diff --git a/sys/cam/cam_debug.h b/sys/cam/cam_debug.h index 1526f11f4c0d..8c04b1fd7ce9 100644 --- a/sys/cam/cam_debug.h +++ b/sys/cam/cam_debug.h @@ -1,138 +1,127 @@ /*- * Macros for tracing/loging information in the CAM layer * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 1997 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _CAM_CAM_DEBUG_H #define _CAM_CAM_DEBUG_H 1 /* * Debugging flags. */ typedef enum { CAM_DEBUG_NONE = 0x00, /* no debugging */ CAM_DEBUG_INFO = 0x01, /* scsi commands, errors, data */ CAM_DEBUG_TRACE = 0x02, /* routine flow tracking */ CAM_DEBUG_SUBTRACE = 0x04, /* internal to routine flows */ CAM_DEBUG_CDB = 0x08, /* print out SCSI CDBs only */ CAM_DEBUG_XPT = 0x10, /* print out xpt scheduling */ CAM_DEBUG_PERIPH = 0x20, /* print out peripheral calls */ CAM_DEBUG_PROBE = 0x40 /* print out probe actions */ } cam_debug_flags; #if defined(_KERNEL) #ifndef CAM_DEBUG_FLAGS #define CAM_DEBUG_FLAGS CAM_DEBUG_NONE #endif #ifndef CAM_DEBUG_COMPILE #ifdef CAMDEBUG #define CAM_DEBUG_COMPILE (-1) #else #define CAM_DEBUG_COMPILE (CAM_DEBUG_INFO | CAM_DEBUG_CDB | \ CAM_DEBUG_PERIPH | CAM_DEBUG_PROBE | \ CAM_DEBUG_FLAGS) #endif #endif #ifndef CAM_DEBUG_BUS #define CAM_DEBUG_BUS CAM_BUS_WILDCARD #endif #ifndef CAM_DEBUG_TARGET #define CAM_DEBUG_TARGET CAM_TARGET_WILDCARD #endif #ifndef CAM_DEBUG_LUN #define CAM_DEBUG_LUN CAM_LUN_WILDCARD #endif #ifndef CAM_DEBUG_DELAY #define CAM_DEBUG_DELAY 0 #endif /* Path we want to debug */ extern struct cam_path *cam_dpath; /* Current debug levels set */ extern uint32_t cam_dflags; /* Printf delay value (to prevent scrolling) */ extern uint32_t cam_debug_delay; -/* Debugging macros. */ -#define CAM_DEBUGGED(path, flag) \ - (((flag) & (CAM_DEBUG_COMPILE) & cam_dflags) \ - && (cam_dpath != NULL) \ - && (xpt_path_comp(cam_dpath, path) >= 0) \ - && (xpt_path_comp(cam_dpath, path) < 2)) - -#define CAM_DEBUG(path, flag, printfargs) \ - if (((flag) & (CAM_DEBUG_COMPILE) & cam_dflags) \ - && (cam_dpath != NULL) \ - && (xpt_path_comp(cam_dpath, path) >= 0) \ - && (xpt_path_comp(cam_dpath, path) < 2)) { \ - xpt_print_path(path); \ - printf printfargs; \ - if (cam_debug_delay != 0) \ - DELAY(cam_debug_delay); \ - } +/* Helper routines -- helps conserve stack */ +struct cam_ed; +void xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...); +void xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...); +void xpt_cam_debug(const char *fmt, ...); -#define CAM_DEBUG_DEV(dev, flag, printfargs) \ - if (((flag) & (CAM_DEBUG_COMPILE) & cam_dflags) \ - && (cam_dpath != NULL) \ - && (xpt_path_comp_dev(cam_dpath, dev) >= 0) \ - && (xpt_path_comp_dev(cam_dpath, dev) < 2)) { \ - xpt_print_device(dev); \ - printf printfargs; \ - if (cam_debug_delay != 0) \ - DELAY(cam_debug_delay); \ +/* Stupid macro to remove a layer of parens */ +#define _CAM_X(...) __VA_ARGS__ + +/* Debugging macros. */ +#define CAM_DEBUGGED(path, flag) \ + (((flag) & (CAM_DEBUG_COMPILE) & cam_dflags) \ + && (cam_dpath != NULL) \ + && (xpt_path_comp(cam_dpath, (path)) >= 0) \ + && (xpt_path_comp(cam_dpath, (path)) < 2)) + +#define CAM_DEBUG(path, flag, printfargs) \ + if (CAM_DEBUGGED(path, flag)) { \ + xpt_cam_path_debug(path, _CAM_X printfargs); \ } -#define CAM_DEBUG_PRINT(flag, printfargs) \ - if (((flag) & (CAM_DEBUG_COMPILE) & cam_dflags)) { \ - printf("cam_debug: "); \ - printf printfargs; \ - if (cam_debug_delay != 0) \ - DELAY(cam_debug_delay); \ +#define CAM_DEBUG_DEV(dev, flag, printfargs) \ + if (((flag) & (CAM_DEBUG_COMPILE) & cam_dflags) \ + && (cam_dpath != NULL) \ + && (xpt_path_comp_dev(cam_dpath, (dev)) >= 0) \ + && (xpt_path_comp_dev(cam_dpath, (dev)) < 2)) { \ + xpt_cam_dev_debug(dev, _CAM_X printfargs); \ } -#define CAM_DEBUG_PATH_PRINT(flag, path, printfargs) \ - if (((flag) & (CAM_DEBUG_COMPILE) & cam_dflags)) { \ - xpt_print(path, "cam_debug: "); \ - printf printfargs; \ - if (cam_debug_delay != 0) \ - DELAY(cam_debug_delay); \ +#define CAM_DEBUG_PRINT(flag, printfargs) \ + if (((flag) & (CAM_DEBUG_COMPILE) & cam_dflags)) { \ + xpt_cam_debug(_CAM_X printfargs); \ } #else /* !_KERNEL */ #define CAM_DEBUGGED(A, B) 0 #define CAM_DEBUG(A, B, C) +#define CAM_DEBUG_DEV(A, B, C) #define CAM_DEBUG_PRINT(A, B) -#define CAM_DEBUG_PATH_PRINT(A, B, C) #endif /* _KERNEL */ #endif /* _CAM_CAM_DEBUG_H */ diff --git a/sys/cam/cam_xpt.c b/sys/cam/cam_xpt.c index c32cad2433b1..a1dec7a8a674 100644 --- a/sys/cam/cam_xpt.c +++ b/sys/cam/cam_xpt.c @@ -1,5545 +1,5602 @@ /*- * Implementation of the Common Access Method Transport (XPT) layer. * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_printf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for xpt_print below */ #include "opt_cam.h" /* Wild guess based on not wanting to grow the stack too much */ #define XPT_PRINT_MAXLEN 512 #ifdef PRINTF_BUFR_SIZE #define XPT_PRINT_LEN PRINTF_BUFR_SIZE #else #define XPT_PRINT_LEN 128 #endif _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); /* * This is the maximum number of high powered commands (e.g. start unit) * that can be outstanding at a particular time. */ #ifndef CAM_MAX_HIGHPOWER #define CAM_MAX_HIGHPOWER 4 #endif /* Datastructures internal to the xpt layer */ MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); struct xpt_softc { uint32_t xpt_generation; /* number of high powered commands that can go through right now */ struct mtx xpt_highpower_lock; STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; int num_highpower; /* queue for handling async rescan requests. */ TAILQ_HEAD(, ccb_hdr) ccb_scanq; int buses_to_config; int buses_config_done; /* * Registered buses * * N.B., "busses" is an archaic spelling of "buses". In new code * "buses" is preferred. */ TAILQ_HEAD(,cam_eb) xpt_busses; u_int bus_generation; int boot_delay; struct callout boot_callout; struct task boot_task; struct root_hold_token xpt_rootmount; struct mtx xpt_topo_lock; struct taskqueue *xpt_taskq; }; typedef enum { DM_RET_COPY = 0x01, DM_RET_FLAG_MASK = 0x0f, DM_RET_NONE = 0x00, DM_RET_STOP = 0x10, DM_RET_DESCEND = 0x20, DM_RET_ERROR = 0x30, DM_RET_ACTION_MASK = 0xf0 } dev_match_ret; typedef enum { XPT_DEPTH_BUS, XPT_DEPTH_TARGET, XPT_DEPTH_DEVICE, XPT_DEPTH_PERIPH } xpt_traverse_depth; struct xpt_traverse_config { xpt_traverse_depth depth; void *tr_func; void *tr_arg; }; typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); /* Transport layer configuration information */ static struct xpt_softc xsoftc; MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, &xsoftc.boot_delay, 0, "Bus registration wait time"); SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); struct cam_doneq { struct mtx_padalign cam_doneq_mtx; STAILQ_HEAD(, ccb_hdr) cam_doneq; int cam_doneq_sleep; }; static struct cam_doneq cam_doneqs[MAXCPU]; static u_int __read_mostly cam_num_doneqs; static struct proc *cam_proc; static struct cam_doneq cam_async; SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, &cam_num_doneqs, 0, "Number of completion queues/threads"); struct cam_periph *xpt_periph; static periph_init_t xpt_periph_init; static struct periph_driver xpt_driver = { xpt_periph_init, "xpt", TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, CAM_PERIPH_DRV_EARLY }; PERIPHDRIVER_DECLARE(xpt, xpt_driver); static d_open_t xptopen; static d_close_t xptclose; static d_ioctl_t xptioctl; static d_ioctl_t xptdoioctl; static struct cdevsw xpt_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = xptopen, .d_close = xptclose, .d_ioctl = xptioctl, .d_name = "xpt", }; /* Storage for debugging datastructures */ struct cam_path *cam_dpath; uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS; SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, &cam_dflags, 0, "Enabled debug flags"); uint32_t cam_debug_delay = CAM_DEBUG_DELAY; SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, &cam_debug_delay, 0, "Delay in us after each debug message"); /* Our boot-time initialization hook */ static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); static moduledata_t cam_moduledata = { "cam", cam_module_event_handler, NULL }; static int xpt_init(void *); DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); MODULE_VERSION(cam, 1); static void xpt_async_bcast(struct async_list *async_head, uint32_t async_code, struct cam_path *path, void *async_arg); static path_id_t xptnextfreepathid(void); static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); static union ccb *xpt_get_ccb(struct cam_periph *periph); static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); static void xpt_run_allocq(struct cam_periph *periph, int sleep); static void xpt_run_allocq_task(void *context, int pending); static void xpt_run_devq(struct cam_devq *devq); static callout_func_t xpt_release_devq_timeout; static void xpt_acquire_bus(struct cam_eb *bus); static void xpt_release_bus(struct cam_eb *bus); static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); static int xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue); static struct cam_et* xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); static void xpt_acquire_target(struct cam_et *target); static void xpt_release_target(struct cam_et *target); static struct cam_eb* xpt_find_bus(path_id_t path_id); static struct cam_et* xpt_find_target(struct cam_eb *bus, target_id_t target_id); static struct cam_ed* xpt_find_device(struct cam_et *target, lun_id_t lun_id); static void xpt_config(void *arg); static void xpt_hold_boot_locked(void); static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, uint32_t new_priority); static xpt_devicefunc_t xptpassannouncefunc; static void xptaction(struct cam_sim *sim, union ccb *work_ccb); static void xptpoll(struct cam_sim *sim); static void camisr_runqueue(void); static void xpt_done_process(struct ccb_hdr *ccb_h); static void xpt_done_td(void *); static void xpt_async_td(void *); static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_eb *bus); static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_ed *device); static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_periph *periph); static xpt_busfunc_t xptedtbusfunc; static xpt_targetfunc_t xptedttargetfunc; static xpt_devicefunc_t xptedtdevicefunc; static xpt_periphfunc_t xptedtperiphfunc; static xpt_pdrvfunc_t xptplistpdrvfunc; static xpt_periphfunc_t xptplistperiphfunc; static int xptedtmatch(struct ccb_dev_match *cdm); static int xptperiphlistmatch(struct ccb_dev_match *cdm); static int xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg); static int xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, xpt_targetfunc_t *tr_func, void *arg); static int xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, xpt_devicefunc_t *tr_func, void *arg); static int xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg); static int xptpdrvtraverse(struct periph_driver **start_pdrv, xpt_pdrvfunc_t *tr_func, void *arg); static int xptpdperiphtraverse(struct periph_driver **pdrv, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg); static xpt_busfunc_t xptdefbusfunc; static xpt_targetfunc_t xptdeftargetfunc; static xpt_devicefunc_t xptdefdevicefunc; static xpt_periphfunc_t xptdefperiphfunc; static void xpt_finishconfig_task(void *context, int pending); static void xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg); static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id); static xpt_devicefunc_t xptsetasyncfunc; static xpt_busfunc_t xptsetasyncbusfunc; static cam_status xptregister(struct cam_periph *periph, void *arg); static __inline int xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) { int retval; mtx_assert(&devq->send_mtx, MA_OWNED); if ((dev->ccbq.queue.entries > 0) && (dev->ccbq.dev_openings > 0) && (dev->ccbq.queue.qfrozen_cnt == 0)) { /* * The priority of a device waiting for controller * resources is that of the highest priority CCB * enqueued. */ retval = xpt_schedule_dev(&devq->send_queue, &dev->devq_entry, CAMQ_GET_PRIO(&dev->ccbq.queue)); } else { retval = 0; } return (retval); } static __inline int device_is_queued(struct cam_ed *device) { return (device->devq_entry.index != CAM_UNQUEUED_INDEX); } static void xpt_periph_init(void) { make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); } static int xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) { /* * Only allow read-write access. */ if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) return(EPERM); /* * We don't allow nonblocking access. */ if ((flags & O_NONBLOCK) != 0) { printf("%s: can't do nonblocking access\n", devtoname(dev)); return(ENODEV); } return(0); } static int xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) { return(0); } /* * Don't automatically grab the xpt softc lock here even though this is going * through the xpt device. The xpt device is really just a back door for * accessing other devices and SIMs, so the right thing to do is to grab * the appropriate SIM lock once the bus/SIM is located. */ static int xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); } return (error); } static int xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; error = 0; switch(cmd) { /* * For the transport layer CAMIOCOMMAND ioctl, we really only want * to accept CCB types that don't quite make sense to send through a * passthrough driver. XPT_PATH_INQ is an exception to this, as stated * in the CAM spec. */ case CAMIOCOMMAND: { union ccb *ccb; union ccb *inccb; struct cam_eb *bus; inccb = (union ccb *)addr; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (inccb->ccb_h.func_code == XPT_SCSI_IO) inccb->csio.bio = NULL; #endif if (inccb->ccb_h.flags & CAM_UNLOCKED) return (EINVAL); bus = xpt_find_bus(inccb->ccb_h.path_id); if (bus == NULL) return (EINVAL); switch (inccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_RESET_BUS: if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { xpt_release_bus(bus); return (EINVAL); } break; case XPT_SCAN_TGT: if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { xpt_release_bus(bus); return (EINVAL); } break; default: break; } switch(inccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_RESET_BUS: case XPT_PATH_INQ: case XPT_ENG_INQ: case XPT_SCAN_LUN: case XPT_SCAN_TGT: ccb = xpt_alloc_ccb(); /* * Create a path using the bus, target, and lun the * user passed in. */ if (xpt_create_path(&ccb->ccb_h.path, NULL, inccb->ccb_h.path_id, inccb->ccb_h.target_id, inccb->ccb_h.target_lun) != CAM_REQ_CMP){ error = EINVAL; xpt_free_ccb(ccb); break; } /* Ensure all of our fields are correct */ xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, inccb->ccb_h.pinfo.priority); xpt_merge_ccb(ccb, inccb); xpt_path_lock(ccb->ccb_h.path); cam_periph_runccb(ccb, NULL, 0, 0, NULL); xpt_path_unlock(ccb->ccb_h.path); bcopy(ccb, inccb, sizeof(union ccb)); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); break; case XPT_DEBUG: { union ccb ccb; /* * This is an immediate CCB, so it's okay to * allocate it on the stack. */ memset(&ccb, 0, sizeof(ccb)); /* * Create a path using the bus, target, and lun the * user passed in. */ if (xpt_create_path(&ccb.ccb_h.path, NULL, inccb->ccb_h.path_id, inccb->ccb_h.target_id, inccb->ccb_h.target_lun) != CAM_REQ_CMP){ error = EINVAL; break; } /* Ensure all of our fields are correct */ xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, inccb->ccb_h.pinfo.priority); xpt_merge_ccb(&ccb, inccb); xpt_action(&ccb); bcopy(&ccb, inccb, sizeof(union ccb)); xpt_free_path(ccb.ccb_h.path); break; } case XPT_DEV_MATCH: { struct cam_periph_map_info mapinfo; struct cam_path *old_path; /* * We can't deal with physical addresses for this * type of transaction. */ if ((inccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) { error = EINVAL; break; } /* * Save this in case the caller had it set to * something in particular. */ old_path = inccb->ccb_h.path; /* * We really don't need a path for the matching * code. The path is needed because of the * debugging statements in xpt_action(). They * assume that the CCB has a valid path. */ inccb->ccb_h.path = xpt_periph->path; bzero(&mapinfo, sizeof(mapinfo)); /* * Map the pattern and match buffers into kernel * virtual address space. */ error = cam_periph_mapmem(inccb, &mapinfo, maxphys); if (error) { inccb->ccb_h.path = old_path; break; } /* * This is an immediate CCB, we can send it on directly. */ xpt_action(inccb); /* * Map the buffers back into user space. */ cam_periph_unmapmem(inccb, &mapinfo); inccb->ccb_h.path = old_path; error = 0; break; } default: error = ENOTSUP; break; } xpt_release_bus(bus); break; } /* * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, * with the periphal driver name and unit name filled in. The other * fields don't really matter