diff --git a/usr.sbin/bhyve/pci_emul.c b/usr.sbin/bhyve/pci_emul.c
index fd18fdbdaeab..86a2f995126e 100644
--- a/usr.sbin/bhyve/pci_emul.c
+++ b/usr.sbin/bhyve/pci_emul.c
@@ -1,2428 +1,2427 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2011 NetApp, Inc.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/linker_set.h>
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/pmap.h>
 
 #include <ctype.h>
 #include <errno.h>
 #include <pthread.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <strings.h>
 #include <assert.h>
 #include <stdbool.h>
 
 #include <machine/vmm.h>
 #include <machine/vmm_snapshot.h>
 #include <machine/cpufunc.h>
 #include <machine/specialreg.h>
 #include <vmmapi.h>
 
 #include "acpi.h"
 #include "bhyverun.h"
 #include "config.h"
 #include "debug.h"
 #include "inout.h"
 #include "ioapic.h"
 #include "mem.h"
 #include "pci_emul.h"
 #include "pci_irq.h"
 #include "pci_lpc.h"
 
 #define CONF1_ADDR_PORT	   0x0cf8
 #define CONF1_DATA_PORT	   0x0cfc
 
 #define CONF1_ENABLE	   0x80000000ul
 
 #define	MAXBUSES	(PCI_BUSMAX + 1)
 #define MAXSLOTS	(PCI_SLOTMAX + 1)
 #define	MAXFUNCS	(PCI_FUNCMAX + 1)
 
 struct funcinfo {
 	nvlist_t *fi_config;
 	struct pci_devemu *fi_pde;
 	struct pci_devinst *fi_devi;
 };
 
 struct intxinfo {
 	int	ii_count;
 	int	ii_pirq_pin;
 	int	ii_ioapic_irq;
 };
 
 struct slotinfo {
 	struct intxinfo si_intpins[4];
 	struct funcinfo si_funcs[MAXFUNCS];
 };
 
 struct businfo {
 	uint16_t iobase, iolimit;		/* I/O window */
 	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
 	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
 	struct slotinfo slotinfo[MAXSLOTS];
 };
 
 static struct businfo *pci_businfo[MAXBUSES];
 
 SET_DECLARE(pci_devemu_set, struct pci_devemu);
 
 static uint64_t pci_emul_iobase;
 static uint64_t pci_emul_membase32;
 static uint64_t pci_emul_membase64;
 static uint64_t pci_emul_memlim64;
 
 #define	PCI_EMUL_IOBASE		0x2000
 #define	PCI_EMUL_IOLIMIT	0x10000
 
 #define	PCI_EMUL_ECFG_BASE	0xE0000000		    /* 3.5GB */
 #define	PCI_EMUL_ECFG_SIZE	(MAXBUSES * 1024 * 1024)    /* 1MB per bus */
 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
 
 #define	PCI_EMUL_MEMLIMIT32	PCI_EMUL_ECFG_BASE
 
 static struct pci_devemu *pci_emul_finddev(const char *name);
 static void pci_lintr_route(struct pci_devinst *pi);
 static void pci_lintr_update(struct pci_devinst *pi);
 static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot,
     int func, int coff, int bytes, uint32_t *val);
 
 static __inline void
 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
 {
 
 	if (bytes == 1)
 		pci_set_cfgdata8(pi, coff, val);
 	else if (bytes == 2)
 		pci_set_cfgdata16(pi, coff, val);
 	else
 		pci_set_cfgdata32(pi, coff, val);
 }
 
 static __inline uint32_t
 CFGREAD(struct pci_devinst *pi, int coff, int bytes)
 {
 
 	if (bytes == 1)
 		return (pci_get_cfgdata8(pi, coff));
 	else if (bytes == 2)
 		return (pci_get_cfgdata16(pi, coff));
 	else
 		return (pci_get_cfgdata32(pi, coff));
 }
 
 /*
  * I/O access
  */
 
 /*
  * Slot options are in the form:
  *
  *  <bus>:<slot>:<func>,<emul>[,<config>]
  *  <slot>[:<func>],<emul>[,<config>]
  *
  *  slot is 0..31
  *  func is 0..7
  *  emul is a string describing the type of PCI device e.g. virtio-net
  *  config is an optional string, depending on the device, that can be
  *  used for configuration.
  *   Examples are:
  *     1,virtio-net,tap0
  *     3:0,dummy
  */
 static void
 pci_parse_slot_usage(char *aopt)
 {
 
 	EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
 }
 
 /*
  * Helper function to parse a list of comma-separated options where
  * each option is formatted as "name[=value]".  If no value is
  * provided, the option is treated as a boolean and is given a value
  * of true.
  */
 int
 pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
 {
 	char *config, *name, *tofree, *value;
 
 	if (opt == NULL)
 		return (0);
 
 	config = tofree = strdup(opt);
 	while ((name = strsep(&config, ",")) != NULL) {
 		value = strchr(name, '=');
 		if (value != NULL) {
 			*value = '\0';
 			value++;
 			set_config_value_node(nvl, name, value);
 		} else
 			set_config_bool_node(nvl, name, true);
 	}
 	free(tofree);
 	return (0);
 }
 
 /*
  * PCI device configuration is stored in MIBs that encode the device's
  * location:
  *
  * pci.<bus>.<slot>.<func>
  *
  * Where "bus", "slot", and "func" are all decimal values without
  * leading zeroes.  Each valid device must have a "device" node which
  * identifies the driver model of the device.
  *
  * Device backends can provide a parser for the "config" string.  If
  * a custom parser is not provided, pci_parse_legacy_config() is used
  * to parse the string.
  */
 int
 pci_parse_slot(char *opt)
 {
 	char node_name[sizeof("pci.XXX.XX.X")];
 	struct pci_devemu *pde;
 	char *emul, *config, *str, *cp;
 	int error, bnum, snum, fnum;
 	nvlist_t *nvl;
 
 	error = -1;
 	str = strdup(opt);
 
 	emul = config = NULL;
 	if ((cp = strchr(str, ',')) != NULL) {
 		*cp = '\0';
 		emul = cp + 1;
 		if ((cp = strchr(emul, ',')) != NULL) {
 			*cp = '\0';
 			config = cp + 1;
 		}
 	} else {
 		pci_parse_slot_usage(opt);
 		goto done;
 	}
 
 	/* <bus>:<slot>:<func> */
 	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
 		bnum = 0;
 		/* <slot>:<func> */
 		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
 			fnum = 0;
 			/* <slot> */
 			if (sscanf(str, "%d", &snum) != 1) {
 				snum = -1;
 			}
 		}
 	}
 
 	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
 	    fnum < 0 || fnum >= MAXFUNCS) {
 		pci_parse_slot_usage(opt);
 		goto done;
 	}
 
 	pde = pci_emul_finddev(emul);
 	if (pde == NULL) {
 		EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
 		    fnum, emul);
 		goto done;
 	}
 
 	snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
 	    fnum);
 	nvl = find_config_node(node_name);
 	if (nvl != NULL) {
 		EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
 		    fnum);
 		goto done;
 	}
 	nvl = create_config_node(node_name);
 	if (pde->pe_alias != NULL)
 		set_config_value_node(nvl, "device", pde->pe_alias);
 	else
 		set_config_value_node(nvl, "device", pde->pe_emu);
 
 	if (pde->pe_legacy_config != NULL)
 		error = pde->pe_legacy_config(nvl, config);
 	else
 		error = pci_parse_legacy_config(nvl, config);
 done:
 	free(str);
 	return (error);
 }
 
 void
 pci_print_supported_devices()
 {
 	struct pci_devemu **pdpp, *pdp;
 
 	SET_FOREACH(pdpp, pci_devemu_set) {
 		pdp = *pdpp;
 		printf("%s\n", pdp->pe_emu);
 	}
 }
 
 static int
 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
 {
 
 	if (offset < pi->pi_msix.pba_offset)
 		return (0);
 
 	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
 		return (0);
 	}
 
 	return (1);
 }
 
 int
 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
 		     uint64_t value)
 {
 	int msix_entry_offset;
 	int tab_index;
 	char *dest;
 
 	/* support only 4 or 8 byte writes */
 	if (size != 4 && size != 8)
 		return (-1);
 
 	/*
 	 * Return if table index is beyond what device supports
 	 */
 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
 	if (tab_index >= pi->pi_msix.table_count)
 		return (-1);
 
