diff --git a/cmd/arc_summary b/cmd/arc_summary index 6b29a611dab3..426e0207052d 100755 --- a/cmd/arc_summary +++ b/cmd/arc_summary @@ -1,1069 +1,1034 @@ #!/usr/bin/env python3 # # Copyright (c) 2008 Ben Rockwood , # Copyright (c) 2010 Martin Matuska , # Copyright (c) 2010-2011 Jason J. Hellenthal , # Copyright (c) 2017 Scot W. Stevenson # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. """Print statistics on the ZFS ARC Cache and other information Provides basic information on the ARC, its efficiency, the L2ARC (if present), the Data Management Unit (DMU), Virtual Devices (VDEVs), and tunables. See the in-source documentation and code at https://github.com/openzfs/zfs/blob/master/module/zfs/arc.c for details. The original introduction to arc_summary can be found at http://cuddletech.com/?p=454 """ import argparse import os import subprocess import sys import time import errno # We can't use env -S portably, and we need python3 -u to handle pipes in # the shell abruptly closing the way we want to, so... import io if isinstance(sys.__stderr__.buffer, io.BufferedWriter): os.execv(sys.executable, [sys.executable, "-u"] + sys.argv) DESCRIPTION = 'Print ARC and other statistics for OpenZFS' INDENT = ' '*8 LINE_LENGTH = 72 DATE_FORMAT = '%a %b %d %H:%M:%S %Y' TITLE = 'ZFS Subsystem Report' SECTIONS = 'arc archits dmu l2arc spl tunables vdev zil'.split() SECTION_HELP = 'print info from one section ('+' '.join(SECTIONS)+')' # Tunables and SPL are handled separately because they come from # different sources SECTION_PATHS = {'arc': 'arcstats', 'dmu': 'dmu_tx', 'l2arc': 'arcstats', # L2ARC stuff lives in arcstats - 'vdev': 'vdev_cache_stats', 'zfetch': 'zfetchstats', 'zil': 'zil'} parser = argparse.ArgumentParser(description=DESCRIPTION) parser.add_argument('-a', '--alternate', action='store_true', default=False, help='use alternate formatting for tunables and SPL', dest='alt') parser.add_argument('-d', '--description', action='store_true', default=False, help='print descriptions with tunables and SPL', dest='desc') parser.add_argument('-g', '--graph', action='store_true', default=False, help='print graph on ARC use and exit', dest='graph') parser.add_argument('-p', '--page', type=int, dest='page', help='print page by number (DEPRECATED, use "-s")') parser.add_argument('-r', '--raw', action='store_true', default=False, help='dump all available data with minimal formatting', dest='raw') parser.add_argument('-s', '--section', dest='section', help=SECTION_HELP) ARGS = parser.parse_args() if sys.platform.startswith('freebsd'): # Requires py36-sysctl on FreeBSD import sysctl - VDEV_CACHE_SIZE = 'vdev.cache_size' - def is_value(ctl): return ctl.type != sysctl.CTLTYPE_NODE def namefmt(ctl, base='vfs.zfs.'): # base is removed from the name cut = len(base) return ctl.name[cut:] def load_kstats(section): base = 'kstat.zfs.misc.{section}.'.format(section=section) fmt = lambda kstat: '{name} : {value}'.format(name=namefmt(kstat, base), value=kstat.value) kstats = sysctl.filter(base) return [fmt(kstat) for kstat in kstats if is_value(kstat)] def get_params(base): ctls = sysctl.filter(base) return {namefmt(ctl): str(ctl.value) for ctl in ctls if is_value(ctl)} def get_tunable_params(): return get_params('vfs.zfs') def get_vdev_params(): return get_params('vfs.zfs.vdev') def get_version_impl(request): # FreeBSD reports versions for zpl and spa instead of zfs and spl. name = {'zfs': 'zpl', 'spl': 'spa'}[request] mib = 'vfs.zfs.version.{}'.format(name) version = sysctl.filter(mib)[0].value return '{} version {}'.format(name, version) def get_descriptions(_request): ctls = sysctl.filter('vfs.zfs') return {namefmt(ctl): ctl.description for ctl in ctls if is_value(ctl)} elif sys.platform.startswith('linux'): KSTAT_PATH = '/proc/spl/kstat/zfs' SPL_PATH = '/sys/module/spl/parameters' TUNABLES_PATH = '/sys/module/zfs/parameters' - VDEV_CACHE_SIZE = 'zfs_vdev_cache_size' - def load_kstats(section): path = os.path.join(KSTAT_PATH, section) with open(path) as f: return list(f)[2:] # Get rid of header def get_params(basepath): """Collect information on the Solaris Porting Layer (SPL) or the tunables, depending on the PATH given. Does not check if PATH is legal. """ result = {} for name in os.listdir(basepath): path = os.path.join(basepath, name) with open(path) as f: value = f.read() result[name] = value.strip() return result def get_spl_params(): return get_params(SPL_PATH) def get_tunable_params(): return get_params(TUNABLES_PATH) def get_vdev_params(): return get_params(TUNABLES_PATH) def get_version_impl(request): # The original arc_summary called /sbin/modinfo/{spl,zfs} to get # the version information. We switch to /sys/module/{spl,zfs}/version # to make sure we get what is really loaded in the kernel try: with open("/sys/module/{}/version".format(request)) as f: return f.read().strip() except: return "(unknown)" def get_descriptions(request): """Get the descriptions of the Solaris Porting Layer (SPL) or the tunables, return with minimal formatting. """ if request not in ('spl', 'zfs'): print('ERROR: description of "{0}" requested)'.format(request)) sys.exit(1) descs = {} target_prefix = 'parm:' # We would prefer to do this with /sys/modules -- see the discussion at # get_version() -- but there isn't a way to get the descriptions from # there, so we fall back on modinfo command = ["/sbin/modinfo", request, "-0"] info = '' try: info = subprocess.run(command, stdout=subprocess.PIPE, check=True, universal_newlines=True) raw_output = info.stdout.split('\0') except subprocess.CalledProcessError: print("Error: Descriptions not available", "(can't access kernel module)") sys.exit(1) for line in raw_output: if not line.startswith(target_prefix): continue line = line[len(target_prefix):].strip() name, raw_desc = line.split(':', 1) desc = raw_desc.rsplit('(', 1)[0] if desc == '': desc = '(No description found)' descs[name.strip()] = desc.strip() return descs def handle_unraisableException(exc_type, exc_value=None, exc_traceback=None, err_msg=None, object=None): handle_Exception(exc_type, object, exc_traceback) def handle_Exception(ex_cls, ex, tb): if ex_cls is KeyboardInterrupt: sys.exit() if ex_cls is BrokenPipeError: # It turns out that while sys.exit() triggers an exception # not handled message on Python 3.8+, os._exit() does not. os._exit(0) if ex_cls is OSError: if ex.errno == errno.ENOTCONN: sys.exit() raise ex if hasattr(sys,'unraisablehook'): # Python 3.8+ sys.unraisablehook = handle_unraisableException sys.excepthook = handle_Exception def cleanup_line(single_line): """Format a raw line of data from /proc and isolate the name value part, returning a tuple with each. Currently, this gets rid of the middle '4'. For example "arc_no_grow 4 0" returns the tuple ("arc_no_grow", "0"). """ name, _, value = single_line.split() return name, value def draw_graph(kstats_dict): """Draw a primitive graph representing the basic information on the ARC -- its size and the proportion used by MFU and MRU -- and quit. We use max size of the ARC to calculate how full it is. This is a very rough representation. """ arc_stats = isolate_section('arcstats', kstats_dict) GRAPH_INDENT = ' '*4 GRAPH_WIDTH = 60 arc_size = f_bytes(arc_stats['size']) arc_perc = f_perc(arc_stats['size'], arc_stats['c_max']) mfu_size = f_bytes(arc_stats['mfu_size']) mru_size = f_bytes(arc_stats['mru_size']) meta_size = f_bytes(arc_stats['arc_meta_used']) dnode_limit = f_bytes(arc_stats['arc_dnode_limit']) dnode_size = f_bytes(arc_stats['dnode_size']) info_form = ('ARC: {0} ({1}) MFU: {2} MRU: {3} META: {4} ' 'DNODE {5} ({6})') info_line = info_form.format(arc_size, arc_perc, mfu_size, mru_size, meta_size, dnode_size, dnode_limit) info_spc = ' '*int((GRAPH_WIDTH-len(info_line))/2) info_line = GRAPH_INDENT+info_spc+info_line graph_line = GRAPH_INDENT+'+'+('-'*(GRAPH_WIDTH-2))+'+' mfu_perc = float(int(arc_stats['mfu_size'])/int(arc_stats['c_max'])) mru_perc = float(int(arc_stats['mru_size'])/int(arc_stats['c_max'])) arc_perc = float(int(arc_stats['size'])/int(arc_stats['c_max'])) total_ticks = float(arc_perc)*GRAPH_WIDTH mfu_ticks = mfu_perc*GRAPH_WIDTH mru_ticks = mru_perc*GRAPH_WIDTH other_ticks = total_ticks-(mfu_ticks+mru_ticks) core_form = 'F'*int(mfu_ticks)+'R'*int(mru_ticks)+'O'*int(other_ticks) core_spc = ' '*(GRAPH_WIDTH-(2+len(core_form))) core_line = GRAPH_INDENT+'|'+core_form+core_spc+'|' for line in ('', info_line, graph_line, core_line, graph_line, ''): print(line) def f_bytes(byte_string): """Return human-readable representation of a byte value in powers of 2 (eg "KiB" for "kibibytes", etc) to two decimal points. Values smaller than one KiB are returned without decimal points. Note "bytes" is a reserved keyword. """ prefixes = ([2**80, "YiB"], # yobibytes (yotta) [2**70, "ZiB"], # zebibytes (zetta) [2**60, "EiB"], # exbibytes (exa) [2**50, "PiB"], # pebibytes (peta) [2**40, "TiB"], # tebibytes (tera) [2**30, "GiB"], # gibibytes (giga) [2**20, "MiB"], # mebibytes (mega) [2**10, "KiB"]) # kibibytes (kilo) bites = int(byte_string) if bites >= 2**10: for limit, unit in prefixes: if bites >= limit: value = bites / limit break result = '{0:.1f} {1}'.format(value, unit) else: result = '{0} Bytes'.format(bites) return result def f_hits(hits_string): """Create a human-readable representation of the number of hits. The single-letter symbols used are SI to avoid the confusion caused by the different "short scale" and "long scale" representations in English, which use the same words for different values. See https://en.wikipedia.org/wiki/Names_of_large_numbers and: https://physics.nist.gov/cuu/Units/prefixes.html """ numbers = ([10**24, 'Y'], # yotta (septillion) [10**21, 'Z'], # zetta (sextillion) [10**18, 'E'], # exa (quintrillion) [10**15, 'P'], # peta (quadrillion) [10**12, 'T'], # tera (trillion) [10**9, 'G'], # giga (billion) [10**6, 'M'], # mega (million) [10**3, 'k']) # kilo (thousand) hits = int(hits_string) if hits >= 1000: for limit, symbol in numbers: if hits >= limit: value = hits/limit break result = "%0.1f%s" % (value, symbol) else: result = "%d" % hits return result def f_perc(value1, value2): """Calculate percentage and return in human-readable form. If rounding produces the result '0.0' though the first number is not zero, include a 'less-than' symbol to avoid confusion. Division by zero is handled by returning 'n/a'; no error is called. """ v1 = float(value1) v2 = float(value2) try: perc = 100 * v1/v2 except ZeroDivisionError: result = 'n/a' else: result = '{0:0.1f} %'.format(perc) if result == '0.0 %' and v1 > 0: result = '< 0.1 %' return result def format_raw_line(name, value): """For the --raw option for the tunable and SPL outputs, decide on the correct formatting based on the --alternate flag. """ if ARGS.alt: result = '{0}{1}={2}'.format(INDENT, name, value) else: # Right-align the value within the line length if it fits, # otherwise just separate it from the name by a single space. fit = LINE_LENGTH - len(INDENT) - len(name) overflow = len(value) + 1 w = max(fit, overflow) result = '{0}{1}{2:>{w}}'.format(INDENT, name, value, w=w) return result def get_kstats(): """Collect information on the ZFS subsystem. The step does not perform any further processing, giving us the option to only work on what is actually needed. The name "kstat" is a holdover from the Solaris utility of the same name. """ result = {} for section in SECTION_PATHS.values(): if section not in result: result[section] = load_kstats(section) return result def get_version(request): """Get the version number of ZFS or SPL on this machine for header. Returns an error string, but does not raise an error, if we can't get the ZFS/SPL version. """ if request not in ('spl', 'zfs'): error_msg = '(ERROR: "{0}" requested)'.format(request) return error_msg return get_version_impl(request) def print_header(): """Print the initial heading with date and time as well as info on the kernel and ZFS versions. This is not called for the graph. """ # datetime is now recommended over time but we keep the exact formatting # from the older version of arc_summary in case there are scripts # that expect it in this way daydate = time.strftime(DATE_FORMAT) spc_date = LINE_LENGTH-len(daydate) sys_version = os.uname() sys_msg = sys_version.sysname+' '+sys_version.release zfs = get_version('zfs') spc_zfs = LINE_LENGTH-len(zfs) machine_msg = 'Machine: '+sys_version.nodename+' ('+sys_version.machine+')' spl = get_version('spl') spc_spl = LINE_LENGTH-len(spl) print('\n'+('-'*LINE_LENGTH)) print('{0:<{spc}}{1}'.format(TITLE, daydate, spc=spc_date)) print('{0:<{spc}}{1}'.format(sys_msg, zfs, spc=spc_zfs)) print('{0:<{spc}}{1}\n'.format(machine_msg, spl, spc=spc_spl)) def print_raw(kstats_dict): """Print all available data from the system in a minimally sorted format. This can be used as a source to be piped through 'grep'. """ sections = sorted(kstats_dict.keys()) for section in sections: print('\n{0}:'.format(section.upper())) lines = sorted(kstats_dict[section]) for line in lines: name, value = cleanup_line(line) print(format_raw_line(name, value)) # Tunables and SPL must be handled separately because they come from a # different source and have descriptions the user might request print() section_spl() section_tunables() def isolate_section(section_name, kstats_dict): """From the complete information on all sections, retrieve only those for one section. """ try: section_data = kstats_dict[section_name] except KeyError: print('ERROR: Data on {0} not available'.format(section_data)) sys.exit(1) section_dict = dict(cleanup_line(l) for l in section_data) return section_dict # Formatted output helper functions def prt_1(text, value): """Print text and one value, no indent""" spc = ' '*(LINE_LENGTH-(len(text)+len(value))) print('{0}{spc}{1}'.format(text, value, spc=spc)) def prt_i1(text, value): """Print text and one value, with indent""" spc = ' '*(LINE_LENGTH-(len(INDENT)+len(text)+len(value))) print(INDENT+'{0}{spc}{1}'.format(text, value, spc=spc)) def prt_2(text, value1, value2): """Print text and two values, no indent""" values = '{0:>9} {1:>9}'.format(value1, value2) spc = ' '*(LINE_LENGTH-(len(text)+len(values)+2)) print('{0}{spc} {1}'.format(text, values, spc=spc)) def prt_i2(text, value1, value2): """Print text and two values, with indent""" values = '{0:>9} {1:>9}'.format(value1, value2) spc = ' '*(LINE_LENGTH-(len(INDENT)+len(text)+len(values)+2)) print(INDENT+'{0}{spc} {1}'.format(text, values, spc=spc)) # The section output concentrates on important parameters instead of # being exhaustive (that is what the --raw parameter is for) def section_arc(kstats_dict): """Give basic information on the ARC, MRU and MFU. This is the first and most used section. """ arc_stats = isolate_section('arcstats', kstats_dict) throttle = arc_stats['memory_throttle_count'] if throttle == '0': health = 'HEALTHY' else: health = 'THROTTLED' prt_1('ARC status:', health) prt_i1('Memory throttle count:', throttle) print() arc_size = arc_stats['size'] arc_target_size = arc_stats['c'] arc_max = arc_stats['c_max'] arc_min = arc_stats['c_min'] meta = arc_stats['meta'] pd = arc_stats['pd'] pm = arc_stats['pm'] anon_data = arc_stats['anon_data'] anon_metadata = arc_stats['anon_metadata'] mfu_data = arc_stats['mfu_data'] mfu_metadata = arc_stats['mfu_metadata'] mru_data = arc_stats['mru_data'] mru_metadata = arc_stats['mru_metadata'] mfug_data = arc_stats['mfu_ghost_data'] mfug_metadata = arc_stats['mfu_ghost_metadata'] mrug_data = arc_stats['mru_ghost_data'] mrug_metadata = arc_stats['mru_ghost_metadata'] unc_data = arc_stats['uncached_data'] unc_metadata = arc_stats['uncached_metadata'] bonus_size = arc_stats['bonus_size'] dnode_limit = arc_stats['arc_dnode_limit'] dnode_size = arc_stats['dnode_size'] dbuf_size = arc_stats['dbuf_size'] hdr_size = arc_stats['hdr_size'] l2_hdr_size = arc_stats['l2_hdr_size'] abd_chunk_waste_size = arc_stats['abd_chunk_waste_size'] target_size_ratio = '{0}:1'.format(int(arc_max) // int(arc_min)) prt_2('ARC size (current):', f_perc(arc_size, arc_max), f_bytes(arc_size)) prt_i2('Target size (adaptive):', f_perc(arc_target_size, arc_max), f_bytes(arc_target_size)) prt_i2('Min size (hard limit):', f_perc(arc_min, arc_max), f_bytes(arc_min)) prt_i2('Max size (high water):', target_size_ratio, f_bytes(arc_max)) caches_size = int(anon_data)+int(anon_metadata)+\ int(mfu_data)+int(mfu_metadata)+int(mru_data)+int(mru_metadata)+\ int(unc_data)+int(unc_metadata) prt_i2('Anonymous data size:', f_perc(anon_data, caches_size), f_bytes(anon_data)) prt_i2('Anonymous metadata size:', f_perc(anon_metadata, caches_size), f_bytes(anon_metadata)) s = 4294967296 v = (s-int(pd))*(s-int(meta))/s prt_i2('MFU data target:', f_perc(v, s), f_bytes(v / 65536 * caches_size / 65536)) prt_i2('MFU data size:', f_perc(mfu_data, caches_size), f_bytes(mfu_data)) prt_i1('MFU ghost data size:', f_bytes(mfug_data)) v = (s-int(pm))*int(meta)/s prt_i2('MFU metadata target:', f_perc(v, s), f_bytes(v / 65536 * caches_size / 65536)) prt_i2('MFU metadata size:', f_perc(mfu_metadata, caches_size), f_bytes(mfu_metadata)) prt_i1('MFU ghost metadata size:', f_bytes(mfug_metadata)) v = int(pd)*(s-int(meta))/s prt_i2('MRU data target:', f_perc(v, s), f_bytes(v / 65536 * caches_size / 65536)) prt_i2('MRU data size:', f_perc(mru_data, caches_size), f_bytes(mru_data)) prt_i1('MRU ghost data size:', f_bytes(mrug_data)) v = int(pm)*int(meta)/s prt_i2('MRU metadata target:', f_perc(v, s), f_bytes(v / 65536 * caches_size / 65536)) prt_i2('MRU metadata size:', f_perc(mru_metadata, caches_size), f_bytes(mru_metadata)) prt_i1('MRU ghost metadata size:', f_bytes(mrug_metadata)) prt_i2('Uncached data size:', f_perc(unc_data, caches_size), f_bytes(unc_data)) prt_i2('Uncached metadata size:', f_perc(unc_metadata, caches_size), f_bytes(unc_metadata)) prt_i2('Bonus size:', f_perc(bonus_size, arc_size), f_bytes(bonus_size)) prt_i2('Dnode cache target:', f_perc(dnode_limit, arc_max), f_bytes(dnode_limit)) prt_i2('Dnode cache size:', f_perc(dnode_size, dnode_limit), f_bytes(dnode_size)) prt_i2('Dbuf size:', f_perc(dbuf_size, arc_size), f_bytes(dbuf_size)) prt_i2('Header size:', f_perc(hdr_size, arc_size), f_bytes(hdr_size)) prt_i2('L2 header size:', f_perc(l2_hdr_size, arc_size), f_bytes(l2_hdr_size)) prt_i2('ABD chunk waste size:', f_perc(abd_chunk_waste_size, arc_size), f_bytes(abd_chunk_waste_size)) print() print('ARC hash breakdown:') prt_i1('Elements max:', f_hits(arc_stats['hash_elements_max'])) prt_i2('Elements current:', f_perc(arc_stats['hash_elements'], arc_stats['hash_elements_max']), f_hits(arc_stats['hash_elements'])) prt_i1('Collisions:', f_hits(arc_stats['hash_collisions'])) prt_i1('Chain max:', f_hits(arc_stats['hash_chain_max'])) prt_i1('Chains:', f_hits(arc_stats['hash_chains'])) print() print('ARC misc:') prt_i1('Deleted:', f_hits(arc_stats['deleted'])) prt_i1('Mutex misses:', f_hits(arc_stats['mutex_miss'])) prt_i1('Eviction skips:', f_hits(arc_stats['evict_skip'])) prt_i1('Eviction skips due to L2 writes:', f_hits(arc_stats['evict_l2_skip'])) prt_i1('L2 cached evictions:', f_bytes(arc_stats['evict_l2_cached'])) prt_i1('L2 eligible evictions:', f_bytes(arc_stats['evict_l2_eligible'])) prt_i2('L2 eligible MFU evictions:', f_perc(arc_stats['evict_l2_eligible_mfu'], arc_stats['evict_l2_eligible']), f_bytes(arc_stats['evict_l2_eligible_mfu'])) prt_i2('L2 eligible MRU evictions:', f_perc(arc_stats['evict_l2_eligible_mru'], arc_stats['evict_l2_eligible']), f_bytes(arc_stats['evict_l2_eligible_mru'])) prt_i1('L2 ineligible evictions:', f_bytes(arc_stats['evict_l2_ineligible'])) print() def section_archits(kstats_dict): """Print information on how the caches are accessed ("arc hits"). """ arc_stats = isolate_section('arcstats', kstats_dict) all_accesses = int(arc_stats['hits'])+int(arc_stats['iohits'])+\ int(arc_stats['misses']) prt_1('ARC total accesses:', f_hits(all_accesses)) ta_todo = (('Total hits:', arc_stats['hits']), ('Total I/O hits:', arc_stats['iohits']), ('Total misses:', arc_stats['misses'])) for title, value in ta_todo: prt_i2(title, f_perc(value, all_accesses), f_hits(value)) print() dd_total = int(arc_stats['demand_data_hits']) +\ int(arc_stats['demand_data_iohits']) +\ int(arc_stats['demand_data_misses']) prt_2('ARC demand data accesses:', f_perc(dd_total, all_accesses), f_hits(dd_total)) dd_todo = (('Demand data hits:', arc_stats['demand_data_hits']), ('Demand data I/O hits:', arc_stats['demand_data_iohits']), ('Demand data misses:', arc_stats['demand_data_misses'])) for title, value in dd_todo: prt_i2(title, f_perc(value, dd_total), f_hits(value)) print() dm_total = int(arc_stats['demand_metadata_hits']) +\ int(arc_stats['demand_metadata_iohits']) +\ int(arc_stats['demand_metadata_misses']) prt_2('ARC demand metadata accesses:', f_perc(dm_total, all_accesses), f_hits(dm_total)) dm_todo = (('Demand metadata hits:', arc_stats['demand_metadata_hits']), ('Demand metadata I/O hits:', arc_stats['demand_metadata_iohits']), ('Demand metadata misses:', arc_stats['demand_metadata_misses'])) for title, value in dm_todo: prt_i2(title, f_perc(value, dm_total), f_hits(value)) print() pd_total = int(arc_stats['prefetch_data_hits']) +\ int(arc_stats['prefetch_data_iohits']) +\ int(arc_stats['prefetch_data_misses']) prt_2('ARC prefetch metadata accesses:', f_perc(pd_total, all_accesses), f_hits(pd_total)) pd_todo = (('Prefetch data hits:', arc_stats['prefetch_data_hits']), ('Prefetch data I/O hits:', arc_stats['prefetch_data_iohits']), ('Prefetch data misses:', arc_stats['prefetch_data_misses'])) for title, value in pd_todo: prt_i2(title, f_perc(value, pd_total), f_hits(value)) print() pm_total = int(arc_stats['prefetch_metadata_hits']) +\ int(arc_stats['prefetch_metadata_iohits']) +\ int(arc_stats['prefetch_metadata_misses']) prt_2('ARC prefetch metadata accesses:', f_perc(pm_total, all_accesses), f_hits(pm_total)) pm_todo = (('Prefetch metadata hits:', arc_stats['prefetch_metadata_hits']), ('Prefetch metadata I/O hits:', arc_stats['prefetch_metadata_iohits']), ('Prefetch metadata misses:', arc_stats['prefetch_metadata_misses'])) for title, value in pm_todo: prt_i2(title, f_perc(value, pm_total), f_hits(value)) print() all_prefetches = int(arc_stats['predictive_prefetch'])+\ int(arc_stats['prescient_prefetch']) prt_2('ARC predictive prefetches:', f_perc(arc_stats['predictive_prefetch'], all_prefetches), f_hits(arc_stats['predictive_prefetch'])) prt_i2('Demand hits after predictive:', f_perc(arc_stats['demand_hit_predictive_prefetch'], arc_stats['predictive_prefetch']), f_hits(arc_stats['demand_hit_predictive_prefetch'])) prt_i2('Demand I/O hits after predictive:', f_perc(arc_stats['demand_iohit_predictive_prefetch'], arc_stats['predictive_prefetch']), f_hits(arc_stats['demand_iohit_predictive_prefetch'])) never = int(arc_stats['predictive_prefetch']) -\ int(arc_stats['demand_hit_predictive_prefetch']) -\ int(arc_stats['demand_iohit_predictive_prefetch']) prt_i2('Never demanded after predictive:', f_perc(never, arc_stats['predictive_prefetch']), f_hits(never)) print() prt_2('ARC prescient prefetches:', f_perc(arc_stats['prescient_prefetch'], all_prefetches), f_hits(arc_stats['prescient_prefetch'])) prt_i2('Demand hits after prescient:', f_perc(arc_stats['demand_hit_prescient_prefetch'], arc_stats['prescient_prefetch']), f_hits(arc_stats['demand_hit_prescient_prefetch'])) prt_i2('Demand I/O hits after prescient:', f_perc(arc_stats['demand_iohit_prescient_prefetch'], arc_stats['prescient_prefetch']), f_hits(arc_stats['demand_iohit_prescient_prefetch'])) never = int(arc_stats['prescient_prefetch'])-\ int(arc_stats['demand_hit_prescient_prefetch'])-\ int(arc_stats['demand_iohit_prescient_prefetch']) prt_i2('Never demanded after prescient:', f_perc(never, arc_stats['prescient_prefetch']), f_hits(never)) print() print('ARC states hits of all accesses:') cl_todo = (('Most frequently used (MFU):', arc_stats['mfu_hits']), ('Most recently used (MRU):', arc_stats['mru_hits']), ('Most frequently used (MFU) ghost:', arc_stats['mfu_ghost_hits']), ('Most recently used (MRU) ghost:', arc_stats['mru_ghost_hits']), ('Uncached:', arc_stats['uncached_hits'])) for title, value in cl_todo: prt_i2(title, f_perc(value, all_accesses), f_hits(value)) print() def section_dmu(kstats_dict): """Collect information on the DMU""" zfetch_stats = isolate_section('zfetchstats', kstats_dict) zfetch_access_total = int(zfetch_stats['hits'])+int(zfetch_stats['misses']) prt_1('DMU predictive prefetcher calls:', f_hits(zfetch_access_total)) prt_i2('Stream hits:', f_perc(zfetch_stats['hits'], zfetch_access_total), f_hits(zfetch_stats['hits'])) prt_i2('Stream misses:', f_perc(zfetch_stats['misses'], zfetch_access_total), f_hits(zfetch_stats['misses'])) prt_i2('Streams limit reached:', f_perc(zfetch_stats['max_streams'], zfetch_stats['misses']), f_hits(zfetch_stats['max_streams'])) prt_i1('Prefetches issued', f_hits(zfetch_stats['io_issued'])) print() def section_l2arc(kstats_dict): """Collect information on L2ARC device if present. If not, tell user that we're skipping the section. """ # The L2ARC statistics live in the same section as the normal ARC stuff arc_stats = isolate_section('arcstats', kstats_dict) if arc_stats['l2_size'] == '0': print('L2ARC not detected, skipping section\n') return l2_errors = int(arc_stats['l2_writes_error']) +\ int(arc_stats['l2_cksum_bad']) +\ int(arc_stats['l2_io_error']) l2_access_total = int(arc_stats['l2_hits'])+int(arc_stats['l2_misses']) health = 'HEALTHY' if l2_errors > 0: health = 'DEGRADED' prt_1('L2ARC status:', health) l2_todo = (('Low memory aborts:', 'l2_abort_lowmem'), ('Free on write:', 'l2_free_on_write'), ('R/W clashes:', 'l2_rw_clash'), ('Bad checksums:', 'l2_cksum_bad'), ('Read errors:', 'l2_io_error'), ('Write errors:', 'l2_writes_error')) for title, value in l2_todo: prt_i1(title, f_hits(arc_stats[value])) print() prt_1('L2ARC size (adaptive):', f_bytes(arc_stats['l2_size'])) prt_i2('Compressed:', f_perc(arc_stats['l2_asize'], arc_stats['l2_size']), f_bytes(arc_stats['l2_asize'])) prt_i2('Header size:', f_perc(arc_stats['l2_hdr_size'], arc_stats['l2_size']), f_bytes(arc_stats['l2_hdr_size'])) prt_i2('MFU allocated size:', f_perc(arc_stats['l2_mfu_asize'], arc_stats['l2_asize']), f_bytes(arc_stats['l2_mfu_asize'])) prt_i2('MRU allocated size:', f_perc(arc_stats['l2_mru_asize'], arc_stats['l2_asize']), f_bytes(arc_stats['l2_mru_asize'])) prt_i2('Prefetch allocated size:', f_perc(arc_stats['l2_prefetch_asize'], arc_stats['l2_asize']), f_bytes(arc_stats['l2_prefetch_asize'])) prt_i2('Data (buffer content) allocated size:', f_perc(arc_stats['l2_bufc_data_asize'], arc_stats['l2_asize']), f_bytes(arc_stats['l2_bufc_data_asize'])) prt_i2('Metadata (buffer content) allocated size:', f_perc(arc_stats['l2_bufc_metadata_asize'], arc_stats['l2_asize']), f_bytes(arc_stats['l2_bufc_metadata_asize'])) print() prt_1('L2ARC breakdown:', f_hits(l2_access_total)) prt_i2('Hit ratio:', f_perc(arc_stats['l2_hits'], l2_access_total), f_hits(arc_stats['l2_hits'])) prt_i2('Miss ratio:', f_perc(arc_stats['l2_misses'], l2_access_total), f_hits(arc_stats['l2_misses'])) print() print('L2ARC I/O:') prt_i2('Reads:', f_bytes(arc_stats['l2_read_bytes']), f_hits(arc_stats['l2_hits'])) prt_i2('Writes:', f_bytes(arc_stats['l2_write_bytes']), f_hits(arc_stats['l2_writes_sent'])) print() print('L2ARC evicts:') prt_i1('L1 cached:', f_hits(arc_stats['l2_evict_l1cached'])) prt_i1('While reading:', f_hits(arc_stats['l2_evict_reading'])) print() def section_spl(*_): """Print the SPL parameters, if requested with alternative format and/or descriptions. This does not use kstats. """ if sys.platform.startswith('freebsd'): # No SPL support in FreeBSD return spls = get_spl_params() keylist = sorted(spls.keys()) print('Solaris Porting Layer (SPL):') if ARGS.desc: descriptions = get_descriptions('spl') for key in keylist: value = spls[key] if ARGS.desc: try: print(INDENT+'#', descriptions[key]) except KeyError: print(INDENT+'# (No description found)') # paranoid print(format_raw_line(key, value)) print() def section_tunables(*_): """Print the tunables, if requested with alternative format and/or descriptions. This does not use kstasts. """ tunables = get_tunable_params() keylist = sorted(tunables.keys()) print('Tunables:') if ARGS.desc: descriptions = get_descriptions('zfs') for key in keylist: value = tunables[key] if ARGS.desc: try: print(INDENT+'#', descriptions[key]) except KeyError: print(INDENT+'# (No description found)') # paranoid print(format_raw_line(key, value)) print() -def section_vdev(kstats_dict): - """Collect information on VDEV caches""" - - # Currently [Nov 2017] the VDEV cache is disabled, because it is actually - # harmful. When this is the case, we just skip the whole entry. See - # https://github.com/openzfs/zfs/blob/master/module/zfs/vdev_cache.c - # for details - tunables = get_vdev_params() - - if tunables[VDEV_CACHE_SIZE] == '0': - print('VDEV cache disabled, skipping section\n') - return - - vdev_stats = isolate_section('vdev_cache_stats', kstats_dict) - - vdev_cache_total = int(vdev_stats['hits']) +\ - int(vdev_stats['misses']) +\ - int(vdev_stats['delegations']) - - prt_1('VDEV cache summary:', f_hits(vdev_cache_total)) - prt_i2('Hit ratio:', f_perc(vdev_stats['hits'], vdev_cache_total), - f_hits(vdev_stats['hits'])) - prt_i2('Miss ratio:', f_perc(vdev_stats['misses'], vdev_cache_total), - f_hits(vdev_stats['misses'])) - prt_i2('Delegations:', f_perc(vdev_stats['delegations'], vdev_cache_total), - f_hits(vdev_stats['delegations'])) - print() - - def section_zil(kstats_dict): """Collect information on the ZFS Intent Log. Some of the information taken from https://github.com/openzfs/zfs/blob/master/include/sys/zil.h """ zil_stats = isolate_section('zil', kstats_dict) prt_1('ZIL committed transactions:', f_hits(zil_stats['zil_itx_count'])) prt_i1('Commit requests:', f_hits(zil_stats['zil_commit_count'])) prt_i1('Flushes to stable storage:', f_hits(zil_stats['zil_commit_writer_count'])) prt_i2('Transactions to SLOG storage pool:', f_bytes(zil_stats['zil_itx_metaslab_slog_bytes']), f_hits(zil_stats['zil_itx_metaslab_slog_count'])) prt_i2('Transactions to non-SLOG storage pool:', f_bytes(zil_stats['zil_itx_metaslab_normal_bytes']), f_hits(zil_stats['zil_itx_metaslab_normal_count'])) print() section_calls = {'arc': section_arc, 'archits': section_archits, 'dmu': section_dmu, 'l2arc': section_l2arc, 'spl': section_spl, 'tunables': section_tunables, - 'vdev': section_vdev, 'zil': section_zil} def main(): """Run program. The options to draw a graph and to print all data raw are treated separately because they come with their own call. """ kstats = get_kstats() if ARGS.graph: draw_graph(kstats) sys.exit(0) print_header() if ARGS.raw: print_raw(kstats) elif ARGS.section: try: section_calls[ARGS.section](kstats) except KeyError: print('Error: Section "{0}" unknown'.format(ARGS.section)) sys.exit(1) elif ARGS.page: print('WARNING: Pages are deprecated, please use "--section"\n') pages_to_calls = {1: 'arc', 2: 'archits', 3: 'l2arc', 4: 'dmu', 5: 'vdev', 6: 'tunables'} try: call = pages_to_calls[ARGS.page] except KeyError: print('Error: Page "{0}" not supported'.format(ARGS.page)) sys.exit(1) else: section_calls[call](kstats) else: # If no parameters were given, we print all sections. We might want to # change the sequence by hand calls = sorted(section_calls.keys()) for section in calls: section_calls[section](kstats) sys.exit(0) if __name__ == '__main__': main() diff --git a/cmd/zdb/zdb.c b/cmd/zdb/zdb.c index 105d36882291..04a10c4eedd7 100644 --- a/cmd/zdb/zdb.c +++ b/cmd/zdb/zdb.c @@ -1,9339 +1,9338 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2019 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Nexenta Systems, Inc. * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. * Copyright (c) 2015, 2017, Intel Corporation. * Copyright (c) 2020 Datto Inc. * Copyright (c) 2020, The FreeBSD Foundation [1] * * [1] Portions of this software were developed by Allan Jude * under sponsorship from the FreeBSD Foundation. * Copyright (c) 2021 Allan Jude * Copyright (c) 2021 Toomas Soome * Copyright (c) 2023, Klara Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zdb.h" #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ zio_compress_table[(idx)].ci_name : "UNKNOWN") #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ zio_checksum_table[(idx)].ci_name : "UNKNOWN") #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \ DMU_OT_ZAP_OTHER : \ (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \ DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES) /* Some platforms require part of inode IDs to be remapped */ #ifdef __APPLE__ #define ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2) #else #define ZDB_MAP_OBJECT_ID(obj) (obj) #endif static const char * zdb_ot_name(dmu_object_type_t type) { if (type < DMU_OT_NUMTYPES) return (dmu_ot[type].ot_name); else if ((type & DMU_OT_NEWTYPE) && ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS)) return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name); else return ("UNKNOWN"); } extern int reference_tracking_enable; extern int zfs_recover; extern uint_t zfs_vdev_async_read_max_active; extern boolean_t spa_load_verify_dryrun; extern boolean_t spa_mode_readable_spacemaps; extern uint_t zfs_reconstruct_indirect_combinations_max; extern uint_t zfs_btree_verify_intensity; static const char cmdname[] = "zdb"; uint8_t dump_opt[256]; typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); static uint64_t *zopt_metaslab = NULL; static unsigned zopt_metaslab_args = 0; typedef struct zopt_object_range { uint64_t zor_obj_start; uint64_t zor_obj_end; uint64_t zor_flags; } zopt_object_range_t; static zopt_object_range_t *zopt_object_ranges = NULL; static unsigned zopt_object_args = 0; static int flagbits[256]; #define ZOR_FLAG_PLAIN_FILE 0x0001 #define ZOR_FLAG_DIRECTORY 0x0002 #define ZOR_FLAG_SPACE_MAP 0x0004 #define ZOR_FLAG_ZAP 0x0008 #define ZOR_FLAG_ALL_TYPES -1 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \ ZOR_FLAG_DIRECTORY | \ ZOR_FLAG_SPACE_MAP | \ ZOR_FLAG_ZAP) #define ZDB_FLAG_CHECKSUM 0x0001 #define ZDB_FLAG_DECOMPRESS 0x0002 #define ZDB_FLAG_BSWAP 0x0004 #define ZDB_FLAG_GBH 0x0008 #define ZDB_FLAG_INDIRECT 0x0010 #define ZDB_FLAG_RAW 0x0020 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 #define ZDB_FLAG_VERBOSE 0x0080 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ static int leaked_objects = 0; static range_tree_t *mos_refd_objs; static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, boolean_t); static void mos_obj_refd(uint64_t); static void mos_obj_refd_multiple(uint64_t); static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, dmu_tx_t *tx); typedef struct sublivelist_verify { /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */ zfs_btree_t sv_pair; /* ALLOC's without a matching FREE, accumulates across sub-livelists */ zfs_btree_t sv_leftover; } sublivelist_verify_t; static int livelist_compare(const void *larg, const void *rarg) { const blkptr_t *l = larg; const blkptr_t *r = rarg; /* Sort them according to dva[0] */ uint64_t l_dva0_vdev, r_dva0_vdev; l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]); r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]); if (l_dva0_vdev < r_dva0_vdev) return (-1); else if (l_dva0_vdev > r_dva0_vdev) return (+1); /* if vdevs are equal, sort by offsets. */ uint64_t l_dva0_offset; uint64_t r_dva0_offset; l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]); r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]); if (l_dva0_offset < r_dva0_offset) { return (-1); } else if (l_dva0_offset > r_dva0_offset) { return (+1); } /* * Since we're storing blkptrs without cancelling FREE/ALLOC pairs, * it's possible the offsets are equal. In that case, sort by txg */ if (l->blk_birth < r->blk_birth) { return (-1); } else if (l->blk_birth > r->blk_birth) { return (+1); } return (0); } typedef struct sublivelist_verify_block { dva_t svb_dva; /* * We need this to check if the block marked as allocated * in the livelist was freed (and potentially reallocated) * in the metaslab spacemaps at a later TXG. */ uint64_t svb_allocated_txg; } sublivelist_verify_block_t; static void zdb_print_blkptr(const blkptr_t *bp, int flags); typedef struct sublivelist_verify_block_refcnt { /* block pointer entry in livelist being verified */ blkptr_t svbr_blk; /* * Refcount gets incremented to 1 when we encounter the first * FREE entry for the svfbr block pointer and a node for it * is created in our ZDB verification/tracking metadata. * * As we encounter more FREE entries we increment this counter * and similarly decrement it whenever we find the respective * ALLOC entries for this block. * * When the refcount gets to 0 it means that all the FREE and * ALLOC entries of this block have paired up and we no longer * need to track it in our verification logic (e.g. the node * containing this struct in our verification data structure * should be freed). * * [refer to sublivelist_verify_blkptr() for the actual code] */ uint32_t svbr_refcnt; } sublivelist_verify_block_refcnt_t; static int sublivelist_block_refcnt_compare(const void *larg, const void *rarg) { const sublivelist_verify_block_refcnt_t *l = larg; const sublivelist_verify_block_refcnt_t *r = rarg; return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); } static int sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, dmu_tx_t *tx) { ASSERT3P(tx, ==, NULL); struct sublivelist_verify *sv = arg; sublivelist_verify_block_refcnt_t current = { .svbr_blk = *bp, /* * Start with 1 in case this is the first free entry. * This field is not used for our B-Tree comparisons * anyway. */ .svbr_refcnt = 1, }; zfs_btree_index_t where; sublivelist_verify_block_refcnt_t *pair = zfs_btree_find(&sv->sv_pair, ¤t, &where); if (free) { if (pair == NULL) { /* first free entry for this block pointer */ zfs_btree_add(&sv->sv_pair, ¤t); } else { pair->svbr_refcnt++; } } else { if (pair == NULL) { /* block that is currently marked as allocated */ for (int i = 0; i < SPA_DVAS_PER_BP; i++) { if (DVA_IS_EMPTY(&bp->blk_dva[i])) break; sublivelist_verify_block_t svb = { .svb_dva = bp->blk_dva[i], .svb_allocated_txg = bp->blk_birth }; if (zfs_btree_find(&sv->sv_leftover, &svb, &where) == NULL) { zfs_btree_add_idx(&sv->sv_leftover, &svb, &where); } } } else { /* alloc matches a free entry */ pair->svbr_refcnt--; if (pair->svbr_refcnt == 0) { /* all allocs and frees have been matched */ zfs_btree_remove_idx(&sv->sv_pair, &where); } } } return (0); } static int sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) { int err; struct sublivelist_verify *sv = args; zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, sizeof (sublivelist_verify_block_refcnt_t)); err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, sv, NULL); sublivelist_verify_block_refcnt_t *e; zfs_btree_index_t *cookie = NULL; while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &e->svbr_blk, B_TRUE); (void) printf("\tERROR: %d unmatched FREE(s): %s\n", e->svbr_refcnt, blkbuf); } zfs_btree_destroy(&sv->sv_pair); return (err); } static int livelist_block_compare(const void *larg, const void *rarg) { const sublivelist_verify_block_t *l = larg; const sublivelist_verify_block_t *r = rarg; if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) return (-1); else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) return (+1); if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) return (-1); else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) return (+1); if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) return (-1); else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) return (+1); return (0); } /* * Check for errors in a livelist while tracking all unfreed ALLOCs in the * sublivelist_verify_t: sv->sv_leftover */ static void livelist_verify(dsl_deadlist_t *dl, void *arg) { sublivelist_verify_t *sv = arg; dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); } /* * Check for errors in the livelist entry and discard the intermediary * data structures */ static int sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) { (void) args; sublivelist_verify_t sv; zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, sizeof (sublivelist_verify_block_t)); int err = sublivelist_verify_func(&sv, dle); zfs_btree_clear(&sv.sv_leftover); zfs_btree_destroy(&sv.sv_leftover); return (err); } typedef struct metaslab_verify { /* * Tree containing all the leftover ALLOCs from the livelists * that are part of this metaslab. */ zfs_btree_t mv_livelist_allocs; /* * Metaslab information. */ uint64_t mv_vdid; uint64_t mv_msid; uint64_t mv_start; uint64_t mv_end; /* * What's currently allocated for this metaslab. */ range_tree_t *mv_allocated; } metaslab_verify_t; typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg); typedef struct unflushed_iter_cb_arg { spa_t *uic_spa; uint64_t uic_txg; void *uic_arg; zdb_log_sm_cb_t uic_cb; } unflushed_iter_cb_arg_t; static int iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) { unflushed_iter_cb_arg_t *uic = arg; return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); } static void iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) { if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) return; spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { space_map_t *sm = NULL; VERIFY0(space_map_open(&sm, spa_meta_objset(spa), sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); unflushed_iter_cb_arg_t uic = { .uic_spa = spa, .uic_txg = sls->sls_txg, .uic_arg = arg, .uic_cb = cb }; VERIFY0(space_map_iterate(sm, space_map_length(sm), iterate_through_spacemap_logs_cb, &uic)); space_map_close(sm); } spa_config_exit(spa, SCL_CONFIG, FTAG); } static void verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, uint64_t offset, uint64_t size) { sublivelist_verify_block_t svb = {{{0}}}; DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); DVA_SET_OFFSET(&svb.svb_dva, offset); DVA_SET_ASIZE(&svb.svb_dva, size); zfs_btree_index_t where; uint64_t end_offset = offset + size; /* * Look for an exact match for spacemap entry in the livelist entries. * Then, look for other livelist entries that fall within the range * of the spacemap entry as it may have been condensed */ sublivelist_verify_block_t *found = zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); if (found == NULL) { found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); } for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && DVA_GET_OFFSET(&found->svb_dva) < end_offset; found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { if (found->svb_allocated_txg <= txg) { (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " "from TXG %llx FREED at TXG %llx\n", (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), (u_longlong_t)found->svb_allocated_txg, (u_longlong_t)txg); } } } static int metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) { metaslab_verify_t *mv = arg; uint64_t offset = sme->sme_offset; uint64_t size = sme->sme_run; uint64_t txg = sme->sme_txg; if (sme->sme_type == SM_ALLOC) { if (range_tree_contains(mv->mv_allocated, offset, size)) { (void) printf("ERROR: DOUBLE ALLOC: " "%llu [%llx:%llx] " "%llu:%llu LOG_SM\n", (u_longlong_t)txg, (u_longlong_t)offset, (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, (u_longlong_t)mv->mv_msid); } else { range_tree_add(mv->mv_allocated, offset, size); } } else { if (!range_tree_contains(mv->mv_allocated, offset, size)) { (void) printf("ERROR: DOUBLE FREE: " "%llu [%llx:%llx] " "%llu:%llu LOG_SM\n", (u_longlong_t)txg, (u_longlong_t)offset, (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, (u_longlong_t)mv->mv_msid); } else { range_tree_remove(mv->mv_allocated, offset, size); } } if (sme->sme_type != SM_ALLOC) { /* * If something is freed in the spacemap, verify that * it is not listed as allocated in the livelist. */ verify_livelist_allocs(mv, txg, offset, size); } return (0); } static int spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) { metaslab_verify_t *mv = arg; uint64_t offset = sme->sme_offset; uint64_t vdev_id = sme->sme_vdev; vdev_t *vd = vdev_lookup_top(spa, vdev_id); /* skip indirect vdevs */ if (!vdev_is_concrete(vd)) return (0); if (vdev_id != mv->mv_vdid) return (0); metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; if (ms->ms_id != mv->mv_msid) return (0); if (txg < metaslab_unflushed_txg(ms)) return (0); ASSERT3U(txg, ==, sme->sme_txg); return (metaslab_spacemap_validation_cb(sme, mv)); } static void spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) { iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); } static void spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) { if (sm == NULL) return; VERIFY0(space_map_iterate(sm, space_map_length(sm), metaslab_spacemap_validation_cb, mv)); } static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); /* * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if * they are part of that metaslab (mv_msid). */ static void mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) { zfs_btree_index_t where; sublivelist_verify_block_t *svb; ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); for (svb = zfs_btree_first(&sv->sv_leftover, &where); svb != NULL; svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) continue; if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && (DVA_GET_OFFSET(&svb->svb_dva) + DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { (void) printf("ERROR: Found block that crosses " "metaslab boundary: <%llu:%llx:%llx>\n", (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); continue; } if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) continue; if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) continue; if ((DVA_GET_OFFSET(&svb->svb_dva) + DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { (void) printf("ERROR: Found block that crosses " "metaslab boundary: <%llu:%llx:%llx>\n", (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); continue; } zfs_btree_add(&mv->mv_livelist_allocs, svb); } for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); svb != NULL; svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { zfs_btree_remove(&sv->sv_leftover, svb); } } /* * [Livelist Check] * Iterate through all the sublivelists and: * - report leftover frees (**) * - record leftover ALLOCs together with their TXG [see Cross Check] * * (**) Note: Double ALLOCs are valid in datasets that have dedup * enabled. Similarly double FREEs are allowed as well but * only if they pair up with a corresponding ALLOC entry once * we our done with our sublivelist iteration. * * [Spacemap Check] * for each metaslab: * - iterate over spacemap and then the metaslab's entries in the * spacemap log, then report any double FREEs and ALLOCs (do not * blow up). * * [Cross Check] * After finishing the Livelist Check phase and while being in the * Spacemap Check phase, we find all the recorded leftover ALLOCs * of the livelist check that are part of the metaslab that we are * currently looking at in the Spacemap Check. We report any entries * that are marked as ALLOCs in the livelists but have been actually * freed (and potentially allocated again) after their TXG stamp in * the spacemaps. Also report any ALLOCs from the livelists that * belong to indirect vdevs (e.g. their vdev completed removal). * * Note that this will miss Log Spacemap entries that cancelled each other * out before being flushed to the metaslab, so we are not guaranteed * to match all erroneous ALLOCs. */ static void livelist_metaslab_validate(spa_t *spa) { (void) printf("Verifying deleted livelist entries\n"); sublivelist_verify_t sv; zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, sizeof (sublivelist_verify_block_t)); iterate_deleted_livelists(spa, livelist_verify, &sv); (void) printf("Verifying metaslab entries\n"); vdev_t *rvd = spa->spa_root_vdev; for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; if (!vdev_is_concrete(vd)) continue; for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { metaslab_t *m = vd->vdev_ms[mid]; (void) fprintf(stderr, "\rverifying concrete vdev %llu, " "metaslab %llu of %llu ...", (longlong_t)vd->vdev_id, (longlong_t)mid, (longlong_t)vd->vdev_ms_count); uint64_t shift, start; range_seg_type_t type = metaslab_calculate_range_tree_type(vd, m, &start, &shift); metaslab_verify_t mv; mv.mv_allocated = range_tree_create(NULL, type, NULL, start, shift); mv.mv_vdid = vd->vdev_id; mv.mv_msid = m->ms_id; mv.mv_start = m->ms_start; mv.mv_end = m->ms_start + m->ms_size; zfs_btree_create(&mv.mv_livelist_allocs, livelist_block_compare, NULL, sizeof (sublivelist_verify_block_t)); mv_populate_livelist_allocs(&mv, &sv); spacemap_check_ms_sm(m->ms_sm, &mv); spacemap_check_sm_log(spa, &mv); range_tree_vacate(mv.mv_allocated, NULL, NULL); range_tree_destroy(mv.mv_allocated); zfs_btree_clear(&mv.mv_livelist_allocs); zfs_btree_destroy(&mv.mv_livelist_allocs); } } (void) fprintf(stderr, "\n"); /* * If there are any segments in the leftover tree after we walked * through all the metaslabs in the concrete vdevs then this means * that we have segments in the livelists that belong to indirect * vdevs and are marked as allocated. */ if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { zfs_btree_destroy(&sv.sv_leftover); return; } (void) printf("ERROR: Found livelist blocks marked as allocated " "for indirect vdevs:\n"); zfs_btree_index_t *where = NULL; sublivelist_verify_block_t *svb; while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != NULL) { int vdev_id = DVA_GET_VDEV(&svb->svb_dva); ASSERT3U(vdev_id, <, rvd->vdev_children); vdev_t *vd = rvd->vdev_child[vdev_id]; ASSERT(!vdev_is_concrete(vd)); (void) printf("<%d:%llx:%llx> TXG %llx\n", vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), (u_longlong_t)svb->svb_allocated_txg); } (void) printf("\n"); zfs_btree_destroy(&sv.sv_leftover); } /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init(void) { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } static void usage(void) { (void) fprintf(stderr, "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p ...]] " "[-I ]\n" "\t\t[-o =]... [-t ] [-U ] [-x ]\n" "\t\t[-K ]\n" "\t\t[[/] [ ...]]\n" "\t%s [-AdiPv] [-e [-V] [-p ...]] [-U ] [-K ]\n" "\t\t[[/] [ ...]\n" "\t%s -B [-e [-V] [-p ...]] [-I ]\n" "\t\t[-o =]... [-t ] [-U ] [-x ]\n" "\t\t[-K ] / []\n" "\t%s [-v] \n" "\t%s -C [-A] [-U ]\n" "\t%s -l [-Aqu] \n" "\t%s -m [-AFLPX] [-e [-V] [-p ...]] [-t ] " "[-U ]\n\t\t [ [ ...]]\n" "\t%s -O [-K ] \n" "\t%s -r [-K ] \n" "\t%s -R [-A] [-e [-V] [-p ...]] [-U ]\n" "\t\t ::[:]\n" "\t%s -E [-A] word0:word1:...:word15\n" "\t%s -S [-AP] [-e [-V] [-p ...]] [-U ] " "\n\n", cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname); (void) fprintf(stderr, " Dataset name must include at least one " "separator character '/' or '@'\n"); (void) fprintf(stderr, " If dataset name is specified, only that " "dataset is dumped\n"); (void) fprintf(stderr, " If object numbers or object number " "ranges are specified, only those\n" " objects or ranges are dumped.