CMD_GET_AMP_GAIN_MUTE_MUTE_SHIFT 7 #define HDA_CMD_GET_AMP_GAIN_MUTE_GAIN_MASK 0x00000007 #define HDA_CMD_GET_AMP_GAIN_MUTE_GAIN_SHIFT 0 #define HDA_CMD_GET_AMP_GAIN_MUTE_MUTE(rsp) \ (((rsp) & HDA_CMD_GET_AMP_GAIN_MUTE_MUTE_MASK) >> \ HDA_CMD_GET_AMP_GAIN_MUTE_MUTE_SHIFT) #define HDA_CMD_GET_AMP_GAIN_MUTE_GAIN(rsp) \ (((rsp) & HDA_CMD_GET_AMP_GAIN_MUTE_GAIN_MASK) >> \ HDA_CMD_GET_AMP_GAIN_MUTE_GAIN_SHIFT) #define HDA_CMD_SET_AMP_GAIN_MUTE_OUTPUT 0x8000 #define HDA_CMD_SET_AMP_GAIN_MUTE_INPUT 0x4000 #define HDA_CMD_SET_AMP_GAIN_MUTE_LEFT 0x2000 #define HDA_CMD_SET_AMP_GAIN_MUTE_RIGHT 0x1000 #define HDA_CMD_SET_AMP_GAIN_MUTE_INDEX_MASK 0x0f00 #define HDA_CMD_SET_AMP_GAIN_MUTE_INDEX_SHIFT 8 #define HDA_CMD_SET_AMP_GAIN_MUTE_MUTE 0x0080 #define HDA_CMD_SET_AMP_GAIN_MUTE_GAIN_MASK 0x0007 #define HDA_CMD_SET_AMP_GAIN_MUTE_GAIN_SHIFT 0 #define HDA_CMD_SET_AMP_GAIN_MUTE_INDEX(index) \ (((index) << HDA_CMD_SET_AMP_GAIN_MUTE_INDEX_SHIFT) & \ HDA_CMD_SET_AMP_GAIN_MUTE_INDEX_MASK) #define HDA_CMD_SET_AMP_GAIN_MUTE_GAIN(index) \ (((index) << HDA_CMD_SET_AMP_GAIN_MUTE_GAIN_SHIFT) & \ HDA_CMD_SET_AMP_GAIN_MUTE_GAIN_MASK) /* Converter format */ #define HDA_CMD_VERB_GET_CONV_FMT 0xa #define HDA_CMD_VERB_SET_CONV_FMT 0x2 #define HDA_CMD_GET_CONV_FMT(cad, nid) \ (HDA_CMD_4BIT((cad), (nid), \ HDA_CMD_VERB_GET_CONV_FMT, 0x0)) #define HDA_CMD_SET_CONV_FMT(cad, nid, payload) \ (HDA_CMD_4BIT((cad), (nid), \ HDA_CMD_VERB_SET_CONV_FMT, (payload))) /* Digital Converter Control */ #define HDA_CMD_VERB_GET_DIGITAL_CONV_FMT1 0xf0d #define HDA_CMD_VERB_GET_DIGITAL_CONV_FMT2 0xf0e #define HDA_CMD_VERB_SET_DIGITAL_CONV_FMT1 0x70d #define HDA_CMD_VERB_SET_DIGITAL_CONV_FMT2 0x70e #define HDA_CMD_GET_DIGITAL_CONV_FMT(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_DIGITAL_CONV_FMT1, 0x0)) #define HDA_CMD_SET_DIGITAL_CONV_FMT1(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_DIGITAL_CONV_FMT1, (payload))) #define HDA_CMD_SET_DIGITAL_CONV_FMT2(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_DIGITAL_CONV_FMT2, (payload))) #define HDA_CMD_GET_DIGITAL_CONV_FMT_CC_MASK 0x7f00 #define HDA_CMD_GET_DIGITAL_CONV_FMT_CC_SHIFT 8 #define HDA_CMD_GET_DIGITAL_CONV_FMT_L_MASK 0x0080 #define HDA_CMD_GET_DIGITAL_CONV_FMT_L_SHIFT 7 #define HDA_CMD_GET_DIGITAL_CONV_FMT_PRO_MASK 0x0040 #define HDA_CMD_GET_DIGITAL_CONV_FMT_PRO_SHIFT 6 #define HDA_CMD_GET_DIGITAL_CONV_FMT_NAUDIO_MASK 0x0020 #define HDA_CMD_GET_DIGITAL_CONV_FMT_NAUDIO_SHIFT 5 #define HDA_CMD_GET_DIGITAL_CONV_FMT_COPY_MASK 0x0010 #define HDA_CMD_GET_DIGITAL_CONV_FMT_COPY_SHIFT 4 #define HDA_CMD_GET_DIGITAL_CONV_FMT_PRE_MASK 0x0008 #define HDA_CMD_GET_DIGITAL_CONV_FMT_PRE_SHIFT 3 #define HDA_CMD_GET_DIGITAL_CONV_FMT_VCFG_MASK 0x0004 #define HDA_CMD_GET_DIGITAL_CONV_FMT_VCFG_SHIFT 2 #define HDA_CMD_GET_DIGITAL_CONV_FMT_V_MASK 0x0002 #define HDA_CMD_GET_DIGITAL_CONV_FMT_V_SHIFT 1 #define HDA_CMD_GET_DIGITAL_CONV_FMT_DIGEN_MASK 0x0001 #define HDA_CMD_GET_DIGITAL_CONV_FMT_DIGEN_SHIFT 0 #define HDA_CMD_GET_DIGITAL_CONV_FMT_CC(rsp) \ (((rsp) & HDA_CMD_GET_DIGITAL_CONV_FMT_CC_MASK) >> \ HDA_CMD_GET_DIGITAL_CONV_FMT_CC_SHIFT) #define HDA_CMD_GET_DIGITAL_CONV_FMT_L(rsp) \ (((rsp) & HDA_CMD_GET_DIGITAL_CONV_FMT_L_MASK) >> \ HDA_CMD_GET_DIGITAL_CONV_FMT_L_SHIFT) #define HDA_CMD_GET_DIGITAL_CONV_FMT_PRO(rsp) \ (((rsp) & HDA_CMD_GET_DIGITAL_CONV_FMT_PRO_MASK) >> \ HDA_CMD_GET_DIGITAL_CONV_FMT_PRO_SHIFT) #define HDA_CMD_GET_DIGITAL_CONV_FMT_NAUDIO(rsp) \ (((rsp) & HDA_CMD_GET_DIGITAL_CONV_FMT_NAUDIO_MASK) >> \ HDA_CMD_GET_DIGITAL_CONV_FMT_NAUDIO_SHIFT) #define HDA_CMD_GET_DIGITAL_CONV_FMT_COPY(rsp) \ (((rsp) & HDA_CMD_GET_DIGITAL_CONV_FMT_COPY_MASK) >> \ HDA_CMD_GET_DIGITAL_CONV_FMT_COPY_SHIFT) #define HDA_CMD_GET_DIGITAL_CONV_FMT_PRE(rsp) \ (((rsp) & HDA_CMD_GET_DIGITAL_CONV_FMT_PRE_MASK) >> \ HDA_CMD_GET_DIGITAL_CONV_FMT_PRE_SHIFT) #define HDA_CMD_GET_DIGITAL_CONV_FMT_VCFG(rsp) \ (((rsp) & HDA_CMD_GET_DIGITAL_CONV_FMT_VCFG_MASK) >> \ HDA_CMD_GET_DIGITAL_CONV_FMT_VCFG_SHIFT) #define HDA_CMD_GET_DIGITAL_CONV_FMT_V(rsp) \ (((rsp) & HDA_CMD_GET_DIGITAL_CONV_FMT_V_MASK) >> \ HDA_CMD_GET_DIGITAL_CONV_FMT_V_SHIFT) #define HDA_CMD_GET_DIGITAL_CONV_FMT_DIGEN(rsp) \ (((rsp) & HDA_CMD_GET_DIGITAL_CONV_FMT_DIGEN_MASK) >> \ HDA_CMD_GET_DIGITAL_CONV_FMT_DIGEN_SHIFT) #define HDA_CMD_SET_DIGITAL_CONV_FMT1_L 0x80 #define HDA_CMD_SET_DIGITAL_CONV_FMT1_PRO 0x40 #define HDA_CMD_SET_DIGITAL_CONV_FMT1_NAUDIO 0x20 #define HDA_CMD_SET_DIGITAL_CONV_FMT1_COPY 0x10 #define HDA_CMD_SET_DIGITAL_CONV_FMT1_PRE 0x08 #define HDA_CMD_SET_DIGITAL_CONV_FMT1_VCFG 0x04 #define HDA_CMD_SET_DIGITAL_CONV_FMT1_V 0x02 #define HDA_CMD_SET_DIGITAL_CONV_FMT1_DIGEN 0x01 /* Power State */ #define HDA_CMD_VERB_GET_POWER_STATE 0xf05 #define HDA_CMD_VERB_SET_POWER_STATE 0x705 #define HDA_CMD_GET_POWER_STATE(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_POWER_STATE, 0x0)) #define HDA_CMD_SET_POWER_STATE(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_POWER_STATE, (payload))) #define HDA_CMD_POWER_STATE_D0 0x00 #define HDA_CMD_POWER_STATE_D1 0x01 #define HDA_CMD_POWER_STATE_D2 0x02 #define HDA_CMD_POWER_STATE_D3 0x03 #define HDA_CMD_POWER_STATE_ACT_MASK 0x000000f0 #define HDA_CMD_POWER_STATE_ACT_SHIFT 4 #define HDA_CMD_POWER_STATE_SET_MASK 0x0000000f #define HDA_CMD_POWER_STATE_SET_SHIFT 0 #define HDA_CMD_GET_POWER_STATE_ACT(rsp) \ (((rsp) & HDA_CMD_POWER_STATE_ACT_MASK) >> \ HDA_CMD_POWER_STATE_ACT_SHIFT) #define HDA_CMD_GET_POWER_STATE_SET(rsp) \ (((rsp) & HDA_CMD_POWER_STATE_SET_MASK) >> \ HDA_CMD_POWER_STATE_SET_SHIFT) #define HDA_CMD_SET_POWER_STATE_ACT(ps) \ (((ps) << HDA_CMD_POWER_STATE_ACT_SHIFT) & \ HDA_CMD_POWER_STATE_ACT_MASK) #define HDA_CMD_SET_POWER_STATE_SET(ps) \ (((ps) << HDA_CMD_POWER_STATE_SET_SHIFT) & \ HDA_CMD_POWER_STATE_ACT_MASK) /* Converter Stream, Channel */ #define HDA_CMD_VERB_GET_CONV_STREAM_CHAN 0xf06 #define HDA_CMD_VERB_SET_CONV_STREAM_CHAN 0x706 #define HDA_CMD_GET_CONV_STREAM_CHAN(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_CONV_STREAM_CHAN, 0x0)) #define HDA_CMD_SET_CONV_STREAM_CHAN(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_CONV_STREAM_CHAN, (payload))) #define HDA_CMD_CONV_STREAM_CHAN_STREAM_MASK 0x000000f0 #define HDA_CMD_CONV_STREAM_CHAN_STREAM_SHIFT 4 #define HDA_CMD_CONV_STREAM_CHAN_CHAN_MASK 0x0000000f #define HDA_CMD_CONV_STREAM_CHAN_CHAN_SHIFT 0 #define HDA_CMD_GET_CONV_STREAM_CHAN_STREAM(rsp) \ (((rsp) & HDA_CMD_CONV_STREAM_CHAN_STREAM_MASK) >> \ HDA_CMD_CONV_STREAM_CHAN_STREAM_SHIFT) #define HDA_CMD_GET_CONV_STREAM_CHAN_CHAN(rsp) \ (((rsp) & HDA_CMD_CONV_STREAM_CHAN_CHAN_MASK) >> \ HDA_CMD_CONV_STREAM_CHAN_CHAN_SHIFT) #define HDA_CMD_SET_CONV_STREAM_CHAN_STREAM(param) \ (((param) << HDA_CMD_CONV_STREAM_CHAN_STREAM_SHIFT) & \ HDA_CMD_CONV_STREAM_CHAN_STREAM_MASK) #define HDA_CMD_SET_CONV_STREAM_CHAN_CHAN(param) \ (((param) << HDA_CMD_CONV_STREAM_CHAN_CHAN_SHIFT) & \ HDA_CMD_CONV_STREAM_CHAN_CHAN_MASK) /* Input Converter SDI Select */ #define HDA_CMD_VERB_GET_INPUT_CONVERTER_SDI_SELECT 0xf04 #define HDA_CMD_VERB_SET_INPUT_CONVERTER_SDI_SELECT 0x704 #define HDA_CMD_GET_INPUT_CONVERTER_SDI_SELECT(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_INPUT_CONVERTER_SDI_SELECT, 0x0)) #define HDA_CMD_SET_INPUT_CONVERTER_SDI_SELECT(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_INPUT_CONVERTER_SDI_SELECT, (payload))) /* Pin Widget Control */ #define HDA_CMD_VERB_GET_PIN_WIDGET_CTRL 0xf07 #define HDA_CMD_VERB_SET_PIN_WIDGET_CTRL 0x707 #define HDA_CMD_GET_PIN_WIDGET_CTRL(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_PIN_WIDGET_CTRL, 0x0)) #define HDA_CMD_SET_PIN_WIDGET_CTRL(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_PIN_WIDGET_CTRL, (payload))) #define HDA_CMD_GET_PIN_WIDGET_CTRL_HPHN_ENABLE_MASK 0x00000080 #define HDA_CMD_GET_PIN_WIDGET_CTRL_HPHN_ENABLE_SHIFT 7 #define HDA_CMD_GET_PIN_WIDGET_CTRL_OUT_ENABLE_MASK 0x00000040 #define HDA_CMD_GET_PIN_WIDGET_CTRL_OUT_ENABLE_SHIFT 6 #define HDA_CMD_GET_PIN_WIDGET_CTRL_IN_ENABLE_MASK 0x00000020 #define HDA_CMD_GET_PIN_WIDGET_CTRL_IN_ENABLE_SHIFT 5 #define HDA_CMD_GET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK 0x00000007 #define HDA_CMD_GET_PIN_WIDGET_CTRL_VREF_ENABLE_SHIFT 0 #define HDA_CMD_GET_PIN_WIDGET_CTRL_HPHN_ENABLE(rsp) \ (((rsp) & HDA_CMD_GET_PIN_WIDGET_CTRL_HPHN_ENABLE_MASK) >> \ HDA_CMD_GET_PIN_WIDGET_CTRL_HPHN_ENABLE_SHIFT) #define HDA_CMD_GET_PIN_WIDGET_CTRL_OUT_ENABLE(rsp) \ (((rsp) & HDA_CMD_GET_PIN_WIDGET_CTRL_OUT_ENABLE_MASK) >> \ HDA_GET_CMD_PIN_WIDGET_CTRL_OUT_ENABLE_SHIFT) #define HDA_CMD_GET_PIN_WIDGET_CTRL_IN_ENABLE(rsp) \ (((rsp) & HDA_CMD_GET_PIN_WIDGET_CTRL_IN_ENABLE_MASK) >> \ HDA_CMD_GET_PIN_WIDGET_CTRL_IN_ENABLE_SHIFT) #define HDA_CMD_GET_PIN_WIDGET_CTRL_VREF_ENABLE(rsp) \ (((rsp) & HDA_CMD_GET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK) >> \ HDA_CMD_GET_PIN_WIDGET_CTRL_VREF_ENABLE_SHIFT) #define HDA_CMD_SET_PIN_WIDGET_CTRL_HPHN_ENABLE 0x80 #define HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE 0x40 #define HDA_CMD_SET_PIN_WIDGET_CTRL_IN_ENABLE 0x20 #define HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK 0x07 #define HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_SHIFT 0 #define HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE(param) \ (((param) << HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_SHIFT) & \ HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK) #define HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_HIZ 0 #define HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_50 1 #define HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_GROUND 2 #define HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_80 4 #define HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_100 5 /* Unsolicited Response */ #define HDA_CMD_VERB_GET_UNSOLICITED_RESPONSE 0xf08 #define HDA_CMD_VERB_SET_UNSOLICITED_RESPONSE 0x708 #define HDA_CMD_GET_UNSOLICITED_RESPONSE(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_UNSOLICITED_RESPONSE, 0x0)) #define HDA_CMD_SET_UNSOLICITED_RESPONSE(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_UNSOLICITED_RESPONSE, (payload))) #define HDA_CMD_GET_UNSOLICITED_RESPONSE_ENABLE_MASK 0x00000080 #define HDA_CMD_GET_UNSOLICITED_RESPONSE_ENABLE_SHIFT 7 #define HDA_CMD_GET_UNSOLICITED_RESPONSE_TAG_MASK 0x0000001f #define HDA_CMD_GET_UNSOLICITED_RESPONSE_TAG_SHIFT 0 #define HDA_CMD_GET_UNSOLICITED_RESPONSE_ENABLE(rsp) \ (((rsp) & HDA_CMD_GET_UNSOLICITED_RESPONSE_ENABLE_MASK) >> \ HDA_CMD_GET_UNSOLICITED_RESPONSE_ENABLE_SHIFT) #define HDA_CMD_GET_UNSOLICITED_RESPONSE_TAG(rsp) \ (((rsp) & HDA_CMD_GET_UNSOLICITED_RESPONSE_TAG_MASK) >> \ HDA_CMD_GET_UNSOLICITED_RESPONSE_TAG_SHIFT) #define HDA_CMD_SET_UNSOLICITED_RESPONSE_ENABLE 0x80 #define HDA_CMD_SET_UNSOLICITED_RESPONSE_TAG_MASK 0x3f #define HDA_CMD_SET_UNSOLICITED_RESPONSE_TAG_SHIFT 0 #define HDA_CMD_SET_UNSOLICITED_RESPONSE_TAG(param) \ (((param) << HDA_CMD_SET_UNSOLICITED_RESPONSE_TAG_SHIFT) & \ HDA_CMD_SET_UNSOLICITED_RESPONSE_TAG_MASK) /* Pin Sense */ #define HDA_CMD_VERB_GET_PIN_SENSE 0xf09 #define HDA_CMD_VERB_SET_PIN_SENSE 0x709 #define HDA_CMD_GET_PIN_SENSE(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_PIN_SENSE, 0x0)) #define HDA_CMD_SET_PIN_SENSE(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_PIN_SENSE, (payload))) #define HDA_CMD_GET_PIN_SENSE_PRESENCE_DETECT 0x80000000 #define HDA_CMD_GET_PIN_SENSE_ELD_VALID 0x40000000 #define HDA_CMD_GET_PIN_SENSE_IMP_SENSE_MASK 0x7fffffff #define HDA_CMD_GET_PIN_SENSE_IMP_SENSE_SHIFT 0 #define HDA_CMD_GET_PIN_SENSE_IMP_SENSE(rsp) \ (((rsp) & HDA_CMD_GET_PIN_SENSE_IMP_SENSE_MASK) >> \ HDA_CMD_GET_PIN_SENSE_IMP_SENSE_SHIFT) #define HDA_CMD_GET_PIN_SENSE_IMP_SENSE_INVALID 0x7fffffff #define HDA_CMD_SET_PIN_SENSE_LEFT_CHANNEL 0x00 #define HDA_CMD_SET_PIN_SENSE_RIGHT_CHANNEL 0x01 /* EAPD/BTL Enable */ #define HDA_CMD_VERB_GET_EAPD_BTL_ENABLE 0xf0c #define HDA_CMD_VERB_SET_EAPD_BTL_ENABLE 0x70c #define HDA_CMD_GET_EAPD_BTL_ENABLE(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_EAPD_BTL_ENABLE, 0x0)) #define HDA_CMD_SET_EAPD_BTL_ENABLE(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_EAPD_BTL_ENABLE, (payload))) #define HDA_CMD_GET_EAPD_BTL_ENABLE_LR_SWAP_MASK 0x00000004 #define HDA_CMD_GET_EAPD_BTL_ENABLE_LR_SWAP_SHIFT 2 #define HDA_CMD_GET_EAPD_BTL_ENABLE_EAPD_MASK 0x00000002 #define HDA_CMD_GET_EAPD_BTL_ENABLE_EAPD_SHIFT 1 #define HDA_CMD_GET_EAPD_BTL_ENABLE_BTL_MASK 0x00000001 #define HDA_CMD_GET_EAPD_BTL_ENABLE_BTL_SHIFT 0 #define HDA_CMD_GET_EAPD_BTL_ENABLE_LR_SWAP(rsp) \ (((rsp) & HDA_CMD_GET_EAPD_BTL_ENABLE_LR_SWAP_MASK) >> \ HDA_CMD_GET_EAPD_BTL_ENABLE_LR_SWAP_SHIFT) #define HDA_CMD_GET_EAPD_BTL_ENABLE_EAPD(rsp) \ (((rsp) & HDA_CMD_GET_EAPD_BTL_ENABLE_EAPD_MASK) >> \ HDA_CMD_GET_EAPD_BTL_ENABLE_EAPD_SHIFT) #define HDA_CMD_GET_EAPD_BTL_ENABLE_BTL(rsp) \ (((rsp) & HDA_CMD_GET_EAPD_BTL_ENABLE_BTL_MASK) >> \ HDA_CMD_GET_EAPD_BTL_ENABLE_BTL_SHIFT) #define HDA_CMD_SET_EAPD_BTL_ENABLE_LR_SWAP 0x04 #define HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD 0x02 #define HDA_CMD_SET_EAPD_BTL_ENABLE_BTL 0x01 /* GPI Data */ #define HDA_CMD_VERB_GET_GPI_DATA 0xf10 #define HDA_CMD_VERB_SET_GPI_DATA 0x710 #define HDA_CMD_GET_GPI_DATA(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPI_DATA, 0x0)) #define HDA_CMD_SET_GPI_DATA(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPI_DATA, (payload))) /* GPI Wake Enable Mask */ #define HDA_CMD_VERB_GET_GPI_WAKE_ENABLE_MASK 0xf11 #define HDA_CMD_VERB_SET_GPI_WAKE_ENABLE_MASK 0x711 #define HDA_CMD_GET_GPI_WAKE_ENABLE_MASK(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPI_WAKE_ENABLE_MASK, 0x0)) #define HDA_CMD_SET_GPI_WAKE_ENABLE_MASK(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPI_WAKE_ENABLE_MASK, (payload))) /* GPI Unsolicited Enable Mask */ #define HDA_CMD_VERB_GET_GPI_UNSOLICITED_ENABLE_MASK 0xf12 #define HDA_CMD_VERB_SET_GPI_UNSOLICITED_ENABLE_MASK 0x712 #define HDA_CMD_GET_GPI_UNSOLICITED_ENABLE_MASK(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPI_UNSOLICITED_ENABLE_MASK, 0x0)) #define HDA_CMD_SET_GPI_UNSOLICITED_ENABLE_MASK(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPI_UNSOLICITED_ENABLE_MASK, (payload))) /* GPI Sticky Mask */ #define HDA_CMD_VERB_GET_GPI_STICKY_MASK 0xf13 #define HDA_CMD_VERB_SET_GPI_STICKY_MASK 0x713 #define HDA_CMD_GET_GPI_STICKY_MASK(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPI_STICKY_MASK, 0x0)) #define HDA_CMD_SET_GPI_STICKY_MASK(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPI_STICKY_MASK, (payload))) /* GPO Data */ #define HDA_CMD_VERB_GET_GPO_DATA 0xf14 #define HDA_CMD_VERB_SET_GPO_DATA 0x714 #define HDA_CMD_GET_GPO_DATA(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPO_DATA, 0x0)) #define HDA_CMD_SET_GPO_DATA(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPO_DATA, (payload))) /* GPIO Data */ #define HDA_CMD_VERB_GET_GPIO_DATA 0xf15 #define HDA_CMD_VERB_SET_GPIO_DATA 0x715 #define HDA_CMD_GET_GPIO_DATA(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPIO_DATA, 0x0)) #define HDA_CMD_SET_GPIO_DATA(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPIO_DATA, (payload))) /* GPIO Enable Mask */ #define HDA_CMD_VERB_GET_GPIO_ENABLE_MASK 0xf16 #define HDA_CMD_VERB_SET_GPIO_ENABLE_MASK 0x716 #define HDA_CMD_GET_GPIO_ENABLE_MASK(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPIO_ENABLE_MASK, 0x0)) #define HDA_CMD_SET_GPIO_ENABLE_MASK(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPIO_ENABLE_MASK, (payload))) /* GPIO Direction */ #define HDA_CMD_VERB_GET_GPIO_DIRECTION 0xf17 #define HDA_CMD_VERB_SET_GPIO_DIRECTION 0x717 #define HDA_CMD_GET_GPIO_DIRECTION(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPIO_DIRECTION, 0x0)) #define HDA_CMD_SET_GPIO_DIRECTION(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPIO_DIRECTION, (payload))) /* GPIO Wake Enable Mask */ #define HDA_CMD_VERB_GET_GPIO_WAKE_ENABLE_MASK 0xf18 #define HDA_CMD_VERB_SET_GPIO_WAKE_ENABLE_MASK 0x718 #define HDA_CMD_GET_GPIO_WAKE_ENABLE_MASK(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPIO_WAKE_ENABLE_MASK, 0x0)) #define HDA_CMD_SET_GPIO_WAKE_ENABLE_MASK(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPIO_WAKE_ENABLE_MASK, (payload))) /* GPIO Unsolicited Enable Mask */ #define HDA_CMD_VERB_GET_GPIO_UNSOLICITED_ENABLE_MASK 0xf19 #define HDA_CMD_VERB_SET_GPIO_UNSOLICITED_ENABLE_MASK 0x719 #define HDA_CMD_GET_GPIO_UNSOLICITED_ENABLE_MASK(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPIO_UNSOLICITED_ENABLE_MASK, 0x0)) #define HDA_CMD_SET_GPIO_UNSOLICITED_ENABLE_MASK(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPIO_UNSOLICITED_ENABLE_MASK, (payload))) /* GPIO_STICKY_MASK */ #define HDA_CMD_VERB_GET_GPIO_STICKY_MASK 0xf1a #define HDA_CMD_VERB_SET_GPIO_STICKY_MASK 0x71a #define HDA_CMD_GET_GPIO_STICKY_MASK(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_GPIO_STICKY_MASK, 0x0)) #define HDA_CMD_SET_GPIO_STICKY_MASK(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_GPIO_STICKY_MASK, (payload))) /* Beep Generation */ #define HDA_CMD_VERB_GET_BEEP_GENERATION 0xf0a #define HDA_CMD_VERB_SET_BEEP_GENERATION 0x70a #define HDA_CMD_GET_BEEP_GENERATION(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_BEEP_GENERATION, 0x0)) #define HDA_CMD_SET_BEEP_GENERATION(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_BEEP_GENERATION, (payload))) /* Volume Knob */ #define HDA_CMD_VERB_GET_VOLUME_KNOB 0xf0f #define HDA_CMD_VERB_SET_VOLUME_KNOB 0x70f #define HDA_CMD_GET_VOLUME_KNOB(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_VOLUME_KNOB, 0x0)) #define HDA_CMD_SET_VOLUME_KNOB(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_VOLUME_KNOB, (payload))) /* Subsystem ID */ #define HDA_CMD_VERB_GET_SUBSYSTEM_ID 0xf20 #define HDA_CMD_VERB_SET_SUSBYSTEM_ID1 0x720 #define HDA_CMD_VERB_SET_SUBSYSTEM_ID2 0x721 #define HDA_CMD_VERB_SET_SUBSYSTEM_ID3 0x722 #define HDA_CMD_VERB_SET_SUBSYSTEM_ID4 0x723 #define HDA_CMD_GET_SUBSYSTEM_ID(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_SUBSYSTEM_ID, 0x0)) #define HDA_CMD_SET_SUBSYSTEM_ID1(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_SUSBYSTEM_ID1, (payload))) #define HDA_CMD_SET_SUBSYSTEM_ID2(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_SUSBYSTEM_ID2, (payload))) #define HDA_CMD_SET_SUBSYSTEM_ID3(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_SUSBYSTEM_ID3, (payload))) #define HDA_CMD_SET_SUBSYSTEM_ID4(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_SUSBYSTEM_ID4, (payload))) /* Configuration Default */ #define HDA_CMD_VERB_GET_CONFIGURATION_DEFAULT 0xf1c #define HDA_CMD_VERB_SET_CONFIGURATION_DEFAULT1 0x71c #define HDA_CMD_VERB_SET_CONFIGURATION_DEFAULT2 0x71d #define HDA_CMD_VERB_SET_CONFIGURATION_DEFAULT3 0x71e #define HDA_CMD_VERB_SET_CONFIGURATION_DEFAULT4 0x71f #define HDA_CMD_GET_CONFIGURATION_DEFAULT(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_CONFIGURATION_DEFAULT, 0x0)) #define HDA_CMD_SET_CONFIGURATION_DEFAULT1(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_CONFIGURATION_DEFAULT1, (payload))) #define HDA_CMD_SET_CONFIGURATION_DEFAULT2(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_CONFIGURATION_DEFAULT2, (payload))) #define HDA_CMD_SET_CONFIGURATION_DEFAULT3(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_CONFIGURATION_DEFAULT3, (payload))) #define HDA_CMD_SET_CONFIGURATION_DEFAULT4(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_CONFIGURATION_DEFAULT4, (payload))) /* Stripe Control */ #define HDA_CMD_VERB_GET_STRIPE_CONTROL 0xf24 #define HDA_CMD_VERB_SET_STRIPE_CONTROL 0x724 #define HDA_CMD_GET_STRIPE_CONTROL(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_STRIPE_CONTROL, 0x0)) #define HDA_CMD_SET_STRIPE_CONTROL(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_STRIPE_CONTROL, (payload))) /* Channel Count Control */ #define HDA_CMD_VERB_GET_CONV_CHAN_COUNT 0xf2d -#define HDA_CMD_VERB_SET_CONV_CHAN_COUNT 0x72d +#define HDA_CMD_VERB_SET_CONV_CHAN_COUNT 0x72d #define HDA_CMD_GET_CONV_CHAN_COUNT(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_CONV_CHAN_COUNT, 0x0)) #define HDA_CMD_SET_CONV_CHAN_COUNT(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_CONV_CHAN_COUNT, (payload))) -#define HDA_CMD_VERB_GET_HDMI_DIP_SIZE 0xf2e +#define HDA_CMD_VERB_GET_HDMI_DIP_SIZE 0xf2e #define HDA_CMD_GET_HDMI_DIP_SIZE(cad, nid, arg) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_HDMI_DIP_SIZE, (arg))) -#define HDA_CMD_VERB_GET_HDMI_ELDD 0xf2f +#define HDA_CMD_VERB_GET_HDMI_ELDD 0xf2f #define HDA_CMD_GET_HDMI_ELDD(cad, nid, off) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_HDMI_ELDD, (off))) -#define HDA_CMD_VERB_GET_HDMI_DIP_INDEX 0xf30 -#define HDA_CMD_VERB_SET_HDMI_DIP_INDEX 0x730 +#define HDA_CMD_VERB_GET_HDMI_DIP_INDEX 0xf30 +#define HDA_CMD_VERB_SET_HDMI_DIP_INDEX 0x730 #define HDA_CMD_GET_HDMI_DIP_INDEX(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_HDMI_DIP_INDEX, 0x0)) #define HDA_CMD_SET_HDMI_DIP_INDEX(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_HDMI_DIP_INDEX, (payload))) -#define HDA_CMD_VERB_GET_HDMI_DIP_DATA 0xf31 -#define HDA_CMD_VERB_SET_HDMI_DIP_DATA 0x731 +#define HDA_CMD_VERB_GET_HDMI_DIP_DATA 0xf31 +#define HDA_CMD_VERB_SET_HDMI_DIP_DATA 0x731 #define HDA_CMD_GET_HDMI_DIP_DATA(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_HDMI_DIP_DATA, 0x0)) #define HDA_CMD_SET_HDMI_DIP_DATA(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_HDMI_DIP_DATA, (payload))) -#define HDA_CMD_VERB_GET_HDMI_DIP_XMIT 0xf32 -#define HDA_CMD_VERB_SET_HDMI_DIP_XMIT 0x732 +#define HDA_CMD_VERB_GET_HDMI_DIP_XMIT 0xf32 +#define HDA_CMD_VERB_SET_HDMI_DIP_XMIT 0x732 #define HDA_CMD_GET_HDMI_DIP_XMIT(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_HDMI_DIP_XMIT, 0x0)) #define HDA_CMD_SET_HDMI_DIP_XMIT(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_HDMI_DIP_XMIT, (payload))) -#define HDA_CMD_VERB_GET_HDMI_CP_CTRL 0xf33 -#define HDA_CMD_VERB_SET_HDMI_CP_CTRL 0x733 +#define HDA_CMD_VERB_GET_HDMI_CP_CTRL 0xf33 +#define HDA_CMD_VERB_SET_HDMI_CP_CTRL 0x733 -#define HDA_CMD_VERB_GET_HDMI_CHAN_SLOT 0xf34 -#define HDA_CMD_VERB_SET_HDMI_CHAN_SLOT 0x734 +#define HDA_CMD_VERB_GET_HDMI_CHAN_SLOT 0xf34 +#define HDA_CMD_VERB_SET_HDMI_CHAN_SLOT 0x734 #define HDA_CMD_GET_HDMI_CHAN_SLOT(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_GET_HDMI_CHAN_SLOT, 0x0)) #define HDA_CMD_SET_HDMI_CHAN_SLOT(cad, nid, payload) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_SET_HDMI_CHAN_SLOT, (payload))) #define HDA_HDMI_CODING_TYPE_REF_STREAM_HEADER 0 #define HDA_HDMI_CODING_TYPE_LPCM 1 #define HDA_HDMI_CODING_TYPE_AC3 2 #define HDA_HDMI_CODING_TYPE_MPEG1 3 #define HDA_HDMI_CODING_TYPE_MP3 4 #define HDA_HDMI_CODING_TYPE_MPEG2 5 #define HDA_HDMI_CODING_TYPE_AACLC 6 #define HDA_HDMI_CODING_TYPE_DTS 7 #define HDA_HDMI_CODING_TYPE_ATRAC 8 #define HDA_HDMI_CODING_TYPE_SACD 9 #define HDA_HDMI_CODING_TYPE_EAC3 10 #define HDA_HDMI_CODING_TYPE_DTS_HD 11 #define HDA_HDMI_CODING_TYPE_MLP 12 #define HDA_HDMI_CODING_TYPE_DST 13 #define HDA_HDMI_CODING_TYPE_WMAPRO 14 #define HDA_HDMI_CODING_TYPE_REF_CTX 15 /* Function Reset */ #define HDA_CMD_VERB_FUNCTION_RESET 0x7ff #define HDA_CMD_FUNCTION_RESET(cad, nid) \ (HDA_CMD_12BIT((cad), (nid), \ HDA_CMD_VERB_FUNCTION_RESET, 0x0)) /**************************************************************************** * HDA Device Parameters ****************************************************************************/ /* Vendor ID */ #define HDA_PARAM_VENDOR_ID 0x00 #define HDA_PARAM_VENDOR_ID_VENDOR_ID_MASK 0xffff0000 #define HDA_PARAM_VENDOR_ID_VENDOR_ID_SHIFT 16 #define HDA_PARAM_VENDOR_ID_DEVICE_ID_MASK 0x0000ffff #define HDA_PARAM_VENDOR_ID_DEVICE_ID_SHIFT 0 #define HDA_PARAM_VENDOR_ID_VENDOR_ID(param) \ (((param) & HDA_PARAM_VENDOR_ID_VENDOR_ID_MASK) >> \ HDA_PARAM_VENDOR_ID_VENDOR_ID_SHIFT) #define HDA_PARAM_VENDOR_ID_DEVICE_ID(param) \ (((param) & HDA_PARAM_VENDOR_ID_DEVICE_ID_MASK) >> \ HDA_PARAM_VENDOR_ID_DEVICE_ID_SHIFT) /* Revision ID */ #define HDA_PARAM_REVISION_ID 0x02 #define HDA_PARAM_REVISION_ID_MAJREV_MASK 0x00f00000 #define HDA_PARAM_REVISION_ID_MAJREV_SHIFT 20 #define HDA_PARAM_REVISION_ID_MINREV_MASK 0x000f0000 #define HDA_PARAM_REVISION_ID_MINREV_SHIFT 16 #define HDA_PARAM_REVISION_ID_REVISION_ID_MASK 0x0000ff00 #define HDA_PARAM_REVISION_ID_REVISION_ID_SHIFT 8 #define HDA_PARAM_REVISION_ID_STEPPING_ID_MASK 0x000000ff #define HDA_PARAM_REVISION_ID_STEPPING_ID_SHIFT 0 #define HDA_PARAM_REVISION_ID_MAJREV(param) \ (((param) & HDA_PARAM_REVISION_ID_MAJREV_MASK) >> \ HDA_PARAM_REVISION_ID_MAJREV_SHIFT) #define HDA_PARAM_REVISION_ID_MINREV(param) \ (((param) & HDA_PARAM_REVISION_ID_MINREV_MASK) >> \ HDA_PARAM_REVISION_ID_MINREV_SHIFT) #define HDA_PARAM_REVISION_ID_REVISION_ID(param) \ (((param) & HDA_PARAM_REVISION_ID_REVISION_ID_MASK) >> \ HDA_PARAM_REVISION_ID_REVISION_ID_SHIFT) #define HDA_PARAM_REVISION_ID_STEPPING_ID(param) \ (((param) & HDA_PARAM_REVISION_ID_STEPPING_ID_MASK) >> \ HDA_PARAM_REVISION_ID_STEPPING_ID_SHIFT) /* Subordinate Node Cound */ #define HDA_PARAM_SUB_NODE_COUNT 0x04 #define HDA_PARAM_SUB_NODE_COUNT_START_MASK 0x00ff0000 #define HDA_PARAM_SUB_NODE_COUNT_START_SHIFT 16 #define HDA_PARAM_SUB_NODE_COUNT_TOTAL_MASK 0x000000ff #define HDA_PARAM_SUB_NODE_COUNT_TOTAL_SHIFT 0 #define HDA_PARAM_SUB_NODE_COUNT_START(param) \ (((param) & HDA_PARAM_SUB_NODE_COUNT_START_MASK) >> \ HDA_PARAM_SUB_NODE_COUNT_START_SHIFT) #define HDA_PARAM_SUB_NODE_COUNT_TOTAL(param) \ (((param) & HDA_PARAM_SUB_NODE_COUNT_TOTAL_MASK) >> \ HDA_PARAM_SUB_NODE_COUNT_TOTAL_SHIFT) /* Function Group Type */ #define HDA_PARAM_FCT_GRP_TYPE 0x05 #define HDA_PARAM_FCT_GRP_TYPE_UNSOL_MASK 0x00000100 #define HDA_PARAM_FCT_GRP_TYPE_UNSOL_SHIFT 8 #define HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_MASK 0x000000ff #define HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_SHIFT 0 #define HDA_PARAM_FCT_GRP_TYPE_UNSOL(param) \ (((param) & HDA_PARAM_FCT_GRP_TYPE_UNSOL_MASK) >> \ HDA_PARAM_FCT_GROUP_TYPE_UNSOL_SHIFT) #define HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE(param) \ (((param) & HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_MASK) >> \ HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_SHIFT) #define HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO 0x01 #define HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_MODEM 0x02 /* Audio Function Group Capabilities */ #define HDA_PARAM_AUDIO_FCT_GRP_CAP 0x08 #define HDA_PARAM_AUDIO_FCT_GRP_CAP_BEEP_GEN_MASK 0x00010000 #define HDA_PARAM_AUDIO_FCT_GRP_CAP_BEEP_GEN_SHIFT 16 #define HDA_PARAM_AUDIO_FCT_GRP_CAP_INPUT_DELAY_MASK 0x00000f00 #define HDA_PARAM_AUDIO_FCT_GRP_CAP_INPUT_DELAY_SHIFT 8 #define HDA_PARAM_AUDIO_FCT_GRP_CAP_OUTPUT_DELAY_MASK 0x0000000f #define HDA_PARAM_AUDIO_FCT_GRP_CAP_OUTPUT_DELAY_SHIFT 0 #define HDA_PARAM_AUDIO_FCT_GRP_CAP_BEEP_GEN(param) \ (((param) & HDA_PARAM_AUDIO_FCT_GRP_CAP_BEEP_GEN_MASK) >> \ HDA_PARAM_AUDIO_FCT_GRP_CAP_BEEP_GEN_SHIFT) #define HDA_PARAM_AUDIO_FCT_GRP_CAP_INPUT_DELAY(param) \ (((param) & HDA_PARAM_AUDIO_FCT_GRP_CAP_INPUT_DELAY_MASK) >> \ HDA_PARAM_AUDIO_FCT_GRP_CAP_INPUT_DELAY_SHIFT) #define HDA_PARAM_AUDIO_FCT_GRP_CAP_OUTPUT_DELAY(param) \ (((param) & HDA_PARAM_AUDIO_FCT_GRP_CAP_OUTPUT_DELAY_MASK) >> \ HDA_PARAM_AUDIO_FCT_GRP_CAP_OUTPUT_DELAY_SHIFT) /* Audio Widget Capabilities */ #define HDA_PARAM_AUDIO_WIDGET_CAP 0x09 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_MASK 0x00f00000 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_SHIFT 20 #define HDA_PARAM_AUDIO_WIDGET_CAP_DELAY_MASK 0x000f0000 #define HDA_PARAM_AUDIO_WIDGET_CAP_DELAY_SHIFT 16 #define HDA_PARAM_AUDIO_WIDGET_CAP_CC_EXT_MASK 0x0000e000 #define HDA_PARAM_AUDIO_WIDGET_CAP_CC_EXT_SHIFT 13 #define HDA_PARAM_AUDIO_WIDGET_CAP_CP_MASK 0x00001000 #define HDA_PARAM_AUDIO_WIDGET_CAP_CP_SHIFT 12 #define HDA_PARAM_AUDIO_WIDGET_CAP_LR_SWAP_MASK 0x00000800 #define HDA_PARAM_AUDIO_WIDGET_CAP_LR_SWAP_SHIFT 11 #define HDA_PARAM_AUDIO_WIDGET_CAP_POWER_CTRL_MASK 0x00000400 #define HDA_PARAM_AUDIO_WIDGET_CAP_POWER_CTRL_SHIFT 10 #define HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL_MASK 0x00000200 #define HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL_SHIFT 9 #define HDA_PARAM_AUDIO_WIDGET_CAP_CONN_LIST_MASK 0x00000100 #define HDA_PARAM_AUDIO_WIDGET_CAP_CONN_LIST_SHIFT 8 #define HDA_PARAM_AUDIO_WIDGET_CAP_UNSOL_CAP_MASK 0x00000080 #define HDA_PARAM_AUDIO_WIDGET_CAP_UNSOL_CAP_SHIFT 7 #define HDA_PARAM_AUDIO_WIDGET_CAP_PROC_WIDGET_MASK 0x00000040 #define HDA_PARAM_AUDIO_WIDGET_CAP_PROC_WIDGET_SHIFT 6 #define HDA_PARAM_AUDIO_WIDGET_CAP_STRIPE_MASK 0x00000020 #define HDA_PARAM_AUDIO_WIDGET_CAP_STRIPE_SHIFT 5 #define HDA_PARAM_AUDIO_WIDGET_CAP_FORMAT_OVR_MASK 0x00000010 #define HDA_PARAM_AUDIO_WIDGET_CAP_FORMAT_OVR_SHIFT 4 #define HDA_PARAM_AUDIO_WIDGET_CAP_AMP_OVR_MASK 0x00000008 #define HDA_PARAM_AUDIO_WIDGET_CAP_AMP_OVR_SHIFT 3 #define HDA_PARAM_AUDIO_WIDGET_CAP_OUT_AMP_MASK 0x00000004 #define HDA_PARAM_AUDIO_WIDGET_CAP_OUT_AMP_SHIFT 2 #define HDA_PARAM_AUDIO_WIDGET_CAP_IN_AMP_MASK 0x00000002 #define HDA_PARAM_AUDIO_WIDGET_CAP_IN_AMP_SHIFT 1 #define HDA_PARAM_AUDIO_WIDGET_CAP_STEREO_MASK 0x00000001 #define HDA_PARAM_AUDIO_WIDGET_CAP_STEREO_SHIFT 0 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_DELAY(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_DELAY_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_DELAY_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_CC(param) \ ((((param) & HDA_PARAM_AUDIO_WIDGET_CAP_CC_EXT_MASK) >> \ (HDA_PARAM_AUDIO_WIDGET_CAP_CC_EXT_SHIFT - 1)) | \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_STEREO_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_STEREO_SHIFT)) #define HDA_PARAM_AUDIO_WIDGET_CAP_CP(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_CP_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_CP_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_LR_SWAP(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_LR_SWAP_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_LR_SWAP_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_POWER_CTRL(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_POWER_CTRL_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_POWER_CTRL_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_CONN_LIST(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_CONN_LIST_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_CONN_LIST_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_UNSOL_CAP(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_UNSOL_CAP_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_UNSOL_CAP_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_PROC_WIDGET(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_PROC_WIDGET_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_PROC_WIDGET_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_STRIPE(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_STRIPE_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_STRIPE_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_FORMAT_OVR(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_FORMAT_OVR_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_FORMAT_OVR_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_AMP_OVR(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_AMP_OVR_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_AMP_OVR_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_OUT_AMP(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_OUT_AMP_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_OUT_AMP_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_IN_AMP(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_IN_AMP_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_IN_AMP_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_STEREO(param) \ (((param) & HDA_PARAM_AUDIO_WIDGET_CAP_STEREO_MASK) >> \ HDA_PARAM_AUDIO_WIDGET_CAP_STEREO_SHIFT) #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT 0x0 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT 0x1 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER 0x2 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR 0x3 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX 0x4 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_POWER_WIDGET 0x5 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_VOLUME_WIDGET 0x6 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_BEEP_WIDGET 0x7 #define HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_VENDOR_WIDGET 0xf /* Supported PCM Size, Rates */ #define HDA_PARAM_SUPP_PCM_SIZE_RATE 0x0a #define HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT_MASK 0x00100000 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT_SHIFT 20 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT_MASK 0x00080000 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT_SHIFT 19 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT_MASK 0x00040000 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT_SHIFT 18 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_16BIT_MASK 0x00020000 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_16BIT_SHIFT 17 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_8BIT_MASK 0x00010000 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_8BIT_SHIFT 16 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_8KHZ_MASK 0x00000001 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_8KHZ_SHIFT 0 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_11KHZ_MASK 0x00000002 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_11KHZ_SHIFT 1 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_16KHZ_MASK 0x00000004 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_16KHZ_SHIFT 2 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_22KHZ_MASK 0x00000008 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_22KHZ_SHIFT 3 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_32KHZ_MASK 0x00000010 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_32KHZ_SHIFT 4 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_44KHZ_MASK 0x00000020 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_44KHZ_SHIFT 5 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_48KHZ_MASK 0x00000040 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_48KHZ_SHIFT 6 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_88KHZ_MASK 0x00000080 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_88KHZ_SHIFT 7 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_96KHZ_MASK 0x00000100 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_96KHZ_SHIFT 8 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_176KHZ_MASK 0x00000200 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_176KHZ_SHIFT 9 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_192KHZ_MASK 0x00000400 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_192KHZ_SHIFT 10 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_384KHZ_MASK 0x00000800 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_384KHZ_SHIFT 11 #define HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_16BIT(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_16BIT_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_16BIT_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_8BIT(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_8BIT_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_8BIT_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_8KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_8KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_8KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_11KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_11KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_11KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_16KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_16KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_16KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_22KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_22KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_22KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_32KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_32KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_32KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_44KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_44KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_44KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_48KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_48KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_48KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_88KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_88KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_88KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_96KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_96KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_96KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_176KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_176KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_176KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_192KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_192KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_192KHZ_SHIFT) #define HDA_PARAM_SUPP_PCM_SIZE_RATE_384KHZ(param) \ (((param) & HDA_PARAM_SUPP_PCM_SIZE_RATE_384KHZ_MASK) >> \ HDA_PARAM_SUPP_PCM_SIZE_RATE_384KHZ_SHIFT) /* Supported Stream Formats */ #define HDA_PARAM_SUPP_STREAM_FORMATS 0x0b #define HDA_PARAM_SUPP_STREAM_FORMATS_AC3_MASK 0x00000004 #define HDA_PARAM_SUPP_STREAM_FORMATS_AC3_SHIFT 2 #define HDA_PARAM_SUPP_STREAM_FORMATS_FLOAT32_MASK 0x00000002 #define HDA_PARAM_SUPP_STREAM_FORMATS_FLOAT32_SHIFT 1 #define HDA_PARAM_SUPP_STREAM_FORMATS_PCM_MASK 0x00000001 #define HDA_PARAM_SUPP_STREAM_FORMATS_PCM_SHIFT 0 #define HDA_PARAM_SUPP_STREAM_FORMATS_AC3(param) \ (((param) & HDA_PARAM_SUPP_STREAM_FORMATS_AC3_MASK) >> \ HDA_PARAM_SUPP_STREAM_FORMATS_AC3_SHIFT) #define HDA_PARAM_SUPP_STREAM_FORMATS_FLOAT32(param) \ (((param) & HDA_PARAM_SUPP_STREAM_FORMATS_FLOAT32_MASK) >> \ HDA_PARAM_SUPP_STREAM_FORMATS_FLOAT32_SHIFT) #define HDA_PARAM_SUPP_STREAM_FORMATS_PCM(param) \ (((param) & HDA_PARAM_SUPP_STREAM_FORMATS_PCM_MASK) >> \ HDA_PARAM_SUPP_STREAM_FORMATS_PCM_SHIFT) /* Pin Capabilities */ #define HDA_PARAM_PIN_CAP 0x0c #define HDA_PARAM_PIN_CAP_HBR_MASK 0x08000000 #define HDA_PARAM_PIN_CAP_HBR_SHIFT 27 #define HDA_PARAM_PIN_CAP_DP_MASK 0x01000000 #define HDA_PARAM_PIN_CAP_DP_SHIFT 24 #define HDA_PARAM_PIN_CAP_EAPD_CAP_MASK 0x00010000 #define HDA_PARAM_PIN_CAP_EAPD_CAP_SHIFT 16 #define HDA_PARAM_PIN_CAP_VREF_CTRL_MASK 0x0000ff00 #define HDA_PARAM_PIN_CAP_VREF_CTRL_SHIFT 8 #define HDA_PARAM_PIN_CAP_VREF_CTRL_100_MASK 0x00002000 #define HDA_PARAM_PIN_CAP_VREF_CTRL_100_SHIFT 13 #define HDA_PARAM_PIN_CAP_VREF_CTRL_80_MASK 0x00001000 #define HDA_PARAM_PIN_CAP_VREF_CTRL_80_SHIFT 12 #define HDA_PARAM_PIN_CAP_VREF_CTRL_GROUND_MASK 0x00000400 #define HDA_PARAM_PIN_CAP_VREF_CTRL_GROUND_SHIFT 10 #define HDA_PARAM_PIN_CAP_VREF_CTRL_50_MASK 0x00000200 #define HDA_PARAM_PIN_CAP_VREF_CTRL_50_SHIFT 9 #define HDA_PARAM_PIN_CAP_VREF_CTRL_HIZ_MASK 0x00000100 #define HDA_PARAM_PIN_CAP_VREF_CTRL_HIZ_SHIFT 8 #define HDA_PARAM_PIN_CAP_HDMI_MASK 0x00000080 #define HDA_PARAM_PIN_CAP_HDMI_SHIFT 7 #define HDA_PARAM_PIN_CAP_BALANCED_IO_PINS_MASK 0x00000040 #define HDA_PARAM_PIN_CAP_BALANCED_IO_PINS_SHIFT 6 #define HDA_PARAM_PIN_CAP_INPUT_CAP_MASK 0x00000020 #define HDA_PARAM_PIN_CAP_INPUT_CAP_SHIFT 5 #define HDA_PARAM_PIN_CAP_OUTPUT_CAP_MASK 0x00000010 #define HDA_PARAM_PIN_CAP_OUTPUT_CAP_SHIFT 4 #define HDA_PARAM_PIN_CAP_HEADPHONE_CAP_MASK 0x00000008 #define HDA_PARAM_PIN_CAP_HEADPHONE_CAP_SHIFT 3 #define HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP_MASK 0x00000004 #define HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP_SHIFT 2 #define HDA_PARAM_PIN_CAP_TRIGGER_REQD_MASK 0x00000002 #define HDA_PARAM_PIN_CAP_TRIGGER_REQD_SHIFT 1 #define HDA_PARAM_PIN_CAP_IMP_SENSE_CAP_MASK 0x00000001 #define HDA_PARAM_PIN_CAP_IMP_SENSE_CAP_SHIFT 0 #define HDA_PARAM_PIN_CAP_HBR(param) \ (((param) & HDA_PARAM_PIN_CAP_HBR_MASK) >> \ HDA_PARAM_PIN_CAP_HBR_SHIFT) #define HDA_PARAM_PIN_CAP_DP(param) \ (((param) & HDA_PARAM_PIN_CAP_DP_MASK) >> \ HDA_PARAM_PIN_CAP_DP_SHIFT) #define HDA_PARAM_PIN_CAP_EAPD_CAP(param) \ (((param) & HDA_PARAM_PIN_CAP_EAPD_CAP_MASK) >> \ HDA_PARAM_PIN_CAP_EAPD_CAP_SHIFT) #define HDA_PARAM_PIN_CAP_VREF_CTRL(param) \ (((param) & HDA_PARAM_PIN_CAP_VREF_CTRL_MASK) >> \ HDA_PARAM_PIN_CAP_VREF_CTRL_SHIFT) #define HDA_PARAM_PIN_CAP_VREF_CTRL_100(param) \ (((param) & HDA_PARAM_PIN_CAP_VREF_CTRL_100_MASK) >> \ HDA_PARAM_PIN_CAP_VREF_CTRL_100_SHIFT) #define HDA_PARAM_PIN_CAP_VREF_CTRL_80(param) \ (((param) & HDA_PARAM_PIN_CAP_VREF_CTRL_80_MASK) >> \ HDA_PARAM_PIN_CAP_VREF_CTRL_80_SHIFT) #define HDA_PARAM_PIN_CAP_VREF_CTRL_GROUND(param) \ (((param) & HDA_PARAM_PIN_CAP_VREF_CTRL_GROUND_MASK) >> \ HDA_PARAM_PIN_CAP_VREF_CTRL_GROUND_SHIFT) #define HDA_PARAM_PIN_CAP_VREF_CTRL_50(param) \ (((param) & HDA_PARAM_PIN_CAP_VREF_CTRL_50_MASK) >> \ HDA_PARAM_PIN_CAP_VREF_CTRL_50_SHIFT) #define HDA_PARAM_PIN_CAP_VREF_CTRL_HIZ(param) \ (((param) & HDA_PARAM_PIN_CAP_VREF_CTRL_HIZ_MASK) >> \ HDA_PARAM_PIN_CAP_VREF_CTRL_HIZ_SHIFT) #define HDA_PARAM_PIN_CAP_HDMI(param) \ (((param) & HDA_PARAM_PIN_CAP_HDMI_MASK) >> \ HDA_PARAM_PIN_CAP_HDMI_SHIFT) #define HDA_PARAM_PIN_CAP_BALANCED_IO_PINS(param) \ (((param) & HDA_PARAM_PIN_CAP_BALANCED_IO_PINS_MASK) >> \ HDA_PARAM_PIN_CAP_BALANCED_IO_PINS_SHIFT) #define HDA_PARAM_PIN_CAP_INPUT_CAP(param) \ (((param) & HDA_PARAM_PIN_CAP_INPUT_CAP_MASK) >> \ HDA_PARAM_PIN_CAP_INPUT_CAP_SHIFT) #define HDA_PARAM_PIN_CAP_OUTPUT_CAP(param) \ (((param) & HDA_PARAM_PIN_CAP_OUTPUT_CAP_MASK) >> \ HDA_PARAM_PIN_CAP_OUTPUT_CAP_SHIFT) #define HDA_PARAM_PIN_CAP_HEADPHONE_CAP(param) \ (((param) & HDA_PARAM_PIN_CAP_HEADPHONE_CAP_MASK) >> \ HDA_PARAM_PIN_CAP_HEADPHONE_CAP_SHIFT) #define HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP(param) \ (((param) & HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP_MASK) >> \ HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP_SHIFT) #define HDA_PARAM_PIN_CAP_TRIGGER_REQD(param) \ (((param) & HDA_PARAM_PIN_CAP_TRIGGER_REQD_MASK) >> \ HDA_PARAM_PIN_CAP_TRIGGER_REQD_SHIFT) #define HDA_PARAM_PIN_CAP_IMP_SENSE_CAP(param) \ (((param) & HDA_PARAM_PIN_CAP_IMP_SENSE_CAP_MASK) >> \ HDA_PARAM_PIN_CAP_IMP_SENSE_CAP_SHIFT) /* Input Amplifier Capabilities */ #define HDA_PARAM_INPUT_AMP_CAP 0x0d #define HDA_PARAM_INPUT_AMP_CAP_MUTE_CAP_MASK 0x80000000 #define HDA_PARAM_INPUT_AMP_CAP_MUTE_CAP_SHIFT 31 #define HDA_PARAM_INPUT_AMP_CAP_STEPSIZE_MASK 0x007f0000 #define HDA_PARAM_INPUT_AMP_CAP_STEPSIZE_SHIFT 16 #define HDA_PARAM_INPUT_AMP_CAP_NUMSTEPS_MASK 0x00007f00 #define HDA_PARAM_INPUT_AMP_CAP_NUMSTEPS_SHIFT 8 #define HDA_PARAM_INPUT_AMP_CAP_OFFSET_MASK 0x0000007f #define HDA_PARAM_INPUT_AMP_CAP_OFFSET_SHIFT 0 #define HDA_PARAM_INPUT_AMP_CAP_MUTE_CAP(param) \ (((param) & HDA_PARAM_INPUT_AMP_CAP_MUTE_CAP_MASK) >> \ HDA_PARAM_INPUT_AMP_CAP_MUTE_CAP_SHIFT) #define HDA_PARAM_INPUT_AMP_CAP_STEPSIZE(param) \ (((param) & HDA_PARAM_INPUT_AMP_CAP_STEPSIZE_MASK) >> \ HDA_PARAM_INPUT_AMP_CAP_STEPSIZE_SHIFT) #define HDA_PARAM_INPUT_AMP_CAP_NUMSTEPS(param) \ (((param) & HDA_PARAM_INPUT_AMP_CAP_NUMSTEPS_MASK) >> \ HDA_PARAM_INPUT_AMP_CAP_NUMSTEPS_SHIFT) #define HDA_PARAM_INPUT_AMP_CAP_OFFSET(param) \ (((param) & HDA_PARAM_INPUT_AMP_CAP_OFFSET_MASK) >> \ HDA_PARAM_INPUT_AMP_CAP_OFFSET_SHIFT) /* Output Amplifier Capabilities */ #define HDA_PARAM_OUTPUT_AMP_CAP 0x12 #define HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP_MASK 0x80000000 #define HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP_SHIFT 31 #define HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE_MASK 0x007f0000 #define HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE_SHIFT 16 #define HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS_MASK 0x00007f00 #define HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS_SHIFT 8 #define HDA_PARAM_OUTPUT_AMP_CAP_OFFSET_MASK 0x0000007f #define HDA_PARAM_OUTPUT_AMP_CAP_OFFSET_SHIFT 0 #define HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP(param) \ (((param) & HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP_MASK) >> \ HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP_SHIFT) #define HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE(param) \ (((param) & HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE_MASK) >> \ HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE_SHIFT) #define HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS(param) \ (((param) & HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS_MASK) >> \ HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS_SHIFT) #define HDA_PARAM_OUTPUT_AMP_CAP_OFFSET(param) \ (((param) & HDA_PARAM_OUTPUT_AMP_CAP_OFFSET_MASK) >> \ HDA_PARAM_OUTPUT_AMP_CAP_OFFSET_SHIFT) /* Connection List Length */ #define HDA_PARAM_CONN_LIST_LENGTH 0x0e #define HDA_PARAM_CONN_LIST_LENGTH_LONG_FORM_MASK 0x00000080 #define HDA_PARAM_CONN_LIST_LENGTH_LONG_FORM_SHIFT 7 #define HDA_PARAM_CONN_LIST_LENGTH_LIST_LENGTH_MASK 0x0000007f #define HDA_PARAM_CONN_LIST_LENGTH_LIST_LENGTH_SHIFT 0 #define HDA_PARAM_CONN_LIST_LENGTH_LONG_FORM(param) \ (((param) & HDA_PARAM_CONN_LIST_LENGTH_LONG_FORM_MASK) >> \ HDA_PARAM_CONN_LIST_LENGTH_LONG_FORM_SHIFT) #define HDA_PARAM_CONN_LIST_LENGTH_LIST_LENGTH(param) \ (((param) & HDA_PARAM_CONN_LIST_LENGTH_LIST_LENGTH_MASK) >> \ HDA_PARAM_CONN_LIST_LENGTH_LIST_LENGTH_SHIFT) /* Supported Power States */ #define HDA_PARAM_SUPP_POWER_STATES 0x0f #define HDA_PARAM_SUPP_POWER_STATES_D3_MASK 0x00000008 #define HDA_PARAM_SUPP_POWER_STATES_D3_SHIFT 3 #define HDA_PARAM_SUPP_POWER_STATES_D2_MASK 0x00000004 #define HDA_PARAM_SUPP_POWER_STATES_D2_SHIFT 2 #define HDA_PARAM_SUPP_POWER_STATES_D1_MASK 0x00000002 #define HDA_PARAM_SUPP_POWER_STATES_D1_SHIFT 1 #define HDA_PARAM_SUPP_POWER_STATES_D0_MASK 0x00000001 #define HDA_PARAM_SUPP_POWER_STATES_D0_SHIFT 0 #define HDA_PARAM_SUPP_POWER_STATES_D3(param) \ (((param) & HDA_PARAM_SUPP_POWER_STATES_D3_MASK) >> \ HDA_PARAM_SUPP_POWER_STATES_D3_SHIFT) #define HDA_PARAM_SUPP_POWER_STATES_D2(param) \ (((param) & HDA_PARAM_SUPP_POWER_STATES_D2_MASK) >> \ HDA_PARAM_SUPP_POWER_STATES_D2_SHIFT) #define HDA_PARAM_SUPP_POWER_STATES_D1(param) \ (((param) & HDA_PARAM_SUPP_POWER_STATES_D1_MASK) >> \ HDA_PARAM_SUPP_POWER_STATES_D1_SHIFT) #define HDA_PARAM_SUPP_POWER_STATES_D0(param) \ (((param) & HDA_PARAM_SUPP_POWER_STATES_D0_MASK) >> \ HDA_PARAM_SUPP_POWER_STATES_D0_SHIFT) /* Processing Capabilities */ #define HDA_PARAM_PROCESSING_CAP 0x10 #define HDA_PARAM_PROCESSING_CAP_NUMCOEFF_MASK 0x0000ff00 #define HDA_PARAM_PROCESSING_CAP_NUMCOEFF_SHIFT 8 #define HDA_PARAM_PROCESSING_CAP_BENIGN_MASK 0x00000001 #define HDA_PARAM_PROCESSING_CAP_BENIGN_SHIFT 0 #define HDA_PARAM_PROCESSING_CAP_NUMCOEFF(param) \ (((param) & HDA_PARAM_PROCESSING_CAP_NUMCOEFF_MASK) >> \ HDA_PARAM_PROCESSING_CAP_NUMCOEFF_SHIFT) #define HDA_PARAM_PROCESSING_CAP_BENIGN(param) \ (((param) & HDA_PARAM_PROCESSING_CAP_BENIGN_MASK) >> \ HDA_PARAM_PROCESSING_CAP_BENIGN_SHIFT) /* GPIO Count */ #define HDA_PARAM_GPIO_COUNT 0x11 #define HDA_PARAM_GPIO_COUNT_GPI_WAKE_MASK 0x80000000 #define HDA_PARAM_GPIO_COUNT_GPI_WAKE_SHIFT 31 #define HDA_PARAM_GPIO_COUNT_GPI_UNSOL_MASK 0x40000000 #define HDA_PARAM_GPIO_COUNT_GPI_UNSOL_SHIFT 30 #define HDA_PARAM_GPIO_COUNT_NUM_GPI_MASK 0x00ff0000 #define HDA_PARAM_GPIO_COUNT_NUM_GPI_SHIFT 16 #define HDA_PARAM_GPIO_COUNT_NUM_GPO_MASK 0x0000ff00 #define HDA_PARAM_GPIO_COUNT_NUM_GPO_SHIFT 8 #define HDA_PARAM_GPIO_COUNT_NUM_GPIO_MASK 0x000000ff #define HDA_PARAM_GPIO_COUNT_NUM_GPIO_SHIFT 0 #define HDA_PARAM_GPIO_COUNT_GPI_WAKE(param) \ (((param) & HDA_PARAM_GPIO_COUNT_GPI_WAKE_MASK) >> \ HDA_PARAM_GPIO_COUNT_GPI_WAKE_SHIFT) #define HDA_PARAM_GPIO_COUNT_GPI_UNSOL(param) \ (((param) & HDA_PARAM_GPIO_COUNT_GPI_UNSOL_MASK) >> \ HDA_PARAM_GPIO_COUNT_GPI_UNSOL_SHIFT) #define HDA_PARAM_GPIO_COUNT_NUM_GPI(param) \ (((param) & HDA_PARAM_GPIO_COUNT_NUM_GPI_MASK) >> \ HDA_PARAM_GPIO_COUNT_NUM_GPI_SHIFT) #define HDA_PARAM_GPIO_COUNT_NUM_GPO(param) \ (((param) & HDA_PARAM_GPIO_COUNT_NUM_GPO_MASK) >> \ HDA_PARAM_GPIO_COUNT_NUM_GPO_SHIFT) #define HDA_PARAM_GPIO_COUNT_NUM_GPIO(param) \ (((param) & HDA_PARAM_GPIO_COUNT_NUM_GPIO_MASK) >> \ HDA_PARAM_GPIO_COUNT_NUM_GPIO_SHIFT) /* Volume Knob Capabilities */ #define HDA_PARAM_VOLUME_KNOB_CAP 0x13 #define HDA_PARAM_VOLUME_KNOB_CAP_DELTA_MASK 0x00000080 #define HDA_PARAM_VOLUME_KNOB_CAP_DELTA_SHIFT 7 #define HDA_PARAM_VOLUME_KNOB_CAP_NUM_STEPS_MASK 0x0000007f #define HDA_PARAM_VOLUME_KNOB_CAP_NUM_STEPS_SHIFT 0 #define HDA_PARAM_VOLUME_KNOB_CAP_DELTA(param) \ (((param) & HDA_PARAM_VOLUME_KNOB_CAP_DELTA_MASK) >> \ HDA_PARAM_VOLUME_KNOB_CAP_DELTA_SHIFT) #define HDA_PARAM_VOLUME_KNOB_CAP_NUM_STEPS(param) \ (((param) & HDA_PARAM_VOLUME_KNOB_CAP_NUM_STEPS_MASK) >> \ HDA_PARAM_VOLUME_KNOB_CAP_NUM_STEPS_SHIFT) #define HDA_CONFIG_DEFAULTCONF_SEQUENCE_MASK 0x0000000f #define HDA_CONFIG_DEFAULTCONF_SEQUENCE_SHIFT 0 #define HDA_CONFIG_DEFAULTCONF_ASSOCIATION_MASK 0x000000f0 #define HDA_CONFIG_DEFAULTCONF_ASSOCIATION_SHIFT 4 #define HDA_CONFIG_DEFAULTCONF_MISC_MASK 0x00000f00 #define HDA_CONFIG_DEFAULTCONF_MISC_SHIFT 8 #define HDA_CONFIG_DEFAULTCONF_COLOR_MASK 0x0000f000 #define HDA_CONFIG_DEFAULTCONF_COLOR_SHIFT 12 #define HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_MASK 0x000f0000 #define HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_SHIFT 16 #define HDA_CONFIG_DEFAULTCONF_DEVICE_MASK 0x00f00000 #define HDA_CONFIG_DEFAULTCONF_DEVICE_SHIFT 20 #define HDA_CONFIG_DEFAULTCONF_LOCATION_MASK 0x3f000000 #define HDA_CONFIG_DEFAULTCONF_LOCATION_SHIFT 24 #define HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK 0xc0000000 #define HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_SHIFT 30 #define HDA_CONFIG_DEFAULTCONF_SEQUENCE(conf) \ (((conf) & HDA_CONFIG_DEFAULTCONF_SEQUENCE_MASK) >> \ HDA_CONFIG_DEFAULTCONF_SEQUENCE_SHIFT) #define HDA_CONFIG_DEFAULTCONF_ASSOCIATION(conf) \ (((conf) & HDA_CONFIG_DEFAULTCONF_ASSOCIATION_MASK) >> \ HDA_CONFIG_DEFAULTCONF_ASSOCIATION_SHIFT) #define HDA_CONFIG_DEFAULTCONF_MISC(conf) \ (((conf) & HDA_CONFIG_DEFAULTCONF_MISC_MASK) >> \ HDA_CONFIG_DEFAULTCONF_MISC_SHIFT) #define HDA_CONFIG_DEFAULTCONF_COLOR(conf) \ (((conf) & HDA_CONFIG_DEFAULTCONF_COLOR_MASK) >> \ HDA_CONFIG_DEFAULTCONF_COLOR_SHIFT) #define HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE(conf) \ (((conf) & HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_MASK) >> \ HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_SHIFT) #define HDA_CONFIG_DEFAULTCONF_DEVICE(conf) \ (((conf) & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) >> \ HDA_CONFIG_DEFAULTCONF_DEVICE_SHIFT) #define HDA_CONFIG_DEFAULTCONF_LOCATION(conf) \ (((conf) & HDA_CONFIG_DEFAULTCONF_LOCATION_MASK) >> \ HDA_CONFIG_DEFAULTCONF_LOCATION_SHIFT) #define HDA_CONFIG_DEFAULTCONF_CONNECTIVITY(conf) \ (((conf) & HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK) >> \ HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_SHIFT) #define HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_JACK (0<<30) #define HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_NONE (1<<30) #define HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED (2<<30) #define HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_BOTH (3<<30) #define HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_OUT (0<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_SPEAKER (1<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT (2<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_CD (3<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_SPDIF_OUT (4<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_DIGITAL_OTHER_OUT (5<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_MODEM_LINE (6<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_MODEM_HANDSET (7<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_IN (8<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_AUX (9<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN (10<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_TELEPHONY (11<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_SPDIF_IN (12<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_DIGITAL_OTHER_IN (13<<20) #define HDA_CONFIG_DEFAULTCONF_DEVICE_OTHER (15<<20) #endif diff --git a/sys/dev/sound/pci/hda/hdaa.c b/sys/dev/sound/pci/hda/hdaa.c index ae7d77d431b2..621361c5fa70 100644 --- a/sys/dev/sound/pci/hda/hdaa.c +++ b/sys/dev/sound/pci/hda/hdaa.c @@ -1,7154 +1,7154 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006 Stephane E. Potvin * Copyright (c) 2006 Ariff Abdullah * Copyright (c) 2008-2012 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Intel High Definition Audio (Audio function) driver for FreeBSD. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include #include #include #include #include "mixer_if.h" SND_DECLARE_FILE("$FreeBSD$"); #define hdaa_lock(devinfo) snd_mtxlock((devinfo)->lock) #define hdaa_unlock(devinfo) snd_mtxunlock((devinfo)->lock) #define hdaa_lockassert(devinfo) snd_mtxassert((devinfo)->lock) static const struct { const char *key; uint32_t value; } hdaa_quirks_tab[] = { { "softpcmvol", HDAA_QUIRK_SOFTPCMVOL }, { "fixedrate", HDAA_QUIRK_FIXEDRATE }, { "forcestereo", HDAA_QUIRK_FORCESTEREO }, { "eapdinv", HDAA_QUIRK_EAPDINV }, { "senseinv", HDAA_QUIRK_SENSEINV }, { "ivref50", HDAA_QUIRK_IVREF50 }, { "ivref80", HDAA_QUIRK_IVREF80 }, { "ivref100", HDAA_QUIRK_IVREF100 }, { "ovref50", HDAA_QUIRK_OVREF50 }, { "ovref80", HDAA_QUIRK_OVREF80 }, { "ovref100", HDAA_QUIRK_OVREF100 }, { "ivref", HDAA_QUIRK_IVREF }, { "ovref", HDAA_QUIRK_OVREF }, { "vref", HDAA_QUIRK_VREF }, }; #define HDA_PARSE_MAXDEPTH 10 MALLOC_DEFINE(M_HDAA, "hdaa", "HDA Audio"); static const char *HDA_COLORS[16] = {"Unknown", "Black", "Grey", "Blue", "Green", "Red", "Orange", "Yellow", "Purple", "Pink", "Res.A", "Res.B", "Res.C", "Res.D", "White", "Other"}; static const char *HDA_DEVS[16] = {"Line-out", "Speaker", "Headphones", "CD", "SPDIF-out", "Digital-out", "Modem-line", "Modem-handset", "Line-in", "AUX", "Mic", "Telephony", "SPDIF-in", "Digital-in", "Res.E", "Other"}; static const char *HDA_CONNS[4] = {"Jack", "None", "Fixed", "Both"}; static const char *HDA_CONNECTORS[16] = { "Unknown", "1/8", "1/4", "ATAPI", "RCA", "Optical", "Digital", "Analog", "DIN", "XLR", "RJ-11", "Combo", "0xc", "0xd", "0xe", "Other" }; static const char *HDA_LOCS[64] = { "0x00", "Rear", "Front", "Left", "Right", "Top", "Bottom", "Rear-panel", "Drive-bay", "0x09", "0x0a", "0x0b", "0x0c", "0x0d", "0x0e", "0x0f", "Internal", "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "Riser", "0x18", "Onboard", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f", "External", "Ext-Rear", "Ext-Front", "Ext-Left", "Ext-Right", "Ext-Top", "Ext-Bottom", "0x07", "0x28", "0x29", "0x2a", "0x2b", "0x2c", "0x2d", "0x2e", "0x2f", "Other", "0x31", "0x32", "0x33", "0x34", "0x35", "Other-Bott", "Lid-In", "Lid-Out", "0x39", "0x3a", "0x3b", "0x3c", "0x3d", "0x3e", "0x3f" }; static const char *HDA_GPIO_ACTIONS[8] = { "keep", "set", "clear", "disable", "input", "0x05", "0x06", "0x07"}; static const char *HDA_HDMI_CODING_TYPES[18] = { "undefined", "LPCM", "AC-3", "MPEG1", "MP3", "MPEG2", "AAC-LC", "DTS", "ATRAC", "DSD", "E-AC-3", "DTS-HD", "MLP", "DST", "WMAPro", "HE-AAC", "HE-AACv2", "MPEG-Surround" }; /* Default */ static uint32_t hdaa_fmt[] = { SND_FORMAT(AFMT_S16_LE, 2, 0), 0 }; static struct pcmchan_caps hdaa_caps = {48000, 48000, hdaa_fmt, 0}; static const struct { uint32_t rate; int valid; uint16_t base; uint16_t mul; uint16_t div; } hda_rate_tab[] = { { 8000, 1, 0x0000, 0x0000, 0x0500 }, /* (48000 * 1) / 6 */ { 9600, 0, 0x0000, 0x0000, 0x0400 }, /* (48000 * 1) / 5 */ { 12000, 0, 0x0000, 0x0000, 0x0300 }, /* (48000 * 1) / 4 */ { 16000, 1, 0x0000, 0x0000, 0x0200 }, /* (48000 * 1) / 3 */ { 18000, 0, 0x0000, 0x1000, 0x0700 }, /* (48000 * 3) / 8 */ { 19200, 0, 0x0000, 0x0800, 0x0400 }, /* (48000 * 2) / 5 */ { 24000, 0, 0x0000, 0x0000, 0x0100 }, /* (48000 * 1) / 2 */ { 28800, 0, 0x0000, 0x1000, 0x0400 }, /* (48000 * 3) / 5 */ { 32000, 1, 0x0000, 0x0800, 0x0200 }, /* (48000 * 2) / 3 */ { 36000, 0, 0x0000, 0x1000, 0x0300 }, /* (48000 * 3) / 4 */ { 38400, 0, 0x0000, 0x1800, 0x0400 }, /* (48000 * 4) / 5 */ { 48000, 1, 0x0000, 0x0000, 0x0000 }, /* (48000 * 1) / 1 */ { 64000, 0, 0x0000, 0x1800, 0x0200 }, /* (48000 * 4) / 3 */ { 72000, 0, 0x0000, 0x1000, 0x0100 }, /* (48000 * 3) / 2 */ { 96000, 1, 0x0000, 0x0800, 0x0000 }, /* (48000 * 2) / 1 */ { 144000, 0, 0x0000, 0x1000, 0x0000 }, /* (48000 * 3) / 1 */ { 192000, 1, 0x0000, 0x1800, 0x0000 }, /* (48000 * 4) / 1 */ { 8820, 0, 0x4000, 0x0000, 0x0400 }, /* (44100 * 1) / 5 */ { 11025, 1, 0x4000, 0x0000, 0x0300 }, /* (44100 * 1) / 4 */ { 12600, 0, 0x4000, 0x0800, 0x0600 }, /* (44100 * 2) / 7 */ { 14700, 0, 0x4000, 0x0000, 0x0200 }, /* (44100 * 1) / 3 */ { 17640, 0, 0x4000, 0x0800, 0x0400 }, /* (44100 * 2) / 5 */ { 18900, 0, 0x4000, 0x1000, 0x0600 }, /* (44100 * 3) / 7 */ { 22050, 1, 0x4000, 0x0000, 0x0100 }, /* (44100 * 1) / 2 */ { 25200, 0, 0x4000, 0x1800, 0x0600 }, /* (44100 * 4) / 7 */ { 26460, 0, 0x4000, 0x1000, 0x0400 }, /* (44100 * 3) / 5 */ { 29400, 0, 0x4000, 0x0800, 0x0200 }, /* (44100 * 2) / 3 */ { 33075, 0, 0x4000, 0x1000, 0x0300 }, /* (44100 * 3) / 4 */ { 35280, 0, 0x4000, 0x1800, 0x0400 }, /* (44100 * 4) / 5 */ { 44100, 1, 0x4000, 0x0000, 0x0000 }, /* (44100 * 1) / 1 */ { 58800, 0, 0x4000, 0x1800, 0x0200 }, /* (44100 * 4) / 3 */ { 66150, 0, 0x4000, 0x1000, 0x0100 }, /* (44100 * 3) / 2 */ { 88200, 1, 0x4000, 0x0800, 0x0000 }, /* (44100 * 2) / 1 */ { 132300, 0, 0x4000, 0x1000, 0x0000 }, /* (44100 * 3) / 1 */ { 176400, 1, 0x4000, 0x1800, 0x0000 }, /* (44100 * 4) / 1 */ }; #define HDA_RATE_TAB_LEN (sizeof(hda_rate_tab) / sizeof(hda_rate_tab[0])) const static char *ossnames[] = SOUND_DEVICE_NAMES; /**************************************************************************** * Function prototypes ****************************************************************************/ static int hdaa_pcmchannel_setup(struct hdaa_chan *); static void hdaa_widget_connection_select(struct hdaa_widget *, uint8_t); static void hdaa_audio_ctl_amp_set(struct hdaa_audio_ctl *, uint32_t, int, int); static struct hdaa_audio_ctl *hdaa_audio_ctl_amp_get(struct hdaa_devinfo *, nid_t, int, int, int); static void hdaa_audio_ctl_amp_set_internal(struct hdaa_devinfo *, nid_t, int, int, int, int, int, int); static void hdaa_dump_pin_config(struct hdaa_widget *w, uint32_t conf); static char * hdaa_audio_ctl_ossmixer_mask2allname(uint32_t mask, char *buf, size_t len) { int i, first = 1; bzero(buf, len); for (i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (mask & (1 << i)) { if (first == 0) strlcat(buf, ", ", len); strlcat(buf, ossnames[i], len); first = 0; } } return (buf); } static struct hdaa_audio_ctl * hdaa_audio_ctl_each(struct hdaa_devinfo *devinfo, int *index) { if (devinfo == NULL || index == NULL || devinfo->ctl == NULL || devinfo->ctlcnt < 1 || *index < 0 || *index >= devinfo->ctlcnt) return (NULL); return (&devinfo->ctl[(*index)++]); } static struct hdaa_audio_ctl * hdaa_audio_ctl_amp_get(struct hdaa_devinfo *devinfo, nid_t nid, int dir, int index, int cnt) { struct hdaa_audio_ctl *ctl; int i, found = 0; if (devinfo == NULL || devinfo->ctl == NULL) return (NULL); i = 0; while ((ctl = hdaa_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0) continue; if (ctl->widget->nid != nid) continue; if (dir && ctl->ndir != dir) continue; if (index >= 0 && ctl->ndir == HDAA_CTL_IN && ctl->dir == ctl->ndir && ctl->index != index) continue; found++; if (found == cnt || cnt <= 0) return (ctl); } return (NULL); } static const struct matrix { struct pcmchan_matrix m; int analog; } matrixes[] = { { SND_CHN_MATRIX_MAP_1_0, 1 }, { SND_CHN_MATRIX_MAP_2_0, 1 }, { SND_CHN_MATRIX_MAP_2_1, 0 }, { SND_CHN_MATRIX_MAP_3_0, 0 }, { SND_CHN_MATRIX_MAP_3_1, 0 }, { SND_CHN_MATRIX_MAP_4_0, 1 }, { SND_CHN_MATRIX_MAP_4_1, 0 }, { SND_CHN_MATRIX_MAP_5_0, 0 }, { SND_CHN_MATRIX_MAP_5_1, 1 }, { SND_CHN_MATRIX_MAP_6_0, 0 }, { SND_CHN_MATRIX_MAP_6_1, 0 }, { SND_CHN_MATRIX_MAP_7_0, 0 }, { SND_CHN_MATRIX_MAP_7_1, 1 }, }; static const char *channel_names[] = SND_CHN_T_NAMES; /* * Connected channels change handler. */ static void hdaa_channels_handler(struct hdaa_audio_as *as) { struct hdaa_pcm_devinfo *pdevinfo = as->pdevinfo; struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_chan *ch = &devinfo->chans[as->chans[0]]; struct hdaa_widget *w; uint8_t *eld; int i, total, sub, assume, channels; uint16_t cpins, upins, tpins; cpins = upins = 0; eld = NULL; for (i = 0; i < 16; i++) { if (as->pins[i] <= 0) continue; w = hdaa_widget_get(devinfo, as->pins[i]); if (w == NULL) continue; if (w->wclass.pin.connected == 1) cpins |= (1 << i); else if (w->wclass.pin.connected != 0) upins |= (1 << i); if (w->eld != NULL && w->eld_len >= 8) eld = w->eld; } tpins = cpins | upins; if (as->hpredir >= 0) tpins &= 0x7fff; if (tpins == 0) tpins = as->pinset; total = sub = assume = channels = 0; if (eld) { /* Map CEA speakers to sound(4) channels. */ if (eld[7] & 0x01) /* Front Left/Right */ channels |= SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR; if (eld[7] & 0x02) /* Low Frequency Effect */ channels |= SND_CHN_T_MASK_LF; if (eld[7] & 0x04) /* Front Center */ channels |= SND_CHN_T_MASK_FC; if (eld[7] & 0x08) { /* Rear Left/Right */ /* If we have both RLR and RLRC, report RLR as side. */ if (eld[7] & 0x40) /* Rear Left/Right Center */ channels |= SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR; else channels |= SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR; } if (eld[7] & 0x10) /* Rear center */ channels |= SND_CHN_T_MASK_BC; if (eld[7] & 0x20) /* Front Left/Right Center */ channels |= SND_CHN_T_MASK_FLC | SND_CHN_T_MASK_FRC; if (eld[7] & 0x40) /* Rear Left/Right Center */ channels |= SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR; } else if (as->pinset != 0 && (tpins & 0xffe0) == 0) { /* Map UAA speakers to sound(4) channels. */ if (tpins & 0x0001) channels |= SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR; if (tpins & 0x0002) channels |= SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF; if (tpins & 0x0004) channels |= SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR; if (tpins & 0x0008) channels |= SND_CHN_T_MASK_FLC | SND_CHN_T_MASK_FRC; if (tpins & 0x0010) { /* If there is no back pin, report side as back. */ if ((as->pinset & 0x0004) == 0) channels |= SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR; else channels |= SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR; } } else if (as->mixed) { /* Mixed assoc can be only stereo or theoretically mono. */ if (ch->channels == 1) channels |= SND_CHN_T_MASK_FC; else channels |= SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR; } if (channels) { /* We have some usable channels info. */ HDA_BOOTVERBOSE( device_printf(pdevinfo->dev, "%s channel set is: ", as->dir == HDAA_CTL_OUT ? "Playback" : "Recording"); for (i = 0; i < SND_CHN_T_MAX; i++) if (channels & (1 << i)) printf("%s, ", channel_names[i]); printf("\n"); ); /* Look for maximal fitting matrix. */ for (i = 0; i < sizeof(matrixes) / sizeof(struct matrix); i++) { if (as->pinset != 0 && matrixes[i].analog == 0) continue; if ((matrixes[i].m.mask & ~channels) == 0) { total = matrixes[i].m.channels; sub = matrixes[i].m.ext; } } } if (total == 0) { assume = 1; total = ch->channels; sub = (total == 6 || total == 8) ? 1 : 0; } HDA_BOOTVERBOSE( device_printf(pdevinfo->dev, "%s channel matrix is: %s%d.%d (%s)\n", as->dir == HDAA_CTL_OUT ? "Playback" : "Recording", assume ? "unknown, assuming " : "", total - sub, sub, cpins != 0 ? "connected" : (upins != 0 ? "unknown" : "disconnected")); ); } /* * Headphones redirection change handler. */ static void hdaa_hpredir_handler(struct hdaa_widget *w) { struct hdaa_devinfo *devinfo = w->devinfo; struct hdaa_audio_as *as = &devinfo->as[w->bindas]; struct hdaa_widget *w1; struct hdaa_audio_ctl *ctl; uint32_t val; int j, connected = w->wclass.pin.connected; HDA_BOOTVERBOSE( device_printf((as->pdevinfo && as->pdevinfo->dev) ? as->pdevinfo->dev : devinfo->dev, "Redirect output to: %s\n", connected ? "headphones": "main"); ); /* (Un)Mute headphone pin. */ ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_IN, -1, 1); if (ctl != NULL && ctl->mute) { /* If pin has muter - use it. */ val = connected ? 0 : 1; if (val != ctl->forcemute) { ctl->forcemute = val; hdaa_audio_ctl_amp_set(ctl, HDAA_AMP_MUTE_DEFAULT, HDAA_AMP_VOL_DEFAULT, HDAA_AMP_VOL_DEFAULT); } } else { /* If there is no muter - disable pin output. */ if (connected) val = w->wclass.pin.ctrl | HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE; else val = w->wclass.pin.ctrl & ~HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE; if (val != w->wclass.pin.ctrl) { w->wclass.pin.ctrl = val; hda_command(devinfo->dev, HDA_CMD_SET_PIN_WIDGET_CTRL(0, w->nid, w->wclass.pin.ctrl)); } } /* (Un)Mute other pins. */ for (j = 0; j < 15; j++) { if (as->pins[j] <= 0) continue; ctl = hdaa_audio_ctl_amp_get(devinfo, as->pins[j], HDAA_CTL_IN, -1, 1); if (ctl != NULL && ctl->mute) { /* If pin has muter - use it. */ val = connected ? 1 : 0; if (val == ctl->forcemute) continue; ctl->forcemute = val; hdaa_audio_ctl_amp_set(ctl, HDAA_AMP_MUTE_DEFAULT, HDAA_AMP_VOL_DEFAULT, HDAA_AMP_VOL_DEFAULT); continue; } /* If there is no muter - disable pin output. */ w1 = hdaa_widget_get(devinfo, as->pins[j]); if (w1 != NULL) { if (connected) val = w1->wclass.pin.ctrl & ~HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE; else val = w1->wclass.pin.ctrl | HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE; if (val != w1->wclass.pin.ctrl) { w1->wclass.pin.ctrl = val; hda_command(devinfo->dev, HDA_CMD_SET_PIN_WIDGET_CTRL(0, w1->nid, w1->wclass.pin.ctrl)); } } } } /* * Recording source change handler. */ static void hdaa_autorecsrc_handler(struct hdaa_audio_as *as, struct hdaa_widget *w) { struct hdaa_pcm_devinfo *pdevinfo = as->pdevinfo; struct hdaa_devinfo *devinfo; struct hdaa_widget *w1; int i, mask, fullmask, prio, bestprio; char buf[128]; if (!as->mixed || pdevinfo == NULL || pdevinfo->mixer == NULL) return; /* Don't touch anything if we asked not to. */ if (pdevinfo->autorecsrc == 0 || (pdevinfo->autorecsrc == 1 && w != NULL)) return; /* Don't touch anything if "mix" or "speaker" selected. */ if (pdevinfo->recsrc & (SOUND_MASK_IMIX | SOUND_MASK_SPEAKER)) return; /* Don't touch anything if several selected. */ if (ffs(pdevinfo->recsrc) != fls(pdevinfo->recsrc)) return; devinfo = pdevinfo->devinfo; mask = fullmask = 0; bestprio = 0; for (i = 0; i < 16; i++) { if (as->pins[i] <= 0) continue; w1 = hdaa_widget_get(devinfo, as->pins[i]); if (w1 == NULL || w1->enable == 0) continue; if (w1->wclass.pin.connected == 0) continue; prio = (w1->wclass.pin.connected == 1) ? 2 : 1; if (prio < bestprio) continue; if (prio > bestprio) { mask = 0; bestprio = prio; } mask |= (1 << w1->ossdev); fullmask |= (1 << w1->ossdev); } if (mask == 0) return; /* Prefer newly connected input. */ if (w != NULL && (mask & (1 << w->ossdev))) mask = (1 << w->ossdev); /* Prefer previously selected input */ if (mask & pdevinfo->recsrc) mask &= pdevinfo->recsrc; /* Prefer mic. */ if (mask & SOUND_MASK_MIC) mask = SOUND_MASK_MIC; /* Prefer monitor (2nd mic). */ if (mask & SOUND_MASK_MONITOR) mask = SOUND_MASK_MONITOR; /* Just take first one. */ mask = (1 << (ffs(mask) - 1)); HDA_BOOTVERBOSE( hdaa_audio_ctl_ossmixer_mask2allname(mask, buf, sizeof(buf)); device_printf(pdevinfo->dev, "Automatically set rec source to: %s\n", buf); ); hdaa_unlock(devinfo); mix_setrecsrc(pdevinfo->mixer, mask); hdaa_lock(devinfo); } /* * Jack presence detection event handler. */ static void hdaa_presence_handler(struct hdaa_widget *w) { struct hdaa_devinfo *devinfo = w->devinfo; struct hdaa_audio_as *as; uint32_t res; int connected, old; if (w->enable == 0 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) return; if (HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP(w->wclass.pin.cap) == 0 || (HDA_CONFIG_DEFAULTCONF_MISC(w->wclass.pin.config) & 1) != 0) return; res = hda_command(devinfo->dev, HDA_CMD_GET_PIN_SENSE(0, w->nid)); connected = (res & HDA_CMD_GET_PIN_SENSE_PRESENCE_DETECT) != 0; if (devinfo->quirks & HDAA_QUIRK_SENSEINV) connected = !connected; old = w->wclass.pin.connected; if (connected == old) return; w->wclass.pin.connected = connected; HDA_BOOTVERBOSE( if (connected || old != 2) { device_printf(devinfo->dev, "Pin sense: nid=%d sense=0x%08x (%sconnected)\n", w->nid, res, !connected ? "dis" : ""); } ); as = &devinfo->as[w->bindas]; if (as->hpredir >= 0 && as->pins[15] == w->nid) hdaa_hpredir_handler(w); if (as->dir == HDAA_CTL_IN && old != 2) hdaa_autorecsrc_handler(as, w); if (old != 2) hdaa_channels_handler(as); } /* * Callback for poll based presence detection. */ static void hdaa_jack_poll_callback(void *arg) { struct hdaa_devinfo *devinfo = arg; struct hdaa_widget *w; int i; hdaa_lock(devinfo); if (devinfo->poll_ival == 0) { hdaa_unlock(devinfo); return; } for (i = 0; i < devinfo->ascnt; i++) { if (devinfo->as[i].hpredir < 0) continue; w = hdaa_widget_get(devinfo, devinfo->as[i].pins[15]); if (w == NULL || w->enable == 0 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; hdaa_presence_handler(w); } callout_reset(&devinfo->poll_jack, devinfo->poll_ival, hdaa_jack_poll_callback, devinfo); hdaa_unlock(devinfo); } static void hdaa_eld_dump(struct hdaa_widget *w) { struct hdaa_devinfo *devinfo = w->devinfo; device_t dev = devinfo->dev; uint8_t *sad; int len, mnl, i, sadc, fmt; if (w->eld == NULL || w->eld_len < 4) return; device_printf(dev, "ELD nid=%d: ELD_Ver=%u Baseline_ELD_Len=%u\n", w->nid, w->eld[0] >> 3, w->eld[2]); if ((w->eld[0] >> 3) != 0x02) return; len = min(w->eld_len, (u_int)w->eld[2] * 4); mnl = w->eld[4] & 0x1f; device_printf(dev, "ELD nid=%d: CEA_EDID_Ver=%u MNL=%u\n", w->nid, w->eld[4] >> 5, mnl); sadc = w->eld[5] >> 4; device_printf(dev, "ELD nid=%d: SAD_Count=%u Conn_Type=%u S_AI=%u HDCP=%u\n", w->nid, sadc, (w->eld[5] >> 2) & 0x3, (w->eld[5] >> 1) & 0x1, w->eld[5] & 0x1); device_printf(dev, "ELD nid=%d: Aud_Synch_Delay=%ums\n", w->nid, w->eld[6] * 2); device_printf(dev, "ELD nid=%d: Channels=0x%b\n", w->nid, w->eld[7], "\020\07RLRC\06FLRC\05RC\04RLR\03FC\02LFE\01FLR"); device_printf(dev, "ELD nid=%d: Port_ID=0x%02x%02x%02x%02x%02x%02x%02x%02x\n", w->nid, w->eld[8], w->eld[9], w->eld[10], w->eld[11], w->eld[12], w->eld[13], w->eld[14], w->eld[15]); device_printf(dev, "ELD nid=%d: Manufacturer_Name=0x%02x%02x\n", w->nid, w->eld[16], w->eld[17]); device_printf(dev, "ELD nid=%d: Product_Code=0x%02x%02x\n", w->nid, w->eld[18], w->eld[19]); device_printf(dev, "ELD nid=%d: Monitor_Name_String='%.*s'\n", w->nid, mnl, &w->eld[20]); for (i = 0; i < sadc; i++) { sad = &w->eld[20 + mnl + i * 3]; fmt = (sad[0] >> 3) & 0x0f; if (fmt == HDA_HDMI_CODING_TYPE_REF_CTX) { fmt = (sad[2] >> 3) & 0x1f; if (fmt < 1 || fmt > 3) fmt = 0; else fmt += 14; } device_printf(dev, "ELD nid=%d: %s %dch freqs=0x%b", w->nid, HDA_HDMI_CODING_TYPES[fmt], (sad[0] & 0x07) + 1, sad[1], "\020\007192\006176\00596\00488\00348\00244\00132"); switch (fmt) { case HDA_HDMI_CODING_TYPE_LPCM: printf(" sizes=0x%b", sad[2] & 0x07, "\020\00324\00220\00116"); break; case HDA_HDMI_CODING_TYPE_AC3: case HDA_HDMI_CODING_TYPE_MPEG1: case HDA_HDMI_CODING_TYPE_MP3: case HDA_HDMI_CODING_TYPE_MPEG2: case HDA_HDMI_CODING_TYPE_AACLC: case HDA_HDMI_CODING_TYPE_DTS: case HDA_HDMI_CODING_TYPE_ATRAC: printf(" max_bitrate=%d", sad[2] * 8000); break; case HDA_HDMI_CODING_TYPE_WMAPRO: printf(" profile=%d", sad[2] & 0x07); break; } printf("\n"); } } static void hdaa_eld_handler(struct hdaa_widget *w) { struct hdaa_devinfo *devinfo = w->devinfo; uint32_t res; int i; if (w->enable == 0 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) return; if (HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP(w->wclass.pin.cap) == 0 || (HDA_CONFIG_DEFAULTCONF_MISC(w->wclass.pin.config) & 1) != 0) return; res = hda_command(devinfo->dev, HDA_CMD_GET_PIN_SENSE(0, w->nid)); if ((w->eld != 0) == ((res & HDA_CMD_GET_PIN_SENSE_ELD_VALID) != 0)) return; if (w->eld != NULL) { w->eld_len = 0; free(w->eld, M_HDAA); w->eld = NULL; } HDA_BOOTVERBOSE( device_printf(devinfo->dev, "Pin sense: nid=%d sense=0x%08x " "(%sconnected, ELD %svalid)\n", w->nid, res, (res & HDA_CMD_GET_PIN_SENSE_PRESENCE_DETECT) ? "" : "dis", (res & HDA_CMD_GET_PIN_SENSE_ELD_VALID) ? "" : "in"); ); if ((res & HDA_CMD_GET_PIN_SENSE_ELD_VALID) == 0) return; res = hda_command(devinfo->dev, HDA_CMD_GET_HDMI_DIP_SIZE(0, w->nid, 0x08)); if (res == HDA_INVALID) return; w->eld_len = res & 0xff; if (w->eld_len != 0) w->eld = malloc(w->eld_len, M_HDAA, M_ZERO | M_NOWAIT); if (w->eld == NULL) { w->eld_len = 0; return; } for (i = 0; i < w->eld_len; i++) { res = hda_command(devinfo->dev, HDA_CMD_GET_HDMI_ELDD(0, w->nid, i)); if (res & 0x80000000) w->eld[i] = res & 0xff; } HDA_BOOTVERBOSE( hdaa_eld_dump(w); ); hdaa_channels_handler(&devinfo->as[w->bindas]); } /* * Pin sense initializer. */ static void hdaa_sense_init(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as; struct hdaa_widget *w; int i, poll = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (HDA_PARAM_AUDIO_WIDGET_CAP_UNSOL_CAP(w->param.widget_cap)) { if (w->unsol < 0) w->unsol = HDAC_UNSOL_ALLOC( device_get_parent(devinfo->dev), devinfo->dev, w->nid); hda_command(devinfo->dev, HDA_CMD_SET_UNSOLICITED_RESPONSE(0, w->nid, HDA_CMD_SET_UNSOLICITED_RESPONSE_ENABLE | w->unsol)); } as = &devinfo->as[w->bindas]; if (as->hpredir >= 0 && as->pins[15] == w->nid) { if (HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP(w->wclass.pin.cap) == 0 || (HDA_CONFIG_DEFAULTCONF_MISC(w->wclass.pin.config) & 1) != 0) { device_printf(devinfo->dev, "No presence detection support at nid %d\n", w->nid); } else { if (w->unsol < 0) poll = 1; HDA_BOOTVERBOSE( device_printf(devinfo->dev, "Headphones redirection for " "association %d nid=%d using %s.\n", w->bindas, w->nid, (w->unsol < 0) ? "polling" : "unsolicited responses"); ); } } hdaa_presence_handler(w); if (!HDA_PARAM_PIN_CAP_DP(w->wclass.pin.cap) && !HDA_PARAM_PIN_CAP_HDMI(w->wclass.pin.cap)) continue; hdaa_eld_handler(w); } if (poll) { callout_reset(&devinfo->poll_jack, 1, hdaa_jack_poll_callback, devinfo); } } static void hdaa_sense_deinit(struct hdaa_devinfo *devinfo) { struct hdaa_widget *w; int i; callout_stop(&devinfo->poll_jack); for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (w->unsol < 0) continue; hda_command(devinfo->dev, HDA_CMD_SET_UNSOLICITED_RESPONSE(0, w->nid, 0)); HDAC_UNSOL_FREE( device_get_parent(devinfo->dev), devinfo->dev, w->unsol); w->unsol = -1; } } uint32_t hdaa_widget_pin_patch(uint32_t config, const char *str) { char buf[256]; char *key, *value, *rest, *bad; int ival, i; strlcpy(buf, str, sizeof(buf)); rest = buf; while ((key = strsep(&rest, "=")) != NULL) { value = strsep(&rest, " \t"); if (value == NULL) break; ival = strtol(value, &bad, 10); if (strcmp(key, "seq") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_SEQUENCE_MASK; config |= ((ival << HDA_CONFIG_DEFAULTCONF_SEQUENCE_SHIFT) & HDA_CONFIG_DEFAULTCONF_SEQUENCE_MASK); } else if (strcmp(key, "as") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_ASSOCIATION_MASK; config |= ((ival << HDA_CONFIG_DEFAULTCONF_ASSOCIATION_SHIFT) & HDA_CONFIG_DEFAULTCONF_ASSOCIATION_MASK); } else if (strcmp(key, "misc") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_MISC_MASK; config |= ((ival << HDA_CONFIG_DEFAULTCONF_MISC_SHIFT) & HDA_CONFIG_DEFAULTCONF_MISC_MASK); } else if (strcmp(key, "color") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_COLOR_MASK; if (bad[0] == 0) { config |= ((ival << HDA_CONFIG_DEFAULTCONF_COLOR_SHIFT) & HDA_CONFIG_DEFAULTCONF_COLOR_MASK); } for (i = 0; i < 16; i++) { if (strcasecmp(HDA_COLORS[i], value) == 0) { config |= (i << HDA_CONFIG_DEFAULTCONF_COLOR_SHIFT); break; } } } else if (strcmp(key, "ctype") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_MASK; if (bad[0] == 0) { config |= ((ival << HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_SHIFT) & HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_MASK); } for (i = 0; i < 16; i++) { if (strcasecmp(HDA_CONNECTORS[i], value) == 0) { config |= (i << HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_SHIFT); break; } } } else if (strcmp(key, "device") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; if (bad[0] == 0) { config |= ((ival << HDA_CONFIG_DEFAULTCONF_DEVICE_SHIFT) & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK); continue; } for (i = 0; i < 16; i++) { if (strcasecmp(HDA_DEVS[i], value) == 0) { config |= (i << HDA_CONFIG_DEFAULTCONF_DEVICE_SHIFT); break; } } } else if (strcmp(key, "loc") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_LOCATION_MASK; if (bad[0] == 0) { config |= ((ival << HDA_CONFIG_DEFAULTCONF_LOCATION_SHIFT) & HDA_CONFIG_DEFAULTCONF_LOCATION_MASK); continue; } for (i = 0; i < 64; i++) { if (strcasecmp(HDA_LOCS[i], value) == 0) { config |= (i << HDA_CONFIG_DEFAULTCONF_LOCATION_SHIFT); break; } } } else if (strcmp(key, "conn") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK; if (bad[0] == 0) { config |= ((ival << HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_SHIFT) & HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK); continue; } for (i = 0; i < 4; i++) { if (strcasecmp(HDA_CONNS[i], value) == 0) { config |= (i << HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_SHIFT); break; } } } } return (config); } uint32_t hdaa_gpio_patch(uint32_t gpio, const char *str) { char buf[256]; char *key, *value, *rest; int ikey, i; strlcpy(buf, str, sizeof(buf)); rest = buf; while ((key = strsep(&rest, "=")) != NULL) { value = strsep(&rest, " \t"); if (value == NULL) break; ikey = strtol(key, NULL, 10); if (ikey < 0 || ikey > 7) continue; for (i = 0; i < 7; i++) { if (strcasecmp(HDA_GPIO_ACTIONS[i], value) == 0) { gpio &= ~HDAA_GPIO_MASK(ikey); gpio |= i << HDAA_GPIO_SHIFT(ikey); break; } } } return (gpio); } static void hdaa_local_patch_pin(struct hdaa_widget *w) { device_t dev = w->devinfo->dev; const char *res = NULL; uint32_t config, orig; char buf[32]; config = orig = w->wclass.pin.config; snprintf(buf, sizeof(buf), "cad%u.nid%u.config", hda_get_codec_id(dev), w->nid); if (resource_string_value(device_get_name( device_get_parent(device_get_parent(dev))), device_get_unit(device_get_parent(device_get_parent(dev))), buf, &res) == 0) { if (strncmp(res, "0x", 2) == 0) { config = strtol(res + 2, NULL, 16); } else { config = hdaa_widget_pin_patch(config, res); } } snprintf(buf, sizeof(buf), "nid%u.config", w->nid); if (resource_string_value(device_get_name(dev), device_get_unit(dev), buf, &res) == 0) { if (strncmp(res, "0x", 2) == 0) { config = strtol(res + 2, NULL, 16); } else { config = hdaa_widget_pin_patch(config, res); } } HDA_BOOTVERBOSE( if (config != orig) device_printf(w->devinfo->dev, "Patching pin config nid=%u 0x%08x -> 0x%08x\n", w->nid, orig, config); ); w->wclass.pin.newconf = w->wclass.pin.config = config; } static void hdaa_dump_audio_formats_sb(struct sbuf *sb, uint32_t fcap, uint32_t pcmcap) { uint32_t cap; cap = fcap; if (cap != 0) { sbuf_printf(sb, " Stream cap: 0x%08x", cap); if (HDA_PARAM_SUPP_STREAM_FORMATS_AC3(cap)) sbuf_printf(sb, " AC3"); if (HDA_PARAM_SUPP_STREAM_FORMATS_FLOAT32(cap)) sbuf_printf(sb, " FLOAT32"); if (HDA_PARAM_SUPP_STREAM_FORMATS_PCM(cap)) sbuf_printf(sb, " PCM"); sbuf_printf(sb, "\n"); } cap = pcmcap; if (cap != 0) { sbuf_printf(sb, " PCM cap: 0x%08x", cap); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_8BIT(cap)) sbuf_printf(sb, " 8"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_16BIT(cap)) sbuf_printf(sb, " 16"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT(cap)) sbuf_printf(sb, " 20"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT(cap)) sbuf_printf(sb, " 24"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT(cap)) sbuf_printf(sb, " 32"); sbuf_printf(sb, " bits,"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_8KHZ(cap)) sbuf_printf(sb, " 8"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_11KHZ(cap)) sbuf_printf(sb, " 11"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_16KHZ(cap)) sbuf_printf(sb, " 16"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_22KHZ(cap)) sbuf_printf(sb, " 22"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_32KHZ(cap)) sbuf_printf(sb, " 32"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_44KHZ(cap)) sbuf_printf(sb, " 44"); sbuf_printf(sb, " 48"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_88KHZ(cap)) sbuf_printf(sb, " 88"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_96KHZ(cap)) sbuf_printf(sb, " 96"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_176KHZ(cap)) sbuf_printf(sb, " 176"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_192KHZ(cap)) sbuf_printf(sb, " 192"); sbuf_printf(sb, " KHz\n"); } } static void hdaa_dump_pin_sb(struct sbuf *sb, struct hdaa_widget *w) { uint32_t pincap, conf; pincap = w->wclass.pin.cap; sbuf_printf(sb, " Pin cap: 0x%08x", pincap); if (HDA_PARAM_PIN_CAP_IMP_SENSE_CAP(pincap)) sbuf_printf(sb, " ISC"); if (HDA_PARAM_PIN_CAP_TRIGGER_REQD(pincap)) sbuf_printf(sb, " TRQD"); if (HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP(pincap)) sbuf_printf(sb, " PDC"); if (HDA_PARAM_PIN_CAP_HEADPHONE_CAP(pincap)) sbuf_printf(sb, " HP"); if (HDA_PARAM_PIN_CAP_OUTPUT_CAP(pincap)) sbuf_printf(sb, " OUT"); if (HDA_PARAM_PIN_CAP_INPUT_CAP(pincap)) sbuf_printf(sb, " IN"); if (HDA_PARAM_PIN_CAP_BALANCED_IO_PINS(pincap)) sbuf_printf(sb, " BAL"); if (HDA_PARAM_PIN_CAP_HDMI(pincap)) sbuf_printf(sb, " HDMI"); if (HDA_PARAM_PIN_CAP_VREF_CTRL(pincap)) { sbuf_printf(sb, " VREF["); if (HDA_PARAM_PIN_CAP_VREF_CTRL_50(pincap)) sbuf_printf(sb, " 50"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_80(pincap)) sbuf_printf(sb, " 80"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_100(pincap)) sbuf_printf(sb, " 100"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_GROUND(pincap)) sbuf_printf(sb, " GROUND"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_HIZ(pincap)) sbuf_printf(sb, " HIZ"); sbuf_printf(sb, " ]"); } if (HDA_PARAM_PIN_CAP_EAPD_CAP(pincap)) sbuf_printf(sb, " EAPD"); if (HDA_PARAM_PIN_CAP_DP(pincap)) sbuf_printf(sb, " DP"); if (HDA_PARAM_PIN_CAP_HBR(pincap)) sbuf_printf(sb, " HBR"); sbuf_printf(sb, "\n"); conf = w->wclass.pin.config; sbuf_printf(sb, " Pin config: 0x%08x", conf); sbuf_printf(sb, " as=%d seq=%d " "device=%s conn=%s ctype=%s loc=%s color=%s misc=%d\n", HDA_CONFIG_DEFAULTCONF_ASSOCIATION(conf), HDA_CONFIG_DEFAULTCONF_SEQUENCE(conf), HDA_DEVS[HDA_CONFIG_DEFAULTCONF_DEVICE(conf)], HDA_CONNS[HDA_CONFIG_DEFAULTCONF_CONNECTIVITY(conf)], HDA_CONNECTORS[HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE(conf)], HDA_LOCS[HDA_CONFIG_DEFAULTCONF_LOCATION(conf)], HDA_COLORS[HDA_CONFIG_DEFAULTCONF_COLOR(conf)], HDA_CONFIG_DEFAULTCONF_MISC(conf)); sbuf_printf(sb, " Pin control: 0x%08x", w->wclass.pin.ctrl); if (w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_HPHN_ENABLE) sbuf_printf(sb, " HP"); if (w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_IN_ENABLE) sbuf_printf(sb, " IN"); if (w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE) sbuf_printf(sb, " OUT"); if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) { if ((w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK) == 0x03) sbuf_printf(sb, " HBR"); else if ((w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK) != 0) sbuf_printf(sb, " EPTs"); } else { if ((w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK) != 0) sbuf_printf(sb, " VREFs"); } sbuf_printf(sb, "\n"); } static void hdaa_dump_amp_sb(struct sbuf *sb, uint32_t cap, const char *banner) { int offset, size, step; offset = HDA_PARAM_OUTPUT_AMP_CAP_OFFSET(cap); size = HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE(cap); step = HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS(cap); sbuf_printf(sb, " %s amp: 0x%08x " "mute=%d step=%d size=%d offset=%d (%+d/%+ddB)\n", banner, cap, HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP(cap), step, size, offset, ((0 - offset) * (size + 1)) / 4, ((step - offset) * (size + 1)) / 4); } static int hdaa_sysctl_caps(SYSCTL_HANDLER_ARGS) { struct hdaa_devinfo *devinfo; struct hdaa_widget *w, *cw; struct sbuf sb; char buf[64]; int error, j; w = (struct hdaa_widget *)oidp->oid_arg1; devinfo = w->devinfo; sbuf_new_for_sysctl(&sb, NULL, 256, req); sbuf_printf(&sb, "%s%s\n", w->name, (w->enable == 0) ? " [DISABLED]" : ""); sbuf_printf(&sb, " Widget cap: 0x%08x", w->param.widget_cap); if (w->param.widget_cap & 0x0ee1) { if (HDA_PARAM_AUDIO_WIDGET_CAP_LR_SWAP(w->param.widget_cap)) sbuf_printf(&sb, " LRSWAP"); if (HDA_PARAM_AUDIO_WIDGET_CAP_POWER_CTRL(w->param.widget_cap)) sbuf_printf(&sb, " PWR"); if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) sbuf_printf(&sb, " DIGITAL"); if (HDA_PARAM_AUDIO_WIDGET_CAP_UNSOL_CAP(w->param.widget_cap)) sbuf_printf(&sb, " UNSOL"); if (HDA_PARAM_AUDIO_WIDGET_CAP_PROC_WIDGET(w->param.widget_cap)) sbuf_printf(&sb, " PROC"); if (HDA_PARAM_AUDIO_WIDGET_CAP_STRIPE(w->param.widget_cap)) sbuf_printf(&sb, " STRIPE(x%d)", 1 << (fls(w->wclass.conv.stripecap) - 1)); j = HDA_PARAM_AUDIO_WIDGET_CAP_CC(w->param.widget_cap); if (j == 1) sbuf_printf(&sb, " STEREO"); else if (j > 1) sbuf_printf(&sb, " %dCH", j + 1); } sbuf_printf(&sb, "\n"); if (w->bindas != -1) { sbuf_printf(&sb, " Association: %d (0x%04x)\n", w->bindas, w->bindseqmask); } if (w->ossmask != 0 || w->ossdev >= 0) { sbuf_printf(&sb, " OSS: %s", hdaa_audio_ctl_ossmixer_mask2allname(w->ossmask, buf, sizeof(buf))); if (w->ossdev >= 0) sbuf_printf(&sb, " (%s)", ossnames[w->ossdev]); sbuf_printf(&sb, "\n"); } if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) { hdaa_dump_audio_formats_sb(&sb, w->param.supp_stream_formats, w->param.supp_pcm_size_rate); } else if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX || w->waspin) hdaa_dump_pin_sb(&sb, w); if (w->param.eapdbtl != HDA_INVALID) { sbuf_printf(&sb, " EAPD: 0x%08x%s%s%s\n", w->param.eapdbtl, (w->param.eapdbtl & HDA_CMD_SET_EAPD_BTL_ENABLE_LR_SWAP) ? " LRSWAP" : "", (w->param.eapdbtl & HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD) ? " EAPD" : "", (w->param.eapdbtl & HDA_CMD_SET_EAPD_BTL_ENABLE_BTL) ? " BTL" : ""); } if (HDA_PARAM_AUDIO_WIDGET_CAP_OUT_AMP(w->param.widget_cap) && w->param.outamp_cap != 0) hdaa_dump_amp_sb(&sb, w->param.outamp_cap, "Output"); if (HDA_PARAM_AUDIO_WIDGET_CAP_IN_AMP(w->param.widget_cap) && w->param.inamp_cap != 0) hdaa_dump_amp_sb(&sb, w->param.inamp_cap, " Input"); if (w->nconns > 0) sbuf_printf(&sb, " Connections: %d\n", w->nconns); for (j = 0; j < w->nconns; j++) { cw = hdaa_widget_get(devinfo, w->conns[j]); sbuf_printf(&sb, " + %s<- nid=%d [%s]", (w->connsenable[j] == 0)?"[DISABLED] ":"", w->conns[j], (cw == NULL) ? "GHOST!" : cw->name); if (cw == NULL) sbuf_printf(&sb, " [UNKNOWN]"); else if (cw->enable == 0) sbuf_printf(&sb, " [DISABLED]"); if (w->nconns > 1 && w->selconn == j && w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) sbuf_printf(&sb, " (selected)"); sbuf_printf(&sb, "\n"); } error = sbuf_finish(&sb); sbuf_delete(&sb); return (error); } static int hdaa_sysctl_config(SYSCTL_HANDLER_ARGS) { char buf[256]; int error; uint32_t conf; conf = *(uint32_t *)oidp->oid_arg1; snprintf(buf, sizeof(buf), "0x%08x as=%d seq=%d " "device=%s conn=%s ctype=%s loc=%s color=%s misc=%d", conf, HDA_CONFIG_DEFAULTCONF_ASSOCIATION(conf), HDA_CONFIG_DEFAULTCONF_SEQUENCE(conf), HDA_DEVS[HDA_CONFIG_DEFAULTCONF_DEVICE(conf)], HDA_CONNS[HDA_CONFIG_DEFAULTCONF_CONNECTIVITY(conf)], HDA_CONNECTORS[HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE(conf)], HDA_LOCS[HDA_CONFIG_DEFAULTCONF_LOCATION(conf)], HDA_COLORS[HDA_CONFIG_DEFAULTCONF_COLOR(conf)], HDA_CONFIG_DEFAULTCONF_MISC(conf)); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return (error); if (strncmp(buf, "0x", 2) == 0) conf = strtol(buf + 2, NULL, 16); else conf = hdaa_widget_pin_patch(conf, buf); *(uint32_t *)oidp->oid_arg1 = conf; return (0); } static void hdaa_config_fetch(const char *str, uint32_t *on, uint32_t *off) { int i = 0, j, k, len, inv; for (;;) { while (str[i] != '\0' && (str[i] == ',' || isspace(str[i]) != 0)) i++; if (str[i] == '\0') return; j = i; while (str[j] != '\0' && !(str[j] == ',' || isspace(str[j]) != 0)) j++; len = j - i; if (len > 2 && strncmp(str + i, "no", 2) == 0) inv = 2; else inv = 0; for (k = 0; len > inv && k < nitems(hdaa_quirks_tab); k++) { if (strncmp(str + i + inv, hdaa_quirks_tab[k].key, len - inv) != 0) continue; if (len - inv != strlen(hdaa_quirks_tab[k].key)) continue; if (inv == 0) { *on |= hdaa_quirks_tab[k].value; *off &= ~hdaa_quirks_tab[k].value; } else { *off |= hdaa_quirks_tab[k].value; *on &= ~hdaa_quirks_tab[k].value; } break; } i = j; } } static int hdaa_sysctl_quirks(SYSCTL_HANDLER_ARGS) { char buf[256]; int error, n = 0, i; uint32_t quirks, quirks_off; quirks = *(uint32_t *)oidp->oid_arg1; buf[0] = 0; for (i = 0; i < nitems(hdaa_quirks_tab); i++) { if ((quirks & hdaa_quirks_tab[i].value) != 0) n += snprintf(buf + n, sizeof(buf) - n, "%s%s", n != 0 ? "," : "", hdaa_quirks_tab[i].key); } error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return (error); if (strncmp(buf, "0x", 2) == 0) quirks = strtol(buf + 2, NULL, 16); else { quirks = 0; hdaa_config_fetch(buf, &quirks, &quirks_off); } *(uint32_t *)oidp->oid_arg1 = quirks; return (0); } static void hdaa_local_patch(struct hdaa_devinfo *devinfo) { struct hdaa_widget *w; const char *res = NULL; uint32_t quirks_on = 0, quirks_off = 0, x; int i; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL) continue; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) hdaa_local_patch_pin(w); } if (resource_string_value(device_get_name(devinfo->dev), device_get_unit(devinfo->dev), "config", &res) == 0) { if (res != NULL && strlen(res) > 0) hdaa_config_fetch(res, &quirks_on, &quirks_off); devinfo->quirks |= quirks_on; devinfo->quirks &= ~quirks_off; } if (devinfo->newquirks == -1) devinfo->newquirks = devinfo->quirks; else devinfo->quirks = devinfo->newquirks; HDA_BOOTHVERBOSE( device_printf(devinfo->dev, "Config options: 0x%08x\n", devinfo->quirks); ); if (resource_string_value(device_get_name(devinfo->dev), device_get_unit(devinfo->dev), "gpio_config", &res) == 0) { if (strncmp(res, "0x", 2) == 0) { devinfo->gpio = strtol(res + 2, NULL, 16); } else { devinfo->gpio = hdaa_gpio_patch(devinfo->gpio, res); } } if (devinfo->newgpio == -1) devinfo->newgpio = devinfo->gpio; else devinfo->gpio = devinfo->newgpio; if (devinfo->newgpo == -1) devinfo->newgpo = devinfo->gpo; else devinfo->gpo = devinfo->newgpo; HDA_BOOTHVERBOSE( device_printf(devinfo->dev, "GPIO config options:"); for (i = 0; i < 7; i++) { x = (devinfo->gpio & HDAA_GPIO_MASK(i)) >> HDAA_GPIO_SHIFT(i); if (x != 0) printf(" %d=%s", i, HDA_GPIO_ACTIONS[x]); } printf("\n"); ); } static void hdaa_widget_connection_parse(struct hdaa_widget *w) { uint32_t res; int i, j, max, ents, entnum; nid_t nid = w->nid; nid_t cnid, addcnid, prevcnid; w->nconns = 0; res = hda_command(w->devinfo->dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_CONN_LIST_LENGTH)); ents = HDA_PARAM_CONN_LIST_LENGTH_LIST_LENGTH(res); if (ents < 1) return; entnum = HDA_PARAM_CONN_LIST_LENGTH_LONG_FORM(res) ? 2 : 4; max = (sizeof(w->conns) / sizeof(w->conns[0])) - 1; prevcnid = 0; #define CONN_RMASK(e) (1 << ((32 / (e)) - 1)) #define CONN_NMASK(e) (CONN_RMASK(e) - 1) #define CONN_RESVAL(r, e, n) ((r) >> ((32 / (e)) * (n))) #define CONN_RANGE(r, e, n) (CONN_RESVAL(r, e, n) & CONN_RMASK(e)) #define CONN_CNID(r, e, n) (CONN_RESVAL(r, e, n) & CONN_NMASK(e)) for (i = 0; i < ents; i += entnum) { res = hda_command(w->devinfo->dev, HDA_CMD_GET_CONN_LIST_ENTRY(0, nid, i)); for (j = 0; j < entnum; j++) { cnid = CONN_CNID(res, entnum, j); if (cnid == 0) { if (w->nconns < ents) device_printf(w->devinfo->dev, "WARNING: nid=%d has zero cnid " "entnum=%d j=%d index=%d " "entries=%d found=%d res=0x%08x\n", nid, entnum, j, i, ents, w->nconns, res); else goto getconns_out; } if (cnid < w->devinfo->startnode || cnid >= w->devinfo->endnode) { HDA_BOOTVERBOSE( device_printf(w->devinfo->dev, "WARNING: nid=%d has cnid outside " "of the AFG range j=%d " "entnum=%d index=%d res=0x%08x\n", nid, j, entnum, i, res); ); } if (CONN_RANGE(res, entnum, j) == 0) addcnid = cnid; else if (prevcnid == 0 || prevcnid >= cnid) { device_printf(w->devinfo->dev, "WARNING: Invalid child range " "nid=%d index=%d j=%d entnum=%d " "prevcnid=%d cnid=%d res=0x%08x\n", nid, i, j, entnum, prevcnid, cnid, res); addcnid = cnid; } else addcnid = prevcnid + 1; while (addcnid <= cnid) { if (w->nconns > max) { device_printf(w->devinfo->dev, "Adding %d (nid=%d): " "Max connection reached! max=%d\n", addcnid, nid, max + 1); goto getconns_out; } w->connsenable[w->nconns] = 1; w->conns[w->nconns++] = addcnid++; } prevcnid = cnid; } } getconns_out: return; } static void hdaa_widget_parse(struct hdaa_widget *w) { device_t dev = w->devinfo->dev; uint32_t wcap, cap; nid_t nid = w->nid; char buf[64]; w->param.widget_cap = wcap = hda_command(dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_AUDIO_WIDGET_CAP)); w->type = HDA_PARAM_AUDIO_WIDGET_CAP_TYPE(wcap); hdaa_widget_connection_parse(w); if (HDA_PARAM_AUDIO_WIDGET_CAP_OUT_AMP(wcap)) { if (HDA_PARAM_AUDIO_WIDGET_CAP_AMP_OVR(wcap)) w->param.outamp_cap = hda_command(dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_OUTPUT_AMP_CAP)); else w->param.outamp_cap = w->devinfo->outamp_cap; } else w->param.outamp_cap = 0; if (HDA_PARAM_AUDIO_WIDGET_CAP_IN_AMP(wcap)) { if (HDA_PARAM_AUDIO_WIDGET_CAP_AMP_OVR(wcap)) w->param.inamp_cap = hda_command(dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_INPUT_AMP_CAP)); else w->param.inamp_cap = w->devinfo->inamp_cap; } else w->param.inamp_cap = 0; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) { if (HDA_PARAM_AUDIO_WIDGET_CAP_FORMAT_OVR(wcap)) { cap = hda_command(dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_SUPP_STREAM_FORMATS)); w->param.supp_stream_formats = (cap != 0) ? cap : w->devinfo->supp_stream_formats; cap = hda_command(dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_SUPP_PCM_SIZE_RATE)); w->param.supp_pcm_size_rate = (cap != 0) ? cap : w->devinfo->supp_pcm_size_rate; } else { w->param.supp_stream_formats = w->devinfo->supp_stream_formats; w->param.supp_pcm_size_rate = w->devinfo->supp_pcm_size_rate; } if (HDA_PARAM_AUDIO_WIDGET_CAP_STRIPE(w->param.widget_cap)) { w->wclass.conv.stripecap = hda_command(dev, HDA_CMD_GET_STRIPE_CONTROL(0, w->nid)) >> 20; } else w->wclass.conv.stripecap = 1; } else { w->param.supp_stream_formats = 0; w->param.supp_pcm_size_rate = 0; } if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) { w->wclass.pin.original = w->wclass.pin.newconf = w->wclass.pin.config = hda_command(dev, HDA_CMD_GET_CONFIGURATION_DEFAULT(0, w->nid)); w->wclass.pin.cap = hda_command(dev, HDA_CMD_GET_PARAMETER(0, w->nid, HDA_PARAM_PIN_CAP)); w->wclass.pin.ctrl = hda_command(dev, HDA_CMD_GET_PIN_WIDGET_CTRL(0, nid)); w->wclass.pin.connected = 2; if (HDA_PARAM_PIN_CAP_EAPD_CAP(w->wclass.pin.cap)) { w->param.eapdbtl = hda_command(dev, HDA_CMD_GET_EAPD_BTL_ENABLE(0, nid)); w->param.eapdbtl &= 0x7; w->param.eapdbtl |= HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD; } else w->param.eapdbtl = HDA_INVALID; } w->unsol = -1; hdaa_unlock(w->devinfo); snprintf(buf, sizeof(buf), "nid%d", w->nid); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, buf, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, w, 0, hdaa_sysctl_caps, "A", "Node capabilities"); if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) { snprintf(buf, sizeof(buf), "nid%d_config", w->nid); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, buf, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, &w->wclass.pin.newconf, 0, hdaa_sysctl_config, "A", "Current pin configuration"); snprintf(buf, sizeof(buf), "nid%d_original", w->nid); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, buf, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, &w->wclass.pin.original, 0, hdaa_sysctl_config, "A", "Original pin configuration"); } hdaa_lock(w->devinfo); } static void hdaa_widget_postprocess(struct hdaa_widget *w) { const char *typestr; w->type = HDA_PARAM_AUDIO_WIDGET_CAP_TYPE(w->param.widget_cap); switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT: typestr = "audio output"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT: typestr = "audio input"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER: typestr = "audio mixer"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR: typestr = "audio selector"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX: typestr = "pin"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_POWER_WIDGET: typestr = "power widget"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_VOLUME_WIDGET: typestr = "volume widget"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_BEEP_WIDGET: typestr = "beep widget"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_VENDOR_WIDGET: typestr = "vendor widget"; break; default: typestr = "unknown type"; break; } strlcpy(w->name, typestr, sizeof(w->name)); if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) { uint32_t config; const char *devstr; int conn, color; config = w->wclass.pin.config; devstr = HDA_DEVS[(config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) >> HDA_CONFIG_DEFAULTCONF_DEVICE_SHIFT]; conn = (config & HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK) >> HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_SHIFT; color = (config & HDA_CONFIG_DEFAULTCONF_COLOR_MASK) >> HDA_CONFIG_DEFAULTCONF_COLOR_SHIFT; strlcat(w->name, ": ", sizeof(w->name)); strlcat(w->name, devstr, sizeof(w->name)); strlcat(w->name, " (", sizeof(w->name)); if (conn == 0 && color != 0 && color != 15) { strlcat(w->name, HDA_COLORS[color], sizeof(w->name)); strlcat(w->name, " ", sizeof(w->name)); } strlcat(w->name, HDA_CONNS[conn], sizeof(w->name)); strlcat(w->name, ")", sizeof(w->name)); } } struct hdaa_widget * hdaa_widget_get(struct hdaa_devinfo *devinfo, nid_t nid) { if (devinfo == NULL || devinfo->widget == NULL || nid < devinfo->startnode || nid >= devinfo->endnode) return (NULL); return (&devinfo->widget[nid - devinfo->startnode]); } static void hdaa_audio_ctl_amp_set_internal(struct hdaa_devinfo *devinfo, nid_t nid, int index, int lmute, int rmute, int left, int right, int dir) { uint16_t v = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->dev, "Setting amplifier nid=%d index=%d %s mute=%d/%d vol=%d/%d\n", nid,index,dir ? "in" : "out",lmute,rmute,left,right); ); if (left != right || lmute != rmute) { v = (1 << (15 - dir)) | (1 << 13) | (index << 8) | (lmute << 7) | left; hda_command(devinfo->dev, HDA_CMD_SET_AMP_GAIN_MUTE(0, nid, v)); v = (1 << (15 - dir)) | (1 << 12) | (index << 8) | (rmute << 7) | right; } else v = (1 << (15 - dir)) | (3 << 12) | (index << 8) | (lmute << 7) | left; hda_command(devinfo->dev, HDA_CMD_SET_AMP_GAIN_MUTE(0, nid, v)); } static void hdaa_audio_ctl_amp_set(struct hdaa_audio_ctl *ctl, uint32_t mute, int left, int right) { nid_t nid; int lmute, rmute; nid = ctl->widget->nid; /* Save new values if valid. */ if (mute != HDAA_AMP_MUTE_DEFAULT) ctl->muted = mute; if (left != HDAA_AMP_VOL_DEFAULT) ctl->left = left; if (right != HDAA_AMP_VOL_DEFAULT) ctl->right = right; /* Prepare effective values */ if (ctl->forcemute) { lmute = 1; rmute = 1; left = 0; right = 0; } else { lmute = HDAA_AMP_LEFT_MUTED(ctl->muted); rmute = HDAA_AMP_RIGHT_MUTED(ctl->muted); left = ctl->left; right = ctl->right; } /* Apply effective values */ if (ctl->dir & HDAA_CTL_OUT) hdaa_audio_ctl_amp_set_internal(ctl->widget->devinfo, nid, ctl->index, lmute, rmute, left, right, 0); if (ctl->dir & HDAA_CTL_IN) hdaa_audio_ctl_amp_set_internal(ctl->widget->devinfo, nid, ctl->index, lmute, rmute, left, right, 1); } static void hdaa_widget_connection_select(struct hdaa_widget *w, uint8_t index) { if (w == NULL || w->nconns < 1 || index > (w->nconns - 1)) return; HDA_BOOTHVERBOSE( device_printf(w->devinfo->dev, "Setting selector nid=%d index=%d\n", w->nid, index); ); hda_command(w->devinfo->dev, HDA_CMD_SET_CONNECTION_SELECT_CONTROL(0, w->nid, index)); w->selconn = index; } /**************************************************************************** * Device Methods ****************************************************************************/ static void * hdaa_channel_init(kobj_t obj, void *data, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct hdaa_chan *ch = data; struct hdaa_pcm_devinfo *pdevinfo = ch->pdevinfo; struct hdaa_devinfo *devinfo = pdevinfo->devinfo; hdaa_lock(devinfo); if (devinfo->quirks & HDAA_QUIRK_FIXEDRATE) { ch->caps.minspeed = ch->caps.maxspeed = 48000; ch->pcmrates[0] = 48000; ch->pcmrates[1] = 0; } ch->dir = dir; ch->b = b; ch->c = c; ch->blksz = pdevinfo->chan_size / pdevinfo->chan_blkcnt; ch->blkcnt = pdevinfo->chan_blkcnt; hdaa_unlock(devinfo); if (sndbuf_alloc(ch->b, bus_get_dma_tag(devinfo->dev), hda_get_dma_nocache(devinfo->dev) ? BUS_DMA_NOCACHE : BUS_DMA_COHERENT, pdevinfo->chan_size) != 0) return (NULL); return (ch); } static int hdaa_channel_setformat(kobj_t obj, void *data, uint32_t format) { struct hdaa_chan *ch = data; int i; for (i = 0; ch->caps.fmtlist[i] != 0; i++) { if (format == ch->caps.fmtlist[i]) { ch->fmt = format; return (0); } } return (EINVAL); } static uint32_t hdaa_channel_setspeed(kobj_t obj, void *data, uint32_t speed) { struct hdaa_chan *ch = data; uint32_t spd = 0, threshold; int i; /* First look for equal or multiple frequency. */ for (i = 0; ch->pcmrates[i] != 0; i++) { spd = ch->pcmrates[i]; if (speed != 0 && spd / speed * speed == spd) { ch->spd = spd; return (spd); } } /* If no match, just find nearest. */ for (i = 0; ch->pcmrates[i] != 0; i++) { spd = ch->pcmrates[i]; threshold = spd + ((ch->pcmrates[i + 1] != 0) ? ((ch->pcmrates[i + 1] - spd) >> 1) : 0); if (speed < threshold) break; } ch->spd = spd; return (spd); } static uint16_t hdaa_stream_format(struct hdaa_chan *ch) { int i; uint16_t fmt; fmt = 0; if (ch->fmt & AFMT_S16_LE) fmt |= ch->bit16 << 4; else if (ch->fmt & AFMT_S32_LE) fmt |= ch->bit32 << 4; else fmt |= 1 << 4; for (i = 0; i < HDA_RATE_TAB_LEN; i++) { if (hda_rate_tab[i].valid && ch->spd == hda_rate_tab[i].rate) { fmt |= hda_rate_tab[i].base; fmt |= hda_rate_tab[i].mul; fmt |= hda_rate_tab[i].div; break; } } fmt |= (AFMT_CHANNEL(ch->fmt) - 1); return (fmt); } static int hdaa_allowed_stripes(uint16_t fmt) { static const int bits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 }; int size; size = bits[(fmt >> 4) & 0x03]; size *= (fmt & 0x0f) + 1; size *= ((fmt >> 11) & 0x07) + 1; return (0xffffffffU >> (32 - fls(size / 8))); } static void hdaa_audio_setup(struct hdaa_chan *ch) { struct hdaa_audio_as *as = &ch->devinfo->as[ch->as]; struct hdaa_widget *w, *wp; int i, j, k, chn, cchn, totalchn, totalextchn, c; uint16_t fmt, dfmt; /* Mapping channel pairs to codec pins/converters. */ const static uint16_t convmap[2][5] = /* 1.0 2.0 4.0 5.1 7.1 */ {{ 0x0010, 0x0001, 0x0201, 0x0231, 0x4231 }, /* no dup. */ { 0x0010, 0x0001, 0x2201, 0x2231, 0x4231 }}; /* side dup. */ /* Mapping formats to HDMI channel allocations. */ const static uint8_t hdmica[2][8] = /* 1 2 3 4 5 6 7 8 */ {{ 0x02, 0x00, 0x04, 0x08, 0x0a, 0x0e, 0x12, 0x12 }, /* x.0 */ { 0x01, 0x03, 0x01, 0x03, 0x09, 0x0b, 0x0f, 0x13 }}; /* x.1 */ /* Mapping formats to HDMI channels order. */ const static uint32_t hdmich[2][8] = /* 1 / 5 2 / 6 3 / 7 4 / 8 */ {{ 0xFFFF0F00, 0xFFFFFF10, 0xFFF2FF10, 0xFF32FF10, 0xFF324F10, 0xF5324F10, 0x54326F10, 0x54326F10 }, /* x.0 */ { 0xFFFFF000, 0xFFFF0100, 0xFFFFF210, 0xFFFF2310, 0xFF32F410, 0xFF324510, 0xF6324510, 0x76325410 }}; /* x.1 */ int convmapid = -1; nid_t nid; uint8_t csum; totalchn = AFMT_CHANNEL(ch->fmt); totalextchn = AFMT_EXTCHANNEL(ch->fmt); HDA_BOOTHVERBOSE( device_printf(ch->pdevinfo->dev, "PCMDIR_%s: Stream setup fmt=%08x (%d.