 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
 
 	/* support only aligned writes */
 	if ((msix_entry_offset % size) != 0)
 		return (-1);
 
 	dest = (char *)(pi->pi_msix.table + tab_index);
 	dest += msix_entry_offset;
 
 	if (size == 4)
 		*((uint32_t *)dest) = value;
 	else
 		*((uint64_t *)dest) = value;
 
 	return (0);
 }
 
 uint64_t
 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
 {
 	char *dest;
 	int msix_entry_offset;
 	int tab_index;
 	uint64_t retval = ~0;
 
 	/*
 	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
 	 * table but we also allow 1 byte access to accommodate reads from
 	 * ddb.
 	 */
 	if (size != 1 && size != 4 && size != 8)
 		return (retval);
 
 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
 
 	/* support only aligned reads */
 	if ((msix_entry_offset % size) != 0) {
 		return (retval);
 	}
 
 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
 
 	if (tab_index < pi->pi_msix.table_count) {
 		/* valid MSI-X Table access */
 		dest = (char *)(pi->pi_msix.table + tab_index);
 		dest += msix_entry_offset;
 
 		if (size == 1)
 			retval = *((uint8_t *)dest);
 		else if (size == 4)
 			retval = *((uint32_t *)dest);
 		else
 			retval = *((uint64_t *)dest);
 	} else if (pci_valid_pba_offset(pi, offset)) {
 		/* return 0 for PBA access */
 		retval = 0;
 	}
 
 	return (retval);
 }
 
 int
 pci_msix_table_bar(struct pci_devinst *pi)
 {
 
 	if (pi->pi_msix.table != NULL)
 		return (pi->pi_msix.table_bar);
 	else
 		return (-1);
 }
 
 int
 pci_msix_pba_bar(struct pci_devinst *pi)
 {
 
 	if (pi->pi_msix.table != NULL)
 		return (pi->pi_msix.pba_bar);
 	else
 		return (-1);
 }
 
 static int
 pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
 		    uint32_t *eax, void *arg)
 {
 	struct pci_devinst *pdi = arg;
 	struct pci_devemu *pe = pdi->pi_d;
 	uint64_t offset;
 	int i;
 
 	for (i = 0; i <= PCI_BARMAX; i++) {
 		if (pdi->pi_bar[i].type == PCIBAR_IO &&
 		    port >= pdi->pi_bar[i].addr &&
 		    port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
 			offset = port - pdi->pi_bar[i].addr;
 			if (in)
 				*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
 							 offset, bytes);
 			else
 				(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
 						   bytes, *eax);
 			return (0);
 		}
 	}
 	return (-1);
 }
 
 static int
 pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
 		     int size, uint64_t *val, void *arg1, long arg2)
 {
 	struct pci_devinst *pdi = arg1;
 	struct pci_devemu *pe = pdi->pi_d;
 	uint64_t offset;
 	int bidx = (int) arg2;
 
 	assert(bidx <= PCI_BARMAX);
 	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
 	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
 	assert(addr >= pdi->pi_bar[bidx].addr &&
 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
 
 	offset = addr - pdi->pi_bar[bidx].addr;
 
 	if (dir == MEM_F_WRITE) {
 		if (size == 8) {
 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
 					   4, *val & 0xffffffff);
 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4,
 					   4, *val >> 32);
 		} else {
 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
 					   size, *val);
 		}
 	} else {
 		if (size == 8) {
 			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
 						 offset, 4);
 			*val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
 						  offset + 4, 4) << 32;
 		} else {
 			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
 						 offset, size);
 		}
 	}
 
 	return (0);
 }
 
 
 static int
 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
 			uint64_t *addr)
 {
 	uint64_t base;
 
 	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
 
 	base = roundup2(*baseptr, size);
 
 	if (base + size <= limit) {
 		*addr = base;
 		*baseptr = base + size;
 		return (0);
 	} else
 		return (-1);
 }
 
 /*
  * Register (or unregister) the MMIO or I/O region associated with the BAR
  * register 'idx' of an emulated pci device.
  */
 static void
 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
 {
 	struct pci_devemu *pe;
 	int error;
 	struct inout_port iop;
 	struct mem_range mr;
 
 	pe = pi->pi_d;
 	switch (pi->pi_bar[idx].type) {
 	case PCIBAR_IO:
 		bzero(&iop, sizeof(struct inout_port));
 		iop.name = pi->pi_name;
 		iop.port = pi->pi_bar[idx].addr;
 		iop.size = pi->pi_bar[idx].size;
 		if (registration) {
 			iop.flags = IOPORT_F_INOUT;
 			iop.handler = pci_emul_io_handler;
 			iop.arg = pi;
 			error = register_inout(&iop);
 		} else
 			error = unregister_inout(&iop);
 		if (pe->pe_baraddr != NULL)
 			(*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration,
 					  pi->pi_bar[idx].addr);
 		break;
 	case PCIBAR_MEM32:
 	case PCIBAR_MEM64:
 		bzero(&mr, sizeof(struct mem_range));
 		mr.name = pi->pi_name;
 		mr.base = pi->pi_bar[idx].addr;
 		mr.size = pi->pi_bar[idx].size;
 		if (registration) {
 			mr.flags = MEM_F_RW;
 			mr.handler = pci_emul_mem_handler;
 			mr.arg1 = pi;
 			mr.arg2 = idx;
 			error = register_mem(&mr);
 		} else
 			error = unregister_mem(&mr);
 		if (pe->pe_baraddr != NULL)
 			(*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration,
 					  pi->pi_bar[idx].addr);
 		break;
 	default:
 		error = EINVAL;
 		break;
 	}
 	assert(error == 0);
 }
 
 static void
 unregister_bar(struct pci_devinst *pi, int idx)
 {
 
 	modify_bar_registration(pi, idx, 0);
 }
 
 static void
 register_bar(struct pci_devinst *pi, int idx)
 {
 
 	modify_bar_registration(pi, idx, 1);
 }
 
 /* Are we decoding i/o port accesses for the emulated pci device? */
 static int
 porten(struct pci_devinst *pi)
 {
 	uint16_t cmd;
 
 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
 
 	return (cmd & PCIM_CMD_PORTEN);
 }
 
 /* Are we decoding memory accesses for the emulated pci device? */
 static int
 memen(struct pci_devinst *pi)
 {
 	uint16_t cmd;
 
 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
 
 	return (cmd & PCIM_CMD_MEMEN);
 }
 
 /*
  * Update the MMIO or I/O address that is decoded by the BAR register.
  *
  * If the pci device has enabled the address space decoding then intercept
  * the address range decoded by the BAR register.
  */
 static void
 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
 {
 	int decode;
 
 	if (pi->pi_bar[idx].type == PCIBAR_IO)
 		decode = porten(pi);
 	else
 		decode = memen(pi);
 
 	if (decode)
 		unregister_bar(pi, idx);
 
 	switch (type) {
 	case PCIBAR_IO:
 	case PCIBAR_MEM32:
 		pi->pi_bar[idx].addr = addr;
 		break;
 	case PCIBAR_MEM64:
 		pi->pi_bar[idx].addr &= ~0xffffffffUL;
 		pi->pi_bar[idx].addr |= addr;
 		break;
 	case PCIBAR_MEMHI64:
 		pi->pi_bar[idx].addr &= 0xffffffff;
 		pi->pi_bar[idx].addr |= addr;
 		break;
 	default:
 		assert(0);
 	}
 
 	if (decode)
 		register_bar(pi, idx);
 }
 
 int
 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
     uint64_t size)
 {
 	int error;
 	uint64_t *baseptr, limit, addr, mask, lobits, bar;
 	uint16_t cmd, enbit;
 
 	assert(idx >= 0 && idx <= PCI_BARMAX);
 
 	if ((size & (size - 1)) != 0)
 		size = 1UL << flsl(size);	/* round up to a power of 2 */
 
