diff --git a/cmd/ztest.c b/cmd/ztest.c index 847c3a5b06cd..0712f286bf66 100644 --- a/cmd/ztest.c +++ b/cmd/ztest.c @@ -1,8288 +1,8288 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Joyent, Inc. * Copyright (c) 2017, Intel Corporation. */ /* * The objective of this program is to provide a DMU/ZAP/SPA stress test * that runs entirely in userland, is easy to use, and easy to extend. * * The overall design of the ztest program is as follows: * * (1) For each major functional area (e.g. adding vdevs to a pool, * creating and destroying datasets, reading and writing objects, etc) * we have a simple routine to test that functionality. These * individual routines do not have to do anything "stressful". * * (2) We turn these simple functionality tests into a stress test by * running them all in parallel, with as many threads as desired, * and spread across as many datasets, objects, and vdevs as desired. * * (3) While all this is happening, we inject faults into the pool to * verify that self-healing data really works. * * (4) Every time we open a dataset, we change its checksum and compression * functions. Thus even individual objects vary from block to block * in which checksum they use and whether they're compressed. * * (5) To verify that we never lose on-disk consistency after a crash, * we run the entire test in a child of the main process. * At random times, the child self-immolates with a SIGKILL. * This is the software equivalent of pulling the power cord. * The parent then runs the test again, using the existing * storage pool, as many times as desired. If backwards compatibility * testing is enabled ztest will sometimes run the "older" version * of ztest after a SIGKILL. * * (6) To verify that we don't have future leaks or temporal incursions, * many of the functional tests record the transaction group number * as part of their data. When reading old data, they verify that * the transaction group number is less than the current, open txg. * If you add a new test, please do this if applicable. * * (7) Threads are created with a reduced stack size, for sanity checking. * Therefore, it's important not to allocate huge buffers on the stack. * * When run with no arguments, ztest runs for about five minutes and * produces no output if successful. To get a little bit of information, * specify -V. To get more information, specify -VV, and so on. * * To turn this into an overnight stress test, use -T to specify run time. * * You can ask more vdevs [-v], datasets [-d], or threads [-t] * to increase the pool capacity, fanout, and overall stress level. * * Use the -k option to set the desired frequency of kills. * * When ztest invokes itself it passes all relevant information through a * temporary file which is mmap-ed in the child process. This allows shared * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always * stored at offset 0 of this file and contains information on the size and * number of shared structures in the file. The information stored in this file * must remain backwards compatible with older versions of ztest so that * ztest can invoke them during backwards compatibility testing (-B). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if (__GLIBC__ && !__UCLIBC__) #include /* for backtrace() */ #endif static int ztest_fd_data = -1; static int ztest_fd_rand = -1; typedef struct ztest_shared_hdr { uint64_t zh_hdr_size; uint64_t zh_opts_size; uint64_t zh_size; uint64_t zh_stats_size; uint64_t zh_stats_count; uint64_t zh_ds_size; uint64_t zh_ds_count; } ztest_shared_hdr_t; static ztest_shared_hdr_t *ztest_shared_hdr; enum ztest_class_state { ZTEST_VDEV_CLASS_OFF, ZTEST_VDEV_CLASS_ON, ZTEST_VDEV_CLASS_RND }; #define ZO_GVARS_MAX_ARGLEN ((size_t)64) #define ZO_GVARS_MAX_COUNT ((size_t)10) typedef struct ztest_shared_opts { char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; char zo_alt_ztest[MAXNAMELEN]; char zo_alt_libpath[MAXNAMELEN]; uint64_t zo_vdevs; uint64_t zo_vdevtime; size_t zo_vdev_size; int zo_ashift; int zo_mirrors; int zo_raid_children; int zo_raid_parity; char zo_raid_type[8]; int zo_draid_data; int zo_draid_spares; int zo_datasets; int zo_threads; uint64_t zo_passtime; uint64_t zo_killrate; int zo_verbose; int zo_init; uint64_t zo_time; uint64_t zo_maxloops; uint64_t zo_metaslab_force_ganging; int zo_mmp_test; int zo_special_vdevs; int zo_dump_dbgmsg; int zo_gvars_count; char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN]; } ztest_shared_opts_t; /* Default values for command line options. */ #define DEFAULT_POOL "ztest" #define DEFAULT_VDEV_DIR "/tmp" #define DEFAULT_VDEV_COUNT 5 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */ #define DEFAULT_VDEV_SIZE_STR "256M" #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT #define DEFAULT_MIRRORS 2 #define DEFAULT_RAID_CHILDREN 4 #define DEFAULT_RAID_PARITY 1 #define DEFAULT_DRAID_DATA 4 #define DEFAULT_DRAID_SPARES 1 #define DEFAULT_DATASETS_COUNT 7 #define DEFAULT_THREADS 23 #define DEFAULT_RUN_TIME 300 /* 300 seconds */ #define DEFAULT_RUN_TIME_STR "300 sec" #define DEFAULT_PASS_TIME 60 /* 60 seconds */ #define DEFAULT_PASS_TIME_STR "60 sec" #define DEFAULT_KILL_RATE 70 /* 70% kill rate */ #define DEFAULT_KILLRATE_STR "70%" #define DEFAULT_INITS 1 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */ #define DEFAULT_FORCE_GANGING (64 << 10) #define DEFAULT_FORCE_GANGING_STR "64K" /* Simplifying assumption: -1 is not a valid default. */ #define NO_DEFAULT -1 static const ztest_shared_opts_t ztest_opts_defaults = { .zo_pool = DEFAULT_POOL, .zo_dir = DEFAULT_VDEV_DIR, .zo_alt_ztest = { '\0' }, .zo_alt_libpath = { '\0' }, .zo_vdevs = DEFAULT_VDEV_COUNT, .zo_ashift = DEFAULT_ASHIFT, .zo_mirrors = DEFAULT_MIRRORS, .zo_raid_children = DEFAULT_RAID_CHILDREN, .zo_raid_parity = DEFAULT_RAID_PARITY, .zo_raid_type = VDEV_TYPE_RAIDZ, .zo_vdev_size = DEFAULT_VDEV_SIZE, .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */ .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */ .zo_datasets = DEFAULT_DATASETS_COUNT, .zo_threads = DEFAULT_THREADS, .zo_passtime = DEFAULT_PASS_TIME, .zo_killrate = DEFAULT_KILL_RATE, .zo_verbose = 0, .zo_mmp_test = 0, .zo_init = DEFAULT_INITS, .zo_time = DEFAULT_RUN_TIME, .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */ .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING, .zo_special_vdevs = ZTEST_VDEV_CLASS_RND, .zo_gvars_count = 0, }; extern uint64_t metaslab_force_ganging; extern uint64_t metaslab_df_alloc_threshold; extern unsigned long zfs_deadman_synctime_ms; extern int metaslab_preload_limit; extern int zfs_compressed_arc_enabled; extern int zfs_abd_scatter_enabled; extern int dmu_object_alloc_chunk_shift; extern boolean_t zfs_force_some_double_word_sm_entries; extern unsigned long zio_decompress_fail_fraction; extern unsigned long zfs_reconstruct_indirect_damage_fraction; static ztest_shared_opts_t *ztest_shared_opts; static ztest_shared_opts_t ztest_opts; static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345"; typedef struct ztest_shared_ds { uint64_t zd_seq; } ztest_shared_ds_t; static ztest_shared_ds_t *ztest_shared_ds; #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) #define BT_MAGIC 0x123456789abcdefULL #define MAXFAULTS(zs) \ (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1) enum ztest_io_type { ZTEST_IO_WRITE_TAG, ZTEST_IO_WRITE_PATTERN, ZTEST_IO_WRITE_ZEROES, ZTEST_IO_TRUNCATE, ZTEST_IO_SETATTR, ZTEST_IO_REWRITE, ZTEST_IO_TYPES }; typedef struct ztest_block_tag { uint64_t bt_magic; uint64_t bt_objset; uint64_t bt_object; uint64_t bt_dnodesize; uint64_t bt_offset; uint64_t bt_gen; uint64_t bt_txg; uint64_t bt_crtxg; } ztest_block_tag_t; typedef struct bufwad { uint64_t bw_index; uint64_t bw_txg; uint64_t bw_data; } bufwad_t; /* * It would be better to use a rangelock_t per object. Unfortunately * the rangelock_t is not a drop-in replacement for rl_t, because we * still need to map from object ID to rangelock_t. */ typedef enum { RL_READER, RL_WRITER, RL_APPEND } rl_type_t; typedef struct rll { void *rll_writer; int rll_readers; kmutex_t rll_lock; kcondvar_t rll_cv; } rll_t; typedef struct rl { uint64_t rl_object; uint64_t rl_offset; uint64_t rl_size; rll_t *rl_lock; } rl_t; #define ZTEST_RANGE_LOCKS 64 #define ZTEST_OBJECT_LOCKS 64 /* * Object descriptor. Used as a template for object lookup/create/remove. */ typedef struct ztest_od { uint64_t od_dir; uint64_t od_object; dmu_object_type_t od_type; dmu_object_type_t od_crtype; uint64_t od_blocksize; uint64_t od_crblocksize; uint64_t od_crdnodesize; uint64_t od_gen; uint64_t od_crgen; char od_name[ZFS_MAX_DATASET_NAME_LEN]; } ztest_od_t; /* * Per-dataset state. */ typedef struct ztest_ds { ztest_shared_ds_t *zd_shared; objset_t *zd_os; pthread_rwlock_t zd_zilog_lock; zilog_t *zd_zilog; ztest_od_t *zd_od; /* debugging aid */ char zd_name[ZFS_MAX_DATASET_NAME_LEN]; kmutex_t zd_dirobj_lock; rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; } ztest_ds_t; /* * Per-iteration state. */ typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); typedef struct ztest_info { ztest_func_t *zi_func; /* test function */ uint64_t zi_iters; /* iterations per execution */ uint64_t *zi_interval; /* execute every seconds */ const char *zi_funcname; /* name of test function */ } ztest_info_t; typedef struct ztest_shared_callstate { uint64_t zc_count; /* per-pass count */ uint64_t zc_time; /* per-pass time */ uint64_t zc_next; /* next time to call this function */ } ztest_shared_callstate_t; static ztest_shared_callstate_t *ztest_shared_callstate; #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) ztest_func_t ztest_dmu_read_write; ztest_func_t ztest_dmu_write_parallel; ztest_func_t ztest_dmu_object_alloc_free; ztest_func_t ztest_dmu_object_next_chunk; ztest_func_t ztest_dmu_commit_callbacks; ztest_func_t ztest_zap; ztest_func_t ztest_zap_parallel; ztest_func_t ztest_zil_commit; ztest_func_t ztest_zil_remount; ztest_func_t ztest_dmu_read_write_zcopy; ztest_func_t ztest_dmu_objset_create_destroy; ztest_func_t ztest_dmu_prealloc; ztest_func_t ztest_fzap; ztest_func_t ztest_dmu_snapshot_create_destroy; ztest_func_t ztest_dsl_prop_get_set; ztest_func_t ztest_spa_prop_get_set; ztest_func_t ztest_spa_create_destroy; ztest_func_t ztest_fault_inject; ztest_func_t ztest_dmu_snapshot_hold; ztest_func_t ztest_mmp_enable_disable; ztest_func_t ztest_scrub; ztest_func_t ztest_dsl_dataset_promote_busy; ztest_func_t ztest_vdev_attach_detach; ztest_func_t ztest_vdev_LUN_growth; ztest_func_t ztest_vdev_add_remove; ztest_func_t ztest_vdev_class_add; ztest_func_t ztest_vdev_aux_add_remove; ztest_func_t ztest_split_pool; ztest_func_t ztest_reguid; ztest_func_t ztest_spa_upgrade; ztest_func_t ztest_device_removal; ztest_func_t ztest_spa_checkpoint_create_discard; ztest_func_t ztest_initialize; ztest_func_t ztest_trim; ztest_func_t ztest_blake3; ztest_func_t ztest_fletcher; ztest_func_t ztest_fletcher_incr; ztest_func_t ztest_verify_dnode_bt; uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ #define ZTI_INIT(func, iters, interval) \ { .zi_func = (func), \ .zi_iters = (iters), \ .zi_interval = (interval), \ .zi_funcname = # func } ztest_info_t ztest_info[] = { ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always), ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always), ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always), ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes), ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always), ZTI_INIT(ztest_zap, 30, &zopt_always), ZTI_INIT(ztest_zap_parallel, 100, &zopt_always), ZTI_INIT(ztest_split_pool, 1, &zopt_always), ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant), ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes), ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often), ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often), ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often), ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes), #if 0 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes), #endif ZTI_INIT(ztest_fzap, 1, &zopt_sometimes), ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes), ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes), ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes), ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes), ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes), ZTI_INIT(ztest_reguid, 1, &zopt_rarely), ZTI_INIT(ztest_scrub, 1, &zopt_rarely), ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely), ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely), ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes), ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely), ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime), ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime), ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime), ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes), ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely), ZTI_INIT(ztest_initialize, 1, &zopt_sometimes), ZTI_INIT(ztest_trim, 1, &zopt_sometimes), ZTI_INIT(ztest_blake3, 1, &zopt_rarely), ZTI_INIT(ztest_fletcher, 1, &zopt_rarely), ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely), ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes), }; #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) /* * The following struct is used to hold a list of uncalled commit callbacks. * The callbacks are ordered by txg number. */ typedef struct ztest_cb_list { kmutex_t zcl_callbacks_lock; list_t zcl_callbacks; } ztest_cb_list_t; /* * Stuff we need to share writably between parent and child. */ typedef struct ztest_shared { boolean_t zs_do_init; hrtime_t zs_proc_start; hrtime_t zs_proc_stop; hrtime_t zs_thread_start; hrtime_t zs_thread_stop; hrtime_t zs_thread_kill; uint64_t zs_enospc_count; uint64_t zs_vdev_next_leaf; uint64_t zs_vdev_aux; uint64_t zs_alloc; uint64_t zs_space; uint64_t zs_splits; uint64_t zs_mirrors; uint64_t zs_metaslab_sz; uint64_t zs_metaslab_df_alloc_threshold; uint64_t zs_guid; } ztest_shared_t; #define ID_PARALLEL -1ULL static char ztest_dev_template[] = "%s/%s.%llua"; static char ztest_aux_template[] = "%s/%s.%s.%llu"; ztest_shared_t *ztest_shared; static spa_t *ztest_spa = NULL; static ztest_ds_t *ztest_ds; static kmutex_t ztest_vdev_lock; static boolean_t ztest_device_removal_active = B_FALSE; static boolean_t ztest_pool_scrubbed = B_FALSE; static kmutex_t ztest_checkpoint_lock; /* * The ztest_name_lock protects the pool and dataset namespace used by * the individual tests. To modify the namespace, consumers must grab * this lock as writer. Grabbing the lock as reader will ensure that the * namespace does not change while the lock is held. */ static pthread_rwlock_t ztest_name_lock; static boolean_t ztest_dump_core = B_TRUE; static boolean_t ztest_exiting; /* Global commit callback list */ static ztest_cb_list_t zcl; /* Commit cb delay */ static uint64_t zc_min_txg_delay = UINT64_MAX; static int zc_cb_counter = 0; /* * Minimum number of commit callbacks that need to be registered for us to check * whether the minimum txg delay is acceptable. */ #define ZTEST_COMMIT_CB_MIN_REG 100 /* * If a number of txgs equal to this threshold have been created after a commit * callback has been registered but not called, then we assume there is an * implementation bug. */ #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000) enum ztest_object { ZTEST_META_DNODE = 0, ZTEST_DIROBJ, ZTEST_OBJECTS }; static __attribute__((noreturn)) void usage(boolean_t requested); static int ztest_scrub_impl(spa_t *spa); /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init(void) { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } static void dump_debug_buffer(void) { ssize_t ret __attribute__((unused)); if (!ztest_opts.zo_dump_dbgmsg) return; /* * We use write() instead of printf() so that this function * is safe to call from a signal handler. */ ret = write(STDOUT_FILENO, "\n", 1); zfs_dbgmsg_print("ztest"); } #define BACKTRACE_SZ 100 static void sig_handler(int signo) { struct sigaction action; #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */ int nptrs; void *buffer[BACKTRACE_SZ]; nptrs = backtrace(buffer, BACKTRACE_SZ); backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO); #endif dump_debug_buffer(); /* * Restore default action and re-raise signal so SIGSEGV and * SIGABRT can trigger a core dump. */ action.sa_handler = SIG_DFL; sigemptyset(&action.sa_mask); action.sa_flags = 0; (void) sigaction(signo, &action, NULL); raise(signo); } #define FATAL_MSG_SZ 1024 static const char *fatal_msg; static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void fatal(int do_perror, const char *message, ...) { va_list args; int save_errno = errno; char *buf; (void) fflush(stdout); buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL); if (buf == NULL) goto out; va_start(args, message); (void) sprintf(buf, "ztest: "); /* LINTED */ (void) vsprintf(buf + strlen(buf), message, args); va_end(args); if (do_perror) { (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), ": %s", strerror(save_errno)); } (void) fprintf(stderr, "%s\n", buf); fatal_msg = buf; /* to ease debugging */ out: if (ztest_dump_core) abort(); else dump_debug_buffer(); exit(3); } static int str2shift(const char *buf) { const char *ends = "BKMGTPEZ"; int i; if (buf[0] == '\0') return (0); for (i = 0; i < strlen(ends); i++) { if (toupper(buf[0]) == ends[i]) break; } if (i == strlen(ends)) { (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); } if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { return (10*i); } (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); } static uint64_t nicenumtoull(const char *buf) { char *end; uint64_t val; val = strtoull(buf, &end, 0); if (end == buf) { (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); usage(B_FALSE); } else if (end[0] == '.') { double fval = strtod(buf, &end); fval *= pow(2, str2shift(end)); /* * UINT64_MAX is not exactly representable as a double. * The closest representation is UINT64_MAX + 1, so we * use a >= comparison instead of > for the bounds check. */ if (fval >= (double)UINT64_MAX) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val = (uint64_t)fval; } else { int shift = str2shift(end); if (shift >= 64 || (val << shift) >> shift != val) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val <<= shift; } return (val); } typedef struct ztest_option { const char short_opt; const char *long_opt; const char *long_opt_param; const char *comment; unsigned int default_int; const char *default_str; } ztest_option_t; /* * The following option_table is used for generating the usage info as well as * the long and short option information for calling getopt_long(). */ static ztest_option_t option_table[] = { { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT, NULL}, { 's', "vdev-size", "INTEGER", "Size of each vdev", NO_DEFAULT, DEFAULT_VDEV_SIZE_STR}, { 'a', "alignment-shift", "INTEGER", "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL}, { 'm', "mirror-copies", "INTEGER", "Number of mirror copies", DEFAULT_MIRRORS, NULL}, { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks", DEFAULT_RAID_CHILDREN, NULL}, { 'R', "raid-parity", "INTEGER", "Raid parity", DEFAULT_RAID_PARITY, NULL}, { 'K', "raid-kind", "raidz|draid|random", "Raid kind", NO_DEFAULT, "random"}, { 'D', "draid-data", "INTEGER", "Number of draid data drives", DEFAULT_DRAID_DATA, NULL}, { 'S', "draid-spares", "INTEGER", "Number of draid spares", DEFAULT_DRAID_SPARES, NULL}, { 'd', "datasets", "INTEGER", "Number of datasets", DEFAULT_DATASETS_COUNT, NULL}, { 't', "threads", "INTEGER", "Number of ztest threads", DEFAULT_THREADS, NULL}, { 'g', "gang-block-threshold", "INTEGER", "Metaslab gang block threshold", NO_DEFAULT, DEFAULT_FORCE_GANGING_STR}, { 'i', "init-count", "INTEGER", "Number of times to initialize pool", DEFAULT_INITS, NULL}, { 'k', "kill-percentage", "INTEGER", "Kill percentage", NO_DEFAULT, DEFAULT_KILLRATE_STR}, { 'p', "pool-name", "STRING", "Pool name", NO_DEFAULT, DEFAULT_POOL}, { 'f', "vdev-file-directory", "PATH", "File directory for vdev files", NO_DEFAULT, DEFAULT_VDEV_DIR}, { 'M', "multi-host", NULL, "Multi-host; simulate pool imported on remote host", NO_DEFAULT, NULL}, { 'E', "use-existing-pool", NULL, "Use existing pool instead of creating new one", NO_DEFAULT, NULL}, { 'T', "run-time", "INTEGER", "Total run time", NO_DEFAULT, DEFAULT_RUN_TIME_STR}, { 'P', "pass-time", "INTEGER", "Time per pass", NO_DEFAULT, DEFAULT_PASS_TIME_STR}, { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()", DEFAULT_MAX_LOOPS, NULL}, { 'B', "alt-ztest", "PATH", "Alternate ztest path", NO_DEFAULT, NULL}, { 'C', "vdev-class-state", "on|off|random", "vdev class state", NO_DEFAULT, "random"}, { 'o', "option", "\"OPTION=INTEGER\"", "Set global variable to an unsigned 32-bit integer value", NO_DEFAULT, NULL}, { 'G', "dump-debug-msg", NULL, "Dump zfs_dbgmsg buffer before exiting due to an error", NO_DEFAULT, NULL}, { 'V', "verbose", NULL, "Verbose (use multiple times for ever more verbosity)", NO_DEFAULT, NULL}, { 'h', "help", NULL, "Show this help", NO_DEFAULT, NULL}, {0, 0, 0, 0, 0, 0} }; static struct option *long_opts = NULL; static char *short_opts = NULL; static void init_options(void) { ASSERT3P(long_opts, ==, NULL); ASSERT3P(short_opts, ==, NULL); int count = sizeof (option_table) / sizeof (option_table[0]); long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL); short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL); int short_opt_index = 0; for (int i = 0; i < count; i++) { long_opts[i].val = option_table[i].short_opt; long_opts[i].name = option_table[i].long_opt; long_opts[i].has_arg = option_table[i].long_opt_param != NULL ? required_argument : no_argument; long_opts[i].flag = NULL; short_opts[short_opt_index++] = option_table[i].short_opt; if (option_table[i].long_opt_param != NULL) { short_opts[short_opt_index++] = ':'; } } } static void fini_options(void) { int count = sizeof (option_table) / sizeof (option_table[0]); umem_free(long_opts, sizeof (struct option) * count); umem_free(short_opts, sizeof (char) * 2 * count); long_opts = NULL; short_opts = NULL; } static __attribute__((noreturn)) void usage(boolean_t requested) { char option[80]; FILE *fp = requested ? stdout : stderr; (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL); for (int i = 0; option_table[i].short_opt != 0; i++) { if (option_table[i].long_opt_param != NULL) { (void) sprintf(option, " -%c --%s=%s", option_table[i].short_opt, option_table[i].long_opt, option_table[i].long_opt_param); } else { (void) sprintf(option, " -%c --%s", option_table[i].short_opt, option_table[i].long_opt); } (void) fprintf(fp, " %-40s%s", option, option_table[i].comment); if (option_table[i].long_opt_param != NULL) { if (option_table[i].default_str != NULL) { (void) fprintf(fp, " (default: %s)", option_table[i].default_str); } else if (option_table[i].default_int != NO_DEFAULT) { (void) fprintf(fp, " (default: %u)", option_table[i].default_int); } } (void) fprintf(fp, "\n"); } exit(requested ? 0 : 1); } static uint64_t ztest_random(uint64_t range) { uint64_t r; ASSERT3S(ztest_fd_rand, >=, 0); if (range == 0) return (0); if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) fatal(B_TRUE, "short read from /dev/urandom"); return (r % range); } static void ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo) { char name[32]; char *value; int state = ZTEST_VDEV_CLASS_RND; (void) strlcpy(name, input, sizeof (name)); value = strchr(name, '='); if (value == NULL) { (void) fprintf(stderr, "missing value in property=value " "'-C' argument (%s)\n", input); usage(B_FALSE); } *(value) = '\0'; value++; if (strcmp(value, "on") == 0) { state = ZTEST_VDEV_CLASS_ON; } else if (strcmp(value, "off") == 0) { state = ZTEST_VDEV_CLASS_OFF; } else if (strcmp(value, "random") == 0) { state = ZTEST_VDEV_CLASS_RND; } else { (void) fprintf(stderr, "invalid property value '%s'\n", value); usage(B_FALSE); } if (strcmp(name, "special") == 0) { zo->zo_special_vdevs = state; } else { (void) fprintf(stderr, "invalid property name '%s'\n", name); usage(B_FALSE); } if (zo->zo_verbose >= 3) (void) printf("%s vdev state is '%s'\n", name, value); } static void process_options(int argc, char **argv) { char *path; ztest_shared_opts_t *zo = &ztest_opts; int opt; uint64_t value; const char *raid_kind = "random"; memcpy(zo, &ztest_opts_defaults, sizeof (*zo)); init_options(); while ((opt = getopt_long(argc, argv, short_opts, long_opts, NULL)) != EOF) { value = 0; switch (opt) { case 'v': case 's': case 'a': case 'm': case 'r': case 'R': case 'D': case 'S': case 'd': case 't': case 'g': case 'i': case 'k': case 'T': case 'P': case 'F': value = nicenumtoull(optarg); } switch (opt) { case 'v': zo->zo_vdevs = value; break; case 's': zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); break; case 'a': zo->zo_ashift = value; break; case 'm': zo->zo_mirrors = value; break; case 'r': zo->zo_raid_children = MAX(1, value); break; case 'R': zo->zo_raid_parity = MIN(MAX(value, 1), 3); break; case 'K': raid_kind = optarg; break; case 'D': zo->zo_draid_data = MAX(1, value); break; case 'S': zo->zo_draid_spares = MAX(1, value); break; case 'd': zo->zo_datasets = MAX(1, value); break; case 't': zo->zo_threads = MAX(1, value); break; case 'g': zo->zo_metaslab_force_ganging = MAX(SPA_MINBLOCKSIZE << 1, value); break; case 'i': zo->zo_init = value; break; case 'k': zo->zo_killrate = value; break; case 'p': (void) strlcpy(zo->zo_pool, optarg, sizeof (zo->zo_pool)); break; case 'f': path = realpath(optarg, NULL); if (path == NULL) { (void) fprintf(stderr, "error: %s: %s\n", optarg, strerror(errno)); usage(B_FALSE); } else { (void) strlcpy(zo->zo_dir, path, sizeof (zo->zo_dir)); free(path); } break; case 'M': zo->zo_mmp_test = 1; break; case 'V': zo->zo_verbose++; break; case 'E': zo->zo_init = 0; break; case 'T': zo->zo_time = value; break; case 'P': zo->zo_passtime = MAX(1, value); break; case 'F': zo->zo_maxloops = MAX(1, value); break; case 'B': (void) strlcpy(zo->zo_alt_ztest, optarg, sizeof (zo->zo_alt_ztest)); break; case 'C': ztest_parse_name_value(optarg, zo); break; case 'o': if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) { (void) fprintf(stderr, "max global var count (%zu) exceeded\n", ZO_GVARS_MAX_COUNT); usage(B_FALSE); } char *v = zo->zo_gvars[zo->zo_gvars_count]; if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >= ZO_GVARS_MAX_ARGLEN) { (void) fprintf(stderr, "global var option '%s' is too long\n", optarg); usage(B_FALSE); } zo->zo_gvars_count++; break; case 'G': zo->zo_dump_dbgmsg = 1; break; case 'h': usage(B_TRUE); break; case '?': default: usage(B_FALSE); break; } } fini_options(); /* When raid choice is 'random' add a draid pool 50% of the time */ if (strcmp(raid_kind, "random") == 0) { raid_kind = (ztest_random(2) == 0) ? "draid" : "raidz"; if (ztest_opts.zo_verbose >= 3) (void) printf("choosing RAID type '%s'\n", raid_kind); } if (strcmp(raid_kind, "draid") == 0) { uint64_t min_devsize; /* With fewer disk use 256M, otherwise 128M is OK */ min_devsize = (ztest_opts.zo_raid_children < 16) ? (256ULL << 20) : (128ULL << 20); /* No top-level mirrors with dRAID for now */ zo->zo_mirrors = 0; /* Use more appropriate defaults for dRAID */ if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs) zo->zo_vdevs = 1; if (zo->zo_raid_children == ztest_opts_defaults.zo_raid_children) zo->zo_raid_children = 16; if (zo->zo_ashift < 12) zo->zo_ashift = 12; if (zo->zo_vdev_size < min_devsize) zo->zo_vdev_size = min_devsize; if (zo->zo_draid_data + zo->zo_raid_parity > zo->zo_raid_children - zo->zo_draid_spares) { (void) fprintf(stderr, "error: too few draid " "children (%d) for stripe width (%d)\n", zo->zo_raid_children, zo->zo_draid_data + zo->zo_raid_parity); usage(B_FALSE); } (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID, sizeof (zo->zo_raid_type)); } else /* using raidz */ { ASSERT0(strcmp(raid_kind, "raidz")); zo->zo_raid_parity = MIN(zo->zo_raid_parity, zo->zo_raid_children - 1); } zo->zo_vdevtime = (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : UINT64_MAX >> 2); if (*zo->zo_alt_ztest) { const char *invalid_what = "ztest"; char *val = zo->zo_alt_ztest; if (0 != access(val, X_OK) || (strrchr(val, '/') == NULL && (errno = EINVAL))) goto invalid; int dirlen = strrchr(val, '/') - val; strncpy(zo->zo_alt_libpath, val, dirlen); invalid_what = "library path", val = zo->zo_alt_libpath; if (strrchr(val, '/') == NULL && (errno = EINVAL)) goto invalid; *strrchr(val, '/') = '\0'; strlcat(val, "/lib", sizeof (zo->zo_alt_libpath)); if (0 != access(zo->zo_alt_libpath, X_OK)) goto invalid; return; invalid: ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val); } } static void ztest_kill(ztest_shared_t *zs) { zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); /* * Before we kill ourselves, make sure that the config is updated. * See comment above spa_write_cachefile(). */ mutex_enter(&spa_namespace_lock); spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE); mutex_exit(&spa_namespace_lock); (void) raise(SIGKILL); } static void ztest_record_enospc(const char *s) { (void) s; ztest_shared->zs_enospc_count++; } static uint64_t ztest_get_ashift(void) { if (ztest_opts.zo_ashift == 0) return (SPA_MINBLOCKSHIFT + ztest_random(5)); return (ztest_opts.zo_ashift); } static boolean_t ztest_is_draid_spare(const char *name) { uint64_t spare_id = 0, parity = 0, vdev_id = 0; if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"", &parity, &vdev_id, &spare_id) == 3) { return (B_TRUE); } return (B_FALSE); } static nvlist_t * make_vdev_file(const char *path, const char *aux, const char *pool, size_t size, uint64_t ashift) { char *pathbuf = NULL; uint64_t vdev; nvlist_t *file; boolean_t draid_spare = B_FALSE; if (ashift == 0) ashift = ztest_get_ashift(); if (path == NULL) { pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); path = pathbuf; if (aux != NULL) { vdev = ztest_shared->zs_vdev_aux; (void) snprintf(pathbuf, MAXPATHLEN, ztest_aux_template, ztest_opts.zo_dir, pool == NULL ? ztest_opts.zo_pool : pool, aux, vdev); } else { vdev = ztest_shared->zs_vdev_next_leaf++; (void) snprintf(pathbuf, MAXPATHLEN, ztest_dev_template, ztest_opts.zo_dir, pool == NULL ? ztest_opts.zo_pool : pool, vdev); } } else { draid_spare = ztest_is_draid_spare(path); } if (size != 0 && !draid_spare) { int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); if (fd == -1) fatal(B_TRUE, "can't open %s", path); if (ftruncate(fd, size) != 0) fatal(B_TRUE, "can't ftruncate %s", path); (void) close(fd); } file = fnvlist_alloc(); fnvlist_add_string(file, ZPOOL_CONFIG_TYPE, draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE); fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path); fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift); umem_free(pathbuf, MAXPATHLEN); return (file); } static nvlist_t * make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size, uint64_t ashift, int r) { nvlist_t *raid, **child; int c; if (r < 2) return (make_vdev_file(path, aux, pool, size, ashift)); child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < r; c++) child[c] = make_vdev_file(path, aux, pool, size, ashift); raid = fnvlist_alloc(); fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE, ztest_opts.zo_raid_type); fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY, ztest_opts.zo_raid_parity); fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)child, r); if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) { uint64_t ndata = ztest_opts.zo_draid_data; uint64_t nparity = ztest_opts.zo_raid_parity; uint64_t nspares = ztest_opts.zo_draid_spares; uint64_t children = ztest_opts.zo_raid_children; uint64_t ngroups = 1; /* * Calculate the minimum number of groups required to fill a * slice. This is the LCM of the stripe width (data + parity) * and the number of data drives (children - spares). */ while (ngroups * (ndata + nparity) % (children - nspares) != 0) ngroups++; /* Store the basic dRAID configuration. */ fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata); fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares); fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups); } for (c = 0; c < r; c++) fnvlist_free(child[c]); umem_free(child, r * sizeof (nvlist_t *)); return (raid); } static nvlist_t * make_vdev_mirror(const char *path, const char *aux, const char *pool, size_t size, uint64_t ashift, int r, int m) { nvlist_t *mirror, **child; int c; if (m < 1) return (make_vdev_raid(path, aux, pool, size, ashift, r)); child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < m; c++) child[c] = make_vdev_raid(path, aux, pool, size, ashift, r); mirror = fnvlist_alloc(); fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR); fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)child, m); for (c = 0; c < m; c++) fnvlist_free(child[c]); umem_free(child, m * sizeof (nvlist_t *)); return (mirror); } static nvlist_t * make_vdev_root(const char *path, const char *aux, const char *pool, size_t size, uint64_t ashift, const char *class, int r, int m, int t) { nvlist_t *root, **child; int c; boolean_t log; ASSERT3S(t, >, 0); log = (class != NULL && strcmp(class, "log") == 0); child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < t; c++) { child[c] = make_vdev_mirror(path, aux, pool, size, ashift, r, m); fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log); if (class != NULL && class[0] != '\0') { ASSERT(m > 1 || log); /* expecting a mirror */ fnvlist_add_string(child[c], ZPOOL_CONFIG_ALLOCATION_BIAS, class); } } root = fnvlist_alloc(); fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT); fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)child, t); for (c = 0; c < t; c++) fnvlist_free(child[c]); umem_free(child, t * sizeof (nvlist_t *)); return (root); } /* * Find a random spa version. Returns back a random spa version in the * range [initial_version, SPA_VERSION_FEATURES]. */ static uint64_t ztest_random_spa_version(uint64_t initial_version) { uint64_t version = initial_version; if (version <= SPA_VERSION_BEFORE_FEATURES) { version = version + ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); } if (version > SPA_VERSION_BEFORE_FEATURES) version = SPA_VERSION_FEATURES; ASSERT(SPA_VERSION_IS_SUPPORTED(version)); return (version); } static int ztest_random_blocksize(void) { ASSERT3U(ztest_spa->spa_max_ashift, !