diff --git a/sys/dev/sound/pcm/channel.c b/sys/dev/sound/pcm/channel.c index 6b8f00f9aa83..b1d3ebc0d0f7 100644 --- a/sys/dev/sound/pcm/channel.c +++ b/sys/dev/sound/pcm/channel.c @@ -1,2692 +1,2714 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2005-2009 Ariff Abdullah * Portions Copyright (c) Ryan Beasley - GSoC 2006 * Copyright (c) 1999 Cameron Grant * Portions Copyright (c) Luigi Rizzo - 1997-99 * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include "feeder_if.h" int report_soft_formats = 1; SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW, &report_soft_formats, 0, "report software-emulated formats"); int report_soft_matrix = 1; SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW, &report_soft_matrix, 0, "report software-emulated channel matrixing"); int chn_latency = CHN_LATENCY_DEFAULT; static int sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS) { int err, val; val = chn_latency; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return err; if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX) err = EINVAL; else chn_latency = val; return err; } SYSCTL_PROC(_hw_snd, OID_AUTO, latency, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), sysctl_hw_snd_latency, "I", "buffering latency (0=low ... 10=high)"); int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT; static int sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS) { int err, val; val = chn_latency_profile; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return err; if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX) err = EINVAL; else chn_latency_profile = val; return err; } SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), sysctl_hw_snd_latency_profile, "I", "buffering latency profile (0=aggressive 1=safe)"); static int chn_timeout = CHN_TIMEOUT; static int sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS) { int err, val; val = chn_timeout; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return err; if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX) err = EINVAL; else chn_timeout = val; return err; } SYSCTL_PROC(_hw_snd, OID_AUTO, timeout, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), sysctl_hw_snd_timeout, "I", "interrupt timeout (1 - 10) seconds"); static int chn_vpc_autoreset = 1; SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RWTUN, &chn_vpc_autoreset, 0, "automatically reset channels volume to 0db"); static int chn_vol_0db_pcm = SND_VOL_0DB_PCM; static void chn_vpc_proc(int reset, int db) { struct snddev_info *d; struct pcm_channel *c; int i; for (i = 0; pcm_devclass != NULL && i < devclass_get_maxunit(pcm_devclass); i++) { d = devclass_get_softc(pcm_devclass, i); if (!PCM_REGISTERED(d)) continue; PCM_LOCK(d); PCM_WAIT(d); PCM_ACQUIRE(d); CHN_FOREACH(c, d, channels.pcm) { CHN_LOCK(c); CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db); if (reset != 0) chn_vpc_reset(c, SND_VOL_C_PCM, 1); CHN_UNLOCK(c); } PCM_RELEASE(d); PCM_UNLOCK(d); } } static int sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS) { int err, val; val = chn_vol_0db_pcm; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX) return (EINVAL); chn_vol_0db_pcm = val; chn_vpc_proc(0, val); return (0); } SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int), sysctl_hw_snd_vpc_0db, "I", "0db relative level"); static int sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS) { int err, val; val = 0; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL || val == 0) return (err); chn_vol_0db_pcm = SND_VOL_0DB_PCM; chn_vpc_proc(1, SND_VOL_0DB_PCM); return (0); } SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), sysctl_hw_snd_vpc_reset, "I", "reset volume on all channels"); static int chn_usefrags = 0; static int chn_syncdelay = -1; SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RWTUN, &chn_usefrags, 0, "prefer setfragments() over setblocksize()"); SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RWTUN, &chn_syncdelay, 0, "append (0-1000) millisecond trailing buffer delay on each sync"); /** * @brief Channel sync group lock * * Clients should acquire this lock @b without holding any channel locks * before touching syncgroups or the main syncgroup list. */ struct mtx snd_pcm_syncgroups_mtx; MTX_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx, "PCM channel sync group lock", MTX_DEF); /** * @brief syncgroups' master list * * Each time a channel syncgroup is created, it's added to this list. This * list should only be accessed with @sa snd_pcm_syncgroups_mtx held. * * See SNDCTL_DSP_SYNCGROUP for more information. */ struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups); static void chn_lockinit(struct pcm_channel *c, int dir) { switch (dir) { case PCMDIR_PLAY: c->lock = snd_mtxcreate(c->name, "pcm play channel"); cv_init(&c->intr_cv, "pcmwr"); break; case PCMDIR_PLAY_VIRTUAL: c->lock = snd_mtxcreate(c->name, "pcm virtual play channel"); cv_init(&c->intr_cv, "pcmwrv"); break; case PCMDIR_REC: c->lock = snd_mtxcreate(c->name, "pcm record channel"); cv_init(&c->intr_cv, "pcmrd"); break; case PCMDIR_REC_VIRTUAL: c->lock = snd_mtxcreate(c->name, "pcm virtual record channel"); cv_init(&c->intr_cv, "pcmrdv"); break; default: panic("%s(): Invalid direction=%d", __func__, dir); break; } cv_init(&c->cv, "pcmchn"); } static void chn_lockdestroy(struct pcm_channel *c) { CHN_LOCKASSERT(c); CHN_BROADCAST(&c->cv); CHN_BROADCAST(&c->intr_cv); cv_destroy(&c->cv); cv_destroy(&c->intr_cv); snd_mtxfree(c->lock); } /** * @brief Determine channel is ready for I/O * * @retval 1 = ready for I/O * @retval 0 = not ready for I/O */ static int chn_polltrigger(struct pcm_channel *c) { struct snd_dbuf *bs = c->bufsoft; u_int delta; CHN_LOCKASSERT(c); if (c->flags & CHN_F_MMAP) { if (sndbuf_getprevtotal(bs) < c->lw) delta = c->lw; else delta = sndbuf_gettotal(bs) - sndbuf_getprevtotal(bs); } else { if (c->direction == PCMDIR_PLAY) delta = sndbuf_getfree(bs); else delta = sndbuf_getready(bs); } return ((delta < c->lw) ? 0 : 1); } static void chn_pollreset(struct pcm_channel *c) { CHN_LOCKASSERT(c); sndbuf_updateprevtotal(c->bufsoft); } static void chn_wakeup(struct pcm_channel *c) { struct snd_dbuf *bs; struct pcm_channel *ch; CHN_LOCKASSERT(c); bs = c->bufsoft; if (CHN_EMPTY(c, children.busy)) { if (SEL_WAITING(sndbuf_getsel(bs)) && chn_polltrigger(c)) selwakeuppri(sndbuf_getsel(bs), PRIBIO); if (c->flags & CHN_F_SLEEPING) { /* * Ok, I can just panic it right here since it is * quite obvious that we never allow multiple waiters * from userland. I'm too generous... */ CHN_BROADCAST(&c->intr_cv); } } else { CHN_FOREACH(ch, c, children.busy) { CHN_LOCK(ch); chn_wakeup(ch); CHN_UNLOCK(ch); } } } static int chn_sleep(struct pcm_channel *c, int timeout) { int ret; CHN_LOCKASSERT(c); KASSERT((c->flags & CHN_F_SLEEPING) == 0, ("%s(): entered with CHN_F_SLEEPING", __func__)); if (c->flags & CHN_F_DEAD) return (EINVAL); c->flags |= CHN_F_SLEEPING; ret = cv_timedwait_sig(&c->intr_cv, c->lock, timeout); c->flags &= ~CHN_F_SLEEPING; return ((c->flags & CHN_F_DEAD) ? EINVAL : ret); } /* * chn_dmaupdate() tracks the status of a dma transfer, * updating pointers. */ static unsigned int chn_dmaupdate(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; unsigned int delta, old, hwptr, amt; KASSERT(sndbuf_getsize(b) > 0, ("bufsize == 0")); CHN_LOCKASSERT(c); old = sndbuf_gethwptr(b); hwptr = chn_getptr(c); delta = (sndbuf_getsize(b) + hwptr - old) % sndbuf_getsize(b); sndbuf_sethwptr(b, hwptr); if (c->direction == PCMDIR_PLAY) { amt = min(delta, sndbuf_getready(b)); amt -= amt % sndbuf_getalign(b); if (amt > 0) sndbuf_dispose(b, NULL, amt); } else { amt = min(delta, sndbuf_getfree(b)); amt -= amt % sndbuf_getalign(b); if (amt > 0) sndbuf_acquire(b, NULL, amt); } if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) { device_printf(c->dev, "WARNING: %s DMA completion " "too fast/slow ! hwptr=%u, old=%u " "delta=%u amt=%u ready=%u free=%u\n", CHN_DIRSTR(c), hwptr, old, delta, amt, sndbuf_getready(b), sndbuf_getfree(b)); } return delta; } static void chn_wrfeed(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; unsigned int amt, want, wasfree; CHN_LOCKASSERT(c); if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING)) sndbuf_acquire(bs, NULL, sndbuf_getfree(bs)); wasfree = sndbuf_getfree(b); want = min(sndbuf_getsize(b), imax(0, sndbuf_xbytes(sndbuf_getsize(bs), bs, b) - sndbuf_getready(b))); amt = min(wasfree, want); if (amt > 0) sndbuf_feed(bs, b, c, c->feeder, amt); /* * Possible xruns. There should be no empty space left in buffer. */ if (sndbuf_getready(b) < want) c->xruns++; if (sndbuf_getfree(b) < wasfree) chn_wakeup(c); } #if 0 static void chn_wrupdate(struct pcm_channel *c) { CHN_LOCKASSERT(c); KASSERT(c->direction == PCMDIR_PLAY, ("%s(): bad channel", __func__)); if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) return; chn_dmaupdate(c); chn_wrfeed(c); /* tell the driver we've updated the primary buffer */ chn_trigger(c, PCMTRIG_EMLDMAWR); } #endif static void chn_wrintr(struct pcm_channel *c) { CHN_LOCKASSERT(c); /* update pointers in primary buffer */ chn_dmaupdate(c); /* ...and feed from secondary to primary */ chn_wrfeed(c); /* tell the driver we've updated the primary buffer */ chn_trigger(c, PCMTRIG_EMLDMAWR); } /* * user write routine - uiomove data into secondary buffer, trigger if necessary * if blocking, sleep, rinse and repeat. * * called externally, so must handle locking */ int chn_write(struct pcm_channel *c, struct uio *buf) { struct snd_dbuf *bs = c->bufsoft; void *off; int ret, timeout, sz, t, p; CHN_LOCKASSERT(c); ret = 0; timeout = chn_timeout * hz; while (ret == 0 && buf->uio_resid > 0) { sz = min(buf->uio_resid, sndbuf_getfree(bs)); if (sz > 0) { /* * The following assumes that the free space in * the buffer can never be less around the * unlock-uiomove-lock sequence. */ while (ret == 0 && sz > 0) { p = sndbuf_getfreeptr(bs); t = min(sz, sndbuf_getsize(bs) - p); off = sndbuf_getbufofs(bs, p); CHN_UNLOCK(c); ret = uiomove(off, t, buf); CHN_LOCK(c); sz -= t; sndbuf_acquire(bs, NULL, t); } ret = 0; if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { ret = chn_start(c, 0); if (ret != 0) c->flags |= CHN_F_DEAD; } } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) { /** * @todo Evaluate whether EAGAIN is truly desirable. * 4Front drivers behave like this, but I'm * not sure if it at all violates the "write * should be allowed to block" model. * * The idea is that, while set with CHN_F_NOTRIGGER, * a channel isn't playing, *but* without this we * end up with "interrupt timeout / channel dead". */ ret = EAGAIN; } else { ret = chn_sleep(c, timeout); if (ret == EAGAIN) { ret = EINVAL; c->flags |= CHN_F_DEAD; device_printf(c->dev, "%s(): %s: " "play interrupt timeout, channel dead\n", __func__, c->name); } else if (ret == ERESTART || ret == EINTR) c->flags |= CHN_F_ABORTING; } } return (ret); } /* * Feed new data from the read buffer. Can be called in the bottom half. */ static void chn_rdfeed(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; unsigned int amt; CHN_LOCKASSERT(c); if (c->flags & CHN_F_MMAP) sndbuf_dispose(bs, NULL, sndbuf_getready(bs)); amt = sndbuf_getfree(bs); if (amt > 0) sndbuf_feed(b, bs, c, c->feeder, amt); amt = sndbuf_getready(b); if (amt > 0) { c->xruns++; sndbuf_dispose(b, NULL, amt); } if (sndbuf_getready(bs) > 0) chn_wakeup(c); } #if 0 static void chn_rdupdate(struct pcm_channel *c) { CHN_LOCKASSERT(c); KASSERT(c->direction == PCMDIR_REC, ("chn_rdupdate on bad channel")); if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) return; chn_trigger(c, PCMTRIG_EMLDMARD); chn_dmaupdate(c); chn_rdfeed(c); } #endif /* read interrupt routine. Must be called with interrupts blocked. */ static void chn_rdintr(struct pcm_channel *c) { CHN_LOCKASSERT(c); /* tell the driver to update the primary buffer if non-dma */ chn_trigger(c, PCMTRIG_EMLDMARD); /* update pointers in primary buffer */ chn_dmaupdate(c); /* ...and feed from primary to secondary */ chn_rdfeed(c); } /* * user read routine - trigger if necessary, uiomove data from secondary buffer * if blocking, sleep, rinse and repeat. * * called externally, so must handle locking */ int chn_read(struct pcm_channel *c, struct uio *buf) { struct snd_dbuf *bs = c->bufsoft; void *off; int ret, timeout, sz, t, p; CHN_LOCKASSERT(c); if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { ret = chn_start(c, 0); if (ret != 0) { c->flags |= CHN_F_DEAD; return (ret); } } ret = 0; timeout = chn_timeout * hz; while (ret == 0 && buf->uio_resid > 0) { sz = min(buf->uio_resid, sndbuf_getready(bs)); if (sz > 0) { /* * The following assumes that the free space in * the buffer can never be less around the * unlock-uiomove-lock sequence. */ while (ret == 0 && sz > 0) { p = sndbuf_getreadyptr(bs); t = min(sz, sndbuf_getsize(bs) - p); off = sndbuf_getbufofs(bs, p); CHN_UNLOCK(c); ret = uiomove(off, t, buf); CHN_LOCK(c); sz -= t; sndbuf_dispose(bs, NULL, t); } ret = 0; } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) ret = EAGAIN; else { ret = chn_sleep(c, timeout); if (ret == EAGAIN) { ret = EINVAL; c->flags |= CHN_F_DEAD; device_printf(c->dev, "%s(): %s: " "record interrupt timeout, channel dead\n", __func__, c->name); } else if (ret == ERESTART || ret == EINTR) c->flags |= CHN_F_ABORTING; } } return (ret); } void chn_intr_locked(struct pcm_channel *c) { CHN_LOCKASSERT(c); c->interrupts++; if (c->direction == PCMDIR_PLAY) chn_wrintr(c); else chn_rdintr(c); } void chn_intr(struct pcm_channel *c) { if (CHN_LOCKOWNED(c)) { chn_intr_locked(c); return; } CHN_LOCK(c); chn_intr_locked(c); CHN_UNLOCK(c); } u_int32_t chn_start(struct pcm_channel *c, int force) { u_int32_t i, j; struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; int err; CHN_LOCKASSERT(c); /* if we're running, or if we're prevented from triggering, bail */ if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force)) return (EINVAL); err = 0; if (force) { i = 1; j = 0; } else { if (c->direction == PCMDIR_REC) { i = sndbuf_getfree(bs); j = (i > 0) ? 1 : sndbuf_getready(b); } else { if (sndbuf_getfree(bs) == 0) { i = 1; j = 0; } else { struct snd_dbuf *pb; pb = CHN_BUF_PARENT(c, b); i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb); j = sndbuf_getalign(pb); } } if (snd_verbose > 3 && CHN_EMPTY(c, children)) device_printf(c->dev, "%s(): %s (%s) threshold " "i=%d j=%d\n", __func__, CHN_DIRSTR(c), (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware", i, j); } if (i >= j) { c->flags |= CHN_F_TRIGGERED; sndbuf_setrun(b, 1); if (c->flags & CHN_F_CLOSING) c->feedcount = 2; else { c->feedcount = 0; c->interrupts = 0; c->xruns = 0; } if (c->parentchannel == NULL) { if (c->direction == PCMDIR_PLAY) sndbuf_fillsilence_rl(b, sndbuf_xbytes(sndbuf_getsize(bs), bs, b)); if (snd_verbose > 3) device_printf(c->dev, "%s(): %s starting! (%s/%s) " "(ready=%d force=%d i=%d j=%d " "intrtimeout=%u latency=%dms)\n", __func__, (c->flags & CHN_F_HAS_VCHAN) ? "VCHAN PARENT" : "HW", CHN_DIRSTR(c), (c->flags & CHN_F_CLOSING) ? "closing" : "running", sndbuf_getready(b), force, i, j, c->timeout, (sndbuf_getsize(b) * 1000) / (sndbuf_getalign(b) * sndbuf_getspd(b))); } err = chn_trigger(c, PCMTRIG_START); } return (err); } void chn_resetbuf(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; c->blocks = 0; sndbuf_reset(b); sndbuf_reset(bs); } /* * chn_sync waits until the space in the given channel goes above * a threshold. The threshold is checked against fl or rl respectively. * Assume that the condition can become true, do not check here... */ int chn_sync(struct pcm_channel *c, int threshold) { struct snd_dbuf *b, *bs; int ret, count, hcount, minflush, resid, residp, syncdelay, blksz; u_int32_t cflag; CHN_LOCKASSERT(c); if (c->direction != PCMDIR_PLAY) return (EINVAL); bs = c->bufsoft; if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) || (threshold < 1 && sndbuf_getready(bs) < 1)) return (0); /* if we haven't yet started and nothing is buffered, else start*/ if (CHN_STOPPED(c)) { if (threshold > 0 || sndbuf_getready(bs) > 0) { ret = chn_start(c, 1); if (ret != 0) return (ret); } else return (0); } b = CHN_BUF_PARENT(c, c->bufhard); minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs); syncdelay = chn_syncdelay; if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0)) minflush += sndbuf_xbytes(sndbuf_getsize(b), b, bs); /* * Append (0-1000) millisecond trailing buffer (if needed) * for slower / high latency hardwares (notably USB audio) * to avoid audible truncation. */ if (syncdelay > 0) minflush += (sndbuf_getalign(bs) * sndbuf_getspd(bs) * ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000; minflush -= minflush % sndbuf_getalign(bs); if (minflush > 0) { threshold = min(minflush, sndbuf_getfree(bs)); sndbuf_clear(bs, threshold); sndbuf_acquire(bs, NULL, threshold); minflush -= threshold; } resid = sndbuf_getready(bs); residp = resid; blksz = sndbuf_getblksz(b); if (blksz < 1) { device_printf(c->dev, "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n", __func__, sndbuf_getmaxsize(b), sndbuf_getsize(b), sndbuf_getblksz(b), sndbuf_getblkcnt(b)); if (sndbuf_getblkcnt(b) > 0) blksz = sndbuf_getsize(b) / sndbuf_getblkcnt(b); if (blksz < 1) blksz = 1; } count = sndbuf_xbytes(minflush + resid, bs, b) / blksz; hcount = count; ret = 0; if (snd_verbose > 3) device_printf(c->dev, "%s(): [begin] timeout=%d count=%d " "minflush=%d resid=%d\n", __func__, c->timeout, count, minflush, resid); cflag = c->flags & CHN_F_CLOSING; c->flags |= CHN_F_CLOSING; while (count > 0 && (resid > 0 || minflush > 0)) { ret = chn_sleep(c, c->timeout); if (ret == ERESTART || ret == EINTR) { c->flags |= CHN_F_ABORTING; break; } else if (ret == 0 || ret == EAGAIN) { resid = sndbuf_getready(bs); if (resid == residp) { --count; if (snd_verbose > 3) device_printf(c->dev, "%s(): [stalled] timeout=%d " "count=%d hcount=%d " "resid=%d minflush=%d\n", __func__, c->timeout, count, hcount, resid, minflush); } else if (resid < residp && count < hcount) { ++count; if (snd_verbose > 3) device_printf(c->dev, "%s((): [resume] timeout=%d " "count=%d hcount=%d " "resid=%d minflush=%d\n", __func__, c->timeout, count, hcount, resid, minflush); } if (minflush > 0 && sndbuf_getfree(bs) > 0) { threshold = min(minflush, sndbuf_getfree(bs)); sndbuf_clear(bs, threshold); sndbuf_acquire(bs, NULL, threshold); resid = sndbuf_getready(bs); minflush -= threshold; } residp = resid; } else break; } c->flags &= ~CHN_F_CLOSING; c->flags |= cflag; if (snd_verbose > 3) device_printf(c->dev, "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d " "minflush=%d ret=%d\n", __func__, c->timeout, count, hcount, resid, residp, minflush, ret); return (0); } /* called externally, handle locking */ int chn_poll(struct pcm_channel *c, int ev, struct thread *td) { struct snd_dbuf *bs = c->bufsoft; int ret; CHN_LOCKASSERT(c); if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) { ret = chn_start(c, 1); if (ret != 0) return (0); } ret = 0; if (chn_polltrigger(c)) { chn_pollreset(c); ret = ev; } else selrecord(td, sndbuf_getsel(bs)); return (ret); } /* * chn_abort terminates a running dma transfer. it may sleep up to 200ms. * it returns the number of bytes that have not been transferred. * * called from: dsp_close, dsp_ioctl, with channel locked */ int chn_abort(struct pcm_channel *c) { int missing = 0; struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; CHN_LOCKASSERT(c); if (CHN_STOPPED(c)) return 0; c->flags |= CHN_F_ABORTING; c->flags &= ~CHN_F_TRIGGERED; /* kill the channel */ chn_trigger(c, PCMTRIG_ABORT); sndbuf_setrun(b, 0); if (!(c->flags & CHN_F_VIRTUAL)) chn_dmaupdate(c); missing = sndbuf_getready(bs); c->flags &= ~CHN_F_ABORTING; return missing; } /* * this routine tries to flush the dma transfer. It is called * on a close of a playback channel. * first, if there is data in the buffer, but the dma has not yet * begun, we need to start it. * next, we wait for the play buffer to drain * finally, we stop the dma. * * called from: dsp_close, not valid for record channels. */ int chn_flush(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; CHN_LOCKASSERT(c); KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel")); DEB(printf("chn_flush: c->flags 0x%08x\n", c->flags)); c->flags |= CHN_F_CLOSING; chn_sync(c, 0); c->flags &= ~CHN_F_TRIGGERED; /* kill the channel */ chn_trigger(c, PCMTRIG_ABORT); sndbuf_setrun(b, 0); c->flags &= ~CHN_F_CLOSING; return 0; } int snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist) { int i; for (i = 0; fmtlist[i] != 0; i++) { if (fmt == fmtlist[i] || ((fmt & AFMT_PASSTHROUGH) && (AFMT_ENCODING(fmt) & fmtlist[i]))) return (1); } return (0); } static const struct { char *name, *alias1, *alias2; uint32_t afmt; } afmt_tab[] = { { "alaw", NULL, NULL, AFMT_A_LAW }, { "mulaw", NULL, NULL, AFMT_MU_LAW }, { "u8", "8", NULL, AFMT_U8 }, { "s8", NULL, NULL, AFMT_S8 }, #if BYTE_ORDER == LITTLE_ENDIAN { "s16le", "s16", "16", AFMT_S16_LE }, { "s16be", NULL, NULL, AFMT_S16_BE }, #else { "s16le", NULL, NULL, AFMT_S16_LE }, { "s16be", "s16", "16", AFMT_S16_BE }, #endif { "u16le", NULL, NULL, AFMT_U16_LE }, { "u16be", NULL, NULL, AFMT_U16_BE }, { "s24le", NULL, NULL, AFMT_S24_LE }, { "s24be", NULL, NULL, AFMT_S24_BE }, { "u24le", NULL, NULL, AFMT_U24_LE }, { "u24be", NULL, NULL, AFMT_U24_BE }, #if BYTE_ORDER == LITTLE_ENDIAN { "s32le", "s32", "32", AFMT_S32_LE }, { "s32be", NULL, NULL, AFMT_S32_BE }, #else { "s32le", NULL, NULL, AFMT_S32_LE }, { "s32be", "s32", "32", AFMT_S32_BE }, #endif { "u32le", NULL, NULL, AFMT_U32_LE }, { "u32be", NULL, NULL, AFMT_U32_BE }, { "ac3", NULL, NULL, AFMT_AC3 }, { NULL, NULL, NULL, 0 } }; uint32_t snd_str2afmt(const char *req) { int ext; int ch; int i; char b1[8]; char b2[8]; memset(b1, 0, sizeof(b1)); memset(b2, 0, sizeof(b2)); i = sscanf(req, "%5[^:]:%6s", b1, b2); if (i == 1) { if (strlen(req) != strlen(b1)) return (0); strlcpy(b2, "2.0", sizeof(b2)); } else if (i == 2) { if (strlen(req) != (strlen(b1) + 1 + strlen(b2))) return (0); } else return (0); i = sscanf(b2, "%d.