 	/* Enforce minimum BAR sizes required by the PCI standard */
 	if (type == PCIBAR_IO) {
 		if (size < 4)
 			size = 4;
 	} else {
 		if (size < 16)
 			size = 16;
 	}
 
 	switch (type) {
 	case PCIBAR_NONE:
 		baseptr = NULL;
 		addr = mask = lobits = enbit = 0;
 		break;
 	case PCIBAR_IO:
 		baseptr = &pci_emul_iobase;
 		limit = PCI_EMUL_IOLIMIT;
 		mask = PCIM_BAR_IO_BASE;
 		lobits = PCIM_BAR_IO_SPACE;
 		enbit = PCIM_CMD_PORTEN;
 		break;
 	case PCIBAR_MEM64:
 		/*
 		 * XXX
 		 * Some drivers do not work well if the 64-bit BAR is allocated
 		 * above 4GB. Allow for this by allocating small requests under
 		 * 4GB unless then allocation size is larger than some arbitrary
 		 * number (128MB currently).
 		 */
 		if (size > 128 * 1024 * 1024) {
 			baseptr = &pci_emul_membase64;
 			limit = pci_emul_memlim64;
 			mask = PCIM_BAR_MEM_BASE;
 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
 				 PCIM_BAR_MEM_PREFETCH;
 		} else {
 			baseptr = &pci_emul_membase32;
 			limit = PCI_EMUL_MEMLIMIT32;
 			mask = PCIM_BAR_MEM_BASE;
 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
 		}
 		enbit = PCIM_CMD_MEMEN;
 		break;
 	case PCIBAR_MEM32:
 		baseptr = &pci_emul_membase32;
 		limit = PCI_EMUL_MEMLIMIT32;
 		mask = PCIM_BAR_MEM_BASE;
 		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
 		enbit = PCIM_CMD_MEMEN;
 		break;
 	default:
 		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
 		assert(0);
 	}
 
 	if (baseptr != NULL) {
 		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
 		if (error != 0)
 			return (error);
 	}
 
 	pdi->pi_bar[idx].type = type;
 	pdi->pi_bar[idx].addr = addr;
 	pdi->pi_bar[idx].size = size;
 
 	/* Initialize the BAR register in config space */
 	bar = (addr & mask) | lobits;
 	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
 
 	if (type == PCIBAR_MEM64) {
 		assert(idx + 1 <= PCI_BARMAX);
 		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
 		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
 	}
 
 	cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
 	if ((cmd & enbit) != enbit)
 		pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
 	register_bar(pdi, idx);
 
 	return (0);
 }
 
 #define	CAP_START_OFFSET	0x40
 static int
 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
 {
 	int i, capoff, reallen;
 	uint16_t sts;
 
 	assert(caplen > 0);
 
 	reallen = roundup2(caplen, 4);		/* dword aligned */
 
 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
 		capoff = CAP_START_OFFSET;
 	else
 		capoff = pi->pi_capend + 1;
 
 	/* Check if we have enough space */
 	if (capoff + reallen > PCI_REGMAX + 1)
 		return (-1);
 
 	/* Set the previous capability pointer */
 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
 		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
 		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
 	} else
 		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
 
 	/* Copy the capability */
 	for (i = 0; i < caplen; i++)
 		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
 
 	/* Set the next capability pointer */
 	pci_set_cfgdata8(pi, capoff + 1, 0);
 
 	pi->pi_prevcap = capoff;
 	pi->pi_capend = capoff + reallen - 1;
 	return (0);
 }
 
 static struct pci_devemu *
 pci_emul_finddev(const char *name)
 {
 	struct pci_devemu **pdpp, *pdp;
 
 	SET_FOREACH(pdpp, pci_devemu_set) {
 		pdp = *pdpp;
 		if (!strcmp(pdp->pe_emu, name)) {
 			return (pdp);
 		}
 	}
 
 	return (NULL);
 }
 
 static int
 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
     int func, struct funcinfo *fi)
 {
 	struct pci_devinst *pdi;
 	int err;
 
 	pdi = calloc(1, sizeof(struct pci_devinst));
 
 	pdi->pi_vmctx = ctx;
 	pdi->pi_bus = bus;
 	pdi->pi_slot = slot;
 	pdi->pi_func = func;
 	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
 	pdi->pi_lintr.pin = 0;
 	pdi->pi_lintr.state = IDLE;
 	pdi->pi_lintr.pirq_pin = 0;
 	pdi->pi_lintr.ioapic_irq = 0;
 	pdi->pi_d = pde;
 	snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
 
 	/* Disable legacy interrupts */
 	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
 	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
 
 	pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
 
 	err = (*pde->pe_init)(ctx, pdi, fi->fi_config);
 	if (err == 0)
 		fi->fi_devi = pdi;
 	else
 		free(pdi);
 
 	return (err);
 }
 
 void
 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
 {
 	int mmc;
 
 	/* Number of msi messages must be a power of 2 between 1 and 32 */
 	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
 	mmc = ffs(msgnum) - 1;
 
 	bzero(msicap, sizeof(struct msicap));
 	msicap->capid = PCIY_MSI;
 	msicap->nextptr = nextptr;
 	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
 }
 
 int
 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
 {
 	struct msicap msicap;
 
 	pci_populate_msicap(&msicap, msgnum, 0);
 
 	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
 }
 
 static void
 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
 		     uint32_t msix_tab_size)
 {
 
 	assert(msix_tab_size % 4096 == 0);
 
 	bzero(msixcap, sizeof(struct msixcap));
 	msixcap->capid = PCIY_MSIX;
 
 	/*
 	 * Message Control Register, all fields set to
 	 * zero except for the Table Size.
 	 * Note: Table size N is encoded as N-1
 	 */
 	msixcap->msgctrl = msgnum - 1;
 
 	/*
 	 * MSI-X BAR setup:
 	 * - MSI-X table start at offset 0
 	 * - PBA table starts at a 4K aligned offset after the MSI-X table
 	 */
 	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
 	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
 }
 
 static void
 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
 {
 	int i, table_size;
 
 	assert(table_entries > 0);
 	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
 
 	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
 	pi->pi_msix.table = calloc(1, table_size);
 
 	/* set mask bit of vector control register */
 	for (i = 0; i < table_entries; i++)
 		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
 }
 
 int
 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
 {
 	uint32_t tab_size;
 	struct msixcap msixcap;
 
 	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
 	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
 
 	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
 
 	/* Align table size to nearest 4K */
 	tab_size = roundup2(tab_size, 4096);
 
 	pi->pi_msix.table_bar = barnum;
 	pi->pi_msix.pba_bar   = barnum;
 	pi->pi_msix.table_offset = 0;
 	pi->pi_msix.table_count = msgnum;
 	pi->pi_msix.pba_offset = tab_size;
 	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
 
 	pci_msix_table_init(pi, msgnum);
 
 	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
 
 	/* allocate memory for MSI-X Table and PBA */
 	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
 				tab_size + pi->pi_msix.pba_size);
 
 	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
 					sizeof(msixcap)));
 }
 
 static void
 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
 		 int bytes, uint32_t val)
 {
 	uint16_t msgctrl, rwmask;
 	int off;
 
 	off = offset - capoff;
 	/* Message Control Register */
 	if (off == 2 && bytes == 2) {
 		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
 		msgctrl = pci_get_cfgdata16(pi, offset);
 		msgctrl &= ~rwmask;
 		msgctrl |= val & rwmask;
 		val = msgctrl;
 
 		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
 		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
 		pci_lintr_update(pi);
 	}
 
 	CFGWRITE(pi, offset, val, bytes);
 }
 
 static void
 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
 		int bytes, uint32_t val)
 {
 	uint16_t msgctrl, rwmask, msgdata, mme;
 	uint32_t addrlo;
 
 	/*
 	 * If guest is writing to the message control register make sure
 	 * we do not overwrite read-only fields.
 	 */
 	if ((offset - capoff) == 2 && bytes == 2) {
 		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
 		msgctrl = pci_get_cfgdata16(pi, offset);
 		msgctrl &= ~rwmask;
 		msgctrl |= val & rwmask;
 		val = msgctrl;
 	}
 	CFGWRITE(pi, offset, val, bytes);
 
 	msgctrl = pci_get_cfgdata16(pi, capoff + 2);
 	addrlo = pci_get_cfgdata32(pi, capoff + 4);
 	if (msgctrl & PCIM_MSICTRL_64BIT)
 		msgdata = pci_get_cfgdata16(pi, capoff + 12);
 	else
 		msgdata = pci_get_cfgdata16(pi, capoff + 8);
 
 	mme = msgctrl & PCIM_MSICTRL_MME_MASK;
 	pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
 	if (pi->pi_msi.enabled) {
 		pi->pi_msi.addr = addrlo;
 		pi->pi_msi.msg_data = msgdata;
 		pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
 	} else {
 		pi->pi_msi.maxmsgnum = 0;
 	}
 	pci_lintr_update(pi);
 }
 
 void
 pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
 		 int bytes, uint32_t val)
 {
 