%d) speed=%d\n", (ch->dir == PCMDIR_PLAY) ? "PLAY" : "REC", ch->fmt, totalchn - totalextchn, totalextchn, ch->spd); ); fmt = hdaa_stream_format(ch); /* Set channels to I/O converters mapping for known speaker setups. */ if ((as->pinset == 0x0007 || as->pinset == 0x0013) || /* Standard 5.1 */ (as->pinset == 0x0017)) /* Standard 7.1 */ convmapid = (ch->dir == PCMDIR_PLAY); dfmt = HDA_CMD_SET_DIGITAL_CONV_FMT1_DIGEN; if (ch->fmt & AFMT_AC3) dfmt |= HDA_CMD_SET_DIGITAL_CONV_FMT1_NAUDIO; chn = 0; for (i = 0; ch->io[i] != -1; i++) { w = hdaa_widget_get(ch->devinfo, ch->io[i]); if (w == NULL) continue; /* If HP redirection is enabled, but failed to use same DAC, make last DAC to duplicate first one. */ if (as->fakeredir && i == (as->pincnt - 1)) { c = (ch->sid << 4); } else { /* Map channels to I/O converters, if set. */ if (convmapid >= 0) chn = (((convmap[convmapid][totalchn / 2] >> i * 4) & 0xf) - 1) * 2; if (chn < 0 || chn >= totalchn) { c = 0; } else { c = (ch->sid << 4) | chn; } } hda_command(ch->devinfo->dev, HDA_CMD_SET_CONV_FMT(0, ch->io[i], fmt)); if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) { hda_command(ch->devinfo->dev, HDA_CMD_SET_DIGITAL_CONV_FMT1(0, ch->io[i], dfmt)); } hda_command(ch->devinfo->dev, HDA_CMD_SET_CONV_STREAM_CHAN(0, ch->io[i], c)); if (HDA_PARAM_AUDIO_WIDGET_CAP_STRIPE(w->param.widget_cap)) { hda_command(ch->devinfo->dev, HDA_CMD_SET_STRIPE_CONTROL(0, w->nid, ch->stripectl)); } cchn = HDA_PARAM_AUDIO_WIDGET_CAP_CC(w->param.widget_cap); if (cchn > 1 && chn < totalchn) { cchn = min(cchn, totalchn - chn - 1); hda_command(ch->devinfo->dev, HDA_CMD_SET_CONV_CHAN_COUNT(0, ch->io[i], cchn)); } HDA_BOOTHVERBOSE( device_printf(ch->pdevinfo->dev, "PCMDIR_%s: Stream setup nid=%d: " "fmt=0x%04x, dfmt=0x%04x, chan=0x%04x, " "chan_count=0x%02x, stripe=%d\n", (ch->dir == PCMDIR_PLAY) ? "PLAY" : "REC", ch->io[i], fmt, dfmt, c, cchn, ch->stripectl); ); for (j = 0; j < 16; j++) { if (as->dacs[ch->asindex][j] != ch->io[i]) continue; nid = as->pins[j]; wp = hdaa_widget_get(ch->devinfo, nid); if (wp == NULL) continue; if (!HDA_PARAM_PIN_CAP_DP(wp->wclass.pin.cap) && !HDA_PARAM_PIN_CAP_HDMI(wp->wclass.pin.cap)) continue; /* Set channel mapping. */ for (k = 0; k < 8; k++) { hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_CHAN_SLOT(0, nid, (((hdmich[totalextchn == 0 ? 0 : 1][totalchn - 1] >> (k * 4)) & 0xf) << 4) | k)); } /* * Enable High Bit Rate (HBR) Encoded Packet Type * (EPT), if supported and needed (8ch data). */ if (HDA_PARAM_PIN_CAP_HDMI(wp->wclass.pin.cap) && HDA_PARAM_PIN_CAP_HBR(wp->wclass.pin.cap)) { wp->wclass.pin.ctrl &= ~HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK; if ((ch->fmt & AFMT_AC3) && (cchn == 7)) wp->wclass.pin.ctrl |= 0x03; hda_command(ch->devinfo->dev, HDA_CMD_SET_PIN_WIDGET_CTRL(0, nid, wp->wclass.pin.ctrl)); } /* Stop audio infoframe transmission. */ hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_INDEX(0, nid, 0x00)); hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_XMIT(0, nid, 0x00)); /* Clear audio infoframe buffer. */ hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_INDEX(0, nid, 0x00)); for (k = 0; k < 32; k++) hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, 0x00)); /* Write HDMI/DisplayPort audio infoframe. */ hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_INDEX(0, nid, 0x00)); if (w->eld != NULL && w->eld_len >= 6 && ((w->eld[5] >> 2) & 0x3) == 1) { /* DisplayPort */ hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, 0x84)); hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, 0x1b)); hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, 0x44)); } else { /* HDMI */ hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, 0x84)); hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, 0x01)); hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, 0x0a)); csum = 0; csum -= 0x84 + 0x01 + 0x0a + (totalchn - 1) + hdmica[totalextchn == 0 ? 0 : 1][totalchn - 1]; hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, csum)); } hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, totalchn - 1)); hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, 0x00)); hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, 0x00)); hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_DATA(0, nid, hdmica[totalextchn == 0 ? 0 : 1][totalchn - 1])); /* Start audio infoframe transmission. */ hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_INDEX(0, nid, 0x00)); hda_command(ch->devinfo->dev, HDA_CMD_SET_HDMI_DIP_XMIT(0, nid, 0xc0)); } chn += cchn + 1; } } /* * Greatest Common Divisor. */ static unsigned gcd(unsigned a, unsigned b) { u_int c; while (b != 0) { c = a; a = b; b = (c % b); } return (a); } /* * Least Common Multiple. */ static unsigned lcm(unsigned a, unsigned b) { return ((a * b) / gcd(a, b)); } static int hdaa_channel_setfragments(kobj_t obj, void *data, uint32_t blksz, uint32_t blkcnt) { struct hdaa_chan *ch = data; blksz -= blksz % lcm(HDA_DMA_ALIGNMENT, sndbuf_getalign(ch->b)); if (blksz > (sndbuf_getmaxsize(ch->b) / HDA_BDL_MIN)) blksz = sndbuf_getmaxsize(ch->b) / HDA_BDL_MIN; if (blksz < HDA_BLK_MIN) blksz = HDA_BLK_MIN; if (blkcnt > HDA_BDL_MAX) blkcnt = HDA_BDL_MAX; if (blkcnt < HDA_BDL_MIN) blkcnt = HDA_BDL_MIN; while ((blksz * blkcnt) > sndbuf_getmaxsize(ch->b)) { if ((blkcnt >> 1) >= HDA_BDL_MIN) blkcnt >>= 1; else if ((blksz >> 1) >= HDA_BLK_MIN) blksz >>= 1; else break; } if ((sndbuf_getblksz(ch->b) != blksz || sndbuf_getblkcnt(ch->b) != blkcnt) && sndbuf_resize(ch->b, blkcnt, blksz) != 0) device_printf(ch->devinfo->dev, "%s: failed blksz=%u blkcnt=%u\n", __func__, blksz, blkcnt); ch->blksz = sndbuf_getblksz(ch->b); ch->blkcnt = sndbuf_getblkcnt(ch->b); return (0); } static uint32_t hdaa_channel_setblocksize(kobj_t obj, void *data, uint32_t blksz) { struct hdaa_chan *ch = data; hdaa_channel_setfragments(obj, data, blksz, ch->pdevinfo->chan_blkcnt); return (ch->blksz); } static void hdaa_channel_stop(struct hdaa_chan *ch) { struct hdaa_devinfo *devinfo = ch->devinfo; struct hdaa_widget *w; int i; if ((ch->flags & HDAA_CHN_RUNNING) == 0) return; ch->flags &= ~HDAA_CHN_RUNNING; HDAC_STREAM_STOP(device_get_parent(devinfo->dev), devinfo->dev, ch->dir == PCMDIR_PLAY ? 1 : 0, ch->sid); for (i = 0; ch->io[i] != -1; i++) { w = hdaa_widget_get(ch->devinfo, ch->io[i]); if (w == NULL) continue; if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) { hda_command(devinfo->dev, HDA_CMD_SET_DIGITAL_CONV_FMT1(0, ch->io[i], 0)); } hda_command(devinfo->dev, HDA_CMD_SET_CONV_STREAM_CHAN(0, ch->io[i], 0)); } HDAC_STREAM_FREE(device_get_parent(devinfo->dev), devinfo->dev, ch->dir == PCMDIR_PLAY ? 1 : 0, ch->sid); } static int hdaa_channel_start(struct hdaa_chan *ch) { struct hdaa_devinfo *devinfo = ch->devinfo; uint32_t fmt; fmt = hdaa_stream_format(ch); ch->stripectl = fls(ch->stripecap & hdaa_allowed_stripes(fmt) & hda_get_stripes_mask(devinfo->dev)) - 1; ch->sid = HDAC_STREAM_ALLOC(device_get_parent(devinfo->dev), devinfo->dev, ch->dir == PCMDIR_PLAY ? 1 : 0, fmt, ch->stripectl, &ch->dmapos); if (ch->sid <= 0) return (EBUSY); hdaa_audio_setup(ch); HDAC_STREAM_RESET(device_get_parent(devinfo->dev), devinfo->dev, ch->dir == PCMDIR_PLAY ? 1 : 0, ch->sid); HDAC_STREAM_START(device_get_parent(devinfo->dev), devinfo->dev, ch->dir == PCMDIR_PLAY ? 1 : 0, ch->sid, sndbuf_getbufaddr(ch->b), ch->blksz, ch->blkcnt); ch->flags |= HDAA_CHN_RUNNING; return (0); } static int hdaa_channel_trigger(kobj_t obj, void *data, int go) { struct hdaa_chan *ch = data; int error = 0; if (!PCMTRIG_COMMON(go)) return (0); hdaa_lock(ch->devinfo); switch (go) { case PCMTRIG_START: error = hdaa_channel_start(ch); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: hdaa_channel_stop(ch); break; default: break; } hdaa_unlock(ch->devinfo); return (error); } static uint32_t hdaa_channel_getptr(kobj_t obj, void *data) { struct hdaa_chan *ch = data; struct hdaa_devinfo *devinfo = ch->devinfo; uint32_t ptr; hdaa_lock(devinfo); if (ch->dmapos != NULL) { ptr = *(ch->dmapos); } else { ptr = HDAC_STREAM_GETPTR( device_get_parent(devinfo->dev), devinfo->dev, ch->dir == PCMDIR_PLAY ? 1 : 0, ch->sid); } hdaa_unlock(devinfo); /* * Round to available space and force 128 bytes aligment. */ ptr %= ch->blksz * ch->blkcnt; ptr &= HDA_BLK_ALIGN; return (ptr); } static struct pcmchan_caps * hdaa_channel_getcaps(kobj_t obj, void *data) { return (&((struct hdaa_chan *)data)->caps); } static kobj_method_t hdaa_channel_methods[] = { KOBJMETHOD(channel_init, hdaa_channel_init), KOBJMETHOD(channel_setformat, hdaa_channel_setformat), KOBJMETHOD(channel_setspeed, hdaa_channel_setspeed), KOBJMETHOD(channel_setblocksize, hdaa_channel_setblocksize), KOBJMETHOD(channel_setfragments, hdaa_channel_setfragments), KOBJMETHOD(channel_trigger, hdaa_channel_trigger), KOBJMETHOD(channel_getptr, hdaa_channel_getptr), KOBJMETHOD(channel_getcaps, hdaa_channel_getcaps), KOBJMETHOD_END }; CHANNEL_DECLARE(hdaa_channel); static int hdaa_audio_ctl_ossmixer_init(struct snd_mixer *m) { struct hdaa_pcm_devinfo *pdevinfo = mix_getdevinfo(m); struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_widget *w, *cw; uint32_t mask, recmask; int i, j; hdaa_lock(devinfo); pdevinfo->mixer = m; /* Make sure that in case of soft volume it won't stay muted. */ for (i = 0; i < SOUND_MIXER_NRDEVICES; i++) { pdevinfo->left[i] = 100; pdevinfo->right[i] = 100; } /* Declare volume controls assigned to this association. */ mask = pdevinfo->ossmask; if (pdevinfo->playas >= 0) { /* Declate EAPD as ogain control. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX || w->param.eapdbtl == HDA_INVALID || w->bindas != pdevinfo->playas) continue; mask |= SOUND_MASK_OGAIN; break; } /* Declare soft PCM volume if needed. */ if ((mask & SOUND_MASK_PCM) == 0 || (devinfo->quirks & HDAA_QUIRK_SOFTPCMVOL) || pdevinfo->minamp[SOUND_MIXER_PCM] == pdevinfo->maxamp[SOUND_MIXER_PCM]) { mask |= SOUND_MASK_PCM; pcm_setflags(pdevinfo->dev, pcm_getflags(pdevinfo->dev) | SD_F_SOFTPCMVOL); HDA_BOOTHVERBOSE( device_printf(pdevinfo->dev, "Forcing Soft PCM volume\n"); ); } /* Declare master volume if needed. */ if ((mask & SOUND_MASK_VOLUME) == 0) { mask |= SOUND_MASK_VOLUME; mix_setparentchild(m, SOUND_MIXER_VOLUME, SOUND_MASK_PCM); mix_setrealdev(m, SOUND_MIXER_VOLUME, SOUND_MIXER_NONE); HDA_BOOTHVERBOSE( device_printf(pdevinfo->dev, "Forcing master volume with PCM\n"); ); } } /* Declare record sources available to this association. */ recmask = 0; if (pdevinfo->recas >= 0) { for (i = 0; i < 16; i++) { if (devinfo->as[pdevinfo->recas].dacs[0][i] < 0) continue; w = hdaa_widget_get(devinfo, devinfo->as[pdevinfo->recas].dacs[0][i]); if (w == NULL || w->enable == 0) continue; for (j = 0; j < w->nconns; j++) { if (w->connsenable[j] == 0) continue; cw = hdaa_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) continue; if (cw->bindas != pdevinfo->recas && cw->bindas != -2) continue; recmask |= cw->ossmask; } } } recmask &= (1 << SOUND_MIXER_NRDEVICES) - 1; mask &= (1 << SOUND_MIXER_NRDEVICES) - 1; pdevinfo->ossmask = mask; mix_setrecdevs(m, recmask); mix_setdevs(m, mask); hdaa_unlock(devinfo); return (0); } /* * Update amplification per pdevinfo per ossdev, calculate summary coefficient * and write it to codec, update *left and *right to reflect remaining error. */ static void hdaa_audio_ctl_dev_set(struct hdaa_audio_ctl *ctl, int ossdev, int mute, int *left, int *right) { int i, zleft, zright, sleft, sright, smute, lval, rval; ctl->devleft[ossdev] = *left; ctl->devright[ossdev] = *right; ctl->devmute[ossdev] = mute; smute = sleft = sright = zleft = zright = 0; for (i = 0; i < SOUND_MIXER_NRDEVICES; i++) { sleft += ctl->devleft[i]; sright += ctl->devright[i]; smute |= ctl->devmute[i]; if (i == ossdev) continue; zleft += ctl->devleft[i]; zright += ctl->devright[i]; } lval = QDB2VAL(ctl, sleft); rval = QDB2VAL(ctl, sright); hdaa_audio_ctl_amp_set(ctl, smute, lval, rval); *left -= VAL2QDB(ctl, lval) - VAL2QDB(ctl, QDB2VAL(ctl, zleft)); *right -= VAL2QDB(ctl, rval) - VAL2QDB(ctl, QDB2VAL(ctl, zright)); } /* * Trace signal from source, setting volumes on the way. */ static void hdaa_audio_ctl_source_volume(struct hdaa_pcm_devinfo *pdevinfo, int ossdev, nid_t nid, int index, int mute, int left, int right, int depth) { struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_widget *w, *wc; struct hdaa_audio_ctl *ctl; int i, j, conns = 0; if (depth > HDA_PARSE_MAXDEPTH) return; w = hdaa_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return; /* Count number of active inputs. */ if (depth > 0) { for (j = 0; j < w->nconns; j++) { if (!w->connsenable[j]) continue; conns++; } } /* If this is not a first step - use input mixer. Pins have common input ctl so care must be taken. */ if (depth > 0 && (conns == 1 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX)) { ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_IN, index, 1); if (ctl) hdaa_audio_ctl_dev_set(ctl, ossdev, mute, &left, &right); } /* If widget has own ossdev - not traverse it. It will be traversed on its own. */ if (w->ossdev >= 0 && depth > 0) return; /* We must not traverse pin */ if ((w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) && depth > 0) return; /* * If signals mixed, we can't assign controls farther. * Ignore this on depth zero. Caller must knows why. */ if (conns > 1 && (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER || w->selconn != index)) return; ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_OUT, -1, 1); if (ctl) hdaa_audio_ctl_dev_set(ctl, ossdev, mute, &left, &right); for (i = devinfo->startnode; i < devinfo->endnode; i++) { wc = hdaa_widget_get(devinfo, i); if (wc == NULL || wc->enable == 0) continue; for (j = 0; j < wc->nconns; j++) { if (wc->connsenable[j] && wc->conns[j] == nid) { hdaa_audio_ctl_source_volume(pdevinfo, ossdev, wc->nid, j, mute, left, right, depth + 1); } } } return; } /* * Trace signal from destination, setting volumes on the way. */ static void hdaa_audio_ctl_dest_volume(struct hdaa_pcm_devinfo *pdevinfo, int ossdev, nid_t nid, int index, int mute, int left, int right, int depth) { struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_audio_as *as = devinfo->as; struct hdaa_widget *w, *wc; struct hdaa_audio_ctl *ctl; int i, j, consumers, cleft, cright; if (depth > HDA_PARSE_MAXDEPTH) return; w = hdaa_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return; if (depth > 0) { /* If this node produce output for several consumers, we can't touch it. */ consumers = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { wc = hdaa_widget_get(devinfo, i); if (wc == NULL || wc->enable == 0) continue; for (j = 0; j < wc->nconns; j++) { if (wc->connsenable[j] && wc->conns[j] == nid) consumers++; } } /* The only exception is if real HP redirection is configured and this is a duplication point. XXX: Actually exception is not completely correct. XXX: Duplication point check is not perfect. */ if ((consumers == 2 && (w->bindas < 0 || as[w->bindas].hpredir < 0 || as[w->bindas].fakeredir || (w->bindseqmask & (1 << 15)) == 0)) || consumers > 2) return; /* Else use it's output mixer. */ ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_OUT, -1, 1); if (ctl) hdaa_audio_ctl_dev_set(ctl, ossdev, mute, &left, &right); } /* We must not traverse pin */ if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && depth > 0) return; for (i = 0; i < w->nconns; i++) { if (w->connsenable[i] == 0) continue; if (index >= 0 && i != index) continue; cleft = left; cright = right; ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_IN, i, 1); if (ctl) hdaa_audio_ctl_dev_set(ctl, ossdev, mute, &cleft, &cright); hdaa_audio_ctl_dest_volume(pdevinfo, ossdev, w->conns[i], -1, mute, cleft, cright, depth + 1); } } /* * Set volumes for the specified pdevinfo and ossdev. */ static void hdaa_audio_ctl_dev_volume(struct hdaa_pcm_devinfo *pdevinfo, unsigned dev) { struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_widget *w, *cw; uint32_t mute; int lvol, rvol; int i, j; mute = 0; if (pdevinfo->left[dev] == 0) { mute |= HDAA_AMP_MUTE_LEFT; lvol = -4000; } else lvol = ((pdevinfo->maxamp[dev] - pdevinfo->minamp[dev]) * pdevinfo->left[dev] + 50) / 100 + pdevinfo->minamp[dev]; if (pdevinfo->right[dev] == 0) { mute |= HDAA_AMP_MUTE_RIGHT; rvol = -4000; } else rvol = ((pdevinfo->maxamp[dev] - pdevinfo->minamp[dev]) * pdevinfo->right[dev] + 50) / 100 + pdevinfo->minamp[dev]; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->bindas < 0) { if (pdevinfo->index != 0) continue; } else { if (w->bindas != pdevinfo->playas && w->bindas != pdevinfo->recas) continue; } if (dev == SOUND_MIXER_RECLEV && w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) { hdaa_audio_ctl_dest_volume(pdevinfo, dev, w->nid, -1, mute, lvol, rvol, 0); continue; } if (dev == SOUND_MIXER_VOLUME && w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && devinfo->as[w->bindas].dir == HDAA_CTL_OUT) { hdaa_audio_ctl_dest_volume(pdevinfo, dev, w->nid, -1, mute, lvol, rvol, 0); continue; } if (dev == SOUND_MIXER_IGAIN && w->pflags & HDAA_ADC_MONITOR) { for (j = 0; j < w->nconns; j++) { if (!w->connsenable[j]) continue; cw = hdaa_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) continue; if (cw->bindas == -1) continue; if (cw->bindas >= 0 && devinfo->as[cw->bindas].dir != HDAA_CTL_IN) continue; hdaa_audio_ctl_dest_volume(pdevinfo, dev, w->nid, j, mute, lvol, rvol, 0); } continue; } if (w->ossdev != dev) continue; hdaa_audio_ctl_source_volume(pdevinfo, dev, w->nid, -1, mute, lvol, rvol, 0); if (dev == SOUND_MIXER_IMIX && (w->pflags & HDAA_IMIX_AS_DST)) hdaa_audio_ctl_dest_volume(pdevinfo, dev, w->nid, -1, mute, lvol, rvol, 0); } } /* * OSS Mixer set method. */ static int hdaa_audio_ctl_ossmixer_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct hdaa_pcm_devinfo *pdevinfo = mix_getdevinfo(m); struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_widget *w; int i; hdaa_lock(devinfo); /* Save new values. */ pdevinfo->left[dev] = left; pdevinfo->right[dev] = right; /* 'ogain' is the special case implemented with EAPD. */ if (dev == SOUND_MIXER_OGAIN) { uint32_t orig; w = NULL; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX || w->param.eapdbtl == HDA_INVALID) continue; break; } if (i >= devinfo->endnode) { hdaa_unlock(devinfo); return (-1); } orig = w->param.eapdbtl; if (left == 0) w->param.eapdbtl &= ~HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD; else w->param.eapdbtl |= HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD; if (orig != w->param.eapdbtl) { uint32_t val; val = w->param.eapdbtl; if (devinfo->quirks & HDAA_QUIRK_EAPDINV) val ^= HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD; hda_command(devinfo->dev, HDA_CMD_SET_EAPD_BTL_ENABLE(0, w->nid, val)); } hdaa_unlock(devinfo); return (left | (left << 8)); } /* Recalculate all controls related to this OSS device. */ hdaa_audio_ctl_dev_volume(pdevinfo, dev); hdaa_unlock(devinfo); return (left | (right << 8)); } /* * Set mixer settings to our own default values: * +20dB for mics, -10dB for analog vol, mute for igain, 0dB for others. */ static void hdaa_audio_ctl_set_defaults(struct hdaa_pcm_devinfo *pdevinfo) { int amp, vol, dev; for (dev = 0; dev < SOUND_MIXER_NRDEVICES; dev++) { if ((pdevinfo->ossmask & (1 << dev)) == 0) continue; /* If the value was overriden, leave it as is. */ if (resource_int_value(device_get_name(pdevinfo->dev), device_get_unit(pdevinfo->dev), ossnames[dev], &vol) == 0) continue; vol = -1; if (dev == SOUND_MIXER_OGAIN) vol = 100; else if (dev == SOUND_MIXER_IGAIN) vol = 0; else if (dev == SOUND_MIXER_MIC || dev == SOUND_MIXER_MONITOR) amp = 20 * 4; /* +20dB */ else if (dev == SOUND_MIXER_VOLUME && !pdevinfo->digital) amp = -10 * 4; /* -10dB */ else amp = 0; if (vol < 0 && (pdevinfo->maxamp[dev] - pdevinfo->minamp[dev]) <= 0) { vol = 100; } else if (vol < 0) { vol = ((amp - pdevinfo->minamp[dev]) * 100 + (pdevinfo->maxamp[dev] - pdevinfo->minamp[dev]) / 2) / (pdevinfo->maxamp[dev] - pdevinfo->minamp[dev]); vol = imin(imax(vol, 1), 100); } mix_set(pdevinfo->mixer, dev, vol, vol); } } /* * Recursively commutate specified record source. */ static uint32_t hdaa_audio_ctl_recsel_comm(struct hdaa_pcm_devinfo *pdevinfo, uint32_t src, nid_t nid, int depth) { struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_widget *w, *cw; struct hdaa_audio_ctl *ctl; char buf[64]; int i, muted; uint32_t res = 0; if (depth > HDA_PARSE_MAXDEPTH) return (0); w = hdaa_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (0); for (i = 0; i < w->nconns; i++) { if (w->connsenable[i] == 0) continue; cw = hdaa_widget_get(devinfo, w->conns[i]); if (cw == NULL || cw->enable == 0 || cw->bindas == -1) continue; /* Call recursively to trace signal to it's source if needed. */ if ((src & cw->ossmask) != 0) { if (cw->ossdev < 0) { res |= hdaa_audio_ctl_recsel_comm(pdevinfo, src, w->conns[i], depth + 1); } else { res |= cw->ossmask; } } /* We have two special cases: mixers and others (selectors). */ if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) { ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_IN, i, 1); - if (ctl == NULL) + if (ctl == NULL) continue; /* If we have input control on this node mute them * according to requested sources. */ muted = (src & cw->ossmask) ? 0 : 1; if (muted != ctl->forcemute) { ctl->forcemute = muted; hdaa_audio_ctl_amp_set(ctl, HDAA_AMP_MUTE_DEFAULT, HDAA_AMP_VOL_DEFAULT, HDAA_AMP_VOL_DEFAULT); } HDA_BOOTHVERBOSE( device_printf(pdevinfo->dev, "Recsel (%s): nid %d source %d %s\n", hdaa_audio_ctl_ossmixer_mask2allname( src, buf, sizeof(buf)), nid, i, muted?"mute":"unmute"); ); } else { if (w->nconns == 1) break; if ((src & cw->ossmask) == 0) continue; /* If we found requested source - select it and exit. */ hdaa_widget_connection_select(w, i); HDA_BOOTHVERBOSE( device_printf(pdevinfo->dev, "Recsel (%s): nid %d source %d select\n", hdaa_audio_ctl_ossmixer_mask2allname( src, buf, sizeof(buf)), nid, i); ); break; } } return (res); } static uint32_t hdaa_audio_ctl_ossmixer_setrecsrc(struct snd_mixer *m, uint32_t src) { struct hdaa_pcm_devinfo *pdevinfo = mix_getdevinfo(m); struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_widget *w; struct hdaa_audio_as *as; struct hdaa_audio_ctl *ctl; struct hdaa_chan *ch; int i, j; uint32_t ret = 0xffffffff; hdaa_lock(devinfo); if (pdevinfo->recas < 0) { hdaa_unlock(devinfo); return (0); } as = &devinfo->as[pdevinfo->recas]; /* For non-mixed associations we always recording everything. */ if (!as->mixed) { hdaa_unlock(devinfo); return (mix_getrecdevs(m)); } /* Commutate requested recsrc for each ADC. */ for (j = 0; j < as->num_chans; j++) { ch = &devinfo->chans[as->chans[j]]; for (i = 0; ch->io[i] >= 0; i++) { w = hdaa_widget_get(devinfo, ch->io[i]); if (w == NULL || w->enable == 0) continue; ret &= hdaa_audio_ctl_recsel_comm(pdevinfo, src, ch->io[i], 0); } } if (ret == 0xffffffff) ret = 0; /* * Some controls could be shared. Reset volumes for controls * related to previously chosen devices, as they may no longer * affect the signal. */ i = 0; while ((ctl = hdaa_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0 || !(ctl->ossmask & pdevinfo->recsrc)) continue; if (!((pdevinfo->playas >= 0 && ctl->widget->bindas == pdevinfo->playas) || (pdevinfo->recas >= 0 && ctl->widget->bindas == pdevinfo->recas) || (pdevinfo->index == 0 && ctl->widget->bindas == -2))) continue; for (j = 0; j < SOUND_MIXER_NRDEVICES; j++) { if (pdevinfo->recsrc & (1 << j)) { ctl->devleft[j] = 0; ctl->devright[j] = 0; ctl->devmute[j] = 0; } } } /* * Some controls could be shared. Set volumes for controls * related to devices selected both previously and now. */ for (j = 0; j < SOUND_MIXER_NRDEVICES; j++) { if ((ret | pdevinfo->recsrc) & (1 << j)) hdaa_audio_ctl_dev_volume(pdevinfo, j); } pdevinfo->recsrc = ret; hdaa_unlock(devinfo); return (ret); } static kobj_method_t hdaa_audio_ctl_ossmixer_methods[] = { KOBJMETHOD(mixer_init, hdaa_audio_ctl_ossmixer_init), KOBJMETHOD(mixer_set, hdaa_audio_ctl_ossmixer_set), KOBJMETHOD(mixer_setrecsrc, hdaa_audio_ctl_ossmixer_setrecsrc), KOBJMETHOD_END }; MIXER_DECLARE(hdaa_audio_ctl_ossmixer); static void hdaa_dump_gpi(struct hdaa_devinfo *devinfo) { device_t dev = devinfo->dev; int i; uint32_t data, wake, unsol, sticky; if (HDA_PARAM_GPIO_COUNT_NUM_GPI(devinfo->gpio_cap) > 0) { data = hda_command(dev, HDA_CMD_GET_GPI_DATA(0, devinfo->nid)); wake = hda_command(dev, HDA_CMD_GET_GPI_WAKE_ENABLE_MASK(0, devinfo->nid)); unsol = hda_command(dev, HDA_CMD_GET_GPI_UNSOLICITED_ENABLE_MASK(0, devinfo->nid)); sticky = hda_command(dev, HDA_CMD_GET_GPI_STICKY_MASK(0, devinfo->nid)); for (i = 0; i < HDA_PARAM_GPIO_COUNT_NUM_GPI(devinfo->gpio_cap); i++) { device_printf(dev, " GPI%d:%s%s%s state=%d", i, (sticky & (1 << i)) ? " sticky" : "", (unsol & (1 << i)) ? " unsol" : "", (wake & (1 << i)) ? " wake" : "", (data >> i) & 1); } } } static void hdaa_dump_gpio(struct hdaa_devinfo *devinfo) { device_t dev = devinfo->dev; int i; uint32_t data, dir, enable, wake, unsol, sticky; if (HDA_PARAM_GPIO_COUNT_NUM_GPIO(devinfo->gpio_cap) > 0) { data = hda_command(dev, HDA_CMD_GET_GPIO_DATA(0, devinfo->nid)); enable = hda_command(dev, HDA_CMD_GET_GPIO_ENABLE_MASK(0, devinfo->nid)); dir = hda_command(dev, HDA_CMD_GET_GPIO_DIRECTION(0, devinfo->nid)); wake = hda_command(dev, HDA_CMD_GET_GPIO_WAKE_ENABLE_MASK(0, devinfo->nid)); unsol = hda_command(dev, HDA_CMD_GET_GPIO_UNSOLICITED_ENABLE_MASK(0, devinfo->nid)); sticky = hda_command(dev, HDA_CMD_GET_GPIO_STICKY_MASK(0, devinfo->nid)); for (i = 0; i < HDA_PARAM_GPIO_COUNT_NUM_GPIO(devinfo->gpio_cap); i++) { device_printf(dev, " GPIO%d: ", i); if ((enable & (1 << i)) == 0) { printf("disabled\n"); continue; } if ((dir & (1 << i)) == 0) { printf("input%s%s%s", (sticky & (1 << i)) ? " sticky" : "", (unsol & (1 << i)) ? " unsol" : "", (wake & (1 << i)) ? " wake" : ""); } else printf("output"); printf(" state=%d\n", (data >> i) & 1); } } } static void hdaa_dump_gpo(struct hdaa_devinfo *devinfo) { device_t dev = devinfo->dev; int i; uint32_t data; if (HDA_PARAM_GPIO_COUNT_NUM_GPO(devinfo->gpio_cap) > 0) { data = hda_command(dev, HDA_CMD_GET_GPO_DATA(0, devinfo->nid)); for (i = 0; i < HDA_PARAM_GPIO_COUNT_NUM_GPO(devinfo->gpio_cap); i++) { device_printf(dev, " GPO%d: state=%d", i, (data >> i) & 1); } } } static void hdaa_audio_parse(struct hdaa_devinfo *devinfo) { struct hdaa_widget *w; uint32_t res; int i; nid_t nid; nid = devinfo->nid; res = hda_command(devinfo->dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_GPIO_COUNT)); devinfo->gpio_cap = res; HDA_BOOTVERBOSE( device_printf(devinfo->dev, "NumGPIO=%d NumGPO=%d " "NumGPI=%d GPIWake=%d GPIUnsol=%d\n", HDA_PARAM_GPIO_COUNT_NUM_GPIO(devinfo->gpio_cap), HDA_PARAM_GPIO_COUNT_NUM_GPO(devinfo->gpio_cap), HDA_PARAM_GPIO_COUNT_NUM_GPI(devinfo->gpio_cap), HDA_PARAM_GPIO_COUNT_GPI_WAKE(devinfo->gpio_cap), HDA_PARAM_GPIO_COUNT_GPI_UNSOL(devinfo->gpio_cap)); hdaa_dump_gpi(devinfo); hdaa_dump_gpio(devinfo); hdaa_dump_gpo(devinfo); ); res = hda_command(devinfo->dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_SUPP_STREAM_FORMATS)); devinfo->supp_stream_formats = res; res = hda_command(devinfo->dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_SUPP_PCM_SIZE_RATE)); devinfo->supp_pcm_size_rate = res; res = hda_command(devinfo->dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_OUTPUT_AMP_CAP)); devinfo->outamp_cap = res; res = hda_command(devinfo->dev, HDA_CMD_GET_PARAMETER(0, nid, HDA_PARAM_INPUT_AMP_CAP)); devinfo->inamp_cap = res; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL) device_printf(devinfo->dev, "Ghost widget! nid=%d!\n", i); else { w->devinfo = devinfo; w->nid = i; w->enable = 1; w->selconn = -1; w->pflags = 0; w->ossdev = -1; w->bindas = -1; w->param.eapdbtl = HDA_INVALID; hdaa_widget_parse(w); } } } static void hdaa_audio_postprocess(struct hdaa_devinfo *devinfo) { struct hdaa_widget *w; int i; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL) continue; hdaa_widget_postprocess(w); } } static void hdaa_audio_ctl_parse(struct hdaa_devinfo *devinfo) { struct hdaa_audio_ctl *ctls; struct hdaa_widget *w, *cw; int i, j, cnt, max, ocap, icap; int mute, offset, step, size; /* XXX This is redundant */ max = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->param.outamp_cap != 0) max++; if (w->param.inamp_cap != 0) { switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR: case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER: for (j = 0; j < w->nconns; j++) { cw = hdaa_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) continue; max++; } break; default: max++; break; } } } devinfo->ctlcnt = max; if (max < 1) return; ctls = (struct hdaa_audio_ctl *)malloc( sizeof(*ctls) * max, M_HDAA, M_ZERO | M_NOWAIT); if (ctls == NULL) { /* Blekh! */ device_printf(devinfo->dev, "unable to allocate ctls!\n"); devinfo->ctlcnt = 0; return; } cnt = 0; for (i = devinfo->startnode; cnt < max && i < devinfo->endnode; i++) { if (cnt >= max) { device_printf(devinfo->dev, "%s: Ctl overflow!\n", __func__); break; } w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; ocap = w->param.outamp_cap; icap = w->param.inamp_cap; if (ocap != 0) { mute = HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP(ocap); step = HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS(ocap); size = HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE(ocap); offset = HDA_PARAM_OUTPUT_AMP_CAP_OFFSET(ocap); /*if (offset > step) { HDA_BOOTVERBOSE( device_printf(devinfo->dev, "BUGGY outamp: nid=%d " "[offset=%d > step=%d]\n", w->nid, offset, step); ); offset = step; }*/ ctls[cnt].enable = 1; ctls[cnt].widget = w; ctls[cnt].mute = mute; ctls[cnt].step = step; ctls[cnt].size = size; ctls[cnt].offset = offset; ctls[cnt].left = offset; ctls[cnt].right = offset; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX || w->waspin) ctls[cnt].ndir = HDAA_CTL_IN; - else + else ctls[cnt].ndir = HDAA_CTL_OUT; ctls[cnt++].dir = HDAA_CTL_OUT; } if (icap != 0) { mute = HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP(icap); step = HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS(icap); size = HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE(icap); offset = HDA_PARAM_OUTPUT_AMP_CAP_OFFSET(icap); /*if (offset > step) { HDA_BOOTVERBOSE( device_printf(devinfo->dev, "BUGGY inamp: nid=%d " "[offset=%d > step=%d]\n", w->nid, offset, step); ); offset = step; }*/ switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR: case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER: for (j = 0; j < w->nconns; j++) { if (cnt >= max) { device_printf(devinfo->dev, "%s: Ctl overflow!\n", __func__); break; } cw = hdaa_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) continue; ctls[cnt].enable = 1; ctls[cnt].widget = w; ctls[cnt].childwidget = cw; ctls[cnt].index = j; ctls[cnt].mute = mute; ctls[cnt].step = step; ctls[cnt].size = size; ctls[cnt].offset = offset; ctls[cnt].left = offset; ctls[cnt].right = offset; ctls[cnt].ndir = HDAA_CTL_IN; ctls[cnt++].dir = HDAA_CTL_IN; } break; default: if (cnt >= max) { device_printf(devinfo->dev, "%s: Ctl overflow!\n", __func__); break; } ctls[cnt].enable = 1; ctls[cnt].widget = w; ctls[cnt].mute = mute; ctls[cnt].step = step; ctls[cnt].size = size; ctls[cnt].offset = offset; ctls[cnt].left = offset; ctls[cnt].right = offset; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) ctls[cnt].ndir = HDAA_CTL_OUT; - else + else ctls[cnt].ndir = HDAA_CTL_IN; ctls[cnt++].dir = HDAA_CTL_IN; break; } } } devinfo->ctl = ctls; } static void hdaa_audio_as_parse(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as; struct hdaa_widget *w; int i, j, cnt, max, type, dir, assoc, seq, first, hpredir; /* Count present associations */ max = 0; for (j = 1; j < 16; j++) { for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (HDA_CONFIG_DEFAULTCONF_ASSOCIATION(w->wclass.pin.config) != j) continue; max++; if (j != 15) /* There could be many 1-pin assocs #15 */ break; } } devinfo->ascnt = max; if (max < 1) return; as = (struct hdaa_audio_as *)malloc( sizeof(*as) * max, M_HDAA, M_ZERO | M_NOWAIT); if (as == NULL) { /* Blekh! */ device_printf(devinfo->dev, "unable to allocate assocs!\n"); devinfo->ascnt = 0; return; } for (i = 0; i < max; i++) { as[i].hpredir = -1; as[i].digital = 0; as[i].num_chans = 1; as[i].location = -1; } /* Scan associations skipping as=0. */ cnt = 0; for (j = 1; j < 16 && cnt < max; j++) { first = 16; hpredir = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; assoc = HDA_CONFIG_DEFAULTCONF_ASSOCIATION(w->wclass.pin.config); seq = HDA_CONFIG_DEFAULTCONF_SEQUENCE(w->wclass.pin.config); if (assoc != j) { continue; } KASSERT(cnt < max, ("%s: Associations owerflow (%d of %d)", __func__, cnt, max)); type = w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; /* Get pin direction. */ if (type == HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_OUT || type == HDA_CONFIG_DEFAULTCONF_DEVICE_SPEAKER || type == HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT || type == HDA_CONFIG_DEFAULTCONF_DEVICE_SPDIF_OUT || type == HDA_CONFIG_DEFAULTCONF_DEVICE_DIGITAL_OTHER_OUT) dir = HDAA_CTL_OUT; else dir = HDAA_CTL_IN; /* If this is a first pin - create new association. */ if (as[cnt].pincnt == 0) { as[cnt].enable = 1; as[cnt].index = j; as[cnt].dir = dir; } if (seq < first) first = seq; /* Check association correctness. */ if (as[cnt].pins[seq] != 0) { device_printf(devinfo->dev, "%s: Duplicate pin %d (%d) " "in association %d! Disabling association.\n", __func__, seq, w->nid, j); as[cnt].enable = 0; } if (dir != as[cnt].dir) { device_printf(devinfo->dev, "%s: Pin %d has wrong " "direction for association %d! Disabling " "association.\n", __func__, w->nid, j); as[cnt].enable = 0; } if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) { as[cnt].digital |= 0x1; if (HDA_PARAM_PIN_CAP_HDMI(w->wclass.pin.cap)) as[cnt].digital |= 0x2; if (HDA_PARAM_PIN_CAP_DP(w->wclass.pin.cap)) as[cnt].digital |= 0x4; } if (as[cnt].location == -1) { as[cnt].location = HDA_CONFIG_DEFAULTCONF_LOCATION(w->wclass.pin.config); } else if (as[cnt].location != HDA_CONFIG_DEFAULTCONF_LOCATION(w->wclass.pin.config)) { as[cnt].location = -2; } /* Headphones with seq=15 may mean redirection. */ if (type == HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT && seq == 15) hpredir = 1; as[cnt].pins[seq] = w->nid; as[cnt].pincnt++; /* Association 15 is a multiple unassociated pins. */ if (j == 15) cnt++; } if (j != 15 && as[cnt].pincnt > 0) { if (hpredir && as[cnt].pincnt > 1) as[cnt].hpredir = first; cnt++; } } for (i = 0; i < max; i++) { if (as[i].dir == HDAA_CTL_IN && (as[i].pincnt == 1 || as[i].pins[14] > 0 || as[i].pins[15] > 0)) as[i].mixed = 1; } HDA_BOOTVERBOSE( device_printf(devinfo->dev, "%d associations found:\n", max); for (i = 0; i < max; i++) { device_printf(devinfo->dev, "Association %d (%d) %s%s:\n", i, as[i].index, (as[i].dir == HDAA_CTL_IN)?"in":"out", as[i].enable?"":" (disabled)"); for (j = 0; j < 16; j++) { if (as[i].pins[j] == 0) continue; device_printf(devinfo->dev, " Pin nid=%d seq=%d\n", as[i].pins[j], j); } } ); devinfo->as = as; } /* * Trace path from DAC to pin. */ static nid_t hdaa_audio_trace_dac(struct hdaa_devinfo *devinfo, int as, int seq, nid_t nid, int dupseq, int min, int only, int depth) { struct hdaa_widget *w; int i, im = -1; nid_t m = 0, ret; if (depth > HDA_PARSE_MAXDEPTH) return (0); w = hdaa_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (0); HDA_BOOTHVERBOSE( if (!only) { device_printf(devinfo->dev, " %*stracing via nid %d\n", depth + 1, "", w->nid); } ); /* Use only unused widgets */ if (w->bindas >= 0 && w->bindas != as) { HDA_BOOTHVERBOSE( if (!only) { device_printf(devinfo->dev, " %*snid %d busy by association %d\n", depth + 1, "", w->nid, w->bindas); } ); return (0); } if (dupseq < 0) { if (w->bindseqmask != 0) { HDA_BOOTHVERBOSE( if (!only) { device_printf(devinfo->dev, " %*snid %d busy by seqmask %x\n", depth + 1, "", w->nid, w->bindseqmask); } ); return (0); } } else { /* If this is headphones - allow duplicate first pin. */ if (w->bindseqmask != 0 && (w->bindseqmask & (1 << dupseq)) == 0) { HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " %*snid %d busy by seqmask %x\n", depth + 1, "", w->nid, w->bindseqmask); ); return (0); } } switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT: /* Do not traverse input. AD1988 has digital monitor for which we are not ready. */ break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT: /* If we are tracing HP take only dac of first pin. */ if ((only == 0 || only == w->nid) && (w->nid >= min) && (dupseq < 0 || w->nid == devinfo->as[as].dacs[0][dupseq])) m = w->nid; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX: if (depth > 0) break; /* Fall */ default: /* Find reachable DACs with smallest nid respecting constraints. */ for (i = 0; i < w->nconns; i++) { if (w->connsenable[i] == 0) continue; if (w->selconn != -1 && w->selconn != i) continue; if ((ret = hdaa_audio_trace_dac(devinfo, as, seq, w->conns[i], dupseq, min, only, depth + 1)) != 0) { if (m == 0 || ret < m) { m = ret; im = i; } if (only || dupseq >= 0) break; } } if (im >= 0 && only && ((w->nconns > 1 && w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR)) w->selconn = im; break; } if (m && only) { w->bindas = as; w->bindseqmask |= (1 << seq); } HDA_BOOTHVERBOSE( if (!only) { device_printf(devinfo->dev, " %*snid %d returned %d\n", depth + 1, "", w->nid, m); } ); return (m); } /* * Trace path from widget to ADC. */ static nid_t hdaa_audio_trace_adc(struct hdaa_devinfo *devinfo, int as, int seq, nid_t nid, int mixed, int min, int only, int depth, int *length, int onlylength) { struct hdaa_widget *w, *wc; int i, j, im, lm = HDA_PARSE_MAXDEPTH; nid_t m = 0, ret; if (depth > HDA_PARSE_MAXDEPTH) return (0); w = hdaa_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (0); HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " %*stracing via nid %d\n", depth + 1, "", w->nid); ); /* Use only unused widgets */ if (w->bindas >= 0 && w->bindas != as) { HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " %*snid %d busy by association %d\n", depth + 1, "", w->nid, w->bindas); ); return (0); } if (!mixed && w->bindseqmask != 0) { HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " %*snid %d busy by seqmask %x\n", depth + 1, "", w->nid, w->bindseqmask); ); return (0); } switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT: if ((only == 0 || only == w->nid) && (w->nid >= min) && (onlylength == 0 || onlylength == depth)) { m = w->nid; *length = depth; } break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX: if (depth > 0) break; /* Fall */ default: /* Try to find reachable ADCs with specified nid. */ for (j = devinfo->startnode; j < devinfo->endnode; j++) { wc = hdaa_widget_get(devinfo, j); if (wc == NULL || wc->enable == 0) continue; im = -1; for (i = 0; i < wc->nconns; i++) { if (wc->connsenable[i] == 0) continue; if (wc->conns[i] != nid) continue; if ((ret = hdaa_audio_trace_adc(devinfo, as, seq, j, mixed, min, only, depth + 1, length, onlylength)) != 0) { if (m == 0 || ret < m || (ret == m && *length < lm)) { m = ret; im = i; lm = *length; } else *length = lm; if (only) break; } } if (im >= 0 && only && ((wc->nconns > 1 && wc->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) || wc->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR)) wc->selconn = im; } break; } if (m && only) { w->bindas = as; w->bindseqmask |= (1 << seq); } HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " %*snid %d returned %d\n", depth + 1, "", w->nid, m); ); return (m); } /* * Erase trace path of the specified association. */ static void hdaa_audio_undo_trace(struct hdaa_devinfo *devinfo, int as, int seq) { struct hdaa_widget *w; int i; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->bindas == as) { if (seq >= 0) { w->bindseqmask &= ~(1 << seq); if (w->bindseqmask == 0) { w->bindas = -1; w->selconn = -1; } } else { w->bindas = -1; w->bindseqmask = 0; w->selconn = -1; } } } } /* * Trace association path from DAC to output */ static int hdaa_audio_trace_as_out(struct hdaa_devinfo *devinfo, int as, int seq) { struct hdaa_audio_as *ases = devinfo->as; int i, hpredir; nid_t min, res; /* Find next pin */ for (i = seq; i < 16 && ases[as].pins[i] == 0; i++) ; /* Check if there is no any left. If so - we succeeded. */ if (i == 16) return (1); hpredir = (i == 15 && ases[as].fakeredir == 0)?ases[as].hpredir:-1; min = 0; do { HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " Tracing pin %d with min nid %d", ases[as].pins[i], min); if (hpredir >= 0) printf(" and hpredir %d", hpredir); printf("\n"); ); /* Trace this pin taking min nid into account. */ res = hdaa_audio_trace_dac(devinfo, as, i, ases[as].pins[i], hpredir, min, 0, 0); if (res == 0) { /* If we failed - return to previous and redo it. */ HDA_BOOTVERBOSE( device_printf(devinfo->dev, " Unable to trace pin %d seq %d with min " "nid %d", ases[as].pins[i], i, min); if (hpredir >= 0) printf(" and hpredir %d", hpredir); printf("\n"); ); return (0); } HDA_BOOTVERBOSE( device_printf(devinfo->dev, " Pin %d traced to DAC %d", ases[as].pins[i], res); if (hpredir >= 0) printf(" and hpredir %d", hpredir); if (ases[as].fakeredir) printf(" with fake redirection"); printf("\n"); ); /* Trace again to mark the path */ hdaa_audio_trace_dac(devinfo, as, i, ases[as].pins[i], hpredir, min, res, 0); ases[as].dacs[0][i] = res; /* We succeeded, so call next. */ if (hdaa_audio_trace_as_out(devinfo, as, i + 1)) return (1); /* If next failed, we should retry with next min */ hdaa_audio_undo_trace(devinfo, as, i); ases[as].dacs[0][i] = 0; min = res + 1; } while (1); } /* * Check equivalency of two DACs. */ static int hdaa_audio_dacs_equal(struct hdaa_widget *w1, struct hdaa_widget *w2) { struct hdaa_devinfo *devinfo = w1->devinfo; struct hdaa_widget *w3; int i, j, c1, c2; if (memcmp(&w1->param, &w2->param, sizeof(w1->param))) return (0); for (i = devinfo->startnode; i < devinfo->endnode; i++) { w3 = hdaa_widget_get(devinfo, i); if (w3 == NULL || w3->enable == 0) continue; if (w3->bindas != w1->bindas) continue; if (w3->nconns == 0) continue; c1 = c2 = -1; for (j = 0; j < w3->nconns; j++) { if (w3->connsenable[j] == 0) continue; if (w3->conns[j] == w1->nid) c1 = j; if (w3->conns[j] == w2->nid) c2 = j; } if (c1 < 0) continue; if (c2 < 0) return (0); if (w3->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) return (0); } return (1); } /* * Check equivalency of two ADCs. */ static int hdaa_audio_adcs_equal(struct hdaa_widget *w1, struct hdaa_widget *w2) { struct hdaa_devinfo *devinfo = w1->devinfo; struct hdaa_widget *w3, *w4; int i; if (memcmp(&w1->param, &w2->param, sizeof(w1->param))) return (0); if (w1->nconns != 1 || w2->nconns != 1) return (0); if (w1->conns[0] == w2->conns[0]) return (1); w3 = hdaa_widget_get(devinfo, w1->conns[0]); if (w3 == NULL || w3->enable == 0) return (0); w4 = hdaa_widget_get(devinfo, w2->conns[0]); if (w4 == NULL || w4->enable == 0) return (0); if (w3->bindas == w4->bindas && w3->bindseqmask == w4->bindseqmask) return (1); if (w4->bindas >= 0) return (0); if (w3->type != w4->type) return (0); if (memcmp(&w3->param, &w4->param, sizeof(w3->param))) return (0); if (w3->nconns != w4->nconns) return (0); for (i = 0; i < w3->nconns; i++) { if (w3->conns[i] != w4->conns[i]) return (0); } return (1); } /* * Look for equivalent DAC/ADC to implement second channel. */ static void hdaa_audio_adddac(struct hdaa_devinfo *devinfo, int asid) { struct hdaa_audio_as *as = &devinfo->as[asid]; struct hdaa_widget *w1, *w2; int i, pos; nid_t nid1, nid2; HDA_BOOTVERBOSE( device_printf(devinfo->dev, "Looking for additional %sC " "for association %d (%d)\n", (as->dir == HDAA_CTL_OUT) ? "DA" : "AD", asid, as->index); ); /* Find the exisitng DAC position and return if found more the one. */ pos = -1; for (i = 0; i < 16; i++) { if (as->dacs[0][i] <= 0) continue; if (pos >= 0 && as->dacs[0][i] != as->dacs[0][pos]) return; pos = i; } nid1 = as->dacs[0][pos]; w1 = hdaa_widget_get(devinfo, nid1); w2 = NULL; for (nid2 = devinfo->startnode; nid2 < devinfo->endnode; nid2++) { w2 = hdaa_widget_get(devinfo, nid2); if (w2 == NULL || w2->enable == 0) continue; if (w2->bindas >= 0) continue; if (w1->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT) { if (w2->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT) continue; if (hdaa_audio_dacs_equal(w1, w2)) break; } else { if (w2->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) continue; if (hdaa_audio_adcs_equal(w1, w2)) break; } } if (nid2 >= devinfo->endnode) return; w2->bindas = w1->bindas; w2->bindseqmask = w1->bindseqmask; if (w1->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) { HDA_BOOTVERBOSE( device_printf(devinfo->dev, " ADC %d considered equal to ADC %d\n", nid2, nid1); ); w1 = hdaa_widget_get(devinfo, w1->conns[0]); w2 = hdaa_widget_get(devinfo, w2->conns[0]); w2->bindas = w1->bindas; w2->bindseqmask = w1->bindseqmask; } else { HDA_BOOTVERBOSE( device_printf(devinfo->dev, " DAC %d considered equal to DAC %d\n", nid2, nid1); ); } for (i = 0; i < 16; i++) { if (as->dacs[0][i] <= 0) continue; as->dacs[as->num_chans][i] = nid2; } as->num_chans++; } /* * Trace association path from input to ADC */ static int hdaa_audio_trace_as_in(struct hdaa_devinfo *devinfo, int as) { struct hdaa_audio_as *ases = devinfo->as; struct hdaa_widget *w; int i, j, k, length; for (j = devinfo->startnode; j < devinfo->endnode; j++) { w = hdaa_widget_get(devinfo, j); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) continue; if (w->bindas >= 0 && w->bindas != as) continue; /* Find next pin */ for (i = 0; i < 16; i++) { if (ases[as].pins[i] == 0) continue; HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " Tracing pin %d to ADC %d\n", ases[as].pins[i], j); ); /* Trace this pin taking goal into account. */ if (hdaa_audio_trace_adc(devinfo, as, i, ases[as].pins[i], 1, 0, j, 0, &length, 0) == 0) { /* If we failed - return to previous and redo it. */ HDA_BOOTVERBOSE( device_printf(devinfo->dev, " Unable to trace pin %d to ADC %d, undo traces\n", ases[as].pins[i], j); ); hdaa_audio_undo_trace(devinfo, as, -1); for (k = 0; k < 16; k++) ases[as].dacs[0][k] = 0; break; } HDA_BOOTVERBOSE( device_printf(devinfo->dev, " Pin %d traced to ADC %d\n", ases[as].pins[i], j); ); ases[as].dacs[0][i] = j; } if (i == 16) return (1); } return (0); } /* * Trace association path from input to multiple ADCs */ static int hdaa_audio_trace_as_in_mch(struct hdaa_devinfo *devinfo, int as, int seq) { struct hdaa_audio_as *ases = devinfo->as; int i, length; nid_t min, res; /* Find next pin */ for (i = seq; i < 16 && ases[as].pins[i] == 0; i++) ; /* Check if there is no any left. If so - we succeeded. */ if (i == 16) return (1); min = 0; do { HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " Tracing pin %d with min nid %d", ases[as].pins[i], min); printf("\n"); ); /* Trace this pin taking min nid into account. */ res = hdaa_audio_trace_adc(devinfo, as, i, ases[as].pins[i], 0, min, 0, 0, &length, 0); if (res == 0) { /* If we failed - return to previous and redo it. */ HDA_BOOTVERBOSE( device_printf(devinfo->dev, " Unable to trace pin %d seq %d with min " "nid %d", ases[as].pins[i], i, min); printf("\n"); ); return (0); } HDA_BOOTVERBOSE( device_printf(devinfo->dev, " Pin %d traced to ADC %d\n", ases[as].pins[i], res); ); /* Trace again to mark the path */ hdaa_audio_trace_adc(devinfo, as, i, ases[as].pins[i], 0, min, res, 0, &length, length); ases[as].dacs[0][i] = res; /* We succeeded, so call next. */ if (hdaa_audio_trace_as_in_mch(devinfo, as, i + 1)) return (1); /* If next failed, we should retry with next min */ hdaa_audio_undo_trace(devinfo, as, i); ases[as].dacs[0][i] = 0; min = res + 1; } while (1); } /* * Trace input monitor path from mixer to output association. */ static int hdaa_audio_trace_to_out(struct hdaa_devinfo *devinfo, nid_t nid, int depth) { struct hdaa_audio_as *ases = devinfo->as; struct hdaa_widget *w, *wc; int i, j; nid_t res = 0; if (depth > HDA_PARSE_MAXDEPTH) return (0); w = hdaa_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (0); HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " %*stracing via nid %d\n", depth + 1, "", w->nid); ); /* Use only unused widgets */ if (depth > 0 && w->bindas != -1) { if (w->bindas < 0 || ases[w->bindas].dir == HDAA_CTL_OUT) { HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " %*snid %d found output association %d\n", depth + 1, "", w->nid, w->bindas); ); if (w->bindas >= 0) w->pflags |= HDAA_ADC_MONITOR; return (1); } else { HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " %*snid %d busy by input association %d\n", depth + 1, "", w->nid, w->bindas); ); return (0); } } switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT: /* Do not traverse input. AD1988 has digital monitor for which we are not ready. */ break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX: if (depth > 0) break; /* Fall */ default: /* Try to find reachable ADCs with specified nid. */ for (j = devinfo->startnode; j < devinfo->endnode; j++) { wc = hdaa_widget_get(devinfo, j); if (wc == NULL || wc->enable == 0) continue; for (i = 0; i < wc->nconns; i++) { if (wc->connsenable[i] == 0) continue; if (wc->conns[i] != nid) continue; if (hdaa_audio_trace_to_out(devinfo, j, depth + 1) != 0) { res = 1; if (wc->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR && wc->selconn == -1) wc->selconn = i; } } } break; } if (res && w->bindas == -1) w->bindas = -2; HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " %*snid %d returned %d\n", depth + 1, "", w->nid, res); ); return (res); } /* * Trace extra associations (beeper, monitor) */ static void hdaa_audio_trace_as_extra(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as = devinfo->as; struct hdaa_widget *w; int j; /* Input monitor */ /* Find mixer associated with input, but supplying signal for output associations. Hope it will be input monitor. */ HDA_BOOTVERBOSE( device_printf(devinfo->dev, "Tracing input monitor\n"); ); for (j = devinfo->startnode; j < devinfo->endnode; j++) { w = hdaa_widget_get(devinfo, j); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) continue; if (w->bindas < 0 || as[w->bindas].dir != HDAA_CTL_IN) continue; HDA_BOOTVERBOSE( device_printf(devinfo->dev, " Tracing nid %d to out\n", j); ); if (hdaa_audio_trace_to_out(devinfo, w->nid, 0)) { HDA_BOOTVERBOSE( device_printf(devinfo->dev, " nid %d is input monitor\n", w->nid); ); w->ossdev = SOUND_MIXER_IMIX; } } /* Other inputs monitor */ /* Find input pins supplying signal for output associations. Hope it will be input monitoring. */ HDA_BOOTVERBOSE( device_printf(devinfo->dev, "Tracing other input monitors\n"); ); for (j = devinfo->startnode; j < devinfo->endnode; j++) { w = hdaa_widget_get(devinfo, j); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (w->bindas < 0 || as[w->bindas].dir != HDAA_CTL_IN) continue; HDA_BOOTVERBOSE( device_printf(devinfo->dev, " Tracing nid %d to out\n", j); ); if (hdaa_audio_trace_to_out(devinfo, w->nid, 0)) { HDA_BOOTVERBOSE( device_printf(devinfo->dev, " nid %d is input monitor\n", w->nid); ); } } /* Beeper */ HDA_BOOTVERBOSE( device_printf(devinfo->dev, "Tracing beeper\n"); ); for (j = devinfo->startnode; j < devinfo->endnode; j++) { w = hdaa_widget_get(devinfo, j); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_BEEP_WIDGET) continue; HDA_BOOTHVERBOSE( device_printf(devinfo->dev, " Tracing nid %d to out\n", j); ); if (hdaa_audio_trace_to_out(devinfo, w->nid, 0)) { HDA_BOOTVERBOSE( device_printf(devinfo->dev, " nid %d traced to out\n", j); ); } w->bindas = -2; } } /* * Bind assotiations to PCM channels */ static void hdaa_audio_bind_as(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as = devinfo->as; int i, j, cnt = 0, free; for (j = 0; j < devinfo->ascnt; j++) { if (as[j].enable) cnt += as[j].num_chans; } if (devinfo->num_chans == 0) { devinfo->chans = (struct hdaa_chan *)malloc( sizeof(struct hdaa_chan) * cnt, M_HDAA, M_ZERO | M_NOWAIT); if (devinfo->chans == NULL) { device_printf(devinfo->dev, "Channels memory allocation failed!