diff --git a/sys/netinet/in_pcb.c b/sys/netinet/in_pcb.c
index 5adac0fddddf..8232003b3808 100644
--- a/sys/netinet/in_pcb.c
+++ b/sys/netinet/in_pcb.c
@@ -1,3593 +1,3598 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1991, 1993, 1995
  *	The Regents of the University of California.
  * Copyright (c) 2007-2009 Robert N. M. Watson
  * Copyright (c) 2010-2011 Juniper Networks, Inc.
  * All rights reserved.
  *
  * Portions of this software were developed by Robert N. M. Watson under
  * contract to Juniper Networks, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_ddb.h"
 #include "opt_ipsec.h"
 #include "opt_inet.h"
 #include "opt_inet6.h"
 #include "opt_ratelimit.h"
 #include "opt_pcbgroup.h"
 #include "opt_route.h"
 #include "opt_rss.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mbuf.h>
 #include <sys/callout.h>
 #include <sys/eventhandler.h>
 #include <sys/domain.h>
 #include <sys/protosw.h>
 #include <sys/rmlock.h>
 #include <sys/smp.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/sockio.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/refcount.h>
 #include <sys/jail.h>
 #include <sys/kernel.h>
 #include <sys/sysctl.h>
 
 #ifdef DDB
 #include <ddb/ddb.h>
 #endif
 
 #include <vm/uma.h>
 #include <vm/vm.h>
 
 #include <net/if.h>
 #include <net/if_var.h>
 #include <net/if_types.h>
 #include <net/if_llatbl.h>
 #include <net/route.h>
 #include <net/rss_config.h>
 #include <net/vnet.h>
 
 #if defined(INET) || defined(INET6)
 #include <netinet/in.h>
 #include <netinet/in_pcb.h>
 #ifdef INET
 #include <netinet/in_var.h>
 #include <netinet/in_fib.h>
 #endif
 #include <netinet/ip_var.h>
 #include <netinet/tcp_var.h>
 #ifdef TCPHPTS
 #include <netinet/tcp_hpts.h>
 #endif
 #include <netinet/udp.h>
 #include <netinet/udp_var.h>
 #ifdef INET6
 #include <netinet/ip6.h>
 #include <netinet6/in6_pcb.h>
 #include <netinet6/in6_var.h>
 #include <netinet6/ip6_var.h>
 #endif /* INET6 */
 #include <net/route/nhop.h>
 #endif
 
 #include <netipsec/ipsec_support.h>
 
 #include <security/mac/mac_framework.h>
 
 #define	INPCBLBGROUP_SIZMIN	8
 #define	INPCBLBGROUP_SIZMAX	256
 
 static struct callout	ipport_tick_callout;
 
 /*
  * These configure the range of local port addresses assigned to
  * "unspecified" outgoing connections/packets/whatever.
  */
 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
 
 /*
  * Reserved ports accessible only to root. There are significant
  * security considerations that must be accounted for when changing these,
  * but the security benefits can be great. Please be careful.
  */
 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
 VNET_DEFINE(int, ipport_reservedlow);
 
 /* Variables dealing with random ephemeral port allocation. */
 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
 VNET_DEFINE(int, ipport_tcpallocs);
 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
 
 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
 
 static void	in_pcbremlists(struct inpcb *inp);
 #ifdef INET
 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
 			    struct in_addr faddr, u_int fport_arg,
 			    struct in_addr laddr, u_int lport_arg,
 			    int lookupflags, struct ifnet *ifp,
 			    uint8_t numa_domain);
 
 #define RANGECHK(var, min, max) \
 	if ((var) < (min)) { (var) = (min); } \
 	else if ((var) > (max)) { (var) = (max); }
 
 static int
 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
 {
 	int error;
 
 	error = sysctl_handle_int(oidp, arg1, arg2, req);
 	if (error == 0) {
 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
 	}
 	return (error);
 }
 
 #undef RANGECHK
 
 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "IP Ports");
 
 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
     "");
 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
     "");
 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
     "");
 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
     "");
 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
     "");
 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
     "");
 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
 	&VNET_NAME(ipport_reservedhigh), 0, "");
 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
 	CTLFLAG_VNET | CTLFLAG_RW,
 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
 	CTLFLAG_VNET | CTLFLAG_RW,
 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
 	"allocations before switching to a sequental one");
 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
 	CTLFLAG_VNET | CTLFLAG_RW,
 	&VNET_NAME(ipport_randomtime), 0,
 	"Minimum time to keep sequental port "
 	"allocation before switching to a random one");
 
 #ifdef RATELIMIT
 counter_u64_t rate_limit_active;
 counter_u64_t rate_limit_alloc_fail;
 counter_u64_t rate_limit_set_ok;
 
 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "IP Rate Limiting");
 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
     &rate_limit_active, "Active rate limited connections");
 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
    &rate_limit_alloc_fail, "Rate limited connection failures");
 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
    &rate_limit_set_ok, "Rate limited setting succeeded");
 #endif /* RATELIMIT */
 
 #endif /* INET */
 
 /*
  * in_pcb.c: manage the Protocol Control Blocks.
  *
  * NOTE: It is assumed that most of these functions will be called with
  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
  * functions often modify hash chains or addresses in pcbs.
  */
 
 static struct inpcblbgroup *
 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
     uint16_t port, const union in_dependaddr *addr, int size,
     uint8_t numa_domain)
 {
 	struct inpcblbgroup *grp;
 	size_t bytes;
 
 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
 	if (!grp)
 		return (NULL);
 	grp->il_vflag = vflag;
 	grp->il_lport = port;
 	grp->il_numa_domain = numa_domain;
 	grp->il_dependladdr = *addr;
 	grp->il_inpsiz = size;
 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
 	return (grp);
 }
 
 static void
 in_pcblbgroup_free_deferred(epoch_context_t ctx)
 {
 	struct inpcblbgroup *grp;
 
 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
 	free(grp, M_PCB);
 }
 
 static void
 in_pcblbgroup_free(struct inpcblbgroup *grp)
 {
 
 	CK_LIST_REMOVE(grp, il_list);
 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
 }
 
 static struct inpcblbgroup *
 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
     struct inpcblbgroup *old_grp, int size)
 {
 	struct inpcblbgroup *grp;
 	int i;
 
 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
 	    old_grp->il_numa_domain);
 	if (grp == NULL)
 		return (NULL);
 
 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
 	    ("invalid new local group size %d and old local group count %d",
 	     grp->il_inpsiz, old_grp->il_inpcnt));
 
 	for (i = 0; i < old_grp->il_inpcnt; ++i)
 		grp->il_inp[i] = old_grp->il_inp[i];
 	grp->il_inpcnt = old_grp->il_inpcnt;
 	in_pcblbgroup_free(old_grp);
 	return (grp);
 }
 
 /*
  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
  * and shrink group if possible.
  */
 static void
 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
     int i)
 {
 	struct inpcblbgroup *grp, *new_grp;
 
 	grp = *grpp;
 	for (; i + 1 < grp->il_inpcnt; ++i)
 		grp->il_inp[i] = grp->il_inp[i + 1];
 	grp->il_inpcnt--;
 
 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
 		/* Shrink this group. */
 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
 		if (new_grp != NULL)
 			*grpp = new_grp;
 	}
 }
 
 /*
  * Add PCB to load balance group for SO_REUSEPORT_LB option.
  */
 static int
 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
 {
 	const static struct timeval interval = { 60, 0 };
 	static struct timeval lastprint;
 	struct inpcbinfo *pcbinfo;
 	struct inpcblbgrouphead *hdr;
 	struct inpcblbgroup *grp;
 	uint32_t idx;
 
 	pcbinfo = inp->inp_pcbinfo;
 
 	INP_WLOCK_ASSERT(inp);
 	INP_HASH_WLOCK_ASSERT(pcbinfo);
 
 	/*
 	 * Don't allow jailed socket to join local group.
 	 */
 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
 		return (0);
 
 #ifdef INET6
 	/*
 	 * Don't allow IPv4 mapped INET6 wild socket.
 	 */
 	if ((inp->inp_vflag & INP_IPV4) &&
 	    inp->inp_laddr.s_addr == INADDR_ANY &&
 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
 		return (0);
 	}
 #endif
 
 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
 	CK_LIST_FOREACH(grp, hdr, il_list) {
 		if (grp->il_vflag == inp->inp_vflag &&
 		    grp->il_lport == inp->inp_lport &&
 		    grp->il_numa_domain == numa_domain &&
 		    memcmp(&grp->il_dependladdr,
 		    &inp->inp_inc.inc_ie.ie_dependladdr,
 		    sizeof(grp->il_dependladdr)) == 0)
 			break;
 	}
 	if (grp == NULL) {
 		/* Create new load balance group. */
 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
 		    INPCBLBGROUP_SIZMIN, numa_domain);
 		if (grp == NULL)
 			return (ENOBUFS);
 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
 			if (ratecheck(&lastprint, &interval))
 				printf("lb group port %d, limit reached\n",
 				    ntohs(grp->il_lport));
 			return (0);
 		}
 
 		/* Expand this local group. */
 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
 		if (grp == NULL)
 			return (ENOBUFS);
 	}
 
 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
 	    grp->il_inpcnt));
 
 	grp->il_inp[grp->il_inpcnt] = inp;
 	grp->il_inpcnt++;
 	return (0);
 }
 
 /*
  * Remove PCB from load balance group.
  */
 static void
 in_pcbremlbgrouphash(struct inpcb *inp)
 {
 	struct inpcbinfo *pcbinfo;
 	struct inpcblbgrouphead *hdr;
 	struct inpcblbgroup *grp;
 	int i;
 
 	pcbinfo = inp->inp_pcbinfo;
 
 	INP_WLOCK_ASSERT(inp);
 	INP_HASH_WLOCK_ASSERT(pcbinfo);
 
 	hdr = &pcbinfo->ipi_lbgrouphashbase[
 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
 	CK_LIST_FOREACH(grp, hdr, il_list) {
 		for (i = 0; i < grp->il_inpcnt; ++i) {
 			if (grp->il_inp[i] != inp)
 				continue;
 
 			if (grp->il_inpcnt == 1) {
 				/* We are the last, free this local group. */
 				in_pcblbgroup_free(grp);
 			} else {
 				/* Pull up inpcbs, shrink group if possible. */
 				in_pcblbgroup_reorder(hdr, &grp, i);
 			}
 			return;
 		}
 	}
 }
 
 int
 in_pcblbgroup_numa(struct inpcb *inp, int arg)
 {
 	struct inpcbinfo *pcbinfo;
 	struct inpcblbgrouphead *hdr;
 	struct inpcblbgroup *grp;
 	int err, i;
 	uint8_t numa_domain;
 
 	switch (arg) {
 	case TCP_REUSPORT_LB_NUMA_NODOM:
 		numa_domain = M_NODOM;
 		break;
 	case TCP_REUSPORT_LB_NUMA_CURDOM:
 		numa_domain = PCPU_GET(domain);
 		break;
 	default:
 		if (arg < 0 || arg >= vm_ndomains)
 			return (EINVAL);
 		numa_domain = arg;
 	}
 
 	err = 0;
 	pcbinfo = inp->inp_pcbinfo;
 	INP_WLOCK_ASSERT(inp);
 	INP_HASH_WLOCK(pcbinfo);
 	hdr = &pcbinfo->ipi_lbgrouphashbase[
 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
 	CK_LIST_FOREACH(grp, hdr, il_list) {
 		for (i = 0; i < grp->il_inpcnt; ++i) {
 			if (grp->il_inp[i] != inp)
 				continue;
 
 			if (grp->il_numa_domain == numa_domain) {
 				goto abort_with_hash_wlock;
 			}
 
 			/* Remove it from the old group. */
 			in_pcbremlbgrouphash(inp);
 