 	/* XXX don't write to the readonly parts */
 	CFGWRITE(pi, offset, val, bytes);
 }
 
 #define	PCIECAP_VERSION	0x2
 int
 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
 {
 	int err;
 	struct pciecap pciecap;
 
 	bzero(&pciecap, sizeof(pciecap));
 
 	/*
 	 * Use the integrated endpoint type for endpoints on a root complex bus.
 	 *
 	 * NB: bhyve currently only supports a single PCI bus that is the root
 	 * complex bus, so all endpoints are integrated.
 	 */
 	if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
 		type = PCIEM_TYPE_ROOT_INT_EP;
 
 	pciecap.capid = PCIY_EXPRESS;
 	pciecap.pcie_capabilities = PCIECAP_VERSION | type;
 	if (type != PCIEM_TYPE_ROOT_INT_EP) {
 		pciecap.link_capabilities = 0x411;	/* gen1, x1 */
 		pciecap.link_status = 0x11;		/* gen1, x1 */
 	}
 
 	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
 	return (err);
 }
 
 /*
  * This function assumes that 'coff' is in the capabilities region of the
  * config space. A capoff parameter of zero will force a search for the
  * offset and type.
  */
 void
 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
     uint8_t capoff, int capid)
 {
 	uint8_t nextoff;
 
 	/* Do not allow un-aligned writes */
 	if ((offset & (bytes - 1)) != 0)
 		return;
 
 	if (capoff == 0) {
 		/* Find the capability that we want to update */
 		capoff = CAP_START_OFFSET;
 		while (1) {
 			nextoff = pci_get_cfgdata8(pi, capoff + 1);
 			if (nextoff == 0)
 				break;
 			if (offset >= capoff && offset < nextoff)
 				break;
 
 			capoff = nextoff;
 		}
 		assert(offset >= capoff);
 		capid = pci_get_cfgdata8(pi, capoff);
 	}
 
 	/*
 	 * Capability ID and Next Capability Pointer are readonly.
 	 * However, some o/s's do 4-byte writes that include these.
 	 * For this case, trim the write back to 2 bytes and adjust
 	 * the data.
 	 */
 	if (offset == capoff || offset == capoff + 1) {
 		if (offset == capoff && bytes == 4) {
 			bytes = 2;
 			offset += 2;
 			val >>= 16;
 		} else
 			return;
 	}
 
 	switch (capid) {
 	case PCIY_MSI:
 		msicap_cfgwrite(pi, capoff, offset, bytes, val);
 		break;
 	case PCIY_MSIX:
 		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
 		break;
 	case PCIY_EXPRESS:
 		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
 		break;
 	default:
 		break;
 	}
 }
 
 static int
 pci_emul_iscap(struct pci_devinst *pi, int offset)
 {
 	uint16_t sts;
 
 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
 	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
 		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
 			return (1);
 	}
 	return (0);
 }
 
 static int
 pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
 			  int size, uint64_t *val, void *arg1, long arg2)
 {
 	/*
 	 * Ignore writes; return 0xff's for reads. The mem read code
 	 * will take care of truncating to the correct size.
 	 */
 	if (dir == MEM_F_READ) {
 		*val = 0xffffffffffffffff;
 	}
 
 	return (0);
 }
 
 static int
 pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
     int bytes, uint64_t *val, void *arg1, long arg2)
 {
 	int bus, slot, func, coff, in;
 
 	coff = addr & 0xfff;
 	func = (addr >> 12) & 0x7;
 	slot = (addr >> 15) & 0x1f;
 	bus = (addr >> 20) & 0xff;
 	in = (dir == MEM_F_READ);
 	if (in)
 		*val = ~0UL;
 	pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val);
 	return (0);
 }
 
 uint64_t
 pci_ecfg_base(void)
 {
 
 	return (PCI_EMUL_ECFG_BASE);
 }
 
 #define	BUSIO_ROUNDUP		32
 #define	BUSMEM_ROUNDUP		(1024 * 1024)
 
 int
 init_pci(struct vmctx *ctx)
 {
 	char node_name[sizeof("pci.XXX.XX.X")];
 	struct mem_range mr;
 	struct pci_devemu *pde;
 	struct businfo *bi;
 	struct slotinfo *si;
 	struct funcinfo *fi;
 	nvlist_t *nvl;
 	const char *emul;
 	size_t lowmem;
 	uint64_t cpu_maxphysaddr, pci_emul_memresv64;
 	u_int regs[4];
 	int bus, slot, func, error;
 
 	pci_emul_iobase = PCI_EMUL_IOBASE;
 	pci_emul_membase32 = vm_get_lowmem_limit(ctx);
 
 	do_cpuid(0x80000008, regs);
 	cpu_maxphysaddr = 1ULL << (regs[0] & 0xff);
 	if (cpu_maxphysaddr > VM_MAXUSER_ADDRESS_LA48)
 		cpu_maxphysaddr = VM_MAXUSER_ADDRESS_LA48;
 	pci_emul_memresv64 = cpu_maxphysaddr / 4;
 	/*
 	 * Max power of 2 that is less then
 	 * cpu_maxphysaddr - pci_emul_memresv64.
 	 */
 	pci_emul_membase64 = 1ULL << (flsl(cpu_maxphysaddr -
 	    pci_emul_memresv64) - 1);
 	pci_emul_memlim64 = cpu_maxphysaddr;
 
 	for (bus = 0; bus < MAXBUSES; bus++) {
 		snprintf(node_name, sizeof(node_name), "pci.%d", bus);
 		nvl = find_config_node(node_name);
 		if (nvl == NULL)
 			continue;
 		pci_businfo[bus] = calloc(1, sizeof(struct businfo));
 		bi = pci_businfo[bus];
 
 		/*
 		 * Keep track of the i/o and memory resources allocated to
 		 * this bus.
 		 */
 		bi->iobase = pci_emul_iobase;
 		bi->membase32 = pci_emul_membase32;
 		bi->membase64 = pci_emul_membase64;
 
 		for (slot = 0; slot < MAXSLOTS; slot++) {
 			si = &bi->slotinfo[slot];
 			for (func = 0; func < MAXFUNCS; func++) {
 				fi = &si->si_funcs[func];
 				snprintf(node_name, sizeof(node_name),
 				    "pci.%d.%d.%d", bus, slot, func);
 				nvl = find_config_node(node_name);
 				if (nvl == NULL)
 					continue;
 
 				fi->fi_config = nvl;
 				emul = get_config_value_node(nvl, "device");
 				if (emul == NULL) {
 					EPRINTLN("pci slot %d:%d:%d: missing "
 					    "\"device\" value", bus, slot, func);
 					return (EINVAL);
 				}
 				pde = pci_emul_finddev(emul);
 				if (pde == NULL) {
 					EPRINTLN("pci slot %d:%d:%d: unknown "
 					    "device \"%s\"", bus, slot, func,
 					    emul);
 					return (EINVAL);
 				}
 				if (pde->pe_alias != NULL) {
 					EPRINTLN("pci slot %d:%d:%d: legacy "
 					    "device \"%s\", use \"%s\" instead",
 					    bus, slot, func, emul,
 					    pde->pe_alias);
 					return (EINVAL);
 				}
 				fi->fi_pde = pde;
 				error = pci_emul_init(ctx, pde, bus, slot,
 				    func, fi);
 				if (error)
 					return (error);
 			}
 		}
 
 		/*
 		 * Add some slop to the I/O and memory resources decoded by
 		 * this bus to give a guest some flexibility if it wants to
 		 * reprogram the BARs.
 		 */
 		pci_emul_iobase += BUSIO_ROUNDUP;
 		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
 		bi->iolimit = pci_emul_iobase;
 
 		pci_emul_membase32 += BUSMEM_ROUNDUP;
 		pci_emul_membase32 = roundup2(pci_emul_membase32,
 		    BUSMEM_ROUNDUP);
 		bi->memlimit32 = pci_emul_membase32;
 
 		pci_emul_membase64 += BUSMEM_ROUNDUP;
 		pci_emul_membase64 = roundup2(pci_emul_membase64,
 		    BUSMEM_ROUNDUP);
 		bi->memlimit64 = pci_emul_membase64;
 	}
 