%d", &ch, &ext); if (i == 0) { if (strcasecmp(b2, "mono") == 0) { ch = 1; ext = 0; } else if (strcasecmp(b2, "stereo") == 0) { ch = 2; ext = 0; } else if (strcasecmp(b2, "quad") == 0) { ch = 4; ext = 0; } else return (0); } else if (i == 1) { if (ch < 1 || ch > AFMT_CHANNEL_MAX) return (0); ext = 0; } else if (i == 2) { if (ext < 0 || ext > AFMT_EXTCHANNEL_MAX) return (0); if (ch < 1 || (ch + ext) > AFMT_CHANNEL_MAX) return (0); } else return (0); for (i = 0; afmt_tab[i].name != NULL; i++) { if (strcasecmp(afmt_tab[i].name, b1) != 0) { if (afmt_tab[i].alias1 == NULL) continue; if (strcasecmp(afmt_tab[i].alias1, b1) != 0) { if (afmt_tab[i].alias2 == NULL) continue; if (strcasecmp(afmt_tab[i].alias2, b1) != 0) continue; } } /* found a match */ return (SND_FORMAT(afmt_tab[i].afmt, ch + ext, ext)); } /* not a valid format */ return (0); } uint32_t snd_afmt2str(uint32_t afmt, char *buf, size_t len) { uint32_t enc; uint32_t ext; uint32_t ch; int i; if (buf == NULL || len < AFMTSTR_LEN) return (0); memset(buf, 0, len); enc = AFMT_ENCODING(afmt); ch = AFMT_CHANNEL(afmt); ext = AFMT_EXTCHANNEL(afmt); /* check there is at least one channel */ if (ch <= ext) return (0); for (i = 0; afmt_tab[i].name != NULL; i++) { if (enc != afmt_tab[i].afmt) continue; /* found a match */ snprintf(buf, len, "%s:%d.%d", afmt_tab[i].name, ch - ext, ext); return (SND_FORMAT(enc, ch, ext)); } return (0); } int chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd) { int r; CHN_LOCKASSERT(c); c->feedcount = 0; c->flags &= CHN_F_RESET; c->interrupts = 0; c->timeout = 1; c->xruns = 0; c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ? CHN_F_BITPERFECT : 0; r = CHANNEL_RESET(c->methods, c->devinfo); if (r == 0 && fmt != 0 && spd != 0) { r = chn_setparam(c, fmt, spd); fmt = 0; spd = 0; } if (r == 0 && fmt != 0) r = chn_setformat(c, fmt); if (r == 0 && spd != 0) r = chn_setspeed(c, spd); if (r == 0) r = chn_setlatency(c, chn_latency); if (r == 0) { chn_resetbuf(c); r = CHANNEL_RESETDONE(c->methods, c->devinfo); } return r; } static struct unrhdr * chn_getunr(struct snddev_info *d, int type) { switch (type) { - case SND_DEV_DSPHW_PLAY: + case PCMDIR_PLAY: return (d->p_unr); - case SND_DEV_DSPHW_VPLAY: + case PCMDIR_PLAY_VIRTUAL: return (d->vp_unr); - case SND_DEV_DSPHW_REC: + case PCMDIR_REC: return (d->r_unr); - case SND_DEV_DSPHW_VREC: + case PCMDIR_REC_VIRTUAL: return (d->vr_unr); default: __assert_unreachable(); } } +char * +chn_mkname(char *buf, size_t len, struct pcm_channel *c) +{ + const char *str; + + KASSERT(buf != NULL && len != 0, + ("%s(): bogus buf=%p len=%lu", __func__, buf, len)); + + switch (c->type) { + case PCMDIR_PLAY: + str = "play"; + break; + case PCMDIR_PLAY_VIRTUAL: + str = "virtual_play"; + break; + case PCMDIR_REC: + str = "record"; + break; + case PCMDIR_REC_VIRTUAL: + str = "virtual_record"; + break; + default: + __assert_unreachable(); + } + + snprintf(buf, len, "dsp%d.%s.%d", + device_get_unit(c->dev), str, c->unit); + + return (buf); +} + struct pcm_channel * chn_init(struct snddev_info *d, struct pcm_channel *parent, kobj_class_t cls, int dir, void *devinfo) { struct pcm_channel *c; struct feeder_class *fc; struct snd_dbuf *b, *bs; char buf[CHN_NAMELEN]; - int i, direction, type; + int i, direction; PCM_BUSYASSERT(d); PCM_LOCKASSERT(d); switch (dir) { case PCMDIR_PLAY: - direction = PCMDIR_PLAY; - type = SND_DEV_DSPHW_PLAY; - break; case PCMDIR_PLAY_VIRTUAL: direction = PCMDIR_PLAY; - type = SND_DEV_DSPHW_VPLAY; break; case PCMDIR_REC: - direction = PCMDIR_REC; - type = SND_DEV_DSPHW_REC; - break; case PCMDIR_REC_VIRTUAL: direction = PCMDIR_REC; - type = SND_DEV_DSPHW_VREC; break; default: device_printf(d->dev, "%s(): invalid channel direction: %d\n", __func__, dir); return (NULL); } PCM_UNLOCK(d); b = NULL; bs = NULL; c = malloc(sizeof(*c), M_DEVBUF, M_WAITOK | M_ZERO); c->methods = kobj_create(cls, M_DEVBUF, M_WAITOK | M_ZERO); chn_lockinit(c, dir); CHN_INIT(c, children); CHN_INIT(c, children.busy); c->direction = direction; - c->type = type; + c->type = dir; c->unit = alloc_unr(chn_getunr(d, c->type)); c->format = SND_FORMAT(AFMT_U8, 1, 0); c->speed = DSP_DEFAULT_SPEED; c->pid = -1; c->latency = -1; c->timeout = 1; strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm)); c->parentsnddev = d; c->parentchannel = parent; c->dev = d->dev; c->trigger = PCMTRIG_STOP; - - strlcpy(c->name, dsp_unit2name(buf, sizeof(buf), c), sizeof(c->name)); + strlcpy(c->name, chn_mkname(buf, sizeof(buf), c), sizeof(c->name)); c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0); c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; for (i = 0; i < SND_CHN_T_MAX; i++) c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER; c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER; c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm; CHN_LOCK(c); chn_vpc_reset(c, SND_VOL_C_PCM, 1); CHN_UNLOCK(c); fc = feeder_getclass(NULL); if (fc == NULL) { device_printf(d->dev, "%s(): failed to get feeder class\n", __func__); goto fail; } if (feeder_add(c, fc, NULL)) { device_printf(d->dev, "%s(): failed to add feeder\n", __func__); goto fail; } b = sndbuf_create(c->dev, c->name, "primary", c); bs = sndbuf_create(c->dev, c->name, "secondary", c); if (b == NULL || bs == NULL) { device_printf(d->dev, "%s(): failed to create %s buffer\n", __func__, b == NULL ? "hardware" : "software"); goto fail; } c->bufhard = b; c->bufsoft = bs; c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction); if (c->devinfo == NULL) { device_printf(d->dev, "%s(): CHANNEL_INIT() failed\n", __func__); goto fail; } if ((sndbuf_getsize(b) == 0) && ((c->flags & CHN_F_VIRTUAL) == 0)) { device_printf(d->dev, "%s(): hardware buffer's size is 0\n", __func__); goto fail; } sndbuf_setfmt(b, c->format); sndbuf_setspd(b, c->speed); sndbuf_setfmt(bs, c->format); sndbuf_setspd(bs, c->speed); sndbuf_setup(bs, NULL, 0); /** * @todo Should this be moved somewhere else? The primary buffer * is allocated by the driver or via DMA map setup, and tmpbuf * seems to only come into existence in sndbuf_resize(). */ if (c->direction == PCMDIR_PLAY) { bs->sl = sndbuf_getmaxsize(bs); bs->shadbuf = malloc(bs->sl, M_DEVBUF, M_WAITOK); } PCM_LOCK(d); CHN_INSERT_SORT_ASCEND(d, c, channels.pcm); switch (c->type) { - case SND_DEV_DSPHW_PLAY: + case PCMDIR_PLAY: d->playcount++; break; - case SND_DEV_DSPHW_VPLAY: + case PCMDIR_PLAY_VIRTUAL: d->pvchancount++; break; - case SND_DEV_DSPHW_REC: + case PCMDIR_REC: d->reccount++; break; - case SND_DEV_DSPHW_VREC: + case PCMDIR_REC_VIRTUAL: d->rvchancount++; break; default: __assert_unreachable(); } return (c); fail: free_unr(chn_getunr(d, c->type), c->unit); feeder_remove(c); if (c->devinfo && CHANNEL_FREE(c->methods, c->devinfo)) sndbuf_free(b); if (bs) sndbuf_destroy(bs); if (b) sndbuf_destroy(b); CHN_LOCK(c); chn_lockdestroy(c); kobj_delete(c->methods, M_DEVBUF); free(c, M_DEVBUF); PCM_LOCK(d); return (NULL); } void chn_kill(struct pcm_channel *c) { struct snddev_info *d = c->parentsnddev; struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; PCM_BUSYASSERT(c->parentsnddev); PCM_LOCK(d); CHN_REMOVE(d, c, channels.pcm); switch (c->type) { - case SND_DEV_DSPHW_PLAY: + case PCMDIR_PLAY: d->playcount--; break; - case SND_DEV_DSPHW_VPLAY: + case PCMDIR_PLAY_VIRTUAL: d->pvchancount--; break; - case SND_DEV_DSPHW_REC: + case PCMDIR_REC: d->reccount--; break; - case SND_DEV_DSPHW_VREC: + case PCMDIR_REC_VIRTUAL: d->rvchancount--; break; default: __assert_unreachable(); } PCM_UNLOCK(d); if (CHN_STARTED(c)) { CHN_LOCK(c); chn_trigger(c, PCMTRIG_ABORT); CHN_UNLOCK(c); } free_unr(chn_getunr(c->parentsnddev, c->type), c->unit); feeder_remove(c); if (CHANNEL_FREE(c->methods, c->devinfo)) sndbuf_free(b); sndbuf_destroy(bs); sndbuf_destroy(b); CHN_LOCK(c); c->flags |= CHN_F_DEAD; chn_lockdestroy(c); kobj_delete(c->methods, M_DEVBUF); free(c, M_DEVBUF); } void chn_shutdown(struct pcm_channel *c) { CHN_LOCKASSERT(c); chn_wakeup(c); c->flags |= CHN_F_DEAD; } /* release a locked channel and unlock it */ int chn_release(struct pcm_channel *c) { PCM_BUSYASSERT(c->parentsnddev); CHN_LOCKASSERT(c); c->flags &= ~CHN_F_BUSY; c->pid = -1; strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm)); CHN_UNLOCK(c); return (0); } int chn_ref(struct pcm_channel *c, int ref) { PCM_BUSYASSERT(c->parentsnddev); CHN_LOCKASSERT(c); KASSERT((c->refcount + ref) >= 0, ("%s(): new refcount will be negative", __func__)); c->refcount += ref; return (c->refcount); } int chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right, int center) { int i, ret; ret = 0; for (i = 0; i < SND_CHN_T_MAX; i++) { if ((1 << i) & SND_CHN_LEFT_MASK) ret |= chn_setvolume_matrix(c, vc, i, left); else if ((1 << i) & SND_CHN_RIGHT_MASK) ret |= chn_setvolume_matrix(c, vc, i, right) << 8; else ret |= chn_setvolume_matrix(c, vc, i, center) << 16; } return (ret); } int chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val) { int i; KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && (vc == SND_VOL_C_MASTER || (vc & 1)) && (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB || (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)), ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d", __func__, c, vc, vt, val)); CHN_LOCKASSERT(c); if (val < 0) val = 0; if (val > 100) val = 100; c->volume[vc][vt] = val; /* * Do relative calculation here and store it into class + 1 * to ease the job of feeder_volume. */ if (vc == SND_VOL_C_MASTER) { for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; vc += SND_VOL_C_STEP) c->volume[SND_VOL_C_VAL(vc)][vt] = SND_VOL_CALC_VAL(c->volume, vc, vt); } else if (vc & 1) { if (vt == SND_CHN_T_VOL_0DB) for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) { c->volume[SND_VOL_C_VAL(vc)][i] = SND_VOL_CALC_VAL(c->volume, vc, i); } else c->volume[SND_VOL_C_VAL(vc)][vt] = SND_VOL_CALC_VAL(c->volume, vc, vt); } return (val); } int chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt) { KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), ("%s(): invalid volume matrix c=%p vc=%d vt=%d", __func__, c, vc, vt)); CHN_LOCKASSERT(c); return (c->volume[vc][vt]); } int chn_setmute_multi(struct pcm_channel *c, int vc, int mute) { int i, ret; ret = 0; for (i = 0; i < SND_CHN_T_MAX; i++) { if ((1 << i) & SND_CHN_LEFT_MASK) ret |= chn_setmute_matrix(c, vc, i, mute); else if ((1 << i) & SND_CHN_RIGHT_MASK) ret |= chn_setmute_matrix(c, vc, i, mute) << 8; else ret |= chn_setmute_matrix(c, vc, i, mute) << 16; } return (ret); } int chn_setmute_matrix(struct pcm_channel *c, int vc, int vt, int mute) { int i; KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && (vc == SND_VOL_C_MASTER || (vc & 1)) && (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), ("%s(): invalid mute matrix c=%p vc=%d vt=%d mute=%d", __func__, c, vc, vt, mute)); CHN_LOCKASSERT(c); mute = (mute != 0); c->muted[vc][vt] = mute; /* * Do relative calculation here and store it into class + 1 * to ease the job of feeder_volume. */ if (vc == SND_VOL_C_MASTER) { for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; vc += SND_VOL_C_STEP) c->muted[SND_VOL_C_VAL(vc)][vt] = mute; } else if (vc & 1) { if (vt == SND_CHN_T_VOL_0DB) { for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) { c->muted[SND_VOL_C_VAL(vc)][i] = mute; } } else { c->muted[SND_VOL_C_VAL(vc)][vt] = mute; } } return (mute); } int chn_getmute_matrix(struct pcm_channel *c, int vc, int vt) { KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), ("%s(): invalid mute matrix c=%p vc=%d vt=%d", __func__, c, vc, vt)); CHN_LOCKASSERT(c); return (c->muted[vc][vt]); } struct pcmchan_matrix * chn_getmatrix(struct pcm_channel *c) { KASSERT(c != NULL, ("%s(): NULL channel", __func__)); CHN_LOCKASSERT(c); if (!(c->format & AFMT_CONVERTIBLE)) return (NULL); return (&c->matrix); } int chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m) { KASSERT(c != NULL && m != NULL, ("%s(): NULL channel or matrix", __func__)); CHN_LOCKASSERT(c); if (!(c->format & AFMT_CONVERTIBLE)) return (EINVAL); c->matrix = *m; c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext))); } /* * XXX chn_oss_* exists for the sake of compatibility. */ int chn_oss_getorder(struct pcm_channel *c, unsigned long long *map) { KASSERT(c != NULL && map != NULL, ("%s(): NULL channel or map", __func__)); CHN_LOCKASSERT(c); if (!(c->format & AFMT_CONVERTIBLE)) return (EINVAL); return (feeder_matrix_oss_get_channel_order(&c->matrix, map)); } int chn_oss_setorder(struct pcm_channel *c, unsigned long long *map) { struct pcmchan_matrix m; int ret; KASSERT(c != NULL && map != NULL, ("%s(): NULL channel or map", __func__)); CHN_LOCKASSERT(c); if (!(c->format & AFMT_CONVERTIBLE)) return (EINVAL); m = c->matrix; ret = feeder_matrix_oss_set_channel_order(&m, map); if (ret != 0) return (ret); return (chn_setmatrix(c, &m)); } #define SND_CHN_OSS_FRONT (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR) #define SND_CHN_OSS_SURR (SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR) #define SND_CHN_OSS_CENTER_LFE (SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF) #define SND_CHN_OSS_REAR (SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR) int chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask) { struct pcmchan_matrix *m; struct pcmchan_caps *caps; uint32_t i, format; KASSERT(c != NULL && retmask != NULL, ("%s(): NULL channel or retmask", __func__)); CHN_LOCKASSERT(c); caps = chn_getcaps(c); if (caps == NULL || caps->fmtlist == NULL) return (ENODEV); for (i = 0; caps->fmtlist[i] != 0; i++) { format = caps->fmtlist[i]; if (!(format & AFMT_CONVERTIBLE)) { *retmask |= DSP_BIND_SPDIF; continue; } m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format); if (m == NULL) continue; if (m->mask & SND_CHN_OSS_FRONT) *retmask |= DSP_BIND_FRONT; if (m->mask & SND_CHN_OSS_SURR) *retmask |= DSP_BIND_SURR; if (m->mask & SND_CHN_OSS_CENTER_LFE) *retmask |= DSP_BIND_CENTER_LFE; if (m->mask & SND_CHN_OSS_REAR) *retmask |= DSP_BIND_REAR; } /* report software-supported binding mask */ if (!CHN_BITPERFECT(c) && report_soft_matrix) *retmask |= DSP_BIND_FRONT | DSP_BIND_SURR | DSP_BIND_CENTER_LFE | DSP_BIND_REAR; return (0); } void chn_vpc_reset(struct pcm_channel *c, int vc, int force) { int i; KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END, ("%s(): invalid reset c=%p vc=%d", __func__, c, vc)); CHN_LOCKASSERT(c); if (force == 0 && chn_vpc_autoreset == 0) return; for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]); } static u_int32_t round_pow2(u_int32_t v) { u_int32_t ret; if (v < 2) v = 2; ret = 0; while (v >> ret) ret++; ret = 1 << (ret - 1); while (ret < v) ret <<= 1; return ret; } static u_int32_t round_blksz(u_int32_t v, int round) { u_int32_t ret, tmp; if (round < 1) round = 1; ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1); if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2)) ret >>= 1; tmp = ret - (ret % round); while (tmp < 16 || tmp < round) { ret <<= 1; tmp = ret - (ret % round); } return ret; } /* * 4Front call it DSP Policy, while we call it "Latency Profile". The idea * is to keep 2nd buffer short so that it doesn't cause long queue during * buffer transfer. * * Latency reference table for 48khz stereo 16bit: (PLAY) * * +---------+------------+-----------+------------+ * | Latency | Blockcount | Blocksize | Buffersize | * +---------+------------+-----------+------------+ * | 0 | 2 | 64 | 128 | * +---------+------------+-----------+------------+ * | 1 | 4 | 128 | 512 | * +---------+------------+-----------+------------+ * | 2 | 8 | 512 | 4096 | * +---------+------------+-----------+------------+ * | 3 | 16 | 512 | 8192 | * +---------+------------+-----------+------------+ * | 4 | 32 | 512 | 16384 | * +---------+------------+-----------+------------+ * | 5 | 32 | 1024 | 32768 | * +---------+------------+-----------+------------+ * | 6 | 16 | 2048 | 32768 | * +---------+------------+-----------+------------+ * | 7 | 8 | 4096 | 32768 | * +---------+------------+-----------+------------+ * | 8 | 4 | 8192 | 32768 | * +---------+------------+-----------+------------+ * | 9 | 2 | 16384 | 32768 | * +---------+------------+-----------+------------+ * | 10 | 2 | 32768 | 65536 | * +---------+------------+-----------+------------+ * * Recording need a different reference table. All we care is * gobbling up everything within reasonable buffering threshold. * * Latency reference table for 48khz stereo 16bit: (REC) * * +---------+------------+-----------+------------+ * | Latency | Blockcount | Blocksize | Buffersize | * +---------+------------+-----------+------------+ * | 0 | 512 | 32 | 16384 | * +---------+------------+-----------+------------+ * | 1 | 256 | 64 | 16384 | * +---------+------------+-----------+------------+ * | 2 | 128 | 128 | 16384 | * +---------+------------+-----------+------------+ * | 3 | 64 | 256 | 16384 | * +---------+------------+-----------+------------+ * | 4 | 32 | 512 | 16384 | * +---------+------------+-----------+------------+ * | 5 | 32 | 1024 | 32768 | * +---------+------------+-----------+------------+ * | 6 | 16 | 2048 | 32768 | * +---------+------------+-----------+------------+ * | 7 | 8 | 4096 | 32768 | * +---------+------------+-----------+------------+ * | 8 | 4 | 8192 | 32768 | * +---------+------------+-----------+------------+ * | 9 | 2 | 16384 | 32768 | * +---------+------------+-----------+------------+ * | 10 | 2 | 32768 | 65536 | * +---------+------------+-----------+------------+ * * Calculations for other data rate are entirely based on these reference * tables. For normal operation, Latency 5 seems give the best, well * balanced performance for typical workload. Anything below 5 will * eat up CPU to keep up with increasing context switches because of * shorter buffer space and usually require the application to handle it * aggressively through possibly real time programming technique. * */ #define CHN_LATENCY_PBLKCNT_REF \ {{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}, \ {1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}} #define CHN_LATENCY_PBUFSZ_REF \ {{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16}, \ {11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}} #define CHN_LATENCY_RBLKCNT_REF \ {{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}, \ {9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}} #define CHN_LATENCY_RBUFSZ_REF \ {{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16}, \ {15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}} #define CHN_LATENCY_DATA_REF 192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */ static int chn_calclatency(int dir, int latency, int bps, u_int32_t datarate, u_int32_t max, int *rblksz, int *rblkcnt) { static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = CHN_LATENCY_PBLKCNT_REF; static int pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = CHN_LATENCY_PBUFSZ_REF; static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = CHN_LATENCY_RBLKCNT_REF; static int rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = CHN_LATENCY_RBUFSZ_REF; u_int32_t bufsz; int lprofile, blksz, blkcnt; if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX || bps < 1 || datarate < 1 || !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) { if (rblksz != NULL) *rblksz = CHN_2NDBUFMAXSIZE >> 1; if (rblkcnt != NULL) *rblkcnt = 2; printf("%s(): FAILED dir=%d latency=%d bps=%d " "datarate=%u max=%u\n", __func__, dir, latency, bps, datarate, max); return CHN_2NDBUFMAXSIZE; } lprofile = chn_latency_profile; if (dir == PCMDIR_PLAY) { blkcnt = pblkcnts[lprofile][latency]; bufsz = pbufszs[lprofile][latency]; } else { blkcnt = rblkcnts[lprofile][latency]; bufsz = rbufszs[lprofile][latency]; } bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF, datarate)); if (bufsz > max) bufsz = max; blksz = round_blksz(bufsz >> blkcnt, bps); if (rblksz != NULL) *rblksz = blksz; if (rblkcnt != NULL) *rblkcnt = 1 << blkcnt; return blksz << blkcnt; } static int chn_resizebuf(struct pcm_channel *c, int latency, int blkcnt, int blksz) { struct snd_dbuf *b, *bs, *pb; int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt; int ret; CHN_LOCKASSERT(c); if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) || !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC)) return EINVAL; if (latency == -1) { c->latency = -1; latency = chn_latency; } else if (latency == -2) { latency = c->latency; if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) latency = chn_latency; } else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) return EINVAL; else { c->latency = latency; } bs = c->bufsoft; b = c->bufhard; if (!