diff --git a/sys/amd64/amd64/support.S b/sys/amd64/amd64/support.S index ae2793aa7584..6e541b75cdae 100644 --- a/sys/amd64/amd64/support.S +++ b/sys/amd64/amd64/support.S @@ -1,1971 +1,1992 @@ /*- * Copyright (c) 2018-2019 The FreeBSD Foundation * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1993 The Regents of the University of California. * All rights reserved. * * Portions of this software were developed by * Konstantin Belousov under sponsorship from * the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_ddb.h" #include #include #include #include "assym.inc" .text /* Address: %rdi */ ENTRY(pagezero_std) PUSH_FRAME_POINTER movl $PAGE_SIZE/8,%ecx xorl %eax,%eax rep stosq POP_FRAME_POINTER ret END(pagezero_std) ENTRY(pagezero_erms) PUSH_FRAME_POINTER movl $PAGE_SIZE,%ecx xorl %eax,%eax rep stosb POP_FRAME_POINTER ret END(pagezero_erms) /* * pagecopy(%rdi=from, %rsi=to) */ ENTRY(pagecopy) PUSH_FRAME_POINTER movl $PAGE_SIZE/8,%ecx movq %rdi,%r9 movq %rsi,%rdi movq %r9,%rsi rep movsq POP_FRAME_POINTER ret END(pagecopy) /* * memcmp(b1, b2, len) * rdi,rsi,rdx */ ENTRY(memcmp) PUSH_FRAME_POINTER xorl %eax,%eax 10: cmpq $16,%rdx ja 101632f cmpb $8,%dl jg 100816f cmpb $4,%dl jg 100408f cmpb $2,%dl jge 100204f cmpb $1,%dl jl 100000f movzbl (%rdi),%eax movzbl (%rsi),%r8d subl %r8d,%eax 100000: POP_FRAME_POINTER ret ALIGN_TEXT 100816: movq (%rdi),%r8 movq (%rsi),%r9 cmpq %r8,%r9 jne 80f movq -8(%rdi,%rdx),%r8 movq -8(%rsi,%rdx),%r9 cmpq %r8,%r9 jne 10081608f POP_FRAME_POINTER ret ALIGN_TEXT 100408: movl (%rdi),%r8d movl (%rsi),%r9d cmpl %r8d,%r9d jne 80f movl -4(%rdi,%rdx),%r8d movl -4(%rsi,%rdx),%r9d cmpl %r8d,%r9d jne 10040804f POP_FRAME_POINTER ret ALIGN_TEXT 100204: movzwl (%rdi),%r8d movzwl (%rsi),%r9d cmpl %r8d,%r9d jne 1f movzwl -2(%rdi,%rdx),%r8d movzwl -2(%rsi,%rdx),%r9d cmpl %r8d,%r9d jne 1f POP_FRAME_POINTER ret ALIGN_TEXT 101632: cmpq $32,%rdx ja 103200f movq (%rdi),%r8 movq (%rsi),%r9 cmpq %r8,%r9 jne 80f movq 8(%rdi),%r8 movq 8(%rsi),%r9 cmpq %r8,%r9 jne 10163208f movq -16(%rdi,%rdx),%r8 movq -16(%rsi,%rdx),%r9 cmpq %r8,%r9 jne 10163216f movq -8(%rdi,%rdx),%r8 movq -8(%rsi,%rdx),%r9 cmpq %r8,%r9 jne 10163224f POP_FRAME_POINTER ret ALIGN_TEXT 103200: movq (%rdi),%r8 movq 8(%rdi),%r9 subq (%rsi),%r8 subq 8(%rsi),%r9 orq %r8,%r9 jnz 10320000f movq 16(%rdi),%r8 movq 24(%rdi),%r9 subq 16(%rsi),%r8 subq 24(%rsi),%r9 orq %r8,%r9 jnz 10320016f leaq 32(%rdi),%rdi leaq 32(%rsi),%rsi subq $32,%rdx cmpq $32,%rdx jae 103200b cmpb $0,%dl jne 10b POP_FRAME_POINTER ret /* * Mismatch was found. * * Before we compute it we narrow down the range (16 -> 8 -> 4 bytes). */ ALIGN_TEXT 10320016: leaq 16(%rdi),%rdi leaq 16(%rsi),%rsi 10320000: movq (%rdi),%r8 movq (%rsi),%r9 cmpq %r8,%r9 jne 80f leaq 8(%rdi),%rdi leaq 8(%rsi),%rsi jmp 80f ALIGN_TEXT 10081608: 10163224: leaq -8(%rdi,%rdx),%rdi leaq -8(%rsi,%rdx),%rsi jmp 80f ALIGN_TEXT 10163216: leaq -16(%rdi,%rdx),%rdi leaq -16(%rsi,%rdx),%rsi jmp 80f ALIGN_TEXT 10163208: leaq 8(%rdi),%rdi leaq 8(%rsi),%rsi jmp 80f ALIGN_TEXT 10040804: leaq -4(%rdi,%rdx),%rdi leaq -4(%rsi,%rdx),%rsi jmp 1f ALIGN_TEXT 80: movl (%rdi),%r8d movl (%rsi),%r9d cmpl %r8d,%r9d jne 1f leaq 4(%rdi),%rdi leaq 4(%rsi),%rsi /* * We have up to 4 bytes to inspect. */ 1: movzbl (%rdi),%eax movzbl (%rsi),%r8d cmpb %r8b,%al jne 2f movzbl 1(%rdi),%eax movzbl 1(%rsi),%r8d cmpb %r8b,%al jne 2f movzbl 2(%rdi),%eax movzbl 2(%rsi),%r8d cmpb %r8b,%al jne 2f movzbl 3(%rdi),%eax movzbl 3(%rsi),%r8d 2: subl %r8d,%eax POP_FRAME_POINTER ret END(memcmp) /* * memmove(dst, src, cnt) * rdi, rsi, rdx */ /* * Register state at entry is supposed to be as follows: * rdi - destination * rsi - source * rdx - count * * The macro possibly clobbers the above and: rcx, r8, r9, r10 * It does not clobber rax nor r11. */ .macro MEMMOVE erms overlap begin end \begin /* * For sizes 0..32 all data is read before it is written, so there * is no correctness issue with direction of copying. */ cmpq $32,%rcx jbe 101632f .if \overlap == 1 movq %rdi,%r8 subq %rsi,%r8 cmpq %rcx,%r8 /* overlapping && src < dst? */ jb 2f .endif cmpq $256,%rcx ja 1256f ALIGN_TEXT 103200: movq (%rsi),%rdx movq %rdx,(%rdi) movq 8(%rsi),%rdx movq %rdx,8(%rdi) movq 16(%rsi),%rdx movq %rdx,16(%rdi) movq 24(%rsi),%rdx movq %rdx,24(%rdi) leaq 32(%rsi),%rsi leaq 32(%rdi),%rdi subq $32,%rcx cmpq $32,%rcx jae 103200b cmpb $0,%cl jne 101632f \end ret ALIGN_TEXT 101632: cmpb $16,%cl jl 100816f movq (%rsi),%rdx movq 8(%rsi),%r8 movq -16(%rsi,%rcx),%r9 movq -8(%rsi,%rcx),%r10 movq %rdx,(%rdi) movq %r8,8(%rdi) movq %r9,-16(%rdi,%rcx) movq %r10,-8(%rdi,%rcx) \end ret ALIGN_TEXT 100816: cmpb $8,%cl jl 100408f movq (%rsi),%rdx movq -8(%rsi,%rcx),%r8 movq %rdx,(%rdi) movq %r8,-8(%rdi,%rcx,) \end ret ALIGN_TEXT 100408: cmpb $4,%cl jl 100204f movl (%rsi),%edx movl -4(%rsi,%rcx),%r8d movl %edx,(%rdi) movl %r8d,-4(%rdi,%rcx) \end ret ALIGN_TEXT 100204: cmpb $2,%cl jl 100001f movzwl (%rsi),%edx movzwl -2(%rsi,%rcx),%r8d movw %dx,(%rdi) movw %r8w,-2(%rdi,%rcx) \end ret ALIGN_TEXT 100001: cmpb $1,%cl jl 100000f movb (%rsi),%dl movb %dl,(%rdi) 100000: \end ret ALIGN_TEXT 1256: testb $15,%dil jnz 100f .if \erms == 1 rep movsb .else shrq $3,%rcx /* copy by 64-bit words */ rep movsq movq %rdx,%rcx andl $7,%ecx /* any bytes left? */ jne 100408b .endif \end ret 100: movq (%rsi),%r8 movq 8(%rsi),%r9 movq %rdi,%r10 movq %rdi,%rcx andq $15,%rcx leaq -16(%rdx,%rcx),%rdx neg %rcx leaq 16(%rdi,%rcx),%rdi leaq 16(%rsi,%rcx),%rsi movq %rdx,%rcx .if \erms == 1 rep movsb movq %r8,(%r10) movq %r9,8(%r10) .else shrq $3,%rcx /* copy by 64-bit words */ rep movsq movq %r8,(%r10) movq %r9,8(%r10) movq %rdx,%rcx andl $7,%ecx /* any bytes left? */ jne 100408b .endif \end ret .if \overlap == 1 /* * Copy backwards. */ ALIGN_TEXT 2: cmpq $256,%rcx ja 2256f leaq -8(%rdi,%rcx),%rdi leaq -8(%rsi,%rcx),%rsi cmpq $32,%rcx jb 2016f ALIGN_TEXT 2032: movq (%rsi),%rdx movq %rdx,(%rdi) movq -8(%rsi),%rdx movq %rdx,-8(%rdi) movq -16(%rsi),%rdx movq %rdx,-16(%rdi) movq -24(%rsi),%rdx movq %rdx,-24(%rdi) leaq -32(%rsi),%rsi leaq -32(%rdi),%rdi subq $32,%rcx cmpq $32,%rcx jae 2032b cmpb $0,%cl jne 2016f \end ret ALIGN_TEXT 2016: cmpb $16,%cl jl 2008f movq (%rsi),%rdx movq %rdx,(%rdi) movq -8(%rsi),%rdx movq %rdx,-8(%rdi) subb $16,%cl jz 2000f leaq -16(%rsi),%rsi leaq -16(%rdi),%rdi 2008: cmpb $8,%cl jl 2004f movq (%rsi),%rdx movq %rdx,(%rdi) subb $8,%cl jz 2000f leaq -8(%rsi),%rsi leaq -8(%rdi),%rdi 2004: cmpb $4,%cl jl 2002f movl 4(%rsi),%edx movl %edx,4(%rdi) subb $4,%cl jz 2000f leaq -4(%rsi),%rsi leaq -4(%rdi),%rdi 2002: cmpb $2,%cl jl 2001f movw 6(%rsi),%dx movw %dx,6(%rdi) subb $2,%cl jz 2000f leaq -2(%rsi),%rsi leaq -2(%rdi),%rdi 2001: cmpb $1,%cl jl 2000f movb 7(%rsi),%dl movb %dl,7(%rdi) 2000: \end ret ALIGN_TEXT 2256: std leaq -8(%rdi,%rcx),%rdi leaq -8(%rsi,%rcx),%rsi shrq $3,%rcx rep movsq cld movq %rdx,%rcx andb $7,%cl jne 2004b \end ret .endif .endm .macro MEMMOVE_BEGIN PUSH_FRAME_POINTER movq %rdi,%rax movq %rdx,%rcx .endm .macro MEMMOVE_END POP_FRAME_POINTER .endm ENTRY(memmove_std) MEMMOVE erms=0 overlap=1 begin=MEMMOVE_BEGIN end=MEMMOVE_END END(memmove_std) ENTRY(memmove_erms) MEMMOVE erms=1 overlap=1 begin=MEMMOVE_BEGIN end=MEMMOVE_END END(memmove_erms) /* * memcpy(dst, src, len) * rdi, rsi, rdx * * Note: memcpy does not support overlapping copies */ ENTRY(memcpy_std) MEMMOVE erms=0 overlap=0 begin=MEMMOVE_BEGIN end=MEMMOVE_END END(memcpy_std) ENTRY(memcpy_erms) MEMMOVE erms=1 overlap=0 begin=MEMMOVE_BEGIN end=MEMMOVE_END END(memcpy_erms) /* * memset(dst, c, len) * rdi, rsi, rdx */ .macro MEMSET erms PUSH_FRAME_POINTER movq %rdi,%rax movq %rdx,%rcx movzbq %sil,%r8 movabs $0x0101010101010101,%r10 imulq %r8,%r10 cmpq $32,%rcx jbe 101632f cmpq $256,%rcx ja 1256f ALIGN_TEXT 103200: movq %r10,(%rdi) movq %r10,8(%rdi) movq %r10,16(%rdi) movq %r10,24(%rdi) leaq 32(%rdi),%rdi subq $32,%rcx cmpq $32,%rcx ja 103200b cmpb $16,%cl ja 201632f movq %r10,-16(%rdi,%rcx) movq %r10,-8(%rdi,%rcx) POP_FRAME_POINTER ret ALIGN_TEXT 101632: cmpb $16,%cl jl 100816f 201632: movq %r10,(%rdi) movq %r10,8(%rdi) movq %r10,-16(%rdi,%rcx) movq %r10,-8(%rdi,%rcx) POP_FRAME_POINTER ret ALIGN_TEXT 100816: cmpb $8,%cl jl 100408f movq %r10,(%rdi) movq %r10,-8(%rdi,%rcx) POP_FRAME_POINTER ret ALIGN_TEXT 100408: cmpb $4,%cl jl 100204f movl %r10d,(%rdi) movl %r10d,-4(%rdi,%rcx) POP_FRAME_POINTER ret ALIGN_TEXT 100204: cmpb $2,%cl jl 100001f movw %r10w,(%rdi) movw %r10w,-2(%rdi,%rcx) POP_FRAME_POINTER ret ALIGN_TEXT 100001: cmpb $0,%cl je 100000f movb %r10b,(%rdi) 100000: POP_FRAME_POINTER ret ALIGN_TEXT 1256: movq %rdi,%r9 movq %r10,%rax testl $15,%edi jnz 3f 1: .if \erms == 1 rep stosb movq %r9,%rax .else movq %rcx,%rdx shrq $3,%rcx rep stosq movq %r9,%rax andl $7,%edx jnz 2f POP_FRAME_POINTER ret 2: movq %r10,-8(%rdi,%rdx) .endif POP_FRAME_POINTER ret ALIGN_TEXT 3: movq %r10,(%rdi) movq %r10,8(%rdi) movq %rdi,%r8 andq $15,%r8 leaq -16(%rcx,%r8),%rcx neg %r8 leaq 16(%rdi,%r8),%rdi jmp 1b .endm ENTRY(memset_std) MEMSET erms=0 END(memset_std) ENTRY(memset_erms) MEMSET erms=1 END(memset_erms) /* fillw(pat, base, cnt) */ /* %rdi,%rsi, %rdx */ ENTRY(fillw) PUSH_FRAME_POINTER movq %rdi,%rax movq %rsi,%rdi movq %rdx,%rcx rep stosw POP_FRAME_POINTER ret END(fillw) /* * strlen(string) * %rdi * * Uses the ((x - 0x01....01) & ~x & 0x80....80) trick. * * 0x01....01 is replaced with 0x0 - 0x01....01 so that it can be added * with leaq. * * For a description see either: * - "Hacker's Delight" by Henry S. Warren, Jr. * - "Optimizing subroutines in assembly language: An optimization guide for x86 platforms" * by Agner Fog * * The latter contains a 32-bit variant of the same algorithm coded in assembly for i386. */ ENTRY(strlen) PUSH_FRAME_POINTER movabsq $0xfefefefefefefeff,%r8 movabsq $0x8080808080808080,%r9 movq %rdi,%r10 movq %rdi,%rcx testb $7,%dil jz 2f /* * Handle misaligned reads: align to 8 and fill * the spurious bytes. */ andq $~7,%rdi movq (%rdi),%r11 shlq $3,%rcx movq $-1,%rdx shlq %cl,%rdx notq %rdx orq %rdx,%r11 leaq (%r11,%r8),%rcx notq %r11 andq %r11,%rcx andq %r9,%rcx jnz 3f /* * Main loop. */ ALIGN_TEXT 1: leaq 8(%rdi),%rdi 2: movq (%rdi),%r11 leaq (%r11,%r8),%rcx notq %r11 andq %r11,%rcx andq %r9,%rcx jz 1b 3: bsfq %rcx,%rcx shrq $3,%rcx leaq (%rcx,%rdi),%rax subq %r10,%rax POP_FRAME_POINTER ret END(strlen) /*****************************************************************************/ /* copyout and fubyte family */ /*****************************************************************************/ /* * Access user memory from inside the kernel. These routines should be * the only places that do this. * * These routines set curpcb->pcb_onfault for the time they execute. When a * protection violation occurs inside the functions, the trap handler * returns to *curpcb->pcb_onfault instead of the function. */ .macro SMAP_DISABLE smap .if \smap stac .endif .endm .macro SMAP_ENABLE smap .if \smap clac .endif .endm .macro COPYINOUT_BEGIN .endm .macro COPYINOUT_END movq %rax,PCB_ONFAULT(%r11) POP_FRAME_POINTER .endm .macro COPYINOUT_SMAP_END SMAP_ENABLE smap=1 COPYINOUT_END .endm /* * copyout(from_kernel, to_user, len) * %rdi, %rsi, %rdx */ .macro COPYOUT smap erms PUSH_FRAME_POINTER movq PCPU(CURPCB),%r11 movq $copy_fault,PCB_ONFAULT(%r11) /* * Check explicitly for non-user addresses. * First, prevent address wrapping. */ movq %rsi,%rax addq %rdx,%rax jc copy_fault /* * XXX STOP USING VM_MAXUSER_ADDRESS. * It is an end address, not a max, so every time it is used correctly it * looks like there is an off by one error, and of course it caused an off * by one error in several places. */ movq $VM_MAXUSER_ADDRESS,%rcx cmpq %rcx,%rax ja copy_fault /* * Set return value to zero. Remaining failure mode goes through * copy_fault. */ xorl %eax,%eax /* * Set up arguments for MEMMOVE. */ movq %rdi,%r8 movq %rsi,%rdi movq %r8,%rsi movq %rdx,%rcx SMAP_DISABLE \smap .if \smap == 1 MEMMOVE erms=\erms overlap=0 begin=COPYINOUT_BEGIN end=COPYINOUT_SMAP_END .else MEMMOVE erms=\erms overlap=0 begin=COPYINOUT_BEGIN end=COPYINOUT_END .endif /* NOTREACHED */ .endm ENTRY(copyout_nosmap_std) COPYOUT smap=0 erms=0 END(copyout_nosmap_std) ENTRY(copyout_smap_std) COPYOUT smap=1 erms=0 END(copyout_smap_std) ENTRY(copyout_nosmap_erms) COPYOUT smap=0 erms=1 END(copyout_nosmap_erms) ENTRY(copyout_smap_erms) COPYOUT smap=1 erms=1 END(copyout_smap_erms) /* * copyin(from_user, to_kernel, len) * %rdi, %rsi, %rdx */ .macro COPYIN smap erms PUSH_FRAME_POINTER movq PCPU(CURPCB),%r11 movq $copy_fault,PCB_ONFAULT(%r11) /* * make sure address is valid */ movq %rdi,%rax addq %rdx,%rax jc copy_fault movq $VM_MAXUSER_ADDRESS,%rcx cmpq %rcx,%rax ja copy_fault xorl %eax,%eax movq %rdi,%r8 movq %rsi,%rdi movq %r8,%rsi movq %rdx,%rcx SMAP_DISABLE \smap .if \smap == 1 MEMMOVE erms=\erms overlap=0 begin=COPYINOUT_BEGIN end=COPYINOUT_SMAP_END .else MEMMOVE erms=\erms overlap=0 begin=COPYINOUT_BEGIN end=COPYINOUT_END .endif /* NOTREACHED */ .endm ENTRY(copyin_nosmap_std) COPYIN smap=0 erms=0 END(copyin_nosmap_std) ENTRY(copyin_smap_std) COPYIN smap=1 erms=0 END(copyin_smap_std) ENTRY(copyin_nosmap_erms) COPYIN smap=0 erms=1 END(copyin_nosmap_erms) ENTRY(copyin_smap_erms) COPYIN smap=1 erms=1 END(copyin_smap_erms) ALIGN_TEXT copy_fault: testl $CPUID_STDEXT_SMAP,cpu_stdext_feature(%rip) je 1f clac 1: movq $0,PCB_ONFAULT(%r11) movl $EFAULT,%eax POP_FRAME_POINTER ret /* * casueword32. Compare and set user integer. Returns -1 on fault, * 0 if access was successful, and 1 when comparison failed. * Old value is written to *oldp. * dst = %rdi, old = %esi, oldp = %rdx, new = %ecx */ ENTRY(casueword32_nosmap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%r8 movq $fusufault,PCB_ONFAULT(%r8) movq $VM_MAXUSER_ADDRESS-4,%rax cmpq %rax,%rdi /* verify address is valid */ ja fusufault movl %esi,%eax /* old */ #ifdef SMP lock #endif cmpxchgl %ecx,(%rdi) /* new = %ecx */ setne %cl /* * The old value is in %eax. If the store succeeded it will be the * value we expected (old) from before the store, otherwise it will * be the current value. Save %eax into %esi to prepare the return * value. */ movl %eax,%esi xorl %eax,%eax movq %rax,PCB_ONFAULT(%r8) /* * Access the oldp after the pcb_onfault is cleared, to correctly * catch corrupted pointer. */ movl %esi,(%rdx) /* oldp = %rdx */ POP_FRAME_POINTER movzbl %cl, %eax ret END(casueword32_nosmap) ENTRY(casueword32_smap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%r8 movq $fusufault,PCB_ONFAULT(%r8) movq $VM_MAXUSER_ADDRESS-4,%rax cmpq %rax,%rdi /* verify address is valid */ ja fusufault movl %esi,%eax /* old */ stac #ifdef SMP lock #endif cmpxchgl %ecx,(%rdi) /* new = %ecx */ clac setne %cl /* * The old value is in %eax. If the store succeeded it will be the * value we expected (old) from before the store, otherwise it will * be the current value. Save %eax into %esi to prepare the return * value. */ movl %eax,%esi xorl %eax,%eax movq %rax,PCB_ONFAULT(%r8) /* * Access the oldp after the pcb_onfault is cleared, to correctly * catch corrupted pointer. */ movl %esi,(%rdx) /* oldp = %rdx */ POP_FRAME_POINTER movzbl %cl, %eax ret END(casueword32_smap) /* * casueword. Compare and set user long. Returns -1 on fault, * 0 if access was successful, and 1 when comparison failed. * Old value is written to *oldp. * dst = %rdi, old = %rsi, oldp = %rdx, new = %rcx */ ENTRY(casueword_nosmap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%r8 movq $fusufault,PCB_ONFAULT(%r8) movq $VM_MAXUSER_ADDRESS-4,%rax cmpq %rax,%rdi /* verify address is valid */ ja fusufault movq %rsi,%rax /* old */ #ifdef SMP lock #endif cmpxchgq %rcx,(%rdi) /* new = %rcx */ setne %cl /* * The old value is in %rax. If the store succeeded it will be the * value we expected (old) from before the store, otherwise it will * be the current value. */ movq %rax,%rsi xorl %eax,%eax movq %rax,PCB_ONFAULT(%r8) movq %rsi,(%rdx) POP_FRAME_POINTER movzbl %cl, %eax ret END(casueword_nosmap) ENTRY(casueword_smap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%r8 movq $fusufault,PCB_ONFAULT(%r8) movq $VM_MAXUSER_ADDRESS-4,%rax cmpq %rax,%rdi /* verify address is valid */ ja fusufault movq %rsi,%rax /* old */ stac #ifdef SMP lock #endif cmpxchgq %rcx,(%rdi) /* new = %rcx */ clac setne %cl /* * The old value is in %rax. If the store succeeded it will be the * value we expected (old) from before the store, otherwise it will * be the current value. */ movq %rax,%rsi xorl %eax,%eax movq %rax,PCB_ONFAULT(%r8) movq %rsi,(%rdx) POP_FRAME_POINTER movzbl %cl, %eax ret END(casueword_smap) /* * Fetch (load) a 64-bit word, a 32-bit word, a 16-bit word, or an 8-bit * byte from user memory. * addr = %rdi, valp = %rsi */ ENTRY(fueword_nosmap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-8,%rax cmpq %rax,%rdi /* verify address is valid */ ja fusufault xorl %eax,%eax movq (%rdi),%r11 movq %rax,PCB_ONFAULT(%rcx) movq %r11,(%rsi) POP_FRAME_POINTER ret END(fueword_nosmap) ENTRY(fueword_smap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-8,%rax cmpq %rax,%rdi /* verify address is valid */ ja fusufault xorl %eax,%eax stac movq (%rdi),%r11 clac movq %rax,PCB_ONFAULT(%rcx) movq %r11,(%rsi) POP_FRAME_POINTER ret END(fueword_smap) ENTRY(fueword32_nosmap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-4,%rax cmpq %rax,%rdi /* verify address is valid */ ja fusufault xorl %eax,%eax movl (%rdi),%r11d movq %rax,PCB_ONFAULT(%rcx) movl %r11d,(%rsi) POP_FRAME_POINTER ret END(fueword32_nosmap) ENTRY(fueword32_smap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-4,%rax cmpq %rax,%rdi /* verify address is valid */ ja fusufault xorl %eax,%eax stac movl (%rdi),%r11d clac movq %rax,PCB_ONFAULT(%rcx) movl %r11d,(%rsi) POP_FRAME_POINTER ret END(fueword32_smap) ENTRY(fuword16_nosmap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-2,%rax cmpq %rax,%rdi ja fusufault movzwl (%rdi),%eax movq $0,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(fuword16_nosmap) ENTRY(fuword16_smap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-2,%rax cmpq %rax,%rdi ja fusufault stac movzwl (%rdi),%eax clac movq $0,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(fuword16_smap) ENTRY(fubyte_nosmap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-1,%rax cmpq %rax,%rdi ja fusufault movzbl (%rdi),%eax movq $0,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(fubyte_nosmap) ENTRY(fubyte_smap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-1,%rax cmpq %rax,%rdi ja fusufault stac movzbl (%rdi),%eax clac movq $0,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(fubyte_smap) /* * Store a 64-bit word, a 32-bit word, a 16-bit word, or an 8-bit byte to * user memory. * addr = %rdi, value = %rsi */ ENTRY(suword_nosmap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-8,%rax cmpq %rax,%rdi /* verify address validity */ ja fusufault movq %rsi,(%rdi) xorl %eax,%eax movq %rax,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(suword_nosmap) ENTRY(suword_smap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-8,%rax cmpq %rax,%rdi /* verify address validity */ ja fusufault stac movq %rsi,(%rdi) clac xorl %eax,%eax movq %rax,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(suword_smap) ENTRY(suword32_nosmap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-4,%rax cmpq %rax,%rdi /* verify address validity */ ja fusufault movl %esi,(%rdi) xorl %eax,%eax movq %rax,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(suword32_nosmap) ENTRY(suword32_smap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-4,%rax cmpq %rax,%rdi /* verify address validity */ ja fusufault stac movl %esi,(%rdi) clac xorl %eax,%eax movq %rax,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(suword32_smap) ENTRY(suword16_nosmap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-2,%rax cmpq %rax,%rdi /* verify address validity */ ja fusufault movw %si,(%rdi) xorl %eax,%eax movq %rax,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(suword16_nosmap) ENTRY(suword16_smap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-2,%rax cmpq %rax,%rdi /* verify address validity */ ja fusufault stac movw %si,(%rdi) clac xorl %eax,%eax movq %rax,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(suword16_smap) ENTRY(subyte_nosmap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-1,%rax cmpq %rax,%rdi /* verify address validity */ ja fusufault movl %esi,%eax movb %al,(%rdi) xorl %eax,%eax movq %rax,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(subyte_nosmap) ENTRY(subyte_smap) PUSH_FRAME_POINTER movq PCPU(CURPCB),%rcx movq $fusufault,PCB_ONFAULT(%rcx) movq $VM_MAXUSER_ADDRESS-1,%rax cmpq %rax,%rdi /* verify address validity */ ja fusufault movl %esi,%eax stac movb %al,(%rdi) clac xorl %eax,%eax movq %rax,PCB_ONFAULT(%rcx) POP_FRAME_POINTER ret END(subyte_smap) ALIGN_TEXT fusufault: testl $CPUID_STDEXT_SMAP,cpu_stdext_feature(%rip) je 1f clac 1: movq PCPU(CURPCB),%rcx xorl %eax,%eax movq %rax,PCB_ONFAULT(%rcx) decq %rax POP_FRAME_POINTER ret /* * copyinstr(from, to, maxlen, int *lencopied) * %rdi, %rsi, %rdx, %rcx * * copy a string from 'from' to 'to', stop when a 0 character is reached. * return ENAMETOOLONG if string is longer than maxlen, and * EFAULT on protection violations. If lencopied is non-zero, * return the actual length in *lencopied. */ .macro COPYINSTR smap PUSH_FRAME_POINTER movq %rdx,%r8 /* %r8 = maxlen */ movq PCPU(CURPCB),%r9 movq $cpystrflt,PCB_ONFAULT(%r9) movq $VM_MAXUSER_ADDRESS,%rax /* make sure 'from' is within bounds */ subq %rdi,%rax jbe cpystrflt SMAP_DISABLE \smap /* restrict maxlen to <= VM_MAXUSER_ADDRESS-from */ cmpq %rdx,%rax jb 8f 1: incq %rdx 2: decq %rdx .if \smap == 0 jz copyinstr_toolong .else jz copyinstr_toolong_smap .endif movb (%rdi),%al movb %al,(%rsi) incq %rsi incq %rdi testb %al,%al jnz 2b SMAP_ENABLE \smap /* Success -- 0 byte reached */ decq %rdx xorl %eax,%eax /* set *lencopied and return %eax */ movq %rax,PCB_ONFAULT(%r9) testq %rcx,%rcx jz 3f subq %rdx,%r8 movq %r8,(%rcx) 3: POP_FRAME_POINTER ret ALIGN_TEXT 8: movq %rax,%rdx movq %rax,%r8 jmp 1b .endm ENTRY(copyinstr_nosmap) COPYINSTR smap=0 END(copyinstr_nosmap) ENTRY(copyinstr_smap) COPYINSTR smap=1 END(copyinstr_smap) cpystrflt: testl $CPUID_STDEXT_SMAP,cpu_stdext_feature(%rip) je 1f clac 1: movl $EFAULT,%eax cpystrflt_x: /* set *lencopied and return %eax */ movq $0,PCB_ONFAULT(%r9) testq %rcx,%rcx jz 1f subq %rdx,%r8 movq %r8,(%rcx) 1: POP_FRAME_POINTER ret copyinstr_toolong_smap: clac copyinstr_toolong: /* rdx is zero - return ENAMETOOLONG or EFAULT */ movq $VM_MAXUSER_ADDRESS,%rax cmpq %rax,%rdi jae cpystrflt movl $ENAMETOOLONG,%eax jmp cpystrflt_x /* * Handling of special amd64 registers and descriptor tables etc */ /* void lgdt(struct region_descriptor *rdp); */ ENTRY(lgdt) /* reload the descriptor table */ lgdt (%rdi) /* flush the prefetch q */ jmp 1f nop 1: movl $KDSEL,%eax movl %eax,%ds movl %eax,%es movl %eax,%fs /* Beware, use wrmsr to set 64 bit base */ movl %eax,%gs movl %eax,%ss /* reload code selector by turning return into intersegmental return */ popq %rax pushq $KCSEL pushq %rax lretq END(lgdt) /*****************************************************************************/ /* setjump, longjump */ /*****************************************************************************/ ENTRY(setjmp) movq %rbx,0(%rdi) /* save rbx */ movq %rsp,8(%rdi) /* save rsp */ movq %rbp,16(%rdi) /* save rbp */ movq %r12,24(%rdi) /* save r12 */ movq %r13,32(%rdi) /* save r13 */ movq %r14,40(%rdi) /* save r14 */ movq %r15,48(%rdi) /* save r15 */ movq 0(%rsp),%rdx /* get rta */ movq %rdx,56(%rdi) /* save rip */ xorl %eax,%eax /* return(0); */ ret END(setjmp) ENTRY(longjmp) movq 0(%rdi),%rbx /* restore rbx */ movq 8(%rdi),%rsp /* restore rsp */ movq 16(%rdi),%rbp /* restore rbp */ movq 24(%rdi),%r12 /* restore r12 */ movq 32(%rdi),%r13 /* restore r13 */ movq 40(%rdi),%r14 /* restore r14 */ movq 48(%rdi),%r15 /* restore r15 */ movq 56(%rdi),%rdx /* get rta */ movq %rdx,0(%rsp) /* put in return frame */ xorl %eax,%eax /* return(1); */ incl %eax ret END(longjmp) /* * Support for reading MSRs in the safe manner. (Instead of panic on #gp, * return an error.) */ ENTRY(rdmsr_safe) /* int rdmsr_safe(u_int msr, uint64_t *data) */ PUSH_FRAME_POINTER movq PCPU(CURPCB),%r8 movq $msr_onfault,PCB_ONFAULT(%r8) movl %edi,%ecx rdmsr /* Read MSR pointed by %ecx. Returns hi byte in edx, lo in %eax */ salq $32,%rdx /* sign-shift %rdx left */ movl %eax,%eax /* zero-extend %eax -> %rax */ orq %rdx,%rax movq %rax,(%rsi) xorq %rax,%rax movq %rax,PCB_ONFAULT(%r8) POP_FRAME_POINTER ret /* * Support for writing MSRs in the safe manner. (Instead of panic on #gp, * return an error.) */ ENTRY(wrmsr_safe) /* int wrmsr_safe(u_int msr, uint64_t data) */ PUSH_FRAME_POINTER movq PCPU(CURPCB),%r8 movq $msr_onfault,PCB_ONFAULT(%r8) movl %edi,%ecx movl %esi,%eax sarq $32,%rsi movl %esi,%edx wrmsr /* Write MSR pointed by %ecx. Accepts hi byte in edx, lo in %eax. */ xorq %rax,%rax movq %rax,PCB_ONFAULT(%r8) POP_FRAME_POINTER ret /* * MSR operations fault handler */ ALIGN_TEXT msr_onfault: movq $0,PCB_ONFAULT(%r8) movl $EFAULT,%eax POP_FRAME_POINTER ret /* * void pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3); * Invalidates address space addressed by ucr3, then returns to kcr3. * Done in assembler to ensure no other memory accesses happen while * on ucr3. */ ALIGN_TEXT ENTRY(pmap_pti_pcid_invalidate) pushfq cli movq %rdi,%cr3 /* to user page table */ movq %rsi,%cr3 /* back to kernel */ popfq retq /* * void pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va); * Invalidates virtual address va in address space ucr3, then returns to kcr3. */ ALIGN_TEXT ENTRY(pmap_pti_pcid_invlpg) pushfq cli movq %rdi,%cr3 /* to user page table */ invlpg (%rdx) movq %rsi,%cr3 /* back to kernel */ popfq retq /* * void pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva, * vm_offset_t eva); * Invalidates virtual addresses between sva and eva in address space ucr3, * then returns to kcr3. */ ALIGN_TEXT ENTRY(pmap_pti_pcid_invlrng) pushfq cli movq %rdi,%cr3 /* to user page table */ 1: invlpg (%rdx) addq $PAGE_SIZE,%rdx cmpq %rdx,%rcx ja 1b movq %rsi,%cr3 /* back to kernel */ popfq retq .altmacro .macro rsb_seq_label l rsb_seq_\l: .endm .macro rsb_call_label l call rsb_seq_\l .endm .macro rsb_seq count ll=1 .rept \count rsb_call_label %(ll) nop rsb_seq_label %(ll) addq $8,%rsp ll=ll+1 .endr .endm ENTRY(rsb_flush) rsb_seq 32 ret /* all callers already saved %rax, %rdx, and %rcx */ ENTRY(handle_ibrs_entry) cmpb $0,hw_ibrs_ibpb_active(%rip) je 1f movl $MSR_IA32_SPEC_CTRL,%ecx rdmsr orl $(IA32_SPEC_CTRL_IBRS|IA32_SPEC_CTRL_STIBP),%eax orl $(IA32_SPEC_CTRL_IBRS|IA32_SPEC_CTRL_STIBP)>>32,%edx wrmsr movb $1,PCPU(IBPB_SET) testl $CPUID_STDEXT_SMEP,cpu_stdext_feature(%rip) je rsb_flush 1: ret END(handle_ibrs_entry) ENTRY(handle_ibrs_exit) cmpb $0,PCPU(IBPB_SET) je 1f movl $MSR_IA32_SPEC_CTRL,%ecx rdmsr andl $~(IA32_SPEC_CTRL_IBRS|IA32_SPEC_CTRL_STIBP),%eax andl $~((IA32_SPEC_CTRL_IBRS|IA32_SPEC_CTRL_STIBP)>>32),%edx wrmsr movb $0,PCPU(IBPB_SET) 1: ret END(handle_ibrs_exit) /* registers-neutral version, but needs stack */ ENTRY(handle_ibrs_exit_rs) cmpb $0,PCPU(IBPB_SET) je 1f pushq %rax pushq %rdx pushq %rcx movl $MSR_IA32_SPEC_CTRL,%ecx rdmsr andl $~(IA32_SPEC_CTRL_IBRS|IA32_SPEC_CTRL_STIBP),%eax andl $~((IA32_SPEC_CTRL_IBRS|IA32_SPEC_CTRL_STIBP)>>32),%edx wrmsr popq %rcx popq %rdx popq %rax movb $0,PCPU(IBPB_SET) 1: ret END(handle_ibrs_exit_rs) .noaltmacro /* * Flush L1D cache. Load enough of the data from the kernel text * to flush existing L1D content. * * N.B. The function does not follow ABI calling conventions, it corrupts %rbx. * The vmm.ko caller expects that only %rax, %rdx, %rbx, %rcx, %r9, and %rflags * registers are