diff --git a/stand/efi/loader/main.c b/stand/efi/loader/main.c index 58e5763f14ff..591e2e499622 100644 --- a/stand/efi/loader/main.c +++ b/stand/efi/loader/main.c @@ -1,1647 +1,1647 @@ /*- * Copyright (c) 2008-2010 Rui Paulo * Copyright (c) 2006 Marcel Moolenaar * All rights reserved. * * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "efizfs.h" #include "loader_efi.h" struct arch_switch archsw; /* MI/MD interface boundary */ EFI_GUID acpi = ACPI_TABLE_GUID; EFI_GUID acpi20 = ACPI_20_TABLE_GUID; EFI_GUID devid = DEVICE_PATH_PROTOCOL; EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; EFI_GUID mps = MPS_TABLE_GUID; EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; EFI_GUID smbios = SMBIOS_TABLE_GUID; EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; EFI_GUID hoblist = HOB_LIST_TABLE_GUID; EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; EFI_GUID esrt = ESRT_TABLE_GUID; EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; EFI_GUID fdtdtb = FDT_TABLE_GUID; EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; /* * Number of seconds to wait for a keystroke before exiting with failure * in the event no currdev is found. -2 means always break, -1 means * never break, 0 means poll once and then reboot, > 0 means wait for * that many seconds. "fail_timeout" can be set in the environment as * well. */ static int fail_timeout = 5; /* * Current boot variable */ UINT16 boot_current; /* * Image that we booted from. */ EFI_LOADED_IMAGE *boot_img; static bool has_keyboard(void) { EFI_STATUS status; EFI_DEVICE_PATH *path; EFI_HANDLE *hin, *hin_end, *walker; UINTN sz; bool retval = false; /* * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and * do the typical dance to get the right sized buffer. */ sz = 0; hin = NULL; status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); if (status == EFI_BUFFER_TOO_SMALL) { hin = (EFI_HANDLE *)malloc(sz); status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, hin); if (EFI_ERROR(status)) free(hin); } if (EFI_ERROR(status)) return retval; /* * Look at each of the handles. If it supports the device path protocol, * use it to get the device path for this handle. Then see if that * device path matches either the USB device path for keyboards or the * legacy device path for keyboards. */ hin_end = &hin[sz / sizeof(*hin)]; for (walker = hin; walker < hin_end; walker++) { status = OpenProtocolByHandle(*walker, &devid, (void **)&path); if (EFI_ERROR(status)) continue; while (!IsDevicePathEnd(path)) { /* * Check for the ACPI keyboard node. All PNP3xx nodes * are keyboards of different flavors. Note: It is * unclear of there's always a keyboard node when * there's a keyboard controller, or if there's only one * when a keyboard is detected at boot. */ if (DevicePathType(path) == ACPI_DEVICE_PATH && (DevicePathSubType(path) == ACPI_DP || DevicePathSubType(path) == ACPI_EXTENDED_DP)) { ACPI_HID_DEVICE_PATH *acpi; acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { retval = true; goto out; } /* * Check for USB keyboard node, if present. Unlike a * PS/2 keyboard, these definitely only appear when * connected to the system. */ } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && DevicePathSubType(path) == MSG_USB_CLASS_DP) { USB_CLASS_DEVICE_PATH *usb; usb = (USB_CLASS_DEVICE_PATH *)(void *)path; if (usb->DeviceClass == 3 && /* HID */ usb->DeviceSubClass == 1 && /* Boot devices */ usb->DeviceProtocol == 1) { /* Boot keyboards */ retval = true; goto out; } } path = NextDevicePathNode(path); } } out: free(hin); return retval; } static void set_currdev(const char *devname) { /* * Don't execute hooks here; we may need to try setting these more than * once here if we're probing for the ZFS pool we're supposed to boot. * The currdev hook is intended to just validate user input anyways, * while the loaddev hook makes it immutable once we've determined what * the proper currdev is. */ env_setenv("currdev", EV_VOLATILE | EV_NOHOOK, devname, efi_setcurrdev, env_nounset); env_setenv("loaddev", EV_VOLATILE | EV_NOHOOK, devname, env_noset, env_nounset); } static void set_currdev_devdesc(struct devdesc *currdev) { const char *devname; devname = efi_fmtdev(currdev); printf("Setting currdev to %s\n", devname); set_currdev(devname); } static void set_currdev_devsw(struct devsw *dev, int unit) { struct devdesc currdev; currdev.d_dev = dev; currdev.d_unit = unit; set_currdev_devdesc(&currdev); } static void set_currdev_pdinfo(pdinfo_t *dp) { /* * Disks are special: they have partitions. if the parent * pointer is non-null, we're a partition not a full disk * and we need to adjust currdev appropriately. */ if (dp->pd_devsw->dv_type == DEVT_DISK) { struct disk_devdesc currdev; currdev.dd.d_dev = dp->pd_devsw; if (dp->pd_parent == NULL) { currdev.dd.d_unit = dp->pd_unit; currdev.d_slice = D_SLICENONE; currdev.d_partition = D_PARTNONE; } else { currdev.dd.d_unit = dp->pd_parent->pd_unit; currdev.d_slice = dp->pd_unit; currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */ } set_currdev_devdesc((struct devdesc *)&currdev); } else { set_currdev_devsw(dp->pd_devsw, dp->pd_unit); } } static bool sanity_check_currdev(void) { struct stat st; return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 || #ifdef PATH_BOOTABLE_TOKEN stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */ #endif stat(PATH_KERNEL, &st) == 0); } #ifdef EFI_ZFS_BOOT static bool probe_zfs_currdev(uint64_t guid) { char *devname; struct zfs_devdesc currdev; char *buf = NULL; bool rv; currdev.dd.d_dev = &zfs_dev; currdev.dd.d_unit = 0; currdev.pool_guid = guid; currdev.root_guid = 0; set_currdev_devdesc((struct devdesc *)&currdev); devname = efi_fmtdev(&currdev); init_zfs_bootenv(devname); rv = sanity_check_currdev(); if (rv) { buf = malloc(VDEV_PAD_SIZE); if (buf != NULL) { if (zfs_nextboot(&currdev, buf, VDEV_PAD_SIZE) == 0) { printf("zfs nextboot: %s\n", buf); set_currdev(buf); } free(buf); } } return (rv); } #endif #ifdef MD_IMAGE_SIZE static bool probe_md_currdev(void) { extern struct devsw md_dev; bool rv; set_currdev_devsw(&md_dev, 0); rv = sanity_check_currdev(); if (!rv) printf("MD not present\n"); return (rv); } #endif static bool try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) { uint64_t guid; #ifdef EFI_ZFS_BOOT /* * If there's a zpool on this device, try it as a ZFS * filesystem, which has somewhat different setup than all * other types of fs due to imperfect loader integration. * This all stems from ZFS being both a device (zpool) and * a filesystem, plus the boot env feature. */ if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) return (probe_zfs_currdev(guid)); #endif /* * All other filesystems just need the pdinfo * initialized in the standard way. */ set_currdev_pdinfo(pp); return (sanity_check_currdev()); } /* * Sometimes we get filenames that are all upper case * and/or have backslashes in them. Filter all this out * if it looks like we need to do so. */ static void fix_dosisms(char *p) { while (*p) { if (isupper(*p)) *p = tolower(*p); else if (*p == '\\') *p = '/'; p++; } } #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; static int match_boot_info(char *boot_info, size_t bisz) { uint32_t attr; uint16_t fplen; size_t len; char *walker, *ep; EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; pdinfo_t *pp; CHAR16 *descr; char *kernel = NULL; FILEPATH_DEVICE_PATH *fp; struct stat st; CHAR16 *text; /* - * FreeBSD encodes it's boot loading path into the boot loader + * FreeBSD encodes its boot loading path into the boot loader * BootXXXX variable. We look for the last one in the path - * and use that to load the kernel. However, if we only fine + * and use that to load the kernel. However, if we only find * one DEVICE_PATH, then there's nothing specific and we should * fall back. * * In an ideal world, we'd look at the image handle we were * passed, match up with the loader we are and then return the * next one in the path. This would be most flexible and cover * many chain booting scenarios where you need to use this * boot loader to get to the next boot loader. However, that * doesn't work. We rarely have the path to the image booted * (just the device) so we can't count on that. So, we do the - * enxt best thing, we look through the device path(s) passed - * in the BootXXXX varaible. If there's only one, we return + * next best thing: we look through the device path(s) passed + * in the BootXXXX variable. If there's only one, we return * NOT_SPECIFIC. Otherwise, we look at the last one and try to * load that. If we can, we return BOOT_INFO_OK. Otherwise we * return BAD_CHOICE for the caller to sort out. */ if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) return NOT_SPECIFIC; walker = boot_info; ep = walker + bisz; memcpy(&attr, walker, sizeof(attr)); walker += sizeof(attr); memcpy(&fplen, walker, sizeof(fplen)); walker += sizeof(fplen); descr = (CHAR16 *)(intptr_t)walker; len = ucs2len(descr); walker += (len + 1) * sizeof(CHAR16); last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; edp = (EFI_DEVICE_PATH *)(walker + fplen); if ((char *)edp > ep) return NOT_SPECIFIC; while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { text = efi_devpath_name(dp); if (text != NULL) { printf(" BootInfo Path: %S\n", text); efi_free_devpath_name(text); } last_dp = dp; dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); } /* * If there's only one item in the list, then nothing was * specified. Or if the last path doesn't have a media * path in it. Those show up as various VenHw() nodes * which are basically opaque to us. Don't count those * as something specifc. */ if (last_dp == first_dp) { printf("Ignoring Boot%04x: Only one DP found\n", boot_current); return NOT_SPECIFIC; } if (efi_devpath_to_media_path(last_dp) == NULL) { printf("Ignoring Boot%04x: No Media Path\n", boot_current); return NOT_SPECIFIC; } /* * OK. At this point we either have a good path or a bad one. * Let's check. */ pp = efiblk_get_pdinfo_by_device_path(last_dp); if (pp == NULL) { printf("Ignoring Boot%04x: Device Path not found\n", boot_current); return BAD_CHOICE; } set_currdev_pdinfo(pp); if (!sanity_check_currdev()) { printf("Ignoring Boot%04x: sanity check failed\n", boot_current); return BAD_CHOICE; } /* * OK. We've found a device that matches, next we need to check the last * component of the path. If it's a file, then we set the default kernel * to that. Otherwise, just use this as the default root. * * Reminder: we're running very early, before we've parsed the defaults * file, so we may need to have a hack override. */ dp = efi_devpath_last_node(last_dp); if (DevicePathType(dp) != MEDIA_DEVICE_PATH || DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { printf("Using Boot%04x for root partition\n", boot_current); return (BOOT_INFO_OK); /* use currdir, default kernel */ } fp = (FILEPATH_DEVICE_PATH *)dp; ucs2_to_utf8(fp->PathName, &kernel); if (kernel == NULL) { printf("Not using Boot%04x: can't decode kernel\n", boot_current); return (BAD_CHOICE); } if (*kernel == '\\' || isupper(*kernel)) fix_dosisms(kernel); if (stat(kernel, &st) != 0) { free(kernel); printf("Not using Boot%04x: can't find %s\n", boot_current, kernel); return (BAD_CHOICE); } setenv("kernel", kernel, 1); free(kernel); text = efi_devpath_name(last_dp); if (text) { printf("Using Boot%04x %S + %s\n", boot_current, text, kernel); efi_free_devpath_name(text); } return (BOOT_INFO_OK); } /* * Look at the passed-in boot_info, if any. If we find it then we need * to see if we can find ourselves in the boot chain. If we can, and * there's another specified thing to boot next, assume that the file * is loaded from / and use that for the root filesystem. If can't * find the specified thing, we must fail the boot. If we're last on * the list, then we fallback to looking for the first available / * candidate (ZFS, if there's a bootable zpool, otherwise a UFS * partition that has either /boot/defaults/loader.conf on it or * /boot/kernel/kernel (the default kernel) that we can use. * * We always fail if we can't find the right thing. However, as * a concession to buggy UEFI implementations, like u-boot, if * we have determined that the host is violating the UEFI boot * manager protocol, we'll signal the rest of the program that * a drop to the OK boot loader prompt is possible. */ static int find_currdev(bool do_bootmgr, bool is_last, char *boot_info, size_t boot_info_sz) { pdinfo_t *dp, *pp; EFI_DEVICE_PATH *devpath, *copy; EFI_HANDLE h; CHAR16 *text; struct devsw *dev; int unit; uint64_t extra; int rv; char *rootdev; /* * First choice: if rootdev is already set, use that, even if * it's wrong. */ rootdev = getenv("rootdev"); if (rootdev != NULL) { printf(" Setting currdev to configured rootdev %s\n", rootdev); set_currdev(rootdev); return (0); } /* * Second choice: If uefi_rootdev is set, translate that UEFI device * path to the loader's internal name and use that. */ do { rootdev = getenv("uefi_rootdev"); if (rootdev == NULL) break; devpath = efi_name_to_devpath(rootdev); if (devpath == NULL) break; dp = efiblk_get_pdinfo_by_device_path(devpath); efi_devpath_free(devpath); if (dp == NULL) break; printf(" Setting currdev to UEFI path %s\n", rootdev); set_currdev_pdinfo(dp); return (0); } while (0); /* * Third choice: If we can find out image boot_info, and there's * a follow-on boot image in that boot_info, use that. In this * case root will be the partition specified in that image and * we'll load the kernel specified by the file path. Should there * not be a filepath, we use the default. This filepath overrides * loader.conf. */ if (do_bootmgr) { rv = match_boot_info(boot_info, boot_info_sz); switch (rv) { case BOOT_INFO_OK: /* We found it */ return (0); case BAD_CHOICE: /* specified file not found -> error */ /* XXX do we want to have an escape hatch for last in boot order? */ return (ENOENT); } /* Nothing specified, try normal match */ } #ifdef EFI_ZFS_BOOT /* * Did efi_zfs_probe() detect the boot pool? If so, use the zpool * it found, if it's sane. ZFS is the only thing that looks for * disks and pools to boot. This may change in the future, however, * if we allow specifying which pool to boot from via UEFI variables * rather than the bootenv stuff that FreeBSD uses today. */ if (pool_guid != 0) { printf("Trying ZFS pool\n"); if (probe_zfs_currdev(pool_guid)) return (0); } #endif /* EFI_ZFS_BOOT */ #ifdef MD_IMAGE_SIZE /* * If there is an embedded MD, try to use that. */ printf("Trying MD\n"); if (probe_md_currdev()) return (0); #endif /* MD_IMAGE_SIZE */ /* * Try to find the block device by its handle based on the * image we're booting. If we can't find a sane partition, * search all the other partitions of the disk. We do not * search other disks because it's a violation of the UEFI * boot protocol to do so. We fail and let UEFI go on to * the next candidate. */ dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle); if (dp != NULL) { text = efi_devpath_name(dp->pd_devpath); if (text != NULL) { printf("Trying