=, 0); /* * Choose a block size >= the ashift. * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. */ int maxbs = SPA_OLD_MAXBLOCKSHIFT; if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) maxbs = 20; uint64_t block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); return (1 << (SPA_MINBLOCKSHIFT + block_shift)); } static int ztest_random_dnodesize(void) { int slots; int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT; if (max_slots == DNODE_MIN_SLOTS) return (DNODE_MIN_SIZE); /* * Weight the random distribution more heavily toward smaller * dnode sizes since that is more likely to reflect real-world * usage. */ ASSERT3U(max_slots, >, 4); switch (ztest_random(10)) { case 0: slots = 5 + ztest_random(max_slots - 4); break; case 1 ... 4: slots = 2 + ztest_random(3); break; default: slots = 1; break; } return (slots << DNODE_SHIFT); } static int ztest_random_ibshift(void) { return (DN_MIN_INDBLKSHIFT + ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); } static uint64_t ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) { uint64_t top; vdev_t *rvd = spa->spa_root_vdev; vdev_t *tvd; ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); do { top = ztest_random(rvd->vdev_children); tvd = rvd->vdev_child[top]; } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); return (top); } static uint64_t ztest_random_dsl_prop(zfs_prop_t prop) { uint64_t value; do { value = zfs_prop_random_value(prop, ztest_random(-1ULL)); } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); return (value); } static int ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, boolean_t inherit) { const char *propname = zfs_prop_to_name(prop); const char *valname; char *setpoint; uint64_t curval; int error; error = dsl_prop_set_int(osname, propname, (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT0(error); setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); if (ztest_opts.zo_verbose >= 6) { int err; err = zfs_prop_index_to_string(prop, curval, &valname); if (err) (void) printf("%s %s = %llu at '%s'\n", osname, propname, (unsigned long long)curval, setpoint); else (void) printf("%s %s = %s at '%s'\n", osname, propname, valname, setpoint); } umem_free(setpoint, MAXPATHLEN); return (error); } static int ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) { spa_t *spa = ztest_spa; nvlist_t *props = NULL; int error; props = fnvlist_alloc(); fnvlist_add_uint64(props, zpool_prop_to_name(prop), value); error = spa_prop_set(spa, props); fnvlist_free(props); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT0(error); return (error); } static int ztest_dmu_objset_own(const char *name, dmu_objset_type_t type, boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp) { int err; char *cp = NULL; char ddname[ZFS_MAX_DATASET_NAME_LEN]; strcpy(ddname, name); cp = strchr(ddname, '@'); if (cp != NULL) *cp = '\0'; err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); while (decrypt && err == EACCES) { dsl_crypto_params_t *dcp; nvlist_t *crypto_args = fnvlist_alloc(); fnvlist_add_uint8_array(crypto_args, "wkeydata", (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, crypto_args, &dcp)); err = spa_keystore_load_wkey(ddname, dcp, B_FALSE); /* * Note: if there was an error loading, the wkey was not * consumed, and needs to be freed. */ dsl_crypto_params_free(dcp, (err != 0)); fnvlist_free(crypto_args); if (err == EINVAL) { /* * We couldn't load a key for this dataset so try * the parent. This loop will eventually hit the * encryption root since ztest only makes clones * as children of their origin datasets. */ cp = strrchr(ddname, '/'); if (cp == NULL) return (err); *cp = '\0'; err = EACCES; continue; } else if (err != 0) { break; } err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); break; } return (err); } static void ztest_rll_init(rll_t *rll) { rll->rll_writer = NULL; rll->rll_readers = 0; mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL); } static void ztest_rll_destroy(rll_t *rll) { ASSERT3P(rll->rll_writer, ==, NULL); ASSERT0(rll->rll_readers); mutex_destroy(&rll->rll_lock); cv_destroy(&rll->rll_cv); } static void ztest_rll_lock(rll_t *rll, rl_type_t type) { mutex_enter(&rll->rll_lock); if (type == RL_READER) { while (rll->rll_writer != NULL) (void) cv_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_readers++; } else { while (rll->rll_writer != NULL || rll->rll_readers) (void) cv_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_writer = curthread; } mutex_exit(&rll->rll_lock); } static void ztest_rll_unlock(rll_t *rll) { mutex_enter(&rll->rll_lock); if (rll->rll_writer) { ASSERT0(rll->rll_readers); rll->rll_writer = NULL; } else { ASSERT3S(rll->rll_readers, >, 0); ASSERT3P(rll->rll_writer, ==, NULL); rll->rll_readers--; } if (rll->rll_writer == NULL && rll->rll_readers == 0) cv_broadcast(&rll->rll_cv); mutex_exit(&rll->rll_lock); } static void ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_lock(rll, type); } static void ztest_object_unlock(ztest_ds_t *zd, uint64_t object) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_unlock(rll); } static rl_t * ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, rl_type_t type) { uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; rl_t *rl; rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); rl->rl_object = object; rl->rl_offset = offset; rl->rl_size = size; rl->rl_lock = rll; ztest_rll_lock(rll, type); return (rl); } static void ztest_range_unlock(rl_t *rl) { rll_t *rll = rl->rl_lock; ztest_rll_unlock(rll); umem_free(rl, sizeof (*rl)); } static void ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) { zd->zd_os = os; zd->zd_zilog = dmu_objset_zil(os); zd->zd_shared = szd; dmu_objset_name(os, zd->zd_name); int l; if (zd->zd_shared != NULL) zd->zd_shared->zd_seq = 0; VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL)); mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL); for (l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_init(&zd->zd_object_lock[l]); for (l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_init(&zd->zd_range_lock[l]); } static void ztest_zd_fini(ztest_ds_t *zd) { int l; mutex_destroy(&zd->zd_dirobj_lock); (void) pthread_rwlock_destroy(&zd->zd_zilog_lock); for (l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_destroy(&zd->zd_object_lock[l]); for (l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_destroy(&zd->zd_range_lock[l]); } #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) static uint64_t ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) { uint64_t txg; int error; /* * Attempt to assign tx to some transaction group. */ error = dmu_tx_assign(tx, txg_how); if (error) { if (error == ERESTART) { ASSERT3U(txg_how, ==, TXG_NOWAIT); dmu_tx_wait(tx); } else { ASSERT3U(error, ==, ENOSPC); ztest_record_enospc(tag); } dmu_tx_abort(tx); return (0); } txg = dmu_tx_get_txg(tx); ASSERT3U(txg, !=, 0); return (txg); } static void ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) { bt->bt_magic = BT_MAGIC; bt->bt_objset = dmu_objset_id(os); bt->bt_object = object; bt->bt_dnodesize = dnodesize; bt->bt_offset = offset; bt->bt_gen = gen; bt->bt_txg = txg; bt->bt_crtxg = crtxg; } static void ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) { ASSERT3U(bt->bt_magic, ==, BT_MAGIC); ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); ASSERT3U(bt->bt_object, ==, object); ASSERT3U(bt->bt_dnodesize, ==, dnodesize); ASSERT3U(bt->bt_offset, ==, offset); ASSERT3U(bt->bt_gen, <=, gen); ASSERT3U(bt->bt_txg, <=, txg); ASSERT3U(bt->bt_crtxg, ==, crtxg); } static ztest_block_tag_t * ztest_bt_bonus(dmu_buf_t *db) { dmu_object_info_t doi; ztest_block_tag_t *bt; dmu_object_info_from_db(db, &doi); ASSERT3U(doi.doi_bonus_size, <=, db->db_size); ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); return (bt); } /* * Generate a token to fill up unused bonus buffer space. Try to make * it unique to the object, generation, and offset to verify that data * is not getting overwritten by data from other dnodes. */ #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \ (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset)) /* * Fill up the unused bonus buffer region before the block tag with a * verifiable pattern. Filling the whole bonus area with non-zero data * helps ensure that all dnode traversal code properly skips the * interior regions of large dnodes. */ static void ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, objset_t *os, uint64_t gen) { uint64_t *bonusp; ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8)); for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), gen, bonusp - (uint64_t *)db->db_data); *bonusp = token; } } /* * Verify that the unused area of a bonus buffer is filled with the * expected tokens. */ static void ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, objset_t *os, uint64_t gen) { uint64_t *bonusp; for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), gen, bonusp - (uint64_t *)db->db_data); VERIFY3U(*bonusp, ==, token); } } /* * ZIL logging ops */ #define lrz_type lr_mode #define lrz_blocksize lr_uid #define lrz_ibshift lr_gid #define lrz_bonustype lr_rdev #define lrz_dnodesize lr_crtime[1] static void ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, sizeof (*lr) + namesize - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, sizeof (*lr) + namesize - sizeof (lr_t)); itx->itx_oid = object; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) { itx_t *itx; itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); if (zil_replaying(zd->zd_zilog, tx)) return; if (lr->lr_length > zil_max_log_data(zd->zd_zilog)) write_state = WR_INDIRECT; itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); if (write_state == WR_COPIED && dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); write_state = WR_NEED_COPY; } itx->itx_private = zd; itx->itx_wr_state = write_state; itx->itx_sync = (ztest_random(8) == 0); memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, sizeof (*lr) - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } /* * ZIL replay ops */ static int ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_create_t *lr = arg2; char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; ztest_block_tag_t *bbt; dmu_buf_t *db; dmu_tx_t *tx; uint64_t txg; int error = 0; int bonuslen; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ); ASSERT3S(name[0], !=, '\0'); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } else { dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); } txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) return (ENOSPC); ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid); bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { if (lr->lr_foid == 0) { lr->lr_foid = zap_create_dnsize(os, lr->lrz_type, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } else { error = zap_create_claim_dnsize(os, lr->lr_foid, lr->lrz_type, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } } else { if (lr->lr_foid == 0) { lr->lr_foid = dmu_object_alloc_dnsize(os, lr->lrz_type, 0, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } else { error = dmu_object_claim_dnsize(os, lr->lr_foid, lr->lrz_type, 0, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } } if (error) { ASSERT3U(error, ==, EEXIST); ASSERT(zd->zd_zilog->zl_replay); dmu_tx_commit(tx); return (error); } ASSERT3U(lr->lr_foid, !=, 0); if (lr->lrz_type != DMU_OT_ZAP_OTHER) VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid, lr->lrz_blocksize, lr->lrz_ibshift, tx)); VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); bbt = ztest_bt_bonus(db); dmu_buf_will_dirty(db, tx); ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL, lr->lr_gen, txg, txg); ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen); dmu_buf_rele(db, FTAG); VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, &lr->lr_foid, tx)); (void) ztest_log_create(zd, tx, lr); dmu_tx_commit(tx); return (0); } static int ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_remove_t *lr = arg2; char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; dmu_object_info_t doi; dmu_tx_t *tx; uint64_t object, txg; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ); ASSERT3S(name[0], !=, '\0'); VERIFY0( zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); ASSERT3U(object, !=, 0); ztest_object_lock(zd, object, RL_WRITER); VERIFY0(dmu_object_info(os, object, &doi)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_object_unlock(zd, object); return (ENOSPC); } if (doi.doi_type == DMU_OT_ZAP_OTHER) { VERIFY0(zap_destroy(os, object, tx)); } else { VERIFY0(dmu_object_free(os, object, tx)); } VERIFY0(zap_remove(os, lr->lr_doid, name, tx)); (void) ztest_log_remove(zd, tx, lr, object); dmu_tx_commit(tx); ztest_object_unlock(zd, object); return (0); } static int ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_write_t *lr = arg2; objset_t *os = zd->zd_os; void *data = lr + 1; /* data follows lr */ uint64_t offset, length; ztest_block_tag_t *bt = data; ztest_block_tag_t *bbt; uint64_t gen, txg, lrtxg, crtxg; dmu_object_info_t doi; dmu_tx_t *tx; dmu_buf_t *db; arc_buf_t *abuf = NULL; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } } if (bt->bt_magic == BSWAP_64(BT_MAGIC)) byteswap_uint64_array(bt, sizeof (*bt)); if (bt->bt_magic != BT_MAGIC) bt = NULL; ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); gen = bbt->bt_gen; crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; tx = dmu_tx_create(os); dmu_tx_hold_write(tx, lr->lr_foid, offset, length); if (ztest_random(8) == 0 && length == doi.doi_data_block_size && P2PHASE(offset, length) == 0) abuf = dmu_request_arcbuf(db, length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { if (abuf != NULL) dmu_return_arcbuf(abuf); dmu_buf_rele(db, FTAG); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } if (bt != NULL) { /* * Usually, verify the old data before writing new data -- * but not always, because we also want to verify correct * behavior when the data was not recently read into cache. */ ASSERT0(offset % doi.doi_data_block_size); if (ztest_random(4) != 0) { int prefetch = ztest_random(2) ? DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; ztest_block_tag_t rbt; VERIFY(dmu_read(os, lr->lr_foid, offset, sizeof (rbt), &rbt, prefetch) == 0); if (rbt.bt_magic == BT_MAGIC) { ztest_bt_verify(&rbt, os, lr->lr_foid, 0, offset, gen, txg, crtxg); } } /* * Writes can appear to be newer than the bonus buffer because * the ztest_get_data() callback does a dmu_read() of the * open-context data, which may be different than the data * as it was when the write was generated. */ if (zd->zd_zilog->zl_replay) { ztest_bt_verify(bt, os, lr->lr_foid, 0, offset, MAX(gen, bt->bt_gen), MAX(txg, lrtxg), bt->bt_crtxg); } /* * Set the bt's gen/txg to the bonus buffer's gen/txg * so that all of the usual ASSERTs will work. */ ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg, crtxg); } if (abuf == NULL) { dmu_write(os, lr->lr_foid, offset, length, data, tx); } else { memcpy(abuf->b_data, data, length); dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx); } (void) ztest_log_write(zd, tx, lr); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_truncate_t *lr = arg2; objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset, lr->lr_length, tx)); (void) ztest_log_truncate(zd, tx, lr); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_setattr_t *lr = arg2; objset_t *os = zd->zd_os; dmu_tx_t *tx; dmu_buf_t *db; ztest_block_tag_t *bbt; uint64_t txg, lrtxg, crtxg, dnodesize; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_WRITER); VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, lr->lr_foid); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; dnodesize = bbt->bt_dnodesize; if (zd->zd_zilog->zl_replay) { ASSERT3U(lr->lr_size, !=, 0); ASSERT3U(lr->lr_mode, !=, 0); ASSERT3U(lrtxg, !=, 0); } else { /* * Randomly change the size and increment the generation. */ lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * sizeof (*bbt); lr->lr_mode = bbt->bt_gen + 1; ASSERT0(lrtxg); } /* * Verify that the current bonus buffer is not newer than our txg. */ ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, MAX(txg, lrtxg), crtxg); dmu_buf_will_dirty(db, tx); ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); ASSERT3U(lr->lr_size, <=, db->db_size); VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); bbt = ztest_bt_bonus(db); ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, txg, crtxg); ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen); dmu_buf_rele(db, FTAG); (void) ztest_log_setattr(zd, tx, lr); dmu_tx_commit(tx); ztest_object_unlock(zd, lr->lr_foid); return (0); } zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { NULL, /* 0 no such transaction type */ ztest_replay_create, /* TX_CREATE */ NULL, /* TX_MKDIR */ NULL, /* TX_MKXATTR */ NULL, /* TX_SYMLINK */ ztest_replay_remove, /* TX_REMOVE */ NULL, /* TX_RMDIR */ NULL, /* TX_LINK */ NULL, /* TX_RENAME */ ztest_replay_write, /* TX_WRITE */ ztest_replay_truncate, /* TX_TRUNCATE */ ztest_replay_setattr, /* TX_SETATTR */ NULL, /* TX_ACL */ NULL, /* TX_CREATE_ACL */ NULL, /* TX_CREATE_ATTR */ NULL, /* TX_CREATE_ACL_ATTR */ NULL, /* TX_MKDIR_ACL */ NULL, /* TX_MKDIR_ATTR */ NULL, /* TX_MKDIR_ACL_ATTR */ NULL, /* TX_WRITE2 */ NULL, /* TX_SETSAXATTR */ }; /* * ZIL get_data callbacks */ static void ztest_get_done(zgd_t *zgd, int error) { (void) error; ztest_ds_t *zd = zgd->zgd_private; uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); ztest_range_unlock((rl_t *)zgd->zgd_lr); ztest_object_unlock(zd, object); umem_free(zgd, sizeof (*zgd)); } static int ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) { (void) arg2; ztest_ds_t *zd = arg; objset_t *os = zd->zd_os; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; uint64_t txg = lr->lr_common.lrc_txg; uint64_t crtxg; dmu_object_info_t doi; dmu_buf_t *db; zgd_t *zgd; int error; ASSERT3P(lwb, !=, NULL); ASSERT3P(zio, !=, NULL); ASSERT3U(size, !=, 0); ztest_object_lock(zd, object, RL_READER); error = dmu_bonus_hold(os, object, FTAG, &db); if (error) { ztest_object_unlock(zd, object); return (error); } crtxg = ztest_bt_bonus(db)->bt_crtxg; if (crtxg == 0 || crtxg > txg) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, object); return (ENOENT); } dmu_object_info_from_db(db, &doi); dmu_buf_rele(db, FTAG); db = NULL; zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); zgd->zgd_lwb = lwb; zgd->zgd_private = zd; if (buf != NULL) { /* immediate write */ zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); ASSERT0(error); } else { size = doi.doi_data_block_size; if (ISP2(size)) { offset = P2ALIGN(offset, size); } else { ASSERT3U(offset, <, size); offset = 0; } zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *bp = &lr->lr_blkptr; zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT3U(db->db_offset, ==, offset); ASSERT3U(db->db_size, ==, size); error = dmu_sync(zio, lr->lr_common.lrc_txg, ztest_get_done, zgd); if (error == 0) return (0); } } ztest_get_done(zgd, error); return (error); } static void * ztest_lr_alloc(size_t lrsize, char *name) { char *lr; size_t namesize = name ? strlen(name) + 1 : 0; lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); if (name) memcpy(lr + lrsize, name, namesize); return (lr); } static void ztest_lr_free(void *lr, size_t lrsize, char *name) { size_t namesize = name ? strlen(name) + 1 : 0; umem_free(lr, lrsize + namesize); } /* * Lookup a bunch of objects. Returns the number of objects not found. */ static int ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; int i; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); for (i = 0; i < count; i++, od++) { od->od_object = 0; error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, sizeof (uint64_t), 1, &od->od_object); if (error) { ASSERT3S(error, ==, ENOENT); ASSERT0(od->od_object); missing++; } else { dmu_buf_t *db; ztest_block_tag_t *bbt; dmu_object_info_t doi; ASSERT3U(od->od_object, !=, 0); ASSERT0(missing); /* there should be no gaps */ ztest_object_lock(zd, od->od_object, RL_READER); VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); od->od_type = doi.doi_type; od->od_blocksize = doi.doi_data_block_size; od->od_gen = bbt->bt_gen; dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, od->od_object); } } return (missing); } static int ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int i; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); for (i = 0; i < count; i++, od++) { if (missing) { od->od_object = 0; missing++; continue; } lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ lr->lrz_type = od->od_crtype; lr->lrz_blocksize = od->od_crblocksize; lr->lrz_ibshift = ztest_random_ibshift(); lr->lrz_bonustype = DMU_OT_UINT64_OTHER; lr->lrz_dnodesize = od->od_crdnodesize; lr->lr_gen = od->od_crgen; lr->lr_crtime[0] = time(NULL); if (ztest_replay_create(zd, lr, B_FALSE) != 0) { ASSERT0(missing); od->od_object = 0; missing++; } else { od->od_object = lr->lr_foid; od->od_type = od->od_crtype; od->od_blocksize = od->od_crblocksize; od->od_gen = od->od_crgen; ASSERT3U(od->od_object, !=, 0); } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; int i; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); od += count - 1; for (i = count - 1; i >= 0; i--, od--) { if (missing) { missing++; continue; } /* * No object was found. */ if (od->od_object == 0) continue; lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { ASSERT3U(error, ==, ENOSPC); missing++; } else { od->od_object = 0; } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, void *data) { lr_write_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); memcpy(lr + 1, data, size); error = ztest_replay_write(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr) + size, NULL); return (error); } static int ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { lr_truncate_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; error = ztest_replay_truncate(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static int ztest_setattr(ztest_ds_t *zd, uint64_t object) { lr_setattr_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_size = 0; lr->lr_mode = 0; error = ztest_replay_setattr(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static void ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; txg_wait_synced(dmu_objset_pool(os), 0); ztest_object_lock(zd, object, RL_READER); rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, object, offset, size); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg != 0) { dmu_prealloc(os, object, offset, size, tx); dmu_tx_commit(tx); txg_wait_synced(dmu_objset_pool(os), txg); } else { (void) dmu_free_long_range(os, object, offset, size); } ztest_range_unlock(rl); ztest_object_unlock(zd, object); } static void ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) { int err; ztest_block_tag_t wbt; dmu_object_info_t doi; enum ztest_io_type io_type; uint64_t blocksize; void *data; VERIFY0(dmu_object_info(zd->zd_os, object, &doi)); blocksize = doi.doi_data_block_size; data = umem_alloc(blocksize, UMEM_NOFAIL); /* * Pick an i/o type at random, biased toward writing block tags. */ io_type = ztest_random(ZTEST_IO_TYPES); if (ztest_random(2) == 0) io_type = ZTEST_IO_WRITE_TAG; (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock); switch (io_type) { case ZTEST_IO_WRITE_TAG: ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize, offset, 0, 0, 0); (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); break; case ZTEST_IO_WRITE_PATTERN: (void) memset(data, 'a' + (object + offset) % 5, blocksize); if (ztest_random(2) == 0) { /* * Induce fletcher2 collisions to ensure that * zio_ddt_collision() detects and resolves them * when using fletcher2-verify for deduplication. */ ((uint64_t *)data)[0] ^= 1ULL << 63; ((uint64_t *)data)[4] ^= 1ULL << 63; } (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_WRITE_ZEROES: memset(data, 0, blocksize); (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_TRUNCATE: (void) ztest_truncate(zd, object, offset, blocksize); break; case ZTEST_IO_SETATTR: (void) ztest_setattr(zd, object); break; default: break; case ZTEST_IO_REWRITE: (void) pthread_rwlock_rdlock(&ztest_name_lock); err = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), B_FALSE); VERIFY(err == 0 || err == ENOSPC); err = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COMPRESSION, ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), B_FALSE); VERIFY(err == 0 || err == ENOSPC); (void) pthread_rwlock_unlock(&ztest_name_lock); VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, DMU_READ_NO_PREFETCH)); (void) ztest_write(zd, object, offset, blocksize, data); break; } (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); umem_free(data, blocksize); } /* * Initialize an object description template. */ static void ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index, dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize, uint64_t gen) { od->od_dir = ZTEST_DIROBJ; od->od_object = 0; od->od_crtype = type; od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize(); od->od_crgen = gen; od->od_type = DMU_OT_NONE; od->od_blocksize = 0; od->od_gen = 0; (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%"PRId64")[%"PRIu64"]", tag, id, index); } /* * Lookup or create the objects for a test using the od template. * If the objects do not all exist, or if 'remove' is specified, * remove any existing objects and create new ones. Otherwise, * use the existing objects. */ static int ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) { int count = size / sizeof (*od); int rv = 0; mutex_enter(&zd->zd_dirobj_lock); if ((ztest_lookup(zd, od, count) != 0 || remove) && (ztest_remove(zd, od, count) != 0 || ztest_create(zd, od, count) != 0)) rv = -1; zd->zd_od = od; mutex_exit(&zd->zd_dirobj_lock); return (rv); } void ztest_zil_commit(ztest_ds_t *zd, uint64_t id) { (void) id; zilog_t *zilog = zd->zd_zilog; (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock); zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); /* * Remember the committed values in zd, which is in parent/child * shared memory. If we die, the next iteration of ztest_run() * will verify that the log really does contain this record. */ mutex_enter(&zilog->zl_lock); ASSERT3P(zd->zd_shared, !=, NULL); ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; mutex_exit(&zilog->zl_lock); (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); } /* * This function is designed to simulate the operations that occur during a * mount/unmount operation. We hold the dataset across these operations in an * attempt to expose any implicit assumptions about ZIL management. */ void ztest_zil_remount(ztest_ds_t *zd, uint64_t id) { (void) id; objset_t *os = zd->zd_os; /* * We hold the ztest_vdev_lock so we don't cause problems with * other threads that wish to remove a log device, such as * ztest_device_removal(). */ mutex_enter(&ztest_vdev_lock); /* * We grab the zd_dirobj_lock to ensure that no other thread is * updating the zil (i.e. adding in-memory log records) and the * zd_zilog_lock to block any I/O. */ mutex_enter(&zd->zd_dirobj_lock); (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock); /* zfsvfs_teardown() */ zil_close(zd->zd_zilog); /* zfsvfs_setup() */ VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog); zil_replay(os, zd, ztest_replay_vector); (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); mutex_exit(&zd->zd_dirobj_lock); mutex_exit(&ztest_vdev_lock); } /* * Verify that we can't destroy an active pool, create an existing pool, * or create a pool with a bad vdev spec. */ void ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_opts_t *zo = &ztest_opts; spa_t *spa; nvlist_t *nvroot; if (zo->zo_mmp_test) return; /* * Attempt to create using a bad file. */ nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); fnvlist_free(nvroot); /* * Attempt to create using a bad mirror. */ nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); fnvlist_free(nvroot); /* * Attempt to create an existing pool. It shouldn't matter * what's in the nvroot; we should fail with EEXIST. */ (void) pthread_rwlock_rdlock(&ztest_name_lock); nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL)); fnvlist_free(nvroot); /* * We open a reference to the spa and then we try to export it * expecting one of the following errors: * * EBUSY * Because of the reference we just opened. * * ZFS_ERR_EXPORT_IN_PROGRESS * For the case that there is another ztest thread doing * an export concurrently. */ VERIFY0(spa_open(zo->zo_pool, &spa, FTAG)); int error = spa_destroy(zo->zo_pool); if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) { fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d", spa->spa_name, error); } spa_close(spa, FTAG); (void) pthread_rwlock_unlock(&ztest_name_lock); } /* * Start and then stop the MMP threads to ensure the startup and shutdown code * works properly. Actual protection and property-related code tested via ZTS. */ void ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_opts_t *zo = &ztest_opts; spa_t *spa = ztest_spa; if (zo->zo_mmp_test) return; /* * Since enabling MMP involves setting a property, it could not be done * while the pool is suspended. */ if (spa_suspended(spa)) return; spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); mutex_enter(&spa->spa_props_lock); zfs_multihost_fail_intervals = 0; if (!spa_multihost(spa)) { spa->spa_multihost = B_TRUE; mmp_thread_start(spa); } mutex_exit(&spa->spa_props_lock); spa_config_exit(spa, SCL_CONFIG, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); mmp_signal_all_threads(); txg_wait_synced(spa_get_dsl(spa), 0); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); mutex_enter(&spa->spa_props_lock); if (spa_multihost(spa)) { mmp_thread_stop(spa); spa->spa_multihost = B_FALSE; } mutex_exit(&spa->spa_props_lock); spa_config_exit(spa, SCL_CONFIG, FTAG); } void ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa; uint64_t initial_version = SPA_VERSION_INITIAL; uint64_t version, newversion; nvlist_t *nvroot, *props; char *name; if (ztest_opts.zo_mmp_test) return; /* dRAID added after feature flags, skip upgrade test. */ if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) return; mutex_enter(&ztest_vdev_lock); name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); /* * Clean up from previous runs. */ (void) spa_destroy(name); nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1); /* * If we're configuring a RAIDZ device then make sure that the * initial version is capable of supporting that feature. */ switch (ztest_opts.zo_raid_parity) { case 0: case 1: initial_version = SPA_VERSION_INITIAL; break; case 2: initial_version = SPA_VERSION_RAIDZ2; break; case 3: initial_version = SPA_VERSION_RAIDZ3; break; } /* * Create a pool with a spa version that can be upgraded. Pick * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. */ do { version = ztest_random_spa_version(initial_version); } while (version > SPA_VERSION_BEFORE_FEATURES); props = fnvlist_alloc(); fnvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), version); VERIFY0(spa_create(name, nvroot, props, NULL, NULL)); fnvlist_free(nvroot); fnvlist_free(props); VERIFY0(spa_open(name, &spa, FTAG)); VERIFY3U(spa_version(spa), ==, version); newversion = ztest_random_spa_version(version + 1); if (ztest_opts.zo_verbose >= 4) { (void) printf("upgrading spa version from " "%"PRIu64" to %"PRIu64"\n", version, newversion); } spa_upgrade(spa, newversion); VERIFY3U(spa_version(spa), >, version); VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, zpool_prop_to_name(ZPOOL_PROP_VERSION))); spa_close(spa, FTAG); kmem_strfree(name); mutex_exit(&ztest_vdev_lock); } static void ztest_spa_checkpoint(spa_t *spa) { ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); int error = spa_checkpoint(spa->spa_name); switch (error) { case 0: case ZFS_ERR_DEVRM_IN_PROGRESS: case ZFS_ERR_DISCARDING_CHECKPOINT: case ZFS_ERR_CHECKPOINT_EXISTS: break; case ENOSPC: ztest_record_enospc(FTAG); break; default: fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error); } } static void ztest_spa_discard_checkpoint(spa_t *spa) { ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); int error = spa_checkpoint_discard(spa->spa_name); switch (error) { case 0: case ZFS_ERR_DISCARDING_CHECKPOINT: case ZFS_ERR_NO_CHECKPOINT: break; default: fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d", spa->spa_name, error); } } void ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; mutex_enter(&ztest_checkpoint_lock); if (ztest_random(2) == 0) { ztest_spa_checkpoint(spa); } else { ztest_spa_discard_checkpoint(spa); } mutex_exit(&ztest_checkpoint_lock); } static vdev_t * vdev_lookup_by_path(vdev_t *vd, const char *path) { vdev_t *mvd; int c; if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) return (vd); for (c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != NULL) return (mvd); return (NULL); } static int spa_num_top_vdevs(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV); return (rvd->vdev_children); } /* * Verify that vdev_add() works as expected. */ void ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; uint64_t leaves; uint64_t guid; nvlist_t *nvroot; int error; if (ztest_opts.zo_mmp_test) return; mutex_enter(&ztest_vdev_lock); leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raid_children; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves; /* * If we have slogs then remove them 1/4 of the time. */ if (spa_has_slogs(spa) && ztest_random(4) == 0) { metaslab_group_t *mg; /* * find the first real slog in log allocation class */ mg = spa_log_class(spa)->mc_allocator[0].mca_rotor; while (!mg->mg_vd->vdev_islog) mg = mg->mg_next; guid = mg->mg_vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); /* * We have to grab the zs_name_lock as writer to * prevent a race between removing a slog (dmu_objset_find) * and destroying a dataset. Removing the slog will * grab a reference on the dataset which may cause * dsl_destroy_head() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ pthread_rwlock_wrlock(&ztest_name_lock); error = spa_vdev_remove(spa, guid, B_FALSE); pthread_rwlock_unlock(&ztest_name_lock); switch (error) { case 0: case EEXIST: /* Generic zil_reset() error */ case EBUSY: /* Replay required */ case EACCES: /* Crypto key not loaded */ case ZFS_ERR_CHECKPOINT_EXISTS: case ZFS_ERR_DISCARDING_CHECKPOINT: break; default: fatal(B_FALSE, "spa_vdev_remove() = %d", error); } } else { spa_config_exit(spa, SCL_VDEV, FTAG); /* * Make 1/4 of the devices be log devices */ nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ? "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1); error = spa_vdev_add(spa, nvroot); fnvlist_free(nvroot); switch (error) { case 0: break; case ENOSPC: ztest_record_enospc("spa_vdev_add"); break; default: fatal(B_FALSE, "spa_vdev_add() = %d", error); } } mutex_exit(&ztest_vdev_lock); } void ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; uint64_t leaves; nvlist_t *nvroot; const char *class = (ztest_random(2) == 0) ? VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP; int error; /* * By default add a special vdev 50% of the time */ if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) || (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND && ztest_random(2) == 0)) { return; } mutex_enter(&ztest_vdev_lock); /* Only test with mirrors */ if (zs->zs_mirrors < 2) { mutex_exit(&ztest_vdev_lock); return; } /* requires feature@allocation_classes */ if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) { mutex_exit(&ztest_vdev_lock); return; } leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raid_children; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves; spa_config_exit(spa, SCL_VDEV, FTAG); nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1); error = spa_vdev_add(spa, nvroot); fnvlist_free(nvroot); if (error == ENOSPC) ztest_record_enospc("spa_vdev_add"); else if (error != 0) fatal(B_FALSE, "spa_vdev_add() = %d", error); /* * 50% of the time allow small blocks in the special class */ if (error == 0 && spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) { if (ztest_opts.zo_verbose >= 3) (void) printf("Enabling special VDEV small blocks\n"); (void) ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE); } mutex_exit(&ztest_vdev_lock); if (ztest_opts.zo_verbose >= 3) { metaslab_class_t *mc; if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0) mc = spa_special_class(spa); else mc = spa_dedup_class(spa); (void) printf("Added a %s mirrored vdev (of %d)\n", class, (int)mc->mc_groups); } } /* * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. */ void ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; vdev_t *rvd = spa->spa_root_vdev; spa_aux_vdev_t *sav; const char *aux; char *path; uint64_t guid = 0; int error, ignore_err = 0; if (ztest_opts.zo_mmp_test) return; path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); if (ztest_random(2) == 0) { sav = &spa->spa_spares; aux = ZPOOL_CONFIG_SPARES; } else { sav = &spa->spa_l2cache; aux = ZPOOL_CONFIG_L2CACHE; } mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); if (sav->sav_count != 0 && ztest_random(4) == 0) { /* * Pick a random device to remove. */ vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)]; /* dRAID spares cannot be removed; try anyways to see ENOTSUP */ if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL) ignore_err = ENOTSUP; guid = svd->vdev_guid; } else { /* * Find an unused device we can add. */ zs->zs_vdev_aux = 0; for (;;) { int c; (void) snprintf(path, MAXPATHLEN, ztest_aux_template, ztest_opts.zo_dir, ztest_opts.zo_pool, aux, zs->zs_vdev_aux); for (c = 0; c < sav->sav_count; c++) if (strcmp(sav->sav_vdevs[c]->vdev_path, path) == 0) break; if (c == sav->sav_count && vdev_lookup_by_path(rvd, path) == NULL) break; zs->zs_vdev_aux++; } } spa_config_exit(spa, SCL_VDEV, FTAG); if (guid == 0) { /* * Add a new device. */ nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1); error = spa_vdev_add(spa, nvroot); switch (error) { case 0: break; default: fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error); } fnvlist_free(nvroot); } else { /* * Remove an existing device. Sometimes, dirty its * vdev state first to make sure we handle removal * of devices that have pending state changes. */ if (ztest_random(2) == 0) (void) vdev_online(spa, guid, 0, NULL); error = spa_vdev_remove(spa, guid, B_FALSE); switch (error) { case 0: case EBUSY: case ZFS_ERR_CHECKPOINT_EXISTS: case ZFS_ERR_DISCARDING_CHECKPOINT: break; default: if (error != ignore_err) fatal(B_FALSE, "spa_vdev_remove(%"PRIu64") = %d", guid, error); } } mutex_exit(&ztest_vdev_lock); umem_free(path, MAXPATHLEN); } /* * split a pool if it has mirror tlvdevs */ void ztest_split_pool(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; vdev_t *rvd = spa->spa_root_vdev; nvlist_t *tree, **child, *config, *split, **schild; uint_t c, children, schildren = 0, lastlogid = 0; int error = 0; if (ztest_opts.zo_mmp_test) return; mutex_enter(&ztest_vdev_lock); /* ensure we have a usable config; mirrors of raidz aren't supported */ if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) { mutex_exit(&ztest_vdev_lock); return; } /* clean up the old pool, if any */ (void) spa_destroy("splitp"); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* generate a config from the existing config */ mutex_enter(&spa->spa_props_lock); tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE); mutex_exit(&spa->spa_props_lock); VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, &children)); schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); for (c = 0; c < children; c++) { vdev_t *tvd = rvd->vdev_child[c]; nvlist_t **mchild; uint_t mchildren; if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { schild[schildren] = fnvlist_alloc(); fnvlist_add_string(schild[schildren], ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE); fnvlist_add_uint64(schild[schildren], ZPOOL_CONFIG_IS_HOLE, 1); if (lastlogid == 0) lastlogid = schildren; ++schildren; continue; } lastlogid = 0; VERIFY0(nvlist_lookup_nvlist_array(child[c], ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren)); schild[schildren++] = fnvlist_dup(mchild[0]); } /* OK, create a config that can be used to split */ split = fnvlist_alloc(); fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT); fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren); config = fnvlist_alloc(); fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split); for (c = 0; c < schildren; c++) fnvlist_free(schild[c]); free(schild); fnvlist_free(split); spa_config_exit(spa, SCL_VDEV, FTAG); (void) pthread_rwlock_wrlock(&ztest_name_lock); error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); (void) pthread_rwlock_unlock(&ztest_name_lock); fnvlist_free(config); if (error == 0) { (void) printf("successful split - results:\n"); mutex_enter(&spa_namespace_lock); show_pool_stats(spa); show_pool_stats(spa_lookup("splitp")); mutex_exit(&spa_namespace_lock); ++zs->zs_splits; --zs->zs_mirrors; } mutex_exit(&ztest_vdev_lock); } /* * Verify that we can attach and detach devices. */ void ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; spa_aux_vdev_t *sav = &spa->spa_spares; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *pvd; nvlist_t *root; uint64_t leaves; uint64_t leaf, top; uint64_t ashift = ztest_get_ashift(); uint64_t oldguid, pguid; uint64_t oldsize, newsize; char *oldpath, *newpath; int replacing; int oldvd_has_siblings = B_FALSE; int newvd_is_spare = B_FALSE; int newvd_is_dspare = B_FALSE; int oldvd_is_log; int error, expected_error; if (ztest_opts.zo_mmp_test) return; oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); mutex_enter(&ztest_vdev_lock); leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * If a vdev is in the process of being removed, its removal may * finish while we are in progress, leading to an unexpected error * value. Don't bother trying to attach while we are in the middle * of removal. */ if (ztest_device_removal_active) { spa_config_exit(spa, SCL_ALL, FTAG); goto out; } /* * Decide whether to do an attach or a replace. */ replacing = ztest_random(2); /* * Pick a random top-level vdev. */ top = ztest_random_vdev_top(spa, B_TRUE); /* * Pick a random leaf within it. */ leaf = ztest_random(leaves); /* * Locate this vdev. */ oldvd = rvd->vdev_child[top]; /* pick a child from the mirror */ if (zs->zs_mirrors >= 1) { ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops); ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors); oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children]; } /* pick a child out of the raidz group */ if (ztest_opts.zo_raid_children > 1) { if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0) ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops); else ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops); ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children); oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children]; } /* * If we're already doing an attach or replace, oldvd may be a * mirror vdev -- in which case, pick a random child. */ while (oldvd->vdev_children != 0) { oldvd_has_siblings = B_TRUE; ASSERT3U(oldvd->vdev_children, >=, 2); oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; } oldguid = oldvd->vdev_guid; oldsize = vdev_get_min_asize(oldvd); oldvd_is_log = oldvd->vdev_top->vdev_islog; (void) strcpy(oldpath, oldvd->vdev_path); pvd = oldvd->vdev_parent; pguid = pvd->vdev_guid; /* * If oldvd has siblings, then half of the time, detach it. Prior * to the detach the pool is scrubbed in order to prevent creating * unrepairable blocks as a result of the data corruption injection. */ if (oldvd_has_siblings && ztest_random(2) == 0) { spa_config_exit(spa, SCL_ALL, FTAG); error = ztest_scrub_impl(spa); if (error) goto out; error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); if (error != 0 && error != ENODEV && error != EBUSY && error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS && error != ZFS_ERR_DISCARDING_CHECKPOINT) fatal(B_FALSE, "detach (%s) returned %d", oldpath, error); goto out; } /* * For the new vdev, choose with equal probability between the two * standard paths (ending in either 'a' or 'b') or a random hot spare. */ if (sav->sav_count != 0 && ztest_random(3) == 0) { newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; newvd_is_spare = B_TRUE; if (newvd->vdev_ops == &vdev_draid_spare_ops) newvd_is_dspare = B_TRUE; (void) strcpy(newpath, newvd->vdev_path); } else { (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + leaf); if (ztest_random(2) == 0) newpath[strlen(newpath) - 1] = 'b'; newvd = vdev_lookup_by_path(rvd, newpath); } if (newvd) { /* * Reopen to ensure the vdev's asize field isn't stale. */ vdev_reopen(newvd); newsize = vdev_get_min_asize(newvd); } else { /* * Make newsize a little bigger or smaller than oldsize. * If it's smaller, the attach should fail. * If it's larger, and we're doing a replace, * we should get dynamic LUN growth when we're done. */ newsize = 10 * oldsize / (9 + ztest_random(3)); } /* * If pvd is not a mirror or root, the attach should fail with ENOTSUP, * unless it's a replace; in that case any non-replacing parent is OK. * * If newvd is already part of the pool, it should fail with EBUSY. * * If newvd is too small, it should fail with EOVERFLOW. * * If newvd is a distributed spare and it's being attached to a * dRAID which is not its parent it should fail with EINVAL. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops && (!replacing || pvd->vdev_ops == &vdev_replacing_ops || pvd->vdev_ops == &vdev_spare_ops)) expected_error = ENOTSUP; else if (newvd_is_spare && (!replacing || oldvd_is_log)) expected_error = ENOTSUP; else if (newvd == oldvd) expected_error = replacing ? 0 : EBUSY; else if (vdev_lookup_by_path(rvd, newpath) != NULL) expected_error = EBUSY; else if (!newvd_is_dspare && newsize < oldsize) expected_error = EOVERFLOW; else if (ashift > oldvd->vdev_top->vdev_ashift) expected_error = EDOM; else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd)) expected_error = ENOTSUP; else expected_error = 0; spa_config_exit(spa, SCL_ALL, FTAG); /* * Build the nvlist describing newpath. */ root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, ashift, NULL, 0, 0, 1); /* * When supported select either a healing or sequential resilver. */ boolean_t rebuilding = B_FALSE; if (pvd->vdev_ops == &vdev_mirror_ops || pvd->vdev_ops == &vdev_root_ops) { rebuilding = !!ztest_random(2); } error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding); fnvlist_free(root); /* * If our parent was the replacing vdev, but the replace completed, * then instead of failing with ENOTSUP we may either succeed, * fail with ENODEV, or fail with EOVERFLOW. */ if (expected_error == ENOTSUP && (error == 0 || error == ENODEV || error == EOVERFLOW)) expected_error = error; /* * If someone grew the LUN, the replacement may be too small. */ if (error == EOVERFLOW || error == EBUSY) expected_error = error; if (error == ZFS_ERR_CHECKPOINT_EXISTS || error == ZFS_ERR_DISCARDING_CHECKPOINT || error == ZFS_ERR_RESILVER_IN_PROGRESS || error == ZFS_ERR_REBUILD_IN_PROGRESS) expected_error = error; if (error != expected_error && expected_error != EBUSY) { fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) " "returned %d, expected %d", oldpath, oldsize, newpath, newsize, replacing, error, expected_error); } out: mutex_exit(&ztest_vdev_lock); umem_free(oldpath, MAXPATHLEN); umem_free(newpath, MAXPATHLEN); } void ztest_device_removal(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; vdev_t *vd; uint64_t guid; int error; mutex_enter(&ztest_vdev_lock); if (ztest_device_removal_active) { mutex_exit(&ztest_vdev_lock); return; } /* * Remove a random top-level vdev and wait for removal to finish. */ spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); guid = vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); error = spa_vdev_remove(spa, guid, B_FALSE); if (error == 0) { ztest_device_removal_active = B_TRUE; mutex_exit(&ztest_vdev_lock); /* * spa->spa_vdev_removal is created in a sync task that * is initiated via dsl_sync_task_nowait(). Since the * task may not run before spa_vdev_remove() returns, we * must wait at least 1 txg to ensure that the removal * struct has been created. */ txg_wait_synced(spa_get_dsl(spa), 0); while (spa->spa_removing_phys.sr_state == DSS_SCANNING) txg_wait_synced(spa_get_dsl(spa), 0); } else { mutex_exit(&ztest_vdev_lock); return; } /* * The pool needs to be scrubbed after completing device removal. * Failure to do so may result in checksum errors due to the * strategy employed by ztest_fault_inject() when selecting which * offset are redundant and can be damaged. */ error = spa_scan(spa, POOL_SCAN_SCRUB); if (error == 0) { while (dsl_scan_scrubbing(spa_get_dsl(spa))) txg_wait_synced(spa_get_dsl(spa), 0); } mutex_enter(&ztest_vdev_lock); ztest_device_removal_active = B_FALSE; mutex_exit(&ztest_vdev_lock); } /* * Callback function which expands the physical size of the vdev. */ static vdev_t * grow_vdev(vdev_t *vd, void *arg) { spa_t *spa __maybe_unused = vd->vdev_spa; size_t *newsize = arg; size_t fsize; int fd; ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); if ((fd = open(vd->vdev_path, O_RDWR)) == -1) return (vd); fsize = lseek(fd, 0, SEEK_END); VERIFY0(ftruncate(fd, *newsize)); if (ztest_opts.zo_verbose >= 6) { (void) printf("%s grew from %lu to %lu bytes\n", vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); } (void) close(fd); return (NULL); } /* * Callback function which expands a given vdev by calling vdev_online(). */ static vdev_t * online_vdev(vdev_t *vd, void *arg) { (void) arg; spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint64_t guid = vd->vdev_guid; uint64_t generation = spa->spa_config_generation + 1; vdev_state_t newstate = VDEV_STATE_UNKNOWN; int error; ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); /* Calling vdev_online will initialize the new metaslabs */ spa_config_exit(spa, SCL_STATE, spa); error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If vdev_online returned an error or the underlying vdev_open * failed then we abort the expand. The only way to know that * vdev_open fails is by checking the returned newstate. */ if (error || newstate != VDEV_STATE_HEALTHY) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Unable to expand vdev, state %u, " "error %d\n", newstate, error); } return (vd); } ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); /* * Since we dropped the lock we need to ensure that we're * still talking to the original vdev. It's possible this * vdev may have been detached/replaced while we were * trying to online it. */ if (generation != spa->spa_config_generation) { if (ztest_opts.zo_verbose >= 5) { (void) printf("vdev configuration has changed, " "guid %"PRIu64", state %"PRIu64", " "expected gen %"PRIu64", got gen %"PRIu64"\n", guid, tvd->vdev_state, generation, spa->spa_config_generation); } return (vd); } return (NULL); } /* * Traverse the vdev tree calling the supplied function. * We continue to walk the tree until we either have walked all * children or we receive a non-NULL return from the callback. * If a NULL callback is passed, then we just return back the first * leaf vdev we encounter. */ static vdev_t * vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) { uint_t c; if (vd->vdev_ops->vdev_op_leaf) { if (func == NULL) return (vd); else return (func(vd, arg)); } for (c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) return (cvd); } return (NULL); } /* * Verify that dynamic LUN growth works as expected. */ void ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; vdev_t *vd, *tvd; metaslab_class_t *mc; metaslab_group_t *mg; size_t psize, newsize; uint64_t top; uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; mutex_enter(&ztest_checkpoint_lock); mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If there is a vdev removal in progress, it could complete while * we are running, in which case we would not be able to verify * that the metaslab_class space increased (because it decreases * when the device removal completes). */ if (ztest_device_removal_active) { spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } top = ztest_random_vdev_top(spa, B_TRUE); tvd = spa->spa_root_vdev->vdev_child[top]; mg = tvd->vdev_mg; mc = mg->mg_class; old_ms_count = tvd->vdev_ms_count; old_class_space = metaslab_class_get_space(mc); /* * Determine the size of the first leaf vdev associated with * our top-level device. */ vd = vdev_walk_tree(tvd, NULL, NULL); ASSERT3P(vd, !=, NULL); ASSERT(vd->vdev_ops->vdev_op_leaf); psize = vd->vdev_psize; /* * We only try to expand the vdev if it's healthy, less than 4x its * original size, and it has a valid psize. */ if (tvd->vdev_state != VDEV_STATE_HEALTHY || psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } ASSERT3U(psize, >, 0); newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE); ASSERT3U(newsize, >, psize); if (ztest_opts.zo_verbose >= 6) { (void) printf("Expanding LUN %s from %lu to %lu\n", vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); } /* * Growing the vdev is a two step process: * 1). expand the physical size (i.e. relabel) * 2). online the vdev to create the new metaslabs */ if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || vdev_walk_tree(tvd, online_vdev, NULL) != NULL || tvd->vdev_state != VDEV_STATE_HEALTHY) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Could not expand LUN because " "the vdev configuration changed.\n"); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } spa_config_exit(spa, SCL_STATE, spa); /* * Expanding the LUN will update the config asynchronously, * thus we must wait for the async thread to complete any * pending tasks before proceeding. */ for (;;) { boolean_t done; mutex_enter(&spa->spa_async_lock); done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); mutex_exit(&spa->spa_async_lock); if (done) break; txg_wait_synced(spa_get_dsl(spa), 0); (void) poll(NULL, 0, 100); } spa_config_enter(spa, SCL_STATE, spa, RW_READER); tvd = spa->spa_root_vdev->vdev_child[top]; new_ms_count = tvd->vdev_ms_count; new_class_space = metaslab_class_get_space(mc); if (tvd->vdev_mg != mg || mg->mg_class != mc) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Could not verify LUN expansion due to " "intervening vdev offline or remove.\n"); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } /* * Make sure we were able to grow the vdev. */ if (new_ms_count <= old_ms_count) { fatal(B_FALSE, "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n", old_ms_count, new_ms_count); } /* * Make sure we were able to grow the pool. */ if (new_class_space <= old_class_space) { fatal(B_FALSE, "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n", old_class_space, new_class_space); } if (ztest_opts.zo_verbose >= 5) { char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); (void) printf("%s grew from %s to %s\n", spa->spa_name, oldnumbuf, newnumbuf); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); } /* * Verify that dmu_objset_{create,destroy,open,close} work as expected. */ static void ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { (void) arg, (void) cr; /* * Create the objects common to all ztest datasets. */ VERIFY0(zap_create_claim(os, ZTEST_DIROBJ, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx)); } static int ztest_dataset_create(char *dsname) { int err; uint64_t rand; dsl_crypto_params_t *dcp = NULL; /* * 50% of the time, we create encrypted datasets * using a random cipher suite and a hard-coded * wrapping key. */ rand = ztest_random(2); if (rand != 0) { nvlist_t *crypto_args = fnvlist_alloc(); nvlist_t *props = fnvlist_alloc(); /* slight bias towards the default cipher suite */ rand = ztest_random(ZIO_CRYPT_FUNCTIONS); if (rand < ZIO_CRYPT_AES_128_CCM) rand = ZIO_CRYPT_ON; fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand); fnvlist_add_uint8_array(crypto_args, "wkeydata", (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); /* * These parameters aren't really used by the kernel. They * are simply stored so that userspace knows how to load * the wrapping key. */ fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW); fnvlist_add_string(props, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt"); fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL); fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL); VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props, crypto_args, &dcp)); /* * Cycle through all available encryption implementations * to verify interoperability. */ VERIFY0(gcm_impl_set("cycle")); VERIFY0(aes_impl_set("cycle")); fnvlist_free(crypto_args); fnvlist_free(props); } err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp, ztest_objset_create_cb, NULL); dsl_crypto_params_free(dcp, !!err); rand = ztest_random(100); if (err || rand < 80) return (err); if (ztest_opts.zo_verbose >= 5) (void) printf("Setting dataset %s to sync always\n", dsname); return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, ZFS_SYNC_ALWAYS, B_FALSE)); } static int ztest_objset_destroy_cb(const char *name, void *arg) { (void) arg; objset_t *os; dmu_object_info_t doi; int error; /* * Verify that the dataset contains a directory object. */ VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE, FTAG, &os)); error = dmu_object_info(os, ZTEST_DIROBJ, &doi); if (error != ENOENT) { /* We could have crashed in the middle of destroying it */ ASSERT0(error); ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); ASSERT3S(doi.doi_physical_blocks_512, >=, 0); } dmu_objset_disown(os, B_TRUE, FTAG); /* * Destroy the dataset. */ if (strchr(name, '@') != NULL) { error = dsl_destroy_snapshot(name, B_TRUE); if (error != ECHRNG) { /* * The program was executed, but encountered a runtime * error, such as insufficient slop, or a hold on the * dataset. */ ASSERT0(error); } } else { error = dsl_destroy_head(name); if (error == ENOSPC) { /* There could be checkpoint or insufficient slop */ ztest_record_enospc(FTAG); } else if (error != EBUSY) { /* There could be a hold on this dataset */ ASSERT0(error); } } return (0); } static boolean_t ztest_snapshot_create(char *osname, uint64_t id) { char snapname[ZFS_MAX_DATASET_NAME_LEN]; int error; (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id); error = dmu_objset_snapshot_one(osname, snapname); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (B_FALSE); } if (error != 0 && error != EEXIST) { fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname, snapname, error); } return (B_TRUE); } static boolean_t ztest_snapshot_destroy(char *osname, uint64_t id) { char snapname[ZFS_MAX_DATASET_NAME_LEN]; int error; (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"", osname, id); error = dsl_destroy_snapshot(snapname, B_FALSE); if (error != 0 && error != ENOENT) fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d", snapname, error); return (B_TRUE); } void ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) { (void) zd; ztest_ds_t *zdtmp; int iters; int error; objset_t *os, *os2; char name[ZFS_MAX_DATASET_NAME_LEN]; zilog_t *zilog; int i; zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL); (void) pthread_rwlock_rdlock(&ztest_name_lock); (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"", ztest_opts.zo_pool, id); /* * If this dataset exists from a previous run, process its replay log * half of the time. If we don't replay it, then dsl_destroy_head() * (invoked from ztest_objset_destroy_cb()) should just throw it away. */ if (ztest_random(2) == 0 && ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, FTAG, &os) == 0) { ztest_zd_init(zdtmp, NULL, os); zil_replay(os, zdtmp, ztest_replay_vector); ztest_zd_fini(zdtmp); dmu_objset_disown(os, B_TRUE, FTAG); } /* * There may be an old instance of the dataset we're about to * create lying around from a previous run. If so, destroy it * and all of its snapshots. */ (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); /* * Verify that the destroyed dataset is no longer in the namespace. */ VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE, FTAG, &os)); /* * Verify that we can create a new dataset. */ error = ztest_dataset_create(name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error); } VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, FTAG, &os)); ztest_zd_init(zdtmp, NULL, os); /* * Open the intent log for it. */ zilog = zil_open(os, ztest_get_data, NULL); /* * Put some objects in there, do a little I/O to them, * and randomly take a couple of snapshots along the way. */ iters = ztest_random(5); for (i = 0; i < iters; i++) { ztest_dmu_object_alloc_free(zdtmp, id); if (ztest_random(iters) == 0) (void) ztest_snapshot_create(name, i); } /* * Verify that we cannot create an existing dataset. */ VERIFY3U(EEXIST, ==, dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL)); /* * Verify that we can hold an objset that is also owned. */ VERIFY0(dmu_objset_hold(name, FTAG, &os2)); dmu_objset_rele(os2, FTAG); /* * Verify that we cannot own an objset that is already owned. */ VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, FTAG, &os2)); zil_close(zilog); dmu_objset_disown(os, B_TRUE, FTAG); ztest_zd_fini(zdtmp); out: (void) pthread_rwlock_unlock(&ztest_name_lock); umem_free(zdtmp, sizeof (ztest_ds_t)); } /* * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. */ void ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) { (void) pthread_rwlock_rdlock(&ztest_name_lock); (void) ztest_snapshot_destroy(zd->zd_name, id); (void) ztest_snapshot_create(zd->zd_name, id); (void) pthread_rwlock_unlock(&ztest_name_lock); } /* * Cleanup non-standard snapshots and clones. */ static void ztest_dsl_dataset_cleanup(char *osname, uint64_t id) { char *snap1name; char *clone1name; char *snap2name; char *clone2name; char *snap3name; int error; snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"", osname, id); (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"", osname, id); (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"", clone1name, id); (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"", osname, id); (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"", clone1name, id); error = dsl_destroy_head(clone2name); if (error && error != ENOENT) fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error); error = dsl_destroy_snapshot(snap3name, B_FALSE); if (error && error != ENOENT) fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", snap3name, error); error = dsl_destroy_snapshot(snap2name, B_FALSE); if (error && error != ENOENT) fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", snap2name, error); error = dsl_destroy_head(clone1name); if (error && error != ENOENT) fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error); error = dsl_destroy_snapshot(snap1name, B_FALSE); if (error && error != ENOENT) fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", snap1name, error); umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN); umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN); umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN); umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN); umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN); } /* * Verify dsl_dataset_promote handles EBUSY */ void ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) { objset_t *os; char *snap1name; char *clone1name; char *snap2name; char *clone2name; char *snap3name; char *osname = zd->zd_name; int error; snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); (void) pthread_rwlock_rdlock(&ztest_name_lock); ztest_dsl_dataset_cleanup(osname, id); (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"", osname, id); (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"", osname, id); (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"", clone1name, id); (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"", osname, id); (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"", clone1name, id); error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error); } error = dmu_objset_clone(clone1name, snap1name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error); } error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error); } error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error); } error = dmu_objset_clone(clone2name, snap3name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error); } error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os); if (error) fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error); error = dsl_dataset_promote(clone2name, NULL); if (error == ENOSPC) { dmu_objset_disown(os, B_TRUE, FTAG); ztest_record_enospc(FTAG); goto out; } if (error != EBUSY) fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, error); dmu_objset_disown(os, B_TRUE, FTAG); out: ztest_dsl_dataset_cleanup(osname, id); (void) pthread_rwlock_unlock(&ztest_name_lock); umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN); umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN); umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN); umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN); umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN); } #undef OD_ARRAY_SIZE #define OD_ARRAY_SIZE 4 /* * Verify that dmu_object_{alloc,free} work as expected. */ void ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) { ztest_od_t *od; int batchsize; int size; int b; size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; od = umem_alloc(size, UMEM_NOFAIL); batchsize = OD_ARRAY_SIZE; for (b = 0; b < batchsize; b++) ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0, 0); /* * Destroy the previous batch of objects, create a new batch, * and do some I/O on the new objects. */ if (ztest_object_init(zd, od, size, B_TRUE) != 0) return; while (ztest_random(4 * batchsize) != 0) ztest_io(zd, od[ztest_random(batchsize)].od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); umem_free(od, size); } /* * Rewind the global allocator to verify object allocation backfilling. */ void ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id) { (void) id; objset_t *os = zd->zd_os; int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift; uint64_t object; /* * Rewind the global allocator randomly back to a lower object number * to force backfilling and reclamation of recently freed dnodes. */ mutex_enter(&os->os_obj_lock); object = ztest_random(os->os_obj_next_chunk); os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk); mutex_exit(&os->os_obj_lock); } #undef OD_ARRAY_SIZE #define OD_ARRAY_SIZE 2 /* * Verify that dmu_{read,write} work as expected. */ void ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) { int size; ztest_od_t *od; objset_t *os = zd->zd_os; size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; od = umem_alloc(size, UMEM_NOFAIL); dmu_tx_t *tx; int freeit, error; uint64_t i, n, s, txg; bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 40; int free_percent = 5; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is arbitrary. It doesn't have to be a power of two, * and it doesn't have any relation to the object blocksize. * The only requirement is that it can hold at least two bufwads. * * Normally, we write the bufwad to each of these locations. * However, free_percent of the time we instead write zeroes to * packobj and perform a dmu_free_range() on bigobj. By comparing * bigobj to packobj, we can verify that the DMU is correctly * tracking which parts of an object are allocated and free, * and that the contents of the allocated blocks are correct. */ /* * Read the directory info. If it's the first time, set things up. */ ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize); ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, chunksize); if (ztest_object_init(zd, od, size, B_FALSE) != 0) { umem_free(od, size); return; } bigobj = od[0].od_object; packobj = od[1].od_object; chunksize = od[0].od_gen; ASSERT3U(chunksize, ==, od[1].od_gen); /* * Prefetch a random chunk of the big object. * Our aim here is to get some async reads in flight * for blocks that we may free below; the DMU should * handle this race correctly. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(2 * width - 1); dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, ZIO_PRIORITY_SYNC_READ); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_alloc(packsize, UMEM_NOFAIL); bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); /* * free_percent of the time, free a range of bigobj rather than * overwriting it. */ freeit = (ztest_random(100) < free_percent); /* * Read the current contents of our objects. */ error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT0(error); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT0(error); /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); if (freeit) dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); else dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); /* This accounts for setting the checksum/compression. */ dmu_tx_hold_bonus(tx, bigobj); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(od, size); return; } enum zio_checksum cksum; do { cksum = (enum zio_checksum) ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); dmu_object_set_checksum(os, bigobj, cksum, tx); enum zio_compress comp; do { comp = (enum zio_compress) ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); dmu_object_set_compress(os, bigobj, comp, tx); /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize); ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize); if (pack->bw_txg > txg) fatal(B_FALSE, "future leak: got %"PRIx64", open txg is %"PRIx64"", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(B_FALSE, "wrong index: " "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"", pack->bw_index, n, i); if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(B_FALSE, "pack/bigH mismatch in %p/%p", pack, bigH); if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(B_FALSE, "pack/bigT mismatch in %p/%p", pack, bigT); if (freeit) { memset(pack, 0, sizeof (bufwad_t)); } else { pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); } *bigH = *pack; *bigT = *pack; } /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (freeit) { if (ztest_opts.zo_verbose >= 7) { (void) printf("freeing offset %"PRIx64" size %"PRIx64"" " txg %"PRIx64"\n", bigoff, bigsize, txg); } VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx)); } else { if (ztest_opts.zo_verbose >= 7) { (void) printf("writing offset %"PRIx64" size %"PRIx64"" " txg %"PRIx64"\n", bigoff, bigsize, txg); } dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY0(dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY0(dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT0(memcmp(packbuf, packcheck, packsize)); ASSERT0(memcmp(bigbuf, bigcheck, bigsize)); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(od, size); } static void compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) { uint64_t i; bufwad_t *pack; bufwad_t *bigH; bufwad_t *bigT; /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize); ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize); if (pack->bw_txg > txg) fatal(B_FALSE, "future leak: got %"PRIx64", open txg is %"PRIx64"", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(B_FALSE, "wrong index: " "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"", pack->bw_index, n, i); if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(B_FALSE, "pack/bigH mismatch in %p/%p", pack, bigH); if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(B_FALSE, "pack/bigT mismatch in %p/%p", pack, bigT); pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); *bigH = *pack; *bigT = *pack; } } #undef OD_ARRAY_SIZE #define OD_ARRAY_SIZE 2 void ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t *od; dmu_tx_t *tx; uint64_t i; int error; int size; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t blocksize = ztest_random_blocksize(); uint64_t chunksize = blocksize; uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 9; dmu_buf_t *bonus_db; arc_buf_t **bigbuf_arcbufs; dmu_object_info_t doi; size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; od = umem_alloc(size, UMEM_NOFAIL); /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is set equal to bigobj block size so that * dmu_assign_arcbuf_by_dbuf() can be tested for object updates. */ /* * Read the directory info. If it's the first time, set things up. */ ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, chunksize); if (ztest_object_init(zd, od, size, B_FALSE) != 0) { umem_free(od, size); return; } bigobj = od[0].od_object; packobj = od[1].od_object; blocksize = od[0].od_blocksize; chunksize = blocksize; ASSERT3U(chunksize, ==, od[1].od_gen); VERIFY0(dmu_object_info(os, bigobj, &doi)); VERIFY(ISP2(doi.doi_data_block_size)); VERIFY3U(chunksize, ==, doi.doi_data_block_size); VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t)); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_zalloc(packsize, UMEM_NOFAIL); bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); /* * Iteration 0 test zcopy for DB_UNCACHED dbufs. * Iteration 1 test zcopy to already referenced dbufs. * Iteration 2 test zcopy to dirty dbuf in the same txg. * Iteration 3 test zcopy to dbuf dirty in previous txg. * Iteration 4 test zcopy when dbuf is no longer dirty. * Iteration 5 test zcopy when it can't be done. * Iteration 6 one more zcopy write. */ for (i = 0; i < 7; i++) { uint64_t j; uint64_t off; /* * In iteration 5 (i == 5) use arcbufs * that don't match bigobj blksz to test * dmu_assign_arcbuf_by_dbuf() when it can't directly * assign an arcbuf to a dbuf. */ for (j = 0; j < s; j++) { if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { bigbuf_arcbufs[j] = dmu_request_arcbuf(bonus_db, chunksize); } else { bigbuf_arcbufs[2 * j] = dmu_request_arcbuf(bonus_db, chunksize / 2); bigbuf_arcbufs[2 * j + 1] = dmu_request_arcbuf(bonus_db, chunksize / 2); } } /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); for (j = 0; j < s; j++) { if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { dmu_return_arcbuf(bigbuf_arcbufs[j]); } else { dmu_return_arcbuf( bigbuf_arcbufs[2 * j]); dmu_return_arcbuf( bigbuf_arcbufs[2 * j + 1]); } } umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); umem_free(od, size); dmu_buf_rele(bonus_db, FTAG); return; } /* * 50% of the time don't read objects in the 1st iteration to * test dmu_assign_arcbuf_by_dbuf() for the case when there are * no existing dbufs for the specified offsets. */ if (i != 0 || ztest_random(2) != 0) { error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT0(error); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT0(error); } compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, n, chunksize, txg); /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (ztest_opts.zo_verbose >= 7) { (void) printf("writing offset %"PRIx64" size %"PRIx64"" " txg %"PRIx64"\n", bigoff, bigsize, txg); } for (off = bigoff, j = 0; j < s; j++, off += chunksize) { dmu_buf_t *dbt; if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { memcpy(bigbuf_arcbufs[j]->b_data, (caddr_t)bigbuf + (off - bigoff), chunksize); } else { memcpy(bigbuf_arcbufs[2 * j]->b_data, (caddr_t)bigbuf + (off - bigoff), chunksize / 2); memcpy(bigbuf_arcbufs[2 * j + 1]->b_data, (caddr_t)bigbuf + (off - bigoff) + chunksize / 2, chunksize / 2); } if (i == 1) { VERIFY(dmu_buf_hold(os, bigobj, off, FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); } if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, off, bigbuf_arcbufs[j], tx)); } else { VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, off, bigbuf_arcbufs[2 * j], tx)); VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, off + chunksize / 2, bigbuf_arcbufs[2 * j + 1], tx)); } if (i == 1) { dmu_buf_rele(dbt, FTAG); } } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY0(dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY0(dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT0(memcmp(packbuf, packcheck, packsize)); ASSERT0(memcmp(bigbuf, bigcheck, bigsize)); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } if (i == 2) { txg_wait_open(dmu_objset_pool(os), 0, B_TRUE); } else if (i == 3) { txg_wait_synced(dmu_objset_pool(os), 0); } } dmu_buf_rele(bonus_db, FTAG); umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); umem_free(od, size); } void ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) { (void) id; ztest_od_t *od; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); uint64_t offset = (1ULL << (ztest_random(20) + 43)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); /* * Have multiple threads write to large offsets in an object * to verify that parallel writes to an object -- even to the * same blocks within the object -- doesn't cause any trouble. */ ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) return; while (ztest_random(10) != 0) ztest_io(zd, od->od_object, offset); umem_free(od, sizeof (ztest_od_t)); } void ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) { ztest_od_t *od; uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); uint64_t count = ztest_random(20) + 1; uint64_t blocksize = ztest_random_blocksize(); void *data; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), !ztest_random(2)) != 0) { umem_free(od, sizeof (ztest_od_t)); return; } if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) { umem_free(od, sizeof (ztest_od_t)); return; } ztest_prealloc(zd, od->od_object, offset, count * blocksize); data = umem_zalloc(blocksize, UMEM_NOFAIL); while (ztest_random(count) != 0) { uint64_t randoff = offset + (ztest_random(count) * blocksize); if (ztest_write(zd, od->od_object, randoff, blocksize, data) != 0) break; while (ztest_random(4) != 0) ztest_io(zd, od->od_object, randoff); } umem_free(data, blocksize); umem_free(od, sizeof (ztest_od_t)); } /* * Verify that zap_{create,destroy,add,remove,update} work as expected. */ #define ZTEST_ZAP_MIN_INTS 1 #define ZTEST_ZAP_MAX_INTS 4 #define ZTEST_ZAP_MAX_PROPS 1000 void ztest_zap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t *od; uint64_t object; uint64_t txg, last_txg; uint64_t value[ZTEST_ZAP_MAX_INTS]; uint64_t zl_ints, zl_intsize, prop; int i, ints; dmu_tx_t *tx; char propname[100], txgname[100]; int error; const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), !ztest_random(2)) != 0) goto out; object = od->od_object; /* * Generate a known hash collision, and verify that * we can lookup and remove both entries. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) goto out; for (i = 0; i < 2; i++) { value[i] = i; VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); } for (i = 0; i < 2; i++) { VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); VERIFY0( zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); } for (i = 0; i < 2; i++) { VERIFY0(zap_remove(os, object, hc[i], tx)); } dmu_tx_commit(tx); /* * Generate a bunch of random entries. */ ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%"PRIu64"", prop); (void) sprintf(txgname, "txg_%"PRIu64"", prop); memset(value, 0, sizeof (value)); last_txg = 0; /* * If these zap entries already exist, validate their contents. */ error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == 0) { ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); VERIFY0(zap_lookup(os, object, txgname, zl_intsize, zl_ints, &last_txg)); VERIFY0(zap_length(os, object, propname, &zl_intsize, &zl_ints)); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, ints); VERIFY0(zap_lookup(os, object, propname, zl_intsize, zl_ints, value)); for (i = 0; i < ints; i++) { ASSERT3U(value[i], ==, last_txg + object + i); } } else { ASSERT3U(error, ==, ENOENT); } /* * Atomically update two entries in our zap object. * The first is named txg_%llu, and contains the txg * in which the property was last updated. The second * is named prop_%llu, and the nth element of its value * should be txg + object + n. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) goto out; if (last_txg > txg) fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"", last_txg, txg); for (i = 0; i < ints; i++) value[i] = txg + object + i; VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx)); VERIFY0(zap_update(os, object, propname, sizeof (uint64_t), ints, value, tx)); dmu_tx_commit(tx); /* * Remove a random pair of entries. */ prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%"PRIu64"", prop); (void) sprintf(txgname, "txg_%"PRIu64"", prop); error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == ENOENT) goto out; ASSERT0(error); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) goto out; VERIFY0(zap_remove(os, object, txgname, tx)); VERIFY0(zap_remove(os, object, propname, tx)); dmu_tx_commit(tx); out: umem_free(od, sizeof (ztest_od_t)); } /* * Test case to test the upgrading of a microzap to fatzap. */ void ztest_fzap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t *od; uint64_t object, txg, value; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), !ztest_random(2)) != 0) goto out; object = od->od_object; /* * Add entries to this ZAP and make sure it spills over * and gets upgraded to a fatzap. Also, since we are adding * 2050 entries we should see ptrtbl growth and leaf-block split. */ for (value = 0; value < 2050; value++) { char name[ZFS_MAX_DATASET_NAME_LEN]; dmu_tx_t *tx; int error; (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"", id, value); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, name); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) goto out; error = zap_add(os, object, name, sizeof (uint64_t), 1, &value, tx); ASSERT(error == 0 || error == EEXIST); dmu_tx_commit(tx); } out: umem_free(od, sizeof (ztest_od_t)); } void ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) { (void) id; objset_t *os = zd->zd_os; ztest_od_t *od; uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; dmu_tx_t *tx; int i, namelen, error; int micro = ztest_random(2); char name[20], string_value[20]; void *data; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) { umem_free(od, sizeof (ztest_od_t)); return; } object = od->od_object; /* * Generate a random name of the form 'xxx.....' where each * x is a random printable character and the dots are dots. * There are 94 such characters, and the name length goes from * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. */ namelen = ztest_random(sizeof (name) - 5) + 5 + 1; for (i = 0; i < 3; i++) name[i] = '!' + ztest_random('~' - '!' + 1); for (; i < namelen - 1; i++) name[i] = '.'; name[i] = '\0'; if ((namelen & 1) || micro) { wsize = sizeof (txg); wc = 1; data = &txg; } else { wsize = 1; wc = namelen; data = string_value; } count = -1ULL; VERIFY0(zap_count(os, object, &count)); ASSERT3S(count, !=, -1ULL); /* * Select an operation: length, lookup, add, update, remove. */ i = ztest_random(5); if (i >= 2) { tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(od, sizeof (ztest_od_t)); return; } memcpy(string_value, name, namelen); } else { tx = NULL; txg = 0; memset(string_value, 0, namelen); } switch (i) { case 0: error = zap_length(os, object, name, &zl_wsize, &zl_wc); if (error == 0) { ASSERT3U(wsize, ==, zl_wsize); ASSERT3U(wc, ==, zl_wc); } else { ASSERT3U(error, ==, ENOENT); } break; case 1: error = zap_lookup(os, object, name, wsize, wc, data); if (error == 0) { if (data == string_value && memcmp(name, data, namelen) != 0) fatal(B_FALSE, "name '%s' != val '%s' len %d", name, (char *)data, namelen); } else { ASSERT3U(error, ==, ENOENT); } break; case 2: error = zap_add(os, object, name, wsize, wc, data, tx); ASSERT(error == 0 || error == EEXIST); break; case 3: VERIFY0(zap_update(os, object, name, wsize, wc, data, tx)); break; case 4: error = zap_remove(os, object, name, tx); ASSERT(error == 0 || error == ENOENT); break; } if (tx != NULL) dmu_tx_commit(tx); umem_free(od, sizeof (ztest_od_t)); } /* * Commit callback data. */ typedef struct ztest_cb_data { list_node_t zcd_node; uint64_t zcd_txg; int zcd_expected_err; boolean_t zcd_added; boolean_t zcd_called; spa_t *zcd_spa; } ztest_cb_data_t; /* This is the actual commit callback function */ static void ztest_commit_callback(void *arg, int error) { ztest_cb_data_t *data = arg; uint64_t synced_txg; VERIFY3P(data, !=, NULL); VERIFY3S(data->zcd_expected_err, ==, error); VERIFY(!data->zcd_called); synced_txg = spa_last_synced_txg(data->zcd_spa); if (data->zcd_txg > synced_txg) fatal(B_FALSE, "commit callback of txg %"PRIu64" called prematurely, " "last synced txg = %"PRIu64"\n", data->zcd_txg, synced_txg); data->zcd_called = B_TRUE; if (error == ECANCELED) { ASSERT0(data->zcd_txg); ASSERT(!data->zcd_added); /* * The private callback data should be destroyed here, but * since we are going to check the zcd_called field after * dmu_tx_abort(), we will destroy it there. */ return; } ASSERT(data->zcd_added); ASSERT3U(data->zcd_txg, !=, 0); (void) mutex_enter(&zcl.zcl_callbacks_lock); /* See if this cb was called more quickly */ if ((synced_txg - data->zcd_txg) < zc_min_txg_delay) zc_min_txg_delay = synced_txg - data->zcd_txg; /* Remove our callback from the list */ list_remove(&zcl.zcl_callbacks, data); (void) mutex_exit(&zcl.zcl_callbacks_lock); umem_free(data, sizeof (ztest_cb_data_t)); } /* Allocate and initialize callback data structure */ static ztest_cb_data_t * ztest_create_cb_data(objset_t *os, uint64_t txg) { ztest_cb_data_t *cb_data; cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); cb_data->zcd_txg = txg; cb_data->zcd_spa = dmu_objset_spa(os); list_link_init(&cb_data->zcd_node); return (cb_data); } /* * Commit callback test. */ void ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t *od; dmu_tx_t *tx; ztest_cb_data_t *cb_data[3], *tmp_cb; uint64_t old_txg, txg; int i, error = 0; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) { umem_free(od, sizeof (ztest_od_t)); return; } tx = dmu_tx_create(os); cb_data[0] = ztest_create_cb_data(os, 0); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t)); /* Every once in a while, abort the transaction on purpose */ if (ztest_random(100) == 0) error = -1; if (!error) error = dmu_tx_assign(tx, TXG_NOWAIT); txg = error ? 0 : dmu_tx_get_txg(tx); cb_data[0]->zcd_txg = txg; cb_data[1] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); if (error) { /* * It's not a strict requirement to call the registered * callbacks from inside dmu_tx_abort(), but that's what * it's supposed to happen in the current implementation * so we will check for that. */ for (i = 0; i < 2; i++) { cb_data[i]->zcd_expected_err = ECANCELED; VERIFY(!cb_data[i]->zcd_called); } dmu_tx_abort(tx); for (i = 0; i < 2; i++) { VERIFY(cb_data[i]->zcd_called); umem_free(cb_data[i], sizeof (ztest_cb_data_t)); } umem_free(od, sizeof (ztest_od_t)); return; } cb_data[2] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); /* * Read existing data to make sure there isn't a future leak. */ VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t), &old_txg, DMU_READ_PREFETCH)); if (old_txg > txg) fatal(B_FALSE, "future leak: got %"PRIu64", open txg is %"PRIu64"", old_txg, txg); dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx); (void) mutex_enter(&zcl.zcl_callbacks_lock); /* * Since commit callbacks don't have any ordering requirement and since * it is theoretically possible for a commit callback to be called * after an arbitrary amount of time has elapsed since its txg has been * synced, it is difficult to reliably determine whether a commit * callback hasn't been called due to high load or due to a flawed * implementation. * * In practice, we will assume that if after a certain number of txgs a * commit callback hasn't been called, then most likely there's an * implementation bug.. */ tmp_cb = list_head(&zcl.zcl_callbacks); if (tmp_cb != NULL && tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) { fatal(B_FALSE, "Commit callback threshold exceeded, " "oldest txg: %"PRIu64", open txg: %"PRIu64"\n", tmp_cb->zcd_txg, txg); } /* * Let's find the place to insert our callbacks. * * Even though the list is ordered by txg, it is possible for the * insertion point to not be the end because our txg may already be * quiescing at this point and other callbacks in the open txg * (from other objsets) may have sneaked in. */ tmp_cb = list_tail(&zcl.zcl_callbacks); while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); /* Add the 3 callbacks to the list */ for (i = 0; i < 3; i++) { if (tmp_cb == NULL) list_insert_head(&zcl.zcl_callbacks, cb_data[i]); else list_insert_after(&zcl.zcl_callbacks, tmp_cb, cb_data[i]); cb_data[i]->zcd_added = B_TRUE; VERIFY(!cb_data[i]->zcd_called); tmp_cb = cb_data[i]; } zc_cb_counter += 3; (void) mutex_exit(&zcl.zcl_callbacks_lock); dmu_tx_commit(tx); umem_free(od, sizeof (ztest_od_t)); } /* * Visit each object in the dataset. Verify that its properties * are consistent what was stored in the block tag when it was created, * and that its unused bonus buffer space has not been overwritten. */ void ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id) { (void) id; objset_t *os = zd->zd_os; uint64_t obj; int err = 0; for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) { ztest_block_tag_t *bt = NULL; dmu_object_info_t doi; dmu_buf_t *db; ztest_object_lock(zd, obj, RL_READER); if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) { ztest_object_unlock(zd, obj); continue; } dmu_object_info_from_db(db, &doi); if (doi.doi_bonus_size >= sizeof (*bt)) bt = ztest_bt_bonus(db); if (bt && bt->bt_magic == BT_MAGIC) { ztest_bt_verify(bt, os, obj, doi.doi_dnodesize, bt->bt_offset, bt->bt_gen, bt->bt_txg, bt->bt_crtxg); ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen); } dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, obj); } } void ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) { (void) id; zfs_prop_t proplist[] = { ZFS_PROP_CHECKSUM, ZFS_PROP_COMPRESSION, ZFS_PROP_COPIES, ZFS_PROP_DEDUP }; (void) pthread_rwlock_rdlock(&ztest_name_lock); for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE, ztest_random_blocksize(), (int)ztest_random(2))); (void) pthread_rwlock_unlock(&ztest_name_lock); } void ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; nvlist_t *props = NULL; (void) pthread_rwlock_rdlock(&ztest_name_lock); (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2)); VERIFY0(spa_prop_get(ztest_spa, &props)); if (ztest_opts.zo_verbose >= 6) dump_nvlist(props, 4); fnvlist_free(props); (void) pthread_rwlock_unlock(&ztest_name_lock); } static int user_release_one(const char *snapname, const char *holdname) { nvlist_t *snaps, *holds; int error; snaps = fnvlist_alloc(); holds = fnvlist_alloc(); fnvlist_add_boolean(holds, holdname); fnvlist_add_nvlist(snaps, snapname, holds); fnvlist_free(holds); error = dsl_dataset_user_release(snaps, NULL); fnvlist_free(snaps); return (error); } /* * Test snapshot hold/release and deferred destroy. */ void ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) { int error; objset_t *os = zd->zd_os; objset_t *origin; char snapname[100]; char fullname[100]; char clonename[100]; char tag[100]; char osname[ZFS_MAX_DATASET_NAME_LEN]; nvlist_t *holds; (void) pthread_rwlock_rdlock(&ztest_name_lock); dmu_objset_name(os, osname); (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id); (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"", osname, id); (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id); /* * Clean up from any previous run. */ error = dsl_destroy_head(clonename); if (error != ENOENT) ASSERT0(error); error = user_release_one(fullname, tag); if (error != ESRCH && error != ENOENT) ASSERT0(error); error = dsl_destroy_snapshot(fullname, B_FALSE); if (error != ENOENT) ASSERT0(error); /* * Create snapshot, clone it, mark snap for deferred destroy, * destroy clone, verify snap was also destroyed. */ error = dmu_objset_snapshot_one(osname, snapname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error); } error = dmu_objset_clone(clonename, fullname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_clone"); goto out; } fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error); } error = dsl_destroy_snapshot(fullname, B_TRUE); if (error) { fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d", fullname, error); } error = dsl_destroy_head(clonename); if (error) fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error); error = dmu_objset_hold(fullname, FTAG, &origin); if (error != ENOENT) fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error); /* * Create snapshot, add temporary hold, verify that we can't * destroy a held snapshot, mark for deferred destroy, * release hold, verify snapshot was destroyed. */ error = dmu_objset_snapshot_one(osname, snapname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error); } holds = fnvlist_alloc(); fnvlist_add_string(holds, fullname, tag); error = dsl_dataset_user_hold(holds, 0, NULL); fnvlist_free(holds); if (error == ENOSPC) { ztest_record_enospc("dsl_dataset_user_hold"); goto out; } else if (error) { fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u", fullname, tag, error); } error = dsl_destroy_snapshot(fullname, B_FALSE); if (error != EBUSY) { fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d", fullname, error); } error = dsl_destroy_snapshot(fullname, B_TRUE); if (error) { fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d", fullname, error); } error = user_release_one(fullname, tag); if (error) fatal(B_FALSE, "user_release_one(%s, %s) = %d", fullname, tag, error); VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); out: (void) pthread_rwlock_unlock(&ztest_name_lock); } /* * Inject random faults into the on-disk data. */ void ztest_fault_inject(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; int fd; uint64_t offset; uint64_t leaves; uint64_t bad = 0x1990c0ffeedecadeull; uint64_t top, leaf; char *path0; char *pathrand; size_t fsize; int bshift = SPA_MAXBLOCKSHIFT + 2; int iters = 1000; int maxfaults; int mirror_save; vdev_t *vd0 = NULL; uint64_t guid0 = 0; boolean_t islog = B_FALSE; path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); mutex_enter(&ztest_vdev_lock); /* * Device removal is in progress, fault injection must be disabled * until it completes and the pool is scrubbed. The fault injection * strategy for damaging blocks does not take in to account evacuated * blocks which may have already been damaged. */ if (ztest_device_removal_active) { mutex_exit(&ztest_vdev_lock); goto out; } maxfaults = MAXFAULTS(zs); leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children; mirror_save = zs->zs_mirrors; mutex_exit(&ztest_vdev_lock); ASSERT3U(leaves, >=, 1); /* * While ztest is running the number of leaves will not change. This * is critical for the fault injection logic as it determines where * errors can be safely injected such that they are always repairable. * * When restarting ztest a different number of leaves may be requested * which will shift the regions to be damaged. This is fine as long * as the pool has been scrubbed prior to using the new mapping. * Failure to do can result in non-repairable damage being injected. */ if (ztest_pool_scrubbed == B_FALSE) goto out; /* * Grab the name lock as reader. There are some operations * which don't like to have their vdevs changed while * they are in progress (i.e. spa_change_guid). Those * operations will have grabbed the name lock as writer. */ (void) pthread_rwlock_rdlock(&ztest_name_lock); /* * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (ztest_random(2) == 0) { /* * Inject errors on a normal data device or slog device. */ top = ztest_random_vdev_top(spa, B_TRUE); leaf = ztest_random(leaves) + zs->zs_splits; /* * Generate paths to the first leaf in this top-level vdev, * and to the random leaf we selected. We'll induce transient * write failures and random online/offline activity on leaf 0, * and we'll write random garbage to the randomly chosen leaf. */ (void) snprintf(path0, MAXPATHLEN, ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + zs->zs_splits); (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + leaf); vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); if (vd0 != NULL && vd0->vdev_top->vdev_islog) islog = B_TRUE; /* * If the top-level vdev needs to be resilvered * then we only allow faults on the device that is * resilvering. */ if (vd0 != NULL && maxfaults != 1 && (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || vd0->vdev_resilver_txg != 0)) { /* * Make vd0 explicitly claim to be unreadable, * or unwritable, or reach behind its back * and close the underlying fd. We can do this if * maxfaults == 0 because we'll fail and reexecute, * and we can do it if maxfaults >= 2 because we'll * have enough redundancy. If maxfaults == 1, the * combination of this with injection of random data * corruption below exceeds the pool's fault tolerance. */ vdev_file_t *vf = vd0->vdev_tsd; zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", (long long)vd0->vdev_id, (int)maxfaults); if (vf != NULL && ztest_random(3) == 0) { (void) close(vf->vf_file->f_fd); vf->vf_file->f_fd = -1; } else if (ztest_random(2) == 0) { vd0->vdev_cant_read = B_TRUE; } else { vd0->vdev_cant_write = B_TRUE; } guid0 = vd0->vdev_guid; } } else { /* * Inject errors on an l2cache device. */ spa_aux_vdev_t *sav = &spa->spa_l2cache; if (sav->sav_count == 0) { spa_config_exit(spa, SCL_STATE, FTAG); (void) pthread_rwlock_unlock(&ztest_name_lock); goto out; } vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; guid0 = vd0->vdev_guid; (void) strcpy(path0, vd0->vdev_path); (void) strcpy(pathrand, vd0->vdev_path); leaf = 0; leaves = 1; maxfaults = INT_MAX; /* no limit on cache devices */ } spa_config_exit(spa, SCL_STATE, FTAG); (void) pthread_rwlock_unlock(&ztest_name_lock); /* * If we can tolerate two or more faults, or we're dealing * with a slog, randomly online/offline vd0. */ if ((maxfaults >= 2 || islog) && guid0 != 0) { if (ztest_random(10) < 6) { int flags = (ztest_random(2) == 0 ? ZFS_OFFLINE_TEMPORARY : 0); /* * We have to grab the zs_name_lock as writer to * prevent a race between offlining a slog and * destroying a dataset. Offlining the slog will * grab a reference on the dataset which may cause * dsl_destroy_head() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ if (islog) (void) pthread_rwlock_wrlock(&ztest_name_lock); VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY); if (islog) (void) pthread_rwlock_unlock(&ztest_name_lock); } else { /* * Ideally we would like to be able to randomly * call vdev_[on|off]line without holding locks * to force unpredictable failures but the side * effects of vdev_[on|off]line prevent us from * doing so. We grab the ztest_vdev_lock here to * prevent a race between injection testing and * aux_vdev removal. */ mutex_enter(&ztest_vdev_lock); (void) vdev_online(spa, guid0, 0, NULL); mutex_exit(&ztest_vdev_lock); } } if (maxfaults == 0) goto out; /* * We have at least single-fault tolerance, so inject data corruption. */ fd = open(pathrand, O_RDWR); if (fd == -1) /* we hit a gap in the device namespace */ goto out; fsize = lseek(fd, 0, SEEK_END); while (--iters != 0) { /* * The offset must be chosen carefully to ensure that * we do not inject a given logical block with errors * on two different leaf devices, because ZFS can not * tolerate that (if maxfaults==1). * * To achieve this we divide each leaf device into * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4). * Each chunk is further divided into error-injection * ranges (can accept errors) and clear ranges (we do * not inject errors in those). Each error-injection * range can accept errors only for a single leaf vdev. * Error-injection ranges are separated by clear ranges. * * For example, with 3 leaves, each chunk looks like: * 0 to 32M: injection range for leaf 0 * 32M to 64M: clear range - no injection allowed * 64M to 96M: injection range for leaf 1 * 96M to 128M: clear range - no injection allowed * 128M to 160M: injection range for leaf 2 * 160M to 192M: clear range - no injection allowed * * Each clear range must be large enough such that a * single block cannot straddle it. This way a block * can't be a target in two different injection ranges * (on different leaf vdevs). */ offset = ztest_random(fsize / (leaves << bshift)) * (leaves << bshift) + (leaf << bshift) + (ztest_random(1ULL << (bshift - 1)) & -8ULL); /* * Only allow damage to the labels at one end of the vdev. * * If all labels are damaged, the device will be totally * inaccessible, which will result in loss of data, * because we also damage (parts of) the other side of * the mirror/raidz. * * Additionally, we will always have both an even and an * odd label, so that we can handle crashes in the * middle of vdev_config_sync(). */ if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) continue; /* * The two end labels are stored at the "end" of the disk, but * the end of the disk (vdev_psize) is aligned to * sizeof (vdev_label_t). */ uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); if ((leaf & 1) == 1 && offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) continue; mutex_enter(&ztest_vdev_lock); if (mirror_save != zs->zs_mirrors) { mutex_exit(&ztest_vdev_lock); (void) close(fd); goto out; } if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) fatal(B_TRUE, "can't inject bad word at 0x%"PRIx64" in %s", offset, pathrand); mutex_exit(&ztest_vdev_lock); if (ztest_opts.zo_verbose >= 7) (void) printf("injected bad word into %s," " offset 0x%"PRIx64"\n", pathrand, offset); } (void) close(fd); out: umem_free(path0, MAXPATHLEN); umem_free(pathrand, MAXPATHLEN); } /* * By design ztest will never inject uncorrectable damage in to the pool. * Issue a scrub, wait for it to complete, and verify there is never any * persistent damage. * * Only after a full scrub has been completed is it safe to start injecting * data corruption. See the comment in zfs_fault_inject(). */ static int ztest_scrub_impl(spa_t *spa) { int error = spa_scan(spa, POOL_SCAN_SCRUB); if (error) return (error); while (dsl_scan_scrubbing(spa_get_dsl(spa))) txg_wait_synced(spa_get_dsl(spa), 0); if (spa_get_errlog_size(spa) > 0) return (ECKSUM); ztest_pool_scrubbed = B_TRUE; return (0); } /* * Scrub the pool. */ void ztest_scrub(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; int error; /* * Scrub in progress by device removal. */ if (ztest_device_removal_active) return; /* * Start a scrub, wait a moment, then force a restart. */ (void) spa_scan(spa, POOL_SCAN_SCRUB); (void) poll(NULL, 0, 100); error = ztest_scrub_impl(spa); if (error == EBUSY) error = 0; ASSERT0(error); } /* * Change the guid for the pool. */ void ztest_reguid(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; uint64_t orig, load; int error; if (ztest_opts.zo_mmp_test) return; orig = spa_guid(spa); load = spa_load_guid(spa); (void) pthread_rwlock_wrlock(&ztest_name_lock); error = spa_change_guid(spa); (void) pthread_rwlock_unlock(&ztest_name_lock); if (error != 0) return; if (ztest_opts.zo_verbose >= 4) { (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n", orig, spa_guid(spa)); } VERIFY3U(orig, !