diff --git a/sys/netinet6/in6_var.h b/sys/netinet6/in6_var.h index 92e94e730c33..6af0e54ccb75 100644 --- a/sys/netinet6/in6_var.h +++ b/sys/netinet6/in6_var.h @@ -1,927 +1,929 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_var.h,v 1.56 2001/03/29 05:34:31 itojun Exp $ */ /*- * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NETINET6_IN6_VAR_H_ #define _NETINET6_IN6_VAR_H_ #include #include #ifdef _KERNEL #include #include #endif /* * Interface address, Internet version. One of these structures * is allocated for each interface with an Internet address. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ /* * pltime/vltime are just for future reference (required to implements 2 * hour rule for hosts). they should never be modified by nd6_timeout or * anywhere else. * userland -> kernel: accept pltime/vltime * kernel -> userland: throw up everything * in kernel: modify preferred/expire only */ struct in6_addrlifetime { time_t ia6t_expire; /* valid lifetime expiration time */ time_t ia6t_preferred; /* preferred lifetime expiration time */ u_int32_t ia6t_vltime; /* valid lifetime */ u_int32_t ia6t_pltime; /* prefix lifetime */ }; struct nd_ifinfo; struct scope6_id; struct lltable; struct mld_ifsoftc; struct in6_multi; struct in6_ifextra { counter_u64_t *in6_ifstat; counter_u64_t *icmp6_ifstat; struct nd_ifinfo *nd_ifinfo; struct scope6_id *scope6_id; struct lltable *lltable; struct mld_ifsoftc *mld_ifinfo; }; #define LLTABLE6(ifp) (((struct in6_ifextra *)(ifp)->if_afdata[AF_INET6])->lltable) #ifdef _KERNEL SLIST_HEAD(in6_multi_head, in6_multi); MALLOC_DECLARE(M_IP6MADDR); struct in6_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags struct sockaddr_in6 ia_addr; /* interface address */ struct sockaddr_in6 ia_net; /* network number of interface */ struct sockaddr_in6 ia_dstaddr; /* space for destination addr */ struct sockaddr_in6 ia_prefixmask; /* prefix mask */ u_int32_t ia_plen; /* prefix length */ CK_STAILQ_ENTRY(in6_ifaddr) ia_link; /* list of IPv6 addresses */ int ia6_flags; struct in6_addrlifetime ia6_lifetime; time_t ia6_createtime; /* the creation time of this address, which is * currently used for temporary addresses only. */ time_t ia6_updatetime; /* back pointer to the ND prefix (for autoconfigured addresses only) */ struct nd_prefix *ia6_ndpr; /* multicast addresses joined from the kernel */ LIST_HEAD(, in6_multi_mship) ia6_memberships; /* entry in bucket of inet6 addresses */ CK_LIST_ENTRY(in6_ifaddr) ia6_hash; }; /* List of in6_ifaddr's. */ CK_STAILQ_HEAD(in6_ifaddrhead, in6_ifaddr); CK_LIST_HEAD(in6_ifaddrlisthead, in6_ifaddr); #endif /* _KERNEL */ /* control structure to manage address selection policy */ struct in6_addrpolicy { struct sockaddr_in6 addr; /* prefix address */ struct sockaddr_in6 addrmask; /* prefix mask */ int preced; /* precedence */ int label; /* matching label */ u_quad_t use; /* statistics */ }; /* * IPv6 interface statistics, as defined in RFC2465 Ipv6IfStatsEntry (p12). */ struct in6_ifstat { uint64_t ifs6_in_receive; /* # of total input datagram */ uint64_t ifs6_in_hdrerr; /* # of datagrams with invalid hdr */ uint64_t ifs6_in_toobig; /* # of datagrams exceeded MTU */ uint64_t ifs6_in_noroute; /* # of datagrams with no route */ uint64_t ifs6_in_addrerr; /* # of datagrams with invalid dst */ uint64_t ifs6_in_protounknown; /* # of datagrams with unknown proto */ /* NOTE: increment on final dst if */ uint64_t ifs6_in_truncated; /* # of truncated datagrams */ uint64_t ifs6_in_discard; /* # of discarded datagrams */ /* NOTE: fragment timeout is not here */ uint64_t ifs6_in_deliver; /* # of datagrams delivered to ULP */ /* NOTE: increment on final dst if */ uint64_t ifs6_out_forward; /* # of datagrams forwarded */ /* NOTE: increment on outgoing if */ uint64_t ifs6_out_request; /* # of outgoing datagrams from ULP */ /* NOTE: does not include forwrads */ uint64_t ifs6_out_discard; /* # of discarded datagrams */ uint64_t ifs6_out_fragok; /* # of datagrams fragmented */ uint64_t ifs6_out_fragfail; /* # of datagrams failed on fragment */ uint64_t ifs6_out_fragcreat; /* # of fragment datagrams */ /* NOTE: this is # after fragment */ uint64_t ifs6_reass_reqd; /* # of incoming fragmented packets */ /* NOTE: increment on final dst if */ uint64_t ifs6_reass_ok; /* # of reassembled packets */ /* NOTE: this is # after reass */ /* NOTE: increment on final dst if */ uint64_t ifs6_reass_fail; /* # of reass failures */ /* NOTE: may not be packet count */ /* NOTE: increment on final dst if */ uint64_t ifs6_in_mcast; /* # of inbound multicast datagrams */ uint64_t ifs6_out_mcast; /* # of outbound multicast datagrams */ }; /* * ICMPv6 interface statistics, as defined in RFC2466 Ipv6IfIcmpEntry. * XXX: I'm not sure if this file is the right place for this structure... */ struct icmp6_ifstat { /* * Input statistics */ /* ipv6IfIcmpInMsgs, total # of input messages */ uint64_t ifs6_in_msg; /* ipv6IfIcmpInErrors, # of input error messages */ uint64_t ifs6_in_error; /* ipv6IfIcmpInDestUnreachs, # of input dest unreach errors */ uint64_t ifs6_in_dstunreach; /* ipv6IfIcmpInAdminProhibs, # of input administratively prohibited errs */ uint64_t ifs6_in_adminprohib; /* ipv6IfIcmpInTimeExcds, # of input time exceeded errors */ uint64_t ifs6_in_timeexceed; /* ipv6IfIcmpInParmProblems, # of input parameter problem errors */ uint64_t ifs6_in_paramprob; /* ipv6IfIcmpInPktTooBigs, # of input packet too big errors */ uint64_t ifs6_in_pkttoobig; /* ipv6IfIcmpInEchos, # of input echo requests */ uint64_t ifs6_in_echo; /* ipv6IfIcmpInEchoReplies, # of input echo replies */ uint64_t ifs6_in_echoreply; /* ipv6IfIcmpInRouterSolicits, # of input router solicitations */ uint64_t ifs6_in_routersolicit; /* ipv6IfIcmpInRouterAdvertisements, # of input router advertisements */ uint64_t ifs6_in_routeradvert; /* ipv6IfIcmpInNeighborSolicits, # of input neighbor solicitations */ uint64_t ifs6_in_neighborsolicit; /* ipv6IfIcmpInNeighborAdvertisements, # of input neighbor advertisements */ uint64_t ifs6_in_neighboradvert; /* ipv6IfIcmpInRedirects, # of input redirects */ uint64_t ifs6_in_redirect; /* ipv6IfIcmpInGroupMembQueries, # of input MLD queries */ uint64_t ifs6_in_mldquery; /* ipv6IfIcmpInGroupMembResponses, # of input MLD reports */ uint64_t ifs6_in_mldreport; /* ipv6IfIcmpInGroupMembReductions, # of input MLD done */ uint64_t ifs6_in_mlddone; /* * Output statistics. We should solve unresolved routing problem... */ /* ipv6IfIcmpOutMsgs, total # of output messages */ uint64_t ifs6_out_msg; /* ipv6IfIcmpOutErrors, # of output error messages */ uint64_t ifs6_out_error; /* ipv6IfIcmpOutDestUnreachs, # of output dest unreach errors */ uint64_t ifs6_out_dstunreach; /* ipv6IfIcmpOutAdminProhibs, # of output administratively prohibited errs */ uint64_t ifs6_out_adminprohib; /* ipv6IfIcmpOutTimeExcds, # of output time exceeded errors */ uint64_t ifs6_out_timeexceed; /* ipv6IfIcmpOutParmProblems, # of output parameter problem errors */ uint64_t ifs6_out_paramprob; /* ipv6IfIcmpOutPktTooBigs, # of output packet too big errors */ uint64_t ifs6_out_pkttoobig; /* ipv6IfIcmpOutEchos, # of output echo requests */ uint64_t ifs6_out_echo; /* ipv6IfIcmpOutEchoReplies, # of output echo replies */ uint64_t ifs6_out_echoreply; /* ipv6IfIcmpOutRouterSolicits, # of output router solicitations */ uint64_t ifs6_out_routersolicit; /* ipv6IfIcmpOutRouterAdvertisements, # of output router advertisements */ uint64_t ifs6_out_routeradvert; /* ipv6IfIcmpOutNeighborSolicits, # of output neighbor solicitations */ uint64_t ifs6_out_neighborsolicit; /* ipv6IfIcmpOutNeighborAdvertisements, # of output neighbor advertisements */ uint64_t ifs6_out_neighboradvert; /* ipv6IfIcmpOutRedirects, # of output redirects */ uint64_t ifs6_out_redirect; /* ipv6IfIcmpOutGroupMembQueries, # of output MLD queries */ uint64_t ifs6_out_mldquery; /* ipv6IfIcmpOutGroupMembResponses, # of output MLD reports */ uint64_t ifs6_out_mldreport; /* ipv6IfIcmpOutGroupMembReductions, # of output MLD done */ uint64_t ifs6_out_mlddone; }; struct in6_ifreq { char ifr_name[IFNAMSIZ]; union { struct sockaddr_in6 ifru_addr; struct sockaddr_in6 ifru_dstaddr; int ifru_flags; int ifru_flags6; int ifru_metric; caddr_t ifru_data; struct in6_addrlifetime ifru_lifetime; struct in6_ifstat ifru_stat; struct icmp6_ifstat ifru_icmp6stat; u_int32_t ifru_scope_id[16]; } ifr_ifru; }; struct in6_aliasreq { char ifra_name[IFNAMSIZ]; struct sockaddr_in6 ifra_addr; struct sockaddr_in6 ifra_dstaddr; struct sockaddr_in6 ifra_prefixmask; int ifra_flags; struct in6_addrlifetime ifra_lifetime; int ifra_vhid; }; /* pre-10.x compat */ struct oin6_aliasreq { char ifra_name[IFNAMSIZ]; struct sockaddr_in6 ifra_addr; struct sockaddr_in6 ifra_dstaddr; struct sockaddr_in6 ifra_prefixmask; int ifra_flags; struct in6_addrlifetime ifra_lifetime; }; /* prefix type macro */ #define IN6_PREFIX_ND 1 #define IN6_PREFIX_RR 2 /* * prefix related flags passed between kernel(NDP related part) and * user land command(ifconfig) and daemon(rtadvd). */ struct in6_prflags { struct prf_ra { u_char onlink : 1; u_char autonomous : 1; - u_char reserved : 6; + u_char ra_derived: 1; + u_char reserved : 5; } prf_ra; u_char prf_reserved1; u_short prf_reserved2; /* want to put this on 4byte offset */ struct prf_rr { u_char decrvalid : 1; u_char decrprefd : 1; u_char reserved : 6; } prf_rr; u_char prf_reserved3; u_short prf_reserved4; }; struct in6_prefixreq { char ipr_name[IFNAMSIZ]; u_char ipr_origin; u_char ipr_plen; u_int32_t ipr_vltime; u_int32_t ipr_pltime; struct in6_prflags ipr_flags; struct sockaddr_in6 ipr_prefix; }; #define PR_ORIG_RA 0 #define PR_ORIG_RR 1 #define PR_ORIG_STATIC 2 #define PR_ORIG_KERNEL 3 #define ipr_raf_onlink ipr_flags.prf_ra.onlink #define ipr_raf_auto ipr_flags.prf_ra.autonomous +#define ipr_raf_ra_derived ipr_flags.prf_ra.ra_derived #define ipr_statef_onlink ipr_flags.prf_state.onlink #define ipr_rrf_decrvalid ipr_flags.prf_rr.decrvalid #define ipr_rrf_decrprefd ipr_flags.prf_rr.decrprefd struct in6_rrenumreq { char irr_name[IFNAMSIZ]; u_char irr_origin; u_char irr_m_len; /* match len for matchprefix */ u_char irr_m_minlen; /* minlen for matching prefix */ u_char irr_m_maxlen; /* maxlen for matching prefix */ u_char irr_u_uselen; /* uselen for adding prefix */ u_char irr_u_keeplen; /* keeplen from matching prefix */ struct irr_raflagmask { u_char onlink : 1; u_char autonomous : 1; u_char reserved : 6; } irr_raflagmask; u_int32_t irr_vltime; u_int32_t irr_pltime; struct in6_prflags irr_flags; struct sockaddr_in6 irr_matchprefix; struct sockaddr_in6 irr_useprefix; }; #define irr_raf_mask_onlink irr_raflagmask.onlink #define irr_raf_mask_auto irr_raflagmask.autonomous #define irr_raf_mask_reserved irr_raflagmask.reserved #define irr_raf_onlink irr_flags.prf_ra.onlink #define irr_raf_auto irr_flags.prf_ra.autonomous #define irr_statef_onlink irr_flags.prf_state.onlink #define irr_rrf irr_flags.prf_rr #define irr_rrf_decrvalid irr_flags.prf_rr.decrvalid #define irr_rrf_decrprefd irr_flags.prf_rr.decrprefd /* * Given a pointer to an in6_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in6 */ #define IA6_IN6(ia) (&((ia)->ia_addr.sin6_addr)) #define IA6_DSTIN6(ia) (&((ia)->ia_dstaddr.sin6_addr)) #define IA6_MASKIN6(ia) (&((ia)->ia_prefixmask.sin6_addr)) #define IA6_SIN6(ia) (&((ia)->ia_addr)) #define IA6_DSTSIN6(ia) (&((ia)->ia_dstaddr)) #define IFA_IN6(x) (&((struct sockaddr_in6 *)((x)->ifa_addr))->sin6_addr) #define IFA_DSTIN6(x) (&((struct sockaddr_in6 *)((x)->ifa_dstaddr))->sin6_addr) #define IFA_MASKIN6(x) (&((struct sockaddr_in6 *)((x)->ifa_netmask))->sin6_addr) #define IFPR_IN6(x) (&((struct sockaddr_in6 *)((x)->ifpr_prefix))->sin6_addr) #ifdef _KERNEL #define IN6_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ (((d)->s6_addr32[0] ^ (a)->s6_addr32[0]) & (m)->s6_addr32[0]) == 0 && \ (((d)->s6_addr32[1] ^ (a)->s6_addr32[1]) & (m)->s6_addr32[1]) == 0 && \ (((d)->s6_addr32[2] ^ (a)->s6_addr32[2]) & (m)->s6_addr32[2]) == 0 && \ (((d)->s6_addr32[3] ^ (a)->s6_addr32[3]) & (m)->s6_addr32[3]) == 0 ) #define IN6_MASK_ADDR(a, m) do { \ (a)->s6_addr32[0] &= (m)->s6_addr32[0]; \ (a)->s6_addr32[1] &= (m)->s6_addr32[1]; \ (a)->s6_addr32[2] &= (m)->s6_addr32[2]; \ (a)->s6_addr32[3] &= (m)->s6_addr32[3]; \ } while (0) #endif #define SIOCSIFADDR_IN6 _IOW('i', 12, struct in6_ifreq) #define SIOCGIFADDR_IN6 _IOWR('i', 33, struct in6_ifreq) #ifdef _KERNEL /* * SIOCSxxx ioctls should be unused (see comments in in6.c), but * we do not shift numbers for binary compatibility. */ #define SIOCSIFDSTADDR_IN6 _IOW('i', 14, struct in6_ifreq) #define SIOCSIFNETMASK_IN6 _IOW('i', 22, struct in6_ifreq) #endif #define SIOCGIFDSTADDR_IN6 _IOWR('i', 34, struct in6_ifreq) #define SIOCGIFNETMASK_IN6 _IOWR('i', 37, struct in6_ifreq) #define SIOCDIFADDR_IN6 _IOW('i', 25, struct in6_ifreq) #define OSIOCAIFADDR_IN6 _IOW('i', 26, struct oin6_aliasreq) #define SIOCAIFADDR_IN6 _IOW('i', 27, struct in6_aliasreq) #define SIOCSIFPHYADDR_IN6 _IOW('i', 70, struct in6_aliasreq) #define SIOCGIFPSRCADDR_IN6 _IOWR('i', 71, struct in6_ifreq) #define SIOCGIFPDSTADDR_IN6 _IOWR('i', 72, struct in6_ifreq) #define SIOCGIFAFLAG_IN6 _IOWR('i', 73, struct in6_ifreq) #ifdef _KERNEL #define OSIOCGIFINFO_IN6 _IOWR('i', 76, struct in6_ondireq) #endif #define SIOCGIFINFO_IN6 _IOWR('i', 108, struct in6_ndireq) #define SIOCSIFINFO_IN6 _IOWR('i', 109, struct in6_ndireq) #define SIOCSNDFLUSH_IN6 _IOWR('i', 77, struct in6_ifreq) #define SIOCGNBRINFO_IN6 _IOWR('i', 78, struct in6_nbrinfo) #define SIOCSPFXFLUSH_IN6 _IOWR('i', 79, struct in6_ifreq) #define SIOCSRTRFLUSH_IN6 _IOWR('i', 80, struct in6_ifreq) #define SIOCGIFALIFETIME_IN6 _IOWR('i', 81, struct in6_ifreq) #define SIOCGIFSTAT_IN6 _IOWR('i', 83, struct in6_ifreq) #define SIOCGIFSTAT_ICMP6 _IOWR('i', 84, struct in6_ifreq) #define SIOCSDEFIFACE_IN6 _IOWR('i', 85, struct in6_ndifreq) #define SIOCGDEFIFACE_IN6 _IOWR('i', 86, struct in6_ndifreq) #define SIOCSIFINFO_FLAGS _IOWR('i', 87, struct in6_ndireq) /* XXX */ #define SIOCSSCOPE6 _IOW('i', 88, struct in6_ifreq) #define SIOCGSCOPE6 _IOWR('i', 89, struct in6_ifreq) #define SIOCGSCOPE6DEF _IOWR('i', 90, struct in6_ifreq) #define SIOCSIFPREFIX_IN6 _IOW('i', 100, struct in6_prefixreq) /* set */ #define SIOCGIFPREFIX_IN6 _IOWR('i', 101, struct in6_prefixreq) /* get */ #define SIOCDIFPREFIX_IN6 _IOW('i', 102, struct in6_prefixreq) /* del */ #define SIOCAIFPREFIX_IN6 _IOW('i', 103, struct in6_rrenumreq) /* add */ #define SIOCCIFPREFIX_IN6 _IOW('i', 104, \ struct in6_rrenumreq) /* change */ #define SIOCSGIFPREFIX_IN6 _IOW('i', 105, \ struct in6_rrenumreq) /* set global */ #define SIOCGETSGCNT_IN6 _IOWR('u', 106, \ struct sioc_sg_req6) /* get s,g pkt cnt */ #define SIOCGETMIFCNT_IN6 _IOWR('u', 107, \ struct sioc_mif_req6) /* get pkt cnt per if */ #define SIOCAADDRCTL_POLICY _IOW('u', 108, struct in6_addrpolicy) #define SIOCDADDRCTL_POLICY _IOW('u', 109, struct in6_addrpolicy) #define IN6_IFF_ANYCAST 0x01 /* anycast address */ #define IN6_IFF_TENTATIVE 0x02 /* tentative address */ #define IN6_IFF_DUPLICATED 0x04 /* DAD detected duplicate */ #define IN6_IFF_DETACHED 0x08 /* may be detached from the link */ #define IN6_IFF_DEPRECATED 0x10 /* deprecated address */ #define IN6_IFF_NODAD 0x20 /* don't perform DAD on this address * (obsolete) */ #define IN6_IFF_AUTOCONF 0x40 /* autoconfigurable address. */ #define IN6_IFF_TEMPORARY 0x80 /* temporary (anonymous) address. */ #define IN6_IFF_PREFER_SOURCE 0x0100 /* preferred address for SAS */ /* do not input/output */ #define IN6_IFF_NOTREADY (IN6_IFF_TENTATIVE|IN6_IFF_DUPLICATED) #ifdef _KERNEL #define IN6_ARE_SCOPE_CMP(a,b) ((a)-(b)) #define IN6_ARE_SCOPE_EQUAL(a,b) ((a)==(b)) #endif #ifdef _KERNEL VNET_DECLARE(struct in6_ifaddrhead, in6_ifaddrhead); VNET_DECLARE(struct in6_ifaddrlisthead *, in6_ifaddrhashtbl); VNET_DECLARE(u_long, in6_ifaddrhmask); #define V_in6_ifaddrhead VNET(in6_ifaddrhead) #define V_in6_ifaddrhashtbl VNET(in6_ifaddrhashtbl) #define V_in6_ifaddrhmask VNET(in6_ifaddrhmask) #define IN6ADDR_NHASH_LOG2 8 #define IN6ADDR_NHASH (1 << IN6ADDR_NHASH_LOG2) #define IN6ADDR_HASHVAL(x) (in6_addrhash(x)) #define IN6ADDR_HASH(x) \ (&V_in6_ifaddrhashtbl[IN6ADDR_HASHVAL(x) & V_in6_ifaddrhmask]) static __inline uint32_t in6_addrhash(const struct in6_addr *in6) { uint32_t x; x = in6->s6_addr32[0] ^ in6->s6_addr32[1] ^ in6->s6_addr32[2] ^ in6->s6_addr32[3]; return (fnv_32_buf(&x, sizeof(x), FNV1_32_INIT)); } extern struct rmlock in6_ifaddr_lock; #define IN6_IFADDR_LOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_LOCKED) #define IN6_IFADDR_RLOCK(t) rm_rlock(&in6_ifaddr_lock, (t)) #define IN6_IFADDR_RLOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_RLOCKED) #define IN6_IFADDR_RUNLOCK(t) rm_runlock(&in6_ifaddr_lock, (t)) #define IN6_IFADDR_WLOCK() rm_wlock(&in6_ifaddr_lock) #define IN6_IFADDR_WLOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_WLOCKED) #define IN6_IFADDR_WUNLOCK() rm_wunlock(&in6_ifaddr_lock) #define in6_ifstat_inc(ifp, tag) \ do { \ if (ifp) \ counter_u64_add(((struct in6_ifextra *) \ ((ifp)->if_afdata[AF_INET6]))->in6_ifstat[ \ offsetof(struct in6_ifstat, tag) / sizeof(uint64_t)], 1);\ } while (/*CONSTCOND*/ 0) extern u_char inet6ctlerrmap[]; VNET_DECLARE(unsigned long, in6_maxmtu); #define V_in6_maxmtu VNET(in6_maxmtu) #endif /* _KERNEL */ /* * IPv6 multicast MLD-layer source entry. */ struct ip6_msource { RB_ENTRY(ip6_msource) im6s_link; /* RB tree links */ struct in6_addr im6s_addr; struct im6s_st { uint16_t ex; /* # of exclusive members */ uint16_t in; /* # of inclusive members */ } im6s_st[2]; /* state at t0, t1 */ uint8_t im6s_stp; /* pending query */ }; RB_HEAD(ip6_msource_tree, ip6_msource); /* * IPv6 multicast PCB-layer source entry. * * NOTE: overlapping use of struct ip6_msource fields at start. */ struct in6_msource { RB_ENTRY(ip6_msource) im6s_link; /* Common field */ struct in6_addr im6s_addr; /* Common field */ uint8_t im6sl_st[2]; /* state before/at commit */ }; #ifdef _KERNEL /* * IPv6 source tree comparison function. * * An ordered predicate is necessary; bcmp() is not documented to return * an indication of order, memcmp() is, and is an ISO C99 requirement. */ static __inline int ip6_msource_cmp(const struct ip6_msource *a, const struct ip6_msource *b) { return (memcmp(&a->im6s_addr, &b->im6s_addr, sizeof(struct in6_addr))); } RB_PROTOTYPE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); /* * IPv6 multicast PCB-layer group filter descriptor. */ struct in6_mfilter { struct ip6_msource_tree im6f_sources; /* source list for (S,G) */ u_long im6f_nsrc; /* # of source entries */ uint8_t im6f_st[2]; /* state before/at commit */ struct in6_multi *im6f_in6m; /* associated multicast address */ STAILQ_ENTRY(in6_mfilter) im6f_entry; /* list entry */ }; /* * Helper types and functions for IPv4 multicast filters. */ STAILQ_HEAD(ip6_mfilter_head, in6_mfilter); struct in6_mfilter *ip6_mfilter_alloc(int mflags, int st0, int st1); void ip6_mfilter_free(struct in6_mfilter *); static inline void ip6_mfilter_init(struct ip6_mfilter_head *head) { STAILQ_INIT(head); } static inline struct in6_mfilter * ip6_mfilter_first(const struct ip6_mfilter_head *head) { return (STAILQ_FIRST(head)); } static inline void ip6_mfilter_insert(struct ip6_mfilter_head *head, struct in6_mfilter *imf) { STAILQ_INSERT_TAIL(head, imf, im6f_entry); } static inline void ip6_mfilter_remove(struct ip6_mfilter_head *head, struct in6_mfilter *imf) { STAILQ_REMOVE(head, imf, in6_mfilter, im6f_entry); } #define IP6_MFILTER_FOREACH(imf, head) \ STAILQ_FOREACH(imf, head, im6f_entry) static inline size_t ip6_mfilter_count(struct ip6_mfilter_head *head) { struct in6_mfilter *imf; size_t num = 0; STAILQ_FOREACH(imf, head, im6f_entry) num++; return (num); } /* * Legacy KAME IPv6 multicast membership descriptor. */ struct in6_multi_mship { struct in6_multi *i6mm_maddr; LIST_ENTRY(in6_multi_mship) i6mm_chain; }; /* * IPv6 group descriptor. * * For every entry on an ifnet's if_multiaddrs list which represents * an IP multicast group, there is one of these structures. * * If any source filters are present, then a node will exist in the RB-tree * to permit fast lookup by source whenever an operation takes place. * This permits pre-order traversal when we issue reports. * Source filter trees are kept separately from the socket layer to * greatly simplify locking. * * When MLDv2 is active, in6m_timer is the response to group query