 	/*
 	 * PCI backends are initialized before routing INTx interrupts
 	 * so that LPC devices are able to reserve ISA IRQs before
 	 * routing PIRQ pins.
 	 */
 	for (bus = 0; bus < MAXBUSES; bus++) {
 		if ((bi = pci_businfo[bus]) == NULL)
 			continue;
 
 		for (slot = 0; slot < MAXSLOTS; slot++) {
 			si = &bi->slotinfo[slot];
 			for (func = 0; func < MAXFUNCS; func++) {
 				fi = &si->si_funcs[func];
 				if (fi->fi_devi == NULL)
 					continue;
 				pci_lintr_route(fi->fi_devi);
 			}
 		}
 	}
 	lpc_pirq_routed();
 
 	/*
 	 * The guest physical memory map looks like the following:
 	 * [0,		    lowmem)		guest system memory
 	 * [lowmem,	    lowmem_limit)	memory hole (may be absent)
 	 * [lowmem_limit,   0xE0000000)		PCI hole (32-bit BAR allocation)
 	 * [0xE0000000,	    0xF0000000)		PCI extended config window
 	 * [0xF0000000,	    4GB)		LAPIC, IOAPIC, HPET, firmware
 	 * [4GB,	    4GB + highmem)
 	 */
 
 	/*
 	 * Accesses to memory addresses that are not allocated to system
 	 * memory or PCI devices return 0xff's.
 	 */
 	lowmem = vm_get_lowmem_size(ctx);
 	bzero(&mr, sizeof(struct mem_range));
 	mr.name = "PCI hole";
 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
 	mr.base = lowmem;
 	mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
 	mr.handler = pci_emul_fallback_handler;
 	error = register_mem_fallback(&mr);
 	assert(error == 0);
 
 	/* PCI extended config space */
 	bzero(&mr, sizeof(struct mem_range));
 	mr.name = "PCI ECFG";
 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
 	mr.base = PCI_EMUL_ECFG_BASE;
 	mr.size = PCI_EMUL_ECFG_SIZE;
 	mr.handler = pci_emul_ecfg_handler;
 	error = register_mem(&mr);
 	assert(error == 0);
 
 	return (0);
 }
 
 static void
 pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
     void *arg)
 {
 
 	dsdt_line("  Package ()");
 	dsdt_line("  {");
 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
 	dsdt_line("    0x%02X,", pin - 1);
 	dsdt_line("    Zero,");
 	dsdt_line("    0x%X", ioapic_irq);
 	dsdt_line("  },");
 }
 
 static void
 pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
     void *arg)
 {
 	char *name;
 
 	name = lpc_pirq_name(pirq_pin);
 	if (name == NULL)
 		return;
 	dsdt_line("  Package ()");
 	dsdt_line("  {");
 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
 	dsdt_line("    0x%02X,", pin - 1);
 	dsdt_line("    %s,", name);
 	dsdt_line("    0x00");
 	dsdt_line("  },");
 	free(name);
 }
 
 /*
  * A bhyve virtual machine has a flat PCI hierarchy with a root port
  * corresponding to each PCI bus.
  */
 static void
 pci_bus_write_dsdt(int bus)
 {
 	struct businfo *bi;
 	struct slotinfo *si;
 	struct pci_devinst *pi;
 	int count, func, slot;
 
 	/*
 	 * If there are no devices on this 'bus' then just return.
 	 */
 	if ((bi = pci_businfo[bus]) == NULL) {
 		/*
 		 * Bus 0 is special because it decodes the I/O ports used
 		 * for PCI config space access even if there are no devices
 		 * on it.
 		 */
 		if (bus != 0)
 			return;
 	}
 
 	dsdt_line("  Device (PC%02X)", bus);
 	dsdt_line("  {");
 	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
 
 	dsdt_line("    Method (_BBN, 0, NotSerialized)");
 	dsdt_line("    {");
 	dsdt_line("        Return (0x%08X)", bus);
 	dsdt_line("    }");
 	dsdt_line("    Name (_CRS, ResourceTemplate ()");
 	dsdt_line("    {");
 	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
 	    "MaxFixed, PosDecode,");
 	dsdt_line("        0x0000,             // Granularity");
 	dsdt_line("        0x%04X,             // Range Minimum", bus);
 	dsdt_line("        0x%04X,             // Range Maximum", bus);
 	dsdt_line("        0x0000,             // Translation Offset");
 	dsdt_line("        0x0001,             // Length");
 	dsdt_line("        ,, )");
 
 	if (bus == 0) {
 		dsdt_indent(3);
 		dsdt_fixed_ioport(0xCF8, 8);
 		dsdt_unindent(3);
 
 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
 		    "PosDecode, EntireRange,");
 		dsdt_line("        0x0000,             // Granularity");
 		dsdt_line("        0x0000,             // Range Minimum");
 		dsdt_line("        0x0CF7,             // Range Maximum");
 		dsdt_line("        0x0000,             // Translation Offset");
 		dsdt_line("        0x0CF8,             // Length");
 		dsdt_line("        ,, , TypeStatic)");
 
 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
 		    "PosDecode, EntireRange,");
 		dsdt_line("        0x0000,             // Granularity");
 		dsdt_line("        0x0D00,             // Range Minimum");
 		dsdt_line("        0x%04X,             // Range Maximum",
 		    PCI_EMUL_IOBASE - 1);
 		dsdt_line("        0x0000,             // Translation Offset");
 		dsdt_line("        0x%04X,             // Length",
 		    PCI_EMUL_IOBASE - 0x0D00);
 		dsdt_line("        ,, , TypeStatic)");
 
 		if (bi == NULL) {
 			dsdt_line("    })");
 			goto done;
 		}
 	}
 	assert(bi != NULL);
 
 	/* i/o window */
 	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
 	    "PosDecode, EntireRange,");
 	dsdt_line("        0x0000,             // Granularity");
 	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
 	dsdt_line("        0x%04X,             // Range Maximum",
 	    bi->iolimit - 1);
 	dsdt_line("        0x0000,             // Translation Offset");
 	dsdt_line("        0x%04X,             // Length",
 	    bi->iolimit - bi->iobase);
 	dsdt_line("        ,, , TypeStatic)");
 
 	/* mmio window (32-bit) */
 	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
 	dsdt_line("        0x00000000,         // Granularity");
 	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
 	dsdt_line("        0x%08X,         // Range Maximum\n",
 	    bi->memlimit32 - 1);
 	dsdt_line("        0x00000000,         // Translation Offset");
 	dsdt_line("        0x%08X,         // Length\n",
 	    bi->memlimit32 - bi->membase32);
 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
 
 	/* mmio window (64-bit) */
 	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
 	dsdt_line("        0x0000000000000000, // Granularity");
 	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
 	dsdt_line("        0x%016lX, // Range Maximum\n",
 	    bi->memlimit64 - 1);
 	dsdt_line("        0x0000000000000000, // Translation Offset");
 	dsdt_line("        0x%016lX, // Length\n",
 	    bi->memlimit64 - bi->membase64);
 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
 	dsdt_line("    })");
 
 	count = pci_count_lintr(bus);
 	if (count != 0) {
 		dsdt_indent(2);
 		dsdt_line("Name (PPRT, Package ()");
 		dsdt_line("{");
 		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
 		dsdt_line("})");
 		dsdt_line("Name (APRT, Package ()");
 		dsdt_line("{");
 		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
 		dsdt_line("})");
 		dsdt_line("Method (_PRT, 0, NotSerialized)");
 		dsdt_line("{");
 		dsdt_line("  If (PICM)");
 		dsdt_line("  {");
 		dsdt_line("    Return (APRT)");
 		dsdt_line("  }");
 		dsdt_line("  Else");
 		dsdt_line("  {");
 		dsdt_line("    Return (PPRT)");
 		dsdt_line("  }");
 		dsdt_line("}");
 		dsdt_unindent(2);
 	}
 
 	dsdt_indent(2);
 	for (slot = 0; slot < MAXSLOTS; slot++) {
 		si = &bi->slotinfo[slot];
 		for (func = 0; func < MAXFUNCS; func++) {
 			pi = si->si_funcs[func].fi_devi;
 			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
 				pi->pi_d->pe_write_dsdt(pi);
 		}
 	}
 	dsdt_unindent(2);
 done:
 	dsdt_line("  }");
 }
 
 void
 pci_write_dsdt(void)
 {
 	int bus;
 