=, spa_guid(spa)); VERIFY3U(load, ==, spa_load_guid(spa)); } void ztest_blake3(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; hrtime_t end = gethrtime() + NANOSEC; zio_cksum_salt_t salt; void *salt_ptr = &salt.zcs_bytes; struct abd *abd_data, *abd_meta; void *buf, *templ; int i, *ptr; uint32_t size; BLAKE3_CTX ctx; size = ztest_random_blocksize(); buf = umem_alloc(size, UMEM_NOFAIL); abd_data = abd_alloc(size, B_FALSE); abd_meta = abd_alloc(size, B_TRUE); for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) *ptr = ztest_random(UINT_MAX); memset(salt_ptr, 'A', 32); abd_copy_from_buf_off(abd_data, buf, 0, size); abd_copy_from_buf_off(abd_meta, buf, 0, size); while (gethrtime() <= end) { int run_count = 100; zio_cksum_t zc_ref1, zc_ref2; zio_cksum_t zc_res1, zc_res2; void *ref1 = &zc_ref1; void *ref2 = &zc_ref2; void *res1 = &zc_res1; void *res2 = &zc_res2; /* BLAKE3_KEY_LEN = 32 */ - VERIFY0(blake3_set_impl_name("generic")); + VERIFY0(blake3_impl_setname("generic")); templ = abd_checksum_blake3_tmpl_init(&salt); Blake3_InitKeyed(&ctx, salt_ptr); Blake3_Update(&ctx, buf, size); Blake3_Final(&ctx, ref1); zc_ref2 = zc_ref1; ZIO_CHECKSUM_BSWAP(&zc_ref2); abd_checksum_blake3_tmpl_free(templ); - VERIFY0(blake3_set_impl_name("cycle")); + VERIFY0(blake3_impl_setname("cycle")); while (run_count-- > 0) { /* Test current implementation */ Blake3_InitKeyed(&ctx, salt_ptr); Blake3_Update(&ctx, buf, size); Blake3_Final(&ctx, res1); zc_res2 = zc_res1; ZIO_CHECKSUM_BSWAP(&zc_res2); VERIFY0(memcmp(ref1, res1, 32)); VERIFY0(memcmp(ref2, res2, 32)); /* Test ABD - data */ templ = abd_checksum_blake3_tmpl_init(&salt); abd_checksum_blake3_native(abd_data, size, templ, &zc_res1); abd_checksum_blake3_byteswap(abd_data, size, templ, &zc_res2); VERIFY0(memcmp(ref1, res1, 32)); VERIFY0(memcmp(ref2, res2, 32)); /* Test ABD - metadata */ abd_checksum_blake3_native(abd_meta, size, templ, &zc_res1); abd_checksum_blake3_byteswap(abd_meta, size, templ, &zc_res2); abd_checksum_blake3_tmpl_free(templ); VERIFY0(memcmp(ref1, res1, 32)); VERIFY0(memcmp(ref2, res2, 32)); } } abd_free(abd_data); abd_free(abd_meta); umem_free(buf, size); } void ztest_fletcher(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; hrtime_t end = gethrtime() + NANOSEC; while (gethrtime() <= end) { int run_count = 100; void *buf; struct abd *abd_data, *abd_meta; uint32_t size; int *ptr; int i; zio_cksum_t zc_ref; zio_cksum_t zc_ref_byteswap; size = ztest_random_blocksize(); buf = umem_alloc(size, UMEM_NOFAIL); abd_data = abd_alloc(size, B_FALSE); abd_meta = abd_alloc(size, B_TRUE); for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) *ptr = ztest_random(UINT_MAX); abd_copy_from_buf_off(abd_data, buf, 0, size); abd_copy_from_buf_off(abd_meta, buf, 0, size); VERIFY0(fletcher_4_impl_set("scalar")); fletcher_4_native(buf, size, NULL, &zc_ref); fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap); VERIFY0(fletcher_4_impl_set("cycle")); while (run_count-- > 0) { zio_cksum_t zc; zio_cksum_t zc_byteswap; fletcher_4_byteswap(buf, size, NULL, &zc_byteswap); fletcher_4_native(buf, size, NULL, &zc); VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, sizeof (zc_byteswap))); /* Test ABD - data */ abd_fletcher_4_byteswap(abd_data, size, NULL, &zc_byteswap); abd_fletcher_4_native(abd_data, size, NULL, &zc); VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, sizeof (zc_byteswap))); /* Test ABD - metadata */ abd_fletcher_4_byteswap(abd_meta, size, NULL, &zc_byteswap); abd_fletcher_4_native(abd_meta, size, NULL, &zc); VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, sizeof (zc_byteswap))); } umem_free(buf, size); abd_free(abd_data); abd_free(abd_meta); } } void ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; void *buf; size_t size; int *ptr; int i; zio_cksum_t zc_ref; zio_cksum_t zc_ref_bswap; hrtime_t end = gethrtime() + NANOSEC; while (gethrtime() <= end) { int run_count = 100; size = ztest_random_blocksize(); buf = umem_alloc(size, UMEM_NOFAIL); for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) *ptr = ztest_random(UINT_MAX); VERIFY0(fletcher_4_impl_set("scalar")); fletcher_4_native(buf, size, NULL, &zc_ref); fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap); VERIFY0(fletcher_4_impl_set("cycle")); while (run_count-- > 0) { zio_cksum_t zc; zio_cksum_t zc_bswap; size_t pos = 0; ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0); while (pos < size) { size_t inc = 64 * ztest_random(size / 67); /* sometimes add few bytes to test non-simd */ if (ztest_random(100) < 10) inc += P2ALIGN(ztest_random(64), sizeof (uint32_t)); if (inc > (size - pos)) inc = size - pos; fletcher_4_incremental_native(buf + pos, inc, &zc); fletcher_4_incremental_byteswap(buf + pos, inc, &zc_bswap); pos += inc; } VERIFY3U(pos, ==, size); VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref)); VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap)); /* * verify if incremental on the whole buffer is * equivalent to non-incremental version */ ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0); fletcher_4_incremental_native(buf, size, &zc); fletcher_4_incremental_byteswap(buf, size, &zc_bswap); VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref)); VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap)); } umem_free(buf, size); } } static int ztest_set_global_vars(void) { for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) { char *kv = ztest_opts.zo_gvars[i]; VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN); VERIFY3U(strlen(kv), >, 0); int err = set_global_var(kv); if (ztest_opts.zo_verbose > 0) { (void) printf("setting global var %s ... %s\n", kv, err ? "failed" : "ok"); } if (err != 0) { (void) fprintf(stderr, "failed to set global var '%s'\n", kv); return (err); } } return (0); } static char ** ztest_global_vars_to_zdb_args(void) { char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *)); char **cur = args; for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) { *cur++ = (char *)"-o"; *cur++ = ztest_opts.zo_gvars[i]; } ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]); *cur = NULL; return (args); } /* The end of strings is indicated by a NULL element */ static char * join_strings(char **strings, const char *sep) { size_t totallen = 0; for (char **sp = strings; *sp != NULL; sp++) { totallen += strlen(*sp); totallen += strlen(sep); } if (totallen > 0) { ASSERT(totallen >= strlen(sep)); totallen -= strlen(sep); } size_t buflen = totallen + 1; char *o = malloc(buflen); /* trailing 0 byte */ o[0] = '\0'; for (char **sp = strings; *sp != NULL; sp++) { size_t would; would = strlcat(o, *sp, buflen); VERIFY3U(would, <, buflen); if (*(sp+1) == NULL) { break; } would = strlcat(o, sep, buflen); VERIFY3U(would, <, buflen); } ASSERT3S(strlen(o), ==, totallen); return (o); } static int ztest_check_path(char *path) { struct stat s; /* return true on success */ return (!stat(path, &s)); } static void ztest_get_zdb_bin(char *bin, int len) { char *zdb_path; /* * Try to use $ZDB and in-tree zdb path. If not successful, just * let popen to search through PATH. */ if ((zdb_path = getenv("ZDB"))) { strlcpy(bin, zdb_path, len); /* In env */ if (!ztest_check_path(bin)) { ztest_dump_core = 0; fatal(B_TRUE, "invalid ZDB '%s'", bin); } return; } VERIFY3P(realpath(getexecname(), bin), !=, NULL); if (strstr(bin, ".libs/ztest")) { strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */ strcat(bin, "zdb"); if (ztest_check_path(bin)) return; } strcpy(bin, "zdb"); } static vdev_t * ztest_random_concrete_vdev_leaf(vdev_t *vd) { if (vd == NULL) return (NULL); if (vd->vdev_children == 0) return (vd); vdev_t *eligible[vd->vdev_children]; int eligible_idx = 0, i; for (i = 0; i < vd->vdev_children; i++) { vdev_t *cvd = vd->vdev_child[i]; if (cvd->vdev_top->vdev_removing) continue; if (cvd->vdev_children > 0 || (vdev_is_concrete(cvd) && !cvd->vdev_detached)) { eligible[eligible_idx++] = cvd; } } VERIFY3S(eligible_idx, >, 0); uint64_t child_no = ztest_random(eligible_idx); return (ztest_random_concrete_vdev_leaf(eligible[child_no])); } void ztest_initialize(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; int error = 0; mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* Random leaf vdev */ vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); if (rand_vd == NULL) { spa_config_exit(spa, SCL_VDEV, FTAG); mutex_exit(&ztest_vdev_lock); return; } /* * The random vdev we've selected may change as soon as we * drop the spa_config_lock. We create local copies of things * we're interested in. */ uint64_t guid = rand_vd->vdev_guid; char *path = strdup(rand_vd->vdev_path); boolean_t active = rand_vd->vdev_initialize_thread != NULL; zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid); spa_config_exit(spa, SCL_VDEV, FTAG); uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS); nvlist_t *vdev_guids = fnvlist_alloc(); nvlist_t *vdev_errlist = fnvlist_alloc(); fnvlist_add_uint64(vdev_guids, path, guid); error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist); fnvlist_free(vdev_guids); fnvlist_free(vdev_errlist); switch (cmd) { case POOL_INITIALIZE_CANCEL: if (ztest_opts.zo_verbose >= 4) { (void) printf("Cancel initialize %s", path); if (!active) (void) printf(" failed (no initialize active)"); (void) printf("\n"); } break; case POOL_INITIALIZE_START: if (ztest_opts.zo_verbose >= 4) { (void) printf("Start initialize %s", path); if (active && error == 0) (void) printf(" failed (already active)"); else if (error != 0) (void) printf(" failed (error %d)", error); (void) printf("\n"); } break; case POOL_INITIALIZE_SUSPEND: if (ztest_opts.zo_verbose >= 4) { (void) printf("Suspend initialize %s", path); if (!active) (void) printf(" failed (no initialize active)"); (void) printf("\n"); } break; } free(path); mutex_exit(&ztest_vdev_lock); } void ztest_trim(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; int error = 0; mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* Random leaf vdev */ vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); if (rand_vd == NULL) { spa_config_exit(spa, SCL_VDEV, FTAG); mutex_exit(&ztest_vdev_lock); return; } /* * The random vdev we've selected may change as soon as we * drop the spa_config_lock. We create local copies of things * we're interested in. */ uint64_t guid = rand_vd->vdev_guid; char *path = strdup(rand_vd->vdev_path); boolean_t active = rand_vd->vdev_trim_thread != NULL; zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid); spa_config_exit(spa, SCL_VDEV, FTAG); uint64_t cmd = ztest_random(POOL_TRIM_FUNCS); uint64_t rate = 1 << ztest_random(30); boolean_t partial = (ztest_random(5) > 0); boolean_t secure = (ztest_random(5) > 0); nvlist_t *vdev_guids = fnvlist_alloc(); nvlist_t *vdev_errlist = fnvlist_alloc(); fnvlist_add_uint64(vdev_guids, path, guid); error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial, secure, vdev_errlist); fnvlist_free(vdev_guids); fnvlist_free(vdev_errlist); switch (cmd) { case POOL_TRIM_CANCEL: if (ztest_opts.zo_verbose >= 4) { (void) printf("Cancel TRIM %s", path); if (!active) (void) printf(" failed (no TRIM active)"); (void) printf("\n"); } break; case POOL_TRIM_START: if (ztest_opts.zo_verbose >= 4) { (void) printf("Start TRIM %s", path); if (active && error == 0) (void) printf(" failed (already active)"); else if (error != 0) (void) printf(" failed (error %d)", error); (void) printf("\n"); } break; case POOL_TRIM_SUSPEND: if (ztest_opts.zo_verbose >= 4) { (void) printf("Suspend TRIM %s", path); if (!active) (void) printf(" failed (no TRIM active)"); (void) printf("\n"); } break; } free(path); mutex_exit(&ztest_vdev_lock); } /* * Verify pool integrity by running zdb. */ static void ztest_run_zdb(const char *pool) { int status; char *bin; char *zdb; char *zbuf; const int len = MAXPATHLEN + MAXNAMELEN + 20; FILE *fp; bin = umem_alloc(len, UMEM_NOFAIL); zdb = umem_alloc(len, UMEM_NOFAIL); zbuf = umem_alloc(1024, UMEM_NOFAIL); ztest_get_zdb_bin(bin, len); char **set_gvars_args = ztest_global_vars_to_zdb_args(); char *set_gvars_args_joined = join_strings(set_gvars_args, " "); free(set_gvars_args); size_t would = snprintf(zdb, len, "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s", bin, ztest_opts.zo_verbose >= 3 ? "s" : "", ztest_opts.zo_verbose >= 4 ? "v" : "", set_gvars_args_joined, ztest_opts.zo_dir, pool); ASSERT3U(would, <, len); free(set_gvars_args_joined); if (ztest_opts.zo_verbose >= 5) (void) printf("Executing %s\n", zdb); fp = popen(zdb, "r"); while (fgets(zbuf, 1024, fp) != NULL) if (ztest_opts.zo_verbose >= 3) (void) printf("%s", zbuf); status = pclose(fp); if (status == 0) goto out; ztest_dump_core = 0; if (WIFEXITED(status)) fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status)); else fatal(B_FALSE, "'%s' died with signal %d", zdb, WTERMSIG(status)); out: umem_free(bin, len); umem_free(zdb, len); umem_free(zbuf, 1024); } static void ztest_walk_pool_directory(const char *header) { spa_t *spa = NULL; if (ztest_opts.zo_verbose >= 6) (void) puts(header); mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) if (ztest_opts.zo_verbose >= 6) (void) printf("\t%s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); } static void ztest_spa_import_export(char *oldname, char *newname) { nvlist_t *config, *newconfig; uint64_t pool_guid; spa_t *spa; int error; if (ztest_opts.zo_verbose >= 4) { (void) printf("import/export: old = %s, new = %s\n", oldname, newname); } /* * Clean up from previous runs. */ (void) spa_destroy(newname); /* * Get the pool's configuration and guid. */ VERIFY0(spa_open(oldname, &spa, FTAG)); /* * Kick off a scrub to tickle scrub/export races. */ if (ztest_random(2) == 0) (void) spa_scan(spa, POOL_SCAN_SCRUB); pool_guid = spa_guid(spa); spa_close(spa, FTAG); ztest_walk_pool_directory("pools before export"); /* * Export it. */ VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE)); ztest_walk_pool_directory("pools after export"); /* * Try to import it. */ newconfig = spa_tryimport(config); ASSERT3P(newconfig, !=, NULL); fnvlist_free(newconfig); /* * Import it under the new name. */ error = spa_import(newname, config, NULL, 0); if (error != 0) { dump_nvlist(config, 0); fatal(B_FALSE, "couldn't import pool %s as %s: error %u", oldname, newname, error); } ztest_walk_pool_directory("pools after import"); /* * Try to import it again -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); /* * Try to import it under a different name -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); /* * Verify that the pool is no longer visible under the old name. */ VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); /* * Verify that we can open and close the pool using the new name. */ VERIFY0(spa_open(newname, &spa, FTAG)); ASSERT3U(pool_guid, ==, spa_guid(spa)); spa_close(spa, FTAG); fnvlist_free(config); } static void ztest_resume(spa_t *spa) { if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) (void) printf("resuming from suspended state\n"); spa_vdev_state_enter(spa, SCL_NONE); vdev_clear(spa, NULL); (void) spa_vdev_state_exit(spa, NULL, 0); (void) zio_resume(spa); } static __attribute__((noreturn)) void ztest_resume_thread(void *arg) { spa_t *spa = arg; while (!ztest_exiting) { if (spa_suspended(spa)) ztest_resume(spa); (void) poll(NULL, 0, 100); /* * Periodically change the zfs_compressed_arc_enabled setting. */ if (ztest_random(10) == 0) zfs_compressed_arc_enabled = ztest_random(2); /* * Periodically change the zfs_abd_scatter_enabled setting. */ if (ztest_random(10) == 0) zfs_abd_scatter_enabled = ztest_random(2); } thread_exit(); } static __attribute__((noreturn)) void ztest_deadman_thread(void *arg) { ztest_shared_t *zs = arg; spa_t *spa = ztest_spa; hrtime_t delay, overdue, last_run = gethrtime(); delay = (zs->zs_thread_stop - zs->zs_thread_start) + MSEC2NSEC(zfs_deadman_synctime_ms); while (!ztest_exiting) { /* * Wait for the delay timer while checking occasionally * if we should stop. */ if (gethrtime() < last_run + delay) { (void) poll(NULL, 0, 1000); continue; } /* * If the pool is suspended then fail immediately. Otherwise, * check to see if the pool is making any progress. If * vdev_deadman() discovers that there hasn't been any recent * I/Os then it will end up aborting the tests. */ if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { fatal(B_FALSE, "aborting test after %lu seconds because " "pool has transitioned to a suspended state.", zfs_deadman_synctime_ms / 1000); } vdev_deadman(spa->spa_root_vdev, FTAG); /* * If the process doesn't complete within a grace period of * zfs_deadman_synctime_ms over the expected finish time, * then it may be hung and is terminated. */ overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms); if (gethrtime() > overdue) { fatal(B_FALSE, "aborting test after %llu seconds because " "the process is overdue for termination.", (gethrtime() - zs->zs_proc_start) / NANOSEC); } (void) printf("ztest has been running for %lld seconds\n", (gethrtime() - zs->zs_proc_start) / NANOSEC); last_run = gethrtime(); delay = MSEC2NSEC(zfs_deadman_checktime_ms); } thread_exit(); } static void ztest_execute(int test, ztest_info_t *zi, uint64_t id) { ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); hrtime_t functime = gethrtime(); int i; for (i = 0; i < zi->zi_iters; i++) zi->zi_func(zd, id); functime = gethrtime() - functime; atomic_add_64(&zc->zc_count, 1); atomic_add_64(&zc->zc_time, functime); if (ztest_opts.zo_verbose >= 4) (void) printf("%6.2f sec in %s\n", (double)functime / NANOSEC, zi->zi_funcname); } static __attribute__((noreturn)) void ztest_thread(void *arg) { int rand; uint64_t id = (uintptr_t)arg; ztest_shared_t *zs = ztest_shared; uint64_t call_next; hrtime_t now; ztest_info_t *zi; ztest_shared_callstate_t *zc; while ((now = gethrtime()) < zs->zs_thread_stop) { /* * See if it's time to force a crash. */ if (now > zs->zs_thread_kill) ztest_kill(zs); /* * If we're getting ENOSPC with some regularity, stop. */ if (zs->zs_enospc_count > 10) break; /* * Pick a random function to execute. */ rand = ztest_random(ZTEST_FUNCS); zi = &ztest_info[rand]; zc = ZTEST_GET_SHARED_CALLSTATE(rand); call_next = zc->zc_next; if (now >= call_next && atomic_cas_64(&zc->zc_next, call_next, call_next + ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { ztest_execute(rand, zi, id); } } thread_exit(); } static void ztest_dataset_name(char *dsname, const char *pool, int d) { (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); } static void ztest_dataset_destroy(int d) { char name[ZFS_MAX_DATASET_NAME_LEN]; int t; ztest_dataset_name(name, ztest_opts.zo_pool, d); if (ztest_opts.zo_verbose >= 3) (void) printf("Destroying %s to free up space\n", name); /* * Cleanup any non-standard clones and snapshots. In general, * ztest thread t operates on dataset (t % zopt_datasets), * so there may be more than one thing to clean up. */ for (t = d; t < ztest_opts.zo_threads; t += ztest_opts.zo_datasets) ztest_dsl_dataset_cleanup(name, t); (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); } static void ztest_dataset_dirobj_verify(ztest_ds_t *zd) { uint64_t usedobjs, dirobjs, scratch; /* * ZTEST_DIROBJ is the object directory for the entire dataset. * Therefore, the number of objects in use should equal the * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. * If not, we have an object leak. * * Note that we can only check this in ztest_dataset_open(), * when the open-context and syncing-context values agree. * That's because zap_count() returns the open-context value, * while dmu_objset_space() returns the rootbp fill count. */ VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); ASSERT3U(dirobjs + 1, ==, usedobjs); } static int ztest_dataset_open(int d) { ztest_ds_t *zd = &ztest_ds[d]; uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; objset_t *os; zilog_t *zilog; char name[ZFS_MAX_DATASET_NAME_LEN]; int error; ztest_dataset_name(name, ztest_opts.zo_pool, d); (void) pthread_rwlock_rdlock(&ztest_name_lock); error = ztest_dataset_create(name); if (error == ENOSPC) { (void) pthread_rwlock_unlock(&ztest_name_lock); ztest_record_enospc(FTAG); return (error); } ASSERT(error == 0 || error == EEXIST); VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, zd, &os)); (void) pthread_rwlock_unlock(&ztest_name_lock); ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); zilog = zd->zd_zilog; if (zilog->zl_header->zh_claim_lr_seq != 0 && zilog->zl_header->zh_claim_lr_seq < committed_seq) fatal(B_FALSE, "missing log records: " "claimed %"PRIu64" < committed %"PRIu64"", zilog->zl_header->zh_claim_lr_seq, committed_seq); ztest_dataset_dirobj_verify(zd); zil_replay(os, zd, ztest_replay_vector); ztest_dataset_dirobj_verify(zd); if (ztest_opts.zo_verbose >= 6) (void) printf("%s replay %"PRIu64" blocks, " "%"PRIu64" records, seq %"PRIu64"\n", zd->zd_name, zilog->zl_parse_blk_count, zilog->zl_parse_lr_count, zilog->zl_replaying_seq); zilog = zil_open(os, ztest_get_data, NULL); if (zilog->zl_replaying_seq != 0 && zilog->zl_replaying_seq < committed_seq) fatal(B_FALSE, "missing log records: " "replayed %"PRIu64" < committed %"PRIu64"", zilog->zl_replaying_seq, committed_seq); return (0); } static void ztest_dataset_close(int d) { ztest_ds_t *zd = &ztest_ds[d]; zil_close(zd->zd_zilog); dmu_objset_disown(zd->zd_os, B_TRUE, zd); ztest_zd_fini(zd); } static int ztest_replay_zil_cb(const char *name, void *arg) { (void) arg; objset_t *os; ztest_ds_t *zdtmp; VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os)); zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL); ztest_zd_init(zdtmp, NULL, os); zil_replay(os, zdtmp, ztest_replay_vector); ztest_zd_fini(zdtmp); if (dmu_objset_zil(os)->zl_parse_lr_count != 0 && ztest_opts.zo_verbose >= 6) { zilog_t *zilog = dmu_objset_zil(os); (void) printf("%s replay %"PRIu64" blocks, " "%"PRIu64" records, seq %"PRIu64"\n", name, zilog->zl_parse_blk_count, zilog->zl_parse_lr_count, zilog->zl_replaying_seq); } umem_free(zdtmp, sizeof (ztest_ds_t)); dmu_objset_disown(os, B_TRUE, FTAG); return (0); } static void ztest_freeze(void) { ztest_ds_t *zd = &ztest_ds[0]; spa_t *spa; int numloops = 0; if (ztest_opts.zo_verbose >= 3) (void) printf("testing spa_freeze()...\n"); kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); VERIFY0(ztest_dataset_open(0)); ztest_spa = spa; /* * Force the first log block to be transactionally allocated. * We have to do this before we freeze the pool -- otherwise * the log chain won't be anchored. */ while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { ztest_dmu_object_alloc_free(zd, 0); zil_commit(zd->zd_zilog, 0); } txg_wait_synced(spa_get_dsl(spa), 0); /* * Freeze the pool. This stops spa_sync() from doing anything, * so that the only way to record changes from now on is the ZIL. */ spa_freeze(spa); /* * Because it is hard to predict how much space a write will actually * require beforehand, we leave ourselves some fudge space to write over * capacity. */ uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; /* * Run tests that generate log records but don't alter the pool config * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). * We do a txg_wait_synced() after each iteration to force the txg * to increase well beyond the last synced value in the uberblock. * The ZIL should be OK with that. * * Run a random number of times less than zo_maxloops and ensure we do * not run out of space on the pool. */ while (ztest_random(10) != 0 && numloops++ < ztest_opts.zo_maxloops && metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { ztest_od_t od; ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); ztest_io(zd, od.od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); txg_wait_synced(spa_get_dsl(spa), 0); } /* * Commit all of the changes we just generated. */ zil_commit(zd->zd_zilog, 0); txg_wait_synced(spa_get_dsl(spa), 0); /* * Close our dataset and close the pool. */ ztest_dataset_close(0); spa_close(spa, FTAG); kernel_fini(); /* * Open and close the pool and dataset to induce log replay. */ kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX); VERIFY0(ztest_dataset_open(0)); ztest_spa = spa; txg_wait_synced(spa_get_dsl(spa), 0); ztest_dataset_close(0); ztest_reguid(NULL, 0); spa_close(spa, FTAG); kernel_fini(); } static void ztest_import_impl(void) { importargs_t args = { 0 }; nvlist_t *cfg = NULL; int nsearch = 1; char *searchdirs[nsearch]; int flags = ZFS_IMPORT_MISSING_LOG; searchdirs[0] = ztest_opts.zo_dir; args.paths = nsearch; args.path = searchdirs; args.can_be_active = B_FALSE; VERIFY0(zpool_find_config(NULL, ztest_opts.zo_pool, &cfg, &args, &libzpool_config_ops)); VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags)); fnvlist_free(cfg); } /* * Import a storage pool with the given name. */ static void ztest_import(ztest_shared_t *zs) { spa_t *spa; mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); ztest_import_impl(); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); zs->zs_metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; spa_close(spa, FTAG); kernel_fini(); if (!ztest_opts.zo_mmp_test) { ztest_run_zdb(ztest_opts.zo_pool); ztest_freeze(); ztest_run_zdb(ztest_opts.zo_pool); } (void) pthread_rwlock_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); mutex_destroy(&ztest_checkpoint_lock); } /* * Kick off threads to run tests on all datasets in parallel. */ static void ztest_run(ztest_shared_t *zs) { spa_t *spa; objset_t *os; kthread_t *resume_thread, *deadman_thread; kthread_t **run_threads; uint64_t object; int error; int t, d; ztest_exiting = B_FALSE; /* * Initialize parent/child shared state. */ mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); zs->zs_thread_start = gethrtime(); zs->zs_thread_stop = zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); zs->zs_thread_kill = zs->zs_thread_stop; if (ztest_random(100) < ztest_opts.zo_killrate) { zs->zs_thread_kill -= ztest_random(ztest_opts.zo_passtime * NANOSEC); } mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), offsetof(ztest_cb_data_t, zcd_node)); /* * Open our pool. It may need to be imported first depending on * what tests were running when the previous pass was terminated. */ kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); error = spa_open(ztest_opts.zo_pool, &spa, FTAG); if (error) { VERIFY3S(error, ==, ENOENT); ztest_import_impl(); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); zs->zs_metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; } metaslab_preload_limit = ztest_random(20) + 1; ztest_spa = spa; VERIFY0(vdev_raidz_impl_set("cycle")); dmu_objset_stats_t dds; VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool, DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os)); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); dmu_objset_fast_stat(os, &dds); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); zs->zs_guid = dds.dds_guid; dmu_objset_disown(os, B_TRUE, FTAG); /* * Create a thread to periodically resume suspended I/O. */ resume_thread = thread_create(NULL, 0, ztest_resume_thread, spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri); /* * Create a deadman thread and set to panic if we hang. */ deadman_thread = thread_create(NULL, 0, ztest_deadman_thread, zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri); spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; /* * Verify that we can safely inquire about any object, * whether it's allocated or not. To make it interesting, * we probe a 5-wide window around each power of two. * This hits all edge cases, including zero and the max. */ for (t = 0; t < 64; t++) { for (d = -5; d <= 5; d++) { error = dmu_object_info(spa->spa_meta_objset, (1ULL << t) + d, NULL); ASSERT(error == 0 || error == ENOENT || error == EINVAL); } } /* * If we got any ENOSPC errors on the previous run, destroy something. */ if (zs->zs_enospc_count != 0) { int d = ztest_random(ztest_opts.zo_datasets); ztest_dataset_destroy(d); } zs->zs_enospc_count = 0; /* * If we were in the middle of ztest_device_removal() and were killed * we need to ensure the removal and scrub complete before running * any tests that check ztest_device_removal_active. The removal will * be restarted automatically when the spa is opened, but we need to * initiate the scrub manually if it is not already in progress. Note * that we always run the scrub whenever an indirect vdev exists * because we have no way of knowing for sure if ztest_device_removal() * fully completed its scrub before the pool was reimported. */ if (spa->spa_removing_phys.sr_state == DSS_SCANNING || spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { while (spa->spa_removing_phys.sr_state == DSS_SCANNING) txg_wait_synced(spa_get_dsl(spa), 0); error = ztest_scrub_impl(spa); if (error == EBUSY) error = 0; ASSERT0(error); } run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *), UMEM_NOFAIL); if (ztest_opts.zo_verbose >= 4) (void) printf("starting main threads...\n"); /* * Replay all logs of all datasets in the pool. This is primarily for * temporary datasets which wouldn't otherwise get replayed, which * can trigger failures when attempting to offline a SLOG in * ztest_fault_inject(). */ (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb, NULL, DS_FIND_CHILDREN); /* * Kick off all the tests that run in parallel. */ for (t = 0; t < ztest_opts.zo_threads; t++) { if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) { umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *)); return; } run_threads[t] = thread_create(NULL, 0, ztest_thread, (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri); } /* * Wait for all of the tests to complete. */ for (t = 0; t < ztest_opts.zo_threads; t++) VERIFY0(thread_join(run_threads[t])); /* * Close all datasets. This must be done after all the threads * are joined so we can be sure none of the datasets are in-use * by any of the threads. */ for (t = 0; t < ztest_opts.zo_threads; t++) { if (t < ztest_opts.zo_datasets) ztest_dataset_close(t); } txg_wait_synced(spa_get_dsl(spa), 0); zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *)); /* Kill the resume and deadman threads */ ztest_exiting = B_TRUE; VERIFY0(thread_join(resume_thread)); VERIFY0(thread_join(deadman_thread)); ztest_resume(spa); /* * Right before closing the pool, kick off a bunch of async I/O; * spa_close() should wait for it to complete. */ for (object = 1; object < 50; object++) { dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, ZIO_PRIORITY_SYNC_READ); } /* Verify that at least one commit cb was called in a timely fashion */ if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG) VERIFY0(zc_min_txg_delay); spa_close(spa, FTAG); /* * Verify that we can loop over all pools. */ mutex_enter(&spa_namespace_lock); for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) if (ztest_opts.zo_verbose > 3) (void) printf("spa_next: found %s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); /* * Verify that we can export the pool and reimport it under a * different name. */ if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) { char name[ZFS_MAX_DATASET_NAME_LEN]; (void) snprintf(name, sizeof (name), "%s_import", ztest_opts.zo_pool); ztest_spa_import_export(ztest_opts.zo_pool, name); ztest_spa_import_export(name, ztest_opts.zo_pool); } kernel_fini(); list_destroy(&zcl.zcl_callbacks); mutex_destroy(&zcl.zcl_callbacks_lock); (void) pthread_rwlock_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); mutex_destroy(&ztest_checkpoint_lock); } static void print_time(hrtime_t t, char *timebuf) { hrtime_t s = t / NANOSEC; hrtime_t m = s / 60; hrtime_t h = m / 60; hrtime_t d = h / 24; s -= m * 60; m -= h * 60; h -= d * 24; timebuf[0] = '\0'; if (d) (void) sprintf(timebuf, "%llud%02lluh%02llum%02llus", d, h, m, s); else if (h) (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); else if (m) (void) sprintf(timebuf, "%llum%02llus", m, s); else (void) sprintf(timebuf, "%llus", s); } static nvlist_t * make_random_props(void) { nvlist_t *props; props = fnvlist_alloc(); if (ztest_random(2) == 0) return (props); fnvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1); return (props); } /* * Create a storage pool with the given name and initial vdev size. * Then test spa_freeze() functionality. */ static void ztest_init(ztest_shared_t *zs) { spa_t *spa; nvlist_t *nvroot, *props; int i; mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); /* * Create the storage pool. */ (void) spa_destroy(ztest_opts.zo_pool); ztest_shared->zs_vdev_next_leaf = 0; zs->zs_splits = 0; zs->zs_mirrors = ztest_opts.zo_mirrors; nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1); props = make_random_props(); /* * We don't expect the pool to suspend unless maxfaults == 0, * in which case ztest_fault_inject() temporarily takes away * the only valid replica. */ fnvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT); for (i = 0; i < SPA_FEATURES; i++) { char *buf; if (!spa_feature_table[i].fi_zfs_mod_supported) continue; /* * 75% chance of using the log space map feature. We want ztest * to exercise both the code paths that use the log space map * feature and the ones that don't. */ if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0) continue; VERIFY3S(-1, !=, asprintf(&buf, "feature@%s", spa_feature_table[i].fi_uname)); fnvlist_add_uint64(props, buf, 0); free(buf); } VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL)); fnvlist_free(nvroot); fnvlist_free(props); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); zs->zs_metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; spa_close(spa, FTAG); kernel_fini(); if (!ztest_opts.zo_mmp_test) { ztest_run_zdb(ztest_opts.zo_pool); ztest_freeze(); ztest_run_zdb(ztest_opts.zo_pool); } (void) pthread_rwlock_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); mutex_destroy(&ztest_checkpoint_lock); } static void setup_data_fd(void) { static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; ztest_fd_data = mkstemp(ztest_name_data); ASSERT3S(ztest_fd_data, >=, 0); (void) unlink(ztest_name_data); } static int shared_data_size(ztest_shared_hdr_t *hdr) { int size; size = hdr->zh_hdr_size; size += hdr->zh_opts_size; size += hdr->zh_size; size += hdr->zh_stats_size * hdr->zh_stats_count; size += hdr->zh_ds_size * hdr->zh_ds_count; return (size); } static void setup_hdr(void) { int size; ztest_shared_hdr_t *hdr; hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); ASSERT3P(hdr, !