 			/* Add it to the new group based on numa domain. */
 			in_pcbinslbgrouphash(inp, numa_domain);
 			goto abort_with_hash_wlock;
 		}
 	}
 	err = ENOENT;
 abort_with_hash_wlock:
 	INP_HASH_WUNLOCK(pcbinfo);
 	return (err);
 }
 
 /*
  * Different protocols initialize their inpcbs differently - giving
  * different name to the lock.  But they all are disposed the same.
  */
 static void
 inpcb_fini(void *mem, int size)
 {
 	struct inpcb *inp = mem;
 
 	INP_LOCK_DESTROY(inp);
 }
 
 /*
  * Initialize an inpcbinfo -- we should be able to reduce the number of
  * arguments in time.
  */
 void
 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
 {
 
 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
 
 	INP_INFO_LOCK_INIT(pcbinfo, name);
 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
 #ifdef VIMAGE
 	pcbinfo->ipi_vnet = curvnet;
 #endif
 	pcbinfo->ipi_listhead = listhead;
 	CK_LIST_INIT(pcbinfo->ipi_listhead);
 	pcbinfo->ipi_count = 0;
 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
 	    &pcbinfo->ipi_hashmask);
 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
 	    &pcbinfo->ipi_porthashmask);
 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
 	    &pcbinfo->ipi_lbgrouphashmask);
 #ifdef PCBGROUP
 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
 #endif
 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
 	uma_zone_set_warning(pcbinfo->ipi_zone,
 	    "kern.ipc.maxsockets limit reached");
 }
 
 /*
  * Destroy an inpcbinfo.
  */
 void
 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
 {
 
 	KASSERT(pcbinfo->ipi_count == 0,
 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
 
 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
 	    pcbinfo->ipi_porthashmask);
 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
 	    pcbinfo->ipi_lbgrouphashmask);
 #ifdef PCBGROUP
 	in_pcbgroup_destroy(pcbinfo);
 #endif
 	uma_zdestroy(pcbinfo->ipi_zone);
 	INP_LIST_LOCK_DESTROY(pcbinfo);
 	INP_HASH_LOCK_DESTROY(pcbinfo);
 	INP_INFO_LOCK_DESTROY(pcbinfo);
 }
 
 /*
  * Allocate a PCB and associate it with the socket.
  * On success return with the PCB locked.
  */
 int
 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
 {
 	struct inpcb *inp;
 	int error;
 
 	error = 0;
 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
 	if (inp == NULL)
 		return (ENOBUFS);
 	bzero(&inp->inp_start_zero, inp_zero_size);
 #ifdef NUMA
 	inp->inp_numa_domain = M_NODOM;
 #endif
 	inp->inp_pcbinfo = pcbinfo;
 	inp->inp_socket = so;
 	inp->inp_cred = crhold(so->so_cred);
 	inp->inp_inc.inc_fibnum = so->so_fibnum;
 #ifdef MAC
 	error = mac_inpcb_init(inp, M_NOWAIT);
 	if (error != 0)
 		goto out;
 	mac_inpcb_create(so, inp);
 #endif
 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
 	error = ipsec_init_pcbpolicy(inp);
 	if (error != 0) {
 #ifdef MAC
 		mac_inpcb_destroy(inp);
 #endif
 		goto out;
 	}
 #endif /*IPSEC*/
 #ifdef INET6
 	if (INP_SOCKAF(so) == AF_INET6) {
 		inp->inp_vflag |= INP_IPV6PROTO;
 		if (V_ip6_v6only)
 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
 	}
 #endif
 	INP_WLOCK(inp);
 	INP_LIST_WLOCK(pcbinfo);
 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
 	pcbinfo->ipi_count++;
 	so->so_pcb = (caddr_t)inp;
 #ifdef INET6
 	if (V_ip6_auto_flowlabel)
 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
 #endif
 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
 
 	/*
 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
 	 * to be cleaned up.
 	 */
 	inp->inp_route.ro_flags = RT_LLE_CACHE;
 	INP_LIST_WUNLOCK(pcbinfo);
 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
 out:
 	if (error != 0) {
 		crfree(inp->inp_cred);
 		uma_zfree(pcbinfo->ipi_zone, inp);
 	}
 #endif
 	return (error);
 }
 
 #ifdef INET
 int
 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
 {
 	int anonport, error;
 
 	INP_WLOCK_ASSERT(inp);
 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
 
 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
 		return (EINVAL);
 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
 	    &inp->inp_lport, cred);
 	if (error)
 		return (error);
 	if (in_pcbinshash(inp) != 0) {
 		inp->inp_laddr.s_addr = INADDR_ANY;
 		inp->inp_lport = 0;
 		return (EAGAIN);
 	}
 	if (anonport)
 		inp->inp_flags |= INP_ANONPORT;
 	return (0);
 }
 #endif
 
 #if defined(INET) || defined(INET6)
 /*
  * Assign a local port like in_pcb_lport(), but also used with connect()
  * and a foreign address and port.  If fsa is non-NULL, choose a local port
  * that is unused with those, otherwise one that is completely unused.
  * lsa can be NULL for IPv6.
  */
 int
 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
 {
 	struct inpcbinfo *pcbinfo;
 	struct inpcb *tmpinp;
 	unsigned short *lastport;
 	int count, dorandom, error;
 	u_short aux, first, last, lport;
 #ifdef INET
 	struct in_addr laddr, faddr;
 #endif
 #ifdef INET6
 	struct in6_addr *laddr6, *faddr6;
 #endif
 
 	pcbinfo = inp->inp_pcbinfo;
 
 	/*
 	 * Because no actual state changes occur here, a global write lock on
 	 * the pcbinfo isn't required.
 	 */
 	INP_LOCK_ASSERT(inp);
 	INP_HASH_LOCK_ASSERT(pcbinfo);
 
 	if (inp->inp_flags & INP_HIGHPORT) {
 		first = V_ipport_hifirstauto;	/* sysctl */
 		last  = V_ipport_hilastauto;
 		lastport = &pcbinfo->ipi_lasthi;
 	} else if (inp->inp_flags & INP_LOWPORT) {
 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
 		if (error)
 			return (error);
 		first = V_ipport_lowfirstauto;	/* 1023 */
 		last  = V_ipport_lowlastauto;	/* 600 */
 		lastport = &pcbinfo->ipi_lastlow;
 	} else {
 		first = V_ipport_firstauto;	/* sysctl */
 		last  = V_ipport_lastauto;
 		lastport = &pcbinfo->ipi_lastport;
 	}
 	/*
 	 * For UDP(-Lite), use random port allocation as long as the user
 	 * allows it.  For TCP (and as of yet unknown) connections,
 	 * use random port allocation only if the user allows it AND
 	 * ipport_tick() allows it.
 	 */
 	if (V_ipport_randomized &&
 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
 		pcbinfo == &V_ulitecbinfo))
 		dorandom = 1;
 	else
 		dorandom = 0;
 	/*
 	 * It makes no sense to do random port allocation if
 	 * we have the only port available.
 	 */
 	if (first == last)
 		dorandom = 0;
 	/* Make sure to not include UDP(-Lite) packets in the count. */
 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
 		V_ipport_tcpallocs++;
 	/*
 	 * Instead of having two loops further down counting up or down
 	 * make sure that first is always <= last and go with only one
 	 * code path implementing all logic.
 	 */
 	if (first > last) {
 		aux = first;
 		first = last;
 		last = aux;
 	}
 
 #ifdef INET
 	laddr.s_addr = INADDR_ANY;
 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
 		if (lsa != NULL)
 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
 		if (fsa != NULL)
 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
 	}
 #endif
 #ifdef INET6
 	laddr6 = NULL;
 	if ((inp->inp_vflag & INP_IPV6) != 0) {
 		if (lsa != NULL)
 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
 		if (fsa != NULL)
 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
 	}
 #endif
 
 	tmpinp = NULL;
 	lport = *lportp;
 
 	if (dorandom)
 		*lastport = first + (arc4random() % (last - first));
 
 	count = last - first;
 
 	do {
 		if (count-- < 0)	/* completely used? */
 			return (EADDRNOTAVAIL);
 		++*lastport;
 		if (*lastport < first || *lastport > last)
 			*lastport = first;
 		lport = htons(*lastport);
 
 		if (fsa != NULL) {
 #ifdef INET
 			if (lsa->sa_family == AF_INET) {
 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
 				    faddr, fport, laddr, lport, lookupflags,
 				    NULL, M_NODOM);
 			}
 #endif
 #ifdef INET6
 			if (lsa->sa_family == AF_INET6) {
 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
 				    faddr6, fport, laddr6, lport, lookupflags,
 				    NULL, M_NODOM);
 			}
 #endif
 		} else {
 #ifdef INET6
 			if ((inp->inp_vflag & INP_IPV6) != 0)
 				tmpinp = in6_pcblookup_local(pcbinfo,
 				    &inp->in6p_laddr, lport, lookupflags, cred);
 #endif
 #if defined(INET) && defined(INET6)
 			else
 #endif
 #ifdef INET
 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
 				    lport, lookupflags, cred);
 #endif
 		}
 	} while (tmpinp != NULL);
 
 	*lportp = lport;
 
 	return (0);
 }
 
 /*
  * Select a local port (number) to use.
  */
 int
 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
     struct ucred *cred, int lookupflags)
 {
 	struct sockaddr_in laddr;
 
 	if (laddrp) {
 		bzero(&laddr, sizeof(laddr));
 		laddr.sin_family = AF_INET;
 		laddr.sin_addr = *laddrp;
 	}
 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
 	    NULL, lportp, NULL, 0, cred, lookupflags));
 }
 
 /*
  * Return cached socket options.
  */
 int
 inp_so_options(const struct inpcb *inp)
 {
 	int so_options;
 
 	so_options = 0;
 
 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
 		so_options |= SO_REUSEPORT_LB;
 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
 		so_options |= SO_REUSEPORT;
 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
 		so_options |= SO_REUSEADDR;
 	return (so_options);
 }
 #endif /* INET || INET6 */
 
 /*
  * Check if a new BINDMULTI socket is allowed to be created.
  *
  * ni points to the new inp.
  * oi points to the exisitng inp.
  *
  * This checks whether the existing inp also has BINDMULTI and
  * whether the credentials match.
  */
 int
 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
 {
 	/* Check permissions match */
 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
 	    (ni->inp_cred->cr_uid !=
 	    oi->inp_cred->cr_uid))
 		return (0);
 
 	/* Check the existing inp has BINDMULTI set */
 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
 		return (0);
 
 	/*
 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
 	 * it is and it matches the checks.
 	 */
 	return (1);
 }
 
 #ifdef INET
 /*
  * Set up a bind operation on a PCB, performing port allocation
  * as required, but do not actually modify the PCB. Callers can
  * either complete the bind by setting inp_laddr/inp_lport and
  * calling in_pcbinshash(), or they can just use the resulting
  * port and address to authorise the sending of a once-off packet.
  *
  * On error, the values of *laddrp and *lportp are not changed.
  */
 int
 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
     u_short *lportp, struct ucred *cred)
 {
 	struct socket *so = inp->inp_socket;
 	struct sockaddr_in *sin;
 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 	struct in_addr laddr;
 	u_short lport = 0;
 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
 	int error;
 
 	/*
 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
 	 * so that we don't have to add to the (already messy) code below.
 	 */
 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
 
 	/*
 	 * No state changes, so read locks are sufficient here.
 	 */
 	INP_LOCK_ASSERT(inp);
 	INP_HASH_LOCK_ASSERT(pcbinfo);
 