(blksz == 0 || blkcnt == -1) && (blksz < 16 || blksz < sndbuf_getalign(bs) || blkcnt < 2 || (blksz * blkcnt) > CHN_2NDBUFMAXSIZE)) return EINVAL; chn_calclatency(c->direction, latency, sndbuf_getalign(bs), sndbuf_getalign(bs) * sndbuf_getspd(bs), CHN_2NDBUFMAXSIZE, &sblksz, &sblkcnt); if (blksz == 0 || blkcnt == -1) { if (blkcnt == -1) c->flags &= ~CHN_F_HAS_SIZE; if (c->flags & CHN_F_HAS_SIZE) { blksz = sndbuf_getblksz(bs); blkcnt = sndbuf_getblkcnt(bs); } } else c->flags |= CHN_F_HAS_SIZE; if (c->flags & CHN_F_HAS_SIZE) { /* * The application has requested their own blksz/blkcnt. * Just obey with it, and let them toast alone. We can * clamp it to the nearest latency profile, but that would * defeat the purpose of having custom control. The least * we can do is round it to the nearest ^2 and align it. */ sblksz = round_blksz(blksz, sndbuf_getalign(bs)); sblkcnt = round_pow2(blkcnt); } if (c->parentchannel != NULL) { pb = c->parentchannel->bufsoft; CHN_UNLOCK(c); CHN_LOCK(c->parentchannel); chn_notify(c->parentchannel, CHN_N_BLOCKSIZE); CHN_UNLOCK(c->parentchannel); CHN_LOCK(c); if (c->direction == PCMDIR_PLAY) { limit = (pb != NULL) ? sndbuf_xbytes(sndbuf_getsize(pb), pb, bs) : 0; } else { limit = (pb != NULL) ? sndbuf_xbytes(sndbuf_getblksz(pb), pb, bs) * 2 : 0; } } else { hblkcnt = 2; if (c->flags & CHN_F_HAS_SIZE) { hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b), sndbuf_getalign(b)); hblkcnt = round_pow2(sndbuf_getblkcnt(bs)); } else chn_calclatency(c->direction, latency, sndbuf_getalign(b), sndbuf_getalign(b) * sndbuf_getspd(b), CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt); if ((hblksz << 1) > sndbuf_getmaxsize(b)) hblksz = round_blksz(sndbuf_getmaxsize(b) >> 1, sndbuf_getalign(b)); while ((hblksz * hblkcnt) > sndbuf_getmaxsize(b)) { if (hblkcnt < 4) hblksz >>= 1; else hblkcnt >>= 1; } hblksz -= hblksz % sndbuf_getalign(b); #if 0 hblksz = sndbuf_getmaxsize(b) >> 1; hblksz -= hblksz % sndbuf_getalign(b); hblkcnt = 2; #endif CHN_UNLOCK(c); if (chn_usefrags == 0 || CHANNEL_SETFRAGMENTS(c->methods, c->devinfo, hblksz, hblkcnt) != 0) sndbuf_setblksz(b, CHANNEL_SETBLOCKSIZE(c->methods, c->devinfo, hblksz)); CHN_LOCK(c); if (!CHN_EMPTY(c, children)) { nsblksz = round_blksz( sndbuf_xbytes(sndbuf_getblksz(b), b, bs), sndbuf_getalign(bs)); nsblkcnt = sndbuf_getblkcnt(b); if (c->direction == PCMDIR_PLAY) { do { nsblkcnt--; } while (nsblkcnt >= 2 && nsblksz * nsblkcnt >= sblksz * sblkcnt); nsblkcnt++; } sblksz = nsblksz; sblkcnt = nsblkcnt; limit = 0; } else limit = sndbuf_xbytes(sndbuf_getblksz(b), b, bs) * 2; } if (limit > CHN_2NDBUFMAXSIZE) limit = CHN_2NDBUFMAXSIZE; #if 0 while (limit > 0 && (sblksz * sblkcnt) > limit) { if (sblkcnt < 4) break; sblkcnt >>= 1; } #endif while ((sblksz * sblkcnt) < limit) sblkcnt <<= 1; while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) { if (sblkcnt < 4) sblksz >>= 1; else sblkcnt >>= 1; } sblksz -= sblksz % sndbuf_getalign(bs); if (sndbuf_getblkcnt(bs) != sblkcnt || sndbuf_getblksz(bs) != sblksz || sndbuf_getsize(bs) != (sblkcnt * sblksz)) { ret = sndbuf_remalloc(bs, sblkcnt, sblksz); if (ret != 0) { device_printf(c->dev, "%s(): Failed: %d %d\n", __func__, sblkcnt, sblksz); return ret; } } /* * Interrupt timeout */ c->timeout = ((u_int64_t)hz * sndbuf_getsize(bs)) / ((u_int64_t)sndbuf_getspd(bs) * sndbuf_getalign(bs)); if (c->parentchannel != NULL) c->timeout = min(c->timeout, c->parentchannel->timeout); if (c->timeout < 1) c->timeout = 1; /* * OSSv4 docs: "By default OSS will set the low water level equal * to the fragment size which is optimal in most cases." */ c->lw = sndbuf_getblksz(bs); chn_resetbuf(c); if (snd_verbose > 3) device_printf(c->dev, "%s(): %s (%s) timeout=%u " "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n", __func__, CHN_DIRSTR(c), (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware", c->timeout, sndbuf_getsize(b), sndbuf_getblksz(b), sndbuf_getblkcnt(b), sndbuf_getsize(bs), sndbuf_getblksz(bs), sndbuf_getblkcnt(bs), limit); return 0; } int chn_setlatency(struct pcm_channel *c, int latency) { CHN_LOCKASSERT(c); /* Destroy blksz/blkcnt, enforce latency profile. */ return chn_resizebuf(c, latency, -1, 0); } int chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz) { CHN_LOCKASSERT(c); /* Destroy latency profile, enforce blksz/blkcnt */ return chn_resizebuf(c, -1, blkcnt, blksz); } int chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed) { struct pcmchan_caps *caps; uint32_t hwspeed, delta; int ret; CHN_LOCKASSERT(c); if (speed < 1 || format == 0 || CHN_STARTED(c)) return (EINVAL); c->format = format; c->speed = speed; caps = chn_getcaps(c); hwspeed = speed; RANGE(hwspeed, caps->minspeed, caps->maxspeed); sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo, hwspeed)); hwspeed = sndbuf_getspd(c->bufhard); delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed); if (delta <= feeder_rate_round) c->speed = hwspeed; ret = feeder_chain(c); if (ret == 0) ret = CHANNEL_SETFORMAT(c->methods, c->devinfo, sndbuf_getfmt(c->bufhard)); if (ret == 0) ret = chn_resizebuf(c, -2, 0, 0); return (ret); } int chn_setspeed(struct pcm_channel *c, uint32_t speed) { uint32_t oldformat, oldspeed, format; int ret; #if 0 /* XXX force 48k */ if (c->format & AFMT_PASSTHROUGH) speed = AFMT_PASSTHROUGH_RATE; #endif oldformat = c->format; oldspeed = c->speed; format = oldformat; ret = chn_setparam(c, format, speed); if (ret != 0) { if (snd_verbose > 3) device_printf(c->dev, "%s(): Setting speed %d failed, " "falling back to %d\n", __func__, speed, oldspeed); chn_setparam(c, c->format, oldspeed); } return (ret); } int chn_setformat(struct pcm_channel *c, uint32_t format) { uint32_t oldformat, oldspeed, speed; int ret; /* XXX force stereo */ if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) { format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL, AFMT_PASSTHROUGH_EXTCHANNEL); } oldformat = c->format; oldspeed = c->speed; speed = oldspeed; ret = chn_setparam(c, format, speed); if (ret != 0) { if (snd_verbose > 3) device_printf(c->dev, "%s(): Format change 0x%08x failed, " "falling back to 0x%08x\n", __func__, format, oldformat); chn_setparam(c, oldformat, oldspeed); } return (ret); } void chn_syncstate(struct pcm_channel *c) { struct snddev_info *d; struct snd_mixer *m; d = (c != NULL) ? c->parentsnddev : NULL; m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 : NULL; if (d == NULL || m == NULL) return; CHN_LOCKASSERT(c); if (c->feederflags & (1 << FEEDER_VOLUME)) { uint32_t parent; int vol, pvol, left, right, center; if (c->direction == PCMDIR_PLAY && (d->flags & SD_F_SOFTPCMVOL)) { /* CHN_UNLOCK(c); */ vol = mix_get(m, SOUND_MIXER_PCM); parent = mix_getparent(m, SOUND_MIXER_PCM); if (parent != SOUND_MIXER_NONE) pvol = mix_get(m, parent); else pvol = 100 | (100 << 8); /* CHN_LOCK(c); */ } else { vol = 100 | (100 << 8); pvol = vol; } if (vol == -1) { device_printf(c->dev, "Soft PCM Volume: Failed to read pcm " "default value\n"); vol = 100 | (100 << 8); } if (pvol == -1) { device_printf(c->dev, "Soft PCM Volume: Failed to read parent " "default value\n"); pvol = 100 | (100 << 8); } left = ((vol & 0x7f) * (pvol & 0x7f)) / 100; right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100; center = (left + right) >> 1; chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center); } if (c->feederflags & (1 << FEEDER_EQ)) { struct pcm_feeder *f; int treble, bass, state; /* CHN_UNLOCK(c); */ treble = mix_get(m, SOUND_MIXER_TREBLE); bass = mix_get(m, SOUND_MIXER_BASS); /* CHN_LOCK(c); */ if (treble == -1) treble = 50; else treble = ((treble & 0x7f) + ((treble >> 8) & 0x7f)) >> 1; if (bass == -1) bass = 50; else bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1; f = feeder_find(c, FEEDER_EQ); if (f != NULL) { if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0) device_printf(c->dev, "EQ: Failed to set treble -- %d\n", treble); if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0) device_printf(c->dev, "EQ: Failed to set bass -- %d\n", bass); if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0) device_printf(c->dev, "EQ: Failed to set preamp -- %d\n", d->eqpreamp); if (d->flags & SD_F_EQ_BYPASSED) state = FEEDEQ_BYPASS; else if (d->flags & SD_F_EQ_ENABLED) state = FEEDEQ_ENABLE; else state = FEEDEQ_DISABLE; if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0) device_printf(c->dev, "EQ: Failed to set state -- %d\n", state); } } } int chn_trigger(struct pcm_channel *c, int go) { struct snddev_info *d = c->parentsnddev; int ret; CHN_LOCKASSERT(c); if (!PCMTRIG_COMMON(go)) return (CHANNEL_TRIGGER(c->methods, c->devinfo, go)); if (go == c->trigger) return (0); ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go); if (ret != 0) return (ret); switch (go) { case PCMTRIG_START: if (snd_verbose > 3) device_printf(c->dev, "%s() %s: calling go=0x%08x , " "prev=0x%08x\n", __func__, c->name, go, c->trigger); if (c->trigger != PCMTRIG_START) { c->trigger = go; CHN_UNLOCK(c); PCM_LOCK(d); CHN_INSERT_HEAD(d, c, channels.pcm.busy); PCM_UNLOCK(d); CHN_LOCK(c); chn_syncstate(c); } break; case PCMTRIG_STOP: case PCMTRIG_ABORT: if (snd_verbose > 3) device_printf(c->dev, "%s() %s: calling go=0x%08x , " "prev=0x%08x\n", __func__, c->name, go, c->trigger); if (c->trigger == PCMTRIG_START) { c->trigger = go; CHN_UNLOCK(c); PCM_LOCK(d); CHN_REMOVE(d, c, channels.pcm.busy); PCM_UNLOCK(d); CHN_LOCK(c); } break; default: break; } return (0); } /** * @brief Queries sound driver for sample-aligned hardware buffer pointer index * * This function obtains the hardware pointer location, then aligns it to * the current bytes-per-sample value before returning. (E.g., a channel * running in 16 bit stereo mode would require 4 bytes per sample, so a * hwptr value ranging from 32-35 would be returned as 32.) * * @param c PCM channel context * @returns sample-aligned hardware buffer pointer index */ int chn_getptr(struct pcm_channel *c) { int hwptr; CHN_LOCKASSERT(c); hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0; return (hwptr - (hwptr % sndbuf_getalign(c->bufhard))); } struct pcmchan_caps * chn_getcaps(struct pcm_channel *c) { CHN_LOCKASSERT(c); return CHANNEL_GETCAPS(c->methods, c->devinfo); } u_int32_t chn_getformats(struct pcm_channel *c) { u_int32_t *fmtlist, fmts; int i; fmtlist = chn_getcaps(c)->fmtlist; fmts = 0; for (i = 0; fmtlist[i]; i++) fmts |= fmtlist[i]; /* report software-supported formats */ if (!CHN_BITPERFECT(c) && report_soft_formats) fmts |= AFMT_CONVERTIBLE; return (AFMT_ENCODING(fmts)); } int chn_notify(struct pcm_channel *c, u_int32_t flags) { struct pcm_channel *ch; struct pcmchan_caps *caps; uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate; uint32_t vpflags; int dirty, err, run, nrun; CHN_LOCKASSERT(c); if (CHN_EMPTY(c, children)) return (ENODEV); err = 0; /* * If the hwchan is running, we can't change its rate, format or * blocksize */ run = (CHN_STARTED(c)) ? 1 : 0; if (run) flags &= CHN_N_VOLUME | CHN_N_TRIGGER; if (flags & CHN_N_RATE) { /* * XXX I'll make good use of this someday. * However this is currently being superseded by * the availability of CHN_F_VCHAN_DYNAMIC. */ } if (flags & CHN_N_FORMAT) { /* * XXX I'll make good use of this someday. * However this is currently being superseded by * the availability of CHN_F_VCHAN_DYNAMIC. */ } if (flags & CHN_N_VOLUME) { /* * XXX I'll make good use of this someday, though * soft volume control is currently pretty much * integrated. */ } if (flags & CHN_N_BLOCKSIZE) { /* * Set to default latency profile */ chn_setlatency(c, chn_latency); } if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) { nrun = CHN_EMPTY(c, children.busy) ? 0 : 1; if (nrun && !run) err = chn_start(c, 1); if (!nrun && run) chn_abort(c); flags &= ~CHN_N_TRIGGER; } if (flags & CHN_N_TRIGGER) { if (c->direction == PCMDIR_PLAY) { vchanformat = &c->parentsnddev->pvchanformat; vchanrate = &c->parentsnddev->pvchanrate; } else { vchanformat = &c->parentsnddev->rvchanformat; vchanrate = &c->parentsnddev->rvchanrate; } /* Dynamic Virtual Channel */ if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) { bestformat = *vchanformat; bestspeed = *vchanrate; } else { bestformat = 0; bestspeed = 0; } besthwformat = 0; nrun = 0; caps = chn_getcaps(c); dirty = 0; vpflags = 0; CHN_FOREACH(ch, c, children.busy) { CHN_LOCK(ch); if ((ch->format & AFMT_PASSTHROUGH) && snd_fmtvalid(ch->format, caps->fmtlist)) { bestformat = ch->format; bestspeed = ch->speed; CHN_UNLOCK(ch); vpflags = CHN_F_PASSTHROUGH; nrun++; break; } if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) { if (c->flags & CHN_F_VCHAN_ADAPTIVE) { bestspeed = ch->speed; RANGE(bestspeed, caps->minspeed, caps->maxspeed); besthwformat = snd_fmtbest(ch->format, caps->fmtlist); if (besthwformat != 0) bestformat = besthwformat; } CHN_UNLOCK(ch); vpflags = CHN_F_EXCLUSIVE; nrun++; continue; } if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) || vpflags != 0) { CHN_UNLOCK(ch); nrun++; continue; } if (ch->speed > bestspeed) { bestspeed = ch->speed; RANGE(bestspeed, caps->minspeed, caps->maxspeed); } besthwformat = snd_fmtbest(ch->format, caps->fmtlist); if (!(besthwformat & AFMT_VCHAN)) { CHN_UNLOCK(ch); nrun++; continue; } if (AFMT_CHANNEL(besthwformat) > AFMT_CHANNEL(bestformat)) bestformat = besthwformat; else if (AFMT_CHANNEL(besthwformat) == AFMT_CHANNEL(bestformat) && AFMT_BIT(besthwformat) > AFMT_BIT(bestformat)) bestformat = besthwformat; CHN_UNLOCK(ch); nrun++; } if (bestformat == 0) bestformat = c->format; if (bestspeed == 0) bestspeed = c->speed; if (bestformat != c->format || bestspeed != c->speed) dirty = 1; c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); c->flags |= vpflags; if (nrun && !run) { if (dirty) { bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo, bestspeed); err = chn_reset(c, bestformat, bestspeed); } if (err == 0 && dirty) { CHN_FOREACH(ch, c, children.busy) { CHN_LOCK(ch); if (VCHAN_SYNC_REQUIRED(ch)) vchan_sync(ch); CHN_UNLOCK(ch); } } if (err == 0) { if (dirty) c->flags |= CHN_F_DIRTY; err = chn_start(c, 1); } } if (nrun && run && dirty) { chn_abort(c); bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo, bestspeed); err = chn_reset(c, bestformat, bestspeed); if (err == 0) { CHN_FOREACH(ch, c, children.busy) { CHN_LOCK(ch); if (VCHAN_SYNC_REQUIRED(ch)) vchan_sync(ch); CHN_UNLOCK(ch); } } if (err == 0) { c->flags |= CHN_F_DIRTY; err = chn_start(c, 1); } } if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) && (bestformat & AFMT_VCHAN)) { *vchanformat = bestformat; *vchanrate = bestspeed; } if (!nrun && run) { c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); bestformat = *vchanformat; bestspeed = *vchanrate; chn_abort(c); if (c->format != bestformat || c->speed != bestspeed) chn_reset(c, bestformat, bestspeed); } } return (err); } /** * @brief Fetch array of supported discrete sample rates * * Wrapper for CHANNEL_GETRATES. Please see channel_if.m:getrates() for * detailed information. * * @note If the operation isn't supported, this function will just return 0 * (no rates in the array), and *rates will be set to NULL. Callers * should examine rates @b only if this function returns non-zero. * * @param c pcm channel to examine * @param rates pointer to array of integers; rate table will be recorded here * * @return number of rates in the array pointed to be @c rates */ int chn_getrates(struct pcm_channel *c, int **rates) { KASSERT(rates != NULL, ("rates is null")); CHN_LOCKASSERT(c); return CHANNEL_GETRATES(c->methods, c->devinfo, rates); } /** * @brief Remove channel from a sync group, if there is one. * * This function is initially intended for the following conditions: * - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl) * - Closing a device. (A channel can't be destroyed if it's still in use.) * * @note Before calling this function, the syncgroup list mutex must be * held. (Consider pcm_channel::sm protected by the SG list mutex * whether @c c is locked or not.) * * @param c channel device to be started or closed * @returns If this channel was the only member of a group, the group ID * is returned to the caller so that the caller can release it * via free_unr() after giving up the syncgroup lock. Else it * returns 0. */ int chn_syncdestroy(struct pcm_channel *c) { struct pcmchan_syncmember *sm; struct pcmchan_syncgroup *sg; int sg_id; sg_id = 0; PCM_SG_LOCKASSERT(MA_OWNED); if (c->sm != NULL) { sm = c->sm; sg = sm->parent; c->sm = NULL; KASSERT(sg != NULL, ("syncmember has null parent")); SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link); free(sm, M_DEVBUF); if (SLIST_EMPTY(&sg->members)) { SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link); sg_id = sg->id; free(sg, M_DEVBUF); } } return sg_id; } #ifdef OSSV4_EXPERIMENT int chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak) { CHN_LOCKASSERT(c); return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak); } #endif diff --git a/sys/dev/sound/pcm/channel.h b/sys/dev/sound/pcm/channel.h index 13efbef15d8b..6c6692fa8bc2 100644 --- a/sys/dev/sound/pcm/channel.h +++ b/sys/dev/sound/pcm/channel.h @@ -1,452 +1,453 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2005-2009 Ariff Abdullah * Portions Copyright (c) Ryan Beasley - GSoC 2006 * Copyright (c) 1999 Cameron Grant * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ struct pcmchan_caps { u_int32_t minspeed, maxspeed; u_int32_t *fmtlist; u_int32_t caps; }; struct pcmchan_matrix { int id; uint8_t channels, ext; struct { int type; uint32_t members; } map[SND_CHN_T_MAX + 1]; uint32_t mask; int8_t offset[SND_CHN_T_MAX]; }; /* Forward declarations */ struct pcm_channel; struct pcmchan_syncgroup; struct pcmchan_syncmember; extern struct mtx snd_pcm_syncgroups_mtx; extern SLIST_HEAD(pcm_synclist, pcmchan_syncgroup) snd_pcm_syncgroups; #define PCM_SG_LOCK() mtx_lock(&snd_pcm_syncgroups_mtx) #define PCM_SG_TRYLOCK() mtx_trylock(&snd_pcm_syncgroups_mtx) #define PCM_SG_UNLOCK() mtx_unlock(&snd_pcm_syncgroups_mtx) #define PCM_SG_LOCKASSERT(arg) mtx_assert(&snd_pcm_syncgroups_mtx, arg) /** * @brief Specifies an audio device sync group */ struct pcmchan_syncgroup { SLIST_ENTRY(pcmchan_syncgroup) link; SLIST_HEAD(, pcmchan_syncmember) members; int id; /**< Group identifier; set to address of group. */ }; /** * @brief Specifies a container for members of a sync group */ struct pcmchan_syncmember { SLIST_ENTRY(pcmchan_syncmember) link; struct pcmchan_syncgroup *parent; /**< group head */ struct pcm_channel *ch; }; #define CHN_NAMELEN 32 #define CHN_COMM_UNUSED "" #define CHN_COMM_UNKNOWN "" struct pcm_channel { kobj_t methods; pid_t pid; int refcount; struct pcm_feeder *feeder; u_int32_t align; int latency; u_int32_t speed; u_int32_t format; u_int32_t flags; u_int32_t feederflags; u_int64_t blocks; int direction; unsigned int interrupts, xruns, feedcount; unsigned int timeout; struct snd_dbuf *bufhard, *bufsoft; struct snddev_info *parentsnddev; struct pcm_channel *parentchannel; void *devinfo; device_t dev; int unit; int type; char name[CHN_NAMELEN]; char comm[MAXCOMLEN + 1]; struct mtx *lock; int trigger; /** * For interrupt manipulations. */ struct cv intr_cv; /** * Increment,decrement this around operations that temporarily yield * lock. */ unsigned int inprog; /** * Special channel operations should examine @c inprog after acquiring * lock. If zero, operations may continue. Else, thread should * wait on this cv for previous operation to finish. */ struct cv cv; /** * Low water mark for select()/poll(). * * This is initialized to the channel's fragment size, and will be * overwritten if a new fragment size is set. Users may alter this * value directly with the @c SNDCTL_DSP_LOW_WATER ioctl. */ unsigned int lw; /** * If part of a sync group, this will point to the syncmember * container. */ struct pcmchan_syncmember *sm; #ifdef OSSV4_EXPERIMENT u_int16_t lpeak, rpeak; /**< Peak value from 0-32767. */ #endif struct { SLIST_HEAD(, pcm_channel) head; SLIST_ENTRY(pcm_channel) link; struct { SLIST_HEAD(, pcm_channel) head; SLIST_ENTRY(pcm_channel) link; } busy; } children; struct { struct { SLIST_ENTRY(pcm_channel) link; struct { SLIST_ENTRY(pcm_channel) link; } busy; struct { SLIST_ENTRY(pcm_channel) link; } opened; } pcm; } channels; struct pcmchan_matrix matrix; struct pcmchan_matrix matrix_scratch; int16_t volume[SND_VOL_C_MAX][SND_CHN_T_VOL_MAX]; int8_t muted[SND_VOL_C_MAX][SND_CHN_T_VOL_MAX]; void *data1, *data2; }; #define CHN_HEAD(x, y) &(x)->y.head #define CHN_INIT(x, y) SLIST_INIT(CHN_HEAD(x, y)) #define CHN_LINK(y) y.link #define CHN_EMPTY(x, y) SLIST_EMPTY(CHN_HEAD(x, y)) #define CHN_FIRST(x, y) SLIST_FIRST(CHN_HEAD(x, y)) #define CHN_FOREACH(x, y, z) \ SLIST_FOREACH(x, CHN_HEAD(y, z), CHN_LINK(z)) #define CHN_FOREACH_SAFE(w, x, y, z) \ SLIST_FOREACH_SAFE(w, CHN_HEAD(x, z), CHN_LINK(z), y) #define CHN_INSERT_HEAD(x, y, z) \ SLIST_INSERT_HEAD(CHN_HEAD(x, z), y, CHN_LINK(z)) #define CHN_INSERT_AFTER(x, y, z) \ SLIST_INSERT_AFTER(x, y, CHN_LINK(z)) #define CHN_REMOVE(x, y, z) \ SLIST_REMOVE(CHN_HEAD(x, z), y, pcm_channel, CHN_LINK(z)) #define CHN_INSERT_HEAD_SAFE(x, y, z) do { \ struct pcm_channel *t = NULL; \ CHN_FOREACH(t, x, z) { \ if (t == y) \ break; \ } \ if (t != y) \ CHN_INSERT_HEAD(x, y, z); \ } while (0) #define CHN_INSERT_AFTER_SAFE(w, x, y, z) do { \ struct pcm_channel *t = NULL; \ CHN_FOREACH(t, w, z) { \ if (t == y) \ break; \ } \ if (t != y) \ CHN_INSERT_AFTER(x, y, z); \ } while (0) #define CHN_REMOVE_SAFE(x, y, z) do { \ struct pcm_channel *t = NULL; \ CHN_FOREACH(t, x, z) { \ if (t == y) \ break; \ } \ if (t == y) \ CHN_REMOVE(x, y, z); \ } while (0) #define CHN_INSERT_SORT(w, x, y, z) do { \ struct pcm_channel *t, *a = NULL; \ CHN_FOREACH(t, x, z) { \ if (((y)->type w t->type) || \ (((y)->type == t->type) && ((y)->unit w t->unit))) \ a = t; \ else \ break; \ } \ if (a != NULL) \ CHN_INSERT_AFTER(a, y, z); \ else \ CHN_INSERT_HEAD(x, y, z); \ } while (0) #define CHN_INSERT_SORT_ASCEND(x, y, z) CHN_INSERT_SORT(>, x, y, z) #define CHN_INSERT_SORT_DESCEND(x, y, z) CHN_INSERT_SORT(<, x, y, z) #define CHN_BUF_PARENT(x, y) \ (((x) != NULL && (x)->parentchannel != NULL && \ (x)->parentchannel->bufhard != NULL) ? \ (x)->parentchannel->bufhard : (y)) #define CHN_BROADCAST(x) do { \ if ((x)->cv_waiters != 0) \ cv_broadcastpri(x, PRIBIO); \ } while (0) #include "channel_if.h" int chn_reinit(struct pcm_channel *c); int chn_write(struct pcm_channel *c, struct uio *buf); int chn_read(struct pcm_channel *c, struct uio *buf); u_int32_t chn_start(struct pcm_channel *c, int force); int chn_sync(struct pcm_channel *c, int threshold); int chn_flush(struct pcm_channel *c); int chn_poll(struct pcm_channel *c, int ev, struct thread *td); +char *chn_mkname(char *buf, size_t len, struct pcm_channel *c); struct pcm_channel *chn_init(struct snddev_info *d, struct pcm_channel *parent, kobj_class_t cls, int dir, void *devinfo); void chn_kill(struct pcm_channel *c); void chn_shutdown(struct pcm_channel *c); int chn_release(struct pcm_channel *c); int chn_ref(struct pcm_channel *c, int ref); int chn_reset(struct pcm_channel *c, u_int32_t fmt, u_int32_t spd); int chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right, int center); int chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val); int chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt); int chn_setmute_multi(struct pcm_channel *c, int vc, int mute); int chn_setmute_matrix(struct pcm_channel *c, int vc, int vt, int mute); int chn_getmute_matrix(struct pcm_channel *c, int vc, int vt); void chn_vpc_reset(struct pcm_channel *c, int vc, int force); int chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed); int chn_setspeed(struct pcm_channel *c, uint32_t speed); int chn_setformat(struct pcm_channel *c, uint32_t format); int chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz); int chn_setlatency(struct pcm_channel *c, int latency); void chn_syncstate(struct pcm_channel *c); int chn_trigger(struct pcm_channel *c, int go); int chn_getptr(struct pcm_channel *c); struct pcmchan_caps *chn_getcaps(struct pcm_channel *c); u_int32_t chn_getformats(struct pcm_channel *c); struct pcmchan_matrix *chn_getmatrix(struct pcm_channel *); int chn_setmatrix(struct pcm_channel *, struct pcmchan_matrix *); int chn_oss_getorder(struct pcm_channel *, unsigned long long *); int chn_oss_setorder(struct pcm_channel *, unsigned long long *); int chn_oss_getmask(struct pcm_channel *, uint32_t *); void chn_resetbuf(struct pcm_channel *c); void chn_intr_locked(struct pcm_channel *c); void chn_intr(struct pcm_channel *c); int chn_abort(struct pcm_channel *c); int chn_notify(struct pcm_channel *c, u_int32_t flags); int chn_getrates(struct pcm_channel *c, int **rates); int chn_syncdestroy(struct