\n"); return; } } else { devinfo->chans = (struct hdaa_chan *)realloc(devinfo->chans, sizeof(struct hdaa_chan) * (devinfo->num_chans + cnt), M_HDAA, M_ZERO | M_NOWAIT); if (devinfo->chans == NULL) { devinfo->num_chans = 0; device_printf(devinfo->dev, "Channels memory allocation failed!\n"); return; } /* Fixup relative pointers after realloc */ for (j = 0; j < devinfo->num_chans; j++) devinfo->chans[j].caps.fmtlist = devinfo->chans[j].fmtlist; } free = devinfo->num_chans; devinfo->num_chans += cnt; for (j = free; j < free + cnt; j++) { devinfo->chans[j].devinfo = devinfo; devinfo->chans[j].as = -1; } /* Assign associations in order of their numbers, */ for (j = 0; j < devinfo->ascnt; j++) { if (as[j].enable == 0) continue; for (i = 0; i < as[j].num_chans; i++) { devinfo->chans[free].as = j; devinfo->chans[free].asindex = i; devinfo->chans[free].dir = (as[j].dir == HDAA_CTL_IN) ? PCMDIR_REC : PCMDIR_PLAY; hdaa_pcmchannel_setup(&devinfo->chans[free]); as[j].chans[i] = free; free++; } } } static void hdaa_audio_disable_nonaudio(struct hdaa_devinfo *devinfo) { struct hdaa_widget *w; int i; /* Disable power and volume widgets. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_POWER_WIDGET || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_VOLUME_WIDGET) { w->enable = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling nid %d due to it's" " non-audio type.\n", w->nid); ); } } } static void hdaa_audio_disable_useless(struct hdaa_devinfo *devinfo) { struct hdaa_widget *w, *cw; struct hdaa_audio_ctl *ctl; int done, found, i, j, k; /* Disable useless pins. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) { if ((w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK) == HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_NONE) { w->enable = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling pin nid %d due" " to None connectivity.\n", w->nid); ); } else if ((w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_ASSOCIATION_MASK) == 0) { w->enable = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling unassociated" " pin nid %d.\n", w->nid); ); } } } do { done = 1; /* Disable and mute controls for disabled widgets. */ i = 0; while ((ctl = hdaa_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0) continue; if (ctl->widget->enable == 0 || (ctl->childwidget != NULL && ctl->childwidget->enable == 0)) { ctl->forcemute = 1; ctl->muted = HDAA_AMP_MUTE_ALL; ctl->left = 0; ctl->right = 0; ctl->enable = 0; if (ctl->ndir == HDAA_CTL_IN) ctl->widget->connsenable[ctl->index] = 0; done = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling ctl %d nid %d cnid %d due" " to disabled widget.\n", i, ctl->widget->nid, (ctl->childwidget != NULL)? ctl->childwidget->nid:-1); ); } } /* Disable useless widgets. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; /* Disable inputs with disabled child widgets. */ for (j = 0; j < w->nconns; j++) { if (w->connsenable[j]) { cw = hdaa_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) { w->connsenable[j] = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling nid %d connection %d due" " to disabled child widget.\n", i, j); ); } } } if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR && w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) continue; /* Disable mixers and selectors without inputs. */ found = 0; for (j = 0; j < w->nconns; j++) { if (w->connsenable[j]) { found = 1; break; } } if (found == 0) { w->enable = 0; done = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling nid %d due to all it's" " inputs disabled.\n", w->nid); ); } /* Disable nodes without consumers. */ if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR && w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) continue; found = 0; for (k = devinfo->startnode; k < devinfo->endnode; k++) { cw = hdaa_widget_get(devinfo, k); if (cw == NULL || cw->enable == 0) continue; for (j = 0; j < cw->nconns; j++) { if (cw->connsenable[j] && cw->conns[j] == i) { found = 1; break; } } } if (found == 0) { w->enable = 0; done = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling nid %d due to all it's" " consumers disabled.\n", w->nid); ); } } } while (done == 0); } static void hdaa_audio_disable_unas(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as = devinfo->as; struct hdaa_widget *w, *cw; struct hdaa_audio_ctl *ctl; int i, j, k; /* Disable unassosiated widgets. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->bindas == -1) { w->enable = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling unassociated nid %d.\n", w->nid); ); } } /* Disable input connections on input pin and * output on output. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (w->bindas < 0) continue; if (as[w->bindas].dir == HDAA_CTL_IN) { for (j = 0; j < w->nconns; j++) { if (w->connsenable[j] == 0) continue; w->connsenable[j] = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling connection to input pin " "nid %d conn %d.\n", i, j); ); } ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_IN, -1, 1); if (ctl && ctl->enable) { ctl->forcemute = 1; ctl->muted = HDAA_AMP_MUTE_ALL; ctl->left = 0; ctl->right = 0; ctl->enable = 0; } } else { ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_OUT, -1, 1); if (ctl && ctl->enable) { ctl->forcemute = 1; ctl->muted = HDAA_AMP_MUTE_ALL; ctl->left = 0; ctl->right = 0; ctl->enable = 0; } for (k = devinfo->startnode; k < devinfo->endnode; k++) { cw = hdaa_widget_get(devinfo, k); if (cw == NULL || cw->enable == 0) continue; for (j = 0; j < cw->nconns; j++) { if (cw->connsenable[j] && cw->conns[j] == i) { cw->connsenable[j] = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling connection from output pin " "nid %d conn %d cnid %d.\n", k, j, i); ); if (cw->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && cw->nconns > 1) continue; ctl = hdaa_audio_ctl_amp_get(devinfo, k, HDAA_CTL_IN, j, 1); if (ctl && ctl->enable) { ctl->forcemute = 1; ctl->muted = HDAA_AMP_MUTE_ALL; ctl->left = 0; ctl->right = 0; ctl->enable = 0; } } } } } } } static void hdaa_audio_disable_notselected(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as = devinfo->as; struct hdaa_widget *w; int i, j; /* On playback path we can safely disable all unseleted inputs. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->nconns <= 1) continue; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) continue; if (w->bindas < 0 || as[w->bindas].dir == HDAA_CTL_IN) continue; for (j = 0; j < w->nconns; j++) { if (w->connsenable[j] == 0) continue; if (w->selconn < 0 || w->selconn == j) continue; w->connsenable[j] = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling unselected connection " "nid %d conn %d.\n", i, j); ); } } } static void hdaa_audio_disable_crossas(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *ases = devinfo->as; struct hdaa_widget *w, *cw; struct hdaa_audio_ctl *ctl; int i, j; /* Disable crossassociatement and unwanted crosschannel connections. */ /* ... using selectors */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->nconns <= 1) continue; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) continue; /* Allow any -> mix */ if (w->bindas == -2) continue; for (j = 0; j < w->nconns; j++) { if (w->connsenable[j] == 0) continue; cw = hdaa_widget_get(devinfo, w->conns[j]); if (cw == NULL || w->enable == 0) continue; /* Allow mix -> out. */ if (cw->bindas == -2 && w->bindas >= 0 && ases[w->bindas].dir == HDAA_CTL_OUT) continue; /* Allow mix -> mixed-in. */ if (cw->bindas == -2 && w->bindas >= 0 && ases[w->bindas].mixed) continue; /* Allow in -> mix. */ if ((w->pflags & HDAA_ADC_MONITOR) && cw->bindas >= 0 && ases[cw->bindas].dir == HDAA_CTL_IN) continue; /* Allow if have common as/seqs. */ if (w->bindas == cw->bindas && (w->bindseqmask & cw->bindseqmask) != 0) continue; w->connsenable[j] = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling crossassociatement connection " "nid %d conn %d cnid %d.\n", i, j, cw->nid); ); } } /* ... using controls */ i = 0; while ((ctl = hdaa_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0 || ctl->childwidget == NULL) continue; /* Allow any -> mix */ if (ctl->widget->bindas == -2) continue; /* Allow mix -> out. */ if (ctl->childwidget->bindas == -2 && ctl->widget->bindas >= 0 && ases[ctl->widget->bindas].dir == HDAA_CTL_OUT) continue; /* Allow mix -> mixed-in. */ if (ctl->childwidget->bindas == -2 && ctl->widget->bindas >= 0 && ases[ctl->widget->bindas].mixed) continue; /* Allow in -> mix. */ if ((ctl->widget->pflags & HDAA_ADC_MONITOR) && ctl->childwidget->bindas >= 0 && ases[ctl->childwidget->bindas].dir == HDAA_CTL_IN) continue; /* Allow if have common as/seqs. */ if (ctl->widget->bindas == ctl->childwidget->bindas && (ctl->widget->bindseqmask & ctl->childwidget->bindseqmask) != 0) continue; ctl->forcemute = 1; ctl->muted = HDAA_AMP_MUTE_ALL; ctl->left = 0; ctl->right = 0; ctl->enable = 0; if (ctl->ndir == HDAA_CTL_IN) ctl->widget->connsenable[ctl->index] = 0; HDA_BOOTHVERBOSE( - device_printf(devinfo->dev, + device_printf(devinfo->dev, " Disabling crossassociatement connection " "ctl %d nid %d cnid %d.\n", i, ctl->widget->nid, ctl->childwidget->nid); ); } } /* * Find controls to control amplification for source and calculate possible * amplification range. */ static int hdaa_audio_ctl_source_amp(struct hdaa_devinfo *devinfo, nid_t nid, int index, int ossdev, int ctlable, int depth, int *minamp, int *maxamp) { struct hdaa_widget *w, *wc; struct hdaa_audio_ctl *ctl; int i, j, conns = 0, tminamp, tmaxamp, cminamp, cmaxamp, found = 0; if (depth > HDA_PARSE_MAXDEPTH) return (found); w = hdaa_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (found); /* Count number of active inputs. */ if (depth > 0) { for (j = 0; j < w->nconns; j++) { if (!w->connsenable[j]) continue; conns++; } } /* If this is not a first step - use input mixer. Pins have common input ctl so care must be taken. */ if (depth > 0 && ctlable && (conns == 1 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX)) { ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_IN, index, 1); if (ctl) { ctl->ossmask |= (1 << ossdev); found++; if (*minamp == *maxamp) { *minamp += MINQDB(ctl); *maxamp += MAXQDB(ctl); } } } /* If widget has own ossdev - not traverse it. It will be traversed on its own. */ if (w->ossdev >= 0 && depth > 0) return (found); /* We must not traverse pin */ if ((w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) && depth > 0) return (found); /* record that this widget exports such signal, */ w->ossmask |= (1 << ossdev); /* * If signals mixed, we can't assign controls farther. * Ignore this on depth zero. Caller must knows why. */ if (conns > 1 && w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) ctlable = 0; if (ctlable) { ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_OUT, -1, 1); if (ctl) { ctl->ossmask |= (1 << ossdev); found++; if (*minamp == *maxamp) { *minamp += MINQDB(ctl); *maxamp += MAXQDB(ctl); } } } cminamp = cmaxamp = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { wc = hdaa_widget_get(devinfo, i); if (wc == NULL || wc->enable == 0) continue; for (j = 0; j < wc->nconns; j++) { if (wc->connsenable[j] && wc->conns[j] == nid) { tminamp = tmaxamp = 0; found += hdaa_audio_ctl_source_amp(devinfo, wc->nid, j, ossdev, ctlable, depth + 1, &tminamp, &tmaxamp); if (cminamp == 0 && cmaxamp == 0) { cminamp = tminamp; cmaxamp = tmaxamp; } else if (tminamp != tmaxamp) { cminamp = imax(cminamp, tminamp); cmaxamp = imin(cmaxamp, tmaxamp); } } } } if (*minamp == *maxamp && cminamp < cmaxamp) { *minamp += cminamp; *maxamp += cmaxamp; } return (found); } /* * Find controls to control amplification for destination and calculate * possible amplification range. */ static int hdaa_audio_ctl_dest_amp(struct hdaa_devinfo *devinfo, nid_t nid, int index, int ossdev, int depth, int *minamp, int *maxamp) { struct hdaa_audio_as *as = devinfo->as; struct hdaa_widget *w, *wc; struct hdaa_audio_ctl *ctl; int i, j, consumers, tminamp, tmaxamp, cminamp, cmaxamp, found = 0; if (depth > HDA_PARSE_MAXDEPTH) return (found); w = hdaa_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (found); if (depth > 0) { /* If this node produce output for several consumers, we can't touch it. */ consumers = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { wc = hdaa_widget_get(devinfo, i); if (wc == NULL || wc->enable == 0) continue; for (j = 0; j < wc->nconns; j++) { if (wc->connsenable[j] && wc->conns[j] == nid) consumers++; } } /* The only exception is if real HP redirection is configured and this is a duplication point. XXX: Actually exception is not completely correct. XXX: Duplication point check is not perfect. */ if ((consumers == 2 && (w->bindas < 0 || as[w->bindas].hpredir < 0 || as[w->bindas].fakeredir || (w->bindseqmask & (1 << 15)) == 0)) || consumers > 2) return (found); /* Else use it's output mixer. */ ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_OUT, -1, 1); if (ctl) { ctl->ossmask |= (1 << ossdev); found++; if (*minamp == *maxamp) { *minamp += MINQDB(ctl); *maxamp += MAXQDB(ctl); } } } /* We must not traverse pin */ if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && depth > 0) return (found); cminamp = cmaxamp = 0; for (i = 0; i < w->nconns; i++) { if (w->connsenable[i] == 0) continue; if (index >= 0 && i != index) continue; tminamp = tmaxamp = 0; ctl = hdaa_audio_ctl_amp_get(devinfo, w->nid, HDAA_CTL_IN, i, 1); if (ctl) { ctl->ossmask |= (1 << ossdev); found++; if (*minamp == *maxamp) { tminamp += MINQDB(ctl); tmaxamp += MAXQDB(ctl); } } found += hdaa_audio_ctl_dest_amp(devinfo, w->conns[i], -1, ossdev, depth + 1, &tminamp, &tmaxamp); if (cminamp == 0 && cmaxamp == 0) { cminamp = tminamp; cmaxamp = tmaxamp; } else if (tminamp != tmaxamp) { cminamp = imax(cminamp, tminamp); cmaxamp = imin(cmaxamp, tmaxamp); } } if (*minamp == *maxamp && cminamp < cmaxamp) { *minamp += cminamp; *maxamp += cmaxamp; } return (found); } /* * Assign OSS names to sound sources */ static void hdaa_audio_assign_names(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as = devinfo->as; struct hdaa_widget *w; int i, j; int type = -1, use, used = 0; static const int types[7][13] = { - { SOUND_MIXER_LINE, SOUND_MIXER_LINE1, SOUND_MIXER_LINE2, + { SOUND_MIXER_LINE, SOUND_MIXER_LINE1, SOUND_MIXER_LINE2, SOUND_MIXER_LINE3, -1 }, /* line */ { SOUND_MIXER_MONITOR, SOUND_MIXER_MIC, -1 }, /* int mic */ { SOUND_MIXER_MIC, SOUND_MIXER_MONITOR, -1 }, /* ext mic */ { SOUND_MIXER_CD, -1 }, /* cd */ { SOUND_MIXER_SPEAKER, -1 }, /* speaker */ { SOUND_MIXER_DIGITAL1, SOUND_MIXER_DIGITAL2, SOUND_MIXER_DIGITAL3, -1 }, /* digital */ { SOUND_MIXER_LINE, SOUND_MIXER_LINE1, SOUND_MIXER_LINE2, SOUND_MIXER_LINE3, SOUND_MIXER_PHONEIN, SOUND_MIXER_PHONEOUT, SOUND_MIXER_VIDEO, SOUND_MIXER_RADIO, SOUND_MIXER_DIGITAL1, SOUND_MIXER_DIGITAL2, SOUND_MIXER_DIGITAL3, SOUND_MIXER_MONITOR, -1 } /* others */ }; /* Surely known names */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->bindas == -1) continue; use = -1; switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX: if (as[w->bindas].dir == HDAA_CTL_OUT) break; type = -1; switch (w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) { case HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_IN: type = 0; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN: if ((w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK) == HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_JACK) break; type = 1; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_CD: type = 3; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_SPEAKER: type = 4; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_SPDIF_IN: case HDA_CONFIG_DEFAULTCONF_DEVICE_DIGITAL_OTHER_IN: type = 5; break; } if (type == -1) break; j = 0; while (types[type][j] >= 0 && (used & (1 << types[type][j])) != 0) { j++; } if (types[type][j] >= 0) use = types[type][j]; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT: use = SOUND_MIXER_PCM; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_BEEP_WIDGET: use = SOUND_MIXER_SPEAKER; break; default: break; } if (use >= 0) { w->ossdev = use; used |= (1 << use); } } /* Semi-known names */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->ossdev >= 0) continue; if (w->bindas == -1) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (as[w->bindas].dir == HDAA_CTL_OUT) continue; type = -1; switch (w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) { case HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_OUT: case HDA_CONFIG_DEFAULTCONF_DEVICE_SPEAKER: case HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT: case HDA_CONFIG_DEFAULTCONF_DEVICE_AUX: type = 0; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN: type = 2; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_SPDIF_OUT: case HDA_CONFIG_DEFAULTCONF_DEVICE_DIGITAL_OTHER_OUT: type = 5; break; } if (type == -1) break; j = 0; while (types[type][j] >= 0 && (used & (1 << types[type][j])) != 0) { j++; } if (types[type][j] >= 0) { w->ossdev = types[type][j]; used |= (1 << types[type][j]); } } /* Others */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->ossdev >= 0) continue; if (w->bindas == -1) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (as[w->bindas].dir == HDAA_CTL_OUT) continue; j = 0; while (types[6][j] >= 0 && (used & (1 << types[6][j])) != 0) { j++; } if (types[6][j] >= 0) { w->ossdev = types[6][j]; used |= (1 << types[6][j]); } } } static void hdaa_audio_build_tree(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as = devinfo->as; int j, res; /* Trace all associations in order of their numbers. */ for (j = 0; j < devinfo->ascnt; j++) { if (as[j].enable == 0) continue; HDA_BOOTVERBOSE( device_printf(devinfo->dev, "Tracing association %d (%d)\n", j, as[j].index); ); if (as[j].dir == HDAA_CTL_OUT) { retry: res = hdaa_audio_trace_as_out(devinfo, j, 0); if (res == 0 && as[j].hpredir >= 0 && as[j].fakeredir == 0) { /* If CODEC can't do analog HP redirection try to make it using one more DAC. */ as[j].fakeredir = 1; goto retry; } } else if (as[j].mixed) res = hdaa_audio_trace_as_in(devinfo, j); else res = hdaa_audio_trace_as_in_mch(devinfo, j, 0); if (res) { HDA_BOOTVERBOSE( device_printf(devinfo->dev, "Association %d (%d) trace succeeded\n", j, as[j].index); ); } else { HDA_BOOTVERBOSE( device_printf(devinfo->dev, "Association %d (%d) trace failed\n", j, as[j].index); ); as[j].enable = 0; } } /* Look for additional DACs/ADCs. */ for (j = 0; j < devinfo->ascnt; j++) { if (as[j].enable == 0) continue; hdaa_audio_adddac(devinfo, j); } /* Trace mixer and beeper pseudo associations. */ hdaa_audio_trace_as_extra(devinfo); } /* * Store in pdevinfo new data about whether and how we can control signal * for OSS device to/from specified widget. */ static void hdaa_adjust_amp(struct hdaa_widget *w, int ossdev, int found, int minamp, int maxamp) { struct hdaa_devinfo *devinfo = w->devinfo; struct hdaa_pcm_devinfo *pdevinfo; if (w->bindas >= 0) pdevinfo = devinfo->as[w->bindas].pdevinfo; else pdevinfo = &devinfo->devs[0]; if (found) pdevinfo->ossmask |= (1 << ossdev); if (minamp == 0 && maxamp == 0) return; if (pdevinfo->minamp[ossdev] == 0 && pdevinfo->maxamp[ossdev] == 0) { pdevinfo->minamp[ossdev] = minamp; pdevinfo->maxamp[ossdev] = maxamp; } else { pdevinfo->minamp[ossdev] = imax(pdevinfo->minamp[ossdev], minamp); pdevinfo->maxamp[ossdev] = imin(pdevinfo->maxamp[ossdev], maxamp); } } /* * Trace signals from/to all possible sources/destionstions to find possible * recording sources, OSS device control ranges and to assign controls. */ static void hdaa_audio_assign_mixers(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as = devinfo->as; struct hdaa_widget *w, *cw; int i, j, minamp, maxamp, found; /* Assign mixers to the tree. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; minamp = maxamp = 0; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_BEEP_WIDGET || (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && as[w->bindas].dir == HDAA_CTL_IN)) { if (w->ossdev < 0) continue; found = hdaa_audio_ctl_source_amp(devinfo, w->nid, -1, w->ossdev, 1, 0, &minamp, &maxamp); hdaa_adjust_amp(w, w->ossdev, found, minamp, maxamp); } else if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) { found = hdaa_audio_ctl_dest_amp(devinfo, w->nid, -1, SOUND_MIXER_RECLEV, 0, &minamp, &maxamp); hdaa_adjust_amp(w, SOUND_MIXER_RECLEV, found, minamp, maxamp); } else if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && as[w->bindas].dir == HDAA_CTL_OUT) { found = hdaa_audio_ctl_dest_amp(devinfo, w->nid, -1, SOUND_MIXER_VOLUME, 0, &minamp, &maxamp); hdaa_adjust_amp(w, SOUND_MIXER_VOLUME, found, minamp, maxamp); } if (w->ossdev == SOUND_MIXER_IMIX) { minamp = maxamp = 0; found = hdaa_audio_ctl_source_amp(devinfo, w->nid, -1, w->ossdev, 1, 0, &minamp, &maxamp); if (minamp == maxamp) { /* If we are unable to control input monitor as source - try to control it as destination. */ found += hdaa_audio_ctl_dest_amp(devinfo, w->nid, -1, w->ossdev, 0, &minamp, &maxamp); w->pflags |= HDAA_IMIX_AS_DST; } hdaa_adjust_amp(w, w->ossdev, found, minamp, maxamp); } if (w->pflags & HDAA_ADC_MONITOR) { for (j = 0; j < w->nconns; j++) { if (!w->connsenable[j]) continue; cw = hdaa_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) continue; if (cw->bindas == -1) continue; if (cw->bindas >= 0 && as[cw->bindas].dir != HDAA_CTL_IN) continue; minamp = maxamp = 0; found = hdaa_audio_ctl_dest_amp(devinfo, w->nid, j, SOUND_MIXER_IGAIN, 0, &minamp, &maxamp); hdaa_adjust_amp(w, SOUND_MIXER_IGAIN, found, minamp, maxamp); } } } } static void hdaa_audio_prepare_pin_ctrl(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as = devinfo->as; struct hdaa_widget *w; uint32_t pincap; int i; for (i = 0; i < devinfo->nodecnt; i++) { w = &devinfo->widget[i]; if (w == NULL) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && w->waspin == 0) continue; pincap = w->wclass.pin.cap; /* Disable everything. */ if (devinfo->init_clear) { w->wclass.pin.ctrl &= ~( - HDA_CMD_SET_PIN_WIDGET_CTRL_HPHN_ENABLE | - HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE | - HDA_CMD_SET_PIN_WIDGET_CTRL_IN_ENABLE | - HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK); + HDA_CMD_SET_PIN_WIDGET_CTRL_HPHN_ENABLE | + HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE | + HDA_CMD_SET_PIN_WIDGET_CTRL_IN_ENABLE | + HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK); } if (w->enable == 0) { /* Pin is unused so left it disabled. */ continue; } else if (w->waspin) { /* Enable input for beeper input. */ w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_IN_ENABLE; } else if (w->bindas < 0 || as[w->bindas].enable == 0) { /* Pin is unused so left it disabled. */ continue; } else if (as[w->bindas].dir == HDAA_CTL_IN) { /* Input pin, configure for input. */ if (HDA_PARAM_PIN_CAP_INPUT_CAP(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_IN_ENABLE; if ((devinfo->quirks & HDAA_QUIRK_IVREF100) && HDA_PARAM_PIN_CAP_VREF_CTRL_100(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_100); else if ((devinfo->quirks & HDAA_QUIRK_IVREF80) && HDA_PARAM_PIN_CAP_VREF_CTRL_80(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_80); else if ((devinfo->quirks & HDAA_QUIRK_IVREF50) && HDA_PARAM_PIN_CAP_VREF_CTRL_50(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_50); } else { /* Output pin, configure for output. */ if (HDA_PARAM_PIN_CAP_OUTPUT_CAP(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE; if (HDA_PARAM_PIN_CAP_HEADPHONE_CAP(pincap) && (w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) == HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_HPHN_ENABLE; if ((devinfo->quirks & HDAA_QUIRK_OVREF100) && HDA_PARAM_PIN_CAP_VREF_CTRL_100(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_100); else if ((devinfo->quirks & HDAA_QUIRK_OVREF80) && HDA_PARAM_PIN_CAP_VREF_CTRL_80(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_80); else if ((devinfo->quirks & HDAA_QUIRK_OVREF50) && HDA_PARAM_PIN_CAP_VREF_CTRL_50(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_50); } } } static void hdaa_audio_ctl_commit(struct hdaa_devinfo *devinfo) { struct hdaa_audio_ctl *ctl; int i, z; i = 0; while ((ctl = hdaa_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0 || ctl->ossmask != 0) { /* Mute disabled and mixer controllable controls. * Last will be initialized by mixer_init(). * This expected to reduce click on startup. */ hdaa_audio_ctl_amp_set(ctl, HDAA_AMP_MUTE_ALL, 0, 0); continue; } /* Init fixed controls to 0dB amplification. */ z = ctl->offset; if (z > ctl->step) z = ctl->step; hdaa_audio_ctl_amp_set(ctl, HDAA_AMP_MUTE_NONE, z, z); } } static void hdaa_gpio_commit(struct hdaa_devinfo *devinfo) { uint32_t gdata, gmask, gdir; int i, numgpio; numgpio = HDA_PARAM_GPIO_COUNT_NUM_GPIO(devinfo->gpio_cap); if (devinfo->gpio != 0 && numgpio != 0) { gdata = hda_command(devinfo->dev, HDA_CMD_GET_GPIO_DATA(0, devinfo->nid)); gmask = hda_command(devinfo->dev, HDA_CMD_GET_GPIO_ENABLE_MASK(0, devinfo->nid)); gdir = hda_command(devinfo->dev, HDA_CMD_GET_GPIO_DIRECTION(0, devinfo->nid)); for (i = 0; i < numgpio; i++) { if ((devinfo->gpio & HDAA_GPIO_MASK(i)) == HDAA_GPIO_SET(i)) { gdata |= (1 << i); gmask |= (1 << i); gdir |= (1 << i); } else if ((devinfo->gpio & HDAA_GPIO_MASK(i)) == HDAA_GPIO_CLEAR(i)) { gdata &= ~(1 << i); gmask |= (1 << i); gdir |= (1 << i); } else if ((devinfo->gpio & HDAA_GPIO_MASK(i)) == HDAA_GPIO_DISABLE(i)) { gmask &= ~(1 << i); } else if ((devinfo->gpio & HDAA_GPIO_MASK(i)) == HDAA_GPIO_INPUT(i)) { gmask |= (1 << i); gdir &= ~(1 << i); } } HDA_BOOTVERBOSE( device_printf(devinfo->dev, "GPIO commit\n"); ); hda_command(devinfo->dev, HDA_CMD_SET_GPIO_ENABLE_MASK(0, devinfo->nid, gmask)); hda_command(devinfo->dev, HDA_CMD_SET_GPIO_DIRECTION(0, devinfo->nid, gdir)); hda_command(devinfo->dev, HDA_CMD_SET_GPIO_DATA(0, devinfo->nid, gdata)); HDA_BOOTVERBOSE( hdaa_dump_gpio(devinfo); ); } } static void hdaa_gpo_commit(struct hdaa_devinfo *devinfo) { uint32_t gdata; int i, numgpo; numgpo = HDA_PARAM_GPIO_COUNT_NUM_GPO(devinfo->gpio_cap); if (devinfo->gpo != 0 && numgpo != 0) { gdata = hda_command(devinfo->dev, HDA_CMD_GET_GPO_DATA(0, devinfo->nid)); for (i = 0; i < numgpo; i++) { if ((devinfo->gpio & HDAA_GPIO_MASK(i)) == HDAA_GPIO_SET(i)) { gdata |= (1 << i); } else if ((devinfo->gpio & HDAA_GPIO_MASK(i)) == HDAA_GPIO_CLEAR(i)) { gdata &= ~(1 << i); } } HDA_BOOTVERBOSE( device_printf(devinfo->dev, "GPO commit\n"); ); hda_command(devinfo->dev, HDA_CMD_SET_GPO_DATA(0, devinfo->nid, gdata)); HDA_BOOTVERBOSE( hdaa_dump_gpo(devinfo); ); } } static void hdaa_audio_commit(struct hdaa_devinfo *devinfo) { struct hdaa_widget *w; int i; /* Commit controls. */ hdaa_audio_ctl_commit(devinfo); /* Commit selectors, pins and EAPD. */ for (i = 0; i < devinfo->nodecnt; i++) { w = &devinfo->widget[i]; if (w == NULL) continue; if (w->selconn == -1) w->selconn = 0; if (w->nconns > 0) hdaa_widget_connection_select(w, w->selconn); if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX || w->waspin) { hda_command(devinfo->dev, HDA_CMD_SET_PIN_WIDGET_CTRL(0, w->nid, w->wclass.pin.ctrl)); } if (w->param.eapdbtl != HDA_INVALID) { uint32_t val; val = w->param.eapdbtl; if (devinfo->quirks & HDAA_QUIRK_EAPDINV) val ^= HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD; hda_command(devinfo->dev, HDA_CMD_SET_EAPD_BTL_ENABLE(0, w->nid, val)); } } hdaa_gpio_commit(devinfo); hdaa_gpo_commit(devinfo); } static void hdaa_powerup(struct hdaa_devinfo *devinfo) { int i; hda_command(devinfo->dev, HDA_CMD_SET_POWER_STATE(0, devinfo->nid, HDA_CMD_POWER_STATE_D0)); DELAY(100); for (i = devinfo->startnode; i < devinfo->endnode; i++) { hda_command(devinfo->dev, HDA_CMD_SET_POWER_STATE(0, i, HDA_CMD_POWER_STATE_D0)); } DELAY(1000); } static int hdaa_pcmchannel_setup(struct hdaa_chan *ch) { struct hdaa_devinfo *devinfo = ch->devinfo; struct hdaa_audio_as *as = devinfo->as; struct hdaa_widget *w; uint32_t cap, fmtcap, pcmcap; int i, j, ret, channels, onlystereo; uint16_t pinset; ch->caps = hdaa_caps; ch->caps.fmtlist = ch->fmtlist; ch->bit16 = 1; ch->bit32 = 0; ch->pcmrates[0] = 48000; ch->pcmrates[1] = 0; ch->stripecap = 0xff; ret = 0; channels = 0; onlystereo = 1; pinset = 0; fmtcap = devinfo->supp_stream_formats; pcmcap = devinfo->supp_pcm_size_rate; for (i = 0; i < 16; i++) { /* Check as is correct */ if (ch->as < 0) break; /* Cound only present DACs */ if (as[ch->as].dacs[ch->asindex][i] <= 0) continue; /* Ignore duplicates */ for (j = 0; j < ret; j++) { if (ch->io[j] == as[ch->as].dacs[ch->asindex][i]) break; } if (j < ret) continue; w = hdaa_widget_get(devinfo, as[ch->as].dacs[ch->asindex][i]); if (w == NULL || w->enable == 0) continue; cap = w->param.supp_stream_formats; if (!HDA_PARAM_SUPP_STREAM_FORMATS_PCM(cap) && !HDA_PARAM_SUPP_STREAM_FORMATS_AC3(cap)) continue; /* Many CODECs does not declare AC3 support on SPDIF. I don't beleave that they doesn't support it! */ if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) cap |= HDA_PARAM_SUPP_STREAM_FORMATS_AC3_MASK; if (ret == 0) { fmtcap = cap; pcmcap = w->param.supp_pcm_size_rate; } else { fmtcap &= cap; pcmcap &= w->param.supp_pcm_size_rate; } ch->io[ret++] = as[ch->as].dacs[ch->asindex][i]; ch->stripecap &= w->wclass.conv.stripecap; /* Do not count redirection pin/dac channels. */ if (i == 15 && as[ch->as].hpredir >= 0) continue; channels += HDA_PARAM_AUDIO_WIDGET_CAP_CC(w->param.widget_cap) + 1; if (HDA_PARAM_AUDIO_WIDGET_CAP_CC(w->param.widget_cap) != 1) onlystereo = 0; pinset |= (1 << i); } ch->io[ret] = -1; ch->channels = channels; if (as[ch->as].fakeredir) ret--; /* Standard speaks only about stereo pins and playback, ... */ if ((!onlystereo) || as[ch->as].mixed) pinset = 0; /* ..., but there it gives us info about speakers layout. */ as[ch->as].pinset = pinset; ch->supp_stream_formats = fmtcap; ch->supp_pcm_size_rate = pcmcap; /* * 8bit = 0 * 16bit = 1 * 20bit = 2 * 24bit = 3 * 32bit = 4 */ if (ret > 0) { i = 0; if (HDA_PARAM_SUPP_STREAM_FORMATS_PCM(fmtcap)) { if (HDA_PARAM_SUPP_PCM_SIZE_RATE_16BIT(pcmcap)) ch->bit16 = 1; else if (HDA_PARAM_SUPP_PCM_SIZE_RATE_8BIT(pcmcap)) ch->bit16 = 0; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT(pcmcap)) ch->bit32 = 3; else if (HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT(pcmcap)) ch->bit32 = 2; else if (HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT(pcmcap)) ch->bit32 = 4; if (!(devinfo->quirks & HDAA_QUIRK_FORCESTEREO)) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 1, 0); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 1, 0); } if (channels >= 2) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 2, 0); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 2, 0); } if (channels >= 3 && !onlystereo) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 3, 0); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 3, 0); ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 3, 1); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 3, 1); } if (channels >= 4) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 4, 0); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 4, 0); if (!onlystereo) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 4, 1); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 4, 1); } } if (channels >= 5 && !onlystereo) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 5, 0); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 5, 0); ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 5, 1); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 5, 1); } if (channels >= 6) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 6, 1); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 6, 1); if (!onlystereo) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 6, 0); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 6, 0); } } if (channels >= 7 && !onlystereo) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 7, 0); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 7, 0); ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 7, 1); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 7, 1); } if (channels >= 8) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 8, 1); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 8, 1); } } if (HDA_PARAM_SUPP_STREAM_FORMATS_AC3(fmtcap)) { ch->fmtlist[i++] = SND_FORMAT(AFMT_AC3, 2, 0); if (channels >= 8) { ch->fmtlist[i++] = SND_FORMAT(AFMT_AC3, 8, 0); ch->fmtlist[i++] = SND_FORMAT(AFMT_AC3, 8, 1); } } ch->fmtlist[i] = 0; i = 0; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_8KHZ(pcmcap)) ch->pcmrates[i++] = 8000; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_11KHZ(pcmcap)) ch->pcmrates[i++] = 11025; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_16KHZ(pcmcap)) ch->pcmrates[i++] = 16000; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_22KHZ(pcmcap)) ch->pcmrates[i++] = 22050; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_32KHZ(pcmcap)) ch->pcmrates[i++] = 32000; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_44KHZ(pcmcap)) ch->pcmrates[i++] = 44100; /* if (HDA_PARAM_SUPP_PCM_SIZE_RATE_48KHZ(pcmcap)) */ ch->pcmrates[i++] = 48000; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_88KHZ(pcmcap)) ch->pcmrates[i++] = 88200; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_96KHZ(pcmcap)) ch->pcmrates[i++] = 96000; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_176KHZ(pcmcap)) ch->pcmrates[i++] = 176400; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_192KHZ(pcmcap)) ch->pcmrates[i++] = 192000; /* if (HDA_PARAM_SUPP_PCM_SIZE_RATE_384KHZ(pcmcap)) */ ch->pcmrates[i] = 0; if (i > 0) { ch->caps.minspeed = ch->pcmrates[0]; ch->caps.maxspeed = ch->pcmrates[i - 1]; } } return (ret); } static void hdaa_prepare_pcms(struct hdaa_devinfo *devinfo) { struct hdaa_audio_as *as = devinfo->as; int i, j, k, apdev = 0, ardev = 0, dpdev = 0, drdev = 0; for (i = 0; i < devinfo->ascnt; i++) { if (as[i].enable == 0) continue; if (as[i].dir == HDAA_CTL_IN) { if (as[i].digital) drdev++; else ardev++; } else { if (as[i].digital) dpdev++; else apdev++; } } devinfo->num_devs = max(ardev, apdev) + max(drdev, dpdev); devinfo->devs = (struct hdaa_pcm_devinfo *)malloc( devinfo->num_devs * sizeof(struct hdaa_pcm_devinfo), M_HDAA, M_ZERO | M_NOWAIT); if (devinfo->devs == NULL) { device_printf(devinfo->dev, "Unable to allocate memory for devices\n"); return; } for (i = 0; i < devinfo->num_devs; i++) { devinfo->devs[i].index = i; devinfo->devs[i].devinfo = devinfo; devinfo->devs[i].playas = -1; devinfo->devs[i].recas = -1; devinfo->devs[i].digital = 255; } for (i = 0; i < devinfo->ascnt; i++) { if (as[i].enable == 0) continue; for (j = 0; j < devinfo->num_devs; j++) { if (devinfo->devs[j].digital != 255 && (!devinfo->devs[j].digital) != (!as[i].digital)) continue; if (as[i].dir == HDAA_CTL_IN) { if (devinfo->devs[j].recas >= 0) continue; devinfo->devs[j].recas = i; } else { if (devinfo->devs[j].playas >= 0) continue; devinfo->devs[j].playas = i; } as[i].pdevinfo = &devinfo->devs[j]; for (k = 0; k < as[i].num_chans; k++) { devinfo->chans[as[i].chans[k]].pdevinfo = &devinfo->devs[j]; } devinfo->devs[j].digital = as[i].digital; break; } } } static void hdaa_create_pcms(struct hdaa_devinfo *devinfo) { int i; for (i = 0; i < devinfo->num_devs; i++) { struct hdaa_pcm_devinfo *pdevinfo = &devinfo->devs[i]; pdevinfo->dev = device_add_child(devinfo->dev, "pcm", -1); device_set_ivars(pdevinfo->dev, (void *)pdevinfo); } } static void hdaa_dump_ctls(struct hdaa_pcm_devinfo *pdevinfo, const char *banner, uint32_t flag) { struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_audio_ctl *ctl; char buf[64]; int i, j, printed = 0; if (flag == 0) { flag = ~(SOUND_MASK_VOLUME | SOUND_MASK_PCM | SOUND_MASK_CD | SOUND_MASK_LINE | SOUND_MASK_RECLEV | SOUND_MASK_MIC | SOUND_MASK_SPEAKER | SOUND_MASK_IGAIN | SOUND_MASK_OGAIN | SOUND_MASK_IMIX | SOUND_MASK_MONITOR); } for (j = 0; j < SOUND_MIXER_NRDEVICES; j++) { if ((flag & (1 << j)) == 0) continue; i = 0; printed = 0; while ((ctl = hdaa_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0 || ctl->widget->enable == 0) continue; if (!((pdevinfo->playas >= 0 && ctl->widget->bindas == pdevinfo->playas) || (pdevinfo->recas >= 0 && ctl->widget->bindas == pdevinfo->recas) || (ctl->widget->bindas == -2 && pdevinfo->index == 0))) continue; if ((ctl->ossmask & (1 << j)) == 0) continue; if (printed == 0) { if (banner != NULL) { device_printf(pdevinfo->dev, "%s", banner); } else { device_printf(pdevinfo->dev, "Unknown Ctl"); } printf(" (OSS: %s)", hdaa_audio_ctl_ossmixer_mask2allname(1 << j, buf, sizeof(buf))); if (pdevinfo->ossmask & (1 << j)) { printf(": %+d/%+ddB\n", pdevinfo->minamp[j] / 4, pdevinfo->maxamp[j] / 4); } else printf("\n"); printed = 1; } device_printf(pdevinfo->dev, " +- ctl %2d (nid %3d %s", i, ctl->widget->nid, (ctl->ndir == HDAA_CTL_IN)?"in ":"out"); if (ctl->ndir == HDAA_CTL_IN && ctl->ndir == ctl->dir) printf(" %2d): ", ctl->index); else printf("): "); if (ctl->step > 0) { printf("%+d/%+ddB (%d steps)%s\n", MINQDB(ctl) / 4, MAXQDB(ctl) / 4, ctl->step + 1, ctl->mute?" + mute":""); } else printf("%s\n", ctl->mute?"mute":""); } } if (printed) device_printf(pdevinfo->dev, "\n"); } static void hdaa_dump_audio_formats(device_t dev, uint32_t fcap, uint32_t pcmcap) { uint32_t cap; cap = fcap; if (cap != 0) { device_printf(dev, " Stream cap: 0x%08x", cap); if (HDA_PARAM_SUPP_STREAM_FORMATS_AC3(cap)) printf(" AC3"); if (HDA_PARAM_SUPP_STREAM_FORMATS_FLOAT32(cap)) printf(" FLOAT32"); if (HDA_PARAM_SUPP_STREAM_FORMATS_PCM(cap)) printf(" PCM"); printf("\n"); } cap = pcmcap; if (cap != 0) { device_printf(dev, " PCM cap: 0x%08x", cap); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_8BIT(cap)) printf(" 8"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_16BIT(cap)) printf(" 16"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT(cap)) printf(" 20"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT(cap)) printf(" 24"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT(cap)) printf(" 32"); printf(" bits,"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_8KHZ(cap)) printf(" 8"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_11KHZ(cap)) printf(" 11"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_16KHZ(cap)) printf(" 16"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_22KHZ(cap)) printf(" 22"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_32KHZ(cap)) printf(" 32"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_44KHZ(cap)) printf(" 44"); printf(" 48"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_88KHZ(cap)) printf(" 88"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_96KHZ(cap)) printf(" 96"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_176KHZ(cap)) printf(" 176"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_192KHZ(cap)) printf(" 192"); printf(" KHz\n"); } } static void hdaa_dump_pin(struct hdaa_widget *w) { uint32_t pincap; pincap = w->wclass.pin.cap; device_printf(w->devinfo->dev, " Pin cap: 0x%08x", pincap); if (HDA_PARAM_PIN_CAP_IMP_SENSE_CAP(pincap)) printf(" ISC"); if (HDA_PARAM_PIN_CAP_TRIGGER_REQD(pincap)) printf(" TRQD"); if (HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP(pincap)) printf(" PDC"); if (HDA_PARAM_PIN_CAP_HEADPHONE_CAP(pincap)) printf(" HP"); if (HDA_PARAM_PIN_CAP_OUTPUT_CAP(pincap)) printf(" OUT"); if (HDA_PARAM_PIN_CAP_INPUT_CAP(pincap)) printf(" IN"); if (HDA_PARAM_PIN_CAP_BALANCED_IO_PINS(pincap)) printf(" BAL"); if (HDA_PARAM_PIN_CAP_HDMI(pincap)) printf(" HDMI"); if (HDA_PARAM_PIN_CAP_VREF_CTRL(pincap)) { printf(" VREF["); if (HDA_PARAM_PIN_CAP_VREF_CTRL_50(pincap)) printf(" 50"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_80(pincap)) printf(" 80"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_100(pincap)) printf(" 100"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_GROUND(pincap)) printf(" GROUND"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_HIZ(pincap)) printf(" HIZ"); printf(" ]"); } if (HDA_PARAM_PIN_CAP_EAPD_CAP(pincap)) printf(" EAPD"); if (HDA_PARAM_PIN_CAP_DP(pincap)) printf(" DP"); if (HDA_PARAM_PIN_CAP_HBR(pincap)) printf(" HBR"); printf("\n"); device_printf(w->devinfo->dev, " Pin config: 0x%08x\n", w->wclass.pin.config); device_printf(w->devinfo->dev, " Pin control: 0x%08x", w->wclass.pin.ctrl); if (w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_HPHN_ENABLE) printf(" HP"); if (w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_IN_ENABLE) printf(" IN"); if (w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE) printf(" OUT"); if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) { if ((w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK) == 0x03) printf(" HBR"); else if ((w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK) != 0) printf(" EPTs"); } else { if ((w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK) != 0) printf(" VREFs"); } printf("\n"); } static void hdaa_dump_pin_config(struct hdaa_widget *w, uint32_t conf) { device_printf(w->devinfo->dev, "%2d %08x %-2d %-2d " "%-13s %-5s %-7s %-10s %-7s %d%s\n", w->nid, conf, HDA_CONFIG_DEFAULTCONF_ASSOCIATION(conf), HDA_CONFIG_DEFAULTCONF_SEQUENCE(conf), HDA_DEVS[HDA_CONFIG_DEFAULTCONF_DEVICE(conf)], HDA_CONNS[HDA_CONFIG_DEFAULTCONF_CONNECTIVITY(conf)], HDA_CONNECTORS[HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE(conf)], HDA_LOCS[HDA_CONFIG_DEFAULTCONF_LOCATION(conf)], HDA_COLORS[HDA_CONFIG_DEFAULTCONF_COLOR(conf)], HDA_CONFIG_DEFAULTCONF_MISC(conf), (w->enable == 0)?" DISA":""); } static void hdaa_dump_pin_configs(struct hdaa_devinfo *devinfo) { struct hdaa_widget *w; int i; device_printf(devinfo->dev, "nid 0x as seq " "device conn jack loc color misc\n"); for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; hdaa_dump_pin_config(w, w->wclass.pin.config); } } static void hdaa_dump_amp(device_t dev, uint32_t cap, const char *banner) { int offset, size, step; offset = HDA_PARAM_OUTPUT_AMP_CAP_OFFSET(cap); size = HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE(cap); step = HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS(cap); device_printf(dev, " %s amp: 0x%08x " "mute=%d step=%d size=%d offset=%d (%+d/%+ddB)\n", banner, cap, HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP(cap), step, size, offset, ((0 - offset) * (size + 1)) / 4, ((step - offset) * (size + 1)) / 4); } static void hdaa_dump_nodes(struct hdaa_devinfo *devinfo) { struct hdaa_widget *w, *cw; char buf[64]; int i, j; device_printf(devinfo->dev, "\n"); device_printf(devinfo->dev, "Default parameters:\n"); hdaa_dump_audio_formats(devinfo->dev, devinfo->supp_stream_formats, devinfo->supp_pcm_size_rate); hdaa_dump_amp(devinfo->dev, devinfo->inamp_cap, " Input"); hdaa_dump_amp(devinfo->dev, devinfo->outamp_cap, "Output"); for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL) { device_printf(devinfo->dev, "Ghost widget nid=%d\n", i); continue; } device_printf(devinfo->dev, "\n"); device_printf(devinfo->dev, " nid: %d%s\n", w->nid, (w->enable == 0) ? " [DISABLED]" : ""); device_printf(devinfo->dev, " Name: %s\n", w->name); device_printf(devinfo->dev, " Widget cap: 0x%08x", w->param.widget_cap); if (w->param.widget_cap & 0x0ee1) { if (HDA_PARAM_AUDIO_WIDGET_CAP_LR_SWAP(w->param.widget_cap)) printf(" LRSWAP"); if (HDA_PARAM_AUDIO_WIDGET_CAP_POWER_CTRL(w->param.widget_cap)) printf(" PWR"); if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) printf(" DIGITAL"); if (HDA_PARAM_AUDIO_WIDGET_CAP_UNSOL_CAP(w->param.widget_cap)) printf(" UNSOL"); if (HDA_PARAM_AUDIO_WIDGET_CAP_PROC_WIDGET(w->param.widget_cap)) printf(" PROC"); if (HDA_PARAM_AUDIO_WIDGET_CAP_STRIPE(w->param.widget_cap)) printf(" STRIPE(x%d)", 1 << (fls(w->wclass.conv.stripecap) - 1)); j = HDA_PARAM_AUDIO_WIDGET_CAP_CC(w->param.widget_cap); if (j == 1) printf(" STEREO"); else if (j > 1) printf(" %dCH", j + 1); } printf("\n"); if (w->bindas != -1) { device_printf(devinfo->dev, " Association: %d (0x%04x)\n", w->bindas, w->bindseqmask); } if (w->ossmask != 0 || w->ossdev >= 0) { device_printf(devinfo->dev, " OSS: %s", hdaa_audio_ctl_ossmixer_mask2allname(w->ossmask, buf, sizeof(buf))); if (w->ossdev >= 0) printf(" (%s)", ossnames[w->ossdev]); printf("\n"); } if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) { hdaa_dump_audio_formats(devinfo->dev, w->param.supp_stream_formats, w->param.supp_pcm_size_rate); } else if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX || w->waspin) hdaa_dump_pin(w); if (w->param.eapdbtl != HDA_INVALID) device_printf(devinfo->dev, " EAPD: 0x%08x\n", w->param.eapdbtl); if (HDA_PARAM_AUDIO_WIDGET_CAP_OUT_AMP(w->param.widget_cap) && w->param.outamp_cap != 0) hdaa_dump_amp(devinfo->dev, w->param.outamp_cap, "Output"); if (HDA_PARAM_AUDIO_WIDGET_CAP_IN_AMP(w->param.widget_cap) && w->param.inamp_cap != 0) hdaa_dump_amp(devinfo->dev, w->param.inamp_cap, " Input"); if (w->nconns > 0) device_printf(devinfo->dev, " Connections: %d\n", w->nconns); for (j = 0; j < w->nconns; j++) { cw = hdaa_widget_get(devinfo, w->conns[j]); device_printf(devinfo->dev, " + %s<- nid=%d [%s]", (w->connsenable[j] == 0)?"