 	dsdt_indent(1);
 	dsdt_line("Name (PICM, 0x00)");
 	dsdt_line("Method (_PIC, 1, NotSerialized)");
 	dsdt_line("{");
 	dsdt_line("  Store (Arg0, PICM)");
 	dsdt_line("}");
 	dsdt_line("");
 	dsdt_line("Scope (_SB)");
 	dsdt_line("{");
 	for (bus = 0; bus < MAXBUSES; bus++)
 		pci_bus_write_dsdt(bus);
 	dsdt_line("}");
 	dsdt_unindent(1);
 }
 
 int
 pci_bus_configured(int bus)
 {
 	assert(bus >= 0 && bus < MAXBUSES);
 	return (pci_businfo[bus] != NULL);
 }
 
 int
 pci_msi_enabled(struct pci_devinst *pi)
 {
 	return (pi->pi_msi.enabled);
 }
 
 int
 pci_msi_maxmsgnum(struct pci_devinst *pi)
 {
 	if (pi->pi_msi.enabled)
 		return (pi->pi_msi.maxmsgnum);
 	else
 		return (0);
 }
 
 int
 pci_msix_enabled(struct pci_devinst *pi)
 {
 
 	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
 }
 
 void
 pci_generate_msix(struct pci_devinst *pi, int index)
 {
 	struct msix_table_entry *mte;
 
 	if (!pci_msix_enabled(pi))
 		return;
 
 	if (pi->pi_msix.function_mask)
 		return;
 
 	if (index >= pi->pi_msix.table_count)
 		return;
 
 	mte = &pi->pi_msix.table[index];
 	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
 		/* XXX Set PBA bit if interrupt is disabled */
 		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
 	}
 }
 
 void
 pci_generate_msi(struct pci_devinst *pi, int index)
 {
 
 	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
 		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
 			     pi->pi_msi.msg_data + index);
 	}
 }
 
 static bool
 pci_lintr_permitted(struct pci_devinst *pi)
 {
 	uint16_t cmd;
 
 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
 	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
 		(cmd & PCIM_CMD_INTxDIS)));
 }
 
 void
 pci_lintr_request(struct pci_devinst *pi)
 {
 	struct businfo *bi;
 	struct slotinfo *si;
 	int bestpin, bestcount, pin;
 
 	bi = pci_businfo[pi->pi_bus];
 	assert(bi != NULL);
 
 	/*
 	 * Just allocate a pin from our slot.  The pin will be
 	 * assigned IRQs later when interrupts are routed.
 	 */
 	si = &bi->slotinfo[pi->pi_slot];
 	bestpin = 0;
 	bestcount = si->si_intpins[0].ii_count;
 	for (pin = 1; pin < 4; pin++) {
 		if (si->si_intpins[pin].ii_count < bestcount) {
 			bestpin = pin;
 			bestcount = si->si_intpins[pin].ii_count;
 		}
 	}
 
 	si->si_intpins[bestpin].ii_count++;
 	pi->pi_lintr.pin = bestpin + 1;
 	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
 }
 
 static void
 pci_lintr_route(struct pci_devinst *pi)
 {
 	struct businfo *bi;
 	struct intxinfo *ii;
 
 	if (pi->pi_lintr.pin == 0)
 		return;
 
 	bi = pci_businfo[pi->pi_bus];
 	assert(bi != NULL);
 	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
 
 	/*
 	 * Attempt to allocate an I/O APIC pin for this intpin if one
 	 * is not yet assigned.
 	 */
 	if (ii->ii_ioapic_irq == 0)
 		ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi);
 	assert(ii->ii_ioapic_irq > 0);
 
 	/*
 	 * Attempt to allocate a PIRQ pin for this intpin if one is
 	 * not yet assigned.
 	 */
 	if (ii->ii_pirq_pin == 0)
 		ii->ii_pirq_pin = pirq_alloc_pin(pi);
 	assert(ii->ii_pirq_pin > 0);
 
 	pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
 	pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
 	pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
 }
 
 void
 pci_lintr_assert(struct pci_devinst *pi)
 {
 
 	assert(pi->pi_lintr.pin > 0);
 
 	pthread_mutex_lock(&pi->pi_lintr.lock);
 	if (pi->pi_lintr.state == IDLE) {
 		if (pci_lintr_permitted(pi)) {
 			pi->pi_lintr.state = ASSERTED;
 			pci_irq_assert(pi);
 		} else
 			pi->pi_lintr.state = PENDING;
 	}
 	pthread_mutex_unlock(&pi->pi_lintr.lock);
 }
 
 void
 pci_lintr_deassert(struct pci_devinst *pi)
 {
 
 	assert(pi->pi_lintr.pin > 0);
 
 	pthread_mutex_lock(&pi->pi_lintr.lock);
 	if (pi->pi_lintr.state == ASSERTED) {
 		pi->pi_lintr.state = IDLE;
 		pci_irq_deassert(pi);
 	} else if (pi->pi_lintr.state == PENDING)
 		pi->pi_lintr.state = IDLE;
 	pthread_mutex_unlock(&pi->pi_lintr.lock);
 }
 
 static void
 pci_lintr_update(struct pci_devinst *pi)
 {
 
 	pthread_mutex_lock(&pi->pi_lintr.lock);
 	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
 		pci_irq_deassert(pi);
 		pi->pi_lintr.state = PENDING;
 	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
 		pi->pi_lintr.state = ASSERTED;
 		pci_irq_assert(pi);
 	}
 	pthread_mutex_unlock(&pi->pi_lintr.lock);
 }
 
 int
 pci_count_lintr(int bus)
 {
 	int count, slot, pin;
 	struct slotinfo *slotinfo;
 
 	count = 0;
 	if (pci_businfo[bus] != NULL) {
 		for (slot = 0; slot < MAXSLOTS; slot++) {
 			slotinfo = &pci_businfo[bus]->slotinfo[slot];
 			for (pin = 0; pin < 4; pin++) {
 				if (slotinfo->si_intpins[pin].ii_count != 0)
 					count++;
 			}
 		}
 	}
 	return (count);
 }
 
 void
 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
 {
 	struct businfo *bi;
 	struct slotinfo *si;
 	struct intxinfo *ii;
 	int slot, pin;
 
 	if ((bi = pci_businfo[bus]) == NULL)
 		return;
 
 	for (slot = 0; slot < MAXSLOTS; slot++) {
 		si = &bi->slotinfo[slot];
 		for (pin = 0; pin < 4; pin++) {
 			ii = &si->si_intpins[pin];
 			if (ii->ii_count != 0)
 				cb(bus, slot, pin + 1, ii->ii_pirq_pin,
 				    ii->ii_ioapic_irq, arg);
 		}
 	}
 }
 
 /*
  * Return 1 if the emulated device in 'slot' is a multi-function device.
  * Return 0 otherwise.
  */
 static int
 pci_emul_is_mfdev(int bus, int slot)
 {
 	struct businfo *bi;
 	struct slotinfo *si;
 	int f, numfuncs;
 
 	numfuncs = 0;
 	if ((bi = pci_businfo[bus]) != NULL) {
 		si = &bi->slotinfo[slot];
 		for (f = 0; f < MAXFUNCS; f++) {
 			if (si->si_funcs[f].fi_devi != NULL) {
 				numfuncs++;
 			}
 		}
 	}
 	return (numfuncs > 1);
 }
 
 /*
  * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
  * whether or not is a multi-function being emulated in the pci 'slot'.
  */
 static void
 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
 {
 	int mfdev;
 
 	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
 		mfdev = pci_emul_is_mfdev(bus, slot);
 		switch (bytes) {
 		case 1:
 		case 2:
 			*rv &= ~PCIM_MFDEV;
 			if (mfdev) {
 				*rv |= PCIM_MFDEV;
 			}
 			break;
 		case 4:
 			*rv &= ~(PCIM_MFDEV << 16);
 			if (mfdev) {
 				*rv |= (PCIM_MFDEV << 16);
 			}
 			break;
 		}
 	}
 }
 
 /*
  * Update device state in response to changes to the PCI command
  * register.
  */
 void
 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
 {
 	int i;
 	uint16_t changed, new;
 
 	new = pci_get_cfgdata16(pi, PCIR_COMMAND);
 	changed = old ^ new;
 