 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
 		return (EADDRNOTAVAIL);
 	laddr.s_addr = *laddrp;
 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
 		return (EINVAL);
 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
 		lookupflags = INPLOOKUP_WILDCARD;
 	if (nam == NULL) {
 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
 			return (error);
 	} else {
 		sin = (struct sockaddr_in *)nam;
 		if (nam->sa_len != sizeof (*sin))
 			return (EINVAL);
 #ifdef notdef
 		/*
 		 * We should check the family, but old programs
 		 * incorrectly fail to initialize it.
 		 */
 		if (sin->sin_family != AF_INET)
 			return (EAFNOSUPPORT);
 #endif
 		error = prison_local_ip4(cred, &sin->sin_addr);
 		if (error)
 			return (error);
 		if (sin->sin_port != *lportp) {
 			/* Don't allow the port to change. */
 			if (*lportp != 0)
 				return (EINVAL);
 			lport = sin->sin_port;
 		}
 		/* NB: lport is left as 0 if the port isn't being changed. */
 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
 			/*
 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
 			 * allow complete duplication of binding if
 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
 			 * and a multicast address is bound on both
 			 * new and duplicated sockets.
 			 */
 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
 			/*
 			 * XXX: How to deal with SO_REUSEPORT_LB here?
 			 * Treat same as SO_REUSEPORT for now.
 			 */
 			if ((so->so_options &
 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
 			sin->sin_port = 0;		/* yech... */
 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
 			/*
 			 * Is the address a local IP address?
 			 * If INP_BINDANY is set, then the socket may be bound
 			 * to any endpoint address, local or not.
 			 */
 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
 				return (EADDRNOTAVAIL);
 		}
 		laddr = sin->sin_addr;
 		if (lport) {
 			struct inpcb *t;
 			struct tcptw *tw;
 
 			/* GROSS */
 			if (ntohs(lport) <= V_ipport_reservedhigh &&
 			    ntohs(lport) >= V_ipport_reservedlow &&
 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
 				return (EACCES);
 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
 				    lport, INPLOOKUP_WILDCARD, cred);
 	/*
 	 * XXX
 	 * This entire block sorely needs a rewrite.
 	 */
 				if (t &&
 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
 				    (so->so_type != SOCK_STREAM ||
 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
 				     (t->inp_flags2 & INP_REUSEPORT) ||
 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
 				    (inp->inp_cred->cr_uid !=
 				     t->inp_cred->cr_uid))
 					return (EADDRINUSE);
 
 				/*
 				 * If the socket is a BINDMULTI socket, then
 				 * the credentials need to match and the
 				 * original socket also has to have been bound
 				 * with BINDMULTI.
 				 */
 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
 					return (EADDRINUSE);
 			}
 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
 			    lport, lookupflags, cred);
 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
 				/*
 				 * XXXRW: If an incpb has had its timewait
 				 * state recycled, we treat the address as
 				 * being in use (for now).  This is better
 				 * than a panic, but not desirable.
 				 */
 				tw = intotw(t);
 				if (tw == NULL ||
 				    ((reuseport & tw->tw_so_options) == 0 &&
 					(reuseport_lb &
 				            tw->tw_so_options) == 0)) {
 					return (EADDRINUSE);
 				}
 			} else if (t &&
 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
 				   (reuseport & inp_so_options(t)) == 0 &&
 				   (reuseport_lb & inp_so_options(t)) == 0) {
 #ifdef INET6
 				if (ntohl(sin->sin_addr.s_addr) !=
 				    INADDR_ANY ||
 				    ntohl(t->inp_laddr.s_addr) !=
 				    INADDR_ANY ||
 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
 #endif
 						return (EADDRINUSE);
 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
 					return (EADDRINUSE);
 			}
 		}
 	}
 	if (*lportp != 0)
 		lport = *lportp;
 	if (lport == 0) {
 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
 		if (error != 0)
 			return (error);
 	}
 	*laddrp = laddr.s_addr;
 	*lportp = lport;
 	return (0);
 }
 
 /*
  * Connect from a socket to a specified address.
  * Both address and port must be specified in argument sin.
  * If don't have a local address for this socket yet,
  * then pick one.
  */
 int
 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
     struct ucred *cred, struct mbuf *m, bool rehash)
 {
 	u_short lport, fport;
 	in_addr_t laddr, faddr;
 	int anonport, error;
 
 	INP_WLOCK_ASSERT(inp);
 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
 
 	lport = inp->inp_lport;
 	laddr = inp->inp_laddr.s_addr;
 	anonport = (lport == 0);
 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
 	    NULL, cred);
 	if (error)
 		return (error);
 
 	/* Do the initial binding of the local address if required. */
 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
 		KASSERT(rehash == true,
 		    ("Rehashing required for unbound inps"));
 		inp->inp_lport = lport;
 		inp->inp_laddr.s_addr = laddr;
 		if (in_pcbinshash(inp) != 0) {
 			inp->inp_laddr.s_addr = INADDR_ANY;
 			inp->inp_lport = 0;
 			return (EAGAIN);
 		}
 	}
 
 	/* Commit the remaining changes. */
 	inp->inp_lport = lport;
 	inp->inp_laddr.s_addr = laddr;
 	inp->inp_faddr.s_addr = faddr;
 	inp->inp_fport = fport;
 	if (rehash) {
 		in_pcbrehash_mbuf(inp, m);
 	} else {
 		in_pcbinshash_mbuf(inp, m);
 	}
 
 	if (anonport)
 		inp->inp_flags |= INP_ANONPORT;
 	return (0);
 }
 
 int
 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
 {
 
 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
 }
 
 /*
  * Do proper source address selection on an unbound socket in case
  * of connect. Take jails into account as well.
  */
 int
 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
     struct ucred *cred)
 {
 	struct ifaddr *ifa;
 	struct sockaddr *sa;
 	struct sockaddr_in *sin, dst;
 	struct nhop_object *nh;
 	int error;
 
 	NET_EPOCH_ASSERT();
 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
 	/*
 	 * Bypass source address selection and use the primary jail IP
 	 * if requested.
 	 */
 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
 		return (0);
 
 	error = 0;
 
 	nh = NULL;
 	bzero(&dst, sizeof(dst));
 	sin = &dst;
 	sin->sin_family = AF_INET;
 	sin->sin_len = sizeof(struct sockaddr_in);
 	sin->sin_addr.s_addr = faddr->s_addr;
 
 	/*
 	 * If route is known our src addr is taken from the i/f,
 	 * else punt.
 	 *
 	 * Find out route to destination.
 	 */
 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
 		    0, NHR_NONE, 0);
 
 	/*
 	 * If we found a route, use the address corresponding to
 	 * the outgoing interface.
 	 *
 	 * Otherwise assume faddr is reachable on a directly connected
 	 * network and try to find a corresponding interface to take
 	 * the source address from.
 	 */
 	if (nh == NULL || nh->nh_ifp == NULL) {
 		struct in_ifaddr *ia;
 		struct ifnet *ifp;
 
 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
 					inp->inp_socket->so_fibnum));
 		if (ia == NULL) {
 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
 						inp->inp_socket->so_fibnum));
 		}
 		if (ia == NULL) {
 			error = ENETUNREACH;
 			goto done;
 		}
 
 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
 			goto done;
 		}
 
 		ifp = ia->ia_ifp;
 		ia = NULL;
 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 			sa = ifa->ifa_addr;
 			if (sa->sa_family != AF_INET)
 				continue;
 			sin = (struct sockaddr_in *)sa;
 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
 				ia = (struct in_ifaddr *)ifa;
 				break;
 			}
 		}
 		if (ia != NULL) {
 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
 			goto done;
 		}
 
 		/* 3. As a last resort return the 'default' jail address. */
 		error = prison_get_ip4(cred, laddr);
 		goto done;
 	}
 
 	/*
 	 * If the outgoing interface on the route found is not
 	 * a loopback interface, use the address from that interface.
 	 * In case of jails do those three steps:
 	 * 1. check if the interface address belongs to the jail. If so use it.
 	 * 2. check if we have any address on the outgoing interface
 	 *    belonging to this jail. If so use it.
 	 * 3. as a last resort return the 'default' jail address.
 	 */
 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
 		struct in_ifaddr *ia;
 		struct ifnet *ifp;
 
 		/* If not jailed, use the default returned. */
 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
 			ia = (struct in_ifaddr *)nh->nh_ifa;
 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
 			goto done;
 		}
 
 		/* Jailed. */
 		/* 1. Check if the iface address belongs to the jail. */
 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
 			ia = (struct in_ifaddr *)nh->nh_ifa;
 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
 			goto done;
 		}
 
 		/*
 		 * 2. Check if we have any address on the outgoing interface
 		 *    belonging to this jail.
 		 */
 		ia = NULL;
 		ifp = nh->nh_ifp;
 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 			sa = ifa->ifa_addr;
 			if (sa->sa_family != AF_INET)
 				continue;
 			sin = (struct sockaddr_in *)sa;
 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
 				ia = (struct in_ifaddr *)ifa;
 				break;
 			}
 		}
 		if (ia != NULL) {
 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
 			goto done;
 		}
 
 		/* 3. As a last resort return the 'default' jail address. */
 		error = prison_get_ip4(cred, laddr);
 		goto done;
 	}
 
 	/*
 	 * The outgoing interface is marked with 'loopback net', so a route
 	 * to ourselves is here.
 	 * Try to find the interface of the destination address and then
 	 * take the address from there. That interface is not necessarily
 	 * a loopback interface.
 	 * In case of jails, check that it is an address of the jail
 	 * and if we cannot find, fall back to the 'default' jail address.
 	 */
 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
 		struct in_ifaddr *ia;
 
 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
 					inp->inp_socket->so_fibnum));
 		if (ia == NULL)
 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
 						inp->inp_socket->so_fibnum));
 		if (ia == NULL)
 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
 
 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
 			if (ia == NULL) {
 				error = ENETUNREACH;
 				goto done;
 			}
 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
 			goto done;
 		}
 
 		/* Jailed. */
 		if (ia != NULL) {
 			struct ifnet *ifp;
 
 			ifp = ia->ia_ifp;
 			ia = NULL;
 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 				sa = ifa->ifa_addr;
 				if (sa->sa_family != AF_INET)
 					continue;
 				sin = (struct sockaddr_in *)sa;
 				if (prison_check_ip4(cred,
 				    &sin->sin_addr) == 0) {
 					ia = (struct in_ifaddr *)ifa;
 					break;
 				}
 			}
 			if (ia != NULL) {
 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
 				goto done;
 			}
 		}
 
 		/* 3. As a last resort return the 'default' jail address. */
 		error = prison_get_ip4(cred, laddr);
 		goto done;
 	}
 
 done:
 	return (error);
 }
 
 /*
  * Set up for a connect from a socket to the specified address.
  * On entry, *laddrp and *lportp should contain the current local
  * address and port for the PCB; these are updated to the values
  * that should be placed in inp_laddr and inp_lport to complete
  * the connect.
  *
  * On success, *faddrp and *fportp will be set to the remote address
  * and port. These are not updated in the error case.
  *
  * If the operation fails because the connection already exists,
  * *oinpp will be set to the PCB of that connection so that the
  * caller can decide to override it. In all other cases, *oinpp
  * is set to NULL.
  */
 int
 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
     struct inpcb **oinpp, struct ucred *cred)
 {
 	struct rm_priotracker in_ifa_tracker;
 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
 	struct in_ifaddr *ia;
 	struct inpcb *oinp;
 	struct in_addr laddr, faddr;
 	u_short lport, fport;
 	int error;
 