clobbered. The NMI handler caller only needs %r13 and %r15 * preserved. */ ENTRY(flush_l1d_sw) #define L1D_FLUSH_SIZE (64 * 1024) movq $KERNBASE, %r9 movq $-L1D_FLUSH_SIZE, %rcx /* * pass 1: Preload TLB. * Kernel text is mapped using superpages. TLB preload is * done for the benefit of older CPUs which split 2M page * into 4k TLB entries. */ 1: movb L1D_FLUSH_SIZE(%r9, %rcx), %al addq $PAGE_SIZE, %rcx jne 1b xorl %eax, %eax cpuid movq $-L1D_FLUSH_SIZE, %rcx /* pass 2: Read each cache line. */ 2: movb L1D_FLUSH_SIZE(%r9, %rcx), %al addq $64, %rcx jne 2b lfence ret #undef L1D_FLUSH_SIZE END(flush_l1d_sw) ENTRY(flush_l1d_sw_abi) pushq %rbx call flush_l1d_sw popq %rbx ret END(flush_l1d_sw_abi) ENTRY(mds_handler_void) retq END(mds_handler_void) ENTRY(mds_handler_verw) subq $8, %rsp movw %ds, (%rsp) verw (%rsp) addq $8, %rsp retq END(mds_handler_verw) ENTRY(mds_handler_ivb) pushq %rax pushq %rdx pushq %rcx movq %cr0, %rax testb $CR0_TS, %al je 1f clts 1: movq PCPU(MDS_BUF), %rdx movdqa %xmm0, PCPU(MDS_TMP) pxor %xmm0, %xmm0 lfence orpd (%rdx), %xmm0 orpd (%rdx), %xmm0 mfence movl $40, %ecx addq $16, %rdx 2: movntdq %xmm0, (%rdx) addq $16, %rdx decl %ecx jnz 2b mfence movdqa PCPU(MDS_TMP),%xmm0 testb $CR0_TS, %al je 3f movq %rax, %cr0 3: popq %rcx popq %rdx popq %rax retq END(mds_handler_ivb) ENTRY(mds_handler_bdw) pushq %rax pushq %rbx pushq %rcx pushq %rdi pushq %rsi movq %cr0, %rax testb $CR0_TS, %al je 1f clts 1: movq PCPU(MDS_BUF), %rbx movdqa %xmm0, PCPU(MDS_TMP) pxor %xmm0, %xmm0 movq %rbx, %rdi movq %rbx, %rsi movl $40, %ecx 2: movntdq %xmm0, (%rbx) addq $16, %rbx decl %ecx jnz 2b mfence movl $1536, %ecx rep; movsb lfence movdqa PCPU(MDS_TMP),%xmm0 testb $CR0_TS, %al je 3f movq %rax, %cr0 3: popq %rsi popq %rdi popq %rcx popq %rbx popq %rax retq END(mds_handler_bdw) ENTRY(mds_handler_skl_sse) pushq %rax pushq %rdx pushq %rcx pushq %rdi movq %cr0, %rax testb $CR0_TS, %al je 1f clts 1: movq PCPU(MDS_BUF), %rdi movq PCPU(MDS_BUF64), %rdx movdqa %xmm0, PCPU(MDS_TMP) pxor %xmm0, %xmm0 lfence orpd (%rdx), %xmm0 orpd (%rdx), %xmm0 xorl %eax, %eax 2: clflushopt 5376(%rdi, %rax, 8) addl $8, %eax cmpl $8 * 12, %eax jb 2b sfence movl $6144, %ecx xorl %eax, %eax rep; stosb mfence movdqa PCPU(MDS_TMP), %xmm0 testb $CR0_TS, %al je 3f movq %rax, %cr0 3: popq %rdi popq %rcx popq %rdx popq %rax retq END(mds_handler_skl_sse) ENTRY(mds_handler_skl_avx) pushq %rax pushq %rdx pushq %rcx pushq %rdi movq %cr0, %rax testb $CR0_TS, %al je 1f clts 1: movq PCPU(MDS_BUF), %rdi movq PCPU(MDS_BUF64), %rdx vmovdqa %ymm0, PCPU(MDS_TMP) vpxor %ymm0, %ymm0, %ymm0 lfence vorpd (%rdx), %ymm0, %ymm0 vorpd (%rdx), %ymm0, %ymm0 xorl %eax, %eax 2: clflushopt 5376(%rdi, %rax, 8) addl $8, %eax cmpl $8 * 12, %eax jb 2b sfence movl $6144, %ecx xorl %eax, %eax rep; stosb mfence vmovdqa PCPU(MDS_TMP), %ymm0 testb $CR0_TS, %al je 3f movq %rax, %cr0 3: popq %rdi popq %rcx popq %rdx popq %rax retq END(mds_handler_skl_avx) ENTRY(mds_handler_skl_avx512) pushq %rax pushq %rdx pushq %rcx pushq %rdi movq %cr0, %rax testb $CR0_TS, %al je 1f clts 1: movq PCPU(MDS_BUF), %rdi movq PCPU(MDS_BUF64), %rdx vmovdqa64 %zmm0, PCPU(MDS_TMP) vpxord %zmm0, %zmm0, %zmm0 lfence vorpd (%rdx), %zmm0, %zmm0 vorpd (%rdx), %zmm0, %zmm0 xorl %eax, %eax 2: clflushopt 5376(%rdi, %rax, 8) addl $8, %eax cmpl $8 * 12, %eax jb 2b sfence movl $6144, %ecx xorl %eax, %eax rep; stosb mfence vmovdqa64 PCPU(MDS_TMP), %zmm0 testb $CR0_TS, %al je 3f movq %rax, %cr0 3: popq %rdi popq %rcx popq %rdx popq %rax retq END(mds_handler_skl_avx512) ENTRY(mds_handler_silvermont) pushq %rax pushq %rdx pushq %rcx movq %cr0, %rax testb $CR0_TS, %al je 1f clts 1: movq PCPU(MDS_BUF), %rdx movdqa %xmm0, PCPU(MDS_TMP) pxor %xmm0, %xmm0 movl $16, %ecx 2: movntdq %xmm0, (%rdx) addq $16, %rdx decl %ecx jnz 2b mfence movdqa PCPU(MDS_TMP),%xmm0 testb $CR0_TS, %al je 3f movq %rax, %cr0 3: popq %rcx popq %rdx popq %rax retq END(mds_handler_silvermont) + +/* + * Do the same as Linux and execute IRET explicitly, despite IPI + * return does it as well. + */ +ENTRY(cpu_sync_core) +/* + * Can utilize SERIALIZE when instruction is moved from + * 'future extensions' to SDM. + */ + movq (%rsp), %rdx + movl %ss, %eax + pushq %rax + pushq %rsp + addq $16, (%rsp) + pushfq + movl %cs, %eax + pushq %rax + pushq %rdx + iretq +END(cpu_sync_core) diff --git a/sys/arm/arm/vm_machdep.c b/sys/arm/arm/vm_machdep.c index ace6b4ce668b..b7c08cd4e97f 100644 --- a/sys/arm/arm/vm_machdep.c +++ b/sys/arm/arm/vm_machdep.c @@ -1,313 +1,318 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary :forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * struct switchframe and trapframe must both be a multiple of 8 * for correct stack alignment. */ _Static_assert((sizeof(struct switchframe) % 8) == 0, "Bad alignment"); _Static_assert((sizeof(struct trapframe) % 8) == 0, "Bad alignment"); uint32_t initial_fpscr = VFPSCR_DN | VFPSCR_FZ; /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags) { struct pcb *pcb2; struct trapframe *tf; struct mdproc *mdp2; if ((flags & RFPROC) == 0) return; /* Point the pcb to the top of the stack */ pcb2 = (struct pcb *) (td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE) - 1; #ifdef VFP /* Store actual state of VFP */ if (curthread == td1) { if ((td1->td_pcb->pcb_fpflags & PCB_FP_STARTED) != 0) vfp_save_state(td1, td1->td_pcb); } #endif td2->td_pcb = pcb2; /* Clone td1's pcb */ bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); /* Point to mdproc and then copy over td1's contents */ mdp2 = &p2->p_md; bcopy(&td1->td_proc->p_md, mdp2, sizeof(*mdp2)); /* Point the frame to the stack in front of pcb and copy td1's frame */ td2->td_frame = (struct trapframe *)pcb2 - 1; *td2->td_frame = *td1->td_frame; /* * Create a new fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies most of the user mode register values. */ pmap_set_pcb_pagedir(vmspace_pmap(p2->p_vmspace), pcb2); pcb2->pcb_regs.sf_r4 = (register_t)fork_return; pcb2->pcb_regs.sf_r5 = (register_t)td2; pcb2->pcb_regs.sf_lr = (register_t)fork_trampoline; pcb2->pcb_regs.sf_sp = STACKALIGN(td2->td_frame); pcb2->pcb_regs.sf_tpidrurw = (register_t)get_tls(); #ifdef VFP vfp_new_thread(td2, td1, true); #endif tf = td2->td_frame; tf->tf_spsr &= ~PSR_C; tf->tf_r0 = 0; tf->tf_r1 = 0; /* Setup to release spin count in fork_exit(). */ td2->td_md.md_spinlock_count = 1; td2->td_md.md_saved_cspr = PSR_SVC32_MODE; } void cpu_thread_swapin(struct thread *td) { } void cpu_thread_swapout(struct thread *td) { } void cpu_set_syscall_retval(struct thread *td, int error) { struct trapframe *frame; frame = td->td_frame; switch (error) { case 0: frame->tf_r0 = td->td_retval[0]; frame->tf_r1 = td->td_retval[1]; frame->tf_spsr &= ~PSR_C; /* carry bit */ break; case ERESTART: /* * Reconstruct the pc to point at the swi. */ #if __ARM_ARCH >= 7 if ((frame->tf_spsr & PSR_T) != 0) frame->tf_pc -= THUMB_INSN_SIZE; else #endif frame->tf_pc -= INSN_SIZE; break; case EJUSTRETURN: /* nothing to do */ break; default: frame->tf_r0 = error; frame->tf_spsr |= PSR_C; /* carry bit */ break; } } /* * Initialize machine state, mostly pcb and trap frame for a new * thread, about to return to userspace. Put enough state in the new * thread's PCB to get it to go back to the fork_return(), which * finalizes the thread state and handles peculiarities of the first * return to userspace for the new thread. */ void cpu_copy_thread(struct thread *td, struct thread *td0) { bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); bcopy(td0->td_pcb, td->td_pcb, sizeof(struct pcb)); td->td_pcb->pcb_regs.sf_r4 = (register_t)fork_return; td->td_pcb->pcb_regs.sf_r5 = (register_t)td; td->td_pcb->pcb_regs.sf_lr = (register_t)fork_trampoline; td->td_pcb->pcb_regs.sf_sp = STACKALIGN(td->td_frame); td->td_frame->tf_spsr &= ~PSR_C; td->td_frame->tf_r0 = 0; #ifdef VFP vfp_new_thread(td, td0, false); #endif /* Setup to release spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_cspr = PSR_SVC32_MODE; } /* * Set that machine state for performing an upcall that starts * the entry function with the given argument. */ void cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { struct trapframe *tf = td->td_frame; tf->tf_usr_sp = STACKALIGN((int)stack->ss_sp + stack->ss_size); tf->tf_pc = (int)entry; tf->tf_r0 = (int)arg; tf->tf_spsr = PSR_USR32_MODE; if ((register_t)entry & 1) tf->tf_spsr |= PSR_T; } int cpu_set_user_tls(struct thread *td, void *tls_base) { td->td_pcb->pcb_regs.sf_tpidrurw = (register_t)tls_base; if (td == curthread) set_tls(tls_base); return (0); } void cpu_thread_exit(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_pages * PAGE_SIZE) - 1; /* * Ensure td_frame is aligned to an 8 byte boundary as it will be * placed into the stack pointer which must be 8 byte aligned in * the ARM EABI. */ td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb) - 1; } void cpu_thread_free(struct thread *td) { } void cpu_thread_clean(struct thread *td) { } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg) { td->td_pcb->pcb_regs.sf_r4 = (register_t)func; /* function */ td->td_pcb->pcb_regs.sf_r5 = (register_t)arg; /* first arg */ } void cpu_exit(struct thread *td) { } bool cpu_exec_vmspace_reuse(struct proc *p __unused, vm_map_t map __unused) { return (true); } int cpu_procctl(struct thread *td __unused, int idtype __unused, id_t id __unused, int com __unused, void *data __unused) { return (EINVAL); } + +void +cpu_sync_core(void) +{ +} diff --git a/sys/arm64/arm64/vm_machdep.c b/sys/arm64/arm64/vm_machdep.c index 06e063d916f1..5e45b45dc320 100644 --- a/sys/arm64/arm64/vm_machdep.c +++ b/sys/arm64/arm64/vm_machdep.c @@ -1,312 +1,323 @@ /*- * Copyright (c) 2014 Andrew Turner * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VFP #include #endif #include /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags) { struct pcb *pcb2; struct trapframe *tf; if ((flags & RFPROC) == 0) return; if (td1 == curthread) { /* * Save the tpidr_el0 and the vfp state, these normally happen * in cpu_switch, but if userland changes these then forks * this may not have happened. */ td1->td_pcb->pcb_tpidr_el0 = READ_SPECIALREG(tpidr_el0); td1->td_pcb->pcb_tpidrro_el0 = READ_SPECIALREG(tpidrro_el0); #ifdef VFP if ((td1->td_pcb->pcb_fpflags & PCB_FP_STARTED) != 0) vfp_save_state(td1, td1->td_pcb); #endif } pcb2 = (struct pcb *)(td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE) - 1; td2->td_pcb = pcb2; bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); /* Clear the debug register state. */ bzero(&pcb2->pcb_dbg_regs, sizeof(pcb2->pcb_dbg_regs)); ptrauth_fork(td2, td1); tf = (struct trapframe *)STACKALIGN((struct trapframe *)pcb2 - 1); bcopy(td1->td_frame, tf, sizeof(*tf)); tf->tf_x[0] = 0; tf->tf_x[1] = 0; tf->tf_spsr = td1->td_frame->tf_spsr & (PSR_M_32 | PSR_DAIF); td2->td_frame = tf; /* Set the return value registers for fork() */ td2->td_pcb->pcb_x[PCB_X19] = (uintptr_t)fork_return; td2->td_pcb->pcb_x[PCB_X20] = (uintptr_t)td2; td2->td_pcb->pcb_x[PCB_LR] = (uintptr_t)fork_trampoline; td2->td_pcb->pcb_sp = (uintptr_t)td2->td_frame; vfp_new_thread(td2, td1, true); /* Setup to release spin count in fork_exit(). */ td2->td_md.md_spinlock_count = 1; td2->td_md.md_saved_daif = PSR_DAIF_DEFAULT; #if defined(PERTHREAD_SSP) /* Set the new canary */ arc4random_buf(&td2->td_md.md_canary, sizeof(td2->td_md.md_canary)); #endif } void cpu_reset(void) { psci_reset(); printf("cpu_reset failed"); while(1) __asm volatile("wfi" ::: "memory"); } void cpu_thread_swapin(struct thread *td) { } void cpu_thread_swapout(struct thread *td) { } void cpu_set_syscall_retval(struct thread *td, int error) { struct trapframe *frame; frame = td->td_frame; if (__predict_true(error == 0)) { frame->tf_x[0] = td->td_retval[0]; frame->tf_x[1] = td->td_retval[1]; frame->tf_spsr &= ~PSR_C; /* carry bit */ return; } switch (error) { case ERESTART: frame->tf_elr -= 4; break; case EJUSTRETURN: break; default: frame->tf_spsr |= PSR_C; /* carry bit */ frame->tf_x[0] = error; break; } } /* * Initialize machine state, mostly pcb and trap frame for a new * thread, about to return to userspace. Put enough state in the new * thread's PCB to get it to go back to the fork_return(), which * finalizes the thread state and handles peculiarities of the first * return to userspace for the new thread. */ void cpu_copy_thread(struct thread *td, struct thread *td0) { bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); bcopy(td0->td_pcb, td->td_pcb, sizeof(struct pcb)); td->td_pcb->pcb_x[PCB_X19] = (uintptr_t)fork_return; td->td_pcb->pcb_x[PCB_X20] = (uintptr_t)td; td->td_pcb->pcb_x[PCB_LR] = (uintptr_t)fork_trampoline; td->td_pcb->pcb_sp = (uintptr_t)td->td_frame; /* Update VFP state for the new thread */ vfp_new_thread(td, td0, false); /* Setup to release spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_daif = PSR_DAIF_DEFAULT; #if defined(PERTHREAD_SSP) /* Set the new canary */ arc4random_buf(&td->td_md.md_canary, sizeof(td->td_md.md_canary)); #endif /* Generate new pointer authentication keys. */ ptrauth_copy_thread(td, td0); } /* * Set that machine state for performing an upcall that starts * the entry function with the given argument. */ void cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { struct trapframe *tf = td->td_frame; /* 32bits processes use r13 for sp */ if (td->td_frame->tf_spsr & PSR_M_32) { tf->tf_x[13] = STACKALIGN((uintptr_t)stack->ss_sp + stack->ss_size); if ((register_t)entry & 1) tf->tf_spsr |= PSR_T; } else tf->tf_sp = STACKALIGN((uintptr_t)stack->ss_sp + stack->ss_size); tf->tf_elr = (register_t)entry; tf->tf_x[0] = (register_t)arg; tf->tf_x[29] = 0; tf->tf_lr = 0; } int cpu_set_user_tls(struct thread *td, void *tls_base) { struct pcb *pcb; if ((uintptr_t)tls_base >= VM_MAXUSER_ADDRESS) return (EINVAL); pcb = td->td_pcb; if (td->td_frame->tf_spsr & PSR_M_32) { /* 32bits arm stores the user TLS