[DISABLED] ":"", w->conns[j], (cw == NULL) ? "GHOST!" : cw->name); if (cw == NULL) printf(" [UNKNOWN]"); else if (cw->enable == 0) printf(" [DISABLED]"); if (w->nconns > 1 && w->selconn == j && w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) printf(" (selected)"); printf("\n"); } } } static void hdaa_dump_dst_nid(struct hdaa_pcm_devinfo *pdevinfo, nid_t nid, int depth) { struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_widget *w, *cw; char buf[64]; int i; if (depth > HDA_PARSE_MAXDEPTH) return; w = hdaa_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return; if (depth == 0) device_printf(pdevinfo->dev, "%*s", 4, ""); else device_printf(pdevinfo->dev, "%*s + <- ", 4 + (depth - 1) * 7, ""); printf("nid=%d [%s]", w->nid, w->name); if (depth > 0) { if (w->ossmask == 0) { printf("\n"); return; } - printf(" [src: %s]", + printf(" [src: %s]", hdaa_audio_ctl_ossmixer_mask2allname( w->ossmask, buf, sizeof(buf))); if (w->ossdev >= 0) { printf("\n"); return; } } printf("\n"); for (i = 0; i < w->nconns; i++) { if (w->connsenable[i] == 0) continue; cw = hdaa_widget_get(devinfo, w->conns[i]); if (cw == NULL || cw->enable == 0 || cw->bindas == -1) continue; hdaa_dump_dst_nid(pdevinfo, w->conns[i], depth + 1); } } static void hdaa_dump_dac(struct hdaa_pcm_devinfo *pdevinfo) { struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_audio_as *as; struct hdaa_widget *w; nid_t *nids; int chid, i; if (pdevinfo->playas < 0) return; device_printf(pdevinfo->dev, "Playback:\n"); chid = devinfo->as[pdevinfo->playas].chans[0]; hdaa_dump_audio_formats(pdevinfo->dev, devinfo->chans[chid].supp_stream_formats, devinfo->chans[chid].supp_pcm_size_rate); for (i = 0; i < devinfo->as[pdevinfo->playas].num_chans; i++) { chid = devinfo->as[pdevinfo->playas].chans[i]; device_printf(pdevinfo->dev, " DAC:"); for (nids = devinfo->chans[chid].io; *nids != -1; nids++) printf(" %d", *nids); printf("\n"); } as = &devinfo->as[pdevinfo->playas]; for (i = 0; i < 16; i++) { if (as->pins[i] <= 0) continue; w = hdaa_widget_get(devinfo, as->pins[i]); if (w == NULL || w->enable == 0) continue; device_printf(pdevinfo->dev, "\n"); hdaa_dump_dst_nid(pdevinfo, as->pins[i], 0); } device_printf(pdevinfo->dev, "\n"); } static void hdaa_dump_adc(struct hdaa_pcm_devinfo *pdevinfo) { struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_widget *w; nid_t *nids; int chid, i; if (pdevinfo->recas < 0) return; device_printf(pdevinfo->dev, "Record:\n"); chid = devinfo->as[pdevinfo->recas].chans[0]; hdaa_dump_audio_formats(pdevinfo->dev, devinfo->chans[chid].supp_stream_formats, devinfo->chans[chid].supp_pcm_size_rate); for (i = 0; i < devinfo->as[pdevinfo->recas].num_chans; i++) { chid = devinfo->as[pdevinfo->recas].chans[i]; device_printf(pdevinfo->dev, " ADC:"); for (nids = devinfo->chans[chid].io; *nids != -1; nids++) printf(" %d", *nids); printf("\n"); } for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) continue; if (w->bindas != pdevinfo->recas) continue; device_printf(pdevinfo->dev, "\n"); hdaa_dump_dst_nid(pdevinfo, i, 0); } device_printf(pdevinfo->dev, "\n"); } static void hdaa_dump_mix(struct hdaa_pcm_devinfo *pdevinfo) { struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_widget *w; int i; int printed = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->ossdev != SOUND_MIXER_IMIX) continue; if (w->bindas != pdevinfo->recas) continue; if (printed == 0) { printed = 1; device_printf(pdevinfo->dev, "Input Mix:\n"); } device_printf(pdevinfo->dev, "\n"); hdaa_dump_dst_nid(pdevinfo, i, 0); } if (printed) device_printf(pdevinfo->dev, "\n"); } static void hdaa_pindump(device_t dev) { struct hdaa_devinfo *devinfo = device_get_softc(dev); struct hdaa_widget *w; uint32_t res, pincap, delay; int i; device_printf(dev, "Dumping AFG pins:\n"); device_printf(dev, "nid 0x as seq " "device conn jack loc color misc\n"); for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; hdaa_dump_pin_config(w, w->wclass.pin.config); pincap = w->wclass.pin.cap; device_printf(dev, " Caps: %2s %3s %2s %4s %4s", HDA_PARAM_PIN_CAP_INPUT_CAP(pincap)?"IN":"", HDA_PARAM_PIN_CAP_OUTPUT_CAP(pincap)?"OUT":"", HDA_PARAM_PIN_CAP_HEADPHONE_CAP(pincap)?"HP":"", HDA_PARAM_PIN_CAP_EAPD_CAP(pincap)?"EAPD":"", HDA_PARAM_PIN_CAP_VREF_CTRL(pincap)?"VREF":""); if (HDA_PARAM_PIN_CAP_IMP_SENSE_CAP(pincap) || HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP(pincap)) { if (HDA_PARAM_PIN_CAP_TRIGGER_REQD(pincap)) { delay = 0; hda_command(dev, HDA_CMD_SET_PIN_SENSE(0, w->nid, 0)); do { res = hda_command(dev, HDA_CMD_GET_PIN_SENSE(0, w->nid)); if (res != 0x7fffffff && res != 0xffffffff) break; DELAY(10); } while (++delay < 10000); } else { delay = 0; res = hda_command(dev, HDA_CMD_GET_PIN_SENSE(0, w->nid)); } printf(" Sense: 0x%08x (%sconnected%s)", res, (res & HDA_CMD_GET_PIN_SENSE_PRESENCE_DETECT) ? "" : "dis", (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap) && (res & HDA_CMD_GET_PIN_SENSE_ELD_VALID)) ? ", ELD valid" : ""); if (delay > 0) printf(" delay %dus", delay * 10); } printf("\n"); } device_printf(dev, "NumGPIO=%d NumGPO=%d NumGPI=%d GPIWake=%d GPIUnsol=%d\n", HDA_PARAM_GPIO_COUNT_NUM_GPIO(devinfo->gpio_cap), HDA_PARAM_GPIO_COUNT_NUM_GPO(devinfo->gpio_cap), HDA_PARAM_GPIO_COUNT_NUM_GPI(devinfo->gpio_cap), HDA_PARAM_GPIO_COUNT_GPI_WAKE(devinfo->gpio_cap), HDA_PARAM_GPIO_COUNT_GPI_UNSOL(devinfo->gpio_cap)); hdaa_dump_gpi(devinfo); hdaa_dump_gpio(devinfo); hdaa_dump_gpo(devinfo); } static void hdaa_configure(device_t dev) { struct hdaa_devinfo *devinfo = device_get_softc(dev); struct hdaa_audio_ctl *ctl; int i; HDA_BOOTHVERBOSE( device_printf(dev, "Applying built-in patches...\n"); ); hdaa_patch(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Applying local patches...\n"); ); hdaa_local_patch(devinfo); hdaa_audio_postprocess(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Parsing Ctls...\n"); ); hdaa_audio_ctl_parse(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Disabling nonaudio...\n"); ); hdaa_audio_disable_nonaudio(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Disabling useless...\n"); ); hdaa_audio_disable_useless(devinfo); HDA_BOOTVERBOSE( device_printf(dev, "Patched pins configuration:\n"); hdaa_dump_pin_configs(devinfo); ); HDA_BOOTHVERBOSE( device_printf(dev, "Parsing pin associations...\n"); ); hdaa_audio_as_parse(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Building AFG tree...\n"); ); hdaa_audio_build_tree(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Disabling unassociated " "widgets...\n"); ); hdaa_audio_disable_unas(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Disabling nonselected " "inputs...\n"); ); hdaa_audio_disable_notselected(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Disabling useless...\n"); ); hdaa_audio_disable_useless(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Disabling " "crossassociatement connections...\n"); ); hdaa_audio_disable_crossas(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Disabling useless...\n"); ); hdaa_audio_disable_useless(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Binding associations to channels...\n"); ); hdaa_audio_bind_as(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Assigning names to signal sources...\n"); ); hdaa_audio_assign_names(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Preparing PCM devices...\n"); ); hdaa_prepare_pcms(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Assigning mixers to the tree...\n"); ); hdaa_audio_assign_mixers(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Preparing pin controls...\n"); ); hdaa_audio_prepare_pin_ctrl(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "AFG commit...\n"); ); hdaa_audio_commit(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Applying direct built-in patches...\n"); ); hdaa_patch_direct(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Pin sense init...\n"); ); hdaa_sense_init(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Creating PCM devices...\n"); ); hdaa_create_pcms(devinfo); HDA_BOOTVERBOSE( if (devinfo->quirks != 0) { device_printf(dev, "FG config/quirks:"); for (i = 0; i < nitems(hdaa_quirks_tab); i++) { if ((devinfo->quirks & hdaa_quirks_tab[i].value) == hdaa_quirks_tab[i].value) printf(" %s", hdaa_quirks_tab[i].key); } printf("\n"); } ); HDA_BOOTHVERBOSE( device_printf(dev, "\n"); device_printf(dev, "+-----------+\n"); device_printf(dev, "| HDA NODES |\n"); device_printf(dev, "+-----------+\n"); hdaa_dump_nodes(devinfo); device_printf(dev, "\n"); device_printf(dev, "+----------------+\n"); device_printf(dev, "| HDA AMPLIFIERS |\n"); device_printf(dev, "+----------------+\n"); device_printf(dev, "\n"); i = 0; while ((ctl = hdaa_audio_ctl_each(devinfo, &i)) != NULL) { device_printf(dev, "%3d: nid %3d %s (%s) index %d", i, (ctl->widget != NULL) ? ctl->widget->nid : -1, (ctl->ndir == HDAA_CTL_IN)?"in ":"out", (ctl->dir == HDAA_CTL_IN)?"in ":"out", ctl->index); if (ctl->childwidget != NULL) printf(" cnid %3d", ctl->childwidget->nid); else printf(" "); printf(" ossmask=0x%08x\n", ctl->ossmask); - device_printf(dev, + device_printf(dev, " mute: %d step: %3d size: %3d off: %3d%s\n", ctl->mute, ctl->step, ctl->size, ctl->offset, - (ctl->enable == 0) ? " [DISABLED]" : + (ctl->enable == 0) ? " [DISABLED]" : ((ctl->ossmask == 0) ? " [UNUSED]" : "")); } device_printf(dev, "\n"); ); } static void hdaa_unconfigure(device_t dev) { struct hdaa_devinfo *devinfo = device_get_softc(dev); struct hdaa_widget *w; int i, j; HDA_BOOTHVERBOSE( device_printf(dev, "Pin sense deinit...\n"); ); hdaa_sense_deinit(devinfo); free(devinfo->ctl, M_HDAA); devinfo->ctl = NULL; devinfo->ctlcnt = 0; free(devinfo->as, M_HDAA); devinfo->as = NULL; devinfo->ascnt = 0; free(devinfo->devs, M_HDAA); devinfo->devs = NULL; devinfo->num_devs = 0; free(devinfo->chans, M_HDAA); devinfo->chans = NULL; devinfo->num_chans = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL) continue; w->enable = 1; w->selconn = -1; w->pflags = 0; w->bindas = -1; w->bindseqmask = 0; w->ossdev = -1; w->ossmask = 0; for (j = 0; j < w->nconns; j++) w->connsenable[j] = 1; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) w->wclass.pin.config = w->wclass.pin.newconf; if (w->eld != NULL) { w->eld_len = 0; free(w->eld, M_HDAA); w->eld = NULL; } } } static int hdaa_sysctl_gpi_state(SYSCTL_HANDLER_ARGS) { struct hdaa_devinfo *devinfo = oidp->oid_arg1; device_t dev = devinfo->dev; char buf[256]; int n = 0, i, numgpi; uint32_t data = 0; buf[0] = 0; hdaa_lock(devinfo); numgpi = HDA_PARAM_GPIO_COUNT_NUM_GPI(devinfo->gpio_cap); if (numgpi > 0) { data = hda_command(dev, HDA_CMD_GET_GPI_DATA(0, devinfo->nid)); } hdaa_unlock(devinfo); for (i = 0; i < numgpi; i++) { n += snprintf(buf + n, sizeof(buf) - n, "%s%d=%d", n != 0 ? " " : "", i, ((data >> i) & 1)); } return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); } static int hdaa_sysctl_gpio_state(SYSCTL_HANDLER_ARGS) { struct hdaa_devinfo *devinfo = oidp->oid_arg1; device_t dev = devinfo->dev; char buf[256]; int n = 0, i, numgpio; uint32_t data = 0, enable = 0, dir = 0; buf[0] = 0; hdaa_lock(devinfo); numgpio = HDA_PARAM_GPIO_COUNT_NUM_GPIO(devinfo->gpio_cap); if (numgpio > 0) { data = hda_command(dev, HDA_CMD_GET_GPIO_DATA(0, devinfo->nid)); enable = hda_command(dev, HDA_CMD_GET_GPIO_ENABLE_MASK(0, devinfo->nid)); dir = hda_command(dev, HDA_CMD_GET_GPIO_DIRECTION(0, devinfo->nid)); } hdaa_unlock(devinfo); for (i = 0; i < numgpio; i++) { n += snprintf(buf + n, sizeof(buf) - n, "%s%d=", n != 0 ? " " : "", i); if ((enable & (1 << i)) == 0) { n += snprintf(buf + n, sizeof(buf) - n, "disabled"); continue; } n += snprintf(buf + n, sizeof(buf) - n, "%sput(%d)", ((dir >> i) & 1) ? "out" : "in", ((data >> i) & 1)); } return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); } static int hdaa_sysctl_gpio_config(SYSCTL_HANDLER_ARGS) { struct hdaa_devinfo *devinfo = oidp->oid_arg1; char buf[256]; int error, n = 0, i, numgpio; uint32_t gpio, x; gpio = devinfo->newgpio; numgpio = HDA_PARAM_GPIO_COUNT_NUM_GPIO(devinfo->gpio_cap); buf[0] = 0; for (i = 0; i < numgpio; i++) { x = (gpio & HDAA_GPIO_MASK(i)) >> HDAA_GPIO_SHIFT(i); n += snprintf(buf + n, sizeof(buf) - n, "%s%d=%s", n != 0 ? " " : "", i, HDA_GPIO_ACTIONS[x]); } error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return (error); if (strncmp(buf, "0x", 2) == 0) gpio = strtol(buf + 2, NULL, 16); else gpio = hdaa_gpio_patch(gpio, buf); hdaa_lock(devinfo); devinfo->newgpio = devinfo->gpio = gpio; hdaa_gpio_commit(devinfo); hdaa_unlock(devinfo); return (0); } static int hdaa_sysctl_gpo_state(SYSCTL_HANDLER_ARGS) { struct hdaa_devinfo *devinfo = oidp->oid_arg1; device_t dev = devinfo->dev; char buf[256]; int n = 0, i, numgpo; uint32_t data = 0; buf[0] = 0; hdaa_lock(devinfo); numgpo = HDA_PARAM_GPIO_COUNT_NUM_GPO(devinfo->gpio_cap); if (numgpo > 0) { data = hda_command(dev, HDA_CMD_GET_GPO_DATA(0, devinfo->nid)); } hdaa_unlock(devinfo); for (i = 0; i < numgpo; i++) { n += snprintf(buf + n, sizeof(buf) - n, "%s%d=%d", n != 0 ? " " : "", i, ((data >> i) & 1)); } return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); } static int hdaa_sysctl_gpo_config(SYSCTL_HANDLER_ARGS) { struct hdaa_devinfo *devinfo = oidp->oid_arg1; char buf[256]; int error, n = 0, i, numgpo; uint32_t gpo, x; gpo = devinfo->newgpo; numgpo = HDA_PARAM_GPIO_COUNT_NUM_GPO(devinfo->gpio_cap); buf[0] = 0; for (i = 0; i < numgpo; i++) { x = (gpo & HDAA_GPIO_MASK(i)) >> HDAA_GPIO_SHIFT(i); n += snprintf(buf + n, sizeof(buf) - n, "%s%d=%s", n != 0 ? " " : "", i, HDA_GPIO_ACTIONS[x]); } error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return (error); if (strncmp(buf, "0x", 2) == 0) gpo = strtol(buf + 2, NULL, 16); else gpo = hdaa_gpio_patch(gpo, buf); hdaa_lock(devinfo); devinfo->newgpo = devinfo->gpo = gpo; hdaa_gpo_commit(devinfo); hdaa_unlock(devinfo); return (0); } static int hdaa_sysctl_reconfig(SYSCTL_HANDLER_ARGS) { device_t dev; struct hdaa_devinfo *devinfo; int error, val; dev = oidp->oid_arg1; devinfo = device_get_softc(dev); if (devinfo == NULL) return (EINVAL); val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL || val == 0) return (error); HDA_BOOTHVERBOSE( device_printf(dev, "Reconfiguration...\n"); ); if ((error = device_delete_children(dev)) != 0) return (error); hdaa_lock(devinfo); hdaa_unconfigure(dev); hdaa_configure(dev); hdaa_unlock(devinfo); bus_generic_attach(dev); HDA_BOOTHVERBOSE( device_printf(dev, "Reconfiguration done\n"); ); return (0); } static int hdaa_suspend(device_t dev) { struct hdaa_devinfo *devinfo = device_get_softc(dev); int i; HDA_BOOTHVERBOSE( device_printf(dev, "Suspend...\n"); ); hdaa_lock(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Stop streams...\n"); ); for (i = 0; i < devinfo->num_chans; i++) { if (devinfo->chans[i].flags & HDAA_CHN_RUNNING) { devinfo->chans[i].flags |= HDAA_CHN_SUSPEND; hdaa_channel_stop(&devinfo->chans[i]); } } HDA_BOOTHVERBOSE( device_printf(dev, "Power down FG" " nid=%d to the D3 state...\n", devinfo->nid); ); hda_command(devinfo->dev, HDA_CMD_SET_POWER_STATE(0, devinfo->nid, HDA_CMD_POWER_STATE_D3)); callout_stop(&devinfo->poll_jack); hdaa_unlock(devinfo); callout_drain(&devinfo->poll_jack); HDA_BOOTHVERBOSE( device_printf(dev, "Suspend done\n"); ); return (0); } static int hdaa_resume(device_t dev) { struct hdaa_devinfo *devinfo = device_get_softc(dev); int i; HDA_BOOTHVERBOSE( device_printf(dev, "Resume...\n"); ); hdaa_lock(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Power up audio FG nid=%d...\n", devinfo->nid); ); hdaa_powerup(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "AFG commit...\n"); ); hdaa_audio_commit(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Applying direct built-in patches...\n"); ); hdaa_patch_direct(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Pin sense init...\n"); ); hdaa_sense_init(devinfo); hdaa_unlock(devinfo); for (i = 0; i < devinfo->num_devs; i++) { struct hdaa_pcm_devinfo *pdevinfo = &devinfo->devs[i]; HDA_BOOTHVERBOSE( device_printf(pdevinfo->dev, "OSS mixer reinitialization...\n"); ); if (mixer_reinit(pdevinfo->dev) == -1) device_printf(pdevinfo->dev, "unable to reinitialize the mixer\n"); } hdaa_lock(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Start streams...\n"); ); for (i = 0; i < devinfo->num_chans; i++) { if (devinfo->chans[i].flags & HDAA_CHN_SUSPEND) { devinfo->chans[i].flags &= ~HDAA_CHN_SUSPEND; hdaa_channel_start(&devinfo->chans[i]); } } hdaa_unlock(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Resume done\n"); ); return (0); } static int hdaa_probe(device_t dev) { const char *pdesc; char buf[128]; if (hda_get_node_type(dev) != HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO) return (ENXIO); pdesc = device_get_desc(device_get_parent(dev)); snprintf(buf, sizeof(buf), "%.*s Audio Function Group", (int)(strlen(pdesc) - 10), pdesc); device_set_desc_copy(dev, buf); return (BUS_PROBE_DEFAULT); } static int hdaa_attach(device_t dev) { struct hdaa_devinfo *devinfo = device_get_softc(dev); uint32_t res; nid_t nid = hda_get_node_id(dev); devinfo->dev = dev; devinfo->lock = HDAC_GET_MTX(device_get_parent(dev), dev); devinfo->nid = nid; devinfo->newquirks = -1; devinfo->newgpio = -1; devinfo->newgpo = -1; callout_init(&devinfo->poll_jack, 1); devinfo->poll_ival = hz; hdaa_lock(devinfo); res = hda_command(dev, HDA_CMD_GET_PARAMETER(0 , nid, HDA_PARAM_SUB_NODE_COUNT)); hdaa_unlock(devinfo); devinfo->nodecnt = HDA_PARAM_SUB_NODE_COUNT_TOTAL(res); devinfo->startnode = HDA_PARAM_SUB_NODE_COUNT_START(res); devinfo->endnode = devinfo->startnode + devinfo->nodecnt; HDA_BOOTVERBOSE( device_printf(dev, "Subsystem ID: 0x%08x\n", hda_get_subsystem_id(dev)); ); HDA_BOOTHVERBOSE( device_printf(dev, "Audio Function Group at nid=%d: %d subnodes %d-%d\n", nid, devinfo->nodecnt, devinfo->startnode, devinfo->endnode - 1); ); if (devinfo->nodecnt > 0) devinfo->widget = (struct hdaa_widget *)malloc( sizeof(*(devinfo->widget)) * devinfo->nodecnt, M_HDAA, M_WAITOK | M_ZERO); else devinfo->widget = NULL; hdaa_lock(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Powering up...\n"); ); hdaa_powerup(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "Parsing audio FG...\n"); ); hdaa_audio_parse(devinfo); HDA_BOOTVERBOSE( device_printf(dev, "Original pins configuration:\n"); hdaa_dump_pin_configs(devinfo); ); hdaa_configure(dev); hdaa_unlock(devinfo); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "config", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, &devinfo->newquirks, 0, hdaa_sysctl_quirks, "A", "Configuration options"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "gpi_state", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, devinfo, 0, hdaa_sysctl_gpi_state, "A", "GPI state"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "gpio_state", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, devinfo, 0, hdaa_sysctl_gpio_state, "A", "GPIO state"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "gpio_config", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, devinfo, 0, hdaa_sysctl_gpio_config, "A", "GPIO configuration"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "gpo_state", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, devinfo, 0, hdaa_sysctl_gpo_state, "A", "GPO state"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "gpo_config", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, devinfo, 0, hdaa_sysctl_gpo_config, "A", "GPO configuration"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "reconfig", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, dev, 0, hdaa_sysctl_reconfig, "I", "Reprocess configuration"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "init_clear", CTLFLAG_RW, &devinfo->init_clear, 1,"Clear initial pin widget configuration"); bus_generic_attach(dev); return (0); } static int hdaa_detach(device_t dev) { struct hdaa_devinfo *devinfo = device_get_softc(dev); int error; if ((error = device_delete_children(dev)) != 0) return (error); hdaa_lock(devinfo); hdaa_unconfigure(dev); devinfo->poll_ival = 0; callout_stop(&devinfo->poll_jack); hdaa_unlock(devinfo); callout_drain(&devinfo->poll_jack); free(devinfo->widget, M_HDAA); return (0); } static int hdaa_print_child(device_t dev, device_t child) { struct hdaa_devinfo *devinfo = device_get_softc(dev); struct hdaa_pcm_devinfo *pdevinfo = (struct hdaa_pcm_devinfo *)device_get_ivars(child); struct hdaa_audio_as *as; int retval, first = 1, i; retval = bus_print_child_header(dev, child); retval += printf(" at nid "); if (pdevinfo->playas >= 0) { as = &devinfo->as[pdevinfo->playas]; for (i = 0; i < 16; i++) { if (as->pins[i] <= 0) continue; retval += printf("%s%d", first ? "" : ",", as->pins[i]); first = 0; } } if (pdevinfo->recas >= 0) { if (pdevinfo->playas >= 0) { retval += printf(" and "); first = 1; } as = &devinfo->as[pdevinfo->recas]; for (i = 0; i < 16; i++) { if (as->pins[i] <= 0) continue; retval += printf("%s%d", first ? "" : ",", as->pins[i]); first = 0; } } retval += bus_print_child_footer(dev, child); return (retval); } static int hdaa_child_location(device_t dev, device_t child, struct sbuf *sb) { struct hdaa_devinfo *devinfo = device_get_softc(dev); struct hdaa_pcm_devinfo *pdevinfo = (struct hdaa_pcm_devinfo *)device_get_ivars(child); struct hdaa_audio_as *as; int first = 1, i; sbuf_printf(sb, "nid="); if (pdevinfo->playas >= 0) { as = &devinfo->as[pdevinfo->playas]; for (i = 0; i < 16; i++) { if (as->pins[i] <= 0) continue; sbuf_printf(sb, "%s%d", first ? "" : ",", as->pins[i]); first = 0; } } if (pdevinfo->recas >= 0) { as = &devinfo->as[pdevinfo->recas]; for (i = 0; i < 16; i++) { if (as->pins[i] <= 0) continue; sbuf_printf(sb, "%s%d", first ? "" : ",", as->pins[i]); first = 0; } } return (0); } static void hdaa_stream_intr(device_t dev, int dir, int stream) { struct hdaa_devinfo *devinfo = device_get_softc(dev); struct hdaa_chan *ch; int i; for (i = 0; i < devinfo->num_chans; i++) { ch = &devinfo->chans[i]; if (!(ch->flags & HDAA_CHN_RUNNING)) continue; if (ch->dir == ((dir == 1) ? PCMDIR_PLAY : PCMDIR_REC) && ch->sid == stream) { hdaa_unlock(devinfo); chn_intr(ch->c); hdaa_lock(devinfo); } } } static void hdaa_unsol_intr(device_t dev, uint32_t resp) { struct hdaa_devinfo *devinfo = device_get_softc(dev); struct hdaa_widget *w; int i, tag, flags; HDA_BOOTHVERBOSE( device_printf(dev, "Unsolicited response %08x\n", resp); ); tag = resp >> 26; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdaa_widget_get(devinfo, i); if (w == NULL || w->enable == 0 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (w->unsol != tag) continue; if (HDA_PARAM_PIN_CAP_DP(w->wclass.pin.cap) || HDA_PARAM_PIN_CAP_HDMI(w->wclass.pin.cap)) flags = resp & 0x03; else flags = 0x01; if (flags & 0x01) hdaa_presence_handler(w); if (flags & 0x02) hdaa_eld_handler(w); } } static device_method_t hdaa_methods[] = { /* device interface */ DEVMETHOD(device_probe, hdaa_probe), DEVMETHOD(device_attach, hdaa_attach), DEVMETHOD(device_detach, hdaa_detach), DEVMETHOD(device_suspend, hdaa_suspend), DEVMETHOD(device_resume, hdaa_resume), /* Bus interface */ DEVMETHOD(bus_print_child, hdaa_print_child), DEVMETHOD(bus_child_location, hdaa_child_location), DEVMETHOD(hdac_stream_intr, hdaa_stream_intr), DEVMETHOD(hdac_unsol_intr, hdaa_unsol_intr), DEVMETHOD(hdac_pindump, hdaa_pindump), DEVMETHOD_END }; static driver_t hdaa_driver = { "hdaa", hdaa_methods, sizeof(struct hdaa_devinfo), }; static devclass_t hdaa_devclass; DRIVER_MODULE(snd_hda, hdacc, hdaa_driver, hdaa_devclass, NULL, NULL); static void hdaa_chan_formula(struct hdaa_devinfo *devinfo, int asid, char *buf, int buflen) { struct hdaa_audio_as *as; int c; as = &devinfo->as[asid]; c = devinfo->chans[as->chans[0]].channels; if (c == 1) snprintf(buf, buflen, "mono"); else if (c == 2) { if (as->hpredir < 0) buf[0] = 0; else snprintf(buf, buflen, "2.0"); } else if (as->pinset == 0x0003) snprintf(buf, buflen, "3.1"); else if (as->pinset == 0x0005 || as->pinset == 0x0011) snprintf(buf, buflen, "4.0"); else if (as->pinset == 0x0007 || as->pinset == 0x0013) snprintf(buf, buflen, "5.1"); else if (as->pinset == 0x0017) snprintf(buf, buflen, "7.1"); else snprintf(buf, buflen, "%dch", c); if (as->hpredir >= 0) strlcat(buf, "+HP", buflen); } static int hdaa_chan_type(struct hdaa_devinfo *devinfo, int asid) { struct hdaa_audio_as *as; struct hdaa_widget *w; int i, t = -1, t1; as = &devinfo->as[asid]; for (i = 0; i < 16; i++) { w = hdaa_widget_get(devinfo, as->pins[i]); if (w == NULL || w->enable == 0 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; t1 = HDA_CONFIG_DEFAULTCONF_DEVICE(w->wclass.pin.config); if (t == -1) t = t1; else if (t != t1) { t = -2; break; } } return (t); } static int hdaa_sysctl_32bit(SYSCTL_HANDLER_ARGS) { struct hdaa_audio_as *as = (struct hdaa_audio_as *)oidp->oid_arg1; struct hdaa_pcm_devinfo *pdevinfo = as->pdevinfo; struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_chan *ch; int error, val, i; uint32_t pcmcap; ch = &devinfo->chans[as->chans[0]]; val = (ch->bit32 == 4) ? 32 : ((ch->bit32 == 3) ? 24 : ((ch->bit32 == 2) ? 20 : 0)); error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); pcmcap = ch->supp_pcm_size_rate; if (val == 32 && HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT(pcmcap)) ch->bit32 = 4; else if (val == 24 && HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT(pcmcap)) ch->bit32 = 3; else if (val == 20 && HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT(pcmcap)) ch->bit32 = 2; else return (EINVAL); for (i = 1; i < as->num_chans; i++) devinfo->chans[as->chans[i]].bit32 = ch->bit32; return (0); } static int hdaa_pcm_probe(device_t dev) { struct hdaa_pcm_devinfo *pdevinfo = (struct hdaa_pcm_devinfo *)device_get_ivars(dev); struct hdaa_devinfo *devinfo = pdevinfo->devinfo; const char *pdesc; char chans1[8], chans2[8]; char buf[128]; int loc1, loc2, t1, t2; if (pdevinfo->playas >= 0) loc1 = devinfo->as[pdevinfo->playas].location; else loc1 = devinfo->as[pdevinfo->recas].location; if (pdevinfo->recas >= 0) loc2 = devinfo->as[pdevinfo->recas].location; else loc2 = loc1; if (loc1 != loc2) loc1 = -2; if (loc1 >= 0 && HDA_LOCS[loc1][0] == '0') loc1 = -2; chans1[0] = 0; chans2[0] = 0; t1 = t2 = -1; if (pdevinfo->playas >= 0) { hdaa_chan_formula(devinfo, pdevinfo->playas, chans1, sizeof(chans1)); t1 = hdaa_chan_type(devinfo, pdevinfo->playas); } if (pdevinfo->recas >= 0) { hdaa_chan_formula(devinfo, pdevinfo->recas, chans2, sizeof(chans2)); t2 = hdaa_chan_type(devinfo, pdevinfo->recas); } if (chans1[0] != 0 || chans2[0] != 0) { if (chans1[0] == 0 && pdevinfo->playas >= 0) snprintf(chans1, sizeof(chans1), "2.0"); else if (chans2[0] == 0 && pdevinfo->recas >= 0) snprintf(chans2, sizeof(chans2), "2.0"); if (strcmp(chans1, chans2) == 0) chans2[0] = 0; } if (t1 == -1) t1 = t2; else if (t2 == -1) t2 = t1; if (t1 != t2) t1 = -2; if (pdevinfo->digital) t1 = -2; pdesc = device_get_desc(device_get_parent(dev)); snprintf(buf, sizeof(buf), "%.*s (%s%s%s%s%s%s%s%s%s)", (int)(strlen(pdesc) - 21), pdesc, loc1 >= 0 ? HDA_LOCS[loc1] : "", loc1 >= 0 ? " " : "", (pdevinfo->digital == 0x7)?"HDMI/DP": ((pdevinfo->digital == 0x5)?"DisplayPort": ((pdevinfo->digital == 0x3)?"HDMI": ((pdevinfo->digital)?"Digital":"Analog"))), chans1[0] ? " " : "", chans1, chans2[0] ? "/" : "", chans2, t1 >= 0 ? " " : "", t1 >= 0 ? HDA_DEVS[t1] : ""); device_set_desc_copy(dev, buf); return (BUS_PROBE_SPECIFIC); } static int hdaa_pcm_attach(device_t dev) { struct hdaa_pcm_devinfo *pdevinfo = (struct hdaa_pcm_devinfo *)device_get_ivars(dev); struct hdaa_devinfo *devinfo = pdevinfo->devinfo; struct hdaa_audio_as *as; struct snddev_info *d; char status[SND_STATUSLEN]; int i; pdevinfo->chan_size = pcm_getbuffersize(dev, HDA_BUFSZ_MIN, HDA_BUFSZ_DEFAULT, HDA_BUFSZ_MAX); HDA_BOOTVERBOSE( hdaa_dump_dac(pdevinfo); hdaa_dump_adc(pdevinfo); hdaa_dump_mix(pdevinfo); hdaa_dump_ctls(pdevinfo, "Master Volume", SOUND_MASK_VOLUME); hdaa_dump_ctls(pdevinfo, "PCM Volume", SOUND_MASK_PCM); hdaa_dump_ctls(pdevinfo, "CD Volume", SOUND_MASK_CD); hdaa_dump_ctls(pdevinfo, "Microphone Volume", SOUND_MASK_MIC); hdaa_dump_ctls(pdevinfo, "Microphone2 Volume", SOUND_MASK_MONITOR); hdaa_dump_ctls(pdevinfo, "Line-in Volume", SOUND_MASK_LINE); hdaa_dump_ctls(pdevinfo, "Speaker/Beep Volume", SOUND_MASK_SPEAKER); hdaa_dump_ctls(pdevinfo, "Recording Level", SOUND_MASK_RECLEV); hdaa_dump_ctls(pdevinfo, "Input Mix Level", SOUND_MASK_IMIX); hdaa_dump_ctls(pdevinfo, "Input Monitoring Level", SOUND_MASK_IGAIN); hdaa_dump_ctls(pdevinfo, NULL, 0); ); if (resource_int_value(device_get_name(dev), device_get_unit(dev), "blocksize", &i) == 0 && i > 0) { i &= HDA_BLK_ALIGN; if (i < HDA_BLK_MIN) i = HDA_BLK_MIN; pdevinfo->chan_blkcnt = pdevinfo->chan_size / i; i = 0; while (pdevinfo->chan_blkcnt >> i) i++; pdevinfo->chan_blkcnt = 1 << (i - 1); if (pdevinfo->chan_blkcnt < HDA_BDL_MIN) pdevinfo->chan_blkcnt = HDA_BDL_MIN; else if (pdevinfo->chan_blkcnt > HDA_BDL_MAX) pdevinfo->chan_blkcnt = HDA_BDL_MAX; } else pdevinfo->chan_blkcnt = HDA_BDL_DEFAULT; - /* + /* * We don't register interrupt handler with snd_setup_intr * in pcm device. Mark pcm device as MPSAFE manually. */ pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE); HDA_BOOTHVERBOSE( device_printf(dev, "OSS mixer initialization...\n"); ); if (mixer_init(dev, &hdaa_audio_ctl_ossmixer_class, pdevinfo) != 0) device_printf(dev, "Can't register mixer\n"); HDA_BOOTHVERBOSE( device_printf(dev, "Registering PCM channels...\n"); ); if (pcm_register(dev, pdevinfo, (pdevinfo->playas >= 0)?1:0, (pdevinfo->recas >= 0)?1:0) != 0) device_printf(dev, "Can't register PCM\n"); pdevinfo->registered++; d = device_get_softc(dev); if (pdevinfo->playas >= 0) { as = &devinfo->as[pdevinfo->playas]; for (i = 0; i < as->num_chans; i++) pcm_addchan(dev, PCMDIR_PLAY, &hdaa_channel_class, &devinfo->chans[as->chans[i]]); SYSCTL_ADD_PROC(&d->play_sysctl_ctx, SYSCTL_CHILDREN(d->play_sysctl_tree), OID_AUTO, "32bit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, as, sizeof(as), hdaa_sysctl_32bit, "I", "Resolution of 32bit samples (20/24/32bit)"); } if (pdevinfo->recas >= 0) { as = &devinfo->as[pdevinfo->recas]; for (i = 0; i < as->num_chans; i++) pcm_addchan(dev, PCMDIR_REC, &hdaa_channel_class, &devinfo->chans[as->chans[i]]); SYSCTL_ADD_PROC(&d->rec_sysctl_ctx, SYSCTL_CHILDREN(d->rec_sysctl_tree), OID_AUTO, "32bit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, as, sizeof(as), hdaa_sysctl_32bit, "I", "Resolution of 32bit samples (20/24/32bit)"); pdevinfo->autorecsrc = 2; resource_int_value(device_get_name(dev), device_get_unit(dev), "rec.autosrc", &pdevinfo->autorecsrc); SYSCTL_ADD_INT(&d->rec_sysctl_ctx, SYSCTL_CHILDREN(d->rec_sysctl_tree), OID_AUTO, "autosrc", CTLFLAG_RW, &pdevinfo->autorecsrc, 0, "Automatic recording source selection"); } if (pdevinfo->mixer != NULL) { hdaa_audio_ctl_set_defaults(pdevinfo); hdaa_lock(devinfo); if (pdevinfo->playas >= 0) { as = &devinfo->as[pdevinfo->playas]; hdaa_channels_handler(as); } if (pdevinfo->recas >= 0) { as = &devinfo->as[pdevinfo->recas]; hdaa_autorecsrc_handler(as, NULL); hdaa_channels_handler(as); } hdaa_unlock(devinfo); } snprintf(status, SND_STATUSLEN, "on %s %s", device_get_nameunit(device_get_parent(dev)), PCM_KLDSTRING(snd_hda)); pcm_setstatus(dev, status); return (0); } static int hdaa_pcm_detach(device_t dev) { struct hdaa_pcm_devinfo *pdevinfo = (struct hdaa_pcm_devinfo *)device_get_ivars(dev); int err; if (pdevinfo->registered > 0) { err = pcm_unregister(dev); if (err != 0) return (err); } return (0); } static device_method_t hdaa_pcm_methods[] = { /* device interface */ DEVMETHOD(device_probe, hdaa_pcm_probe), DEVMETHOD(device_attach, hdaa_pcm_attach), DEVMETHOD(device_detach, hdaa_pcm_detach), DEVMETHOD_END }; static driver_t hdaa_pcm_driver = { "pcm", hdaa_pcm_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(snd_hda_pcm, hdaa, hdaa_pcm_driver, pcm_devclass, NULL, NULL); MODULE_DEPEND(snd_hda, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_VERSION(snd_hda, 1); diff --git a/sys/dev/sound/pci/hda/hdaa.h b/sys/dev/sound/pci/hda/hdaa.h index 4fdc3fcead26..15a3db5edd04 100644 --- a/sys/dev/sound/pci/hda/hdaa.h +++ b/sys/dev/sound/pci/hda/hdaa.h @@ -1,277 +1,277 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006 Stephane E. Potvin * Copyright (c) 2006 Ariff Abdullah * Copyright (c) 2008-2012 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Intel High Definition Audio (Audio function quirks) driver for FreeBSD. */ #ifndef _HDAA_QUIRKS_H_ #define _HDAA_QUIRKS_H_ #define HDAA_GPIO_SHIFT(n) (n * 3) #define HDAA_GPIO_MASK(n) (0x7 << (n * 3)) #define HDAA_GPIO_KEEP(n) (0x0 << (n * 3)) #define HDAA_GPIO_SET(n) (0x1 << (n * 3)) #define HDAA_GPIO_CLEAR(n) (0x2 << (n * 3)) #define HDAA_GPIO_DISABLE(n) (0x3 << (n * 3)) #define HDAA_GPIO_INPUT(n) (0x4 << (n * 3)) /* 9 - 25 = anything else */ #define HDAA_QUIRK_SOFTPCMVOL (1 << 9) #define HDAA_QUIRK_FIXEDRATE (1 << 10) #define HDAA_QUIRK_FORCESTEREO (1 << 11) #define HDAA_QUIRK_EAPDINV (1 << 12) #define HDAA_QUIRK_SENSEINV (1 << 14) /* 26 - 31 = vrefs */ #define HDAA_QUIRK_IVREF50 (1 << 26) #define HDAA_QUIRK_IVREF80 (1 << 27) #define HDAA_QUIRK_IVREF100 (1 << 28) #define HDAA_QUIRK_OVREF50 (1 << 29) #define HDAA_QUIRK_OVREF80 (1 << 30) #define HDAA_QUIRK_OVREF100 (1U << 31) #define HDAA_QUIRK_IVREF (HDAA_QUIRK_IVREF50 | HDAA_QUIRK_IVREF80 | \ HDAA_QUIRK_IVREF100) #define HDAA_QUIRK_OVREF (HDAA_QUIRK_OVREF50 | HDAA_QUIRK_OVREF80 | \ HDAA_QUIRK_OVREF100) #define HDAA_QUIRK_VREF (HDAA_QUIRK_IVREF | HDAA_QUIRK_OVREF) #define HDAA_AMP_VOL_DEFAULT (-1) #define HDAA_AMP_MUTE_DEFAULT (0xffffffff) #define HDAA_AMP_MUTE_NONE (0) #define HDAA_AMP_MUTE_LEFT (1 << 0) #define HDAA_AMP_MUTE_RIGHT (1 << 1) #define HDAA_AMP_MUTE_ALL (HDAA_AMP_MUTE_LEFT | HDAA_AMP_MUTE_RIGHT) #define HDAA_AMP_LEFT_MUTED(v) ((v) & (HDAA_AMP_MUTE_LEFT)) #define HDAA_AMP_RIGHT_MUTED(v) (((v) & HDAA_AMP_MUTE_RIGHT) >> 1) /* Widget in playback receiving signal from recording. */ #define HDAA_ADC_MONITOR (1 << 0) /* Input mixer widget needs volume control as destination. */ #define HDAA_IMIX_AS_DST (2 << 0) #define HDAA_CTL_OUT 1 #define HDAA_CTL_IN 2 #define HDA_MAX_CONNS 32 #define HDA_MAX_NAMELEN 32 struct hdaa_audio_as; struct hdaa_audio_ctl; struct hdaa_chan; struct hdaa_devinfo; struct hdaa_pcm_devinfo; struct hdaa_widget; struct hdaa_widget { nid_t nid; int type; int enable; int nconns, selconn; int waspin; uint32_t pflags; int bindas; int bindseqmask; int ossdev; uint32_t ossmask; int unsol; nid_t conns[HDA_MAX_CONNS]; u_char connsenable[HDA_MAX_CONNS]; char name[HDA_MAX_NAMELEN]; uint8_t *eld; int eld_len; struct hdaa_devinfo *devinfo; struct { uint32_t widget_cap; uint32_t outamp_cap; uint32_t inamp_cap; uint32_t supp_stream_formats; uint32_t supp_pcm_size_rate; uint32_t eapdbtl; } param; union { struct { uint32_t config; uint32_t original; uint32_t newconf; uint32_t cap; uint32_t ctrl; int connected; } pin; struct { uint8_t stripecap; } conv; } wclass; }; struct hdaa_audio_ctl { struct hdaa_widget *widget, *childwidget; int enable; int index, dir, ndir; int mute, step, size, offset; int left, right, forcemute; uint32_t muted; uint32_t ossmask; /* OSS devices that may affect control. */ int devleft[SOUND_MIXER_NRDEVICES]; /* Left ampl in 1/4dB. */ int devright[SOUND_MIXER_NRDEVICES]; /* Right ampl in 1/4dB. */ int devmute[SOUND_MIXER_NRDEVICES]; /* Mutes per OSS device. */ }; /* Association is a group of pins bound for some special function. */ struct hdaa_audio_as { u_char enable; u_char index; u_char dir; u_char pincnt; u_char fakeredir; u_char digital; uint16_t pinset; nid_t hpredir; nid_t pins[16]; nid_t dacs[2][16]; int num_chans; int chans[2]; int location; /* Pins location, if all have the same */ int mixed; /* Mixed/multiplexed recording, not multichannel. */ struct hdaa_pcm_devinfo *pdevinfo; }; struct hdaa_pcm_devinfo { device_t dev; struct hdaa_devinfo *devinfo; struct snd_mixer *mixer; int index; int registered; int playas, recas; u_char left[SOUND_MIXER_NRDEVICES]; u_char right[SOUND_MIXER_NRDEVICES]; int minamp[SOUND_MIXER_NRDEVICES]; /* Minimal amps in 1/4dB. */ int maxamp[SOUND_MIXER_NRDEVICES]; /* Maximal amps in 1/4dB. */ int chan_size; int chan_blkcnt; u_char digital; uint32_t ossmask; /* Mask of supported OSS devices. */ uint32_t recsrc; /* Mask of supported OSS sources. */ int autorecsrc; }; struct hdaa_devinfo { device_t dev; struct mtx *lock; nid_t nid; nid_t startnode, endnode; uint32_t outamp_cap; uint32_t inamp_cap; uint32_t supp_stream_formats; uint32_t supp_pcm_size_rate; uint32_t gpio_cap; uint32_t quirks; uint32_t newquirks; uint32_t gpio; uint32_t newgpio; uint32_t gpo; uint32_t newgpo; int nodecnt; int ctlcnt; int ascnt; int num_devs; int num_chans; struct hdaa_widget *widget; struct hdaa_audio_ctl *ctl; struct hdaa_audio_as *as; struct hdaa_pcm_devinfo *devs; struct hdaa_chan *chans; struct callout poll_jack; int poll_ival; uint32_t init_clear; }; #define HDAA_CHN_RUNNING 0x00000001 #define HDAA_CHN_SUSPEND 0x00000002 struct hdaa_chan { struct snd_dbuf *b; struct pcm_channel *c; struct pcmchan_caps caps; struct hdaa_devinfo *devinfo; struct hdaa_pcm_devinfo *pdevinfo; uint32_t spd, fmt, fmtlist[32], pcmrates[16]; uint32_t supp_stream_formats, supp_pcm_size_rate; uint32_t blkcnt, blksz; uint32_t *dmapos; uint32_t flags; int dir; int off; int sid; int bit16, bit32; int channels; /* Number of audio channels. */ int as; /* Number of association. */ int asindex; /* Index within association. */ nid_t io[16]; uint8_t stripecap; /* AND of stripecap of all ios. */ uint8_t stripectl; /* stripe to use to all ios. */ }; #define MINQDB(ctl) \ ((0 - (ctl)->offset) * ((ctl)->size + 1)) #define MAXQDB(ctl) \ (((ctl)->step - (ctl)->offset) * ((ctl)->size + 1)) #define RANGEQDB(ctl) \ ((ctl)->step * ((ctl)->size + 1)) -#define VAL2QDB(ctl, val) \ +#define VAL2QDB(ctl, val) \ (((ctl)->size + 1) * ((int)(val) - (ctl)->offset)) -#define QDB2VAL(ctl, qdb) \ +#define QDB2VAL(ctl, qdb) \ imax(imin((((qdb) + (ctl)->size / 2 * ((qdb) > 0 ? 1 : -1)) / \ ((ctl)->size + 1) + (ctl)->offset), (ctl)->step), 0) #define hdaa_codec_id(devinfo) \ (((uint32_t)hda_get_vendor_id(devinfo->dev) << 16) + \ hda_get_device_id(devinfo->dev)) #define hdaa_card_id(devinfo) \ (((uint32_t)hda_get_subdevice_id(devinfo->dev) << 16) + \ hda_get_subvendor_id(devinfo->dev)) struct hdaa_widget *hdaa_widget_get(struct hdaa_devinfo *, nid_t); uint32_t hdaa_widget_pin_patch(uint32_t config, const char *str); uint32_t hdaa_gpio_patch(uint32_t gpio, const char *str); void hdaa_patch(struct hdaa_devinfo *devinfo); void hdaa_patch_direct(struct hdaa_devinfo *devinfo); #endif diff --git a/sys/dev/sound/pci/hda/hdac.c b/sys/dev/sound/pci/hda/hdac.c index b1fb193595fe..cad631f4ee5d 100644 --- a/sys/dev/sound/pci/hda/hdac.c +++ b/sys/dev/sound/pci/hda/hdac.c @@ -1,2163 +1,2163 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006 Stephane E. Potvin * Copyright (c) 2006 Ariff Abdullah * Copyright (c) 2008-2012 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Intel High Definition Audio (Controller) driver for FreeBSD. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include #include #include #include #include #include #include #include #define HDA_DRV_TEST_REV "20120126_0002" SND_DECLARE_FILE("$FreeBSD$"); #define hdac_lock(sc) snd_mtxlock((sc)->lock) #define hdac_unlock(sc) snd_mtxunlock((sc)->lock) #define hdac_lockassert(sc) snd_mtxassert((sc)->lock) #define HDAC_QUIRK_64BIT (1 << 0) #define HDAC_QUIRK_DMAPOS (1 << 1) #define HDAC_QUIRK_MSI (1 << 2) static const struct { const char *key; uint32_t value; } hdac_quirks_tab[] = { { "64bit", HDAC_QUIRK_64BIT }, { "dmapos", HDAC_QUIRK_DMAPOS }, { "msi", HDAC_QUIRK_MSI }, }; MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller"); static const struct { uint32_t model; const char *desc; char quirks_on; char quirks_off; } hdac_devices[] = { { HDA_INTEL_OAK, "Intel Oaktrail", 0, 0 }, { HDA_INTEL_CMLKLP, "Intel Comet Lake-LP", 0, 0 }, { HDA_INTEL_CMLKH, "Intel Comet Lake-H", 0, 0 }, { HDA_INTEL_BAY, "Intel BayTrail", 0, 0 }, { HDA_INTEL_HSW1, "Intel Haswell", 0, 0 }, { HDA_INTEL_HSW2, "Intel Haswell", 0, 0 }, { HDA_INTEL_HSW3, "Intel Haswell", 0, 0 }, { HDA_INTEL_BDW1, "Intel Broadwell", 0, 0 }, { HDA_INTEL_BDW2, "Intel Broadwell", 0, 0 }, { HDA_INTEL_BXTNT, "Intel Broxton-T", 0, 0 }, { HDA_INTEL_CPT, "Intel Cougar Point", 0, 0 }, { HDA_INTEL_PATSBURG,"Intel Patsburg", 0, 0 }, { HDA_INTEL_PPT1, "Intel Panther Point", 0, 0 }, { HDA_INTEL_BR, "Intel Braswell", 0, 0 }, { HDA_INTEL_LPT1, "Intel Lynx Point", 0, 0 }, { HDA_INTEL_LPT2, "Intel Lynx Point", 0, 0 }, { HDA_INTEL_WCPT, "Intel Wildcat Point", 0, 0 }, { HDA_INTEL_WELLS1, "Intel Wellsburg", 0, 0 }, { HDA_INTEL_WELLS2, "Intel Wellsburg", 0, 0 }, { HDA_INTEL_LPTLP1, "Intel Lynx Point-LP", 0, 0 }, { HDA_INTEL_LPTLP2, "Intel Lynx Point-LP", 0, 0 }, { HDA_INTEL_SRPTLP, "Intel Sunrise Point-LP", 0, 0 }, { HDA_INTEL_KBLKLP, "Intel Kaby Lake-LP", 0, 0 }, { HDA_INTEL_SRPT, "Intel Sunrise Point", 0, 0 }, { HDA_INTEL_KBLK, "Intel Kaby Lake", 0, 0 }, { HDA_INTEL_KBLKH, "Intel Kaby Lake-H", 0, 0 }, { HDA_INTEL_CFLK, "Intel Coffee Lake", 0, 0 }, { HDA_INTEL_CMLKS, "Intel Comet Lake-S", 0, 0 }, { HDA_INTEL_CNLK, "Intel Cannon Lake", 0, 0 }, { HDA_INTEL_ICLK, "Intel Ice Lake", 0, 0 }, { HDA_INTEL_CMLKLP, "Intel Comet Lake-LP", 0, 0 }, { HDA_INTEL_CMLKH, "Intel Comet Lake-H", 0, 0 }, { HDA_INTEL_TGLK, "Intel Tiger Lake", 0, 0 }, { HDA_INTEL_GMLK, "Intel Gemini Lake", 0, 0 }, { HDA_INTEL_82801F, "Intel 82801F", 0, 0 }, { HDA_INTEL_63XXESB, "Intel 631x/632xESB", 0, 0 }, { HDA_INTEL_82801G, "Intel 82801G", 0, 0 }, { HDA_INTEL_82801H, "Intel 82801H", 0, 0 }, { HDA_INTEL_82801I, "Intel 82801I", 0, 0 }, { HDA_INTEL_JLK, "Intel Jasper Lake", 0, 0 }, { HDA_INTEL_82801JI, "Intel 82801JI", 0, 0 }, { HDA_INTEL_82801JD, "Intel 82801JD", 0, 0 }, { HDA_INTEL_PCH, "Intel Ibex Peak", 0, 0 }, { HDA_INTEL_PCH2, "Intel Ibex Peak", 0, 0 }, { HDA_INTEL_ELLK, "Intel Elkhart Lake", 0, 0 }, { HDA_INTEL_JLK2, "Intel Jasper Lake", 0, 0 }, { HDA_INTEL_BXTNP, "Intel Broxton-P", 0, 0 }, { HDA_INTEL_SCH, "Intel SCH", 0, 0 }, { HDA_NVIDIA_MCP51, "NVIDIA MCP51", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_MCP55, "NVIDIA MCP55", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_MCP61_1, "NVIDIA MCP61", 0, 0 }, { HDA_NVIDIA_MCP61_2, "NVIDIA MCP61", 0, 0 }, { HDA_NVIDIA_MCP65_1, "NVIDIA MCP65", 0, 0 }, { HDA_NVIDIA_MCP65_2, "NVIDIA MCP65", 0, 0 }, { HDA_NVIDIA_MCP67_1, "NVIDIA MCP67", 0, 0 }, { HDA_NVIDIA_MCP67_2, "NVIDIA MCP67", 0, 0 }, { HDA_NVIDIA_MCP73_1, "NVIDIA MCP73", 0, 0 }, { HDA_NVIDIA_MCP73_2, "NVIDIA MCP73", 0, 0 }, { HDA_NVIDIA_MCP78_1, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, { HDA_NVIDIA_MCP78_2, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, { HDA_NVIDIA_MCP78_3, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, { HDA_NVIDIA_MCP78_4, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, { HDA_NVIDIA_MCP79_1, "NVIDIA MCP79", 0, 0 }, { HDA_NVIDIA_MCP79_2, "NVIDIA MCP79", 0, 0 }, { HDA_NVIDIA_MCP79_3, "NVIDIA MCP79", 0, 0 }, { HDA_NVIDIA_MCP79_4, "NVIDIA MCP79", 0, 0 }, { HDA_NVIDIA_MCP89_1, "NVIDIA MCP89", 0, 0 }, { HDA_NVIDIA_MCP89_2, "NVIDIA MCP89", 0, 0 }, { HDA_NVIDIA_MCP89_3, "NVIDIA MCP89", 0, 0 }, { HDA_NVIDIA_MCP89_4, "NVIDIA MCP89", 0, 0 }, { HDA_NVIDIA_0BE2, "NVIDIA (0x0be2)", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_0BE3, "NVIDIA (0x0be3)", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_0BE4, "NVIDIA (0x0be4)", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_GT100, "NVIDIA GT100", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_GT104, "NVIDIA GT104", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_GT106, "NVIDIA GT106", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_GT108, "NVIDIA GT108", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_GT116, "NVIDIA GT116", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_GF119, "NVIDIA GF119", 0, 0 }, { HDA_NVIDIA_GF110_1, "NVIDIA GF110", 0, HDAC_QUIRK_MSI }, { HDA_NVIDIA_GF110_2, "NVIDIA GF110", 0, HDAC_QUIRK_MSI }, { HDA_ATI_SB450, "ATI SB450", 0, 0 }, { HDA_ATI_SB600, "ATI SB600", 0, 0 }, { HDA_ATI_RS600, "ATI RS600", 0, 0 }, { HDA_ATI_RS690, "ATI RS690", 0, 0 }, { HDA_ATI_RS780, "ATI RS780", 0, 0 }, { HDA_ATI_R600, "ATI R600", 0, 0 }, { HDA_ATI_RV610, "ATI RV610", 0, 0 }, { HDA_ATI_RV620, "ATI RV620", 0, 0 }, { HDA_ATI_RV630, "ATI RV630", 0, 0 }, { HDA_ATI_RV635, "ATI RV635", 0, 0 }, { HDA_ATI_RV710, "ATI RV710", 0, 0 }, { HDA_ATI_RV730, "ATI RV730", 0, 0 }, { HDA_ATI_RV740, "ATI RV740", 0, 0 }, { HDA_ATI_RV770, "ATI RV770", 0, 0 }, { HDA_ATI_RV810, "ATI RV810", 0, 0 }, { HDA_ATI_RV830, "ATI RV830", 0, 0 }, { HDA_ATI_RV840, "ATI RV840", 0, 0 }, { HDA_ATI_RV870, "ATI RV870", 0, 0 }, { HDA_ATI_RV910, "ATI RV910", 0, 0 }, { HDA_ATI_RV930, "ATI RV930", 0, 0 }, { HDA_ATI_RV940, "ATI RV940", 0, 0 }, { HDA_ATI_RV970, "ATI RV970", 0, 0 }, { HDA_ATI_R1000, "ATI R1000", 0, 0 }, { HDA_AMD_X370, "AMD X370", 0, 0 }, { HDA_AMD_X570, "AMD X570", 0, 0 }, { HDA_AMD_STONEY, "AMD Stoney", 0, 0 }, { HDA_AMD_RAVEN, "AMD Raven", 0, 0 }, { HDA_AMD_HUDSON2, "AMD Hudson-2", 0, 0 }, { HDA_RDC_M3010, "RDC M3010", 0, 0 }, { HDA_VIA_VT82XX, "VIA VT8251/8237A",0, 0 }, { HDA_SIS_966, "SiS 966/968", 0, 0 }, { HDA_ULI_M5461, "ULI M5461", 0, 0 }, /* Unknown */ { HDA_INTEL_ALL, "Intel", 0, 0 }, { HDA_NVIDIA_ALL, "NVIDIA", 0, 0 }, { HDA_ATI_ALL, "ATI", 0, 0 }, { HDA_AMD_ALL, "AMD", 0, 0 }, { HDA_CREATIVE_ALL, "Creative", 0, 0 }, { HDA_VIA_ALL, "VIA", 0, 0 }, { HDA_SIS_ALL, "SiS", 0, 0 }, { HDA_ULI_ALL, "ULI", 0, 0 }, }; static const struct { uint16_t vendor; uint8_t reg; uint8_t mask; uint8_t enable; } hdac_pcie_snoop[] = { { INTEL_VENDORID, 0x00, 0x00, 0x00 }, { ATI_VENDORID, 0x42, 0xf8, 0x02 }, { AMD_VENDORID, 0x42, 0xf8, 0x02 }, { NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f }, }; /**************************************************************************** * Function prototypes ****************************************************************************/ static void hdac_intr_handler(void *); static int hdac_reset(struct hdac_softc *, bool); static int hdac_get_capabilities(struct hdac_softc *); static void hdac_dma_cb(void *, bus_dma_segment_t *, int, int); static int hdac_dma_alloc(struct hdac_softc *, struct hdac_dma *, bus_size_t); static void hdac_dma_free(struct hdac_softc *, struct hdac_dma *); static int hdac_mem_alloc(struct hdac_softc *); static void hdac_mem_free(struct hdac_softc *); static int hdac_irq_alloc(struct hdac_softc *); static void hdac_irq_free(struct hdac_softc *); static void hdac_corb_init(struct hdac_softc *); static void hdac_rirb_init(struct hdac_softc *); static void hdac_corb_start(struct hdac_softc *); static void hdac_rirb_start(struct hdac_softc *); static void hdac_attach2(void *); static uint32_t hdac_send_command(struct hdac_softc *, nid_t, uint32_t); static int hdac_probe(device_t); static int hdac_attach(device_t); static int hdac_detach(device_t); static int hdac_suspend(device_t); static int hdac_resume(device_t); static int hdac_rirb_flush(struct hdac_softc *sc); static int hdac_unsolq_flush(struct hdac_softc *sc); /* This function surely going to make its way into upper level someday. */ static void hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off) { const char *res = NULL; int i = 0, j, k, len, inv; if (resource_string_value(device_get_name(sc->dev), device_get_unit(sc->dev), "config", &res) != 0) return; if (!(res != NULL && strlen(res) > 0)) return; HDA_BOOTVERBOSE( device_printf(sc->dev, "Config options:"); ); for (;;) { while (res[i] != '\0' && (res[i] == ',' || isspace(res[i]) != 0)) i++; if (res[i] == '\0') { HDA_BOOTVERBOSE( printf("\n"); ); return; } j = i; while (res[j] != '\0' && !