 	/*
 	 * Because a global state change doesn't actually occur here, a read
 	 * lock is sufficient.
 	 */
 	NET_EPOCH_ASSERT();
 	INP_LOCK_ASSERT(inp);
 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
 
 	if (oinpp != NULL)
 		*oinpp = NULL;
 	if (nam->sa_len != sizeof (*sin))
 		return (EINVAL);
 	if (sin->sin_family != AF_INET)
 		return (EAFNOSUPPORT);
 	if (sin->sin_port == 0)
 		return (EADDRNOTAVAIL);
 	laddr.s_addr = *laddrp;
 	lport = *lportp;
 	faddr = sin->sin_addr;
 	fport = sin->sin_port;
 #ifdef ROUTE_MPATH
 	if (CALC_FLOWID_OUTBOUND) {
 		uint32_t hash_val, hash_type;
 
 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
 
 		inp->inp_flowid = hash_val;
 		inp->inp_flowtype = hash_type;
 	}
 #endif
 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
 		/*
 		 * If the destination address is INADDR_ANY,
 		 * use the primary local address.
 		 * If the supplied address is INADDR_BROADCAST,
 		 * and the primary interface supports broadcast,
 		 * choose the broadcast address for that interface.
 		 */
 		if (faddr.s_addr == INADDR_ANY) {
 			IN_IFADDR_RLOCK(&in_ifa_tracker);
 			faddr =
 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
 			if (cred != NULL &&
 			    (error = prison_get_ip4(cred, &faddr)) != 0)
 				return (error);
 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
 			IN_IFADDR_RLOCK(&in_ifa_tracker);
 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
 			    IFF_BROADCAST)
 				faddr = satosin(&CK_STAILQ_FIRST(
 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
 		}
 	}
 	if (laddr.s_addr == INADDR_ANY) {
 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
 		/*
 		 * If the destination address is multicast and an outgoing
 		 * interface has been set as a multicast option, prefer the
 		 * address of that interface as our source address.
 		 */
 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
 		    inp->inp_moptions != NULL) {
 			struct ip_moptions *imo;
 			struct ifnet *ifp;
 
 			imo = inp->inp_moptions;
 			if (imo->imo_multicast_ifp != NULL) {
 				ifp = imo->imo_multicast_ifp;
 				IN_IFADDR_RLOCK(&in_ifa_tracker);
 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
 					if ((ia->ia_ifp == ifp) &&
 					    (cred == NULL ||
 					    prison_check_ip4(cred,
 					    &ia->ia_addr.sin_addr) == 0))
 						break;
 				}
 				if (ia == NULL)
 					error = EADDRNOTAVAIL;
 				else {
 					laddr = ia->ia_addr.sin_addr;
 					error = 0;
 				}
 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
 			}
 		}
 		if (error)
 			return (error);
 	}
 
 	if (lport != 0) {
 		oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
 		    fport, laddr, lport, 0, NULL, M_NODOM);
 		if (oinp != NULL) {
 			if (oinpp != NULL)
 				*oinpp = oinp;
 			return (EADDRINUSE);
 		}
 	} else {
 		struct sockaddr_in lsin, fsin;
 
 		bzero(&lsin, sizeof(lsin));
 		bzero(&fsin, sizeof(fsin));
 		lsin.sin_family = AF_INET;
 		lsin.sin_addr = laddr;
 		fsin.sin_family = AF_INET;
 		fsin.sin_addr = faddr;
 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
 		    &lport, (struct sockaddr *)& fsin, fport, cred,
 		    INPLOOKUP_WILDCARD);
 		if (error)
 			return (error);
 	}
 	*laddrp = laddr.s_addr;
 	*lportp = lport;
 	*faddrp = faddr.s_addr;
 	*fportp = fport;
 	return (0);
 }
 
 void
 in_pcbdisconnect(struct inpcb *inp)
 {
 
 	INP_WLOCK_ASSERT(inp);
 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
 
 	inp->inp_faddr.s_addr = INADDR_ANY;
 	inp->inp_fport = 0;
 	in_pcbrehash(inp);
 }
 #endif /* INET */
 
 /*
  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
  * For most protocols, this will be invoked immediately prior to calling
  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
  * socket, in which case in_pcbfree() is deferred.
  */
 void
 in_pcbdetach(struct inpcb *inp)
 {
 
 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
 
 #ifdef RATELIMIT
 	if (inp->inp_snd_tag != NULL)
 		in_pcbdetach_txrtlmt(inp);
 #endif
 	inp->inp_socket->so_pcb = NULL;
 	inp->inp_socket = NULL;
 }
 
 /*
  * in_pcbref() bumps the reference count on an inpcb in order to maintain
  * stability of an inpcb pointer despite the inpcb lock being released.  This
  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
  * but where the inpcb lock may already held, or when acquiring a reference
  * via a pcbgroup.
  *
  * in_pcbref() should be used only to provide brief memory stability, and
  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
  * garbage collect the inpcb if it has been in_pcbfree()'d from another
  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
  * lock and rele are the *only* safe operations that may be performed on the
  * inpcb.
  *
  * While the inpcb will not be freed, releasing the inpcb lock means that the
  * connection's state may change, so the caller should be careful to
  * revalidate any cached state on reacquiring the lock.  Drop the reference
  * using in_pcbrele().
  */
 void
 in_pcbref(struct inpcb *inp)
 {
 
 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 
 	refcount_acquire(&inp->inp_refcount);
 }
 
 /*
  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
  * return a flag indicating whether or not the inpcb remains valid.  If it is
  * valid, we return with the inpcb lock held.
  *
  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
  * reference on an inpcb.  Historically more work was done here (actually, in
  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
  * about memory stability (and continued use of the write lock).
  */
 int
 in_pcbrele_rlocked(struct inpcb *inp)
 {
 	struct inpcbinfo *pcbinfo;
 
 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 
 	INP_RLOCK_ASSERT(inp);
 
 	if (refcount_release(&inp->inp_refcount) == 0) {
 		/*
 		 * If the inpcb has been freed, let the caller know, even if
 		 * this isn't the last reference.
 		 */
 		if (inp->inp_flags2 & INP_FREED) {
 			INP_RUNLOCK(inp);
 			return (1);
 		}
 		return (0);
 	}
 
 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 #ifdef TCPHPTS
 	if (inp->inp_in_hpts || inp->inp_in_input) {
 		struct tcp_hpts_entry *hpts;
 		/*
 		 * We should not be on the hpts at
 		 * this point in any form. we must
 		 * get the lock to be sure.
 		 */
 		hpts = tcp_hpts_lock(inp);
 		if (inp->inp_in_hpts)
 			panic("Hpts:%p inp:%p at free still on hpts",
 			      hpts, inp);
 		mtx_unlock(&hpts->p_mtx);
 		hpts = tcp_input_lock(inp);
 		if (inp->inp_in_input)
 			panic("Hpts:%p inp:%p at free still on input hpts",
 			      hpts, inp);
 		mtx_unlock(&hpts->p_mtx);
 	}
 #endif
 	INP_RUNLOCK(inp);
 	pcbinfo = inp->inp_pcbinfo;
 	uma_zfree(pcbinfo->ipi_zone, inp);
 	return (1);
 }
 
 int
 in_pcbrele_wlocked(struct inpcb *inp)
 {
 	struct inpcbinfo *pcbinfo;
 
 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 
 	INP_WLOCK_ASSERT(inp);
 
 	if (refcount_release(&inp->inp_refcount) == 0) {
 		/*
 		 * If the inpcb has been freed, let the caller know, even if
 		 * this isn't the last reference.
 		 */
 		if (inp->inp_flags2 & INP_FREED) {
 			INP_WUNLOCK(inp);
 			return (1);
 		}
 		return (0);
 	}
 
 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 #ifdef TCPHPTS
 	if (inp->inp_in_hpts || inp->inp_in_input) {
 		struct tcp_hpts_entry *hpts;
 		/*
 		 * We should not be on the hpts at
 		 * this point in any form. we must
 		 * get the lock to be sure.
 		 */
 		hpts = tcp_hpts_lock(inp);
 		if (inp->inp_in_hpts)
 			panic("Hpts:%p inp:%p at free still on hpts",
 			      hpts, inp);
 		mtx_unlock(&hpts->p_mtx);
 		hpts = tcp_input_lock(inp);
 		if (inp->inp_in_input)
 			panic("Hpts:%p inp:%p at free still on input hpts",
 			      hpts, inp);
 		mtx_unlock(&hpts->p_mtx);
 	}
 #endif
 	INP_WUNLOCK(inp);
 	pcbinfo = inp->inp_pcbinfo;
 	uma_zfree(pcbinfo->ipi_zone, inp);
 	return (1);
 }
 
 /*
  * Temporary wrapper.
  */
 int
 in_pcbrele(struct inpcb *inp)
 {
 
 	return (in_pcbrele_wlocked(inp));
 }
 
 void
 in_pcblist_rele_rlocked(epoch_context_t ctx)
 {
 	struct in_pcblist *il;
 	struct inpcb *inp;
 	struct inpcbinfo *pcbinfo;
 	int i, n;
 
 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
 	pcbinfo = il->il_pcbinfo;
 	n = il->il_count;
 	INP_INFO_WLOCK(pcbinfo);
 	for (i = 0; i < n; i++) {
 		inp = il->il_inp_list[i];
 		INP_RLOCK(inp);
 		if (!in_pcbrele_rlocked(inp))
 			INP_RUNLOCK(inp);
 	}
 	INP_INFO_WUNLOCK(pcbinfo);
 	free(il, M_TEMP);
 }
 
 static void
 inpcbport_free(epoch_context_t ctx)
 {
 	struct inpcbport *phd;
 
 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
 	free(phd, M_PCB);
 }
 
 static void
 in_pcbfree_deferred(epoch_context_t ctx)
 {
 	struct inpcb *inp;
 	int released __unused;
 
 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
 
 	INP_WLOCK(inp);
 	CURVNET_SET(inp->inp_vnet);
 #ifdef INET
 	struct ip_moptions *imo = inp->inp_moptions;
 	inp->inp_moptions = NULL;
 #endif
 	/* XXXRW: Do as much as possible here. */
 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
 	if (inp->inp_sp != NULL)
 		ipsec_delete_pcbpolicy(inp);
 #endif
 #ifdef INET6
 	struct ip6_moptions *im6o = NULL;
 	if (inp->inp_vflag & INP_IPV6PROTO) {
 		ip6_freepcbopts(inp->in6p_outputopts);
 		im6o = inp->in6p_moptions;
 		inp->in6p_moptions = NULL;
 	}
 #endif
 	if (inp->inp_options)
 		(void)m_free(inp->inp_options);
 	inp->inp_vflag = 0;
 	crfree(inp->inp_cred);
 #ifdef MAC
 	mac_inpcb_destroy(inp);
 #endif
 	released = in_pcbrele_wlocked(inp);
 	MPASS(released);
 #ifdef INET6
 	ip6_freemoptions(im6o);
 #endif
 #ifdef INET
 	inp_freemoptions(imo);
 #endif
 	CURVNET_RESTORE();
 }
 
 /*
  * Unconditionally schedule an inpcb to be freed by decrementing its
  * reference count, which should occur only after the inpcb has been detached
  * from its socket.  If another thread holds a temporary reference (acquired
  * using in_pcbref()) then the free is deferred until that reference is
  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
  * work, including removal from global lists, is done in this context, where
  * the pcbinfo lock is held.
  */
 void
 in_pcbfree(struct inpcb *inp)
 {
 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 
 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
 	    ("%s: called twice for pcb %p", __func__, inp));
 	if (inp->inp_flags2 & INP_FREED) {
 		INP_WUNLOCK(inp);
 		return;
 	}
 