as input. The passthrough driver name * ("pass"), and unit number are passed back in the ccb. The current * device generation number, and the index into the device peripheral * driver list, and the status are also passed back. Note that * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is * (or rather should be) impossible for the device peripheral driver * list to change since we look at the whole thing in one pass, and * we do it with lock protection. * */ case CAMGETPASSTHRU: { union ccb *ccb; struct cam_periph *periph; struct periph_driver **p_drv; char *name; u_int unit; bool base_periph_found; ccb = (union ccb *)addr; unit = ccb->cgdl.unit_number; name = ccb->cgdl.periph_name; base_periph_found = false; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (ccb->ccb_h.func_code == XPT_SCSI_IO) ccb->csio.bio = NULL; #endif /* * Sanity check -- make sure we don't get a null peripheral * driver name. */ if (*ccb->cgdl.periph_name == '\0') { error = EINVAL; break; } /* Keep the list from changing while we traverse it */ xpt_lock_buses(); /* first find our driver in the list of drivers */ for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) if (strcmp((*p_drv)->driver_name, name) == 0) break; if (*p_drv == NULL) { xpt_unlock_buses(); ccb->ccb_h.status = CAM_REQ_CMP_ERR; ccb->cgdl.status = CAM_GDEVLIST_ERROR; *ccb->cgdl.periph_name = '\0'; ccb->cgdl.unit_number = 0; error = ENOENT; break; } /* * Run through every peripheral instance of this driver * and check to see whether it matches the unit passed * in by the user. If it does, get out of the loops and * find the passthrough driver associated with that * peripheral driver. */ for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; periph = TAILQ_NEXT(periph, unit_links)) { if (periph->unit_number == unit) break; } /* * If we found the peripheral driver that the user passed * in, go through all of the peripheral drivers for that * particular device and look for a passthrough driver. */ if (periph != NULL) { struct cam_ed *device; int i; base_periph_found = true; device = periph->path->device; for (i = 0, periph = SLIST_FIRST(&device->periphs); periph != NULL; periph = SLIST_NEXT(periph, periph_links), i++) { /* * Check to see whether we have a * passthrough device or not. */ if (strcmp(periph->periph_name, "pass") == 0) { /* * Fill in the getdevlist fields. */ strlcpy(ccb->cgdl.periph_name, periph->periph_name, sizeof(ccb->cgdl.periph_name)); ccb->cgdl.unit_number = periph->unit_number; if (SLIST_NEXT(periph, periph_links)) ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; else ccb->cgdl.status = CAM_GDEVLIST_LAST_DEVICE; ccb->cgdl.generation = device->generation; ccb->cgdl.index = i; /* * Fill in some CCB header fields * that the user may want. */ ccb->ccb_h.path_id = periph->path->bus->path_id; ccb->ccb_h.target_id = periph->path->target->target_id; ccb->ccb_h.target_lun = periph->path->device->lun_id; ccb->ccb_h.status = CAM_REQ_CMP; break; } } } /* * If the periph is null here, one of two things has * happened. The first possibility is that we couldn't * find the unit number of the particular peripheral driver * that the user is asking about. e.g. the user asks for * the passthrough driver for "da11". We find the list of * "da" peripherals all right, but there is no unit 11. * The other possibility is that we went through the list * of peripheral drivers attached to the device structure, * but didn't find one with the name "pass". Either way, * we return ENOENT, since we couldn't find something. */ if (periph == NULL) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; ccb->cgdl.status = CAM_GDEVLIST_ERROR; *ccb->cgdl.periph_name = '\0'; ccb->cgdl.unit_number = 0; error = ENOENT; /* * It is unfortunate that this is even necessary, * but there are many, many clueless users out there. * If this is true, the user is looking for the * passthrough driver, but doesn't have one in his * kernel. */ if (base_periph_found) { printf("xptioctl: pass driver is not in the " "kernel\n"); printf("xptioctl: put \"device pass\" in " "your kernel config file\n"); } } xpt_unlock_buses(); break; } default: error = ENOTTY; break; } return(error); } static int cam_module_event_handler(module_t mod, int what, void *arg) { int error; switch (what) { case MOD_LOAD: if ((error = xpt_init(NULL)) != 0) return (error); break; case MOD_UNLOAD: return EBUSY; default: return EOPNOTSUPP; } return 0; } static struct xpt_proto * xpt_proto_find(cam_proto proto) { struct xpt_proto **pp; SET_FOREACH(pp, cam_xpt_proto_set) { if ((*pp)->proto == proto) return *pp; } return NULL; } static void xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) { if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { xpt_free_path(done_ccb->ccb_h.path); xpt_free_ccb(done_ccb); } else { done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); } xpt_release_boot(); } /* thread to handle bus rescans */ static void xpt_scanner_thread(void *dummy) { union ccb *ccb; struct mtx *mtx; struct cam_ed *device; xpt_lock_buses(); for (;;) { if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, "-", 0); if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); xpt_unlock_buses(); /* * We need to lock the device's mutex which we use as * the path mutex. We can't do it directly because the * cam_path in the ccb may wind up going away because * the path lock may be dropped and the path retired in * the completion callback. We do this directly to keep * the reference counts in cam_path sane. We also have * to copy the device pointer because ccb_h.path may * be freed in the callback. */ mtx = xpt_path_mtx(ccb->ccb_h.path); device = ccb->ccb_h.path->device; xpt_acquire_device(device); mtx_lock(mtx); xpt_action(ccb); mtx_unlock(mtx); xpt_release_device(device); xpt_lock_buses(); } } } void xpt_rescan(union ccb *ccb) { struct ccb_hdr *hdr; /* Prepare request */ if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_BUS; else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_TGT; else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_LUN; else { xpt_print(ccb->ccb_h.path, "illegal scan path\n"); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, xpt_action_name(ccb->ccb_h.func_code))); ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; ccb->ccb_h.cbfcnp = xpt_rescan_done; xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); /* Don't make duplicate entries for the same paths. */ xpt_lock_buses(); if (ccb->ccb_h.ppriv_ptr1 == NULL) { TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { wakeup(&xsoftc.ccb_scanq); xpt_unlock_buses(); xpt_print(ccb->ccb_h.path, "rescan already queued\n"); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } } } TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); xpt_hold_boot_locked(); wakeup(&xsoftc.ccb_scanq); xpt_unlock_buses(); } /* Functions accessed by the peripheral drivers */ static int xpt_init(void *dummy) { struct cam_sim *xpt_sim; struct cam_path *path; struct cam_devq *devq; cam_status status; int error, i; TAILQ_INIT(&xsoftc.xpt_busses); TAILQ_INIT(&xsoftc.ccb_scanq); STAILQ_INIT(&xsoftc.highpowerq); xsoftc.num_highpower = CAM_MAX_HIGHPOWER; mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); #ifdef CAM_BOOT_DELAY /* * Override this value at compile time to assist our users * who don't use loader to boot a kernel. */ xsoftc.boot_delay = CAM_BOOT_DELAY; #endif /* * The xpt layer is, itself, the equivalent of a SIM. * Allow 16 ccbs in the ccb pool for it. This should * give decent parallelism when we probe buses and * perform other XPT functions. */ devq = cam_simq_alloc(16); xpt_sim = cam_sim_alloc(xptaction, xptpoll, "xpt", /*softc*/NULL, /*unit*/0, /*mtx*/NULL, /*max_dev_transactions*/0, /*max_tagged_dev_transactions*/0, devq); if (xpt_sim == NULL) return (ENOMEM); if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { printf("xpt_init: xpt_bus_register failed with errno %d," " failing attach\n", error); return (EINVAL); } /* * Looking at the XPT from the SIM layer, the XPT is * the equivalent of a peripheral driver. Allocate * a peripheral driver entry for us. */ if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { printf("xpt_init: xpt_create_path failed with status %#x," " failing attach\n", status); return (EINVAL); } xpt_path_lock(path); cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, path, NULL, 0, xpt_sim); xpt_path_unlock(path); xpt_free_path(path); if (cam_num_doneqs < 1) cam_num_doneqs = 1 + mp_ncpus / 6; else if (cam_num_doneqs > MAXCPU) cam_num_doneqs = MAXCPU; for (i = 0; i < cam_num_doneqs; i++) { mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, MTX_DEF); STAILQ_INIT(&cam_doneqs[i].cam_doneq); error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); if (error != 0) { cam_num_doneqs = i; break; } } if (cam_num_doneqs < 1) { printf("xpt_init: Cannot init completion queues " "- failing attach\n"); return (ENOMEM); } mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF); STAILQ_INIT(&cam_async.cam_doneq); if (kproc_kthread_add(xpt_async_td, &cam_async, &cam_proc, NULL, 0, 0, "cam", "async") != 0) { printf("xpt_init: Cannot init async thread " "- failing attach\n"); return (ENOMEM); } /* * Register a callback for when interrupts are enabled. */ config_intrhook_oneshot(xpt_config, NULL); return (0); } static cam_status xptregister(struct cam_periph *periph, void *arg) { struct cam_sim *xpt_sim; if (periph == NULL) { printf("xptregister: periph was NULL!!\n"); return(CAM_REQ_CMP_ERR); } xpt_sim = (struct cam_sim *)arg; xpt_sim->softc = periph; xpt_periph = periph; periph->softc = NULL; return(CAM_REQ_CMP); } int32_t xpt_add_periph(struct cam_periph *periph) { struct cam_ed *device; int32_t status; TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); device = periph->path->device; status = CAM_REQ_CMP; if (device != NULL) { mtx_lock(&device->target->bus->eb_mtx); device->generation++; SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); mtx_unlock(&device->target->bus->eb_mtx); atomic_add_32(&xsoftc.xpt_generation, 1); } return (status); } void xpt_remove_periph(struct cam_periph *periph) { struct cam_ed *device; device = periph->path->device; if (device != NULL) { mtx_lock(&device->target->bus->eb_mtx); device->generation++; SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); mtx_unlock(&device->target->bus->eb_mtx); atomic_add_32(&xsoftc.xpt_generation, 1); } } void xpt_announce_periph(struct cam_periph *periph, char *announce_string) { char buf[128]; struct sbuf sb; (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL); sbuf_set_drain(&sb, sbuf_printf_drain, NULL); xpt_announce_periph_sbuf(periph, &sb, announce_string); (void)sbuf_finish(&sb); } void xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, char *announce_string) { struct cam_path *path = periph->path; struct xpt_proto *proto; cam_periph_assert(periph, MA_OWNED); periph->flags |= CAM_PERIPH_ANNOUNCED; sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); proto = xpt_proto_find(path->device->protocol); if (proto) proto->ops->announce_sbuf(path->device, sb); else sbuf_printf(sb, "Unknown protocol device %d\n", path->device->protocol); if (path->device->serial_num_len > 0) { /* Don't wrap the screen - print only the first 60 chars */ sbuf_printf(sb, "%s%d: Serial Number %.60s\n", periph->periph_name, periph->unit_number, path->device->serial_num); } /* Announce transport details. */ path->bus->xport->ops->announce_sbuf(periph, sb); /* Announce command queueing. */ if (path->device->inq_flags & SID_CmdQue || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { sbuf_printf(sb, "%s%d: Command Queueing enabled\n", periph->periph_name, periph->unit_number); } /* Announce caller's details if they've passed in. */ if (announce_string != NULL) sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, periph->unit_number, announce_string); } void xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) { if (quirks != 0) { printf("%s%d: quirks=0x%b\n", periph->periph_name, periph->unit_number, quirks, bit_string); } } void xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, int quirks, char *bit_string) { if (quirks != 0) { sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, periph->unit_number, quirks, bit_string); } } void xpt_denounce_periph(struct cam_periph *periph) { char buf[128]; struct sbuf sb; (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL); sbuf_set_drain(&sb, sbuf_printf_drain, NULL); xpt_denounce_periph_sbuf(periph, &sb); (void)sbuf_finish(&sb); } void xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) { struct cam_path *path = periph->path; struct xpt_proto *proto; cam_periph_assert(periph, MA_OWNED); sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); proto = xpt_proto_find(path->device->protocol); if (proto) proto->ops->denounce_sbuf(path->device, sb); else sbuf_printf(sb, "Unknown protocol device %d", path->device->protocol); if (path->device->serial_num_len > 0) sbuf_printf(sb, " s/n %.60s", path->device->serial_num); sbuf_printf(sb, " detached\n"); } int xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) { int ret = -1, l, o; struct ccb_dev_advinfo cdai; struct scsi_vpd_device_id *did; struct scsi_vpd_id_descriptor *idd; xpt_path_assert(path, MA_OWNED); memset(&cdai, 0, sizeof(cdai)); xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); cdai.ccb_h.func_code = XPT_DEV_ADVINFO; cdai.flags = CDAI_FLAG_NONE; cdai.bufsiz = len; cdai.buf = buf; if (!strcmp(attr, "GEOM::ident")) cdai.buftype = CDAI_TYPE_SERIAL_NUM; else if (!strcmp(attr, "GEOM::physpath")) cdai.buftype = CDAI_TYPE_PHYS_PATH; else if (strcmp(attr, "GEOM::lunid") == 0 || strcmp(attr, "GEOM::lunname") == 0) { cdai.buftype = CDAI_TYPE_SCSI_DEVID; cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT); if (cdai.buf == NULL) { ret = ENOMEM; goto out; } } else goto out; xpt_action((union ccb *)&cdai); /* can only be synchronous */ if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); if (cdai.provsiz == 0) goto out; switch(cdai.buftype) { case CDAI_TYPE_SCSI_DEVID: did = (struct scsi_vpd_device_id *)cdai.buf; if (strcmp(attr, "GEOM::lunid") == 0) { idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_naa); if (idd == NULL) idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_eui64); if (idd == NULL) idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_uuid); if (idd == NULL) idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_md5); } else idd = NULL; if (idd == NULL) idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_t10); if (idd == NULL) idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_name); if (idd == NULL) break; ret = 0; if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { if (idd->length < len) { for (l = 0; l < idd->length; l++) buf[l] = idd->identifier[l] ? idd->identifier[l] : ' '; buf[l] = 0; } else ret = EFAULT; break; } if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { l = strnlen(idd->identifier, idd->length); if (l < len) { bcopy(idd->identifier, buf, l); buf[l] = 0; } else ret = EFAULT; break; } if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) { if ((idd->length - 2) * 2 + 4 >= len) { ret = EFAULT; break; } for (l = 2, o = 0; l < idd->length; l++) { if (l == 6 || l == 8 || l == 10 || l == 12) o += sprintf(buf + o, "-"); o += sprintf(buf + o, "%02x", idd->identifier[l]); } break; } if (idd->length * 2 < len) { for (l = 0; l < idd->length; l++) sprintf(buf + l * 2, "%02x", idd->identifier[l]); } else ret = EFAULT; break; default: if (cdai.provsiz < len) { cdai.buf[cdai.provsiz] = 0; ret = 0; } else ret = EFAULT; break; } out: if ((char *)cdai.buf != buf) free(cdai.buf, M_CAMXPT); return ret; } static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_eb *bus) { dev_match_ret retval; u_int i; retval = DM_RET_NONE; /* * If we aren't given something to match against, that's an error. */ if (bus == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this bus matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_DESCEND | DM_RET_COPY); for (i = 0; i < num_patterns; i++) { struct bus_match_pattern *cur_pattern; struct device_match_pattern *dp = &patterns[i].pattern.device_pattern; struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern; /* * If the pattern in question isn't for a bus node, we * aren't interested. However, we do indicate to the * calling routine that we should continue descending the * tree, since the user wants to match against lower-level * EDT elements. */ if (patterns[i].type == DEV_MATCH_DEVICE && (dp->flags & DEV_MATCH_PATH) != 0 && dp->path_id != bus->path_id) continue; if (patterns[i].type == DEV_MATCH_PERIPH && (pp->flags & PERIPH_MATCH_PATH) != 0 && pp->path_id != bus->path_id) continue; if (patterns[i].type != DEV_MATCH_BUS) { if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_DESCEND; continue; } cur_pattern = &patterns[i].pattern.bus_pattern; if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) && (cur_pattern->path_id != bus->path_id)) continue; if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) && (cur_pattern->bus_id != bus->sim->bus_id)) continue; if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) && (cur_pattern->unit_number != bus->sim->unit_number)) continue; if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, DEV_IDLEN) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this bus. So tell the caller to copy the * data out. */ retval |= DM_RET_COPY; /* * If the return action has been set to descend, then we * know that we've already seen a non-bus matching * expression, therefore we need to further descend the tree. * This won't change by continuing around the loop, so we * go ahead and return. If we haven't seen a non-bus * matching expression, we keep going around the loop until * we exhaust the matching expressions. We'll set the stop * flag once we fall out of the loop. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) return(retval); } /* * If the return action hasn't been set to descend yet, that means * we haven't seen anything other than bus matching patterns. So * tell the caller to stop descending the tree -- the user doesn't * want to match against lower level tree elements. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_STOP; return(retval); } static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_ed *device) { dev_match_ret retval; u_int i; retval = DM_RET_NONE; /* * If we aren't given something to match against, that's an error. */ if (device == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this device matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_DESCEND | DM_RET_COPY); for (i = 0; i < num_patterns; i++) { struct device_match_pattern *cur_pattern; struct scsi_vpd_device_id *device_id_page; struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern; /* * If the pattern in question isn't for a device node, we * aren't interested. */ if (patterns[i].type == DEV_MATCH_PERIPH && (pp->flags & PERIPH_MATCH_TARGET) != 0 && pp->target_id != device->target->target_id) continue; if (patterns[i].type == DEV_MATCH_PERIPH && (pp->flags & PERIPH_MATCH_LUN) != 0 && pp->target_lun != device->lun_id) continue; if (patterns[i].type != DEV_MATCH_DEVICE) { if ((patterns[i].type == DEV_MATCH_PERIPH) && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) retval |= DM_RET_DESCEND; continue; } cur_pattern = &patterns[i].pattern.device_pattern; /* Error out if mutually exclusive options are specified. */ if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) return(DM_RET_ERROR); if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) && (cur_pattern->path_id != device->target->bus->path_id)) continue; if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) && (cur_pattern->target_id != device->target->target_id)) continue; if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) && (cur_pattern->target_lun != device->lun_id)) continue; if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) && (cam_quirkmatch((caddr_t)&device->inq_data, (caddr_t)&cur_pattern->data.inq_pat, 1, sizeof(cur_pattern->data.inq_pat), scsi_static_inquiry_match) == NULL)) continue; device_id_page = (struct scsi_vpd_device_id *)device->device_id; if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN || scsi_devid_match((uint8_t *)device_id_page->desc_list, device->device_id_len - SVPD_DEVICE_ID_HDR_LEN, cur_pattern->data.devid_pat.id, cur_pattern->data.devid_pat.id_len) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this device. So tell the caller to copy * the data out. */ retval |= DM_RET_COPY; /* * If the return action has been set to descend, then we * know that we've already seen a peripheral matching * expression, therefore we need to further descend the tree. * This won't change by continuing around the loop, so we * go ahead and return. If we haven't seen a peripheral * matching expression, we keep going around the loop until * we exhaust the matching expressions. We'll set the stop * flag once we fall out of the loop. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) return(retval); } /* * If the return action hasn't been set to descend yet, that means * we haven't seen any peripheral matching patterns. So tell the * caller to stop descending the tree -- the user doesn't want to * match against lower level tree elements. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_STOP; return(retval); } /* * Match a single peripheral against any number of match patterns. */ static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_periph *periph) { dev_match_ret retval; u_int i; /* * If we aren't given something to match against, that's an error. */ if (periph == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this peripheral matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_STOP | DM_RET_COPY); /* * There aren't any nodes below a peripheral node, so there's no * reason to descend the tree any further. */ retval = DM_RET_STOP; for (i = 0; i < num_patterns; i++) { struct periph_match_pattern *cur_pattern; /* * If the pattern in question isn't for a peripheral, we * aren't interested. */ if (patterns[i].type != DEV_MATCH_PERIPH) continue; cur_pattern = &patterns[i].pattern.periph_pattern; if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) && (cur_pattern->path_id != periph->path->bus->path_id)) continue; /* * For the target and lun id's, we have to make sure the * target and lun pointers aren't NULL. The xpt peripheral * has a wildcard target and device. */ if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) && ((periph->path->target == NULL) ||(cur_pattern->target_id != periph->path->target->target_id))) continue; if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) && ((periph->path->device == NULL) || (cur_pattern->target_lun != periph->path->device->lun_id))) continue; if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) && (cur_pattern->unit_number != periph->unit_number)) continue; if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) && (strncmp(cur_pattern->periph_name, periph->periph_name, DEV_IDLEN) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this peripheral. So tell the caller to * copy the data out. */ retval |= DM_RET_COPY; /* * The return action has already been set to stop, since * peripherals don't have any nodes below them in the EDT. */ return(retval); } /* * If we get to this point, the peripheral that was passed in * doesn't match any of the patterns. */ return(retval); } static int xptedtbusfunc(struct cam_eb *bus, void *arg) { struct ccb_dev_match *cdm; struct cam_et *target; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; /* * If our position is for something deeper in the tree, that means * that we've already seen this node. So, we keep going down. */ if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target != NULL)) retval = DM_RET_DESCEND; else retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); /* * If we got an error, bail out of the search. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this bus out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; cdm->pos.cookie.bus = bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_BUS; cdm->matches[j].result.bus_result.path_id = bus->path_id; cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; cdm->matches[j].result.bus_result.unit_number = bus->sim->unit_number; strlcpy(cdm->matches[j].result.bus_result.dev_name, bus->sim->sim_name, sizeof(cdm->matches[j].result.bus_result.dev_name)); } /* * If the user is only interested in buses, there's no * reason to descend to the next level in the tree. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) return(1); /* * If there is a target generation recorded, check it to * make sure the target list hasn't changed. */ mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target != NULL)) { if ((cdm->pos.generations[CAM_TARGET_GENERATION] != bus->generation)) { mtx_unlock(&bus->eb_mtx); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return (0); } target = (struct cam_et *)cdm->pos.cookie.target; target->refcount++; } else target = NULL; mtx_unlock(&bus->eb_mtx); return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); } static int xptedttargetfunc(struct cam_et *target, void *arg) { struct ccb_dev_match *cdm; struct cam_eb *bus; struct cam_ed *device; cdm = (struct ccb_dev_match *)arg; bus = target->bus; /* * If there is a device list generation recorded, check it to * make sure the device list hasn't changed. */ mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device != NULL)) { if (cdm->pos.generations[CAM_DEV_GENERATION] != target->generation) { mtx_unlock(&bus->eb_mtx); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } device = (struct cam_ed *)cdm->pos.cookie.device; device->refcount++; } else device = NULL; mtx_unlock(&bus->eb_mtx); return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); } static int xptedtdevicefunc(struct cam_ed *device, void *arg) { struct cam_eb *bus; struct cam_periph *periph; struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; bus = device->target->bus; /* * If our position is for something deeper in the tree, that means * that we've already seen this node. So, we keep going down. */ if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device == device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) retval = DM_RET_DESCEND; else retval = xptdevicematch(cdm->patterns, cdm->num_patterns, device); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this device out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; cdm->pos.cookie.bus = device->target->bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->pos.cookie.target = device->target; cdm->pos.generations[CAM_TARGET_GENERATION] = device->target->bus->generation; cdm->pos.cookie.device = device; cdm->pos.generations[CAM_DEV_GENERATION] = device->target->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_DEVICE; cdm->matches[j].result.device_result.path_id = device->target->bus->path_id; cdm->matches[j].result.device_result.target_id = device->target->target_id; cdm->matches[j].result.device_result.target_lun = device->lun_id; cdm->matches[j].result.device_result.protocol = device->protocol; bcopy(&device->inq_data, &cdm->matches[j].result.device_result.inq_data, sizeof(struct scsi_inquiry_data)); bcopy(&device->ident_data, &cdm->matches[j].result.device_result.ident_data, sizeof(struct ata_params)); /* Let the user know whether this device is unconfigured */ if (device->flags & CAM_DEV_UNCONFIGURED) cdm->matches[j].result.device_result.flags = DEV_RESULT_UNCONFIGURED; else cdm->matches[j].result.device_result.flags = DEV_RESULT_NOFLAG; } /* * If the user isn't interested in peripherals, don't descend * the tree any further. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) return(1); /* * If there is a peripheral list generation recorded, make sure * it hasn't changed. */ xpt_lock_buses(); mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == device->target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device == device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) { if (cdm->pos.generations[CAM_PERIPH_GENERATION] != device->generation) { mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } periph = (struct cam_periph *)cdm->pos.cookie.periph; periph->refcount++; } else periph = NULL; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); } static int xptedtperiphfunc(struct cam_periph *periph, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this peripheral out. */ if (retval & DM_RET_COPY) { int spaceleft, j; size_t l; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | CAM_DEV_POS_PERIPH; cdm->pos.cookie.bus = periph->path->bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->pos.cookie.target = periph->path->target; cdm->pos.generations[CAM_TARGET_GENERATION] = periph->path->bus->generation; cdm->pos.cookie.device = periph->path->device; cdm->pos.generations[CAM_DEV_GENERATION] = periph->path->target->generation; cdm->pos.cookie.periph = periph; cdm->pos.generations[CAM_PERIPH_GENERATION] = periph->path->device->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_PERIPH; cdm->matches[j].result.periph_result.path_id = periph->path->bus->path_id; cdm->matches[j].result.periph_result.target_id = periph->path->target->target_id; cdm->matches[j].result.periph_result.target_lun = periph->path->device->lun_id; cdm->matches[j].result.periph_result.unit_number = periph->unit_number; l = sizeof(cdm->matches[j].result.periph_result.periph_name); strlcpy(cdm->matches[j].result.periph_result.periph_name, periph->periph_name, l); } return(1); } static int xptedtmatch(struct ccb_dev_match *cdm) { struct cam_eb *bus; int ret; cdm->num_matches = 0; /* * Check the bus list generation. If it has changed, the user * needs to reset everything and start over. */ xpt_lock_buses(); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus != NULL)) { if (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation) { xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } bus = (struct cam_eb *)cdm->pos.cookie.bus; bus->refcount++; } else bus = NULL; xpt_unlock_buses(); ret = xptbustraverse(bus, xptedtbusfunc, cdm); /* * If we get back 0, that means that we had to stop before fully * traversing the EDT. It also means that one of the subroutines * has set the status field to the proper value. If we get back 1, * we've fully traversed the EDT and copied out any matching entries. */ if (ret == 1) cdm->status = CAM_DEV_MATCH_LAST; return(ret); } static int xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) { struct cam_periph *periph; struct ccb_dev_match *cdm; cdm = (struct ccb_dev_match *)arg; xpt_lock_buses(); if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv == pdrv) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) { if (cdm->pos.generations[CAM_PERIPH_GENERATION] != (*pdrv)->generation) { xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } periph = (struct cam_periph *)cdm->pos.cookie.periph; periph->refcount++; } else periph = NULL; xpt_unlock_buses(); return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); } static int xptplistperiphfunc(struct cam_periph *periph, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this peripheral out. */ if (retval & DM_RET_COPY) { int spaceleft, j; size_t l; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { struct periph_driver **pdrv; pdrv = NULL; bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | CAM_DEV_POS_PERIPH; /* * This may look a bit non-sensical, but it is * actually quite logical. There are very few * peripheral drivers, and bloating every peripheral * structure with a pointer back to its parent * peripheral driver linker set entry would cost * more in the long run than doing this quick lookup. */ for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { if (strcmp((*pdrv)->driver_name, periph->periph_name) == 0) break; } if (*pdrv == NULL) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } cdm->pos.cookie.pdrv = pdrv; /* * The periph generation slot does double duty, as * does the periph pointer slot. They are used for * both edt and pdrv lookups and positioning. */ cdm->pos.cookie.periph = periph; cdm->pos.generations[CAM_PERIPH_GENERATION] = (*pdrv)->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_PERIPH; cdm->matches[j].result.periph_result.path_id = periph->path->bus->path_id; /* * The transport layer peripheral doesn't have a target or * lun. */ if (periph->path->target) cdm->matches[j].result.periph_result.target_id = periph->path->target->target_id; else cdm->matches[j].result.periph_result.target_id = CAM_TARGET_WILDCARD; if (periph->path->device) cdm->matches[j].result.periph_result.target_lun = periph->path->device->lun_id; else cdm->matches[j].result.periph_result.target_lun = CAM_LUN_WILDCARD; cdm->matches[j].result.periph_result.unit_number = periph->unit_number; l = sizeof(cdm->matches[j].result.periph_result.periph_name); strlcpy(cdm->matches[j].result.periph_result.periph_name, periph->periph_name, l); } return(1); } static int xptperiphlistmatch(struct ccb_dev_match *cdm) { int ret; cdm->num_matches = 0; /* * At this point in the edt traversal function, we check the bus * list generation to make sure that no buses have been added or * removed since the user last sent a XPT_DEV_MATCH