=, MAP_FAILED); VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); hdr->zh_opts_size = sizeof (ztest_shared_opts_t); hdr->zh_size = sizeof (ztest_shared_t); hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); hdr->zh_stats_count = ZTEST_FUNCS; hdr->zh_ds_size = sizeof (ztest_shared_ds_t); hdr->zh_ds_count = ztest_opts.zo_datasets; size = shared_data_size(hdr); VERIFY0(ftruncate(ztest_fd_data, size)); (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); } static void setup_data(void) { int size, offset; ztest_shared_hdr_t *hdr; uint8_t *buf; hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), PROT_READ, MAP_SHARED, ztest_fd_data, 0); ASSERT3P(hdr, !=, MAP_FAILED); size = shared_data_size(hdr); (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); ASSERT3P(hdr, !=, MAP_FAILED); buf = (uint8_t *)hdr; offset = hdr->zh_hdr_size; ztest_shared_opts = (void *)&buf[offset]; offset += hdr->zh_opts_size; ztest_shared = (void *)&buf[offset]; offset += hdr->zh_size; ztest_shared_callstate = (void *)&buf[offset]; offset += hdr->zh_stats_size * hdr->zh_stats_count; ztest_shared_ds = (void *)&buf[offset]; } static boolean_t exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) { pid_t pid; int status; char *cmdbuf = NULL; pid = fork(); if (cmd == NULL) { cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); cmd = cmdbuf; } if (pid == -1) fatal(B_TRUE, "fork failed"); if (pid == 0) { /* child */ char fd_data_str[12]; VERIFY3S(11, >=, snprintf(fd_data_str, 12, "%d", ztest_fd_data)); VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); if (libpath != NULL) { const char *curlp = getenv("LD_LIBRARY_PATH"); if (curlp == NULL) VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1)); else { char *newlp = NULL; VERIFY3S(-1, !=, asprintf(&newlp, "%s:%s", libpath, curlp)); VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1)); free(newlp); } } (void) execl(cmd, cmd, (char *)NULL); ztest_dump_core = B_FALSE; fatal(B_TRUE, "exec failed: %s", cmd); } if (cmdbuf != NULL) { umem_free(cmdbuf, MAXPATHLEN); cmd = NULL; } while (waitpid(pid, &status, 0) != pid) continue; if (statusp != NULL) *statusp = status; if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { (void) fprintf(stderr, "child exited with code %d\n", WEXITSTATUS(status)); exit(2); } return (B_FALSE); } else if (WIFSIGNALED(status)) { if (!ignorekill || WTERMSIG(status) != SIGKILL) { (void) fprintf(stderr, "child died with signal %d\n", WTERMSIG(status)); exit(3); } return (B_TRUE); } else { (void) fprintf(stderr, "something strange happened to child\n"); exit(4); } } static void ztest_run_init(void) { int i; ztest_shared_t *zs = ztest_shared; /* * Blow away any existing copy of zpool.cache */ (void) remove(spa_config_path); if (ztest_opts.zo_init == 0) { if (ztest_opts.zo_verbose >= 1) (void) printf("Importing pool %s\n", ztest_opts.zo_pool); ztest_import(zs); return; } /* * Create and initialize our storage pool. */ for (i = 1; i <= ztest_opts.zo_init; i++) { memset(zs, 0, sizeof (*zs)); if (ztest_opts.zo_verbose >= 3 && ztest_opts.zo_init != 1) { (void) printf("ztest_init(), pass %d\n", i); } ztest_init(zs); } } int main(int argc, char **argv) { int kills = 0; int iters = 0; int older = 0; int newer = 0; ztest_shared_t *zs; ztest_info_t *zi; ztest_shared_callstate_t *zc; char timebuf[100]; char numbuf[NN_NUMBUF_SZ]; char *cmd; boolean_t hasalt; int f, err; char *fd_data_str = getenv("ZTEST_FD_DATA"); struct sigaction action; (void) setvbuf(stdout, NULL, _IOLBF, 0); dprintf_setup(&argc, argv); zfs_deadman_synctime_ms = 300000; zfs_deadman_checktime_ms = 30000; /* * As two-word space map entries may not come up often (especially * if pool and vdev sizes are small) we want to force at least some * of them so the feature get tested. */ zfs_force_some_double_word_sm_entries = B_TRUE; /* * Verify that even extensively damaged split blocks with many * segments can be reconstructed in a reasonable amount of time * when reconstruction is known to be possible. * * Note: the lower this value is, the more damage we inflict, and * the more time ztest spends in recovering that damage. We chose * to induce damage 1/100th of the time so recovery is tested but * not so frequently that ztest doesn't get to test other code paths. */ zfs_reconstruct_indirect_damage_fraction = 100; action.sa_handler = sig_handler; sigemptyset(&action.sa_mask); action.sa_flags = 0; if (sigaction(SIGSEGV, &action, NULL) < 0) { (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n", strerror(errno)); exit(EXIT_FAILURE); } if (sigaction(SIGABRT, &action, NULL) < 0) { (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n", strerror(errno)); exit(EXIT_FAILURE); } /* * Force random_get_bytes() to use /dev/urandom in order to prevent * ztest from needlessly depleting the system entropy pool. */ random_path = "/dev/urandom"; ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC); ASSERT3S(ztest_fd_rand, >=, 0); if (!fd_data_str) { process_options(argc, argv); setup_data_fd(); setup_hdr(); setup_data(); memcpy(ztest_shared_opts, &ztest_opts, sizeof (*ztest_shared_opts)); } else { ztest_fd_data = atoi(fd_data_str); setup_data(); memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts)); } ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); err = ztest_set_global_vars(); if (err != 0 && !fd_data_str) { /* error message done by ztest_set_global_vars */ exit(EXIT_FAILURE); } else { /* children should not be spawned if setting gvars fails */ VERIFY3S(err, ==, 0); } /* Override location of zpool.cache */ VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache", ztest_opts.zo_dir), !=, -1); ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), UMEM_NOFAIL); zs = ztest_shared; if (fd_data_str) { metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging; metaslab_df_alloc_threshold = zs->zs_metaslab_df_alloc_threshold; if (zs->zs_do_init) ztest_run_init(); else ztest_run(zs); exit(0); } hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); if (ztest_opts.zo_verbose >= 1) { (void) printf("%"PRIu64" vdevs, %d datasets, %d threads," "%d %s disks, %"PRIu64" seconds...\n\n", ztest_opts.zo_vdevs, ztest_opts.zo_datasets, ztest_opts.zo_threads, ztest_opts.zo_raid_children, ztest_opts.zo_raid_type, ztest_opts.zo_time); } cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); (void) strlcpy(cmd, getexecname(), MAXNAMELEN); zs->zs_do_init = B_TRUE; if (strlen(ztest_opts.zo_alt_ztest) != 0) { if (ztest_opts.zo_verbose >= 1) { (void) printf("Executing older ztest for " "initialization: %s\n", ztest_opts.zo_alt_ztest); } VERIFY(!exec_child(ztest_opts.zo_alt_ztest, ztest_opts.zo_alt_libpath, B_FALSE, NULL)); } else { VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); } zs->zs_do_init = B_FALSE; zs->zs_proc_start = gethrtime(); zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; for (f = 0; f < ZTEST_FUNCS; f++) { zi = &ztest_info[f]; zc = ZTEST_GET_SHARED_CALLSTATE(f); if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) zc->zc_next = UINT64_MAX; else zc->zc_next = zs->zs_proc_start + ztest_random(2 * zi->zi_interval[0] + 1); } /* * Run the tests in a loop. These tests include fault injection * to verify that self-healing data works, and forced crashes * to verify that we never lose on-disk consistency. */ while (gethrtime() < zs->zs_proc_stop) { int status; boolean_t killed; /* * Initialize the workload counters for each function. */ for (f = 0; f < ZTEST_FUNCS; f++) { zc = ZTEST_GET_SHARED_CALLSTATE(f); zc->zc_count = 0; zc->zc_time = 0; } /* Set the allocation switch size */ zs->zs_metaslab_df_alloc_threshold = ztest_random(zs->zs_metaslab_sz / 4) + 1; if (!hasalt || ztest_random(2) == 0) { if (hasalt && ztest_opts.zo_verbose >= 1) { (void) printf("Executing newer ztest: %s\n", cmd); } newer++; killed = exec_child(cmd, NULL, B_TRUE, &status); } else { if (hasalt && ztest_opts.zo_verbose >= 1) { (void) printf("Executing older ztest: %s\n", ztest_opts.zo_alt_ztest); } older++; killed = exec_child(ztest_opts.zo_alt_ztest, ztest_opts.zo_alt_libpath, B_TRUE, &status); } if (killed) kills++; iters++; if (ztest_opts.zo_verbose >= 1) { hrtime_t now = gethrtime(); now = MIN(now, zs->zs_proc_stop); print_time(zs->zs_proc_stop - now, timebuf); nicenum(zs->zs_space, numbuf, sizeof (numbuf)); (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, " "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", iters, WIFEXITED(status) ? "Complete" : "SIGKILL", zs->zs_enospc_count, 100.0 * zs->zs_alloc / zs->zs_space, numbuf, 100.0 * (now - zs->zs_proc_start) / (ztest_opts.zo_time * NANOSEC), timebuf); } if (ztest_opts.zo_verbose >= 2) { (void) printf("\nWorkload summary:\n\n"); (void) printf("%7s %9s %s\n", "Calls", "Time", "Function"); (void) printf("%7s %9s %s\n", "-----", "----", "--------"); for (f = 0; f < ZTEST_FUNCS; f++) { zi = &ztest_info[f]; zc = ZTEST_GET_SHARED_CALLSTATE(f); print_time(zc->zc_time, timebuf); (void) printf("%7"PRIu64" %9s %s\n", zc->zc_count, timebuf, zi->zi_funcname); } (void) printf("\n"); } if (!ztest_opts.zo_mmp_test) ztest_run_zdb(ztest_opts.zo_pool); } if (ztest_opts.zo_verbose >= 1) { if (hasalt) { (void) printf("%d runs of older ztest: %s\n", older, ztest_opts.zo_alt_ztest); (void) printf("%d runs of newer ztest: %s\n", newer, cmd); } (void) printf("%d killed, %d completed, %.0f%% kill rate\n", kills, iters - kills, (100.0 * kills) / MAX(1, iters)); } umem_free(cmd, MAXNAMELEN); return (0); } diff --git a/include/os/freebsd/spl/sys/mod_os.h b/include/os/freebsd/spl/sys/mod_os.h index 95a19cc940c9..e2815ce9e543 100644 --- a/include/os/freebsd/spl/sys/mod_os.h +++ b/include/os/freebsd/spl/sys/mod_os.h @@ -1,126 +1,125 @@ /* * Copyright (c) 2020 iXsystems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SPL_MOD_H #define _SPL_MOD_H #include -#define EXPORT_SYMBOL(x) -#define module_param(a, b, c) -#define MODULE_PARM_DESC(a, b) - #define ZMOD_RW CTLFLAG_RWTUN #define ZMOD_RD CTLFLAG_RDTUN #define ZFS_MODULE_PARAM(scope_prefix, name_prefix, name, type, perm, desc) \ SYSCTL_DECL(_vfs_ ## scope_prefix); \ SYSCTL_##type(_vfs_ ## scope_prefix, OID_AUTO, name, perm, \ &name_prefix ## name, 0, desc) #define ZFS_MODULE_PARAM_ARGS SYSCTL_HANDLER_ARGS #define ZFS_MODULE_PARAM_CALL_IMPL(parent, name, perm, args, desc) \ SYSCTL_DECL(parent); \ SYSCTL_PROC(parent, OID_AUTO, name, CTLFLAG_MPSAFE | perm | args, desc) #define ZFS_MODULE_PARAM_CALL( \ scope_prefix, name_prefix, name, func, _, perm, desc) \ ZFS_MODULE_PARAM_CALL_IMPL(_vfs_ ## scope_prefix, name, perm, \ func ## _args(name_prefix ## name), desc) #define ZFS_MODULE_VIRTUAL_PARAM_CALL ZFS_MODULE_PARAM_CALL #define param_set_arc_long_args(var) \ CTLTYPE_ULONG, &var, 0, param_set_arc_long, "LU" #define param_set_arc_int_args(var) \ CTLTYPE_INT, &var, 0, param_set_arc_int, "I" #define param_set_arc_min_args(var) \ CTLTYPE_ULONG, NULL, 0, param_set_arc_min, "LU" #define param_set_arc_max_args(var) \ CTLTYPE_ULONG, NULL, 0, param_set_arc_max, "LU" #define param_set_arc_free_target_args(var) \ CTLTYPE_UINT, NULL, 0, param_set_arc_free_target, "IU" #define param_set_arc_no_grow_shift_args(var) \ CTLTYPE_INT, NULL, 0, param_set_arc_no_grow_shift, "I" #define param_set_deadman_failmode_args(var) \ CTLTYPE_STRING, NULL, 0, param_set_deadman_failmode, "A" #define param_set_deadman_synctime_args(var) \ CTLTYPE_ULONG, NULL, 0, param_set_deadman_synctime, "LU" #define param_set_deadman_ziotime_args(var) \ CTLTYPE_ULONG, NULL, 0, param_set_deadman_ziotime, "LU" #define param_set_multihost_interval_args(var) \ CTLTYPE_ULONG, NULL, 0, param_set_multihost_interval, "LU" #define param_set_slop_shift_args(var) \ CTLTYPE_INT, NULL, 0, param_set_slop_shift, "I" #define param_set_min_auto_ashift_args(var) \ CTLTYPE_U64, NULL, 0, param_set_min_auto_ashift, "QU" #define param_set_max_auto_ashift_args(var) \ CTLTYPE_U64, NULL, 0, param_set_max_auto_ashift, "QU" #define fletcher_4_param_set_args(var) \ CTLTYPE_STRING, NULL, 0, fletcher_4_param, "A" +#define blake3_param_set_args(var) \ + CTLTYPE_STRING, NULL, 0, blake3_param, "A" + #include #define module_init(fn) \ static void \ wrap_ ## fn(void *dummy __unused) \ { \ fn(); \ } \ SYSINIT(zfs_ ## fn, SI_SUB_LAST, SI_ORDER_FIRST, wrap_ ## fn, NULL) #define module_init_early(fn) \ static void \ wrap_ ## fn(void *dummy __unused) \ { \ fn(); \ } \ SYSINIT(zfs_ ## fn, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_FIRST, wrap_ ## fn, NULL) #define module_exit(fn) \ static void \ wrap_ ## fn(void *dummy __unused) \ { \ fn(); \ } \ SYSUNINIT(zfs_ ## fn, SI_SUB_LAST, SI_ORDER_FIRST, wrap_ ## fn, NULL) #endif /* SPL_MOD_H */ diff --git a/include/sys/blake3.h b/include/sys/blake3.h index 19500585f382..ad65fc8db7b9 100644 --- a/include/sys/blake3.h +++ b/include/sys/blake3.h @@ -1,125 +1,122 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3 * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor * Copyright (c) 2021 Tino Reichardt */ #ifndef BLAKE3_H #define BLAKE3_H #ifdef _KERNEL #include #else #include #include #endif #ifdef __cplusplus extern "C" { #endif #define BLAKE3_KEY_LEN 32 #define BLAKE3_OUT_LEN 32 #define BLAKE3_MAX_DEPTH 54 #define BLAKE3_BLOCK_LEN 64 #define BLAKE3_CHUNK_LEN 1024 /* * This struct is a private implementation detail. * It has to be here because it's part of BLAKE3_CTX below. */ typedef struct { uint32_t cv[8]; uint64_t chunk_counter; uint8_t buf[BLAKE3_BLOCK_LEN]; uint8_t buf_len; uint8_t blocks_compressed; uint8_t flags; } blake3_chunk_state_t; typedef struct { uint32_t key[8]; blake3_chunk_state_t chunk; uint8_t cv_stack_len; /* * The stack size is MAX_DEPTH + 1 because we do lazy merging. For * example, with 7 chunks, we have 3 entries in the stack. Adding an * 8th chunk requires a 4th entry, rather than merging everything down * to 1, because we don't know whether more input is coming. This is * different from how the reference implementation does things. */ uint8_t cv_stack[(BLAKE3_MAX_DEPTH + 1) * BLAKE3_OUT_LEN]; - /* const blake3_impl_ops_t *ops */ + /* const blake3_ops_t *ops */ const void *ops; } BLAKE3_CTX; /* init the context for hash operation */ void Blake3_Init(BLAKE3_CTX *ctx); /* init the context for a MAC and/or tree hash operation */ void Blake3_InitKeyed(BLAKE3_CTX *ctx, const uint8_t key[BLAKE3_KEY_LEN]); /* process the input bytes */ void Blake3_Update(BLAKE3_CTX *ctx, const void *input, size_t input_len); /* finalize the hash computation and output the result */ void Blake3_Final(const BLAKE3_CTX *ctx, uint8_t *out); /* finalize the hash computation and output the result */ void Blake3_FinalSeek(const BLAKE3_CTX *ctx, uint64_t seek, uint8_t *out, size_t out_len); /* these are pre-allocated contexts */ extern void **blake3_per_cpu_ctx; extern void blake3_per_cpu_ctx_init(void); extern void blake3_per_cpu_ctx_fini(void); -/* return number of supported implementations */ -extern int blake3_get_impl_count(void); +/* get count of supported implementations */ +extern uint32_t blake3_impl_getcnt(void); -/* return id of selected implementation */ -extern int blake3_get_impl_id(void); +/* get id of selected implementation */ +extern uint32_t blake3_impl_getid(void); -/* return name of selected implementation */ -extern const char *blake3_get_impl_name(void); +/* get name of selected implementation */ +extern const char *blake3_impl_getname(void); /* setup id as fastest implementation */ -extern void blake3_set_impl_fastest(uint32_t id); +extern void blake3_impl_set_fastest(uint32_t id); /* set implementation by id */ -extern void blake3_set_impl_id(uint32_t id); +extern void blake3_impl_setid(uint32_t id); /* set implementation by name */ -extern int blake3_set_impl_name(const char *name); - -/* set startup implementation */ -extern void blake3_setup_impl(void); +extern int blake3_impl_setname(const char *name); #ifdef __cplusplus } #endif #endif /* BLAKE3_H */ diff --git a/module/icp/algs/blake3/blake3.c b/module/icp/algs/blake3/blake3.c index b9600207b673..5f7018598820 100644 --- a/module/icp/algs/blake3/blake3.c +++ b/module/icp/algs/blake3/blake3.c @@ -1,732 +1,732 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3 * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor * Copyright (c) 2021-2022 Tino Reichardt */ #include #include #include "blake3_impl.h" /* * We need 1056 byte stack for blake3_compress_subtree_wide() * - we define this pragma to make gcc happy */ #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wframe-larger-than=" #endif /* internal used */ typedef struct { uint32_t input_cv[8]; uint64_t counter; uint8_t block[BLAKE3_BLOCK_LEN]; uint8_t block_len; uint8_t flags; } output_t; /* internal flags */ enum blake3_flags { CHUNK_START = 1 << 0, CHUNK_END = 1 << 1, PARENT = 1 << 2, ROOT = 1 << 3, KEYED_HASH = 1 << 4, DERIVE_KEY_CONTEXT = 1 << 5, DERIVE_KEY_MATERIAL = 1 << 6, }; /* internal start */ static void chunk_state_init(blake3_chunk_state_t *ctx, const uint32_t key[8], uint8_t flags) { memcpy(ctx->cv, key, BLAKE3_KEY_LEN); ctx->chunk_counter = 0; memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); ctx->buf_len = 0; ctx->blocks_compressed = 0; ctx->flags = flags; } static void chunk_state_reset(blake3_chunk_state_t *ctx, const uint32_t key[8], uint64_t chunk_counter) { memcpy(ctx->cv, key, BLAKE3_KEY_LEN); ctx->chunk_counter = chunk_counter; ctx->blocks_compressed = 0; memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); ctx->buf_len = 0; } static size_t chunk_state_len(const blake3_chunk_state_t *ctx) { return (BLAKE3_BLOCK_LEN * (size_t)ctx->blocks_compressed) + ((size_t)ctx->buf_len); } static size_t chunk_state_fill_buf(blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len) { size_t take = BLAKE3_BLOCK_LEN - ((size_t)ctx->buf_len); if (take > input_len) { take = input_len; } uint8_t *dest = ctx->buf + ((size_t)ctx->buf_len); memcpy(dest, input, take); ctx->buf_len += (uint8_t)take; return (take); } static uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state_t *ctx) { if (ctx->blocks_compressed == 0) { return (CHUNK_START); } else { return (0); } } static output_t make_output(const uint32_t input_cv[8], const uint8_t *block, uint8_t block_len, uint64_t counter, uint8_t flags) { output_t ret; memcpy(ret.input_cv, input_cv, 32); memcpy(ret.block, block, BLAKE3_BLOCK_LEN); ret.block_len = block_len; ret.counter = counter; ret.flags = flags; return (ret); } /* * Chaining values within a given chunk (specifically the compress_in_place * interface) are represented as words. This avoids unnecessary bytes<->words * conversion overhead in the portable implementation. However, the hash_many * interface handles both user input and parent node blocks, so it accepts * bytes. For that reason, chaining values in the CV stack are represented as * bytes. */ -static void output_chaining_value(const blake3_impl_ops_t *ops, +static void output_chaining_value(const blake3_ops_t *ops, const output_t *ctx, uint8_t cv[32]) { uint32_t cv_words[8]; memcpy(cv_words, ctx->input_cv, 32); ops->compress_in_place(cv_words, ctx->block, ctx->block_len, ctx->counter, ctx->flags); store_cv_words(cv, cv_words); } -static void output_root_bytes(const blake3_impl_ops_t *ops, const output_t *ctx, +static void output_root_bytes(const blake3_ops_t *ops, const output_t *ctx, uint64_t seek, uint8_t *out, size_t out_len) { uint64_t output_block_counter = seek / 64; size_t offset_within_block = seek % 64; uint8_t wide_buf[64]; while (out_len > 0) { ops->compress_xof(ctx->input_cv, ctx->block, ctx->block_len, output_block_counter, ctx->flags | ROOT, wide_buf); size_t available_bytes = 64 - offset_within_block; size_t memcpy_len; if (out_len > available_bytes) { memcpy_len = available_bytes; } else { memcpy_len = out_len; } memcpy(out, wide_buf + offset_within_block, memcpy_len); out += memcpy_len; out_len -= memcpy_len; output_block_counter += 1; offset_within_block = 0; } } -static void chunk_state_update(const blake3_impl_ops_t *ops, +static void chunk_state_update(const blake3_ops_t *ops, blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len) { if (ctx->buf_len > 0) { size_t take = chunk_state_fill_buf(ctx, input, input_len); input += take; input_len -= take; if (input_len > 0) { ops->compress_in_place(ctx->cv, ctx->buf, BLAKE3_BLOCK_LEN, ctx->chunk_counter, ctx->flags|chunk_state_maybe_start_flag(ctx)); ctx->blocks_compressed += 1; ctx->buf_len = 0; memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); } } while (input_len > BLAKE3_BLOCK_LEN) { ops->compress_in_place(ctx->cv, input, BLAKE3_BLOCK_LEN, ctx->chunk_counter, ctx->flags|chunk_state_maybe_start_flag(ctx)); ctx->blocks_compressed += 1; input += BLAKE3_BLOCK_LEN; input_len -= BLAKE3_BLOCK_LEN; } size_t take = chunk_state_fill_buf(ctx, input, input_len); input += take; input_len -= take; } static output_t chunk_state_output(const blake3_chunk_state_t *ctx) { uint8_t block_flags = ctx->flags | chunk_state_maybe_start_flag(ctx) | CHUNK_END; return (make_output(ctx->cv, ctx->buf, ctx->buf_len, ctx->chunk_counter, block_flags)); } static output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN], const uint32_t key[8], uint8_t flags) { return (make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT)); } /* * Given some input larger than one chunk, return the number of bytes that * should go in the left subtree. This is the largest power-of-2 number of * chunks that leaves at least 1 byte for the right subtree. */ static size_t left_len(size_t content_len) { /* * Subtract 1 to reserve at least one byte for the right side. * content_len * should always be greater than BLAKE3_CHUNK_LEN. */ size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN; return (round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN); } /* * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time * on a single thread. Write out the chunk chaining values and return the * number of chunks hashed. These chunks are never the root and never empty; * those cases use a different codepath. */ -static size_t compress_chunks_parallel(const blake3_impl_ops_t *ops, +static size_t compress_chunks_parallel(const blake3_ops_t *ops, const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t *out) { const uint8_t *chunks_array[MAX_SIMD_DEGREE]; size_t input_position = 0; size_t chunks_array_len = 0; while (input_len - input_position >= BLAKE3_CHUNK_LEN) { chunks_array[chunks_array_len] = &input[input_position]; input_position += BLAKE3_CHUNK_LEN; chunks_array_len += 1; } ops->hash_many(chunks_array, chunks_array_len, BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter, B_TRUE, flags, CHUNK_START, CHUNK_END, out); /* * Hash the remaining partial chunk, if there is one. Note that the * empty chunk (meaning the empty message) is a different codepath. */ if (input_len > input_position) { uint64_t counter = chunk_counter + (uint64_t)chunks_array_len; blake3_chunk_state_t chunk_state; chunk_state_init(&chunk_state, key, flags); chunk_state.chunk_counter = counter; chunk_state_update(ops, &chunk_state, &input[input_position], input_len - input_position); output_t output = chunk_state_output(&chunk_state); output_chaining_value(ops, &output, &out[chunks_array_len * BLAKE3_OUT_LEN]); return (chunks_array_len + 1); } else { return (chunks_array_len); } } /* * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time * on a single thread. Write out the parent chaining values and return the * number of parents hashed. (If there's an odd input chaining value left over, * return it as an additional output.) These parents are never the root and * never empty; those cases use a different codepath. */ -static size_t compress_parents_parallel(const blake3_impl_ops_t *ops, +static size_t compress_parents_parallel(const blake3_ops_t *ops, const uint8_t *child_chaining_values, size_t num_chaining_values, const uint32_t key[8], uint8_t flags, uint8_t *out) { const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2]; size_t parents_array_len = 0; while (num_chaining_values - (2 * parents_array_len) >= 2) { parents_array[parents_array_len] = &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN]; parents_array_len += 1; } ops->hash_many(parents_array, parents_array_len, 1, key, 0, B_FALSE, flags | PARENT, 0, 0, out); /* If there's an odd child left over, it becomes an output. */ if (num_chaining_values > 2 * parents_array_len) { memcpy(&out[parents_array_len * BLAKE3_OUT_LEN], &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN], BLAKE3_OUT_LEN); return (parents_array_len + 1); } else { return (parents_array_len); } } /* * The wide helper function returns (writes out) an array of chaining values * and returns the length of that array. The number of chaining values returned * is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, * if the input is shorter than that many chunks. The reason for maintaining a * wide array of chaining values going back up the tree, is to allow the * implementation to hash as many parents in parallel as possible. * * As a special case when the SIMD degree is 1, this function will still return * at least 2 outputs. This guarantees that this function doesn't perform the * root compression. (If it did, it would use the wrong flags, and also we * wouldn't be able to implement exendable ouput.) Note that this function is * not used when the whole input is only 1 chunk long; that's a different * codepath. * * Why not just have the caller split the input on the first update(), instead * of implementing this special rule? Because we don't want to limit SIMD or * multi-threading parallelism for that update(). */ -static size_t blake3_compress_subtree_wide(const blake3_impl_ops_t *ops, +static size_t blake3_compress_subtree_wide(const blake3_ops_t *ops, const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t *out) { /* * Note that the single chunk case does *not* bump the SIMD degree up * to 2 when it is 1. If this implementation adds multi-threading in * the future, this gives us the option of multi-threading even the * 2-chunk case, which can help performance on smaller platforms. */ if (input_len <= (size_t)(ops->degree * BLAKE3_CHUNK_LEN)) { return (compress_chunks_parallel(ops, input, input_len, key, chunk_counter, flags, out)); } /* * With more than simd_degree chunks, we need to recurse. Start by * dividing the input into left and right subtrees. (Note that this is * only optimal as long as the SIMD degree is a power of 2. If we ever * get a SIMD degree of 3 or something, we'll need a more complicated * strategy.) */ size_t left_input_len = left_len(input_len); size_t right_input_len = input_len - left_input_len; const uint8_t *right_input = &input[left_input_len]; uint64_t right_chunk_counter = chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN); /* * Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 * to account for the special case of returning 2 outputs when the * SIMD degree is 1. */ uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; size_t degree = ops->degree; if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) { /* * The special case: We always use a degree of at least two, * to make sure there are two outputs. Except, as noted above, * at the chunk level, where we allow degree=1. (Note that the * 1-chunk-input case is a different codepath.) */ degree = 2; } uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN]; /* * Recurse! If this implementation adds multi-threading support in the * future, this is where it will go. */ size_t left_n = blake3_compress_subtree_wide(ops, input, left_input_len, key, chunk_counter, flags, cv_array); size_t right_n = blake3_compress_subtree_wide(ops, right_input, right_input_len, key, right_chunk_counter, flags, right_cvs); /* * The special case again. If simd_degree=1, then we'll have left_n=1 * and right_n=1. Rather than compressing them into a single output, * return them directly, to make sure we always have at least two * outputs. */ if (left_n == 1) { memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); return (2); } /* Otherwise, do one layer of parent node compression. */ size_t num_chaining_values = left_n + right_n; return compress_parents_parallel(ops, cv_array, num_chaining_values, key, flags, out); } /* * Hash a subtree with compress_subtree_wide(), and then condense the resulting * list of chaining values down to a single parent node. Don't compress that * last parent node, however. Instead, return its message bytes (the * concatenated chaining values of its children). This is necessary when the * first call to update() supplies a complete subtree, because the topmost * parent node of that subtree could end up being the root. It's also necessary * for extended output in the general case. * * As with compress_subtree_wide(), this function is not used on inputs of 1 * chunk or less. That's a different codepath. */ -static void compress_subtree_to_parent_node(const blake3_impl_ops_t *ops, +static void compress_subtree_to_parent_node(const blake3_ops_t *ops, const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) { uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; size_t num_cvs = blake3_compress_subtree_wide(ops, input, input_len, key, chunk_counter, flags, cv_array); /* * If MAX_SIMD_DEGREE is greater than 2 and there's enough input, * compress_subtree_wide() returns more than 2 chaining values. Condense * them into 2 by forming parent nodes repeatedly. */ uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2]; while (num_cvs > 2) { num_cvs = compress_parents_parallel(ops, cv_array, num_cvs, key, flags, out_array); memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN); } memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); } static void hasher_init_base(BLAKE3_CTX *ctx, const uint32_t key[8], uint8_t flags) { memcpy(ctx->key, key, BLAKE3_KEY_LEN); chunk_state_init(&ctx->chunk, key, flags); ctx->cv_stack_len = 0; ctx->ops = blake3_impl_get_ops(); } /* * As described in hasher_push_cv() below, we do "lazy merging", delaying * merges until right before the next CV is about to be added. This is * different from the reference implementation. Another difference is that we * aren't always merging 1 chunk at a time. Instead, each CV might represent * any power-of-two number of chunks, as long as the smaller-above-larger * stack order is maintained. Instead of the "count the trailing 0-bits" * algorithm described in the spec, we use a "count the total number of * 1-bits" variant that doesn't require us to retain the subtree size of the * CV on top of the stack. The principle is the same: each CV that should * remain in the stack is represented by a 1-bit in the total number of chunks * (or bytes) so far. */ static void hasher_merge_cv_stack(BLAKE3_CTX *ctx, uint64_t total_len) { size_t post_merge_stack_len = (size_t)popcnt(total_len); while (ctx->cv_stack_len > post_merge_stack_len) { uint8_t *parent_node = &ctx->cv_stack[(ctx->cv_stack_len - 2) * BLAKE3_OUT_LEN]; output_t output = parent_output(parent_node, ctx->key, ctx->chunk.flags); output_chaining_value(ctx->ops, &output, parent_node); ctx->cv_stack_len -= 1; } } /* * In reference_impl.rs, we merge the new CV with existing CVs from the stack * before pushing it. We can do that because we know more input is coming, so * we know none of the merges are root. * * This setting is different. We want to feed as much input as possible to * compress_subtree_wide(), without setting aside anything for the chunk_state. * If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once * as a single subtree, if at all possible. * * This leads to two problems: * 1) This 64 KiB input might be the only call that ever gets made to update. * In this case, the root node of the 64 KiB subtree would be the root node * of the whole tree, and it would need to be ROOT finalized. We can't * compress it until we know. * 2) This 64 KiB input might complete a larger tree, whose root node is * similarly going to be the the root of the whole tree. For example, maybe * we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the * node at the root of the 256 KiB subtree until we know how to finalize it. * * The second problem is solved with "lazy merging". That is, when we're about * to add a CV to the stack, we don't merge it with anything first, as the * reference impl does. Instead we do merges using the *previous* CV that was * added, which is sitting on top of the stack, and we put the new CV * (unmerged) on top of the stack afterwards. This guarantees that we never * merge the root node until finalize(). * * Solving the first problem requires an additional tool, * compress_subtree_to_parent_node(). That function always returns the top * *two* chaining values of the subtree it's compressing. We then do lazy * merging with each of them separately, so that the second CV will always * remain unmerged. (That also helps us support extendable output when we're * hashing an input all-at-once.) */ static void hasher_push_cv(BLAKE3_CTX *ctx, uint8_t new_cv[BLAKE3_OUT_LEN], uint64_t chunk_counter) { hasher_merge_cv_stack(ctx, chunk_counter); memcpy(&ctx->cv_stack[ctx->cv_stack_len * BLAKE3_OUT_LEN], new_cv, BLAKE3_OUT_LEN); ctx->cv_stack_len += 1; } void Blake3_Init(BLAKE3_CTX *ctx) { hasher_init_base(ctx, BLAKE3_IV, 0); } void Blake3_InitKeyed(BLAKE3_CTX *ctx, const uint8_t key[BLAKE3_KEY_LEN]) { uint32_t key_words[8]; load_key_words(key, key_words); hasher_init_base(ctx, key_words, KEYED_HASH); } static void Blake3_Update2(BLAKE3_CTX *ctx, const void *input, size_t input_len) { /* * Explicitly checking for zero avoids causing UB by passing a null * pointer to memcpy. This comes up in practice with things like: * std::vector v; * blake3_hasher_update(&hasher, v.data(), v.size()); */ if (input_len == 0) { return; } const uint8_t *input_bytes = (const uint8_t *)input; /* * If we have some partial chunk bytes in the internal chunk_state, we * need to finish that chunk first. */ if (chunk_state_len(&ctx->chunk) > 0) { size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&ctx->chunk); if (take > input_len) { take = input_len; } chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, take); input_bytes += take; input_len -= take; /* * If we've filled the current chunk and there's more