 	INP_WLOCK_ASSERT(inp);
 	INP_LIST_WLOCK(pcbinfo);
 	in_pcbremlists(inp);
 	INP_LIST_WUNLOCK(pcbinfo);
 	RO_INVALIDATE_CACHE(&inp->inp_route);
 	/* mark as destruction in progress */
 	inp->inp_flags2 |= INP_FREED;
 	INP_WUNLOCK(inp);
 	NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
 }
 
 /*
  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
  * port reservation, and preventing it from being returned by inpcb lookups.
  *
  * It is used by TCP to mark an inpcb as unused and avoid future packet
  * delivery or event notification when a socket remains open but TCP has
  * closed.  This might occur as a result of a shutdown()-initiated TCP close
  * or a RST on the wire, and allows the port binding to be reused while still
  * maintaining the invariant that so_pcb always points to a valid inpcb until
  * in_pcbdetach().
  *
  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
  * in_pcbnotifyall() and in_pcbpurgeif0()?
  */
 void
 in_pcbdrop(struct inpcb *inp)
 {
 
 	INP_WLOCK_ASSERT(inp);
 #ifdef INVARIANTS
 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
 		MPASS(inp->inp_refcount > 1);
 #endif
 
 	/*
 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
 	 * the hash lock...?
 	 */
 	inp->inp_flags |= INP_DROPPED;
 	if (inp->inp_flags & INP_INHASHLIST) {
 		struct inpcbport *phd = inp->inp_phd;
 
 		INP_HASH_WLOCK(inp->inp_pcbinfo);
 		in_pcbremlbgrouphash(inp);
 		CK_LIST_REMOVE(inp, inp_hash);
 		CK_LIST_REMOVE(inp, inp_portlist);
 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
 			CK_LIST_REMOVE(phd, phd_hash);
 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
 		}
 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
 		inp->inp_flags &= ~INP_INHASHLIST;
 #ifdef PCBGROUP
 		in_pcbgroup_remove(inp);
 #endif
 	}
 }
 
 #ifdef INET
 /*
  * Common routines to return the socket addresses associated with inpcbs.
  */
 struct sockaddr *
 in_sockaddr(in_port_t port, struct in_addr *addr_p)
 {
 	struct sockaddr_in *sin;
 
 	sin = malloc(sizeof *sin, M_SONAME,
 		M_WAITOK | M_ZERO);
 	sin->sin_family = AF_INET;
 	sin->sin_len = sizeof(*sin);
 	sin->sin_addr = *addr_p;
 	sin->sin_port = port;
 
 	return (struct sockaddr *)sin;
 }
 
 int
 in_getsockaddr(struct socket *so, struct sockaddr **nam)
 {
 	struct inpcb *inp;
 	struct in_addr addr;
 	in_port_t port;
 
 	inp = sotoinpcb(so);
 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
 
 	INP_RLOCK(inp);
 	port = inp->inp_lport;
 	addr = inp->inp_laddr;
 	INP_RUNLOCK(inp);
 
 	*nam = in_sockaddr(port, &addr);
 	return 0;
 }
 
 int
 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
 {
 	struct inpcb *inp;
 	struct in_addr addr;
 	in_port_t port;
 
 	inp = sotoinpcb(so);
 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
 
 	INP_RLOCK(inp);
 	port = inp->inp_fport;
 	addr = inp->inp_faddr;
 	INP_RUNLOCK(inp);
 
 	*nam = in_sockaddr(port, &addr);
 	return 0;
 }
 
 void
 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
     struct inpcb *(*notify)(struct inpcb *, int))
 {
 	struct inpcb *inp, *inp_temp;
 
 	INP_INFO_WLOCK(pcbinfo);
 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
 		INP_WLOCK(inp);
 #ifdef INET6
 		if ((inp->inp_vflag & INP_IPV4) == 0) {
 			INP_WUNLOCK(inp);
 			continue;
 		}
 #endif
 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
 		    inp->inp_socket == NULL) {
 			INP_WUNLOCK(inp);
 			continue;
 		}
 		if ((*notify)(inp, errno))
 			INP_WUNLOCK(inp);
 	}
 	INP_INFO_WUNLOCK(pcbinfo);
 }
 
 void
 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
 {
 	struct inpcb *inp;
 	struct in_multi *inm;
 	struct in_mfilter *imf;
 	struct ip_moptions *imo;
 
 	INP_INFO_WLOCK(pcbinfo);
 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
 		INP_WLOCK(inp);
 		imo = inp->inp_moptions;
 		if ((inp->inp_vflag & INP_IPV4) &&
 		    imo != NULL) {
 			/*
 			 * Unselect the outgoing interface if it is being
 			 * detached.
 			 */
 			if (imo->imo_multicast_ifp == ifp)
 				imo->imo_multicast_ifp = NULL;
 
 			/*
 			 * Drop multicast group membership if we joined
 			 * through the interface being detached.
 			 *
 			 * XXX This can all be deferred to an epoch_call
 			 */
 restart:
 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
 				if ((inm = imf->imf_inm) == NULL)
 					continue;
 				if (inm->inm_ifp != ifp)
 					continue;
 				ip_mfilter_remove(&imo->imo_head, imf);
 				IN_MULTI_LOCK_ASSERT();
 				in_leavegroup_locked(inm, NULL);
 				ip_mfilter_free(imf);
 				goto restart;
 			}
 		}
 		INP_WUNLOCK(inp);
 	}
 	INP_INFO_WUNLOCK(pcbinfo);
 }
 
 /*
  * Lookup a PCB based on the local address and port.  Caller must hold the
  * hash lock.  No inpcb locks or references are acquired.
  */
 #define INP_LOOKUP_MAPPED_PCB_COST	3
 struct inpcb *
 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
     u_short lport, int lookupflags, struct ucred *cred)
 {
 	struct inpcb *inp;
 #ifdef INET6
 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
 #else
 	int matchwild = 3;
 #endif
 	int wildcard;
 
 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
 
 	INP_HASH_LOCK_ASSERT(pcbinfo);
 
 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
 		struct inpcbhead *head;
 		/*
 		 * Look for an unconnected (wildcard foreign addr) PCB that
 		 * matches the local address and port we're looking for.
 		 */
 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 		    0, pcbinfo->ipi_hashmask)];
 		CK_LIST_FOREACH(inp, head, inp_hash) {
 #ifdef INET6
 			/* XXX inp locking */
 			if ((inp->inp_vflag & INP_IPV4) == 0)
 				continue;
 #endif
 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
 			    inp->inp_laddr.s_addr == laddr.s_addr &&
 			    inp->inp_lport == lport) {
 				/*
 				 * Found?
 				 */
 				if (cred == NULL ||
 				    prison_equal_ip4(cred->cr_prison,
 					inp->inp_cred->cr_prison))
 					return (inp);
 			}
 		}
 		/*
 		 * Not found.
 		 */
 		return (NULL);
 	} else {
 		struct inpcbporthead *porthash;
 		struct inpcbport *phd;
 		struct inpcb *match = NULL;
 		/*
 		 * Best fit PCB lookup.
 		 *
 		 * First see if this local port is in use by looking on the
 		 * port hash list.
 		 */
 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
 		    pcbinfo->ipi_porthashmask)];
 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
 			if (phd->phd_port == lport)
 				break;
 		}
 		if (phd != NULL) {
 			/*
 			 * Port is in use by one or more PCBs. Look for best
 			 * fit.
 			 */
 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
 				wildcard = 0;
 				if (cred != NULL &&
 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
 					cred->cr_prison))
 					continue;
 #ifdef INET6
 				/* XXX inp locking */
 				if ((inp->inp_vflag & INP_IPV4) == 0)
 					continue;
 				/*
 				 * We never select the PCB that has
 				 * INP_IPV6 flag and is bound to :: if
 				 * we have another PCB which is bound
 				 * to 0.0.0.0.  If a PCB has the
 				 * INP_IPV6 flag, then we set its cost
 				 * higher than IPv4 only PCBs.
 				 *
 				 * Note that the case only happens
 				 * when a socket is bound to ::, under
 				 * the condition that the use of the
 				 * mapped address is allowed.
 				 */
 				if ((inp->inp_vflag & INP_IPV6) != 0)
 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
 #endif
 				if (inp->inp_faddr.s_addr != INADDR_ANY)
 					wildcard++;
 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
 					if (laddr.s_addr == INADDR_ANY)
 						wildcard++;
 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
 						continue;
 				} else {
 					if (laddr.s_addr != INADDR_ANY)
 						wildcard++;
 				}
 				if (wildcard < matchwild) {
 					match = inp;
 					matchwild = wildcard;
 					if (matchwild == 0)
 						break;
 				}
 			}
 		}
 		return (match);
 	}
 }
 #undef INP_LOOKUP_MAPPED_PCB_COST
 
 static struct inpcb *
 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
     uint16_t fport, int lookupflags, int numa_domain)
 {
 	struct inpcb *local_wild, *numa_wild;
 	const struct inpcblbgrouphead *hdr;
 	struct inpcblbgroup *grp;
 	uint32_t idx;
 
 	INP_HASH_LOCK_ASSERT(pcbinfo);
 
 	hdr = &pcbinfo->ipi_lbgrouphashbase[
 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
 
 	/*
 	 * Order of socket selection:
 	 * 1. non-wild.
 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
 	 *
 	 * NOTE:
 	 * - Load balanced group does not contain jailed sockets
 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
 	 */
 	local_wild = NULL;
 	numa_wild = NULL;
 	CK_LIST_FOREACH(grp, hdr, il_list) {
 #ifdef INET6
 		if (!(grp->il_vflag & INP_IPV4))
 			continue;
 #endif
 		if (grp->il_lport != lport)
 			continue;
 
 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
 		    grp->il_inpcnt;
 		if (grp->il_laddr.s_addr == laddr->s_addr) {
 			if (numa_domain == M_NODOM ||
 			    grp->il_numa_domain == numa_domain) {
 				return (grp->il_inp[idx]);
 			} else {
 				numa_wild = grp->il_inp[idx];
 			}
 		}
 		if (grp->il_laddr.s_addr == INADDR_ANY &&
 		    (lookupflags & INPLOOKUP_WILDCARD) != 0 &&
 		    (local_wild == NULL || numa_domain == M_NODOM ||
 			grp->il_numa_domain == numa_domain)) {
 			local_wild = grp->il_inp[idx];
 		}
 	}
 	if (numa_wild != NULL)
 		return (numa_wild);
 
 	return (local_wild);
 }
 
 #ifdef PCBGROUP
 /*
  * Lookup PCB in hash list, using pcbgroup tables.
  */
 static struct inpcb *
 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
     u_int lport_arg, int lookupflags, struct ifnet *ifp)
 {
 	struct inpcbhead *head;
 	struct inpcb *inp, *tmpinp;
 	u_short fport = fport_arg, lport = lport_arg;
 	bool locked;
 
 	/*
 	 * First look for an exact match.
 	 */
 	tmpinp = NULL;
 	INP_GROUP_LOCK(pcbgroup);
 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
 	    pcbgroup->ipg_hashmask)];
 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
 #ifdef INET6
 		/* XXX inp locking */
 		if ((inp->inp_vflag & INP_IPV4) == 0)
 			continue;
 #endif
 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
 		    inp->inp_laddr.s_addr == laddr.s_addr &&
 		    inp->inp_fport == fport &&
 		    inp->inp_lport == lport) {
 			/*
 			 * XXX We should be able to directly return
 			 * the inp here, without any checks.
 			 * Well unless both bound with SO_REUSEPORT?
 			 */
 			if (prison_flag(inp->inp_cred, PR_IP4))
 				goto found;
 			if (tmpinp == NULL)
 				tmpinp = inp;
 		}
 	}
 	if (tmpinp != NULL) {
 		inp = tmpinp;
 		goto found;
 	}
 