 	/*
 	 * If the MMIO or I/O address space decoding has changed then
 	 * register/unregister all BARs that decode that address space.
 	 */
 	for (i = 0; i <= PCI_BARMAX; i++) {
 		switch (pi->pi_bar[i].type) {
 			case PCIBAR_NONE:
 			case PCIBAR_MEMHI64:
 				break;
 			case PCIBAR_IO:
 				/* I/O address space decoding changed? */
 				if (changed & PCIM_CMD_PORTEN) {
 					if (new & PCIM_CMD_PORTEN)
 						register_bar(pi, i);
 					else
 						unregister_bar(pi, i);
 				}
 				break;
 			case PCIBAR_MEM32:
 			case PCIBAR_MEM64:
 				/* MMIO address space decoding changed? */
 				if (changed & PCIM_CMD_MEMEN) {
 					if (new & PCIM_CMD_MEMEN)
 						register_bar(pi, i);
 					else
 						unregister_bar(pi, i);
 				}
 				break;
 			default:
 				assert(0);
 		}
 	}
 
 	/*
 	 * If INTx has been unmasked and is pending, assert the
 	 * interrupt.
 	 */
 	pci_lintr_update(pi);
 }
 
 static void
 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
 {
 	int rshift;
 	uint32_t cmd, old, readonly;
 
 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
 
 	/*
 	 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
 	 *
 	 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
 	 * 'write 1 to clear'. However these bits are not set to '1' by
 	 * any device emulation so it is simpler to treat them as readonly.
 	 */
 	rshift = (coff & 0x3) * 8;
 	readonly = 0xFFFFF880 >> rshift;
 
 	old = CFGREAD(pi, coff, bytes);
 	new &= ~readonly;
 	new |= (old & readonly);
 	CFGWRITE(pi, coff, new, bytes);			/* update config */
 
 	pci_emul_cmd_changed(pi, cmd);
 }
 
 static void
 pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func,
     int coff, int bytes, uint32_t *eax)
 {
 	struct businfo *bi;
 	struct slotinfo *si;
 	struct pci_devinst *pi;
 	struct pci_devemu *pe;
 	int idx, needcfg;
 	uint64_t addr, bar, mask;
 
 	if ((bi = pci_businfo[bus]) != NULL) {
 		si = &bi->slotinfo[slot];
 		pi = si->si_funcs[func].fi_devi;
 	} else
 		pi = NULL;
 
 	/*
 	 * Just return if there is no device at this slot:func or if the
 	 * the guest is doing an un-aligned access.
 	 */
 	if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
 	    (coff & (bytes - 1)) != 0) {
 		if (in)
 			*eax = 0xffffffff;
 		return;
 	}
 
 	/*
 	 * Ignore all writes beyond the standard config space and return all
 	 * ones on reads.
 	 */
 	if (coff >= PCI_REGMAX + 1) {
 		if (in) {
 			*eax = 0xffffffff;
 			/*
 			 * Extended capabilities begin at offset 256 in config
 			 * space. Absence of extended capabilities is signaled
 			 * with all 0s in the extended capability header at
 			 * offset 256.
 			 */
 			if (coff <= PCI_REGMAX + 4)
 				*eax = 0x00000000;
 		}
 		return;
 	}
 
 	pe = pi->pi_d;
 
 	/*
 	 * Config read
 	 */
 	if (in) {
 		/* Let the device emulation override the default handler */
 		if (pe->pe_cfgread != NULL) {
 			needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes,
 			    eax);
 		} else {
 			needcfg = 1;
 		}
 
 		if (needcfg)
 			*eax = CFGREAD(pi, coff, bytes);
 
 		pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax);
 	} else {
 		/* Let the device emulation override the default handler */
 		if (pe->pe_cfgwrite != NULL &&
 		    (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
 			return;
 
 		/*
 		 * Special handling for write to BAR registers
 		 */
 		if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
 			/*
 			 * Ignore writes to BAR registers that are not
 			 * 4-byte aligned.
 			 */
 			if (bytes != 4 || (coff & 0x3) != 0)
 				return;
 			idx = (coff - PCIR_BAR(0)) / 4;
 			mask = ~(pi->pi_bar[idx].size - 1);
 			switch (pi->pi_bar[idx].type) {
 			case PCIBAR_NONE:
 				pi->pi_bar[idx].addr = bar = 0;
 				break;
 			case PCIBAR_IO:
 				addr = *eax & mask;
 				addr &= 0xffff;
 				bar = addr | PCIM_BAR_IO_SPACE;
 				/*
 				 * Register the new BAR value for interception
 				 */
 				if (addr != pi->pi_bar[idx].addr) {
 					update_bar_address(pi, addr, idx,
 							   PCIBAR_IO);
 				}
 				break;
 			case PCIBAR_MEM32:
 				addr = bar = *eax & mask;
 				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
 				if (addr != pi->pi_bar[idx].addr) {
 					update_bar_address(pi, addr, idx,
 							   PCIBAR_MEM32);
 				}
 				break;
 			case PCIBAR_MEM64:
 				addr = bar = *eax & mask;
 				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
 				       PCIM_BAR_MEM_PREFETCH;
 				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
 					update_bar_address(pi, addr, idx,
 							   PCIBAR_MEM64);
 				}
 				break;
 			case PCIBAR_MEMHI64:
 				mask = ~(pi->pi_bar[idx - 1].size - 1);
 				addr = ((uint64_t)*eax << 32) & mask;
 				bar = addr >> 32;
 				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
 					update_bar_address(pi, addr, idx - 1,
 							   PCIBAR_MEMHI64);
 				}
 				break;
 			default:
 				assert(0);
 			}
 			pci_set_cfgdata32(pi, coff, bar);
 
 		} else if (pci_emul_iscap(pi, coff)) {
 			pci_emul_capwrite(pi, coff, bytes, *eax, 0, 0);
 		} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
 			pci_emul_cmdsts_write(pi, coff, *eax, bytes);
 		} else {
 			CFGWRITE(pi, coff, *eax, bytes);
 		}
 	}
 }
 
 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
 
 static int
 pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
 		 uint32_t *eax, void *arg)
 {
 	uint32_t x;
 
 	if (bytes != 4) {
 		if (in)
 			*eax = (bytes == 2) ? 0xffff : 0xff;
 		return (0);
 	}
 
 	if (in) {
 		x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
 		if (cfgenable)
 			x |= CONF1_ENABLE;
 		*eax = x;
 	} else {
 		x = *eax;
 		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
 		cfgoff = (x & PCI_REGMAX) & ~0x03;
 		cfgfunc = (x >> 8) & PCI_FUNCMAX;
 		cfgslot = (x >> 11) & PCI_SLOTMAX;
 		cfgbus = (x >> 16) & PCI_BUSMAX;
 	}
 
 	return (0);
 }
 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
 
 static int
 pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
 		 uint32_t *eax, void *arg)
 {
 	int coff;
 
 	assert(bytes == 1 || bytes == 2 || bytes == 4);
 
 	coff = cfgoff + (port - CONF1_DATA_PORT);
 	if (cfgenable) {
 		pci_cfgrw(ctx, vcpu, in, cfgbus, cfgslot, cfgfunc, coff, bytes,
 		    eax);
 	} else {
 		/* Ignore accesses to cfgdata if not enabled by cfgaddr */
 		if (in)
 			*eax = 0xffffffff;
 	}
 	return (0);
 }
 
 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
 
 #ifdef BHYVE_SNAPSHOT
 /*
  * Saves/restores PCI device emulated state. Returns 0 on success.
  */
 static int
 pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
 {
 	struct pci_devinst *pi;
 	int i;
 	int ret;
 
 	pi = meta->dev_data;
 
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
 
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
-	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_page_offset, meta, ret, done);
 
 	SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
 			      meta, ret, done);
 
 	for (i = 0; i < nitems(pi->pi_bar); i++) {
 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
 	}
 
 	/* Restore MSI-X table. */
 	for (i = 0; i < pi->pi_msix.table_count; i++) {
 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
 				      meta, ret, done);
 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
 				      meta, ret, done);
 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
 				      meta, ret, done);
 	}
 
 done:
 	return (ret);
 }
 
 static int
 pci_find_slotted_dev(const char *dev_name, struct pci_devemu **pde,
 		     struct pci_devinst **pdi)
 {
 	struct businfo *bi;
 	struct slotinfo *si;
 	struct funcinfo *fi;
 	int bus, slot, func;
 
 	assert(dev_name != NULL);
 	assert(pde != NULL);
 	assert(pdi != NULL);
 
 	for (bus = 0; bus < MAXBUSES; bus++) {
 		if ((bi = pci_businfo[bus]) == NULL)
 			continue;
 
 		for (slot = 0; slot < MAXSLOTS; slot++) {
 			si = &bi->slotinfo[slot];
 			for (func = 0; func < MAXFUNCS; func++) {
 				fi = &si->si_funcs[func];
 				if (fi->fi_pde == NULL)
 					continue;
 				if (strcmp(dev_name, fi->fi_pde->pe_emu) != 0)
 					continue;
 