ccb through. * For the peripheral driver list traversal function, however, we * don't have to worry about new peripheral driver types coming or * going; they're in a linker set, and therefore can't change * without a recompile. */ if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv != NULL)) ret = xptpdrvtraverse( (struct periph_driver **)cdm->pos.cookie.pdrv, xptplistpdrvfunc, cdm); else ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); /* * If we get back 0, that means that we had to stop before fully * traversing the peripheral driver tree. It also means that one of * the subroutines has set the status field to the proper value. If * we get back 1, we've fully traversed the EDT and copied out any * matching entries. */ if (ret == 1) cdm->status = CAM_DEV_MATCH_LAST; return(ret); } static int xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) { struct cam_eb *bus, *next_bus; int retval; retval = 1; if (start_bus) bus = start_bus; else { xpt_lock_buses(); bus = TAILQ_FIRST(&xsoftc.xpt_busses); if (bus == NULL) { xpt_unlock_buses(); return (retval); } bus->refcount++; xpt_unlock_buses(); } for (; bus != NULL; bus = next_bus) { retval = tr_func(bus, arg); if (retval == 0) { xpt_release_bus(bus); break; } xpt_lock_buses(); next_bus = TAILQ_NEXT(bus, links); if (next_bus) next_bus->refcount++; xpt_unlock_buses(); xpt_release_bus(bus); } return(retval); } static int xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, xpt_targetfunc_t *tr_func, void *arg) { struct cam_et *target, *next_target; int retval; retval = 1; if (start_target) target = start_target; else { mtx_lock(&bus->eb_mtx); target = TAILQ_FIRST(&bus->et_entries); if (target == NULL) { mtx_unlock(&bus->eb_mtx); return (retval); } target->refcount++; mtx_unlock(&bus->eb_mtx); } for (; target != NULL; target = next_target) { retval = tr_func(target, arg); if (retval == 0) { xpt_release_target(target); break; } mtx_lock(&bus->eb_mtx); next_target = TAILQ_NEXT(target, links); if (next_target) next_target->refcount++; mtx_unlock(&bus->eb_mtx); xpt_release_target(target); } return(retval); } static int xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, xpt_devicefunc_t *tr_func, void *arg) { struct cam_eb *bus; struct cam_ed *device, *next_device; int retval; retval = 1; bus = target->bus; if (start_device) device = start_device; else { mtx_lock(&bus->eb_mtx); device = TAILQ_FIRST(&target->ed_entries); if (device == NULL) { mtx_unlock(&bus->eb_mtx); return (retval); } device->refcount++; mtx_unlock(&bus->eb_mtx); } for (; device != NULL; device = next_device) { mtx_lock(&device->device_mtx); retval = tr_func(device, arg); mtx_unlock(&device->device_mtx); if (retval == 0) { xpt_release_device(device); break; } mtx_lock(&bus->eb_mtx); next_device = TAILQ_NEXT(device, links); if (next_device) next_device->refcount++; mtx_unlock(&bus->eb_mtx); xpt_release_device(device); } return(retval); } static int xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg) { struct cam_eb *bus; struct cam_periph *periph, *next_periph; int retval; retval = 1; bus = device->target->bus; if (start_periph) periph = start_periph; else { xpt_lock_buses(); mtx_lock(&bus->eb_mtx); periph = SLIST_FIRST(&device->periphs); while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) periph = SLIST_NEXT(periph, periph_links); if (periph == NULL) { mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); return (retval); } periph->refcount++; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); } for (; periph != NULL; periph = next_periph) { retval = tr_func(periph, arg); if (retval == 0) { cam_periph_release_locked(periph); break; } xpt_lock_buses(); mtx_lock(&bus->eb_mtx); next_periph = SLIST_NEXT(periph, periph_links); while (next_periph != NULL && (next_periph->flags & CAM_PERIPH_FREE) != 0) next_periph = SLIST_NEXT(next_periph, periph_links); if (next_periph) next_periph->refcount++; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); cam_periph_release_locked(periph); } return(retval); } static int xptpdrvtraverse(struct periph_driver **start_pdrv, xpt_pdrvfunc_t *tr_func, void *arg) { struct periph_driver **pdrv; int retval; retval = 1; /* * We don't traverse the peripheral driver list like we do the * other lists, because it is a linker set, and therefore cannot be * changed during runtime. If the peripheral driver list is ever * re-done to be something other than a linker set (i.e. it can * change while the system is running), the list traversal should * be modified to work like the other traversal functions. */ for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); *pdrv != NULL; pdrv++) { retval = tr_func(pdrv, arg); if (retval == 0) return(retval); } return(retval); } static int xptpdperiphtraverse(struct periph_driver **pdrv, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg) { struct cam_periph *periph, *next_periph; int retval; retval = 1; if (start_periph) periph = start_periph; else { xpt_lock_buses(); periph = TAILQ_FIRST(&(*pdrv)->units); while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) periph = TAILQ_NEXT(periph, unit_links); if (periph == NULL) { xpt_unlock_buses(); return (retval); } periph->refcount++; xpt_unlock_buses(); } for (; periph != NULL; periph = next_periph) { cam_periph_lock(periph); retval = tr_func(periph, arg); cam_periph_unlock(periph); if (retval == 0) { cam_periph_release(periph); break; } xpt_lock_buses(); next_periph = TAILQ_NEXT(periph, unit_links); while (next_periph != NULL && (next_periph->flags & CAM_PERIPH_FREE) != 0) next_periph = TAILQ_NEXT(next_periph, unit_links); if (next_periph) next_periph->refcount++; xpt_unlock_buses(); cam_periph_release(periph); } return(retval); } static int xptdefbusfunc(struct cam_eb *bus, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_BUS) { xpt_busfunc_t *tr_func; tr_func = (xpt_busfunc_t *)tr_config->tr_func; return(tr_func(bus, tr_config->tr_arg)); } else return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); } static int xptdeftargetfunc(struct cam_et *target, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_TARGET) { xpt_targetfunc_t *tr_func; tr_func = (xpt_targetfunc_t *)tr_config->tr_func; return(tr_func(target, tr_config->tr_arg)); } else return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); } static int xptdefdevicefunc(struct cam_ed *device, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_DEVICE) { xpt_devicefunc_t *tr_func; tr_func = (xpt_devicefunc_t *)tr_config->tr_func; return(tr_func(device, tr_config->tr_arg)); } else return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); } static int xptdefperiphfunc(struct cam_periph *periph, void *arg) { struct xpt_traverse_config *tr_config; xpt_periphfunc_t *tr_func; tr_config = (struct xpt_traverse_config *)arg; tr_func = (xpt_periphfunc_t *)tr_config->tr_func; /* * Unlike the other default functions, we don't check for depth * here. The peripheral driver level is the last level in the EDT, * so if we're here, we should execute the function in question. */ return(tr_func(periph, tr_config->tr_arg)); } /* * Execute the given function for every bus in the EDT. */ static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) { struct xpt_traverse_config tr_config; tr_config.depth = XPT_DEPTH_BUS; tr_config.tr_func = tr_func; tr_config.tr_arg = arg; return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); } /* * Execute the given function for every device in the EDT. */ static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) { struct xpt_traverse_config tr_config; tr_config.depth = XPT_DEPTH_DEVICE; tr_config.tr_func = tr_func; tr_config.tr_arg = arg; return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); } static int xptsetasyncfunc(struct cam_ed *device, void *arg) { struct cam_path path; struct ccb_getdev cgd; struct ccb_setasync *csa = (struct ccb_setasync *)arg; /* * Don't report unconfigured devices (Wildcard devs, * devices only for target mode, device instances * that have been invalidated but are waiting for * their last reference count to be released). */ if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) return (1); memset(&cgd, 0, sizeof(cgd)); xpt_compile_path(&path, NULL, device->target->bus->path_id, device->target->target_id, device->lun_id); xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); csa->callback(csa->callback_arg, AC_FOUND_DEVICE, &path, &cgd); xpt_release_path(&path); return(1); } static int xptsetasyncbusfunc(struct cam_eb *bus, void *arg) { struct cam_path path; struct ccb_pathinq cpi; struct ccb_setasync *csa = (struct ccb_setasync *)arg; xpt_compile_path(&path, /*periph*/NULL, bus->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); xpt_path_lock(&path); xpt_path_inq(&cpi, &path); csa->callback(csa->callback_arg, AC_PATH_REGISTERED, &path, &cpi); xpt_path_unlock(&path); xpt_release_path(&path); return(1); } void xpt_action(union ccb *start_ccb) { CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code))); start_ccb->ccb_h.status = CAM_REQ_INPROG; (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); } void xpt_action_default(union ccb *start_ccb) { struct cam_path *path; struct cam_sim *sim; struct mtx *mtx; path = start_ccb->ccb_h.path; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code))); switch (start_ccb->ccb_h.func_code) { case XPT_SCSI_IO: { struct cam_ed *device; /* * For the sake of compatibility with SCSI-1 * devices that may not understand the identify * message, we include lun information in the * second byte of all commands. SCSI-1 specifies * that luns are a 3 bit value and reserves only 3 * bits for lun information in the CDB. Later * revisions of the SCSI spec allow for more than 8 * luns, but have deprecated lun information in the * CDB. So, if the lun won't fit, we must omit. * * Also be aware that during initial probing for devices, * the inquiry information is unknown but initialized to 0. * This means that this code will be exercised while probing * devices with an ANSI revision greater than 2. */ device = path->device; if (device->protocol_version <= SCSI_REV_2 && start_ccb->ccb_h.target_lun < 8 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { start_ccb->csio.cdb_io.cdb_bytes[1] |= start_ccb->ccb_h.target_lun << 5; } start_ccb->csio.scsi_status = SCSI_STATUS_OK; } /* FALLTHROUGH */ case XPT_TARGET_IO: case XPT_CONT_TARGET_IO: start_ccb->csio.sense_resid = 0; start_ccb->csio.resid = 0; /* FALLTHROUGH */ case XPT_ATA_IO: if (start_ccb->ccb_h.func_code == XPT_ATA_IO) start_ccb->ataio.resid = 0; /* FALLTHROUGH */ case XPT_NVME_IO: case XPT_NVME_ADMIN: case XPT_MMC_IO: case XPT_MMC_GET_TRAN_SETTINGS: case XPT_MMC_SET_TRAN_SETTINGS: case XPT_RESET_DEV: case XPT_ENG_EXEC: case XPT_SMP_IO: { struct cam_devq *devq; devq = path->bus->sim->devq; mtx_lock(&devq->send_mtx); cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); if (xpt_schedule_devq(devq, path->device) != 0) xpt_run_devq(devq); mtx_unlock(&devq->send_mtx); break; } case XPT_CALC_GEOMETRY: /* Filter out garbage */ if (start_ccb->ccg.block_size == 0 || start_ccb->ccg.volume_size == 0) { start_ccb->ccg.cylinders = 0; start_ccb->ccg.heads = 0; start_ccb->ccg.secs_per_track = 0; start_ccb->ccb_h.status = CAM_REQ_CMP; break; } goto call_sim; case XPT_ABORT: { union ccb* abort_ccb; abort_ccb = start_ccb->cab.abort_ccb; if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { struct cam_ed *device; struct cam_devq *devq; device = abort_ccb->ccb_h.path->device; devq = device->sim->devq; mtx_lock(&devq->send_mtx); if (abort_ccb->ccb_h.pinfo.index > 0) { cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); abort_ccb->ccb_h.status = CAM_REQ_ABORTED|CAM_DEV_QFRZN; xpt_freeze_devq_device(device, 1); mtx_unlock(&devq->send_mtx); xpt_done(abort_ccb); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } mtx_unlock(&devq->send_mtx); if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { /* * We've caught this ccb en route to * the SIM. Flag it for abort and the * SIM will do so just before starting * real work on the CCB. */ abort_ccb->ccb_h.status = CAM_REQ_ABORTED|CAM_DEV_QFRZN; xpt_freeze_devq(abort_ccb->ccb_h.path, 1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } } if (XPT_FC_IS_QUEUED(abort_ccb) && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { /* * It's already completed but waiting * for our SWI to get to it. */ start_ccb->ccb_h.status = CAM_UA_ABORT; break; } /* * If we weren't able to take care of the abort request * in the XPT, pass the request down to the SIM for processing. */ } /* FALLTHROUGH */ case XPT_ACCEPT_TARGET_IO: case XPT_EN_LUN: case XPT_IMMED_NOTIFY: case XPT_NOTIFY_ACK: case XPT_RESET_BUS: case XPT_IMMEDIATE_NOTIFY: case XPT_NOTIFY_ACKNOWLEDGE: case XPT_GET_SIM_KNOB_OLD: case XPT_GET_SIM_KNOB: case XPT_SET_SIM_KNOB: case XPT_GET_TRAN_SETTINGS: case XPT_SET_TRAN_SETTINGS: case XPT_PATH_INQ: call_sim: sim = path->bus->sim; mtx = sim->mtx; if (mtx && !mtx_owned(mtx)) mtx_lock(mtx); else mtx = NULL; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); (*(sim->sim_action))(sim, start_ccb); CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); if (mtx) mtx_unlock(mtx); break; case XPT_PATH_STATS: start_ccb->cpis.last_reset = path->bus->last_reset; start_ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_GDEV_TYPE: { struct cam_ed *dev; dev = path->device; if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; } else { struct ccb_getdev *cgd; cgd = &start_ccb->cgd; cgd->protocol = dev->protocol; cgd->inq_data = dev->inq_data; cgd->ident_data = dev->ident_data; cgd->inq_flags = dev->inq_flags; cgd->ccb_h.status = CAM_REQ_CMP; cgd->serial_num_len = dev->serial_num_len; if ((dev->serial_num_len > 0) && (dev->serial_num != NULL)) bcopy(dev->serial_num, cgd->serial_num, dev->serial_num_len); } break; } case XPT_GDEV_STATS: { struct ccb_getdevstats *cgds = &start_ccb->cgds; struct cam_ed *dev = path->device; struct cam_eb *bus = path->bus; struct cam_et *tar = path->target; struct cam_devq *devq = bus->sim->devq; mtx_lock(&devq->send_mtx); cgds->dev_openings = dev->ccbq.dev_openings; cgds->dev_active = dev->ccbq.dev_active; cgds->allocated = dev->ccbq.allocated; cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; cgds->last_reset = tar->last_reset; cgds->maxtags = dev->maxtags; cgds->mintags = dev->mintags; if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) cgds->last_reset = bus->last_reset; mtx_unlock(&devq->send_mtx); cgds->ccb_h.status = CAM_REQ_CMP; break; } case XPT_GDEVLIST: { struct cam_periph *nperiph; struct periph_list *periph_head; struct ccb_getdevlist *cgdl; u_int i; struct cam_ed *device; bool found; found = false; /* * Don't want anyone mucking with our data. */ device = path->device; periph_head = &device->periphs; cgdl = &start_ccb->cgdl; /* * Check and see if the list has changed since the user * last requested a list member. If so, tell them that the * list has changed, and therefore they need to start over * from the beginning. */ if ((cgdl->index != 0) && (cgdl->generation != device->generation)) { cgdl->status = CAM_GDEVLIST_LIST_CHANGED; break; } /* * Traverse the list of peripherals and attempt to find * the requested peripheral. */ for (nperiph = SLIST_FIRST(periph_head), i = 0; (nperiph != NULL) && (i <= cgdl->index); nperiph = SLIST_NEXT(nperiph, periph_links), i++) { if (i == cgdl->index) { strlcpy(cgdl->periph_name, nperiph->periph_name, sizeof(cgdl->periph_name)); cgdl->unit_number = nperiph->unit_number; found = true; } } if (!found) { cgdl->status = CAM_GDEVLIST_ERROR; break; } if (nperiph == NULL) cgdl->status = CAM_GDEVLIST_LAST_DEVICE; else cgdl->status = CAM_GDEVLIST_MORE_DEVS; cgdl->index++; cgdl->generation = device->generation; cgdl->ccb_h.status = CAM_REQ_CMP; break; } case XPT_DEV_MATCH: { dev_pos_type position_type; struct ccb_dev_match *cdm; cdm = &start_ccb->cdm; /* * There are two ways of getting at information in the EDT. * The first way is via the primary EDT tree. It starts * with a list of buses, then a list of targets on a bus, * then devices/luns on a target, and then peripherals on a * device/lun. The "other" way is by the peripheral driver * lists. The peripheral driver lists are organized by * peripheral driver. (obviously) So it makes sense to * use the peripheral driver list if the user is looking * for something like "da1", or all "da" devices. If the * user is looking for something on a particular bus/target * or lun, it's generally better to go through the EDT tree. */ if (cdm->pos.position_type != CAM_DEV_POS_NONE) position_type = cdm->pos.position_type; else { u_int i; position_type = CAM_DEV_POS_NONE; for (i = 0; i < cdm->num_patterns; i++) { if ((cdm->patterns[i].type == DEV_MATCH_BUS) ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ position_type = CAM_DEV_POS_EDT; break; } } if (cdm->num_patterns == 0) position_type = CAM_DEV_POS_EDT; else if (position_type == CAM_DEV_POS_NONE) position_type = CAM_DEV_POS_PDRV; } switch(position_type & CAM_DEV_POS_TYPEMASK) { case CAM_DEV_POS_EDT: xptedtmatch(cdm); break; case CAM_DEV_POS_PDRV: xptperiphlistmatch(cdm); break; default: cdm->status = CAM_DEV_MATCH_ERROR; break; } if (cdm->status == CAM_DEV_MATCH_ERROR) start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; else start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_SASYNC_CB: { struct ccb_setasync *csa; struct async_node *cur_entry; struct async_list *async_head; uint32_t added; csa = &start_ccb->csa; added = csa->event_enable; async_head = &path->device->asyncs; /* * If there is already an entry for us, simply * update it. */ cur_entry = SLIST_FIRST(async_head); while (cur_entry != NULL) { if ((cur_entry->callback_arg == csa->callback_arg) && (cur_entry->callback == csa->callback)) break; cur_entry = SLIST_NEXT(cur_entry, links); } if (cur_entry != NULL) { /* * If the request has no flags set, * remove the entry. */ added &= ~cur_entry->event_enable; if (csa->event_enable == 0) { SLIST_REMOVE(async_head, cur_entry, async_node, links); xpt_release_device(path->device); free(cur_entry, M_CAMXPT); } else { cur_entry->event_enable = csa->event_enable; } csa->event_enable = added; } else { cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, M_NOWAIT); if (cur_entry == NULL) { csa->ccb_h.status = CAM_RESRC_UNAVAIL; break; } cur_entry->event_enable = csa->event_enable; cur_entry->event_lock = (path->bus->sim->mtx && mtx_owned(path->bus->sim->mtx)) ? 