timer. * The state-change timer in6m_sctimer is separate; whenever state changes * for the group the state change record is generated and transmitted, * and kept if retransmissions are necessary. * * FUTURE: in6m_link is now only used when groups are being purged * on a detaching ifnet. It could be demoted to a SLIST_ENTRY, but * because it is at the very start of the struct, we can't do this * w/o breaking the ABI for ifmcstat. */ struct in6_multi { struct in6_addr in6m_addr; /* IPv6 multicast address */ struct ifnet *in6m_ifp; /* back pointer to ifnet */ struct ifmultiaddr *in6m_ifma; /* back pointer to ifmultiaddr */ u_int in6m_refcount; /* reference count */ u_int in6m_state; /* state of the membership */ u_int in6m_timer; /* MLD6 listener report timer */ /* New fields for MLDv2 follow. */ struct mld_ifsoftc *in6m_mli; /* MLD info */ SLIST_ENTRY(in6_multi) in6m_nrele; /* to-be-released by MLD */ SLIST_ENTRY(in6_multi) in6m_defer; /* deferred MLDv1 */ struct ip6_msource_tree in6m_srcs; /* tree of sources */ u_long in6m_nsrc; /* # of tree entries */ struct mbufq in6m_scq; /* queue of pending * state-change packets */ struct timeval in6m_lastgsrtv; /* last G-S-R query */ uint16_t in6m_sctimer; /* state-change timer */ uint16_t in6m_scrv; /* state-change rexmit count */ /* * SSM state counters which track state at T0 (the time the last * state-change report's RV timer went to zero) and T1 * (time of pending report, i.e. now). * Used for computing MLDv2 state-change reports. Several refcounts * are maintained here to optimize for common use-cases. */ struct in6m_st { uint16_t iss_fmode; /* MLD filter mode */ uint16_t iss_asm; /* # of ASM listeners */ uint16_t iss_ex; /* # of exclusive members */ uint16_t iss_in; /* # of inclusive members */ uint16_t iss_rec; /* # of recorded sources */ } in6m_st[2]; /* state at t0, t1 */ }; void in6m_disconnect_locked(struct in6_multi_head *inmh, struct in6_multi *inm); /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ static __inline uint8_t im6s_get_mode(const struct in6_multi *inm, const struct ip6_msource *ims, uint8_t t) { t = !!t; if (inm->in6m_st[t].iss_ex > 0 && inm->in6m_st[t].iss_ex == ims->im6s_st[t].ex) return (MCAST_EXCLUDE); else if (ims->im6s_st[t].in > 0 && ims->im6s_st[t].ex == 0) return (MCAST_INCLUDE); return (MCAST_UNDEFINED); } /* * Lock macros for IPv6 layer multicast address lists. IPv6 lock goes * before link layer multicast locks in the lock order. In most cases, * consumers of IN_*_MULTI() macros should acquire the locks before * calling them; users of the in_{add,del}multi() functions should not. */ extern struct mtx in6_multi_list_mtx; extern struct sx in6_multi_sx; #define IN6_MULTI_LIST_LOCK() mtx_lock(&in6_multi_list_mtx) #define IN6_MULTI_LIST_UNLOCK() mtx_unlock(&in6_multi_list_mtx) #define IN6_MULTI_LIST_LOCK_ASSERT() mtx_assert(&in6_multi_list_mtx, MA_OWNED) #define IN6_MULTI_LIST_UNLOCK_ASSERT() mtx_assert(&in6_multi_list_mtx, MA_NOTOWNED) #define IN6_MULTI_LOCK() sx_xlock(&in6_multi_sx) #define IN6_MULTI_UNLOCK() sx_xunlock(&in6_multi_sx) #define IN6_MULTI_LOCK_ASSERT() sx_assert(&in6_multi_sx, SA_XLOCKED) #define IN6_MULTI_UNLOCK_ASSERT() sx_assert(&in6_multi_sx, SA_XUNLOCKED) /* * Get the in6_multi pointer from a ifmultiaddr. * Returns NULL if ifmultiaddr is no longer valid. */ static __inline struct in6_multi * in6m_ifmultiaddr_get_inm(struct ifmultiaddr *ifma) { NET_EPOCH_ASSERT(); return ((ifma->ifma_addr->sa_family != AF_INET6 || (ifma->ifma_flags & IFMA_F_ENQUEUED) == 0) ? NULL : ifma->ifma_protospec); } /* * Look up an in6_multi record for an IPv6 multicast address * on the interface ifp. * If no record found, return NULL. * * SMPng: The IN6_MULTI_LOCK and must be held and must be in network epoch. */ static __inline struct in6_multi * in6m_lookup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr) { struct ifmultiaddr *ifma; struct in6_multi *inm; CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { inm = in6m_ifmultiaddr_get_inm(ifma); if (inm == NULL) continue; if (IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, mcaddr)) return (inm); } return (NULL); } /* * Wrapper for in6m_lookup_locked(). * * SMPng: Assumes network epoch entered and that IN6_MULTI_LOCK() isn't held. */ static __inline struct in6_multi * in6m_lookup(struct ifnet *ifp, const struct in6_addr *mcaddr) { struct in6_multi *inm; NET_EPOCH_ASSERT(); IN6_MULTI_LIST_LOCK(); inm = in6m_lookup_locked(ifp, mcaddr); IN6_MULTI_LIST_UNLOCK(); return (inm); } /* Acquire an in6_multi record. */ static __inline void in6m_acquire_locked(struct in6_multi *inm) { IN6_MULTI_LIST_LOCK_ASSERT(); ++inm->in6m_refcount; } static __inline void in6m_acquire(struct in6_multi *inm) { IN6_MULTI_LIST_LOCK(); in6m_acquire_locked(inm); IN6_MULTI_LIST_UNLOCK(); } static __inline void in6m_rele_locked(struct in6_multi_head *inmh, struct in6_multi *inm) { KASSERT(inm->in6m_refcount > 0, ("refcount == %d inm: %p", inm->in6m_refcount, inm)); IN6_MULTI_LIST_LOCK_ASSERT(); if (--inm->in6m_refcount == 0) { MPASS(inm->in6m_ifp == NULL); inm->in6m_ifma->ifma_protospec = NULL; MPASS(inm->in6m_ifma->ifma_llifma == NULL); SLIST_INSERT_HEAD(inmh, inm, in6m_nrele); } } struct ip6_moptions; struct sockopt; struct inpcbinfo; struct rib_head; /* Multicast KPIs. */ int im6o_mc_filter(const struct ip6_moptions *, const struct ifnet *, const struct sockaddr *, const struct sockaddr *); int in6_joingroup(struct ifnet *, const struct in6_addr *, struct in6_mfilter *, struct in6_multi **, int); int in6_leavegroup(struct in6_multi *, struct in6_mfilter *); int in6_leavegroup_locked(struct in6_multi *, struct in6_mfilter *); void in6m_clear_recorded(struct in6_multi *); void in6m_commit(struct in6_multi *); void in6m_print(const struct in6_multi *); int in6m_record_source(struct in6_multi *, const struct in6_addr *); void in6m_release_list_deferred(struct in6_multi_head *); void in6m_release_wait(void *); void ip6_freemoptions(struct ip6_moptions *); int ip6_getmoptions(struct inpcb *, struct sockopt *); int ip6_setmoptions(struct inpcb *, struct sockopt *); /* flags to in6_update_ifa */ #define IN6_IFAUPDATE_DADDELAY 0x1 /* first time to configure an address */ int in6_mask2len(struct in6_addr *, u_char *); int in6_control(struct socket *, u_long, void *, struct ifnet *, struct thread *); int in6_update_ifa(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int); void in6_prepare_ifra(struct in6_aliasreq *, const struct in6_addr *, const struct in6_addr *); void in6_purgeaddr(struct ifaddr *); void in6_purgeifaddr(struct in6_ifaddr *); int in6if_do_dad(struct ifnet *); void in6_savemkludge(struct in6_ifaddr *); void *in6_domifattach(struct ifnet *); void in6_domifdetach(struct ifnet *, void *); int in6_domifmtu(struct ifnet *); struct rib_head *in6_inithead(uint32_t fibnum); void in6_detachhead(struct rib_head *rh); void in6_setmaxmtu(void); int in6_if2idlen(struct ifnet *); struct in6_ifaddr *in6ifa_ifpforlinklocal(struct ifnet *, int); struct in6_ifaddr *in6ifa_ifpwithaddr(struct ifnet *, const struct in6_addr *); struct in6_ifaddr *in6ifa_ifwithaddr(const struct in6_addr *, uint32_t, bool); struct in6_ifaddr *in6ifa_llaonifp(struct ifnet *); int in6_addr2zoneid(struct ifnet *, struct in6_addr *, u_int32_t *); int in6_matchlen(struct in6_addr *, struct in6_addr *); int in6_are_prefix_equal(struct in6_addr *, struct in6_addr *, int); void in6_prefixlen2mask(struct in6_addr *, int); int in6_prefix_ioctl(struct socket *, u_long, caddr_t, struct ifnet *); int in6_prefix_add_ifid(int, struct in6_ifaddr *); void in6_prefix_remove_ifid(int, struct in6_ifaddr *); void in6_purgeprefix(struct ifnet *); int in6_is_addr_deprecated(struct sockaddr_in6 *); int in6_src_ioctl(u_long, caddr_t); void in6_newaddrmsg(struct in6_ifaddr *, int); void in6_purge_proxy_ndp(struct ifnet *); /* * Extended API for IPv6 FIB support. */ struct mbuf *ip6_tryforward(struct mbuf *); #endif /* _KERNEL */ #endif /* _NETINET6_IN6_VAR_H_ */ diff --git a/sys/netinet6/nd6.c b/sys/netinet6/nd6.c index 516906fda5cc..0ab629c7fcd0 100644 --- a/sys/netinet6/nd6.c +++ b/sys/netinet6/nd6.c @@ -1,2719 +1,2720 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_route.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ #define SIN6(s) ((const struct sockaddr_in6 *)(s)) MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); /* timer values */ VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for * local traffic */ VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage * collection timer */ /* preventing too many loops in ND option parsing */ VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper * layer hints */ VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved * ND entries */ #define V_nd6_maxndopt VNET(nd6_maxndopt) #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) #ifdef ND6_DEBUG VNET_DEFINE(int, nd6_debug) = 1; #else VNET_DEFINE(int, nd6_debug) = 0; #endif static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; VNET_DEFINE(struct nd_prhead, nd_prefix); VNET_DEFINE(struct rwlock, nd6_lock); VNET_DEFINE(uint64_t, nd6_list_genid); VNET_DEFINE(struct mtx, nd6_onlink_mtx); VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); static bool nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, struct ifnet *); static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); static void nd6_slowtimo(void *); static int regen_tmpaddr(struct in6_ifaddr *); static void nd6_free(struct llentry **, int); static void nd6_free_redirect(const struct llentry *); static void nd6_llinfo_timer(void *); static void nd6_llinfo_settimer_locked(struct llentry *, long); static int nd6_resolve_slow(struct ifnet *, int, int, struct mbuf *, const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); static int nd6_need_cache(struct ifnet *); VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); #define V_nd6_timer_ch VNET(nd6_timer_ch) SYSCTL_DECL(_net_inet6_icmp6); static void nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) { struct rt_addrinfo rtinfo; struct sockaddr_in6 dst; struct sockaddr_dl gw; struct ifnet *ifp; int type; int fibnum; LLE_WLOCK_ASSERT(lle); if (lltable_get_af(lle->lle_tbl) != AF_INET6) return; switch (evt) { case LLENTRY_RESOLVED: type = RTM_ADD; KASSERT(lle->la_flags & LLE_VALID, ("%s: %p resolved but not valid?", __func__, lle)); break; case LLENTRY_EXPIRED: type = RTM_DELETE; break; default: return; } ifp = lltable_get_ifp(lle->lle_tbl); bzero(&dst, sizeof(dst)); bzero(&gw, sizeof(gw)); bzero(&rtinfo, sizeof(rtinfo)); lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); dst.sin6_scope_id = in6_getscopezone(ifp, in6_addrscope(&dst.sin6_addr)); gw.sdl_len = sizeof(struct sockaddr_dl); gw.sdl_family = AF_LINK; gw.sdl_alen = ifp->if_addrlen; gw.sdl_index = ifp->if_index; gw.sdl_type = ifp->if_type; if (evt == LLENTRY_RESOLVED) bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( type == RTM_ADD ? RTF_UP: 0), 0, fibnum); } /* * A handler for interface link layer address change event. */ static void nd6_iflladdr(void *arg __unused, struct ifnet *ifp) { if (ifp->if_afdata[AF_INET6] == NULL) return; lltable_update_ifaddr(LLTABLE6(ifp)); } void nd6_init(void) { mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); rw_init(&V_nd6_lock, "nd6 list"); LIST_INIT(&V_nd_prefix); nd6_defrouter_init(); /* Start timers. */ callout_init(&V_nd6_slowtimo_ch, 1); callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, curvnet); callout_init(&V_nd6_timer_ch, 1); callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); nd6_dad_init(); if (IS_DEFAULT_VNET(curvnet)) { lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, NULL, EVENTHANDLER_PRI_ANY); iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); } } #ifdef VIMAGE void nd6_destroy(void) { callout_drain(&V_nd6_slowtimo_ch); callout_drain(&V_nd6_timer_ch); if (IS_DEFAULT_VNET(curvnet)) { EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); } rw_destroy(&V_nd6_lock); mtx_destroy(&V_nd6_onlink_mtx); } #endif struct nd_ifinfo * nd6_ifattach(struct ifnet *ifp) { struct nd_ifinfo *nd; nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); nd->initialized = 1; nd->chlim = IPV6_DEFHLIM; nd->basereachable = REACHABLE_TIME; nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); nd->retrans = RETRANS_TIMER; nd->flags = ND6_IFF_PERFORMNUD; /* Set IPv6 disabled on all interfaces but loopback by default. */ if ((ifp->if_flags & IFF_LOOPBACK) == 0) nd->flags |= ND6_IFF_IFDISABLED; /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by * default regardless of the V_ip6_auto_linklocal configuration to * give a reasonable default behavior. */ if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || (ifp->if_flags & IFF_LOOPBACK)) nd->flags |= ND6_IFF_AUTO_LINKLOCAL; /* * A loopback interface does not need to accept RTADV. * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by * default regardless of the V_ip6_accept_rtadv configuration to * prevent the interface from accepting RA messages arrived * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. */ if (V_ip6_accept_rtadv && !(ifp->if_flags & IFF_LOOPBACK) && (ifp->if_type != IFT_BRIDGE)) { nd->flags |= ND6_IFF_ACCEPT_RTADV; /* If we globally accept rtadv, assume IPv6 on. */ nd->flags &= ~ND6_IFF_IFDISABLED; } if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) nd->flags |= ND6_IFF_NO_RADR; /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ nd6_setmtu0(ifp, nd); return nd; } void nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) { struct epoch_tracker et; struct ifaddr *ifa, *next; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; /* stop DAD processing */ nd6_dad_stop(ifa); } NET_EPOCH_EXIT(et); free(nd, M_IP6NDP); } /* * Reset ND level link MTU. This function is called when the physical MTU * changes, which means we might have to adjust the ND level MTU. */ void nd6_setmtu(struct ifnet *ifp) { if (ifp->if_afdata[AF_INET6] == NULL) return; nd6_setmtu0(ifp, ND_IFINFO(ifp)); } /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ void nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) { u_int32_t omaxmtu; omaxmtu = ndi->maxmtu; ndi->maxmtu = ifp->if_mtu; /* * Decreasing the interface MTU under IPV6 minimum MTU may cause * undesirable situation. We thus notify the operator of the change * explicitly. The check for omaxmtu is necessary to restrict the * log to the case of changing the MTU, not initializing it. */ if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { log(LOG_NOTICE, "nd6_setmtu0: " "new link MTU on %s (%lu) is too small for IPv6\n", if_name(ifp), (unsigned long)ndi->maxmtu); } if (ndi->maxmtu > V_in6_maxmtu) in6_setmaxmtu(); /* check all interfaces just in case */ } void nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) { bzero(ndopts, sizeof(*ndopts)); ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; ndopts->nd_opts_last = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); if (icmp6len == 0) { ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } } /* * Take one ND option. */ struct nd_opt_hdr * nd6_option(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int olen; KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", __func__)); if (ndopts->nd_opts_search == NULL) return NULL; if (ndopts->nd_opts_done) return NULL; nd_opt = ndopts->nd_opts_search; /* make sure nd_opt_len is inside the buffer */ if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { bzero(ndopts, sizeof(*ndopts)); return NULL; } olen = nd_opt->nd_opt_len << 3; if (olen == 0) { /* * Message validation requires that all included * options have a length that is greater than zero. */ bzero(ndopts, sizeof(*ndopts)); return NULL; } ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); if (ndopts->nd_opts_search > ndopts->nd_opts_last) { /* option overruns the end of buffer, invalid */ bzero(ndopts, sizeof(*ndopts)); return NULL; } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { /* reached the end of options chain */ ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } return nd_opt; } /* * Parse multiple ND options. * This function is much easier to use, for ND routines that do not need * multiple options of the same type. */ int nd6_options(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int i = 0; KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", __func__)); if (ndopts->nd_opts_search == NULL) return 0; while (1) { nd_opt = nd6_option(ndopts); if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { /* * Message validation requires that all included * options have a length that is greater than zero. */ ICMP6STAT_INC(icp6s_nd_badopt); bzero(ndopts, sizeof(*ndopts)); return -1; } if (nd_opt == NULL) goto skip1; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LINKADDR: case ND_OPT_TARGET_LINKADDR: case ND_OPT_MTU: case ND_OPT_REDIRECTED_HEADER: case ND_OPT_NONCE: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { nd6log((LOG_INFO, "duplicated ND6 option found (type=%d)\n", nd_opt->nd_opt_type)); /* XXX bark? */ } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFORMATION: if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } ndopts->nd_opts_pi_end = (struct nd_opt_prefix_info *)nd_opt; break; /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ case ND_OPT_RDNSS: /* RFC 6106 */ case ND_OPT_DNSSL: /* RFC 6106 */ /* * Silently ignore options we know and do not care about * in the kernel. */ break; default: /* * Unknown options must be silently ignored, * to accommodate future extension to the protocol. */ nd6log((LOG_DEBUG, "nd6_options: unsupported option %d - " "option ignored\n", nd_opt->nd_opt_type)); } skip1: i++; if (i > V_nd6_maxndopt) { ICMP6STAT_INC(icp6s_nd_toomanyopt); nd6log((LOG_INFO, "too many loop in nd opt\n")); break; } if (ndopts->nd_opts_done) break; } return 0; } /* * ND6 timer routine to handle ND6 entries */ static void nd6_llinfo_settimer_locked(struct llentry *ln, long tick) { int canceled; LLE_WLOCK_ASSERT(ln); /* Do not schedule timers for child LLEs. */ if (ln->la_flags & LLE_CHILD) return; if (tick < 0) { ln->la_expire = 0; ln->ln_ntick = 0; canceled = callout_stop(&ln->lle_timer); } else { ln->la_expire = time_uptime + tick / hz; LLE_ADDREF(ln); if (tick > INT_MAX) { ln->ln_ntick = tick - INT_MAX; canceled = callout_reset(&ln->lle_timer, INT_MAX, nd6_llinfo_timer, ln); } else { ln->ln_ntick = 0; canceled = callout_reset(&ln->lle_timer, tick, nd6_llinfo_timer, ln); } } if (canceled > 0) LLE_REMREF(ln); } /* * Gets source address of the first packet in hold queue * and stores it in @src. * Returns pointer to @src (if hold queue is not empty) or NULL. * * Set noinline to be dtrace-friendly */ static __noinline struct in6_addr * nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) { struct ip6_hdr hdr; struct mbuf *m; if (ln->la_hold == NULL) return (NULL); /* * assume every packet in la_hold has the same IP header */ m = ln->la_hold; if (sizeof(hdr) > m->m_len) return (NULL); m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); *src = hdr.ip6_src; return (src); } /* * Checks if we need to switch from STALE state. * * RFC 4861 requires switching from STALE to DELAY state * on first packet matching entry, waiting V_nd6_delay and * transition to PROBE state (if upper layer confirmation was * not received). * * This code performs a bit differently: * On packet hit we don't change state (but desired state * can be guessed by control plane). However, after V_nd6_delay * seconds code will transition to PROBE state (so DELAY state * is kinda skipped in most situations). * * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so * we perform the following upon entering STALE state: * * 1) Arm timer to run each V_nd6_delay seconds to make sure that * if packet was transmitted at the start of given interval, we * would be able to switch to PROBE state in V_nd6_delay seconds * as user expects. * * 2) Reschedule timer until original V_nd6_gctimer expires keeping * lle in STALE state (remaining timer value stored in lle_remtime). * * 3) Reschedule timer if packet was transmitted less that V_nd6_delay * seconds ago. * * Returns non-zero value if the entry is still STALE (storing * the next timer interval in @pdelay). * * Returns zero value if original timer expired or we need to switch to * PROBE (store that in @do_switch variable). */ static int nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) { int