ESP: %S\n", text); efi_free_devpath_name(text); } set_currdev_pdinfo(dp); if (sanity_check_currdev()) return (0); if (dp->pd_parent != NULL) { pdinfo_t *espdp = dp; dp = dp->pd_parent; STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { /* Already tried the ESP */ if (espdp == pp) continue; /* * Roll up the ZFS special case * for those partitions that have * zpools on them. */ text = efi_devpath_name(pp->pd_devpath); if (text != NULL) { printf("Trying: %S\n", text); efi_free_devpath_name(text); } if (try_as_currdev(dp, pp)) return (0); } } } /* * Try the device handle from our loaded image first. If that * fails, use the device path from the loaded image and see if * any of the nodes in that path match one of the enumerated * handles. Currently, this handle list is only for netboot. */ if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) { set_currdev_devsw(dev, unit); if (sanity_check_currdev()) return (0); } copy = NULL; devpath = efi_lookup_image_devpath(IH); while (devpath != NULL) { h = efi_devpath_handle(devpath); if (h == NULL) break; free(copy); copy = NULL; if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { set_currdev_devsw(dev, unit); if (sanity_check_currdev()) return (0); } devpath = efi_lookup_devpath(h); if (devpath != NULL) { copy = efi_devpath_trim(devpath); devpath = copy; } } free(copy); return (ENOENT); } static bool interactive_interrupt(const char *msg) { time_t now, then, last; last = 0; now = then = getsecs(); printf("%s\n", msg); if (fail_timeout == -2) /* Always break to OK */ return (true); if (fail_timeout == -1) /* Never break to OK */ return (false); do { if (last != now) { printf("press any key to interrupt reboot in %d seconds\r", fail_timeout - (int)(now - then)); last = now; } /* XXX no pause or timeout wait for char */ if (ischar()) return (true); now = getsecs(); } while (now - then < fail_timeout); return (false); } static int parse_args(int argc, CHAR16 *argv[]) { int i, j, howto; bool vargood; char var[128]; /* * Parse the args to set the console settings, etc * boot1.efi passes these in, if it can read /boot.config or /boot/config * or iPXE may be setup to pass these in. Or the optional argument in the * boot environment was used to pass these arguments in (in which case * neither /boot.config nor /boot/config are consulted). * * Loop through the args, and for each one that contains an '=' that is * not the first character, add it to the environment. This allows * loader and kernel env vars to be passed on the command line. Convert * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this * method is flawed for non-ASCII characters). */ howto = 0; for (i = 1; i < argc; i++) { cpy16to8(argv[i], var, sizeof(var)); howto |= boot_parse_arg(var); } return (howto); } static void setenv_int(const char *key, int val) { char buf[20]; snprintf(buf, sizeof(buf), "%d", val); setenv(key, buf, 1); } /* * Parse ConOut (the list of consoles active) and see if we can find a * serial port and/or a video port. It would be nice to also walk the * ACPI name space to map the UID for the serial port to a port. The * latter is especially hard. */ static int parse_uefi_con_out(void) { int how, rv; int vid_seen = 0, com_seen = 0, seen = 0; size_t sz; char buf[4096], *ep; EFI_DEVICE_PATH *node; ACPI_HID_DEVICE_PATH *acpi; UART_DEVICE_PATH *uart; bool pci_pending; how = 0; sz = sizeof(buf); rv = efi_global_getenv("ConOut", buf, &sz); if (rv != EFI_SUCCESS) { /* If we don't have any ConOut default to serial */ how = RB_SERIAL; goto out; } ep = buf + sz; node = (EFI_DEVICE_PATH *)buf; while ((char *)node < ep) { if (IsDevicePathEndType(node)) { if (pci_pending && vid_seen == 0) vid_seen = ++seen; } pci_pending = false; if (DevicePathType(node) == ACPI_DEVICE_PATH && DevicePathSubType(node) == ACPI_DP) { /* Check for Serial node */ acpi = (void *)node; if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { setenv_int("efi_8250_uid", acpi->UID); com_seen = ++seen; } } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && DevicePathSubType(node) == MSG_UART_DP) { uart = (void *)node; setenv_int("efi_com_speed", uart->BaudRate); } else if (DevicePathType(node) == ACPI_DEVICE_PATH && DevicePathSubType(node) == ACPI_ADR_DP) { /* Check for AcpiAdr() Node for video */ vid_seen = ++seen; } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && DevicePathSubType(node) == HW_PCI_DP) { /* * Note, vmware fusion has a funky console device * PciRoot(0x0)/Pci(0xf,0x0) * which we can only detect at the end since we also * have to cope with: * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) * so only match it if it's last. */ pci_pending = true; } node = NextDevicePathNode(node); } /* * Truth table for RB_MULTIPLE | RB_SERIAL * Value Result * 0 Use only video console * RB_SERIAL Use only serial console * RB_MULTIPLE Use both video and serial console * (but video is primary so gets rc messages) * both Use both video and serial console * (but serial is primary so gets rc messages) * * Try to