pcm_channel *c); #define CHN_SETVOLUME(...) chn_setvolume_matrix(__VA_ARGS__) #if defined(SND_DIAGNOSTIC) || defined(INVARIANTS) #define CHN_GETVOLUME(...) chn_getvolume_matrix(__VA_ARGS__) #else #define CHN_GETVOLUME(x, y, z) ((x)->volume[y][z]) #endif #define CHN_GETMUTE(x, y, z) ((x)->muted[y][z]) #ifdef OSSV4_EXPERIMENT int chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak); #endif #define CHN_LOCKOWNED(c) mtx_owned((c)->lock) #define CHN_LOCK(c) mtx_lock((c)->lock) #define CHN_UNLOCK(c) mtx_unlock((c)->lock) #define CHN_TRYLOCK(c) mtx_trylock((c)->lock) #define CHN_LOCKASSERT(c) mtx_assert((c)->lock, MA_OWNED) #define CHN_UNLOCKASSERT(c) mtx_assert((c)->lock, MA_NOTOWNED) int snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist); uint32_t snd_str2afmt(const char *); uint32_t snd_afmt2str(uint32_t, char *, size_t); #define AFMTSTR_LEN 16 extern int chn_latency; extern int chn_latency_profile; extern int report_soft_formats; extern int report_soft_matrix; enum { PCMDIR_PLAY = 1, PCMDIR_PLAY_VIRTUAL, PCMDIR_REC, PCMDIR_REC_VIRTUAL, }; #define PCMTRIG_START 1 #define PCMTRIG_EMLDMAWR 2 #define PCMTRIG_EMLDMARD 3 #define PCMTRIG_STOP 0 #define PCMTRIG_ABORT -1 #define PCMTRIG_COMMON(x) ((x) == PCMTRIG_START || \ (x) == PCMTRIG_STOP || \ (x) == PCMTRIG_ABORT) #define CHN_F_CLOSING 0x00000001 /* a pending close */ #define CHN_F_ABORTING 0x00000002 /* a pending abort */ #define CHN_F_RUNNING 0x00000004 /* dma is running */ #define CHN_F_TRIGGERED 0x00000008 #define CHN_F_NOTRIGGER 0x00000010 #define CHN_F_SLEEPING 0x00000020 #define CHN_F_NBIO 0x00000040 /* do non-blocking i/o */ #define CHN_F_MMAP 0x00000080 /* has been mmap()ed */ #define CHN_F_BUSY 0x00000100 /* has been opened */ #define CHN_F_DIRTY 0x00000200 /* need re-config */ #define CHN_F_DEAD 0x00000400 /* too many errors, dead, mdk */ #define CHN_F_SILENCE 0x00000800 /* silence, nil, null, yada */ #define CHN_F_HAS_SIZE 0x00001000 /* user set block size */ #define CHN_F_HAS_VCHAN 0x00002000 /* vchan master */ #define CHN_F_VCHAN_PASSTHROUGH 0x00004000 /* digital ac3/dts passthrough */ #define CHN_F_VCHAN_ADAPTIVE 0x00008000 /* adaptive format/rate selection */ #define CHN_F_VCHAN_DYNAMIC (CHN_F_VCHAN_PASSTHROUGH | CHN_F_VCHAN_ADAPTIVE) #define CHN_F_VIRTUAL 0x10000000 /* not backed by hardware */ #define CHN_F_BITPERFECT 0x20000000 /* un-cooked, Heh.. */ #define CHN_F_PASSTHROUGH 0x40000000 /* passthrough re-config */ #define CHN_F_EXCLUSIVE 0x80000000 /* exclusive access */ #define CHN_F_BITS "\020" \ "\001CLOSING" \ "\002ABORTING" \ "\003RUNNING" \ "\004TRIGGERED" \ "\005NOTRIGGER" \ "\006SLEEPING" \ "\007NBIO" \ "\010MMAP" \ "\011BUSY" \ "\012DIRTY" \ "\013DEAD" \ "\014SILENCE" \ "\015HAS_SIZE" \ "\016HAS_VCHAN" \ "\017VCHAN_PASSTHROUGH" \ "\020VCHAN_ADAPTIVE" \ "\035VIRTUAL" \ "\036BITPERFECT" \ "\037PASSTHROUGH" \ "\040EXCLUSIVE" #define CHN_F_RESET (CHN_F_BUSY | CHN_F_DEAD | \ CHN_F_VIRTUAL | CHN_F_HAS_VCHAN | \ CHN_F_VCHAN_DYNAMIC | \ CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE) #define CHN_F_MMAP_INVALID (CHN_F_DEAD | CHN_F_RUNNING) #define CHN_N_RATE 0x00000001 #define CHN_N_FORMAT 0x00000002 #define CHN_N_VOLUME 0x00000004 #define CHN_N_BLOCKSIZE 0x00000008 #define CHN_N_TRIGGER 0x00000010 #define CHN_LATENCY_MIN 0 #define CHN_LATENCY_MAX 10 #define CHN_LATENCY_DEFAULT 2 /* 21.3ms total buffering */ #define CHN_POLICY_MIN CHN_LATENCY_MIN #define CHN_POLICY_MAX CHN_LATENCY_MAX #define CHN_POLICY_DEFAULT CHN_LATENCY_DEFAULT #define CHN_LATENCY_PROFILE_MIN 0 #define CHN_LATENCY_PROFILE_MAX 1 #define CHN_LATENCY_PROFILE_DEFAULT CHN_LATENCY_PROFILE_MAX #define CHN_STARTED(c) ((c)->flags & CHN_F_TRIGGERED) #define CHN_STOPPED(c) (!CHN_STARTED(c)) #define CHN_DIRSTR(c) (((c)->direction == PCMDIR_PLAY) ? \ "PCMDIR_PLAY" : "PCMDIR_REC") #define CHN_BITPERFECT(c) ((c)->flags & CHN_F_BITPERFECT) #define CHN_PASSTHROUGH(c) ((c)->flags & CHN_F_PASSTHROUGH) #define CHN_TIMEOUT 5 #define CHN_TIMEOUT_MIN 1 #define CHN_TIMEOUT_MAX 10 /* * This should be large enough to hold all pcm data between * tsleeps in chn_{read,write} at the highest sample rate. * (which is usually 48kHz * 16bit * stereo = 192000 bytes/sec) */ #define CHN_2NDBUFBLKSIZE (2 * 1024) /* The total number of blocks per secondary bufhard. */ #define CHN_2NDBUFBLKNUM (32) /* The size of a whole secondary bufhard. */ #define CHN_2NDBUFMAXSIZE (131072) #define CHANNEL_DECLARE(name) static DEFINE_CLASS(name, name ## _methods, sizeof(struct kobj)) diff --git a/sys/dev/sound/pcm/dsp.c b/sys/dev/sound/pcm/dsp.c index 92bfb4d58b86..7d80a82d31c8 100644 --- a/sys/dev/sound/pcm/dsp.c +++ b/sys/dev/sound/pcm/dsp.c @@ -1,3035 +1,2995 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2005-2009 Ariff Abdullah * Portions Copyright (c) Ryan Beasley - GSoC 2006 * Copyright (c) 1999 Cameron Grant * All rights reserved. * Copyright (c) 2024 The FreeBSD Foundation * * Portions of this software were developed by Christos Margiolis * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include #include #include #include #include #include #include struct dsp_cdevpriv { struct snddev_info *sc; struct pcm_channel *rdch; struct pcm_channel *wrch; struct pcm_channel *volch; }; static int dsp_mmap_allow_prot_exec = 0; SYSCTL_INT(_hw_snd, OID_AUTO, compat_linux_mmap, CTLFLAG_RWTUN, &dsp_mmap_allow_prot_exec, 0, "linux mmap compatibility (-1=force disable 0=auto 1=force enable)"); static int dsp_basename_clone = 1; SYSCTL_INT(_hw_snd, OID_AUTO, basename_clone, CTLFLAG_RWTUN, &dsp_basename_clone, 0, "DSP basename cloning (0: Disable; 1: Enabled)"); #define DSP_REGISTERED(x) (PCM_REGISTERED(x) && (x)->dsp_dev != NULL) #define OLDPCM_IOCTL static d_open_t dsp_open; static d_read_t dsp_read; static d_write_t dsp_write; static d_ioctl_t dsp_ioctl; static d_poll_t dsp_poll; static d_mmap_t dsp_mmap; static d_mmap_single_t dsp_mmap_single; struct cdevsw dsp_cdevsw = { .d_version = D_VERSION, .d_open = dsp_open, .d_read = dsp_read, .d_write = dsp_write, .d_ioctl = dsp_ioctl, .d_poll = dsp_poll, .d_mmap = dsp_mmap, .d_mmap_single = dsp_mmap_single, .d_name = "dsp", }; static eventhandler_tag dsp_ehtag = NULL; static int dsp_oss_syncgroup(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_syncgroup *group); static int dsp_oss_syncstart(int sg_id); static int dsp_oss_policy(struct pcm_channel *wrch, struct pcm_channel *rdch, int policy); static int dsp_oss_cookedmode(struct pcm_channel *wrch, struct pcm_channel *rdch, int enabled); static int dsp_oss_getchnorder(struct pcm_channel *wrch, struct pcm_channel *rdch, unsigned long long *map); static int dsp_oss_setchnorder(struct pcm_channel *wrch, struct pcm_channel *rdch, unsigned long long *map); static int dsp_oss_getchannelmask(struct pcm_channel *wrch, struct pcm_channel *rdch, int *mask); #ifdef OSSV4_EXPERIMENT static int dsp_oss_getlabel(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_label_t *label); static int dsp_oss_setlabel(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_label_t *label); static int dsp_oss_getsong(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_longname_t *song); static int dsp_oss_setsong(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_longname_t *song); static int dsp_oss_setname(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_longname_t *name); #endif int dsp_make_dev(device_t dev) { struct make_dev_args devargs; struct snddev_info *sc; int err, unit; sc = device_get_softc(dev); unit = device_get_unit(dev); make_dev_args_init(&devargs); devargs.mda_devsw = &dsp_cdevsw; devargs.mda_uid = UID_ROOT; devargs.mda_gid = GID_WHEEL; devargs.mda_mode = 0666; devargs.mda_si_drv1 = sc; err = make_dev_s(&devargs, &sc->dsp_dev, "dsp%d", unit); if (err != 0) { device_printf(dev, "failed to create dsp%d: error %d", unit, err); return (ENXIO); } return (0); } void dsp_destroy_dev(device_t dev) { struct snddev_info *d; d = device_get_softc(dev); destroy_dev_sched(d->dsp_dev); } static void dsp_lock_chans(struct dsp_cdevpriv *priv, uint32_t prio) { if (priv->rdch != NULL && (prio & SD_F_PRIO_RD)) CHN_LOCK(priv->rdch); if (priv->wrch != NULL && (prio & SD_F_PRIO_WR)) CHN_LOCK(priv->wrch); } static void dsp_unlock_chans(struct dsp_cdevpriv *priv, uint32_t prio) { if (priv->rdch != NULL && (prio & SD_F_PRIO_RD)) CHN_UNLOCK(priv->rdch); if (priv->wrch != NULL && (prio & SD_F_PRIO_WR)) CHN_UNLOCK(priv->wrch); } #define DSP_F_VALID(x) ((x) & (FREAD | FWRITE)) #define DSP_F_DUPLEX(x) (((x) & (FREAD | FWRITE)) == (FREAD | FWRITE)) #define DSP_F_SIMPLEX(x) (!DSP_F_DUPLEX(x)) #define DSP_F_READ(x) ((x) & FREAD) #define DSP_F_WRITE(x) ((x) & FWRITE) -static const struct { - int type; - char *name; - char *sep; - char *alias; -} dsp_cdevs[] = { - { SND_DEV_DSP, "dsp", ".", NULL }, - { SND_DEV_DSPHW_PLAY, "dsp", ".play.", NULL }, - { SND_DEV_DSPHW_VPLAY, "dsp", ".virtual_play.", NULL }, - { SND_DEV_DSPHW_REC, "dsp", ".record.", NULL }, - { SND_DEV_DSPHW_VREC, "dsp", ".virtual_record.", NULL }, - /* Low priority, OSSv4 aliases. */ - { SND_DEV_DSP, "dsp_ac3", ".", "dsp" }, - { SND_DEV_DSP, "dsp_mmap", ".", "dsp" }, - { SND_DEV_DSP, "dsp_multich", ".", "dsp" }, - { SND_DEV_DSP, "dsp_spdifout", ".", "dsp" }, - { SND_DEV_DSP, "dsp_spdifin", ".", "dsp" }, -}; - static void dsp_close(void *data) { struct dsp_cdevpriv *priv = data; struct pcm_channel *rdch, *wrch, *volch; struct snddev_info *d; int sg_ids, rdref, wdref; if (priv == NULL) return; d = priv->sc; /* At this point pcm_unregister() will destroy all channels anyway. */ if (!DSP_REGISTERED(d) || PCM_DETACHING(d)) goto skip; PCM_GIANT_ENTER(d); PCM_LOCK(d); PCM_WAIT(d); PCM_ACQUIRE(d); rdch = priv->rdch; wrch = priv->wrch; volch = priv->volch; rdref = -1; wdref = -1; if (volch != NULL) { if (volch == rdch) rdref--; else if (volch == wrch) wdref--; else { CHN_LOCK(volch); chn_ref(volch, -1); CHN_UNLOCK(volch); } } if (rdch != NULL) CHN_REMOVE(d, rdch, channels.pcm.opened); if (wrch != NULL) CHN_REMOVE(d, wrch, channels.pcm.opened); if (rdch != NULL || wrch != NULL) { PCM_UNLOCK(d); if (rdch != NULL) { /* * The channel itself need not be locked because: * a) Adding a channel to a syncgroup happens only * in dsp_ioctl(), which cannot run concurrently * to dsp_close(). * b) The syncmember pointer (sm) is protected by * the global syncgroup list lock. * c) A channel can't just disappear, invalidating * pointers, unless it's closed/dereferenced * first. */ PCM_SG_LOCK(); sg_ids = chn_syncdestroy(rdch); PCM_SG_UNLOCK(); if (sg_ids != 0) free_unr(pcmsg_unrhdr, sg_ids); CHN_LOCK(rdch); chn_ref(rdch, rdref); chn_abort(rdch); /* won't sleep */ rdch->flags &= ~(CHN_F_RUNNING | CHN_F_MMAP | CHN_F_DEAD | CHN_F_EXCLUSIVE); chn_reset(rdch, 0, 0); chn_release(rdch); } if (wrch != NULL) { /* * Please see block above. */ PCM_SG_LOCK(); sg_ids = chn_syncdestroy(wrch); PCM_SG_UNLOCK(); if (sg_ids != 0) free_unr(pcmsg_unrhdr, sg_ids); CHN_LOCK(wrch); chn_ref(wrch, wdref); chn_flush(wrch); /* may sleep */ wrch->flags &= ~(CHN_F_RUNNING | CHN_F_MMAP | CHN_F_DEAD | CHN_F_EXCLUSIVE); chn_reset(wrch, 0, 0); chn_release(wrch); } PCM_LOCK(d); } PCM_RELEASE(d); PCM_UNLOCK(d); PCM_GIANT_LEAVE(d); skip: free(priv, M_DEVBUF); priv = NULL; } static int dsp_open(struct cdev *i_dev, int flags, int mode, struct thread *td) { struct dsp_cdevpriv *priv; struct pcm_channel *rdch, *wrch, *ch; struct snddev_info *d; uint32_t fmt, spd; int error, rderror, wrerror, dir; /* Kind of impossible.. */ if (i_dev == NULL || td == NULL) return (ENODEV); d = i_dev->si_drv1; if (!DSP_REGISTERED(d) || PCM_DETACHING(d)) return (EBADF); priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO); priv->sc = d; priv->rdch = NULL; priv->wrch = NULL; priv->volch = NULL; error = devfs_set_cdevpriv(priv, dsp_close); if (error != 0) return (error); PCM_GIANT_ENTER(d); /* Lock snddev so nobody else can monkey with it. */ PCM_LOCK(d); PCM_WAIT(d); error = 0; if (!DSP_F_VALID(flags)) error = EINVAL; else if (!DSP_F_DUPLEX(flags) && ((DSP_F_READ(flags) && d->reccount == 0) || (DSP_F_WRITE(flags) && d->playcount == 0))) error = ENOTSUP; if (pcm_getflags(d->dev) & SD_F_SIMPLEX) { if (DSP_F_DUPLEX(flags)) { /* * If no channels are opened yet, and we request * DUPLEX, limit to playback only, otherwise open one * channel in a direction that already exists. */ if (CHN_EMPTY(d, channels.pcm.opened)) { if (d->playcount > 0) flags &= ~FREAD; else if (d->reccount > 0) flags &= ~FWRITE; } else { ch = CHN_FIRST(d, channels.pcm.opened); if (ch->direction == PCMDIR_PLAY) flags &= ~FREAD; else if (ch->direction == PCMDIR_REC) flags &= ~FWRITE; } } else if (!CHN_EMPTY(d, channels.pcm.opened)) { /* * If we requested SIMPLEX, make sure we do not open a * channel in the opposite direction. */ ch = CHN_FIRST(d, channels.pcm.opened); dir = DSP_F_READ(flags) ? PCMDIR_REC : PCMDIR_PLAY; if (ch->direction != dir) error = ENOTSUP; } } if (error != 0) { PCM_UNLOCK(d); PCM_GIANT_EXIT(d); return (error); } /* * That is just enough. Acquire and unlock pcm lock so * the other will just have to wait until we finish doing * everything. */ PCM_ACQUIRE(d); PCM_UNLOCK(d); fmt = SND_FORMAT(AFMT_U8, 1, 0); spd = DSP_DEFAULT_SPEED; rdch = NULL; wrch = NULL; rderror = 0; wrerror = 0; if (DSP_F_READ(flags)) { /* open for read */ rderror = pcm_chnalloc(d, &rdch, PCMDIR_REC, td->td_proc->p_pid, td->td_proc->p_comm); if (rderror == 0 && chn_reset(rdch, fmt, spd) != 0) rderror = ENXIO; if (rderror != 0) { if (rdch != NULL) chn_release(rdch); if (!DSP_F_DUPLEX(flags)) { PCM_RELEASE_QUICK(d); PCM_GIANT_EXIT(d); return (rderror); } rdch = NULL; } else { if (flags & O_NONBLOCK) rdch->flags |= CHN_F_NBIO; if (flags & O_EXCL) rdch->flags |= CHN_F_EXCLUSIVE; chn_ref(rdch, 1); chn_vpc_reset(rdch, SND_VOL_C_PCM, 0); CHN_UNLOCK(rdch); } } if (DSP_F_WRITE(flags)) { /* open for write */ wrerror = pcm_chnalloc(d, &wrch, PCMDIR_PLAY, td->td_proc->p_pid, td->td_proc->p_comm); if (wrerror == 0 && chn_reset(wrch, fmt, spd) != 0) wrerror = ENXIO; if (wrerror != 0) { if (wrch != NULL) chn_release(wrch); if (!DSP_F_DUPLEX(flags)) { if (rdch != NULL) { /* * Lock, deref and release previously * created record channel */ CHN_LOCK(rdch); chn_ref(rdch, -1); chn_release(rdch); } PCM_RELEASE_QUICK(d); PCM_GIANT_EXIT(d); return (wrerror); } wrch = NULL; } else { if (flags & O_NONBLOCK) wrch->flags |= CHN_F_NBIO; if (flags & O_EXCL) wrch->flags |= CHN_F_EXCLUSIVE; chn_ref(wrch, 1); chn_vpc_reset(wrch, SND_VOL_C_PCM, 0); CHN_UNLOCK(wrch); } } PCM_LOCK(d); if (wrch == NULL && rdch == NULL) { PCM_RELEASE(d); PCM_UNLOCK(d); PCM_GIANT_EXIT(d); if (wrerror != 0) return (wrerror); if (rderror != 0) return (rderror); return (EINVAL); } if (rdch != NULL) CHN_INSERT_HEAD(d, rdch, channels.pcm.opened); if (wrch != NULL) CHN_INSERT_HEAD(d, wrch, channels.pcm.opened); priv->rdch = rdch; priv->wrch = wrch; PCM_RELEASE(d); PCM_UNLOCK(d); PCM_GIANT_LEAVE(d); return (0); } static __inline int dsp_io_ops(struct dsp_cdevpriv *priv, struct uio *buf) { struct snddev_info *d; struct pcm_channel **ch; int (*chn_io)(struct pcm_channel *, struct uio *); int prio, ret; pid_t runpid; KASSERT(buf != NULL && (buf->uio_rw == UIO_READ || buf->uio_rw == UIO_WRITE), ("%s(): io train wreck!", __func__)); d = priv->sc; if (!DSP_REGISTERED(d) || PCM_DETACHING(d)) return (EBADF); PCM_GIANT_ENTER(d); switch (buf->uio_rw) { case UIO_READ: prio = SD_F_PRIO_RD; ch = &priv->rdch; chn_io = chn_read; break; case UIO_WRITE: prio = SD_F_PRIO_WR; ch = &priv->wrch; chn_io = chn_write; break; default: panic("invalid/corrupted uio direction: %d", buf->uio_rw); break; } runpid = buf->uio_td->td_proc->p_pid; dsp_lock_chans(priv, prio); if (*ch == NULL || !((*ch)->flags & CHN_F_BUSY)) { if (priv->rdch != NULL || priv->wrch != NULL) dsp_unlock_chans(priv, prio); PCM_GIANT_EXIT(d); return (EBADF); } if (((*ch)->flags & (CHN_F_MMAP | CHN_F_DEAD)) || (((*ch)->flags & CHN_F_RUNNING) && (*ch)->pid != runpid)) { dsp_unlock_chans(priv, prio); PCM_GIANT_EXIT(d); return (EINVAL); } else if (!((*ch)->flags & CHN_F_RUNNING)) { (*ch)->flags |= CHN_F_RUNNING; (*ch)->pid = runpid; } /* * chn_read/write must give up channel lock in order to copy bytes * from/to userland, so up the "in progress" counter to make sure * someone else doesn't come along and muss up the buffer. */ ++(*ch)->inprog; ret = chn_io(*ch, buf); --(*ch)->inprog; CHN_BROADCAST(&(*ch)->cv); dsp_unlock_chans(priv, prio); PCM_GIANT_LEAVE(d); return (ret); } static int dsp_read(struct cdev *i_dev, struct uio *buf, int flag) { struct dsp_cdevpriv *priv; int err; if ((err = devfs_get_cdevpriv((void **)&priv)) != 0) return (err); return (dsp_io_ops(priv, buf)); } static int dsp_write(struct cdev *i_dev, struct uio *buf, int flag) { struct dsp_cdevpriv *priv; int err; if ((err = devfs_get_cdevpriv((void **)&priv)) != 0) return (err); return (dsp_io_ops(priv, buf)); } static int dsp_ioctl_channel(struct dsp_cdevpriv *priv, struct pcm_channel *volch, u_long cmd, caddr_t arg) { struct snddev_info *d; struct pcm_channel *rdch, *wrch; int j, left, right, center, mute; d = priv->sc; if (!PCM_REGISTERED(d) || !(pcm_getflags(d->dev) & SD_F_VPC)) return (-1); PCM_UNLOCKASSERT(d); j = cmd & 0xff; rdch = priv->rdch; wrch = priv->wrch; /* No specific channel, look into cache */ if (volch == NULL) volch = priv->volch; /* Look harder */ if (volch == NULL) { if (j == SOUND_MIXER_RECLEV && rdch != NULL) volch = rdch; else if (j == SOUND_MIXER_PCM && wrch != NULL) volch = wrch; } /* Final validation */ if (volch == NULL) return (EINVAL); CHN_LOCK(volch); if (!(volch->feederflags & (1 << FEEDER_VOLUME))) { CHN_UNLOCK(volch); return (EINVAL); } switch (cmd & ~0xff) { case MIXER_WRITE(0): switch (j) { case SOUND_MIXER_MUTE: if (volch->direction == PCMDIR_REC) { chn_setmute_multi(volch, SND_VOL_C_PCM, (*(int *)arg & SOUND_MASK_RECLEV) != 0); } else { chn_setmute_multi(volch, SND_VOL_C_PCM, (*(int *)arg & SOUND_MASK_PCM) != 0); } break; case SOUND_MIXER_PCM: if (volch->direction != PCMDIR_PLAY) break; left = *(int *)arg & 0x7f; right = ((*(int *)arg) >> 8) & 0x7f; center = (left + right) >> 1; chn_setvolume_multi(volch, SND_VOL_C_PCM, left, right, center); break; case SOUND_MIXER_RECLEV: if (volch->direction != PCMDIR_REC) break; left = *(int *)arg & 0x7f; right = ((*(int *)arg) >> 8) & 0x7f; center = (left + right) >> 1; chn_setvolume_multi(volch, SND_VOL_C_PCM, left, right, center); break; default: /* ignore all other mixer writes */ break; } break; case MIXER_READ(0): switch (j) { case SOUND_MIXER_MUTE: mute = CHN_GETMUTE(volch, SND_VOL_C_PCM, SND_CHN_T_FL) || CHN_GETMUTE(volch, SND_VOL_C_PCM, SND_CHN_T_FR); if (volch->direction == PCMDIR_REC) { *(int *)arg = mute << SOUND_MIXER_RECLEV; } else { *(int *)arg = mute << SOUND_MIXER_PCM; } break; case SOUND_MIXER_PCM: if (volch->direction != PCMDIR_PLAY) break; *(int *)arg = CHN_GETVOLUME(volch, SND_VOL_C_PCM, SND_CHN_T_FL); *(int *)arg |= CHN_GETVOLUME(volch, SND_VOL_C_PCM, SND_CHN_T_FR) << 8; break; case SOUND_MIXER_RECLEV: if (volch->direction != PCMDIR_REC) break; *(int *)arg = CHN_GETVOLUME(volch, SND_VOL_C_PCM, SND_CHN_T_FL); *(int *)arg |= CHN_GETVOLUME(volch, SND_VOL_C_PCM, SND_CHN_T_FR) << 8; break; case SOUND_MIXER_DEVMASK: case SOUND_MIXER_CAPS: case SOUND_MIXER_STEREODEVS: if (volch->direction == PCMDIR_REC) *(int *)arg = SOUND_MASK_RECLEV; else *(int *)arg = SOUND_MASK_PCM; break; default: *(int *)arg = 0; break; } break; default: break; } CHN_UNLOCK(volch); return (0); } static int dsp_ioctl(struct cdev *i_dev, u_long cmd, caddr_t arg, int mode, struct thread *td) { struct dsp_cdevpriv *priv; struct pcm_channel *chn, *rdch, *wrch; struct snddev_info *d; u_long xcmd; int *arg_i, ret, tmp, err; if ((err = devfs_get_cdevpriv((void **)&priv)) != 0) return (err); d = priv->sc; if (!DSP_REGISTERED(d) || PCM_DETACHING(d)) return (EBADF); PCM_GIANT_ENTER(d); arg_i = (int *)arg; ret = 0; xcmd = 0; chn = NULL; if (IOCGROUP(cmd) == 'M') { if (cmd == OSS_GETVERSION) { *arg_i = SOUND_VERSION; PCM_GIANT_EXIT(d); return (0); } ret = dsp_ioctl_channel(priv, priv->volch, cmd, arg); if (ret != -1) { PCM_GIANT_EXIT(d); return (ret); } if (d->mixer_dev != NULL) { PCM_ACQUIRE_QUICK(d); ret = mixer_ioctl_cmd(d->mixer_dev, cmd, arg, -1, td, MIXER_CMD_DIRECT); PCM_RELEASE_QUICK(d); } else ret = EBADF; PCM_GIANT_EXIT(d); return (ret); } /* * Certain ioctls may be made on any type of device (audio, mixer, * and MIDI). Handle those special cases here. */ if (IOCGROUP(cmd) == 'X') { PCM_ACQUIRE_QUICK(d); switch(cmd) { case SNDCTL_SYSINFO: sound_oss_sysinfo((oss_sysinfo *)arg); break; case SNDCTL_CARDINFO: ret = sound_oss_card_info((oss_card_info *)arg); break; case SNDCTL_AUDIOINFO: ret = dsp_oss_audioinfo(i_dev, (oss_audioinfo *)arg, false); break; case SNDCTL_AUDIOINFO_EX: ret = dsp_oss_audioinfo(i_dev, (oss_audioinfo *)arg, true); break; case SNDCTL_ENGINEINFO: ret = dsp_oss_engineinfo(i_dev, (oss_audioinfo *)arg); break; case SNDCTL_MIXERINFO: ret = mixer_oss_mixerinfo(i_dev, (oss_mixerinfo *)arg); break; default: ret = EINVAL; } PCM_RELEASE_QUICK(d); PCM_GIANT_EXIT(d); return (ret); } rdch = priv->rdch; wrch = priv->wrch; if (wrch != NULL && (wrch->flags & CHN_F_DEAD)) wrch = NULL; if (rdch != NULL && (rdch->flags & CHN_F_DEAD)) rdch = NULL; if (wrch == NULL && rdch == NULL) { PCM_GIANT_EXIT(d); return (EINVAL); } switch(cmd) { #ifdef OLDPCM_IOCTL /* * we start with the new ioctl interface. */ case AIONWRITE: /* how many bytes can write ? */ if (wrch) { CHN_LOCK(wrch); /* if (wrch && wrch->bufhard.dl) while (chn_wrfeed(wrch) == 0); */ *arg_i = sndbuf_getfree(wrch->bufsoft); CHN_UNLOCK(wrch); } else { *arg_i = 0; ret = EINVAL; } break; case AIOSSIZE: /* set the current blocksize */ { struct snd_size *p = (struct snd_size *)arg; p->play_size = 0; p->rec_size = 0; PCM_ACQUIRE_QUICK(d); if (wrch) { CHN_LOCK(wrch); chn_setblocksize(wrch, 2, p->play_size); p->play_size = sndbuf_getblksz(wrch->bufsoft); CHN_UNLOCK(wrch); } if (rdch) { CHN_LOCK(rdch); chn_setblocksize(rdch, 2, p->rec_size); p->rec_size = sndbuf_getblksz(rdch->bufsoft); CHN_UNLOCK(rdch); } PCM_RELEASE_QUICK(d); } break; case AIOGSIZE: /* get the current blocksize */ { struct snd_size *p = (struct snd_size *)arg; if (wrch) { CHN_LOCK(wrch); p->play_size = sndbuf_getblksz(wrch->bufsoft); CHN_UNLOCK(wrch); } if (rdch) { CHN_LOCK(rdch); p->rec_size = sndbuf_getblksz(rdch->bufsoft); CHN_UNLOCK(rdch); } } break; case AIOSFMT: case AIOGFMT: { snd_chan_param *p = (snd_chan_param *)arg; if (cmd == AIOSFMT && ((p->play_format != 0 && p->play_rate == 0) || (p->rec_format != 0 && p->rec_rate == 0))) { ret = EINVAL; break; } PCM_ACQUIRE_QUICK(d); if (wrch) { CHN_LOCK(wrch); if (cmd == AIOSFMT && p->play_format != 0) { chn_setformat(wrch, SND_FORMAT(p->play_format, AFMT_CHANNEL(wrch->format), AFMT_EXTCHANNEL(wrch->format))); chn_setspeed(wrch, p->play_rate); } p->play_rate = wrch->speed; p->play_format = AFMT_ENCODING(wrch->format); CHN_UNLOCK(wrch); } else { p->play_rate = 0; p->play_format = 0; } if (rdch) { CHN_LOCK(rdch); if (cmd == AIOSFMT && p->rec_format != 0) { chn_setformat(rdch, SND_FORMAT(p->rec_format, AFMT_CHANNEL(rdch->format), AFMT_EXTCHANNEL(rdch->format))); chn_setspeed(rdch, p->rec_rate); } p->rec_rate = rdch->speed; p->rec_format = AFMT_ENCODING(rdch->format); CHN_UNLOCK(rdch); } else { p->rec_rate = 0; p->rec_format = 0; } PCM_RELEASE_QUICK(d); } break; case AIOGCAP: /* get capabilities */ { snd_capabilities *p = (snd_capabilities *)arg; struct pcmchan_caps *pcaps = NULL, *rcaps = NULL; struct cdev *pdev; PCM_LOCK(d); if (rdch) { CHN_LOCK(rdch); rcaps = chn_getcaps(rdch); } if (wrch) { CHN_LOCK(wrch); pcaps = chn_getcaps(wrch); } p->rate_min = max(rcaps? rcaps->minspeed : 0, pcaps? pcaps->minspeed : 0); p->rate_max = min(rcaps? rcaps->maxspeed : 1000000, pcaps? pcaps->maxspeed : 1000000); p->bufsize = min(rdch? sndbuf_getsize(rdch->bufsoft) : 1000000, wrch? sndbuf_getsize(wrch->bufsoft) : 1000000); /* XXX bad on sb16 */ p->formats = (rdch? chn_getformats(rdch) : 0xffffffff) & (wrch? chn_getformats(wrch) : 0xffffffff); if (rdch && wrch) { p->formats |= (pcm_getflags(d->dev) & SD_F_SIMPLEX) ? 