1 : 0; cur_entry->callback_arg = csa->callback_arg; cur_entry->callback = csa->callback; SLIST_INSERT_HEAD(async_head, cur_entry, links); xpt_acquire_device(path->device); } start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_REL_SIMQ: { struct ccb_relsim *crs; struct cam_ed *dev; crs = &start_ccb->crs; dev = path->device; if (dev == NULL) { crs->ccb_h.status = CAM_DEV_NOT_THERE; break; } if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { /* Don't ever go below one opening */ if (crs->openings > 0) { xpt_dev_ccbq_resize(path, crs->openings); if (bootverbose) { xpt_print(path, "number of openings is now %d\n", crs->openings); } } } mtx_lock(&dev->sim->devq->send_mtx); if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { /* * Just extend the old timeout and decrement * the freeze count so that a single timeout * is sufficient for releasing the queue. */ start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; callout_stop(&dev->callout); } else { start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } callout_reset_sbt(&dev->callout, SBT_1MS * crs->release_timeout, SBT_1MS, xpt_release_devq_timeout, dev, 0); dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; } if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { /* * Decrement the freeze count so that a single * completion is still sufficient to unfreeze * the queue. */ start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; } else { dev->flags |= CAM_DEV_REL_ON_COMPLETE; start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } } if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 || (dev->ccbq.dev_active == 0)) { start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; } else { dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } } mtx_unlock(&dev->sim->devq->send_mtx); if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_DEBUG: { struct cam_path *oldpath; /* Check that all request bits are supported. */ if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; break; } cam_dflags = CAM_DEBUG_NONE; if (cam_dpath != NULL) { oldpath = cam_dpath; cam_dpath = NULL; xpt_free_path(oldpath); } if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { if (xpt_create_path(&cam_dpath, NULL, start_ccb->ccb_h.path_id, start_ccb->ccb_h.target_id, start_ccb->ccb_h.target_lun) != CAM_REQ_CMP) { start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; } else { cam_dflags = start_ccb->cdbg.flags; start_ccb->ccb_h.status = CAM_REQ_CMP; xpt_print(cam_dpath, "debugging flags now %x\n", cam_dflags); } } else start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_NOOP: if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) xpt_freeze_devq(path, 1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_REPROBE_LUN: xpt_async(AC_INQ_CHANGED, path, NULL); start_ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(start_ccb); break; case XPT_ASYNC: /* * Queue the async operation so it can be run from a sleepable * context. */ start_ccb->ccb_h.status = CAM_REQ_CMP; mtx_lock(&cam_async.cam_doneq_mtx); STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe); start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX; mtx_unlock(&cam_async.cam_doneq_mtx); wakeup(&cam_async.cam_doneq); break; default: case XPT_SDEV_TYPE: case XPT_TERM_IO: case XPT_ENG_INQ: /* XXX Implement */ xpt_print(start_ccb->ccb_h.path, "%s: CCB type %#x %s not supported\n", __func__, start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code)); start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { xpt_done(start_ccb); } break; } CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default: func= %#x %s status %#x\n", start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code), start_ccb->ccb_h.status)); } /* * Call the sim poll routine to allow the sim to complete * any inflight requests, then call camisr_runqueue to * complete any CCB that the polling completed. */ void xpt_sim_poll(struct cam_sim *sim) { struct mtx *mtx; KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__)); mtx = sim->mtx; if (mtx) mtx_lock(mtx); (*(sim->sim_poll))(sim); if (mtx) mtx_unlock(mtx); camisr_runqueue(); } uint32_t xpt_poll_setup(union ccb *start_ccb) { uint32_t timeout; struct cam_sim *sim; struct cam_devq *devq; struct cam_ed *dev; timeout = start_ccb->ccb_h.timeout * 10; sim = start_ccb->ccb_h.path->bus->sim; devq = sim->devq; dev = start_ccb->ccb_h.path->device; KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__)); /* * Steal an opening so that no other queued requests * can get it before us while we simulate interrupts. */ mtx_lock(&devq->send_mtx); dev->ccbq.dev_openings--; while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && (--timeout > 0)) { mtx_unlock(&devq->send_mtx); DELAY(100); xpt_sim_poll(sim); mtx_lock(&devq->send_mtx); } dev->ccbq.dev_openings++; mtx_unlock(&devq->send_mtx); return (timeout); } void xpt_pollwait(union ccb *start_ccb, uint32_t timeout) { KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim), ("%s: non-pollable sim", __func__)); while (--timeout > 0) { xpt_sim_poll(start_ccb->ccb_h.path->bus->sim); if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) break; DELAY(100); } if (timeout == 0) { /* * XXX Is it worth adding a sim_timeout entry * point so we can attempt recovery? If * this is only used for dumps, I don't think * it is. */ start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; } } /* * Schedule a peripheral driver to receive a ccb when its * target device has space for more transactions. */ void xpt_schedule(struct cam_periph *periph, uint32_t new_priority) { CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); cam_periph_assert(periph, MA_OWNED); if (new_priority < periph->scheduled_priority) { periph->scheduled_priority = new_priority; xpt_run_allocq(periph, 0); } } /* * Schedule a device to run on a given queue. * If the device was inserted as a new entry on the queue, * return 1 meaning the device queue should be run. If we * were already queued, implying someone else has already * started the queue, return 0 so the caller doesn't attempt * to run the queue. */ static int xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, uint32_t new_priority) { int retval; uint32_t old_priority; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); old_priority = pinfo->priority; /* * Are we already queued? */ if (pinfo->index != CAM_UNQUEUED_INDEX) { /* Simply reorder based on new priority */ if (new_priority < old_priority) { camq_change_priority(queue, pinfo->index, new_priority); CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("changed priority to %d\n", new_priority)); retval = 1; } else retval = 0; } else { /* New entry on the queue */ if (new_priority < old_priority) pinfo->priority = new_priority; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("Inserting onto queue\n")); pinfo->generation = ++queue->generation; camq_insert(queue, pinfo); retval = 1; } return (retval); } static void xpt_run_allocq_task(void *context, int pending) { struct cam_periph *periph = context; cam_periph_lock(periph); periph->flags &= ~CAM_PERIPH_RUN_TASK; xpt_run_allocq(periph, 1); cam_periph_unlock(periph); cam_periph_release(periph); } static void xpt_run_allocq(struct cam_periph *periph, int sleep) { struct cam_ed *device; union ccb *ccb; uint32_t prio; cam_periph_assert(periph, MA_OWNED); if (periph->periph_allocating) return; cam_periph_doacquire(periph); periph->periph_allocating = 1; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); device = periph->path->device; ccb = NULL; restart: while ((prio = min(periph->scheduled_priority, periph->immediate_priority)) != CAM_PRIORITY_NONE && (periph->periph_allocated - (ccb != NULL ? 1 : 0) < device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { if (ccb == NULL && (ccb = xpt_get_ccb_nowait(periph)) == NULL) { if (sleep) { ccb = xpt_get_ccb(periph); goto restart; } if (periph->flags & CAM_PERIPH_RUN_TASK) break; cam_periph_doacquire(periph); periph->flags |= CAM_PERIPH_RUN_TASK; taskqueue_enqueue(xsoftc.xpt_taskq, &periph->periph_run_task); break; } xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); if (prio == periph->immediate_priority) { periph->immediate_priority = CAM_PRIORITY_NONE; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("waking cam_periph_getccb()\n")); SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, periph_links.sle); wakeup(&periph->ccb_list); } else { periph->scheduled_priority = CAM_PRIORITY_NONE; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("calling periph_start()\n")); periph->periph_start(periph, ccb); } ccb = NULL; } if (ccb != NULL) xpt_release_ccb(ccb); periph->periph_allocating = 0; cam_periph_release_locked(periph); } static void xpt_run_devq(struct cam_devq *devq) { struct mtx *mtx; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); devq->send_queue.qfrozen_cnt++; while ((devq->send_queue.entries > 0) && (devq->send_openings > 0) && (devq->send_queue.qfrozen_cnt <= 1)) { struct cam_ed *device; union ccb *work_ccb; struct cam_sim *sim; struct xpt_proto *proto; device = (struct cam_ed *)camq_remove(&devq->send_queue, CAMQ_HEAD); CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("running device %p\n", device)); work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); if (work_ccb == NULL) { printf("device on run queue with no ccbs???\n"); continue; } if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { mtx_lock(&xsoftc.xpt_highpower_lock); if (xsoftc.num_highpower <= 0) { /* * We got a high power command, but we * don't have any available slots. Freeze * the device queue until we have a slot * available. */ xpt_freeze_devq_device(device, 1); STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, highpowerq_entry); mtx_unlock(&xsoftc.xpt_highpower_lock); continue; } else { /* * Consume a high power slot while * this ccb runs. */ xsoftc.num_highpower--; } mtx_unlock(&xsoftc.xpt_highpower_lock); } cam_ccbq_remove_ccb(&device->ccbq, work_ccb); cam_ccbq_send_ccb(&device->ccbq, work_ccb); devq->send_openings--; devq->send_active++; xpt_schedule_devq(devq, device); mtx_unlock(&devq->send_mtx); if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { /* * The client wants to freeze the queue * after this CCB is sent. */ xpt_freeze_devq(work_ccb->ccb_h.path, 1); } /* In Target mode, the peripheral driver knows best... */ if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { if ((device->inq_flags & SID_CmdQue) != 0 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; else /* * Clear this in case of a retried CCB that * failed due to a rejected tag. */ work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; } KASSERT(device == work_ccb->ccb_h.path->device, ("device (%p) / path->device (%p) mismatch", device, work_ccb->ccb_h.path->device)); proto = xpt_proto_find(device->protocol); if (proto && proto->ops->debug_out) proto->ops->debug_out(work_ccb); /* * Device queues can be shared among multiple SIM instances * that reside on different buses. Use the SIM from the * queued device, rather than the one from the calling bus. */ sim = device->sim; mtx = sim->mtx; if (mtx && !mtx_owned(mtx)) mtx_lock(mtx); else mtx = NULL; work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); (*(sim->sim_action))(sim, work_ccb); if (mtx) mtx_unlock(mtx); mtx_lock(&devq->send_mtx); } devq->send_queue.qfrozen_cnt--; } /* * This function merges stuff from the src ccb into the dst ccb, while keeping * important fields in the dst ccb constant. */ void xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb) { /* * Pull fields that are valid for peripheral drivers to set * into the dst CCB along with the CCB "payload". */ dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count; dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code; dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout; dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags; bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1], sizeof(union ccb) - sizeof(struct ccb_hdr)); } void xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority, uint32_t flags) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); ccb_h->pinfo.priority = priority; ccb_h->path = path; ccb_h->path_id = path->bus->path_id; if (path->target) ccb_h->target_id = path->target->target_id; else ccb_h->target_id = CAM_TARGET_WILDCARD; if (path->device) { ccb_h->target_lun = path->device->lun_id; ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; } else { ccb_h->target_lun = CAM_TARGET_WILDCARD; } ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; ccb_h->flags = flags; ccb_h->xflags = 0; } void xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority) { xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); } /* Path manipulation functions */ cam_status xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_path *path; cam_status status; path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); if (path == NULL) { status = CAM_RESRC_UNAVAIL; return(status); } status = xpt_compile_path(path, perph, path_id, target_id, lun_id); if (status != CAM_REQ_CMP) { free(path, M_CAMPATH); path = NULL; } *new_path_ptr = path; return (status); } cam_status xpt_create_path_unlocked(struct cam_path **new_path_ptr, struct cam_periph *periph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { return (xpt_create_path(new_path_ptr, periph, path_id, target_id, lun_id)); } cam_status xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_eb *bus; struct cam_et *target; struct cam_ed *device; cam_status status; status = CAM_REQ_CMP; /* Completed without error */ target = NULL; /* Wildcarded */ device = NULL; /* Wildcarded */ /* * We will potentially modify the EDT, so block interrupts * that may attempt to create cam paths. */ bus = xpt_find_bus(path_id); if (bus == NULL) { status = CAM_PATH_INVALID; } else { xpt_lock_buses(); mtx_lock(&bus->eb_mtx); target = xpt_find_target(bus, target_id); if (target == NULL) { /* Create one */ struct cam_et *new_target; new_target = xpt_alloc_target(bus, target_id); if (new_target == NULL) { status = CAM_RESRC_UNAVAIL; } else { target = new_target; } } xpt_unlock_buses(); if (target != NULL) { device = xpt_find_device(target, lun_id); if (device == NULL) { /* Create one */ struct cam_ed *new_device; new_device = (*(bus->xport->ops->alloc_device))(bus, target, lun_id); if (new_device == NULL) { status = CAM_RESRC_UNAVAIL; } else { device = new_device; } } } mtx_unlock(&bus->eb_mtx); } /* * Only touch the user's data if we are successful. */ if (status == CAM_REQ_CMP) { new_path->periph = perph; new_path->bus = bus; new_path->target = target; new_path->device = device; CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); } else { if (device != NULL) xpt_release_device(device); if (target != NULL) xpt_release_target(target); if (bus != NULL) xpt_release_bus(bus); } return (status); } int xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) { struct cam_path *new_path; new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); if (new_path == NULL) return (ENOMEM); *new_path = *path; if (path->bus != NULL) xpt_acquire_bus(path->bus); if (path->target != NULL) xpt_acquire_target(path->target); if (path->device != NULL) xpt_acquire_device(path->device); *new_path_ptr = new_path; return (0); } void xpt_release_path(struct cam_path *path) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); if (path->device != NULL) { xpt_release_device(path->device); path->device = NULL; } if (path->target != NULL) { xpt_release_target(path->target); path->target = NULL; } if (path->bus != NULL) { xpt_release_bus(path->bus); path->bus = NULL; } } void xpt_free_path(struct cam_path *path) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); xpt_release_path(path); free(path, M_CAMPATH); } void xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) { xpt_lock_buses(); if (bus_ref) { if (path->bus) *bus_ref = path->bus->refcount; else *bus_ref = 0; } if (periph_ref) { if (path->periph) *periph_ref = path->periph->refcount; else *periph_ref = 0; } xpt_unlock_buses(); if (target_ref) { if (path->target) *target_ref = path->target->refcount; else *target_ref = 0; } if (device_ref) { if (path->device) *device_ref = path->device->refcount; else *device_ref = 0; } } /* * Return -1 for failure, 0 for exact match, 1 for match with wildcards * in path1, 2 for match with wildcards in path2. */ int xpt_path_comp(struct cam_path *path1, struct cam_path *path2) { int retval = 0; if (path1->bus != path2->bus) { if (path1->bus->path_id == CAM_BUS_WILDCARD) retval = 1; else if (path2->bus->path_id == CAM_BUS_WILDCARD) retval = 2; else return (-1); } if (path1->target != path2->target) { if (path1->target->target_id == CAM_TARGET_WILDCARD) { if (retval == 0) retval = 1; } else if (path2->target->target_id == CAM_TARGET_WILDCARD) retval = 2; else return (-1); } if (path1->device != path2->device) { if (path1->device->lun_id == CAM_LUN_WILDCARD) { if (retval == 0) retval = 1; } else if (path2->device->lun_id == CAM_LUN_WILDCARD) retval = 2; else return (-1); } return (retval); } int xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) { int retval = 0; if (path->bus != dev->target->bus) { if (path->bus->path_id == CAM_BUS_WILDCARD) retval = 1; else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) retval = 2; else return (-1); } if (path->target != dev->target) { if (path->target->target_id == CAM_TARGET_WILDCARD) { if (retval == 0) retval = 1; } else if (dev->target->target_id == CAM_TARGET_WILDCARD) retval = 2; else return (-1); } if (path->device != dev) { if (path->device->lun_id == CAM_LUN_WILDCARD) { if (retval == 0) retval = 1; } else if (dev->lun_id == CAM_LUN_WILDCARD) retval = 2; else return (-1); } return (retval); } void xpt_print_path(struct cam_path *path) { struct sbuf sb; char buffer[XPT_PRINT_LEN]; sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); xpt_path_sbuf(path, &sb); sbuf_finish(&sb); printf("%s", sbuf_data(&sb)); sbuf_delete(&sb); } -void -xpt_print_device(struct cam_ed *device) +static void +xpt_device_sbuf(struct cam_ed *device, struct sbuf *sb) { - if (device == NULL) - printf("(nopath): "); + sbuf_printf(sb, "(nopath): "); else { - printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, - device->sim->unit_number, - device->sim->bus_id, - device->target->target_id, - (uintmax_t)device->lun_id); + sbuf_printf(sb, "(noperiph:%s%d:%d:%d:%jx): ", + device->sim->sim_name, + device->sim->unit_number, + device->sim->bus_id, + device->target->target_id, + (uintmax_t)device->lun_id); } } void xpt_print(struct cam_path *path, const char *fmt, ...) { va_list ap; struct sbuf sb; char buffer[XPT_PRINT_LEN]; sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); xpt_path_sbuf(path, &sb); va_start(ap, fmt); sbuf_vprintf(&sb, fmt, ap); va_end(ap); sbuf_finish(&sb); printf("%s", sbuf_data(&sb)); sbuf_delete(&sb); } int xpt_path_string(struct cam_path *path, char *str, size_t str_len) { struct sbuf sb; int len; sbuf_new(&sb, str, str_len, 0); len = xpt_path_sbuf(path, &sb); sbuf_finish(&sb); return (len); } int xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) { if (path == NULL) sbuf_printf(sb, "(nopath): "); else { if (path->periph != NULL) sbuf_printf(sb, "(%s%d:", path->periph->periph_name, path->periph->unit_number); else sbuf_printf(sb, "(noperiph:"); if (path->bus != NULL) sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id); else sbuf_printf(sb, "nobus:"); if (path->target != NULL) sbuf_printf(sb, "%d:", path->target->target_id); else sbuf_printf(sb, "X:"); if (path->device != NULL) sbuf_printf(sb, "%jx): ", (uintmax_t)path->device->lun_id); else sbuf_printf(sb, "X): "); } return(sbuf_len(sb)); } path_id_t xpt_path_path_id(struct cam_path *path) { return(path->bus->path_id); } target_id_t xpt_path_target_id(struct cam_path *path) { if (path->target != NULL) return (path->target->target_id); else return (CAM_TARGET_WILDCARD); } lun_id_t xpt_path_lun_id(struct cam_path *path) { if (path->device != NULL) return (path->device->lun_id); else return (CAM_LUN_WILDCARD); } struct cam_sim * xpt_path_sim(struct cam_path *path) { return (path->bus->sim); } struct cam_periph* xpt_path_periph(struct cam_path *path) { return (path->periph); } /* * Release a CAM control block for the caller. Remit the cost of the structure * to the device referenced by the path. If the this device had no 'credits' * and peripheral drivers have registered async callbacks for this notification * call them now. */ void xpt_release_ccb(union ccb *free_ccb) { struct cam_ed *device; struct cam_periph *periph; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); device = free_ccb->ccb_h.path->device; periph = free_ccb->ccb_h.path->periph; xpt_free_ccb(free_ccb); periph->periph_allocated--; cam_ccbq_release_opening(&device->ccbq); xpt_run_allocq(periph, 0); } /* Functions accessed by SIM drivers */ static struct xpt_xport_ops xport_default_ops = { .alloc_device = xpt_alloc_device_default, .action = xpt_action_default, .async = xpt_dev_async_default, }; static struct xpt_xport xport_default = { .xport = XPORT_UNKNOWN, .name = "unknown", .ops = &xport_default_ops, }; CAM_XPT_XPORT(xport_default); /* * A sim structure, listing the SIM entry points and instance * identification info is passed to xpt_bus_register to hook the SIM * into the CAM framework. xpt_bus_register creates a cam_eb entry * for this new bus and places it in the array of buses and assigns * it a path_id. The path_id may be influenced by "hard wiring" * information specified by the user. Once interrupt services are * available, the bus will be probed. */ int xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus) { struct cam_eb *new_bus; struct cam_eb *old_bus; struct ccb_pathinq cpi; struct cam_path *path; cam_status status; sim->bus_id = bus; new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), M_CAMXPT, M_NOWAIT|M_ZERO); if (new_bus == NULL) { /* Couldn't satisfy request */ return (ENOMEM); } mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); TAILQ_INIT(&new_bus->et_entries); cam_sim_hold(sim); new_bus->sim = sim; timevalclear(&new_bus->last_reset); new_bus->flags = 0; new_bus->refcount = 1; /* Held until a bus_deregister event */ new_bus->generation = 0; new_bus->parent_dev = parent; xpt_lock_buses(); sim->path_id = new_bus->path_id = xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); while (old_bus != NULL && old_bus->path_id < new_bus->path_id) old_bus = TAILQ_NEXT(old_bus, links); if (old_bus != NULL) TAILQ_INSERT_BEFORE(old_bus, new_bus, links); else TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); xsoftc.bus_generation++; xpt_unlock_buses(); /* * Set a default transport so that a PATH_INQ can be issued to * the SIM. This will then allow for probing and attaching of * a more appropriate transport. */ new_bus->xport = &xport_default; status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) { xpt_release_bus(new_bus); return (ENOMEM); } xpt_path_inq(&cpi, path); /* * Use the results of PATH_INQ to pick a transport. Note that * the xpt bus (which uses XPORT_UNSPECIFIED) always uses * xport_default instead of a transport from * cam_xpt_port_set. */ if (cam_ccb_success((union ccb *)&cpi) && cpi.transport != XPORT_UNSPECIFIED) { struct xpt_xport **xpt; SET_FOREACH(xpt, cam_xpt_xport_set) { if ((*xpt)->xport == cpi.transport) { new_bus->xport = *xpt; break; } } if (new_bus->xport == &xport_default) { xpt_print(path, "No transport found for %d\n", cpi.transport); xpt_release_bus(new_bus); xpt_free_path(path); return (EINVAL); } } /* Notify interested parties */ if (sim->path_id != CAM_XPT_PATH_ID) { xpt_async(AC_PATH_REGISTERED, path, &cpi); if ((cpi.hba_misc & PIM_NOSCAN) == 0) { union ccb *scan_ccb; /* Initiate bus rescan. */ scan_ccb = xpt_alloc_ccb_nowait(); if (scan_ccb != NULL) { scan_ccb->ccb_h.path = path; scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; scan_ccb->crcn.flags = 0; xpt_rescan(scan_ccb); } else { xpt_print(path, "Can't allocate CCB to scan bus\n"); xpt_free_path(path); } } else xpt_free_path(path); } else xpt_free_path(path); return (CAM_SUCCESS); } int xpt_bus_deregister(path_id_t pathid) { struct cam_path bus_path; cam_status status; status = xpt_compile_path(&bus_path, NULL, pathid, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) return (ENOMEM); xpt_async(AC_LOST_DEVICE, &bus_path, NULL); xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); /* Release the reference count held while registered. */ xpt_release_bus(bus_path.bus); xpt_release_path(&bus_path); return (CAM_SUCCESS); } static path_id_t xptnextfreepathid(void) { struct cam_eb *bus; path_id_t pathid; const char *strval; mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); pathid = 0; bus = TAILQ_FIRST(&xsoftc.xpt_busses); retry: /* Find an unoccupied pathid */ while (bus != NULL && bus->path_id <= pathid) { if (bus->path_id == pathid) pathid++; bus = TAILQ_NEXT(bus, links); } /* * Ensure that this pathid is not reserved for * a bus that may be registered in the future. */ if (resource_string_value("scbus", pathid, "at", &strval) == 0) { ++pathid; /* Start the search over */ goto retry; } return (pathid); } static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus) { path_id_t pathid; int i, dunit, val; char buf[32]; const char *dname; pathid = CAM_XPT_PATH_ID; snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) return (pathid); i = 0; while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { if (strcmp(dname, "scbus")) { /* Avoid a bit of foot shooting. */ continue; } if (dunit < 0) /* unwired?! */ continue; if (resource_int_value("scbus", dunit, "bus", &val) == 0) { if (sim_bus == val) { pathid = dunit; break; } } else if (sim_bus == 0) { /* Unspecified matches bus 0 */ pathid = dunit; break; } else { printf("Ambiguous scbus configuration for %s%d " "bus %d, cannot wire down. The kernel " "config entry for scbus%d should " "specify a controller bus.\n" "Scbus will be assigned dynamically.\n", sim_name, sim_unit, sim_bus, dunit); break; } } if (pathid == CAM_XPT_PATH_ID) pathid = xptnextfreepathid(); return (pathid); } static const char * xpt_async_string(uint32_t async_code) { switch (async_code) { case AC_BUS_RESET: return ("AC_BUS_RESET"); case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); case AC_SCSI_AEN: return ("AC_SCSI_AEN"); case AC_SENT_BDR: return ("AC_SENT_BDR"); case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); case AC_CONTRACT: return ("AC_CONTRACT"); case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); } return ("AC_UNKNOWN"); } static int xpt_async_size(uint32_t async_code) { switch (async_code) { case AC_BUS_RESET: return (0); case AC_UNSOL_RESEL: return (0); case AC_SCSI_AEN: return (0); case AC_SENT_BDR: return (0); case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); case AC_PATH_DEREGISTERED: return (0); case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); case AC_LOST_DEVICE: return (0); case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); case AC_INQ_CHANGED: return (0); case AC_GETDEV_CHANGED: return (0); case AC_CONTRACT: return (sizeof(struct ac_contract)); case AC_ADVINFO_CHANGED: return (-1); case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); } return (0); } static int xpt_async_process_dev(struct cam_ed *device, void *arg) { union ccb *ccb = arg; struct cam_path *path = ccb->ccb_h.path; void *async_arg = ccb->casync.async_arg_ptr; uint32_t async_code = ccb->casync.async_code; bool relock; if (path->device != device && path->device->lun_id != CAM_LUN_WILDCARD && device->lun_id != CAM_LUN_WILDCARD) return (1); /* * The async callback could free the device. * If it is a broadcast async, it doesn't hold * device reference, so take our own reference. */ xpt_acquire_device(device); /* * If async for specific device is to be delivered to * the wildcard client, take the specific device lock. * XXX: We may need a way for client to specify it. */ if ((device->lun_id == CAM_LUN_WILDCARD && path->device->lun_id != CAM_LUN_WILDCARD) || (device->target->target_id == CAM_TARGET_WILDCARD && path->target->target_id != CAM_TARGET_WILDCARD) || (device->target->bus->path_id == CAM_BUS_WILDCARD && path->target->bus->path_id != CAM_BUS_WILDCARD)) { mtx_unlock(&device->device_mtx); xpt_path_lock(path); relock = true; } else relock = false; (*(device->target->bus->xport->ops->async))(async_code, device->target->bus, device->target, device, async_arg); xpt_async_bcast(&device->asyncs, async_code, path, async_arg); if (relock) { xpt_path_unlock(path); mtx_lock(&device->device_mtx); } xpt_release_device(device); return (1); } static int xpt_async_process_tgt(struct cam_et *target, void *arg) { union ccb *ccb = arg; struct cam_path *path = ccb->ccb_h.path; if (path->target != target && path->target->target_id != CAM_TARGET_WILDCARD && target->target_id != CAM_TARGET_WILDCARD) return (1); if (ccb->casync.async_code == AC_SENT_BDR) { /* Update our notion of when the last reset occurred */ microtime(&target->last_reset); } return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); } static void xpt_async_process(struct cam_periph *periph, union ccb *ccb) { struct cam_eb *bus; struct cam_path *path; void *async_arg; uint32_t async_code; path = ccb->ccb_h.path; async_code = ccb->casync.async_code; async_arg = ccb->casync.async_arg_ptr; CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, ("xpt_async(%s)\n", xpt_async_string(async_code))); bus = path->bus; if (async_code == AC_BUS_RESET) { /* Update our notion of when the last reset occurred */ microtime(&bus->last_reset); } xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); /* * If this wasn't a fully wildcarded async, tell all * clients that want all async events. */ if (bus != xpt_periph->path->bus) { xpt_path_lock(xpt_periph->path); xpt_async_process_dev(xpt_periph->path->device, ccb); xpt_path_unlock(xpt_periph->path); } if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) xpt_release_devq(path, 1, TRUE); else xpt_release_simq(path->bus->sim, TRUE); if (ccb->casync.async_arg_size > 0) free(async_arg, M_CAMXPT); xpt_free_path(path); xpt_free_ccb(ccb); } static void xpt_async_bcast(struct async_list *async_head, uint32_t async_code, struct cam_path *path, void *async_arg) { struct async_node *cur_entry; struct mtx *mtx; cur_entry = SLIST_FIRST(async_head); while (cur_entry != NULL) { struct async_node *next_entry; /* * Grab the next list entry before we call the current * entry's callback. This is because the callback function * can delete its async callback entry. */ next_entry = SLIST_NEXT(cur_entry, links); if ((cur_entry->event_enable & async_code) != 0) { mtx = cur_entry->event_lock ? path->device->sim->mtx : NULL; if (mtx) mtx_lock(mtx); cur_entry->callback(cur_entry->callback_arg, async_code, path, async_arg); if (mtx) mtx_unlock(mtx); } cur_entry = next_entry; } } void xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg) { union ccb *ccb; int size; ccb = xpt_alloc_ccb_nowait(); if (ccb == NULL) { xpt_print(path, "Can't allocate CCB to send %s\n", xpt_async_string(async_code)); return; } if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) { xpt_print(path, "Can't allocate path to send %s\n", xpt_async_string(async_code)); xpt_free_ccb(ccb); return; } ccb->ccb_h.path->periph = NULL; ccb->ccb_h.func_code = XPT_ASYNC; ccb->ccb_h.cbfcnp = xpt_async_process; ccb->ccb_h.flags |= CAM_UNLOCKED; ccb->casync.async_code = async_code; ccb->casync.async_arg_size = 0; size = xpt_async_size(async_code); CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_async: func %#x %s aync_code %d %s\n", ccb->ccb_h.func_code, xpt_action_name(ccb->ccb_h.func_code), async_code, xpt_async_string(async_code))); if (size > 0 && async_arg != NULL) { ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); if (ccb->casync.async_arg_ptr == NULL) { xpt_print(path, "Can't allocate argument to send %s\n", xpt_async_string(async_code)); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } memcpy(ccb->casync.async_arg_ptr, async_arg, size); ccb->casync.async_arg_size = size; } else if (size < 0) { ccb->casync.async_arg_ptr = async_arg; ccb->casync.async_arg_size = size; } if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) xpt_freeze_devq(path, 1); else xpt_freeze_simq(path->bus->sim, 1); xpt_action(ccb); } static void xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg) { /* * We only need to handle events for real devices. */ if (target->target_id == CAM_TARGET_WILDCARD || device->lun_id == CAM_LUN_WILDCARD) return; printf("%s called\n", __func__); } static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count) { struct cam_devq *devq; uint32_t freeze; devq = dev->sim->devq; mtx_assert(&devq->send_mtx, MA_OWNED); CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_freeze_devq_device(%d) %u->%u\n", count, dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); freeze = (dev->ccbq.queue.qfrozen_cnt += count); /* Remove frozen device from sendq. */ if (device_is_queued(dev)) camq_remove(&devq->send_queue, dev->devq_entry.index); return (freeze); } uint32_t xpt_freeze_devq(struct cam_path *path, u_int count) { struct cam_ed *dev = path->device; struct cam_devq *devq; uint32_t freeze; devq = dev->sim->devq; mtx_lock(&devq->send_mtx); CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); freeze = xpt_freeze_devq_device(dev, count); mtx_unlock(&devq->send_mtx); return (freeze); } uint32_t xpt_freeze_simq(struct cam_sim *sim, u_int count) { struct cam_devq *devq; uint32_t freeze; devq = sim->devq; mtx_lock(&devq->send_mtx); freeze = (devq->send_queue.qfrozen_cnt += count); mtx_unlock(&devq->send_mtx); return (freeze); } static void xpt_release_devq_timeout(void *arg) { struct cam_ed *dev; struct cam_devq *devq; dev = (struct cam_ed *)arg; CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); devq = dev->sim->devq; mtx_assert(&devq->send_mtx, MA_OWNED); if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) xpt_run_devq(devq); } void xpt_release_devq(struct cam_path *path, u_int count, int run_queue) { struct cam_ed *dev; struct cam_devq *devq; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", count, run_queue)); dev = path->device; devq = dev->sim->devq; mtx_lock(&devq->send_mtx); if (xpt_release_devq_device(dev, count, run_queue)) xpt_run_devq(dev->sim->devq); mtx_unlock(&devq->send_mtx); } static int xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) { mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); if (count > dev->ccbq.queue.qfrozen_cnt) { #ifdef INVARIANTS printf("xpt_release_devq(): requested %u > present %u\n", count, dev->ccbq.queue.qfrozen_cnt); #endif count = dev->ccbq.queue.qfrozen_cnt; } dev->ccbq.queue.qfrozen_cnt -= count; if (dev->ccbq.queue.qfrozen_cnt == 0) { /* * No longer need to wait for a successful * command completion. */ dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; /* * Remove any timeouts that might be scheduled * to release this queue. */ if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { callout_stop(&dev->callout); dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; } /* * Now that we are unfrozen schedule the * device so any pending transactions are * run. */ xpt_schedule_devq(dev->sim->devq, dev); } else run_queue = 0; return (run_queue); } void xpt_release_simq(struct cam_sim *sim, int run_queue) { struct cam_devq *devq; devq = sim->devq; mtx_lock(&devq->send_mtx); if (devq->send_queue.qfrozen_cnt <= 0) { #ifdef INVARIANTS printf("xpt_release_simq: requested 1 > present %u\n", devq->send_queue.qfrozen_cnt); #endif } else devq->send_queue.qfrozen_cnt--; if (devq->send_queue.qfrozen_cnt == 0) { if (run_queue) { /* * Now that we are unfrozen run the send queue. */ xpt_run_devq(sim->devq); } } mtx_unlock(&devq->send_mtx); } void xpt_done(union ccb *done_ccb) { struct cam_doneq *queue; int run, hash; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && done_ccb->csio.bio != NULL) biotrack(done_ccb->csio.bio, __func__); #endif CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done: func= %#x %s status %#x\n", done_ccb->ccb_h.func_code, xpt_action_name(done_ccb->ccb_h.func_code), done_ccb->ccb_h.status)); if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) return; /* Store the time the ccb was in the sim */ done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); done_ccb->ccb_h.status |= CAM_QOS_VALID; hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + done_ccb->ccb_h.target_lun) % cam_num_doneqs; queue = &cam_doneqs[hash]; mtx_lock(&queue->cam_doneq_mtx); run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; mtx_unlock(&queue->cam_doneq_mtx); if (run && !dumping) wakeup(&queue->cam_doneq); } void xpt_done_direct(union ccb *done_ccb) { CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) return; /* Store the time the ccb was in the sim */ done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); done_ccb->ccb_h.status |= CAM_QOS_VALID; xpt_done_process(&done_ccb->ccb_h); } union ccb * xpt_alloc_ccb(void) { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); return (new_ccb); } union ccb * xpt_alloc_ccb_nowait(void) { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); return (new_ccb); } void xpt_free_ccb(union ccb *free_ccb) { struct cam_periph *periph; if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) { /* * Looks like a CCB allocated from a periph UMA zone. */ periph = free_ccb->ccb_h.path->periph; uma_zfree(periph->ccb_zone, free_ccb); } else { free(free_ccb, M_CAMCCB); } } /* Private XPT functions */ /* * Get a CAM control block for the caller. Charge the structure to the device * referenced by the path. If we don't have sufficient resources to allocate * more ccbs, we return NULL. */ static union ccb * xpt_get_ccb_nowait(struct cam_periph *periph) { union ccb *new_ccb; int alloc_flags; if (periph->ccb_zone != NULL) { alloc_flags = CAM_CCB_FROM_UMA; new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT); } else { alloc_flags = 0; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); } if (new_ccb == NULL) return (NULL); new_ccb->ccb_h.alloc_flags = alloc_flags; periph->periph_allocated++; cam_ccbq_take_opening(&periph->path->device->ccbq); return (new_ccb); } static union ccb * xpt_get_ccb(struct cam_periph *periph) { union ccb *new_ccb; int alloc_flags; cam_periph_unlock(periph); if (periph->ccb_zone != NULL) { alloc_flags = CAM_CCB_FROM_UMA; new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK); } else { alloc_flags = 0; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); } new_ccb->ccb_h.alloc_flags = alloc_flags; cam_periph_lock(periph); periph->periph_allocated++; cam_ccbq_take_opening(&periph->path->device->ccbq); return (new_ccb); } union ccb * cam_periph_getccb(struct cam_periph *periph, uint32_t priority) { struct ccb_hdr *ccb_h; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); cam_periph_assert(periph, MA_OWNED); while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || ccb_h->pinfo.priority != priority) { if (priority < periph->immediate_priority) { periph->immediate_priority = priority; xpt_run_allocq(periph, 0); } else cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, "cgticb", 0); } SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); return ((union ccb *)ccb_h); } static void xpt_acquire_bus(struct cam_eb *bus) { xpt_lock_buses(); bus->refcount++; xpt_unlock_buses(); } static void xpt_release_bus(struct cam_eb *bus) { xpt_lock_buses(); KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); if (--bus->refcount > 0) { xpt_unlock_buses(); return; } TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); xsoftc.bus_generation++; xpt_unlock_buses(); KASSERT(TAILQ_EMPTY(&bus->et_entries), ("destroying bus, but target list is not empty")); cam_sim_release(bus->sim); mtx_destroy(&bus->eb_mtx); free(bus, M_CAMXPT); } static struct cam_et * xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) { struct cam_et *cur_target, *target; mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); mtx_assert(&bus->eb_mtx, MA_OWNED); target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT|M_ZERO); if (target == NULL) return (NULL); TAILQ_INIT(&target->ed_entries); target->bus = bus; target->target_id = target_id; target->refcount = 1; target->generation = 0; target->luns = NULL; mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); timevalclear(&target->last_reset); /* * Hold a reference to our parent bus so it * will not go away before we do. */ bus->refcount++; /* Insertion sort into our bus's target list */ cur_target = TAILQ_FIRST(&bus->et_entries); while (cur_target != NULL && cur_target->target_id < target_id) cur_target = TAILQ_NEXT(cur_target, links); if (cur_target != NULL) { TAILQ_INSERT_BEFORE(cur_target, target, links); } else { TAILQ_INSERT_TAIL(&bus->et_entries, target, links); } bus->generation++; return (target); } static void xpt_acquire_target(struct cam_et *target) { struct cam_eb *bus = target->bus; mtx_lock(&bus->eb_mtx); target->refcount++; mtx_unlock(&bus->eb_mtx); } static void xpt_release_target(struct cam_et *target) { struct cam_eb *bus = target->bus; mtx_lock(&bus->eb_mtx); if (--target->refcount > 0) { mtx_unlock(&bus->eb_mtx); return; } TAILQ_REMOVE(&bus->et_entries, target, links); bus->generation++; mtx_unlock(&bus->eb_mtx); KASSERT(TAILQ_EMPTY(&target->ed_entries), ("destroying target, but device list is not empty")); xpt_release_bus(bus); mtx_destroy(&target->luns_mtx); if (target->luns) free(target->luns, M_CAMXPT); free(target, M_CAMXPT); } static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device; device = xpt_alloc_device(bus, target, lun_id); if (device == NULL) return (NULL); device->mintags = 1; device->maxtags = 1; return (device); } static void xpt_destroy_device(void *context, int pending) { struct cam_ed *device = context; mtx_lock(&device->device_mtx); mtx_destroy(&device->device_mtx); free(device, M_CAMDEV); } struct cam_ed * xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_ed *cur_device, *device; struct cam_devq *devq; cam_status status; mtx_assert(&bus->eb_mtx, MA_OWNED); /* Make space for us in the device queue on our bus */ devq = bus->sim->devq; mtx_lock(&devq->send_mtx); status = cam_devq_resize(devq, devq->send_queue.array_size + 1); mtx_unlock(&devq->send_mtx); if (status != CAM_REQ_CMP) return (NULL); device = (struct cam_ed *)malloc(sizeof(*device), M_CAMDEV, M_NOWAIT|M_ZERO); if (device == NULL) return (NULL); cam_init_pinfo(&device->devq_entry); device->target = target; device->lun_id = lun_id; device->sim = bus->sim; if (cam_ccbq_init(&device->ccbq, bus->sim->max_dev_openings) != 0) { free(device, M_CAMDEV); return (NULL); } SLIST_INIT(&device->asyncs); SLIST_INIT(&device->periphs); device->generation = 0; device->flags = CAM_DEV_UNCONFIGURED; device->tag_delay_count = 0; device->tag_saved_openings = 0; device->refcount = 1; mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); callout_init_mtx(&device->callout, &devq->send_mtx, 0); TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); /* * Hold a reference to our parent bus so it * will not go away before we do. */ target->refcount++; cur_device = TAILQ_FIRST(&target->ed_entries); while (cur_device != NULL && cur_device->lun_id < lun_id) cur_device = TAILQ_NEXT(cur_device, links); if (cur_device != NULL) TAILQ_INSERT_BEFORE(cur_device, device, links); else TAILQ_INSERT_TAIL(&target->ed_entries, device, links); target->generation++; return (device); } void xpt_acquire_device(struct cam_ed *device) { struct cam_eb *bus = device->target->bus; mtx_lock(&bus->eb_mtx); device->refcount++; mtx_unlock(&bus->eb_mtx); } void xpt_release_device(struct cam_ed *device) { struct cam_eb *bus = device->target->bus; struct cam_devq *devq; mtx_lock(&bus->eb_mtx); if (--device->refcount > 0) { mtx_unlock(&bus->eb_mtx); return; } TAILQ_REMOVE(&device->target->ed_entries, device,links); device->target->generation++; mtx_unlock(&bus->eb_mtx); /* Release our slot in the devq */ devq = bus->sim->devq; mtx_lock(&devq->send_mtx); cam_devq_resize(devq, devq->send_queue.array_size - 1); KASSERT(SLIST_EMPTY(&device->periphs), ("destroying device, but periphs list is not empty")); KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, ("destroying device while still queued for ccbs")); /* The send_mtx must be held when accessing the callout */ if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) callout_stop(&device->callout); mtx_unlock(&devq->send_mtx); xpt_release_target(device->target); cam_ccbq_fini(&device->ccbq); /* * Free allocated memory. free(9) does nothing if the * supplied pointer is NULL, so it is safe to call without * checking. */ free(device->supported_vpds, M_CAMXPT); free(device->device_id, M_CAMXPT); free(device->ext_inq, M_CAMXPT); free(device->physpath, M_CAMXPT); free(device->rcap_buf, M_CAMXPT); free(device->serial_num, M_CAMXPT); free(device->nvme_data, M_CAMXPT); free(device->nvme_cdata, M_CAMXPT); taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); } uint32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) { int result; struct cam_ed *dev; dev = path->device; mtx_lock(&dev->sim->devq->send_mtx); result = cam_ccbq_resize(&dev->ccbq, newopenings); mtx_unlock(&dev->sim->devq->send_mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 || (dev->inq_flags & SID_CmdQue) != 0) dev->tag_saved_openings = newopenings; return (result); } static struct cam_eb * xpt_find_bus(path_id_t path_id) { struct cam_eb *bus; xpt_lock_buses(); for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); bus != NULL; bus = TAILQ_NEXT(bus, links)) { if (bus->path_id == path_id) { bus->refcount++; break; } } xpt_unlock_buses(); return (bus); } static struct cam_et * xpt_find_target(struct cam_eb *bus, target_id_t target_id) { struct cam_et *target; mtx_assert(&bus->eb_mtx, MA_OWNED); for (target = TAILQ_FIRST(&bus->et_entries); target != NULL; target = TAILQ_NEXT(target, links)) { if (target->target_id == target_id) { target->refcount++; break; } } return (target); } static struct cam_ed * xpt_find_device(struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device; mtx_assert(&target->bus->eb_mtx, MA_OWNED); for (device = TAILQ_FIRST(&target->ed_entries); device != NULL; device = TAILQ_NEXT(device, links)) { if (device->lun_id == lun_id) { device->refcount++; break; } } return (device); } void xpt_start_tags(struct cam_path *path) { struct ccb_relsim crs; struct cam_ed *device; struct cam_sim *sim; int newopenings; device = path->device; sim = path->bus->sim; device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; xpt_freeze_devq(path, /*count*/1); device->inq_flags |= SID_CmdQue; if (device->tag_saved_openings != 0) newopenings = device->tag_saved_openings; else newopenings = min(device->maxtags, sim->max_tagged_dev_openings); xpt_dev_ccbq_resize(path, newopenings); xpt_async(AC_GETDEV_CHANGED, path, NULL); memset(&crs, 0, sizeof(crs)); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; crs.openings = crs.release_timeout = crs.qfrozen_cnt = 0; xpt_action((union ccb *)&crs); } void xpt_stop_tags(struct cam_path *path) { struct ccb_relsim crs; struct cam_ed *device; struct cam_sim *sim; device = path->device; sim = path->bus->sim; device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; device->tag_delay_count = 0; xpt_freeze_devq(path, /*count*/1); device->inq_flags &= ~SID_CmdQue; xpt_dev_ccbq_resize(path, sim->max_dev_openings); xpt_async(AC_GETDEV_CHANGED, path, NULL); memset(&crs, 0, sizeof(crs)); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; crs.openings = crs.release_timeout = crs.qfrozen_cnt = 0; xpt_action((union ccb *)&crs); } /* * Assume all possible buses are detected by this time, so allow boot * as soon as they all are scanned. */ static void xpt_boot_delay(void *arg) { xpt_release_boot(); } /* * Now that all config hooks have completed, start boot_delay timer, * waiting for possibly still undetected buses (USB) to appear. */ static void xpt_ch_done(void *arg) { callout_init(&xsoftc.boot_callout, 1); callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, SBT_1MS, xpt_boot_delay, NULL, 0); } SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL); /* * Now that interrupts are enabled, go find our devices */ static void xpt_config(void *arg) { if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) printf("xpt_config: failed to create taskqueue thread.