(res[j] == ',' || isspace(res[j]) != 0)) j++; len = j - i; if (len > 2 && strncmp(res + i, "no", 2) == 0) inv = 2; else inv = 0; for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) { if (strncmp(res + i + inv, hdac_quirks_tab[k].key, len - inv) != 0) continue; if (len - inv != strlen(hdac_quirks_tab[k].key)) continue; HDA_BOOTVERBOSE( printf(" %s%s", (inv != 0) ? "no" : "", hdac_quirks_tab[k].key); ); if (inv == 0) { *on |= hdac_quirks_tab[k].value; *off &= ~hdac_quirks_tab[k].value; } else if (inv != 0) { *off |= hdac_quirks_tab[k].value; *on &= ~hdac_quirks_tab[k].value; } break; } i = j; } } static void hdac_one_intr(struct hdac_softc *sc, uint32_t intsts) { device_t dev; uint8_t rirbsts; int i; /* Was this a controller interrupt? */ if (intsts & HDAC_INTSTS_CIS) { /* * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then * we will need to check and clear HDAC_STATESTS. * That event is used to report codec status changes such as * a reset or a wake-up event. */ /* * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we * will need to check and clear HDAC_CORBSTS_CMEI in * HDAC_CORBSTS. * That event is used to report CORB memory errors. */ /* * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we * will need to check and clear HDAC_RIRBSTS_RIRBOIS in * HDAC_RIRBSTS. * That event is used to report response FIFO overruns. */ /* Get as many responses that we can */ rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); while (rirbsts & HDAC_RIRBSTS_RINTFL) { HDAC_WRITE_1(&sc->mem, HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL); hdac_rirb_flush(sc); rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); } if (sc->unsolq_rp != sc->unsolq_wp) taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); } if (intsts & HDAC_INTSTS_SIS_MASK) { for (i = 0; i < sc->num_ss; i++) { if ((intsts & (1 << i)) == 0) continue; HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS, HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS); if ((dev = sc->streams[i].dev) != NULL) { HDAC_STREAM_INTR(dev, sc->streams[i].dir, sc->streams[i].stream); } } } } /**************************************************************************** * void hdac_intr_handler(void *) * * Interrupt handler. Processes interrupts received from the hdac. ****************************************************************************/ static void hdac_intr_handler(void *context) { struct hdac_softc *sc; uint32_t intsts; sc = (struct hdac_softc *)context; /* * Loop until HDAC_INTSTS_GIS gets clear. * It is plausible that hardware interrupts a host only when GIS goes * from zero to one. GIS is formed by OR-ing multiple hardware * statuses, so it's possible that a previously cleared status gets set * again while another status has not been cleared yet. Thus, there * will be no new interrupt as GIS always stayed set. If we don't * re-examine GIS then we can leave it set and never get an interrupt * again. */ intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS); while ((intsts & HDAC_INTSTS_GIS) != 0) { hdac_lock(sc); hdac_one_intr(sc, intsts); hdac_unlock(sc); intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS); } } static void hdac_poll_callback(void *arg) { struct hdac_softc *sc = arg; if (sc == NULL) return; hdac_lock(sc); if (sc->polling == 0) { hdac_unlock(sc); return; } callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc); hdac_unlock(sc); hdac_intr_handler(sc); } /**************************************************************************** * int hdac_reset(hdac_softc *, bool) * * Reset the hdac to a quiescent and known state. ****************************************************************************/ static int hdac_reset(struct hdac_softc *sc, bool wakeup) { uint32_t gctl; int count, i; /* * Stop all Streams DMA engine */ for (i = 0; i < sc->num_iss; i++) HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0); for (i = 0; i < sc->num_oss; i++) HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0); for (i = 0; i < sc->num_bss; i++) HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0); /* * Stop Control DMA engines. */ HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0); HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0); /* * Reset DMA position buffer. */ HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0); HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0); /* * Reset the controller. The reset must remain asserted for * a minimum of 100us. */ gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST); count = 10000; do { gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); if (!(gctl & HDAC_GCTL_CRST)) break; DELAY(10); } while (--count); if (gctl & HDAC_GCTL_CRST) { device_printf(sc->dev, "Unable to put hdac in reset\n"); return (ENXIO); } /* If wakeup is not requested - leave the controller in reset state. */ if (!wakeup) return (0); DELAY(100); gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST); count = 10000; do { gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); if (gctl & HDAC_GCTL_CRST) break; DELAY(10); } while (--count); if (!(gctl & HDAC_GCTL_CRST)) { device_printf(sc->dev, "Device stuck in reset\n"); return (ENXIO); } /* * Wait for codecs to finish their own reset sequence. The delay here * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery). */ DELAY(1000); return (0); } /**************************************************************************** * int hdac_get_capabilities(struct hdac_softc *); * * Retreive the general capabilities of the hdac; * Number of Input Streams * Number of Output Streams * Number of bidirectional Streams * 64bit ready * CORB and RIRB sizes ****************************************************************************/ static int hdac_get_capabilities(struct hdac_softc *sc) { uint16_t gcap; uint8_t corbsize, rirbsize; gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP); sc->num_iss = HDAC_GCAP_ISS(gcap); sc->num_oss = HDAC_GCAP_OSS(gcap); sc->num_bss = HDAC_GCAP_BSS(gcap); sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss; sc->num_sdo = HDAC_GCAP_NSDO(gcap); sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0; if (sc->quirks_on & HDAC_QUIRK_64BIT) sc->support_64bit = 1; else if (sc->quirks_off & HDAC_QUIRK_64BIT) sc->support_64bit = 0; corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE); if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) == HDAC_CORBSIZE_CORBSZCAP_256) sc->corb_size = 256; else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) == HDAC_CORBSIZE_CORBSZCAP_16) sc->corb_size = 16; else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) == HDAC_CORBSIZE_CORBSZCAP_2) sc->corb_size = 2; else { device_printf(sc->dev, "%s: Invalid corb size (%x)\n", __func__, corbsize); return (ENXIO); } rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE); if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) == HDAC_RIRBSIZE_RIRBSZCAP_256) sc->rirb_size = 256; else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) == HDAC_RIRBSIZE_RIRBSZCAP_16) sc->rirb_size = 16; else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) == HDAC_RIRBSIZE_RIRBSZCAP_2) sc->rirb_size = 2; else { device_printf(sc->dev, "%s: Invalid rirb size (%x)\n", __func__, rirbsize); return (ENXIO); } HDA_BOOTVERBOSE( device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, " "NSDO %d%s, CORB %d, RIRB %d\n", sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo, sc->support_64bit ? ", 64bit" : "", sc->corb_size, sc->rirb_size); ); return (0); } /**************************************************************************** * void hdac_dma_cb * * This function is called by bus_dmamap_load when the mapping has been * established. We just record the physical address of the mapping into * the struct hdac_dma passed in. ****************************************************************************/ static void hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error) { struct hdac_dma *dma; if (error == 0) { dma = (struct hdac_dma *)callback_arg; dma->dma_paddr = segs[0].ds_addr; } } /**************************************************************************** * int hdac_dma_alloc * * This function allocate and setup a dma region (struct hdac_dma). * It must be freed by a corresponding hdac_dma_free. ****************************************************************************/ static int hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size) { bus_size_t roundsz; int result; roundsz = roundup2(size, HDA_DMA_ALIGNMENT); bzero(dma, sizeof(*dma)); /* * Create a DMA tag */ result = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* parent */ HDA_DMA_ALIGNMENT, /* alignment */ 0, /* boundary */ (sc->support_64bit) ? BUS_SPACE_MAXADDR : BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, /* filtfunc */ NULL, /* fistfuncarg */ - roundsz, /* maxsize */ + roundsz, /* maxsize */ 1, /* nsegments */ - roundsz, /* maxsegsz */ + roundsz, /* maxsegsz */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &dma->dma_tag); /* dmat */ if (result != 0) { device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n", __func__, result); goto hdac_dma_alloc_fail; } /* * Allocate DMA memory */ result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO | ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE : BUS_DMA_COHERENT), &dma->dma_map); if (result != 0) { device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n", __func__, result); goto hdac_dma_alloc_fail; } dma->dma_size = roundsz; /* * Map the memory */ result = bus_dmamap_load(dma->dma_tag, dma->dma_map, (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0); if (result != 0 || dma->dma_paddr == 0) { if (result == 0) result = ENOMEM; device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n", __func__, result); goto hdac_dma_alloc_fail; } HDA_BOOTHVERBOSE( device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n", __func__, (uintmax_t)size, (uintmax_t)roundsz); ); return (0); hdac_dma_alloc_fail: hdac_dma_free(sc, dma); return (result); } /**************************************************************************** * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *) * * Free a struct hdac_dma that has been previously allocated via the * hdac_dma_alloc function. ****************************************************************************/ static void hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma) { if (dma->dma_paddr != 0) { /* Flush caches */ bus_dmamap_sync(dma->dma_tag, dma->dma_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->dma_tag, dma->dma_map); dma->dma_paddr = 0; } if (dma->dma_vaddr != NULL) { bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); dma->dma_vaddr = NULL; } if (dma->dma_tag != NULL) { bus_dma_tag_destroy(dma->dma_tag); dma->dma_tag = NULL; } dma->dma_size = 0; } /**************************************************************************** * int hdac_mem_alloc(struct hdac_softc *) * * Allocate all the bus resources necessary to speak with the physical * controller. ****************************************************************************/ static int hdac_mem_alloc(struct hdac_softc *sc) { struct hdac_mem *mem; mem = &sc->mem; mem->mem_rid = PCIR_BAR(0); mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mem->mem_rid, RF_ACTIVE); if (mem->mem_res == NULL) { device_printf(sc->dev, "%s: Unable to allocate memory resource\n", __func__); return (ENOMEM); } mem->mem_tag = rman_get_bustag(mem->mem_res); mem->mem_handle = rman_get_bushandle(mem->mem_res); return (0); } /**************************************************************************** * void hdac_mem_free(struct hdac_softc *) * * Free up resources previously allocated by hdac_mem_alloc. ****************************************************************************/ static void hdac_mem_free(struct hdac_softc *sc) { struct hdac_mem *mem; mem = &sc->mem; if (mem->mem_res != NULL) bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid, mem->mem_res); mem->mem_res = NULL; } /**************************************************************************** * int hdac_irq_alloc(struct hdac_softc *) * * Allocate and setup the resources necessary for interrupt handling. ****************************************************************************/ static int hdac_irq_alloc(struct hdac_softc *sc) { struct hdac_irq *irq; int result; irq = &sc->irq; irq->irq_rid = 0x0; if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 && (result = pci_msi_count(sc->dev)) == 1 && pci_alloc_msi(sc->dev, &result) == 0) irq->irq_rid = 0x1; irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE); if (irq->irq_res == NULL) { device_printf(sc->dev, "%s: Unable to allocate irq\n", __func__); goto hdac_irq_alloc_fail; } result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV, NULL, hdac_intr_handler, sc, &irq->irq_handle); if (result != 0) { device_printf(sc->dev, "%s: Unable to setup interrupt handler (%d)\n", __func__, result); goto hdac_irq_alloc_fail; } return (0); hdac_irq_alloc_fail: hdac_irq_free(sc); return (ENXIO); } /**************************************************************************** * void hdac_irq_free(struct hdac_softc *) * * Free up resources previously allocated by hdac_irq_alloc. ****************************************************************************/ static void hdac_irq_free(struct hdac_softc *sc) { struct hdac_irq *irq; irq = &sc->irq; if (irq->irq_res != NULL && irq->irq_handle != NULL) bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle); if (irq->irq_res != NULL) bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid, irq->irq_res); if (irq->irq_rid == 0x1) pci_release_msi(sc->dev); irq->irq_handle = NULL; irq->irq_res = NULL; irq->irq_rid = 0x0; } /**************************************************************************** * void hdac_corb_init(struct hdac_softc *) * * Initialize the corb registers for operations but do not start it up yet. * The CORB engine must not be running when this function is called. ****************************************************************************/ static void hdac_corb_init(struct hdac_softc *sc) { uint8_t corbsize; uint64_t corbpaddr; /* Setup the CORB size. */ switch (sc->corb_size) { case 256: corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256); break; case 16: corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16); break; case 2: corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2); break; default: panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size); } HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize); /* Setup the CORB Address in the hdac */ corbpaddr = (uint64_t)sc->corb_dma.dma_paddr; HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr); HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32)); /* Set the WP and RP */ sc->corb_wp = 0; HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST); /* * The HDA specification indicates that the CORBRPRST bit will always * read as zero. Unfortunately, it seems that at least the 82801G * doesn't reset the bit to zero, which stalls the corb engine. * manually reset the bit to zero before continuing. */ HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0); /* Enable CORB error reporting */ #if 0 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE); #endif } /**************************************************************************** * void hdac_rirb_init(struct hdac_softc *) * * Initialize the rirb registers for operations but do not start it up yet. * The RIRB engine must not be running when this function is called. ****************************************************************************/ static void hdac_rirb_init(struct hdac_softc *sc) { uint8_t rirbsize; uint64_t rirbpaddr; /* Setup the RIRB size. */ switch (sc->rirb_size) { case 256: rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256); break; case 16: rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16); break; case 2: rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2); break; default: panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size); } HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize); /* Setup the RIRB Address in the hdac */ rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr; HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr); HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32)); /* Setup the WP and RP */ sc->rirb_rp = 0; HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST); /* Setup the interrupt threshold */ HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2); /* Enable Overrun and response received reporting */ #if 0 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL); #else HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL); #endif /* * Make sure that the Host CPU cache doesn't contain any dirty * cache lines that falls in the rirb. If I understood correctly, it * should be sufficient to do this only once as the rirb is purely * read-only from now on. */ bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, BUS_DMASYNC_PREREAD); } /**************************************************************************** * void hdac_corb_start(hdac_softc *) * * Startup the corb DMA engine ****************************************************************************/ static void hdac_corb_start(struct hdac_softc *sc) { uint32_t corbctl; corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL); corbctl |= HDAC_CORBCTL_CORBRUN; HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl); } /**************************************************************************** * void hdac_rirb_start(hdac_softc *) * * Startup the rirb DMA engine ****************************************************************************/ static void hdac_rirb_start(struct hdac_softc *sc) { uint32_t rirbctl; rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL); rirbctl |= HDAC_RIRBCTL_RIRBDMAEN; HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl); } static int hdac_rirb_flush(struct hdac_softc *sc) { struct hdac_rirb *rirb_base, *rirb; nid_t cad; uint32_t resp, resp_ex; uint8_t rirbwp; int ret; rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr; rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP); bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, BUS_DMASYNC_POSTREAD); ret = 0; while (sc->rirb_rp != rirbwp) { sc->rirb_rp++; sc->rirb_rp %= sc->rirb_size; rirb = &rirb_base[sc->rirb_rp]; resp = le32toh(rirb->response); resp_ex = le32toh(rirb->response_ex); cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex); if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) { sc->unsolq[sc->unsolq_wp++] = resp; sc->unsolq_wp %= HDAC_UNSOLQ_MAX; sc->unsolq[sc->unsolq_wp++] = cad; sc->unsolq_wp %= HDAC_UNSOLQ_MAX; } else if (sc->codecs[cad].pending <= 0) { device_printf(sc->dev, "Unexpected unsolicited " "response from address %d: %08x\n", cad, resp); } else { sc->codecs[cad].response = resp; sc->codecs[cad].pending--; } ret++; } bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, BUS_DMASYNC_PREREAD); return (ret); } static int hdac_unsolq_flush(struct hdac_softc *sc) { device_t child; nid_t cad; uint32_t resp; int ret = 0; if (sc->unsolq_st == HDAC_UNSOLQ_READY) { sc->unsolq_st = HDAC_UNSOLQ_BUSY; while (sc->unsolq_rp != sc->unsolq_wp) { resp = sc->unsolq[sc->unsolq_rp++]; sc->unsolq_rp %= HDAC_UNSOLQ_MAX; cad = sc->unsolq[sc->unsolq_rp++]; sc->unsolq_rp %= HDAC_UNSOLQ_MAX; if ((child = sc->codecs[cad].dev) != NULL && device_is_attached(child)) HDAC_UNSOL_INTR(child, resp); ret++; } sc->unsolq_st = HDAC_UNSOLQ_READY; } return (ret); } /**************************************************************************** * uint32_t hdac_send_command * * Wrapper function that sends only one command to a given codec ****************************************************************************/ static uint32_t hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb) { int timeout; uint32_t *corb; hdac_lockassert(sc); verb &= ~HDA_CMD_CAD_MASK; verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT; sc->codecs[cad].response = HDA_INVALID; sc->codecs[cad].pending++; sc->corb_wp++; sc->corb_wp %= sc->corb_size; corb = (uint32_t *)sc->corb_dma.dma_vaddr; bus_dmamap_sync(sc->corb_dma.dma_tag, sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE); corb[sc->corb_wp] = htole32(verb); bus_dmamap_sync(sc->corb_dma.dma_tag, sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE); HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); timeout = 10000; do { if (hdac_rirb_flush(sc) == 0) DELAY(10); } while (sc->codecs[cad].pending != 0 && --timeout); if (sc->codecs[cad].pending != 0) { device_printf(sc->dev, "Command 0x%08x timeout on address %d\n", verb, cad); sc->codecs[cad].pending = 0; } if (sc->unsolq_rp != sc->unsolq_wp) taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); return (sc->codecs[cad].response); } /**************************************************************************** * Device Methods ****************************************************************************/ /**************************************************************************** * int hdac_probe(device_t) * * Probe for the presence of an hdac. If none is found, check for a generic * match using the subclass of the device. ****************************************************************************/ static int hdac_probe(device_t dev) { int i, result; uint32_t model; uint16_t class, subclass; char desc[64]; model = (uint32_t)pci_get_device(dev) << 16; model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; class = pci_get_class(dev); subclass = pci_get_subclass(dev); bzero(desc, sizeof(desc)); result = ENXIO; for (i = 0; i < nitems(hdac_devices); i++) { if (hdac_devices[i].model == model) { strlcpy(desc, hdac_devices[i].desc, sizeof(desc)); result = BUS_PROBE_DEFAULT; break; } if (HDA_DEV_MATCH(hdac_devices[i].model, model) && class == PCIC_MULTIMEDIA && subclass == PCIS_MULTIMEDIA_HDA) { snprintf(desc, sizeof(desc), "%s (0x%04x)", hdac_devices[i].desc, pci_get_device(dev)); result = BUS_PROBE_GENERIC; break; } } if (result == ENXIO && class == PCIC_MULTIMEDIA && subclass == PCIS_MULTIMEDIA_HDA) { snprintf(desc, sizeof(desc), "Generic (0x%08x)", model); result = BUS_PROBE_GENERIC; } if (result != ENXIO) { strlcat(desc, " HDA Controller", sizeof(desc)); device_set_desc_copy(dev, desc); } return (result); } static void hdac_unsolq_task(void *context, int pending) { struct hdac_softc *sc; sc = (struct hdac_softc *)context; hdac_lock(sc); hdac_unsolq_flush(sc); hdac_unlock(sc); } /**************************************************************************** * int hdac_attach(device_t) * * Attach the device into the kernel. Interrupts usually won't be enabled * when this function is called. Setup everything that doesn't require * interrupts and defer probing of codecs until interrupts are enabled. ****************************************************************************/ static int hdac_attach(device_t dev) { struct hdac_softc *sc; int result; int i, devid = -1; uint32_t model; uint16_t class, subclass; uint16_t vendor; uint8_t v; sc = device_get_softc(dev); HDA_BOOTVERBOSE( device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n", pci_get_subvendor(dev), pci_get_subdevice(dev)); device_printf(dev, "HDA Driver Revision: %s\n", HDA_DRV_TEST_REV); ); model = (uint32_t)pci_get_device(dev) << 16; model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; class = pci_get_class(dev); subclass = pci_get_subclass(dev); for (i = 0; i < nitems(hdac_devices); i++) { if (hdac_devices[i].model == model) { devid = i; break; } if (HDA_DEV_MATCH(hdac_devices[i].model, model) && class == PCIC_MULTIMEDIA && subclass == PCIS_MULTIMEDIA_HDA) { devid = i; break; } } sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex"); sc->dev = dev; TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc); callout_init(&sc->poll_callout, 1); for (i = 0; i < HDAC_CODEC_MAX; i++) sc->codecs[i].dev = NULL; if (devid >= 0) { sc->quirks_on = hdac_devices[devid].quirks_on; sc->quirks_off = hdac_devices[devid].quirks_off; } else { sc->quirks_on = 0; sc->quirks_off = 0; } if (resource_int_value(device_get_name(dev), device_get_unit(dev), "msi", &i) == 0) { if (i == 0) sc->quirks_off |= HDAC_QUIRK_MSI; else { sc->quirks_on |= HDAC_QUIRK_MSI; sc->quirks_off |= ~HDAC_QUIRK_MSI; } } hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off); HDA_BOOTVERBOSE( device_printf(sc->dev, "Config options: on=0x%08x off=0x%08x\n", sc->quirks_on, sc->quirks_off); ); sc->poll_ival = hz; if (resource_int_value(device_get_name(dev), device_get_unit(dev), "polling", &i) == 0 && i != 0) sc->polling = 1; else sc->polling = 0; pci_enable_busmaster(dev); vendor = pci_get_vendor(dev); if (vendor == INTEL_VENDORID) { /* TCSEL -> TC0 */ v = pci_read_config(dev, 0x44, 1); pci_write_config(dev, 0x44, v & 0xf8, 1); HDA_BOOTHVERBOSE( device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v, pci_read_config(dev, 0x44, 1)); ); } #if defined(__i386__) || defined(__amd64__) sc->flags |= HDAC_F_DMA_NOCACHE; if (resource_int_value(device_get_name(dev), device_get_unit(dev), "snoop", &i) == 0 && i != 0) { #else sc->flags &= ~HDAC_F_DMA_NOCACHE; #endif /* * Try to enable PCIe snoop to avoid messing around with * uncacheable DMA attribute. Since PCIe snoop register * config is pretty much vendor specific, there are no * general solutions on how to enable it, forcing us (even * Microsoft) to enable uncacheable or write combined DMA * by default. * * http://msdn2.microsoft.com/en-us/library/ms790324.aspx */ for (i = 0; i < nitems(hdac_pcie_snoop); i++) { if (hdac_pcie_snoop[i].vendor != vendor) continue; sc->flags &= ~HDAC_F_DMA_NOCACHE; if (hdac_pcie_snoop[i].reg == 0x00) break; v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); if ((v & hdac_pcie_snoop[i].enable) == hdac_pcie_snoop[i].enable) break; v &= hdac_pcie_snoop[i].mask; v |= hdac_pcie_snoop[i].enable; pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1); v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); if ((v & hdac_pcie_snoop[i].enable) != hdac_pcie_snoop[i].enable) { HDA_BOOTVERBOSE( device_printf(dev, "WARNING: Failed to enable PCIe " "snoop!\n"); ); #if defined(__i386__) || defined(__amd64__) sc->flags |= HDAC_F_DMA_NOCACHE; #endif } break; } #if defined(__i386__) || defined(__amd64__) } #endif HDA_BOOTHVERBOSE( device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n", (sc->flags & HDAC_F_DMA_NOCACHE) ? "Uncacheable" : "PCIe snoop", vendor); ); /* Allocate resources */ result = hdac_mem_alloc(sc); if (result != 0) goto hdac_attach_fail; result = hdac_irq_alloc(sc); if (result != 0) goto hdac_attach_fail; /* Get Capabilities */ result = hdac_get_capabilities(sc); if (result != 0) goto hdac_attach_fail; /* Allocate CORB, RIRB, POS and BDLs dma memory */ result = hdac_dma_alloc(sc, &sc->corb_dma, sc->corb_size * sizeof(uint32_t)); if (result != 0) goto hdac_attach_fail; result = hdac_dma_alloc(sc, &sc->rirb_dma, sc->rirb_size * sizeof(struct hdac_rirb)); if (result != 0) goto hdac_attach_fail; sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss, M_HDAC, M_ZERO | M_WAITOK); for (i = 0; i < sc->num_ss; i++) { result = hdac_dma_alloc(sc, &sc->streams[i].bdl, sizeof(struct hdac_bdle) * HDA_BDL_MAX); if (result != 0) goto hdac_attach_fail; } if (sc->quirks_on & HDAC_QUIRK_DMAPOS) { if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) { HDA_BOOTVERBOSE( device_printf(dev, "Failed to " "allocate DMA pos buffer " "(non-fatal)\n"); ); } else { uint64_t addr = sc->pos_dma.dma_paddr; HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32); HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, (addr & HDAC_DPLBASE_DPLBASE_MASK) | HDAC_DPLBASE_DPLBASE_DMAPBE); } } result = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* parent */ HDA_DMA_ALIGNMENT, /* alignment */ 0, /* boundary */ (sc->support_64bit) ? BUS_SPACE_MAXADDR : BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, /* filtfunc */ NULL, /* fistfuncarg */ - HDA_BUFSZ_MAX, /* maxsize */ + HDA_BUFSZ_MAX, /* maxsize */ 1, /* nsegments */ - HDA_BUFSZ_MAX, /* maxsegsz */ + HDA_BUFSZ_MAX, /* maxsegsz */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &sc->chan_dmat); /* dmat */ if (result != 0) { device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n", __func__, result); goto hdac_attach_fail; } /* Quiesce everything */ HDA_BOOTHVERBOSE( device_printf(dev, "Reset controller...\n"); ); hdac_reset(sc, true); /* Initialize the CORB and RIRB */ hdac_corb_init(sc); hdac_rirb_init(sc); /* Defer remaining of initialization until interrupts are enabled */ sc->intrhook.ich_func = hdac_attach2; sc->intrhook.ich_arg = (void *)sc; if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) { sc->intrhook.ich_func = NULL; hdac_attach2((void *)sc); } return (0); hdac_attach_fail: hdac_irq_free(sc); if (sc->streams != NULL) for (i = 0; i < sc->num_ss; i++) hdac_dma_free(sc, &sc->streams[i].bdl); free(sc->streams, M_HDAC); hdac_dma_free(sc, &sc->rirb_dma); hdac_dma_free(sc, &sc->corb_dma); hdac_mem_free(sc); snd_mtxfree(sc->lock); return (ENXIO); } static int sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS) { struct hdac_softc *sc; device_t *devlist; device_t dev; int devcount, i, err, val; dev = oidp->oid_arg1; sc = device_get_softc(dev); if (sc == NULL) return (EINVAL); val = 0; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL || val == 0) return (err); /* XXX: Temporary. For debugging. */ if (val == 100) { hdac_suspend(dev); return (0); } else if (val == 101) { hdac_resume(dev); return (0); } if ((err = device_get_children(dev, &devlist, &devcount)) != 0) return (err); hdac_lock(sc); for (i = 0; i < devcount; i++) HDAC_PINDUMP(devlist[i]); hdac_unlock(sc); free(devlist, M_TEMP); return (0); } static int hdac_mdata_rate(uint16_t fmt) { static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 }; int rate, bits; if (fmt & (1 << 14)) rate = 44100; else rate = 48000; rate *= ((fmt >> 11) & 0x07) + 1; rate /= ((fmt >> 8) & 0x07) + 1; bits = mbits[(fmt >> 4) & 0x03]; bits *= (fmt & 0x0f) + 1; return (rate * bits); } static int hdac_bdata_rate(uint16_t fmt, int output) { static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 }; int rate, bits; rate = 48000; rate *= ((fmt >> 11) & 0x07) + 1; bits = bbits[(fmt >> 4) & 0x03]; bits *= (fmt & 0x0f) + 1; if (!output) bits = ((bits + 7) & ~0x07) + 10; return (rate * bits); } static void hdac_poll_reinit(struct hdac_softc *sc) { int i, pollticks, min = 1000000; struct hdac_stream *s; if (sc->polling == 0) return; if (sc->unsol_registered > 0) min = hz / 2; for (i = 0; i < sc->num_ss; i++) { s = &sc->streams[i]; if (s->running == 0) continue; pollticks = ((uint64_t)hz * s->blksz) / (hdac_mdata_rate(s->format) / 8); pollticks >>= 1; if (pollticks > hz) pollticks = hz; if (pollticks < 1) pollticks = 1; if (min > pollticks) min = pollticks; } sc->poll_ival = min; if (min == 1000000) callout_stop(&sc->poll_callout); else callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc); } static int sysctl_hdac_polling(SYSCTL_HANDLER_ARGS) { struct hdac_softc *sc; device_t dev; uint32_t ctl; int err, val; dev = oidp->oid_arg1; sc = device_get_softc(dev); if (sc == NULL) return (EINVAL); hdac_lock(sc); val = sc->polling; hdac_unlock(sc); err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < 0 || val > 1) return (EINVAL); hdac_lock(sc); if (val != sc->polling) { if (val == 0) { callout_stop(&sc->poll_callout); hdac_unlock(sc); callout_drain(&sc->poll_callout); hdac_lock(sc); sc->polling = 0; ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); ctl |= HDAC_INTCTL_GIE; HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); } else { ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); ctl &= ~HDAC_INTCTL_GIE; HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); sc->polling = 1; hdac_poll_reinit(sc); } } hdac_unlock(sc); return (err); } static void hdac_attach2(void *arg) { struct hdac_softc *sc; device_t child; uint32_t vendorid, revisionid; int i; uint16_t statests; sc = (struct hdac_softc *)arg; hdac_lock(sc); /* Remove ourselves from the config hooks */ if (sc->intrhook.ich_func != NULL) { config_intrhook_disestablish(&sc->intrhook); sc->intrhook.ich_func = NULL; } HDA_BOOTHVERBOSE( device_printf(sc->dev, "Starting CORB Engine...\n"); ); hdac_corb_start(sc); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Starting RIRB Engine...\n"); ); hdac_rirb_start(sc); /* * Clear HDAC_WAKEEN as at present we have no use for SDI wake * (status change) interrupts. The documentation says that we * should not make any assumptions about the state of this register * and set it explicitly. * NB: this needs to be done before the interrupt is enabled as * the handler does not expect this interrupt source. */ HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0); /* * Read and clear post-reset SDI wake status. * Each set bit corresponds to a codec that came out of reset. */ statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS); HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Enabling controller interrupt...\n"); ); HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | HDAC_GCTL_UNSOL); if (sc->polling == 0) { HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); } DELAY(1000); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Scanning HDA codecs ...\n"); ); hdac_unlock(sc); for (i = 0; i < HDAC_CODEC_MAX; i++) { if (HDAC_STATESTS_SDIWAKE(statests, i)) { HDA_BOOTHVERBOSE( device_printf(sc->dev, "Found CODEC at address %d\n", i); ); hdac_lock(sc); vendorid = hdac_send_command(sc, i, HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID)); revisionid = hdac_send_command(sc, i, HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID)); hdac_unlock(sc); if (vendorid == HDA_INVALID && revisionid == HDA_INVALID) { device_printf(sc->dev, "CODEC at address %d not responding!\n", i); continue; } sc->codecs[i].vendor_id = HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid); sc->codecs[i].device_id = HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid); sc->codecs[i].revision_id = HDA_PARAM_REVISION_ID_REVISION_ID(revisionid); sc->codecs[i].stepping_id = HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid); child = device_add_child(sc->dev, "hdacc", -1); if (child == NULL) { device_printf(sc->dev, "Failed to add CODEC device\n"); continue; } device_set_ivars(child, (void *)(intptr_t)i); sc->codecs[i].dev = child; } } bus_generic_attach(sc->dev); SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "pindump", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev, sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "polling", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev, sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode"); } /**************************************************************************** * int hdac_suspend(device_t) * * Suspend and power down HDA bus and codecs. ****************************************************************************/ static int hdac_suspend(device_t dev) { struct hdac_softc *sc = device_get_softc(dev); HDA_BOOTHVERBOSE( device_printf(dev, "Suspend...\n"); ); bus_generic_suspend(dev); hdac_lock(sc); HDA_BOOTHVERBOSE( device_printf(dev, "Reset controller...\n"); ); callout_stop(&sc->poll_callout); hdac_reset(sc, false); hdac_unlock(sc); callout_drain(&sc->poll_callout); taskqueue_drain(taskqueue_thread, &sc->unsolq_task); HDA_BOOTHVERBOSE( device_printf(dev, "Suspend done\n"); ); return (0); } /**************************************************************************** * int hdac_resume(device_t) * * Powerup and restore HDA bus and codecs state. ****************************************************************************/ static int hdac_resume(device_t dev) { struct hdac_softc *sc = device_get_softc(dev); int error; HDA_BOOTHVERBOSE( device_printf(dev, "Resume...\n"); ); hdac_lock(sc); /* Quiesce everything */ HDA_BOOTHVERBOSE( device_printf(dev, "Reset controller...\n"); ); hdac_reset(sc, true); /* Initialize the CORB and RIRB */ hdac_corb_init(sc); hdac_rirb_init(sc); HDA_BOOTHVERBOSE( device_printf(dev, "Starting CORB Engine...\n"); ); hdac_corb_start(sc); HDA_BOOTHVERBOSE( device_printf(dev, "Starting RIRB Engine...\n"); ); hdac_rirb_start(sc); /* * Clear HDAC_WAKEEN as at present we have no use for SDI wake * (status change) events. The documentation says that we should * not make any assumptions about the state of this register and * set it explicitly. * Also, clear HDAC_STATESTS. * NB: this needs to be done before the interrupt is enabled as * the handler does not expect this interrupt source. */ HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0); HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK); HDA_BOOTHVERBOSE( device_printf(dev, "Enabling controller interrupt...\n"); ); HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | HDAC_GCTL_UNSOL); HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); DELAY(1000); hdac_poll_reinit(sc); hdac_unlock(sc); error = bus_generic_resume(dev); HDA_BOOTHVERBOSE( device_printf(dev, "Resume done\n"); ); return (error); } /**************************************************************************** * int hdac_detach(device_t) * * Detach and free up resources utilized by the hdac device. ****************************************************************************/ static int hdac_detach(device_t dev) { struct hdac_softc *sc = device_get_softc(dev); device_t *devlist; int cad, i, devcount, error; if ((error = device_get_children(dev, &devlist, &devcount)) != 0) return (error); for (i = 0; i < devcount; i++) { cad = (intptr_t)device_get_ivars(devlist[i]); if ((error = device_delete_child(dev, devlist[i])) != 0) { free(devlist, M_TEMP); return (error); } sc->codecs[cad].dev = NULL; } free(devlist, M_TEMP); hdac_lock(sc); hdac_reset(sc, false); hdac_unlock(sc); taskqueue_drain(taskqueue_thread, &sc->unsolq_task); hdac_irq_free(sc); for (i = 0; i < sc->num_ss; i++) hdac_dma_free(sc, &sc->streams[i].bdl); free(sc->streams, M_HDAC); hdac_dma_free(sc, &sc->pos_dma); hdac_dma_free(sc, &sc->rirb_dma); hdac_dma_free(sc, &sc->corb_dma); if (sc->chan_dmat != NULL) { bus_dma_tag_destroy(sc->chan_dmat); sc->chan_dmat = NULL; } hdac_mem_free(sc); snd_mtxfree(sc->lock); return (0); } static bus_dma_tag_t hdac_get_dma_tag(device_t dev, device_t child) { struct hdac_softc *sc = device_get_softc(dev); return (sc->chan_dmat); } static int hdac_print_child(device_t dev, device_t child) { int retval; retval = bus_print_child_header(dev, child); retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child)); retval += bus_print_child_footer(dev, child); return (retval); } static int hdac_child_location(device_t dev, device_t child, struct sbuf *sb) { sbuf_printf(sb, "cad=%d", (int)(intptr_t)device_get_ivars(child)); return (0); } static int hdac_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb) { struct hdac_softc *sc = device_get_softc(dev); nid_t cad = (uintptr_t)device_get_ivars(child); sbuf_printf(sb, "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x", sc->codecs[cad].vendor_id, sc->codecs[cad].device_id, sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id); return (0); } static int hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { struct hdac_softc *sc = device_get_softc(dev); nid_t cad = (uintptr_t)device_get_ivars(child); switch (which) { case HDA_IVAR_CODEC_ID: *result = cad; break; case HDA_IVAR_VENDOR_ID: *result = sc->codecs[cad].vendor_id; break; case HDA_IVAR_DEVICE_ID: *result = sc->codecs[cad].device_id; break; case HDA_IVAR_REVISION_ID: *result = sc->codecs[cad].revision_id; break; case HDA_IVAR_STEPPING_ID: *result = sc->codecs[cad].stepping_id; break; case HDA_IVAR_SUBVENDOR_ID: *result = pci_get_subvendor(dev); break; case HDA_IVAR_SUBDEVICE_ID: *result = pci_get_subdevice(dev); break; case HDA_IVAR_DMA_NOCACHE: *result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0; break; case HDA_IVAR_STRIPES_MASK: *result = (1 << (1 << sc->num_sdo)) - 1; break; default: return (ENOENT); } return (0); } static struct mtx * hdac_get_mtx(device_t dev, device_t child) { struct hdac_softc *sc = device_get_softc(dev); return (sc->lock); } static uint32_t hdac_codec_command(device_t dev, device_t child, uint32_t verb) { return (hdac_send_command(device_get_softc(dev), (intptr_t)device_get_ivars(child), verb)); } static int hdac_find_stream(struct hdac_softc *sc, int dir, int stream) { int i, ss; ss = -1; /* Allocate ISS/OSS first. */ if (dir == 0) { for (i = 0; i < sc->num_iss; i++) { if (sc->streams[i].stream == stream) { ss = i; break; } } } else { for (i = 0; i < sc->num_oss; i++) { if (sc->streams[i + sc->num_iss].stream == stream) { ss = i + sc->num_iss; break; } } } /* Fallback to BSS. */ if (ss == -1) { for (i = 0; i < sc->num_bss; i++) { if (sc->streams[i + sc->num_iss + sc->num_oss].stream == stream) { ss = i + sc->num_iss + sc->num_oss; break; } } } return (ss); } static int hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe, uint32_t **dmapos) { struct hdac_softc *sc = device_get_softc(dev); nid_t cad = (uintptr_t)device_get_ivars(child); int stream, ss, bw, maxbw, prevbw; /* Look for empty stream. */ ss = hdac_find_stream(sc, dir, 0); /* Return if found nothing. */ if (ss < 0) return (0); /* Check bus bandwidth. */ bw = hdac_bdata_rate(format, dir); if (dir == 1) { bw *= 1 << (sc->num_sdo - stripe); prevbw = sc->sdo_bw_used; maxbw = 48000 * 960 * (1 << sc->num_sdo); } else { prevbw = sc->codecs[cad].sdi_bw_used; maxbw = 48000 * 464; } HDA_BOOTHVERBOSE( device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n", (bw + prevbw) / 1000, maxbw / 1000, bw + prevbw > maxbw ? " -- OVERFLOW!" : ""); ); if (bw + prevbw > maxbw) return (0); if (dir == 1) sc->sdo_bw_used += bw; else sc->codecs[cad].sdi_bw_used += bw; /* Allocate stream number */ if (ss >= sc->num_iss + sc->num_oss) stream = 15 - (ss - sc->num_iss - sc->num_oss); else if (ss >= sc->num_iss) stream = ss - sc->num_iss + 1; else stream = ss + 1; sc->streams[ss].dev = child; sc->streams[ss].dir = dir; sc->streams[ss].stream = stream; sc->streams[ss].bw = bw; sc->streams[ss].format = format; sc->streams[ss].stripe = stripe; if (dmapos != NULL) { if (sc->pos_dma.dma_vaddr != NULL) *dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8); else *dmapos = NULL; } return (stream); } static void hdac_stream_free(device_t dev, device_t child, int dir, int stream) { struct hdac_softc *sc = device_get_softc(dev); nid_t cad = (uintptr_t)device_get_ivars(child); int ss; ss = hdac_find_stream(sc, dir, stream); KASSERT(ss >= 0, ("Free for not allocated stream (%d/%d)\n", dir, stream)); if (dir == 1) sc->sdo_bw_used -= sc->streams[ss].bw; else sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw; sc->streams[ss].stream = 0; sc->streams[ss].dev = NULL; } static int hdac_stream_start(device_t dev, device_t child, int dir, int stream, bus_addr_t buf, int blksz, int blkcnt) { struct hdac_softc *sc = device_get_softc(dev); struct hdac_bdle *bdle; uint64_t addr; int i, ss, off; uint32_t ctl; ss = hdac_find_stream(sc, dir, stream); KASSERT(ss >= 0, ("Start for not allocated stream (%d/%d)\n", dir, stream)); addr = (uint64_t)buf; bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr; for (i = 0; i < blkcnt; i++, bdle++) { bdle->addrl = htole32((uint32_t)addr); bdle->addrh = htole32((uint32_t)(addr >> 32)); bdle->len = htole32(blksz); bdle->ioc = htole32(1); addr += blksz; } bus_dmamap_sync(sc->streams[ss].bdl.dma_tag, sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE); off = ss << 5; HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt); HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1); addr = sc->streams[ss].bdl.dma_paddr; HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr); HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32)); ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2); if (dir) ctl |= HDAC_SDCTL2_DIR; else ctl &= ~HDAC_SDCTL2_DIR; ctl &= ~HDAC_SDCTL2_STRM_MASK; ctl |= stream << HDAC_SDCTL2_STRM_SHIFT; ctl &= ~HDAC_SDCTL2_STRIPE_MASK; ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT; HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl); HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format); ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); ctl |= 1 << ss; HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS, HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS); ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | HDAC_SDCTL_RUN; HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); sc->streams[ss].blksz = blksz; sc->streams[ss].running = 1; hdac_poll_reinit(sc); return (0); } static void hdac_stream_stop(device_t dev, device_t child, int dir, int stream) { struct hdac_softc *sc = device_get_softc(dev); int ss, off; uint32_t ctl; ss = hdac_find_stream(sc, dir, stream); KASSERT(ss >= 0, ("Stop for not allocated stream (%d/%d)\n", dir, stream)); bus_dmamap_sync(sc->streams[ss].bdl.dma_tag, sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE); off = ss << 5; ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | HDAC_SDCTL_RUN); HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); ctl &= ~(1 << ss); HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); sc->streams[ss].running = 0; hdac_poll_reinit(sc); } static void hdac_stream_reset(device_t dev, device_t child, int dir, int stream) { struct hdac_softc *sc = device_get_softc(dev); int timeout = 1000; int to = timeout; int ss, off; uint32_t ctl; ss = hdac_find_stream(sc, dir, stream); KASSERT(ss >= 0, ("Reset for not allocated stream (%d/%d)\n", dir, stream)); off = ss << 5; ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); ctl |= HDAC_SDCTL_SRST; HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); do { ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); if (ctl & HDAC_SDCTL_SRST) break; DELAY(10); } while (--to); if (!(ctl & HDAC_SDCTL_SRST)) device_printf(dev, "Reset setting timeout\n"); ctl &= ~HDAC_SDCTL_SRST; HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); to = timeout; do { ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); if (!(ctl & HDAC_SDCTL_SRST)) break; DELAY(10); } while (--to); if (ctl & HDAC_SDCTL_SRST) device_printf(dev, "Reset timeout!