0 : AFMT_FULLDUPLEX; } pdev = d->mixer_dev; p->mixers = 1; /* default: one mixer */ p->inputs = pdev->si_drv1? mix_getdevs(pdev->si_drv1) : 0; p->left = p->right = 100; if (wrch) CHN_UNLOCK(wrch); if (rdch) CHN_UNLOCK(rdch); PCM_UNLOCK(d); } break; case AIOSTOP: if (*arg_i == AIOSYNC_PLAY && wrch) { CHN_LOCK(wrch); *arg_i = chn_abort(wrch); CHN_UNLOCK(wrch); } else if (*arg_i == AIOSYNC_CAPTURE && rdch) { CHN_LOCK(rdch); *arg_i = chn_abort(rdch); CHN_UNLOCK(rdch); } else { printf("AIOSTOP: bad channel 0x%x\n", *arg_i); *arg_i = 0; } break; case AIOSYNC: printf("AIOSYNC chan 0x%03lx pos %lu unimplemented\n", ((snd_sync_parm *)arg)->chan, ((snd_sync_parm *)arg)->pos); break; #endif /* * here follow the standard ioctls (filio.h etc.) */ case FIONREAD: /* get # bytes to read */ if (rdch) { CHN_LOCK(rdch); /* if (rdch && rdch->bufhard.dl) while (chn_rdfeed(rdch) == 0); */ *arg_i = sndbuf_getready(rdch->bufsoft); CHN_UNLOCK(rdch); } else { *arg_i = 0; ret = EINVAL; } break; case FIOASYNC: /*set/clear async i/o */ DEB( printf("FIOASYNC\n") ; ) break; case SNDCTL_DSP_NONBLOCK: /* set non-blocking i/o */ case FIONBIO: /* set/clear non-blocking i/o */ if (rdch) { CHN_LOCK(rdch); if (cmd == SNDCTL_DSP_NONBLOCK || *arg_i) rdch->flags |= CHN_F_NBIO; else rdch->flags &= ~CHN_F_NBIO; CHN_UNLOCK(rdch); } if (wrch) { CHN_LOCK(wrch); if (cmd == SNDCTL_DSP_NONBLOCK || *arg_i) wrch->flags |= CHN_F_NBIO; else wrch->flags &= ~CHN_F_NBIO; CHN_UNLOCK(wrch); } break; /* * Finally, here is the linux-compatible ioctl interface */ #define THE_REAL_SNDCTL_DSP_GETBLKSIZE _IOWR('P', 4, int) case THE_REAL_SNDCTL_DSP_GETBLKSIZE: case SNDCTL_DSP_GETBLKSIZE: chn = wrch ? wrch : rdch; if (chn) { CHN_LOCK(chn); *arg_i = sndbuf_getblksz(chn->bufsoft); CHN_UNLOCK(chn); } else { *arg_i = 0; ret = EINVAL; } break; case SNDCTL_DSP_SETBLKSIZE: RANGE(*arg_i, 16, 65536); PCM_ACQUIRE_QUICK(d); if (wrch) { CHN_LOCK(wrch); chn_setblocksize(wrch, 2, *arg_i); CHN_UNLOCK(wrch); } if (rdch) { CHN_LOCK(rdch); chn_setblocksize(rdch, 2, *arg_i); CHN_UNLOCK(rdch); } PCM_RELEASE_QUICK(d); break; case SNDCTL_DSP_RESET: DEB(printf("dsp reset\n")); if (wrch) { CHN_LOCK(wrch); chn_abort(wrch); chn_resetbuf(wrch); CHN_UNLOCK(wrch); } if (rdch) { CHN_LOCK(rdch); chn_abort(rdch); chn_resetbuf(rdch); CHN_UNLOCK(rdch); } break; case SNDCTL_DSP_SYNC: DEB(printf("dsp sync\n")); /* chn_sync may sleep */ if (wrch) { CHN_LOCK(wrch); chn_sync(wrch, 0); CHN_UNLOCK(wrch); } break; case SNDCTL_DSP_SPEED: /* chn_setspeed may sleep */ tmp = 0; PCM_ACQUIRE_QUICK(d); if (wrch) { CHN_LOCK(wrch); ret = chn_setspeed(wrch, *arg_i); tmp = wrch->speed; CHN_UNLOCK(wrch); } if (rdch && ret == 0) { CHN_LOCK(rdch); ret = chn_setspeed(rdch, *arg_i); if (tmp == 0) tmp = rdch->speed; CHN_UNLOCK(rdch); } PCM_RELEASE_QUICK(d); *arg_i = tmp; break; case SOUND_PCM_READ_RATE: chn = wrch ? wrch : rdch; if (chn) { CHN_LOCK(chn); *arg_i = chn->speed; CHN_UNLOCK(chn); } else { *arg_i = 0; ret = EINVAL; } break; case SNDCTL_DSP_STEREO: tmp = -1; *arg_i = (*arg_i)? 2 : 1; PCM_ACQUIRE_QUICK(d); if (wrch) { CHN_LOCK(wrch); ret = chn_setformat(wrch, SND_FORMAT(wrch->format, *arg_i, 0)); tmp = (AFMT_CHANNEL(wrch->format) > 1)? 1 : 0; CHN_UNLOCK(wrch); } if (rdch && ret == 0) { CHN_LOCK(rdch); ret = chn_setformat(rdch, SND_FORMAT(rdch->format, *arg_i, 0)); if (tmp == -1) tmp = (AFMT_CHANNEL(rdch->format) > 1)? 1 : 0; CHN_UNLOCK(rdch); } PCM_RELEASE_QUICK(d); *arg_i = tmp; break; case SOUND_PCM_WRITE_CHANNELS: /* case SNDCTL_DSP_CHANNELS: ( == SOUND_PCM_WRITE_CHANNELS) */ if (*arg_i < 0 || *arg_i > AFMT_CHANNEL_MAX) { *arg_i = 0; ret = EINVAL; break; } if (*arg_i != 0) { uint32_t ext = 0; tmp = 0; /* * Map channel number to surround sound formats. * Devices that need bitperfect mode to operate * (e.g. more than SND_CHN_MAX channels) are not * subject to any mapping. */ if (!(pcm_getflags(d->dev) & SD_F_BITPERFECT)) { struct pcmchan_matrix *m; if (*arg_i > SND_CHN_MAX) *arg_i = SND_CHN_MAX; m = feeder_matrix_default_channel_map(*arg_i); if (m != NULL) ext = m->ext; } PCM_ACQUIRE_QUICK(d); if (wrch) { CHN_LOCK(wrch); ret = chn_setformat(wrch, SND_FORMAT(wrch->format, *arg_i, ext)); tmp = AFMT_CHANNEL(wrch->format); CHN_UNLOCK(wrch); } if (rdch && ret == 0) { CHN_LOCK(rdch); ret = chn_setformat(rdch, SND_FORMAT(rdch->format, *arg_i, ext)); if (tmp == 0) tmp = AFMT_CHANNEL(rdch->format); CHN_UNLOCK(rdch); } PCM_RELEASE_QUICK(d); *arg_i = tmp; } else { chn = wrch ? wrch : rdch; CHN_LOCK(chn); *arg_i = AFMT_CHANNEL(chn->format); CHN_UNLOCK(chn); } break; case SOUND_PCM_READ_CHANNELS: chn = wrch ? wrch : rdch; if (chn) { CHN_LOCK(chn); *arg_i = AFMT_CHANNEL(chn->format); CHN_UNLOCK(chn); } else { *arg_i = 0; ret = EINVAL; } break; case SNDCTL_DSP_GETFMTS: /* returns a mask of supported fmts */ chn = wrch ? wrch : rdch; if (chn) { CHN_LOCK(chn); *arg_i = chn_getformats(chn); CHN_UNLOCK(chn); } else { *arg_i = 0; ret = EINVAL; } break; case SNDCTL_DSP_SETFMT: /* sets _one_ format */ if (*arg_i != AFMT_QUERY) { tmp = 0; PCM_ACQUIRE_QUICK(d); if (wrch) { CHN_LOCK(wrch); ret = chn_setformat(wrch, SND_FORMAT(*arg_i, AFMT_CHANNEL(wrch->format), AFMT_EXTCHANNEL(wrch->format))); tmp = wrch->format; CHN_UNLOCK(wrch); } if (rdch && ret == 0) { CHN_LOCK(rdch); ret = chn_setformat(rdch, SND_FORMAT(*arg_i, AFMT_CHANNEL(rdch->format), AFMT_EXTCHANNEL(rdch->format))); if (tmp == 0) tmp = rdch->format; CHN_UNLOCK(rdch); } PCM_RELEASE_QUICK(d); *arg_i = AFMT_ENCODING(tmp); } else { chn = wrch ? wrch : rdch; CHN_LOCK(chn); *arg_i = AFMT_ENCODING(chn->format); CHN_UNLOCK(chn); } break; case SNDCTL_DSP_SETFRAGMENT: DEB(printf("SNDCTL_DSP_SETFRAGMENT 0x%08x\n", *(int *)arg)); { uint32_t fragln = (*arg_i) & 0x0000ffff; uint32_t maxfrags = ((*arg_i) & 0xffff0000) >> 16; uint32_t fragsz; uint32_t r_maxfrags, r_fragsz; RANGE(fragln, 4, 16); fragsz = 1 << fragln; if (maxfrags == 0) maxfrags = CHN_2NDBUFMAXSIZE / fragsz; if (maxfrags < 2) maxfrags = 2; if (maxfrags * fragsz > CHN_2NDBUFMAXSIZE) maxfrags = CHN_2NDBUFMAXSIZE / fragsz; DEB(printf("SNDCTL_DSP_SETFRAGMENT %d frags, %d sz\n", maxfrags, fragsz)); PCM_ACQUIRE_QUICK(d); if (rdch) { CHN_LOCK(rdch); ret = chn_setblocksize(rdch, maxfrags, fragsz); r_maxfrags = sndbuf_getblkcnt(rdch->bufsoft); r_fragsz = sndbuf_getblksz(rdch->bufsoft); CHN_UNLOCK(rdch); } else { r_maxfrags = maxfrags; r_fragsz = fragsz; } if (wrch && ret == 0) { CHN_LOCK(wrch); ret = chn_setblocksize(wrch, maxfrags, fragsz); maxfrags = sndbuf_getblkcnt(wrch->bufsoft); fragsz = sndbuf_getblksz(wrch->bufsoft); CHN_UNLOCK(wrch); } else { /* use whatever came from the read channel */ maxfrags = r_maxfrags; fragsz = r_fragsz; } PCM_RELEASE_QUICK(d); fragln = 0; while (fragsz > 1) { fragln++; fragsz >>= 1; } *arg_i = (maxfrags << 16) | fragln; } break; case SNDCTL_DSP_GETISPACE: /* return the size of data available in the input queue */ { audio_buf_info *a = (audio_buf_info *)arg; if (rdch) { struct snd_dbuf *bs = rdch->bufsoft; CHN_LOCK(rdch); a->bytes = sndbuf_getready(bs); a->fragments = a->bytes / sndbuf_getblksz(bs); a->fragstotal = sndbuf_getblkcnt(bs); a->fragsize = sndbuf_getblksz(bs); CHN_UNLOCK(rdch); } else ret = EINVAL; } break; case SNDCTL_DSP_GETOSPACE: /* return space available in the output queue */ { audio_buf_info *a = (audio_buf_info *)arg; if (wrch) { struct snd_dbuf *bs = wrch->bufsoft; CHN_LOCK(wrch); /* XXX abusive DMA update: chn_wrupdate(wrch); */ a->bytes = sndbuf_getfree(bs); a->fragments = a->bytes / sndbuf_getblksz(bs); a->fragstotal = sndbuf_getblkcnt(bs); a->fragsize = sndbuf_getblksz(bs); CHN_UNLOCK(wrch); } else ret = EINVAL; } break; case SNDCTL_DSP_GETIPTR: { count_info *a = (count_info *)arg; if (rdch) { struct snd_dbuf *bs = rdch->bufsoft; CHN_LOCK(rdch); /* XXX abusive DMA update: chn_rdupdate(rdch); */ a->bytes = sndbuf_gettotal(bs); a->blocks = sndbuf_getblocks(bs) - rdch->blocks; a->ptr = sndbuf_getfreeptr(bs); rdch->blocks = sndbuf_getblocks(bs); CHN_UNLOCK(rdch); } else ret = EINVAL; } break; case SNDCTL_DSP_GETOPTR: { count_info *a = (count_info *)arg; if (wrch) { struct snd_dbuf *bs = wrch->bufsoft; CHN_LOCK(wrch); /* XXX abusive DMA update: chn_wrupdate(wrch); */ a->bytes = sndbuf_gettotal(bs); a->blocks = sndbuf_getblocks(bs) - wrch->blocks; a->ptr = sndbuf_getreadyptr(bs); wrch->blocks = sndbuf_getblocks(bs); CHN_UNLOCK(wrch); } else ret = EINVAL; } break; case SNDCTL_DSP_GETCAPS: PCM_LOCK(d); *arg_i = PCM_CAP_REALTIME | PCM_CAP_MMAP | PCM_CAP_TRIGGER; if (rdch && wrch && !(pcm_getflags(d->dev) & SD_F_SIMPLEX)) *arg_i |= PCM_CAP_DUPLEX; if (rdch && (rdch->flags & CHN_F_VIRTUAL) != 0) *arg_i |= PCM_CAP_VIRTUAL; if (wrch && (wrch->flags & CHN_F_VIRTUAL) != 0) *arg_i |= PCM_CAP_VIRTUAL; PCM_UNLOCK(d); break; case SOUND_PCM_READ_BITS: chn = wrch ? wrch : rdch; if (chn) { CHN_LOCK(chn); if (chn->format & AFMT_8BIT) *arg_i = 8; else if (chn->format & AFMT_16BIT) *arg_i = 16; else if (chn->format & AFMT_24BIT) *arg_i = 24; else if (chn->format & AFMT_32BIT) *arg_i = 32; else ret = EINVAL; CHN_UNLOCK(chn); } else { *arg_i = 0; ret = EINVAL; } break; case SNDCTL_DSP_SETTRIGGER: if (rdch) { CHN_LOCK(rdch); rdch->flags &= ~CHN_F_NOTRIGGER; if (*arg_i & PCM_ENABLE_INPUT) chn_start(rdch, 1); else { chn_abort(rdch); chn_resetbuf(rdch); rdch->flags |= CHN_F_NOTRIGGER; } CHN_UNLOCK(rdch); } if (wrch) { CHN_LOCK(wrch); wrch->flags &= ~CHN_F_NOTRIGGER; if (*arg_i & PCM_ENABLE_OUTPUT) chn_start(wrch, 1); else { chn_abort(wrch); chn_resetbuf(wrch); wrch->flags |= CHN_F_NOTRIGGER; } CHN_UNLOCK(wrch); } break; case SNDCTL_DSP_GETTRIGGER: *arg_i = 0; if (wrch) { CHN_LOCK(wrch); if (wrch->flags & CHN_F_TRIGGERED) *arg_i |= PCM_ENABLE_OUTPUT; CHN_UNLOCK(wrch); } if (rdch) { CHN_LOCK(rdch); if (rdch->flags & CHN_F_TRIGGERED) *arg_i |= PCM_ENABLE_INPUT; CHN_UNLOCK(rdch); } break; case SNDCTL_DSP_GETODELAY: if (wrch) { struct snd_dbuf *bs = wrch->bufsoft; CHN_LOCK(wrch); /* XXX abusive DMA update: chn_wrupdate(wrch); */ *arg_i = sndbuf_getready(bs); CHN_UNLOCK(wrch); } else ret = EINVAL; break; case SNDCTL_DSP_POST: if (wrch) { CHN_LOCK(wrch); wrch->flags &= ~CHN_F_NOTRIGGER; chn_start(wrch, 1); CHN_UNLOCK(wrch); } break; case SNDCTL_DSP_SETDUPLEX: /* * switch to full-duplex mode if card is in half-duplex * mode and is able to work in full-duplex mode */ PCM_LOCK(d); if (rdch && wrch && (pcm_getflags(d->dev) & SD_F_SIMPLEX)) pcm_setflags(d->dev, pcm_getflags(d->dev)^SD_F_SIMPLEX); PCM_UNLOCK(d); break; /* * The following four ioctls are simple wrappers around mixer_ioctl * with no further processing. xcmd is short for "translated * command". */ case SNDCTL_DSP_GETRECVOL: if (xcmd == 0) { xcmd = SOUND_MIXER_READ_RECLEV; chn = rdch; } /* FALLTHROUGH */ case SNDCTL_DSP_SETRECVOL: if (xcmd == 0) { xcmd = SOUND_MIXER_WRITE_RECLEV; chn = rdch; } /* FALLTHROUGH */ case SNDCTL_DSP_GETPLAYVOL: if (xcmd == 0) { xcmd = SOUND_MIXER_READ_PCM; chn = wrch; } /* FALLTHROUGH */ case SNDCTL_DSP_SETPLAYVOL: if (xcmd == 0) { xcmd = SOUND_MIXER_WRITE_PCM; chn = wrch; } ret = dsp_ioctl_channel(priv, chn, xcmd, arg); if (ret != -1) { PCM_GIANT_EXIT(d); return (ret); } if (d->mixer_dev != NULL) { PCM_ACQUIRE_QUICK(d); ret = mixer_ioctl_cmd(d->mixer_dev, xcmd, arg, -1, td, MIXER_CMD_DIRECT); PCM_RELEASE_QUICK(d); } else ret = ENOTSUP; break; case SNDCTL_DSP_GET_RECSRC_NAMES: case SNDCTL_DSP_GET_RECSRC: case SNDCTL_DSP_SET_RECSRC: if (d->mixer_dev != NULL) { PCM_ACQUIRE_QUICK(d); ret = mixer_ioctl_cmd(d->mixer_dev, cmd, arg, -1, td, MIXER_CMD_DIRECT); PCM_RELEASE_QUICK(d); } else ret = ENOTSUP; break; /* * The following 3 ioctls aren't very useful at the moment. For * now, only a single channel is associated with a cdev (/dev/dspN * instance), so there's only a single output routing to use (i.e., * the wrch bound to this cdev). */ case SNDCTL_DSP_GET_PLAYTGT_NAMES: { oss_mixer_enuminfo *ei; ei = (oss_mixer_enuminfo *)arg; ei->dev = 0; ei->ctrl = 0; ei->version = 0; /* static for now */ ei->strindex[0] = 0; if (wrch != NULL) { ei->nvalues = 1; strlcpy(ei->strings, wrch->name, sizeof(ei->strings)); } else { ei->nvalues = 0; ei->strings[0] = '\0'; } } break; case SNDCTL_DSP_GET_PLAYTGT: case SNDCTL_DSP_SET_PLAYTGT: /* yes, they are the same for now */ /* * Re: SET_PLAYTGT * OSSv4: "The value that was accepted by the device will * be returned back in the variable pointed by the * argument." */ if (wrch != NULL) *arg_i = 0; else ret = EINVAL; break; case SNDCTL_DSP_SILENCE: /* * Flush the software (pre-feed) buffer, but try to minimize playback * interruption. (I.e., record unplayed samples with intent to * restore by SNDCTL_DSP_SKIP.) Intended for application "pause" * functionality. */ if (wrch == NULL) ret = EINVAL; else { struct snd_dbuf *bs; CHN_LOCK(wrch); while (wrch->inprog != 0) cv_wait(&wrch->cv, wrch->lock); bs = wrch->bufsoft; if ((bs->shadbuf != NULL) && (sndbuf_getready(bs) > 0)) { bs->sl = sndbuf_getready(bs); sndbuf_dispose(bs, bs->shadbuf, sndbuf_getready(bs)); sndbuf_fillsilence(bs); chn_start(wrch, 0); } CHN_UNLOCK(wrch); } break; case SNDCTL_DSP_SKIP: /* * OSSv4 docs: "This ioctl call discards all unplayed samples in the * playback buffer by moving the current write position immediately * before the point where the device is currently reading the samples." */ if (wrch == NULL) ret = EINVAL; else { struct snd_dbuf *bs; CHN_LOCK(wrch); while (wrch->inprog != 0) cv_wait(&wrch->cv, wrch->lock); bs = wrch->bufsoft; if ((bs->shadbuf != NULL) && (bs->sl > 0)) { sndbuf_softreset(bs); sndbuf_acquire(bs, bs->shadbuf, bs->sl); bs->sl = 0; chn_start(wrch, 0); } CHN_UNLOCK(wrch); } break; case SNDCTL_DSP_CURRENT_OPTR: case SNDCTL_DSP_CURRENT_IPTR: /** * @note Changing formats resets the buffer counters, which differs * from the 4Front drivers. However, I don't expect this to be * much of a problem. * * @note In a test where @c CURRENT_OPTR is called immediately after write * returns, this driver is about 32K samples behind whereas * 4Front's is about 8K samples behind. Should determine source * of discrepancy, even if only out of curiosity. * * @todo Actually test SNDCTL_DSP_CURRENT_IPTR. */ chn = (cmd == SNDCTL_DSP_CURRENT_OPTR) ? wrch : rdch; if (chn == NULL) ret = EINVAL; else { struct snd_dbuf *bs; /* int tmp; */ oss_count_t *oc = (oss_count_t *)arg; CHN_LOCK(chn); bs = chn->bufsoft; #if 0 tmp = (sndbuf_getsize(b) + chn_getptr(chn) - sndbuf_gethwptr(b)) % sndbuf_getsize(b); oc->samples = (sndbuf_gettotal(b) + tmp) / sndbuf_getalign(b); oc->fifo_samples = (sndbuf_getready(b) - tmp) / sndbuf_getalign(b); #else oc->samples = sndbuf_gettotal(bs) / sndbuf_getalign(bs); oc->fifo_samples = sndbuf_getready(bs) / sndbuf_getalign(bs); #endif CHN_UNLOCK(chn); } break; case SNDCTL_DSP_HALT_OUTPUT: case SNDCTL_DSP_HALT_INPUT: chn = (cmd == SNDCTL_DSP_HALT_OUTPUT) ? wrch : rdch; if (chn == NULL) ret = EINVAL; else { CHN_LOCK(chn); chn_abort(chn); CHN_UNLOCK(chn); } break; case SNDCTL_DSP_LOW_WATER: /* * Set the number of bytes required to attract attention by * select/poll. */ if (wrch != NULL) { CHN_LOCK(wrch); wrch->lw = (*arg_i > 1) ? *arg_i : 1; CHN_UNLOCK(wrch); } if (rdch != NULL) { CHN_LOCK(rdch); rdch->lw = (*arg_i > 1) ? *arg_i : 1; CHN_UNLOCK(rdch); } break; case SNDCTL_DSP_GETERROR: /* * OSSv4 docs: "All errors and counters will automatically be * cleared to zeroes after the call so each call will return only * the errors that occurred after the previous invocation. ... The * play_underruns and rec_overrun fields are the only useful fields * returned by OSS 4.0." */ { audio_errinfo *ei = (audio_errinfo *)arg; bzero((void *)ei, sizeof(*ei)); if (wrch != NULL) { CHN_LOCK(wrch); ei->play_underruns = wrch->xruns; wrch->xruns = 0; CHN_UNLOCK(wrch); } if (rdch != NULL) { CHN_LOCK(rdch); ei->rec_overruns = rdch->xruns; rdch->xruns = 0; CHN_UNLOCK(rdch); } } break; case SNDCTL_DSP_SYNCGROUP: PCM_ACQUIRE_QUICK(d); ret = dsp_oss_syncgroup(wrch, rdch, (oss_syncgroup *)arg); PCM_RELEASE_QUICK(d); break; case SNDCTL_DSP_SYNCSTART: PCM_ACQUIRE_QUICK(d); ret = dsp_oss_syncstart(*arg_i); PCM_RELEASE_QUICK(d); break; case SNDCTL_DSP_POLICY: PCM_ACQUIRE_QUICK(d); ret = dsp_oss_policy(wrch, rdch, *arg_i); PCM_RELEASE_QUICK(d); break; case SNDCTL_DSP_COOKEDMODE: PCM_ACQUIRE_QUICK(d); if (!(pcm_getflags(d->dev) & SD_F_BITPERFECT)) ret = dsp_oss_cookedmode(wrch, rdch, *arg_i); PCM_RELEASE_QUICK(d); break; case SNDCTL_DSP_GET_CHNORDER: PCM_ACQUIRE_QUICK(d); ret = dsp_oss_getchnorder(wrch, rdch, (unsigned long long *)arg); PCM_RELEASE_QUICK(d); break; case SNDCTL_DSP_SET_CHNORDER: PCM_ACQUIRE_QUICK(d); ret = dsp_oss_setchnorder(wrch, rdch, (unsigned long long *)arg); PCM_RELEASE_QUICK(d); break; case SNDCTL_DSP_GETCHANNELMASK: /* XXX vlc */ PCM_ACQUIRE_QUICK(d); ret = dsp_oss_getchannelmask(wrch, rdch, (int *)arg); PCM_RELEASE_QUICK(d); break; case SNDCTL_DSP_BIND_CHANNEL: /* XXX what?!? */ ret = EINVAL; break; #ifdef OSSV4_EXPERIMENT /* * XXX The following ioctls are not yet supported and just return * EINVAL. */ case SNDCTL_DSP_GETOPEAKS: case SNDCTL_DSP_GETIPEAKS: chn = (cmd == SNDCTL_DSP_GETOPEAKS) ? wrch : rdch; if (chn == NULL) ret = EINVAL; else { oss_peaks_t *op = (oss_peaks_t *)arg; int lpeak, rpeak; CHN_LOCK(chn); ret = chn_getpeaks(chn, &lpeak, &rpeak); if (ret == -1) ret = EINVAL; else { (*op)[0] = lpeak; (*op)[1] = rpeak; } CHN_UNLOCK(chn); } break; /* * XXX Once implemented, revisit this for proper cv protection * (if necessary). */ case SNDCTL_GETLABEL: ret = dsp_oss_getlabel(wrch, rdch, (oss_label_t *)arg); break; case SNDCTL_SETLABEL: ret = dsp_oss_setlabel(wrch, rdch, (oss_label_t *)arg); break; case SNDCTL_GETSONG: ret = dsp_oss_getsong(wrch, rdch, (oss_longname_t *)arg); break; case SNDCTL_SETSONG: ret = dsp_oss_setsong(wrch, rdch, (oss_longname_t *)arg); break; case SNDCTL_SETNAME: ret = dsp_oss_setname(wrch, rdch, (oss_longname_t *)arg); break; #if 0 /** * @note The S/PDIF interface ioctls, @c SNDCTL_DSP_READCTL and * @c SNDCTL_DSP_WRITECTL have been omitted at the suggestion of * 4Front Technologies. */ case SNDCTL_DSP_READCTL: case SNDCTL_DSP_WRITECTL: ret = EINVAL; break; #endif /* !0 (explicitly omitted ioctls) */ #endif /* !OSSV4_EXPERIMENT */ case SNDCTL_DSP_MAPINBUF: case SNDCTL_DSP_MAPOUTBUF: case SNDCTL_DSP_SETSYNCRO: /* undocumented */ case SNDCTL_DSP_SUBDIVIDE: case SOUND_PCM_WRITE_FILTER: case SOUND_PCM_READ_FILTER: /* dunno what these do, don't sound important */ default: DEB(printf("default ioctl fn 0x%08lx fail\n", cmd)); ret = EINVAL; break; } PCM_GIANT_LEAVE(d); return (ret); } static int dsp_poll(struct cdev *i_dev, int events, struct thread *td) { struct dsp_cdevpriv *priv; struct snddev_info *d; struct pcm_channel *wrch, *rdch; int ret, e, err; if ((err = devfs_get_cdevpriv((void **)&priv)) != 0) return (err); d = priv->sc; if (!DSP_REGISTERED(d) || PCM_DETACHING(d)) { /* XXX many clients don't understand POLLNVAL */ return (events & (POLLHUP | POLLPRI | POLLIN | POLLRDNORM | POLLOUT | POLLWRNORM)); } PCM_GIANT_ENTER(d); ret = 0; dsp_lock_chans(priv, SD_F_PRIO_RD | SD_F_PRIO_WR); wrch = priv->wrch; rdch = priv->rdch; if (wrch != NULL && !(wrch->flags & CHN_F_DEAD)) { e = (events & (POLLOUT | POLLWRNORM)); if (e) ret |= chn_poll(wrch, e, td); } if (rdch != NULL && !