\n"); /* Setup debugging path */ if (cam_dflags != CAM_DEBUG_NONE) { if (xpt_create_path(&cam_dpath, NULL, CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN) != CAM_REQ_CMP) { printf("xpt_config: xpt_create_path() failed for debug" " target %d:%d:%d, debugging disabled\n", CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); cam_dflags = CAM_DEBUG_NONE; } } else cam_dpath = NULL; periphdriver_init(1); xpt_hold_boot(); /* Fire up rescan thread. */ if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, "cam", "scanner")) { printf("xpt_config: failed to create rescan thread.\n"); } } void xpt_hold_boot_locked(void) { if (xsoftc.buses_to_config++ == 0) root_mount_hold_token("CAM", &xsoftc.xpt_rootmount); } void xpt_hold_boot(void) { xpt_lock_buses(); xpt_hold_boot_locked(); xpt_unlock_buses(); } void xpt_release_boot(void) { xpt_lock_buses(); if (--xsoftc.buses_to_config == 0) { if (xsoftc.buses_config_done == 0) { xsoftc.buses_config_done = 1; xsoftc.buses_to_config++; TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task, NULL); taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task); } else root_mount_rel(&xsoftc.xpt_rootmount); } xpt_unlock_buses(); } /* * If the given device only has one peripheral attached to it, and if that * peripheral is the passthrough driver, announce it. This insures that the * user sees some sort of announcement for every peripheral in their system. */ static int xptpassannouncefunc(struct cam_ed *device, void *arg) { struct cam_periph *periph; int i; for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; periph = SLIST_NEXT(periph, periph_links), i++); periph = SLIST_FIRST(&device->periphs); if ((i == 1) && (strncmp(periph->periph_name, "pass", 4) == 0)) xpt_announce_periph(periph, NULL); return(1); } static void xpt_finishconfig_task(void *context, int pending) { periphdriver_init(2); /* * Check for devices with no "standard" peripheral driver * attached. For any devices like that, announce the * passthrough driver so the user will see something. */ if (!bootverbose) xpt_for_all_devices(xptpassannouncefunc, NULL); xpt_release_boot(); } cam_status xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, struct cam_path *path) { struct ccb_setasync csa; cam_status status; bool xptpath = false; if (path == NULL) { status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) return (status); xpt_path_lock(path); xptpath = true; } memset(&csa, 0, sizeof(csa)); xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = event; csa.callback = cbfunc; csa.callback_arg = cbarg; xpt_action((union ccb *)&csa); status = csa.ccb_h.status; CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, ("xpt_register_async: func %p\n", cbfunc)); if (xptpath) { xpt_path_unlock(path); xpt_free_path(path); } if ((status == CAM_REQ_CMP) && (csa.event_enable & AC_FOUND_DEVICE)) { /* * Get this peripheral up to date with all * the currently existing devices. */ xpt_for_all_devices(xptsetasyncfunc, &csa); } if ((status == CAM_REQ_CMP) && (csa.event_enable & AC_PATH_REGISTERED)) { /* * Get this peripheral up to date with all * the currently existing buses. */ xpt_for_all_busses(xptsetasyncbusfunc, &csa); } return (status); } static void xptaction(struct cam_sim *sim, union ccb *work_ccb) { CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); switch (work_ccb->ccb_h.func_code) { /* Common cases first */ case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi; cpi = &work_ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = 0; cpi->target_sprt = 0; cpi->hba_misc = 0; cpi->hba_eng_cnt = 0; cpi->max_target = 0; cpi->max_lun = 0; cpi->initiator_id = 0; strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strlcpy(cpi->hba_vid, "", HBA_IDLEN); strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); cpi->unit_number = sim->unit_number; cpi->bus_id = sim->bus_id; cpi->base_transfer_speed = 0; cpi->protocol = PROTO_UNSPECIFIED; cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; cpi->transport = XPORT_UNSPECIFIED; cpi->transport_version = XPORT_VERSION_UNSPECIFIED; cpi->ccb_h.status = CAM_REQ_CMP; break; } default: work_ccb->ccb_h.status = CAM_REQ_INVALID; break; } xpt_done(work_ccb); } /* * The xpt as a "controller" has no interrupt sources, so polling * is a no-op. */ static void xptpoll(struct cam_sim *sim) { } void xpt_lock_buses(void) { mtx_lock(&xsoftc.xpt_topo_lock); } void xpt_unlock_buses(void) { mtx_unlock(&xsoftc.xpt_topo_lock); } struct mtx * xpt_path_mtx(struct cam_path *path) { return (&path->device->device_mtx); } static void xpt_done_process(struct ccb_hdr *ccb_h) { struct cam_sim *sim = NULL; struct cam_devq *devq = NULL; struct mtx *mtx = NULL; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) struct ccb_scsiio *csio; if (ccb_h->func_code == XPT_SCSI_IO) { csio = &((union ccb *)ccb_h)->csio; if (csio->bio != NULL) biotrack(csio->bio, __func__); } #endif if (ccb_h->flags & CAM_HIGH_POWER) { struct highpowerlist *hphead; struct cam_ed *device; mtx_lock(&xsoftc.xpt_highpower_lock); hphead = &xsoftc.highpowerq; device = STAILQ_FIRST(hphead); /* * Increment the count since this command is done. */ xsoftc.num_highpower++; /* * Any high powered commands queued up? */ if (device != NULL) { STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); mtx_unlock(&xsoftc.xpt_highpower_lock); mtx_lock(&device->sim->devq->send_mtx); xpt_release_devq_device(device, /*count*/1, /*runqueue*/TRUE); mtx_unlock(&device->sim->devq->send_mtx); } else mtx_unlock(&xsoftc.xpt_highpower_lock); } /* * Insulate against a race where the periph is destroyed but CCBs are * still not all processed. This shouldn't happen, but allows us better * bug diagnostic when it does. */ if (ccb_h->path->bus) sim = ccb_h->path->bus->sim; if (ccb_h->status & CAM_RELEASE_SIMQ) { KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request")); xpt_release_simq(sim, /*run_queue*/FALSE); ccb_h->status &= ~CAM_RELEASE_SIMQ; } if ((ccb_h->flags & CAM_DEV_QFRZDIS) && (ccb_h->status & CAM_DEV_QFRZN)) { xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); ccb_h->status &= ~CAM_DEV_QFRZN; } if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { struct cam_ed *dev = ccb_h->path->device; if (sim) devq = sim->devq; KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.", ccb_h, xpt_action_name(ccb_h->func_code))); mtx_lock(&devq->send_mtx); devq->send_active--; devq->send_openings++; cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 && (dev->ccbq.dev_active == 0))) { dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; xpt_release_devq_device(dev, /*count*/1, /*run_queue*/FALSE); } if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; xpt_release_devq_device(dev, /*count*/1, /*run_queue*/FALSE); } if (!device_is_queued(dev)) (void)xpt_schedule_devq(devq, dev); xpt_run_devq(devq); mtx_unlock(&devq->send_mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { mtx = xpt_path_mtx(ccb_h->path); mtx_lock(mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 && (--dev->tag_delay_count == 0)) xpt_start_tags(ccb_h->path); } } if ((ccb_h->flags & CAM_UNLOCKED) == 0) { if (mtx == NULL) { mtx = xpt_path_mtx(ccb_h->path); mtx_lock(mtx); } } else { if (mtx != NULL) { mtx_unlock(mtx); mtx = NULL; } } /* Call the peripheral driver's callback */ ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); if (mtx != NULL) mtx_unlock(mtx); } /* * Parameterize instead and use xpt_done_td? */ static void xpt_async_td(void *arg) { struct cam_doneq *queue = arg; struct ccb_hdr *ccb_h; STAILQ_HEAD(, ccb_hdr) doneq; STAILQ_INIT(&doneq); mtx_lock(&queue->cam_doneq_mtx); while (1) { while (STAILQ_EMPTY(&queue->cam_doneq)) msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, PRIBIO, "-", 0); STAILQ_CONCAT(&doneq, &queue->cam_doneq); mtx_unlock(&queue->cam_doneq_mtx); while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); xpt_done_process(ccb_h); } mtx_lock(&queue->cam_doneq_mtx); } } void xpt_done_td(void *arg) { struct cam_doneq *queue = arg; struct ccb_hdr *ccb_h; STAILQ_HEAD(, ccb_hdr) doneq; STAILQ_INIT(&doneq); mtx_lock(&queue->cam_doneq_mtx); while (1) { while (STAILQ_EMPTY(&queue->cam_doneq)) { queue->cam_doneq_sleep = 1; msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, PRIBIO, "-", 0); queue->cam_doneq_sleep = 0; } STAILQ_CONCAT(&doneq, &queue->cam_doneq); mtx_unlock(&queue->cam_doneq_mtx); THREAD_NO_SLEEPING(); while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); xpt_done_process(ccb_h); } THREAD_SLEEPING_OK(); mtx_lock(&queue->cam_doneq_mtx); } } static void camisr_runqueue(void) { struct ccb_hdr *ccb_h; struct cam_doneq *queue; int i; /* Process global queues. */ for (i = 0; i < cam_num_doneqs; i++) { queue = &cam_doneqs[i]; mtx_lock(&queue->cam_doneq_mtx); while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); mtx_unlock(&queue->cam_doneq_mtx); xpt_done_process(ccb_h); mtx_lock(&queue->cam_doneq_mtx); } mtx_unlock(&queue->cam_doneq_mtx); } } /** * @brief Return the device_t associated with the path * * When a SIM is created, it registers a bus with a NEWBUS device_t. This is * stored in the internal cam_eb bus structure. There is no guarnatee any given * path will have a @c device_t associated with it (it's legal to call @c * xpt_bus_register with a @c NULL @c device_t. * * @param path Path to return the device_t for. */ device_t xpt_path_sim_device(const struct cam_path *path) { return (path->bus->parent_dev); } struct kv { uint32_t v; const char *name; }; static struct kv map[] = { { XPT_NOOP, "XPT_NOOP" }, { XPT_SCSI_IO, "XPT_SCSI_IO" }, { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, { XPT_GDEVLIST, "XPT_GDEVLIST" }, { XPT_PATH_INQ, "XPT_PATH_INQ" }, { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, { XPT_DEBUG, "XPT_DEBUG" }, { XPT_PATH_STATS, "XPT_PATH_STATS" }, { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, { XPT_ASYNC, "XPT_ASYNC" }, { XPT_ABORT, "XPT_ABORT" }, { XPT_RESET_BUS, "XPT_RESET_BUS" }, { XPT_RESET_DEV, "XPT_RESET_DEV" }, { XPT_TERM_IO, "XPT_TERM_IO" }, { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, { XPT_ATA_IO, "XPT_ATA_IO" }, { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, { XPT_NVME_IO, "XPT_NVME_IO" }, { XPT_MMC_IO, "XPT_MMC_IO" }, { XPT_SMP_IO, "XPT_SMP_IO" }, { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, { XPT_ENG_INQ, "XPT_ENG_INQ" }, { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, { XPT_EN_LUN, "XPT_EN_LUN" }, { XPT_TARGET_IO, "XPT_TARGET_IO" }, { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, { 0, 0 } }; const char * xpt_action_name(uint32_t action) { static char buffer[32]; /* Only for unknown messages -- racy */ struct kv *walker = map; while (walker->name != NULL) { if (walker->v == action) return (walker->name); walker++; } snprintf(buffer, sizeof(buffer), "%#x", action); return (buffer); } + +void +xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...) +{ + struct sbuf sbuf; + char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */ + struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN); + va_list ap; + + sbuf_set_drain(sb, sbuf_printf_drain, NULL); + xpt_path_sbuf(path, sb); + va_start(ap, fmt); + sbuf_vprintf(sb, fmt, ap); + va_end(ap); + sbuf_finish(sb); + sbuf_delete(sb); + if (cam_debug_delay != 0) + DELAY(cam_debug_delay); +} + +void +xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...) +{ + struct sbuf sbuf; + char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */ + struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN); + va_list ap; + + sbuf_set_drain(sb, sbuf_printf_drain, NULL); + xpt_device_sbuf(dev, sb); + va_start(ap, fmt); + sbuf_vprintf(sb, fmt, ap); + va_end(ap); + sbuf_finish(sb); + sbuf_delete(sb); + if (cam_debug_delay != 0) + DELAY(cam_debug_delay); +} + +void +xpt_cam_debug(const char *fmt, ...) +{ + struct sbuf sbuf; + char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */ + struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN); + va_list ap; + + sbuf_set_drain(sb, sbuf_printf_drain, NULL); + sbuf_printf(sb, "cam_debug: "); + va_start(ap, fmt); + sbuf_vprintf(sb, fmt, ap); + va_end(ap); + sbuf_finish(sb); + sbuf_delete(sb); + if (cam_debug_delay != 0) + DELAY(cam_debug_delay); +} diff --git a/sys/cam/cam_xpt.h b/sys/cam/cam_xpt.h index 1276dd7b9b2e..3c8d385fe33b 100644 --- a/sys/cam/cam_xpt.h +++ b/sys/cam/cam_xpt.h @@ -1,165 +1,163 @@ /*- * Data structures and definitions for dealing with the * Common Access Method Transport (xpt) layer. * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 1997 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _CAM_CAM_XPT_H #define _CAM_CAM_XPT_H 1 #ifdef _KERNEL -#include #include #endif +#include /* Forward Declarations */ union ccb; struct cam_periph; struct cam_ed; struct cam_sim; -struct sbuf; /* * Definition of a CAM path. Paths are created from bus, target, and lun ids * via xpt_create_path and allow for reference to devices without recurring * lookups in the edt. */ struct cam_path; /* Path functions */ #ifdef _KERNEL /* * Definition of an async handler callback block. These are used to add * SIMs and peripherals to the async callback lists. */ struct async_node { SLIST_ENTRY(async_node) links; uint32_t event_enable; /* Async Event enables */ uint32_t event_lock; /* Take SIM lock for handlers. */ void (*callback)(void *arg, uint32_t code, struct cam_path *path, void *args); void *callback_arg; }; SLIST_HEAD(async_list, async_node); SLIST_HEAD(periph_list, cam_periph); void xpt_action(union ccb *new_ccb); void xpt_action_default(union ccb *new_ccb); union ccb *xpt_alloc_ccb(void); union ccb *xpt_alloc_ccb_nowait(void); void xpt_free_ccb(union ccb *free_ccb); void xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority, uint32_t flags); void xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority); void xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb); cam_status xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id); cam_status xpt_create_path_unlocked(struct cam_path **new_path_ptr, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id); int xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path); void xpt_free_path(struct cam_path *path); void xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref); int xpt_path_comp(struct cam_path *path1, struct cam_path *path2); int xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev); int xpt_path_string(struct cam_path *path, char *str, size_t str_len); int xpt_path_sbuf(struct cam_path *path, struct sbuf *sb); path_id_t xpt_path_path_id(struct cam_path *path); target_id_t xpt_path_target_id(struct cam_path *path); lun_id_t xpt_path_lun_id(struct cam_path *path); struct cam_sim *xpt_path_sim(struct cam_path *path); struct cam_periph *xpt_path_periph(struct cam_path *path); device_t xpt_path_sim_device(const struct cam_path *path); void xpt_print_path(struct cam_path *path); -void xpt_print_device(struct cam_ed *device); void xpt_print(struct cam_path *path, const char *fmt, ...); void xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg); void xpt_rescan(union ccb *ccb); void xpt_hold_boot(void); void xpt_release_boot(void); void xpt_lock_buses(void); void xpt_unlock_buses(void); struct mtx * xpt_path_mtx(struct cam_path *path); #define xpt_path_lock(path) mtx_lock(xpt_path_mtx(path)) #define xpt_path_unlock(path) mtx_unlock(xpt_path_mtx(path)) #define xpt_path_assert(path, what) mtx_assert(xpt_path_mtx(path), (what)) #define xpt_path_owned(path) mtx_owned(xpt_path_mtx(path)) #define xpt_path_sleep(path, chan, priority, wmesg, timo) \ msleep((chan), xpt_path_mtx(path), (priority), (wmesg), (timo)) cam_status xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, struct cam_path *path); cam_status xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id); int xpt_clone_path(struct cam_path **new_path, struct cam_path *path); void xpt_release_path(struct cam_path *path); const char * xpt_action_name(uint32_t action); void xpt_pollwait(union ccb *start_ccb, uint32_t timeout); uint32_t xpt_poll_setup(union ccb *start_ccb); void xpt_sim_poll(struct cam_sim *sim); /* * Perform a path inquiry at the request priority. The bzero may be * unnecessary. */ static inline void xpt_path_inq(struct ccb_pathinq *cpi, struct cam_path *path) { bzero(cpi, sizeof(*cpi)); xpt_setup_ccb(&cpi->ccb_h, path, CAM_PRIORITY_NORMAL); cpi->ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)cpi); } #endif /* _KERNEL */ #endif /* _CAM_CAM_XPT_H */