nd_delay, nd_gctimer; time_t lle_hittime; long delay; *do_switch = 0; nd_gctimer = V_nd6_gctimer; nd_delay = V_nd6_delay; lle_hittime = llentry_get_hittime(lle); if (lle_hittime == 0) { /* * Datapath feedback has been requested upon entering * STALE state. No packets has been passed using this lle. * Ask for the timer reschedule and keep STALE state. */ delay = (long)(MIN(nd_gctimer, nd_delay)); delay *= hz; if (lle->lle_remtime > delay) lle->lle_remtime -= delay; else { delay = lle->lle_remtime; lle->lle_remtime = 0; } if (delay == 0) { /* * The original ng6_gctime timeout ended, * no more rescheduling. */ return (0); } *pdelay = delay; return (1); } /* * Packet received. Verify timestamp */ delay = (long)(time_uptime - lle_hittime); if (delay < nd_delay) { /* * V_nd6_delay still not passed since the first * hit in STALE state. * Reschedule timer and return. */ *pdelay = (long)(nd_delay - delay) * hz; return (1); } /* Request switching to probe */ *do_switch = 1; return (0); } /* * Switch @lle state to new state optionally arming timers. * * Set noinline to be dtrace-friendly */ __noinline void nd6_llinfo_setstate(struct llentry *lle, int newstate) { struct ifnet *ifp; int nd_gctimer, nd_delay; long delay, remtime; delay = 0; remtime = 0; switch (newstate) { case ND6_LLINFO_INCOMPLETE: ifp = lle->lle_tbl->llt_ifp; delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; break; case ND6_LLINFO_REACHABLE: if (!ND6_LLINFO_PERMANENT(lle)) { ifp = lle->lle_tbl->llt_ifp; delay = (long)ND_IFINFO(ifp)->reachable * hz; } break; case ND6_LLINFO_STALE: llentry_request_feedback(lle); nd_delay = V_nd6_delay; nd_gctimer = V_nd6_gctimer; delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; remtime = (long)nd_gctimer * hz - delay; break; case ND6_LLINFO_DELAY: lle->la_asked = 0; delay = (long)V_nd6_delay * hz; break; } if (delay > 0) nd6_llinfo_settimer_locked(lle, delay); lle->lle_remtime = remtime; lle->ln_state = newstate; } /* * Timer-dependent part of nd state machine. * * Set noinline to be dtrace-friendly */ static __noinline void nd6_llinfo_timer(void *arg) { struct epoch_tracker et; struct llentry *ln; struct in6_addr *dst, *pdst, *psrc, src; struct ifnet *ifp; struct nd_ifinfo *ndi; int do_switch, send_ns; long delay; KASSERT(arg != NULL, ("%s: arg NULL", __func__)); ln = (struct llentry *)arg; ifp = lltable_get_ifp(ln->lle_tbl); CURVNET_SET(ifp->if_vnet); ND6_RLOCK(); LLE_WLOCK(ln); if (callout_pending(&ln->lle_timer)) { /* * Here we are a bit odd here in the treatment of * active/pending. If the pending bit is set, it got * rescheduled before I ran. The active * bit we ignore, since if it was stopped * in ll_tablefree() and was currently running * it would have return 0 so the code would * not have deleted it since the callout could * not be stopped so we want to go through * with the delete here now. If the callout * was restarted, the pending bit will be back on and * we just want to bail since the callout_reset would * return 1 and our reference would have been removed * by nd6_llinfo_settimer_locked above since canceled * would have been 1. */ LLE_WUNLOCK(ln); ND6_RUNLOCK(); CURVNET_RESTORE(); return; } NET_EPOCH_ENTER(et); ndi = ND_IFINFO(ifp); send_ns = 0; dst = &ln->r_l3addr.addr6; pdst = dst; if (ln->ln_ntick > 0) { if (ln->ln_ntick > INT_MAX) { ln->ln_ntick -= INT_MAX; nd6_llinfo_settimer_locked(ln, INT_MAX); } else { ln->ln_ntick = 0; nd6_llinfo_settimer_locked(ln, ln->ln_ntick); } goto done; } if (ln->la_flags & LLE_STATIC) { goto done; } if (ln->la_flags & LLE_DELETED) { nd6_free(&ln, 0); goto done; } switch (ln->ln_state) { case ND6_LLINFO_INCOMPLETE: if (ln->la_asked < V_nd6_mmaxtries) { ln->la_asked++; send_ns = 1; /* Send NS to multicast address */ pdst = NULL; } else { struct mbuf *m; ICMP6STAT_ADD(icp6s_dropped, ln->la_numheld); m = ln->la_hold; if (m != NULL) { /* * assuming every packet in la_hold has the * same IP header. Send error after unlock. */ ln->la_hold = m->m_nextpkt; m->m_nextpkt = NULL; ln->la_numheld--; } nd6_free(&ln, 0); if (m != NULL) { struct mbuf *n = m; /* * if there are any ummapped mbufs, we * must free them, rather than using * them for an ICMP, as they cannot be * checksummed. */ while ((n = n->m_next) != NULL) { if (n->m_flags & M_EXTPG) break; } if (n != NULL) { m_freem(m); m = NULL; } else { icmp6_error2(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 0, ifp); } } } break; case ND6_LLINFO_REACHABLE: if (!ND6_LLINFO_PERMANENT(ln)) nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); break; case ND6_LLINFO_STALE: if (nd6_is_stale(ln, &delay, &do_switch) != 0) { /* * No packet has used this entry and GC timeout * has not been passed. Reschedule timer and * return. */ nd6_llinfo_settimer_locked(ln, delay); break; } if (do_switch == 0) { /* * GC timer has ended and entry hasn't been used. * Run Garbage collector (RFC 4861, 5.3) */ if (!ND6_LLINFO_PERMANENT(ln)) nd6_free(&ln, 1); break; } /* Entry has been used AND delay timer has ended. */ /* FALLTHROUGH */ case ND6_LLINFO_DELAY: if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { /* We need NUD */ ln->la_asked = 1; nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); send_ns = 1; } else nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ break; case ND6_LLINFO_PROBE: if (ln->la_asked < V_nd6_umaxtries) { ln->la_asked++; send_ns = 1; } else { nd6_free(&ln, 0); } break; default: panic("%s: paths in a dark night can be confusing: %d", __func__, ln->ln_state); } done: if (ln != NULL) ND6_RUNLOCK(); if (send_ns != 0) { nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); psrc = nd6_llinfo_get_holdsrc(ln, &src); LLE_FREE_LOCKED(ln); ln = NULL; nd6_ns_output(ifp, psrc, pdst, dst, NULL); } if (ln != NULL) LLE_FREE_LOCKED(ln); NET_EPOCH_EXIT(et); CURVNET_RESTORE(); } /* * ND6 timer routine to expire default route list and prefix list */ void nd6_timer(void *arg) { CURVNET_SET((struct vnet *) arg); struct epoch_tracker et; struct nd_prhead prl; struct nd_prefix *pr, *npr; struct ifnet *ifp; struct in6_ifaddr *ia6, *nia6; uint64_t genid; LIST_INIT(&prl); NET_EPOCH_ENTER(et); nd6_defrouter_timer(); /* * expire interface addresses. * in the past the loop was inside prefix expiry processing. * However, from a stricter speci-confrmance standpoint, we should * rather separate address lifetimes and prefix lifetimes. * * XXXRW: in6_ifaddrhead locking. */ addrloop: CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { /* check address lifetime */ if (IFA6_IS_INVALID(ia6)) { int regen = 0; /* * If the expiring address is temporary, try * regenerating a new one. This would be useful when * we suspended a laptop PC, then turned it on after a * period that could invalidate all temporary * addresses. Although we may have to restart the * loop (see below), it must be after purging the * address. Otherwise, we'd see an infinite loop of * regeneration. */ if (V_ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { if (regen_tmpaddr(ia6) == 0) regen = 1; } in6_purgeaddr(&ia6->ia_ifa); if (regen) goto addrloop; /* XXX: see below */ } else if (IFA6_IS_DEPRECATED(ia6)) { int oldflags = ia6->ia6_flags; ia6->ia6_flags |= IN6_IFF_DEPRECATED; /* * If a temporary address has just become deprecated, * regenerate a new one if possible. */ if (V_ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && (oldflags & IN6_IFF_DEPRECATED) == 0) { if (regen_tmpaddr(ia6) == 0) { /* * A new temporary address is * generated. * XXX: this means the address chain * has changed while we are still in * the loop. Although the change * would not cause disaster (because * it's not a deletion, but an * addition,) we'd rather restart the * loop just for safety. Or does this * significantly reduce performance?? */ goto addrloop; } } } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { /* * Schedule DAD for a tentative address. This happens * if the interface was down or not running * when the address was configured. */ int delay; delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); nd6_dad_start((struct ifaddr *)ia6, delay); } else { /* * Check status of the interface. If it is down, * mark the address as tentative for future DAD. */ ifp = ia6->ia_ifp; if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && ((ifp->if_flags & IFF_UP) == 0 || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; ia6->ia6_flags |= IN6_IFF_TENTATIVE; } /* * A new RA might have made a deprecated address * preferred. */ ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; } } NET_EPOCH_EXIT(et); ND6_WLOCK(); restart: LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { /* * Expire prefixes. Since the pltime is only used for * autoconfigured addresses, pltime processing for prefixes is * not necessary. * * Only unlink after all derived addresses have expired. This * may not occur until two hours after the prefix has expired * per RFC 4862. If the prefix expires before its derived * addresses, mark it off-link. This will be done automatically * after unlinking if no address references remain. */ if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) continue; if (pr->ndpr_addrcnt == 0) { nd6_prefix_unlink(pr, &prl); continue; } if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { genid = V_nd6_list_genid; nd6_prefix_ref(pr); ND6_WUNLOCK(); ND6_ONLINK_LOCK(); (void)nd6_prefix_offlink(pr); ND6_ONLINK_UNLOCK(); ND6_WLOCK(); nd6_prefix_rele(pr); if (genid != V_nd6_list_genid) goto restart; } } ND6_WUNLOCK(); while ((pr = LIST_FIRST(&prl)) != NULL) { LIST_REMOVE(pr, ndpr_entry); nd6_prefix_del(pr); } callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, nd6_timer, curvnet); CURVNET_RESTORE(); } /* * ia6 - deprecated/invalidated temporary address */ static int regen_tmpaddr(struct in6_ifaddr *ia6) { struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *public_ifa6 = NULL; NET_EPOCH_ASSERT(); ifp = ia6->ia_ifa.ifa_ifp; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in6_ifaddr *it6; if (ifa->ifa_addr->sa_family != AF_INET6) continue; it6 = (struct in6_ifaddr *)ifa; /* ignore no autoconf addresses. */ if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; /* ignore autoconf addresses with different prefixes. */ if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) continue; /* * Now we are looking at an autoconf address with the same * prefix as ours. If the address is temporary and is still * preferred, do not create another one. It would be rare, but * could happen, for example, when we resume a laptop PC after * a long period. */ if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && !IFA6_IS_DEPRECATED(it6)) { public_ifa6 = NULL; break; } /* * This is a public autoconf address that has the same prefix * as ours. If it is preferred, keep it. We can't break the * loop here, because there may be a still-preferred temporary * address with the prefix. */ if (!IFA6_IS_DEPRECATED(it6)) public_ifa6 = it6; } if (public_ifa6 != NULL) ifa_ref(&public_ifa6->ia_ifa); if (public_ifa6 != NULL) { int e; if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { ifa_free(&public_ifa6->ia_ifa); log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" " tmp addr,errno=%d\n", e); return (-1); } ifa_free(&public_ifa6->ia_ifa); return (0); } return (-1); } /* * Remove prefix and default router list entries corresponding to ifp. Neighbor * cache entries are freed in in6_domifdetach(). */ void nd6_purge(struct ifnet *ifp) { struct nd_prhead prl; struct nd_prefix *pr, *npr; LIST_INIT(&prl); /* Purge default router list entries toward ifp. */ nd6_defrouter_purge(ifp); ND6_WLOCK(); /* * Remove prefixes on ifp. We should have already removed addresses on * this interface, so no addresses should be referencing these prefixes. */ LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { if (pr->ndpr_ifp == ifp) nd6_prefix_unlink(pr, &prl); } ND6_WUNLOCK(); /* Delete the unlinked prefix objects. */ while ((pr = LIST_FIRST(&prl)) != NULL) { LIST_REMOVE(pr, ndpr_entry); nd6_prefix_del(pr); } /* cancel default outgoing interface setting */ if (V_nd6_defifindex == ifp->if_index) nd6_setdefaultiface(0); if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { /* Refresh default router list. */ defrouter_select_fib(ifp->if_fib); } } /* * the caller acquires and releases the lock on the lltbls * Returns the llentry locked */ struct llentry * nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) { struct sockaddr_in6 sin6; struct llentry *ln; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6; IF_AFDATA_LOCK_ASSERT(ifp); ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); return (ln); } static struct llentry * nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) { struct sockaddr_in6 sin6; struct llentry *ln; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6; ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); if (ln != NULL) ln->ln_state = ND6_LLINFO_NOSTATE; return (ln); } /* * Test whether a given IPv6 address can be a neighbor. */ static bool nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) { /* * A link-local address is always a neighbor. * XXX: a link does not necessarily specify a single interface. */ if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { struct sockaddr_in6 sin6_copy; u_int32_t zone; /* * We need sin6_copy since sa6_recoverscope() may modify the * content (XXX). */ sin6_copy = *addr; if (sa6_recoverscope(&sin6_copy)) return (0); /* XXX: should be impossible */ if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) return (0); if (sin6_copy.sin6_scope_id == zone) return (1); else return (0); } /* Checking global unicast */ /* If an address is directly reachable, it is a neigbor */ struct nhop_object *nh; nh = fib6_lookup(ifp->if_fib, &addr->sin6_addr, 0, NHR_NONE, 0); if (nh != NULL && nh->nh_aifp == ifp && (nh->nh_flags & NHF_GATEWAY) == 0) return (true); /* * Check prefixes with desired on-link state, as some may be not * installed in the routing table. */ bool matched = false; struct nd_prefix *pr; ND6_RLOCK(); LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { if (pr->ndpr_ifp != ifp) continue; if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) continue; if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &addr->sin6_addr, &pr->ndpr_mask)) { matched = true; break; } } ND6_RUNLOCK(); if (matched) return (true); /* * If the address is assigned on the node of the other side of * a p2p interface, the address should be a neighbor. */ if (ifp->if_flags & IFF_POINTOPOINT) { struct ifaddr *ifa; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sin6_family) continue; if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { return (true); } } } /* * If the default router list is empty, all addresses are regarded * as on-link, and thus, as a neighbor. */ if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && nd6_defrouter_list_empty() && V_nd6_defifindex == ifp->if_index) { return (1); } return (0); } /* * Detect if a given IPv6 address identifies a neighbor on a given link. * XXX: should take care of the destination of a p2p link? */ int nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) { struct llentry *lle; int rc = 0; NET_EPOCH_ASSERT(); IF_AFDATA_UNLOCK_ASSERT(ifp); if (nd6_is_new_addr_neighbor(addr, ifp)) return (1); /* * Even if the address matches none of our addresses, it might be * in the neighbor cache. */ if ((lle = nd6_lookup(&addr->sin6_addr, LLE_SF(AF_INET6, 0), ifp)) != NULL) { LLE_RUNLOCK(lle); rc = 1; } return (rc); } static __noinline void nd6_free_children(struct llentry *lle) { struct llentry *child_lle; NET_EPOCH_ASSERT(); LLE_WLOCK_ASSERT(lle); while ((child_lle = CK_SLIST_FIRST(&lle->lle_children)) != NULL) { LLE_WLOCK(child_lle); lltable_unlink_child_entry(child_lle); llentry_free(child_lle); } } /* * Tries to update @lle address/prepend data with new @lladdr. * * Returns true on success. * In any case, @lle is returned wlocked. */ static __noinline bool nd6_try_set_entry_addr_locked(struct ifnet *ifp, struct llentry *lle, char *lladdr) { u_char buf[LLE_MAX_LINKHDR]; int fam, off; size_t sz; sz = sizeof(buf); if (lltable_calc_llheader(ifp, AF_INET6, lladdr, buf, &sz, &off) != 0) return (false); /* Update data */ lltable_set_entry_addr(ifp, lle, buf, sz, off); struct llentry *child_lle; CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { LLE_WLOCK(child_lle); fam = child_lle->r_family; sz = sizeof(buf); if (lltable_calc_llheader(ifp, fam, lladdr, buf, &sz, &off) == 0) { /* success */ lltable_set_entry_addr(ifp, child_lle, buf, sz, off); child_lle->ln_state = ND6_LLINFO_REACHABLE; } LLE_WUNLOCK(child_lle); } return (true); } bool nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr) { NET_EPOCH_ASSERT(); LLE_WLOCK_ASSERT(lle); if (!lltable_acquire_wlock(ifp, lle)) return (false); bool ret = nd6_try_set_entry_addr_locked(ifp, lle, lladdr); IF_AFDATA_WUNLOCK(ifp); return (ret); } /* * Free an nd6 llinfo entry. * Since the function would cause significant changes in the kernel, DO NOT * make it global, unless you have a strong reason for the change, and are sure * that the change is safe. * * Set noinline to be dtrace-friendly */ static __noinline void nd6_free(struct llentry **lnp, int gc) { struct ifnet *ifp; struct llentry *ln; struct nd_defrouter *dr; ln = *lnp; *lnp = NULL; LLE_WLOCK_ASSERT(ln); ND6_RLOCK_ASSERT(); KASSERT((ln->la_flags & LLE_CHILD) == 0, ("child lle")); ifp = lltable_get_ifp(ln->lle_tbl); if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); else dr = NULL; ND6_RUNLOCK(); if ((ln->la_flags & LLE_DELETED) == 0) EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); /* * we used to have pfctlinput(PRC_HOSTDEAD) here. * even though it is not harmful, it was not really necessary. */ /* cancel timer */ nd6_llinfo_settimer_locked(ln, -1); if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { if (dr != NULL && dr->expire && ln->ln_state == ND6_LLINFO_STALE && gc) { /* * If the reason for the deletion is just garbage * collection, and the neighbor is an active default * router, do not delete it. Instead, reset the GC * timer using the router's lifetime. * Simply deleting the entry would affect default * router selection, which is not necessarily a good * thing, especially when we're using router preference * values. * XXX: the check for ln_state would be redundant, * but we intentionally keep it just in case. */ if (dr->expire > time_uptime) nd6_llinfo_settimer_locked(ln, (dr->expire - time_uptime) * hz); else nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); LLE_REMREF(ln); LLE_WUNLOCK(ln); defrouter_rele(dr); return; } if (dr) { /* * Unreachability of a router might affect the default * router selection and on-link detection of advertised * prefixes. */ /* * Temporarily fake the state to choose a new default * router and to perform on-link determination of * prefixes correctly. * Below the state will be set correctly, * or the entry itself will be deleted. */ ln->ln_state = ND6_LLINFO_INCOMPLETE; } if (ln->ln_router || dr) { /* * We need to unlock to avoid a LOR with rt6_flush() with the * rnh and for the calls to pfxlist_onlink_check() and * defrouter_select_fib() in the block further down for calls * into nd6_lookup(). We still hold a ref. */ LLE_WUNLOCK(ln); /* * rt6_flush must be called whether or not the neighbor * is in the Default Router List. * See a corresponding comment in nd6_na_input(). */ rt6_flush(&ln->r_l3addr.addr6, ifp); } if (dr) { /* * Since defrouter_select_fib() does not affect the * on-link determination and MIP6 needs the check * before the default router selection, we perform * the check now. */ pfxlist_onlink_check(); /* * Refresh default router list. */ defrouter_select_fib(dr->ifp->if_fib); } /* * If this entry was added by an on-link redirect, remove the * corresponding host route. */ if (ln->la_flags & LLE_REDIRECT) nd6_free_redirect(ln); if (ln->ln_router || dr) LLE_WLOCK(ln); } /* * Save to unlock. We still hold an extra reference and will not * free(9) in llentry_free() if someone else holds one as well. */ LLE_WUNLOCK(ln); IF_AFDATA_LOCK(ifp); LLE_WLOCK(ln); /* Guard against race with other llentry_free(). */ if (ln->la_flags & LLE_LINKED) { /* Remove callout reference */ LLE_REMREF(ln); lltable_unlink_entry(ln->lle_tbl, ln); } IF_AFDATA_UNLOCK(ifp); nd6_free_children(ln); llentry_free(ln); if (dr != NULL) defrouter_rele(dr); } static int nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) { if (nh->nh_flags & NHF_REDIRECT) return (1); return (0); } /* * Remove the rtentry for the given llentry, * both of which were installed by a redirect. */ static void nd6_free_redirect(const struct llentry *ln) { int fibnum; struct sockaddr_in6 sin6; struct rt_addrinfo info; struct rib_cmd_info rc; struct epoch_tracker et; lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); memset(&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; info.rti_filter = nd6_isdynrte; NET_EPOCH_ENTER(et); for (fibnum = 0; fibnum < rt_numfibs; fibnum++) rib_action(fibnum, RTM_DELETE, &info, &rc); NET_EPOCH_EXIT(et); } /* * Updates status of the default router route. */ static void check_release_defrouter(struct rib_cmd_info *rc, void *_cbdata) { struct nd_defrouter *dr; struct nhop_object *nh; nh = rc->rc_nh_old; if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) { dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); if (dr != NULL) { dr->installed = 0; defrouter_rele(dr); } } } void nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) { #ifdef ROUTE_MPATH rib_decompose_notification(rc, check_release_defrouter, NULL); #else check_release_defrouter(rc, NULL); #endif } int nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) { struct in6_ndireq *ndi = (struct in6_ndireq *)data; struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; struct epoch_tracker et; int error = 0; if (ifp->if_afdata[AF_INET6] == NULL) return (EPFNOSUPPORT); switch (cmd) { case OSIOCGIFINFO_IN6: #define ND ndi->ndi /* XXX: old ndp(8) assumes a positive value for linkmtu. */ bzero(&ND, sizeof(ND)); ND.linkmtu = IN6_LINKMTU(ifp); ND.maxmtu = ND_IFINFO(ifp)->maxmtu; ND.basereachable = ND_IFINFO(ifp)->basereachable; ND.reachable = ND_IFINFO(ifp)->reachable; ND.retrans = ND_IFINFO(ifp)->retrans; ND.flags = ND_IFINFO(ifp)->flags; ND.recalctm = ND_IFINFO(ifp)->recalctm; ND.chlim = ND_IFINFO(ifp)->chlim; break; case SIOCGIFINFO_IN6: ND = *ND_IFINFO(ifp); break; case SIOCSIFINFO_IN6: /* * used to change host variables from userland. * intended for a use on router to reflect RA configurations. */ /* 0 means 'unspecified' */ if (ND.linkmtu != 0) { if (ND.linkmtu < IPV6_MMTU || ND.linkmtu > IN6_LINKMTU(ifp)) { error = EINVAL; break; } ND_IFINFO(ifp)->linkmtu = ND.linkmtu; } if (ND.basereachable != 0) { int obasereachable = ND_IFINFO(ifp)->basereachable; ND_IFINFO(ifp)->basereachable = ND.basereachable; if (ND.basereachable != obasereachable) ND_IFINFO(ifp)->reachable = ND_COMPUTE_RTIME(ND.basereachable); } if (ND.retrans != 0) ND_IFINFO(ifp)->retrans = ND.retrans; if (ND.chlim != 0) ND_IFINFO(ifp)->chlim = ND.chlim; /* FALLTHROUGH */ case SIOCSIFINFO_FLAGS: { struct ifaddr *ifa; struct in6_ifaddr *ia; if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && !(ND.flags & ND6_IFF_IFDISABLED)) { /* ifdisabled 1->0 transision */ /* * If the interface is marked as ND6_IFF_IFDISABLED and * has an link-local address with IN6_IFF_DUPLICATED, * do not clear ND6_IFF_IFDISABLED. * See RFC 4862, Section 5.4.5. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) break; } NET_EPOCH_EXIT(et); if (ifa != NULL) { /* LLA is duplicated. */ ND.flags |= ND6_IFF_IFDISABLED; log(LOG_ERR, "Cannot enable an interface" " with a link-local address marked" " duplicate.\n"); } else { ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; if (ifp->if_flags & IFF_UP) in6_if_up(ifp); } } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && (ND.flags & ND6_IFF_IFDISABLED)) { /* ifdisabled 0->1 transision */ /* Mark all IPv6 address as tentative. */ ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; if (V_ip6_dad_count > 0 && (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; ia->ia6_flags |= IN6_IFF_TENTATIVE; } NET_EPOCH_EXIT(et); } } if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { /* auto_linklocal 0->1 transision */ /* If no link-local address on ifp, configure */ ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; in6_ifattach(ifp, NULL); } else if (!(ND.flags & ND6_IFF_IFDISABLED) && ifp->if_flags & IFF_UP) { /* * When the IF already has * ND6_IFF_AUTO_LINKLOCAL, no link-local * address is assigned, and IFF_UP, try to * assign one. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) break; } NET_EPOCH_EXIT(et); if (ifa != NULL) /* No LLA is configured. */ in6_ifattach(ifp, NULL); } } ND_IFINFO(ifp)->flags = ND.flags; break; } #undef ND case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ /* sync kernel routing table with the default router list */ defrouter_reset(); defrouter_select_fib(RT_ALL_FIBS); break; case SIOCSPFXFLUSH_IN6: { /* flush all the prefix advertised by routers */ struct in6_ifaddr *ia, *ia_next; struct nd_prefix *pr, *next; struct nd_prhead prl; LIST_INIT(&prl); ND6_WLOCK(); LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { - if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) - continue; /* XXX */ - nd6_prefix_unlink(pr, &prl); + if (pr->ndpr_raf_ra_derived) + nd6_prefix_unlink(pr, &prl); } ND6_WUNLOCK(); while ((pr = LIST_FIRST(&prl)) != NULL) { LIST_REMOVE(pr, ndpr_entry); /* XXXRW: in6_ifaddrhead locking. */ CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, ia_next) { if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; if (ia->ia6_ndpr == pr) in6_purgeaddr(&ia->ia_ifa); } nd6_prefix_del(pr); } break; } case SIOCSRTRFLUSH_IN6: { /* flush all the default routers */ defrouter_reset(); nd6_defrouter_flush_all(); defrouter_select_fib(RT_ALL_FIBS); break; } case SIOCGNBRINFO_IN6: { struct llentry *ln; struct in6_addr nb_addr = nbi->addr; /* make local for safety */ if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) return (error); NET_EPOCH_ENTER(et); ln = nd6_lookup(&nb_addr, LLE_SF(AF_INET6, 0), ifp); NET_EPOCH_EXIT(et); if (ln == NULL) { error = EINVAL; break; } nbi->state = ln->ln_state; nbi->asked = ln->la_asked; nbi->isrouter = ln->ln_router; if (ln->la_expire == 0) nbi->expire = 0; else nbi->expire = ln->la_expire + ln->lle_remtime / hz + (time_second - time_uptime); LLE_RUNLOCK(ln); break; } case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ ndif->ifindex = V_nd6_defifindex; break; case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ return (nd6_setdefaultiface(ndif->ifindex)); } return (error); } /* * Calculates new isRouter value based on provided parameters and * returns it. */ static int nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, int ln_router) { /* * ICMP6 type dependent behavior. * * NS: clear IsRouter if new entry * RS: clear IsRouter * RA: set IsRouter if there's lladdr * redir: clear IsRouter if new entry * * RA case, (1): * The spec says that we must set IsRouter in the following cases: * - If lladdr exist, set IsRouter. This means (1-5). * - If it is old entry (!newentry), set IsRouter. This means (7). * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. * A quetion arises for (1) case. (1) case has no lladdr in the * neighbor cache, this is similar to (6). * This case is rare but we figured that we MUST NOT set IsRouter. * * is_new old_addr new_addr NS RS RA redir * D R * 0 n n (1) c ? s * 0 y n (2) c s s * 0 n y (3) c s s * 0 y y (4) c s s * 0 y y (5) c s s * 1 -- n (6) c c c s * 1 -- y (7) c c s c s * * (c=clear s=set) */ switch (type & 0xff) { case ND_NEIGHBOR_SOLICIT: /* * New entry must have is_router flag cleared. */ if (is_new) /* (6-7) */ ln_router = 0; break; case ND_REDIRECT: /* * If the icmp is a redirect to a better router, always set the * is_router flag. Otherwise, if the entry is newly created, * clear the flag. [RFC 2461, sec 8.3] */ if (code == ND_REDIRECT_ROUTER) ln_router = 1; else { if (is_new) /* (6-7) */ ln_router = 0; } break; case ND_ROUTER_SOLICIT: /* * is_router flag must always be cleared. */ ln_router = 0; break; case ND_ROUTER_ADVERT: /* * Mark an entry with lladdr as a router. */ if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ (is_new && new_addr)) { /* (7) */ ln_router = 1; } break; } return (ln_router); } /* * Create neighbor cache entry and cache link-layer address, * on reception of inbound ND6 packets. (RS/RA/NS/redirect) * * type - ICMP6 type * code - type dependent information * */ void nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, int lladdrlen, int type, int code) { struct llentry *ln = NULL, *ln_tmp; int is_newentry; int do_update; int olladdr; int llchange; int flags; uint16_t router = 0; struct mbuf *chain = NULL; u_char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; NET_EPOCH_ASSERT(); IF_AFDATA_UNLOCK_ASSERT(ifp); KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); KASSERT(from != NULL, ("%s: from == NULL", __func__)); /* nothing must be updated for unspecified address */ if (IN6_IS_ADDR_UNSPECIFIED(from)) return; /* * Validation about ifp->if_addrlen and lladdrlen must be done in * the caller. * * XXX If the link does not have link-layer adderss, what should * we do? (ifp->if_addrlen == 0) * Spec says nothing in sections for RA, RS and NA. There's small * description on it in NS section (RFC 2461 7.2.3). */ flags = lladdr ? LLE_EXCLUSIVE : 0; ln = nd6_lookup(from, LLE_SF(AF_INET6, flags), ifp); is_newentry = 0; if (ln == NULL) { flags |= LLE_EXCLUSIVE; ln = nd6_alloc(from, 0, ifp); if (ln == NULL) return; /* * Since we already know all the data for the new entry, * fill it before insertion. */ if (lladdr != NULL) { linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET6, lladdr, linkhdr, &linkhdrsize, &lladdr_off) != 0) { lltable_free_entry(LLTABLE6(ifp), ln); return; } lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, lladdr_off); } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(ln); /* Prefer any existing lle over newly-created one */ ln_tmp = nd6_lookup(from, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); if (ln_tmp == NULL) lltable_link_entry(LLTABLE6(ifp), ln); IF_AFDATA_WUNLOCK(ifp); if (ln_tmp == NULL) { /* No existing lle, mark as new entry (6,7) */ is_newentry = 1; if (lladdr != NULL) { /* (7) */ nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); } } else { lltable_free_entry(LLTABLE6(ifp), ln); ln = ln_tmp; ln_tmp = NULL; } } /* do nothing if static ndp is set */ if ((ln->la_flags & LLE_STATIC)) { if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(ln); else LLE_RUNLOCK(ln); return; } olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; if (olladdr && lladdr) { llchange = bcmp(lladdr, ln->ll_addr, ifp->if_addrlen); } else if (!olladdr && lladdr) llchange = 1; else llchange = 0; /* * newentry olladdr lladdr llchange (*=record) * 0 n n -- (1) * 0 y n -- (2) * 0 n y y (3) * STALE * 0 y y n (4) * * 0 y y y (5) * STALE * 1 -- n -- (6) NOSTATE(= PASSIVE) * 1 -- y -- (7) * STALE */ do_update = 0; if (is_newentry == 0 && llchange != 0) { do_update = 1; /* (3,5) */ /* * Record source link-layer address * XXX is it dependent to ifp->if_type? */ if (!nd6_try_set_entry_addr(ifp, ln, lladdr)) { /* Entry was deleted */ LLE_WUNLOCK(ln); return; } nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); if (ln->la_hold != NULL) chain = nd6_grab_holdchain(ln); } /* Calculates new router status */ router = nd6_is_router(type, code, is_newentry, olladdr, lladdr != NULL ? 1 : 0, ln->ln_router); ln->ln_router = router; /* Mark non-router redirects with special flag */ if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) ln->la_flags |= LLE_REDIRECT; if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(ln); else LLE_RUNLOCK(ln); if (chain != NULL) nd6_flush_holdchain(ifp, ln, chain); if (do_update) nd6_flush_children_holdchain(ifp, ln); /* * When the link-layer address of a router changes, select the * best router again. In particular, when the neighbor entry is newly * created, it might affect the selection policy. * Question: can we restrict the first condition to the "is_newentry" * case? * XXX: when we hear an RA from a new router with the link-layer * address option, defrouter_select_fib() is called twice, since * defrtrlist_update called the function as well. However, I believe * we can compromise the overhead, since it only happens the first * time. * XXX: although defrouter_select_fib() should not have a bad effect * for those are not autoconfigured hosts, we explicitly avoid such * cases for safety. */ if ((do_update || is_newentry) && router && ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { /* * guaranteed recursion */ defrouter_select_fib(ifp->if_fib); } } static void nd6_slowtimo(void *arg) { struct epoch_tracker et; CURVNET_SET((struct vnet *) arg); struct nd_ifinfo *nd6if; struct ifnet *ifp; callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, curvnet); NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp->if_afdata[AF_INET6] == NULL) continue; nd6if = ND_IFINFO(ifp); if (nd6if->basereachable && /* already initialized */ (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { /* * Since reachable time rarely changes by router * advertisements, we SHOULD insure that a new random * value gets recomputed at least once every few hours. * (RFC 2461, 6.3.4) */ nd6if->recalctm = V_nd6_recalc_reachtm_interval; nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); } } NET_EPOCH_EXIT(et); CURVNET_RESTORE(); } struct mbuf * nd6_grab_holdchain(struct llentry *ln) { struct mbuf *chain; LLE_WLOCK_ASSERT(ln); chain = ln->la_hold; ln->la_hold = NULL; ln->la_numheld = 0; if (ln->ln_state == ND6_LLINFO_STALE) { /* * The first time we send a packet to a * neighbor whose entry is STALE, we have * to change the state to DELAY and a sets * a timer to expire in DELAY_FIRST_PROBE_TIME * seconds to ensure do neighbor unreachability * detection on expiration. * (RFC 2461 7.3.3) */ nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); } return (chain); } int nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, struct sockaddr_in6 *dst, struct route *ro) { int error; int ip6len; struct ip6_hdr *ip6; struct m_tag *mtag; #ifdef MAC mac_netinet6_nd6_send(ifp, m); #endif /* * If called from nd6_ns_output() (NS), nd6_na_output() (NA), * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA * as handled by rtsol and rtadvd), mbufs will be tagged for SeND * to be diverted to user space. When re-injected into the kernel, * send_output() will directly dispatch them to the outgoing interface. */ if (send_sendso_input_hook != NULL) { mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); if (mtag != NULL) { ip6 = mtod(m, struct ip6_hdr *); ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); /* Use the SEND socket */ error = send_sendso_input_hook(m, ifp, SND_OUT, ip6len); /* -1 == no app on SEND socket */ if (error == 0 || error != -1) return (error); } } m_clrprotoflags(m); /* Avoid confusing lower layers. */ IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, mtod(m, struct ip6_hdr *)); if ((ifp->if_flags & IFF_LOOPBACK) == 0) origifp = ifp; error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); return (error); } /* * Lookup link headerfor @sa_dst address. Stores found * data in @desten buffer. Copy of lle ln_flags can be also * saved in @pflags if @pflags is non-NULL. * * If destination LLE does not exists or lle state modification * is required, call "slow" version. * * Return values: * - 0 on success (address copied to buffer). * - EWOULDBLOCK (no local error, but address is still unresolved) * - other errors (alloc failure, etc) */ int nd6_resolve(struct ifnet *ifp, int gw_flags, struct mbuf *m, const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, struct llentry **plle) { struct llentry *ln = NULL; const struct sockaddr_in6 *dst6; NET_EPOCH_ASSERT(); if (pflags != NULL) *pflags = 0; dst6 = (const struct sockaddr_in6 *)sa_dst; /* discard the packet if IPv6 operation is disabled on the interface */ if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { m_freem(m); return (ENETDOWN); /* better error? */ } if (m != NULL && m->m_flags & M_MCAST) { switch (ifp->if_type) { case IFT_ETHER: case IFT_L2VLAN: case IFT_BRIDGE: ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, desten); return (0); default: m_freem(m); return (EAFNOSUPPORT); } } int family = gw_flags >> 16; int lookup_flags = plle ? LLE_EXCLUSIVE : LLE_UNLOCKED; ln = nd6_lookup(&dst6->sin6_addr, LLE_SF(family, lookup_flags), ifp); if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { /* Entry found, let's copy lle info */ bcopy(ln->r_linkdata, desten, ln->r_hdrlen); if (pflags != NULL) *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); llentry_provide_feedback(ln); if (plle) { LLE_ADDREF(ln); *plle = ln; LLE_WUNLOCK(ln); } return (0); } else if (plle && ln) LLE_WUNLOCK(ln); return (nd6_resolve_slow(ifp, family, 0, m, dst6, desten, pflags, plle)); } /* * Finds or creates a new llentry for @addr and @family. * Returns wlocked llentry or NULL. * * * Child LLEs. * * Do not have their own state machine (gets marked as static) * settimer bails out for child LLEs just in case. * * Locking order: parent lle gets locked first, chen goes the child. */ static __noinline struct llentry * nd6_get_llentry(struct ifnet *ifp, const struct in6_addr *addr, int family) { struct llentry *child_lle = NULL; struct llentry *lle, *lle_tmp; lle = nd6_alloc(addr, 0, ifp); if (lle != NULL && family != AF_INET6) { child_lle = nd6_alloc(addr, 0, ifp); if (child_lle == NULL) { lltable_free_entry(LLTABLE6(ifp), lle); return (NULL); } child_lle->r_family = family; child_lle->la_flags |= LLE_CHILD | LLE_STATIC; child_lle->ln_state = ND6_LLINFO_INCOMPLETE; } if (lle == NULL) { char ip6buf[INET6_ADDRSTRLEN]; log(LOG_DEBUG, "nd6_get_llentry: can't allocate llinfo for %s " "(ln=%p)\n", ip6_sprintf(ip6buf, addr), lle); return (NULL); } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(lle); /* Prefer any existing entry over newly-created one */ lle_tmp = nd6_lookup(addr, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); if (lle_tmp == NULL) lltable_link_entry(LLTABLE6(ifp), lle); else { lltable_free_entry(LLTABLE6(ifp), lle); lle = lle_tmp; } if (child_lle != NULL) { /* Check if child lle for the same family exists */ lle_tmp = llentry_lookup_family(lle, child_lle->r_family); LLE_WLOCK(child_lle); if (lle_tmp == NULL) { /* Attach */ lltable_link_child_entry(lle, child_lle); } else { /* child lle already exists, free newly-created one */ lltable_free_entry(LLTABLE6(ifp), child_lle); child_lle = lle_tmp; } LLE_WUNLOCK(lle); lle = child_lle; } IF_AFDATA_WUNLOCK(ifp); return (lle); } /* * Do L2 address resolution for @sa_dst address. Stores found * address in @desten buffer. Copy of lle ln_flags can be also * saved in @pflags if @pflags is non-NULL. * * Heavy version. * Function assume that destination LLE does not exist, * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. * * Set noinline to be dtrace-friendly */ static __noinline int nd6_resolve_slow(struct ifnet *ifp, int family, int flags, struct mbuf *m, const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, struct llentry **plle) { struct llentry *lle = NULL; struct in6_addr *psrc, src; int send_ns, ll_len; char *lladdr; size_t dropped; NET_EPOCH_ASSERT(); /* * Address resolution or Neighbor Unreachability Detection * for the next hop. * At this point, the destination of the packet must be a unicast * or an anycast address(i.e. not a multicast). */ lle = nd6_lookup(&dst->sin6_addr, LLE_SF(family, LLE_EXCLUSIVE), ifp); if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { /* * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), * the condition below is not very efficient. But we believe * it is tolerable, because this should be a rare case. */ lle = nd6_get_llentry(ifp, &dst->sin6_addr, family); } if (lle == NULL) { m_freem(m); return (ENOBUFS); } LLE_WLOCK_ASSERT(lle); /* * The first time we send a packet to a neighbor whose entry is * STALE, we have to change the state to DELAY and a sets a timer to * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do * neighbor unreachability detection on expiration. * (RFC 2461 7.3.3) */ if ((!