 #ifdef	RSS
 	/*
 	 * For incoming connections, we may wish to do a wildcard
 	 * match for an RSS-local socket.
 	 */
 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
 		struct inpcb *local_wild = NULL, *local_exact = NULL;
 #ifdef INET6
 		struct inpcb *local_wild_mapped = NULL;
 #endif
 		struct inpcb *jail_wild = NULL;
 		struct inpcbhead *head;
 		int injail;
 
 		/*
 		 * Order of socket selection - we always prefer jails.
 		 *      1. jailed, non-wild.
 		 *      2. jailed, wild.
 		 *      3. non-jailed, non-wild.
 		 *      4. non-jailed, wild.
 		 */
 
 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
 		    lport, 0, pcbgroup->ipg_hashmask)];
 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
 #ifdef INET6
 			/* XXX inp locking */
 			if ((inp->inp_vflag & INP_IPV4) == 0)
 				continue;
 #endif
 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
 			    inp->inp_lport != lport)
 				continue;
 
 			injail = prison_flag(inp->inp_cred, PR_IP4);
 			if (injail) {
 				if (prison_check_ip4(inp->inp_cred,
 				    &laddr) != 0)
 					continue;
 			} else {
 				if (local_exact != NULL)
 					continue;
 			}
 
 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
 				if (injail)
 					goto found;
 				else
 					local_exact = inp;
 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 #ifdef INET6
 				/* XXX inp locking, NULL check */
 				if (inp->inp_vflag & INP_IPV6PROTO)
 					local_wild_mapped = inp;
 				else
 #endif
 					if (injail)
 						jail_wild = inp;
 					else
 						local_wild = inp;
 			}
 		} /* LIST_FOREACH */
 
 		inp = jail_wild;
 		if (inp == NULL)
 			inp = local_exact;
 		if (inp == NULL)
 			inp = local_wild;
 #ifdef INET6
 		if (inp == NULL)
 			inp = local_wild_mapped;
 #endif
 		if (inp != NULL)
 			goto found;
 	}
 #endif
 
 	/*
 	 * Then look for a wildcard match, if requested.
 	 */
 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
 		struct inpcb *local_wild = NULL, *local_exact = NULL;
 #ifdef INET6
 		struct inpcb *local_wild_mapped = NULL;
 #endif
 		struct inpcb *jail_wild = NULL;
 		struct inpcbhead *head;
 		int injail;
 
 		/*
 		 * Order of socket selection - we always prefer jails.
 		 *      1. jailed, non-wild.
 		 *      2. jailed, wild.
 		 *      3. non-jailed, non-wild.
 		 *      4. non-jailed, wild.
 		 */
 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
 		    0, pcbinfo->ipi_wildmask)];
 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
 #ifdef INET6
 			/* XXX inp locking */
 			if ((inp->inp_vflag & INP_IPV4) == 0)
 				continue;
 #endif
 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
 			    inp->inp_lport != lport)
 				continue;
 
 			injail = prison_flag(inp->inp_cred, PR_IP4);
 			if (injail) {
 				if (prison_check_ip4(inp->inp_cred,
 				    &laddr) != 0)
 					continue;
 			} else {
 				if (local_exact != NULL)
 					continue;
 			}
 
 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
 				if (injail)
 					goto found;
 				else
 					local_exact = inp;
 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 #ifdef INET6
 				/* XXX inp locking, NULL check */
 				if (inp->inp_vflag & INP_IPV6PROTO)
 					local_wild_mapped = inp;
 				else
 #endif
 					if (injail)
 						jail_wild = inp;
 					else
 						local_wild = inp;
 			}
 		} /* LIST_FOREACH */
 		inp = jail_wild;
 		if (inp == NULL)
 			inp = local_exact;
 		if (inp == NULL)
 			inp = local_wild;
 #ifdef INET6
 		if (inp == NULL)
 			inp = local_wild_mapped;
 #endif
 		if (inp != NULL)
 			goto found;
 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
 	INP_GROUP_UNLOCK(pcbgroup);
 	return (NULL);
 
 found:
 	if (lookupflags & INPLOOKUP_WLOCKPCB)
 		locked = INP_TRY_WLOCK(inp);
 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
 		locked = INP_TRY_RLOCK(inp);
 	else
 		panic("%s: locking bug", __func__);
 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
 		if (lookupflags & INPLOOKUP_WLOCKPCB)
 			INP_WUNLOCK(inp);
 		else
 			INP_RUNLOCK(inp);
 		return (NULL);
 	} else if (!locked)
 		in_pcbref(inp);
 	INP_GROUP_UNLOCK(pcbgroup);
 	if (!locked) {
 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
 			INP_WLOCK(inp);
 			if (in_pcbrele_wlocked(inp))
 				return (NULL);
 		} else {
 			INP_RLOCK(inp);
 			if (in_pcbrele_rlocked(inp))
 				return (NULL);
 		}
 	}
 #ifdef INVARIANTS
 	if (lookupflags & INPLOOKUP_WLOCKPCB)
 		INP_WLOCK_ASSERT(inp);
 	else
 		INP_RLOCK_ASSERT(inp);
 #endif
 	return (inp);
 }
 #endif /* PCBGROUP */
 
 /*
  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
  * that the caller has locked the hash list, and will not perform any further
  * locking or reference operations on either the hash list or the connection.
  */
 static struct inpcb *
 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
     struct ifnet *ifp, uint8_t numa_domain)
 {
 	struct inpcbhead *head;
 	struct inpcb *inp, *tmpinp;
 	u_short fport = fport_arg, lport = lport_arg;
 
 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
 	INP_HASH_LOCK_ASSERT(pcbinfo);
 
 	/*
 	 * First look for an exact match.
 	 */
 	tmpinp = NULL;
 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
 	    pcbinfo->ipi_hashmask)];
 	CK_LIST_FOREACH(inp, head, inp_hash) {
 #ifdef INET6
 		/* XXX inp locking */
 		if ((inp->inp_vflag & INP_IPV4) == 0)
 			continue;
 #endif
 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
 		    inp->inp_laddr.s_addr == laddr.s_addr &&
 		    inp->inp_fport == fport &&
 		    inp->inp_lport == lport) {
 			/*
 			 * XXX We should be able to directly return
 			 * the inp here, without any checks.
 			 * Well unless both bound with SO_REUSEPORT?
 			 */
 			if (prison_flag(inp->inp_cred, PR_IP4))
 				return (inp);
 			if (tmpinp == NULL)
 				tmpinp = inp;
 		}
 	}
 	if (tmpinp != NULL)
 		return (tmpinp);
 
 	/*
 	 * Then look in lb group (for wildcard match).
 	 */
 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
 		    fport, lookupflags, numa_domain);
 		if (inp != NULL)
 			return (inp);
 	}
 
 	/*
 	 * Then look for a wildcard match, if requested.
 	 */
 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
 		struct inpcb *local_wild = NULL, *local_exact = NULL;
 #ifdef INET6
 		struct inpcb *local_wild_mapped = NULL;
 #endif
 		struct inpcb *jail_wild = NULL;
 		int injail;
 
 		/*
 		 * Order of socket selection - we always prefer jails.
 		 *      1. jailed, non-wild.
 		 *      2. jailed, wild.
 		 *      3. non-jailed, non-wild.
 		 *      4. non-jailed, wild.
 		 */
 
 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 		    0, pcbinfo->ipi_hashmask)];
 		CK_LIST_FOREACH(inp, head, inp_hash) {
 #ifdef INET6
 			/* XXX inp locking */
 			if ((inp->inp_vflag & INP_IPV4) == 0)
 				continue;
 #endif
 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
 			    inp->inp_lport != lport)
 				continue;
 
 			injail = prison_flag(inp->inp_cred, PR_IP4);
 			if (injail) {
 				if (prison_check_ip4(inp->inp_cred,
 				    &laddr) != 0)
 					continue;
 			} else {
 				if (local_exact != NULL)
 					continue;
 			}
 
 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
 				if (injail)
 					return (inp);
 				else
 					local_exact = inp;
 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 #ifdef INET6
 				/* XXX inp locking, NULL check */
 				if (inp->inp_vflag & INP_IPV6PROTO)
 					local_wild_mapped = inp;
 				else
 #endif
 					if (injail)
 						jail_wild = inp;
 					else
 						local_wild = inp;
 			}
 		} /* LIST_FOREACH */
 		if (jail_wild != NULL)
 			return (jail_wild);
 		if (local_exact != NULL)
 			return (local_exact);
 		if (local_wild != NULL)
 			return (local_wild);
 #ifdef INET6
 		if (local_wild_mapped != NULL)
 			return (local_wild_mapped);
 #endif
 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
 
 	return (NULL);
 }
 
 /*
  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
  * hash list lock, and will return the inpcb locked (i.e., requires
  * INPLOOKUP_LOCKPCB).
  */
 static struct inpcb *
 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
     struct ifnet *ifp, uint8_t numa_domain)
 {
 	struct inpcb *inp;
 
 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp,
 	    numa_domain);
 	if (inp != NULL) {
 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
 			INP_WLOCK(inp);
 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
 				INP_WUNLOCK(inp);
 				inp = NULL;
 			}
 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
 			INP_RLOCK(inp);
 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
 				INP_RUNLOCK(inp);
 				inp = NULL;
 			}
 		} else
 			panic("%s: locking bug", __func__);
 #ifdef INVARIANTS
 		if (inp != NULL) {
 			if (lookupflags & INPLOOKUP_WLOCKPCB)
 				INP_WLOCK_ASSERT(inp);
 			else
 				INP_RLOCK_ASSERT(inp);
 		}
 #endif
 	}
 
 	return (inp);
 }
 
 /*
  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
  * from which a pre-calculated hash value may be extracted.
  *
  * Possibly more of this logic should be in in_pcbgroup.c.
  */
 struct inpcb *
 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
 {
 #if defined(PCBGROUP) && !defined(RSS)
 	struct inpcbgroup *pcbgroup;
 #endif
 
 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
 	    ("%s: LOCKPCB not set", __func__));
 
 	/*
 	 * When not using RSS, use connection groups in preference to the
 	 * reservation table when looking up 4-tuples.  When using RSS, just
 	 * use the reservation table, due to the cost of the Toeplitz hash
 	 * in software.
 	 *
 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
 	 * in software.
 	 */
 #if defined(PCBGROUP) && !defined(RSS)
 	if (in_pcbgroup_enabled(pcbinfo)) {
 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
 		    fport);
 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
 		    laddr, lport, lookupflags, ifp));
 	}
 #endif
 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
 	    lookupflags, ifp, M_NODOM));
 }
 
 struct inpcb *
 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
     struct ifnet *ifp, struct mbuf *m)
 {
 #ifdef PCBGROUP
 	struct inpcbgroup *pcbgroup;
 #endif
 
 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
 	    ("%s: LOCKPCB not set", __func__));
 
 #ifdef PCBGROUP
 	/*
 	 * If we can use a hardware-generated hash to look up the connection
 	 * group, use that connection group to find the inpcb.  Otherwise
 	 * fall back on a software hash -- or the reservation table if we're
 	 * using RSS.
 	 *
 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
 	 */
 	if (in_pcbgroup_enabled(pcbinfo) &&
 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
 		    m->m_pkthdr.flowid);
 		if (pcbgroup != NULL)
 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
 			    fport, laddr, lport, lookupflags, ifp));
 #ifndef RSS
 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
 		    fport);
 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
 		    laddr, lport, lookupflags, ifp));
 #endif
 	}
 #endif
 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
 	    lookupflags, ifp, m->m_pkthdr.numa_domain));
 }
 #endif /* INET */
 