\n"); } static uint32_t hdac_stream_getptr(device_t dev, device_t child, int dir, int stream) { struct hdac_softc *sc = device_get_softc(dev); int ss, off; ss = hdac_find_stream(sc, dir, stream); KASSERT(ss >= 0, ("Reset for not allocated stream (%d/%d)\n", dir, stream)); off = ss << 5; return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB)); } static int hdac_unsol_alloc(device_t dev, device_t child, int tag) { struct hdac_softc *sc = device_get_softc(dev); sc->unsol_registered++; hdac_poll_reinit(sc); return (tag); } static void hdac_unsol_free(device_t dev, device_t child, int tag) { struct hdac_softc *sc = device_get_softc(dev); sc->unsol_registered--; hdac_poll_reinit(sc); } static device_method_t hdac_methods[] = { /* device interface */ DEVMETHOD(device_probe, hdac_probe), DEVMETHOD(device_attach, hdac_attach), DEVMETHOD(device_detach, hdac_detach), DEVMETHOD(device_suspend, hdac_suspend), DEVMETHOD(device_resume, hdac_resume), /* Bus interface */ DEVMETHOD(bus_get_dma_tag, hdac_get_dma_tag), DEVMETHOD(bus_print_child, hdac_print_child), DEVMETHOD(bus_child_location, hdac_child_location), DEVMETHOD(bus_child_pnpinfo, hdac_child_pnpinfo_method), DEVMETHOD(bus_read_ivar, hdac_read_ivar), DEVMETHOD(hdac_get_mtx, hdac_get_mtx), DEVMETHOD(hdac_codec_command, hdac_codec_command), DEVMETHOD(hdac_stream_alloc, hdac_stream_alloc), DEVMETHOD(hdac_stream_free, hdac_stream_free), DEVMETHOD(hdac_stream_start, hdac_stream_start), DEVMETHOD(hdac_stream_stop, hdac_stream_stop), DEVMETHOD(hdac_stream_reset, hdac_stream_reset), DEVMETHOD(hdac_stream_getptr, hdac_stream_getptr), DEVMETHOD(hdac_unsol_alloc, hdac_unsol_alloc), DEVMETHOD(hdac_unsol_free, hdac_unsol_free), DEVMETHOD_END }; static driver_t hdac_driver = { "hdac", hdac_methods, sizeof(struct hdac_softc), }; static devclass_t hdac_devclass; DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL); diff --git a/sys/dev/sound/pci/hda/hdac.h b/sys/dev/sound/pci/hda/hdac.h index 611cb98badd8..06ac0371df6b 100644 --- a/sys/dev/sound/pci/hda/hdac.h +++ b/sys/dev/sound/pci/hda/hdac.h @@ -1,964 +1,964 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006 Stephane E. Potvin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _HDAC_H_ #define _HDAC_H_ #include "hdac_if.h" /**************************************************************************** * Miscellanious defines ****************************************************************************/ /* Controller models */ #define HDA_MODEL_CONSTRUCT(vendor, model) \ (((uint32_t)(model) << 16) | ((vendor##_VENDORID) & 0xffff)) /* Intel */ #define INTEL_VENDORID 0x8086 #define HDA_INTEL_CMLKLP HDA_MODEL_CONSTRUCT(INTEL, 0x02c8) #define HDA_INTEL_CMLKH HDA_MODEL_CONSTRUCT(INTEL, 0x06c8) #define HDA_INTEL_OAK HDA_MODEL_CONSTRUCT(INTEL, 0x080a) #define HDA_INTEL_BAY HDA_MODEL_CONSTRUCT(INTEL, 0x0f04) #define HDA_INTEL_HSW1 HDA_MODEL_CONSTRUCT(INTEL, 0x0a0c) #define HDA_INTEL_HSW2 HDA_MODEL_CONSTRUCT(INTEL, 0x0c0c) #define HDA_INTEL_HSW3 HDA_MODEL_CONSTRUCT(INTEL, 0x0d0c) #define HDA_INTEL_BDW1 HDA_MODEL_CONSTRUCT(INTEL, 0x160c) #define HDA_INTEL_BXTNT HDA_MODEL_CONSTRUCT(INTEL, 0x1a98) #define HDA_INTEL_CPT HDA_MODEL_CONSTRUCT(INTEL, 0x1c20) #define HDA_INTEL_PATSBURG HDA_MODEL_CONSTRUCT(INTEL, 0x1d20) #define HDA_INTEL_PPT1 HDA_MODEL_CONSTRUCT(INTEL, 0x1e20) #define HDA_INTEL_BR HDA_MODEL_CONSTRUCT(INTEL, 0x2284) #define HDA_INTEL_82801F HDA_MODEL_CONSTRUCT(INTEL, 0x2668) #define HDA_INTEL_63XXESB HDA_MODEL_CONSTRUCT(INTEL, 0x269a) #define HDA_INTEL_82801G HDA_MODEL_CONSTRUCT(INTEL, 0x27d8) #define HDA_INTEL_82801H HDA_MODEL_CONSTRUCT(INTEL, 0x284b) #define HDA_INTEL_82801I HDA_MODEL_CONSTRUCT(INTEL, 0x293e) #define HDA_INTEL_GMLK HDA_MODEL_CONSTRUCT(INTEL, 0x3198) #define HDA_INTEL_JLK HDA_MODEL_CONSTRUCT(INTEL, 0x38c8) #define HDA_INTEL_82801JI HDA_MODEL_CONSTRUCT(INTEL, 0x3a3e) #define HDA_INTEL_82801JD HDA_MODEL_CONSTRUCT(INTEL, 0x3a6e) #define HDA_INTEL_PCH HDA_MODEL_CONSTRUCT(INTEL, 0x3b56) #define HDA_INTEL_PCH2 HDA_MODEL_CONSTRUCT(INTEL, 0x3b57) #define HDA_INTEL_ELLK HDA_MODEL_CONSTRUCT(INTEL, 0x4b55) #define HDA_INTEL_JLK2 HDA_MODEL_CONSTRUCT(INTEL, 0x4dc8) #define HDA_INTEL_BXTNP HDA_MODEL_CONSTRUCT(INTEL, 0x5a98) #define HDA_INTEL_MACBOOKPRO92 HDA_MODEL_CONSTRUCT(INTEL, 0x7270) #define HDA_INTEL_SCH HDA_MODEL_CONSTRUCT(INTEL, 0x811b) #define HDA_INTEL_LPT1 HDA_MODEL_CONSTRUCT(INTEL, 0x8c20) #define HDA_INTEL_LPT2 HDA_MODEL_CONSTRUCT(INTEL, 0x8c21) #define HDA_INTEL_WCPT HDA_MODEL_CONSTRUCT(INTEL, 0x8ca0) #define HDA_INTEL_WELLS1 HDA_MODEL_CONSTRUCT(INTEL, 0x8d20) #define HDA_INTEL_WELLS2 HDA_MODEL_CONSTRUCT(INTEL, 0x8d21) #define HDA_INTEL_LPTLP1 HDA_MODEL_CONSTRUCT(INTEL, 0x9c20) #define HDA_INTEL_LPTLP2 HDA_MODEL_CONSTRUCT(INTEL, 0x9c21) #define HDA_INTEL_BDW2 HDA_MODEL_CONSTRUCT(INTEL, 0x9ca0) #define HDA_INTEL_SRPTLP HDA_MODEL_CONSTRUCT(INTEL, 0x9d70) #define HDA_INTEL_KBLKLP HDA_MODEL_CONSTRUCT(INTEL, 0x9d71) #define HDA_INTEL_SRPT HDA_MODEL_CONSTRUCT(INTEL, 0xa170) #define HDA_INTEL_KBLK HDA_MODEL_CONSTRUCT(INTEL, 0xa171) #define HDA_INTEL_KBLKH HDA_MODEL_CONSTRUCT(INTEL, 0xa2f0) #define HDA_INTEL_CFLK HDA_MODEL_CONSTRUCT(INTEL, 0xa348) #define HDA_INTEL_CMLKS HDA_MODEL_CONSTRUCT(INTEL, 0xa3f0) #define HDA_INTEL_CNLK HDA_MODEL_CONSTRUCT(INTEL, 0x9dc8) #define HDA_INTEL_ICLK HDA_MODEL_CONSTRUCT(INTEL, 0x34c8) #define HDA_INTEL_CMLKLP HDA_MODEL_CONSTRUCT(INTEL, 0x02c8) -#define HDA_INTEL_CMLKH HDA_MODEL_CONSTRUCT(INTEL, 0x06c8) +#define HDA_INTEL_CMLKH HDA_MODEL_CONSTRUCT(INTEL, 0x06c8) #define HDA_INTEL_TGLK HDA_MODEL_CONSTRUCT(INTEL, 0xa0c8) #define INTEL_A100ID_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xa100) #define INTEL_D400ID_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xd400) #define INTEL_D401ID_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xd401) #define INTEL_D402ID_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xd402) #define INTEL_E305ID_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xe305) #define INTEL_E308ID_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xe308) #define INTEL_E224ID_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xe224) #define INTEL_E400ID_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xe400) #define INTEL_E401ID_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xe401) #define INTEL_E402ID_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xe402) #define HDA_INTEL_ALL HDA_MODEL_CONSTRUCT(INTEL, 0xffff) /* Nvidia */ #define NVIDIA_VENDORID 0x10de #define HDA_NVIDIA_MCP51 HDA_MODEL_CONSTRUCT(NVIDIA, 0x026c) #define HDA_NVIDIA_MCP55 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0371) #define HDA_NVIDIA_MCP61_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x03e4) #define HDA_NVIDIA_MCP61_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x03f0) #define HDA_NVIDIA_MCP65_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x044a) #define HDA_NVIDIA_MCP65_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x044b) #define HDA_NVIDIA_MCP67_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x055c) #define HDA_NVIDIA_MCP67_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x055d) #define HDA_NVIDIA_MCP78_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0774) #define HDA_NVIDIA_MCP78_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0775) #define HDA_NVIDIA_MCP78_3 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0776) #define HDA_NVIDIA_MCP78_4 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0777) #define HDA_NVIDIA_MCP73_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x07fc) #define HDA_NVIDIA_MCP73_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x07fd) #define HDA_NVIDIA_MCP79_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0ac0) #define HDA_NVIDIA_MCP79_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0ac1) #define HDA_NVIDIA_MCP79_3 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0ac2) #define HDA_NVIDIA_MCP79_4 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0ac3) #define HDA_NVIDIA_0BE2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0be2) #define HDA_NVIDIA_0BE3 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0be3) #define HDA_NVIDIA_0BE4 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0be4) #define HDA_NVIDIA_GT100 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0be5) #define HDA_NVIDIA_GT106 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0be9) #define HDA_NVIDIA_GT108 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0bea) #define HDA_NVIDIA_GT104 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0beb) #define HDA_NVIDIA_GT116 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0bee) #define HDA_NVIDIA_MCP89_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0d94) #define HDA_NVIDIA_MCP89_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0d95) #define HDA_NVIDIA_MCP89_3 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0d96) #define HDA_NVIDIA_MCP89_4 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0d97) #define HDA_NVIDIA_GF119 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0e08) #define HDA_NVIDIA_GF110_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0e09) #define HDA_NVIDIA_GF110_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0e0c) #define HDA_NVIDIA_ALL HDA_MODEL_CONSTRUCT(NVIDIA, 0xffff) /* ATI */ #define ATI_VENDORID 0x1002 #define HDA_ATI_SB450 HDA_MODEL_CONSTRUCT(ATI, 0x437b) #define HDA_ATI_SB600 HDA_MODEL_CONSTRUCT(ATI, 0x4383) #define HDA_ATI_RS600 HDA_MODEL_CONSTRUCT(ATI, 0x793b) #define HDA_ATI_RS690 HDA_MODEL_CONSTRUCT(ATI, 0x7919) #define HDA_ATI_RS780 HDA_MODEL_CONSTRUCT(ATI, 0x960f) #define HDA_ATI_R600 HDA_MODEL_CONSTRUCT(ATI, 0xaa00) #define HDA_ATI_RV630 HDA_MODEL_CONSTRUCT(ATI, 0xaa08) #define HDA_ATI_RV610 HDA_MODEL_CONSTRUCT(ATI, 0xaa10) #define HDA_ATI_RV670 HDA_MODEL_CONSTRUCT(ATI, 0xaa18) #define HDA_ATI_RV635 HDA_MODEL_CONSTRUCT(ATI, 0xaa20) #define HDA_ATI_RV620 HDA_MODEL_CONSTRUCT(ATI, 0xaa28) #define HDA_ATI_RV770 HDA_MODEL_CONSTRUCT(ATI, 0xaa30) #define HDA_ATI_RV730 HDA_MODEL_CONSTRUCT(ATI, 0xaa38) #define HDA_ATI_RV710 HDA_MODEL_CONSTRUCT(ATI, 0xaa40) #define HDA_ATI_RV740 HDA_MODEL_CONSTRUCT(ATI, 0xaa48) #define HDA_ATI_RV870 HDA_MODEL_CONSTRUCT(ATI, 0xaa50) #define HDA_ATI_RV840 HDA_MODEL_CONSTRUCT(ATI, 0xaa58) #define HDA_ATI_RV830 HDA_MODEL_CONSTRUCT(ATI, 0xaa60) #define HDA_ATI_RV810 HDA_MODEL_CONSTRUCT(ATI, 0xaa68) #define HDA_ATI_RV970 HDA_MODEL_CONSTRUCT(ATI, 0xaa80) #define HDA_ATI_RV940 HDA_MODEL_CONSTRUCT(ATI, 0xaa88) #define HDA_ATI_RV930 HDA_MODEL_CONSTRUCT(ATI, 0xaa90) #define HDA_ATI_RV910 HDA_MODEL_CONSTRUCT(ATI, 0xaa98) #define HDA_ATI_R1000 HDA_MODEL_CONSTRUCT(ATI, 0xaaa0) #define HDA_ATI_ALL HDA_MODEL_CONSTRUCT(ATI, 0xffff) #define AMD_VENDORID 0x1022 #define HDA_AMD_X370 HDA_MODEL_CONSTRUCT(AMD, 0x1457) #define HDA_AMD_X570 HDA_MODEL_CONSTRUCT(AMD, 0x1487) #define HDA_AMD_STONEY HDA_MODEL_CONSTRUCT(AMD, 0x157a) #define HDA_AMD_RAVEN HDA_MODEL_CONSTRUCT(AMD, 0x15e3) #define HDA_AMD_HUDSON2 HDA_MODEL_CONSTRUCT(AMD, 0x780d) #define HDA_AMD_ALL HDA_MODEL_CONSTRUCT(AMD, 0xffff) /* RDC */ #define RDC_VENDORID 0x17f3 #define HDA_RDC_M3010 HDA_MODEL_CONSTRUCT(RDC, 0x3010) /* Creative */ #define CREATIVE_VENDORID 0x1102 #define HDA_CREATIVE_ALL HDA_MODEL_CONSTRUCT(CREATIVE, 0xffff) /* VIA */ #define VIA_VENDORID 0x1106 #define HDA_VIA_VT82XX HDA_MODEL_CONSTRUCT(VIA, 0x3288) #define HDA_VIA_ALL HDA_MODEL_CONSTRUCT(VIA, 0xffff) /* SiS */ #define SIS_VENDORID 0x1039 #define HDA_SIS_966 HDA_MODEL_CONSTRUCT(SIS, 0x7502) #define HDA_SIS_ALL HDA_MODEL_CONSTRUCT(SIS, 0xffff) /* ULI */ #define ULI_VENDORID 0x10b9 #define HDA_ULI_M5461 HDA_MODEL_CONSTRUCT(ULI, 0x5461) #define HDA_ULI_ALL HDA_MODEL_CONSTRUCT(ULI, 0xffff) /* OEM/subvendors */ /* Intel */ #define INTEL_DH87RL_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0x204a) #define INTEL_D101GGC_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xd600) /* HP/Compaq */ #define HP_VENDORID 0x103c #define HP_Z200_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x103c) #define HP_225AID_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x225a) #define HP_2272ID_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x2272) #define HP_2273ID_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x2273) #define HP_V3000_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x30b5) #define HP_NX7400_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x30a2) #define HP_NX6310_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x30aa) #define HP_NX6325_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x30b0) #define HP_XW4300_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x3013) #define HP_3010_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x3010) #define HP_DV5000_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x30a5) #define HP_DC7700S_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x2801) #define HP_DC7700_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x2802) #define HP_DC5750_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x280a) #define HP_AF006UR_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x83a2) #define HP_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0xffff) /* What is wrong with XN 2563 anyway? (Got the picture ?) */ #define HP_NX6325_SUBVENDORX 0x103c30b0 /* Dell */ #define DELL_VENDORID 0x1028 #define DELL_D630_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x01f9) #define DELL_D820_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x01cc) #define DELL_V1400_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x0227) #define DELL_V1500_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x0228) #define DELL_I1300_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x01c9) #define DELL_L7480_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x07a0) #define DELL_XPSM1210_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x01d7) #define DELL_OPLX745_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x01da) #define DELL_05F4ID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x05f4) #define DELL_05F5ID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x05f5) #define DELL_05F6ID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x05f6) #define DELL_V5470_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x0615) #define DELL_V5470_1_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x0616) #define DELL_064AID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x064a) #define DELL_064BID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x064b) #define DELL_9020M_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x0669) #define DELL_V5480_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x069a) #define DELL_06D9ID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x06d9) #define DELL_06DAID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x06da) #define DELL_06DBID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x06db) #define DELL_06DDID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x06dd) #define DELL_06DEID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x06de) #define DELL_06DFID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x06df) #define DELL_06E0ID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x06e0) #define DELL_7559_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x0706) #define DELL_7000_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x0798) #define DELL_XPS9560_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x07be) #define DELL_E7240_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x05ca) #define DELL_164AID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x164a) #define DELL_164BID_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x164b) #define DELL_I7577_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x0802) #define DELL_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0xffff) /* Clevo */ #define CLEVO_VENDORID 0x1558 #define CLEVO_D900T_SUBVENDOR HDA_MODEL_CONSTRUCT(CLEVO, 0x0900) #define CLEVO_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(CLEVO, 0xffff) /* Acer */ #define ACER_VENDORID 0x1025 #define ACER_0070ID_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0070) #define ACER_0077ID_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0077) #define ACER_0078ID_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0078) #define ACER_0087ID_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0087) #define ACER_A5050_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x010f) #define ACER_A4520_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0127) #define ACER_A4710_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x012f) #define ACER_A4715_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0133) #define ACER_TM_6293_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0139) #define ACER_3681WXM_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0110) #define ACER_T6292_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x011b) #define ACER_T5320_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x011f) #define ACER_TM_6293_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0139) #define ACER_AC700_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x047c) #define ACER_V5_571G_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x072d) #define ACER_AO725_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0740) #define ACER_AO756_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0742) #define ACER_E1_472_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0762) #define ACER_E1_572_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0775) #define ACER_V5_573G_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x079b) #define ACER_CB_14_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x106d) #define ACER_V5_122P_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0xa80d) #define ACER_APFV_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0xa884) #define ACER_E309ID_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0xe309) #define ACER_E310ID_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0xe310) #define ACER_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0xffff) /* Asus */ #define ASUS_VENDORID 0x1043 #define ASUS_X540A_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x103e) #define ASUS_X540SA_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x10c0) #define ASUS_X556UR_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x11c0) #define ASUS_W5A_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x10c3) #define ASUS_X540LA_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x10d0) #define ASUS_A8X_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1153) #define ASUS_U5F_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1263) #define ASUS_W6F_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1263) #define ASUS_X541SA_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x12e0) #define ASUS_X541UV_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x12f0) #define ASUS_A7M_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1323) #define ASUS_F3JC_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1338) #define ASUS_G2K_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1339) #define ASUS_Z550SA_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x13b0) #define ASUS_A7T_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x13c2) #define ASUS_UX31A_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1517) #define ASUS_Z71V_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1964) #define ASUS_W2J_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1971) #define ASUS_M5200_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1993) #define ASUS_G73JW_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1a13) #define ASUS_X705UD_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1a30) #define ASUS_Z550MA_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1bbd) #define ASUS_X555UB_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1ccd) #define ASUS_P5PL2_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x817f) #define ASUS_P1AH2_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x81cb) #define ASUS_M2NPVMX_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x81cb) #define ASUS_M2V_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x81e7) #define ASUS_P5BWD_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x81ec) #define ASUS_M2N_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x8234) #define ASUS_A8NVMCSM_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0xcb84) #define ASUS_X101CH_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x8516) #define ASUS_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0xffff) /* IBM / Lenovo */ #define IBM_VENDORID 0x1014 #define IBM_M52_SUBVENDOR HDA_MODEL_CONSTRUCT(IBM, 0x02f6) #define IBM_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(IBM, 0xffff) /* Lenovo */ #define LENOVO_VENDORID 0x17aa #define LENOVO_3KN100_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x2066) #define LENOVO_3KN200_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x384e) #define LENOVO_B450_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x3a0d) #define LENOVO_TCA55_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x1015) #define LENOVO_X1_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x21e8) #define LENOVO_X1CRBN_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x21f9) #define LENOVO_X120BS_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x2227) #define LENOVO_X120KH_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x225c) #define LENOVO_X120QD_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x2292) #define LENOVO_X220_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x21da) #define LENOVO_X300_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x20ac) #define LENOVO_T400_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x20f2) #define LENOVO_T420_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x21ce) #define LENOVO_T430_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x21f3) #define LENOVO_T430S_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x21fb) #define LENOVO_T520_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x21cf) #define LENOVO_T530_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x21f6) #define LENOVO_X230_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x21fa) #define LENOVO_X230T_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x2203) #define LENOVO_T431S_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x2208) #define LENOVO_G580_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x3977) #define LENOVO_3000_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x384e) #define LENOVO_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0xffff) /* Samsung */ #define SAMSUNG_VENDORID 0x144d #define SAMSUNG_Q1_SUBVENDOR HDA_MODEL_CONSTRUCT(SAMSUNG, 0xc027) #define SAMSUNG_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(SAMSUNG, 0xffff) /* Medion ? */ #define MEDION_VENDORID 0x161f #define MEDION_MD95257_SUBVENDOR HDA_MODEL_CONSTRUCT(MEDION, 0x203d) #define MEDION_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(MEDION, 0xffff) /* Apple Computer Inc. */ #define APPLE_VENDORID 0x106b #define APPLE_MB3_SUBVENDOR HDA_MODEL_CONSTRUCT(APPLE, 0x00a1) /* Sony */ #define SONY_VENDORID 0x104d #define SONY_S5_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0x81cc) #define SONY_81A0ID_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0x81a0) #define SONY_81D6ID_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0x81d6) #define SONY_81BBID_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0x81bb) #define SONY_VAIO_TX_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0x81e2) #define SONY_VAIO_S13_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0x9099) #define SONY_VAIO_P11_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0x90b5) #define SONY_VAIO_P13_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0x90b6) #define SONY_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0xffff) /* Tyan? */ #define TYAN_VENDORID 0x10f1 #define TYAN_N6650W_SUBVENDOR HDA_MODEL_CONSTRUCT(TYAN, 0x2915) /* * Apple Intel MacXXXX seems using Sigmatel codec/vendor id * instead of their own, which is beyond my comprehension * (see HDA_CODEC_STAC9221 below). */ #define APPLE_INTEL_MAC 0x76808384 #define APPLE_MACBOOKAIR31 0x0d9410de #define APPLE_MACBOOKPRO55 0xcb7910de #define APPLE_MACBOOKPRO71 0xcb8910de /* LG Electronics */ #define LG_VENDORID 0x1854 #define LG_LW20_SUBVENDOR HDA_MODEL_CONSTRUCT(LG, 0x0018) #define LG_M1_SUBVENDOR HDA_MODEL_CONSTRUCT(LG, 0x003b) #define LG_P1_SUBVENDOR HDA_MODEL_CONSTRUCT(LG, 0x005f) #define LG_W1_SUBVENDOR HDA_MODEL_CONSTRUCT(LG, 0x0068) #define LG_LW25_SUBVENDOR HDA_MODEL_CONSTRUCT(LG, 0x0077) #define LG_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(LG, 0xffff) /* Fujitsu Siemens */ #define FS_VENDORID 0x1734 #define FS_PA1510_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0x10b8) #define FS_SI1848_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0x10cd) #define FS_AMILO_M1437_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0x107c) #define FS_AMILO_M1451G_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0x1094) #define FS_AMILO_PI1556_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0x10b0) #define FS_AMILO_XI1526_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0x10ac) #define FS_H270_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0x1147) #define FS_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0xffff) /* Fujitsu Limited */ #define FL_VENDORID 0x10cf #define FL_S7020D_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0x1326) #define FL_LB_S7110_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0x1397) #define FL_U1010_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0x142d) #define FL_1475ID_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0x1475) #define FL_LB_U904_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0x1845) #define FL_LB_T731_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0x15dc) #define FL_LB_E725_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0x1757) #define FL_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0xffff) /* Toshiba */ #define TOSHIBA_VENDORID 0x1179 #define TOSHIBA_U200_SUBVENDOR HDA_MODEL_CONSTRUCT(TOSHIBA, 0x0001) #define TOSHIBA_A135_SUBVENDOR HDA_MODEL_CONSTRUCT(TOSHIBA, 0xff01) #define TOSHIBA_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(TOSHIBA, 0xffff) /* Micro-Star International (MSI) */ #define MSI_VENDORID 0x1462 #define MSI_MS1034_SUBVENDOR HDA_MODEL_CONSTRUCT(MSI, 0x0349) #define MSI_MS034A_SUBVENDOR HDA_MODEL_CONSTRUCT(MSI, 0x034a) #define MSI_1150ID_SUBVENDOR HDA_MODEL_CONSTRUCT(MSI, 0x1150) #define MSI_MS_B120_SUBVENDOR HDA_MODEL_CONSTRUCT(MSI, 0xb120) #define MSI_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(MSI, 0xffff) /* Giga-Byte Technology */ #define GB_VENDORID 0x1458 #define GB_G33S2H_SUBVENDOR HDA_MODEL_CONSTRUCT(GB, 0xa022) #define GB_K8_SUBVENDOR HDA_MODEL_CONSTRUCT(GB, 0xa102) #define GB_BXBT2807_SUBVENDOR HDA_MODEL_CONSTRUCT(GB, 0xfa53) #define GP_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(GB, 0xffff) /* Uniwill ? */ #define UNIWILL_VENDORID 0x1584 #define UNIWILL_9075_SUBVENDOR HDA_MODEL_CONSTRUCT(UNIWILL, 0x9075) #define UNIWILL_9050_SUBVENDOR HDA_MODEL_CONSTRUCT(UNIWILL, 0x9050) #define UNIWILL_9054_SUBVENDOR HDA_MODEL_CONSTRUCT(UNIWILL, 0x9054) #define UNIWILL_9070_SUBVENDOR HDA_MODEL_CONSTRUCT(UNIWILL, 0x9070) #define UNIWILL_9080_SUBVENDOR HDA_MODEL_CONSTRUCT(UNIWILL, 0x9080) /* Coeus / Elitegroup */ #define COEUS_VENDORID 0x1019 #define COEUS_G610P_SUBVENDOR HDA_MODEL_CONSTRUCT(COEUS, 0x0f69) #define COEUS_A880ID_SUBVENDOR HDA_MODEL_CONSTRUCT(COEUS, 0xa880) /* Arima */ #define ARIMA_VENDORID 0x161f #define ARIMA_W810_SUBVENDOR HDA_MODEL_CONSTRUCT(ARIMA, 0x0f69) /* Shuttle Computer */ #define SHUTTLE_VENDORID 0x1039 #define SHUTTLE_ST20G5_SUBVENDOR HDA_MODEL_CONSTRUCT(SHUTTLE, 0xc790) /* First International Computer */ #define FIC_VENDORID 0x1509 #define FIC_P4M_SUBVENDOR HDA_MODEL_CONSTRUCT(FIC, 0x925d) /* Gateway 2000 */ #define GATEWAY_VENDORID 0x107b #define GATEWAY_3032ID_SUBVENDOR HDA_MODEL_CONSTRUCT(GATEWAY, 0x3032) #define GATEWAY_3033ID_SUBVENDOR HDA_MODEL_CONSTRUCT(GATEWAY, 0x3033) #define GATEWAY_4039ID_SUBVENDOR HDA_MODEL_CONSTRUCT(GATEWAY, 0x4039) /* Biostar */ #define BIOSTAR_VENDORID 0x1565 #define BIOSTAR_8202ID_SUBVENDOR HDA_MODEL_CONSTRUCT(BIOSTAR, 0x8202) /* EPoX Computer Co., Ltd. */ #define EPOX_VENDORID 0x1695 #define EPOX_400DID_SUBVENDOR HDA_MODEL_CONSTRUCT(EPOX, 0x400d) #define EPOX_EP5LDA_SUBVENDOR HDA_MODEL_CONSTRUCT(EPOX, 0x4012) /* AOpen */ #define AOPEN_VENDORID 0xa0a0 #define AOPEN_I915GMMHFS_SUBVENDOR HDA_MODEL_CONSTRUCT(AOPEN, 0x8202) /* All codecs you can eat... */ #define HDA_CODEC_CONSTRUCT(vendor, id) \ (((uint32_t)(vendor##_VENDORID) << 16) | ((id) & 0xffff)) /* Cirrus Logic */ #define CIRRUSLOGIC_VENDORID 0x1013 #define HDA_CODEC_CS4206 HDA_CODEC_CONSTRUCT(CIRRUSLOGIC, 0x4206) #define HDA_CODEC_CS4207 HDA_CODEC_CONSTRUCT(CIRRUSLOGIC, 0x4207) #define HDA_CODEC_CS4210 HDA_CODEC_CONSTRUCT(CIRRUSLOGIC, 0x4210) #define HDA_CODEC_CSXXXX HDA_CODEC_CONSTRUCT(CIRRUSLOGIC, 0xffff) /* Realtek */ #define REALTEK_VENDORID 0x10ec #define HDA_CODEC_ALC215 HDA_CODEC_CONSTRUCT(REALTEK, 0x0215) #define HDA_CODEC_ALC221 HDA_CODEC_CONSTRUCT(REALTEK, 0x0221) #define HDA_CODEC_ALC222 HDA_CODEC_CONSTRUCT(REALTEK, 0x0222) #define HDA_CODEC_ALC225 HDA_CODEC_CONSTRUCT(REALTEK, 0x0225) #define HDA_CODEC_ALC231 HDA_CODEC_CONSTRUCT(REALTEK, 0x0231) #define HDA_CODEC_ALC233 HDA_CODEC_CONSTRUCT(REALTEK, 0x0233) #define HDA_CODEC_ALC234 HDA_CODEC_CONSTRUCT(REALTEK, 0x0234) #define HDA_CODEC_ALC235 HDA_CODEC_CONSTRUCT(REALTEK, 0x0235) #define HDA_CODEC_ALC236 HDA_CODEC_CONSTRUCT(REALTEK, 0x0236) #define HDA_CODEC_ALC245 HDA_CODEC_CONSTRUCT(REALTEK, 0x0245) #define HDA_CODEC_ALC255 HDA_CODEC_CONSTRUCT(REALTEK, 0x0255) #define HDA_CODEC_ALC256 HDA_CODEC_CONSTRUCT(REALTEK, 0x0256) #define HDA_CODEC_ALC257 HDA_CODEC_CONSTRUCT(REALTEK, 0x0257) #define HDA_CODEC_ALC260 HDA_CODEC_CONSTRUCT(REALTEK, 0x0260) #define HDA_CODEC_ALC262 HDA_CODEC_CONSTRUCT(REALTEK, 0x0262) #define HDA_CODEC_ALC267 HDA_CODEC_CONSTRUCT(REALTEK, 0x0267) #define HDA_CODEC_ALC268 HDA_CODEC_CONSTRUCT(REALTEK, 0x0268) #define HDA_CODEC_ALC269 HDA_CODEC_CONSTRUCT(REALTEK, 0x0269) #define HDA_CODEC_ALC270 HDA_CODEC_CONSTRUCT(REALTEK, 0x0270) #define HDA_CODEC_ALC271 HDA_CODEC_CONSTRUCT(REALTEK, 0x0271) #define HDA_CODEC_ALC272 HDA_CODEC_CONSTRUCT(REALTEK, 0x0272) #define HDA_CODEC_ALC273 HDA_CODEC_CONSTRUCT(REALTEK, 0x0273) #define HDA_CODEC_ALC274 HDA_CODEC_CONSTRUCT(REALTEK, 0x0274) #define HDA_CODEC_ALC275 HDA_CODEC_CONSTRUCT(REALTEK, 0x0275) #define HDA_CODEC_ALC276 HDA_CODEC_CONSTRUCT(REALTEK, 0x0276) #define HDA_CODEC_ALC280 HDA_CODEC_CONSTRUCT(REALTEK, 0x0280) #define HDA_CODEC_ALC282 HDA_CODEC_CONSTRUCT(REALTEK, 0x0282) #define HDA_CODEC_ALC283 HDA_CODEC_CONSTRUCT(REALTEK, 0x0283) #define HDA_CODEC_ALC284 HDA_CODEC_CONSTRUCT(REALTEK, 0x0284) #define HDA_CODEC_ALC285 HDA_CODEC_CONSTRUCT(REALTEK, 0x0285) #define HDA_CODEC_ALC286 HDA_CODEC_CONSTRUCT(REALTEK, 0x0286) #define HDA_CODEC_ALC288 HDA_CODEC_CONSTRUCT(REALTEK, 0x0288) #define HDA_CODEC_ALC289 HDA_CODEC_CONSTRUCT(REALTEK, 0x0289) #define HDA_CODEC_ALC290 HDA_CODEC_CONSTRUCT(REALTEK, 0x0290) #define HDA_CODEC_ALC292 HDA_CODEC_CONSTRUCT(REALTEK, 0x0292) #define HDA_CODEC_ALC293 HDA_CODEC_CONSTRUCT(REALTEK, 0x0293) #define HDA_CODEC_ALC294 HDA_CODEC_CONSTRUCT(REALTEK, 0x0294) #define HDA_CODEC_ALC295 HDA_CODEC_CONSTRUCT(REALTEK, 0x0295) #define HDA_CODEC_ALC298 HDA_CODEC_CONSTRUCT(REALTEK, 0x0298) #define HDA_CODEC_ALC299 HDA_CODEC_CONSTRUCT(REALTEK, 0x0299) #define HDA_CODEC_ALC292 HDA_CODEC_CONSTRUCT(REALTEK, 0x0292) #define HDA_CODEC_ALC295 HDA_CODEC_CONSTRUCT(REALTEK, 0x0295) #define HDA_CODEC_ALC300 HDA_CODEC_CONSTRUCT(REALTEK, 0x0300) #define HDA_CODEC_ALC623 HDA_CODEC_CONSTRUCT(REALTEK, 0x0623) #define HDA_CODEC_ALC660 HDA_CODEC_CONSTRUCT(REALTEK, 0x0660) #define HDA_CODEC_ALC662 HDA_CODEC_CONSTRUCT(REALTEK, 0x0662) #define HDA_CODEC_ALC663 HDA_CODEC_CONSTRUCT(REALTEK, 0x0663) #define HDA_CODEC_ALC665 HDA_CODEC_CONSTRUCT(REALTEK, 0x0665) #define HDA_CODEC_ALC670 HDA_CODEC_CONSTRUCT(REALTEK, 0x0670) #define HDA_CODEC_ALC671 HDA_CODEC_CONSTRUCT(REALTEK, 0x0671) #define HDA_CODEC_ALC680 HDA_CODEC_CONSTRUCT(REALTEK, 0x0680) #define HDA_CODEC_ALC700 HDA_CODEC_CONSTRUCT(REALTEK, 0x0700) #define HDA_CODEC_ALC701 HDA_CODEC_CONSTRUCT(REALTEK, 0x0701) #define HDA_CODEC_ALC703 HDA_CODEC_CONSTRUCT(REALTEK, 0x0703) #define HDA_CODEC_ALC861 HDA_CODEC_CONSTRUCT(REALTEK, 0x0861) #define HDA_CODEC_ALC861VD HDA_CODEC_CONSTRUCT(REALTEK, 0x0862) #define HDA_CODEC_ALC880 HDA_CODEC_CONSTRUCT(REALTEK, 0x0880) #define HDA_CODEC_ALC882 HDA_CODEC_CONSTRUCT(REALTEK, 0x0882) #define HDA_CODEC_ALC883 HDA_CODEC_CONSTRUCT(REALTEK, 0x0883) #define HDA_CODEC_ALC885 HDA_CODEC_CONSTRUCT(REALTEK, 0x0885) #define HDA_CODEC_ALC887 HDA_CODEC_CONSTRUCT(REALTEK, 0x0887) #define HDA_CODEC_ALC888 HDA_CODEC_CONSTRUCT(REALTEK, 0x0888) #define HDA_CODEC_ALC889 HDA_CODEC_CONSTRUCT(REALTEK, 0x0889) #define HDA_CODEC_ALC892 HDA_CODEC_CONSTRUCT(REALTEK, 0x0892) #define HDA_CODEC_ALC899 HDA_CODEC_CONSTRUCT(REALTEK, 0x0899) #define HDA_CODEC_ALC1150 HDA_CODEC_CONSTRUCT(REALTEK, 0x0900) #define HDA_CODEC_ALCS1200A HDA_CODEC_CONSTRUCT(REALTEK, 0x0b00) #define HDA_CODEC_ALC1220_1 HDA_CODEC_CONSTRUCT(REALTEK, 0x1168) #define HDA_CODEC_ALC1220 HDA_CODEC_CONSTRUCT(REALTEK, 0x1220) #define HDA_CODEC_ALCXXXX HDA_CODEC_CONSTRUCT(REALTEK, 0xffff) /* Motorola */ #define MOTO_VENDORID 0x1057 #define HDA_CODEC_MOTOXXXX HDA_CODEC_CONSTRUCT(MOTO, 0xffff) /* Creative */ #define CREATIVE_VENDORID 0x1102 #define HDA_CODEC_CA0110 HDA_CODEC_CONSTRUCT(CREATIVE, 0x000a) #define HDA_CODEC_CA0110_2 HDA_CODEC_CONSTRUCT(CREATIVE, 0x000b) #define HDA_CODEC_SB0880 HDA_CODEC_CONSTRUCT(CREATIVE, 0x000d) #define HDA_CODEC_CA0132 HDA_CODEC_CONSTRUCT(CREATIVE, 0x0011) #define HDA_CODEC_CAXXXX HDA_CODEC_CONSTRUCT(CREATIVE, 0xffff) /* Analog Devices */ #define ANALOGDEVICES_VENDORID 0x11d4 #define HDA_CODEC_AD1884A HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x184a) #define HDA_CODEC_AD1882 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1882) #define HDA_CODEC_AD1883 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1883) #define HDA_CODEC_AD1884 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1884) #define HDA_CODEC_AD1984A HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x194a) #define HDA_CODEC_AD1984B HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x194b) #define HDA_CODEC_AD1981HD HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1981) #define HDA_CODEC_AD1983 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1983) #define HDA_CODEC_AD1984 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1984) #define HDA_CODEC_AD1986A HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1986) #define HDA_CODEC_AD1987 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1987) #define HDA_CODEC_AD1988 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1988) #define HDA_CODEC_AD1988B HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x198b) #define HDA_CODEC_AD1882A HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x882a) #define HDA_CODEC_AD1989A HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x989a) #define HDA_CODEC_AD1989B HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x989b) #define HDA_CODEC_ADXXXX HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0xffff) /* CMedia */ #define CMEDIA_VENDORID 0x13f6 #define HDA_CODEC_CMI9880 HDA_CODEC_CONSTRUCT(CMEDIA, 0x9880) #define HDA_CODEC_CMIXXXX HDA_CODEC_CONSTRUCT(CMEDIA, 0xffff) #define CMEDIA2_VENDORID 0x434d #define HDA_CODEC_CMI98802 HDA_CODEC_CONSTRUCT(CMEDIA2, 0x4980) #define HDA_CODEC_CMIXXXX2 HDA_CODEC_CONSTRUCT(CMEDIA2, 0xffff) /* Sigmatel */ #define SIGMATEL_VENDORID 0x8384 #define HDA_CODEC_STAC9230X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7612) #define HDA_CODEC_STAC9230D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7613) #define HDA_CODEC_STAC9229X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7614) #define HDA_CODEC_STAC9229D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7615) #define HDA_CODEC_STAC9228X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7616) #define HDA_CODEC_STAC9228D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7617) #define HDA_CODEC_STAC9227X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7618) #define HDA_CODEC_STAC9227D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7619) #define HDA_CODEC_STAC9274 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7620) #define HDA_CODEC_STAC9274D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7621) #define HDA_CODEC_STAC9273X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7622) #define HDA_CODEC_STAC9273D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7623) #define HDA_CODEC_STAC9272X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7624) #define HDA_CODEC_STAC9272D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7625) #define HDA_CODEC_STAC9271X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7626) #define HDA_CODEC_STAC9271D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7627) #define HDA_CODEC_STAC9274X5NH HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7628) #define HDA_CODEC_STAC9274D5NH HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7629) #define HDA_CODEC_STAC9250 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7634) #define HDA_CODEC_STAC9251 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7636) #define HDA_CODEC_IDT92HD700X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7638) #define HDA_CODEC_IDT92HD700D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7639) #define HDA_CODEC_IDT92HD206X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7645) #define HDA_CODEC_IDT92HD206D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7646) #define HDA_CODEC_CXD9872RDK HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7661) #define HDA_CODEC_STAC9872AK HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7662) #define HDA_CODEC_CXD9872AKD HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7664) #define HDA_CODEC_STAC9221 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7680) #define HDA_CODEC_STAC922XD HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7681) #define HDA_CODEC_STAC9221_A2 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7682) #define HDA_CODEC_STAC9221D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7683) #define HDA_CODEC_STAC9220 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7690) #define HDA_CODEC_STAC9200D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7691) #define HDA_CODEC_IDT92HD005 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7698) #define HDA_CODEC_IDT92HD005D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7699) #define HDA_CODEC_STAC9205X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a0) #define HDA_CODEC_STAC9205D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a1) #define HDA_CODEC_STAC9204X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a2) #define HDA_CODEC_STAC9204D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a3) #define HDA_CODEC_STAC9255 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a4) #define HDA_CODEC_STAC9255D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a5) #define HDA_CODEC_STAC9254 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a6) #define HDA_CODEC_STAC9254D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a7) #define HDA_CODEC_STAC9220_A2 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7880) #define HDA_CODEC_STAC9220_A1 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7882) #define HDA_CODEC_STACXXXX HDA_CODEC_CONSTRUCT(SIGMATEL, 0xffff) /* IDT */ #define IDT_VENDORID 0x111d #define HDA_CODEC_IDT92HD75BX HDA_CODEC_CONSTRUCT(IDT, 0x7603) #define HDA_CODEC_IDT92HD83C1X HDA_CODEC_CONSTRUCT(IDT, 0x7604) #define HDA_CODEC_IDT92HD81B1X HDA_CODEC_CONSTRUCT(IDT, 0x7605) #define HDA_CODEC_IDT92HD75B3 HDA_CODEC_CONSTRUCT(IDT, 0x7608) #define HDA_CODEC_IDT92HD73D1 HDA_CODEC_CONSTRUCT(IDT, 0x7674) #define HDA_CODEC_IDT92HD73C1 HDA_CODEC_CONSTRUCT(IDT, 0x7675) #define HDA_CODEC_IDT92HD73E1 HDA_CODEC_CONSTRUCT(IDT, 0x7676) #define HDA_CODEC_IDT92HD71B8 HDA_CODEC_CONSTRUCT(IDT, 0x76b0) #define HDA_CODEC_IDT92HD71B8_2 HDA_CODEC_CONSTRUCT(IDT, 0x76b1) #define HDA_CODEC_IDT92HD71B7 HDA_CODEC_CONSTRUCT(IDT, 0x76b2) #define HDA_CODEC_IDT92HD71B7_2 HDA_CODEC_CONSTRUCT(IDT, 0x76b3) #define HDA_CODEC_IDT92HD71B6 HDA_CODEC_CONSTRUCT(IDT, 0x76b4) #define HDA_CODEC_IDT92HD71B6_2 HDA_CODEC_CONSTRUCT(IDT, 0x76b5) #define HDA_CODEC_IDT92HD71B5 HDA_CODEC_CONSTRUCT(IDT, 0x76b6) #define HDA_CODEC_IDT92HD71B5_2 HDA_CODEC_CONSTRUCT(IDT, 0x76b7) #define HDA_CODEC_IDT92HD89C3 HDA_CODEC_CONSTRUCT(IDT, 0x76c0) #define HDA_CODEC_IDT92HD89C2 HDA_CODEC_CONSTRUCT(IDT, 0x76c1) #define HDA_CODEC_IDT92HD89C1 HDA_CODEC_CONSTRUCT(IDT, 0x76c2) #define HDA_CODEC_IDT92HD89B3 HDA_CODEC_CONSTRUCT(IDT, 0x76c3) #define HDA_CODEC_IDT92HD89B2 HDA_CODEC_CONSTRUCT(IDT, 0x76c4) #define HDA_CODEC_IDT92HD89B1 HDA_CODEC_CONSTRUCT(IDT, 0x76c5) #define HDA_CODEC_IDT92HD89E3 HDA_CODEC_CONSTRUCT(IDT, 0x76c6) #define HDA_CODEC_IDT92HD89E2 HDA_CODEC_CONSTRUCT(IDT, 0x76c7) #define HDA_CODEC_IDT92HD89E1 HDA_CODEC_CONSTRUCT(IDT, 0x76c8) #define HDA_CODEC_IDT92HD89D3 HDA_CODEC_CONSTRUCT(IDT, 0x76c9) #define HDA_CODEC_IDT92HD89D2 HDA_CODEC_CONSTRUCT(IDT, 0x76ca) #define HDA_CODEC_IDT92HD89D1 HDA_CODEC_CONSTRUCT(IDT, 0x76cb) #define HDA_CODEC_IDT92HD89F3 HDA_CODEC_CONSTRUCT(IDT, 0x76cc) #define HDA_CODEC_IDT92HD89F2 HDA_CODEC_CONSTRUCT(IDT, 0x76cd) #define HDA_CODEC_IDT92HD89F1 HDA_CODEC_CONSTRUCT(IDT, 0x76ce) #define HDA_CODEC_IDT92HD87B1_3 HDA_CODEC_CONSTRUCT(IDT, 0x76d1) #define HDA_CODEC_IDT92HD83C1C HDA_CODEC_CONSTRUCT(IDT, 0x76d4) #define HDA_CODEC_IDT92HD81B1C HDA_CODEC_CONSTRUCT(IDT, 0x76d5) #define HDA_CODEC_IDT92HD87B2_4 HDA_CODEC_CONSTRUCT(IDT, 0x76d9) #define HDA_CODEC_IDT92HD93BXX HDA_CODEC_CONSTRUCT(IDT, 0x76df) #define HDA_CODEC_IDT92HD91BXX HDA_CODEC_CONSTRUCT(IDT, 0x76e0) #define HDA_CODEC_IDT92HD98BXX HDA_CODEC_CONSTRUCT(IDT, 0x76e3) #define HDA_CODEC_IDT92HD99BXX HDA_CODEC_CONSTRUCT(IDT, 0x76e5) #define HDA_CODEC_IDT92HD90BXX HDA_CODEC_CONSTRUCT(IDT, 0x76e7) #define HDA_CODEC_IDT92HD66B1X5 HDA_CODEC_CONSTRUCT(IDT, 0x76e8) #define HDA_CODEC_IDT92HD66B2X5 HDA_CODEC_CONSTRUCT(IDT, 0x76e9) #define HDA_CODEC_IDT92HD66B3X5 HDA_CODEC_CONSTRUCT(IDT, 0x76ea) #define HDA_CODEC_IDT92HD66C1X5 HDA_CODEC_CONSTRUCT(IDT, 0x76eb) #define HDA_CODEC_IDT92HD66C2X5 HDA_CODEC_CONSTRUCT(IDT, 0x76ec) #define HDA_CODEC_IDT92HD66C3X5 HDA_CODEC_CONSTRUCT(IDT, 0x76ed) #define HDA_CODEC_IDT92HD66B1X3 HDA_CODEC_CONSTRUCT(IDT, 0x76ee) #define HDA_CODEC_IDT92HD66B2X3 HDA_CODEC_CONSTRUCT(IDT, 0x76ef) #define HDA_CODEC_IDT92HD66B3X3 HDA_CODEC_CONSTRUCT(IDT, 0x76f0) #define HDA_CODEC_IDT92HD66C1X3 HDA_CODEC_CONSTRUCT(IDT, 0x76f1) #define HDA_CODEC_IDT92HD66C2X3 HDA_CODEC_CONSTRUCT(IDT, 0x76f2) #define HDA_CODEC_IDT92HD66C3_65 HDA_CODEC_CONSTRUCT(IDT, 0x76f3) #define HDA_CODEC_IDTXXXX HDA_CODEC_CONSTRUCT(IDT, 0xffff) /* Silicon Image */ #define SII_VENDORID 0x1095 #define HDA_CODEC_SII1390 HDA_CODEC_CONSTRUCT(SII, 0x1390) #define HDA_CODEC_SII1392 HDA_CODEC_CONSTRUCT(SII, 0x1392) #define HDA_CODEC_SIIXXXX HDA_CODEC_CONSTRUCT(SII, 0xffff) /* Lucent/Agere */ #define AGERE_VENDORID 0x11c1 #define HDA_CODEC_AGEREXXXX HDA_CODEC_CONSTRUCT(AGERE, 0xffff) /* Conexant */ #define CONEXANT_VENDORID 0x14f1 #define HDA_CODEC_CX20549 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5045) #define HDA_CODEC_CX20551 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5047) #define HDA_CODEC_CX20561 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5051) #define HDA_CODEC_CX20582 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5066) #define HDA_CODEC_CX20583 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5067) #define HDA_CODEC_CX20584 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5068) #define HDA_CODEC_CX20585 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5069) #define HDA_CODEC_CX20588 HDA_CODEC_CONSTRUCT(CONEXANT, 0x506c) #define HDA_CODEC_CX20590 HDA_CODEC_CONSTRUCT(CONEXANT, 0x506e) #define HDA_CODEC_CX20631 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5097) #define HDA_CODEC_CX20632 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5098) #define HDA_CODEC_CX20641 HDA_CODEC_CONSTRUCT(CONEXANT, 0x50a1) #define HDA_CODEC_CX20642 HDA_CODEC_CONSTRUCT(CONEXANT, 0x50a2) #define HDA_CODEC_CX20651 HDA_CODEC_CONSTRUCT(CONEXANT, 0x50ab) #define HDA_CODEC_CX20652 HDA_CODEC_CONSTRUCT(CONEXANT, 0x50ac) #define HDA_CODEC_CX20664 HDA_CODEC_CONSTRUCT(CONEXANT, 0x50b8) #define HDA_CODEC_CX20665 HDA_CODEC_CONSTRUCT(CONEXANT, 0x50b9) #define HDA_CODEC_CX21722 HDA_CODEC_CONSTRUCT(CONEXANT, 0x50f1) #define HDA_CODEC_CX20722 HDA_CODEC_CONSTRUCT(CONEXANT, 0x50f2) #define HDA_CODEC_CX21724 HDA_CODEC_CONSTRUCT(CONEXANT, 0x50f3) #define HDA_CODEC_CX20724 HDA_CODEC_CONSTRUCT(CONEXANT, 0x50f4) #define HDA_CODEC_CX20751 HDA_CODEC_CONSTRUCT(CONEXANT, 0x510f) #define HDA_CODEC_CX20751_2 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5110) #define HDA_CODEC_CX20753 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5111) #define HDA_CODEC_CX20755 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5113) #define HDA_CODEC_CX20756 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5114) #define HDA_CODEC_CX20757 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5115) #define HDA_CODEC_CX20952 HDA_CODEC_CONSTRUCT(CONEXANT, 0x51d7) #define HDA_CODEC_CXXXXX HDA_CODEC_CONSTRUCT(CONEXANT, 0xffff) /* VIA */ #define HDA_CODEC_VT1708_8 HDA_CODEC_CONSTRUCT(VIA, 0x1708) #define HDA_CODEC_VT1708_9 HDA_CODEC_CONSTRUCT(VIA, 0x1709) #define HDA_CODEC_VT1708_A HDA_CODEC_CONSTRUCT(VIA, 0x170a) #define HDA_CODEC_VT1708_B HDA_CODEC_CONSTRUCT(VIA, 0x170b) #define HDA_CODEC_VT1709_0 HDA_CODEC_CONSTRUCT(VIA, 0xe710) #define HDA_CODEC_VT1709_1 HDA_CODEC_CONSTRUCT(VIA, 0xe711) #define HDA_CODEC_VT1709_2 HDA_CODEC_CONSTRUCT(VIA, 0xe712) #define HDA_CODEC_VT1709_3 HDA_CODEC_CONSTRUCT(VIA, 0xe713) #define HDA_CODEC_VT1709_4 HDA_CODEC_CONSTRUCT(VIA, 0xe714) #define HDA_CODEC_VT1709_5 HDA_CODEC_CONSTRUCT(VIA, 0xe715) #define HDA_CODEC_VT1709_6 HDA_CODEC_CONSTRUCT(VIA, 0xe716) #define HDA_CODEC_VT1709_7 HDA_CODEC_CONSTRUCT(VIA, 0xe717) #define HDA_CODEC_VT1708B_0 HDA_CODEC_CONSTRUCT(VIA, 0xe720) #define HDA_CODEC_VT1708B_1 HDA_CODEC_CONSTRUCT(VIA, 0xe721) #define HDA_CODEC_VT1708B_2 HDA_CODEC_CONSTRUCT(VIA, 0xe722) #define HDA_CODEC_VT1708B_3 HDA_CODEC_CONSTRUCT(VIA, 0xe723) #define HDA_CODEC_VT1708B_4 HDA_CODEC_CONSTRUCT(VIA, 0xe724) #define HDA_CODEC_VT1708B_5 HDA_CODEC_CONSTRUCT(VIA, 0xe725) #define HDA_CODEC_VT1708B_6 HDA_CODEC_CONSTRUCT(VIA, 0xe726) #define HDA_CODEC_VT1708B_7 HDA_CODEC_CONSTRUCT(VIA, 0xe727) #define HDA_CODEC_VT1708S_0 HDA_CODEC_CONSTRUCT(VIA, 0x0397) #define HDA_CODEC_VT1708S_1 HDA_CODEC_CONSTRUCT(VIA, 0x1397) #define HDA_CODEC_VT1708S_2 HDA_CODEC_CONSTRUCT(VIA, 0x2397) #define HDA_CODEC_VT1708S_3 HDA_CODEC_CONSTRUCT(VIA, 0x3397) #define HDA_CODEC_VT1708S_4 HDA_CODEC_CONSTRUCT(VIA, 0x4397) #define HDA_CODEC_VT1708S_5 HDA_CODEC_CONSTRUCT(VIA, 0x5397) #define HDA_CODEC_VT1708S_6 HDA_CODEC_CONSTRUCT(VIA, 0x6397) #define HDA_CODEC_VT1708S_7 HDA_CODEC_CONSTRUCT(VIA, 0x7397) #define HDA_CODEC_VT1702_0 HDA_CODEC_CONSTRUCT(VIA, 0x0398) #define HDA_CODEC_VT1702_1 HDA_CODEC_CONSTRUCT(VIA, 0x1398) #define HDA_CODEC_VT1702_2 HDA_CODEC_CONSTRUCT(VIA, 0x2398) #define HDA_CODEC_VT1702_3 HDA_CODEC_CONSTRUCT(VIA, 0x3398) #define HDA_CODEC_VT1702_4 HDA_CODEC_CONSTRUCT(VIA, 0x4398) #define HDA_CODEC_VT1702_5 HDA_CODEC_CONSTRUCT(VIA, 0x5398) #define HDA_CODEC_VT1702_6 HDA_CODEC_CONSTRUCT(VIA, 0x6398) #define HDA_CODEC_VT1702_7 HDA_CODEC_CONSTRUCT(VIA, 0x7398) #define HDA_CODEC_VT1716S_0 HDA_CODEC_CONSTRUCT(VIA, 0x0433) #define HDA_CODEC_VT1716S_1 HDA_CODEC_CONSTRUCT(VIA, 0xa721) #define HDA_CODEC_VT1718S_0 HDA_CODEC_CONSTRUCT(VIA, 0x0428) #define HDA_CODEC_VT1718S_1 HDA_CODEC_CONSTRUCT(VIA, 0x4428) #define HDA_CODEC_VT1802_0 HDA_CODEC_CONSTRUCT(VIA, 0x0446) #define HDA_CODEC_VT1802_1 HDA_CODEC_CONSTRUCT(VIA, 0x8446) #define HDA_CODEC_VT1812 HDA_CODEC_CONSTRUCT(VIA, 0x0448) #define HDA_CODEC_VT1818S HDA_CODEC_CONSTRUCT(VIA, 0x0440) #define HDA_CODEC_VT1828S HDA_CODEC_CONSTRUCT(VIA, 0x4441) #define HDA_CODEC_VT2002P_0 HDA_CODEC_CONSTRUCT(VIA, 0x0438) #define HDA_CODEC_VT2002P_1 HDA_CODEC_CONSTRUCT(VIA, 0x4438) #define HDA_CODEC_VT2020 HDA_CODEC_CONSTRUCT(VIA, 0x0441) #define HDA_CODEC_VTXXXX HDA_CODEC_CONSTRUCT(VIA, 0xffff) /* ATI */ #define HDA_CODEC_ATIRS600_1 HDA_CODEC_CONSTRUCT(ATI, 0x793c) #define HDA_CODEC_ATIRS600_2 HDA_CODEC_CONSTRUCT(ATI, 0x7919) #define HDA_CODEC_ATIRS690 HDA_CODEC_CONSTRUCT(ATI, 0x791a) #define HDA_CODEC_ATIR6XX HDA_CODEC_CONSTRUCT(ATI, 0xaa01) #define HDA_CODEC_ATIXXXX HDA_CODEC_CONSTRUCT(ATI, 0xffff) /* NVIDIA */ #define HDA_CODEC_NVIDIAMCP78 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0002) #define HDA_CODEC_NVIDIAMCP78_2 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0003) #define HDA_CODEC_NVIDIAMCP78_3 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0005) #define HDA_CODEC_NVIDIAMCP78_4 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0006) #define HDA_CODEC_NVIDIAMCP7A HDA_CODEC_CONSTRUCT(NVIDIA, 0x0007) #define HDA_CODEC_NVIDIAGT220 HDA_CODEC_CONSTRUCT(NVIDIA, 0x000a) #define HDA_CODEC_NVIDIAGT21X HDA_CODEC_CONSTRUCT(NVIDIA, 0x000b) #define HDA_CODEC_NVIDIAMCP89 HDA_CODEC_CONSTRUCT(NVIDIA, 0x000c) #define HDA_CODEC_NVIDIAGT240 HDA_CODEC_CONSTRUCT(NVIDIA, 0x000d) #define HDA_CODEC_NVIDIAGTS450 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0011) #define HDA_CODEC_NVIDIAGT440 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0014) #define HDA_CODEC_NVIDIAGTX550 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0015) #define HDA_CODEC_NVIDIAGTX570 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0018) #define HDA_CODEC_NVIDIATEGRA30 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0020) #define HDA_CODEC_NVIDIATEGRA114 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0022) #define HDA_CODEC_NVIDIATEGRA124 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0028) #define HDA_CODEC_NVIDIATEGRA210 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0029) #define HDA_CODEC_NVIDIAMCP67 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0067) #define HDA_CODEC_NVIDIAMCP73 HDA_CODEC_CONSTRUCT(NVIDIA, 0x8001) #define HDA_CODEC_NVIDIAXXXX HDA_CODEC_CONSTRUCT(NVIDIA, 0xffff) /* Chrontel */ #define CHRONTEL_VENDORID 0x17e8 #define HDA_CODEC_CHXXXX HDA_CODEC_CONSTRUCT(CHRONTEL, 0xffff) /* INTEL */ #define HDA_CODEC_INTELIP HDA_CODEC_CONSTRUCT(INTEL, 0x0054) #define HDA_CODEC_INTELGMLK HDA_CODEC_CONSTRUCT(INTEL, 0x2800) #define HDA_CODEC_INTELBL HDA_CODEC_CONSTRUCT(INTEL, 0x2801) #define HDA_CODEC_INTELCA HDA_CODEC_CONSTRUCT(INTEL, 0x2802) #define HDA_CODEC_INTELEL HDA_CODEC_CONSTRUCT(INTEL, 0x2803) #define HDA_CODEC_INTELIP2 HDA_CODEC_CONSTRUCT(INTEL, 0x2804) #define HDA_CODEC_INTELCPT HDA_CODEC_CONSTRUCT(INTEL, 0x2805) #define HDA_CODEC_INTELPPT HDA_CODEC_CONSTRUCT(INTEL, 0x2806) #define HDA_CODEC_INTELHSW HDA_CODEC_CONSTRUCT(INTEL, 0x2807) #define HDA_CODEC_INTELBDW HDA_CODEC_CONSTRUCT(INTEL, 0x2808) #define HDA_CODEC_INTELSKLK HDA_CODEC_CONSTRUCT(INTEL, 0x2809) #define HDA_CODEC_INTELBXTN HDA_CODEC_CONSTRUCT(INTEL, 0x280a) #define HDA_CODEC_INTELKBLK HDA_CODEC_CONSTRUCT(INTEL, 0x280b) #define HDA_CODEC_INTELCNLK HDA_CODEC_CONSTRUCT(INTEL, 0x280c) #define HDA_CODEC_INTELGMLK1 HDA_CODEC_CONSTRUCT(INTEL, 0x280d) #define HDA_CODEC_INTELICLK HDA_CODEC_CONSTRUCT(INTEL, 0x280f) #define HDA_CODEC_INTELTGLK HDA_CODEC_CONSTRUCT(INTEL, 0x2812) #define HDA_CODEC_INTELJLK HDA_CODEC_CONSTRUCT(INTEL, 0x281a) #define HDA_CODEC_INTELELLK HDA_CODEC_CONSTRUCT(INTEL, 0x281b) #define HDA_CODEC_INTELCT HDA_CODEC_CONSTRUCT(INTEL, 0x2880) #define HDA_CODEC_INTELVV2 HDA_CODEC_CONSTRUCT(INTEL, 0x2882) #define HDA_CODEC_INTELBR HDA_CODEC_CONSTRUCT(INTEL, 0x2883) #define HDA_CODEC_INTELCL HDA_CODEC_CONSTRUCT(INTEL, 0x29fb) #define HDA_CODEC_INTELXXXX HDA_CODEC_CONSTRUCT(INTEL, 0xffff) /**************************************************************************** * Helper Macros ****************************************************************************/ #define HDA_DMA_ALIGNMENT 128 #define HDA_BDL_MIN 2 #define HDA_BDL_MAX 256 #define HDA_BDL_DEFAULT HDA_BDL_MIN #define HDA_BLK_MIN HDA_DMA_ALIGNMENT #define HDA_BLK_ALIGN (~(HDA_BLK_MIN - 1)) #define HDA_BUFSZ_MIN (HDA_BDL_MIN * HDA_BLK_MIN) #define HDA_BUFSZ_MAX 262144 #define HDA_BUFSZ_DEFAULT 65536 #define HDA_GPIO_MAX 8 #define HDA_DEV_MATCH(fl, v) ((fl) == (v) || \ (fl) == 0xffffffff || \ (((fl) & 0xffff0000) == 0xffff0000 && \ ((fl) & 0x0000ffff) == ((v) & 0x0000ffff)) || \ (((fl) & 0x0000ffff) == 0x0000ffff && \ ((fl) & 0xffff0000) == ((v) & 0xffff0000))) #define HDA_MATCH_ALL 0xffffffff #define HDA_INVALID 0xffffffff #define HDA_BOOTVERBOSE(stmt) do { \ if (bootverbose != 0 || snd_verbose > 3) { \ stmt \ } \ } while (0) #define HDA_BOOTHVERBOSE(stmt) do { \ if (snd_verbose > 3) { \ stmt \ } \ } while (0) #define hda_command(dev, verb) \ HDAC_CODEC_COMMAND(device_get_parent(dev), (dev), (verb)) typedef int nid_t; /**************************************************************************** * Simplified Accessors for HDA devices ****************************************************************************/ enum hdac_device_ivars { HDA_IVAR_CODEC_ID, HDA_IVAR_NODE_ID, HDA_IVAR_VENDOR_ID, HDA_IVAR_DEVICE_ID, HDA_IVAR_REVISION_ID, HDA_IVAR_STEPPING_ID, HDA_IVAR_SUBVENDOR_ID, HDA_IVAR_SUBDEVICE_ID, HDA_IVAR_SUBSYSTEM_ID, HDA_IVAR_NODE_TYPE, HDA_IVAR_DMA_NOCACHE, HDA_IVAR_STRIPES_MASK, }; #define HDA_ACCESSOR(var, ivar, type) \ __BUS_ACCESSOR(hda, var, HDA, ivar, type) HDA_ACCESSOR(codec_id, CODEC_ID, uint8_t); HDA_ACCESSOR(node_id, NODE_ID, uint8_t); HDA_ACCESSOR(vendor_id, VENDOR_ID, uint16_t); HDA_ACCESSOR(device_id, DEVICE_ID, uint16_t); HDA_ACCESSOR(revision_id, REVISION_ID, uint8_t); HDA_ACCESSOR(stepping_id, STEPPING_ID, uint8_t); HDA_ACCESSOR(subvendor_id, SUBVENDOR_ID, uint16_t); HDA_ACCESSOR(subdevice_id, SUBDEVICE_ID, uint16_t); HDA_ACCESSOR(subsystem_id, SUBSYSTEM_ID, uint32_t); HDA_ACCESSOR(node_type, NODE_TYPE, uint8_t); HDA_ACCESSOR(dma_nocache, DMA_NOCACHE, uint8_t); HDA_ACCESSOR(stripes_mask, STRIPES_MASK, uint8_t); #define PCIS_MULTIMEDIA_HDA 0x03 #endif diff --git a/sys/dev/sound/pci/hda/hdacc.c b/sys/dev/sound/pci/hda/hdacc.c index ff72498ecb9f..e663ffa3dbcf 100644 --- a/sys/dev/sound/pci/hda/hdacc.c +++ b/sys/dev/sound/pci/hda/hdacc.c @@ -1,797 +1,797 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006 Stephane E. Potvin * Copyright (c) 2006 Ariff Abdullah * Copyright (c) 2008-2012 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Intel High Definition Audio (CODEC) driver for FreeBSD. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include #include SND_DECLARE_FILE("$FreeBSD$"); struct hdacc_fg { device_t dev; nid_t nid; uint8_t type; uint32_t subsystem_id; }; struct hdacc_softc { device_t dev; struct mtx *lock; nid_t cad; device_t streams[2][16]; device_t tags[64]; int fgcnt; struct hdacc_fg *fgs; }; #define hdacc_lock(codec) snd_mtxlock((codec)->lock) #define hdacc_unlock(codec) snd_mtxunlock((codec)->lock) #define hdacc_lockassert(codec) snd_mtxassert((codec)->lock) MALLOC_DEFINE(M_HDACC, "hdacc", "HDA CODEC"); /* CODECs */ static const struct { uint32_t id; uint16_t revid; const char *name; } hdacc_codecs[] = { { HDA_CODEC_CS4206, 0, "Cirrus Logic CS4206" }, { HDA_CODEC_CS4207, 0, "Cirrus Logic CS4207" }, { HDA_CODEC_CS4210, 0, "Cirrus Logic CS4210" }, { HDA_CODEC_ALC215, 0, "Realtek ALC215" }, { HDA_CODEC_ALC221, 0, "Realtek ALC221" }, { HDA_CODEC_ALC222, 0, "Realtek ALC222" }, { HDA_CODEC_ALC225, 0, "Realtek ALC225" }, { HDA_CODEC_ALC231, 0, "Realtek ALC231" }, { HDA_CODEC_ALC233, 0, "Realtek ALC233" }, { HDA_CODEC_ALC234, 0, "Realtek ALC234" }, { HDA_CODEC_ALC235, 0, "Realtek ALC235" }, { HDA_CODEC_ALC236, 0, "Realtek ALC236" }, { HDA_CODEC_ALC245, 0, "Realtek ALC245" }, { HDA_CODEC_ALC255, 0, "Realtek ALC255" }, { HDA_CODEC_ALC256, 0, "Realtek ALC256" }, { HDA_CODEC_ALC257, 0, "Realtek ALC257" }, { HDA_CODEC_ALC260, 0, "Realtek ALC260" }, { HDA_CODEC_ALC262, 0, "Realtek ALC262" }, { HDA_CODEC_ALC267, 0, "Realtek ALC267" }, { HDA_CODEC_ALC268, 0, "Realtek ALC268" }, { HDA_CODEC_ALC269, 0, "Realtek ALC269" }, { HDA_CODEC_ALC270, 0, "Realtek ALC270" }, { HDA_CODEC_ALC272, 0, "Realtek ALC272" }, { HDA_CODEC_ALC273, 0, "Realtek ALC273" }, { HDA_CODEC_ALC274, 0, "Realtek ALC274" }, { HDA_CODEC_ALC275, 0, "Realtek ALC275" }, { HDA_CODEC_ALC276, 0, "Realtek ALC276" }, { HDA_CODEC_ALC292, 0, "Realtek ALC292" }, { HDA_CODEC_ALC295, 0, "Realtek ALC295" }, { HDA_CODEC_ALC280, 0, "Realtek ALC280" }, { HDA_CODEC_ALC282, 0, "Realtek ALC282" }, { HDA_CODEC_ALC283, 0, "Realtek ALC283" }, { HDA_CODEC_ALC284, 0, "Realtek ALC284" }, { HDA_CODEC_ALC285, 0, "Realtek ALC285" }, { HDA_CODEC_ALC286, 0, "Realtek ALC286" }, { HDA_CODEC_ALC288, 0, "Realtek ALC288" }, { HDA_CODEC_ALC289, 0, "Realtek ALC289" }, { HDA_CODEC_ALC290, 0, "Realtek ALC290" }, { HDA_CODEC_ALC292, 0, "Realtek ALC292" }, { HDA_CODEC_ALC293, 0, "Realtek ALC293" }, { HDA_CODEC_ALC294, 0, "Realtek ALC294" }, { HDA_CODEC_ALC295, 0, "Realtek ALC295" }, { HDA_CODEC_ALC298, 0, "Realtek ALC298" }, { HDA_CODEC_ALC299, 0, "Realtek ALC299" }, { HDA_CODEC_ALC300, 0, "Realtek ALC300" }, { HDA_CODEC_ALC623, 0, "Realtek ALC623" }, { HDA_CODEC_ALC660, 0, "Realtek ALC660-VD" }, { HDA_CODEC_ALC662, 0x0002, "Realtek ALC662 rev2" }, { HDA_CODEC_ALC662, 0x0101, "Realtek ALC662 rev1" }, { HDA_CODEC_ALC662, 0x0300, "Realtek ALC662 rev3" }, { HDA_CODEC_ALC662, 0, "Realtek ALC662" }, { HDA_CODEC_ALC663, 0, "Realtek ALC663" }, { HDA_CODEC_ALC665, 0, "Realtek ALC665" }, { HDA_CODEC_ALC670, 0, "Realtek ALC670" }, { HDA_CODEC_ALC671, 0, "Realtek ALC671" }, { HDA_CODEC_ALC680, 0, "Realtek ALC680" }, { HDA_CODEC_ALC700, 0, "Realtek ALC700" }, { HDA_CODEC_ALC701, 0, "Realtek ALC701" }, { HDA_CODEC_ALC703, 0, "Realtek ALC703" }, { HDA_CODEC_ALC861, 0x0340, "Realtek ALC660" }, { HDA_CODEC_ALC861, 0, "Realtek ALC861" }, { HDA_CODEC_ALC861VD, 0, "Realtek ALC861-VD" }, { HDA_CODEC_ALC880, 0, "Realtek ALC880" }, { HDA_CODEC_ALC882, 0, "Realtek ALC882" }, { HDA_CODEC_ALC883, 0, "Realtek ALC883" }, { HDA_CODEC_ALC885, 0x0101, "Realtek ALC889A" }, { HDA_CODEC_ALC885, 0x0103, "Realtek ALC889A" }, { HDA_CODEC_ALC885, 0, "Realtek ALC885" }, { HDA_CODEC_ALC887, 0, "Realtek ALC887" }, { HDA_CODEC_ALC888, 0x0101, "Realtek ALC1200" }, { HDA_CODEC_ALC888, 0, "Realtek ALC888" }, { HDA_CODEC_ALC889, 0, "Realtek ALC889" }, { HDA_CODEC_ALC892, 0, "Realtek ALC892" }, { HDA_CODEC_ALC899, 0, "Realtek ALC899" }, { HDA_CODEC_ALC1150, 0, "Realtek ALC1150" }, { HDA_CODEC_ALCS1200A, 0, "Realtek ALCS1200A" }, { HDA_CODEC_ALC1220_1, 0, "Realtek ALC1220" }, { HDA_CODEC_ALC1220, 0, "Realtek ALC1220" }, { HDA_CODEC_AD1882, 0, "Analog Devices AD1882" }, { HDA_CODEC_AD1882A, 0, "Analog Devices AD1882A" }, { HDA_CODEC_AD1883, 0, "Analog Devices AD1883" }, { HDA_CODEC_AD1884, 0, "Analog Devices AD1884" }, { HDA_CODEC_AD1884A, 0, "Analog Devices AD1884A" }, { HDA_CODEC_AD1981HD, 0, "Analog Devices AD1981HD" }, { HDA_CODEC_AD1983, 0, "Analog Devices AD1983" }, { HDA_CODEC_AD1984, 0, "Analog Devices AD1984" }, { HDA_CODEC_AD1984A, 0, "Analog Devices AD1984A" }, { HDA_CODEC_AD1984B, 0, "Analog Devices AD1984B" }, { HDA_CODEC_AD1986A, 0, "Analog Devices AD1986A" }, { HDA_CODEC_AD1987, 0, "Analog Devices AD1987" }, { HDA_CODEC_AD1988, 0, "Analog Devices AD1988A" }, { HDA_CODEC_AD1988B, 0, "Analog Devices AD1988B" }, { HDA_CODEC_AD1989A, 0, "Analog Devices AD1989A" }, { HDA_CODEC_AD1989B, 0, "Analog Devices AD1989B" }, { HDA_CODEC_CA0110, 0, "Creative CA0110-IBG" }, { HDA_CODEC_CA0110_2, 0, "Creative CA0110-IBG" }, { HDA_CODEC_CA0132, 0, "Creative CA0132" }, { HDA_CODEC_SB0880, 0, "Creative SB0880 X-Fi" }, { HDA_CODEC_CMI9880, 0, "CMedia CMI9880" }, { HDA_CODEC_CMI98802, 0, "CMedia CMI9880" }, { HDA_CODEC_CXD9872RDK, 0, "Sigmatel CXD9872RD/K" }, { HDA_CODEC_CXD9872AKD, 0, "Sigmatel CXD9872AKD" }, { HDA_CODEC_STAC9200D, 0, "Sigmatel STAC9200D" }, { HDA_CODEC_STAC9204X, 0, "Sigmatel STAC9204X" }, { HDA_CODEC_STAC9204D, 0, "Sigmatel STAC9204D" }, { HDA_CODEC_STAC9205X, 0, "Sigmatel STAC9205X" }, { HDA_CODEC_STAC9205D, 0, "Sigmatel STAC9205D" }, { HDA_CODEC_STAC9220, 0, "Sigmatel STAC9220" }, { HDA_CODEC_STAC9220_A1, 0, "Sigmatel STAC9220_A1" }, { HDA_CODEC_STAC9220_A2, 0, "Sigmatel STAC9220_A2" }, { HDA_CODEC_STAC9221, 0, "Sigmatel STAC9221" }, { HDA_CODEC_STAC9221_A2, 0, "Sigmatel STAC9221_A2" }, { HDA_CODEC_STAC9221D, 0, "Sigmatel STAC9221D" }, { HDA_CODEC_STAC922XD, 0, "Sigmatel STAC9220D/9223D" }, { HDA_CODEC_STAC9227X, 0, "Sigmatel STAC9227X" }, { HDA_CODEC_STAC9227D, 0, "Sigmatel STAC9227D" }, { HDA_CODEC_STAC9228X, 0, "Sigmatel STAC9228X" }, { HDA_CODEC_STAC9228D, 0, "Sigmatel STAC9228D" }, { HDA_CODEC_STAC9229X, 0, "Sigmatel STAC9229X" }, { HDA_CODEC_STAC9229D, 0, "Sigmatel STAC9229D" }, { HDA_CODEC_STAC9230X, 0, "Sigmatel STAC9230X" }, { HDA_CODEC_STAC9230D, 0, "Sigmatel STAC9230D" }, - { HDA_CODEC_STAC9250, 0, "Sigmatel STAC9250" }, - { HDA_CODEC_STAC9251, 0, "Sigmatel STAC9251" }, - { HDA_CODEC_STAC9255, 0, "Sigmatel STAC9255" }, - { HDA_CODEC_STAC9255D, 0, "Sigmatel STAC9255D" }, - { HDA_CODEC_STAC9254, 0, "Sigmatel STAC9254" }, - { HDA_CODEC_STAC9254D, 0, "Sigmatel STAC9254D" }, + { HDA_CODEC_STAC9250, 0, "Sigmatel STAC9250" }, + { HDA_CODEC_STAC9251, 0, "Sigmatel STAC9251" }, + { HDA_CODEC_STAC9255, 0, "Sigmatel STAC9255" }, + { HDA_CODEC_STAC9255D, 0, "Sigmatel STAC9255D" }, + { HDA_CODEC_STAC9254, 0, "Sigmatel STAC9254" }, + { HDA_CODEC_STAC9254D, 0, "Sigmatel STAC9254D" }, { HDA_CODEC_STAC9271X, 0, "Sigmatel STAC9271X" }, { HDA_CODEC_STAC9271D, 0, "Sigmatel STAC9271D" }, { HDA_CODEC_STAC9272X, 0, "Sigmatel STAC9272X" }, { HDA_CODEC_STAC9272D, 0, "Sigmatel STAC9272D" }, { HDA_CODEC_STAC9273X, 0, "Sigmatel STAC9273X" }, { HDA_CODEC_STAC9273D, 0, "Sigmatel STAC9273D" }, - { HDA_CODEC_STAC9274, 0, "Sigmatel STAC9274" }, + { HDA_CODEC_STAC9274, 0, "Sigmatel STAC9274" }, { HDA_CODEC_STAC9274D, 0, "Sigmatel STAC9274D" }, { HDA_CODEC_STAC9274X5NH, 0, "Sigmatel STAC9274X5NH" }, { HDA_CODEC_STAC9274D5NH, 0, "Sigmatel STAC9274D5NH" }, { HDA_CODEC_STAC9872AK, 0, "Sigmatel STAC9872AK" }, { HDA_CODEC_IDT92HD005, 0, "IDT 92HD005" }, { HDA_CODEC_IDT92HD005D, 0, "IDT 92HD005D" }, { HDA_CODEC_IDT92HD206X, 0, "IDT 92HD206X" }, { HDA_CODEC_IDT92HD206D, 0, "IDT 92HD206D" }, { HDA_CODEC_IDT92HD66B1X5, 0, "IDT 92HD66B1X5" }, { HDA_CODEC_IDT92HD66B2X5, 0, "IDT 92HD66B2X5" }, { HDA_CODEC_IDT92HD66B3X5, 0, "IDT 92HD66B3X5" }, { HDA_CODEC_IDT92HD66C1X5, 0, "IDT 92HD66C1X5" }, { HDA_CODEC_IDT92HD66C2X5, 0, "IDT 92HD66C2X5" }, { HDA_CODEC_IDT92HD66C3X5, 0, "IDT 92HD66C3X5" }, { HDA_CODEC_IDT92HD66B1X3, 0, "IDT 92HD66B1X3" }, { HDA_CODEC_IDT92HD66B2X3, 0, "IDT 92HD66B2X3" }, { HDA_CODEC_IDT92HD66B3X3, 0, "IDT 92HD66B3X3" }, { HDA_CODEC_IDT92HD66C1X3, 0, "IDT 92HD66C1X3" }, { HDA_CODEC_IDT92HD66C2X3, 0, "IDT 92HD66C2X3" }, { HDA_CODEC_IDT92HD66C3_65, 0, "IDT 92HD66C3_65" }, { HDA_CODEC_IDT92HD700X, 0, "IDT 92HD700X" }, { HDA_CODEC_IDT92HD700D, 0, "IDT 92HD700D" }, { HDA_CODEC_IDT92HD71B5, 0, "IDT 92HD71B5" }, { HDA_CODEC_IDT92HD71B5_2, 0, "IDT 92HD71B5" }, { HDA_CODEC_IDT92HD71B6, 0, "IDT 92HD71B6" }, { HDA_CODEC_IDT92HD71B6_2, 0, "IDT 92HD71B6" }, { HDA_CODEC_IDT92HD71B7, 0, "IDT 92HD71B7" }, { HDA_CODEC_IDT92HD71B7_2, 0, "IDT 92HD71B7" }, { HDA_CODEC_IDT92HD71B8, 0, "IDT 92HD71B8" }, { HDA_CODEC_IDT92HD71B8_2, 0, "IDT 92HD71B8" }, { HDA_CODEC_IDT92HD73C1, 0, "IDT 92HD73C1" }, { HDA_CODEC_IDT92HD73D1, 0, "IDT 92HD73D1" }, { HDA_CODEC_IDT92HD73E1, 0, "IDT 92HD73E1" }, { HDA_CODEC_IDT92HD75B3, 0, "IDT 92HD75B3" }, { HDA_CODEC_IDT92HD75BX, 0, "IDT 92HD75BX" }, { HDA_CODEC_IDT92HD81B1C, 0, "IDT 92HD81B1C" }, { HDA_CODEC_IDT92HD81B1X, 0, "IDT 92HD81B1X" }, { HDA_CODEC_IDT92HD83C1C, 0, "IDT 92HD83C1C" }, { HDA_CODEC_IDT92HD83C1X, 0, "IDT 92HD83C1X" }, { HDA_CODEC_IDT92HD87B1_3, 0, "IDT 92HD87B1/3" }, { HDA_CODEC_IDT92HD87B2_4, 0, "IDT 92HD87B2/4" }, { HDA_CODEC_IDT92HD89C3, 0, "IDT 92HD89C3" }, { HDA_CODEC_IDT92HD89C2, 0, "IDT 92HD89C2" }, { HDA_CODEC_IDT92HD89C1, 0, "IDT 92HD89C1" }, { HDA_CODEC_IDT92HD89B3, 0, "IDT 92HD89B3" }, { HDA_CODEC_IDT92HD89B2, 0, "IDT 92HD89B2" }, { HDA_CODEC_IDT92HD89B1, 0, "IDT 92HD89B1" }, { HDA_CODEC_IDT92HD89E3, 0, "IDT 92HD89E3" }, { HDA_CODEC_IDT92HD89E2, 0, "IDT 92HD89E2" }, { HDA_CODEC_IDT92HD89E1, 0, "IDT 92HD89E1" }, { HDA_CODEC_IDT92HD89D3, 0, "IDT 92HD89D3" }, { HDA_CODEC_IDT92HD89D2, 0, "IDT 92HD89D2" }, { HDA_CODEC_IDT92HD89D1, 0, "IDT 92HD89D1" }, { HDA_CODEC_IDT92HD89F3, 0, "IDT 92HD89F3" }, { HDA_CODEC_IDT92HD89F2, 0, "IDT 92HD89F2" }, { HDA_CODEC_IDT92HD89F1, 0, "IDT 92HD89F1" }, { HDA_CODEC_IDT92HD90BXX, 0, "IDT 92HD90BXX" }, { HDA_CODEC_IDT92HD91BXX, 0, "IDT 92HD91BXX" }, { HDA_CODEC_IDT92HD93BXX, 0, "IDT 92HD93BXX" }, { HDA_CODEC_IDT92HD98BXX, 0, "IDT 92HD98BXX" }, { HDA_CODEC_IDT92HD99BXX, 0, "IDT 92HD99BXX" }, { HDA_CODEC_CX20549, 0, "Conexant CX20549 (Venice)" }, { HDA_CODEC_CX20551, 0, "Conexant CX20551 (Waikiki)" }, { HDA_CODEC_CX20561, 0, "Conexant CX20561 (Hermosa)" }, { HDA_CODEC_CX20582, 0, "Conexant CX20582 (Pebble)" }, { HDA_CODEC_CX20583, 0, "Conexant CX20583 (Pebble HSF)" }, { HDA_CODEC_CX20584, 0, "Conexant CX20584" }, { HDA_CODEC_CX20585, 0, "Conexant CX20585" }, { HDA_CODEC_CX20588, 0, "Conexant CX20588" }, { HDA_CODEC_CX20590, 0, "Conexant CX20590" }, { HDA_CODEC_CX20631, 0, "Conexant CX20631" }, { HDA_CODEC_CX20632, 0, "Conexant CX20632" }, { HDA_CODEC_CX20641, 0, "Conexant CX20641" }, { HDA_CODEC_CX20642, 0, "Conexant CX20642" }, { HDA_CODEC_CX20651, 0, "Conexant CX20651" }, { HDA_CODEC_CX20652, 0, "Conexant CX20652" }, { HDA_CODEC_CX20664, 0, "Conexant CX20664" }, { HDA_CODEC_CX20665, 0, "Conexant CX20665" }, { HDA_CODEC_CX21722, 0, "Conexant CX21722" }, { HDA_CODEC_CX20722, 0, "Conexant CX20722" }, { HDA_CODEC_CX21724, 0, "Conexant CX21724" }, { HDA_CODEC_CX20724, 0, "Conexant CX20724" }, { HDA_CODEC_CX20751, 0, "Conexant CX20751/2" }, { HDA_CODEC_CX20751_2, 0, "Conexant CX20751/2" }, { HDA_CODEC_CX20753, 0, "Conexant CX20753/4" }, { HDA_CODEC_CX20755, 0, "Conexant CX20755" }, { HDA_CODEC_CX20756, 0, "Conexant CX20756" }, { HDA_CODEC_CX20757, 0, "Conexant CX20757" }, { HDA_CODEC_CX20952, 0, "Conexant CX20952" }, { HDA_CODEC_VT1708_8, 0, "VIA VT1708_8" }, { HDA_CODEC_VT1708_9, 0, "VIA VT1708_9" }, { HDA_CODEC_VT1708_A, 0, "VIA VT1708_A" }, { HDA_CODEC_VT1708_B, 0, "VIA VT1708_B" }, { HDA_CODEC_VT1709_0, 0, "VIA VT1709_0" }, { HDA_CODEC_VT1709_1, 0, "VIA VT1709_1" }, { HDA_CODEC_VT1709_2, 0, "VIA VT1709_2" }, { HDA_CODEC_VT1709_3, 0, "VIA VT1709_3" }, { HDA_CODEC_VT1709_4, 0, "VIA VT1709_4" }, { HDA_CODEC_VT1709_5, 0, "VIA VT1709_5" }, { HDA_CODEC_VT1709_6, 0, "VIA VT1709_6" }, { HDA_CODEC_VT1709_7, 0, "VIA VT1709_7" }, { HDA_CODEC_VT1708B_0, 0, "VIA VT1708B_0" }, { HDA_CODEC_VT1708B_1, 0, "VIA VT1708B_1" }, { HDA_CODEC_VT1708B_2, 0, "VIA VT1708B_2" }, { HDA_CODEC_VT1708B_3, 0, "VIA VT1708B_3" }, { HDA_CODEC_VT1708B_4, 0, "VIA VT1708B_4" }, { HDA_CODEC_VT1708B_5, 0, "VIA VT1708B_5" }, { HDA_CODEC_VT1708B_6, 0, "VIA VT1708B_6" }, { HDA_CODEC_VT1708B_7, 0, "VIA VT1708B_7" }, { HDA_CODEC_VT1708S_0, 0, "VIA VT1708S_0" }, { HDA_CODEC_VT1708S_1, 0, "VIA VT1708S_1" }, { HDA_CODEC_VT1708S_2, 0, "VIA VT1708S_2" }, { HDA_CODEC_VT1708S_3, 0, "VIA VT1708S_3" }, { HDA_CODEC_VT1708S_4, 0, "VIA VT1708S_4" }, { HDA_CODEC_VT1708S_5, 0, "VIA VT1708S_5" }, { HDA_CODEC_VT1708S_6, 0, "VIA VT1708S_6" }, { HDA_CODEC_VT1708S_7, 0, "VIA VT1708S_7" }, { HDA_CODEC_VT1702_0, 0, "VIA VT1702_0" }, { HDA_CODEC_VT1702_1, 0, "VIA VT1702_1" }, { HDA_CODEC_VT1702_2, 0, "VIA VT1702_2" }, { HDA_CODEC_VT1702_3, 0, "VIA VT1702_3" }, { HDA_CODEC_VT1702_4, 0, "VIA VT1702_4" }, { HDA_CODEC_VT1702_5, 0, "VIA VT1702_5" }, { HDA_CODEC_VT1702_6, 0, "VIA VT1702_6" }, { HDA_CODEC_VT1702_7, 0, "VIA VT1702_7" }, { HDA_CODEC_VT1716S_0, 0, "VIA VT1716S_0" }, { HDA_CODEC_VT1716S_1, 0, "VIA VT1716S_1" }, { HDA_CODEC_VT1718S_0, 0, "VIA VT1718S_0" }, { HDA_CODEC_VT1718S_1, 0, "VIA VT1718S_1" }, { HDA_CODEC_VT1802_0, 0, "VIA VT1802_0" }, { HDA_CODEC_VT1802_1, 0, "VIA VT1802_1" }, { HDA_CODEC_VT1812, 0, "VIA VT1812" }, { HDA_CODEC_VT1818S, 0, "VIA VT1818S" }, { HDA_CODEC_VT1828S, 0, "VIA VT1828S" }, { HDA_CODEC_VT2002P_0, 0, "VIA VT2002P_0" }, { HDA_CODEC_VT2002P_1, 0, "VIA VT2002P_1" }, { HDA_CODEC_VT2020, 0, "VIA VT2020" }, { HDA_CODEC_ATIRS600_1, 0, "ATI RS600" }, { HDA_CODEC_ATIRS600_2, 0, "ATI RS600" }, { HDA_CODEC_ATIRS690, 0, "ATI RS690/780" }, { HDA_CODEC_ATIR6XX, 0, "ATI R6xx" }, { HDA_CODEC_NVIDIAMCP67, 0, "NVIDIA MCP67" }, { HDA_CODEC_NVIDIAMCP73, 0, "NVIDIA MCP73" }, { HDA_CODEC_NVIDIAMCP78, 0, "NVIDIA MCP78" }, { HDA_CODEC_NVIDIAMCP78_2, 0, "NVIDIA MCP78" }, { HDA_CODEC_NVIDIAMCP78_3, 0, "NVIDIA MCP78" }, { HDA_CODEC_NVIDIAMCP78_4, 0, "NVIDIA MCP78" }, { HDA_CODEC_NVIDIAMCP7A, 0, "NVIDIA MCP7A" }, { HDA_CODEC_NVIDIAGT220, 0, "NVIDIA GT220" }, { HDA_CODEC_NVIDIAGT21X, 0, "NVIDIA GT21x" }, { HDA_CODEC_NVIDIAMCP89, 0, "NVIDIA MCP89" }, { HDA_CODEC_NVIDIAGT240, 0, "NVIDIA GT240" }, { HDA_CODEC_NVIDIAGTS450, 0, "NVIDIA GTS450" }, { HDA_CODEC_NVIDIAGT440, 0, "NVIDIA GT440" }, { HDA_CODEC_NVIDIAGTX550, 0, "NVIDIA GTX550" }, { HDA_CODEC_NVIDIAGTX570, 0, "NVIDIA GTX570" }, { HDA_CODEC_NVIDIATEGRA30, 0, "NVIDIA Tegra30" }, { HDA_CODEC_NVIDIATEGRA114, 0, "NVIDIA Tegra114" }, { HDA_CODEC_NVIDIATEGRA124, 0, "NVIDIA Tegra124" }, { HDA_CODEC_NVIDIATEGRA210, 0, "NVIDIA Tegra210" }, { HDA_CODEC_INTELIP, 0, "Intel Ibex Peak" }, { HDA_CODEC_INTELBL, 0, "Intel Bearlake" }, { HDA_CODEC_INTELCA, 0, "Intel Cantiga" }, { HDA_CODEC_INTELEL, 0, "Intel Eaglelake" }, { HDA_CODEC_INTELIP2, 0, "Intel Ibex Peak" }, { HDA_CODEC_INTELCPT, 0, "Intel Cougar Point" }, { HDA_CODEC_INTELPPT, 0, "Intel Panther Point" }, { HDA_CODEC_INTELHSW, 0, "Intel Haswell" }, { HDA_CODEC_INTELBDW, 0, "Intel Broadwell" }, { HDA_CODEC_INTELSKLK, 0, "Intel Skylake" }, { HDA_CODEC_INTELKBLK, 0, "Intel Kaby Lake" }, { HDA_CODEC_INTELJLK, 0, "Intel Jasper Lake" }, { HDA_CODEC_INTELELLK, 0, "Intel Elkhart Lake" }, { HDA_CODEC_INTELCT, 0, "Intel Cedar Trail" }, { HDA_CODEC_INTELVV2, 0, "Intel Valleyview2" }, { HDA_CODEC_INTELBR, 0, "Intel Braswell" }, { HDA_CODEC_INTELCL, 0, "Intel Crestline" }, { HDA_CODEC_INTELBXTN, 0, "Intel Broxton" }, { HDA_CODEC_INTELCNLK, 0, "Intel Cannon Lake" }, { HDA_CODEC_INTELGMLK, 0, "Intel Gemini Lake" }, { HDA_CODEC_INTELGMLK1, 0, "Intel Gemini Lake" }, { HDA_CODEC_INTELICLK, 0, "Intel Ice Lake" }, { HDA_CODEC_INTELTGLK, 0, "Intel Tiger Lake" }, { HDA_CODEC_SII1390, 0, "Silicon Image SiI1390" }, { HDA_CODEC_SII1392, 0, "Silicon Image SiI1392" }, /* Unknown CODECs */ { HDA_CODEC_ADXXXX, 0, "Analog Devices" }, { HDA_CODEC_AGEREXXXX, 0, "Lucent/Agere Systems" }, { HDA_CODEC_ALCXXXX, 0, "Realtek" }, { HDA_CODEC_ATIXXXX, 0, "ATI" }, { HDA_CODEC_CAXXXX, 0, "Creative" }, { HDA_CODEC_CMIXXXX, 0, "CMedia" }, { HDA_CODEC_CMIXXXX2, 0, "CMedia" }, { HDA_CODEC_CSXXXX, 0, "Cirrus Logic" }, { HDA_CODEC_CXXXXX, 0, "Conexant" }, { HDA_CODEC_CHXXXX, 0, "Chrontel" }, { HDA_CODEC_IDTXXXX, 0, "IDT" }, { HDA_CODEC_INTELXXXX, 0, "Intel" }, { HDA_CODEC_MOTOXXXX, 0, "Motorola" }, { HDA_CODEC_NVIDIAXXXX, 0, "NVIDIA" }, { HDA_CODEC_SIIXXXX, 0, "Silicon Image" }, { HDA_CODEC_STACXXXX, 0, "Sigmatel" }, { HDA_CODEC_VTXXXX, 0, "VIA" }, }; static int hdacc_suspend(device_t dev) { HDA_BOOTHVERBOSE( device_printf(dev, "Suspend...\n"); ); bus_generic_suspend(dev); HDA_BOOTHVERBOSE( device_printf(dev, "Suspend done\n"); ); return (0); } static int hdacc_resume(device_t dev) { HDA_BOOTHVERBOSE( device_printf(dev, "Resume...\n"); ); bus_generic_resume(dev); HDA_BOOTHVERBOSE( device_printf(dev, "Resume done\n"); ); return (0); } static int hdacc_probe(device_t dev) { uint32_t id, revid; char buf[128]; int i; id = ((uint32_t)hda_get_vendor_id(dev) << 16) + hda_get_device_id(dev); revid = ((uint32_t)hda_get_revision_id(dev) << 8) + hda_get_stepping_id(dev); for (i = 0; i < nitems(hdacc_codecs); i++) { if (!HDA_DEV_MATCH(hdacc_codecs[i].id, id)) continue; if (hdacc_codecs[i].revid != 0 && hdacc_codecs[i].revid != revid) continue; break; } if (i < nitems(hdacc_codecs)) { if ((hdacc_codecs[i].id & 0xffff) != 0xffff) strlcpy(buf, hdacc_codecs[i].name, sizeof(buf)); else snprintf(buf, sizeof(buf), "%s (0x%04x)", hdacc_codecs[i].name, hda_get_device_id(dev)); } else snprintf(buf, sizeof(buf), "Generic (0x%04x)", id); strlcat(buf, " HDA CODEC", sizeof(buf)); device_set_desc_copy(dev, buf); return (BUS_PROBE_DEFAULT); } static int hdacc_attach(device_t dev) { struct hdacc_softc *codec = device_get_softc(dev); device_t child; int cad = (intptr_t)device_get_ivars(dev); uint32_t subnode; int startnode; int endnode; int i, n; codec->lock = HDAC_GET_MTX(device_get_parent(dev), dev); codec->dev = dev; codec->cad = cad; hdacc_lock(codec); subnode = hda_command(dev, HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_SUB_NODE_COUNT)); hdacc_unlock(codec); if (subnode == HDA_INVALID) return (EIO); codec->fgcnt = HDA_PARAM_SUB_NODE_COUNT_TOTAL(subnode); startnode = HDA_PARAM_SUB_NODE_COUNT_START(subnode); endnode = startnode + codec->fgcnt; HDA_BOOTHVERBOSE( device_printf(dev, "Root Node at nid=0: %d subnodes %d-%d\n", HDA_PARAM_SUB_NODE_COUNT_TOTAL(subnode), startnode, endnode - 1); ); codec->fgs = malloc(sizeof(struct hdacc_fg) * codec->fgcnt, M_HDACC, M_ZERO | M_WAITOK); for (i = startnode, n = 0; i < endnode; i++, n++) { codec->fgs[n].nid = i; hdacc_lock(codec); codec->fgs[n].type = HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE(hda_command(dev, HDA_CMD_GET_PARAMETER(0, i, HDA_PARAM_FCT_GRP_TYPE))); codec->fgs[n].subsystem_id = hda_command(dev, HDA_CMD_GET_SUBSYSTEM_ID(0, i)); hdacc_unlock(codec); codec->fgs[n].dev = child = device_add_child(dev, NULL, -1); if (child == NULL) { device_printf(dev, "Failed to add function device\n"); continue; } device_set_ivars(child, &codec->fgs[n]); } bus_generic_attach(dev); return (0); } static int hdacc_detach(device_t dev) { struct hdacc_softc *codec = device_get_softc(dev); int error; error = device_delete_children(dev); free(codec->fgs, M_HDACC); return (error); } static int hdacc_child_location(device_t dev, device_t child, struct sbuf *sb) { struct hdacc_fg *fg = device_get_ivars(child); sbuf_printf(sb, "nid=%d", fg->nid); return (0); } static int hdacc_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb) { struct hdacc_fg *fg = device_get_ivars(child); sbuf_printf(sb, "type=0x%02x subsystem=0x%08x", fg->type, fg->subsystem_id); return (0); } static int hdacc_print_child(device_t dev, device_t child) { struct hdacc_fg *fg = device_get_ivars(child); int retval; retval = bus_print_child_header(dev, child); retval += printf(" at nid %d", fg->nid); retval += bus_print_child_footer(dev, child); return (retval); } static void hdacc_probe_nomatch(device_t dev, device_t child) { struct hdacc_softc *codec = device_get_softc(dev); struct hdacc_fg *fg = device_get_ivars(child); device_printf(child, "<%s %s Function Group> at nid %d on %s " "(no driver attached)\n", device_get_desc(dev), fg->type == HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO ? "Audio" : (fg->type == HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_MODEM ? "Modem" : "Unknown"), fg->nid, device_get_nameunit(dev)); HDA_BOOTVERBOSE( device_printf(dev, "Subsystem ID: 0x%08x\n", hda_get_subsystem_id(dev)); ); HDA_BOOTHVERBOSE( device_printf(dev, "Power down FG nid=%d to the D3 state...\n", fg->nid); ); hdacc_lock(codec); hda_command(dev, HDA_CMD_SET_POWER_STATE(0, fg->nid, HDA_CMD_POWER_STATE_D3)); hdacc_unlock(codec); } static int hdacc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { struct hdacc_fg *fg = device_get_ivars(child); switch (which) { case HDA_IVAR_NODE_ID: *result = fg->nid; break; case HDA_IVAR_NODE_TYPE: *result = fg->type; break; case HDA_IVAR_SUBSYSTEM_ID: *result = fg->subsystem_id; break; default: return(BUS_READ_IVAR(device_get_parent(dev), dev, which, result)); } return (0); } static struct mtx * hdacc_get_mtx(device_t dev, device_t child) { struct hdacc_softc *codec = device_get_softc(dev); return (codec->lock); } static uint32_t hdacc_codec_command(device_t dev, device_t child, uint32_t verb) { return (HDAC_CODEC_COMMAND(device_get_parent(dev), dev, verb)); } static int hdacc_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe, uint32_t **dmapos) { struct hdacc_softc *codec = device_get_softc(dev); int stream; stream = HDAC_STREAM_ALLOC(device_get_parent(dev), dev, dir, format, stripe, dmapos); if (stream > 0) codec->streams[dir][stream] = child; return (stream); } static void hdacc_stream_free(device_t dev, device_t child, int dir, int stream) { struct hdacc_softc *codec = device_get_softc(dev); codec->streams[dir][stream] = NULL; HDAC_STREAM_FREE(device_get_parent(dev), dev, dir, stream); } static int hdacc_stream_start(device_t dev, device_t child, int dir, int stream, bus_addr_t buf, int blksz, int blkcnt) { return (HDAC_STREAM_START(device_get_parent(dev), dev, dir, stream, buf, blksz, blkcnt)); } static void hdacc_stream_stop(device_t dev, device_t child, int dir, int stream) { HDAC_STREAM_STOP(device_get_parent(dev), dev, dir, stream); } static void hdacc_stream_reset(device_t dev, device_t child, int dir, int stream) { HDAC_STREAM_RESET(device_get_parent(dev), dev, dir, stream); } static uint32_t hdacc_stream_getptr(device_t dev, device_t child, int dir, int stream) { return (HDAC_STREAM_GETPTR(device_get_parent(dev), dev, dir, stream)); } static void hdacc_stream_intr(device_t dev, int dir, int stream) { struct hdacc_softc *codec = device_get_softc(dev); device_t child; if ((child = codec->streams[dir][stream]) != NULL) HDAC_STREAM_INTR(child, dir, stream); } static int hdacc_unsol_alloc(device_t dev, device_t child, int wanted) { struct hdacc_softc *codec = device_get_softc(dev); int tag; wanted &= 0x3f; tag = wanted; do { if (codec->tags[tag] == NULL) { codec->tags[tag] = child; HDAC_UNSOL_ALLOC(device_get_parent(dev), dev, tag); return (tag); } tag++; tag &= 0x3f; } while (tag != wanted); return (-1); } static void hdacc_unsol_free(device_t dev, device_t child, int tag) { struct hdacc_softc *codec = device_get_softc(dev); KASSERT(tag >= 0 && tag <= 0x3f, ("Wrong tag value %d\n", tag)); codec->tags[tag] = NULL; HDAC_UNSOL_FREE(device_get_parent(dev), dev, tag); } static void hdacc_unsol_intr(device_t dev, uint32_t resp) { struct hdacc_softc *codec = device_get_softc(dev); device_t child; int tag; tag = resp >> 26; if ((child = codec->tags[tag]) != NULL) HDAC_UNSOL_INTR(child, resp); else device_printf(codec->dev, "Unexpected unsolicited " "response with tag %d: %08x\n", tag, resp); } static void hdacc_pindump(device_t dev) { device_t *devlist; int devcount, i; if (device_get_children(dev, &devlist, &devcount) != 0) return; for (i = 0; i < devcount; i++) HDAC_PINDUMP(devlist[i]); free(devlist, M_TEMP); } static device_method_t hdacc_methods[] = { /* device interface */ DEVMETHOD(device_probe, hdacc_probe), DEVMETHOD(device_attach, hdacc_attach), DEVMETHOD(device_detach, hdacc_detach), DEVMETHOD(device_suspend, hdacc_suspend), DEVMETHOD(device_resume, hdacc_resume), /* Bus interface */ DEVMETHOD(bus_child_location, hdacc_child_location), DEVMETHOD(bus_child_pnpinfo, hdacc_child_pnpinfo_method), DEVMETHOD(bus_print_child, hdacc_print_child), DEVMETHOD(bus_probe_nomatch, hdacc_probe_nomatch), DEVMETHOD(bus_read_ivar, hdacc_read_ivar), DEVMETHOD(hdac_get_mtx, hdacc_get_mtx), DEVMETHOD(hdac_codec_command, hdacc_codec_command), DEVMETHOD(hdac_stream_alloc, hdacc_stream_alloc), DEVMETHOD(hdac_stream_free, hdacc_stream_free), DEVMETHOD(hdac_stream_start, hdacc_stream_start), DEVMETHOD(hdac_stream_stop, hdacc_stream_stop), DEVMETHOD(hdac_stream_reset, hdacc_stream_reset), DEVMETHOD(hdac_stream_getptr, hdacc_stream_getptr), DEVMETHOD(hdac_stream_intr, hdacc_stream_intr), DEVMETHOD(hdac_unsol_alloc, hdacc_unsol_alloc), DEVMETHOD(hdac_unsol_free, hdacc_unsol_free), DEVMETHOD(hdac_unsol_intr, hdacc_unsol_intr), DEVMETHOD(hdac_pindump, hdacc_pindump), DEVMETHOD_END }; static driver_t hdacc_driver = { "hdacc", hdacc_methods, sizeof(struct hdacc_softc), }; static devclass_t hdacc_devclass; DRIVER_MODULE(snd_hda, hdac, hdacc_driver, hdacc_devclass, NULL, NULL); diff --git a/sys/dev/sound/pci/hda/pin_patch.h b/sys/dev/sound/pci/hda/pin_patch.h index 8e2c9875906f..ecf23bdb9603 100644 --- a/sys/dev/sound/pci/hda/pin_patch.h +++ b/sys/dev/sound/pci/hda/pin_patch.h @@ -1,121 +1,121 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2018 Khamba Staring * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef PIN_PATCH_H #define PIN_PATCH_H #include "hdac.h" #define PIN_SUBVENDOR(sv) { .id = sv } #define PIN_PATCH_STRING(n, patchstr) { \ .nid = n, \ .type = PIN_PATCH_TYPE_STRING, \ .patch.string = patchstr \ } #define PIN_OVERRIDE(n, newvalue) { \ .nid = n, \ .type = PIN_PATCH_TYPE_OVERRIDE, \ .patch.override = newvalue \ } #define PIN_PATCH_NOT_APPLICABLE(n) \ PIN_PATCH_STRING(n, "as=15 misc=1 color=Black ctype=1/8 device=Speaker loc=Rear conn=None") #define PIN_PATCH_HP_OUT(n) \ PIN_PATCH_STRING(n, "seq=15 as=1 color=Green ctype=1/8 device=Headphones loc=Rear") #define PIN_PATCH_HP(n) \ PIN_PATCH_STRING(n, "seq=15 as=1 misc=1 color=Green ctype=1/8 device=Headphones loc=Rear") #define PIN_PATCH_SPEAKER(n) \ PIN_PATCH_STRING(n, "as=2 misc=1 ctype=ATAPI loc=Onboard conn=Fixed") #define PIN_PATCH_BASS_SPEAKER(n) \ PIN_PATCH_STRING(n, "as=3 misc=1 ctype=ATAPI loc=Onboard conn=Fixed") #define PIN_PATCH_MIC_IN(n) \ PIN_PATCH_STRING(n, "as=5 misc=9 color=Pink ctype=1/8 device=Mic loc=Rear") #define PIN_PATCH_MIC_INTERNAL(n) \ PIN_PATCH_STRING(n, "as=6 misc=1 ctype=Digital device=Mic loc=Internal conn=Fixed") #define PIN_PATCH_MIC_FRONT(n) \ PIN_PATCH_STRING(n, "as=4 misc=12 color=Pink ctype=1/8 device=Mic loc=Front") #define PIN_PATCH_LINE_IN(n) \ PIN_PATCH_STRING(n, "seq=1 as=3 color=Blue ctype=1/8 device=Line-in loc=Rear") #define PIN_PATCH_LINE_OUT(n) \ PIN_PATCH_STRING(n, "as=1 color=Green ctype=1/8 loc=Rear") #define PIN_PATCH_SPDIF_OUT(n) \ PIN_PATCH_STRING(n, "as=4 misc=1 color=Green ctype=Optical device=SPDIF-out loc=Rear") #define PIN_PATCH_JACK_WO_DETECT(n) \ PIN_PATCH_STRING(n, "seq=12 as=3 misc=1 color=Pink ctype=1/8 device=Mic loc=Rear") #define PIN_PATCH_HPMIC_WO_DETECT(n) \ PIN_PATCH_STRING(n, "seq=13 as=3 misc=1 color=Pink ctype=1/8 device=Mic loc=Rear") #define PIN_PATCH_HPMIC_WITH_DETECT(n) \ PIN_PATCH_STRING(n, "seq=12 as=3 color=Pink ctype=1/8 device=Mic loc=Rear") #define PIN_PATCH_CLFE(n) \ PIN_PATCH_STRING(n, "seq=1 as=1 misc=4 color=Black ctype=1/8 loc=Rear") #define PIN_PATCH_SURROUND(n) \ PIN_PATCH_STRING(n, "seq=2 as=1 misc=4 color=Orange ctype=1/8 loc=Rear") #define PIN_PATCH_SUBWOOFER(n) \ PIN_PATCH_STRING(n, "seq=1 as=1 misc=1 ctype=ATAPI device=Speaker loc=Onboard conn=Fixed") #define PIN_PATCH_DOCK_LINE_OUT(n) \ PIN_PATCH_STRING(n, "seq=15 as=3 color=Black ctype=1/8 loc=Ext-Rear") #define PIN_PATCH_DOCK_HP(n) \ PIN_PATCH_STRING(n, "seq=15 as=3 color=Black ctype=1/8 device=Headphones loc=Ext-Rear") #define PIN_PATCH_DOCK_MIC_IN(n) \ PIN_PATCH_STRING(n, "as=4 color=Black ctype=1/8 device=Mic loc=Ext-Left") enum { PIN_PATCH_TYPE_EOL, /* end-of-list */ PIN_PATCH_TYPE_STRING, PIN_PATCH_TYPE_MASK, PIN_PATCH_TYPE_OVERRIDE }; struct pin_patch_t { nid_t nid; /* nid to patch */ int type; /* patch type */ union { const char *string; /* patch string */ uint32_t mask[2]; /* pin config mask */ uint32_t override; /* pin config override */ } patch; }; struct pin_machine_model_t { uint32_t id; /* vendor machine id */ }; struct model_pin_patch_t { struct pin_machine_model_t *models; /* list of machine models */ - struct pin_patch_t *pin_patches; /* hardcoded overrides */ + struct pin_patch_t *pin_patches; /* hardcoded overrides */ void (*fixup_func)(struct hdaa_widget *); /* for future use */ }; struct hdaa_model_pin_patch_t { uint32_t id; /* the hdaa id */ struct model_pin_patch_t *patches; /* list of machine patches */ }; #endif /* PIN_PATCH_H */ diff --git a/sys/dev/sound/pci/hda/pin_patch_realtek.h b/sys/dev/sound/pci/hda/pin_patch_realtek.h index 804885659515..dfa262e3610a 100644 --- a/sys/dev/sound/pci/hda/pin_patch_realtek.h +++ b/sys/dev/sound/pci/hda/pin_patch_realtek.h @@ -1,1003 +1,1003 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2018 Khamba Staring * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef PIN_PATCH_REALTEK_H #define PIN_PATCH_REALTEK_H #include "hdac.h" #include "pin_patch.h" /* * Pin patches */ static struct pin_patch_t pin_patches_lg_lw20[] = { { .nid = 26, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_IN } }, { .nid = 27, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT } }, { } }; static struct pin_patch_t pin_patches_clevo_d900t_asus_m5200[] = { { .nid = 24, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_IN } }, { .nid = 25, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN } }, { .nid = 26, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_IN } }, { .nid = 27, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_IN } }, { .nid = 28, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_CD } }, { } }; static struct pin_patch_t pin_patches_msi_ms034a[] = { { .nid = 25, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED } }, { .nid = 28, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_CD | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED } }, { } }; static struct pin_patch_t pin_patches_asus_w6f[] = { { .nid = 11, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED } }, { .nid = 12, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED } }, { .nid = 14, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED } }, { .nid = 15, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_JACK } }, { .nid = 16, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED } }, { .nid = 31, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED } }, { .nid = 32, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED } }, { } }; static struct pin_patch_t pin_patches_uniwill_9075[] = { { .nid = 15, .type = PIN_PATCH_TYPE_MASK, .patch.mask = { HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK, HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_JACK } }, { } }; static struct pin_patch_t pin_patches_dell_xps_jack[] = { PIN_PATCH_JACK_WO_DETECT(24), PIN_PATCH_HPMIC_WO_DETECT(26), { } }; /* * List of models and patches */ static struct hdaa_model_pin_patch_t realtek_model_pin_patches[] = { { /**** CODEC: HDA_CODEC_ALC255 ****/ .id = HDA_CODEC_ALC255, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ASUS_X556UR_SUBVENDOR), PIN_SUBVENDOR(ASUS_X540LA_SUBVENDOR), PIN_SUBVENDOR(ASUS_Z550MA_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_JACK_WO_DETECT(25), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(DELL_9020M_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_JACK_WO_DETECT(25), PIN_PATCH_HPMIC_WO_DETECT(26), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC256 ****/ .id = HDA_CODEC_ALC256, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(DELL_9020M_SUBVENDOR), PIN_SUBVENDOR(DELL_7000_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(27, "seq=1 as=5 misc=1 ctype=Analog device=Speaker loc=Internal conn=Fixed"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ASUS_X540A_SUBVENDOR), PIN_SUBVENDOR(ASUS_X540SA_SUBVENDOR), PIN_SUBVENDOR(ASUS_X541SA_SUBVENDOR), PIN_SUBVENDOR(ASUS_X541UV_SUBVENDOR), PIN_SUBVENDOR(ASUS_Z550SA_SUBVENDOR), PIN_SUBVENDOR(ASUS_X705UD_SUBVENDOR), PIN_SUBVENDOR(ASUS_X555UB_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_MIC_INTERNAL(19), PIN_PATCH_STRING(25, "as=2 misc=1 color=Black ctype=1/8 device=Mic loc=Right"), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC260 ****/ .id = HDA_CODEC_ALC260, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(SONY_S5_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(16, "seq=15 device=Headphones"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(HP_DC5750_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(17, "as=1 misc=1 ctype=ATAPI device=Speaker loc=Internal conn=Fixed"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(SONY_VAIO_TX_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(15, "color=Green ctype=1/8 device=Headphones loc=Rear"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(SONY_81BBID_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(15, "as=2 color=Black ctype=1/8 device=Headphones loc=Rear"), PIN_PATCH_STRING(16, "seq=15 as=3 ctype=1/8"), PIN_PATCH_NOT_APPLICABLE(17), PIN_PATCH_STRING(18, "as=3 misc=9 color=Red ctype=1/8 device=Mic loc=Rear"), PIN_PATCH_NOT_APPLICABLE(19), PIN_PATCH_NOT_APPLICABLE(20), PIN_PATCH_NOT_APPLICABLE(21), PIN_PATCH_NOT_APPLICABLE(22), PIN_PATCH_NOT_APPLICABLE(23), PIN_PATCH_NOT_APPLICABLE(24), PIN_PATCH_NOT_APPLICABLE(25), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC262 ****/ .id = HDA_CODEC_ALC262, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(FS_H270_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(20, "as=1 misc=1 ctype=ATAPI device=Speaker loc=Onboard conn=Fixed"), PIN_PATCH_STRING(21, "seq=15 as=2 misc=4 color=Black ctype=1/8 device=Headphones loc=Front"), PIN_PATCH_STRING(22, "seq=15 as=1 misc=4 color=Black ctype=1/8 device=Headphones loc=Rear"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(FL_LB_S7110_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(21, "as=1 misc=1 ctype=Analog device=Speaker loc=Internal conn=Fixed"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(HP_Z200_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(22, "as=2 misc=1 ctype=ATAPI device=Speaker loc=Onboard conn=Fixed"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(TYAN_N6650W_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(22, "as=15 misc=1 color=White ctype=ATAPI device=AUX loc=Onboard"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(LENOVO_3000_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(22, "seq=1 as=2"), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC268 ****/ .id = HDA_CODEC_ALC268, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ACER_T5320_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(20, "as=1 seq=15"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ACER_TM_6293_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(30, "as=8 misc=1 color=Black ctype=Combo device=SPDIF-out loc=Rear"), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC269 ****/ .id = HDA_CODEC_ALC269, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(LENOVO_X1CRBN_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(21, "as=1 seq=15"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(LENOVO_T430_SUBVENDOR), PIN_SUBVENDOR(LENOVO_T430S_SUBVENDOR), PIN_SUBVENDOR(LENOVO_X230_SUBVENDOR), PIN_SUBVENDOR(LENOVO_X230T_SUBVENDOR), PIN_SUBVENDOR(LENOVO_T431S_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_DOCK_MIC_IN(25), PIN_PATCH_DOCK_HP(27), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ASUS_UX31A_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(33, "as=1 seq=15"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ASUS_G73JW_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_SUBWOOFER(23), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(FL_1475ID_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_DOCK_LINE_OUT(26), PIN_PATCH_DOCK_MIC_IN(27), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(FL_LB_U904_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_HPMIC_WITH_DETECT(25), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(FL_LB_T731_SUBVENDOR), PIN_SUBVENDOR(FL_LB_E725_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(33, "seq=15 as=2 color=Black ctype=1/8 device=Headphones loc=Front"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(DELL_05F4ID_SUBVENDOR), PIN_SUBVENDOR(DELL_05F5ID_SUBVENDOR), PIN_SUBVENDOR(DELL_05F6ID_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_JACK_WO_DETECT(25), PIN_PATCH_HPMIC_WO_DETECT(26), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ACER_V5_571G_SUBVENDOR), PIN_SUBVENDOR(ACER_V5_122P_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_JACK_WO_DETECT(25), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ASUS_X101CH_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(24, "seq=12 as=2 misc=8 color=Black ctype=1/8 device=Mic loc=Right"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ACER_AC700_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(18, "seq=15 as=2 misc=9 ctype=ATAPI device=Mic loc=Onboard conn=Fixed"), PIN_PATCH_STRING(20, "as=1 misc=1 ctype=ATAPI device=Speaker loc=Onboard conn=Fixed"), PIN_PATCH_STRING(24, "as=1 misc=1 ctype=ATAPI device=Speaker loc=Onboard conn=Fixed"), PIN_PATCH_STRING(30, "seq=14 as=1 color=Black ctype=Digital device=SPDIF-out loc=Left"), PIN_PATCH_STRING(33, "seq=15 as=1 color=Black ctype=1/8 device=Headphones loc=Left"), - { } + { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(HP_225AID_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(24, "seq=15 as=3 color=Black ctype=1/8 device=Line-in loc=Ext-Rear"), PIN_PATCH_STRING(27, "as=2 color=Black ctype=1/8 loc=Ext-Rear"), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC271 ****/ .id = HDA_CODEC_ALC271, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ACER_AO725_SUBVENDOR), PIN_SUBVENDOR(ACER_AO756_SUBVENDOR), PIN_SUBVENDOR(ACER_E1_472_SUBVENDOR), PIN_SUBVENDOR(ACER_E1_572_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(20, "as=1 misc=1 ctype=ATAPI device=Speaker loc=Onboard conn=Fixed"), PIN_PATCH_STRING(25, "as=2 misc=12 color=Pink ctype=1/8 device=Mic loc=Rear"), PIN_PATCH_STRING(27, "seq=15 as=2 misc=1 ctype=Analog device=Mic loc=Onboard conn=Fixed"), PIN_PATCH_HP_OUT(33), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC280 ****/ .id = HDA_CODEC_ALC280, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(HP_2272ID_SUBVENDOR), PIN_SUBVENDOR(HP_2273ID_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(27, "as=2 color=Black ctype=1/8 loc=Ext-Rear"), PIN_PATCH_HPMIC_WITH_DETECT(26), PIN_PATCH_STRING(24, "seq=15 as=3 color=Black ctype=1/8 device=Line-in loc=Ext-Rear"), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC282 ****/ .id = HDA_CODEC_ALC282, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ACER_V5_573G_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(18, "as=3 misc=1 ctype=Digital device=Mic loc=Internal conn=Fixed"), PIN_PATCH_STRING(20, "as=1 misc=1 ctype=Analog device=Speaker loc=Internal conn=Fixed"), PIN_PATCH_STRING(23, "seq=8 conn=None"), PIN_PATCH_NOT_APPLICABLE(24), PIN_PATCH_JACK_WO_DETECT(25), PIN_PATCH_NOT_APPLICABLE(26), PIN_PATCH_NOT_APPLICABLE(27), PIN_PATCH_STRING(29, "seq=13 as=2 misc=11 color=Pink ctype=DIN device=Other conn=None"), PIN_PATCH_NOT_APPLICABLE(30), PIN_PATCH_STRING(33, "seq=15 as=1 color=Black ctype=1/8 device=Headphones loc=Left"), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC286 ****/ .id = HDA_CODEC_ALC286, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(SONY_VAIO_P11_SUBVENDOR), PIN_SUBVENDOR(SONY_VAIO_P13_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_JACK_WO_DETECT(25), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC288 ****/ .id = HDA_CODEC_ALC288, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(DELL_E7240_SUBVENDOR), { } }, .pin_patches = pin_patches_dell_xps_jack }, { } } }, { /**** CODEC: HDA_CODEC_ALC290 ****/ .id = HDA_CODEC_ALC290, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(DELL_V5470_SUBVENDOR), PIN_SUBVENDOR(DELL_V5470_1_SUBVENDOR), PIN_SUBVENDOR(DELL_V5480_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(18, "as=4 misc=1 ctype=Digital device=Mic loc=Internal conn=Fixed"), PIN_PATCH_STRING(20, "as=1 misc=1 ctype=Analog device=Speaker loc=Internal conn=Fixed"), PIN_PATCH_STRING(21, "seq=15 as=1 color=Green ctype=1/8 device=Headphones loc=Front"), PIN_PATCH_STRING(23, "seq=2 as=1 misc=1 ctype=Analog device=Speaker loc=Internal conn=Fixed"), PIN_PATCH_JACK_WO_DETECT(26), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC292 ****/ .id = HDA_CODEC_ALC292, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(LENOVO_X120BS_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(21, "as=1 seq=15"), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC293 ****/ .id = HDA_CODEC_ALC293, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(DELL_064AID_SUBVENDOR), PIN_SUBVENDOR(DELL_064BID_SUBVENDOR), PIN_SUBVENDOR(DELL_06D9ID_SUBVENDOR), PIN_SUBVENDOR(DELL_06DAID_SUBVENDOR), PIN_SUBVENDOR(DELL_06DBID_SUBVENDOR), PIN_SUBVENDOR(DELL_06DDID_SUBVENDOR), PIN_SUBVENDOR(DELL_06DEID_SUBVENDOR), PIN_SUBVENDOR(DELL_06DFID_SUBVENDOR), PIN_SUBVENDOR(DELL_06E0ID_SUBVENDOR), PIN_SUBVENDOR(DELL_164AID_SUBVENDOR), PIN_SUBVENDOR(DELL_164BID_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_HPMIC_WO_DETECT(24), PIN_PATCH_JACK_WO_DETECT(26), - { } + { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC298 ****/ .id = HDA_CODEC_ALC298, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(DELL_XPS9560_SUBVENDOR), { } }, .pin_patches = pin_patches_dell_xps_jack }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(LENOVO_ALL_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_DOCK_LINE_OUT(23), PIN_PATCH_HP_OUT(33), { } }, }, { } } }, { /**** CODEC: HDA_CODEC_ALC861 ****/ .id = HDA_CODEC_ALC861, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ASUS_W6F_SUBVENDOR), { } }, .pin_patches = pin_patches_asus_w6f }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(UNIWILL_9075_SUBVENDOR), { } }, .pin_patches = pin_patches_uniwill_9075 }, { } } }, { /**** CODEC: HDA_CODEC_ALC880 ****/ .id = HDA_CODEC_ALC880, .patches = (struct model_pin_patch_t[]){ { // old patch .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(LG_LW20_SUBVENDOR), { } }, .pin_patches = pin_patches_lg_lw20 }, { // old patch .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(CLEVO_D900T_SUBVENDOR), PIN_SUBVENDOR(ASUS_M5200_SUBVENDOR), { } }, .pin_patches = pin_patches_clevo_d900t_asus_m5200 }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(LG_M1_SUBVENDOR), PIN_SUBVENDOR(LG_P1_SUBVENDOR), PIN_SUBVENDOR(LG_W1_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_NOT_APPLICABLE(22), PIN_PATCH_NOT_APPLICABLE(24), PIN_PATCH_NOT_APPLICABLE(26), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(COEUS_G610P_SUBVENDOR), PIN_SUBVENDOR(ARIMA_W810_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_NOT_APPLICABLE(23), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(FS_AMILO_M1437_SUBVENDOR), PIN_SUBVENDOR(FS_AMILO_M1451G_SUBVENDOR), PIN_SUBVENDOR(FS_AMILO_PI1556_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_HP_OUT(20), PIN_PATCH_SPEAKER(21), PIN_PATCH_BASS_SPEAKER(22), PIN_PATCH_NOT_APPLICABLE(23), PIN_PATCH_NOT_APPLICABLE(24), PIN_PATCH_MIC_IN(25), PIN_PATCH_NOT_APPLICABLE(26), PIN_PATCH_NOT_APPLICABLE(27), PIN_PATCH_NOT_APPLICABLE(28), PIN_PATCH_NOT_APPLICABLE(29), PIN_PATCH_NOT_APPLICABLE(30), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(UNIWILL_9054_SUBVENDOR), PIN_SUBVENDOR(FS_AMILO_XI1526_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_HP_OUT(20), PIN_PATCH_SPEAKER(21), PIN_PATCH_NOT_APPLICABLE(22), PIN_PATCH_NOT_APPLICABLE(23), PIN_PATCH_NOT_APPLICABLE(24), PIN_PATCH_MIC_IN(25), PIN_PATCH_NOT_APPLICABLE(26), PIN_PATCH_NOT_APPLICABLE(27), PIN_PATCH_NOT_APPLICABLE(28), PIN_PATCH_NOT_APPLICABLE(29), PIN_PATCH_SPDIF_OUT(30), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(LG_LW25_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(26, "seq=15 as=4 misc=4 color=Blue ctype=1/8 device=Line-in loc=Rear"), PIN_PATCH_STRING(27, "seq=15 as=3 color=Green ctype=1/8 device=Headphones loc=Left"), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(UNIWILL_9070_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_HP(20), PIN_PATCH_SPEAKER(21), PIN_PATCH_BASS_SPEAKER(22), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(UNIWILL_9050_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_NOT_APPLICABLE(23), PIN_PATCH_NOT_APPLICABLE(25), PIN_PATCH_NOT_APPLICABLE(27), PIN_PATCH_NOT_APPLICABLE(31), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ASUS_Z71V_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_SPEAKER(20), PIN_PATCH_HP(21), PIN_PATCH_NOT_APPLICABLE(22), PIN_PATCH_NOT_APPLICABLE(23), PIN_PATCH_MIC_IN(24), PIN_PATCH_NOT_APPLICABLE(25), PIN_PATCH_LINE_IN(26), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ASUS_W5A_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_HP(20), PIN_PATCH_NOT_APPLICABLE(21), PIN_PATCH_NOT_APPLICABLE(22), PIN_PATCH_NOT_APPLICABLE(23), PIN_PATCH_MIC_INTERNAL(24), PIN_PATCH_NOT_APPLICABLE(25), PIN_PATCH_NOT_APPLICABLE(26), PIN_PATCH_NOT_APPLICABLE(27), PIN_PATCH_NOT_APPLICABLE(28), PIN_PATCH_NOT_APPLICABLE(29), PIN_PATCH_STRING(30, "seq=14 as=1 misc=1 color=Black ctype=ATAPI device=SPDIF-out loc=Lid-In conn=Fixed"), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ACER_E310ID_SUBVENDOR), PIN_SUBVENDOR(SONY_81A0ID_SUBVENDOR), PIN_SUBVENDOR(SONY_81D6ID_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_LINE_OUT(20), PIN_PATCH_NOT_APPLICABLE(21), PIN_PATCH_NOT_APPLICABLE(22), PIN_PATCH_NOT_APPLICABLE(23), PIN_PATCH_STRING(24, "as=3 misc=12 color=Pink ctype=1/8 device=Mic loc=Rear"), PIN_PATCH_HP(25), PIN_PATCH_LINE_IN(26), PIN_PATCH_MIC_FRONT(27), PIN_PATCH_NOT_APPLICABLE(28), PIN_PATCH_NOT_APPLICABLE(29), PIN_PATCH_NOT_APPLICABLE(30), PIN_PATCH_NOT_APPLICABLE(31), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ACER_0070ID_SUBVENDOR), PIN_SUBVENDOR(ACER_E309ID_SUBVENDOR), PIN_SUBVENDOR(INTEL_D402ID_SUBVENDOR), PIN_SUBVENDOR(INTEL_E305ID_SUBVENDOR), PIN_SUBVENDOR(INTEL_E308ID_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_LINE_OUT(20), PIN_PATCH_NOT_APPLICABLE(21), PIN_PATCH_NOT_APPLICABLE(22), PIN_PATCH_NOT_APPLICABLE(23), PIN_PATCH_STRING(24, "as=3 misc=12 color=Pink ctype=1/8 device=Mic loc=Rear"), PIN_PATCH_HP(25), PIN_PATCH_LINE_IN(26), PIN_PATCH_MIC_FRONT(27), PIN_PATCH_NOT_APPLICABLE(28), PIN_PATCH_NOT_APPLICABLE(29), PIN_PATCH_STRING(30, "seq=14 as=1 misc=1 color=Black ctype=RCA device=SPDIF-out loc=Rear"), PIN_PATCH_NOT_APPLICABLE(31), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(GATEWAY_3032ID_SUBVENDOR), PIN_SUBVENDOR(GATEWAY_3033ID_SUBVENDOR), PIN_SUBVENDOR(GATEWAY_4039ID_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_LINE_OUT(20), PIN_PATCH_NOT_APPLICABLE(21), PIN_PATCH_CLFE(22), PIN_PATCH_SURROUND(23), PIN_PATCH_STRING(24, "as=3 misc=12 color=Pink ctype=1/8 device=Mic loc=Rear"), PIN_PATCH_HP(25), PIN_PATCH_LINE_IN(26), PIN_PATCH_MIC_FRONT(27), PIN_PATCH_NOT_APPLICABLE(28), PIN_PATCH_NOT_APPLICABLE(29), PIN_PATCH_NOT_APPLICABLE(30), PIN_PATCH_NOT_APPLICABLE(31), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(COEUS_A880ID_SUBVENDOR), PIN_SUBVENDOR(BIOSTAR_8202ID_SUBVENDOR), PIN_SUBVENDOR(EPOX_400DID_SUBVENDOR), PIN_SUBVENDOR(EPOX_EP5LDA_SUBVENDOR), PIN_SUBVENDOR(INTEL_A100ID_SUBVENDOR), PIN_SUBVENDOR(INTEL_D400ID_SUBVENDOR), PIN_SUBVENDOR(INTEL_D401ID_SUBVENDOR), PIN_SUBVENDOR(INTEL_E224ID_SUBVENDOR), PIN_SUBVENDOR(INTEL_E400ID_SUBVENDOR), PIN_SUBVENDOR(INTEL_E401ID_SUBVENDOR), PIN_SUBVENDOR(INTEL_E402ID_SUBVENDOR), PIN_SUBVENDOR(AOPEN_I915GMMHFS_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_LINE_OUT(20), PIN_PATCH_NOT_APPLICABLE(21), PIN_PATCH_CLFE(22), PIN_PATCH_SURROUND(23), PIN_PATCH_STRING(24, "as=3 misc=12 color=Pink ctype=1/8 device=Mic loc=Rear"), PIN_PATCH_HP(25), PIN_PATCH_LINE_IN(26), PIN_PATCH_MIC_FRONT(27), PIN_PATCH_NOT_APPLICABLE(28), PIN_PATCH_NOT_APPLICABLE(29), PIN_PATCH_STRING(30, "seq=14 as=1 misc=1 color=Black ctype=RCA device=SPDIF-out loc=Rear"), PIN_PATCH_NOT_APPLICABLE(31), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ACER_APFV_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_LINE_OUT(20), PIN_PATCH_SURROUND(21), PIN_PATCH_CLFE(22), PIN_PATCH_STRING(23, "seq=4 as=1 misc=4 color=Grey ctype=1/8 loc=Rear"), PIN_PATCH_STRING(24, "as=3 misc=12 color=Pink ctype=1/8 device=Mic loc=Rear"), PIN_PATCH_MIC_FRONT(25), PIN_PATCH_LINE_IN(26), PIN_PATCH_HP(27), PIN_PATCH_NOT_APPLICABLE(28), PIN_PATCH_NOT_APPLICABLE(29), PIN_PATCH_NOT_APPLICABLE(30), PIN_PATCH_NOT_APPLICABLE(31), { } } }, { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(ACER_0077ID_SUBVENDOR), PIN_SUBVENDOR(ACER_0078ID_SUBVENDOR), PIN_SUBVENDOR(ACER_0087ID_SUBVENDOR), PIN_SUBVENDOR(SHUTTLE_ST20G5_SUBVENDOR), PIN_SUBVENDOR(GB_K8_SUBVENDOR), PIN_SUBVENDOR(MSI_1150ID_SUBVENDOR), PIN_SUBVENDOR(FIC_P4M_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_LINE_OUT(20), PIN_PATCH_SURROUND(21), PIN_PATCH_CLFE(22), PIN_PATCH_STRING(23, "seq=4 as=1 misc=4 color=Grey ctype=1/8 loc=Rear"), PIN_PATCH_STRING(24, "as=3 misc=12 color=Pink ctype=1/8 device=Mic loc=Rear"), PIN_PATCH_MIC_FRONT(25), PIN_PATCH_LINE_IN(26), PIN_PATCH_HP(27), PIN_PATCH_NOT_APPLICABLE(28), PIN_PATCH_NOT_APPLICABLE(29), PIN_PATCH_STRING(30, "seq=14 as=1 misc=1 color=Black ctype=RCA device=SPDIF-out loc=Rear"), PIN_PATCH_NOT_APPLICABLE(31), { } } }, { } } }, { /**** CODEC: HDA_CODEC_ALC883 ****/ .id = HDA_CODEC_ALC883, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(MSI_MS034A_SUBVENDOR), { } }, .pin_patches = pin_patches_msi_ms034a }, { } } }, { /**** CODEC: HDA_CODEC_ALC892 ****/ .id = HDA_CODEC_ALC892, .patches = (struct model_pin_patch_t[]){ { .models = (struct pin_machine_model_t[]){ PIN_SUBVENDOR(INTEL_DH87RL_SUBVENDOR), { } }, .pin_patches = (struct pin_patch_t[]){ PIN_PATCH_STRING(27, "as=1 seq=15"), - { } + { } } }, { } } - } + } }; #endif /* PIN_PATCH_REALTEK_H */