(lle->la_flags & LLE_CHILD)) && (lle->ln_state == ND6_LLINFO_STALE)) nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); /* * If the neighbor cache entry has a state other than INCOMPLETE * (i.e. its link-layer address is already resolved), just * send the packet. */ if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { if (flags & LLE_ADDRONLY) { lladdr = lle->ll_addr; ll_len = ifp->if_addrlen; } else { lladdr = lle->r_linkdata; ll_len = lle->r_hdrlen; } bcopy(lladdr, desten, ll_len); if (pflags != NULL) *pflags = lle->la_flags; if (plle) { LLE_ADDREF(lle); *plle = lle; } LLE_WUNLOCK(lle); return (0); } /* * There is a neighbor cache entry, but no ethernet address * response yet. Append this latest packet to the end of the * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, * the oldest packet in the queue will be removed. */ dropped = lltable_append_entry_queue(lle, m, V_nd6_maxqueuelen); ICMP6STAT_ADD(icp6s_dropped, dropped); /* * If there has been no NS for the neighbor after entering the * INCOMPLETE state, send the first solicitation. * Note that for newly-created lle la_asked will be 0, * so we will transition from ND6_LLINFO_NOSTATE to * ND6_LLINFO_INCOMPLETE state here. */ psrc = NULL; send_ns = 0; /* If we have child lle, switch to the parent to send NS */ if (lle->la_flags & LLE_CHILD) { struct llentry *lle_parent = lle->lle_parent; LLE_WUNLOCK(lle); lle = lle_parent; LLE_WLOCK(lle); } if (lle->la_asked == 0) { lle->la_asked++; send_ns = 1; psrc = nd6_llinfo_get_holdsrc(lle, &src); nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); } LLE_WUNLOCK(lle); if (send_ns != 0) nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); return (EWOULDBLOCK); } /* * Do L2 address resolution for @sa_dst address. Stores found * address in @desten buffer. Copy of lle ln_flags can be also * saved in @pflags if @pflags is non-NULL. * * Return values: * - 0 on success (address copied to buffer). * - EWOULDBLOCK (no local error, but address is still unresolved) * - other errors (alloc failure, etc) */ int nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, char *desten, uint32_t *pflags) { int error; flags |= LLE_ADDRONLY; error = nd6_resolve_slow(ifp, AF_INET6, flags, NULL, (const struct sockaddr_in6 *)dst, desten, pflags, NULL); return (error); } int nd6_flush_holdchain(struct ifnet *ifp, struct llentry *lle, struct mbuf *chain) { struct mbuf *m, *m_head; struct sockaddr_in6 dst6; int error = 0; NET_EPOCH_ASSERT(); struct route_in6 ro = { .ro_prepend = lle->r_linkdata, .ro_plen = lle->r_hdrlen, }; lltable_fill_sa_entry(lle, (struct sockaddr *)&dst6); m_head = chain; while (m_head) { m = m_head; m_head = m_head->m_nextpkt; m->m_nextpkt = NULL; error = nd6_output_ifp(ifp, ifp, m, &dst6, (struct route *)&ro); } /* * XXX * note that intermediate errors are blindly ignored */ return (error); } __noinline void nd6_flush_children_holdchain(struct ifnet *ifp, struct llentry *lle) { struct llentry *child_lle; struct mbuf *chain; NET_EPOCH_ASSERT(); CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { LLE_WLOCK(child_lle); chain = nd6_grab_holdchain(child_lle); LLE_WUNLOCK(child_lle); nd6_flush_holdchain(ifp, child_lle, chain); } } static int nd6_need_cache(struct ifnet *ifp) { /* * XXX: we currently do not make neighbor cache on any interface * other than Ethernet and GIF. * * RFC2893 says: * - unidirectional tunnels needs no ND */ switch (ifp->if_type) { case IFT_ETHER: case IFT_IEEE1394: case IFT_L2VLAN: case IFT_INFINIBAND: case IFT_BRIDGE: case IFT_PROPVIRTUAL: return (1); default: return (0); } } /* * Add pernament ND6 link-layer record for given * interface address. * * Very similar to IPv4 arp_ifinit(), but: * 1) IPv6 DAD is performed in different place * 2) It is called by IPv6 protocol stack in contrast to * arp_ifinit() which is typically called in SIOCSIFADDR * driver ioctl handler. * */ int nd6_add_ifa_lle(struct in6_ifaddr *ia) { struct ifnet *ifp; struct llentry *ln, *ln_tmp; struct sockaddr *dst; ifp = ia->ia_ifa.ifa_ifp; if (nd6_need_cache(ifp) == 0) return (0); dst = (struct sockaddr *)&ia->ia_addr; ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); if (ln == NULL) return (ENOBUFS); IF_AFDATA_WLOCK(ifp); LLE_WLOCK(ln); /* Unlink any entry if exists */ ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_SF(AF_INET6, LLE_EXCLUSIVE), dst); if (ln_tmp != NULL) lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); lltable_link_entry(LLTABLE6(ifp), ln); IF_AFDATA_WUNLOCK(ifp); if (ln_tmp != NULL) EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); LLE_WUNLOCK(ln); if (ln_tmp != NULL) llentry_free(ln_tmp); return (0); } /* * Removes either all lle entries for given @ia, or lle * corresponding to @ia address. */ void nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) { struct sockaddr_in6 mask, addr; struct sockaddr *saddr, *smask; struct ifnet *ifp; ifp = ia->ia_ifa.ifa_ifp; memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); saddr = (struct sockaddr *)&addr; smask = (struct sockaddr *)&mask; if (all != 0) lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); else lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); } static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) { struct in6_prefix p; struct sockaddr_in6 s6; struct nd_prefix *pr; struct nd_pfxrouter *pfr; time_t maxexpire; int error; char ip6buf[INET6_ADDRSTRLEN]; if (req->newptr) return (EPERM); error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); bzero(&p, sizeof(p)); p.origin = PR_ORIG_RA; bzero(&s6, sizeof(s6)); s6.sin6_family = AF_INET6; s6.sin6_len = sizeof(s6); ND6_RLOCK(); LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { + if (!pr->ndpr_raf_ra_derived) + continue; p.prefix = pr->ndpr_prefix; if (sa6_recoverscope(&p.prefix)) { log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); /* XXX: press on... */ } p.raflags = pr->ndpr_raf; p.prefixlen = pr->ndpr_plen; p.vltime = pr->ndpr_vltime; p.pltime = pr->ndpr_pltime; p.if_index = pr->ndpr_ifp->if_index; if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) p.expire = 0; else { /* XXX: we assume time_t is signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) p.expire = pr->ndpr_lastupdate + pr->ndpr_vltime + (time_second - time_uptime); else p.expire = maxexpire; } p.refcnt = pr->ndpr_addrcnt; p.flags = pr->ndpr_stateflags; p.advrtrs = 0; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) p.advrtrs++; error = SYSCTL_OUT(req, &p, sizeof(p)); if (error != 0) break; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { s6.sin6_addr = pfr->router->rtaddr; if (sa6_recoverscope(&s6)) log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(ip6buf, &pfr->router->rtaddr)); error = SYSCTL_OUT(req, &s6, sizeof(s6)); if (error != 0) goto out; } } out: ND6_RUNLOCK(); return (error); } SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", "NDP prefix list"); SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); diff --git a/sys/netinet6/nd6.h b/sys/netinet6/nd6.h index 3f9f8219b018..d653a432dbe4 100644 --- a/sys/netinet6/nd6.h +++ b/sys/netinet6/nd6.h @@ -1,436 +1,437 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: nd6.h,v 1.76 2001/12/18 02:10:31 itojun Exp $ * $FreeBSD$ */ #ifndef _NETINET6_ND6_H_ #define _NETINET6_ND6_H_ /* see net/route.h, or net/if_inarp.h */ #ifndef RTF_ANNOUNCE #define RTF_ANNOUNCE RTF_PROTO2 #endif #include #include struct llentry; #define ND6_LLINFO_NOSTATE -2 /* * We don't need the WAITDELETE state any more, but we keep the definition * in a comment line instead of removing it. This is necessary to avoid * unintentionally reusing the value for another purpose, which might * affect backward compatibility with old applications. * (20000711 jinmei@kame.net) */ /* #define ND6_LLINFO_WAITDELETE -1 */ #define ND6_LLINFO_INCOMPLETE 0 #define ND6_LLINFO_REACHABLE 1 #define ND6_LLINFO_STALE 2 #define ND6_LLINFO_DELAY 3 #define ND6_LLINFO_PROBE 4 #define ND6_IS_LLINFO_PROBREACH(n) ((n)->ln_state > ND6_LLINFO_INCOMPLETE) #define ND6_LLINFO_PERMANENT(n) (((n)->la_expire == 0) && ((n)->ln_state > ND6_LLINFO_INCOMPLETE)) struct nd_ifinfo { u_int32_t linkmtu; /* LinkMTU */ u_int32_t maxmtu; /* Upper bound of LinkMTU */ u_int32_t basereachable; /* BaseReachableTime */ u_int32_t reachable; /* Reachable Time */ u_int32_t retrans; /* Retrans Timer */ u_int32_t flags; /* Flags */ int recalctm; /* BaseReacable re-calculation timer */ u_int8_t chlim; /* CurHopLimit */ u_int8_t initialized; /* Flag to see the entry is initialized */ /* the following 3 members are for privacy extension for addrconf */ u_int8_t randomseed0[8]; /* upper 64 bits of MD5 digest */ u_int8_t randomseed1[8]; /* lower 64 bits (usually the EUI64 IFID) */ u_int8_t randomid[8]; /* current random ID */ }; #define ND6_IFF_PERFORMNUD 0x1 #define ND6_IFF_ACCEPT_RTADV 0x2 #define ND6_IFF_PREFER_SOURCE 0x4 /* Not used in FreeBSD. */ #define ND6_IFF_IFDISABLED 0x8 /* IPv6 operation is disabled due to * DAD failure. (XXX: not ND-specific) */ #define ND6_IFF_DONT_SET_IFROUTE 0x10 #define ND6_IFF_AUTO_LINKLOCAL 0x20 #define ND6_IFF_NO_RADR 0x40 #define ND6_IFF_NO_PREFER_IFACE 0x80 /* XXX: not related to ND. */ #define ND6_IFF_NO_DAD 0x100 #ifdef EXPERIMENTAL /* XXX: not related to ND. */ #define ND6_IFF_IPV6_ONLY 0x200 /* draft-ietf-6man-ipv6only-flag */ #define ND6_IFF_IPV6_ONLY_MANUAL 0x400 #define ND6_IFF_IPV6_ONLY_MASK (ND6_IFF_IPV6_ONLY|ND6_IFF_IPV6_ONLY_MANUAL) #endif #ifdef _KERNEL #define ND_IFINFO(ifp) \ (((struct in6_ifextra *)(ifp)->if_afdata[AF_INET6])->nd_ifinfo) #define IN6_LINKMTU(ifp) \ ((ND_IFINFO(ifp)->linkmtu && ND_IFINFO(ifp)->linkmtu < (ifp)->if_mtu) \ ? ND_IFINFO(ifp)->linkmtu \ : ((ND_IFINFO(ifp)->maxmtu && ND_IFINFO(ifp)->maxmtu < (ifp)->if_mtu) \ ? ND_IFINFO(ifp)->maxmtu : (ifp)->if_mtu)) #endif struct in6_nbrinfo { char ifname[IFNAMSIZ]; /* if name, e.g. "en0" */ struct in6_addr addr; /* IPv6 address of the neighbor */ long asked; /* number of queries already sent for this addr */ int isrouter; /* if it acts as a router */ int state; /* reachability state */ int expire; /* lifetime for NDP state transition */ }; /* Sysctls, shared with user space. */ struct in6_defrouter { struct sockaddr_in6 rtaddr; u_char flags; u_short rtlifetime; u_long expire; u_short if_index; }; struct in6_prefix { struct sockaddr_in6 prefix; struct prf_ra raflags; u_char prefixlen; u_char origin; u_int32_t vltime; u_int32_t pltime; time_t expire; u_int32_t flags; int refcnt; u_short if_index; u_short advrtrs; /* number of advertisement routers */ /* struct sockaddr_in6 advrtr[] */ }; #ifdef _KERNEL struct in6_ondireq { char ifname[IFNAMSIZ]; struct { u_int32_t linkmtu; /* LinkMTU */ u_int32_t maxmtu; /* Upper bound of LinkMTU */ u_int32_t basereachable; /* BaseReachableTime */ u_int32_t reachable; /* Reachable Time */ u_int32_t retrans; /* Retrans Timer */ u_int32_t flags; /* Flags */ int recalctm; /* BaseReacable re-calculation timer */ u_int8_t chlim; /* CurHopLimit */ u_int8_t receivedra; } ndi; }; #endif struct in6_ndireq { char ifname[IFNAMSIZ]; struct nd_ifinfo ndi; }; struct in6_ndifreq { char ifname[IFNAMSIZ]; u_long ifindex; }; /* Prefix status */ #define NDPRF_ONLINK 0x1 #define NDPRF_DETACHED 0x2 /* protocol constants */ #define MAX_RTR_SOLICITATION_DELAY 1 /* 1sec */ #define RTR_SOLICITATION_INTERVAL 4 /* 4sec */ #define MAX_RTR_SOLICITATIONS 3 #define ND6_INFINITE_LIFETIME 0xffffffff #ifdef _KERNEL /* node constants */ #define MAX_REACHABLE_TIME 3600000 /* msec */ #define REACHABLE_TIME 30000 /* msec */ #define RETRANS_TIMER 1000 /* msec */ #define MIN_RANDOM_FACTOR 512 /* 1024 * 0.5 */ #define MAX_RANDOM_FACTOR 1536 /* 1024 * 1.5 */ #define DEF_TEMP_VALID_LIFETIME 604800 /* 1 week */ #define DEF_TEMP_PREFERRED_LIFETIME 86400 /* 1 day */ #define TEMPADDR_REGEN_ADVANCE 5 /* sec */ #define MAX_TEMP_DESYNC_FACTOR 600 /* 10 min */ #define ND_COMPUTE_RTIME(x) \ (((MIN_RANDOM_FACTOR * (x >> 10)) + (arc4random() & \ ((MAX_RANDOM_FACTOR - MIN_RANDOM_FACTOR) * (x >> 10)))) /1000) struct nd_defrouter { TAILQ_ENTRY(nd_defrouter) dr_entry; struct in6_addr rtaddr; u_char raflags; /* flags on RA message */ u_short rtlifetime; u_long expire; struct ifnet *ifp; int installed; /* is installed into kernel routing table */ u_int refcnt; }; struct nd_prefixctl { struct ifnet *ndpr_ifp; /* prefix */ struct sockaddr_in6 ndpr_prefix; u_char ndpr_plen; u_int32_t ndpr_vltime; /* advertised valid lifetime */ u_int32_t ndpr_pltime; /* advertised preferred lifetime */ struct prf_ra ndpr_flags; }; LIST_HEAD(nd_prhead, nd_prefix); struct nd_prefix { struct ifnet *ndpr_ifp; LIST_ENTRY(nd_prefix) ndpr_entry; struct sockaddr_in6 ndpr_prefix; /* prefix */ struct in6_addr ndpr_mask; /* netmask derived from the prefix */ u_int32_t ndpr_vltime; /* advertised valid lifetime */ u_int32_t ndpr_pltime; /* advertised preferred lifetime */ time_t ndpr_expire; /* expiration time of the prefix */ time_t ndpr_preferred; /* preferred time of the prefix */ time_t ndpr_lastupdate; /* reception time of last advertisement */ struct prf_ra ndpr_flags; u_int32_t ndpr_stateflags; /* actual state flags */ /* list of routers that advertise the prefix: */ LIST_HEAD(pr_rtrhead, nd_pfxrouter) ndpr_advrtrs; u_char ndpr_plen; int ndpr_addrcnt; /* count of derived addresses */ volatile u_int ndpr_refcnt; }; #define ndpr_raf ndpr_flags #define ndpr_raf_onlink ndpr_flags.onlink #define ndpr_raf_auto ndpr_flags.autonomous +#define ndpr_raf_ra_derived ndpr_flags.ra_derived #define ndpr_raf_router ndpr_flags.router struct nd_pfxrouter { LIST_ENTRY(nd_pfxrouter) pfr_entry; struct nd_defrouter *router; }; #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_IP6NDP); #endif /* nd6.c */ VNET_DECLARE(int, nd6_prune); VNET_DECLARE(int, nd6_delay); VNET_DECLARE(int, nd6_umaxtries); VNET_DECLARE(int, nd6_mmaxtries); VNET_DECLARE(int, nd6_useloopback); VNET_DECLARE(int, nd6_maxnudhint); VNET_DECLARE(int, nd6_gctimer); VNET_DECLARE(struct nd_prhead, nd_prefix); VNET_DECLARE(int, nd6_debug); VNET_DECLARE(int, nd6_onlink_ns_rfc4861); #define V_nd6_prune VNET(nd6_prune) #define V_nd6_delay VNET(nd6_delay) #define V_nd6_umaxtries VNET(nd6_umaxtries) #define V_nd6_mmaxtries VNET(nd6_mmaxtries) #define V_nd6_useloopback VNET(nd6_useloopback) #define V_nd6_maxnudhint VNET(nd6_maxnudhint) #define V_nd6_gctimer VNET(nd6_gctimer) #define V_nd_prefix VNET(nd_prefix) #define V_nd6_debug VNET(nd6_debug) #define V_nd6_onlink_ns_rfc4861 VNET(nd6_onlink_ns_rfc4861) /* Lock for the prefix and default router lists. */ VNET_DECLARE(struct rwlock, nd6_lock); VNET_DECLARE(uint64_t, nd6_list_genid); #define V_nd6_lock VNET(nd6_lock) #define V_nd6_list_genid VNET(nd6_list_genid) #define ND6_RLOCK() rw_rlock(&V_nd6_lock) #define ND6_RUNLOCK() rw_runlock(&V_nd6_lock) #define ND6_WLOCK() rw_wlock(&V_nd6_lock) #define ND6_WUNLOCK() rw_wunlock(&V_nd6_lock) #define ND6_TRY_UPGRADE() rw_try_upgrade(&V_nd6_lock) #define ND6_WLOCK_ASSERT() rw_assert(&V_nd6_lock, RA_WLOCKED) #define ND6_RLOCK_ASSERT() rw_assert(&V_nd6_lock, RA_RLOCKED) #define ND6_LOCK_ASSERT() rw_assert(&V_nd6_lock, RA_LOCKED) #define ND6_UNLOCK_ASSERT() rw_assert(&V_nd6_lock, RA_UNLOCKED) /* Mutex for prefix onlink/offlink transitions. */ VNET_DECLARE(struct mtx, nd6_onlink_mtx); #define V_nd6_onlink_mtx VNET(nd6_onlink_mtx) #define ND6_ONLINK_LOCK() mtx_lock(&V_nd6_onlink_mtx) #define ND6_ONLINK_TRYLOCK() mtx_trylock(&V_nd6_onlink_mtx) #define ND6_ONLINK_UNLOCK() mtx_unlock(&V_nd6_onlink_mtx) #define ND6_ONLINK_LOCK_ASSERT() mtx_assert(&V_nd6_onlink_mtx, MA_OWNED) #define ND6_ONLINK_UNLOCK_ASSERT() mtx_assert(&V_nd6_onlink_mtx, MA_NOTOWNED) #define nd6log(x) do { if (V_nd6_debug) log x; } while (/*CONSTCOND*/ 0) /* nd6_rtr.c */ VNET_DECLARE(int, nd6_defifindex); VNET_DECLARE(int, ip6_desync_factor); /* seconds */ VNET_DECLARE(u_int32_t, ip6_temp_preferred_lifetime); /* seconds */ VNET_DECLARE(u_int32_t, ip6_temp_valid_lifetime); /* seconds */ VNET_DECLARE(int, ip6_temp_regen_advance); /* seconds */ #define V_nd6_defifindex VNET(nd6_defifindex) #define V_ip6_desync_factor VNET(ip6_desync_factor) #define V_ip6_temp_preferred_lifetime VNET(ip6_temp_preferred_lifetime) #define V_ip6_temp_valid_lifetime VNET(ip6_temp_valid_lifetime) #define V_ip6_temp_regen_advance VNET(ip6_temp_regen_advance) union nd_opts { struct nd_opt_hdr *nd_opt_array[16]; /* max = ND_OPT_NONCE */ struct { struct nd_opt_hdr *zero; struct nd_opt_hdr *src_lladdr; struct nd_opt_hdr *tgt_lladdr; struct nd_opt_prefix_info *pi_beg; /* multiple opts, start */ struct nd_opt_rd_hdr *rh; struct nd_opt_mtu *mtu; struct nd_opt_hdr *__res6; struct nd_opt_hdr *__res7; struct nd_opt_hdr *__res8; struct nd_opt_hdr *__res9; struct nd_opt_hdr *__res10; struct nd_opt_hdr *__res11; struct nd_opt_hdr *__res12; struct nd_opt_hdr *__res13; struct nd_opt_nonce *nonce; struct nd_opt_hdr *__res15; struct nd_opt_hdr *search; /* multiple opts */ struct nd_opt_hdr *last; /* multiple opts */ int done; struct nd_opt_prefix_info *pi_end;/* multiple opts, end */ } nd_opt_each; }; #define nd_opts_src_lladdr nd_opt_each.src_lladdr #define nd_opts_tgt_lladdr nd_opt_each.tgt_lladdr #define nd_opts_pi nd_opt_each.pi_beg #define nd_opts_pi_end nd_opt_each.pi_end #define nd_opts_rh nd_opt_each.rh #define nd_opts_mtu nd_opt_each.mtu #define nd_opts_nonce nd_opt_each.nonce #define nd_opts_search nd_opt_each.search #define nd_opts_last nd_opt_each.last #define nd_opts_done nd_opt_each.done /* XXX: need nd6_var.h?? */ /* nd6.c */ void nd6_init(void); #ifdef VIMAGE void nd6_destroy(void); #endif struct nd_ifinfo *nd6_ifattach(struct ifnet *); void nd6_ifdetach(struct ifnet *, struct nd_ifinfo *); int nd6_is_addr_neighbor(const struct sockaddr_in6 *, struct ifnet *); void nd6_option_init(void *, int, union nd_opts *); struct nd_opt_hdr *nd6_option(union nd_opts *); int nd6_options(union nd_opts *); struct llentry *nd6_lookup(const struct in6_addr *, int, struct ifnet *); void nd6_setmtu(struct ifnet *); void nd6_llinfo_setstate(struct llentry *lle, int newstate); void nd6_timer(void *); void nd6_purge(struct ifnet *); int nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, char *desten, uint32_t *pflags); int nd6_resolve(struct ifnet *, int, struct mbuf *, const struct sockaddr *, u_char *, uint32_t *, struct llentry **); int nd6_ioctl(u_long, caddr_t, struct ifnet *); void nd6_cache_lladdr(struct ifnet *, struct in6_addr *, char *, int, int, int); bool nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr); struct mbuf *nd6_grab_holdchain(struct llentry *); int nd6_flush_holdchain(struct ifnet *, struct llentry *, struct mbuf *); void nd6_flush_children_holdchain(struct ifnet *, struct llentry *); int nd6_add_ifa_lle(struct in6_ifaddr *); void nd6_rem_ifa_lle(struct in6_ifaddr *, int); int nd6_output_ifp(struct ifnet *, struct ifnet *, struct mbuf *, struct sockaddr_in6 *, struct route *); struct rib_head; struct rib_cmd_info; void nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg); /* nd6_nbr.c */ void nd6_na_input(struct mbuf *, int, int); void nd6_na_output(struct ifnet *, const struct in6_addr *, const struct in6_addr *, u_long, int, struct sockaddr *); void nd6_ns_input(struct mbuf *, int, int); void nd6_ns_output(struct ifnet *, const struct in6_addr *, const struct in6_addr *, const struct in6_addr *, uint8_t *); caddr_t nd6_ifptomac(struct ifnet *); void nd6_dad_init(void); void nd6_dad_start(struct ifaddr *, int); void nd6_dad_stop(struct ifaddr *); /* nd6_rtr.c */ void nd6_rs_input(struct mbuf *, int, int); void nd6_ra_input(struct mbuf *, int, int); void nd6_ifnet_link_event(void *, struct ifnet *, int); struct nd_defrouter *defrouter_lookup(const struct in6_addr *, struct ifnet *); struct nd_defrouter *defrouter_lookup_locked(const struct in6_addr *, struct ifnet *); void defrouter_reset(void); void defrouter_select_fib(int fibnum); void defrouter_rele(struct nd_defrouter *); bool defrouter_remove(struct in6_addr *, struct ifnet *); bool nd6_defrouter_list_empty(void); void nd6_defrouter_flush_all(void); void nd6_defrouter_purge(struct ifnet *); void nd6_defrouter_timer(void); void nd6_defrouter_init(void); int nd6_prelist_add(struct nd_prefixctl *, struct nd_defrouter *, struct nd_prefix **); void nd6_prefix_unlink(struct nd_prefix *, struct nd_prhead *); void nd6_prefix_del(struct nd_prefix *); void nd6_prefix_ref(struct nd_prefix *); void nd6_prefix_rele(struct nd_prefix *); int nd6_prefix_offlink(struct nd_prefix *); void pfxlist_onlink_check(void); struct nd_prefix *nd6_prefix_lookup(struct nd_prefixctl *); void rt6_flush(struct in6_addr *, struct ifnet *); int nd6_setdefaultiface(int); int in6_tmpifadd(const struct in6_ifaddr *, int, int); #endif /* _KERNEL */ #endif /* _NETINET6_ND6_H_ */ diff --git a/sys/netinet6/nd6_rtr.c b/sys/netinet6/nd6_rtr.c index 4502428e1690..9b33d0ea9b24 100644 --- a/sys/netinet6/nd6_rtr.c +++ b/sys/netinet6/nd6_rtr.c @@ -1,2576 +1,2577 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: nd6_rtr.c,v 1.111 2001/04/27 01:37:15 jinmei Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct nd_defrouter *defrtrlist_update(struct nd_defrouter *); static int prelist_update(struct nd_prefixctl *, struct nd_defrouter *, struct mbuf *, int); static int nd6_prefix_onlink(struct nd_prefix *); TAILQ_HEAD(nd6_drhead, nd_defrouter); VNET_DEFINE_STATIC(struct nd6_drhead, nd6_defrouter); #define V_nd6_defrouter VNET(nd6_defrouter) VNET_DECLARE(int, nd6_recalc_reachtm_interval); #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) VNET_DEFINE_STATIC(struct ifnet *, nd6_defifp); VNET_DEFINE(int, nd6_defifindex); #define V_nd6_defifp VNET(nd6_defifp) VNET_DEFINE(int, ip6_use_tempaddr) = 0; VNET_DEFINE(int, ip6_desync_factor); VNET_DEFINE(u_int32_t, ip6_temp_preferred_lifetime) = DEF_TEMP_PREFERRED_LIFETIME; VNET_DEFINE(u_int32_t, ip6_temp_valid_lifetime) = DEF_TEMP_VALID_LIFETIME; VNET_DEFINE(int, ip6_temp_regen_advance) = TEMPADDR_REGEN_ADVANCE; #ifdef EXPERIMENTAL VNET_DEFINE(int, nd6_ignore_ipv6_only_ra) = 1; #endif SYSCTL_DECL(_net_inet6_icmp6); /* RTPREF_MEDIUM has to be 0! */ #define RTPREF_HIGH 1 #define RTPREF_MEDIUM 0 #define RTPREF_LOW (-1) #define RTPREF_RESERVED (-2) #define RTPREF_INVALID (-3) /* internal */ static void defrouter_ref(struct nd_defrouter *dr) { refcount_acquire(&dr->refcnt); } void defrouter_rele(struct nd_defrouter *dr) { if (refcount_release(&dr->refcnt)) free(dr, M_IP6NDP); } /* * Remove a router from the global list and optionally stash it in a * caller-supplied queue. */ static void defrouter_unlink(struct nd_defrouter *dr, struct nd6_drhead *drq) { ND6_WLOCK_ASSERT(); TAILQ_REMOVE(&V_nd6_defrouter, dr, dr_entry); V_nd6_list_genid++; if (drq != NULL) TAILQ_INSERT_TAIL(drq, dr, dr_entry); } /* * Receive Router Solicitation Message - just for routers. * Router solicitation/advertisement is mostly managed by userland program * (rtadvd) so here we have no function like nd6_ra_output(). * * Based on RFC 2461 */ void nd6_rs_input(struct mbuf *m, int off, int icmp6len) { struct ifnet *ifp; struct ip6_hdr *ip6; struct nd_router_solicit *nd_rs; struct in6_addr saddr6; union nd_opts ndopts; char ip6bufs[INET6_ADDRSTRLEN], ip6bufd[INET6_ADDRSTRLEN]; char *lladdr; int lladdrlen; ifp = m->m_pkthdr.rcvif; /* * Accept RS only when V_ip6_forwarding=1 and the interface has * no ND6_IFF_ACCEPT_RTADV. */ if (!V_ip6_forwarding || ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) goto freeit; /* RFC 6980: Nodes MUST silently ignore fragments */ if(m->m_flags & M_FRAGMENTED) goto freeit; /* Sanity checks */ ip6 = mtod(m, struct ip6_hdr *); if (__predict_false(ip6->ip6_hlim != 255)) { ICMP6STAT_INC(icp6s_invlhlim); nd6log((LOG_ERR, "%s: invalid hlim (%d) from %s to %s on %s\n", __func__, ip6->ip6_hlim, ip6_sprintf(ip6bufs, &ip6->ip6_src), ip6_sprintf(ip6bufd, &ip6->ip6_dst), if_name(ifp))); goto bad; } /* * Don't update the neighbor cache, if src = ::. * This indicates that the src has no IP address assigned yet. */ saddr6 = ip6->ip6_src; if (IN6_IS_ADDR_UNSPECIFIED(&saddr6)) goto freeit; if (m->m_len < off + icmp6len) { m = m_pullup(m, off + icmp6len); if (m == NULL) { IP6STAT_INC(ip6s_exthdrtoolong); return; } } ip6 = mtod(m, struct ip6_hdr *); nd_rs = (struct nd_router_solicit *)((caddr_t)ip6 + off); icmp6len -= sizeof(*nd_rs); nd6_option_init(nd_rs + 1, icmp6len, &ndopts); if (nd6_options(&ndopts) < 0) { nd6log((LOG_INFO, "%s: invalid ND option, ignored\n", __func__)); /* nd6_options have incremented stats */ goto freeit; } lladdr = NULL; lladdrlen = 0; if (ndopts.nd_opts_src_lladdr) { lladdr = (char *)(ndopts.nd_opts_src_lladdr + 1); lladdrlen = ndopts.nd_opts_src_lladdr->nd_opt_len << 3; } if (lladdr && ((ifp->if_addrlen + 2 + 7) & ~7) != lladdrlen) { nd6log((LOG_INFO, "%s: lladdrlen mismatch for %s (if %d, RS packet %d)\n", __func__, ip6_sprintf(ip6bufs, &saddr6), ifp->if_addrlen, lladdrlen - 2)); goto bad; } nd6_cache_lladdr(ifp, &saddr6, lladdr, lladdrlen, ND_ROUTER_SOLICIT, 0); freeit: m_freem(m); return; bad: ICMP6STAT_INC(icp6s_badrs); m_freem(m); } #ifdef EXPERIMENTAL /* * An initial update routine for draft-ietf-6man-ipv6only-flag. * We need to iterate over all default routers for the given * interface to see whether they are all advertising the "S" * (IPv6-Only) flag. If they do set, otherwise unset, the * interface flag we later use to filter on. */ static void defrtr_ipv6_only_ifp(struct ifnet *ifp) { struct nd_defrouter *dr; bool ipv6_only, ipv6_only_old; #ifdef INET struct epoch_tracker et; struct ifaddr *ifa; bool has_ipv4_addr; #endif if (V_nd6_ignore_ipv6_only_ra != 0) return; ipv6_only = true; ND6_RLOCK(); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) if (dr->ifp == ifp && (dr->raflags & ND_RA_FLAG_IPV6_ONLY) == 0) ipv6_only = false; ND6_RUNLOCK(); IF_AFDATA_WLOCK(ifp); ipv6_only_old = ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY; IF_AFDATA_WUNLOCK(ifp); /* If nothing changed, we have an early exit. */ if (ipv6_only == ipv6_only_old) return; #ifdef INET /* * Should we want to set the IPV6-ONLY flag, check if the * interface has a non-0/0 and non-link-local IPv4 address * configured on it. If it has we will assume working * IPv4 operations and will clear the interface flag. */ has_ipv4_addr = false; if (ipv6_only) { NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; if (in_canforward( satosin(ifa->ifa_addr)->sin_addr)) { has_ipv4_addr = true; break; } } NET_EPOCH_EXIT(et); } if (ipv6_only && has_ipv4_addr) { log(LOG_NOTICE, "%s rcvd RA w/ IPv6-Only flag set but has IPv4 " "configured, ignoring IPv6-Only flag.\n", ifp->if_xname); ipv6_only = false; } #endif IF_AFDATA_WLOCK(ifp); if (ipv6_only) ND_IFINFO(ifp)->flags |= ND6_IFF_IPV6_ONLY; else ND_IFINFO(ifp)->flags &= ~ND6_IFF_IPV6_ONLY; IF_AFDATA_WUNLOCK(ifp); #ifdef notyet /* Send notification of flag change. */ #endif } static void defrtr_ipv6_only_ipf_down(struct ifnet *ifp) { IF_AFDATA_WLOCK(ifp); ND_IFINFO(ifp)->flags &= ~ND6_IFF_IPV6_ONLY; IF_AFDATA_WUNLOCK(ifp); } #endif /* EXPERIMENTAL */ void nd6_ifnet_link_event(void *arg __unused, struct ifnet *ifp, int linkstate) { /* * XXX-BZ we might want to trigger re-evaluation of our default router * availability. E.g., on link down the default router might be * unreachable but a different interface might still have connectivity. */ #ifdef EXPERIMENTAL if (linkstate == LINK_STATE_DOWN) defrtr_ipv6_only_ipf_down(ifp); #endif } /* * Receive Router Advertisement Message. * * Based on RFC 2461 * TODO: on-link bit on prefix information * TODO: ND_RA_FLAG_{OTHER,MANAGED} processing */ void nd6_ra_input(struct mbuf *m, int off, int icmp6len) { struct ifnet *ifp; struct nd_ifinfo *ndi; struct ip6_hdr *ip6; struct nd_router_advert *nd_ra; struct in6_addr saddr6; struct nd_defrouter *dr; union nd_opts ndopts; char ip6bufs[INET6_ADDRSTRLEN], ip6bufd[INET6_ADDRSTRLEN]; int mcast; /* * We only accept RAs only when the per-interface flag * ND6_IFF_ACCEPT_RTADV is on the receiving interface. */ ifp = m->m_pkthdr.rcvif; ndi = ND_IFINFO(ifp); if (!(ndi->flags & ND6_IFF_ACCEPT_RTADV)) goto freeit; /* RFC 6980: Nodes MUST silently ignore fragments */ if(m->m_flags & M_FRAGMENTED) goto freeit; ip6 = mtod(m, struct ip6_hdr *); if (__predict_false(ip6->ip6_hlim != 255)) { ICMP6STAT_INC(icp6s_invlhlim); nd6log((LOG_ERR, "%s: invalid hlim (%d) from %s to %s on %s\n", __func__, ip6->ip6_hlim, ip6_sprintf(ip6bufs, &ip6->ip6_src), ip6_sprintf(ip6bufd, &ip6->ip6_dst), if_name(ifp))); goto bad; } saddr6 = ip6->ip6_src; if (!IN6_IS_ADDR_LINKLOCAL(&saddr6)) { nd6log((LOG_ERR, "%s: src %s is not link-local\n", __func__, ip6_sprintf(ip6bufs, &saddr6))); goto bad; } if (m->m_len < off + icmp6len) { m = m_pullup(m, off + icmp6len); if (m == NULL) { IP6STAT_INC(ip6s_exthdrtoolong); return; } } ip6 = mtod(m, struct ip6_hdr *); nd_ra = (struct nd_router_advert *)((caddr_t)ip6 + off); icmp6len -= sizeof(*nd_ra); nd6_option_init(nd_ra + 1, icmp6len, &ndopts); if (nd6_options(&ndopts) < 0) { nd6log((LOG_INFO, "%s: invalid ND option, ignored\n", __func__)); /* nd6_options have incremented stats */ goto freeit; } mcast = 0; dr = NULL; { struct nd_defrouter dr0; u_int32_t advreachable = nd_ra->nd_ra_reachable; /* remember if this is a multicasted advertisement */ if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) mcast = 1; bzero(&dr0, sizeof(dr0)); dr0.rtaddr = saddr6; dr0.raflags = nd_ra->nd_ra_flags_reserved; /* * Effectively-disable routes from RA messages when * ND6_IFF_NO_RADR enabled on the receiving interface or * (ip6.forwarding == 1 && ip6.rfc6204w3 != 1). */ if (ndi->flags & ND6_IFF_NO_RADR) dr0.rtlifetime = 0; else if (V_ip6_forwarding && !V_ip6_rfc6204w3) dr0.rtlifetime = 0; else dr0.rtlifetime = ntohs(nd_ra->nd_ra_router_lifetime); dr0.expire = time_uptime + dr0.rtlifetime; dr0.ifp = ifp; /* unspecified or not? (RFC 2461 6.3.4) */ if (advreachable) { advreachable = ntohl(advreachable); if (advreachable <= MAX_REACHABLE_TIME && ndi->basereachable != advreachable) { ndi->basereachable = advreachable; ndi->reachable = ND_COMPUTE_RTIME(ndi->basereachable); ndi->recalctm = V_nd6_recalc_reachtm_interval; /* reset */ } } if (nd_ra->nd_ra_retransmit) ndi->retrans = ntohl(nd_ra->nd_ra_retransmit); if (nd_ra->nd_ra_curhoplimit) { if (ndi->chlim < nd_ra->nd_ra_curhoplimit) ndi->chlim = nd_ra->nd_ra_curhoplimit; else if (ndi->chlim != nd_ra->nd_ra_curhoplimit) { log(LOG_ERR, "RA with a lower CurHopLimit sent from " "%s on %s (current = %d, received = %d). " "Ignored.\n", ip6_sprintf(ip6bufs, &ip6->ip6_src), if_name(ifp), ndi->chlim, nd_ra->nd_ra_curhoplimit); } } dr = defrtrlist_update(&dr0); #ifdef EXPERIMENTAL defrtr_ipv6_only_ifp(ifp); #endif } /* * prefix */ if (ndopts.nd_opts_pi) { struct nd_opt_hdr *pt; struct nd_opt_prefix_info *pi = NULL; struct nd_prefixctl pr; for (pt = (struct nd_opt_hdr *)ndopts.nd_opts_pi; pt <= (struct nd_opt_hdr *)ndopts.nd_opts_pi_end; pt = (struct nd_opt_hdr *)((caddr_t)pt + (pt->nd_opt_len << 3))) { if (pt->nd_opt_type != ND_OPT_PREFIX_INFORMATION) continue; pi = (struct nd_opt_prefix_info *)pt; if (pi->nd_opt_pi_len != 4) { nd6log((LOG_INFO, "%s: invalid option len %d for prefix " "information option, ignored\n", __func__, pi->nd_opt_pi_len)); continue; } if (128 < pi->nd_opt_pi_prefix_len) { nd6log((LOG_INFO, "%s: invalid prefix len %d for prefix " "information option, ignored\n", __func__, pi->nd_opt_pi_prefix_len)); continue; } if (IN6_IS_ADDR_MULTICAST(&pi->nd_opt_pi_prefix) || IN6_IS_ADDR_LINKLOCAL(&pi->nd_opt_pi_prefix)) { nd6log((LOG_INFO, "%s: invalid prefix %s, ignored\n", __func__, ip6_sprintf(ip6bufs, &pi->nd_opt_pi_prefix))); continue; } bzero(&pr, sizeof(pr)); pr.ndpr_prefix.sin6_family = AF_INET6; pr.ndpr_prefix.sin6_len = sizeof(pr.ndpr_prefix); pr.ndpr_prefix.sin6_addr = pi->nd_opt_pi_prefix; pr.ndpr_ifp = (struct ifnet *)m->m_pkthdr.rcvif; pr.ndpr_raf_onlink = (pi->nd_opt_pi_flags_reserved & ND_OPT_PI_FLAG_ONLINK) ? 1 : 0; pr.ndpr_raf_auto = (pi->nd_opt_pi_flags_reserved & ND_OPT_PI_FLAG_AUTO) ? 1 : 0; + pr.ndpr_raf_ra_derived = 1; pr.ndpr_plen = pi->nd_opt_pi_prefix_len; pr.ndpr_vltime = ntohl(pi->nd_opt_pi_valid_time); pr.ndpr_pltime = ntohl(pi->nd_opt_pi_preferred_time); (void)prelist_update(&pr, dr, m, mcast); } } if (dr != NULL) { defrouter_rele(dr); dr = NULL; } /* * MTU */ if (ndopts.nd_opts_mtu && ndopts.nd_opts_mtu->nd_opt_mtu_len == 1) { u_long mtu; u_long maxmtu; mtu = (u_long)ntohl(ndopts.nd_opts_mtu->nd_opt_mtu_mtu); /* lower bound */ if (mtu < IPV6_MMTU) { nd6log((LOG_INFO, "%s: bogus mtu option mtu=%lu sent " "from %s, ignoring\n", __func__, mtu, ip6_sprintf(ip6bufs, &ip6->ip6_src))); goto skip; } /* upper bound */ maxmtu = (ndi->maxmtu && ndi->maxmtu < ifp->if_mtu) ? ndi->maxmtu : ifp->if_mtu; if (mtu <= maxmtu) { int change = (ndi->linkmtu != mtu); ndi->linkmtu = mtu; if (change) { /* in6_maxmtu may change */ in6_setmaxmtu(); rt_updatemtu(ifp); } } else { nd6log((LOG_INFO, "%s: bogus mtu=%lu sent from %s; " "exceeds maxmtu %lu, ignoring\n", __func__, mtu, ip6_sprintf(ip6bufs, &ip6->ip6_src), maxmtu)); } } skip: /* * Source link layer address */ { char *lladdr = NULL; int lladdrlen = 0; if (ndopts.nd_opts_src_lladdr) { lladdr = (char *)(ndopts.nd_opts_src_lladdr + 1); lladdrlen = ndopts.nd_opts_src_lladdr->nd_opt_len << 3; } if (lladdr && ((ifp->if_addrlen + 2 + 7) & ~7) != lladdrlen) { nd6log((LOG_INFO, "%s: lladdrlen mismatch for %s (if %d, RA packet %d)\n", __func__, ip6_sprintf(ip6bufs, &saddr6), ifp->if_addrlen, lladdrlen - 2)); goto bad; } nd6_cache_lladdr(ifp, &saddr6, lladdr, lladdrlen, ND_ROUTER_ADVERT, 0); /* * Installing a link-layer address might change the state of the * router's neighbor cache, which might also affect our on-link * detection of adveritsed prefixes. */ pfxlist_onlink_check(); } freeit: m_freem(m); return; bad: ICMP6STAT_INC(icp6s_badra); m_freem(m); } /* PFXRTR */ static struct nd_pfxrouter * pfxrtr_lookup(struct nd_prefix *pr, struct nd_defrouter *dr) { struct nd_pfxrouter *search; ND6_LOCK_ASSERT(); LIST_FOREACH(search, &pr->ndpr_advrtrs, pfr_entry) { if (search->router == dr) break; } return (search); } static void pfxrtr_add(struct nd_prefix *pr, struct nd_defrouter *dr) { struct nd_pfxrouter *new; bool update; ND6_UNLOCK_ASSERT(); ND6_RLOCK(); if (pfxrtr_lookup(pr, dr) != NULL) { ND6_RUNLOCK(); return; } ND6_RUNLOCK(); new = malloc(sizeof(*new), M_IP6NDP, M_NOWAIT | M_ZERO); if (new == NULL) return; defrouter_ref(dr); new->router = dr; ND6_WLOCK(); if (pfxrtr_lookup(pr, dr) == NULL) { LIST_INSERT_HEAD(&pr->ndpr_advrtrs, new, pfr_entry); update = true; } else { /* We lost a race to add the reference. */ defrouter_rele(dr); free(new, M_IP6NDP); update = false; } ND6_WUNLOCK(); if (update) pfxlist_onlink_check(); } static void pfxrtr_del(struct nd_pfxrouter *pfr) { ND6_WLOCK_ASSERT(); LIST_REMOVE(pfr, pfr_entry); defrouter_rele(pfr->router); free(pfr, M_IP6NDP); } /* Default router list processing sub routines. */ static void defrouter_addreq(struct nd_defrouter *new) { struct sockaddr_in6 def, mask, gate; struct rt_addrinfo info; struct rib_cmd_info rc; unsigned int fibnum; int error; bzero(&def, sizeof(def)); bzero(&mask, sizeof(mask)); bzero(&gate, sizeof(gate)); def.sin6_len = mask.sin6_len = gate.sin6_len = sizeof(struct sockaddr_in6); def.sin6_family = gate.sin6_family = AF_INET6; gate.sin6_addr = new->rtaddr; fibnum = new->ifp->if_fib; bzero((caddr_t)&info, sizeof(info)); info.rti_flags = RTF_GATEWAY; info.rti_info[RTAX_DST] = (struct sockaddr *)&def; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gate; info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&mask; NET_EPOCH_ASSERT(); error = rib_action(fibnum, RTM_ADD, &info, &rc); if (error == 0) { struct nhop_object *nh = nhop_select_func(rc.rc_nh_new, 0); rt_routemsg(RTM_ADD, rc.rc_rt, nh, fibnum); new->installed = 1; } } /* * Remove the default route for a given router. * This is just a subroutine function for defrouter_select_fib(), and * should not be called from anywhere else. */ static void defrouter_delreq(struct nd_defrouter *dr) { struct sockaddr_in6 def, mask, gate; struct rt_addrinfo info; struct rib_cmd_info rc; struct epoch_tracker et; unsigned int fibnum; int error; bzero(&def, sizeof(def)); bzero(&mask, sizeof(mask)); bzero(&gate, sizeof(gate)); def.sin6_len = mask.sin6_len = gate.sin6_len = sizeof(struct sockaddr_in6); def.sin6_family = gate.sin6_family = AF_INET6; gate.sin6_addr = dr->rtaddr; fibnum = dr->ifp->if_fib; bzero((caddr_t)&info, sizeof(info)); info.rti_flags = RTF_GATEWAY; info.rti_info[RTAX_DST] = (struct sockaddr *)&def; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gate; info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&mask; NET_EPOCH_ENTER(et); error = rib_action(fibnum, RTM_DELETE, &info, &rc); if (error == 0) { struct nhop_object *nh = nhop_select_func(rc.rc_nh_old, 0); rt_routemsg(RTM_DELETE, rc.rc_rt, nh, fibnum); } NET_EPOCH_EXIT(et); dr->installed = 0; } static void defrouter_del(struct nd_defrouter *dr) { struct nd_defrouter *deldr = NULL; struct nd_prefix *pr; struct nd_pfxrouter *pfxrtr; ND6_UNLOCK_ASSERT(); /* * Flush all the routing table entries that use the router * as a next hop. */ if (ND_IFINFO(dr->ifp)->flags & ND6_IFF_ACCEPT_RTADV) rt6_flush(&dr->rtaddr, dr->ifp); #ifdef EXPERIMENTAL defrtr_ipv6_only_ifp(dr->ifp); #endif if (dr->installed) { deldr = dr; defrouter_delreq(dr); } /* * Also delete all the pointers to the router in each prefix lists. */ ND6_WLOCK(); LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { if ((pfxrtr = pfxrtr_lookup(pr, dr)) != NULL) pfxrtr_del(pfxrtr); } ND6_WUNLOCK(); pfxlist_onlink_check(); /* * If the router is the primary one, choose a new one. * Note that defrouter_select_fib() will remove the current * gateway from the routing table. */ if (deldr) defrouter_select_fib(deldr->ifp->if_fib); /* * Release the list reference. */ defrouter_rele(dr); } struct nd_defrouter * defrouter_lookup_locked(const struct in6_addr *addr, struct ifnet *ifp) { struct nd_defrouter *dr; ND6_LOCK_ASSERT(); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) if (dr->ifp == ifp && IN6_ARE_ADDR_EQUAL(addr, &dr->rtaddr)) { defrouter_ref(dr); return (dr); } return (NULL); } struct nd_defrouter * defrouter_lookup(const struct in6_addr *addr, struct ifnet *ifp) { struct nd_defrouter *dr; ND6_RLOCK(); dr = defrouter_lookup_locked(addr, ifp); ND6_RUNLOCK(); return (dr); } /* * Remove all default routes from default router list. */ void defrouter_reset(void) { struct nd_defrouter *dr, **dra; int count, i; count = i = 0; /* * We can't delete routes with the ND lock held, so make a copy of the * current default router list and use that when deleting routes. */ ND6_RLOCK(); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) count++; ND6_RUNLOCK(); dra = malloc(count * sizeof(*dra), M_TEMP, M_WAITOK | M_ZERO); ND6_RLOCK(); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) { if (i == count) break; defrouter_ref(dr); dra[i++] = dr; } ND6_RUNLOCK(); for (i = 0; i < count && dra[i] != NULL; i++) { defrouter_delreq(dra[i]); defrouter_rele(dra[i]); } free(dra, M_TEMP); /* * XXX should we also nuke any default routers in the kernel, by * going through them by rtalloc1()? */ } /* * Look up a matching default router list entry and remove it. Returns true if a * matching entry was found, false otherwise. */ bool defrouter_remove(struct in6_addr *addr, struct ifnet *ifp) { struct nd_defrouter *dr; ND6_WLOCK(); dr = defrouter_lookup_locked(addr, ifp); if (dr == NULL) { ND6_WUNLOCK(); return (false); } defrouter_unlink(dr, NULL); ND6_WUNLOCK(); defrouter_del(dr); defrouter_rele(dr); return (true); } /* * for default router selection * regards router-preference field as a 2-bit signed integer */ static int rtpref(struct nd_defrouter *dr) { switch (dr->raflags & ND_RA_FLAG_RTPREF_MASK) { case ND_RA_FLAG_RTPREF_HIGH: return (RTPREF_HIGH); case ND_RA_FLAG_RTPREF_MEDIUM: case ND_RA_FLAG_RTPREF_RSV: return (RTPREF_MEDIUM); case ND_RA_FLAG_RTPREF_LOW: return (RTPREF_LOW); default: /* * This case should never happen. If it did, it would mean a * serious bug of kernel internal. We thus always bark here. * Or, can we even panic? */ log(LOG_ERR, "rtpref: impossible RA flag %x\n", dr->raflags); return (RTPREF_INVALID); } /* NOTREACHED */ } static bool is_dr_reachable(const struct nd_defrouter *dr) { struct llentry *ln = NULL; ln = nd6_lookup(&dr->rtaddr, LLE_SF(AF_INET6, 0), dr->ifp); if (ln == NULL) return (false); bool reachable = ND6_IS_LLINFO_PROBREACH(ln); LLE_RUNLOCK(ln); return reachable; } /* * Default Router Selection according to Section 6.3.6 of RFC 2461 and * draft-ietf-ipngwg-router-selection: * 1) Routers that are reachable or probably reachable should be preferred. * If we have more than one (probably) reachable router, prefer ones * with the highest router preference. * 2) When no routers on the list are known to be reachable or * probably reachable, routers SHOULD be selected in a round-robin * fashion, regardless of router preference values. * 3) If the Default Router List is empty, assume that all * destinations are on-link. * * We assume nd_defrouter is sorted by router preference value. * Since the code below covers both with and without router preference cases, * we do not need to classify the cases by ifdef. * * At this moment, we do not try to install more than one default router, * even when the multipath routing is available, because we're not sure