into tpidrro */ pcb->pcb_tpidrro_el0 = (register_t)tls_base; pcb->pcb_tpidr_el0 = (register_t)tls_base; if (td == curthread) { WRITE_SPECIALREG(tpidrro_el0, tls_base); WRITE_SPECIALREG(tpidr_el0, tls_base); } } else { pcb->pcb_tpidr_el0 = (register_t)tls_base; if (td == curthread) WRITE_SPECIALREG(tpidr_el0, tls_base); } return (0); } void cpu_thread_exit(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_pages * PAGE_SIZE) - 1; td->td_frame = (struct trapframe *)STACKALIGN( (struct trapframe *)td->td_pcb - 1); ptrauth_thread_alloc(td); } void cpu_thread_free(struct thread *td) { } void cpu_thread_clean(struct thread *td) { } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg) { td->td_pcb->pcb_x[PCB_X19] = (uintptr_t)func; td->td_pcb->pcb_x[PCB_X20] = (uintptr_t)arg; } void cpu_exit(struct thread *td) { } bool cpu_exec_vmspace_reuse(struct proc *p __unused, vm_map_t map __unused) { return (true); } int cpu_procctl(struct thread *td __unused, int idtype __unused, id_t id __unused, int com __unused, void *data __unused) { return (EINVAL); } + +void +cpu_sync_core(void) +{ + /* + * Do nothing. According to ARM ARMv8 D1.11 Exception return + * If FEAT_ExS is not implemented, or if FEAT_ExS is + * implemented and the SCTLR_ELx.EOS field is set, exception + * return from ELx is a context synchronization event. + */ +} diff --git a/sys/i386/i386/support.S b/sys/i386/i386/support.S index 58c01f37a3fc..982108a0b968 100644 --- a/sys/i386/i386/support.S +++ b/sys/i386/i386/support.S @@ -1,580 +1,588 @@ /*- * Copyright (c) 1993 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include "assym.inc" #define IDXSHIFT 10 .text ENTRY(sse2_pagezero) pushl %ebx movl 8(%esp),%ecx movl %ecx,%eax addl $4096,%eax xor %ebx,%ebx jmp 1f /* * The loop takes 14 bytes. Ensure that it doesn't cross a 16-byte * cache line. */ .p2align 4,0x90 1: movnti %ebx,(%ecx) movnti %ebx,4(%ecx) addl $8,%ecx cmpl %ecx,%eax jne 1b sfence popl %ebx ret END(sse2_pagezero) ENTRY(i686_pagezero) pushl %edi pushl %ebx movl 12(%esp),%edi movl $1024,%ecx ALIGN_TEXT 1: xorl %eax,%eax repe scasl jnz 2f popl %ebx popl %edi ret ALIGN_TEXT 2: incl %ecx subl $4,%edi movl %ecx,%edx cmpl $16,%ecx jge 3f movl %edi,%ebx andl $0x3f,%ebx shrl %ebx shrl %ebx movl $16,%ecx subl %ebx,%ecx 3: subl %ecx,%edx rep stosl movl %edx,%ecx testl %edx,%edx jnz 1b popl %ebx popl %edi ret END(i686_pagezero) /* fillw(pat, base, cnt) */ ENTRY(fillw) pushl %edi movl 8(%esp),%eax movl 12(%esp),%edi movl 16(%esp),%ecx rep stosw popl %edi ret END(fillw) /* * memmove(dst, src, cnt) (return dst) * ws@tools.de (Wolfgang Solfrank, TooLs GmbH) +49-228-985800 */ ENTRY(memmove) pushl %ebp movl %esp,%ebp pushl %esi pushl %edi movl 8(%ebp),%edi movl 12(%ebp),%esi 1: movl 16(%ebp),%ecx movl %edi,%eax subl %esi,%eax cmpl %ecx,%eax /* overlapping && src < dst? */ jb 1f shrl $2,%ecx /* copy by 32-bit words */ rep movsl movl 16(%ebp),%ecx andl $3,%ecx /* any bytes left? */ rep movsb popl %edi popl %esi movl 8(%ebp),%eax /* return dst for memmove */ popl %ebp ret ALIGN_TEXT 1: addl %ecx,%edi /* copy backwards */ addl %ecx,%esi decl %edi decl %esi andl $3,%ecx /* any fractional bytes? */ std rep movsb movl 16(%ebp),%ecx /* copy remainder by 32-bit words */ shrl $2,%ecx subl $3,%esi subl $3,%edi rep movsl popl %edi popl %esi cld movl 8(%ebp),%eax /* return dst for memmove */ popl %ebp ret END(memmove) /* * Note: memcpy does not support overlapping copies */ ENTRY(memcpy) pushl %edi pushl %esi movl 12(%esp),%edi movl 16(%esp),%esi movl 20(%esp),%ecx movl %edi,%eax shrl $2,%ecx /* copy by 32-bit words */ rep movsl movl 20(%esp),%ecx andl $3,%ecx /* any bytes left? */ rep movsb popl %esi popl %edi ret END(memcpy) /* * Handling of special 386 registers and descriptor tables etc */ /* void lgdt(struct region_descriptor *rdp); */ ENTRY(lgdt) /* reload the descriptor table */ movl 4(%esp),%eax lgdt (%eax) /* flush the prefetch q */ jmp 1f nop 1: /* reload "stale" selectors */ movl $KDSEL,%eax movl %eax,%ds movl %eax,%es movl %eax,%gs movl %eax,%ss movl $KPSEL,%eax movl %eax,%fs /* reload code selector by turning return into intersegmental return */ movl (%esp),%eax pushl %eax movl $KCSEL,4(%esp) lret END(lgdt) /* ssdtosd(*ssdp,*sdp) */ ENTRY(ssdtosd) pushl %ebx movl 8(%esp),%ecx movl 8(%ecx),%ebx shll $16,%ebx movl (%ecx),%edx roll $16,%edx movb %dh,%bl movb %dl,%bh rorl $8,%ebx movl 4(%ecx),%eax movw %ax,%dx andl $0xf0000,%eax orl %eax,%ebx movl 12(%esp),%ecx movl %edx,(%ecx) movl %ebx,4(%ecx) popl %ebx ret END(ssdtosd) /* void reset_dbregs() */ ENTRY(reset_dbregs) movl $0,%eax movl %eax,%dr7 /* disable all breakpoints first */ movl %eax,%dr0 movl %eax,%dr1 movl %eax,%dr2 movl %eax,%dr3 movl %eax,%dr6 ret END(reset_dbregs) /*****************************************************************************/ /* setjump, longjump */ /*****************************************************************************/ ENTRY(setjmp) movl 4(%esp),%eax movl %ebx,(%eax) /* save ebx */ movl %esp,4(%eax) /* save esp */ movl %ebp,8(%eax) /* save ebp */ movl %esi,12(%eax) /* save esi */ movl %edi,16(%eax) /* save edi */ movl (%esp),%edx /* get rta */ movl %edx,20(%eax) /* save eip */ xorl %eax,%eax /* return(0); */ ret END(setjmp) ENTRY(longjmp) movl 4(%esp),%eax movl (%eax),%ebx /* restore ebx */ movl 4(%eax),%esp /* restore esp */ movl 8(%eax),%ebp /* restore ebp */ movl 12(%eax),%esi /* restore esi */ movl 16(%eax),%edi /* restore edi */ movl 20(%eax),%edx /* get rta */ movl %edx,(%esp) /* put in return frame */ xorl %eax,%eax /* return(1); */ incl %eax ret END(longjmp) /* * Support for reading MSRs in the safe manner. (Instead of panic on #gp, * return an error.) */ ENTRY(rdmsr_safe) /* int rdmsr_safe(u_int msr, uint64_t *data) */ movl PCPU(CURPCB),%ecx movl $msr_onfault,PCB_ONFAULT(%ecx) movl 4(%esp),%ecx rdmsr movl 8(%esp),%ecx movl %eax,(%ecx) movl %edx,4(%ecx) xorl %eax,%eax movl PCPU(CURPCB),%ecx movl %eax,PCB_ONFAULT(%ecx) ret /* * Support for writing MSRs in the safe manner. (Instead of panic on #gp, * return an error.) */ ENTRY(wrmsr_safe) /* int wrmsr_safe(u_int msr, uint64_t data) */ movl PCPU(CURPCB),%ecx movl $msr_onfault,PCB_ONFAULT(%ecx) movl 4(%esp),%ecx movl 8(%esp),%eax movl 12(%esp),%edx wrmsr xorl %eax,%eax movl PCPU(CURPCB),%ecx movl %eax,PCB_ONFAULT(%ecx) ret /* * MSR operations fault handler */ ALIGN_TEXT msr_onfault: movl PCPU(CURPCB),%ecx movl $0,PCB_ONFAULT(%ecx) movl $EFAULT,%eax ret .altmacro .macro rsb_seq_label l rsb_seq_\l: .endm .macro rsb_call_label l call rsb_seq_\l .endm .macro rsb_seq count ll=1 .rept \count rsb_call_label %(ll) nop rsb_seq_label %(ll) addl $4,%esp ll=ll+1 .endr .endm ENTRY(rsb_flush) rsb_seq 32 ret ENTRY(handle_ibrs_entry) cmpb $0,hw_ibrs_ibpb_active je 1f movl $MSR_IA32_SPEC_CTRL,%ecx rdmsr orl $(IA32_SPEC_CTRL_IBRS|IA32_SPEC_CTRL_STIBP),%eax orl $(IA32_SPEC_CTRL_IBRS|IA32_SPEC_CTRL_STIBP)>>32,%edx wrmsr movb $1,PCPU(IBPB_SET) /* * i386 does not implement SMEP. */ 1: jmp rsb_flush END(handle_ibrs_entry) ENTRY(handle_ibrs_exit) cmpb $0,PCPU(IBPB_SET) je 1f movl $MSR_IA32_SPEC_CTRL,%ecx rdmsr andl $~(IA32_SPEC_CTRL_IBRS|IA32_SPEC_CTRL_STIBP),%eax andl $~((IA32_SPEC_CTRL_IBRS|IA32_SPEC_CTRL_STIBP)>>32),%edx wrmsr movb $0,PCPU(IBPB_SET) 1: ret END(handle_ibrs_exit) ENTRY(mds_handler_void) ret END(mds_handler_void) ENTRY(mds_handler_verw) subl $4, %esp movw %ds, (%esp) verw (%esp) addl $4, %esp ret END(mds_handler_verw) ENTRY(mds_handler_ivb) movl %cr0, %eax testb $CR0_TS, %al je 1f clts 1: movl PCPU(MDS_BUF), %edx movdqa %xmm0, PCPU(MDS_TMP) pxor %xmm0, %xmm0 lfence orpd (%edx), %xmm0 orpd (%edx), %xmm0 mfence movl $40, %ecx addl $16, %edx 2: movntdq %xmm0, (%edx) addl $16, %edx decl %ecx jnz 2b mfence movdqa PCPU(MDS_TMP),%xmm0 testb $CR0_TS, %al je 3f movl %eax, %cr0 3: ret END(mds_handler_ivb) ENTRY(mds_handler_bdw) movl %cr0, %eax testb $CR0_TS, %al je 1f clts 1: movl PCPU(MDS_BUF), %ebx movdqa %xmm0, PCPU(MDS_TMP) pxor %xmm0, %xmm0 movl %ebx, %edi movl %ebx, %esi movl $40, %ecx 2: movntdq %xmm0, (%ebx) addl $16, %ebx decl %ecx jnz 2b mfence movl $1536, %ecx rep; movsb lfence movdqa PCPU(MDS_TMP),%xmm0 testb $CR0_TS, %al je 3f movl %eax, %cr0 3: ret END(mds_handler_bdw) ENTRY(mds_handler_skl_sse) movl %cr0, %eax testb $CR0_TS, %al je 1f clts 1: movl PCPU(MDS_BUF), %edi movl PCPU(MDS_BUF64), %edx movdqa %xmm0, PCPU(MDS_TMP) pxor %xmm0, %xmm0 lfence orpd (%edx), %xmm0 orpd (%edx), %xmm0 xorl %eax, %eax 2: clflushopt 5376(%edi, %eax, 8) addl $8, %eax cmpl $8 * 12, %eax jb 2b sfence movl $6144, %ecx xorl %eax, %eax rep; stosb mfence movdqa PCPU(MDS_TMP), %xmm0 testb $CR0_TS, %al je 3f movl %eax, %cr0 3: ret END(mds_handler_skl_sse) ENTRY(mds_handler_skl_avx) movl %cr0, %eax testb $CR0_TS, %al je 1f clts 1: movl PCPU(MDS_BUF), %edi movl PCPU(MDS_BUF64), %edx vmovdqa %ymm0, PCPU(MDS_TMP) vpxor %ymm0, %ymm0, %ymm0 lfence vorpd (%edx), %ymm0, %ymm0 vorpd (%edx), %ymm0, %ymm0 xorl %eax, %eax 2: clflushopt 5376(%edi, %eax, 8) addl $8, %eax cmpl $8 * 12, %eax jb 2b sfence movl $6144, %ecx xorl %eax, %eax rep; stosb mfence vmovdqa PCPU(MDS_TMP), %ymm0 testb $CR0_TS, %al je 3f movl %eax, %cr0 3: ret END(mds_handler_skl_avx) ENTRY(mds_handler_skl_avx512) movl %cr0, %eax testb $CR0_TS, %al je 1f clts 1: movl PCPU(MDS_BUF), %edi movl PCPU(MDS_BUF64), %edx vmovdqa64 %zmm0, PCPU(MDS_TMP) vpxord %zmm0, %zmm0, %zmm0 lfence vorpd (%edx), %zmm0, %zmm0 vorpd (%edx), %zmm0, %zmm0 xorl %eax, %eax 2: clflushopt 5376(%edi, %eax, 8) addl $8, %eax cmpl $8 * 12, %eax jb 2b sfence movl $6144, %ecx xorl %eax, %eax rep; stosb mfence vmovdqa64 PCPU(MDS_TMP), %zmm0 testb $CR0_TS, %al je 3f movl %eax, %cr0 3: ret END(mds_handler_skl_avx512) ENTRY(mds_handler_silvermont) movl %cr0, %eax testb $CR0_TS, %al je 1f clts 1: movl PCPU(MDS_BUF), %edx movdqa %xmm0, PCPU(MDS_TMP) pxor %xmm0, %xmm0 movl $16, %ecx 2: movntdq %xmm0, (%edx) addl $16, %edx decl %ecx jnz 2b mfence movdqa PCPU(MDS_TMP),%xmm0 testb $CR0_TS, %al je 3f movl %eax, %cr0 3: ret END(mds_handler_silvermont) + +ENTRY(cpu_sync_core) + popl %eax + pushfl + pushl %cs + pushl %eax + iretl +END(cpu_sync_core) diff --git a/sys/powerpc/powerpc/vm_machdep.c b/sys/powerpc/powerpc/vm_machdep.c index b53da3dd04fa..1a31959b278b 100644 --- a/sys/powerpc/powerpc/vm_machdep.c +++ b/sys/powerpc/powerpc/vm_machdep.c @@ -1,241 +1,251 @@ /*- * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) * * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ */ /*- * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University. * All rights reserved. * * Author: Chris G. Demetriou * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags) { struct trapframe *tf; struct callframe *cf; struct pcb *pcb; KASSERT(td1 == curthread || td1 == &thread0, ("cpu_fork: p1 not curproc and not proc0")); CTR3(KTR_PROC, "cpu_fork: called td1=%p p2=%p flags=%x", td1, p2, flags); if ((flags & RFPROC) == 0) return; /* Ensure td1 is up to date before copy. */ if (td1 == curthread) cpu_save_thread_regs(td1); pcb = (struct pcb *)((td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE - sizeof(struct pcb)) & ~0x2fUL); td2->td_pcb = pcb; /* Copy the pcb */ bcopy(td1->td_pcb, pcb, sizeof(struct pcb)); /* * Create a fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies most of the user mode register values. */ tf = (struct trapframe *)pcb - 1; bcopy(td1->td_frame, tf, sizeof(*tf)); /* Set up trap frame. */ tf->fixreg[FIRSTARG] = 0; tf->fixreg[FIRSTARG + 1] = 0; tf->cr &= ~0x10000000; td2->td_frame = tf; cf = (struct callframe *)tf - 1; memset(cf, 0, sizeof(struct callframe)); #if defined(__powerpc64__) && (!defined(_CALL_ELF) || _CALL_ELF == 1) cf->cf_toc = ((register_t *)fork_return)[1]; #endif cf->cf_func = (register_t)fork_return; cf->cf_arg0 = (register_t)td2; cf->cf_arg1 = (register_t)tf; pcb->pcb_sp = (register_t)cf; KASSERT(pcb->pcb_sp % 16 == 0, ("stack misaligned")); #if defined(__powerpc64__) && (!defined(_CALL_ELF) || _CALL_ELF == 1) pcb->pcb_lr = ((register_t *)fork_trampoline)[0]; pcb->pcb_toc = ((register_t *)fork_trampoline)[1]; #else pcb->pcb_lr = (register_t)fork_trampoline; pcb->pcb_context[0] = pcb->pcb_lr; #endif #ifdef AIM pcb->pcb_cpu.aim.usr_vsid = 0; #endif /* Setup to release spin count in fork_exit(). */ td2->td_md.md_spinlock_count = 1; td2->td_md.md_saved_msr = psl_kernset; /* * Now cpu_switch() can schedule the new process. */ } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg) { struct callframe *cf; CTR4(KTR_PROC, "%s called with td=%p func=%p arg=%p", __func__, td, func, arg); cf = (struct callframe *)td->td_pcb->pcb_sp; #if defined(__powerpc64__) && (!defined(_CALL_ELF) || _CALL_ELF == 1) cf->cf_toc = ((register_t *)func)[1]; #endif cf->cf_func = (register_t)func; cf->cf_arg0 = (register_t)arg; } void cpu_exit(struct thread *td) { } /* * CPU threading functions related to the VM layer. These could be used * to map the SLB bits required for the kernel stack instead of forcing a * fixed-size KVA. */ void cpu_thread_swapin(struct thread *td) { } void cpu_thread_swapout(struct thread *td) { } bool cpu_exec_vmspace_reuse(struct proc *p __unused, vm_map_t map __unused) { return (true); } int cpu_procctl(struct thread *td __unused, int idtype __unused, id_t id __unused, int com __unused, void *data __unused) { return (EINVAL); } + +void +cpu_sync_core(void) +{ + /* + * Linux performs "rfi" there. Our rendezvous IPI handler on + * the target cpu does "rfi" before and lwsync/sync after the + * action, which is stronger than required. + */ +} diff --git a/sys/riscv/riscv/vm_machdep.c b/sys/riscv/riscv/vm_machdep.c index 3b2553996bb8..58acf5df9e14 100644 --- a/sys/riscv/riscv/vm_machdep.c +++ b/sys/riscv/riscv/vm_machdep.c @@ -1,269 +1,276 @@ /*- * Copyright (c) 2015-2018 Ruslan Bukin * All rights reserved. * * Portions of this software were developed by SRI International and the * University of Cambridge Computer Laboratory under DARPA/AFRL contract * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme. * * Portions of this software were developed by the University of Cambridge * Computer Laboratory as part of the CTSRD Project, with support from the * UK Higher Education Innovation Fund (HEIF). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #if __riscv_xlen == 64 #define TP_OFFSET 16 /* sizeof(struct tcb) */ #endif /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags) { struct pcb *pcb2; struct trapframe *tf; if ((flags & RFPROC) == 0) return; /* RISCVTODO: save the FPU state here */ pcb2 = (struct pcb *)(td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE) - 1; td2->td_pcb = pcb2; bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); tf = (struct trapframe *)STACKALIGN((struct trapframe *)pcb2 - 1); bcopy(td1->td_frame, tf, sizeof(*tf)); /* Clear syscall error flag */ tf->tf_t[0] = 0; /* Arguments for child */ tf->tf_a[0] = 0; tf->tf_a[1] = 0; tf->tf_sstatus |= (SSTATUS_SPIE); /* Enable interrupts. */ tf->tf_sstatus &= ~(SSTATUS_SPP); /* User mode. */ td2->td_frame = tf; /* Set the return value registers for fork() */ td2->td_pcb->pcb_s[0] = (uintptr_t)fork_return; td2->td_pcb->pcb_s[1] = (uintptr_t)td2; td2->td_pcb->pcb_ra = (uintptr_t)fork_trampoline; td2->td_pcb->pcb_sp = (uintptr_t)td2->td_frame; /* Setup to release spin count in fork_exit(). */ td2->td_md.md_spinlock_count = 1; td2->td_md.md_saved_sstatus_ie = (SSTATUS_SIE); } void cpu_reset(void) { sbi_system_reset(SBI_SRST_TYPE_COLD_REBOOT, SBI_SRST_REASON_NONE); while(1); } void cpu_thread_swapin(struct thread *td) { } void cpu_thread_swapout(struct thread *td) { } void cpu_set_syscall_retval(struct thread *td, int error) { struct trapframe *frame; frame = td->td_frame; if (__predict_true(error == 0)) { frame->tf_a[0] = td->td_retval[0]; frame->tf_a[1] = td->td_retval[1]; frame->tf_t[0] = 0; /* syscall succeeded */ return; } switch (error) { case ERESTART: frame->tf_sepc -= 4; /* prev instruction */ break; case EJUSTRETURN: break; default: frame->tf_a[0] = error; frame->tf_t[0] = 1; /* syscall error */ break; } } /* * Initialize machine state, mostly pcb and trap frame for a new * thread, about to return to userspace. Put enough state in the new * thread's PCB to get it to go back to the fork_return(), which * finalizes the thread state and handles peculiarities of the first * return to userspace for the new thread. */ void cpu_copy_thread(struct thread *td, struct thread *td0) { bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); bcopy(td0->td_pcb, td->td_pcb, sizeof(struct pcb)); td->td_pcb->pcb_s[0] = (uintptr_t)fork_return; td->td_pcb->pcb_s[1] = (uintptr_t)td; td->td_pcb->pcb_ra = (uintptr_t)fork_trampoline; td->td_pcb->pcb_sp = (uintptr_t)td->td_frame; /* Setup to release spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_sstatus_ie = (SSTATUS_SIE); } /* * Set that machine state for performing an upcall that starts * the entry function with the given argument. */ void cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { struct trapframe *tf; tf = td->td_frame; tf->tf_sp = STACKALIGN((uintptr_t)stack->ss_sp + stack->ss_size); tf->tf_sepc = (register_t)entry; tf->tf_a[0] = (register_t)arg; } int cpu_set_user_tls(struct thread *td, void *tls_base) { if ((uintptr_t)tls_base >= VM_MAXUSER_ADDRESS) return (EINVAL); /* * The user TLS is set by modifying the trapframe's tp value, which * will be restored when returning to userspace. */ td->td_frame->tf_tp = (register_t)tls_base + TP_OFFSET; return (0); } void cpu_thread_exit(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_pages * PAGE_SIZE) - 1; td->td_frame = (struct trapframe *)STACKALIGN( (caddr_t)td->td_pcb - 8 - sizeof(struct trapframe)); } void cpu_thread_free(struct thread *td) { } void cpu_thread_clean(struct thread *td) { } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg) { td->td_pcb->pcb_s[0] = (uintptr_t)func; td->td_pcb->pcb_s[1] = (uintptr_t)arg; td->td_pcb->pcb_ra = (uintptr_t)fork_trampoline; td->td_pcb->pcb_sp = (uintptr_t)td->td_frame; } void cpu_exit(struct thread *td) { } bool cpu_exec_vmspace_reuse(struct proc *p __unused, vm_map_t map __unused) { return (true); } int cpu_procctl(struct thread *td __unused, int idtype __unused, id_t id __unused, int com __unused, void *data __unused) { return (EINVAL); } + +void +cpu_sync_core(void) +{ + fence_i(); +} diff --git a/sys/sys/proc.h b/sys/sys/proc.h index a35446690526..05ab914af409 100644 --- a/sys/sys/proc.h +++ b/sys/sys/proc.h @@ -1,1358 +1,1359 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)proc.h 8.15 (Berkeley) 5/19/95 */ #ifndef _SYS_PROC_H_ #define _SYS_PROC_H_ #include /* For struct callout. */ #include /* For struct klist. */ #ifdef _KERNEL #include #endif #include #ifndef _KERNEL #include #endif #include #include #include #include #include #include #include /* XXX. */ #include #include #include #include #include #ifndef _KERNEL #include /* For structs itimerval, timeval. */ #else #include #include #endif #include #include #include #include #include /* Machine-dependent proc substruct. */ #ifdef _KERNEL #include #endif /* * One structure allocated per session. * * List of locks * (m) locked by s_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct session { u_int s_count; /* Ref cnt; pgrps in session - atomic. */ struct proc *s_leader; /* (m + e) Session leader. */ struct vnode *s_ttyvp; /* (m) Vnode of controlling tty. */ struct cdev_priv *s_ttydp; /* (m) Device of controlling tty. */ struct tty *s_ttyp; /* (e) Controlling tty. */ pid_t s_sid; /* (c) Session ID. */ /* (m) Setlogin() name: */ char s_login[roundup(MAXLOGNAME, sizeof(long))]; struct mtx s_mtx; /* Mutex to protect members. */ }; /* * One structure allocated per process group. * * List of locks * (m) locked by pg_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct pgrp { LIST_ENTRY(pgrp) pg_hash; /* (e) Hash chain. */ LIST_HEAD(, proc) pg_members; /* (m + e) Pointer to pgrp members. */ struct session *pg_session; /* (c) Pointer to session. */ struct sigiolst pg_sigiolst; /* (m) List of sigio sources. */ pid_t pg_id; /* (c) Process group id. */ struct mtx pg_mtx; /* Mutex to protect members */ int pg_flags; /* (m) PGRP_ flags */ struct sx pg_killsx; /* Mutual exclusion between group member * fork() and killpg() */ }; #define PGRP_ORPHANED 0x00000001 /* Group is orphaned */ /* * pargs, used to hold a copy of the command line, if it had a sane length. */ struct pargs { u_int ar_ref; /* Reference count. */ u_int ar_length; /* Length. */ u_char ar_args[1]; /* Arguments. */ }; /*- * Description of a process. * * This structure contains the information needed to manage a thread of * control, known in UN*X as a process; it has references to substructures * containing descriptions of things that the process uses, but may share * with related processes. The process structure and the substructures * are always addressable except for those marked "(CPU)" below, * which might be addressable only on a processor on which the process * is running. * * Below is a key of locks used to protect each member of struct proc. The * lock is indicated by a reference to a specific character in parens in the * associated comment. * * - not yet protected * a - only touched by curproc or parent during fork/wait * b - created at fork, never changes * (exception aiods switch vmspaces, but they are also * marked 'P_SYSTEM' so hopefully it will be left alone) * c - locked by proc mtx * d - locked by allproc_lock lock * e - locked by proctree_lock lock * f - session mtx * g - process group mtx * h - callout_lock mtx * i - by curproc or the master session mtx * j - locked by proc slock * k - only accessed by curthread * k*- only accessed by curthread and from an interrupt * kx- only accessed by curthread and by debugger * l - the attaching proc or attaching proc parent * n - not locked, lazy * o - ktrace lock * q - td_contested lock * r - p_peers lock * s - see sleepq_switch(), sleeping_on_old_rtc(), and sleep(9) * t - thread lock * u - process stat lock * w - process timer lock * x - created at fork, only changes during single threading in exec * y - created at first aio, doesn't change until exit or exec at which * point we are single-threaded and only curthread changes it * * If the locking key specifies two identifiers (for example, p_pptr) then * either lock is sufficient for read access, but both locks must be held * for write access. */ struct cpuset; struct filecaps; struct filemon; struct kaioinfo; struct kaudit_record; struct kcov_info; struct kdtrace_proc; struct kdtrace_thread; struct kmsan_td; struct kq_timer_cb_data; struct mqueue_notifier; struct p_sched; struct proc; struct procdesc; struct racct; struct sbuf; struct sleepqueue; struct socket; struct td_sched; struct thread; struct trapframe; struct turnstile; struct vm_map; struct vm_map_entry; struct epoch_tracker; struct syscall_args { u_int code; u_int original_code; struct sysent *callp; register_t args[8]; }; /* * XXX: Does this belong in resource.h or resourcevar.h instead? * Resource usage extension. The times in rusage structs in the kernel are * never up to date. The actual times are kept as runtimes and tick counts * (with control info in the "previous" times), and are converted when * userland asks for rusage info. Backwards compatibility prevents putting * this directly in the user-visible rusage struct. * * Locking for p_rux: (cu) means (u) for p_rux and (c) for p_crux. * Locking for td_rux: (t) for all fields. */ struct rusage_ext { uint64_t rux_runtime; /* (cu) Real time. */ uint64_t rux_uticks; /* (cu) Statclock hits in user mode. */ uint64_t rux_sticks; /* (cu) Statclock hits in sys mode. */ uint64_t rux_iticks; /* (cu) Statclock hits in intr mode. */ uint64_t rux_uu; /* (c) Previous user time in usec. */ uint64_t rux_su; /* (c) Previous sys time in usec. */ uint64_t rux_tu; /* (c) Previous total time in usec. */ }; /* * Kernel runnable context (thread). * This is what is put to sleep and reactivated. * Thread context. Processes may have multiple threads. */ struct thread { struct mtx *volatile td_lock; /* replaces sched lock */ struct proc *td_proc; /* (*) Associated process. */ TAILQ_ENTRY(thread) td_plist; /* (*) All threads in this proc. */ TAILQ_ENTRY(thread) td_runq; /* (t) Run queue. */ union { TAILQ_ENTRY(thread) td_slpq; /* (t) Sleep queue. */ struct thread *td_zombie; /* Zombie list linkage */ }; TAILQ_ENTRY(thread) td_lockq; /* (t) Lock queue. */ LIST_ENTRY(thread) td_hash; /* (d) Hash chain. */ struct cpuset *td_cpuset; /* (t) CPU affinity mask. */ struct domainset_ref td_domain; /* (a) NUMA policy */ struct seltd *td_sel; /* Select queue/channel. */ struct sleepqueue *td_sleepqueue; /* (k) Associated sleep queue. */ struct turnstile *td_turnstile; /* (k) Associated turnstile. */ struct rl_q_entry *td_rlqe; /* (k) Associated range lock entry. */ struct umtx_q *td_umtxq; /* (c?) Link for when we're blocked. */ lwpid_t td_tid; /* (b) Thread ID. */ sigqueue_t td_sigqueue; /* (c) Sigs arrived, not delivered. */ #define td_siglist td_sigqueue.sq_signals u_char td_lend_user_pri; /* (t) Lend user pri. */ u_char td_allocdomain; /* (b) NUMA domain backing this struct thread. */ u_char td_base_ithread_pri; /* (t) Base ithread pri */ struct kmsan_td *td_kmsan; /* (k) KMSAN state */ /* Cleared during fork1(), thread_create(), or kthread_add(). */ #define td_startzero td_flags int td_flags; /* (t) TDF_* flags. */ int td_ast; /* (t) TDA_* indicators */ int td_inhibitors; /* (t) Why can not run. */ int td_pflags; /* (k) Private thread (TDP_*) flags. */ int td_pflags2; /* (k) Private thread (TDP2_*) flags. */ int td_dupfd; /* (k) Ret value from fdopen. XXX */ int td_sqqueue; /* (t) Sleepqueue queue blocked on. */ const void *td_wchan; /* (t) Sleep address. */ const char *td_wmesg; /* (t) Reason for sleep. */ volatile u_char td_owepreempt; /* (k*) Preempt on last critical_exit */ u_char td_tsqueue; /* (t) Turnstile queue blocked on. */ u_char td_stopsched; /* (k) Scheduler stopped. */ int td_locks; /* (k) Debug: count of non-spin locks */ int td_rw_rlocks; /* (k) Count of rwlock read locks. */ int td_sx_slocks; /* (k) Count of sx shared locks. */ int td_lk_slocks; /* (k) Count of lockmgr shared locks. */ struct turnstile *td_blocked; /* (t) Lock thread is blocked on. */ const char *td_lockname; /* (t) Name of lock blocked on. */ LIST_HEAD(, turnstile) td_contested; /* (q) Contested locks. */ struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */ int td_intr_nesting_level; /* (k) Interrupt recursion. */ int td_pinned; /* (k) Temporary cpu pin count. */ struct ucred *td_realucred; /* (k) Reference to credentials. */ struct ucred *td_ucred; /* (k) Used credentials, temporarily switchable. */ struct plimit *td_limit; /* (k) Resource limits. */ int td_slptick; /* (t) Time at sleep. */ int td_blktick; /* (t) Time spent blocked. */ int td_swvoltick; /* (t) Time at last SW_VOL switch. */ int td_swinvoltick; /* (t) Time at last SW_INVOL switch. */ u_int td_cow; /* (*) Number of copy-on-write faults */ struct rusage td_ru; /* (t) rusage information. */ struct rusage_ext td_rux; /* (t) Internal rusage information. */ uint64_t td_incruntime; /* (t) Cpu ticks to transfer to proc. */ uint64_t td_runtime; /* (t) How many cpu ticks we've run. */ u_int td_pticks; /* (t) Statclock hits for profiling */ u_int td_sticks; /* (t) Statclock hits in system mode. */ u_int td_iticks; /* (t) Statclock hits in intr mode. */ u_int td_uticks; /* (t) Statclock hits in user mode. */ int td_intrval; /* (t) Return value for sleepq. */ sigset_t td_oldsigmask; /* (k) Saved mask from pre sigpause. */ volatile u_int td_generation; /* (k) For detection of preemption */ stack_t td_sigstk; /* (k) Stack ptr and on-stack flag. */ int td_xsig; /* (c) Signal for ptrace */ u_long