 /*
  * Insert PCB onto various hash lists.
  */
 static int
 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
 {
 	struct inpcbhead *pcbhash;
 	struct inpcbporthead *pcbporthash;
 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 	struct inpcbport *phd;
 	u_int32_t hashkey_faddr;
 	int so_options;
 
 	INP_WLOCK_ASSERT(inp);
 	INP_HASH_WLOCK_ASSERT(pcbinfo);
 
 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
 	    ("in_pcbinshash: INP_INHASHLIST"));
 
 #ifdef INET6
 	if (inp->inp_vflag & INP_IPV6)
 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
 	else
 #endif
 	hashkey_faddr = inp->inp_faddr.s_addr;
 
 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 
 	pcbporthash = &pcbinfo->ipi_porthashbase[
 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
 
 	/*
 	 * Add entry to load balance group.
 	 * Only do this if SO_REUSEPORT_LB is set.
 	 */
 	so_options = inp_so_options(inp);
 	if (so_options & SO_REUSEPORT_LB) {
 		int ret = in_pcbinslbgrouphash(inp, M_NODOM);
 		if (ret) {
 			/* pcb lb group malloc fail (ret=ENOBUFS). */
 			return (ret);
 		}
 	}
 
 	/*
 	 * Go through port list and look for a head for this lport.
 	 */
 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
 		if (phd->phd_port == inp->inp_lport)
 			break;
 	}
 	/*
 	 * If none exists, malloc one and tack it on.
 	 */
 	if (phd == NULL) {
 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
 		if (phd == NULL) {
 			return (ENOBUFS); /* XXX */
 		}
 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
 		phd->phd_port = inp->inp_lport;
 		CK_LIST_INIT(&phd->phd_pcblist);
 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
 	}
 	inp->inp_phd = phd;
 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
 	inp->inp_flags |= INP_INHASHLIST;
 #ifdef PCBGROUP
 	if (m != NULL) {
 		in_pcbgroup_update_mbuf(inp, m);
 	} else {
 		in_pcbgroup_update(inp);
 	}
 #endif
 	return (0);
 }
 
 int
 in_pcbinshash(struct inpcb *inp)
 {
 
 	return (in_pcbinshash_internal(inp, NULL));
 }
 
 int
 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
 {
 
 	return (in_pcbinshash_internal(inp, m));
 }
 
 /*
  * Move PCB to the proper hash bucket when { faddr, fport } have  been
  * changed. NOTE: This does not handle the case of the lport changing (the
  * hashed port list would have to be updated as well), so the lport must
  * not change after in_pcbinshash() has been called.
  */
 void
 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
 {
 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 	struct inpcbhead *head;
 	u_int32_t hashkey_faddr;
 
 	INP_WLOCK_ASSERT(inp);
 	INP_HASH_WLOCK_ASSERT(pcbinfo);
 
 	KASSERT(inp->inp_flags & INP_INHASHLIST,
 	    ("in_pcbrehash: !INP_INHASHLIST"));
 
 #ifdef INET6
 	if (inp->inp_vflag & INP_IPV6)
 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
 	else
 #endif
 	hashkey_faddr = inp->inp_faddr.s_addr;
 
 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 
 	CK_LIST_REMOVE(inp, inp_hash);
 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
 
 #ifdef PCBGROUP
 	if (m != NULL)
 		in_pcbgroup_update_mbuf(inp, m);
 	else
 		in_pcbgroup_update(inp);
 #endif
 }
 
 void
 in_pcbrehash(struct inpcb *inp)
 {
 
 	in_pcbrehash_mbuf(inp, NULL);
 }
 
 /*
  * Remove PCB from various lists.
  */
 static void
 in_pcbremlists(struct inpcb *inp)
 {
 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 
 	INP_WLOCK_ASSERT(inp);
 	INP_LIST_WLOCK_ASSERT(pcbinfo);
 
 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
 	if (inp->inp_flags & INP_INHASHLIST) {
 		struct inpcbport *phd = inp->inp_phd;
 
 		INP_HASH_WLOCK(pcbinfo);
 
 		/* XXX: Only do if SO_REUSEPORT_LB set? */
 		in_pcbremlbgrouphash(inp);
 
 		CK_LIST_REMOVE(inp, inp_hash);
 		CK_LIST_REMOVE(inp, inp_portlist);
 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
 			CK_LIST_REMOVE(phd, phd_hash);
 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
 		}
 		INP_HASH_WUNLOCK(pcbinfo);
 		inp->inp_flags &= ~INP_INHASHLIST;
 	}
 	CK_LIST_REMOVE(inp, inp_list);
 	pcbinfo->ipi_count--;
 #ifdef PCBGROUP
 	in_pcbgroup_remove(inp);
 #endif
 }
 
 /*
  * Check for alternatives when higher level complains
  * about service problems.  For now, invalidate cached
  * routing information.  If the route was created dynamically
  * (by a redirect), time to try a default gateway again.
  */
 void
 in_losing(struct inpcb *inp)
 {
 
 	RO_INVALIDATE_CACHE(&inp->inp_route);
 	return;
 }
 
 /*
  * A set label operation has occurred at the socket layer, propagate the
  * label change into the in_pcb for the socket.
  */
 void
 in_pcbsosetlabel(struct socket *so)
 {
 #ifdef MAC
 	struct inpcb *inp;
 
 	inp = sotoinpcb(so);
 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
 
 	INP_WLOCK(inp);
 	SOCK_LOCK(so);
 	mac_inpcb_sosetlabel(so, inp);
 	SOCK_UNLOCK(so);
 	INP_WUNLOCK(inp);
 #endif
 }
 
 /*
  * ipport_tick runs once per second, determining if random port allocation
  * should be continued.  If more than ipport_randomcps ports have been
  * allocated in the last second, then we return to sequential port
  * allocation. We return to random allocation only once we drop below
  * ipport_randomcps for at least ipport_randomtime seconds.
  */
 static void
 ipport_tick(void *xtp)
 {
 	VNET_ITERATOR_DECL(vnet_iter);
 
 	VNET_LIST_RLOCK_NOSLEEP();
 	VNET_FOREACH(vnet_iter) {
 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
 		if (V_ipport_tcpallocs <=
 		    V_ipport_tcplastcount + V_ipport_randomcps) {
 			if (V_ipport_stoprandom > 0)
 				V_ipport_stoprandom--;
 		} else
 			V_ipport_stoprandom = V_ipport_randomtime;
 		V_ipport_tcplastcount = V_ipport_tcpallocs;
 		CURVNET_RESTORE();
 	}
 	VNET_LIST_RUNLOCK_NOSLEEP();
 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
 }
 
 static void
 ip_fini(void *xtp)
 {
 
 	callout_stop(&ipport_tick_callout);
 }
 
 /*
  * The ipport_callout should start running at about the time we attach the
  * inet or inet6 domains.
  */
 static void
 ipport_tick_init(const void *unused __unused)
 {
 
 	/* Start ipport_tick. */
 	callout_init(&ipport_tick_callout, 1);
 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
 		SHUTDOWN_PRI_DEFAULT);
 }
 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
     ipport_tick_init, NULL);
 
 void
 inp_wlock(struct inpcb *inp)
 {
 
 	INP_WLOCK(inp);
 }
 
 void
 inp_wunlock(struct inpcb *inp)
 {
 
 	INP_WUNLOCK(inp);
 }
 
 void
 inp_rlock(struct inpcb *inp)
 {
 
 	INP_RLOCK(inp);
 }
 
 void
 inp_runlock(struct inpcb *inp)
 {
 
 	INP_RUNLOCK(inp);
 }
 
 #ifdef INVARIANT_SUPPORT
 void
 inp_lock_assert(struct inpcb *inp)
 {
 
 	INP_WLOCK_ASSERT(inp);
 }
 
 void
 inp_unlock_assert(struct inpcb *inp)
 {
 
 	INP_UNLOCK_ASSERT(inp);
 }
 #endif
 
 void
 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
 {
 	struct inpcb *inp;
 
 	INP_INFO_WLOCK(&V_tcbinfo);
 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
 		INP_WLOCK(inp);
 		func(inp, arg);
 		INP_WUNLOCK(inp);
 	}
 	INP_INFO_WUNLOCK(&V_tcbinfo);
 }
 
 struct socket *
 inp_inpcbtosocket(struct inpcb *inp)
 {
 
 	INP_WLOCK_ASSERT(inp);
 	return (inp->inp_socket);
 }
 
 struct tcpcb *
 inp_inpcbtotcpcb(struct inpcb *inp)
 {
 
 	INP_WLOCK_ASSERT(inp);
 	return ((struct tcpcb *)inp->inp_ppcb);
 }
 
 int
 inp_ip_tos_get(const struct inpcb *inp)
 {
 
 	return (inp->inp_ip_tos);
 }
 
 void
 inp_ip_tos_set(struct inpcb *inp, int val)
 {
 
 	inp->inp_ip_tos = val;
 }
 
 void
 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
     uint32_t *faddr, uint16_t *fp)
 {
 
 	INP_LOCK_ASSERT(inp);
 	*laddr = inp->inp_laddr.s_addr;
 	*faddr = inp->inp_faddr.s_addr;
 	*lp = inp->inp_lport;
 	*fp = inp->inp_fport;
 }
 
 struct inpcb *
 so_sotoinpcb(struct socket *so)
 {
 
 	return (sotoinpcb(so));
 }
 
 struct tcpcb *
 so_sototcpcb(struct socket *so)
 {
 
 	return (sototcpcb(so));
 }
 
 /*
  * Create an external-format (``xinpcb'') structure using the information in
  * the kernel-format in_pcb structure pointed to by inp.  This is done to
  * reduce the spew of irrelevant information over this interface, to isolate
  * user code from changes in the kernel structure, and potentially to provide
  * information-hiding if we decide that some of this information should be
  * hidden from users.
  */
 void
 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
 {
 
 	bzero(xi, sizeof(*xi));
 	xi->xi_len = sizeof(struct xinpcb);
 	if (inp->inp_socket)
 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
 	xi->inp_gencnt = inp->inp_gencnt;
 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
 	xi->inp_flow = inp->inp_flow;
 	xi->inp_flowid = inp->inp_flowid;
 	xi->inp_flowtype = inp->inp_flowtype;
 	xi->inp_flags = inp->inp_flags;
 	xi->inp_flags2 = inp->inp_flags2;
 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
 	xi->in6p_cksum = inp->in6p_cksum;
 	xi->in6p_hops = inp->in6p_hops;
 	xi->inp_ip_tos = inp->inp_ip_tos;
 	xi->inp_vflag = inp->inp_vflag;
 	xi->inp_ip_ttl = inp->inp_ip_ttl;
 	xi->inp_ip_p = inp->inp_ip_p;
 	xi->inp_ip_minttl = inp->inp_ip_minttl;
 }
 
 #ifdef DDB
 static void
 db_print_indent(int indent)
 {
 	int i;
 
 	for (i = 0; i < indent; i++)
 		db_printf(" ");
 }
 
 static void
 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
 {
 	char faddr_str[48], laddr_str[48];
 
 	db_print_indent(indent);
 	db_printf("%s at %p\n", name, inc);
 
 	indent += 2;
 