\n\n"); (void) fprintf(stderr, " Object ranges take the form :[:]\n" " start Starting object number\n" " end Ending object number, or -1 for no upper bound\n" " flags Optional flags to select object types:\n" " A All objects (this is the default)\n" " d ZFS directories\n" " f ZFS files \n" " m SPA space maps\n" " z ZAPs\n" " - Negate effect of next flag\n\n"); (void) fprintf(stderr, " Options to control amount of output:\n"); (void) fprintf(stderr, " -b --block-stats " "block statistics\n"); (void) fprintf(stderr, " -B --backup " "backup stream\n"); (void) fprintf(stderr, " -c --checksum " "checksum all metadata (twice for all data) blocks\n"); (void) fprintf(stderr, " -C --config " "config (or cachefile if alone)\n"); (void) fprintf(stderr, " -d --datasets " "dataset(s)\n"); (void) fprintf(stderr, " -D --dedup-stats " "dedup statistics\n"); (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" " decode and display block " "from an embedded block pointer\n"); (void) fprintf(stderr, " -h --history " "pool history\n"); (void) fprintf(stderr, " -i --intent-logs " "intent logs\n"); (void) fprintf(stderr, " -l --label " "read label contents\n"); (void) fprintf(stderr, " -k --checkpointed-state " "examine the checkpointed state of the pool\n"); (void) fprintf(stderr, " -L --disable-leak-tracking " "disable leak tracking (do not load spacemaps)\n"); (void) fprintf(stderr, " -m --metaslabs " "metaslabs\n"); (void) fprintf(stderr, " -M --metaslab-groups " "metaslab groups\n"); (void) fprintf(stderr, " -O --object-lookups " "perform object lookups by path\n"); (void) fprintf(stderr, " -r --copy-object " "copy an object by path to file\n"); (void) fprintf(stderr, " -R --read-block " "read and display block from a device\n"); (void) fprintf(stderr, " -s --io-stats " "report stats on zdb's I/O\n"); (void) fprintf(stderr, " -S --simulate-dedup " "simulate dedup to measure effect\n"); (void) fprintf(stderr, " -v --verbose " "verbose (applies to all others)\n"); (void) fprintf(stderr, " -y --livelist " "perform livelist and metaslab validation on any livelists being " "deleted\n\n"); (void) fprintf(stderr, " Below options are intended for use " "with other options:\n"); (void) fprintf(stderr, " -A --ignore-assertions " "ignore assertions (-A), enable panic recovery (-AA) or both " "(-AAA)\n"); (void) fprintf(stderr, " -e --exported " "pool is exported/destroyed/has altroot/not in a cachefile\n"); (void) fprintf(stderr, " -F --automatic-rewind " "attempt automatic rewind within safe range of transaction " "groups\n"); (void) fprintf(stderr, " -G --dump-debug-msg " "dump zfs_dbgmsg buffer before exiting\n"); (void) fprintf(stderr, " -I --inflight=INTEGER " "specify the maximum number of checksumming I/Os " "[default is 200]\n"); (void) fprintf(stderr, " -K --key=KEY " "decryption key for encrypted dataset\n"); (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " "set global variable to an unsigned 32-bit integer\n"); (void) fprintf(stderr, " -p --path==PATH " "use one or more with -e to specify path to vdev dir\n"); (void) fprintf(stderr, " -P --parseable " "print numbers in parseable form\n"); (void) fprintf(stderr, " -q --skip-label " "don't print label contents\n"); (void) fprintf(stderr, " -t --txg=INTEGER " "highest txg to use when searching for uberblocks\n"); (void) fprintf(stderr, " -u --uberblock " "uberblock\n"); (void) fprintf(stderr, " -U --cachefile=PATH " "use alternate cachefile\n"); (void) fprintf(stderr, " -V --verbatim " "do verbatim import\n"); (void) fprintf(stderr, " -x --dump-blocks=PATH " "dump all read blocks into specified directory\n"); (void) fprintf(stderr, " -X --extreme-rewind " "attempt extreme rewind (does not work with dataset)\n"); (void) fprintf(stderr, " -Y --all-reconstruction " "attempt all reconstruction combinations for split blocks\n"); (void) fprintf(stderr, " -Z --zstd-headers " "show ZSTD headers \n"); (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " "to make only that option verbose\n"); (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); exit(1); } static void dump_debug_buffer(void) { if (dump_opt['G']) { (void) printf("\n"); (void) fflush(stdout); zfs_dbgmsg_print("zdb"); } } /* * Called for usage errors that are discovered after a call to spa_open(), * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. */ static void fatal(const char *fmt, ...) { va_list ap; va_start(ap, fmt); (void) fprintf(stderr, "%s: ", cmdname); (void) vfprintf(stderr, fmt, ap); va_end(ap); (void) fprintf(stderr, "\n"); dump_debug_buffer(); exit(1); } static void dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) { (void) size; nvlist_t *nv; size_t nvsize = *(uint64_t *)data; char *packed = umem_alloc(nvsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); umem_free(packed, nvsize); dump_nvlist(nv, 8); nvlist_free(nv); } static void dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) { (void) os, (void) object, (void) size; spa_history_phys_t *shp = data; if (shp == NULL) return; (void) printf("\t\tpool_create_len = %llu\n", (u_longlong_t)shp->sh_pool_create_len); (void) printf("\t\tphys_max_off = %llu\n", (u_longlong_t)shp->sh_phys_max_off); (void) printf("\t\tbof = %llu\n", (u_longlong_t)shp->sh_bof); (void) printf("\t\teof = %llu\n", (u_longlong_t)shp->sh_eof); (void) printf("\t\trecords_lost = %llu\n", (u_longlong_t)shp->sh_records_lost); } static void zdb_nicenum(uint64_t num, char *buf, size_t buflen) { if (dump_opt['P']) (void) snprintf(buf, buflen, "%llu", (longlong_t)num); else nicenum(num, buf, buflen); } static const char histo_stars[] = "****************************************"; static const uint64_t histo_width = sizeof (histo_stars) - 1; static void dump_histogram(const uint64_t *histo, int size, int offset) { int i; int minidx = size - 1; int maxidx = 0; uint64_t max = 0; for (i = 0; i < size; i++) { if (histo[i] == 0) continue; if (histo[i] > max) max = histo[i]; if (i > maxidx) maxidx = i; if (i < minidx) minidx = i; } if (max < histo_width) max = histo_width; for (i = minidx; i <= maxidx; i++) { (void) printf("\t\t\t%3u: %6llu %s\n", i + offset, (u_longlong_t)histo[i], &histo_stars[(max - histo[i]) * histo_width / max]); } } static void dump_zap_stats(objset_t *os, uint64_t object) { int error; zap_stats_t zs; error = zap_get_stats(os, object, &zs); if (error) return; if (zs.zs_ptrtbl_len == 0) { ASSERT(zs.zs_num_blocks == 1); (void) printf("\tmicrozap: %llu bytes, %llu entries\n", (u_longlong_t)zs.zs_blocksize, (u_longlong_t)zs.zs_num_entries); return; } (void) printf("\tFat ZAP stats:\n"); (void) printf("\t\tPointer table:\n"); (void) printf("\t\t\t%llu elements\n", (u_longlong_t)zs.zs_ptrtbl_len); (void) printf("\t\t\tzt_blk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_blk); (void) printf("\t\t\tzt_numblks: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_numblks); (void) printf("\t\t\tzt_shift: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_shift); (void) printf("\t\t\tzt_blks_copied: %llu\n", (u_longlong_t)zs.zs_ptrtbl_blks_copied); (void) printf("\t\t\tzt_nextblk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_nextblk); (void) printf("\t\tZAP entries: %llu\n", (u_longlong_t)zs.zs_num_entries); (void) printf("\t\tLeaf blocks: %llu\n", (u_longlong_t)zs.zs_num_leafs); (void) printf("\t\tTotal blocks: %llu\n", (u_longlong_t)zs.zs_num_blocks); (void) printf("\t\tzap_block_type: 0x%llx\n", (u_longlong_t)zs.zs_block_type); (void) printf("\t\tzap_magic: 0x%llx\n", (u_longlong_t)zs.zs_magic); (void) printf("\t\tzap_salt: 0x%llx\n", (u_longlong_t)zs.zs_salt); (void) printf("\t\tLeafs with 2^n pointers:\n"); dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBlocks with n*5 entries:\n"); dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBlocks n/10 full:\n"); dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tEntries with n chunks:\n"); dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBuckets with n entries:\n"); dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); } static void dump_none(objset_t *os, uint64_t object, void *data, size_t size) { (void) os, (void) object, (void) data, (void) size; } static void dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) { (void) os, (void) object, (void) data, (void) size; (void) printf("\tUNKNOWN OBJECT TYPE\n"); } static void dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) { (void) os, (void) object, (void) data, (void) size; } static void dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) { uint64_t *arr; uint64_t oursize; if (dump_opt['d'] < 6) return; if (data == NULL) { dmu_object_info_t doi; VERIFY0(dmu_object_info(os, object, &doi)); size = doi.doi_max_offset; /* * We cap the size at 1 mebibyte here to prevent * allocation failures and nigh-infinite printing if the * object is extremely large. */ oursize = MIN(size, 1 << 20); arr = kmem_alloc(oursize, KM_SLEEP); int err = dmu_read(os, object, 0, oursize, arr, 0); if (err != 0) { (void) printf("got error %u from dmu_read\n", err); kmem_free(arr, oursize); return; } } else { /* * Even though the allocation is already done in this code path, * we still cap the size to prevent excessive printing. */ oursize = MIN(size, 1 << 20); arr = data; } if (size == 0) { if (data == NULL) kmem_free(arr, oursize); (void) printf("\t\t[]\n"); return; } (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { if (i % 4 != 0) (void) printf(", %0llx", (u_longlong_t)arr[i]); else (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); } if (oursize != size) (void) printf(", ... "); (void) printf("]\n"); if (data == NULL) kmem_free(arr, oursize); } static void dump_zap(objset_t *os, uint64_t object, void *data, size_t size) { (void) data, (void) size; zap_cursor_t zc; zap_attribute_t attr; void *prop; unsigned i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } prop = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); (void) zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, prop); if (attr.za_integer_length == 1) { if (strcmp(attr.za_name, DSL_CRYPTO_KEY_MASTER_KEY) == 0 || strcmp(attr.za_name, DSL_CRYPTO_KEY_HMAC_KEY) == 0 || strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { uint8_t *u8 = prop; for (i = 0; i < attr.za_num_integers; i++) { (void) printf("%02x", u8[i]); } } else { (void) printf("%s", (char *)prop); } } else { for (i = 0; i < attr.za_num_integers; i++) { switch (attr.za_integer_length) { case 2: (void) printf("%u ", ((uint16_t *)prop)[i]); break; case 4: (void) printf("%u ", ((uint32_t *)prop)[i]); break; case 8: (void) printf("%lld ", (u_longlong_t)((int64_t *)prop)[i]); break; } } } (void) printf("\n"); umem_free(prop, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } static void dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) { bpobj_phys_t *bpop = data; uint64_t i; char bytes[32], comp[32], uncomp[32]; /* make sure the output won't get truncated */ _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); if (bpop == NULL) return; zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); (void) printf("\t\tnum_blkptrs = %llu\n", (u_longlong_t)bpop->bpo_num_blkptrs); (void) printf("\t\tbytes = %s\n", bytes); if (size >= BPOBJ_SIZE_V1) { (void) printf("\t\tcomp = %s\n", comp); (void) printf("\t\tuncomp = %s\n", uncomp); } if (size >= BPOBJ_SIZE_V2) { (void) printf("\t\tsubobjs = %llu\n", (u_longlong_t)bpop->bpo_subobjs); (void) printf("\t\tnum_subobjs = %llu\n", (u_longlong_t)bpop->bpo_num_subobjs); } if (size >= sizeof (*bpop)) { (void) printf("\t\tnum_freed = %llu\n", (u_longlong_t)bpop->bpo_num_freed); } if (dump_opt['d'] < 5) return; for (i = 0; i < bpop->bpo_num_blkptrs; i++) { char blkbuf[BP_SPRINTF_LEN]; blkptr_t bp; int err = dmu_read(os, object, i * sizeof (bp), sizeof (bp), &bp, 0); if (err != 0) { (void) printf("got error %u from dmu_read\n", err); break; } snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, BP_GET_FREE(&bp)); (void) printf("\t%s\n", blkbuf); } } static void dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) { (void) data, (void) size; dmu_object_info_t doi; int64_t i; VERIFY0(dmu_object_info(os, object, &doi)); uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); if (err != 0) { (void) printf("got error %u from dmu_read\n", err); kmem_free(subobjs, doi.doi_max_offset); return; } int64_t last_nonzero = -1; for (i = 0; i < doi.doi_max_offset / 8; i++) { if (subobjs[i] != 0) last_nonzero = i; } for (i = 0; i <= last_nonzero; i++) { (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); } kmem_free(subobjs, doi.doi_max_offset); } static void dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) { (void) data, (void) size; dump_zap_stats(os, object); /* contents are printed elsewhere, properly decoded */ } static void dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) { (void) data, (void) size; zap_cursor_t zc; zap_attribute_t attr; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } (void) printf(" %llx : [%d:%d:%d]\n", (u_longlong_t)attr.za_first_integer, (int)ATTR_LENGTH(attr.za_first_integer), (int)ATTR_BSWAP(attr.za_first_integer), (int)ATTR_NUM(attr.za_first_integer)); } zap_cursor_fini(&zc); } static void dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) { (void) data, (void) size; zap_cursor_t zc; zap_attribute_t attr; uint16_t *layout_attrs; unsigned i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = [", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } VERIFY(attr.za_integer_length == 2); layout_attrs = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); VERIFY(zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, layout_attrs) == 0); for (i = 0; i != attr.za_num_integers; i++) (void) printf(" %d ", (int)layout_attrs[i]); (void) printf("]\n"); umem_free(layout_attrs, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } static void dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) { (void) data, (void) size; zap_cursor_t zc; zap_attribute_t attr; const char *typenames[] = { /* 0 */ "not specified", /* 1 */ "FIFO", /* 2 */ "Character Device", /* 3 */ "3 (invalid)", /* 4 */ "Directory", /* 5 */ "5 (invalid)", /* 6 */ "Block Device", /* 7 */ "7 (invalid)", /* 8 */ "Regular File", /* 9 */ "9 (invalid)", /* 10 */ "Symbolic Link", /* 11 */ "11 (invalid)", /* 12 */ "Socket", /* 13 */ "Door", /* 14 */ "Event Port", /* 15 */ "15 (invalid)", }; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = %lld (type: %s)\n", attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); } zap_cursor_fini(&zc); } static int get_dtl_refcount(vdev_t *vd) { int refcount = 0; if (vd->vdev_ops->vdev_op_leaf) { space_map_t *sm = vd->vdev_dtl_sm; if (sm != NULL && sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) return (1); return (0); } for (unsigned c = 0; c < vd->vdev_children; c++) refcount += get_dtl_refcount(vd->vdev_child[c]); return (refcount); } static int get_metaslab_refcount(vdev_t *vd) { int refcount = 0; if (vd->vdev_top == vd) { for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { space_map_t *sm = vd->vdev_ms[m]->ms_sm; if (sm != NULL && sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) refcount++; } } for (unsigned c = 0; c < vd->vdev_children; c++) refcount += get_metaslab_refcount(vd->vdev_child[c]); return (refcount); } static int get_obsolete_refcount(vdev_t *vd) { uint64_t obsolete_sm_object; int refcount = 0; VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); if (vd->vdev_top == vd && obsolete_sm_object != 0) { dmu_object_info_t doi; VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, obsolete_sm_object, &doi)); if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { refcount++; } } else { ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); ASSERT3U(obsolete_sm_object, ==, 0); } for (unsigned c = 0; c < vd->vdev_children; c++) { refcount += get_obsolete_refcount(vd->vdev_child[c]); } return (refcount); } static int get_prev_obsolete_spacemap_refcount(spa_t *spa) { uint64_t prev_obj = spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; if (prev_obj != 0) { dmu_object_info_t doi; VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { return (1); } } return (0); } static int get_checkpoint_refcount(vdev_t *vd) { int refcount = 0; if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && zap_contains(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) refcount++; for (uint64_t c = 0; c < vd->vdev_children; c++) refcount += get_checkpoint_refcount(vd->vdev_child[c]); return (refcount); } static int get_log_spacemap_refcount(spa_t *spa) { return (avl_numnodes(&spa->spa_sm_logs_by_txg)); } static int verify_spacemap_refcounts(spa_t *spa) { uint64_t expected_refcount = 0; uint64_t actual_refcount; (void) feature_get_refcount(spa, &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], &expected_refcount); actual_refcount = get_dtl_refcount(spa->spa_root_vdev); actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); actual_refcount += get_prev_obsolete_spacemap_refcount(spa); actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); actual_refcount += get_log_spacemap_refcount(spa); if (expected_refcount != actual_refcount) { (void) printf("space map refcount mismatch: expected %lld != " "actual %lld\n", (longlong_t)expected_refcount, (longlong_t)actual_refcount); return (2); } return (0); } static void dump_spacemap(objset_t *os, space_map_t *sm) { const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", "INVALID", "INVALID", "INVALID", "INVALID" }; if (sm == NULL) return; (void) printf("space map object %llu:\n", (longlong_t)sm->sm_object); (void) printf(" smp_length = 0x%llx\n", (longlong_t)sm->sm_phys->smp_length); (void) printf(" smp_alloc = 0x%llx\n", (longlong_t)sm->sm_phys->smp_alloc); if (dump_opt['d'] < 6 && dump_opt['m'] < 4) return; /* * Print out the freelist entries in both encoded and decoded form. */ uint8_t mapshift = sm->sm_shift; int64_t alloc = 0; uint64_t word, entry_id = 0; for (uint64_t offset = 0; offset < space_map_length(sm); offset += sizeof (word)) { VERIFY0(dmu_read(os, space_map_object(sm), offset, sizeof (word), &word, DMU_READ_PREFETCH)); if (sm_entry_is_debug(word)) { uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); if (de_txg == 0) { (void) printf( "\t [%6llu] PADDING\n", (u_longlong_t)entry_id); } else { (void) printf( "\t [%6llu] %s: txg %llu pass %llu\n", (u_longlong_t)entry_id, ddata[SM_DEBUG_ACTION_DECODE(word)], (u_longlong_t)de_txg, (u_longlong_t)de_sync_pass); } entry_id++; continue; } uint8_t words; char entry_type; uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; if (sm_entry_is_single_word(word)) { entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 'A' : 'F'; entry_off = (SM_OFFSET_DECODE(word) << mapshift) + sm->sm_start; entry_run = SM_RUN_DECODE(word) << mapshift; words = 1; } else { /* it is a two-word entry so we read another word */ ASSERT(sm_entry_is_double_word(word)); uint64_t extra_word; offset += sizeof (extra_word); VERIFY0(dmu_read(os, space_map_object(sm), offset, sizeof (extra_word), &extra_word, DMU_READ_PREFETCH)); ASSERT3U(offset, <=, space_map_length(sm)); entry_run = SM2_RUN_DECODE(word) << mapshift; entry_vdev = SM2_VDEV_DECODE(word); entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 'A' : 'F'; entry_off = (SM2_OFFSET_DECODE(extra_word) << mapshift) + sm->sm_start; words = 2; } (void) printf("\t [%6llu] %c range:" " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", (u_longlong_t)entry_id, entry_type, (u_longlong_t)entry_off, (u_longlong_t)(entry_off + entry_run), (u_longlong_t)entry_run, (u_longlong_t)entry_vdev, words); if (entry_type == 'A') alloc += entry_run; else alloc -= entry_run; entry_id++; } if (alloc != space_map_allocated(sm)) { (void) printf("space_map_object alloc (%lld) INCONSISTENT " "with space map summary (%lld)\n", (longlong_t)space_map_allocated(sm), (longlong_t)alloc); } } static void dump_metaslab_stats(metaslab_t *msp) { char maxbuf[32]; range_tree_t *rt = msp->ms_allocatable; zfs_btree_t *t = &msp->ms_allocatable_by_size; int free_pct = range_tree_space(rt) * 100 / msp->ms_size; /* max sure nicenum has enough space */ _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, "freepct", free_pct); (void) printf("\tIn-memory histogram:\n"); dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } static void dump_metaslab(metaslab_t *msp) { vdev_t *vd = msp->ms_group->mg_vd; spa_t *spa = vd->vdev_spa; space_map_t *sm = msp->ms_sm; char freebuf[32]; zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, sizeof (freebuf)); (void) printf( "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, (u_longlong_t)space_map_object(sm), freebuf); if (dump_opt['m'] > 2 && !dump_opt['L']) { mutex_enter(&msp->ms_lock); VERIFY0(metaslab_load(msp)); range_tree_stat_verify(msp->ms_allocatable); dump_metaslab_stats(msp); metaslab_unload(msp); mutex_exit(&msp->ms_lock); } if (dump_opt['m'] > 1 && sm != NULL && spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { /* * The space map histogram represents free space in chunks * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). */ (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", (u_longlong_t)msp->ms_fragmentation); dump_histogram(sm->sm_phys->smp_histogram, SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); } if (vd->vdev_ops == &vdev_draid_ops) ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); else ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); dump_spacemap(spa->spa_meta_objset, msp->ms_sm); if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", (u_longlong_t)metaslab_unflushed_txg(msp)); } } static void print_vdev_metaslab_header(vdev_t *vd) { vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; const char *bias_str = ""; if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { bias_str = VDEV_ALLOC_BIAS_LOG; } else if (alloc_bias == VDEV_BIAS_SPECIAL) { bias_str = VDEV_ALLOC_BIAS_SPECIAL; } else if (alloc_bias == VDEV_BIAS_DEDUP) { bias_str = VDEV_ALLOC_BIAS_DEDUP; } uint64_t ms_flush_data_obj = 0; if (vd->vdev_top_zap != 0) { int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &ms_flush_data_obj); if (error != ENOENT) { ASSERT0(error); } } (void) printf("\tvdev %10llu %s", (u_longlong_t)vd->vdev_id, bias_str); if (ms_flush_data_obj != 0) { (void) printf(" ms_unflushed_phys object %llu", (u_longlong_t)ms_flush_data_obj); } (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", "metaslabs", (u_longlong_t)vd->vdev_ms_count, "offset", "spacemap", "free"); (void) printf("\t%15s %19s %15s %12s\n", "---------------", "-------------------", "---------------", "------------"); } static void dump_metaslab_groups(spa_t *spa, boolean_t show_special) { vdev_t *rvd = spa->spa_root_vdev; metaslab_class_t *mc = spa_normal_class(spa); metaslab_class_t *smc = spa_special_class(spa); uint64_t fragmentation; metaslab_class_histogram_verify(mc); for (unsigned c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (mg == NULL || (mg->mg_class != mc && (!show_special || mg->mg_class != smc))) continue; metaslab_group_histogram_verify(mg); mg->mg_fragmentation = metaslab_group_fragmentation(mg); (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" "fragmentation", (u_longlong_t)tvd->vdev_id, (u_longlong_t)tvd->vdev_ms_count); if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { (void) printf("%3s\n", "-"); } else { (void) printf("%3llu%%\n", (u_longlong_t)mg->mg_fragmentation); } dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } (void) printf("\tpool %s\tfragmentation", spa_name(spa)); fragmentation = metaslab_class_fragmentation(mc); if (fragmentation == ZFS_FRAG_INVALID) (void) printf("\t%3s\n", "-"); else (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } static void print_vdev_indirect(vdev_t *vd) { vdev_indirect_config_t *vic = &vd->vdev_indirect_config; vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; vdev_indirect_births_t *vib = vd->vdev_indirect_births; if (vim == NULL) { ASSERT3P(vib, ==, NULL); return; } ASSERT3U(vdev_indirect_mapping_object(vim), ==, vic->vic_mapping_object); ASSERT3U(vdev_indirect_births_object(vib), ==, vic->vic_births_object); (void) printf("indirect births obj %llu:\n", (longlong_t)vic->vic_births_object); (void) printf(" vib_count = %llu\n", (longlong_t)vdev_indirect_births_count(vib)); for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { vdev_indirect_birth_entry_phys_t *cur_vibe = &vib->vib_entries[i]; (void) printf("\toffset %llx -> txg %llu\n", (longlong_t)cur_vibe->vibe_offset, (longlong_t)cur_vibe->vibe_phys_birth_txg); } (void) printf("\n"); (void) printf("indirect mapping obj %llu:\n", (longlong_t)vic->vic_mapping_object); (void) printf(" vim_max_offset = 0x%llx\n", (longlong_t)vdev_indirect_mapping_max_offset(vim)); (void) printf(" vim_bytes_mapped = 0x%llx\n", (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); (void) printf(" vim_count = %llu\n", (longlong_t)vdev_indirect_mapping_num_entries(vim)); if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) return; uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { vdev_indirect_mapping_entry_phys_t *vimep = &vim->vim_entries[i]; (void) printf("\t<%llx:%llx:%llx> -> " "<%llx:%llx:%llx> (%x obsolete)\n", (longlong_t)vd->vdev_id, (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), counts[i]); } (void) printf("\n"); uint64_t obsolete_sm_object; VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); if (obsolete_sm_object != 0) { objset_t *mos = vd->vdev_spa->spa_meta_objset; (void) printf("obsolete space map object %llu:\n", (u_longlong_t)obsolete_sm_object); ASSERT(vd->vdev_obsolete_sm != NULL); ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, obsolete_sm_object); dump_spacemap(mos, vd->vdev_obsolete_sm); (void) printf("\n"); } } static void dump_metaslabs(spa_t *spa) { vdev_t *vd, *rvd = spa->spa_root_vdev; uint64_t m, c = 0, children = rvd->vdev_children; (void) printf("\nMetaslabs:\n"); if (!dump_opt['d'] && zopt_metaslab_args > 0) { c = zopt_metaslab[0]; if (c >= children) (void) fatal("bad vdev id: %llu", (u_longlong_t)c); if (zopt_metaslab_args > 1) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); for (m = 1; m < zopt_metaslab_args; m++) { if (zopt_metaslab[m] < vd->vdev_ms_count) dump_metaslab( vd->vdev_ms[zopt_metaslab[m]]); else (void) fprintf(stderr, "bad metaslab " "number %llu\n", (u_longlong_t)zopt_metaslab[m]); } (void) printf("\n"); return; } children = c + 1; } for (; c < children; c++) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); print_vdev_indirect(vd); for (m = 0; m < vd->vdev_ms_count; m++) dump_metaslab(vd->vdev_ms[m]); (void) printf("\n"); } } static void dump_log_spacemaps(spa_t *spa) { if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) return; (void) printf("\nLog Space Maps in Pool:\n"); for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { space_map_t *sm = NULL; VERIFY0(space_map_open(&sm, spa_meta_objset(spa), sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); (void) printf("Log Spacemap object %llu txg %llu\n", (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); dump_spacemap(spa->spa_meta_objset, sm); space_map_close(sm); } (void) printf("\n"); } static void dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) { const ddt_phys_t *ddp = dde->dde_phys; const ddt_key_t *ddk = &dde->dde_key; const char *types[4] = { "ditto", "single", "double", "triple" }; char blkbuf[BP_SPRINTF_LEN]; blkptr_t blk; int p; for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); (void) printf("index %llx refcnt %llu %s %s\n", (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, types[p], blkbuf); } } static void dump_dedup_ratio(const ddt_stat_t *dds) { double rL, rP, rD, D, dedup, compress, copies; if (dds->dds_blocks == 0) return; rL = (double)dds->dds_ref_lsize; rP = (double)dds->dds_ref_psize; rD = (double)dds->dds_ref_dsize; D = (double)dds->dds_dsize; dedup = rD / D; compress = rL / rP; copies = rD / rP; (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " "dedup * compress / copies = %.2f\n\n", dedup, compress, copies, dedup * compress / copies); } static void dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { char name[DDT_NAMELEN]; ddt_entry_t dde; uint64_t walk = 0; dmu_object_info_t doi; uint64_t count, dspace, mspace; int error; error = ddt_object_info(ddt, type, class, &doi); if (error == ENOENT) return; ASSERT(error == 0); error = ddt_object_count(ddt, type, class, &count); ASSERT(error == 0); if (count == 0) return; dspace = doi.doi_physical_blocks_512 << 9; mspace = doi.doi_fill_count * doi.doi_data_block_size; ddt_object_name(ddt, type, class, name); (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", name, (u_longlong_t)count, (u_longlong_t)(dspace / count), (u_longlong_t)(mspace / count)); if (dump_opt['D'] < 3) return; zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); if (dump_opt['D'] < 4) return; if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) return; (void) printf("%s contents:\n\n", name); while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) dump_dde(ddt, &dde, walk); ASSERT3U(error, ==, ENOENT); (void) printf("\n"); } static void dump_all_ddts(spa_t *spa) { ddt_histogram_t ddh_total = {{{0}}}; ddt_stat_t dds_total = {0}; for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { dump_ddt(ddt, type, class); } } } ddt_get_dedup_stats(spa, &dds_total); if (dds_total.dds_blocks == 0) { (void) printf("All DDTs are empty\n"); return; } (void) printf("\n"); if (dump_opt['D'] > 1) { (void) printf("DDT histogram (aggregated over all DDTs):\n"); ddt_get_dedup_histogram(spa, &ddh_total); zpool_dump_ddt(&dds_total, &ddh_total); } dump_dedup_ratio(&dds_total); } static void dump_dtl_seg(void *arg, uint64_t start, uint64_t size) { char *prefix = arg; (void) printf("%s [%llu,%llu) length %llu\n", prefix, (u_longlong_t)start, (u_longlong_t)(start + size), (u_longlong_t)(size)); } static void dump_dtl(vdev_t *vd, int indent) { spa_t *spa = vd->vdev_spa; boolean_t required; const char *name[DTL_TYPES] = { "missing", "partial", "scrub", "outage" }; char prefix[256]; spa_vdev_state_enter(spa, SCL_NONE); required = vdev_dtl_required(vd); (void) spa_vdev_state_exit(spa, NULL, 0); if (indent == 0) (void) printf("\nDirty time logs:\n\n"); (void) printf("\t%*s%s [%s]\n", indent, "", vd->vdev_path ? vd->vdev_path : vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), required ? "DTL-required" : "DTL-expendable"); for (int t = 0; t < DTL_TYPES; t++) { range_tree_t *rt = vd->vdev_dtl[t]; if (range_tree_space(rt) == 0) continue; (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", indent + 2, "", name[t]); range_tree_walk(rt, dump_dtl_seg, prefix); if (dump_opt['d'] > 5 && vd->vdev_children == 0) dump_spacemap(spa->spa_meta_objset, vd->vdev_dtl_sm); } for (unsigned c = 0; c < vd->vdev_children; c++) dump_dtl(vd->vdev_child[c], indent + 4); } static void dump_history(spa_t *spa) { nvlist_t **events = NULL; char *buf; uint64_t resid, len, off = 0; uint_t num = 0; int error; char tbuf[30]; if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", __func__); return; } do { len = SPA_OLD_MAXBLOCKSIZE; if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { (void) fprintf(stderr, "Unable to read history: " "error %d\n", error); free(buf); return; } if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) break; off -= resid; } while (len != 0); (void) printf("\nHistory:\n"); for (unsigned i = 0; i < num; i++) { boolean_t printed = B_FALSE; if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { time_t tsec; struct tm t; tsec = fnvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME); (void) localtime_r(&tsec, &t); (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); } else { tbuf[0] = '\0'; } if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { (void) printf("%s %s\n", tbuf, fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { uint64_t ievent; ievent = fnvlist_lookup_uint64(events[i], ZPOOL_HIST_INT_EVENT); if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) goto next; (void) printf(" %s [internal %s txg:%ju] %s\n", tbuf, zfs_history_event_names[ievent], fnvlist_lookup_uint64(events[i], ZPOOL_HIST_TXG), fnvlist_lookup_string(events[i], ZPOOL_HIST_INT_STR)); } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { (void) printf("%s [txg:%ju] %s", tbuf, fnvlist_lookup_uint64(events[i], ZPOOL_HIST_TXG), fnvlist_lookup_string(events[i], ZPOOL_HIST_INT_NAME)); if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { (void) printf(" %s (%llu)", fnvlist_lookup_string(events[i], ZPOOL_HIST_DSNAME), (u_longlong_t)fnvlist_lookup_uint64( events[i], ZPOOL_HIST_DSID)); } (void) printf(" %s\n", fnvlist_lookup_string(events[i], ZPOOL_HIST_INT_STR)); } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { (void) printf("%s ioctl %s\n", tbuf, fnvlist_lookup_string(events[i], ZPOOL_HIST_IOCTL)); if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { (void) printf(" input:\n"); dump_nvlist(fnvlist_lookup_nvlist(events[i], ZPOOL_HIST_INPUT_NVL), 8); } if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { (void) printf(" output:\n"); dump_nvlist(fnvlist_lookup_nvlist(events[i], ZPOOL_HIST_OUTPUT_NVL), 8); } if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { (void) printf(" errno: %lld\n", (longlong_t)fnvlist_lookup_int64(events[i], ZPOOL_HIST_ERRNO)); } } else { goto next; } printed = B_TRUE; next: if (dump_opt['h'] > 1) { if (!printed) (void) printf("unrecognized record:\n"); dump_nvlist(events[i], 2); } } free(buf); } static void dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) { (void) os, (void) object, (void) data, (void) size; } static uint64_t blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_phys_t *zb) { if (dnp == NULL) { ASSERT(zb->zb_level < 0); if (zb->zb_object == 0) return (zb->zb_blkid); return (zb->zb_blkid * BP_GET_LSIZE(bp)); } ASSERT(zb->zb_level >= 0); return ((zb->zb_blkid << (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); } static void snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, const blkptr_t *bp) { abd_t *pabd; void *buf; zio_t *zio; zfs_zstdhdr_t zstd_hdr; int error; if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) return; if (BP_IS_HOLE(bp)) return; if (BP_IS_EMBEDDED(bp)) { buf = malloc(SPA_MAXBLOCKSIZE); if (buf == NULL) { (void) fprintf(stderr, "out of memory\n"); exit(1); } decode_embedded_bp_compressed(bp, buf); memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); free(buf); zstd_hdr.c_len = BE_32(zstd_hdr.c_len); zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), zfs_get_hdrlevel(&zstd_hdr)); return; } pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); zio = zio_root(spa, NULL, NULL, 0); /* Decrypt but don't decompress so we can read the compression header */ zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, NULL)); error = zio_wait(zio); if (error) { (void) fprintf(stderr, "read failed: %d\n", error); return; } buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); zstd_hdr.c_len = BE_32(zstd_hdr.c_len); zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), " ZSTD:size=%u:version=%u:level=%u:NORMAL", zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), zfs_get_hdrlevel(&zstd_hdr)); abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); } static void snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, boolean_t bp_freed) { const dva_t *dva = bp->blk_dva; int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; int i; if (dump_opt['b'] >= 6) { snprintf_blkptr(blkbuf, buflen, bp); if (bp_freed) { (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), " %s", "FREE"); } return; } if (BP_IS_EMBEDDED(bp)) { (void) sprintf(blkbuf, "EMBEDDED et=%u %llxL/%llxP B=%llu", (int)BPE_GET_ETYPE(bp), (u_longlong_t)BPE_GET_LSIZE(bp), (u_longlong_t)BPE_GET_PSIZE(bp), (u_longlong_t)bp->blk_birth); return; } blkbuf[0] = '\0'; for (i = 0; i < ndvas; i++) (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llu:%llx:%llx ", (u_longlong_t)DVA_GET_VDEV(&dva[i]), (u_longlong_t)DVA_GET_OFFSET(&dva[i]), (u_longlong_t)DVA_GET_ASIZE(&dva[i])); if (BP_IS_HOLE(bp)) { (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llxL B=%llu", (u_longlong_t)BP_GET_LSIZE(bp), (u_longlong_t)bp->blk_birth); } else { (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llxL/%llxP F=%llu B=%llu/%llu", (u_longlong_t)BP_GET_LSIZE(bp), (u_longlong_t)BP_GET_PSIZE(bp), (u_longlong_t)BP_GET_FILL(bp), (u_longlong_t)bp->blk_birth, (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); if (bp_freed) (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), " %s", "FREE"); (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), " cksum=%016llx:%016llx:%016llx:%016llx", (u_longlong_t)bp->blk_cksum.zc_word[0], (u_longlong_t)bp->blk_cksum.zc_word[1], (u_longlong_t)bp->blk_cksum.zc_word[2], (u_longlong_t)bp->blk_cksum.zc_word[3]); } } static void print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp) { char blkbuf[BP_SPRINTF_LEN]; int l; if (!BP_IS_EMBEDDED(bp)) { ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); } (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); ASSERT(zb->zb_level >= 0); for (l = dnp->dn_nlevels - 1; l >= -1; l--) { if (l == zb->zb_level) { (void) printf("L%llx", (u_longlong_t)zb->zb_level); } else { (void) printf(" "); } } snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); (void) printf("%s\n", blkbuf); } static int visit_indirect(spa_t *spa, const dnode_phys_t *dnp, blkptr_t *bp, const zbookmark_phys_t *zb) { int err = 0; if (bp->blk_birth == 0) return (0); print_indirect(spa, bp, zb, dnp); if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { arc_flags_t flags = ARC_FLAG_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; arc_buf_t *buf; uint64_t fill = 0; ASSERT(!BP_IS_REDACTED(bp)); err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); if (err) return (err); ASSERT(buf->b_data); /* recursively visit blocks below this */ cbp = buf->b_data; for (i = 0; i < epb; i++, cbp++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); err = visit_indirect(spa, dnp, cbp, &czb); if (err) break; fill += BP_GET_FILL(cbp); } if (!err) ASSERT3U(fill, ==, BP_GET_FILL(bp)); arc_buf_destroy(buf, &buf); } return (err); } static void dump_indirect(dnode_t *dn) { dnode_phys_t *dnp = dn->dn_phys; zbookmark_phys_t czb; (void) printf("Indirect blocks:\n"); SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), dn->dn_object, dnp->dn_nlevels - 1, 0); for (int j = 0; j < dnp->dn_nblkptr; j++) { czb.zb_blkid = j; (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, &dnp->dn_blkptr[j], &czb); } (void) printf("\n"); } static void dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) { (void) os, (void) object; dsl_dir_phys_t *dd = data; time_t crtime; char nice[32]; /* make sure nicenum has enough space */ _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); if (dd == NULL) return; ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); crtime = dd->dd_creation_time; (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\thead_dataset_obj = %llu\n", (u_longlong_t)dd->dd_head_dataset_obj); (void) printf("\t\tparent_dir_obj = %llu\n", (u_longlong_t)dd->dd_parent_obj); (void) printf("\t\torigin_obj = %llu\n", (u_longlong_t)dd->dd_origin_obj); (void) printf("\t\tchild_dir_zapobj = %llu\n", (u_longlong_t)dd->dd_child_dir_zapobj); zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); (void) printf("\t\tused_bytes = %s\n", nice); zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); (void) printf("\t\tcompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); (void) printf("\t\tuncompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); (void) printf("\t\tquota = %s\n", nice); zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); (void) printf("\t\treserved = %s\n", nice); (void) printf("\t\tprops_zapobj = %llu\n", (u_longlong_t)dd->dd_props_zapobj); (void) printf("\t\tdeleg_zapobj = %llu\n", (u_longlong_t)dd->dd_deleg_zapobj); (void) printf("\t\tflags = %llx\n", (u_longlong_t)dd->dd_flags); #define DO(which) \ zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ sizeof (nice)); \ (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) DO(HEAD); DO(SNAP); DO(CHILD); DO(CHILD_RSRV); DO(REFRSRV); #undef DO (void) printf("\t\tclones = %llu\n", (u_longlong_t)dd->dd_clones); } static void dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) { (void) os, (void) object; dsl_dataset_phys_t *ds = data; time_t crtime; char used[32], compressed[32], uncompressed[32], unique[32]; char blkbuf[BP_SPRINTF_LEN]; /* make sure nicenum has enough space */ _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, "compressed truncated"); _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, "uncompressed truncated"); _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); if (ds == NULL) return; ASSERT(size == sizeof (*ds)); crtime = ds->ds_creation_time; zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, sizeof (uncompressed)); zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); (void) printf("\t\tdir_obj = %llu\n", (u_longlong_t)ds->ds_dir_obj); (void) printf("\t\tprev_snap_obj = %llu\n", (u_longlong_t)ds->ds_prev_snap_obj); (void) printf("\t\tprev_snap_txg = %llu\n", (u_longlong_t)ds->ds_prev_snap_txg); (void) printf("\t\tnext_snap_obj = %llu\n", (u_longlong_t)ds->ds_next_snap_obj); (void) printf("\t\tsnapnames_zapobj = %llu\n", (u_longlong_t)ds->ds_snapnames_zapobj); (void) printf("\t\tnum_children = %llu\n", (u_longlong_t)ds->ds_num_children); (void) printf("\t\tuserrefs_obj = %llu\n", (u_longlong_t)ds->ds_userrefs_obj); (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\tcreation_txg = %llu\n", (u_longlong_t)ds->ds_creation_txg); (void) printf("\t\tdeadlist_obj = %llu\n", (u_longlong_t)ds->ds_deadlist_obj); (void) printf("\t\tused_bytes = %s\n", used); (void) printf("\t\tcompressed_bytes = %s\n", compressed); (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); (void) printf("\t\tunique = %s\n", unique); (void) printf("\t\tfsid_guid = %llu\n", (u_longlong_t)ds->ds_fsid_guid); (void) printf("\t\tguid = %llu\n", (u_longlong_t)ds->ds_guid); (void) printf("\t\tflags = %llx\n", (u_longlong_t)ds->ds_flags); (void) printf("\t\tnext_clones_obj = %llu\n", (u_longlong_t)ds->ds_next_clones_obj); (void) printf("\t\tprops_obj = %llu\n", (u_longlong_t)ds->ds_props_obj); (void) printf("\t\tbp = %s\n", blkbuf); } static int dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { (void) arg, (void) tx; char blkbuf[BP_SPRINTF_LEN]; if (bp->blk_birth != 0) { snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("\t%s\n", blkbuf); } return (0); } static void dump_bptree(objset_t *os, uint64_t obj, const char *name) { char bytes[32]; bptree_phys_t *bt; dmu_buf_t *db; /* make sure nicenum has enough space */ _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); if (dump_opt['d'] < 3) return; VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); bt = db->db_data; zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); (void) printf("\n %s: %llu datasets, %s\n", name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); dmu_buf_rele(db, FTAG); if (dump_opt['d'] < 5) return; (void) printf("\n"); (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); } static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { (void) arg, (void) tx; char blkbuf[BP_SPRINTF_LEN]; ASSERT(bp->blk_birth != 0); snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); (void) printf("\t%s\n", blkbuf); return (0); } static void dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) { char bytes[32]; char comp[32]; char uncomp[32]; uint64_t i; /* make sure nicenum has enough space */ _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); if (dump_opt['d'] < 3) return; zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); if (bpo->bpo_havefreed) { (void) printf(" %*s: object %llu, %llu local " "blkptrs, %llu freed, %llu subobjs in object %llu, " "%s (%s/%s comp)\n", indent * 8, name, (u_longlong_t)bpo->bpo_object, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, (u_longlong_t)bpo->bpo_phys->bpo_num_freed, (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, (u_longlong_t)bpo->bpo_phys->bpo_subobjs, bytes, comp, uncomp); } else { (void) printf(" %*s: object %llu, %llu local " "blkptrs, %llu subobjs in object %llu, " "%s (%s/%s comp)\n", indent * 8, name, (u_longlong_t)bpo->bpo_object, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, (u_longlong_t)bpo->bpo_phys->bpo_subobjs, bytes, comp, uncomp); } for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { uint64_t subobj; bpobj_t subbpo; int error; VERIFY0(dmu_read(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, i * sizeof (subobj), sizeof (subobj), &subobj, 0)); error = bpobj_open(&subbpo, bpo->bpo_os, subobj); if (error != 0) { (void) printf("ERROR %u while trying to open " "subobj id %llu\n", error, (u_longlong_t)subobj); continue; } dump_full_bpobj(&subbpo, "subobj", indent + 1); bpobj_close(&subbpo); } } else { if (bpo->bpo_havefreed) { (void) printf(" %*s: object %llu, %llu blkptrs, " "%llu freed, %s\n", indent * 8, name, (u_longlong_t)bpo->bpo_object, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, (u_longlong_t)bpo->bpo_phys->bpo_num_freed, bytes); } else { (void) printf(" %*s: object %llu, %llu blkptrs, " "%s\n", indent * 8, name, (u_longlong_t)bpo->bpo_object, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, bytes); } } if (dump_opt['d'] < 5) return; if (indent == 0) { (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); (void) printf("\n"); } } static int dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, boolean_t print_list) { int err = 0; zfs_bookmark_phys_t prop; objset_t *mos = dp->dp_spa->spa_meta_objset; err = dsl_bookmark_lookup(dp, name, NULL, &prop); if (err != 0) { return (err); } (void) printf("\t#%s: ", strchr(name, '#') + 1); (void) printf("{guid: %llx creation_txg: %llu creation_time: " "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, (u_longlong_t)prop.zbm_creation_txg, (u_longlong_t)prop.zbm_creation_time, (u_longlong_t)prop.zbm_redaction_obj); IMPLY(print_list, print_redact); if (!print_redact || prop.zbm_redaction_obj == 0) return (0); redaction_list_t *rl; VERIFY0(dsl_redaction_list_hold_obj(dp, prop.zbm_redaction_obj, FTAG, &rl)); redaction_list_phys_t *rlp = rl->rl_phys; (void) printf("\tRedacted:\n\t\tProgress: "); if (rlp->rlp_last_object != UINT64_MAX || rlp->rlp_last_blkid != UINT64_MAX) { (void) printf("%llu %llu (incomplete)\n", (u_longlong_t)rlp->rlp_last_object, (u_longlong_t)rlp->rlp_last_blkid); } else { (void) printf("complete\n"); } (void) printf("\t\tSnapshots: ["); for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { if (i > 0) (void) printf(", "); (void) printf("%0llu", (u_longlong_t)rlp->rlp_snaps[i]); } (void) printf("]\n\t\tLength: %llu\n", (u_longlong_t)rlp->rlp_num_entries); if (!print_list) { dsl_redaction_list_rele(rl, FTAG); return (0); } if (rlp->rlp_num_entries == 0) { dsl_redaction_list_rele(rl, FTAG); (void) printf("\t\tRedaction List: []\n\n"); return (0); } redact_block_phys_t *rbp_buf; uint64_t size; dmu_object_info_t doi; VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); size = doi.doi_max_offset; rbp_buf = kmem_alloc(size, KM_SLEEP); err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, rbp_buf, 0); if (err != 0) { dsl_redaction_list_rele(rl, FTAG); kmem_free(rbp_buf, size); return (err); } (void) printf("\t\tRedaction List: [{object: %llx, offset: " "%llx, blksz: %x, count: %llx}", (u_longlong_t)rbp_buf[0].rbp_object, (u_longlong_t)rbp_buf[0].rbp_blkid, (uint_t)(redact_block_get_size(&rbp_buf[0])), (u_longlong_t)redact_block_get_count(&rbp_buf[0])); for (size_t i = 1; i < rlp->rlp_num_entries; i++) { (void) printf(",\n\t\t{object: %llx, offset: %llx, " "blksz: %x, count: %llx}", (u_longlong_t)rbp_buf[i].rbp_object, (u_longlong_t)rbp_buf[i].rbp_blkid, (uint_t)(redact_block_get_size(&rbp_buf[i])), (u_longlong_t)redact_block_get_count(&rbp_buf[i])); } dsl_redaction_list_rele(rl, FTAG); kmem_free(rbp_buf, size); (void) printf("]\n\n"); return (0); } static void dump_bookmarks(objset_t *os, int verbosity) { zap_cursor_t zc; zap_attribute_t attr; dsl_dataset_t *ds = dmu_objset_ds(os); dsl_pool_t *dp = spa_get_dsl(os->os_spa); objset_t *mos = os->os_spa->spa_meta_objset; if (verbosity < 4) return; dsl_pool_config_enter(dp, FTAG); for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { char osname[ZFS_MAX_DATASET_NAME_LEN]; char buf[ZFS_MAX_DATASET_NAME_LEN]; int len; dmu_objset_name(os, osname); len = snprintf(buf, sizeof (buf), "%s#%s", osname, attr.za_name); VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); } zap_cursor_fini(&zc); dsl_pool_config_exit(dp, FTAG); } static void bpobj_count_refd(bpobj_t *bpo) { mos_obj_refd(bpo->bpo_object); if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { mos_obj_refd(bpo->bpo_phys->bpo_subobjs); for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { uint64_t subobj; bpobj_t subbpo; int error; VERIFY0(dmu_read(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, i * sizeof (subobj), sizeof (subobj), &subobj, 0)); error = bpobj_open(&subbpo, bpo->bpo_os, subobj); if (error != 0) { (void) printf("ERROR %u while trying to open " "subobj id %llu\n", error, (u_longlong_t)subobj); continue; } bpobj_count_refd(&subbpo); bpobj_close(&subbpo); } } } static int dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) { spa_t *spa = arg; uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; if (dle->dle_bpobj.bpo_object != empty_bpobj) bpobj_count_refd(&dle->dle_bpobj); return (0); } static int dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) { ASSERT(arg == NULL); if (dump_opt['d'] >= 5) { char buf[128]; (void) snprintf(buf, sizeof (buf), "mintxg %llu -> obj %llu", (longlong_t)dle->dle_mintxg, (longlong_t)dle->dle_bpobj.bpo_object); dump_full_bpobj(&dle->dle_bpobj, buf, 0); } else { (void) printf("mintxg %llu -> obj %llu\n", (longlong_t)dle->dle_mintxg, (longlong_t)dle->dle_bpobj.bpo_object); } return (0); } static void dump_blkptr_list(dsl_deadlist_t *dl, const char *name) { char bytes[32]; char comp[32]; char uncomp[32]; char entries[32]; spa_t *spa = dmu_objset_spa(dl->dl_os); uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; if (dl->dl_oldfmt) { if (dl->dl_bpobj.bpo_object != empty_bpobj) bpobj_count_refd(&dl->dl_bpobj); } else { mos_obj_refd(dl->dl_object); dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); } /* make sure nicenum has enough space */ _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); if (dump_opt['d'] < 3) return; if (dl->dl_oldfmt) { dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); return; } zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); (void) printf("\n %s: %s (%s/%s comp), %s