td_profil_addr; /* (k) Temporary addr until AST. */ u_int td_profil_ticks; /* (k) Temporary ticks until AST. */ char td_name[MAXCOMLEN + 1]; /* (*) Thread name. */ struct file *td_fpop; /* (k) file referencing cdev under op */ int td_dbgflags; /* (c) Userland debugger flags */ siginfo_t td_si; /* (c) For debugger or core file */ int td_ng_outbound; /* (k) Thread entered ng from above. */ struct osd td_osd; /* (k) Object specific data. */ struct vm_map_entry *td_map_def_user; /* (k) Deferred entries. */ pid_t td_dbg_forked; /* (c) Child pid for debugger. */ struct vnode *td_vp_reserved;/* (k) Preallocated vnode. */ u_int td_no_sleeping; /* (k) Sleeping disabled count. */ void *td_su; /* (k) FFS SU private */ sbintime_t td_sleeptimo; /* (t) Sleep timeout. */ int td_rtcgen; /* (s) rtc_generation of abs. sleep */ int td_errno; /* (k) Error from last syscall. */ size_t td_vslock_sz; /* (k) amount of vslock-ed space */ struct kcov_info *td_kcov_info; /* (*) Kernel code coverage data */ long td_ucredref; /* (k) references on td_realucred */ #define td_endzero td_sigmask /* Copied during fork1(), thread_create(), or kthread_add(). */ #define td_startcopy td_endzero sigset_t td_sigmask; /* (c) Current signal mask. */ u_char td_rqindex; /* (t) Run queue index. */ u_char td_base_pri; /* (t) Thread base kernel priority. */ u_char td_priority; /* (t) Thread active priority. */ u_char td_pri_class; /* (t) Scheduling class. */ u_char td_user_pri; /* (t) User pri from estcpu and nice. */ u_char td_base_user_pri; /* (t) Base user pri */ uintptr_t td_rb_list; /* (k) Robust list head. */ uintptr_t td_rbp_list; /* (k) Robust priv list head. */ uintptr_t td_rb_inact; /* (k) Current in-action mutex loc. */ struct syscall_args td_sa; /* (kx) Syscall parameters. Copied on fork for child tracing. */ void *td_sigblock_ptr; /* (k) uptr for fast sigblock. */ uint32_t td_sigblock_val; /* (k) fast sigblock value read at td_sigblock_ptr on kern entry */ #define td_endcopy td_pcb /* * Fields that must be manually set in fork1(), thread_create(), kthread_add(), * or already have been set in the allocator, constructor, etc. */ struct pcb *td_pcb; /* (k) Kernel VA of pcb and kstack. */ enum td_states { TDS_INACTIVE = 0x0, TDS_INHIBITED, TDS_CAN_RUN, TDS_RUNQ, TDS_RUNNING } td_state; /* (t) thread state */ /* Note: td_state must be accessed using TD_{GET,SET}_STATE(). */ union { syscallarg_t tdu_retval[2]; off_t tdu_off; } td_uretoff; /* (k) Syscall aux returns. */ #define td_retval td_uretoff.tdu_retval u_int td_cowgen; /* (k) Generation of COW pointers. */ /* LP64 hole */ struct callout td_slpcallout; /* (h) Callout for sleep. */ struct trapframe *td_frame; /* (k) */ vm_offset_t td_kstack; /* (a) Kernel VA of kstack. */ int td_kstack_pages; /* (a) Size of the kstack. */ volatile u_int td_critnest; /* (k*) Critical section nest level. */ struct mdthread td_md; /* (k) Any machine-dependent fields. */ struct kaudit_record *td_ar; /* (k) Active audit record, if any. */ struct lpohead td_lprof[2]; /* (a) lock profiling objects. */ struct kdtrace_thread *td_dtrace; /* (*) DTrace-specific data. */ struct vnet *td_vnet; /* (k) Effective vnet. */ const char *td_vnet_lpush; /* (k) Debugging vnet push / pop. */ struct trapframe *td_intr_frame;/* (k) Frame of the current irq */ struct proc *td_rfppwait_p; /* (k) The vforked child */ struct vm_page **td_ma; /* (k) uio pages held */ int td_ma_cnt; /* (k) size of *td_ma */ /* LP64 hole */ void *td_emuldata; /* Emulator state data */ int td_lastcpu; /* (t) Last cpu we were on. */ int td_oncpu; /* (t) Which cpu we are on. */ void *td_lkpi_task; /* LinuxKPI task struct pointer */ int td_pmcpend; void *td_remotereq; /* (c) dbg remote request. */ off_t td_ktr_io_lim; /* (k) limit for ktrace file size */ #ifdef EPOCH_TRACE SLIST_HEAD(, epoch_tracker) td_epochs; #endif }; struct thread0_storage { struct thread t0st_thread; uint64_t t0st_sched[10]; }; struct mtx *thread_lock_block(struct thread *); void thread_lock_block_wait(struct thread *); void thread_lock_set(struct thread *, struct mtx *); void thread_lock_unblock(struct thread *, struct mtx *); #define THREAD_LOCK_ASSERT(td, type) \ mtx_assert((td)->td_lock, (type)) #define THREAD_LOCK_BLOCKED_ASSERT(td, type) \ do { \ struct mtx *__m = (td)->td_lock; \ if (__m != &blocked_lock) \ mtx_assert(__m, (type)); \ } while (0) #ifdef INVARIANTS #define THREAD_LOCKPTR_ASSERT(td, lock) \ do { \ struct mtx *__m; \ __m = (td)->td_lock; \ KASSERT(__m == (lock), \ ("Thread %p lock %p does not match %p", td, __m, (lock))); \ } while (0) #define THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock) \ do { \ struct mtx *__m; \ __m = (td)->td_lock; \ KASSERT(__m == (lock) || __m == &blocked_lock, \ ("Thread %p lock %p does not match %p", td, __m, (lock))); \ } while (0) #define TD_LOCKS_INC(td) ((td)->td_locks++) #define TD_LOCKS_DEC(td) do { \ KASSERT(SCHEDULER_STOPPED_TD(td) || (td)->td_locks > 0, \ ("Thread %p owns no locks", (td))); \ (td)->td_locks--; \ } while (0) #else #define THREAD_LOCKPTR_ASSERT(td, lock) #define THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock) #define TD_LOCKS_INC(td) #define TD_LOCKS_DEC(td) #endif /* * Flags kept in td_flags: * To change these you MUST have the scheduler lock. */ #define TDF_BORROWING 0x00000001 /* Thread is borrowing pri from another. */ #define TDF_INPANIC 0x00000002 /* Caused a panic, let it drive crashdump. */ #define TDF_INMEM 0x00000004 /* Thread's stack is in memory. */ #define TDF_SINTR 0x00000008 /* Sleep is interruptible. */ #define TDF_TIMEOUT 0x00000010 /* Timing out during sleep. */ #define TDF_IDLETD 0x00000020 /* This is a per-CPU idle thread. */ #define TDF_CANSWAP 0x00000040 /* Thread can be swapped. */ #define TDF_SIGWAIT 0x00000080 /* Ignore ignored signals */ #define TDF_KTH_SUSP 0x00000100 /* kthread is suspended */ #define TDF_ALLPROCSUSP 0x00000200 /* suspended by SINGLE_ALLPROC */ #define TDF_BOUNDARY 0x00000400 /* Thread suspended at user boundary */ #define TDF_UNUSED1 0x00000800 /* Available */ #define TDF_UNUSED2 0x00001000 /* Available */ #define TDF_SBDRY 0x00002000 /* Stop only on usermode boundary. */ #define TDF_UPIBLOCKED 0x00004000 /* Thread blocked on user PI mutex. */ #define TDF_UNUSED3 0x00008000 /* Available */ #define TDF_UNUSED4 0x00010000 /* Available */ #define TDF_UNUSED5 0x00020000 /* Available */ #define TDF_NOLOAD 0x00040000 /* Ignore during load avg calculations. */ #define TDF_SERESTART 0x00080000 /* ERESTART on stop attempts. */ #define TDF_THRWAKEUP 0x00100000 /* Libthr thread must not suspend itself. */ #define TDF_SEINTR 0x00200000 /* EINTR on stop attempts. */ #define TDF_SWAPINREQ 0x00400000 /* Swapin request due to wakeup. */ #define TDF_UNUSED6 0x00800000 /* Available */ #define TDF_SCHED0 0x01000000 /* Reserved for scheduler private use */ #define TDF_SCHED1 0x02000000 /* Reserved for scheduler private use */ #define TDF_SCHED2 0x04000000 /* Reserved for scheduler private use */ #define TDF_SCHED3 0x08000000 /* Reserved for scheduler private use */ #define TDF_UNUSED7 0x10000000 /* Available */ #define TDF_UNUSED8 0x20000000 /* Available */ #define TDF_UNUSED9 0x40000000 /* Available */ #define TDF_UNUSED10 0x80000000 /* Available */ enum { TDA_AST = 0, /* Special: call all non-flagged AST handlers */ TDA_OWEUPC, TDA_HWPMC, TDA_VFORK, TDA_ALRM, TDA_PROF, TDA_MAC, TDA_SCHED, TDA_UFS, TDA_GEOM, TDA_KQUEUE, TDA_RACCT, TDA_MOD1, /* For third party use, before signals are */ TAD_MOD2, /* processed .. */ TDA_SIG, TDA_KTRACE, TDA_SUSPEND, TDA_SIGSUSPEND, TDA_MOD3, /* .. and after */ TAD_MOD4, TDA_MAX, }; #define TDAI(tda) (1U << (tda)) #define td_ast_pending(td, tda) ((td->td_ast & TDAI(tda)) != 0) /* Userland debug flags */ #define TDB_SUSPEND 0x00000001 /* Thread is suspended by debugger */ #define TDB_XSIG 0x00000002 /* Thread is exchanging signal under trace */ #define TDB_USERWR 0x00000004 /* Debugger modified memory or registers */ #define TDB_SCE 0x00000008 /* Thread performs syscall enter */ #define TDB_SCX 0x00000010 /* Thread performs syscall exit */ #define TDB_EXEC 0x00000020 /* TDB_SCX from exec(2) family */ #define TDB_FORK 0x00000040 /* TDB_SCX from fork(2) that created new process */ #define TDB_STOPATFORK 0x00000080 /* Stop at the return from fork (child only) */ #define TDB_CHILD 0x00000100 /* New child indicator for ptrace() */ #define TDB_BORN 0x00000200 /* New LWP indicator for ptrace() */ #define TDB_EXIT 0x00000400 /* Exiting LWP indicator for ptrace() */ #define TDB_VFORK 0x00000800 /* vfork indicator for ptrace() */ #define TDB_FSTP 0x00001000 /* The thread is PT_ATTACH leader */ #define TDB_STEP 0x00002000 /* (x86) PSL_T set for PT_STEP */ #define TDB_SSWITCH 0x00004000 /* Suspended in ptracestop */ #define TDB_BOUNDARY 0x00008000 /* ptracestop() at boundary */ #define TDB_COREDUMPREQ 0x00010000 /* Coredump request */ #define TDB_SCREMOTEREQ 0x00020000 /* Remote syscall request */ /* * "Private" flags kept in td_pflags: * These are only written by curthread and thus need no locking. */ #define TDP_OLDMASK 0x00000001 /* Need to restore mask after suspend. */ #define TDP_INKTR 0x00000002 /* Thread is currently in KTR code. */ #define TDP_INKTRACE 0x00000004 /* Thread is currently in KTRACE code. */ #define TDP_BUFNEED 0x00000008 /* Do not recurse into the buf flush */ #define TDP_COWINPROGRESS 0x00000010 /* Snapshot copy-on-write in progress. */ #define TDP_ALTSTACK 0x00000020 /* Have alternate signal stack. */ #define TDP_DEADLKTREAT 0x00000040 /* Lock acquisition - deadlock treatment. */ #define TDP_NOFAULTING 0x00000080 /* Do not handle page faults. */ #define TDP_SIGFASTBLOCK 0x00000100 /* Fast sigblock active */ #define TDP_OWEUPC 0x00000200 /* Call addupc() at next AST. */ #define TDP_ITHREAD 0x00000400 /* Thread is an interrupt thread. */ #define TDP_SYNCIO 0x00000800 /* Local override, disable async i/o. */ #define TDP_SCHED1 0x00001000 /* Reserved for scheduler private use */ #define TDP_SCHED2 0x00002000 /* Reserved for scheduler private use */ #define TDP_SCHED3 0x00004000 /* Reserved for scheduler private use */ #define TDP_SCHED4 0x00008000 /* Reserved for scheduler private use */ #define TDP_GEOM 0x00010000 /* Settle GEOM before finishing syscall */ #define TDP_SOFTDEP 0x00020000 /* Stuck processing softdep worklist */ #define TDP_NORUNNINGBUF 0x00040000 /* Ignore runningbufspace check */ #define TDP_WAKEUP 0x00080000 /* Don't sleep in umtx cond_wait */ #define TDP_INBDFLUSH 0x00100000 /* Already in BO_BDFLUSH, do not recurse */ #define TDP_KTHREAD 0x00200000 /* This is an official kernel thread */ #define TDP_CALLCHAIN 0x00400000 /* Capture thread's callchain */ #define TDP_IGNSUSP 0x00800000 /* Permission to ignore the MNTK_SUSPEND* */ #define TDP_AUDITREC 0x01000000 /* Audit record pending on thread */ #define TDP_RFPPWAIT 0x02000000 /* Handle RFPPWAIT on syscall exit */ #define TDP_RESETSPUR 0x04000000 /* Reset spurious page fault history. */ #define TDP_NERRNO 0x08000000 /* Last errno is already in td_errno */ #define TDP_UIOHELD 0x10000000 /* Current uio has pages held in td_ma */ #define TDP_INTCPCALLOUT 0x20000000 /* used by netinet/tcp_timer.c */ #define TDP_EXECVMSPC 0x40000000 /* Execve destroyed old vmspace */ #define TDP_SIGFASTPENDING 0x80000000 /* Pending signal due to sigfastblock */ #define TDP2_SBPAGES 0x00000001 /* Owns sbusy on some pages */ #define TDP2_COMPAT32RB 0x00000002 /* compat32 ABI for robust lists */ #define TDP2_ACCT 0x00000004 /* Doing accounting */ /* * Reasons that the current thread can not be run yet. * More than one may apply. */ #define TDI_SUSPENDED 0x0001 /* On suspension queue. */ #define TDI_SLEEPING 0x0002 /* Actually asleep! (tricky). */ #define TDI_SWAPPED 0x0004 /* Stack not in mem. Bad juju if run. */ #define TDI_LOCK 0x0008 /* Stopped on a lock. */ #define TDI_IWAIT 0x0010 /* Awaiting interrupt. */ #define TD_IS_SLEEPING(td) ((td)->td_inhibitors & TDI_SLEEPING) #define TD_ON_SLEEPQ(td) ((td)->td_wchan != NULL) #define TD_IS_SUSPENDED(td) ((td)->td_inhibitors & TDI_SUSPENDED) #define TD_IS_SWAPPED(td) ((td)->td_inhibitors & TDI_SWAPPED) #define TD_ON_LOCK(td) ((td)->td_inhibitors & TDI_LOCK) #define TD_AWAITING_INTR(td) ((td)->td_inhibitors & TDI_IWAIT) #ifdef _KERNEL #define TD_GET_STATE(td) atomic_load_int(&(td)->td_state) #else #define TD_GET_STATE(td) ((td)->td_state) #endif #define TD_IS_RUNNING(td) (TD_GET_STATE(td) == TDS_RUNNING) #define TD_ON_RUNQ(td) (TD_GET_STATE(td) == TDS_RUNQ) #define TD_CAN_RUN(td) (TD_GET_STATE(td) == TDS_CAN_RUN) #define TD_IS_INHIBITED(td) (TD_GET_STATE(td) == TDS_INHIBITED) #define TD_ON_UPILOCK(td) ((td)->td_flags & TDF_UPIBLOCKED) #define TD_IS_IDLETHREAD(td) ((td)->td_flags & TDF_IDLETD) #define TD_CAN_ABORT(td) (TD_ON_SLEEPQ((td)) && \ ((td)->td_flags & TDF_SINTR) != 0) #define KTDSTATE(td) \ (((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep" : \ ((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" : \ ((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" : \ ((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" : \ ((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding") #define TD_SET_INHIB(td, inhib) do { \ TD_SET_STATE(td, TDS_INHIBITED); \ (td)->td_inhibitors |= (inhib); \ } while (0) #define TD_CLR_INHIB(td, inhib) do { \ if (((td)->td_inhibitors & (inhib)) && \ (((td)->td_inhibitors &= ~(inhib)) == 0)) \ TD_SET_STATE(td, TDS_CAN_RUN); \ } while (0) #define TD_SET_SLEEPING(td) TD_SET_INHIB((td), TDI_SLEEPING) #define TD_SET_SWAPPED(td) TD_SET_INHIB((td), TDI_SWAPPED) #define TD_SET_LOCK(td) TD_SET_INHIB((td), TDI_LOCK) #define TD_SET_SUSPENDED(td) TD_SET_INHIB((td), TDI_SUSPENDED) #define TD_SET_IWAIT(td) TD_SET_INHIB((td), TDI_IWAIT) #define TD_SET_EXITING(td) TD_SET_INHIB((td), TDI_EXITING) #define TD_CLR_SLEEPING(td) TD_CLR_INHIB((td), TDI_SLEEPING) #define