honor this as best we can. If only one of serial / video * found, then use that. Otherwise, use the first one we found. * This also implies if we found nothing, default to video. */ how = 0; if (vid_seen && com_seen) { how |= RB_MULTIPLE; if (com_seen < vid_seen) how |= RB_SERIAL; } else if (com_seen) how |= RB_SERIAL; out: return (how); } void parse_loader_efi_config(EFI_HANDLE h, const char *env_fn) { pdinfo_t *dp; struct stat st; int fd = -1; char *env = NULL; dp = efiblk_get_pdinfo_by_handle(h); if (dp == NULL) return; set_currdev_pdinfo(dp); if (stat(env_fn, &st) != 0) return; fd = open(env_fn, O_RDONLY); if (fd == -1) return; env = malloc(st.st_size + 1); if (env == NULL) goto out; if (read(fd, env, st.st_size) != st.st_size) goto out; env[st.st_size] = '\0'; boot_parse_cmdline(env); out: free(env); close(fd); } static void read_loader_env(const char *name, char *def_fn, bool once) { UINTN len; char *fn, *freeme = NULL; len = 0; fn = def_fn; if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) { freeme = fn = malloc(len + 1); if (fn != NULL) { if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) { free(fn); fn = NULL; printf( "Can't fetch FreeBSD::%s we know is there\n", name); } else { /* * if tagged as 'once' delete the env variable so we * only use it once. */ if (once) efi_freebsd_delenv(name); /* * We malloced 1 more than len above, then redid the call. * so now we have room at the end of the string to NUL terminate * it here, even if the typical idium would have '- 1' here to * not overflow. len should be the same on return both times. */ fn[len] = '\0'; } } else { printf( "Can't allocate %d bytes to fetch FreeBSD::%s env var\n", len, name); } } if (fn) { printf(" Reading loader env vars from %s\n", fn); parse_loader_efi_config(boot_img->DeviceHandle, fn); } } caddr_t ptov(uintptr_t x) { return ((caddr_t)x); } EFI_STATUS main(int argc, CHAR16 *argv[]) { EFI_GUID *guid; int howto, i, uhowto; UINTN k; bool has_kbd, is_last; char *s; EFI_DEVICE_PATH *imgpath; CHAR16 *text; EFI_STATUS rv; size_t sz, bosz = 0, bisz = 0; UINT16 boot_order[100]; char boot_info[4096]; char buf[32]; bool uefi_boot_mgr; archsw.arch_autoload = efi_autoload; archsw.arch_getdev = efi_getdev; archsw.arch_copyin = efi_copyin; archsw.arch_copyout = efi_copyout; #ifdef __amd64__ archsw.arch_hypervisor = x86_hypervisor; #endif archsw.arch_readin = efi_readin; archsw.arch_zfs_probe = efi_zfs_probe; /* Get our loaded image protocol interface structure. */ (void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img); /* * Chicken-and-egg problem; we want to have console output early, but * some console attributes may depend on reading from eg. the boot * device, which we can't do yet. We can use printf() etc. once this is * done. So, we set it to the efi console, then call console init. This * gets us printf early, but also primes the pump for all future console * changes to take effect, regardless of where they come from. */ setenv("console", "efi", 1); cons_probe(); /* Init the time source */ efi_time_init(); /* * Initialise the block cache. Set the upper limit. */ bcache_init(32768, 512); /* * Scan the BLOCK IO MEDIA handles then * march through the device switch probing for things. */ i = efipart_inithandles(); if (i != 0 && i != ENOENT) { printf("efipart_inithandles failed with ERRNO %d, expect " "failures\n", i); } for (i = 0; devsw[i] != NULL; i++) if (devsw[i]->dv_init != NULL) (devsw[i]->dv_init)(); /* * Detect console settings two different ways: one via the command * args (eg -h) or via the UEFI ConOut variable. */ has_kbd = has_keyboard(); howto = parse_args(argc, argv); if (!has_kbd && (howto & RB_PROBE)) howto |= RB_SERIAL | RB_MULTIPLE; howto &= ~RB_PROBE; uhowto = parse_uefi_con_out(); /* * Read additional environment variables from the boot device's * "LoaderEnv" file. Any boot loader environment variable may be set * there, which are subtly different than loader.conf variables. Only * the 'simple' ones may be set so things like foo_load="YES" won't work * for two reasons. First, the parser is simplistic and doesn't grok * quotes. Second, because the variables that cause an action to happen * are parsed by the lua, 4th or whatever code that's not yet * loaded. This is relative to the root directory when loader.efi is * loaded off the UFS root drive (when chain booted), or from the ESP * when directly loaded by the BIOS. * * We also read in NextLoaderEnv if it was specified. This allows next boot * functionality to be implemented and to override anything in LoaderEnv. */ read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false); read_loader_env("NextLoaderEnv", NULL, true); /* * We now have two notions of console. howto should be viewed as * overrides. If console is already set, don't set it again. */ #define VIDEO_ONLY 0 #define SERIAL_ONLY RB_SERIAL #define VID_SER_BOTH RB_MULTIPLE #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) #define CON_MASK (RB_SERIAL | RB_MULTIPLE) if (strcmp(getenv("console"), "efi") == 