(rdch->flags & CHN_F_DEAD)) { e = (events & (POLLIN | POLLRDNORM)); if (e) ret |= chn_poll(rdch, e, td); } dsp_unlock_chans(priv, SD_F_PRIO_RD | SD_F_PRIO_WR); PCM_GIANT_LEAVE(d); return (ret); } static int dsp_mmap(struct cdev *i_dev, vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, vm_memattr_t *memattr) { /* * offset is in range due to checks in dsp_mmap_single(). * XXX memattr is not honored. */ *paddr = vtophys(offset); return (0); } static int dsp_mmap_single(struct cdev *i_dev, vm_ooffset_t *offset, vm_size_t size, struct vm_object **object, int nprot) { struct dsp_cdevpriv *priv; struct snddev_info *d; struct pcm_channel *wrch, *rdch, *c; int err; /* * Reject PROT_EXEC by default. It just doesn't makes sense. * Unfortunately, we have to give up this one due to linux_mmap * changes. * * https://lists.freebsd.org/pipermail/freebsd-emulation/2007-June/003698.html * */ #ifdef SV_ABI_LINUX if ((nprot & PROT_EXEC) && (dsp_mmap_allow_prot_exec < 0 || (dsp_mmap_allow_prot_exec == 0 && SV_CURPROC_ABI() != SV_ABI_LINUX))) #else if ((nprot & PROT_EXEC) && dsp_mmap_allow_prot_exec < 1) #endif return (EINVAL); /* * PROT_READ (alone) selects the input buffer. * PROT_WRITE (alone) selects the output buffer. * PROT_WRITE|PROT_READ together select the output buffer. */ if ((nprot & (PROT_READ | PROT_WRITE)) == 0) return (EINVAL); if ((err = devfs_get_cdevpriv((void **)&priv)) != 0) return (err); d = priv->sc; if (!DSP_REGISTERED(d) || PCM_DETACHING(d)) return (EINVAL); PCM_GIANT_ENTER(d); dsp_lock_chans(priv, SD_F_PRIO_RD | SD_F_PRIO_WR); wrch = priv->wrch; rdch = priv->rdch; c = ((nprot & PROT_WRITE) != 0) ? wrch : rdch; if (c == NULL || (c->flags & CHN_F_MMAP_INVALID) || (*offset + size) > sndbuf_getallocsize(c->bufsoft) || (wrch != NULL && (wrch->flags & CHN_F_MMAP_INVALID)) || (rdch != NULL && (rdch->flags & CHN_F_MMAP_INVALID))) { dsp_unlock_chans(priv, SD_F_PRIO_RD | SD_F_PRIO_WR); PCM_GIANT_EXIT(d); return (EINVAL); } if (wrch != NULL) wrch->flags |= CHN_F_MMAP; if (rdch != NULL) rdch->flags |= CHN_F_MMAP; *offset = (uintptr_t)sndbuf_getbufofs(c->bufsoft, *offset); dsp_unlock_chans(priv, SD_F_PRIO_RD | SD_F_PRIO_WR); *object = vm_pager_allocate(OBJT_DEVICE, i_dev, size, nprot, *offset, curthread->td_ucred); PCM_GIANT_LEAVE(d); if (*object == NULL) return (EINVAL); return (0); } +static const char *dsp_aliases[] = { + "dsp_ac3", + "dsp_mmap", + "dsp_multich", + "dsp_spdifout", + "dsp_spdifin", +}; + static void dsp_clone(void *arg, struct ucred *cred, char *name, int namelen, struct cdev **dev) { struct snddev_info *d; size_t i; if (*dev != NULL) return; if (strcmp(name, "dsp") == 0 && dsp_basename_clone) goto found; - for (i = 0; i < nitems(dsp_cdevs); i++) { - if (dsp_cdevs[i].alias != NULL && - strcmp(name, dsp_cdevs[i].name) == 0) + for (i = 0; i < nitems(dsp_aliases); i++) { + if (strcmp(name, dsp_aliases[i]) == 0) goto found; } return; found: bus_topo_lock(); d = devclass_get_softc(pcm_devclass, snd_unit); /* * If we only have a single soundcard attached and we detach it right * before entering dsp_clone(), there is a chance pcm_unregister() will * have returned already, meaning it will have set snd_unit to -1, and * thus devclass_get_softc() will return NULL here. */ if (DSP_REGISTERED(d)) { *dev = d->dsp_dev; dev_ref(*dev); } bus_topo_unlock(); } static void dsp_sysinit(void *p) { if (dsp_ehtag != NULL) return; dsp_ehtag = EVENTHANDLER_REGISTER(dev_clone, dsp_clone, 0, 1000); } static void dsp_sysuninit(void *p) { if (dsp_ehtag == NULL) return; EVENTHANDLER_DEREGISTER(dev_clone, dsp_ehtag); dsp_ehtag = NULL; } SYSINIT(dsp_sysinit, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, dsp_sysinit, NULL); SYSUNINIT(dsp_sysuninit, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, dsp_sysuninit, NULL); -char * -dsp_unit2name(char *buf, size_t len, struct pcm_channel *ch) -{ - size_t i; - - KASSERT(buf != NULL && len != 0, - ("bogus buf=%p len=%ju", buf, (uintmax_t)len)); - - for (i = 0; i < nitems(dsp_cdevs); i++) { - if (ch->type != dsp_cdevs[i].type || dsp_cdevs[i].alias != NULL) - continue; - snprintf(buf, len, "%s%d%s%d", - dsp_cdevs[i].name, device_get_unit(ch->dev), - dsp_cdevs[i].sep, ch->unit); - return (buf); - } - - return (NULL); -} - static void dsp_oss_audioinfo_unavail(oss_audioinfo *ai, int unit) { bzero(ai, sizeof(*ai)); ai->dev = unit; snprintf(ai->name, sizeof(ai->name), "pcm%d (unavailable)", unit); ai->pid = -1; strlcpy(ai->cmd, CHN_COMM_UNUSED, sizeof(ai->cmd)); ai->card_number = unit; ai->port_number = unit; ai->mixer_dev = -1; ai->legacy_device = unit; } /** * @brief Handler for SNDCTL_AUDIOINFO. * * Gathers information about the audio device specified in ai->dev. If * ai->dev == -1, then this function gathers information about the current * device. If the call comes in on a non-audio device and ai->dev == -1, * return EINVAL. * * This routine is supposed to go practically straight to the hardware, * getting capabilities directly from the sound card driver, side-stepping * the intermediate channel interface. * * @note * Calling threads must not hold any snddev_info or pcm_channel locks. * * @param dev device on which the ioctl was issued * @param ai ioctl request data container * @param ex flag to distinguish between SNDCTL_AUDIOINFO from * SNDCTL_AUDIOINFO_EX * * @retval 0 success * @retval EINVAL ai->dev specifies an invalid device */ int dsp_oss_audioinfo(struct cdev *i_dev, oss_audioinfo *ai, bool ex) { struct pcmchan_caps *caps; struct pcm_channel *ch; struct snddev_info *d; uint32_t fmts; int i, minch, maxch, unit; /* * If probing the device that received the ioctl, make sure it's a * DSP device. (Users may use this ioctl with /dev/mixer and * /dev/midi.) */ if (ai->dev == -1 && i_dev->si_devsw != &dsp_cdevsw) return (EINVAL); for (unit = 0; pcm_devclass != NULL && unit < devclass_get_maxunit(pcm_devclass); unit++) { d = devclass_get_softc(pcm_devclass, unit); if (!PCM_REGISTERED(d)) { if ((ai->dev == -1 && unit == snd_unit) || ai->dev == unit) { dsp_oss_audioinfo_unavail(ai, unit); return (0); } else { d = NULL; continue; } } PCM_UNLOCKASSERT(d); PCM_LOCK(d); if ((ai->dev == -1 && d->dsp_dev == i_dev) || (ai->dev == unit)) { PCM_UNLOCK(d); break; } else { PCM_UNLOCK(d); d = NULL; } } /* Exhausted the search -- nothing is locked, so return. */ if (d == NULL) return (EINVAL); /* XXX Need Giant magic entry ??? */ PCM_UNLOCKASSERT(d); PCM_LOCK(d); bzero((void *)ai, sizeof(oss_audioinfo)); ai->dev = unit; strlcpy(ai->name, device_get_desc(d->dev), sizeof(ai->name)); ai->pid = -1; strlcpy(ai->cmd, CHN_COMM_UNKNOWN, sizeof(ai->cmd)); ai->card_number = unit; ai->port_number = unit; ai->mixer_dev = (d->mixer_dev != NULL) ? unit : -1; ai->legacy_device = unit; snprintf(ai->devnode, sizeof(ai->devnode), "/dev/dsp%d", unit); ai->enabled = device_is_attached(d->dev) ? 1 : 0; ai->next_play_engine = 0; ai->next_rec_engine = 0; ai->busy = 0; ai->caps = PCM_CAP_REALTIME | PCM_CAP_MMAP | PCM_CAP_TRIGGER; ai->iformats = 0; ai->oformats = 0; ai->min_rate = INT_MAX; ai->max_rate = 0; ai->min_channels = INT_MAX; ai->max_channels = 0; /* Gather global information about the device. */ CHN_FOREACH(ch, d, channels.pcm) { CHN_UNLOCKASSERT(ch); CHN_LOCK(ch); /* * Skip physical channels if we are servicing SNDCTL_AUDIOINFO, * or VCHANs if we are servicing SNDCTL_AUDIOINFO_EX. * * For SNDCTL_AUDIOINFO do not skip the physical channels if * there are no VCHANs. */ if ((ex && (ch->flags & CHN_F_VIRTUAL) != 0) || ((!ex && (ch->flags & CHN_F_VIRTUAL) == 0) && (d->pvchancount > 0 || d->rvchancount > 0))) { CHN_UNLOCK(ch); continue; } if ((ch->flags & CHN_F_BUSY) == 0) { ai->busy |= (ch->direction == PCMDIR_PLAY) ? OPEN_WRITE : OPEN_READ; } ai->caps |= ((ch->flags & CHN_F_VIRTUAL) ? PCM_CAP_VIRTUAL : 0) | ((ch->direction == PCMDIR_PLAY) ? PCM_CAP_OUTPUT : PCM_CAP_INPUT); caps = chn_getcaps(ch); minch = INT_MAX; maxch = 0; fmts = 0; for (i = 0; caps->fmtlist[i]; i++) { fmts |= AFMT_ENCODING(caps->fmtlist[i]); minch = min(AFMT_CHANNEL(caps->fmtlist[i]), minch); maxch = max(AFMT_CHANNEL(caps->fmtlist[i]), maxch); } if (ch->direction == PCMDIR_PLAY) ai->oformats |= fmts; else ai->iformats |= fmts; if (ex || (pcm_getflags(d->dev) & SD_F_BITPERFECT)) { ai->min_rate = min(ai->min_rate, caps->minspeed); ai->max_rate = max(ai->max_rate, caps->maxspeed); } else { ai->min_rate = min(ai->min_rate, feeder_rate_min); ai->max_rate = max(ai->max_rate, feeder_rate_max); } ai->min_channels = min(ai->min_channels, minch); ai->max_channels = max(ai->max_channels, maxch); CHN_UNLOCK(ch); } if (ai->min_rate == INT_MAX) ai->min_rate = 0; if (ai->min_channels == INT_MAX) ai->min_channels = 0; PCM_UNLOCK(d); return (0); } static int dsp_oss_engineinfo_cb(void *data, void *arg) { struct dsp_cdevpriv *priv = data; struct pcm_channel *ch = arg; if (DSP_REGISTERED(priv->sc) && (ch == priv->rdch || ch == priv->wrch)) return (1); return (0); } /** * @brief Handler for SNDCTL_ENGINEINFO * * Gathers information about the audio device's engine specified in ai->dev. * If ai->dev == -1, then this function gathers information about the current * device. If the call comes in on a non-audio device and ai->dev == -1, * return EINVAL. * * This routine is supposed to go practically straight to the hardware, * getting capabilities directly from the sound card driver, side-stepping * the intermediate channel interface. * * @note * Calling threads must not hold any snddev_info or pcm_channel locks. * * @param dev device on which the ioctl was issued * @param ai ioctl request data container * * @retval 0 success * @retval EINVAL ai->dev specifies an invalid device */ int dsp_oss_engineinfo(struct cdev *i_dev, oss_audioinfo *ai) { struct pcmchan_caps *caps; struct pcm_channel *ch; struct snddev_info *d; uint32_t fmts; int i, nchan, *rates, minch, maxch, unit; - char *devname, buf[CHN_NAMELEN]; /* * If probing the device that received the ioctl, make sure it's a * DSP device. (Users may use this ioctl with /dev/mixer and * /dev/midi.) */ if (ai->dev == -1 && i_dev->si_devsw != &dsp_cdevsw) return (EINVAL); ch = NULL; - devname = NULL; nchan = 0; - bzero(buf, sizeof(buf)); /* * Search for the requested audio device (channel). Start by * iterating over pcm devices. */ for (unit = 0; pcm_devclass != NULL && unit < devclass_get_maxunit(pcm_devclass); unit++) { d = devclass_get_softc(pcm_devclass, unit); if (!PCM_REGISTERED(d)) continue; /* XXX Need Giant magic entry ??? */ /* See the note in function docblock */ PCM_UNLOCKASSERT(d); PCM_LOCK(d); CHN_FOREACH(ch, d, channels.pcm) { CHN_UNLOCKASSERT(ch); CHN_LOCK(ch); - if (ai->dev == -1) { - if (devfs_foreach_cdevpriv(i_dev, - dsp_oss_engineinfo_cb, ch) != 0) { - devname = dsp_unit2name(buf, - sizeof(buf), ch); - } - } else if (ai->dev == nchan) - devname = dsp_unit2name(buf, sizeof(buf), ch); - if (devname != NULL) + if ((ai->dev == -1 && devfs_foreach_cdevpriv( + i_dev, dsp_oss_engineinfo_cb, ch) != 0) || + ai->dev == nchan) break; CHN_UNLOCK(ch); ++nchan; } - if (devname != NULL) { - /* - * At this point, the following synchronization stuff - * has happened: - * - a specific PCM device is locked. - * - a specific audio channel has been locked, so be - * sure to unlock when exiting; - */ + if (ch == NULL) { + PCM_UNLOCK(d); + continue; + } - caps = chn_getcaps(ch); + /* + * At this point, the following synchronization stuff + * has happened: + * - a specific PCM device is locked. + * - a specific audio channel has been locked, so be + * sure to unlock when exiting; + */ - /* - * With all handles collected, zero out the user's - * container and begin filling in its fields. - */ - bzero((void *)ai, sizeof(oss_audioinfo)); + caps = chn_getcaps(ch); - ai->dev = nchan; - strlcpy(ai->name, ch->name, sizeof(ai->name)); + /* + * With all handles collected, zero out the user's + * container and begin filling in its fields. + */ + bzero((void *)ai, sizeof(oss_audioinfo)); - if ((ch->flags & CHN_F_BUSY) == 0) - ai->busy = 0; - else - ai->busy = (ch->direction == PCMDIR_PLAY) ? OPEN_WRITE : OPEN_READ; + ai->dev = nchan; + strlcpy(ai->name, ch->name, sizeof(ai->name)); - ai->pid = ch->pid; - strlcpy(ai->cmd, ch->comm, sizeof(ai->cmd)); + if ((ch->flags & CHN_F_BUSY) == 0) + ai->busy = 0; + else + ai->busy = (ch->direction == PCMDIR_PLAY) ? OPEN_WRITE : OPEN_READ; - /* - * These flags stolen from SNDCTL_DSP_GETCAPS handler. - * Note, however, that a single channel operates in - * only one direction, so PCM_CAP_DUPLEX is out. - */ - /** - * @todo @c SNDCTL_AUDIOINFO::caps - Make drivers keep - * these in pcmchan::caps? - */ - ai->caps = PCM_CAP_REALTIME | PCM_CAP_MMAP | PCM_CAP_TRIGGER | - ((ch->flags & CHN_F_VIRTUAL) ? PCM_CAP_VIRTUAL : 0) | - ((ch->direction == PCMDIR_PLAY) ? PCM_CAP_OUTPUT : PCM_CAP_INPUT); + ai->pid = ch->pid; + strlcpy(ai->cmd, ch->comm, sizeof(ai->cmd)); - /* - * Collect formats supported @b natively by the - * device. Also determine min/max channels. - */ - minch = INT_MAX; - maxch = 0; - fmts = 0; - for (i = 0; caps->fmtlist[i]; i++) { - fmts |= AFMT_ENCODING(caps->fmtlist[i]); - minch = min(AFMT_CHANNEL(caps->fmtlist[i]), minch); - maxch = max(AFMT_CHANNEL(caps->fmtlist[i]), maxch); - } + /* + * These flags stolen from SNDCTL_DSP_GETCAPS handler. + * Note, however, that a single channel operates in + * only one direction, so PCM_CAP_DUPLEX is out. + */ + /** + * @todo @c SNDCTL_AUDIOINFO::caps - Make drivers keep + * these in pcmchan::caps? + */ + ai->caps = PCM_CAP_REALTIME | PCM_CAP_MMAP | PCM_CAP_TRIGGER | + ((ch->flags & CHN_F_VIRTUAL) ? PCM_CAP_VIRTUAL : 0) | + ((ch->direction == PCMDIR_PLAY) ? PCM_CAP_OUTPUT : PCM_CAP_INPUT); - if (ch->direction == PCMDIR_PLAY) - ai->oformats = fmts; - else - ai->iformats = fmts; - - /** - * @note - * @c magic - OSSv4 docs: "Reserved for internal use - * by OSS." - * - * @par - * @c card_number - OSSv4 docs: "Number of the sound - * card where this device belongs or -1 if this - * information is not available. Applications - * should normally not use this field for any - * purpose." - */ - ai->card_number = unit; - /** - * @todo @c song_name - depends first on - * SNDCTL_[GS]ETSONG @todo @c label - depends - * on SNDCTL_[GS]ETLABEL - * @todo @c port_number - routing information? - */ - ai->port_number = unit; - ai->mixer_dev = (d->mixer_dev != NULL) ? unit : -1; - /** - * @note - * @c legacy_device - OSSv4 docs: "Obsolete." - */ - ai->legacy_device = unit; - snprintf(ai->devnode, sizeof(ai->devnode), "/dev/dsp%d", unit); - ai->enabled = device_is_attached(d->dev) ? 1 : 0; - /** - * @note - * @c flags - OSSv4 docs: "Reserved for future use." - * - * @note - * @c binding - OSSv4 docs: "Reserved for future use." - * - * @todo @c handle - haven't decided how to generate - * this yet; bus, vendor, device IDs? - */ + /* + * Collect formats supported @b natively by the + * device. Also determine min/max channels. + */ + minch = INT_MAX; + maxch = 0; + fmts = 0; + for (i = 0; caps->fmtlist[i]; i++) { + fmts |= AFMT_ENCODING(caps->fmtlist[i]); + minch = min(AFMT_CHANNEL(caps->fmtlist[i]), minch); + maxch = max(AFMT_CHANNEL(caps->fmtlist[i]), maxch); + } - if ((ch->flags & CHN_F_EXCLUSIVE) || - (pcm_getflags(d->dev) & SD_F_BITPERFECT)) { - ai->min_rate = caps->minspeed; - ai->max_rate = caps->maxspeed; - } else { - ai->min_rate = feeder_rate_min; - ai->max_rate = feeder_rate_max; - } + if (ch->direction == PCMDIR_PLAY) + ai->oformats = fmts; + else + ai->iformats = fmts; + + /** + * @note + * @c magic - OSSv4 docs: "Reserved for internal use + * by OSS." + * + * @par + * @c card_number - OSSv4 docs: "Number of the sound + * card where this device belongs or -1 if this + * information is not available. Applications + * should normally not use this field for any + * purpose." + */ + ai->card_number = unit; + /** + * @todo @c song_name - depends first on + * SNDCTL_[GS]ETSONG @todo @c label - depends + * on SNDCTL_[GS]ETLABEL + * @todo @c port_number - routing information? + */ + ai->port_number = unit; + ai->mixer_dev = (d->mixer_dev != NULL) ? unit : -1; + /** + * @note + * @c legacy_device - OSSv4 docs: "Obsolete." + */ + ai->legacy_device = unit; + snprintf(ai->devnode, sizeof(ai->devnode), "/dev/dsp%d", unit); + ai->enabled = device_is_attached(d->dev) ? 1 : 0; + /** + * @note + * @c flags - OSSv4 docs: "Reserved for future use." + * + * @note + * @c binding - OSSv4 docs: "Reserved for future use." + * + * @todo @c handle - haven't decided how to generate + * this yet; bus, vendor, device IDs? + */ - ai->min_channels = minch; - ai->max_channels = maxch; + if ((ch->flags & CHN_F_EXCLUSIVE) || + (pcm_getflags(d->dev) & SD_F_BITPERFECT)) { + ai->min_rate = caps->minspeed; + ai->max_rate = caps->maxspeed; + } else { + ai->min_rate = feeder_rate_min; + ai->max_rate = feeder_rate_max; + } - ai->nrates = chn_getrates(ch, &rates); - if (ai->nrates > OSS_MAX_SAMPLE_RATES) - ai->nrates = OSS_MAX_SAMPLE_RATES; + ai->min_channels = minch; + ai->max_channels = maxch; - for (i = 0; i < ai->nrates; i++) - ai->rates[i] = rates[i]; - - ai->next_play_engine = 0; - ai->next_rec_engine = 0; + ai->nrates = chn_getrates(ch, &rates); + if (ai->nrates > OSS_MAX_SAMPLE_RATES) + ai->nrates = OSS_MAX_SAMPLE_RATES; - CHN_UNLOCK(ch); - } + for (i = 0; i < ai->nrates; i++) + ai->rates[i] = rates[i]; + + ai->next_play_engine = 0; + ai->next_rec_engine = 0; + CHN_UNLOCK(ch); PCM_UNLOCK(d); - if (devname != NULL) - return (0); + return (0); } /* Exhausted the search -- nothing is locked, so return. */ return (EINVAL); } /** * @brief Assigns a PCM channel to a sync group. * * Sync groups are used to enable audio operations on multiple devices * simultaneously. They may be used with any number of devices and may * span across applications. Devices are added to groups with * the SNDCTL_DSP_SYNCGROUP ioctl, and operations are triggered with the * SNDCTL_DSP_SYNCSTART ioctl. * * If the @c id field of the @c group parameter is set to zero, then a new * sync group is created. Otherwise, wrch and rdch (if set) are added to * the group specified. * * @todo As far as memory allocation, should we assume that things are * okay and allocate with M_WAITOK before acquiring channel locks, * freeing later if not? * * @param wrch output channel associated w/ device (if any) * @param rdch input channel associated w/ device (if any) * @param group Sync group parameters * * @retval 0 success * @retval non-zero error to be propagated upstream */ static int dsp_oss_syncgroup(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_syncgroup *group) { struct pcmchan_syncmember *smrd, *smwr; struct pcmchan_syncgroup *sg; int ret, sg_ids[3]; smrd = NULL; smwr = NULL; sg = NULL; ret = 0; /* * Free_unr() may sleep, so store released syncgroup IDs until after * all locks are released. */ sg_ids[0] = sg_ids[1] = sg_ids[2] = 0; PCM_SG_LOCK(); /* * - Insert channel(s) into group's member list. * - Set CHN_F_NOTRIGGER on channel(s). * - Stop channel(s). */ /* * If device's channels are already mapped to a group, unmap them. */ if (wrch) { CHN_LOCK(wrch); sg_ids[0] = chn_syncdestroy(wrch); } if (rdch) { CHN_LOCK(rdch); sg_ids[1] = chn_syncdestroy(rdch); } /* * Verify that mode matches character device properites. * - Bail if PCM_ENABLE_OUTPUT && wrch == NULL. * - Bail if PCM_ENABLE_INPUT && rdch == NULL. */ if (((wrch == NULL) && (group->mode & PCM_ENABLE_OUTPUT)) || ((rdch == NULL) && (group->mode & PCM_ENABLE_INPUT))) { ret = EINVAL; goto out; } /* * An id of zero indicates the user wants to create a new * syncgroup. */ if (group->id == 0) { sg = malloc(sizeof(*sg), M_DEVBUF, M_NOWAIT); if (sg != NULL) { SLIST_INIT(&sg->members); sg->id = alloc_unr(pcmsg_unrhdr); group->id = sg->id; SLIST_INSERT_HEAD(&snd_pcm_syncgroups, sg, link); } else ret = ENOMEM; } else { SLIST_FOREACH(sg, &snd_pcm_syncgroups, link) { if (sg->id == group->id) break; } if (sg == NULL) ret = EINVAL; } /* Couldn't create or find a syncgroup. Fail. */ if (sg == NULL) goto out; /* * Allocate a syncmember, assign it and a channel together, and * insert into syncgroup. */ if (group->mode & PCM_ENABLE_INPUT) { smrd = malloc(sizeof(*smrd), M_DEVBUF, M_NOWAIT); if (smrd == NULL) { ret = ENOMEM; goto out; } SLIST_INSERT_HEAD(&sg->members, smrd, link); smrd->parent = sg; smrd->ch = rdch; chn_abort(rdch); rdch->flags |= CHN_F_NOTRIGGER; rdch->sm = smrd; } if (group->mode & PCM_ENABLE_OUTPUT) { smwr = malloc(sizeof(*smwr), M_DEVBUF, M_NOWAIT); if (smwr == NULL) { ret = ENOMEM; goto out; } SLIST_INSERT_HEAD(&sg->members, smwr, link); smwr->parent = sg; smwr->ch = wrch; chn_abort(wrch); wrch->flags |= CHN_F_NOTRIGGER; wrch->sm = smwr; } out: if (ret != 0) { if (smrd != NULL) free(smrd, M_DEVBUF); if ((sg != NULL) && SLIST_EMPTY(&sg->members)) { sg_ids[2] = sg->id; SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link); free(sg, M_DEVBUF); } if (wrch) wrch->sm = NULL; if (rdch) rdch->sm = NULL; } if (wrch) CHN_UNLOCK(wrch); if (rdch) CHN_UNLOCK(rdch); PCM_SG_UNLOCK(); if (sg_ids[0]) free_unr(pcmsg_unrhdr, sg_ids[0]); if (sg_ids[1]) free_unr(pcmsg_unrhdr, sg_ids[1]); if (sg_ids[2]) free_unr(pcmsg_unrhdr, sg_ids[2]); return (ret); } /** * @brief Launch a sync group into action * * Sync groups are established via SNDCTL_DSP_SYNCGROUP. This function * iterates over all members, triggering them along the way. * * @note Caller must not hold any channel locks. * * @param sg_id sync group identifier * * @retval 0 success * @retval non-zero error worthy of propagating upstream to user */ static int dsp_oss_syncstart(int sg_id) { struct pcmchan_syncmember *sm, *sm_tmp; struct pcmchan_syncgroup *sg; struct pcm_channel *c; int ret, needlocks; /* Get the synclists lock */ PCM_SG_LOCK(); do { ret = 0; needlocks = 0; /* Search for syncgroup by ID */ SLIST_FOREACH(sg, &snd_pcm_syncgroups, link) { if (sg->id == sg_id) break; } /* Return EINVAL if not found */ if (sg == NULL) { ret = EINVAL; break; } /* Any removals resulting in an empty group should've handled this */ KASSERT(!SLIST_EMPTY(&sg->members), ("found empty syncgroup")); /* * Attempt to lock all member channels - if any are already * locked, unlock those acquired, sleep for a bit, and try * again. */ SLIST_FOREACH(sm, &sg->members, link) { if (CHN_TRYLOCK(sm->ch) == 0) { int timo = hz * 5/1000; if (timo < 1) timo = 1; /* Release all locked channels so far, retry */ SLIST_FOREACH(sm_tmp, &sg->members, link) { /* sm is the member already locked */ if (sm == sm_tmp) break; CHN_UNLOCK(sm_tmp->ch); } /** @todo Is PRIBIO correct/ */ ret = msleep(sm, &snd_pcm_syncgroups_mtx, PRIBIO | PCATCH, "pcmsg", timo); if (ret == EINTR || ret == ERESTART) break; needlocks = 1; ret = 0; /* Assumes ret == EAGAIN... */ } } } while (needlocks && ret == 0); /* Proceed only if no errors encountered. */ if (ret == 0) { /* Launch channels */ while ((sm = SLIST_FIRST(&sg->members)) != NULL) { SLIST_REMOVE_HEAD(&sg->members, link); c = sm->ch; c->sm = NULL; chn_start(c, 1); c->flags &= ~CHN_F_NOTRIGGER; CHN_UNLOCK(c); free(sm, M_DEVBUF); } SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link); free(sg, M_DEVBUF); } PCM_SG_UNLOCK(); /* * Free_unr() may sleep, so be sure to give up the syncgroup lock * first. */ if (ret == 0) free_unr(pcmsg_unrhdr, sg_id); return (ret); } /** * @brief Handler for SNDCTL_DSP_POLICY * * The SNDCTL_DSP_POLICY ioctl is a simpler interface to control fragment * size and count like with SNDCTL_DSP_SETFRAGMENT. Instead of the user * specifying those two parameters, s/he simply selects a number from 0..10 * which corresponds to a buffer size. Smaller numbers request smaller * buffers with lower latencies (at greater overhead from more frequent * interrupts), while greater numbers behave in the opposite manner. * * The 4Front spec states that a value of 5 should be the default. However, * this implementation deviates slightly by using a linear scale without * consulting drivers. I.e., even though drivers may have different default * buffer sizes, a policy argument of 5 will have the same result across * all drivers. * * See http://manuals.opensound.com/developer/SNDCTL_DSP_POLICY.html for * more information. * * @todo When SNDCTL_DSP_COOKEDMODE is supported, it'll be necessary to * work with hardware drivers directly. * * @note PCM channel arguments must not be locked by caller. * * @param wrch Pointer to opened playback channel (optional; may be NULL) * @param rdch " recording channel (optional; may be NULL) * @param policy Integer from [0:10] * * @retval 0 constant (for now) */ static int dsp_oss_policy(struct pcm_channel *wrch, struct pcm_channel *rdch, int policy) { int ret; if (policy < CHN_POLICY_MIN || policy > CHN_POLICY_MAX) return (EIO); /* Default: success */ ret = 0; if (rdch) { CHN_LOCK(rdch); ret = chn_setlatency(rdch, policy); CHN_UNLOCK(rdch); } if (wrch && ret == 0) { CHN_LOCK(wrch); ret = chn_setlatency(wrch, policy); CHN_UNLOCK(wrch); } if (ret) ret = EIO; return (ret); } /** * @brief Enable or disable "cooked" mode * * This is a handler for @c SNDCTL_DSP_COOKEDMODE. When in cooked mode, which * is the default, the sound system handles rate and format conversions * automatically (ex: user writing 11025Hz/8 bit/unsigned but card only * operates with 44100Hz/16bit/signed samples). * * Disabling cooked mode is intended for applications wanting to mmap() * a sound card's buffer space directly, bypassing the FreeBSD 2-stage * feeder architecture, presumably to gain as much control over audio * hardware as possible. * * See @c http://manuals.opensound.com/developer/SNDCTL_DSP_COOKEDMODE.html * for more details. * * @param wrch playback channel (optional; may be NULL) * @param rdch recording channel (optional; may be NULL) * @param enabled 0 = raw mode, 1 = cooked mode * * @retval EINVAL Operation not yet supported. */ static int dsp_oss_cookedmode(struct pcm_channel *wrch, struct pcm_channel *rdch, int enabled) { /* * XXX I just don't get it. Why don't they call it * "BITPERFECT" ~ SNDCTL_DSP_BITPERFECT !?!?. * This is just plain so confusing, incoherent, * . */ if (!