TD_CLR_SWAPPED(td) TD_CLR_INHIB((td), TDI_SWAPPED) #define TD_CLR_LOCK(td) TD_CLR_INHIB((td), TDI_LOCK) #define TD_CLR_SUSPENDED(td) TD_CLR_INHIB((td), TDI_SUSPENDED) #define TD_CLR_IWAIT(td) TD_CLR_INHIB((td), TDI_IWAIT) #ifdef _KERNEL #define TD_SET_STATE(td, state) atomic_store_int(&(td)->td_state, state) #else #define TD_SET_STATE(td, state) (td)->td_state = state #endif #define TD_SET_RUNNING(td) TD_SET_STATE(td, TDS_RUNNING) #define TD_SET_RUNQ(td) TD_SET_STATE(td, TDS_RUNQ) #define TD_SET_CAN_RUN(td) TD_SET_STATE(td, TDS_CAN_RUN) #define TD_SBDRY_INTR(td) \ (((td)->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 0) #define TD_SBDRY_ERRNO(td) \ (((td)->td_flags & TDF_SEINTR) != 0 ? EINTR : ERESTART) /* * Process structure. */ struct proc { LIST_ENTRY(proc) p_list; /* (d) List of all processes. */ TAILQ_HEAD(, thread) p_threads; /* (c) all threads. */ struct mtx p_slock; /* process spin lock */ struct ucred *p_ucred; /* (c) Process owner's identity. */ struct filedesc *p_fd; /* (b) Open files. */ struct filedesc_to_leader *p_fdtol; /* (b) Tracking node */ struct pwddesc *p_pd; /* (b) Cwd, chroot, jail, umask */ struct pstats *p_stats; /* (b) Accounting/statistics (CPU). */ struct plimit *p_limit; /* (c) Resource limits. */ struct callout p_limco; /* (c) Limit callout handle */ struct sigacts *p_sigacts; /* (x) Signal actions, state (CPU). */ int p_flag; /* (c) P_* flags. */ int p_flag2; /* (c) P2_* flags. */ enum p_states { PRS_NEW = 0, /* In creation */ PRS_NORMAL, /* threads can be run. */ PRS_ZOMBIE } p_state; /* (j/c) Process status. */ pid_t p_pid; /* (b) Process identifier. */ LIST_ENTRY(proc) p_hash; /* (d) Hash chain. */ LIST_ENTRY(proc) p_pglist; /* (g + e) List of processes in pgrp. */ struct proc *p_pptr; /* (c + e) Pointer to parent process. */ LIST_ENTRY(proc) p_sibling; /* (e) List of sibling processes. */ LIST_HEAD(, proc) p_children; /* (e) Pointer to list of children. */ struct proc *p_reaper; /* (e) My reaper. */ LIST_HEAD(, proc) p_reaplist; /* (e) List of my descendants (if I am reaper). */ LIST_ENTRY(proc) p_reapsibling; /* (e) List of siblings - descendants of the same reaper. */ struct mtx p_mtx; /* (n) Lock for this struct. */ struct mtx p_statmtx; /* Lock for the stats */ struct mtx p_itimmtx; /* Lock for the virt/prof timers */ struct mtx p_profmtx; /* Lock for the profiling */ struct ksiginfo *p_ksi; /* Locked by parent proc lock */ sigqueue_t p_sigqueue; /* (c) Sigs not delivered to a td. */ #define p_siglist p_sigqueue.sq_signals pid_t p_oppid; /* (c + e) Real parent pid. */ /* The following fields are all zeroed upon creation in fork. */ #define p_startzero p_vmspace struct vmspace *p_vmspace; /* (b) Address space. */ u_int p_swtick; /* (c) Tick when swapped in or out. */ u_int p_cowgen; /* (c) Generation of COW pointers. */ struct itimerval p_realtimer; /* (c) Alarm timer. */ struct rusage p_ru; /* (a) Exit information. */ struct rusage_ext p_rux; /* (cu) Internal resource usage. */ struct rusage_ext p_crux; /* (c) Internal child resource usage. */ int p_profthreads; /* (c) Num threads in addupc_task. */ volatile int p_exitthreads; /* (j) Number of threads exiting */ int p_traceflag; /* (o) Kernel trace points. */ struct ktr_io_params *p_ktrioparms; /* (c + o) Params for ktrace. */ struct vnode *p_textvp; /* (b) Vnode of executable. */ struct vnode *p_textdvp; /* (b) Dir containing textvp. */ char *p_binname; /* (b) Binary hardlink name. */ u_int p_lock; /* (c) Proclock (prevent swap) count. */ struct sigiolst p_sigiolst; /* (c) List of sigio sources. */ int p_sigparent; /* (c) Signal to parent on exit. */ int p_sig; /* (n) For core dump/debugger XXX. */ u_int p_ptevents; /* (c + e) ptrace() event mask. */ struct kaioinfo *p_aioinfo; /* (y) ASYNC I/O info. */ struct thread *p_singlethread;/* (c + j) If single threading this is it */ int p_suspcount; /* (j) Num threads in suspended mode. */ struct thread *p_xthread; /* (c) Trap thread */ int p_boundary_count;/* (j) Num threads at user boundary */ int p_pendingcnt; /* how many signals are pending */ struct itimers *p_itimers; /* (c) POSIX interval timers. */ struct procdesc *p_procdesc; /* (e) Process descriptor, if any. */ u_int p_treeflag; /* (e) P_TREE flags */ int p_pendingexits; /* (c) Count of pending thread exits. */ struct filemon *p_filemon; /* (c) filemon-specific data. */ int p_pdeathsig; /* (c) Signal from parent on exit. */ /* End area that is zeroed on creation. */ #define p_endzero p_magic /* The following fields are all copied upon creation in fork. */ #define p_startcopy p_endzero u_int p_magic; /* (b) Magic number. */ int p_osrel; /* (x) osreldate for the binary (from ELF note, if any) */ uint32_t p_fctl0; /* (x) ABI feature control, ELF note */ char p_comm[MAXCOMLEN + 1]; /* (x) Process name. */ struct sysentvec *p_sysent; /* (b) Syscall dispatch info. */ struct pargs *p_args; /* (c) Process arguments. */ rlim_t p_cpulimit; /* (c) Current CPU limit in seconds. */ signed char p_nice; /* (c) Process "nice" value. */ int p_fibnum; /* in this routing domain XXX MRT */ pid_t p_reapsubtree; /* (e) Pid of the direct child of the reaper which spawned our subtree. */ uint64_t p_elf_flags; /* (x) ELF flags */ void *p_elf_brandinfo; /* (x) Elf_Brandinfo, NULL for non ELF binaries. */ sbintime_t p_umtx_min_timeout; /* End area that is copied on creation. */ #define p_endcopy p_xexit u_int p_xexit; /* (c) Exit code. */ u_int p_xsig; /* (c) Stop/kill sig. */ struct pgrp *p_pgrp; /* (c + e) Pointer to process group. */ struct knlist *p_klist; /* (c) Knotes attached to this proc. */ int p_numthreads; /* (c) Number of threads. */ struct mdproc p_md; /* Any machine-dependent fields. */ struct callout p_itcallout; /* (h + c) Interval timer callout. */ u_short p_acflag; /* (c) Accounting flags. */ struct proc *p_peers; /* (r) */ struct proc *p_leader; /* (b) */ void *p_emuldata; /* (c) Emulator state data. */ struct label *p_label; /* (*) Proc (not subject) MAC label. */ STAILQ_HEAD(, ktr_request) p_ktr; /* (o) KTR event queue. */ LIST_HEAD(, mqueue_notifier) p_mqnotifier; /* (c) mqueue notifiers.*/ struct kdtrace_proc *p_dtrace; /* (*) DTrace-specific data. */ struct cv p_pwait; /* (*) wait cv for exit/exec. */ uint64_t p_prev_runtime; /* (c) Resource usage accounting. */ struct racct *p_racct; /* (b) Resource accounting. */ int p_throttled; /* (c) Flag for racct pcpu throttling */ /* * An orphan is the child that has been re-parented to the * debugger as a result of attaching to it. Need to keep * track of them for parent to be able to collect the exit * status of what used to be children. */ LIST_ENTRY(proc) p_orphan; /* (e) List of orphan processes. */ LIST_HEAD(, proc) p_orphans; /* (e) Pointer to list of orphans. */ TAILQ_HEAD(, kq_timer_cb_data) p_kqtim_stop; /* (c) */ LIST_ENTRY(proc) p_jaillist; /* (d) Jail process linkage. */ }; #define p_session p_pgrp->pg_session #define p_pgid p_pgrp->pg_id #define NOCPU (-1) /* For when we aren't on a CPU. */ #define NOCPU_OLD (255) #define MAXCPU_OLD (254) #define PROC_SLOCK(p) mtx_lock_spin(&(p)->p_slock) #define PROC_SUNLOCK(p) mtx_unlock_spin(&(p)->p_slock) #define PROC_SLOCK_ASSERT(p, type) mtx_assert(&(p)->p_slock, (type)) #define PROC_STATLOCK(p) mtx_lock_spin(&(p)->p_statmtx) #define PROC_STATUNLOCK(p) mtx_unlock_spin(&(p)->p_statmtx) #define PROC_STATLOCK_ASSERT(p, type) mtx_assert(&(p)->p_statmtx, (type)) #define PROC_ITIMLOCK(p) mtx_lock_spin(&(p)->p_itimmtx) #define PROC_ITIMUNLOCK(p) mtx_unlock_spin(&(p)->p_itimmtx) #define PROC_ITIMLOCK_ASSERT(p, type) mtx_assert(&(p)->p_itimmtx, (type)) #define PROC_PROFLOCK(p) mtx_lock_spin(&(p)->p_profmtx) #define PROC_PROFUNLOCK(p) mtx_unlock_spin(&(p)->p_profmtx) #define PROC_PROFLOCK_ASSERT(p, type) mtx_assert(&(p)->p_profmtx, (type)) /* These flags are kept in p_flag. */ #define P_ADVLOCK 0x00000001 /* Process may hold a POSIX advisory lock. */ #define P_CONTROLT 0x00000002 /* Has a controlling terminal. */ #define P_KPROC 0x00000004 /* Kernel process. */ #define P_UNUSED3 0x00000008 /* --available-- */ #define P_PPWAIT 0x00000010 /* Parent is waiting for child to exec/exit. */ #define P_PROFIL 0x00000020 /* Has started profiling. */ #define P_STOPPROF 0x00000040 /* Has thread requesting to stop profiling. */ #define P_HADTHREADS 0x00000080 /* Has had threads (no cleanup shortcuts) */ #define P_SUGID 0x00000100 /* Had set id privileges since last exec. */ #define P_SYSTEM 0x00000200 /* System proc: no sigs, stats or swapping. */ #define P_SINGLE_EXIT 0x00000400 /* Threads suspending should exit, not wait. */ #define P_TRACED 0x00000800 /* Debugged process being traced. */ #define P_WAITED 0x00001000 /* Someone is waiting for us. */ #define P_WEXIT 0x00002000 /* Working on exiting. */ #define P_EXEC 0x00004000 /* Process called exec. */ #define P_WKILLED 0x00008000 /* Killed, go to kernel/user boundary ASAP. */ #define P_CONTINUED 0x00010000 /* Proc has continued from a stopped state. */ #define P_STOPPED_SIG 0x00020000 /* Stopped due to SIGSTOP/SIGTSTP. */ #define P_STOPPED_TRACE 0x00040000 /* Stopped because of tracing. */ #define P_STOPPED_SINGLE 0x00080000 /* Only 1 thread can continue (not to user). */ #define P_PROTECTED 0x00100000 /* Do not kill on memory overcommit. */ #define P_SIGEVENT 0x00200000 /* Process pending signals changed. */ #define P_SINGLE_BOUNDARY 0x00400000 /* Threads should suspend at user boundary. */ #define P_HWPMC 0x00800000 /* Process is using HWPMCs */ #define P_JAILED 0x01000000 /* Process is in jail. */ #define P_TOTAL_STOP 0x02000000 /* Stopped in stop_all_proc. */ #define P_INEXEC 0x04000000 /* Process is in execve(). */ #define P_STATCHILD 0x08000000 /* Child process stopped or exited. */ #define P_INMEM 0x10000000 /* Loaded into memory. */ #define P_SWAPPINGOUT 0x20000000 /* Process is being swapped out. */ #define P_SWAPPINGIN 0x40000000 /* Process is being swapped in. */ #define P_PPTRACE 0x80000000 /* PT_TRACEME by vforked child. */ #define P_STOPPED (P_STOPPED_SIG|P_STOPPED_SINGLE|P_STOPPED_TRACE) #define P_SHOULDSTOP(p) ((p)->p_flag & P_STOPPED) #define P_KILLED(p) ((p)->p_flag & P_WKILLED) /* These flags are kept in p_flag2. */ #define P2_INHERIT_PROTECTED 0x00000001 /* New children get P_PROTECTED. */ #define P2_NOTRACE 0x00000002 /* No ptrace(2) attach or coredumps. */ #define P2_NOTRACE_EXEC 0x00000004 /* Keep P2_NOPTRACE on exec(2). */ #define P2_AST_SU 0x00000008 /* Handles SU ast for kthreads. */ #define P2_PTRACE_FSTP 0x00000010 /* SIGSTOP from PT_ATTACH not yet handled. */ #define P2_TRAPCAP 0x00000020 /* SIGTRAP on ENOTCAPABLE */ #define P2_ASLR_ENABLE 0x00000040 /* Force enable ASLR. */ #define P2_ASLR_DISABLE 0x00000080 /* Force disable ASLR. */ #define P2_ASLR_IGNSTART 0x00000100 /* Enable ASLR to consume sbrk area. */ #define P2_PROTMAX_ENABLE 0x00000200 /* Force enable implied PROT_MAX. */ #define P2_PROTMAX_DISABLE 0x00000400 /* Force disable implied PROT_MAX. */ #define P2_STKGAP_DISABLE 0x00000800 /* Disable stack gap for MAP_STACK */ #define P2_STKGAP_DISABLE_EXEC 0x00001000 /* Stack gap disabled after exec */ #define P2_ITSTOPPED 0x00002000 #define P2_PTRACEREQ 0x00004000 /* Active ptrace req */ #define P2_NO_NEW_PRIVS 0x00008000 /* Ignore setuid */ #define P2_WXORX_DISABLE 0x00010000 /* WX mappings enabled */ #define P2_WXORX_ENABLE_EXEC 0x00020000 /* WXORX enabled after exec */ #define P2_WEXIT 0x00040000 /* exit just started, no external thread_single() is permitted */ #define P2_REAPKILLED 0x00080000 /* Flags protected by proctree_lock, kept in p_treeflags. */ #define P_TREE_ORPHANED 0x00000001 /* Reparented, on orphan list */ #define P_TREE_FIRST_ORPHAN 0x00000002 /* First element of orphan list */ #define P_TREE_REAPER 0x00000004 /* Reaper of subtree */ #define P_TREE_GRPEXITED 0x00000008 /* exit1() done with job ctl */ /* * These were process status values (p_stat), now they are only used in * legacy conversion code. */ #define SIDL 1 /* Process being created by fork. */ #define SRUN 2 /* Currently runnable. */ #define SSLEEP 3 /* Sleeping on an address. */ #define SSTOP 4 /* Process debugging or suspension. */ #define SZOMB 5 /* Awaiting collection by parent. */ #define SWAIT 6 /* Waiting for interrupt. */ #define SLOCK 7 /* Blocked on a lock. */ #define P_MAGIC 0xbeefface #ifdef _KERNEL /* Types and flags for mi_switch(9). */ #define SW_TYPE_MASK 0xff /* First 8 bits are switch type */ #define SWT_OWEPREEMPT 1 /* Switching due to owepreempt. */ #define SWT_TURNSTILE 2 /* Turnstile contention. */ #define SWT_SLEEPQ 3 /* Sleepq wait. */ #define SWT_RELINQUISH 4 /* yield call. */ #define SWT_NEEDRESCHED 5 /* NEEDRESCHED was set. */ #define SWT_IDLE 6 /* Switching from the idle thread. */ #define SWT_IWAIT 7 /* Waiting for interrupts. */ #define SWT_SUSPEND 8 /* Thread suspended. */ #define SWT_REMOTEPREEMPT 9 /* Remote processor preempted. */ #define SWT_REMOTEWAKEIDLE 10 /* Remote processor preempted idle. */ #define SWT_BIND 11 /* Thread bound to a new CPU. */ #define SWT_COUNT 12 /* Number of switch types. */ /* Flags */ #define SW_VOL 0x0100 /* Voluntary switch. */ #define SW_INVOL 0x0200 /* Involuntary switch. */ #define SW_PREEMPT 0x0400 /* The invol switch is a preemption */ /* How values for thread_single(). */ #define SINGLE_NO_EXIT 0 #define SINGLE_EXIT 1 #define SINGLE_BOUNDARY 2 #define SINGLE_ALLPROC 3 #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_PARGS); MALLOC_DECLARE(M_SESSION); MALLOC_DECLARE(M_SUBPROC); #endif #define FOREACH_PROC_IN_SYSTEM(p) \ LIST_FOREACH((p), &allproc, p_list) #define FOREACH_THREAD_IN_PROC(p, td) \ TAILQ_FOREACH((td), &(p)->p_threads, td_plist) #define FIRST_THREAD_IN_PROC(p) TAILQ_FIRST(&(p)->p_threads) /* * We use process IDs <= pid_max <= PID_MAX; PID_MAX + 1 must also fit * in a pid_t, as it is used to represent "no process group". */ #define PID_MAX 99999 #define NO_PID 