about * the benefits for stub hosts comparing to the risk of making the code * complicated and the possibility of introducing bugs. * * We maintain a single list of routers for multiple FIBs, only considering one * at a time based on the receiving interface's FIB. If @fibnum is RT_ALL_FIBS, * we do the whole thing multiple times. */ void defrouter_select_fib(int fibnum) { struct epoch_tracker et; struct nd_defrouter *dr, *selected_dr, *installed_dr; if (fibnum == RT_ALL_FIBS) { for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { defrouter_select_fib(fibnum); } return; } ND6_RLOCK(); /* * Let's handle easy case (3) first: * If default router list is empty, there's nothing to be done. */ if (TAILQ_EMPTY(&V_nd6_defrouter)) { ND6_RUNLOCK(); return; } /* * Search for a (probably) reachable router from the list. * We just pick up the first reachable one (if any), assuming that * the ordering rule of the list described in defrtrlist_update(). */ selected_dr = installed_dr = NULL; NET_EPOCH_ENTER(et); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) { if (dr->ifp->if_fib != fibnum) continue; if (selected_dr == NULL && is_dr_reachable(dr)) { selected_dr = dr; defrouter_ref(selected_dr); } if (dr->installed) { if (installed_dr == NULL) { installed_dr = dr; defrouter_ref(installed_dr); } else { /* * this should not happen. * warn for diagnosis. */ log(LOG_ERR, "defrouter_select_fib: more than " "one router is installed\n"); } } } /* * If none of the default routers was found to be reachable, * round-robin the list regardless of preference. * Otherwise, if we have an installed router, check if the selected * (reachable) router should really be preferred to the installed one. * We only prefer the new router when the old one is not reachable * or when the new one has a really higher preference value. */ if (selected_dr == NULL) { if (installed_dr == NULL || TAILQ_NEXT(installed_dr, dr_entry) == NULL) dr = TAILQ_FIRST(&V_nd6_defrouter); else dr = TAILQ_NEXT(installed_dr, dr_entry); /* Ensure we select a router for this FIB. */ TAILQ_FOREACH_FROM(dr, &V_nd6_defrouter, dr_entry) { if (dr->ifp->if_fib == fibnum) { selected_dr = dr; defrouter_ref(selected_dr); break; } } } else if (installed_dr != NULL) { if (is_dr_reachable(installed_dr) && rtpref(selected_dr) <= rtpref(installed_dr)) { defrouter_rele(selected_dr); selected_dr = installed_dr; } } ND6_RUNLOCK(); /* * If we selected a router for this FIB and it's different * than the installed one, remove the installed router and * install the selected one in its place. */ if (installed_dr != selected_dr) { if (installed_dr != NULL) { defrouter_delreq(installed_dr); defrouter_rele(installed_dr); } if (selected_dr != NULL) defrouter_addreq(selected_dr); } if (selected_dr != NULL) defrouter_rele(selected_dr); NET_EPOCH_EXIT(et); } static struct nd_defrouter * defrtrlist_update(struct nd_defrouter *new) { struct nd_defrouter *dr, *n; uint64_t genid; int oldpref; bool writelocked; if (new->rtlifetime == 0) { defrouter_remove(&new->rtaddr, new->ifp); return (NULL); } ND6_RLOCK(); writelocked = false; restart: dr = defrouter_lookup_locked(&new->rtaddr, new->ifp); if (dr != NULL) { oldpref = rtpref(dr); /* override */ dr->raflags = new->raflags; /* XXX flag check */ dr->rtlifetime = new->rtlifetime; dr->expire = new->expire; /* * If the preference does not change, there's no need * to sort the entries. Also make sure the selected * router is still installed in the kernel. */ if (dr->installed && rtpref(new) == oldpref) { if (writelocked) ND6_WUNLOCK(); else ND6_RUNLOCK(); return (dr); } } /* * The router needs to be reinserted into the default router * list, so upgrade to a write lock. If that fails and the list * has potentially changed while the lock was dropped, we'll * redo the lookup with the write lock held. */ if (!writelocked) { writelocked = true; if (!ND6_TRY_UPGRADE()) { genid = V_nd6_list_genid; ND6_RUNLOCK(); ND6_WLOCK(); if (genid != V_nd6_list_genid) goto restart; } } if (dr != NULL) { /* * The preferred router may have changed, so relocate this * router. */ TAILQ_REMOVE(&V_nd6_defrouter, dr, dr_entry); n = dr; } else { n = malloc(sizeof(*n), M_IP6NDP, M_NOWAIT | M_ZERO); if (n == NULL) { ND6_WUNLOCK(); return (NULL); } memcpy(n, new, sizeof(*n)); /* Initialize with an extra reference for the caller. */ refcount_init(&n->refcnt, 2); } /* * Insert the new router in the Default Router List; * The Default Router List should be in the descending order * of router-preferece. Routers with the same preference are * sorted in the arriving time order. */ /* insert at the end of the group */ TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) { if (rtpref(n) > rtpref(dr)) break; } if (dr != NULL) TAILQ_INSERT_BEFORE(dr, n, dr_entry); else TAILQ_INSERT_TAIL(&V_nd6_defrouter, n, dr_entry); V_nd6_list_genid++; ND6_WUNLOCK(); defrouter_select_fib(new->ifp->if_fib); return (n); } static int in6_init_prefix_ltimes(struct nd_prefix *ndpr) { if (ndpr->ndpr_pltime == ND6_INFINITE_LIFETIME) ndpr->ndpr_preferred = 0; else ndpr->ndpr_preferred = time_uptime + ndpr->ndpr_pltime; if (ndpr->ndpr_vltime == ND6_INFINITE_LIFETIME) ndpr->ndpr_expire = 0; else ndpr->ndpr_expire = time_uptime + ndpr->ndpr_vltime; return 0; } static void in6_init_address_ltimes(struct nd_prefix *new, struct in6_addrlifetime *lt6) { /* init ia6t_expire */ if (lt6->ia6t_vltime == ND6_INFINITE_LIFETIME) lt6->ia6t_expire = 0; else { lt6->ia6t_expire = time_uptime; lt6->ia6t_expire += lt6->ia6t_vltime; } /* init ia6t_preferred */ if (lt6->ia6t_pltime == ND6_INFINITE_LIFETIME) lt6->ia6t_preferred = 0; else { lt6->ia6t_preferred = time_uptime; lt6->ia6t_preferred += lt6->ia6t_pltime; } } static struct in6_ifaddr * in6_ifadd(struct nd_prefixctl *pr, int mcast) { struct ifnet *ifp = pr->ndpr_ifp; struct ifaddr *ifa; struct in6_aliasreq ifra; struct in6_ifaddr *ia, *ib; int error, plen0; struct in6_addr mask; int prefixlen = pr->ndpr_plen; int updateflags; char ip6buf[INET6_ADDRSTRLEN]; in6_prefixlen2mask(&mask, prefixlen); /* * find a link-local address (will be interface ID). * Is it really mandatory? Theoretically, a global or a site-local * address can be configured without a link-local address, if we * have a unique interface identifier... * * it is not mandatory to have a link-local address, we can generate * interface identifier on the fly. we do this because: * (1) it should be the easiest way to find interface identifier. * (2) RFC2462 5.4 suggesting the use of the same interface identifier * for multiple addresses on a single interface, and possible shortcut * of DAD. we omitted DAD for this reason in the past. * (3) a user can prevent autoconfiguration of global address * by removing link-local address by hand (this is partly because we * don't have other way to control the use of IPv6 on an interface. * this has been our design choice - cf. NRL's "ifconfig auto"). * (4) it is easier to manage when an interface has addresses * with the same interface identifier, than to have multiple addresses * with different interface identifiers. */ ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); /* 0 is OK? */ if (ifa) ib = (struct in6_ifaddr *)ifa; else return NULL; /* prefixlen + ifidlen must be equal to 128 */ plen0 = in6_mask2len(&ib->ia_prefixmask.sin6_addr, NULL); if (prefixlen != plen0) { ifa_free(ifa); nd6log((LOG_INFO, "%s: wrong prefixlen for %s (prefix=%d ifid=%d)\n", __func__, if_name(ifp), prefixlen, 128 - plen0)); return NULL; } /* make ifaddr */ in6_prepare_ifra(&ifra, &pr->ndpr_prefix.sin6_addr, &mask); IN6_MASK_ADDR(&ifra.ifra_addr.sin6_addr, &mask); /* interface ID */ ifra.ifra_addr.sin6_addr.s6_addr32[0] |= (ib->ia_addr.sin6_addr.s6_addr32[0] & ~mask.s6_addr32[0]); ifra.ifra_addr.sin6_addr.s6_addr32[1] |= (ib->ia_addr.sin6_addr.s6_addr32[1] & ~mask.s6_addr32[1]); ifra.ifra_addr.sin6_addr.s6_addr32[2] |= (ib->ia_addr.sin6_addr.s6_addr32[2] & ~mask.s6_addr32[2]); ifra.ifra_addr.sin6_addr.s6_addr32[3] |= (ib->ia_addr.sin6_addr.s6_addr32[3] & ~mask.s6_addr32[3]); ifa_free(ifa); /* lifetimes. */ ifra.ifra_lifetime.ia6t_vltime = pr->ndpr_vltime; ifra.ifra_lifetime.ia6t_pltime = pr->ndpr_pltime; /* XXX: scope zone ID? */ ifra.ifra_flags |= IN6_IFF_AUTOCONF; /* obey autoconf */ /* * Make sure that we do not have this address already. This should * usually not happen, but we can still see this case, e.g., if we * have manually configured the exact address to be configured. */ ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp, &ifra.ifra_addr.sin6_addr); if (ifa != NULL) { ifa_free(ifa); /* this should be rare enough to make an explicit log */ log(LOG_INFO, "in6_ifadd: %s is already configured\n", ip6_sprintf(ip6buf, &ifra.ifra_addr.sin6_addr)); return (NULL); } /* * Allocate ifaddr structure, link into chain, etc. * If we are going to create a new address upon receiving a multicasted * RA, we need to impose a random delay before starting DAD. * [draft-ietf-ipv6-rfc2462bis-02.txt, Section 5.4.2] */ updateflags = 0; if (mcast) updateflags |= IN6_IFAUPDATE_DADDELAY; if ((error = in6_update_ifa(ifp, &ifra, NULL, updateflags)) != 0) { nd6log((LOG_ERR, "%s: failed to make ifaddr %s on %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &ifra.ifra_addr.sin6_addr), if_name(ifp), error)); return (NULL); /* ifaddr must not have been allocated. */ } ia = in6ifa_ifpwithaddr(ifp, &ifra.ifra_addr.sin6_addr); /* * XXXRW: Assumption of non-NULLness here might not be true with * fine-grained locking -- should we validate it? Or just return * earlier ifa rather than looking it up again? */ return (ia); /* this is always non-NULL and referenced. */ } static struct nd_prefix * nd6_prefix_lookup_locked(struct nd_prefixctl *key) { struct nd_prefix *search; ND6_LOCK_ASSERT(); LIST_FOREACH(search, &V_nd_prefix, ndpr_entry) { if (key->ndpr_ifp == search->ndpr_ifp && key->ndpr_plen == search->ndpr_plen && in6_are_prefix_equal(&key->ndpr_prefix.sin6_addr, &search->ndpr_prefix.sin6_addr, key->ndpr_plen)) { nd6_prefix_ref(search); break; } } return (search); } struct nd_prefix * nd6_prefix_lookup(struct nd_prefixctl *key) { struct nd_prefix *search; ND6_RLOCK(); search = nd6_prefix_lookup_locked(key); ND6_RUNLOCK(); return (search); } void nd6_prefix_ref(struct nd_prefix *pr) { refcount_acquire(&pr->ndpr_refcnt); } void nd6_prefix_rele(struct nd_prefix *pr) { if (refcount_release(&pr->ndpr_refcnt)) { KASSERT(LIST_EMPTY(&pr->ndpr_advrtrs), ("prefix %p has advertising routers", pr)); free(pr, M_IP6NDP); } } int nd6_prelist_add(struct nd_prefixctl *pr, struct nd_defrouter *dr, struct nd_prefix **newp) { struct nd_prefix *new; char ip6buf[INET6_ADDRSTRLEN]; int error; new = malloc(sizeof(*new), M_IP6NDP, M_NOWAIT | M_ZERO); if (new == NULL) return (ENOMEM); refcount_init(&new->ndpr_refcnt, newp != NULL ? 2 : 1); new->ndpr_ifp = pr->ndpr_ifp; new->ndpr_prefix = pr->ndpr_prefix; new->ndpr_plen = pr->ndpr_plen; new->ndpr_vltime = pr->ndpr_vltime; new->ndpr_pltime = pr->ndpr_pltime; new->ndpr_flags = pr->ndpr_flags; if ((error = in6_init_prefix_ltimes(new)) != 0) { free(new, M_IP6NDP); return (error); } new->ndpr_lastupdate = time_uptime; /* initialization */ LIST_INIT(&new->ndpr_advrtrs); in6_prefixlen2mask(&new->ndpr_mask, new->ndpr_plen); /* make prefix in the canonical form */ IN6_MASK_ADDR(&new->ndpr_prefix.sin6_addr, &new->ndpr_mask); ND6_WLOCK(); LIST_INSERT_HEAD(&V_nd_prefix, new, ndpr_entry); V_nd6_list_genid++; ND6_WUNLOCK(); /* ND_OPT_PI_FLAG_ONLINK processing */ if (new->ndpr_raf_onlink) { struct epoch_tracker et; ND6_ONLINK_LOCK(); NET_EPOCH_ENTER(et); if ((error = nd6_prefix_onlink(new)) != 0) { nd6log((LOG_ERR, "%s: failed to make the prefix %s/%d " "on-link on %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, if_name(pr->ndpr_ifp), error)); /* proceed anyway. XXX: is it correct? */ } NET_EPOCH_EXIT(et); ND6_ONLINK_UNLOCK(); } if (dr != NULL) pfxrtr_add(new, dr); if (newp != NULL) *newp = new; return (0); } /* * Remove a prefix from the prefix list and optionally stash it in a * caller-provided list. * * The ND6 lock must be held. */ void nd6_prefix_unlink(struct nd_prefix *pr, struct nd_prhead *list) { ND6_WLOCK_ASSERT(); LIST_REMOVE(pr, ndpr_entry); V_nd6_list_genid++; if (list != NULL) LIST_INSERT_HEAD(list, pr, ndpr_entry); } /* * Free an unlinked prefix, first marking it off-link if necessary. */ void nd6_prefix_del(struct nd_prefix *pr) { struct nd_pfxrouter *pfr, *next; int e; char ip6buf[INET6_ADDRSTRLEN]; KASSERT(pr->ndpr_addrcnt == 0, ("prefix %p has referencing addresses", pr)); ND6_UNLOCK_ASSERT(); /* * Though these flags are now meaningless, we'd rather keep the value * of pr->ndpr_raf_onlink and pr->ndpr_raf_auto not to confuse users * when executing "ndp -p". */ if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { ND6_ONLINK_LOCK(); if ((e = nd6_prefix_offlink(pr)) != 0) { nd6log((LOG_ERR, "%s: failed to make the prefix %s/%d offlink on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, if_name(pr->ndpr_ifp), e)); /* what should we do? */ } ND6_ONLINK_UNLOCK(); } /* Release references to routers that have advertised this prefix. */ ND6_WLOCK(); LIST_FOREACH_SAFE(pfr, &pr->ndpr_advrtrs, pfr_entry, next) pfxrtr_del(pfr); ND6_WUNLOCK(); nd6_prefix_rele(pr); pfxlist_onlink_check(); } static int prelist_update(struct nd_prefixctl *new, struct nd_defrouter *dr, struct mbuf *m, int mcast) { struct in6_ifaddr *ia6 = NULL, *ia6_match = NULL; struct ifaddr *ifa; struct ifnet *ifp = new->ndpr_ifp; struct nd_prefix *pr; int error = 0; int auth; struct in6_addrlifetime lt6_tmp; char ip6buf[INET6_ADDRSTRLEN]; NET_EPOCH_ASSERT(); auth = 0; if (m) { /* * Authenticity for NA consists authentication for * both IP header and IP datagrams, doesn't it ? */ #if defined(M_AUTHIPHDR) && defined(M_AUTHIPDGM) auth = ((m->m_flags & M_AUTHIPHDR) && (m->m_flags & M_AUTHIPDGM)); #endif } if ((pr = nd6_prefix_lookup(new)) != NULL) { /* * nd6_prefix_lookup() ensures that pr and new have the same * prefix on a same interface. */ /* * Update prefix information. Note that the on-link (L) bit * and the autonomous (A) bit should NOT be changed from 1 * to 0. */ if (new->ndpr_raf_onlink == 1) pr->ndpr_raf_onlink = 1; if (new->ndpr_raf_auto == 1) pr->ndpr_raf_auto = 1; if (new->ndpr_raf_onlink) { pr->ndpr_vltime = new->ndpr_vltime; pr->ndpr_pltime = new->ndpr_pltime; (void)in6_init_prefix_ltimes(pr); /* XXX error case? */ pr->ndpr_lastupdate = time_uptime; } if (new->ndpr_raf_onlink && (pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { ND6_ONLINK_LOCK(); if ((error = nd6_prefix_onlink(pr)) != 0) { nd6log((LOG_ERR, "%s: failed to make the prefix %s/%d " "on-link on %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, if_name(pr->ndpr_ifp), error)); /* proceed anyway. XXX: is it correct? */ } ND6_ONLINK_UNLOCK(); } if (dr != NULL) pfxrtr_add(pr, dr); } else { if (new->ndpr_vltime == 0) goto end; if (new->ndpr_raf_onlink == 0 && new->ndpr_raf_auto == 0) goto end; error = nd6_prelist_add(new, dr, &pr); if (error != 0) { nd6log((LOG_NOTICE, "%s: nd6_prelist_add() failed for " "the prefix %s/%d on %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &new->ndpr_prefix.sin6_addr), new->ndpr_plen, if_name(new->ndpr_ifp), error)); goto end; /* we should just give up in this case. */ } /* * XXX: from the ND point of view, we can ignore a prefix * with the on-link bit being zero. However, we need a * prefix structure for references from autoconfigured * addresses. Thus, we explicitly make sure that the prefix * itself expires now. */ if (pr->ndpr_raf_onlink == 0) { pr->ndpr_vltime = 0; pr->ndpr_pltime = 0; in6_init_prefix_ltimes(pr); } } /* * Address autoconfiguration based on Section 5.5.3 of RFC 2462. * Note that pr must be non NULL at this point. */ /* 5.5.3 (a). Ignore the prefix without the A bit set. */ if (!new->ndpr_raf_auto) goto end; /* * 5.5.3 (b). the link-local prefix should have been ignored in * nd6_ra_input. */ /* 5.5.3 (c). Consistency check on lifetimes: pltime <= vltime. */ if (new->ndpr_pltime > new->ndpr_vltime) { error = EINVAL; /* XXX: won't be used */ goto end; } /* * 5.5.3 (d). If the prefix advertised is not equal to the prefix of * an address configured by stateless autoconfiguration already in the * list of addresses associated with the interface, and the Valid * Lifetime is not 0, form an address. We first check if we have * a matching prefix. * Note: we apply a clarification in rfc2462bis-02 here. We only * consider autoconfigured addresses while RFC2462 simply said * "address". */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in6_ifaddr *ifa6; u_int32_t remaininglifetime; if (ifa->ifa_addr->sa_family != AF_INET6) continue; ifa6 = (struct in6_ifaddr *)ifa; /* * We only consider autoconfigured addresses as per rfc2462bis. */ if (!(ifa6->ia6_flags & IN6_IFF_AUTOCONF)) continue; /* * Spec is not clear here, but I believe we should concentrate * on unicast (i.e. not anycast) addresses. * XXX: other ia6_flags? detached or duplicated? */ if ((ifa6->ia6_flags & IN6_IFF_ANYCAST) != 0) continue; /* * Ignore the address if it is not associated with a prefix * or is associated with a prefix that is different from this * one. (pr is never NULL here) */ if (ifa6->ia6_ndpr != pr) continue; if (ia6_match == NULL) /* remember the first one */ ia6_match = ifa6; /* * An already autoconfigured address matched. Now that we * are sure there is at least one matched address, we can * proceed to 5.5.3. (e): update the lifetimes according to the * "two hours" rule and the privacy extension. * We apply some clarifications in rfc2462bis: * - use remaininglifetime instead of storedlifetime as a * variable name * - remove the dead code in the "two-hour" rule */ #define TWOHOUR (120*60) lt6_tmp = ifa6->ia6_lifetime; if (lt6_tmp.ia6t_vltime == ND6_INFINITE_LIFETIME) remaininglifetime = ND6_INFINITE_LIFETIME; else if (time_uptime - ifa6->ia6_updatetime > lt6_tmp.ia6t_vltime) { /* * The case of "invalid" address. We should usually * not see this case. */ remaininglifetime = 0; } else remaininglifetime = lt6_tmp.ia6t_vltime - (time_uptime - ifa6->ia6_updatetime); /* when not updating, keep the current stored lifetime. */ lt6_tmp.ia6t_vltime = remaininglifetime; if (TWOHOUR < new->ndpr_vltime || remaininglifetime < new->ndpr_vltime) { lt6_tmp.ia6t_vltime = new->ndpr_vltime; } else if (remaininglifetime <= TWOHOUR) { if (auth) { lt6_tmp.ia6t_vltime = new->ndpr_vltime; } } else { /* * new->ndpr_vltime <= TWOHOUR && * TWOHOUR < remaininglifetime */ lt6_tmp.ia6t_vltime = TWOHOUR; } /* The 2 hour rule is not imposed for preferred lifetime. */ lt6_tmp.ia6t_pltime = new->ndpr_pltime; in6_init_address_ltimes(pr, <6_tmp); /* * We need to treat lifetimes for temporary addresses * differently, according to * draft-ietf-ipv6-privacy-addrs-v2-01.txt 3.3 (1); * we only update the lifetimes when they are in the maximum * intervals. */ if ((ifa6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { u_int32_t maxvltime, maxpltime; if (V_ip6_temp_valid_lifetime > (u_int32_t)((time_uptime - ifa6->ia6_createtime) + V_ip6_desync_factor)) { maxvltime = V_ip6_temp_valid_lifetime - (time_uptime - ifa6->ia6_createtime) - V_ip6_desync_factor; } else maxvltime = 0; if (V_ip6_temp_preferred_lifetime > (u_int32_t)((time_uptime - ifa6->ia6_createtime) + V_ip6_desync_factor)) { maxpltime = V_ip6_temp_preferred_lifetime - (time_uptime - ifa6->ia6_createtime) - V_ip6_desync_factor; } else maxpltime = 0; if (lt6_tmp.ia6t_vltime == ND6_INFINITE_LIFETIME || lt6_tmp.ia6t_vltime > maxvltime) { lt6_tmp.ia6t_vltime = maxvltime; } if (lt6_tmp.ia6t_pltime == ND6_INFINITE_LIFETIME || lt6_tmp.ia6t_pltime > maxpltime) { lt6_tmp.ia6t_pltime = maxpltime; } } ifa6->ia6_lifetime = lt6_tmp; ifa6->ia6_updatetime = time_uptime; } if (ia6_match == NULL && new->ndpr_vltime) { int ifidlen; /* * 5.5.3 (d) (continued) * No address matched and the valid lifetime is non-zero. * Create a new address. */ /* * Prefix Length check: * If the sum of the prefix length and interface identifier * length does not equal 128 bits, the Prefix Information * option MUST be ignored. The length of the interface * identifier is defined in a separate link-type specific * document. */ ifidlen = in6_if2idlen(ifp); if (ifidlen < 0) { /* this should not happen, so we always log it. */ log(LOG_ERR, "prelist_update: IFID undefined (%s)\n", if_name(ifp)); goto end; } if (ifidlen + pr->ndpr_plen != 