entries\n", name, bytes, comp, uncomp, entries); if (dump_opt['d'] < 4) return; (void) putchar('\n'); dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); } static int verify_dd_livelist(objset_t *os) { uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; dsl_pool_t *dp = spa_get_dsl(os->os_spa); dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; ASSERT(!dmu_objset_is_snapshot(os)); if (!dsl_deadlist_is_open(&dd->dd_livelist)) return (0); /* Iterate through the livelist to check for duplicates */ dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, NULL); dsl_pool_config_enter(dp, FTAG); dsl_deadlist_space(&dd->dd_livelist, &ll_used, &ll_comp, &ll_uncomp); dsl_dataset_t *origin_ds; ASSERT(dsl_pool_config_held(dp)); VERIFY0(dsl_dataset_hold_obj(dp, dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, &used, &comp, &uncomp)); dsl_dataset_rele(origin_ds, FTAG); dsl_pool_config_exit(dp, FTAG); /* * It's possible that the dataset's uncomp space is larger than the * livelist's because livelists do not track embedded block pointers */ if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { char nice_used[32], nice_comp[32], nice_uncomp[32]; (void) printf("Discrepancy in space accounting:\n"); zdb_nicenum(used, nice_used, sizeof (nice_used)); zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); (void) printf("dir: used %s, comp %s, uncomp %s\n", nice_used, nice_comp, nice_uncomp); zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); (void) printf("livelist: used %s, comp %s, uncomp %s\n", nice_used, nice_comp, nice_uncomp); return (1); } return (0); } static char *key_material = NULL; static boolean_t zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) { uint64_t keyformat, salt, iters; int i; unsigned char c; VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 1, &keyformat)); switch (keyformat) { case ZFS_KEYFORMAT_HEX: for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { if (!isxdigit(key_material[i]) || !isxdigit(key_material[i+1])) return (B_FALSE); if (sscanf(&key_material[i], "%02hhx", &c) != 1) return (B_FALSE); key_out[i / 2] = c; } break; case ZFS_KEYFORMAT_PASSPHRASE: VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), sizeof (uint64_t), 1, &salt)); VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), sizeof (uint64_t), 1, &iters)); if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), ((uint8_t *)&salt), sizeof (uint64_t), iters, WRAPPING_KEY_LEN, key_out) != 1) return (B_FALSE); break; default: fatal("no support for key format %u\n", (unsigned int) keyformat); } return (B_TRUE); } static char encroot[ZFS_MAX_DATASET_NAME_LEN]; static boolean_t key_loaded = B_FALSE; static void zdb_load_key(objset_t *os) { dsl_pool_t *dp; dsl_dir_t *dd, *rdd; uint8_t key[WRAPPING_KEY_LEN]; uint64_t rddobj; int err; dp = spa_get_dsl(os->os_spa); dd = os->os_dsl_dataset->ds_dir; dsl_pool_config_enter(dp, FTAG); VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); dsl_dir_name(rdd, encroot); dsl_dir_rele(rdd, FTAG); if (!zdb_derive_key(dd, key)) fatal("couldn't derive encryption key"); dsl_pool_config_exit(dp, FTAG); ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); dsl_crypto_params_t *dcp; nvlist_t *crypto_args; crypto_args = fnvlist_alloc(); fnvlist_add_uint8_array(crypto_args, "wkeydata", (uint8_t *)key, WRAPPING_KEY_LEN); VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, crypto_args, &dcp)); err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); dsl_crypto_params_free(dcp, (err != 0)); fnvlist_free(crypto_args); if (err != 0) fatal( "couldn't load encryption key for %s: %s", encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? "crypto params not supported" : strerror(err)); ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); printf("Unlocked encryption root: %s\n", encroot); key_loaded = B_TRUE; } static void zdb_unload_key(void) { if (!key_loaded) return; VERIFY0(spa_keystore_unload_wkey(encroot)); key_loaded = B_FALSE; } static avl_tree_t idx_tree; static avl_tree_t domain_tree; static boolean_t fuid_table_loaded; static objset_t *sa_os = NULL; static sa_attr_type_t *sa_attr_table = NULL; static int open_objset(const char *path, const void *tag, objset_t **osp) { int err; uint64_t sa_attrs = 0; uint64_t version = 0; VERIFY3P(sa_os, ==, NULL); /* * We can't own an objset if it's redacted. Therefore, we do this * dance: hold the objset, then acquire a long hold on its dataset, then * release the pool (which is held as part of holding the objset). */ if (dump_opt['K']) { /* decryption requested, try to load keys */ err = dmu_objset_hold(path, tag, osp); if (err != 0) { (void) fprintf(stderr, "failed to hold dataset " "'%s': %s\n", path, strerror(err)); return (err); } dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); dsl_pool_rele(dmu_objset_pool(*osp), tag); /* succeeds or dies */ zdb_load_key(*osp); /* release it all */ dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); dsl_dataset_rele(dmu_objset_ds(*osp), tag); } int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); if (err != 0) { (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", path, strerror(err)); return (err); } dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); dsl_pool_rele(dmu_objset_pool(*osp), tag); if (dmu_objset_type(*osp) == DMU_OST_ZFS && (key_loaded || !(*osp)->os_encrypted)) { (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &version); if (version >= ZPL_VERSION_SA) { (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_attrs); } err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, &sa_attr_table); if (err != 0) { (void) fprintf(stderr, "sa_setup failed: %s\n", strerror(err)); dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); dsl_dataset_rele_flags(dmu_objset_ds(*osp), ds_hold_flags, tag); *osp = NULL; } } sa_os = *osp; return (err); } static void close_objset(objset_t *os, const void *tag) { VERIFY3P(os, ==, sa_os); if (os->os_sa != NULL) sa_tear_down(os); dsl_dataset_long_rele(dmu_objset_ds(os), tag); dsl_dataset_rele_flags(dmu_objset_ds(os), key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); sa_attr_table = NULL; sa_os = NULL; zdb_unload_key(); } static void fuid_table_destroy(void) { if (fuid_table_loaded) { zfs_fuid_table_destroy(&idx_tree, &domain_tree); fuid_table_loaded = B_FALSE; } } /* * print uid or gid information. * For normal POSIX id just the id is printed in decimal format. * For CIFS files with FUID the fuid is printed in hex followed by * the domain-rid string. */ static void print_idstr(uint64_t id, const char *id_type) { if (FUID_INDEX(id)) { const char *domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); (void) printf("\t%s %llx [%s-%d]\n", id_type, (u_longlong_t)id, domain, (int)FUID_RID(id)); } else { (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); } } static void dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) { uint32_t uid_idx, gid_idx; uid_idx = FUID_INDEX(uid); gid_idx = FUID_INDEX(gid); /* Load domain table, if not already loaded */ if (!fuid_table_loaded && (uid_idx || gid_idx)) { uint64_t fuid_obj; /* first find the fuid object. It lives in the master node */ VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &fuid_obj) == 0); zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); (void) zfs_fuid_table_load(os, fuid_obj, &idx_tree, &domain_tree); fuid_table_loaded = B_TRUE; } print_idstr(uid, "uid"); print_idstr(gid, "gid"); } static void dump_znode_sa_xattr(sa_handle_t *hdl) { nvlist_t *sa_xattr; nvpair_t *elem = NULL; int sa_xattr_size = 0; int sa_xattr_entries = 0; int error; char *sa_xattr_packed; error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); if (error || sa_xattr_size == 0) return; sa_xattr_packed = malloc(sa_xattr_size); if (sa_xattr_packed == NULL) return; error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], sa_xattr_packed, sa_xattr_size); if (error) { free(sa_xattr_packed); return; } error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); if (error) { free(sa_xattr_packed); return; } while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) sa_xattr_entries++; (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", sa_xattr_size, sa_xattr_entries); while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { boolean_t can_print = !dump_opt['P']; uchar_t *value; uint_t cnt, idx; (void) printf("\t\t%s = ", nvpair_name(elem)); nvpair_value_byte_array(elem, &value, &cnt); for (idx = 0; idx < cnt; ++idx) { if (!isprint(value[idx])) { can_print = B_FALSE; break; } } for (idx = 0; idx < cnt; ++idx) { if (can_print) (void) putchar(value[idx]); else (void) printf("\\%3.3o", value[idx]); } (void) putchar('\n'); } nvlist_free(sa_xattr); free(sa_xattr_packed); } static void dump_znode_symlink(sa_handle_t *hdl) { int sa_symlink_size = 0; char linktarget[MAXPATHLEN]; int error; error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); if (error || sa_symlink_size == 0) { return; } if (sa_symlink_size >= sizeof (linktarget)) { (void) printf("symlink size %d is too large\n", sa_symlink_size); return; } linktarget[sa_symlink_size] = '\0'; if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], &linktarget, sa_symlink_size) == 0) (void) printf("\ttarget %s\n", linktarget); } static void dump_znode(objset_t *os, uint64_t object, void *data, size_t size) { (void) data, (void) size; char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ sa_handle_t *hdl; uint64_t xattr, rdev, gen; uint64_t uid, gid, mode, fsize, parent, links; uint64_t pflags; uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; time_t z_crtime, z_atime, z_mtime, z_ctime; sa_bulk_attr_t bulk[12]; int idx = 0; int error; VERIFY3P(os, ==, sa_os); if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { (void) printf("Failed to get handle for SA znode\n"); return; } SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, &links, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], NULL, &parent, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, &fsize, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, acctm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, modtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, crtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, chgtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, &pflags, 8); if (sa_bulk_lookup(hdl, bulk, idx)) { (void) sa_handle_destroy(hdl); return; } z_crtime = (time_t)crtm[0]; z_atime = (time_t)acctm[0]; z_mtime = (time_t)modtm[0]; z_ctime = (time_t)chgtm[0]; if (dump_opt['d'] > 4) { error = zfs_obj_to_path(os, object, path, sizeof (path)); if (error == ESTALE) { (void) snprintf(path, sizeof (path), "on delete queue"); } else if (error != 0) { leaked_objects++; (void) snprintf(path, sizeof (path), "path not found, possibly leaked"); } (void) printf("\tpath %s\n", path); } if (S_ISLNK(mode)) dump_znode_symlink(hdl); dump_uidgid(os, uid, gid); (void) printf("\tatime %s", ctime(&z_atime)); (void) printf("\tmtime %s", ctime(&z_mtime)); (void) printf("\tctime %s", ctime(&z_ctime)); (void) printf("\tcrtime %s", ctime(&z_crtime)); (void) printf("\tgen %llu\n", (u_longlong_t)gen); (void) printf("\tmode %llo\n", (u_longlong_t)mode); (void) printf("\tsize %llu\n", (u_longlong_t)fsize); (void) printf("\tparent %llu\n", (u_longlong_t)parent); (void) printf("\tlinks %llu\n", (u_longlong_t)links); (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { uint64_t projid; if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, sizeof (uint64_t)) == 0) (void) printf("\tprojid %llu\n", (u_longlong_t)projid); } if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, sizeof (uint64_t)) == 0) (void) printf("\txattr %llu\n", (u_longlong_t)xattr); if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, sizeof (uint64_t)) == 0) (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); dump_znode_sa_xattr(hdl); sa_handle_destroy(hdl); } static void dump_acl(objset_t *os, uint64_t object, void *data, size_t size) { (void) os, (void) object, (void) data, (void) size; } static void dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) { (void) os, (void) object, (void) data, (void) size; } static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { dump_none, /* unallocated */ dump_zap, /* object directory */ dump_uint64, /* object array */ dump_none, /* packed nvlist */ dump_packed_nvlist, /* packed nvlist size */ dump_none, /* bpobj */ dump_bpobj, /* bpobj header */ dump_none, /* SPA space map header */ dump_none, /* SPA space map */ dump_none, /* ZIL intent log */ dump_dnode, /* DMU dnode */ dump_dmu_objset, /* DMU objset */ dump_dsl_dir, /* DSL directory */ dump_zap, /* DSL directory child map */ dump_zap, /* DSL dataset snap map */ dump_zap, /* DSL props */ dump_dsl_dataset, /* DSL dataset */ dump_znode, /* ZFS znode */ dump_acl, /* ZFS V0 ACL */ dump_uint8, /* ZFS plain file */ dump_zpldir, /* ZFS directory */ dump_zap, /* ZFS master node */ dump_zap, /* ZFS delete queue */ dump_uint8, /* zvol object */ dump_zap, /* zvol prop */ dump_uint8, /* other uint8[] */ dump_uint64, /* other uint64[] */ dump_zap, /* other ZAP */ dump_zap, /* persistent error log */ dump_uint8, /* SPA history */ dump_history_offsets, /* SPA history offsets */ dump_zap, /* Pool properties */ dump_zap, /* DSL permissions */ dump_acl, /* ZFS ACL */ dump_uint8, /* ZFS SYSACL */ dump_none, /* FUID nvlist */ dump_packed_nvlist, /* FUID nvlist size */ dump_zap, /* DSL dataset next clones */ dump_zap, /* DSL scrub queue */ dump_zap, /* ZFS user/group/project used */ dump_zap, /* ZFS user/group/project quota */ dump_zap, /* snapshot refcount tags */ dump_ddt_zap, /* DDT ZAP object */ dump_zap, /* DDT statistics */ dump_znode, /* SA object */ dump_zap, /* SA Master Node */ dump_sa_attrs, /* SA attribute registration */ dump_sa_layouts, /* SA attribute layouts */ dump_zap, /* DSL scrub translations */ dump_none, /* fake dedup BP */ dump_zap, /* deadlist */ dump_none, /* deadlist hdr */ dump_zap, /* dsl clones */ dump_bpobj_subobjs, /* bpobj subobjs */ dump_unknown, /* Unknown type, must be last */ }; static boolean_t match_object_type(dmu_object_type_t obj_type, uint64_t flags) { boolean_t match = B_TRUE; switch (obj_type) { case DMU_OT_DIRECTORY_CONTENTS: if (!(flags & ZOR_FLAG_DIRECTORY)) match = B_FALSE; break; case DMU_OT_PLAIN_FILE_CONTENTS: if (!(flags & ZOR_FLAG_PLAIN_FILE)) match = B_FALSE; break; case DMU_OT_SPACE_MAP: if (!(flags & ZOR_FLAG_SPACE_MAP)) match = B_FALSE; break; default: if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { if (!