 				*pde = fi->fi_pde;
 				*pdi = fi->fi_devi;
 				return (0);
 			}
 		}
 	}
 
 	return (EINVAL);
 }
 
 int
 pci_snapshot(struct vm_snapshot_meta *meta)
 {
 	struct pci_devemu *pde;
 	struct pci_devinst *pdi;
 	int ret;
 
 	assert(meta->dev_name != NULL);
 
 	ret = pci_find_slotted_dev(meta->dev_name, &pde, &pdi);
 	if (ret != 0) {
 		fprintf(stderr, "%s: no such name: %s\r\n",
 			__func__, meta->dev_name);
 		memset(meta->buffer.buf_start, 0, meta->buffer.buf_size);
 		return (0);
 	}
 
 	meta->dev_data = pdi;
 
 	if (pde->pe_snapshot == NULL) {
 		fprintf(stderr, "%s: not implemented yet for: %s\r\n",
 			__func__, meta->dev_name);
 		return (-1);
 	}
 
 	ret = pci_snapshot_pci_dev(meta);
 	if (ret != 0) {
 		fprintf(stderr, "%s: failed to snapshot pci dev\r\n",
 			__func__);
 		return (-1);
 	}
 
 	ret = (*pde->pe_snapshot)(meta);
 
 	return (ret);
 }
 
 int
 pci_pause(struct vmctx *ctx, const char *dev_name)
 {
 	struct pci_devemu *pde;
 	struct pci_devinst *pdi;
 	int ret;
 
 	assert(dev_name != NULL);
 
 	ret = pci_find_slotted_dev(dev_name, &pde, &pdi);
 	if (ret != 0) {
 		/*
 		 * It is possible to call this function without
 		 * checking that the device is inserted first.
 		 */
 		fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name);
 		return (0);
 	}
 
 	if (pde->pe_pause == NULL) {
 		/* The pause/resume functionality is optional. */
 		fprintf(stderr, "%s: not implemented for: %s\n",
 			__func__, dev_name);
 		return (0);
 	}
 
 	return (*pde->pe_pause)(ctx, pdi);
 }
 
 int
 pci_resume(struct vmctx *ctx, const char *dev_name)
 {
 	struct pci_devemu *pde;
 	struct pci_devinst *pdi;
 	int ret;
 
 	assert(dev_name != NULL);
 
 	ret = pci_find_slotted_dev(dev_name, &pde, &pdi);
 	if (ret != 0) {
 		/*
 		 * It is possible to call this function without
 		 * checking that the device is inserted first.
 		 */
 		fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name);
 		return (0);
 	}
 
 	if (pde->pe_resume == NULL) {
 		/* The pause/resume functionality is optional. */
 		fprintf(stderr, "%s: not implemented for: %s\n",
 			__func__, dev_name);
 		return (0);
 	}
 
 	return (*pde->pe_resume)(ctx, pdi);
 }
 #endif
 
 #define PCI_EMUL_TEST
 #ifdef PCI_EMUL_TEST
 /*
  * Define a dummy test device
  */
 #define DIOSZ	8
 #define DMEMSZ	4096
 struct pci_emul_dsoftc {
 	uint8_t   ioregs[DIOSZ];
 	uint8_t	  memregs[2][DMEMSZ];
 };
 
 #define	PCI_EMUL_MSI_MSGS	 4
 #define	PCI_EMUL_MSIX_MSGS	16
 
 static int
 pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, nvlist_t *nvl)
 {
 	int error;
 	struct pci_emul_dsoftc *sc;
 
 	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
 
 	pi->pi_arg = sc;
 
 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
 	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
 
 	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
 	assert(error == 0);
 
 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
 	assert(error == 0);
 
 	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
 	assert(error == 0);
 
 	error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
 	assert(error == 0);
 
 	return (0);
 }
 
 static void
 pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
 	      uint64_t offset, int size, uint64_t value)
 {
 	int i;
 	struct pci_emul_dsoftc *sc = pi->pi_arg;
 
 	if (baridx == 0) {
 		if (offset + size > DIOSZ) {
 			printf("diow: iow too large, offset %ld size %d\n",
 			       offset, size);
 			return;
 		}
 
 		if (size == 1) {
 			sc->ioregs[offset] = value & 0xff;
 		} else if (size == 2) {
 			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
 		} else if (size == 4) {
 			*(uint32_t *)&sc->ioregs[offset] = value;
 		} else {
 			printf("diow: iow unknown size %d\n", size);
 		}
 
 		/*
 		 * Special magic value to generate an interrupt
 		 */
 		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
 			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
 
 		if (value == 0xabcdef) {
 			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
 				pci_generate_msi(pi, i);
 		}
 	}
 
 	if (baridx == 1 || baridx == 2) {
 		if (offset + size > DMEMSZ) {
 			printf("diow: memw too large, offset %ld size %d\n",
 			       offset, size);
 			return;
 		}
 
 		i = baridx - 1;		/* 'memregs' index */
 
 		if (size == 1) {
 			sc->memregs[i][offset] = value;
 		} else if (size == 2) {
 			*(uint16_t *)&sc->memregs[i][offset] = value;
 		} else if (size == 4) {
 			*(uint32_t *)&sc->memregs[i][offset] = value;
 		} else if (size == 8) {
 			*(uint64_t *)&sc->memregs[i][offset] = value;
 		} else {
 			printf("diow: memw unknown size %d\n", size);
 		}
 		
 		/*
 		 * magic interrupt ??
 		 */
 	}
 
 	if (baridx > 2 || baridx < 0) {
 		printf("diow: unknown bar idx %d\n", baridx);
 	}
 }
 
 static uint64_t
 pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
 	      uint64_t offset, int size)
 {
 	struct pci_emul_dsoftc *sc = pi->pi_arg;
 	uint32_t value;
 	int i;
 
 	if (baridx == 0) {
 		if (offset + size > DIOSZ) {
 			printf("dior: ior too large, offset %ld size %d\n",
 			       offset, size);
 			return (0);
 		}
 	
 		value = 0;
 		if (size == 1) {
 			value = sc->ioregs[offset];
 		} else if (size == 2) {
 			value = *(uint16_t *) &sc->ioregs[offset];
 		} else if (size == 4) {
 			value = *(uint32_t *) &sc->ioregs[offset];
 		} else {
 			printf("dior: ior unknown size %d\n", size);
 		}
 	}
 
 	if (baridx == 1 || baridx == 2) {
 		if (offset + size > DMEMSZ) {
 			printf("dior: memr too large, offset %ld size %d\n",
 			       offset, size);
 			return (0);
 		}
 		
 		i = baridx - 1;		/* 'memregs' index */
 
 		if (size == 1) {
 			value = sc->memregs[i][offset];
 		} else if (size == 2) {
 			value = *(uint16_t *) &sc->memregs[i][offset];
 		} else if (size == 4) {
 			value = *(uint32_t *) &sc->memregs[i][offset];
 		} else if (size == 8) {
 			value = *(uint64_t *) &sc->memregs[i][offset];
 		} else {
 			printf("dior: ior unknown size %d\n", size);
 		}
 	}
 
 
 	if (baridx > 2 || baridx < 0) {
 		printf("dior: unknown bar idx %d\n", baridx);
 		return (0);
 	}
 
 	return (value);
 }
 
 #ifdef BHYVE_SNAPSHOT
 int
 pci_emul_snapshot(struct vm_snapshot_meta *meta)
 {
 
 	return (0);
 }
 #endif
 
 struct pci_devemu pci_dummy = {
 	.pe_emu = "dummy",
 	.pe_init = pci_emul_dinit,
 	.pe_barwrite = pci_emul_diow,
 	.pe_barread = pci_emul_dior,
 #ifdef BHYVE_SNAPSHOT
 	.pe_snapshot = pci_emul_snapshot,
 #endif
 };
 PCI_EMUL_SET(pci_dummy);
 
 #endif /* PCI_EMUL_TEST */