128) { nd6log((LOG_INFO, "%s: invalid prefixlen %d for %s, ignored\n", __func__, pr->ndpr_plen, if_name(ifp))); goto end; } if ((ia6 = in6_ifadd(new, mcast)) != NULL) { /* * note that we should use pr (not new) for reference. */ pr->ndpr_addrcnt++; ia6->ia6_ndpr = pr; /* * RFC 3041 3.3 (2). * When a new public address is created as described * in RFC2462, also create a new temporary address. * * RFC 3041 3.5. * When an interface connects to a new link, a new * randomized interface identifier should be generated * immediately together with a new set of temporary * addresses. Thus, we specifiy 1 as the 2nd arg of * in6_tmpifadd(). */ if (V_ip6_use_tempaddr) { int e; if ((e = in6_tmpifadd(ia6, 1, 1)) != 0) { nd6log((LOG_NOTICE, "%s: failed to " "create a temporary address " "(errno=%d)\n", __func__, e)); } } ifa_free(&ia6->ia_ifa); /* * A newly added address might affect the status * of other addresses, so we check and update it. * XXX: what if address duplication happens? */ pfxlist_onlink_check(); } else { /* just set an error. do not bark here. */ error = EADDRNOTAVAIL; /* XXX: might be unused. */ } } end: if (pr != NULL) nd6_prefix_rele(pr); return (error); } /* * A supplement function used in the on-link detection below; * detect if a given prefix has a (probably) reachable advertising router. * XXX: lengthy function name... */ static struct nd_pfxrouter * find_pfxlist_reachable_router(struct nd_prefix *pr) { struct epoch_tracker et; struct nd_pfxrouter *pfxrtr; ND6_LOCK_ASSERT(); NET_EPOCH_ENTER(et); LIST_FOREACH(pfxrtr, &pr->ndpr_advrtrs, pfr_entry) { if (is_dr_reachable(pfxrtr->router)) break; } NET_EPOCH_EXIT(et); return (pfxrtr); } /* * Check if each prefix in the prefix list has at least one available router * that advertised the prefix (a router is "available" if its neighbor cache * entry is reachable or probably reachable). * If the check fails, the prefix may be off-link, because, for example, * we have moved from the network but the lifetime of the prefix has not * expired yet. So we should not use the prefix if there is another prefix * that has an available router. * But, if there is no prefix that has an available router, we still regard * all the prefixes as on-link. This is because we can't tell if all the * routers are simply dead or if we really moved from the network and there * is no router around us. */ void pfxlist_onlink_check(void) { struct nd_prefix *pr; struct in6_ifaddr *ifa; struct nd_defrouter *dr; struct nd_pfxrouter *pfxrtr = NULL; struct rm_priotracker in6_ifa_tracker; uint64_t genid; uint32_t flags; ND6_ONLINK_LOCK(); ND6_RLOCK(); /* * Check if there is a prefix that has a reachable advertising * router. */ LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { if (pr->ndpr_raf_onlink && find_pfxlist_reachable_router(pr)) break; } /* * If we have no such prefix, check whether we still have a router * that does not advertise any prefixes. */ if (pr == NULL) { TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) { struct nd_prefix *pr0; LIST_FOREACH(pr0, &V_nd_prefix, ndpr_entry) { if ((pfxrtr = pfxrtr_lookup(pr0, dr)) != NULL) break; } if (pfxrtr != NULL) break; } } if (pr != NULL || (!TAILQ_EMPTY(&V_nd6_defrouter) && pfxrtr == NULL)) { /* * There is at least one prefix that has a reachable router, * or at least a router which probably does not advertise * any prefixes. The latter would be the case when we move * to a new link where we have a router that does not provide * prefixes and we configure an address by hand. * Detach prefixes which have no reachable advertising * router, and attach other prefixes. */ LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { /* XXX: a link-local prefix should never be detached */ if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr) || pr->ndpr_raf_onlink == 0 || pr->ndpr_raf_auto == 0) continue; if ((pr->ndpr_stateflags & NDPRF_DETACHED) == 0 && find_pfxlist_reachable_router(pr) == NULL) pr->ndpr_stateflags |= NDPRF_DETACHED; else if ((pr->ndpr_stateflags & NDPRF_DETACHED) != 0 && find_pfxlist_reachable_router(pr) != NULL) pr->ndpr_stateflags &= ~NDPRF_DETACHED; } } else { /* there is no prefix that has a reachable router */ LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr) || pr->ndpr_raf_onlink == 0 || pr->ndpr_raf_auto == 0) continue; pr->ndpr_stateflags &= ~NDPRF_DETACHED; } } /* * Remove each interface route associated with a (just) detached * prefix, and reinstall the interface route for a (just) attached * prefix. Note that all attempt of reinstallation does not * necessarily success, when a same prefix is shared among multiple * interfaces. Such cases will be handled in nd6_prefix_onlink, * so we don't have to care about them. */ restart: LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { char ip6buf[INET6_ADDRSTRLEN]; int e; if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr) || pr->ndpr_raf_onlink == 0 || pr->ndpr_raf_auto == 0) continue; flags = pr->ndpr_stateflags & (NDPRF_DETACHED | NDPRF_ONLINK); if (flags == 0 || flags == (NDPRF_DETACHED | NDPRF_ONLINK)) { genid = V_nd6_list_genid; ND6_RUNLOCK(); if ((flags & NDPRF_ONLINK) != 0 && (e = nd6_prefix_offlink(pr)) != 0) { nd6log((LOG_ERR, "%s: failed to make %s/%d offlink " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, e)); } else if ((flags & NDPRF_ONLINK) == 0 && (e = nd6_prefix_onlink(pr)) != 0) { nd6log((LOG_ERR, "%s: failed to make %s/%d onlink " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, e)); } ND6_RLOCK(); if (genid != V_nd6_list_genid) goto restart; } } /* * Changes on the prefix status might affect address status as well. * Make sure that all addresses derived from an attached prefix are * attached, and that all addresses derived from a detached prefix are * detached. Note, however, that a manually configured address should * always be attached. * The precise detection logic is same as the one for prefixes. */ IN6_IFADDR_RLOCK(&in6_ifa_tracker); CK_STAILQ_FOREACH(ifa, &V_in6_ifaddrhead, ia_link) { if (!(ifa->ia6_flags & IN6_IFF_AUTOCONF)) continue; if (ifa->ia6_ndpr == NULL) { /* * This can happen when we first configure the address * (i.e. the address exists, but the prefix does not). * XXX: complicated relationships... */ continue; } if (find_pfxlist_reachable_router(ifa->ia6_ndpr)) break; } if (ifa) { CK_STAILQ_FOREACH(ifa, &V_in6_ifaddrhead, ia_link) { if ((ifa->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; if (ifa->ia6_ndpr == NULL) /* XXX: see above. */ continue; if (find_pfxlist_reachable_router(ifa->ia6_ndpr)) { if (ifa->ia6_flags & IN6_IFF_DETACHED) { ifa->ia6_flags &= ~IN6_IFF_DETACHED; ifa->ia6_flags |= IN6_IFF_TENTATIVE; nd6_dad_start((struct ifaddr *)ifa, 0); } } else { ifa->ia6_flags |= IN6_IFF_DETACHED; } } } else { CK_STAILQ_FOREACH(ifa, &V_in6_ifaddrhead, ia_link) { if ((ifa->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; if (ifa->ia6_flags & IN6_IFF_DETACHED) { ifa->ia6_flags &= ~IN6_IFF_DETACHED; ifa->ia6_flags |= IN6_IFF_TENTATIVE; /* Do we need a delay in this case? */ nd6_dad_start((struct ifaddr *)ifa, 0); } } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); ND6_RUNLOCK(); ND6_ONLINK_UNLOCK(); } /* * Add or remove interface route specified by @dst, @netmask and @ifp. * ifa can be NULL. * Returns 0 on success */ static int nd6_prefix_rtrequest(uint32_t fibnum, int cmd, struct sockaddr_in6 *dst, struct sockaddr_in6 *netmask, struct ifnet *ifp, struct ifaddr *ifa) { struct epoch_tracker et; int error; /* Prepare gateway */ struct sockaddr_dl_short sdl = { .sdl_family = AF_LINK, .sdl_len = sizeof(struct sockaddr_dl_short), .sdl_type = ifp->if_type, .sdl_index = ifp->if_index, }; struct rt_addrinfo info = { .rti_ifa = ifa, .rti_ifp = ifp, .rti_flags = RTF_PINNED | ((netmask != NULL) ? 0 : RTF_HOST), .rti_info = { [RTAX_DST] = (struct sockaddr *)dst, [RTAX_NETMASK] = (struct sockaddr *)netmask, [RTAX_GATEWAY] = (struct sockaddr *)&sdl, }, }; /* Don't set additional per-gw filters on removal */ NET_EPOCH_ENTER(et); error = rib_handle_ifaddr_info(fibnum, cmd, &info); NET_EPOCH_EXIT(et); return (error); } static int nd6_prefix_onlink_rtrequest(struct nd_prefix *pr, struct ifaddr *ifa) { int error; struct sockaddr_in6 mask6 = { .sin6_family = AF_INET6, .sin6_len = sizeof(struct sockaddr_in6), .sin6_addr = pr->ndpr_mask, }; struct sockaddr_in6 *pmask6 = (pr->ndpr_plen != 128) ? &mask6 : NULL; error = nd6_prefix_rtrequest(pr->ndpr_ifp->if_fib, RTM_ADD, &pr->ndpr_prefix, pmask6, pr->ndpr_ifp, ifa); if (error == 0) pr->ndpr_stateflags |= NDPRF_ONLINK; return (error); } static int nd6_prefix_onlink(struct nd_prefix *pr) { struct epoch_tracker et; struct ifaddr *ifa; struct ifnet *ifp = pr->ndpr_ifp; struct nd_prefix *opr; char ip6buf[INET6_ADDRSTRLEN]; int error; ND6_ONLINK_LOCK_ASSERT(); ND6_UNLOCK_ASSERT(); if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) return (EEXIST); /* * Add the interface route associated with the prefix. Before * installing the route, check if there's the same prefix on another * interface, and the prefix has already installed the interface route. * Although such a configuration is expected to be rare, we explicitly * allow it. */ ND6_RLOCK(); LIST_FOREACH(opr, &V_nd_prefix, ndpr_entry) { if (opr == pr) continue; if ((opr->ndpr_stateflags & NDPRF_ONLINK) == 0) continue; if (!V_rt_add_addr_allfibs && opr->ndpr_ifp->if_fib != pr->ndpr_ifp->if_fib) continue; if (opr->ndpr_plen == pr->ndpr_plen && in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr, &opr->ndpr_prefix.sin6_addr, pr->ndpr_plen)) { ND6_RUNLOCK(); return (0); } } ND6_RUNLOCK(); /* * We prefer link-local addresses as the associated interface address. */ /* search for a link-local addr */ NET_EPOCH_ENTER(et); ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY | IN6_IFF_ANYCAST); if (ifa == NULL) { /* XXX: freebsd does not have ifa_ifwithaf */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET6) { ifa_ref(ifa); break; } } /* should we care about ia6_flags? */ } if (ifa == NULL) { /* * This can still happen, when, for example, we receive an RA * containing a prefix with the L bit set and the A bit clear, * after removing all IPv6 addresses on the receiving * interface. This should, of course, be rare though. */ nd6log((LOG_NOTICE, "%s: failed to find any ifaddr to add route for a " "prefix(%s/%d) on %s\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, if_name(ifp))); error = 0; } else { error = nd6_prefix_onlink_rtrequest(pr, ifa); ifa_free(ifa); } NET_EPOCH_EXIT(et); return (error); } int nd6_prefix_offlink(struct nd_prefix *pr) { int error = 0; struct ifnet *ifp = pr->ndpr_ifp; struct nd_prefix *opr; char ip6buf[INET6_ADDRSTRLEN]; uint64_t genid; int a_failure; ND6_ONLINK_LOCK_ASSERT(); ND6_UNLOCK_ASSERT(); if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) return (EEXIST); struct sockaddr_in6 mask6 = { .sin6_family = AF_INET6, .sin6_len = sizeof(struct sockaddr_in6), .sin6_addr = pr->ndpr_mask, }; struct sockaddr_in6 *pmask6 = (pr->ndpr_plen != 128) ? &mask6 : NULL; error = nd6_prefix_rtrequest(ifp->if_fib, RTM_DELETE, &pr->ndpr_prefix, pmask6, ifp, NULL); a_failure = 1; if (error == 0) { pr->ndpr_stateflags &= ~NDPRF_ONLINK; /* * There might be the same prefix on another interface, * the prefix which could not be on-link just because we have * the interface route (see comments in nd6_prefix_onlink). * If there's one, try to make the prefix on-link on the * interface. */ ND6_RLOCK(); restart: LIST_FOREACH(opr, &V_nd_prefix, ndpr_entry) { /* * KAME specific: detached prefixes should not be * on-link. */ if (opr == pr || (opr->ndpr_stateflags & (NDPRF_ONLINK | NDPRF_DETACHED)) != 0) continue; if (opr->ndpr_plen == pr->ndpr_plen && in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr, &opr->ndpr_prefix.sin6_addr, pr->ndpr_plen)) { int e; genid = V_nd6_list_genid; ND6_RUNLOCK(); if ((e = nd6_prefix_onlink(opr)) != 0) { nd6log((LOG_ERR, "%s: failed to recover a prefix " "%s/%d from %s to %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &opr->ndpr_prefix.sin6_addr), opr->ndpr_plen, if_name(ifp), if_name(opr->ndpr_ifp), e)); } else a_failure = 0; ND6_RLOCK(); if (genid != V_nd6_list_genid) goto restart; } } ND6_RUNLOCK(); } else { /* XXX: can we still set the NDPRF_ONLINK flag? */ nd6log((LOG_ERR, "%s: failed to delete route: %s/%d on %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, if_name(ifp), error)); } if (a_failure) lltable_prefix_free(AF_INET6, (struct sockaddr *)&pr->ndpr_prefix, (struct sockaddr *)&mask6, LLE_STATIC); return (error); } /* * ia0 - corresponding public address */ int in6_tmpifadd(const struct in6_ifaddr *ia0, int forcegen, int delay) { struct ifnet *ifp = ia0->ia_ifa.ifa_ifp; struct in6_ifaddr *newia; struct in6_aliasreq ifra; int error; int trylimit = 3; /* XXX: adhoc value */ int updateflags; u_int32_t randid[2]; time_t vltime0, pltime0; in6_prepare_ifra(&ifra, &ia0->ia_addr.sin6_addr, &ia0->ia_prefixmask.sin6_addr); ifra.ifra_addr = ia0->ia_addr; /* XXX: do we need this ? */ /* clear the old IFID */ IN6_MASK_ADDR(&ifra.ifra_addr.sin6_addr, &ifra.ifra_prefixmask.sin6_addr); again: if (in6_get_tmpifid(ifp, (u_int8_t *)randid, (const u_int8_t *)&ia0->ia_addr.sin6_addr.s6_addr[8], forcegen)) { nd6log((LOG_NOTICE, "%s: failed to find a good random IFID\n", __func__)); return (EINVAL); } ifra.ifra_addr.sin6_addr.s6_addr32[2] |= (randid[0] & ~(ifra.ifra_prefixmask.sin6_addr.s6_addr32[2])); ifra.ifra_addr.sin6_addr.s6_addr32[3] |= (randid[1] & ~(ifra.ifra_prefixmask.sin6_addr.s6_addr32[3])); /* * in6_get_tmpifid() quite likely provided a unique interface ID. * However, we may still have a chance to see collision, because * there may be a time lag between generation of the ID and generation * of the address. So, we'll do one more sanity check. */ if (in6_localip(&ifra.ifra_addr.sin6_addr) != 0) { if (trylimit-- > 0) { forcegen = 1; goto again; } /* Give up. Something strange should have happened. */ nd6log((LOG_NOTICE, "%s: failed to find a unique random IFID\n", __func__)); return (EEXIST); } /* * The Valid Lifetime is the lower of the Valid Lifetime of the * public address or TEMP_VALID_LIFETIME. * The Preferred Lifetime is the lower of the Preferred Lifetime * of the public address or TEMP_PREFERRED_LIFETIME - * DESYNC_FACTOR. */ if (ia0->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { vltime0 = IFA6_IS_INVALID(ia0) ? 0 : (ia0->ia6_lifetime.ia6t_vltime - (time_uptime - ia0->ia6_updatetime)); if (vltime0 > V_ip6_temp_valid_lifetime) vltime0 = V_ip6_temp_valid_lifetime; } else vltime0 = V_ip6_temp_valid_lifetime; if (ia0->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { pltime0 = IFA6_IS_DEPRECATED(ia0) ? 0 : (ia0->ia6_lifetime.ia6t_pltime - (time_uptime - ia0->ia6_updatetime)); if (pltime0 > V_ip6_temp_preferred_lifetime - V_ip6_desync_factor){ pltime0 = V_ip6_temp_preferred_lifetime - V_ip6_desync_factor; } } else pltime0 = V_ip6_temp_preferred_lifetime - V_ip6_desync_factor; ifra.ifra_lifetime.ia6t_vltime = vltime0; ifra.ifra_lifetime.ia6t_pltime = pltime0; /* * A temporary address is created only if this calculated Preferred * Lifetime is greater than REGEN_ADVANCE time units. */ if (ifra.ifra_lifetime.ia6t_pltime <= V_ip6_temp_regen_advance) return (0); /* XXX: scope zone ID? */ ifra.ifra_flags |= (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY); /* allocate ifaddr structure, link into chain, etc. */ updateflags = 0; if (delay) updateflags |= IN6_IFAUPDATE_DADDELAY; if ((error = in6_update_ifa(ifp, &ifra, NULL, updateflags)) != 0) return (error); newia = in6ifa_ifpwithaddr(ifp, &ifra.ifra_addr.sin6_addr); if (newia == NULL) { /* XXX: can it happen? */ nd6log((LOG_ERR, "%s: ifa update succeeded, but we got no ifaddr\n", __func__)); return (EINVAL); /* XXX */ } newia->ia6_ndpr = ia0->ia6_ndpr; newia->ia6_ndpr->ndpr_addrcnt++; ifa_free(&newia->ia_ifa); /* * A newly added address might affect the status of other addresses. * XXX: when the temporary address is generated with a new public * address, the onlink check is redundant. However, it would be safe * to do the check explicitly everywhere a new address is generated, * and, in fact, we surely need the check when we create a new * temporary address due to deprecation of an old temporary address. */ pfxlist_onlink_check(); return (0); } static int rt6_deleteroute(const struct rtentry *rt, const struct nhop_object *nh, void *arg) { struct in6_addr *gate = (struct in6_addr *)arg; int nh_rt_flags; if (nh->gw_sa.sa_family != AF_INET6) return (0); if (!IN6_ARE_ADDR_EQUAL(gate, &nh->gw6_sa.sin6_addr)) { return (0); } /* * Do not delete a static route. * XXX: this seems to be a bit ad-hoc. Should we consider the * 'cloned' bit instead? */ nh_rt_flags = nhop_get_rtflags(nh); if ((nh_rt_flags & RTF_STATIC) != 0) return (0); /* * We delete only host route. This means, in particular, we don't * delete default route. */ if ((nh_rt_flags & RTF_HOST) == 0) return (0); return (1); #undef SIN6 } /* * Delete all the routing table entries that use the specified gateway. * XXX: this function causes search through all entries of routing table, so * it shouldn't be called when acting as a router. */ void rt6_flush(struct in6_addr *gateway, struct ifnet *ifp) { /* We'll care only link-local addresses */ if (!IN6_IS_ADDR_LINKLOCAL(gateway)) return; /* XXX Do we really need to walk any but the default FIB? */ rib_foreach_table_walk_del(AF_INET6, rt6_deleteroute, (void *)gateway); } int nd6_setdefaultiface(int ifindex) { if (V_nd6_defifindex != ifindex) { V_nd6_defifindex = ifindex; if (V_nd6_defifindex != 0) { struct epoch_tracker et; /* * XXXGL: this function should use ifnet_byindex_ref! */ NET_EPOCH_ENTER(et); V_nd6_defifp = ifnet_byindex(V_nd6_defifindex); NET_EPOCH_EXIT(et); if (V_nd6_defifp == NULL) return (EINVAL); } else V_nd6_defifp = NULL; /* * Our current implementation assumes one-to-one mapping between * interfaces and links, so it would be natural to use the * default interface as the default link. */ scope6_setdefault(V_nd6_defifp); } return (0); } bool nd6_defrouter_list_empty(void) { return (TAILQ_EMPTY(&V_nd6_defrouter)); } void nd6_defrouter_timer(void) { struct nd_defrouter *dr, *ndr; struct nd6_drhead drq; TAILQ_INIT(&drq); ND6_WLOCK(); TAILQ_FOREACH_SAFE(dr, &V_nd6_defrouter, dr_entry, ndr) if (dr->expire && dr->expire < time_uptime) defrouter_unlink(dr, &drq); ND6_WUNLOCK(); while ((dr = TAILQ_FIRST(&drq)) != NULL) { TAILQ_REMOVE(&drq, dr, dr_entry); defrouter_del(dr); } } /* * Nuke default router list entries toward ifp. * We defer removal of default router list entries that is installed in the * routing table, in order to keep additional side effects as small as possible. */ void nd6_defrouter_purge(struct ifnet *ifp) { struct nd_defrouter *dr, *ndr; struct nd6_drhead drq; TAILQ_INIT(&drq); ND6_WLOCK(); TAILQ_FOREACH_SAFE(dr, &V_nd6_defrouter, dr_entry, ndr) { if (dr->installed) continue; if (dr->ifp == ifp) defrouter_unlink(dr, &drq); } TAILQ_FOREACH_SAFE(dr, &V_nd6_defrouter, dr_entry, ndr) { if (!dr->installed) continue; if (dr->ifp == ifp) defrouter_unlink(dr, &drq); } ND6_WUNLOCK(); /* Delete the unlinked router objects. */ while ((dr = TAILQ_FIRST(&drq)) != NULL) { TAILQ_REMOVE(&drq, dr, dr_entry); defrouter_del(dr); } } void nd6_defrouter_flush_all(void) { struct nd_defrouter *dr; struct nd6_drhead drq; TAILQ_INIT(&drq); ND6_WLOCK(); while ((dr = TAILQ_FIRST(&V_nd6_defrouter)) != NULL) defrouter_unlink(dr, &drq); ND6_WUNLOCK(); while ((dr = TAILQ_FIRST(&drq)) != NULL) { TAILQ_REMOVE(&drq, dr, dr_entry); defrouter_del(dr); } } void nd6_defrouter_init(void) { TAILQ_INIT(&V_nd6_defrouter); } static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) { struct in6_defrouter d; struct nd_defrouter *dr; int error; if (req->newptr != NULL) return (EPERM); error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); bzero(&d, sizeof(d)); d.rtaddr.sin6_family = AF_INET6; d.rtaddr.sin6_len = sizeof(d.rtaddr); ND6_RLOCK(); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) { d.rtaddr.sin6_addr = dr->rtaddr; error = sa6_recoverscope(&d.rtaddr); if (error != 0) break; d.flags = dr->raflags; d.rtlifetime = dr->rtlifetime; d.expire = dr->expire + (time_second - time_uptime); d.if_index = dr->ifp->if_index; error = SYSCTL_OUT(req, &d, sizeof(d)); if (error != 0) break; } ND6_RUNLOCK(); return (error); } SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter", "NDP default router list");