100000 #define THREAD0_TID NO_PID extern pid_t pid_max; #define SESS_LEADER(p) ((p)->p_session->s_leader == (p)) /* Lock and unlock a process. */ #define PROC_LOCK(p) mtx_lock(&(p)->p_mtx) #define PROC_TRYLOCK(p) mtx_trylock(&(p)->p_mtx) #define PROC_UNLOCK(p) mtx_unlock(&(p)->p_mtx) #define PROC_LOCKED(p) mtx_owned(&(p)->p_mtx) #define PROC_WAIT_UNLOCKED(p) mtx_wait_unlocked(&(p)->p_mtx) #define PROC_LOCK_ASSERT(p, type) mtx_assert(&(p)->p_mtx, (type)) /* Lock and unlock a process group. */ #define PGRP_LOCK(pg) mtx_lock(&(pg)->pg_mtx) #define PGRP_UNLOCK(pg) mtx_unlock(&(pg)->pg_mtx) #define PGRP_LOCKED(pg) mtx_owned(&(pg)->pg_mtx) #define PGRP_LOCK_ASSERT(pg, type) mtx_assert(&(pg)->pg_mtx, (type)) #define PGRP_LOCK_PGSIGNAL(pg) do { \ if ((pg) != NULL) \ PGRP_LOCK(pg); \ } while (0) #define PGRP_UNLOCK_PGSIGNAL(pg) do { \ if ((pg) != NULL) \ PGRP_UNLOCK(pg); \ } while (0) /* Lock and unlock a session. */ #define SESS_LOCK(s) mtx_lock(&(s)->s_mtx) #define SESS_UNLOCK(s) mtx_unlock(&(s)->s_mtx) #define SESS_LOCKED(s) mtx_owned(&(s)->s_mtx) #define SESS_LOCK_ASSERT(s, type) mtx_assert(&(s)->s_mtx, (type)) /* * Non-zero p_lock ensures that: * - exit1() is not performed until p_lock reaches zero; * - the process' threads stack are not swapped out if they are currently * not (P_INMEM). * * PHOLD() asserts that the process (except the current process) is * not exiting, increments p_lock and swaps threads stacks into memory, * if needed. * _PHOLD() is same as PHOLD(), it takes the process locked. * _PHOLD_LITE() also takes the process locked, but comparing with * _PHOLD(), it only guarantees that exit1() is not executed, * faultin() is not called. */ #define PHOLD(p) do { \ PROC_LOCK(p); \ _PHOLD(p); \ PROC_UNLOCK(p); \ } while (0) #define _PHOLD(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc, \ ("PHOLD of exiting process %p", p)); \ (p)->p_lock++; \ if (((p)->p_flag & P_INMEM) == 0) \ faultin((p)); \ } while (0) #define _PHOLD_LITE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc, \ ("PHOLD of exiting process %p", p)); \ (p)->p_lock++; \ } while (0) #define PROC_ASSERT_HELD(p) do { \ KASSERT((p)->p_lock > 0, ("process %p not held", p)); \ } while (0) #define PRELE(p) do { \ PROC_LOCK((p)); \ _PRELE((p)); \ PROC_UNLOCK((p)); \ } while (0) #define _PRELE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ PROC_ASSERT_HELD(p); \ (--(p)->p_lock); \ if (((p)->p_flag & P_WEXIT) && (p)->p_lock == 0) \ wakeup(&(p)->p_lock); \ } while (0) #define PROC_ASSERT_NOT_HELD(p) do { \ KASSERT((p)->p_lock == 0, ("process %p held", p)); \ } while (0) #define PROC_UPDATE_COW(p) do { \ struct proc *_p = (p); \ PROC_LOCK_ASSERT((_p), MA_OWNED); \ atomic_store_int(&_p->p_cowgen, _p->p_cowgen + 1); \ } while (0) #define PROC_COW_CHANGECOUNT(td, p) ({ \ struct thread *_td = (td); \ struct proc *_p = (p); \ MPASS(_td == curthread); \ PROC_LOCK_ASSERT(_p, MA_OWNED); \ _p->p_cowgen - _td->td_cowgen; \ }) /* Check whether a thread is safe to be swapped out. */ #define thread_safetoswapout(td) ((td)->td_flags & TDF_CANSWAP) /* Control whether or not it is safe for curthread to sleep. */ #define THREAD_NO_SLEEPING() do { \ curthread->td_no_sleeping++; \ MPASS(curthread->td_no_sleeping > 0); \ } while (0) #define THREAD_SLEEPING_OK() do { \ MPASS(curthread->td_no_sleeping > 0); \ curthread->td_no_sleeping--; \ } while (0) #define THREAD_CAN_SLEEP() ((curthread)->td_no_sleeping == 0) #define PIDHASH(pid) (&pidhashtbl[(pid) & pidhash]) #define PIDHASHLOCK(pid) (&pidhashtbl_lock[((pid) & pidhashlock)]) extern LIST_HEAD(pidhashhead, proc) *pidhashtbl; extern struct sx *pidhashtbl_lock; extern u_long pidhash; extern u_long pidhashlock; #define PGRPHASH(pgid) (&pgrphashtbl[(pgid) & pgrphash]) extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl; extern u_long pgrphash; extern struct sx allproc_lock; extern int allproc_gen; extern struct sx proctree_lock; extern struct mtx ppeers_lock; extern struct mtx procid_lock; extern struct proc proc0; /* Process slot for swapper. */ extern struct thread0_storage thread0_st; /* Primary thread in proc0. */ #define thread0 (thread0_st.t0st_thread) extern struct vmspace vmspace0; /* VM space for proc0. */ extern int hogticks; /* Limit on kernel cpu hogs. */ extern int lastpid; extern int nprocs, maxproc; /* Current and max number of procs. */ extern int maxprocperuid; /* Max procs per uid. */ extern u_long ps_arg_cache_limit; LIST_HEAD(proclist, proc); TAILQ_HEAD(procqueue, proc); TAILQ_HEAD(threadqueue, thread); extern struct proclist allproc; /* List of all processes. */ extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */ extern struct uma_zone *proc_zone; extern struct uma_zone *pgrp_zone; struct proc *pfind(pid_t); /* Find process by id. */ struct proc *pfind_any(pid_t); /* Find (zombie) process by id. */ struct proc *pfind_any_locked(pid_t pid); /* Find process by id, locked. */ struct pgrp *pgfind(pid_t); /* Find process group by id. */ void pidhash_slockall(void); /* Shared lock all pid hash lists. */ void pidhash_sunlockall(void); /* Shared unlock all pid hash lists. */ struct fork_req { int fr_flags; int fr_pages; int *fr_pidp; struct proc **fr_procp; int *fr_pd_fd; int fr_pd_flags; struct filecaps *fr_pd_fcaps; int fr_flags2; #define FR2_DROPSIG_CAUGHT 0x00000001 /* Drop caught non-DFL signals */ #define FR2_SHARE_PATHS 0x00000002 /* Invert sense of RFFDG for paths */ #define FR2_KPROC 0x00000004 /* Create a kernel process */ }; /* * pget() flags. */ #define PGET_HOLD 0x00001 /* Hold the process. */ #define PGET_CANSEE 0x00002 /* Check against p_cansee(). */ #define PGET_CANDEBUG 0x00004 /* Check against p_candebug(). */ #define PGET_ISCURRENT 0x00008 /* Check that the found process is current. */ #define PGET_NOTWEXIT 0x00010 /* Check that the process is not in P_WEXIT. */ #define PGET_NOTINEXEC 0x00020 /* Check that the process is not in P_INEXEC. */ #define PGET_NOTID 0x00040 /* Do not assume tid if pid > PID_MAX. */ #define PGET_WANTREAD (PGET_HOLD | PGET_CANDEBUG | PGET_NOTWEXIT) int pget(pid_t pid, int flags, struct proc **pp); /* ast_register() flags */ #define ASTR_ASTF_REQUIRED 0x0001 /* td_ast TDAI(TDA_X) flag set is required for call */ #define ASTR_TDP 0x0002 /* td_pflags flag set is required */ #define ASTR_KCLEAR 0x0004 /* call me on ast_kclear() */ #define ASTR_UNCOND 0x0008 /* call me always */ void ast(struct trapframe *framep); void ast_kclear(struct thread *td); void ast_register(int ast, int ast_flags, int tdp, void (*f)(struct thread *td, int asts)); void ast_deregister(int tda); void ast_sched_locked(struct thread *td, int tda); void ast_sched_mask(struct thread *td, int ast); void ast_sched(struct thread *td, int tda); void ast_unsched_locked(struct thread *td, int tda); struct thread *choosethread(void); int cr_cansee(struct ucred *u1, struct ucred *u2); int cr_canseesocket(struct ucred *cred, struct socket *so); int cr_canseeothergids(struct ucred *u1, struct ucred *u2); int cr_canseeotheruids(struct ucred *u1, struct ucred *u2); int cr_canseejailproc(struct ucred *u1, struct ucred *u2); int cr_cansignal(struct ucred *cred, struct proc *proc, int signum); int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess); int enterthispgrp(struct proc *p, struct pgrp *pgrp); void faultin(struct proc *p); int fork1(struct thread *, struct fork_req *); void fork_exit(void (*)(void *, struct trapframe *), void *, struct trapframe *); void fork_return(struct thread *, struct trapframe *); int inferior(struct proc *p); void itimer_proc_continue(struct proc *p); void kqtimer_proc_continue(struct proc *p); void kern_proc_vmmap_resident(struct vm_map *map, struct vm_map_entry *entry, int *resident_count, bool *super); void kern_yield(int); void kick_proc0(void); void killjobc(void); int leavepgrp(struct proc *p); int maybe_preempt(struct thread *td); void maybe_yield(void); void mi_switch(int flags); int p_candebug(struct thread *td, struct proc *p); int p_cansee(struct thread *td, struct proc *p); int p_cansched(struct thread *td, struct proc *p); int p_cansignal(struct thread *td, struct proc *p, int signum); int p_canwait(struct thread *td, struct proc *p); struct pargs *pargs_alloc(int len); void pargs_drop(struct pargs *pa); void pargs_hold(struct pargs *pa); void proc_add_orphan(struct proc *child, struct proc *parent); int proc_get_binpath(struct proc *p, char *binname, char **fullpath, char **freepath); int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb); int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb); int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb); void procinit(void); int proc_iterate(int (*cb)(struct proc *, void *), void *cbarg); void proc_linkup0(struct proc *p, struct thread *td); void proc_linkup(struct proc *p, struct thread *td); struct proc *proc_realparent(struct proc *child); void proc_reap(struct thread *td, struct proc *p, int *status, int options); void proc_reparent(struct proc *child, struct proc *newparent, bool set_oppid); void proc_set_p2_wexit(struct proc *p); void proc_set_traced(struct proc *p, bool stop); void proc_wkilled(struct proc *p); struct pstats *pstats_alloc(void); void pstats_fork(struct pstats *src, struct pstats *dst); void pstats_free(struct pstats *ps); void proc_clear_orphan(struct proc *p); void reaper_abandon_children(struct proc *p, bool exiting); int securelevel_ge(struct ucred *cr, int level); int securelevel_gt(struct ucred *cr, int level); void sess_hold(struct session *); void sess_release(struct session *); int setrunnable(struct thread *, int); void setsugid(struct proc *p); bool should_yield(void); int sigonstack(size_t sp); void stopevent(struct proc *, u_int, u_int); struct thread *tdfind(lwpid_t, pid_t); void threadinit(void); void tidhash_add(struct thread *); void tidhash_remove(struct thread *); void cpu_idle(int); int cpu_idle_wakeup(int); extern void (*cpu_idle_hook)(sbintime_t); /* Hook to machdep CPU idler. */ void cpu_switch(struct thread *, struct thread *, struct mtx *); +void cpu_sync_core(void); void cpu_throw(struct thread *, struct thread *) __dead2; bool curproc_sigkilled(void); void userret(struct thread *, struct trapframe *); void cpu_exit(struct thread *); void exit1(struct thread *, int, int) __dead2; void cpu_copy_thread(struct thread *td, struct thread *td0); bool cpu_exec_vmspace_reuse(struct proc *p, struct vm_map *map); int cpu_fetch_syscall_args(struct thread *td); void cpu_fork(struct thread *, struct proc *, struct thread *, int); void cpu_fork_kthread_handler(struct thread *, void (*)(void *), void *); int cpu_procctl(struct thread *td, int idtype, id_t id, int com, void *data); void cpu_set_syscall_retval(struct thread *, int); void cpu_set_upcall(struct thread *, void (*)(void *), void *, stack_t *); int cpu_set_user_tls(struct thread *, void *tls_base); void cpu_thread_alloc(struct thread *); void cpu_thread_clean(struct thread *); void cpu_thread_exit(struct thread *); void cpu_thread_free(struct thread *); void cpu_thread_swapin(struct thread *); void cpu_thread_swapout(struct thread *); struct thread *thread_alloc(int pages); int thread_alloc_stack(struct thread *, int pages); int thread_check_susp(struct thread *td, bool sleep); void thread_cow_get_proc(struct thread *newtd, struct proc *p); void thread_cow_get(struct thread *newtd, struct thread *td); void thread_cow_free(struct thread *td); void thread_cow_update(struct thread *td); void thread_cow_synced(struct thread *td); int thread_create(struct thread *td, struct rtprio *rtp, int (*initialize_thread)(struct thread *, void *), void *thunk); void thread_exit(void) __dead2; void thread_free(struct thread *td); void thread_link(struct thread *td, struct proc *p); void thread_reap_barrier(void); int thread_single(struct proc *p, int how); void thread_single_end(struct proc *p, int how); void thread_stash(struct thread *td); void thread_stopped(struct proc *p); void childproc_stopped(struct proc *child, int reason); void childproc_continued(struct proc *child); void childproc_exited(struct proc *child); void thread_run_flash(struct thread *td); int thread_suspend_check(int how); bool thread_suspend_check_needed(void); void thread_suspend_switch(struct thread *, struct proc *p); void thread_suspend_one(struct thread *td); void thread_unlink(struct thread *td); void thread_unsuspend(struct proc *p); void thread_wait(struct proc *p); bool stop_all_proc_block(void); void stop_all_proc_unblock(void); void stop_all_proc(void); void resume_all_proc(void); static __inline int curthread_pflags_set(int flags) { struct thread *td; int save; td = curthread; save = ~flags | (td->td_pflags & flags); td->td_pflags |= flags; return (save); } static __inline void curthread_pflags_restore(int save) { curthread->td_pflags &= save; } static __inline int curthread_pflags2_set(int flags) { struct thread *td; int save; td = curthread; save = ~flags | (td->td_pflags2 & flags); td->td_pflags2 |= flags; return (save); } static __inline void curthread_pflags2_restore(int save) { curthread->td_pflags2 &= save; } static __inline __pure2 struct td_sched * td_get_sched(struct thread *td) { return ((struct td_sched *)&td[1]); } #define PROC_ID_PID 0 #define PROC_ID_GROUP 1 #define PROC_ID_SESSION 2 #define PROC_ID_REAP 3 void proc_id_set(int type, pid_t id); void proc_id_set_cond(int type, pid_t id); void proc_id_clear(int type, pid_t id); EVENTHANDLER_LIST_DECLARE(process_ctor); EVENTHANDLER_LIST_DECLARE(process_dtor); EVENTHANDLER_LIST_DECLARE(process_init); EVENTHANDLER_LIST_DECLARE(process_fini); EVENTHANDLER_LIST_DECLARE(process_exit); EVENTHANDLER_LIST_DECLARE(process_fork); EVENTHANDLER_LIST_DECLARE(process_exec); EVENTHANDLER_LIST_DECLARE(thread_ctor); EVENTHANDLER_LIST_DECLARE(thread_dtor); EVENTHANDLER_LIST_DECLARE(thread_init); #endif /* _KERNEL */ #endif /* !_SYS_PROC_H_ */