0) { if ((howto & CON_MASK) == 0) { /* No override, uhowto is controlling and efi cons is perfect */ howto = howto | (uhowto & CON_MASK); } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { /* override matches what UEFI told us, efi console is perfect */ } else if ((uhowto & (CON_MASK)) != 0) { /* * We detected a serial console on ConOut. All possible * overrides include serial. We can't really override what efi * gives us, so we use it knowing it's the best choice. */ /* Do nothing */ } else { /* * We detected some kind of serial in the override, but ConOut * has no serial, so we have to sort out which case it really is. */ switch (howto & CON_MASK) { case SERIAL_ONLY: setenv("console", "comconsole", 1); break; case VID_SER_BOTH: setenv("console", "efi comconsole", 1); break; case SER_VID_BOTH: setenv("console", "comconsole efi", 1); break; /* case VIDEO_ONLY can't happen -- it's the first if above */ } } } /* * howto is set now how we want to export the flags to the kernel, so * set the env based on it. */ boot_howto_to_env(howto); if (efi_copy_init()) { printf("failed to allocate staging area\n"); return (EFI_BUFFER_TOO_SMALL); } if ((s = getenv("fail_timeout")) != NULL) fail_timeout = strtol(s, NULL, 10); printf("%s\n", bootprog_info); printf(" Command line arguments:"); for (i = 0; i < argc; i++) printf(" %S", argv[i]); printf("\n"); printf(" Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase); printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, ST->Hdr.Revision & 0xffff); printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); printf(" Console: %s (%#x)\n", getenv("console"), howto); /* Determine the devpath of our image so we can prefer it. */ text = efi_devpath_name(boot_img->FilePath); if (text != NULL) { printf(" Load Path: %S\n", text); efi_setenv_freebsd_wcs("LoaderPath", text); efi_free_devpath_name(text); } rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid, (void **)&imgpath); if (rv == EFI_SUCCESS) { text = efi_devpath_name(imgpath); if (text != NULL) { printf(" Load Device: %S\n", text); efi_setenv_freebsd_wcs("LoaderDev", text); efi_free_devpath_name(text); } } if (getenv("uefi_ignore_boot_mgr") != NULL) { printf(" Ignoring UEFI boot manager\n"); uefi_boot_mgr = false; } else { uefi_boot_mgr = true; boot_current = 0; sz = sizeof(boot_current); rv = efi_global_getenv("BootCurrent", &boot_current, &sz); if (rv == EFI_SUCCESS) printf(" BootCurrent: %04x\n", boot_current); else { boot_current = 0xffff; uefi_boot_mgr = false; } sz = sizeof(boot_order); rv = efi_global_getenv("BootOrder", &boot_order, &sz); if (rv == EFI_SUCCESS) { printf(" BootOrder:"); for (i = 0; i < sz / sizeof(boot_order[0]); i++) printf(" %04x%s", boot_order[i], boot_order[i] == boot_current ? "[*]" : ""); printf("\n"); is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; bosz = sz; } else if (uefi_boot_mgr) { /* * u-boot doesn't set BootOrder, but otherwise participates in the * boot manager protocol. So we fake it here and don't consider it * a failure. */ bosz = sizeof(boot_order[0]); boot_order[0] = boot_current; is_last = true; } } /* * Next, find the boot info structure the UEFI boot manager is * supposed to setup. We need this so we can walk through it to * find where we are in the booting process and what to try to * boot next. */ if (uefi_boot_mgr) { snprintf(buf, sizeof(buf), "Boot%04X", boot_current); sz = sizeof(boot_info); rv = efi_global_getenv(buf, &boot_info, &sz); if (rv == EFI_SUCCESS) bisz = sz; else uefi_boot_mgr = false; } /* * Disable the watchdog timer. By default the boot manager sets * the timer to 5 minutes before invoking a boot option. If we * want to return to the boot manager, we have to disable the * watchdog timer and since we're an interactive program, we don't * want to wait until the user types "quit". The timer may have * fired by then. We don't care if this fails. It does not prevent * normal functioning in any way... */ BS->SetWatchdogTimer(0, 0, 0, NULL); /* * Initialize the trusted/forbidden certificates from UEFI. * They will be later used to verify the manifest(s), * which should contain hashes of verified files. * This needs to be initialized before any configuration files * are loaded. */ #ifdef EFI_SECUREBOOT ve_efi_init(); #endif /* * Try and find a good currdev based on the image that was booted. * It might be desirable here to have a short pause to allow falling * through to the boot loader instead of returning instantly to follow * the boot protocol and also allow an escape hatch for users wishing * to try something different. */ if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0) if (uefi_boot_mgr && !interactive_interrupt("Failed to find bootable partition")) return (EFI_NOT_FOUND); efi_init_environment(); #if !defined(__arm__) for (k = 0; k < ST->NumberOfTableEntries; k++) { guid = &ST->ConfigurationTable[k].VendorGuid; if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { char buf[40]; snprintf(buf, sizeof(buf), "%p", ST->ConfigurationTable[k].VendorTable); setenv("hint.smbios.0.mem", buf, 1); smbios_detect(ST->ConfigurationTable[k].VendorTable); break; } } #endif interact(); /* doesn't return */ return (EFI_SUCCESS); /* keep compiler happy */ } COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); static int command_poweroff(int argc __unused, char *argv[] __unused) { int i; for (i = 0; devsw[i] != NULL; ++i) if (devsw[i]->dv_cleanup != NULL) (devsw[i]->dv_cleanup)(); RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); /* NOTREACHED */ return (CMD_ERROR); } COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); static int command_reboot(int argc, char *argv[]) { int i; for (i = 0; devsw[i] != NULL; ++i) if (devsw[i]->dv_cleanup != NULL) (devsw[i]->dv_cleanup)(); RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); /* NOTREACHED */ return (CMD_ERROR); } COMMAND_SET(quit, "quit", "exit the loader", command_quit); static int command_quit(int argc, char *argv[]) { exit(0); return (CMD_OK); } COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); static int command_memmap(int argc __unused, char *argv[] __unused) { UINTN sz; EFI_MEMORY_DESCRIPTOR *map, *p; UINTN key, dsz; UINT32 dver; EFI_STATUS status; int i, ndesc; char line[80]; sz = 0; status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); if (status != EFI_BUFFER_TOO_SMALL) { printf("Can't determine memory map size\n"); return (CMD_ERROR); } map = malloc(sz); status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); if (EFI_ERROR(status)) { printf("Can't read memory map\n"); return (CMD_ERROR); } ndesc = sz / dsz; snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", "Type", "Physical", "Virtual", "#Pages", "Attr"); pager_open(); if (pager_output(line)) { pager_close(); return (CMD_OK); } for (i = 0, p = map; i < ndesc; i++, p = NextMemoryDescriptor(p, dsz)) { snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ", efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart, (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); if (pager_output(line)) break; if (p->Attribute & EFI_MEMORY_UC) printf("UC "); if (p->Attribute & EFI_MEMORY_WC) printf("WC "); if (p->Attribute & EFI_MEMORY_WT) printf("WT "); if (p->Attribute & EFI_MEMORY_WB) printf("WB "); if (p->Attribute & EFI_MEMORY_UCE) printf("UCE "); if (p->Attribute & EFI_MEMORY_WP) printf("WP "); if (p->Attribute & EFI_MEMORY_RP) printf("RP "); if (p->Attribute & EFI_MEMORY_XP) printf("XP "); if (p->Attribute & EFI_MEMORY_NV) printf("NV "); if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) printf("MR "); if (p->Attribute & EFI_MEMORY_RO) printf("RO "); if (pager_output("\n")) break; } pager_close(); return (CMD_OK); } COMMAND_SET(configuration, "configuration", "print configuration tables", command_configuration); static int command_configuration(int argc, char *argv[]) { UINTN i; char *name; printf("NumberOfTableEntries=%lu\n", (unsigned long)ST->NumberOfTableEntries); for (i = 0; i < ST->NumberOfTableEntries; i++) { EFI_GUID *guid; printf(" "); guid = &ST->ConfigurationTable[i].VendorGuid; if (efi_guid_to_name(guid, &name) == true) { printf(name); free(name); } else { printf("Error while translating UUID to name"); } printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); } return (CMD_OK); } COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); static int command_mode(int argc, char *argv[]) { UINTN cols, rows; unsigned int mode; int i; char *cp; char rowenv[8]; EFI_STATUS status; SIMPLE_TEXT_OUTPUT_INTERFACE *conout; extern void HO(void); conout = ST->ConOut; if (argc > 1) { mode = strtol(argv[1], &cp, 0); if (cp[0] != '\0') { printf("Invalid mode\n"); return (CMD_ERROR); } status = conout->QueryMode(conout, mode, &cols, &rows); if (EFI_ERROR(status)) { printf("invalid mode %d\n", mode); return (CMD_ERROR); } status = conout->SetMode(conout, mode); if (EFI_ERROR(status)) { printf("couldn't set mode %d\n", mode); return (CMD_ERROR); } sprintf(rowenv, "%u", (unsigned)rows); setenv("LINES", rowenv, 1); HO(); /* set cursor */ return (CMD_OK); } printf("Current mode: %d\n", conout->Mode->Mode); for (i = 0; i <= conout->Mode->MaxMode; i++) { status = conout->QueryMode(conout, i, &cols, &rows); if (EFI_ERROR(status)) continue; printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, (unsigned)rows); } if (i != 0) printf("Select a mode with the command \"mode \"\n"); return (CMD_OK); } COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); static int command_lsefi(int argc __unused, char *argv[] __unused) { char *name; EFI_HANDLE *buffer = NULL; EFI_HANDLE handle; UINTN bufsz = 0, i, j; EFI_STATUS status; int ret = 0; status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); if (status != EFI_BUFFER_TOO_SMALL) { snprintf(command_errbuf, sizeof (command_errbuf), "unexpected error: %lld", (long long)status); return (CMD_ERROR); } if ((buffer = malloc(bufsz)) == NULL) { sprintf(command_errbuf, "out of memory"); return (CMD_ERROR); } status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); if (EFI_ERROR(status)) { free(buffer); snprintf(command_errbuf, sizeof (command_errbuf), "LocateHandle() error: %lld", (long long)status); return (CMD_ERROR); } pager_open(); for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { UINTN nproto = 0; EFI_GUID **protocols = NULL; handle = buffer[i]; printf("Handle %p", handle); if (pager_output("\n")) break; /* device path */ status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); if (EFI_ERROR(status)) { snprintf(command_errbuf, sizeof (command_errbuf), "ProtocolsPerHandle() error: %lld", (long long)status); continue; } for (j = 0; j < nproto; j++) { if (efi_guid_to_name(protocols[j], &name) == true) { printf(" %s", name); free(name); } else { printf("Error while translating UUID to name"); } if ((ret = pager_output("\n")) != 0) break; } BS->FreePool(protocols); if (ret != 0) break; } pager_close(); free(buffer); return (CMD_OK); } #ifdef LOADER_FDT_SUPPORT extern int command_fdt_internal(int argc, char *argv[]); /* * Since proper fdt command handling function is defined in fdt_loader_cmd.c, * and declaring it as extern is in contradiction with COMMAND_SET() macro * (which uses static pointer), we're defining wrapper function, which * calls the proper fdt handling routine. */ static int command_fdt(int argc, char *argv[]) { return (command_fdt_internal(argc, argv)); } COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); #endif /* * Chain load another efi loader. */ static int command_chain(int argc, char *argv[]) { EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; EFI_HANDLE loaderhandle; EFI_LOADED_IMAGE *loaded_image; EFI_STATUS status; struct stat st; struct devdesc *dev; char *name, *path; void *buf; int fd; if (argc < 2) { command_errmsg = "wrong number of arguments"; return (CMD_ERROR); } name = argv[1]; if ((fd = open(name, O_RDONLY)) < 0) { command_errmsg = "no such file"; return (CMD_ERROR); } #ifdef LOADER_VERIEXEC if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) { sprintf(command_errbuf, "can't verify: %s", name); close(fd); return (CMD_ERROR); } #endif if (fstat(fd, &st) < -1) { command_errmsg = "stat failed"; close(fd); return (CMD_ERROR); } status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); if (status != EFI_SUCCESS) { command_errmsg = "failed to allocate buffer"; close(fd); return (CMD_ERROR); } if (read(fd, buf, st.st_size) != st.st_size) { command_errmsg = "error while reading the file"; (void)BS->FreePool(buf); close(fd); return (CMD_ERROR); } close(fd); status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); (void)BS->FreePool(buf); if (status != EFI_SUCCESS) { command_errmsg = "LoadImage failed"; return (CMD_ERROR); } status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID, (void **)&loaded_image); if (argc > 2) { int i, len = 0; CHAR16 *argp; for (i = 2; i < argc; i++) len += strlen(argv[i]) + 1; len *= sizeof (*argp); loaded_image->LoadOptions = argp = malloc (len); loaded_image->LoadOptionsSize = len; for (i = 2; i < argc; i++) { char *ptr = argv[i]; while (*ptr) *(argp++) = *(ptr++); *(argp++) = ' '; } *(--argv) = 0; } if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { #ifdef EFI_ZFS_BOOT struct zfs_devdesc *z_dev; #endif struct disk_devdesc *d_dev; pdinfo_t *hd, *pd; switch (dev->d_dev->dv_type) { #ifdef EFI_ZFS_BOOT case DEVT_ZFS: z_dev = (struct zfs_devdesc *)dev; loaded_image->DeviceHandle = efizfs_get_handle_by_guid(z_dev->pool_guid); break; #endif case DEVT_NET: loaded_image->DeviceHandle = efi_find_handle(dev->d_dev, dev->d_unit); break; default: hd = efiblk_get_pdinfo(dev); if (STAILQ_EMPTY(&hd->pd_part)) { loaded_image->DeviceHandle = hd->pd_handle; break; } d_dev = (struct disk_devdesc *)dev; STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { /* * d_partition should be 255 */ if (pd->pd_unit == (uint32_t)d_dev->d_slice) { loaded_image->DeviceHandle = pd->pd_handle; break; } } break; } } dev_cleanup(); status = BS->StartImage(loaderhandle, NULL, NULL); if (status != EFI_SUCCESS) { command_errmsg = "StartImage failed"; free(loaded_image->LoadOptions); loaded_image->LoadOptions = NULL; status = BS->UnloadImage(loaded_image); return (CMD_ERROR); } return (CMD_ERROR); /* not reached */ } COMMAND_SET(chain, "chain", "chain load file", command_chain); extern struct in_addr servip; static int command_netserver(int argc, char *argv[]) { char *proto; n_long rootaddr; if (argc > 2) { command_errmsg = "wrong number of arguments"; return (CMD_ERROR); } if (argc < 2) { proto = netproto == NET_TFTP ? "tftp://" : "nfs://"; printf("Netserver URI: %s%s%s\n", proto, intoa(rootip.s_addr), rootpath); return (CMD_OK); } if (argc == 2) { strncpy(rootpath, argv[1], sizeof(rootpath)); rootpath[sizeof(rootpath) -1] = '\0'; if ((rootaddr = net_parse_rootpath()) != INADDR_NONE) servip.s_addr = rootip.s_addr = rootaddr; return (CMD_OK); } return (CMD_ERROR); /* not reached */ } COMMAND_SET(netserver, "netserver", "change or display netserver URI", command_netserver);