(enabled == 1 || enabled == 0)) return (EINVAL); /* * I won't give in. I'm inverting its logic here and now. * Brag all you want, but "BITPERFECT" should be the better * term here. */ enabled ^= 0x00000001; if (wrch != NULL) { CHN_LOCK(wrch); wrch->flags &= ~CHN_F_BITPERFECT; wrch->flags |= (enabled != 0) ? CHN_F_BITPERFECT : 0x00000000; CHN_UNLOCK(wrch); } if (rdch != NULL) { CHN_LOCK(rdch); rdch->flags &= ~CHN_F_BITPERFECT; rdch->flags |= (enabled != 0) ? CHN_F_BITPERFECT : 0x00000000; CHN_UNLOCK(rdch); } return (0); } /** * @brief Retrieve channel interleaving order * * This is the handler for @c SNDCTL_DSP_GET_CHNORDER. * * See @c http://manuals.opensound.com/developer/SNDCTL_DSP_GET_CHNORDER.html * for more details. * * @note As the ioctl definition is still under construction, FreeBSD * does not currently support SNDCTL_DSP_GET_CHNORDER. * * @param wrch playback channel (optional; may be NULL) * @param rdch recording channel (optional; may be NULL) * @param map channel map (result will be stored there) * * @retval EINVAL Operation not yet supported. */ static int dsp_oss_getchnorder(struct pcm_channel *wrch, struct pcm_channel *rdch, unsigned long long *map) { struct pcm_channel *ch; int ret; ch = (wrch != NULL) ? wrch : rdch; if (ch != NULL) { CHN_LOCK(ch); ret = chn_oss_getorder(ch, map); CHN_UNLOCK(ch); } else ret = EINVAL; return (ret); } /** * @brief Specify channel interleaving order * * This is the handler for @c SNDCTL_DSP_SET_CHNORDER. * * @note As the ioctl definition is still under construction, FreeBSD * does not currently support @c SNDCTL_DSP_SET_CHNORDER. * * @param wrch playback channel (optional; may be NULL) * @param rdch recording channel (optional; may be NULL) * @param map channel map * * @retval EINVAL Operation not yet supported. */ static int dsp_oss_setchnorder(struct pcm_channel *wrch, struct pcm_channel *rdch, unsigned long long *map) { int ret; ret = 0; if (wrch != NULL) { CHN_LOCK(wrch); ret = chn_oss_setorder(wrch, map); CHN_UNLOCK(wrch); } if (ret == 0 && rdch != NULL) { CHN_LOCK(rdch); ret = chn_oss_setorder(rdch, map); CHN_UNLOCK(rdch); } return (ret); } static int dsp_oss_getchannelmask(struct pcm_channel *wrch, struct pcm_channel *rdch, int *mask) { struct pcm_channel *ch; uint32_t chnmask; int ret; chnmask = 0; ch = (wrch != NULL) ? wrch : rdch; if (ch != NULL) { CHN_LOCK(ch); ret = chn_oss_getmask(ch, &chnmask); CHN_UNLOCK(ch); } else ret = EINVAL; if (ret == 0) *mask = chnmask; return (ret); } #ifdef OSSV4_EXPERIMENT /** * @brief Retrieve an audio device's label * * This is a handler for the @c SNDCTL_GETLABEL ioctl. * * See @c http://manuals.opensound.com/developer/SNDCTL_GETLABEL.html * for more details. * * From Hannu@4Front: "For example ossxmix (just like some HW mixer * consoles) can show variable "labels" for certain controls. By default * the application name (say quake) is shown as the label but * applications may change the labels themselves." * * @note As the ioctl definition is still under construction, FreeBSD * does not currently support @c SNDCTL_GETLABEL. * * @param wrch playback channel (optional; may be NULL) * @param rdch recording channel (optional; may be NULL) * @param label label gets copied here * * @retval EINVAL Operation not yet supported. */ static int dsp_oss_getlabel(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_label_t *label) { return (EINVAL); } /** * @brief Specify an audio device's label * * This is a handler for the @c SNDCTL_SETLABEL ioctl. Please see the * comments for @c dsp_oss_getlabel immediately above. * * See @c http://manuals.opensound.com/developer/SNDCTL_GETLABEL.html * for more details. * * @note As the ioctl definition is still under construction, FreeBSD * does not currently support SNDCTL_SETLABEL. * * @param wrch playback channel (optional; may be NULL) * @param rdch recording channel (optional; may be NULL) * @param label label gets copied from here * * @retval EINVAL Operation not yet supported. */ static int dsp_oss_setlabel(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_label_t *label) { return (EINVAL); } /** * @brief Retrieve name of currently played song * * This is a handler for the @c SNDCTL_GETSONG ioctl. Audio players could * tell the system the name of the currently playing song, which would be * visible in @c /dev/sndstat. * * See @c http://manuals.opensound.com/developer/SNDCTL_GETSONG.html * for more details. * * @note As the ioctl definition is still under construction, FreeBSD * does not currently support SNDCTL_GETSONG. * * @param wrch playback channel (optional; may be NULL) * @param rdch recording channel (optional; may be NULL) * @param song song name gets copied here * * @retval EINVAL Operation not yet supported. */ static int dsp_oss_getsong(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_longname_t *song) { return (EINVAL); } /** * @brief Retrieve name of currently played song * * This is a handler for the @c SNDCTL_SETSONG ioctl. Audio players could * tell the system the name of the currently playing song, which would be * visible in @c /dev/sndstat. * * See @c http://manuals.opensound.com/developer/SNDCTL_SETSONG.html * for more details. * * @note As the ioctl definition is still under construction, FreeBSD * does not currently support SNDCTL_SETSONG. * * @param wrch playback channel (optional; may be NULL) * @param rdch recording channel (optional; may be NULL) * @param song song name gets copied from here * * @retval EINVAL Operation not yet supported. */ static int dsp_oss_setsong(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_longname_t *song) { return (EINVAL); } /** * @brief Rename a device * * This is a handler for the @c SNDCTL_SETNAME ioctl. * * See @c http://manuals.opensound.com/developer/SNDCTL_SETNAME.html for * more details. * * From Hannu@4Front: "This call is used to change the device name * reported in /dev/sndstat and ossinfo. So instead of using some generic * 'OSS loopback audio (MIDI) driver' the device may be given a meaningfull * name depending on the current context (for example 'OSS virtual wave table * synth' or 'VoIP link to London')." * * @note As the ioctl definition is still under construction, FreeBSD * does not currently support SNDCTL_SETNAME. * * @param wrch playback channel (optional; may be NULL) * @param rdch recording channel (optional; may be NULL) * @param name new device name gets copied from here * * @retval EINVAL Operation not yet supported. */ static int dsp_oss_setname(struct pcm_channel *wrch, struct pcm_channel *rdch, oss_longname_t *name) { return (EINVAL); } #endif /* !OSSV4_EXPERIMENT */ diff --git a/sys/dev/sound/pcm/dsp.h b/sys/dev/sound/pcm/dsp.h index 7559e855d4e1..1eab42ca91c8 100644 --- a/sys/dev/sound/pcm/dsp.h +++ b/sys/dev/sound/pcm/dsp.h @@ -1,42 +1,41 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2005-2009 Ariff Abdullah * Portions Copyright (c) Ryan Beasley - GSoC 2006 * Copyright (c) 1999 Cameron Grant * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _PCMDSP_H_ #define _PCMDSP_H_ extern struct cdevsw dsp_cdevsw; int dsp_make_dev(device_t); void dsp_destroy_dev(device_t); -char *dsp_unit2name(char *, size_t, struct pcm_channel *); int dsp_oss_audioinfo(struct cdev *, oss_audioinfo *, bool); int dsp_oss_engineinfo(struct cdev *, oss_audioinfo *); #endif /* !_PCMDSP_H_ */ diff --git a/sys/dev/sound/pcm/sound.h b/sys/dev/sound/pcm/sound.h index f96638081cb9..126b3411b035 100644 --- a/sys/dev/sound/pcm/sound.h +++ b/sys/dev/sound/pcm/sound.h @@ -1,533 +1,529 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2005-2009 Ariff Abdullah * Copyright (c) 1999 Cameron Grant * Copyright (c) 1995 Hannu Savolainen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * first, include kernel header files. */ #ifndef _OS_H_ #define _OS_H_ #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include /* for DATA_SET */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KOBJMETHOD_END #define KOBJMETHOD_END { NULL, NULL } #endif struct pcm_channel; struct pcm_feeder; struct snd_dbuf; struct snd_mixer; #include #include #include #include #include #include #include #define PCM_SOFTC_SIZE (sizeof(struct snddev_info)) #define SND_STATUSLEN 64 #define SOUND_MODVER 5 #define SOUND_MINVER SOUND_MODVER #define SOUND_PREFVER SOUND_MODVER #define SOUND_MAXVER SOUND_MODVER #define SND_MAXVCHANS 256 #define SD_F_SIMPLEX 0x00000001 #define SD_F_AUTOVCHAN 0x00000002 #define SD_F_SOFTPCMVOL 0x00000004 #define SD_F_DYING 0x00000008 #define SD_F_DETACHING 0x00000010 #define SD_F_BUSY 0x00000020 #define SD_F_MPSAFE 0x00000040 #define SD_F_REGISTERED 0x00000080 #define SD_F_BITPERFECT 0x00000100 #define SD_F_VPC 0x00000200 /* volume-per-channel */ #define SD_F_EQ 0x00000400 /* EQ */ #define SD_F_EQ_ENABLED 0x00000800 /* EQ enabled */ #define SD_F_EQ_BYPASSED 0x00001000 /* EQ bypassed */ #define SD_F_EQ_PC 0x00002000 /* EQ per-channel */ #define SD_F_EQ_DEFAULT (SD_F_EQ | SD_F_EQ_ENABLED) #define SD_F_EQ_MASK (SD_F_EQ | SD_F_EQ_ENABLED | \ SD_F_EQ_BYPASSED | SD_F_EQ_PC) #define SD_F_PRIO_RD 0x10000000 #define SD_F_PRIO_WR 0x20000000 #define SD_F_BITS "\020" \ "\001SIMPLEX" \ "\002AUTOVCHAN" \ "\003SOFTPCMVOL" \ "\004DYING" \ "\005DETACHING" \ "\006BUSY" \ "\007MPSAFE" \ "\010REGISTERED" \ "\011BITPERFECT" \ "\012VPC" \ "\013EQ" \ "\014EQ_ENABLED" \ "\015EQ_BYPASSED" \ "\016EQ_PC" \ "\035PRIO_RD" \ "\036PRIO_WR" #define PCM_ALIVE(x) ((x) != NULL && (x)->lock != NULL && \ !((x)->flags & SD_F_DYING)) #define PCM_REGISTERED(x) (PCM_ALIVE(x) && \ ((x)->flags & SD_F_REGISTERED)) #define PCM_DETACHING(x) ((x)->flags & SD_F_DETACHING) #define PCM_CHANCOUNT(d) \ (d->playcount + d->pvchancount + d->reccount + d->rvchancount) /* many variables should be reduced to a range. Here define a macro */ #define RANGE(var, low, high) (var) = \ (((var)<(low))? (low) : ((var)>(high))? (high) : (var)) /* make figuring out what a format is easier. got AFMT_STEREO already */ #define AFMT_32BIT (AFMT_S32_LE | AFMT_S32_BE | AFMT_U32_LE | AFMT_U32_BE) #define AFMT_24BIT (AFMT_S24_LE | AFMT_S24_BE | AFMT_U24_LE | AFMT_U24_BE) #define AFMT_16BIT (AFMT_S16_LE | AFMT_S16_BE | AFMT_U16_LE | AFMT_U16_BE) #define AFMT_G711 (AFMT_MU_LAW | AFMT_A_LAW) #define AFMT_8BIT (AFMT_G711 | AFMT_U8 | AFMT_S8) #define AFMT_SIGNED (AFMT_S32_LE | AFMT_S32_BE | AFMT_S24_LE | AFMT_S24_BE | \ AFMT_S16_LE | AFMT_S16_BE | AFMT_S8) #define AFMT_BIGENDIAN (AFMT_S32_BE | AFMT_U32_BE | AFMT_S24_BE | AFMT_U24_BE | \ AFMT_S16_BE | AFMT_U16_BE) #define AFMT_CONVERTIBLE (AFMT_8BIT | AFMT_16BIT | AFMT_24BIT | \ AFMT_32BIT) /* Supported vchan mixing formats */ #define AFMT_VCHAN (AFMT_CONVERTIBLE & ~AFMT_G711) #define AFMT_PASSTHROUGH AFMT_AC3 #define AFMT_PASSTHROUGH_RATE 48000 #define AFMT_PASSTHROUGH_CHANNEL 2 #define AFMT_PASSTHROUGH_EXTCHANNEL 0 /* * We're simply using unused, contiguous bits from various AFMT_ definitions. * ~(0xb00ff7ff) */ #define AFMT_ENCODING_MASK 0xf00fffff #define AFMT_CHANNEL_MASK 0x07f00000 #define AFMT_CHANNEL_SHIFT 20 #define AFMT_CHANNEL_MAX 0x7f #define AFMT_EXTCHANNEL_MASK 0x08000000 #define AFMT_EXTCHANNEL_SHIFT 27 #define AFMT_EXTCHANNEL_MAX 1 #define AFMT_ENCODING(v) ((v) & AFMT_ENCODING_MASK) #define AFMT_EXTCHANNEL(v) (((v) & AFMT_EXTCHANNEL_MASK) >> \ AFMT_EXTCHANNEL_SHIFT) #define AFMT_CHANNEL(v) (((v) & AFMT_CHANNEL_MASK) >> \ AFMT_CHANNEL_SHIFT) #define AFMT_BIT(v) (((v) & AFMT_32BIT) ? 32 : \ (((v) & AFMT_24BIT) ? 24 : \ ((((v) & AFMT_16BIT) || \ ((v) & AFMT_PASSTHROUGH)) ? 16 : 8))) #define AFMT_BPS(v) (AFMT_BIT(v) >> 3) #define AFMT_ALIGN(v) (AFMT_BPS(v) * AFMT_CHANNEL(v)) #define SND_FORMAT(f, c, e) (AFMT_ENCODING(f) | \ (((c) << AFMT_CHANNEL_SHIFT) & \ AFMT_CHANNEL_MASK) | \ (((e) << AFMT_EXTCHANNEL_SHIFT) & \ AFMT_EXTCHANNEL_MASK)) #define AFMT_U8_NE AFMT_U8 #define AFMT_S8_NE AFMT_S8 #define AFMT_SIGNED_NE (AFMT_S8_NE | AFMT_S16_NE | AFMT_S24_NE | AFMT_S32_NE) #define AFMT_NE (AFMT_SIGNED_NE | AFMT_U8_NE | AFMT_U16_NE | \ AFMT_U24_NE | AFMT_U32_NE) enum { SND_DEV_CTL = 0, /* Control port /dev/mixer */ SND_DEV_SEQ, /* Sequencer /dev/sequencer */ SND_DEV_MIDIN, /* Raw midi access */ SND_DEV_DSP, /* Digitized voice /dev/dsp */ SND_DEV_STATUS, /* /dev/sndstat */ - SND_DEV_DSPHW_PLAY, /* specific playback channel */ - SND_DEV_DSPHW_VPLAY, /* specific virtual playback channel */ - SND_DEV_DSPHW_REC, /* specific record channel */ - SND_DEV_DSPHW_VREC, /* specific virtual record channel */ }; #define DSP_DEFAULT_SPEED 8000 extern int pcm_veto_load; extern int snd_unit; extern int snd_verbose; extern devclass_t pcm_devclass; extern struct unrhdr *pcmsg_unrhdr; #ifndef DEB #define DEB(x) #endif SYSCTL_DECL(_hw_snd); int pcm_chnalloc(struct snddev_info *d, struct pcm_channel **ch, int direction, pid_t pid, char *comm); int pcm_addchan(device_t dev, int dir, kobj_class_t cls, void *devinfo); unsigned int pcm_getbuffersize(device_t dev, unsigned int minbufsz, unsigned int deflt, unsigned int maxbufsz); int pcm_register(device_t dev, void *devinfo, int numplay, int numrec); int pcm_unregister(device_t dev); int pcm_setstatus(device_t dev, char *str); u_int32_t pcm_getflags(device_t dev); void pcm_setflags(device_t dev, u_int32_t val); void *pcm_getdevinfo(device_t dev); int snd_setup_intr(device_t dev, struct resource *res, int flags, driver_intr_t hand, void *param, void **cookiep); void *snd_mtxcreate(const char *desc, const char *type); void snd_mtxfree(void *m); void snd_mtxassert(void *m); #define snd_mtxlock(m) mtx_lock(m) #define snd_mtxunlock(m) mtx_unlock(m) int sndstat_register(device_t dev, char *str); int sndstat_unregister(device_t dev); /* These are the function codes assigned to the children of sound cards. */ enum { SCF_PCM, SCF_MIDI, SCF_SYNTH, }; /* * This is the device information struct, used by a bridge device to pass the * device function code to the children. */ struct sndcard_func { int func; /* The function code. */ void *varinfo; /* Bridge-specific information. */ }; /* * this is rather kludgey- we need to duplicate these struct def'ns from sound.c * so that the macro versions of pcm_{,un}lock can dereference them. * we also have to do this now makedev() has gone away. */ struct snddev_info { struct { struct { SLIST_HEAD(, pcm_channel) head; struct { SLIST_HEAD(, pcm_channel) head; } busy; struct { SLIST_HEAD(, pcm_channel) head; } opened; } pcm; } channels; unsigned playcount, reccount, pvchancount, rvchancount; unsigned flags; unsigned int bufsz; void *devinfo; device_t dev; char status[SND_STATUSLEN]; struct mtx *lock; struct cdev *mixer_dev; struct cdev *dsp_dev; uint32_t pvchanrate, pvchanformat; uint32_t rvchanrate, rvchanformat; int32_t eqpreamp; struct sysctl_ctx_list play_sysctl_ctx, rec_sysctl_ctx; struct sysctl_oid *play_sysctl_tree, *rec_sysctl_tree; struct cv cv; struct unrhdr *p_unr; struct unrhdr *vp_unr; struct unrhdr *r_unr; struct unrhdr *vr_unr; }; void sound_oss_sysinfo(oss_sysinfo *); int sound_oss_card_info(oss_card_info *); #define PCM_MODE_MIXER 0x01 #define PCM_MODE_PLAY 0x02 #define PCM_MODE_REC 0x04 #define PCM_LOCKOWNED(d) mtx_owned((d)->lock) #define PCM_LOCK(d) mtx_lock((d)->lock) #define PCM_UNLOCK(d) mtx_unlock((d)->lock) #define PCM_TRYLOCK(d) mtx_trylock((d)->lock) #define PCM_LOCKASSERT(d) mtx_assert((d)->lock, MA_OWNED) #define PCM_UNLOCKASSERT(d) mtx_assert((d)->lock, MA_NOTOWNED) /* * For PCM_[WAIT | ACQUIRE | RELEASE], be sure to surround these * with PCM_LOCK/UNLOCK() sequence, or I'll come to gnaw upon you! */ #ifdef SND_DIAGNOSTIC #define PCM_WAIT(x) do { \ if (!PCM_LOCKOWNED(x)) \ panic("%s(%d): [PCM WAIT] Mutex not owned!", \ __func__, __LINE__); \ while ((x)->flags & SD_F_BUSY) { \ if (snd_verbose > 3) \ device_printf((x)->dev, \ "%s(%d): [PCM WAIT] calling cv_wait().\n", \ __func__, __LINE__); \ cv_wait(&(x)->cv, (x)->lock); \ } \ } while (0) #define PCM_ACQUIRE(x) do { \ if (!PCM_LOCKOWNED(x)) \ panic("%s(%d): [PCM ACQUIRE] Mutex not owned!", \ __func__, __LINE__); \ if ((x)->flags & SD_F_BUSY) \ panic("%s(%d): [PCM ACQUIRE] " \ "Trying to acquire BUSY cv!", __func__, __LINE__); \ (x)->flags |= SD_F_BUSY; \ } while (0) #define PCM_RELEASE(x) do { \ if (!PCM_LOCKOWNED(x)) \ panic("%s(%d): [PCM RELEASE] Mutex not owned!", \ __func__, __LINE__); \ if ((x)->flags & SD_F_BUSY) { \ (x)->flags &= ~SD_F_BUSY; \ if ((x)->cv.cv_waiters != 0) { \ if ((x)->cv.cv_waiters > 1 && snd_verbose > 3) \ device_printf((x)->dev, \ "%s(%d): [PCM RELEASE] " \ "cv_waiters=%d > 1!\n", \ __func__, __LINE__, \ (x)->cv.cv_waiters); \ cv_broadcast(&(x)->cv); \ } \ } else \ panic("%s(%d): [PCM RELEASE] Releasing non-BUSY cv!", \ __func__, __LINE__); \ } while (0) /* Quick version, for shorter path. */ #define PCM_ACQUIRE_QUICK(x) do { \ if (PCM_LOCKOWNED(x)) \ panic("%s(%d): [PCM ACQUIRE QUICK] Mutex owned!", \ __func__, __LINE__); \ PCM_LOCK(x); \ PCM_WAIT(x); \ PCM_ACQUIRE(x); \ PCM_UNLOCK(x); \ } while (0) #define PCM_RELEASE_QUICK(x) do { \ if (PCM_LOCKOWNED(x)) \ panic("%s(%d): [PCM RELEASE QUICK] Mutex owned!", \ __func__, __LINE__); \ PCM_LOCK(x); \ PCM_RELEASE(x); \ PCM_UNLOCK(x); \ } while (0) #define PCM_BUSYASSERT(x) do { \ if (!((x) != NULL && ((x)->flags & SD_F_BUSY))) \ panic("%s(%d): [PCM BUSYASSERT] " \ "Failed, snddev_info=%p", __func__, __LINE__, x); \ } while (0) #define PCM_GIANT_ENTER(x) do { \ int _pcm_giant = 0; \ if (PCM_LOCKOWNED(x)) \ panic("%s(%d): [GIANT ENTER] PCM lock owned!", \ __func__, __LINE__); \ if (mtx_owned(&Giant) != 0 && snd_verbose > 3) \ device_printf((x)->dev, \ "%s(%d): [GIANT ENTER] Giant owned!\n", \ __func__, __LINE__); \ if (!((x)->flags & SD_F_MPSAFE) && mtx_owned(&Giant) == 0) \ do { \ mtx_lock(&Giant); \ _pcm_giant = 1; \ } while (0) #define PCM_GIANT_EXIT(x) do { \ if (PCM_LOCKOWNED(x)) \ panic("%s(%d): [GIANT EXIT] PCM lock owned!", \ __func__, __LINE__); \ if (!(_pcm_giant == 0 || _pcm_giant == 1)) \ panic("%s(%d): [GIANT EXIT] _pcm_giant screwed!", \ __func__, __LINE__); \ if ((x)->flags & SD_F_MPSAFE) { \ if (_pcm_giant == 1) \ panic("%s(%d): [GIANT EXIT] MPSAFE Giant?", \ __func__, __LINE__); \ if (mtx_owned(&Giant) != 0 && snd_verbose > 3) \ device_printf((x)->dev, \ "%s(%d): [GIANT EXIT] Giant owned!\n", \ __func__, __LINE__); \ } \ if (_pcm_giant != 0) { \ if (mtx_owned(&Giant) == 0) \ panic("%s(%d): [GIANT EXIT] Giant not owned!", \ __func__, __LINE__); \ _pcm_giant = 0; \ mtx_unlock(&Giant); \ } \ } while (0) #else /* !SND_DIAGNOSTIC */ #define PCM_WAIT(x) do { \ PCM_LOCKASSERT(x); \ while ((x)->flags & SD_F_BUSY) \ cv_wait(&(x)->cv, (x)->lock); \ } while (0) #define PCM_ACQUIRE(x) do { \ PCM_LOCKASSERT(x); \ KASSERT(!((x)->flags & SD_F_BUSY), \ ("%s(%d): [PCM ACQUIRE] Trying to acquire BUSY cv!", \ __func__, __LINE__)); \ (x)->flags |= SD_F_BUSY; \ } while (0) #define PCM_RELEASE(x) do { \ PCM_LOCKASSERT(x); \ KASSERT((x)->flags & SD_F_BUSY, \ ("%s(%d): [PCM RELEASE] Releasing non-BUSY cv!", \ __func__, __LINE__)); \ (x)->flags &= ~SD_F_BUSY; \ if ((x)->cv.cv_waiters != 0) \ cv_broadcast(&(x)->cv); \ } while (0) /* Quick version, for shorter path. */ #define PCM_ACQUIRE_QUICK(x) do { \ PCM_UNLOCKASSERT(x); \ PCM_LOCK(x); \ PCM_WAIT(x); \ PCM_ACQUIRE(x); \ PCM_UNLOCK(x); \ } while (0) #define PCM_RELEASE_QUICK(x) do { \ PCM_UNLOCKASSERT(x); \ PCM_LOCK(x); \ PCM_RELEASE(x); \ PCM_UNLOCK(x); \ } while (0) #define PCM_BUSYASSERT(x) KASSERT(x != NULL && \ ((x)->flags & SD_F_BUSY), \ ("%s(%d): [PCM BUSYASSERT] " \ "Failed, snddev_info=%p", \ __func__, __LINE__, x)) #define PCM_GIANT_ENTER(x) do { \ int _pcm_giant = 0; \ PCM_UNLOCKASSERT(x); \ if (!((x)->flags & SD_F_MPSAFE) && mtx_owned(&Giant) == 0) \ do { \ mtx_lock(&Giant); \ _pcm_giant = 1; \ } while (0) #define PCM_GIANT_EXIT(x) do { \ PCM_UNLOCKASSERT(x); \ KASSERT(_pcm_giant == 0 || _pcm_giant == 1, \ ("%s(%d): [GIANT EXIT] _pcm_giant screwed!", \ __func__, __LINE__)); \ KASSERT(!((x)->flags & SD_F_MPSAFE) || \ (((x)->flags & SD_F_MPSAFE) && _pcm_giant == 0), \ ("%s(%d): [GIANT EXIT] MPSAFE Giant?", \ __func__, __LINE__)); \ if (_pcm_giant != 0) { \ mtx_assert(&Giant, MA_OWNED); \ _pcm_giant = 0; \ mtx_unlock(&Giant); \ } \ } while (0) #endif /* SND_DIAGNOSTIC */ #define PCM_GIANT_LEAVE(x) \ PCM_GIANT_EXIT(x); \ } while (0) #endif /* _KERNEL */ #endif /* _OS_H_ */ diff --git a/sys/dev/sound/pcm/vchan.c b/sys/dev/sound/pcm/vchan.c index 4da6f83dc0a2..c9db9d79847b 100644 --- a/sys/dev/sound/pcm/vchan.c +++ b/sys/dev/sound/pcm/vchan.c @@ -1,1126 +1,1121 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2006-2009 Ariff Abdullah * Copyright (c) 2001 Cameron Grant * All rights reserved. * Copyright (c) 2024 The FreeBSD Foundation * * Portions of this software were developed by Christos Margiolis * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Almost entirely rewritten to add multi-format/channels mixing support. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include /* * [ac3 , dts , linear , 0, linear, 0] */ #define FMTLIST_MAX 6 #define FMTLIST_OFFSET 4 #define DIGFMTS_MAX 2 #ifdef SND_DEBUG static int snd_passthrough_verbose = 0; SYSCTL_INT(_hw_snd, OID_AUTO, passthrough_verbose, CTLFLAG_RWTUN, &snd_passthrough_verbose, 0, "passthrough verbosity"); #endif struct vchan_info { struct pcm_channel *channel; struct pcmchan_caps caps; uint32_t fmtlist[FMTLIST_MAX]; int trigger; }; int snd_maxautovchans = 16; static void * vchan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct vchan_info *info; struct pcm_channel *p; uint32_t i, j, *fmtlist; KASSERT(dir == PCMDIR_PLAY || dir == PCMDIR_REC, ("vchan_init: bad direction")); KASSERT(c != NULL && c->parentchannel != NULL, ("vchan_init: bad channels")); info = malloc(sizeof(*info), M_DEVBUF, M_WAITOK | M_ZERO); info->channel = c; info->trigger = PCMTRIG_STOP; p = c->parentchannel; CHN_LOCK(p); fmtlist = chn_getcaps(p)->fmtlist; for (i = 0, j = 0; fmtlist[i] != 0 && j < DIGFMTS_MAX; i++) { if (fmtlist[i] & AFMT_PASSTHROUGH) info->fmtlist[j++] = fmtlist[i]; } if (p->format & AFMT_VCHAN) info->fmtlist[j] = p->format; else info->fmtlist[j] = VCHAN_DEFAULT_FORMAT; info->caps.fmtlist = info->fmtlist + ((p->flags & CHN_F_VCHAN_DYNAMIC) ? 0 : FMTLIST_OFFSET); CHN_UNLOCK(p); c->flags |= CHN_F_VIRTUAL; return (info); } static int vchan_free(kobj_t obj, void *data) { free(data, M_DEVBUF); return (0); } static int vchan_setformat(kobj_t obj, void *data, uint32_t format) { struct vchan_info *info; info = data; CHN_LOCKASSERT(info->channel); if (!snd_fmtvalid(format, info->caps.fmtlist)) return (-1); return (0); } static uint32_t vchan_setspeed(kobj_t obj, void *data, uint32_t speed) { struct vchan_info *info; info = data; CHN_LOCKASSERT(info->channel); return (info->caps.maxspeed); } static int vchan_trigger(kobj_t obj, void *data, int go) { struct vchan_info *info; struct pcm_channel *c, *p; int ret, otrigger; info = data; if (!PCMTRIG_COMMON(go) || go == info->trigger) return (0); c = info->channel; p = c->parentchannel; otrigger = info->trigger; info->trigger = go; CHN_LOCKASSERT(c); CHN_UNLOCK(c); CHN_LOCK(p); switch (go) { case PCMTRIG_START: if (otrigger != PCMTRIG_START) CHN_INSERT_HEAD(p, c, children.busy); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: if (otrigger == PCMTRIG_START) CHN_REMOVE(p, c, children.busy); break; default: break; } ret = chn_notify(p, CHN_N_TRIGGER); CHN_LOCK(c); if (ret == 0 && go == PCMTRIG_START && VCHAN_SYNC_REQUIRED(c)) ret = vchan_sync(c); CHN_UNLOCK(c); CHN_UNLOCK(p); CHN_LOCK(c); return (ret); } static struct pcmchan_caps * vchan_getcaps(kobj_t obj, void *data) { struct vchan_info *info; struct pcm_channel *c; uint32_t pformat, pspeed, pflags, i; info = data; c = info->channel; pformat = c->parentchannel->format; pspeed = c->parentchannel->speed; pflags = c->parentchannel->flags; CHN_LOCKASSERT(c); if (pflags & CHN_F_VCHAN_DYNAMIC) { info->caps.fmtlist = info->fmtlist; if (pformat & AFMT_VCHAN) { for (i = 0; info->caps.fmtlist[i] != 0; i++) { if (info->caps.fmtlist[i] & AFMT_PASSTHROUGH) continue; break; } info->caps.fmtlist[i] = pformat; } if (c->format & AFMT_PASSTHROUGH) info->caps.minspeed = c->speed; else info->caps.minspeed = pspeed; info->caps.maxspeed = info->caps.minspeed; } else { info->caps.fmtlist = info->fmtlist + FMTLIST_OFFSET; if (pformat & AFMT_VCHAN) info->caps.fmtlist[0] = pformat; else { device_printf(c->dev, "%s(): invalid vchan format 0x%08x", __func__, pformat); info->caps.fmtlist[0] = VCHAN_DEFAULT_FORMAT; } info->caps.minspeed = pspeed; info->caps.maxspeed = info->caps.minspeed; } return (&info->caps); } static struct pcmchan_matrix * vchan_getmatrix(kobj_t obj, void *data, uint32_t format) { return (feeder_matrix_format_map(format)); } static kobj_method_t vchan_methods[] = { KOBJMETHOD(channel_init, vchan_init), KOBJMETHOD(channel_free, vchan_free), KOBJMETHOD(channel_setformat, vchan_setformat), KOBJMETHOD(channel_setspeed, vchan_setspeed), KOBJMETHOD(channel_trigger, vchan_trigger), KOBJMETHOD(channel_getcaps, vchan_getcaps), KOBJMETHOD(channel_getmatrix, vchan_getmatrix), KOBJMETHOD_END }; CHANNEL_DECLARE(vchan); static void vchan_getparentchannel(struct snddev_info *d, struct pcm_channel **wrch, struct pcm_channel **rdch) { struct pcm_channel **ch, *wch, *rch, *c; KASSERT(d != NULL, ("%s(): NULL snddev_info", __func__)); PCM_BUSYASSERT(d); PCM_UNLOCKASSERT(d); wch = NULL; rch = NULL; CHN_FOREACH(c, d, channels.pcm) { CHN_LOCK(c); ch = (c->direction == PCMDIR_PLAY) ? &wch : &rch; if (c->flags & CHN_F_VIRTUAL) { /* Sanity check */ if (*ch != NULL && *ch != c->parentchannel) { CHN_UNLOCK(c); *ch = NULL; break; } } else if (c->flags & CHN_F_HAS_VCHAN) { /* No way!! */ if (*ch != NULL) { CHN_UNLOCK(c); *ch = NULL; break; } *ch = c; } CHN_UNLOCK(c); } if (wrch != NULL) *wrch = wch; if (rdch != NULL) *rdch = rch; } static int sysctl_dev_pcm_vchans(SYSCTL_HANDLER_ARGS) { struct snddev_info *d; int direction, vchancount; int err, cnt; d = devclass_get_softc(pcm_devclass, VCHAN_SYSCTL_UNIT(oidp->oid_arg1)); if (!PCM_REGISTERED(d) || !(d->flags & SD_F_AUTOVCHAN)) return (EINVAL); PCM_LOCK(d); PCM_WAIT(d); switch (VCHAN_SYSCTL_DIR(oidp->oid_arg1)) { case VCHAN_PLAY: direction = PCMDIR_PLAY; vchancount = d->pvchancount; cnt = d->playcount; break; case VCHAN_REC: direction = PCMDIR_REC; vchancount = d->rvchancount; cnt = d->reccount; break; default: PCM_UNLOCK(d); return (EINVAL); break; } if (cnt < 1) { PCM_UNLOCK(d); return (ENODEV); } PCM_ACQUIRE(d); PCM_UNLOCK(d); cnt = vchancount; err = sysctl_handle_int(oidp, &cnt, 0, req); if (err == 0 && req->newptr != NULL && vchancount != cnt) { if (cnt < 0) cnt = 0; if (cnt > SND_MAXVCHANS) cnt = SND_MAXVCHANS; err = vchan_setnew(d, direction, cnt); } PCM_RELEASE_QUICK(d); return err; } static int sysctl_dev_pcm_vchanmode(SYSCTL_HANDLER_ARGS) { struct snddev_info *d; struct pcm_channel *c; uint32_t dflags; int direction, ret; char dtype[16]; d = devclass_get_softc(pcm_devclass, VCHAN_SYSCTL_UNIT(oidp->oid_arg1)); if (!PCM_REGISTERED(d) || !(d->flags & SD_F_AUTOVCHAN)) return (EINVAL); PCM_LOCK(d); PCM_WAIT(d); switch (VCHAN_SYSCTL_DIR(oidp->oid_arg1)) { case VCHAN_PLAY: direction = PCMDIR_PLAY; break; case VCHAN_REC: direction = PCMDIR_REC; break; default: PCM_UNLOCK(d); return (EINVAL); break; } PCM_ACQUIRE(d); PCM_UNLOCK(d); if (direction == PCMDIR_PLAY) vchan_getparentchannel(d, &c, NULL); else vchan_getparentchannel(d, NULL, &c); if (c == NULL) { PCM_RELEASE_QUICK(d); return (EINVAL); } KASSERT(direction == c->direction, ("%s(): invalid direction %d/%d", __func__, direction, c->direction)); CHN_LOCK(c); if (c->flags & CHN_F_VCHAN_PASSTHROUGH) strlcpy(dtype, "passthrough", sizeof(dtype)); else if (c->flags & CHN_F_VCHAN_ADAPTIVE) strlcpy(dtype, "adaptive", sizeof(dtype)); else strlcpy(dtype, "fixed", sizeof(dtype)); CHN_UNLOCK(c); ret = sysctl_handle_string(oidp, dtype, sizeof(dtype), req); if (ret == 0 && req->newptr != NULL) { if (strcasecmp(dtype, "passthrough") == 0 || strcmp(dtype, "1") == 0) dflags = CHN_F_VCHAN_PASSTHROUGH; else if (strcasecmp(dtype, "adaptive") == 0 || strcmp(dtype, "2") == 0) dflags = CHN_F_VCHAN_ADAPTIVE; else if (strcasecmp(dtype, "fixed") == 0 || strcmp(dtype, "0") == 0) dflags = 0; else { PCM_RELEASE_QUICK(d); return (EINVAL); } CHN_LOCK(c); if (dflags == (c->flags & CHN_F_VCHAN_DYNAMIC) || (c->flags & CHN_F_PASSTHROUGH)) { CHN_UNLOCK(c); PCM_RELEASE_QUICK(d); return (0); } c->flags &= ~CHN_F_VCHAN_DYNAMIC; c->flags |= dflags; CHN_UNLOCK(c); } PCM_RELEASE_QUICK(d); return (ret); } /* * On the fly vchan rate/format settings */ #define VCHAN_ACCESSIBLE(c) (!((c)->flags & (CHN_F_PASSTHROUGH | \ CHN_F_EXCLUSIVE)) && \ (((c)->flags & CHN_F_VCHAN_DYNAMIC) || \ CHN_STOPPED(c))) static int sysctl_dev_pcm_vchanrate(SYSCTL_HANDLER_ARGS) { struct snddev_info *d; struct pcm_channel *c, *ch; struct pcmchan_caps *caps; int *vchanrate, vchancount, direction, ret, newspd, restart; d = devclass_get_softc(pcm_devclass, VCHAN_SYSCTL_UNIT(oidp->oid_arg1)); if (!PCM_REGISTERED(d) || !(d->flags & SD_F_AUTOVCHAN)) return (EINVAL); PCM_LOCK(d); PCM_WAIT(d); switch (VCHAN_SYSCTL_DIR(oidp->oid_arg1)) { case VCHAN_PLAY: direction = PCMDIR_PLAY; vchancount = d->pvchancount; vchanrate = &d->pvchanrate; break; case VCHAN_REC: direction = PCMDIR_REC; vchancount = d->rvchancount; vchanrate = &d->rvchanrate; break; default: PCM_UNLOCK(d); return (EINVAL); break; } if (vchancount < 1) { PCM_UNLOCK(d); return (EINVAL); } PCM_ACQUIRE(d); PCM_UNLOCK(d); if (direction == PCMDIR_PLAY) vchan_getparentchannel(d, &c, NULL); else vchan_getparentchannel(d, NULL, &c); if (c == NULL) { PCM_RELEASE_QUICK(d); return (EINVAL); } KASSERT(direction == c->direction, ("%s(): invalid direction %d/%d", __func__, direction, c->direction)); CHN_LOCK(c); newspd = c->speed; CHN_UNLOCK(c); ret = sysctl_handle_int(oidp, &newspd, 0, req); if (ret != 0 || req->newptr == NULL) { PCM_RELEASE_QUICK(d); return (ret); } if (newspd < feeder_rate_min || newspd > feeder_rate_max) { PCM_RELEASE_QUICK(d); return (EINVAL); } CHN_LOCK(c); if (newspd != c->speed && VCHAN_ACCESSIBLE(c)) { if (CHN_STARTED(c)) { chn_abort(c); restart = 1; } else restart = 0; if (feeder_rate_round) { caps = chn_getcaps(c); RANGE(newspd, caps->minspeed, caps->maxspeed); newspd = CHANNEL_SETSPEED(c->methods, c->devinfo, newspd); } ret = chn_reset(c, c->format, newspd); if (ret == 0) { *vchanrate = c->speed; if (restart != 0) { CHN_FOREACH(ch, c, children.busy) { CHN_LOCK(ch); if (VCHAN_SYNC_REQUIRED(ch)) vchan_sync(ch); CHN_UNLOCK(ch); } c->flags |= CHN_F_DIRTY; ret = chn_start(c, 1); } } } CHN_UNLOCK(c); PCM_RELEASE_QUICK(d); return (ret); } static int sysctl_dev_pcm_vchanformat(SYSCTL_HANDLER_ARGS) { struct snddev_info *d; struct pcm_channel *c, *ch; uint32_t newfmt; int *vchanformat, vchancount, direction, ret, restart; char fmtstr[AFMTSTR_LEN]; d = devclass_get_softc(pcm_devclass, VCHAN_SYSCTL_UNIT(oidp->oid_arg1)); if (!PCM_REGISTERED(d) || !(d->flags & SD_F_AUTOVCHAN)) return (EINVAL); PCM_LOCK(d); PCM_WAIT(d); switch (VCHAN_SYSCTL_DIR(oidp->oid_arg1)) { case VCHAN_PLAY: direction = PCMDIR_PLAY; vchancount = d->pvchancount; vchanformat = &d->pvchanformat; break; case VCHAN_REC: direction = PCMDIR_REC; vchancount = d->rvchancount; vchanformat = &d->rvchanformat; break; default: PCM_UNLOCK(d); return (EINVAL); break; } if (vchancount < 1) { PCM_UNLOCK(d); return (EINVAL); } PCM_ACQUIRE(d); PCM_UNLOCK(d); if (direction == PCMDIR_PLAY) vchan_getparentchannel(d, &c, NULL); else vchan_getparentchannel(d, NULL, &c); if (c == NULL) { PCM_RELEASE_QUICK(d); return (EINVAL); } KASSERT(direction == c->direction, ("%s(): invalid direction %d/%d", __func__, direction, c->direction)); CHN_LOCK(c); bzero(fmtstr, sizeof(fmtstr)); if (snd_afmt2str(c->format, fmtstr, sizeof(fmtstr)) != c->format) strlcpy(fmtstr, "", sizeof(fmtstr)); CHN_UNLOCK(c); ret = sysctl_handle_string(oidp, fmtstr, sizeof(fmtstr), req); if (ret != 0 || req->newptr == NULL) { PCM_RELEASE_QUICK(d); return (ret); } newfmt = snd_str2afmt(fmtstr); if (newfmt == 0 || !(newfmt & AFMT_VCHAN)) { PCM_RELEASE_QUICK(d); return (EINVAL); } CHN_LOCK(c); if (newfmt != c->format && VCHAN_ACCESSIBLE(c)) { if (CHN_STARTED(c)) { chn_abort(c); restart = 1; } else restart = 0; ret = chn_reset(c, newfmt, c->speed); if (ret == 0) { *vchanformat = c->format; if (restart != 0) { CHN_FOREACH(ch, c, children.busy) { CHN_LOCK(ch); if (VCHAN_SYNC_REQUIRED(ch)) vchan_sync(ch); CHN_UNLOCK(ch); } c->flags |= CHN_F_DIRTY; ret = chn_start(c, 1); } } } CHN_UNLOCK(c); PCM_RELEASE_QUICK(d); return (ret); } /* virtual channel interface */ #define VCHAN_FMT_HINT(x) ((x) == PCMDIR_PLAY_VIRTUAL) ? \ "play.vchanformat" : "rec.vchanformat" #define VCHAN_SPD_HINT(x) ((x) == PCMDIR_PLAY_VIRTUAL) ? \ "play.vchanrate" : "rec.vchanrate" int vchan_create(struct pcm_channel *parent) { struct snddev_info *d; struct pcm_channel *ch; struct pcmchan_caps *parent_caps; uint32_t vchanfmt, vchanspd; int ret, direction, r; bool save; ret = 0; save = false; d = parent->parentsnddev; PCM_BUSYASSERT(d); CHN_LOCKASSERT(parent); if (!(parent->flags & CHN_F_BUSY)) return (EBUSY); if (!(parent->direction == PCMDIR_PLAY || parent->direction == PCMDIR_REC)) return (EINVAL); CHN_UNLOCK(parent); PCM_LOCK(d); if (parent->direction == PCMDIR_PLAY) { direction = PCMDIR_PLAY_VIRTUAL; vchanfmt = d->pvchanformat; vchanspd = d->pvchanrate; } else { direction = PCMDIR_REC_VIRTUAL; vchanfmt = d->rvchanformat; vchanspd = d->rvchanrate; } /* create a new playback channel */ ch = chn_init(d, parent, &vchan_class, direction, parent); if (ch == NULL) { PCM_UNLOCK(d); CHN_LOCK(parent); return (ENODEV); } PCM_UNLOCK(d); CHN_LOCK(parent); /* * Add us to our parent channel's children in reverse order * so future destruction will pick the last (biggest number) * channel. */ CHN_INSERT_SORT_DESCEND(parent, ch, children); if (parent->flags & CHN_F_HAS_VCHAN) return (0); parent->flags |= CHN_F_HAS_VCHAN; parent_caps = chn_getcaps(parent); if (parent_caps == NULL) { ret = EINVAL; goto fail; } if (vchanfmt == 0) { const char *vfmt; CHN_UNLOCK(parent); r = resource_string_value(device_get_name(parent->dev), device_get_unit(parent->dev), VCHAN_FMT_HINT(direction), &vfmt); CHN_LOCK(parent); if (r != 0) vfmt = NULL; if (vfmt != NULL) { vchanfmt = snd_str2afmt(vfmt); if (vchanfmt != 0 && !(vchanfmt & AFMT_VCHAN)) vchanfmt = 0; } if (vchanfmt == 0) vchanfmt = VCHAN_DEFAULT_FORMAT; save = true; } if (vchanspd == 0) { /* * This is very sad. Few soundcards advertised as being * able to do (insanely) higher/lower speed, but in * reality, they simply can't. At least, we give user chance * to set sane value via kernel hints or sysctl. */ CHN_UNLOCK(parent); r = resource_int_value(device_get_name(parent->dev), device_get_unit(parent->dev), VCHAN_SPD_HINT(direction), &vchanspd); CHN_LOCK(parent); if (r != 0) { /* No saved value, no hint, NOTHING. */ vchanspd = VCHAN_DEFAULT_RATE; RANGE(vchanspd, parent_caps->minspeed, parent_caps->maxspeed); } save = true; } /* * Limit the speed between feeder_rate_min <-> feeder_rate_max. */ RANGE(vchanspd, feeder_rate_min, feeder_rate_max); if (feeder_rate_round) { RANGE(vchanspd, parent_caps->minspeed, parent_caps->maxspeed); vchanspd = CHANNEL_SETSPEED(parent->methods, parent->devinfo, vchanspd); } if ((ret = chn_reset(parent, vchanfmt, vchanspd)) != 0) goto fail; if (save) { /* * Save new value. */ if (direction == PCMDIR_PLAY_VIRTUAL) { d->pvchanformat = parent->format; d->pvchanrate = parent->speed; } else { d->rvchanformat = parent->format; d->rvchanrate = parent->speed; } } /* * If the parent channel supports digital format, * enable passthrough mode. */ if (snd_fmtvalid(AFMT_PASSTHROUGH, parent_caps->fmtlist)) { parent->flags &= ~CHN_F_VCHAN_DYNAMIC; parent->flags |= CHN_F_VCHAN_PASSTHROUGH; } return (ret); fail: CHN_REMOVE(parent, ch, children); parent->flags &= ~CHN_F_HAS_VCHAN; CHN_UNLOCK(parent); chn_kill(ch); CHN_LOCK(parent); return (ret); } int vchan_destroy(struct pcm_channel *c) { struct pcm_channel *parent; KASSERT(c != NULL && c->parentchannel != NULL && c->parentsnddev != NULL, ("%s(): invalid channel=%p", __func__, c)); CHN_LOCKASSERT(c); parent = c->parentchannel; PCM_BUSYASSERT(c->parentsnddev); CHN_LOCKASSERT(parent); CHN_UNLOCK(c); if (!(parent->flags & CHN_F_BUSY)) return (EBUSY); if (CHN_EMPTY(parent, children)) return (EINVAL); /* remove us from our parent's children list */ CHN_REMOVE(parent, c, children); if (CHN_EMPTY(parent, children)) { parent->flags &= ~(CHN_F_BUSY | CHN_F_HAS_VCHAN); chn_reset(parent, parent->format, parent->speed); } CHN_UNLOCK(parent); /* destroy ourselves */ chn_kill(c); CHN_LOCK(parent); return (0); } int #ifdef SND_DEBUG vchan_passthrough(struct pcm_channel *c, const char *caller) #else vchan_sync(struct pcm_channel *c) #endif { int ret; KASSERT(c != NULL && c->parentchannel != NULL && (c->flags & CHN_F_VIRTUAL), ("%s(): invalid passthrough", __func__)); CHN_LOCKASSERT(c); CHN_LOCKASSERT(c->parentchannel); sndbuf_setspd(c->bufhard, c->parentchannel->speed); c->flags |= CHN_F_PASSTHROUGH; ret = feeder_chain(c); c->flags &= ~(CHN_F_DIRTY | CHN_F_PASSTHROUGH); if (ret != 0) c->flags |= CHN_F_DIRTY; #ifdef SND_DEBUG - if (snd_passthrough_verbose != 0) { - char *devname, buf[CHN_NAMELEN]; - - devname = dsp_unit2name(buf, sizeof(buf), c); - device_printf(c->dev, - "%s(%s/%s) %s() -> re-sync err=%d\n", - __func__, (devname != NULL) ? devname : "dspX", c->comm, - caller, ret); + if (snd_passthrough_verbose) { + device_printf(c->dev, "%s(%s/%s) %s() -> re-sync err=%d\n", + __func__, c->name, c->comm, caller, ret); } #endif return (ret); } int vchan_setnew(struct snddev_info *d, int direction, int newcnt) { struct pcm_channel *c, *ch, *nch; struct pcmchan_caps *caps; int i, err, vcnt; PCM_BUSYASSERT(d); if ((direction == PCMDIR_PLAY && d->playcount < 1) || (direction == PCMDIR_REC && d->reccount < 1)) return (ENODEV); if (!(d->flags & SD_F_AUTOVCHAN)) return (EINVAL); if (newcnt < 0 || newcnt > SND_MAXVCHANS) return (E2BIG); if (direction == PCMDIR_PLAY) vcnt = d->pvchancount; else if (direction == PCMDIR_REC) vcnt = d->rvchancount; else return (EINVAL); if (newcnt > vcnt) { /* add new vchans - find a parent channel first */ ch = NULL; CHN_FOREACH(c, d, channels.pcm) { CHN_LOCK(c); if (c->direction == direction && ((c->flags & CHN_F_HAS_VCHAN) || (vcnt == 0 && c->refcount < 1 && !(c->flags & (CHN_F_BUSY | CHN_F_VIRTUAL))))) { /* * Reuse hw channel with vchans already * created. */ if (c->flags & CHN_F_HAS_VCHAN) { ch = c; break; } /* * No vchans ever created, look for * channels with supported formats. */ caps = chn_getcaps(c); if (caps == NULL) { CHN_UNLOCK(c); continue; } for (i = 0; caps->fmtlist[i] != 0; i++) { if (caps->fmtlist[i] & AFMT_CONVERTIBLE) break; } if (caps->fmtlist[i] != 0) { ch = c; break; } } CHN_UNLOCK(c); } if (ch == NULL) return (EBUSY); ch->flags |= CHN_F_BUSY; err = 0; while (err == 0 && newcnt > vcnt) { err = vchan_create(ch); if (err == 0) vcnt++; else if (err == E2BIG && newcnt > vcnt) device_printf(d->dev, "%s: err=%d Maximum channel reached.\n", __func__, err); } if (vcnt == 0) ch->flags &= ~CHN_F_BUSY; CHN_UNLOCK(ch); if (err != 0) return (err); } else if (newcnt < vcnt) { CHN_FOREACH(c, d, channels.pcm) { CHN_LOCK(c); if (c->direction != direction || CHN_EMPTY(c, children) || !(c->flags & CHN_F_HAS_VCHAN)) { CHN_UNLOCK(c); continue; } CHN_FOREACH_SAFE(ch, c, nch, children) { CHN_LOCK(ch); if (vcnt == 1 && c->refcount > 0) { CHN_UNLOCK(ch); break; } if (!(ch->flags & CHN_F_BUSY) && ch->refcount < 1) { err = vchan_destroy(ch); if (err == 0) vcnt--; } else CHN_UNLOCK(ch); if (vcnt == newcnt) break; } CHN_UNLOCK(c); break; } } return (0); } void vchan_setmaxauto(struct snddev_info *d, int num) { PCM_BUSYASSERT(d); if (num < 0) return; if (num >= 0 && d->pvchancount > num) (void)vchan_setnew(d, PCMDIR_PLAY, num); else if (num > 0 && d->pvchancount == 0) (void)vchan_setnew(d, PCMDIR_PLAY, 1); if (num >= 0 && d->rvchancount > num) (void)vchan_setnew(d, PCMDIR_REC, num); else if (num > 0 && d->rvchancount == 0) (void)vchan_setnew(d, PCMDIR_REC, 1); } static int sysctl_hw_snd_maxautovchans(SYSCTL_HANDLER_ARGS) { struct snddev_info *d; int i, v, error; v = snd_maxautovchans; error = sysctl_handle_int(oidp, &v, 0, req); if (error == 0 && req->newptr != NULL) { if (v < 0) v = 0; if (v > SND_MAXVCHANS) v = SND_MAXVCHANS; snd_maxautovchans = v; for (i = 0; pcm_devclass != NULL && i < devclass_get_maxunit(pcm_devclass); i++) { d = devclass_get_softc(pcm_devclass, i); if (!PCM_REGISTERED(d)) continue; PCM_ACQUIRE_QUICK(d); vchan_setmaxauto(d, v); PCM_RELEASE_QUICK(d); } } return (error); } SYSCTL_PROC(_hw_snd, OID_AUTO, maxautovchans, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int), sysctl_hw_snd_maxautovchans, "I", "maximum virtual channel"); void vchan_initsys(device_t dev) { struct snddev_info *d; int unit; unit = device_get_unit(dev); d = device_get_softc(dev); /* Play */ SYSCTL_ADD_PROC(&d->play_sysctl_ctx, SYSCTL_CHILDREN(d->play_sysctl_tree), OID_AUTO, "vchans", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, VCHAN_SYSCTL_DATA(unit, PLAY), VCHAN_SYSCTL_DATA_SIZE, sysctl_dev_pcm_vchans, "I", "total allocated virtual channel"); SYSCTL_ADD_PROC(&d->play_sysctl_ctx, SYSCTL_CHILDREN(d->play_sysctl_tree), OID_AUTO, "vchanmode", CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, VCHAN_SYSCTL_DATA(unit, PLAY), VCHAN_SYSCTL_DATA_SIZE, sysctl_dev_pcm_vchanmode, "A", "vchan format/rate selection: 0=fixed, 1=passthrough, 2=adaptive"); SYSCTL_ADD_PROC(&d->play_sysctl_ctx, SYSCTL_CHILDREN(d->play_sysctl_tree), OID_AUTO, "vchanrate", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, VCHAN_SYSCTL_DATA(unit, PLAY), VCHAN_SYSCTL_DATA_SIZE, sysctl_dev_pcm_vchanrate, "I", "virtual channel mixing speed/rate"); SYSCTL_ADD_PROC(&d->play_sysctl_ctx, SYSCTL_CHILDREN(d->play_sysctl_tree), OID_AUTO, "vchanformat", CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, VCHAN_SYSCTL_DATA(unit, PLAY), VCHAN_SYSCTL_DATA_SIZE, sysctl_dev_pcm_vchanformat, "A", "virtual channel mixing format"); /* Rec */ SYSCTL_ADD_PROC(&d->rec_sysctl_ctx, SYSCTL_CHILDREN(d->rec_sysctl_tree), OID_AUTO, "vchans", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, VCHAN_SYSCTL_DATA(unit, REC), VCHAN_SYSCTL_DATA_SIZE, sysctl_dev_pcm_vchans, "I", "total allocated virtual channel"); SYSCTL_ADD_PROC(&d->rec_sysctl_ctx, SYSCTL_CHILDREN(d->rec_sysctl_tree), OID_AUTO, "vchanmode", CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, VCHAN_SYSCTL_DATA(unit, REC), VCHAN_SYSCTL_DATA_SIZE, sysctl_dev_pcm_vchanmode, "A", "vchan format/rate selection: 0=fixed, 1=passthrough, 2=adaptive"); SYSCTL_ADD_PROC(&d->rec_sysctl_ctx, SYSCTL_CHILDREN(d->rec_sysctl_tree), OID_AUTO, "vchanrate", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, VCHAN_SYSCTL_DATA(unit, REC), VCHAN_SYSCTL_DATA_SIZE, sysctl_dev_pcm_vchanrate, "I", "virtual channel mixing speed/rate"); SYSCTL_ADD_PROC(&d->rec_sysctl_ctx, SYSCTL_CHILDREN(d->rec_sysctl_tree), OID_AUTO, "vchanformat", CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, VCHAN_SYSCTL_DATA(unit, REC), VCHAN_SYSCTL_DATA_SIZE, sysctl_dev_pcm_vchanformat, "A", "virtual channel mixing format"); }