coming, * finalize this chunk and proceed. In this case we know it's * not the root. */ if (input_len > 0) { output_t output = chunk_state_output(&ctx->chunk); uint8_t chunk_cv[32]; output_chaining_value(ctx->ops, &output, chunk_cv); hasher_push_cv(ctx, chunk_cv, ctx->chunk.chunk_counter); chunk_state_reset(&ctx->chunk, ctx->key, ctx->chunk.chunk_counter + 1); } else { return; } } /* * Now the chunk_state is clear, and we have more input. If there's * more than a single chunk (so, definitely not the root chunk), hash * the largest whole subtree we can, with the full benefits of SIMD * (and maybe in the future, multi-threading) parallelism. Two * restrictions: * - The subtree has to be a power-of-2 number of chunks. Only * subtrees along the right edge can be incomplete, and we don't know * where the right edge is going to be until we get to finalize(). * - The subtree must evenly divide the total number of chunks up * until this point (if total is not 0). If the current incomplete * subtree is only waiting for 1 more chunk, we can't hash a subtree * of 4 chunks. We have to complete the current subtree first. * Because we might need to break up the input to form powers of 2, or * to evenly divide what we already have, this part runs in a loop. */ while (input_len > BLAKE3_CHUNK_LEN) { size_t subtree_len = round_down_to_power_of_2(input_len); uint64_t count_so_far = ctx->chunk.chunk_counter * BLAKE3_CHUNK_LEN; /* * Shrink the subtree_len until it evenly divides the count so * far. We know that subtree_len itself is a power of 2, so we * can use a bitmasking trick instead of an actual remainder * operation. (Note that if the caller consistently passes * power-of-2 inputs of the same size, as is hopefully * typical, this loop condition will always fail, and * subtree_len will always be the full length of the input.) * * An aside: We don't have to shrink subtree_len quite this * much. For example, if count_so_far is 1, we could pass 2 * chunks to compress_subtree_to_parent_node. Since we'll get * 2 CVs back, we'll still get the right answer in the end, * and we might get to use 2-way SIMD parallelism. The problem * with this optimization, is that it gets us stuck always * hashing 2 chunks. The total number of chunks will remain * odd, and we'll never graduate to higher degrees of * parallelism. See * https://github.com/BLAKE3-team/BLAKE3/issues/69. */ while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) { subtree_len /= 2; } /* * The shrunken subtree_len might now be 1 chunk long. If so, * hash that one chunk by itself. Otherwise, compress the * subtree into a pair of CVs. */ uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN; if (subtree_len <= BLAKE3_CHUNK_LEN) { blake3_chunk_state_t chunk_state; chunk_state_init(&chunk_state, ctx->key, ctx->chunk.flags); chunk_state.chunk_counter = ctx->chunk.chunk_counter; chunk_state_update(ctx->ops, &chunk_state, input_bytes, subtree_len); output_t output = chunk_state_output(&chunk_state); uint8_t cv[BLAKE3_OUT_LEN]; output_chaining_value(ctx->ops, &output, cv); hasher_push_cv(ctx, cv, chunk_state.chunk_counter); } else { /* * This is the high-performance happy path, though * getting here depends on the caller giving us a long * enough input. */ uint8_t cv_pair[2 * BLAKE3_OUT_LEN]; compress_subtree_to_parent_node(ctx->ops, input_bytes, subtree_len, ctx->key, ctx-> chunk.chunk_counter, ctx->chunk.flags, cv_pair); hasher_push_cv(ctx, cv_pair, ctx->chunk.chunk_counter); hasher_push_cv(ctx, &cv_pair[BLAKE3_OUT_LEN], ctx->chunk.chunk_counter + (subtree_chunks / 2)); } ctx->chunk.chunk_counter += subtree_chunks; input_bytes += subtree_len; input_len -= subtree_len; } /* * If there's any remaining input less than a full chunk, add it to * the chunk state. In that case, also do a final merge loop to make * sure the subtree stack doesn't contain any unmerged pairs. The * remaining input means we know these merges are non-root. This merge * loop isn't strictly necessary here, because hasher_push_chunk_cv * already does its own merge loop, but it simplifies * blake3_hasher_finalize below. */ if (input_len > 0) { chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, input_len); hasher_merge_cv_stack(ctx, ctx->chunk.chunk_counter); } } void Blake3_Update(BLAKE3_CTX *ctx, const void *input, size_t todo) { size_t done = 0; const uint8_t *data = input; const size_t block_max = 1024 * 64; /* max feed buffer to leave the stack size small */ while (todo != 0) { size_t block = (todo >= block_max) ? block_max : todo; Blake3_Update2(ctx, data + done, block); done += block; todo -= block; } } void Blake3_Final(const BLAKE3_CTX *ctx, uint8_t *out) { Blake3_FinalSeek(ctx, 0, out, BLAKE3_OUT_LEN); } void Blake3_FinalSeek(const BLAKE3_CTX *ctx, uint64_t seek, uint8_t *out, size_t out_len) { /* * Explicitly checking for zero avoids causing UB by passing a null * pointer to memcpy. This comes up in practice with things like: * std::vector v; * blake3_hasher_finalize(&hasher, v.data(), v.size()); */ if (out_len == 0) { return; } /* If the subtree stack is empty, then the current chunk is the root. */ if (ctx->cv_stack_len == 0) { output_t output = chunk_state_output(&ctx->chunk); output_root_bytes(ctx->ops, &output, seek, out, out_len); return; } /* * If there are any bytes in the chunk state, finalize that chunk and * do a roll-up merge between that chunk hash and every subtree in the * stack. In this case, the extra merge loop at the end of * blake3_hasher_update guarantees that none of the subtrees in the * stack need to be merged with each other first. Otherwise, if there * are no bytes in the chunk state, then the top of the stack is a * chunk hash, and we start the merge from that. */ output_t output; size_t cvs_remaining; if (chunk_state_len(&ctx->chunk) > 0) { cvs_remaining = ctx->cv_stack_len; output = chunk_state_output(&ctx->chunk); } else { /* There are always at least 2 CVs in the stack in this case. */ cvs_remaining = ctx->cv_stack_len - 2; output = parent_output(&ctx->cv_stack[cvs_remaining * 32], ctx->key, ctx->chunk.flags); } while (cvs_remaining > 0) { cvs_remaining -= 1; uint8_t parent_block[BLAKE3_BLOCK_LEN]; memcpy(parent_block, &ctx->cv_stack[cvs_remaining * 32], 32); output_chaining_value(ctx->ops, &output, &parent_block[32]); output = parent_output(parent_block, ctx->key, ctx->chunk.flags); } output_root_bytes(ctx->ops, &output, seek, out, out_len); } diff --git a/module/icp/algs/blake3/blake3_generic.c b/module/icp/algs/blake3/blake3_generic.c index 6c1eb33e89c0..94a1f108236e 100644 --- a/module/icp/algs/blake3/blake3_generic.c +++ b/module/icp/algs/blake3/blake3_generic.c @@ -1,202 +1,202 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3 * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor * Copyright (c) 2021-2022 Tino Reichardt */ #include #include "blake3_impl.h" #define rotr32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) static inline void g(uint32_t *state, size_t a, size_t b, size_t c, size_t d, uint32_t x, uint32_t y) { state[a] = state[a] + state[b] + x; state[d] = rotr32(state[d] ^ state[a], 16); state[c] = state[c] + state[d]; state[b] = rotr32(state[b] ^ state[c], 12); state[a] = state[a] + state[b] + y; state[d] = rotr32(state[d] ^ state[a], 8); state[c] = state[c] + state[d]; state[b] = rotr32(state[b] ^ state[c], 7); } static inline void round_fn(uint32_t state[16], const uint32_t *msg, size_t round) { /* Select the message schedule based on the round. */ const uint8_t *schedule = BLAKE3_MSG_SCHEDULE[round]; /* Mix the columns. */ g(state, 0, 4, 8, 12, msg[schedule[0]], msg[schedule[1]]); g(state, 1, 5, 9, 13, msg[schedule[2]], msg[schedule[3]]); g(state, 2, 6, 10, 14, msg[schedule[4]], msg[schedule[5]]); g(state, 3, 7, 11, 15, msg[schedule[6]], msg[schedule[7]]); /* Mix the rows. */ g(state, 0, 5, 10, 15, msg[schedule[8]], msg[schedule[9]]); g(state, 1, 6, 11, 12, msg[schedule[10]], msg[schedule[11]]); g(state, 2, 7, 8, 13, msg[schedule[12]], msg[schedule[13]]); g(state, 3, 4, 9, 14, msg[schedule[14]], msg[schedule[15]]); } static inline void compress_pre(uint32_t state[16], const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags) { uint32_t block_words[16]; block_words[0] = load32(block + 4 * 0); block_words[1] = load32(block + 4 * 1); block_words[2] = load32(block + 4 * 2); block_words[3] = load32(block + 4 * 3); block_words[4] = load32(block + 4 * 4); block_words[5] = load32(block + 4 * 5); block_words[6] = load32(block + 4 * 6); block_words[7] = load32(block + 4 * 7); block_words[8] = load32(block + 4 * 8); block_words[9] = load32(block + 4 * 9); block_words[10] = load32(block + 4 * 10); block_words[11] = load32(block + 4 * 11); block_words[12] = load32(block + 4 * 12); block_words[13] = load32(block + 4 * 13); block_words[14] = load32(block + 4 * 14); block_words[15] = load32(block + 4 * 15); state[0] = cv[0]; state[1] = cv[1]; state[2] = cv[2]; state[3] = cv[3]; state[4] = cv[4]; state[5] = cv[5]; state[6] = cv[6]; state[7] = cv[7]; state[8] = BLAKE3_IV[0]; state[9] = BLAKE3_IV[1]; state[10] = BLAKE3_IV[2]; state[11] = BLAKE3_IV[3]; state[12] = counter_low(counter); state[13] = counter_high(counter); state[14] = (uint32_t)block_len; state[15] = (uint32_t)flags; round_fn(state, &block_words[0], 0); round_fn(state, &block_words[0], 1); round_fn(state, &block_words[0], 2); round_fn(state, &block_words[0], 3); round_fn(state, &block_words[0], 4); round_fn(state, &block_words[0], 5); round_fn(state, &block_words[0], 6); } static inline void blake3_compress_in_place_generic(uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags) { uint32_t state[16]; compress_pre(state, cv, block, block_len, counter, flags); cv[0] = state[0] ^ state[8]; cv[1] = state[1] ^ state[9]; cv[2] = state[2] ^ state[10]; cv[3] = state[3] ^ state[11]; cv[4] = state[4] ^ state[12]; cv[5] = state[5] ^ state[13]; cv[6] = state[6] ^ state[14]; cv[7] = state[7] ^ state[15]; } static inline void hash_one_generic(const uint8_t *input, size_t blocks, const uint32_t key[8], uint64_t counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) { uint32_t cv[8]; memcpy(cv, key, BLAKE3_KEY_LEN); uint8_t block_flags = flags | flags_start; while (blocks > 0) { if (blocks == 1) { block_flags |= flags_end; } blake3_compress_in_place_generic(cv, input, BLAKE3_BLOCK_LEN, counter, block_flags); input = &input[BLAKE3_BLOCK_LEN]; blocks -= 1; block_flags = flags; } store_cv_words(out, cv); } static inline void blake3_compress_xof_generic(const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags, uint8_t out[64]) { uint32_t state[16]; compress_pre(state, cv, block, block_len, counter, flags); store32(&out[0 * 4], state[0] ^ state[8]); store32(&out[1 * 4], state[1] ^ state[9]); store32(&out[2 * 4], state[2] ^ state[10]); store32(&out[3 * 4], state[3] ^ state[11]); store32(&out[4 * 4], state[4] ^ state[12]); store32(&out[5 * 4], state[5] ^ state[13]); store32(&out[6 * 4], state[6] ^ state[14]); store32(&out[7 * 4], state[7] ^ state[15]); store32(&out[8 * 4], state[8] ^ cv[0]); store32(&out[9 * 4], state[9] ^ cv[1]); store32(&out[10 * 4], state[10] ^ cv[2]); store32(&out[11 * 4], state[11] ^ cv[3]); store32(&out[12 * 4], state[12] ^ cv[4]); store32(&out[13 * 4], state[13] ^ cv[5]); store32(&out[14 * 4], state[14] ^ cv[6]); store32(&out[15 * 4], state[15] ^ cv[7]); } static inline void blake3_hash_many_generic(const uint8_t * const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, boolean_t increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { while (num_inputs > 0) { hash_one_generic(inputs[0], blocks, key, counter, flags, flags_start, flags_end, out); if (increment_counter) { counter += 1; } inputs += 1; num_inputs -= 1; out = &out[BLAKE3_OUT_LEN]; } } static inline boolean_t blake3_is_generic_supported(void) { return (B_TRUE); } -const blake3_impl_ops_t blake3_generic_impl = { +const blake3_ops_t blake3_generic_impl = { .compress_in_place = blake3_compress_in_place_generic, .compress_xof = blake3_compress_xof_generic, .hash_many = blake3_hash_many_generic, .is_supported = blake3_is_generic_supported, .degree = 4, .name = "generic" }; diff --git a/module/icp/algs/blake3/blake3_impl.c b/module/icp/algs/blake3/blake3_impl.c index 10741c82de7e..5276fd88fbb6 100644 --- a/module/icp/algs/blake3/blake3_impl.c +++ b/module/icp/algs/blake3/blake3_impl.c @@ -1,284 +1,362 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2021-2022 Tino Reichardt */ #include #include #include "blake3_impl.h" -static const blake3_impl_ops_t *const blake3_impls[] = { +static const blake3_ops_t *const blake3_impls[] = { &blake3_generic_impl, #if defined(__aarch64__) || \ (defined(__x86_64) && defined(HAVE_SSE2)) || \ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__)) &blake3_sse2_impl, #endif #if defined(__aarch64__) || \ (defined(__x86_64) && defined(HAVE_SSE4_1)) || \ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__)) &blake3_sse41_impl, #endif #if defined(__x86_64) && defined(HAVE_SSE4_1) && defined(HAVE_AVX2) &blake3_avx2_impl, #endif #if defined(__x86_64) && defined(HAVE_AVX512F) && defined(HAVE_AVX512VL) &blake3_avx512_impl, #endif }; -/* this pointer holds current ops for implementation */ -static const blake3_impl_ops_t *blake3_selected_impl = &blake3_generic_impl; - -/* special implementation selections */ +/* Select BLAKE3 implementation */ #define IMPL_FASTEST (UINT32_MAX) -#define IMPL_CYCLE (UINT32_MAX-1) -#define IMPL_USER (UINT32_MAX-2) -#define IMPL_PARAM (UINT32_MAX-3) +#define IMPL_CYCLE (UINT32_MAX - 1) -#define IMPL_READ(i) (*(volatile uint32_t *) &(i)) -static uint32_t icp_blake3_impl = IMPL_FASTEST; +#define IMPL_READ(i) (*(volatile uint32_t *) &(i)) -#define BLAKE3_IMPL_NAME_MAX 16 +/* Indicate that benchmark has been done */ +static boolean_t blake3_initialized = B_FALSE; -/* id of fastest implementation */ -static uint32_t blake3_fastest_id = 0; +/* Implementation that contains the fastest methods */ +static blake3_ops_t blake3_fastest_impl = { + .name = "fastest" +}; -/* currently used id */ -static uint32_t blake3_current_id = 0; +/* Hold all supported implementations */ +static const blake3_ops_t *blake3_supp_impls[ARRAY_SIZE(blake3_impls)]; +static uint32_t blake3_supp_impls_cnt = 0; -/* id of module parameter (-1 == unused) */ -static int blake3_param_id = -1; +/* Currently selected implementation */ +static uint32_t blake3_impl_chosen = IMPL_FASTEST; -/* return number of supported implementations */ -int -blake3_get_impl_count(void) +static struct blake3_impl_selector { + const char *name; + uint32_t sel; +} blake3_impl_selectors[] = { + { "cycle", IMPL_CYCLE }, + { "fastest", IMPL_FASTEST } +}; + +/* check the supported implementations */ +static void blake3_impl_init(void) { - static int impls = 0; - int i; + int i, c; + + /* init only once */ + if (likely(blake3_initialized)) + return; - if (impls) - return (impls); + /* move supported implementations into blake3_supp_impls */ + for (i = 0, c = 0; i < ARRAY_SIZE(blake3_impls); i++) { + const blake3_ops_t *impl = blake3_impls[i]; - for (i = 0; i < ARRAY_SIZE(blake3_impls); i++) { - if (!blake3_impls[i]->is_supported()) continue; - impls++; + if (impl->is_supported && impl->is_supported()) + blake3_supp_impls[c++] = impl; } + blake3_supp_impls_cnt = c; - return (impls); + /* first init generic impl, may be changed via set_fastest() */ + memcpy(&blake3_fastest_impl, blake3_impls[0], + sizeof (blake3_fastest_impl)); + blake3_initialized = B_TRUE; } -/* return id of selected implementation */ -int -blake3_get_impl_id(void) +/* get number of supported implementations */ +uint32_t +blake3_impl_getcnt(void) +{ + blake3_impl_init(); + return (blake3_supp_impls_cnt); +} + +/* get id of selected implementation */ +uint32_t +blake3_impl_getid(void) { - return (blake3_current_id); + return (IMPL_READ(blake3_impl_chosen)); } -/* return name of selected implementation */ +/* get name of selected implementation */ const char * -blake3_get_impl_name(void) +blake3_impl_getname(void) { - return (blake3_selected_impl->name); + uint32_t impl = IMPL_READ(blake3_impl_chosen); + + blake3_impl_init(); + switch (impl) { + case IMPL_FASTEST: + return ("fastest"); + case IMPL_CYCLE: + return ("cycle"); + default: + return (blake3_supp_impls[impl]->name); + } } /* setup id as fastest implementation */ void -blake3_set_impl_fastest(uint32_t id) +blake3_impl_set_fastest(uint32_t id) { - blake3_fastest_id = id; + /* setup fastest impl */ + memcpy(&blake3_fastest_impl, blake3_supp_impls[id], + sizeof (blake3_fastest_impl)); } /* set implementation by id */ void -blake3_set_impl_id(uint32_t id) +blake3_impl_setid(uint32_t id) { - int i, cid; - - /* select fastest */ - if (id == IMPL_FASTEST) - id = blake3_fastest_id; - - /* select next or first */ - if (id == IMPL_CYCLE) - id = (++blake3_current_id) % blake3_get_impl_count(); - - /* 0..N for the real impl */ - for (i = 0, cid = 0; i < ARRAY_SIZE(blake3_impls); i++) { - if (!blake3_impls[i]->is_supported()) continue; - if (cid == id) { - blake3_current_id = cid; - blake3_selected_impl = blake3_impls[i]; - return; - } - cid++; + blake3_impl_init(); + switch (id) { + case IMPL_FASTEST: + atomic_swap_32(&blake3_impl_chosen, IMPL_FASTEST); + break; + case IMPL_CYCLE: + atomic_swap_32(&blake3_impl_chosen, IMPL_CYCLE); + break; + default: + ASSERT3U(id, >=, 0); + ASSERT3U(id, <, blake3_supp_impls_cnt); + atomic_swap_32(&blake3_impl_chosen, id); + break; } } /* set implementation by name */ int -blake3_set_impl_name(const char *name) +blake3_impl_setname(const char *val) { - int i, cid; - - if (strcmp(name, "fastest") == 0) { - atomic_swap_32(&icp_blake3_impl, IMPL_FASTEST); - blake3_set_impl_id(IMPL_FASTEST); - return (0); - } else if (strcmp(name, "cycle") == 0) { - atomic_swap_32(&icp_blake3_impl, IMPL_CYCLE); - blake3_set_impl_id(IMPL_CYCLE); - return (0); + uint32_t impl = IMPL_READ(blake3_impl_chosen); + size_t val_len; + int i, err = -EINVAL; + + blake3_impl_init(); + val_len = strlen(val); + while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */ + val_len--; + + /* check mandatory implementations */ + for (i = 0; i < ARRAY_SIZE(blake3_impl_selectors); i++) { + const char *name = blake3_impl_selectors[i].name; + + if (val_len == strlen(name) && + strncmp(val, name, val_len) == 0) { + impl = blake3_impl_selectors[i].sel; + err = 0; + break; + } } - for (i = 0, cid = 0; i < ARRAY_SIZE(blake3_impls); i++) { - if (!blake3_impls[i]->is_supported()) continue; - if (strcmp(name, blake3_impls[i]->name) == 0) { - if (icp_blake3_impl == IMPL_PARAM) { - blake3_param_id = cid; - return (0); + if (err != 0 && blake3_initialized) { + /* check all supported implementations */ + for (i = 0; i < blake3_supp_impls_cnt; i++) { + const char *name = blake3_supp_impls[i]->name; + + if (val_len == strlen(name) && + strncmp(val, name, val_len) == 0) { + impl = i; + err = 0; + break; } - blake3_selected_impl = blake3_impls[i]; - blake3_current_id = cid; - return (0); } - cid++; } - return (-EINVAL); + if (err == 0) { + atomic_swap_32(&blake3_impl_chosen, impl); + } + + return (err); } -/* setup implementation */ -void -blake3_setup_impl(void) +const blake3_ops_t * +blake3_impl_get_ops(void) { - switch (IMPL_READ(icp_blake3_impl)) { - case IMPL_PARAM: - blake3_set_impl_id(blake3_param_id); - atomic_swap_32(&icp_blake3_impl, IMPL_USER); - break; + const blake3_ops_t *ops = NULL; + uint32_t impl = IMPL_READ(blake3_impl_chosen); + + blake3_impl_init(); + switch (impl) { case IMPL_FASTEST: - blake3_set_impl_id(IMPL_FASTEST); + ASSERT(blake3_initialized); + ops = &blake3_fastest_impl; break; case IMPL_CYCLE: - blake3_set_impl_id(IMPL_CYCLE); + /* Cycle through supported implementations */ + ASSERT(blake3_initialized); + ASSERT3U(blake3_supp_impls_cnt, >, 0); + static uint32_t cycle_count = 0; + uint32_t idx = (++cycle_count) % blake3_supp_impls_cnt; + ops = blake3_supp_impls[idx]; break; default: - blake3_set_impl_id(blake3_current_id); + ASSERT3U(blake3_supp_impls_cnt, >, 0); + ASSERT3U(impl, <, blake3_supp_impls_cnt); + ops = blake3_supp_impls[impl]; break; } -} -/* return selected implementation */ -const blake3_impl_ops_t * -blake3_impl_get_ops(void) -{ - /* each call to ops will cycle */ - if (icp_blake3_impl == IMPL_CYCLE) - blake3_set_impl_id(IMPL_CYCLE); - - return (blake3_selected_impl); + ASSERT3P(ops, !=, NULL); + return (ops); } #if defined(_KERNEL) + void **blake3_per_cpu_ctx; void blake3_per_cpu_ctx_init(void) { /* * Create "The Godfather" ptr to hold all blake3 ctx */ blake3_per_cpu_ctx = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { blake3_per_cpu_ctx[i] = kmem_alloc(sizeof (BLAKE3_CTX), KM_SLEEP); } + + /* init once in kernel mode */ + blake3_impl_init(); } void blake3_per_cpu_ctx_fini(void) { for (int i = 0; i < max_ncpus; i++) { memset(blake3_per_cpu_ctx[i], 0, sizeof (BLAKE3_CTX)); kmem_free(blake3_per_cpu_ctx[i], sizeof (BLAKE3_CTX)); } memset(blake3_per_cpu_ctx, 0, max_ncpus * sizeof (void *)); kmem_free(blake3_per_cpu_ctx, max_ncpus * sizeof (void *)); } -#endif -#if defined(_KERNEL) && defined(__linux__) +#define IMPL_FMT(impl, i) (((impl) == (i)) ? "[%s] " : "%s ") + +#if defined(__linux__) + static int -icp_blake3_impl_set(const char *name, zfs_kernel_param_t *kp) +blake3_param_get(char *buffer, zfs_kernel_param_t *unused) { - char req_name[BLAKE3_IMPL_NAME_MAX]; - size_t i; + const uint32_t impl = IMPL_READ(blake3_impl_chosen); + char *fmt; + int cnt = 0; - /* sanitize input */ - i = strnlen(name, BLAKE3_IMPL_NAME_MAX); - if (i == 0 || i >= BLAKE3_IMPL_NAME_MAX) - return (-EINVAL); + /* cycling */ + fmt = IMPL_FMT(impl, IMPL_CYCLE); + cnt += sprintf(buffer + cnt, fmt, "cycle"); + + /* list fastest */ + fmt = IMPL_FMT(impl, IMPL_FASTEST); + cnt += sprintf(buffer + cnt, fmt, "fastest"); + + /* list all supported implementations */ + for (uint32_t i = 0; i < blake3_supp_impls_cnt; ++i) { + fmt = IMPL_FMT(impl, i); + cnt += sprintf(buffer + cnt, fmt, + blake3_supp_impls[i]->name); + } - strlcpy(req_name, name, BLAKE3_IMPL_NAME_MAX); - while (i > 0 && isspace(req_name[i-1])) - i--; - req_name[i] = '\0'; + return (cnt); +} - atomic_swap_32(&icp_blake3_impl, IMPL_PARAM); - return (blake3_set_impl_name(req_name)); +static int +blake3_param_set(const char *val, zfs_kernel_param_t *unused) +{ + (void) unused; + return (blake3_impl_setname(val)); } +#elif defined(__FreeBSD__) + +#include + static int -icp_blake3_impl_get(char *buffer, zfs_kernel_param_t *kp) +blake3_param(ZFS_MODULE_PARAM_ARGS) { - int i, cid, cnt = 0; - char *fmt; + int err; - /* cycling */ - fmt = (icp_blake3_impl == IMPL_CYCLE) ? "[cycle] " : "cycle "; - cnt += sprintf(buffer + cnt, fmt); - - /* fastest one */ - fmt = (icp_blake3_impl == IMPL_FASTEST) ? "[fastest] " : "fastest "; - cnt += sprintf(buffer + cnt, fmt); - - /* user selected */ - for (i = 0, cid = 0; i < ARRAY_SIZE(blake3_impls); i++) { - if (!blake3_impls[i]->is_supported()) continue; - fmt = (icp_blake3_impl == IMPL_USER && - cid == blake3_current_id) ? "[%s] " : "%s "; - cnt += sprintf(buffer + cnt, fmt, blake3_impls[i]->name); - cid++; + if (req->newptr == NULL) { + const uint32_t impl = IMPL_READ(blake3_impl_chosen); + const int init_buflen = 64; + const char *fmt; + struct sbuf *s; + + s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req); + + /* cycling */ + fmt = IMPL_FMT(impl, IMPL_CYCLE); + (void) sbuf_printf(s, fmt, "cycle"); + + /* list fastest */ + fmt = IMPL_FMT(impl, IMPL_FASTEST); + (void) sbuf_printf(s, fmt, "fastest"); + + /* list all supported implementations */ + for (uint32_t i = 0; i < blake3_supp_impls_cnt; ++i) { + fmt = IMPL_FMT(impl, i); + (void) sbuf_printf(s, fmt, blake3_supp_impls[i]->name); + } + + err = sbuf_finish(s); + sbuf_delete(s); + + return (err); } - buffer[cnt] = 0; + char buf[16]; - return (cnt); + err = sysctl_handle_string(oidp, buf, sizeof (buf), req); + if (err) { + return (err); + } + + return (-blake3_impl_setname(buf)); } +#endif + +#undef IMPL_FMT -module_param_call(icp_blake3_impl, icp_blake3_impl_set, icp_blake3_impl_get, - NULL, 0644); -MODULE_PARM_DESC(icp_blake3_impl, "Select BLAKE3 implementation."); +ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, blake3_impl, + blake3_param_set, blake3_param_get, ZMOD_RW, \ + "Select BLAKE3 implementation."); #endif diff --git a/module/icp/algs/blake3/blake3_impl.h b/module/icp/algs/blake3/blake3_impl.h index 5254061c7378..eef74eaa9098 100644 --- a/module/icp/algs/blake3/blake3_impl.h +++ b/module/icp/algs/blake3/blake3_impl.h @@ -1,213 +1,213 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3 * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor * Copyright (c) 2021-2022 Tino Reichardt */ #ifndef BLAKE3_IMPL_H #define BLAKE3_IMPL_H #ifdef __cplusplus extern "C" { #endif #include #include #include /* * Methods used to define BLAKE3 assembler implementations */ typedef void (*blake3_compress_in_place_f)(uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags); typedef void (*blake3_compress_xof_f)(const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags, uint8_t out[64]); typedef void (*blake3_hash_many_f)(const uint8_t * const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, boolean_t increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out); typedef boolean_t (*blake3_is_supported_f)(void); typedef struct blake3_impl_ops { blake3_compress_in_place_f compress_in_place; blake3_compress_xof_f compress_xof; blake3_hash_many_f hash_many; blake3_is_supported_f is_supported; int degree; const char *name; -} blake3_impl_ops_t; +} blake3_ops_t; /* Return selected BLAKE3 implementation ops */ -extern const blake3_impl_ops_t *blake3_impl_get_ops(void); +extern const blake3_ops_t *blake3_impl_get_ops(void); -extern const blake3_impl_ops_t blake3_generic_impl; +extern const blake3_ops_t blake3_generic_impl; #if defined(__aarch64__) || \ (defined(__x86_64) && defined(HAVE_SSE2)) || \ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__)) -extern const blake3_impl_ops_t blake3_sse2_impl; +extern const blake3_ops_t blake3_sse2_impl; #endif #if defined(__aarch64__) || \ (defined(__x86_64) && defined(HAVE_SSE4_1)) || \ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__)) -extern const blake3_impl_ops_t blake3_sse41_impl; +extern const blake3_ops_t blake3_sse41_impl; #endif #if defined(__x86_64) && defined(HAVE_SSE4_1) && defined(HAVE_AVX2) -extern const blake3_impl_ops_t blake3_avx2_impl; +extern const blake3_ops_t blake3_avx2_impl; #endif #if defined(__x86_64) && defined(HAVE_AVX512F) && defined(HAVE_AVX512VL) -extern const blake3_impl_ops_t blake3_avx512_impl; +extern const blake3_ops_t blake3_avx512_impl; #endif #if defined(__x86_64) #define MAX_SIMD_DEGREE 16 #else #define MAX_SIMD_DEGREE 4 #endif #define MAX_SIMD_DEGREE_OR_2 (MAX_SIMD_DEGREE > 2 ? MAX_SIMD_DEGREE : 2) static const uint32_t BLAKE3_IV[8] = { 0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL, 0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL}; static const uint8_t BLAKE3_MSG_SCHEDULE[7][16] = { {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8}, {3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1}, {10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6}, {12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4}, {9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7}, {11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13}, }; /* Find index of the highest set bit */ static inline unsigned int highest_one(uint64_t x) { #if defined(__GNUC__) || defined(__clang__) return (63 ^ __builtin_clzll(x)); #elif defined(_MSC_VER) && defined(IS_X86_64) unsigned long index; _BitScanReverse64(&index, x); return (index); #elif defined(_MSC_VER) && defined(IS_X86_32) if (x >> 32) { unsigned long index; _BitScanReverse(&index, x >> 32); return (32 + index); } else { unsigned long index; _BitScanReverse(&index, x); return (index); } #else unsigned int c = 0; if (x & 0xffffffff00000000ULL) { x >>= 32; c += 32; } if (x & 0x00000000ffff0000ULL) { x >>= 16; c += 16; } if (x & 0x000000000000ff00ULL) { x >>= 8; c += 8; } if (x & 0x00000000000000f0ULL) { x >>= 4; c += 4; } if (x & 0x000000000000000cULL) { x >>= 2; c += 2; } if (x & 0x0000000000000002ULL) { c += 1; } return (c); #endif } /* Count the number of 1 bits. */ static inline unsigned int popcnt(uint64_t x) { unsigned int count = 0; while (x != 0) { count += 1; x &= x - 1; } return (count); } /* * Largest power of two less than or equal to x. * As a special case, returns 1 when x is 0. */ static inline uint64_t round_down_to_power_of_2(uint64_t x) { return (1ULL << highest_one(x | 1)); } static inline uint32_t counter_low(uint64_t counter) { return ((uint32_t)counter); } static inline uint32_t counter_high(uint64_t counter) { return ((uint32_t)(counter >> 32)); } static inline uint32_t load32(const void *src) { const uint8_t *p = (const uint8_t *)src; return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) | ((uint32_t)(p[2]) << 16) | ((uint32_t)(p[3]) << 24); } static inline void load_key_words(const uint8_t key[BLAKE3_KEY_LEN], uint32_t key_words[8]) { key_words[0] = load32(&key[0 * 4]); key_words[1] = load32(&key[1 * 4]); key_words[2] = load32(&key[2 * 4]); key_words[3] = load32(&key[3 * 4]); key_words[4] = load32(&key[4 * 4]); key_words[5] = load32(&key[5 * 4]); key_words[6] = load32(&key[6 * 4]); key_words[7] = load32(&key[7 * 4]); } static inline void store32(void *dst, uint32_t w) { uint8_t *p = (uint8_t *)dst; p[0] = (uint8_t)(w >> 0); p[1] = (uint8_t)(w >> 8); p[2] = (uint8_t)(w >> 16); p[3] = (uint8_t)(w >> 24); } static inline void store_cv_words(uint8_t bytes_out[32], uint32_t cv_words[8]) { store32(&bytes_out[0 * 4], cv_words[0]); store32(&bytes_out[1 * 4], cv_words[1]); store32(&bytes_out[2 * 4], cv_words[2]); store32(&bytes_out[3 * 4], cv_words[3]); store32(&bytes_out[4 * 4], cv_words[4]); store32(&bytes_out[5 * 4], cv_words[5]); store32(&bytes_out[6 * 4], cv_words[6]); store32(&bytes_out[7 * 4], cv_words[7]); } #ifdef __cplusplus } #endif #endif /* BLAKE3_IMPL_H */ diff --git a/module/icp/algs/blake3/blake3_x86-64.c b/module/icp/algs/blake3/blake3_x86-64.c index aecd29edb16c..8139789fd779 100644 --- a/module/icp/algs/blake3/blake3_x86-64.c +++ b/module/icp/algs/blake3/blake3_x86-64.c @@ -1,248 +1,248 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2021-2022 Tino Reichardt */ #include "blake3_impl.h" #if defined(__aarch64__) || \ (defined(__x86_64) && defined(HAVE_SSE2)) || \ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__)) extern void zfs_blake3_compress_in_place_sse2(uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags); extern void zfs_blake3_compress_xof_sse2(const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags, uint8_t out[64]); extern void zfs_blake3_hash_many_sse2(const uint8_t * const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, boolean_t increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out); static void blake3_compress_in_place_sse2(uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags) { kfpu_begin(); zfs_blake3_compress_in_place_sse2(cv, block, block_len, counter, flags); kfpu_end(); } static void blake3_compress_xof_sse2(const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags, uint8_t out[64]) { kfpu_begin(); zfs_blake3_compress_xof_sse2(cv, block, block_len, counter, flags, out); kfpu_end(); } static void blake3_hash_many_sse2(const uint8_t * const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, boolean_t increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { kfpu_begin(); zfs_blake3_hash_many_sse2(inputs, num_inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out); kfpu_end(); } static boolean_t blake3_is_sse2_supported(void) { #if defined(__x86_64) return (kfpu_allowed() && zfs_sse2_available()); #elif defined(__PPC64__) && defined(__linux__) return (kfpu_allowed() && zfs_vsx_available()); #else return (kfpu_allowed()); #endif } -const blake3_impl_ops_t blake3_sse2_impl = { +const blake3_ops_t blake3_sse2_impl = { .compress_in_place = blake3_compress_in_place_sse2, .compress_xof = blake3_compress_xof_sse2, .hash_many = blake3_hash_many_sse2, .is_supported = blake3_is_sse2_supported, .degree = 4, .name = "sse2" }; #endif #if defined(__aarch64__) || \ (defined(__x86_64) && defined(HAVE_SSE2)) || \ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__)) extern void zfs_blake3_compress_in_place_sse41(uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags); extern void zfs_blake3_compress_xof_sse41(const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags, uint8_t out[64]); extern void zfs_blake3_hash_many_sse41(const uint8_t * const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, boolean_t increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out); static void blake3_compress_in_place_sse41(uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags) { kfpu_begin(); zfs_blake3_compress_in_place_sse41(cv, block, block_len, counter, flags); kfpu_end(); } static void blake3_compress_xof_sse41(const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags, uint8_t out[64]) { kfpu_begin(); zfs_blake3_compress_xof_sse41(cv, block, block_len, counter, flags, out); kfpu_end(); } static void blake3_hash_many_sse41(const uint8_t * const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, boolean_t increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { kfpu_begin(); zfs_blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out); kfpu_end(); } static boolean_t blake3_is_sse41_supported(void) { #if defined(__x86_64) return (kfpu_allowed() && zfs_sse4_1_available()); #elif defined(__PPC64__) && defined(__linux__) return (kfpu_allowed() && zfs_vsx_available()); #else return (kfpu_allowed()); #endif } -const blake3_impl_ops_t blake3_sse41_impl = { +const blake3_ops_t blake3_sse41_impl = { .compress_in_place = blake3_compress_in_place_sse41, .compress_xof = blake3_compress_xof_sse41, .hash_many = blake3_hash_many_sse41, .is_supported = blake3_is_sse41_supported, .degree = 4, .name = "sse41" }; #endif #if defined(__x86_64) && defined(HAVE_SSE4_1) && defined(HAVE_AVX2) extern void zfs_blake3_hash_many_avx2(const uint8_t * const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, boolean_t increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out); static void blake3_hash_many_avx2(const uint8_t * const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, boolean_t increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { kfpu_begin(); zfs_blake3_hash_many_avx2(inputs, num_inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out); kfpu_end(); } static boolean_t blake3_is_avx2_supported(void) { return (kfpu_allowed() && zfs_sse4_1_available() && zfs_avx2_available()); } -const blake3_impl_ops_t blake3_avx2_impl = { +const blake3_ops_t blake3_avx2_impl = { .compress_in_place = blake3_compress_in_place_sse41, .compress_xof = blake3_compress_xof_sse41, .hash_many = blake3_hash_many_avx2, .is_supported = blake3_is_avx2_supported, .degree = 8, .name = "avx2" }; #endif #if defined(__x86_64) && defined(HAVE_AVX512F) && defined(HAVE_AVX512VL) extern void zfs_blake3_compress_in_place_avx512(uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags); extern void zfs_blake3_compress_xof_avx512(const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags, uint8_t out[64]); extern void zfs_blake3_hash_many_avx512(const uint8_t * const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, boolean_t increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out); static void blake3_compress_in_place_avx512(uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags) { kfpu_begin(); zfs_blake3_compress_in_place_avx512(cv, block, block_len, counter, flags); kfpu_end(); } static void blake3_compress_xof_avx512(const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags, uint8_t out[64]) { kfpu_begin(); zfs_blake3_compress_xof_avx512(cv, block, block_len, counter, flags, out); kfpu_end(); } static void blake3_hash_many_avx512(const uint8_t * const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, boolean_t increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { kfpu_begin(); zfs_blake3_hash_many_avx512(inputs, num_inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out); kfpu_end(); } static boolean_t blake3_is_avx512_supported(void) { return (kfpu_allowed() && zfs_avx512f_available() && zfs_avx512vl_available()); } -const blake3_impl_ops_t blake3_avx512_impl = { +const blake3_ops_t blake3_avx512_impl = { .compress_in_place = blake3_compress_in_place_avx512, .compress_xof = blake3_compress_xof_avx512, .hash_many = blake3_hash_many_avx512, .is_supported = blake3_is_avx512_supported, .degree = 16, .name = "avx512" }; #endif diff --git a/module/zfs/zfs_chksum.c b/module/zfs/zfs_chksum.c index b9dc907afa8d..74b4cb8d2e63 100644 --- a/module/zfs/zfs_chksum.c +++ b/module/zfs/zfs_chksum.c @@ -1,355 +1,357 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2021-2022 Tino Reichardt */ #include #include #include #include #include #include /* limit benchmarking to max 256KiB, when EdonR is slower then this: */ #define LIMIT_PERF_MBS 300 typedef struct { const char *name; const char *impl; uint64_t bs1k; uint64_t bs4k; uint64_t bs16k; uint64_t bs64k; uint64_t bs256k; uint64_t bs1m; uint64_t bs4m; uint64_t bs16m; zio_cksum_salt_t salt; zio_checksum_t *(func); zio_checksum_tmpl_init_t *(init); zio_checksum_tmpl_free_t *(free); } chksum_stat_t; static chksum_stat_t *chksum_stat_data = 0; static int chksum_stat_cnt = 0; static kstat_t *chksum_kstat = NULL; /* * i3-1005G1 test output: * * implementation 1k 4k 16k 64k 256k 1m 4m * fletcher-4 5421 15001 26468 32555 34720 32801 18847 * edonr-generic 1196 1602 1761 1749 1762 1759 1751 * skein-generic 546 591 608 615 619 612 616 * sha256-generic 246 270 274 274 277 275 276 * sha256-avx 262 296 304 307 307 307 306 * sha256-sha-ni 769 1072 1172 1220 1219 1232 1228 * sha256-openssl 240 300 316 314 304 285 276 * sha512-generic 333 374 385 392 391 393 392 * sha512-openssl 353 441 467 476 472 467 426 * sha512-avx 362 444 473 475 479 476 478 * sha512-avx2 394 500 530 538 543 545 542 * blake3-generic 308 313 313 313 312 313 312 * blake3-sse2 402 1289 1423 1446 1432 1458 1413 * blake3-sse41 427 1470 1625 1704 1679 1607 1629 * blake3-avx2 428 1920 3095 3343 3356 3318 3204 * blake3-avx512 473 2687 4905 5836 5844 5643 5374 */ static int chksum_kstat_headers(char *buf, size_t size) { ssize_t off = 0; off += snprintf(buf + off, size, "%-23s", "implementation"); off += snprintf(buf + off, size - off, "%8s", "1k"); off += snprintf(buf + off, size - off, "%8s", "4k"); off += snprintf(buf + off, size - off, "%8s", "16k"); off += snprintf(buf + off, size - off, "%8s", "64k"); off += snprintf(buf + off, size - off, "%8s", "256k"); off += snprintf(buf + off, size - off, "%8s", "1m"); off += snprintf(buf + off, size - off, "%8s", "4m"); (void) snprintf(buf + off, size - off, "%8s\n", "16m"); return (0); } static int chksum_kstat_data(char *buf, size_t size, void *data) { chksum_stat_t *cs; ssize_t off = 0; char b[24]; cs = (chksum_stat_t *)data; snprintf(b, 23, "%s-%s", cs->name, cs->impl); off += snprintf(buf + off, size - off, "%-23s", b); off += snprintf(buf + off, size - off, "%8llu", (u_longlong_t)cs->bs1k); off += snprintf(buf + off, size - off, "%8llu", (u_longlong_t)cs->bs4k); off += snprintf(buf + off, size - off, "%8llu", (u_longlong_t)cs->bs16k); off += snprintf(buf + off, size - off, "%8llu", (u_longlong_t)cs->bs64k); off += snprintf(buf + off, size - off, "%8llu", (u_longlong_t)cs->bs256k); off += snprintf(buf + off, size - off, "%8llu", (u_longlong_t)cs->bs1m); off += snprintf(buf + off, size - off, "%8llu", (u_longlong_t)cs->bs4m); (void) snprintf(buf + off, size - off, "%8llu\n", (u_longlong_t)cs->bs16m); return (0); } static void * chksum_kstat_addr(kstat_t *ksp, loff_t n) { if (n < chksum_stat_cnt) ksp->ks_private = (void *)(chksum_stat_data + n); else ksp->ks_private = NULL; return (ksp->ks_private); } static void chksum_run(chksum_stat_t *cs, abd_t *abd, void *ctx, int round, uint64_t *result) { hrtime_t start; uint64_t run_bw, run_time_ns, run_count = 0, size = 0; uint32_t l, loops = 0; zio_cksum_t zcp; switch (round) { case 1: /* 1k */ size = 1<<10; loops = 128; break; case 2: /* 2k */ size = 1<<12; loops = 64; break; case 3: /* 4k */ size = 1<<14; loops = 32; break; case 4: /* 16k */ size = 1<<16; loops = 16; break; case 5: /* 256k */ size = 1<<18; loops = 8; break; case 6: /* 1m */ size = 1<<20; loops = 4; break; case 7: /* 4m */ size = 1<<22; loops = 1; break; case 8: /* 16m */ size = 1<<24; loops = 1; break; } kpreempt_disable(); start = gethrtime(); do { for (l = 0; l < loops; l++, run_count++) cs->func(abd, size, ctx, &zcp); run_time_ns = gethrtime() - start; } while (run_time_ns < MSEC2NSEC(1)); kpreempt_enable(); run_bw = size * run_count * NANOSEC; run_bw /= run_time_ns; /* B/s */ *result = run_bw/1024/1024; /* MiB/s */ } #define LIMIT_INIT 0 #define LIMIT_NEEDED 1 #define LIMIT_NOLIMIT 2 static void chksum_benchit(chksum_stat_t *cs) { abd_t *abd; void *ctx = 0; void *salt = &cs->salt.zcs_bytes; static int chksum_stat_limit = LIMIT_INIT; memset(salt, 0, sizeof (cs->salt.zcs_bytes)); if (cs->init) ctx = cs->init(&cs->salt); /* allocate test memory via abd linear interface */ abd = abd_alloc_linear(1<<20, B_FALSE); chksum_run(cs, abd, ctx, 1, &cs->bs1k); chksum_run(cs, abd, ctx, 2, &cs->bs4k); chksum_run(cs, abd, ctx, 3, &cs->bs16k); chksum_run(cs, abd, ctx, 4, &cs->bs64k); chksum_run(cs, abd, ctx, 5, &cs->bs256k); /* check if we ran on a slow cpu */ if (chksum_stat_limit == LIMIT_INIT) { if (cs->bs1k < LIMIT_PERF_MBS) { chksum_stat_limit = LIMIT_NEEDED; } else { chksum_stat_limit = LIMIT_NOLIMIT; } } /* skip benchmarks >= 1MiB when the CPU is to slow */ if (chksum_stat_limit == LIMIT_NEEDED) goto abort; chksum_run(cs, abd, ctx, 6, &cs->bs1m); abd_free(abd); /* allocate test memory via abd non linear interface */ abd = abd_alloc(1<<24, B_FALSE); chksum_run(cs, abd, ctx, 7, &cs->bs4m); chksum_run(cs, abd, ctx, 8, &cs->bs16m); abort: abd_free(abd); /* free up temp memory */ if (cs->free) cs->free(ctx); } /* * Initialize and benchmark all supported implementations. */ static void chksum_benchmark(void) { #ifndef _KERNEL /* we need the benchmark only for the kernel module */ return; #endif chksum_stat_t *cs; - int cbid = 0, id; + int cbid = 0; uint64_t max = 0; + uint32_t id, id_save; /* space for the benchmark times */ chksum_stat_cnt = 4; - chksum_stat_cnt += blake3_get_impl_count(); + chksum_stat_cnt += blake3_impl_getcnt(); chksum_stat_data = (chksum_stat_t *)kmem_zalloc( sizeof (chksum_stat_t) * chksum_stat_cnt, KM_SLEEP); /* edonr - needs to be the first one here (slow CPU check) */ cs = &chksum_stat_data[cbid++]; cs->init = abd_checksum_edonr_tmpl_init; cs->func = abd_checksum_edonr_native; cs->free = abd_checksum_edonr_tmpl_free; cs->name = "edonr"; cs->impl = "generic"; chksum_benchit(cs); /* skein */ cs = &chksum_stat_data[cbid++]; cs->init = abd_checksum_skein_tmpl_init; cs->func = abd_checksum_skein_native; cs->free = abd_checksum_skein_tmpl_free; cs->name = "skein"; cs->impl = "generic"; chksum_benchit(cs); /* sha256 */ cs = &chksum_stat_data[cbid++]; cs->init = 0; cs->func = abd_checksum_SHA256; cs->free = 0; cs->name = "sha256"; cs->impl = "generic"; chksum_benchit(cs); /* sha512 */ cs = &chksum_stat_data[cbid++]; cs->init = 0; cs->func = abd_checksum_SHA512_native; cs->free = 0; cs->name = "sha512"; cs->impl = "generic"; chksum_benchit(cs); /* blake3 */ - for (id = 0; id < blake3_get_impl_count(); id++) { - blake3_set_impl_id(id); + id_save = blake3_impl_getid(); + for (id = 0; id < blake3_impl_getcnt(); id++) { + blake3_impl_setid(id); cs = &chksum_stat_data[cbid++]; cs->init = abd_checksum_blake3_tmpl_init; cs->func = abd_checksum_blake3_native; cs->free = abd_checksum_blake3_tmpl_free; cs->name = "blake3"; - cs->impl = blake3_get_impl_name(); + cs->impl = blake3_impl_getname(); chksum_benchit(cs); if (cs->bs256k > max) { max = cs->bs256k; - blake3_set_impl_fastest(id); + blake3_impl_set_fastest(id); } } + + /* restore initial value */ + blake3_impl_setid(id_save); } void chksum_init(void) { #ifdef _KERNEL blake3_per_cpu_ctx_init(); #endif /* Benchmark supported implementations */ chksum_benchmark(); /* Install kstats for all implementations */ chksum_kstat = kstat_create("zfs", 0, "chksum_bench", "misc", KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL); if (chksum_kstat != NULL) { chksum_kstat->ks_data = NULL; chksum_kstat->ks_ndata = UINT32_MAX; kstat_set_raw_ops(chksum_kstat, chksum_kstat_headers, chksum_kstat_data, chksum_kstat_addr); kstat_install(chksum_kstat); } - - /* setup implementations */ - blake3_setup_impl(); } void chksum_fini(void) { if (chksum_kstat != NULL) { kstat_delete(chksum_kstat); chksum_kstat = NULL; } if (chksum_stat_cnt) { kmem_free(chksum_stat_data, sizeof (chksum_stat_t) * chksum_stat_cnt); chksum_stat_cnt = 0; chksum_stat_data = 0; } #ifdef _KERNEL blake3_per_cpu_ctx_fini(); #endif } diff --git a/tests/zfs-tests/cmd/checksum/blake3_test.c b/tests/zfs-tests/cmd/checksum/blake3_test.c index d57d0e047f01..648e1faaaeb7 100644 --- a/tests/zfs-tests/cmd/checksum/blake3_test.c +++ b/tests/zfs-tests/cmd/checksum/blake3_test.c @@ -1,575 +1,575 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2022 Tino Reichardt */ #include #include #include #include #include #include /* * set it to a define for debugging */ #undef BLAKE3_DEBUG /* * C version of: * https://github.com/BLAKE3-team/BLAKE3/tree/master/test_vectors */ typedef struct { /* input length for this entry */ const int input_len; /* hash value */ const char *hash; /* salted hash value */ const char *shash; } blake3_test_t; /* BLAKE3 is variable here */ #define TEST_DIGEST_LEN 262 /* * key for the keyed hashing */ static const char *salt = "whats the Elvish word for friend"; static blake3_test_t TestArray[] = { { 0, "af1349b9f5f9a1a6a0404dea36dcc9499bcb25c9adc112b7cc9a93cae41f3262e0" "0f03e7b69af26b7faaf09fcd333050338ddfe085b8cc869ca98b206c08243a26f5" "487789e8f660afe6c99ef9e0c52b92e7393024a80459cf91f476f9ffdbda7001c2" "2e159b402631f277ca96f2defdf1078282314e763699a31c5363165421cce14d", "92b2b75604ed3c761f9d6f62392c8a9227ad0ea3f09573e783f1498a4ed60d26b1" "8171a2f22a4b94822c701f107153dba24918c4bae4d2945c20ece13387627d3b73" "cbf97b797d5e59948c7ef788f54372df45e45e4293c7dc18c1d41144a9758be589" "60856be1eabbe22c2653190de560ca3b2ac4aa692a9210694254c371e851bc8f", }, { 1, "2d3adedff11b61f14c886e35afa036736dcd87a74d27b5c1510225d0f592e213c3" "a6cb8bf623e20cdb535f8d1a5ffb86342d9c0b64aca3bce1d31f60adfa137b358a" "d4d79f97b47c3d5e79f179df87a3b9776ef8325f8329886ba42f07fb138bb502f4" "081cbcec3195c5871e6c23e2cc97d3c69a613eba131e5f1351f3f1da786545e5", "6d7878dfff2f485635d39013278ae14f1454b8c0a3a2d34bc1ab38228a80c95b65" "68c0490609413006fbd428eb3fd14e7756d90f73a4725fad147f7bf70fd61c4e0c" "f7074885e92b0e3f125978b4154986d4fb202a3f331a3fb6cf349a3a70e49990f9" "8fe4289761c8602c4e6ab1138d31d3b62218078b2f3ba9a88e1d08d0dd4cea11", }, { 2, "7b7015bb92cf0b318037702a6cdd81dee41224f734684c2c122cd6359cb1ee63d8" "386b22e2ddc05836b7c1bb693d92af006deb5ffbc4c70fb44d0195d0c6f252faac" "61659ef86523aa16517f87cb5f1340e723756ab65efb2f91964e14391de2a43226" "3a6faf1d146937b35a33621c12d00be8223a7f1919cec0acd12097ff3ab00ab1", "5392ddae0e0a69d5f40160462cbd9bd889375082ff224ac9c758802b7a6fd20a9f" "fbf7efd13e989a6c246f96d3a96b9d279f2c4e63fb0bdff633957acf50ee1a5f65" "8be144bab0f6f16500dee4aa5967fc2c586d85a04caddec90fffb7633f46a60786" "024353b9e5cebe277fcd9514217fee2267dcda8f7b31697b7c54fab6a939bf8f", }, { 3, "e1be4d7a8ab5560aa4199eea339849ba8e293d55ca0a81006726d184519e647f5b" "49b82f805a538c68915c1ae8035c900fd1d4b13902920fd05e1450822f36de9454" "b7e9996de4900c8e723512883f93f4345f8a58bfe64ee38d3ad71ab027765d25cd" "d0e448328a8e7a683b9a6af8b0af94fa09010d9186890b096a08471e4230a134", "39e67b76b5a007d4921969779fe666da67b5213b096084ab674742f0d5ec62b9b9" "142d0fab08e1b161efdbb28d18afc64d8f72160c958e53a950cdecf91c1a1bbab1" "a9c0f01def762a77e2e8545d4dec241e98a89b6db2e9a5b070fc110caae2622690" "bd7b76c02ab60750a3ea75426a6bb8803c370ffe465f07fb57def95df772c39f", }, { 4, "f30f5ab28fe047904037f77b6da4fea1e27241c5d132638d8bedce9d40494f328f" "603ba4564453e06cdcee6cbe728a4519bbe6f0d41e8a14b5b225174a566dbfa61b" "56afb1e452dc08c804f8c3143c9e2cc4a31bb738bf8c1917b55830c6e657972117" "01dc0b98daa1faeaa6ee9e56ab606ce03a1a881e8f14e87a4acf4646272cfd12", "7671dde590c95d5ac9616651ff5aa0a27bee5913a348e053b8aa9108917fe07011" "6c0acff3f0d1fa97ab38d813fd46506089118147d83393019b068a55d646251ecf" "81105f798d76a10ae413f3d925787d6216a7eb444e510fd56916f1d753a5544ecf" "0072134a146b2615b42f50c179f56b8fae0788008e3e27c67482349e249cb86a", }, { 5, "b40b44dfd97e7a84a996a91af8b85188c66c126940ba7aad2e7ae6b385402aa2eb" "cfdac6c5d32c31209e1f81a454751280db64942ce395104e1e4eaca62607de1c2c" "a748251754ea5bbe8c20150e7f47efd57012c63b3c6a6632dc1c7cd15f3e1c9999" "04037d60fac2eb9397f2adbe458d7f264e64f1e73aa927b30988e2aed2f03620", "73ac69eecf286894d8102018a6fc729f4b1f4247d3703f69bdc6a5fe3e0c84616a" "b199d1f2f3e53bffb17f0a2209fe8b4f7d4c7bae59c2bc7d01f1ff94c67588cc6b" "38fa6024886f2c078bfe09b5d9e6584cd6c521c3bb52f4de7687b37117a2dbbec0" "d59e92fa9a8cc3240d4432f91757aabcae03e87431dac003e7d73574bfdd8218", }, { 6, "06c4e8ffb6872fad96f9aaca5eee1553eb62aed0ad7198cef42e87f6a616c84461" "1a30c4e4f37fe2fe23c0883cde5cf7059d88b657c7ed2087e3d210925ede716435" "d6d5d82597a1e52b9553919e804f5656278bd739880692c94bff2824d8e0b48cac" "1d24682699e4883389dc4f2faa2eb3b4db6e39debd5061ff3609916f3e07529a", "82d3199d0013035682cc7f2a399d4c212544376a839aa863a0f4c91220ca7a6dc2" "ffb3aa05f2631f0fa9ac19b6e97eb7e6669e5ec254799350c8b8d189e880780084" "2a5383c4d907c932f34490aaf00064de8cdb157357bde37c1504d2960034930887" "603abc5ccb9f5247f79224baff6120a3c622a46d7b1bcaee02c5025460941256", }, { 7, "3f8770f387faad08faa9d8414e9f449ac68e6ff0417f673f602a646a891419fe66" "036ef6e6d1a8f54baa9fed1fc11c77cfb9cff65bae915045027046ebe0c01bf5a9" "41f3bb0f73791d3fc0b84370f9f30af0cd5b0fc334dd61f70feb60dad785f070fe" "f1f343ed933b49a5ca0d16a503f599a365a4296739248b28d1a20b0e2cc8975c", "af0a7ec382aedc0cfd626e49e7628bc7a353a4cb108855541a5651bf64fbb28a7c" "5035ba0f48a9c73dabb2be0533d02e8fd5d0d5639a18b2803ba6bf527e1d145d5f" "d6406c437b79bcaad6c7bdf1cf4bd56a893c3eb9510335a7a798548c6753f74617" "bede88bef924ba4b334f8852476d90b26c5dc4c3668a2519266a562c6c8034a6", }, { 8, "2351207d04fc16ade43ccab08600939c7c1fa70a5c0aaca76063d04c3228eaeb72" "5d6d46ceed8f785ab9f2f9b06acfe398c6699c6129da084cb531177445a682894f" "9685eaf836999221d17c9a64a3a057000524cd2823986db378b074290a1a9b93a2" "2e135ed2c14c7e20c6d045cd00b903400374126676ea78874d79f2dd7883cf5c", "be2f5495c61cba1bb348a34948c004045e3bd4dae8f0fe82bf44d0da245a060048" "eb5e68ce6dea1eb0229e144f578b3aa7e9f4f85febd135df8525e6fe40c6f0340d" "13dd09b255ccd5112a94238f2be3c0b5b7ecde06580426a93e0708555a265305ab" "f86d874e34b4995b788e37a823491f25127a502fe0704baa6bfdf04e76c13276", }, { 63, "e9bc37a594daad83be9470df7f7b3798297c3d834ce80ba85d6e207627b7db7b11" "97012b1e7d9af4d7cb7bdd1f3bb49a90a9b5dec3ea2bbc6eaebce77f4e470cbf46" "87093b5352f04e4a4570fba233164e6acc36900e35d185886a827f7ea9bdc1e5c3" "ce88b095a200e62c10c043b3e9bc6cb9b6ac4dfa51794b02ace9f98779040755", "bb1eb5d4afa793c1ebdd9fb08def6c36d10096986ae0cfe148cd101170ce37aea0" "5a63d74a840aecd514f654f080e51ac50fd617d22610d91780fe6b07a26b0847ab" "b38291058c97474ef6ddd190d30fc318185c09ca1589d2024f0a6f16d45f116783" "77483fa5c005b2a107cb9943e5da634e7046855eaa888663de55d6471371d55d", }, { 64, "4eed7141ea4a5cd4b788606bd23f46e212af9cacebacdc7d1f4c6dc7f2511b98fc" "9cc56cb831ffe33ea8e7e1d1df09b26efd2767670066aa82d023b1dfe8ab1b2b7f" "bb5b97592d46ffe3e05a6a9b592e2949c74160e4674301bc3f97e04903f8c6cf95" "b863174c33228924cdef7ae47559b10b294acd660666c4538833582b43f82d74", "ba8ced36f327700d213f120b1a207a3b8c04330528586f414d09f2f7d9ccb7e682" "44c26010afc3f762615bbac552a1ca909e67c83e2fd5478cf46b9e811efccc93f7" "7a21b17a152ebaca1695733fdb086e23cd0eb48c41c034d52523fc21236e5d8c92" "55306e48d52ba40b4dac24256460d56573d1312319afcf3ed39d72d0bfc69acb", }, { 65, "de1e5fa0be70df6d2be8fffd0e99ceaa8eb6e8c93a63f2d8d1c30ecb6b263dee0e" "16e0a4749d6811dd1d6d1265c29729b1b75a9ac346cf93f0e1d7296dfcfd4313b3" "a227faaaaf7757cc95b4e87a49be3b8a270a12020233509b1c3632b3485eef309d" "0abc4a4a696c9decc6e90454b53b000f456a3f10079072baaf7a981653221f2c", "c0a4edefa2d2accb9277c371ac12fcdbb52988a86edc54f0716e1591b4326e72d5" "e795f46a596b02d3d4bfb43abad1e5d19211152722ec1f20fef2cd413e3c22f2fc" "5da3d73041275be6ede3517b3b9f0fc67ade5956a672b8b75d96cb43294b904149" "7de92637ed3f2439225e683910cb3ae923374449ca788fb0f9bea92731bc26ad", }, { 127, "d81293fda863f008c09e92fc382a81f5a0b4a1251cba1634016a0f86a6bd640de3" "137d477156d1fde56b0cf36f8ef18b44b2d79897bece12227539ac9ae0a5119da4" "7644d934d26e74dc316145dcb8bb69ac3f2e05c242dd6ee06484fcb0e956dc4435" "5b452c5e2bbb5e2b66e99f5dd443d0cbcaaafd4beebaed24ae2f8bb672bcef78", "c64200ae7dfaf35577ac5a9521c47863fb71514a3bcad18819218b818de85818ee" "7a317aaccc1458f78d6f65f3427ec97d9c0adb0d6dacd4471374b621b7b5f35cd5" "4663c64dbe0b9e2d95632f84c611313ea5bd90b71ce97b3cf645776f3adc11e27d" "135cbadb9875c2bf8d3ae6b02f8a0206aba0c35bfe42574011931c9a255ce6dc", }, { 128, "f17e570564b26578c33bb7f44643f539624b05df1a76c81f30acd548c44b45efa6" "9faba091427f9c5c4caa873aa07828651f19c55bad85c47d1368b11c6fd99e47ec" "ba5820a0325984d74fe3e4058494ca12e3f1d3293d0010a9722f7dee64f71246f7" "5e9361f44cc8e214a100650db1313ff76a9f93ec6e84edb7add1cb4a95019b0c", "b04fe15577457267ff3b6f3c947d93be581e7e3a4b018679125eaf86f6a628ecd8" "6bbe0001f10bda47e6077b735016fca8119da11348d93ca302bbd125bde0db2b50" "edbe728a620bb9d3e6f706286aedea973425c0b9eedf8a38873544cf91badf49ad" "92a635a93f71ddfcee1eae536c25d1b270956be16588ef1cfef2f1d15f650bd5", }, { 129, "683aaae9f3c5ba37eaaf072aed0f9e30bac0865137bae68b1fde4ca2aebdcb12f9" "6ffa7b36dd78ba321be7e842d364a62a42e3746681c8bace18a4a8a79649285c71" "27bf8febf125be9de39586d251f0d41da20980b70d35e3dac0eee59e468a894fa7" "e6a07129aaad09855f6ad4801512a116ba2b7841e6cfc99ad77594a8f2d181a7", "d4a64dae6cdccbac1e5287f54f17c5f985105457c1a2ec1878ebd4b57e20d38f1c" "9db018541eec241b748f87725665b7b1ace3e0065b29c3bcb232c90e37897fa5aa" "ee7e1e8a2ecfcd9b51463e42238cfdd7fee1aecb3267fa7f2128079176132a412c" "d8aaf0791276f6b98ff67359bd8652ef3a203976d5ff1cd41885573487bcd683", }, { 1023, "10108970eeda3eb932baac1428c7a2163b0e924c9a9e25b35bba72b28f70bd11a1" "82d27a591b05592b15607500e1e8dd56bc6c7fc063715b7a1d737df5bad3339c56" "778957d870eb9717b57ea3d9fb68d1b55127bba6a906a4a24bbd5acb2d123a37b2" "8f9e9a81bbaae360d58f85e5fc9d75f7c370a0cc09b6522d9c8d822f2f28f485", "c951ecdf03288d0fcc96ee3413563d8a6d3589547f2c2fb36d9786470f1b9d6e89" "0316d2e6d8b8c25b0a5b2180f94fb1a158ef508c3cde45e2966bd796a696d3e13e" "fd86259d756387d9becf5c8bf1ce2192b87025152907b6d8cc33d17826d8b7b9bc" "97e38c3c85108ef09f013e01c229c20a83d9e8efac5b37470da28575fd755a10", }, { 1024, "42214739f095a406f3fc83deb889744ac00df831c10daa55189b5d121c855af71c" "f8107265ecdaf8505b95d8fcec83a98a6a96ea5109d2c179c47a387ffbb404756f" "6eeae7883b446b70ebb144527c2075ab8ab204c0086bb22b7c93d465efc57f8d91" "7f0b385c6df265e77003b85102967486ed57db5c5ca170ba441427ed9afa684e", "75c46f6f3d9eb4f55ecaaee480db732e6c2105546f1e675003687c31719c7ba4a7" "8bc838c72852d4f49c864acb7adafe2478e824afe51c8919d06168414c265f298a" "8094b1ad813a9b8614acabac321f24ce61c5a5346eb519520d38ecc43e89b50002" "36df0597243e4d2493fd626730e2ba17ac4d8824d09d1a4a8f57b8227778e2de", }, { 1025, "d00278ae47eb27b34faecf67b4fe263f82d5412916c1ffd97c8cb7fb814b8444f4" "c4a22b4b399155358a994e52bf255de60035742ec71bd08ac275a1b51cc6bfe332" "b0ef84b409108cda080e6269ed4b3e2c3f7d722aa4cdc98d16deb554e5627be8f9" "55c98e1d5f9565a9194cad0c4285f93700062d9595adb992ae68ff12800ab67a", "357dc55de0c7e382c900fd6e320acc04146be01db6a8ce7210b7189bd664ea6936" "2396b77fdc0d2634a552970843722066c3c15902ae5097e00ff53f1e116f1cd535" "2720113a837ab2452cafbde4d54085d9cf5d21ca613071551b25d52e69d6c81123" "872b6f19cd3bc1333edf0c52b94de23ba772cf82636cff4542540a7738d5b930", }, { 2048, "e776b6028c7cd22a4d0ba182a8bf62205d2ef576467e838ed6f2529b85fba24a9a" "60bf80001410ec9eea6698cd537939fad4749edd484cb541aced55cd9bf54764d0" "63f23f6f1e32e12958ba5cfeb1bf618ad094266d4fc3c968c2088f677454c288c6" "7ba0dba337b9d91c7e1ba586dc9a5bc2d5e90c14f53a8863ac75655461cea8f9", "879cf1fa2ea0e79126cb1063617a05b6ad9d0b696d0d757cf053439f60a99dd101" "73b961cd574288194b23ece278c330fbb8585485e74967f31352a8183aa782b2b2" "2f26cdcadb61eed1a5bc144b8198fbb0c13abbf8e3192c145d0a5c21633b0ef860" "54f42809df823389ee40811a5910dcbd1018af31c3b43aa55201ed4edaac74fe", }, { 2049, "5f4d72f40d7a5f82b15ca2b2e44b1de3c2ef86c426c95c1af0b687952256303096" "de31d71d74103403822a2e0bc1eb193e7aecc9643a76b7bbc0c9f9c52e8783aae9" "8764ca468962b5c2ec92f0c74eb5448d519713e09413719431c802f948dd5d9042" "5a4ecdadece9eb178d80f26efccae630734dff63340285adec2aed3b51073ad3", "9f29700902f7c86e514ddc4df1e3049f258b2472b6dd5267f61bf13983b78dd5f9" "a88abfefdfa1e00b418971f2b39c64ca621e8eb37fceac57fd0c8fc8e117d43b81" "447be22d5d8186f8f5919ba6bcc6846bd7d50726c06d245672c2ad4f61702c6464" "99ee1173daa061ffe15bf45a631e2946d616a4c345822f1151284712f76b2b0e", }, { 3072, "b98cb0ff3623be03326b373de6b9095218513e64f1ee2edd2525c7ad1e5cffd29a" "3f6b0b978d6608335c09dc94ccf682f9951cdfc501bfe47b9c9189a6fc7b404d12" "0258506341a6d802857322fbd20d3e5dae05b95c88793fa83db1cb08e7d8008d15" "99b6209d78336e24839724c191b2a52a80448306e0daa84a3fdb566661a37e11", "044a0e7b172a312dc02a4c9a818c036ffa2776368d7f528268d2e6b5df19177022" "f302d0529e4174cc507c463671217975e81dab02b8fdeb0d7ccc7568dd22574c78" "3a76be215441b32e91b9a904be8ea81f7a0afd14bad8ee7c8efc305ace5d3dd61b" "996febe8da4f56ca0919359a7533216e2999fc87ff7d8f176fbecb3d6f34278b", }, { 3073, "7124b49501012f81cc7f11ca069ec9226cecb8a2c850cfe644e327d22d3e1cd39a" "27ae3b79d68d89da9bf25bc27139ae65a324918a5f9b7828181e52cf373c84f35b" "639b7fccbb985b6f2fa56aea0c18f531203497b8bbd3a07ceb5926f1cab74d14bd" "66486d9a91eba99059a98bd1cd25876b2af5a76c3e9eed554ed72ea952b603bf", "68dede9bef00ba89e43f31a6825f4cf433389fedae75c04ee9f0cf16a427c95a96" "d6da3fe985054d3478865be9a092250839a697bbda74e279e8a9e69f0025e4cfdd" "d6cfb434b1cd9543aaf97c635d1b451a4386041e4bb100f5e45407cbbc24fa53ea" "2de3536ccb329e4eb9466ec37093a42cf62b82903c696a93a50b702c80f3c3c5", }, { 4096, "015094013f57a5277b59d8475c0501042c0b642e531b0a1c8f58d2163229e96902" "89e9409ddb1b99768eafe1623da896faf7e1114bebeadc1be30829b6f8af707d85" "c298f4f0ff4d9438aef948335612ae921e76d411c3a9111df62d27eaf871959ae0" "062b5492a0feb98ef3ed4af277f5395172dbe5c311918ea0074ce0036454f620", "befc660aea2f1718884cd8deb9902811d332f4fc4a38cf7c7300d597a081bfc0bb" "b64a36edb564e01e4b4aaf3b060092a6b838bea44afebd2deb8298fa562b7b597c" "757b9df4c911c3ca462e2ac89e9a787357aaf74c3b56d5c07bc93ce899568a3eb1" "7d9250c20f6c5f6c1e792ec9a2dcb715398d5a6ec6d5c54f586a00403a1af1de", }, { 4097, "9b4052b38f1c5fc8b1f9ff7ac7b27cd242487b3d890d15c96a1c25b8aa0fb99505" "f91b0b5600a11251652eacfa9497b31cd3c409ce2e45cfe6c0a016967316c426bd" "26f619eab5d70af9a418b845c608840390f361630bd497b1ab44019316357c61db" "e091ce72fc16dc340ac3d6e009e050b3adac4b5b2c92e722cffdc46501531956", "00df940cd36bb9fa7cbbc3556744e0dbc8191401afe70520ba292ee3ca80abbc60" "6db4976cfdd266ae0abf667d9481831ff12e0caa268e7d3e57260c0824115a54ce" "595ccc897786d9dcbf495599cfd90157186a46ec800a6763f1c59e36197e9939e9" "00809f7077c102f888caaf864b253bc41eea812656d46742e4ea42769f89b83f", }, { 5120, "9cadc15fed8b5d854562b26a9536d9707cadeda9b143978f319ab34230535833ac" "c61c8fdc114a2010ce8038c853e121e1544985133fccdd0a2d507e8e615e611e9a" "0ba4f47915f49e53d721816a9198e8b30f12d20ec3689989175f1bf7a300eee0d9" "321fad8da232ece6efb8e9fd81b42ad161f6b9550a069e66b11b40487a5f5059", "2c493e48e9b9bf31e0553a22b23503c0a3388f035cece68eb438d22fa1943e209b" "4dc9209cd80ce7c1f7c9a744658e7e288465717ae6e56d5463d4f80cdb2ef56495" "f6a4f5487f69749af0c34c2cdfa857f3056bf8d807336a14d7b89bf62bef2fb54f" "9af6a546f818dc1e98b9e07f8a5834da50fa28fb5874af91bf06020d1bf0120e", }, { 5121, "628bd2cb2004694adaab7bbd778a25df25c47b9d4155a55f8fbd79f2fe154cff96" "adaab0613a6146cdaabe498c3a94e529d3fc1da2bd08edf54ed64d40dcd6777647" "eac51d8277d70219a9694334a68bc8f0f23e20b0ff70ada6f844542dfa32cd4204" "ca1846ef76d811cdb296f65e260227f477aa7aa008bac878f72257484f2b6c95", "6ccf1c34753e7a044db80798ecd0782a8f76f33563accaddbfbb2e0ea4b2d0240d" "07e63f13667a8d1490e5e04f13eb617aea16a8c8a5aaed1ef6fbde1b0515e3c810" "50b361af6ead126032998290b563e3caddeaebfab592e155f2e161fb7cba939092" "133f23f9e65245e58ec23457b78a2e8a125588aad6e07d7f11a85b88d375b72d", }, { 6144, "3e2e5b74e048f3add6d21faab3f83aa44d3b2278afb83b80b3c35164ebeca2054d" "742022da6fdda444ebc384b04a54c3ac5839b49da7d39f6d8a9db03deab32aade1" "56c1c0311e9b3435cde0ddba0dce7b26a376cad121294b689193508dd63151603c" "6ddb866ad16c2ee41585d1633a2cea093bea714f4c5d6b903522045b20395c83", "3d6b6d21281d0ade5b2b016ae4034c5dec10ca7e475f90f76eac7138e9bc8f1dc3" "5754060091dc5caf3efabe0603c60f45e415bb3407db67e6beb3d11cf8e4f79075" "61f05dace0c15807f4b5f389c841eb114d81a82c02a00b57206b1d11fa6e803486" "b048a5ce87105a686dee041207e095323dfe172df73deb8c9532066d88f9da7e", }, { 6145, "f1323a8631446cc50536a9f705ee5cb619424d46887f3c376c695b70e0f0507f18" "a2cfdd73c6e39dd75ce7c1c6e3ef238fd54465f053b25d21044ccb2093beb01501" "5532b108313b5829c3621ce324b8e14229091b7c93f32db2e4e63126a377d2a63a" "3597997d4f1cba59309cb4af240ba70cebff9a23d5e3ff0cdae2cfd54e070022", "9ac301e9e39e45e3250a7e3b3df701aa0fb6889fbd80eeecf28dbc6300fbc539f3" "c184ca2f59780e27a576c1d1fb9772e99fd17881d02ac7dfd39675aca918453283" "ed8c3169085ef4a466b91c1649cc341dfdee60e32231fc34c9c4e0b9a2ba87ca8f" "372589c744c15fd6f985eec15e98136f25beeb4b13c4e43dc84abcc79cd4646c", }, { 7168, "61da957ec2499a95d6b8023e2b0e604ec7f6b50e80a9678b89d2628e99ada77a57" "07c321c83361793b9af62a40f43b523df1c8633cecb4cd14d00bdc79c78fca5165" "b863893f6d38b02ff7236c5a9a8ad2dba87d24c547cab046c29fc5bc1ed142e1de" "4763613bb162a5a538e6ef05ed05199d751f9eb58d332791b8d73fb74e4fce95", "b42835e40e9d4a7f42ad8cc04f85a963a76e18198377ed84adddeaecacc6f3fca2" "f01d5277d69bb681c70fa8d36094f73ec06e452c80d2ff2257ed82e7ba34840098" "9a65ee8daa7094ae0933e3d2210ac6395c4af24f91c2b590ef87d7788d7066ea3e" "aebca4c08a4f14b9a27644f99084c3543711b64a070b94f2c9d1d8a90d035d52", }, { 7169, "a003fc7a51754a9b3c7fae0367ab3d782dccf28855a03d435f8cfe74605e781798" "a8b20534be1ca9eb2ae2df3fae2ea60e48c6fb0b850b1385b5de0fe460dbe9d9f9" "b0d8db4435da75c601156df9d047f4ede008732eb17adc05d96180f8a735485228" "40779e6062d643b79478a6e8dbce68927f36ebf676ffa7d72d5f68f050b119c8", "ed9b1a922c046fdb3d423ae34e143b05ca1bf28b710432857bf738bcedbfa5113c" "9e28d72fcbfc020814ce3f5d4fc867f01c8f5b6caf305b3ea8a8ba2da3ab69fabc" "b438f19ff11f5378ad4484d75c478de425fb8e6ee809b54eec9bdb184315dc8566" "17c09f5340451bf42fd3270a7b0b6566169f242e533777604c118a6358250f54", }, { 8192, "aae792484c8efe4f19e2ca7d371d8c467ffb10748d8a5a1ae579948f718a2a635f" "e51a27db045a567c1ad51be5aa34c01c6651c4d9b5b5ac5d0fd58cf18dd61a4777" "8566b797a8c67df7b1d60b97b19288d2d877bb2df417ace009dcb0241ca1257d62" "712b6a4043b4ff33f690d849da91ea3bf711ed583cb7b7a7da2839ba71309bbf", "dc9637c8845a770b4cbf76b8daec0eebf7dc2eac11498517f08d44c8fc00d58a48" "34464159dcbc12a0ba0c6d6eb41bac0ed6585cabfe0aca36a375e6c5480c22afdc" "40785c170f5a6b8a1107dbee282318d00d915ac9ed1143ad40765ec120042ee121" "cd2baa36250c618adaf9e27260fda2f94dea8fb6f08c04f8f10c78292aa46102", }, { 8193, "bab6c09cb8ce8cf459261398d2e7aef35700bf488116ceb94a36d0f5f1b7bc3bb2" "282aa69be089359ea1154b9a9286c4a56af4de975a9aa4a5c497654914d279bea6" "0bb6d2cf7225a2fa0ff5ef56bbe4b149f3ed15860f78b4e2ad04e158e375c1e0c0" "b551cd7dfc82f1b155c11b6b3ed51ec9edb30d133653bb5709d1dbd55f4e1ff6", "954a2a75420c8d6547e3ba5b98d963e6fa6491addc8c023189cc519821b4a1f5f0" "3228648fd983aef045c2fa8290934b0866b615f585149587dda229903996532883" "5a2b18f1d63b7e300fc76ff260b571839fe44876a4eae66cbac8c67694411ed7e0" "9df51068a22c6e67d6d3dd2cca8ff12e3275384006c80f4db68023f24eebba57", }, { 16384, "f875d6646de28985646f34ee13be9a576fd515f76b5b0a26bb324735041ddde49d" "764c270176e53e97bdffa58d549073f2c660be0e81293767ed4e4929f9ad34bbb3" "9a529334c57c4a381ffd2a6d4bfdbf1482651b172aa883cc13408fa67758a3e475" "03f93f87720a3177325f7823251b85275f64636a8f1d599c2e49722f42e93893", "9e9fc4eb7cf081ea7c47d1807790ed211bfec56aa25bb7037784c13c4b707b0df9" "e601b101e4cf63a404dfe50f2e1865bb12edc8fca166579ce0c70dba5a5c0fc960" "ad6f3772183416a00bd29d4c6e651ea7620bb100c9449858bf14e1ddc9ecd35725" "581ca5b9160de04060045993d972571c3e8f71e9d0496bfa744656861b169d65", }, { 31744, "62b6960e1a44bcc1eb1a611a8d6235b6b4b78f32e7abc4fb4c6cdcce94895c4786" "0cc51f2b0c28a7b77304bd55fe73af663c02d3f52ea053ba43431ca5bab7bfea2f" "5e9d7121770d88f70ae9649ea713087d1914f7f312147e247f87eb2d4ffef0ac97" "8bf7b6579d57d533355aa20b8b77b13fd09748728a5cc327a8ec470f4013226f", "efa53b389ab67c593dba624d898d0f7353ab99e4ac9d42302ee64cbf9939a4193a" "7258db2d9cd32a7a3ecfce46144114b15c2fcb68a618a976bd74515d47be08b628" "be420b5e830fade7c080e351a076fbc38641ad80c736c8a18fe3c66ce12f95c61c" "2462a9770d60d0f77115bbcd3782b593016a4e728d4c06cee4505cb0c08a42ec", }, { 102400, "bc3e3d41a1146b069abffad3c0d44860cf664390afce4d9661f7902e7943e085e0" "1c59dab908c04c3342b816941a26d69c2605ebee5ec5291cc55e15b76146e6745f" "0601156c3596cb75065a9c57f35585a52e1ac70f69131c23d611ce11ee4ab1ec2c" "009012d236648e77be9295dd0426f29b764d65de58eb7d01dd42248204f45f8e", "1c35d1a5811083fd7119f5d5d1ba027b4d01c0c6c49fb6ff2cf75393ea5db4a7f9" "dbdd3e1d81dcbca3ba241bb18760f207710b751846faaeb9dff8262710999a59b2" "aa1aca298a032d94eacfadf1aa192418eb54808db23b56e34213266aa08499a16b" "354f018fc4967d05f8b9d2ad87a7278337be9693fc638a3bfdbe314574ee6fc4", }, { 0, 0, 0 } }; #ifdef BLAKE3_DEBUG #define dprintf printf #else #define dprintf(...) #endif static char fmt_tohex(char c); static size_t fmt_hexdump(char *dest, const char *src, size_t len); static char fmt_tohex(char c) { return ((char)(c >= 10 ? c-10+'a' : c+'0')); } static size_t fmt_hexdump(char *dest, const char *src, size_t len) { register const unsigned char *s = (const unsigned char *) src; size_t written = 0, i; if (!dest) return ((len > ((size_t)-1)/2) ? (size_t)-1 : len*2); for (i = 0; i < len; ++i) { dest[written] = fmt_tohex(s[i]>>4); dest[written+1] = fmt_tohex(s[i]&15); written += 2; } return (written); } int main(int argc, char *argv[]) { boolean_t failed = B_FALSE; uint8_t buffer[102400]; uint64_t cpu_mhz = 0; int id, i, j; if (argc == 2) cpu_mhz = atoi(argv[1]); /* fill test message */ for (i = 0, j = 0; i < sizeof (buffer); i++, j++) { if (j == 251) j = 0; buffer[i] = (uint8_t)j; } (void) printf("Running algorithm correctness tests:\n"); - for (id = 0; id < blake3_get_impl_count(); id++) { - blake3_set_impl_id(id); - const char *name = blake3_get_impl_name(); + for (id = 0; id < blake3_impl_getcnt(); id++) { + blake3_impl_setid(id); + const char *name = blake3_impl_getname(); dprintf("Result for BLAKE3-%s:\n", name); for (i = 0; TestArray[i].hash; i++) { blake3_test_t *cur = &TestArray[i]; BLAKE3_CTX ctx; uint8_t digest[TEST_DIGEST_LEN]; char result[TEST_DIGEST_LEN]; /* default hashing */ Blake3_Init(&ctx); Blake3_Update(&ctx, buffer, cur->input_len); Blake3_FinalSeek(&ctx, 0, digest, TEST_DIGEST_LEN); fmt_hexdump(result, (char *)digest, 131); if (memcmp(result, cur->hash, 131) != 0) failed = B_TRUE; dprintf("HASH-res: %s\n", result); dprintf("HASH-ref: %s\n", cur->hash); /* salted hashing */ Blake3_InitKeyed(&ctx, (const uint8_t *)salt); Blake3_Update(&ctx, buffer, cur->input_len); Blake3_FinalSeek(&ctx, 0, digest, TEST_DIGEST_LEN); fmt_hexdump(result, (char *)digest, 131); if (memcmp(result, cur->shash, 131) != 0) failed = B_TRUE; dprintf("SHASH-res: %s\n", result); dprintf("SHASH-ref: %s\n", cur->shash); printf("BLAKE3-%s Message (inlen=%d)\tResult: %s\n", name, cur->input_len, failed?"FAILED!":"OK"); } } if (failed) return (1); #define BLAKE3_PERF_TEST(impl, diglen) \ do { \ BLAKE3_CTX ctx; \ uint8_t digest[diglen / 8]; \ uint8_t block[131072]; \ uint64_t delta; \ double cpb = 0; \ int i; \ struct timeval start, end; \ memset(block, 0, sizeof (block)); \ (void) gettimeofday(&start, NULL); \ Blake3_Init(&ctx); \ for (i = 0; i < 8192; i++) \ Blake3_Update(&ctx, block, sizeof (block)); \ Blake3_Final(&ctx, digest); \ (void) gettimeofday(&end, NULL); \ delta = (end.tv_sec * 1000000llu + end.tv_usec) - \ (start.tv_sec * 1000000llu + start.tv_usec); \ if (cpu_mhz != 0) { \ cpb = (cpu_mhz * 1e6 * ((double)delta / \ 1000000)) / (8192 * 128 * 1024); \ } \ (void) printf("BLAKE3-%s %llu us (%.02f CPB)\n", impl, \ (u_longlong_t)delta, cpb); \ } while (0) printf("Running performance tests (hashing 1024 MiB of data):\n"); - for (id = 0; id < blake3_get_impl_count(); id++) { - blake3_set_impl_id(id); - const char *name = blake3_get_impl_name(); + for (id = 0; id < blake3_impl_getcnt(); id++) { + blake3_impl_setid(id); + const char *name = blake3_impl_getname(); BLAKE3_PERF_TEST(name, 256); } return (0); }