 #ifdef INET6
 	if (inc->inc_flags & INC_ISIPV6) {
 		/* IPv6. */
 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
 	} else
 #endif
 	{
 		/* IPv4. */
 		inet_ntoa_r(inc->inc_laddr, laddr_str);
 		inet_ntoa_r(inc->inc_faddr, faddr_str);
 	}
 	db_print_indent(indent);
 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
 	    ntohs(inc->inc_lport));
 	db_print_indent(indent);
 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
 	    ntohs(inc->inc_fport));
 }
 
 static void
 db_print_inpflags(int inp_flags)
 {
 	int comma;
 
 	comma = 0;
 	if (inp_flags & INP_RECVOPTS) {
 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_RECVRETOPTS) {
 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_RECVDSTADDR) {
 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_ORIGDSTADDR) {
 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_HDRINCL) {
 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_HIGHPORT) {
 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_LOWPORT) {
 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_ANONPORT) {
 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_RECVIF) {
 		db_printf("%sINP_RECVIF", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_MTUDISC) {
 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_RECVTTL) {
 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_DONTFRAG) {
 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_RECVTOS) {
 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & IN6P_IPV6_V6ONLY) {
 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & IN6P_PKTINFO) {
 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & IN6P_HOPLIMIT) {
 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & IN6P_HOPOPTS) {
 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & IN6P_DSTOPTS) {
 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & IN6P_RTHDR) {
 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & IN6P_TCLASS) {
 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & INP_TIMEWAIT) {
 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
 		comma  = 1;
 	}
 	if (inp_flags & INP_ONESBCAST) {
 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
 		comma  = 1;
 	}
 	if (inp_flags & INP_DROPPED) {
 		db_printf("%sINP_DROPPED", comma ? ", " : "");
 		comma  = 1;
 	}
 	if (inp_flags & INP_SOCKREF) {
 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
 		comma  = 1;
 	}
 	if (inp_flags & IN6P_RFC2292) {
 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
 		comma = 1;
 	}
 	if (inp_flags & IN6P_MTU) {
 		db_printf("IN6P_MTU%s", comma ? ", " : "");
 		comma = 1;
 	}
 }
 
 static void
 db_print_inpvflag(u_char inp_vflag)
 {
 	int comma;
 
 	comma = 0;
 	if (inp_vflag & INP_IPV4) {
 		db_printf("%sINP_IPV4", comma ? ", " : "");
 		comma  = 1;
 	}
 	if (inp_vflag & INP_IPV6) {
 		db_printf("%sINP_IPV6", comma ? ", " : "");
 		comma  = 1;
 	}
 	if (inp_vflag & INP_IPV6PROTO) {
 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
 		comma  = 1;
 	}
 }
 
 static void
 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
 {
 
 	db_print_indent(indent);
 	db_printf("%s at %p\n", name, inp);
 
 	indent += 2;
 
 	db_print_indent(indent);
 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
 
 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
 
 	db_print_indent(indent);
 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
 
 	db_print_indent(indent);
 	db_printf("inp_label: %p   inp_flags: 0x%x (",
 	   inp->inp_label, inp->inp_flags);
 	db_print_inpflags(inp->inp_flags);
 	db_printf(")\n");
 
 	db_print_indent(indent);
 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
 	    inp->inp_vflag);
 	db_print_inpvflag(inp->inp_vflag);
 	db_printf(")\n");
 
 	db_print_indent(indent);
 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
 
 	db_print_indent(indent);
 #ifdef INET6
 	if (inp->inp_vflag & INP_IPV6) {
 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
 		    "in6p_moptions: %p\n", inp->in6p_options,
 		    inp->in6p_outputopts, inp->in6p_moptions);
 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
 		    inp->in6p_hops);
 	} else
 #endif
 	{
 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
 		    inp->inp_options, inp->inp_moptions);
 	}
 
 	db_print_indent(indent);
 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
 	    (uintmax_t)inp->inp_gencnt);
 }
 
 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
 {
 	struct inpcb *inp;
 
 	if (!have_addr) {
 		db_printf("usage: show inpcb <addr>\n");
 		return;
 	}
 	inp = (struct inpcb *)addr;
 
 	db_print_inpcb(inp, "inpcb", 0);
 }
 #endif /* DDB */
 
 #ifdef RATELIMIT
 /*
  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
  * if any.
  */
 int
 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
 {
 	union if_snd_tag_modify_params params = {
 		.rate_limit.max_rate = max_pacing_rate,
 		.rate_limit.flags = M_NOWAIT,
 	};
 	struct m_snd_tag *mst;
 	struct ifnet *ifp;
 	int error;
 
 	mst = inp->inp_snd_tag;
 	if (mst == NULL)
 		return (EINVAL);
 
 	ifp = mst->ifp;
 	if (ifp == NULL)
 		return (EINVAL);
 
 	if (ifp->if_snd_tag_modify == NULL) {
 		error = EOPNOTSUPP;
 	} else {
 		error = ifp->if_snd_tag_modify(mst, &params);
 	}
 	return (error);
 }
 
 /*
  * Query existing TX rate limit based on the existing
  * "inp->inp_snd_tag", if any.
  */
 int
 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
 {
 	union if_snd_tag_query_params params = { };
 	struct m_snd_tag *mst;
 	struct ifnet *ifp;
 	int error;
 
 	mst = inp->inp_snd_tag;
 	if (mst == NULL)
 		return (EINVAL);
 
 	ifp = mst->ifp;
 	if (ifp == NULL)
 		return (EINVAL);
 
 	if (ifp->if_snd_tag_query == NULL) {
 		error = EOPNOTSUPP;
 	} else {
 		error = ifp->if_snd_tag_query(mst, &params);
 		if (error == 0 &&  p_max_pacing_rate != NULL)
 			*p_max_pacing_rate = params.rate_limit.max_rate;
 	}
 	return (error);
 }
 
 /*
  * Query existing TX queue level based on the existing
  * "inp->inp_snd_tag", if any.
  */
 int
 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
 {
 	union if_snd_tag_query_params params = { };
 	struct m_snd_tag *mst;
 	struct ifnet *ifp;
 	int error;
 
 	mst = inp->inp_snd_tag;
 	if (mst == NULL)
 		return (EINVAL);
 
 	ifp = mst->ifp;
 	if (ifp == NULL)
 		return (EINVAL);
 
 	if (ifp->if_snd_tag_query == NULL)
 		return (EOPNOTSUPP);
 
 	error = ifp->if_snd_tag_query(mst, &params);
 	if (error == 0 &&  p_txqueue_level != NULL)
 		*p_txqueue_level = params.rate_limit.queue_level;
 	return (error);
 }
 
 /*
  * Allocate a new TX rate limit send tag from the network interface
  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
  */
 int
 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
 
 {
 	union if_snd_tag_alloc_params params = {
 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
 		.rate_limit.hdr.flowid = flowid,
 		.rate_limit.hdr.flowtype = flowtype,
 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
 		.rate_limit.max_rate = max_pacing_rate,
 		.rate_limit.flags = M_NOWAIT,
 	};
 	int error;
 
 	INP_WLOCK_ASSERT(inp);
 
-	if (*st != NULL)
+	/*
+	 * If there is already a send tag, or the INP is being torn
+	 * down, allocating a new send tag is not allowed. Else send
+	 * tags may leak.
+	 */
+	if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0)
 		return (EINVAL);
 
 	error = m_snd_tag_alloc(ifp, &params, st);
 #ifdef INET
 	if (error == 0) {
 		counter_u64_add(rate_limit_set_ok, 1);
 		counter_u64_add(rate_limit_active, 1);
 	} else if (error != EOPNOTSUPP)
 		  counter_u64_add(rate_limit_alloc_fail, 1);
 #endif
 	return (error);
 }
 
 void
 in_pcbdetach_tag(struct m_snd_tag *mst)
 {
 
 	m_snd_tag_rele(mst);
 #ifdef INET
 	counter_u64_add(rate_limit_active, -1);
 #endif
 }
 
 /*
  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
  * if any:
  */
 void
 in_pcbdetach_txrtlmt(struct inpcb *inp)
 {
 	struct m_snd_tag *mst;
 
 	INP_WLOCK_ASSERT(inp);
 
 	mst = inp->inp_snd_tag;
 	inp->inp_snd_tag = NULL;
 
 	if (mst == NULL)
 		return;
 
 	m_snd_tag_rele(mst);
 }
 
 int
 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
 {
 	int error;
 
 	/*
 	 * If the existing send tag is for the wrong interface due to
 	 * a route change, first drop the existing tag.  Set the
 	 * CHANGED flag so that we will keep trying to allocate a new
 	 * tag if we fail to allocate one this time.
 	 */
 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
 		in_pcbdetach_txrtlmt(inp);
 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
 	}
 
 	/*
 	 * NOTE: When attaching to a network interface a reference is
 	 * made to ensure the network interface doesn't go away until
 	 * all ratelimit connections are gone. The network interface
 	 * pointers compared below represent valid network interfaces,
 	 * except when comparing towards NULL.
 	 */
 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
 		error = 0;
 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
 		if (inp->inp_snd_tag != NULL)
 			in_pcbdetach_txrtlmt(inp);
 		error = 0;
 	} else if (inp->inp_snd_tag == NULL) {
 		/*
 		 * In order to utilize packet pacing with RSS, we need
 		 * to wait until there is a valid RSS hash before we
 		 * can proceed:
 		 */
 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
 			error = EAGAIN;
 		} else {
 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
 		}
 	} else {
 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
 	}
 	if (error == 0 || error == EOPNOTSUPP)
 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
 
 	return (error);
 }
 
 /*
  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
  * is set in the fast path and will attach/detach/modify the TX rate
  * limit send tag based on the socket's so_max_pacing_rate value.
  */
 void
 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
 {
 	struct socket *socket;
 	uint32_t max_pacing_rate;
 	bool did_upgrade;
 	int error;
 
 	if (inp == NULL)
 		return;
 
 	socket = inp->inp_socket;
 	if (socket == NULL)
 		return;
 
 	if (!INP_WLOCKED(inp)) {
 		/*
 		 * NOTE: If the write locking fails, we need to bail
 		 * out and use the non-ratelimited ring for the
 		 * transmit until there is a new chance to get the
 		 * write lock.
 		 */
 		if (!INP_TRY_UPGRADE(inp))
 			return;
 		did_upgrade = 1;
 	} else {
 		did_upgrade = 0;
 	}
 
 	/*
 	 * NOTE: The so_max_pacing_rate value is read unlocked,
 	 * because atomic updates are not required since the variable
 	 * is checked at every mbuf we send. It is assumed that the
 	 * variable read itself will be atomic.
 	 */
 	max_pacing_rate = socket->so_max_pacing_rate;
 
 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
 
 	if (did_upgrade)
 		INP_DOWNGRADE(inp);
 }
 
 /*
  * Track route changes for TX rate limiting.
  */
 void
 in_pcboutput_eagain(struct inpcb *inp)
 {
 	bool did_upgrade;
 
 	if (inp == NULL)
 		return;
 
 	if (inp->inp_snd_tag == NULL)
 		return;
 
 	if (!INP_WLOCKED(inp)) {
 		/*
 		 * NOTE: If the write locking fails, we need to bail
 		 * out and use the non-ratelimited ring for the
 		 * transmit until there is a new chance to get the
 		 * write lock.
 		 */
 		if (!INP_TRY_UPGRADE(inp))
 			return;
 		did_upgrade = 1;
 	} else {
 		did_upgrade = 0;
 	}
 
 	/* detach rate limiting */
 	in_pcbdetach_txrtlmt(inp);
 
 	/* make sure new mbuf send tag allocation is made */
 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
 
 	if (did_upgrade)
 		INP_DOWNGRADE(inp);
 }
 
 #ifdef INET
 static void
 rl_init(void *st)
 {
 	rate_limit_active = counter_u64_alloc(M_WAITOK);
 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
 }
 
 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
 #endif
 #endif /* RATELIMIT */