(flags & ZOR_FLAG_ZAP)) match = B_FALSE; break; } /* * If all bits except some of the supported flags are * set, the user combined the all-types flag (A) with * a negated flag to exclude some types (e.g. A-f to * show all object types except plain files). */ if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) match = B_FALSE; break; } return (match); } static void dump_object(objset_t *os, uint64_t object, int verbosity, boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) { dmu_buf_t *db = NULL; dmu_object_info_t doi; dnode_t *dn; boolean_t dnode_held = B_FALSE; void *bonus = NULL; size_t bsize = 0; char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; char bonus_size[32]; char aux[50]; int error; /* make sure nicenum has enough space */ _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, "bonus_size truncated"); if (*print_header) { (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", "lsize", "%full", "type"); *print_header = 0; } if (object == 0) { dn = DMU_META_DNODE(os); dmu_object_info_from_dnode(dn, &doi); } else { /* * Encrypted datasets will have sensitive bonus buffers * encrypted. Therefore we cannot hold the bonus buffer and * must hold the dnode itself instead. */ error = dmu_object_info(os, object, &doi); if (error) fatal("dmu_object_info() failed, errno %u", error); if (!key_loaded && os->os_encrypted && DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { error = dnode_hold(os, object, FTAG, &dn); if (error) fatal("dnode_hold() failed, errno %u", error); dnode_held = B_TRUE; } else { error = dmu_bonus_hold(os, object, FTAG, &db); if (error) fatal("dmu_bonus_hold(%llu) failed, errno %u", object, error); bonus = db->db_data; bsize = db->db_size; dn = DB_DNODE((dmu_buf_impl_t *)db); } } /* * Default to showing all object types if no flags were specified. */ if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && !match_object_type(doi.doi_type, flags)) goto out; if (dnode_slots_used) *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) / doi.doi_max_offset); aux[0] = '\0'; if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); } if (doi.doi_compress == ZIO_COMPRESS_INHERIT && ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { const char *compname = NULL; if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), &compname) == 0) { (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), " (Z=inherit=%s)", compname); } else { (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), " (Z=inherit=%s-unknown)", ZDB_COMPRESS_NAME(os->os_compress)); } } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); } (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", (u_longlong_t)object, doi.doi_indirection, iblk, dblk, asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", "", "", "", "", "", "", bonus_size, "bonus", zdb_ot_name(doi.doi_bonus_type)); } if (verbosity >= 4) { (void) printf("\tdnode flags: %s%s%s%s\n", (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? "USED_BYTES " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? "USERUSED_ACCOUNTED " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? "USEROBJUSED_ACCOUNTED " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? "SPILL_BLKPTR" : ""); (void) printf("\tdnode maxblkid: %llu\n", (longlong_t)dn->dn_phys->dn_maxblkid); if (!dnode_held) { object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, object, bonus, bsize); } else { (void) printf("\t\t(bonus encrypted)\n"); } if (key_loaded || (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, NULL, 0); } else { (void) printf("\t\t(object encrypted)\n"); } *print_header = B_TRUE; } if (verbosity >= 5) { if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); (void) printf("\nSpill block: %s\n", blkbuf); } dump_indirect(dn); } if (verbosity >= 5) { /* * Report the list of segments that comprise the object. */ uint64_t start = 0; uint64_t end; uint64_t blkfill = 1; int minlvl = 1; if (dn->dn_type == DMU_OT_DNODE) { minlvl = 0; blkfill = DNODES_PER_BLOCK; } for (;;) { char segsize[32]; /* make sure nicenum has enough space */ _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, "segsize truncated"); error = dnode_next_offset(dn, 0, &start, minlvl, blkfill, 0); if (error) break; end = start; error = dnode_next_offset(dn, DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); zdb_nicenum(end - start, segsize, sizeof (segsize)); (void) printf("\t\tsegment [%016llx, %016llx)" " size %5s\n", (u_longlong_t)start, (u_longlong_t)end, segsize); if (error) break; start = end; } } out: if (db != NULL) dmu_buf_rele(db, FTAG); if (dnode_held) dnode_rele(dn, FTAG); } static void count_dir_mos_objects(dsl_dir_t *dd) { mos_obj_refd(dd->dd_object); mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); mos_obj_refd(dsl_dir_phys(dd)->dd_clones); /* * The dd_crypto_obj can be referenced by multiple dsl_dir's. * Ignore the references after the first one. */ mos_obj_refd_multiple(dd->dd_crypto_obj); } static void count_ds_mos_objects(dsl_dataset_t *ds) { mos_obj_refd(ds->ds_object); mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); mos_obj_refd(ds->ds_bookmarks_obj); if (!dsl_dataset_is_snapshot(ds)) { count_dir_mos_objects(ds->ds_dir); } } static const char *const objset_types[DMU_OST_NUMTYPES] = { "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; /* * Parse a string denoting a range of object IDs of the form * [:[:flags]], and store the results in zor. * Return 0 on success. On error, return 1 and update the msg * pointer to point to a descriptive error message. */ static int parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) { uint64_t flags = 0; char *p, *s, *dup, *flagstr, *tmp = NULL; size_t len; int i; int rc = 0; if (strchr(range, ':') == NULL) { zor->zor_obj_start = strtoull(range, &p, 0); if (*p != '\0') { *msg = "Invalid characters in object ID"; rc = 1; } zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); zor->zor_obj_end = zor->zor_obj_start; return (rc); } if (strchr(range, ':') == range) { *msg = "Invalid leading colon"; rc = 1; return (rc); } len = strlen(range); if (range[len - 1] == ':') { *msg = "Invalid trailing colon"; rc = 1; return (rc); } dup = strdup(range); s = strtok_r(dup, ":", &tmp); zor->zor_obj_start = strtoull(s, &p, 0); if (*p != '\0') { *msg = "Invalid characters in start object ID"; rc = 1; goto out; } s = strtok_r(NULL, ":", &tmp); zor->zor_obj_end = strtoull(s, &p, 0); if (*p != '\0') { *msg = "Invalid characters in end object ID"; rc = 1; goto out; } if (zor->zor_obj_start > zor->zor_obj_end) { *msg = "Start object ID may not exceed end object ID"; rc = 1; goto out; } s = strtok_r(NULL, ":", &tmp); if (s == NULL) { zor->zor_flags = ZOR_FLAG_ALL_TYPES; goto out; } else if (strtok_r(NULL, ":", &tmp) != NULL) { *msg = "Invalid colon-delimited field after flags"; rc = 1; goto out; } flagstr = s; for (i = 0; flagstr[i]; i++) { int bit; boolean_t negation = (flagstr[i] == '-'); if (negation) { i++; if (flagstr[i] == '\0') { *msg = "Invalid trailing negation operator"; rc = 1; goto out; } } bit = flagbits[(uchar_t)flagstr[i]]; if (bit == 0) { *msg = "Invalid flag"; rc = 1; goto out; } if (negation) flags &= ~bit; else flags |= bit; } zor->zor_flags = flags; zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); out: free(dup); return (rc); } static void dump_objset(objset_t *os) { dmu_objset_stats_t dds = { 0 }; uint64_t object, object_count; uint64_t refdbytes, usedobjs, scratch; char numbuf[32]; char blkbuf[BP_SPRINTF_LEN + 20]; char osname[ZFS_MAX_DATASET_NAME_LEN]; const char *type = "UNKNOWN"; int verbosity = dump_opt['d']; boolean_t print_header; unsigned i; int error; uint64_t total_slots_used = 0; uint64_t max_slot_used = 0; uint64_t dnode_slots; uint64_t obj_start; uint64_t obj_end; uint64_t flags; /* make sure nicenum has enough space */ _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); dmu_objset_fast_stat(os, &dds); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); print_header = B_TRUE; if (dds.dds_type < DMU_OST_NUMTYPES) type = objset_types[dds.dds_type]; if (dds.dds_type == DMU_OST_META) { dds.dds_creation_txg = TXG_INITIAL; usedobjs = BP_GET_FILL(os->os_rootbp); refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> dd_used_bytes; } else { dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); } ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); if (verbosity >= 4) { (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); (void) snprintf_blkptr(blkbuf + strlen(blkbuf), sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); } else { blkbuf[0] = '\0'; } dmu_objset_name(os, osname); (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " "%s, %llu objects%s%s\n", osname, type, (u_longlong_t)dmu_objset_id(os), (u_longlong_t)dds.dds_creation_txg, numbuf, (u_longlong_t)usedobjs, blkbuf, (dds.dds_inconsistent) ? " (inconsistent)" : ""); for (i = 0; i < zopt_object_args; i++) { obj_start = zopt_object_ranges[i].zor_obj_start; obj_end = zopt_object_ranges[i].zor_obj_end; flags = zopt_object_ranges[i].zor_flags; object = obj_start; if (object == 0 || obj_start == obj_end) dump_object(os, object, verbosity, &print_header, NULL, flags); else object--; while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && object <= obj_end) { dump_object(os, object, verbosity, &print_header, NULL, flags); } } if (zopt_object_args > 0) { (void) printf("\n"); return; } if (dump_opt['i'] != 0 || verbosity >= 2) dump_intent_log(dmu_objset_zil(os)); if (dmu_objset_ds(os) != NULL) { dsl_dataset_t *ds = dmu_objset_ds(os); dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && !dmu_objset_is_snapshot(os)) { dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); if (verify_dd_livelist(os) != 0) fatal("livelist is incorrect"); } if (dsl_dataset_remap_deadlist_exists(ds)) { (void) printf("ds_remap_deadlist:\n"); dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); } count_ds_mos_objects(ds); } if (dmu_objset_ds(os) != NULL) dump_bookmarks(os, verbosity); if (verbosity < 2) return; if (BP_IS_HOLE(os->os_rootbp)) return; dump_object(os, 0, verbosity, &print_header, NULL, 0); object_count = 0; if (DMU_USERUSED_DNODE(os) != NULL && DMU_USERUSED_DNODE(os)->dn_type != 0) { dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, NULL, 0); dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, NULL, 0); } if (DMU_PROJECTUSED_DNODE(os) != NULL && DMU_PROJECTUSED_DNODE(os)->dn_type != 0) dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, &print_header, NULL, 0); object = 0; while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { dump_object(os, object, verbosity, &print_header, &dnode_slots, 0); object_count++; total_slots_used += dnode_slots; max_slot_used = object + dnode_slots - 1; } (void) printf("\n"); (void) printf(" Dnode slots:\n"); (void) printf("\tTotal used: %10llu\n", (u_longlong_t)total_slots_used); (void) printf("\tMax used: %10llu\n", (u_longlong_t)max_slot_used); (void) printf("\tPercent empty: %10lf\n", (double)(max_slot_used - total_slots_used)*100 / (double)max_slot_used); (void) printf("\n"); if (error != ESRCH) { (void) fprintf(stderr, "dmu_object_next() = %d\n", error); abort(); } ASSERT3U(object_count, ==, usedobjs); if (leaked_objects != 0) { (void) printf("%d potentially leaked objects detected\n", leaked_objects); leaked_objects = 0; } } static void dump_uberblock(uberblock_t *ub, const char *header, const char *footer) { time_t timestamp = ub->ub_timestamp; (void) printf("%s", header ? header : ""); (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); (void) printf("\ttimestamp = %llu UTC = %s", (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); (void) printf("\tmmp_magic = %016llx\n", (u_longlong_t)ub->ub_mmp_magic); if (MMP_VALID(ub)) { (void) printf("\tmmp_delay = %0llu\n", (u_longlong_t)ub->ub_mmp_delay); if (MMP_SEQ_VALID(ub)) (void) printf("\tmmp_seq = %u\n", (unsigned int) MMP_SEQ(ub)); if (MMP_FAIL_INT_VALID(ub)) (void) printf("\tmmp_fail = %u\n", (unsigned int) MMP_FAIL_INT(ub)); if (MMP_INTERVAL_VALID(ub)) (void) printf("\tmmp_write = %u\n", (unsigned int) MMP_INTERVAL(ub)); /* After MMP_* to make summarize_uberblock_mmp cleaner */ (void) printf("\tmmp_valid = %x\n", (unsigned int) ub->ub_mmp_config & 0xFF); } if (dump_opt['u'] >= 4) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); (void) printf("\trootbp = %s\n", blkbuf); } (void) printf("\tcheckpoint_txg = %llu\n", (u_longlong_t)ub->ub_checkpoint_txg); (void) printf("%s", footer ? footer : ""); } static void dump_config(spa_t *spa) { dmu_buf_t *db; size_t nvsize = 0; int error = 0; error = dmu_bonus_hold(spa->spa_meta_objset, spa->spa_config_object, FTAG, &db); if (error == 0) { nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); (void) printf("\nMOS Configuration:\n"); dump_packed_nvlist(spa->spa_meta_objset, spa->spa_config_object, (void *)&nvsize, 1); } else { (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", (u_longlong_t)spa->spa_config_object, error); } } static void dump_cachefile(const char *cachefile) { int fd; struct stat64 statbuf; char *buf; nvlist_t *config; if ((fd = open64(cachefile, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", cachefile, strerror(errno)); exit(1); } if (fstat64(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", cachefile, strerror(errno)); exit(1); } if ((buf = malloc(statbuf.st_size)) == NULL) { (void) fprintf(stderr, "failed to allocate %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { (void) fprintf(stderr, "failed to read %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } (void) close(fd); if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { (void) fprintf(stderr, "failed to unpack nvlist\n"); exit(1); } free(buf); dump_nvlist(config, 0); nvlist_free(config); } /* * ZFS label nvlist stats */ typedef struct zdb_nvl_stats { int zns_list_count; int zns_leaf_count; size_t zns_leaf_largest; size_t zns_leaf_total; nvlist_t *zns_string; nvlist_t *zns_uint64; nvlist_t *zns_boolean; } zdb_nvl_stats_t; static void collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) { nvlist_t *list, **array; nvpair_t *nvp = NULL; const char *name; uint_t i, items; stats->zns_list_count++; while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { name = nvpair_name(nvp); switch (nvpair_type(nvp)) { case DATA_TYPE_STRING: fnvlist_add_string(stats->zns_string, name, fnvpair_value_string(nvp)); break; case DATA_TYPE_UINT64: fnvlist_add_uint64(stats->zns_uint64, name, fnvpair_value_uint64(nvp)); break; case DATA_TYPE_BOOLEAN: fnvlist_add_boolean(stats->zns_boolean, name); break; case DATA_TYPE_NVLIST: if (nvpair_value_nvlist(nvp, &list) == 0) collect_nvlist_stats(list, stats); break; case DATA_TYPE_NVLIST_ARRAY: if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) break; for (i = 0; i < items; i++) { collect_nvlist_stats(array[i], stats); /* collect stats on leaf vdev */ if (strcmp(name, "children") == 0) { size_t size; (void) nvlist_size(array[i], &size, NV_ENCODE_XDR); stats->zns_leaf_total += size; if (size > stats->zns_leaf_largest) stats->zns_leaf_largest = size; stats->zns_leaf_count++; } } break; default: (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); } } } static void dump_nvlist_stats(nvlist_t *nvl, size_t cap) { zdb_nvl_stats_t stats = { 0 }; size_t size, sum = 0, total; size_t noise; /* requires nvlist with non-unique names for stat collection */ VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); (void) printf("\n\nZFS Label NVList Config Stats:\n"); VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", (int)total, (int)(cap - total), 100.0 * total / cap); collect_nvlist_stats(nvl, &stats); VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); size -= noise; sum += size; (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", (int)fnvlist_num_pairs(stats.zns_uint64), (int)size, 100.0 * size / total); VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); size -= noise; sum += size; (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", (int)fnvlist_num_pairs(stats.zns_string), (int)size, 100.0 * size / total); VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); size -= noise; sum += size; (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", (int)fnvlist_num_pairs(stats.zns_boolean), (int)size, 100.0 * size / total); size = total - sum; /* treat remainder as nvlist overhead */ (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", stats.zns_list_count, (int)size, 100.0 * size / total); if (stats.zns_leaf_count > 0) { size_t average = stats.zns_leaf_total / stats.zns_leaf_count; (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", stats.zns_leaf_count, (int)average); (void) printf("%24d bytes largest\n", (int)stats.zns_leaf_largest); if (dump_opt['l'] >= 3 && average > 0) (void) printf(" space for %d additional leaf vdevs\n", (int)((cap - total) / average)); } (void) printf("\n"); nvlist_free(stats.zns_string); nvlist_free(stats.zns_uint64); nvlist_free(stats.zns_boolean); } typedef struct cksum_record { zio_cksum_t cksum; boolean_t labels[VDEV_LABELS]; avl_node_t link; } cksum_record_t; static int cksum_record_compare(const void *x1, const void *x2) { const cksum_record_t *l = (cksum_record_t *)x1; const cksum_record_t *r = (cksum_record_t *)x2; int arraysize = ARRAY_SIZE(l->cksum.zc_word); int difference = 0; for (int i = 0; i < arraysize; i++) { difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); if (difference) break; } return (difference); } static cksum_record_t * cksum_record_alloc(zio_cksum_t *cksum, int l) { cksum_record_t *rec; rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); rec->cksum = *cksum; rec->labels[l] = B_TRUE; return (rec); } static cksum_record_t * cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) { cksum_record_t lookup = { .cksum = *cksum }; avl_index_t where; return (avl_find(tree, &lookup, &where)); } static cksum_record_t * cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) { cksum_record_t *rec; rec = cksum_record_lookup(tree, cksum); if (rec) { rec->labels[l] = B_TRUE; } else { rec = cksum_record_alloc(cksum, l); avl_add(tree, rec); } return (rec); } static int first_label(cksum_record_t *rec) { for (int i = 0; i < VDEV_LABELS; i++) if (rec->labels[i]) return (i); return (-1); } static void print_label_numbers(const char *prefix, const cksum_record_t *rec) { fputs(prefix, stdout); for (int i = 0; i < VDEV_LABELS; i++) if (rec->labels[i] == B_TRUE) printf("%d ", i); putchar('\n'); } #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) typedef struct zdb_label { vdev_label_t label; uint64_t label_offset; nvlist_t *config_nv; cksum_record_t *config; cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; boolean_t header_printed; boolean_t read_failed; boolean_t cksum_valid; } zdb_label_t; static void print_label_header(zdb_label_t *label, int l) { if (dump_opt['q']) return; if (label->header_printed == B_TRUE) return; (void) printf("------------------------------------\n"); (void) printf("LABEL %d %s\n", l, label->cksum_valid ? "" : "(Bad label cksum)"); (void) printf("------------------------------------\n"); label->header_printed = B_TRUE; } static void print_l2arc_header(void) { (void) printf("------------------------------------\n"); (void) printf("L2ARC device header\n"); (void) printf("------------------------------------\n"); } static void print_l2arc_log_blocks(void) { (void) printf("------------------------------------\n"); (void) printf("L2ARC device log blocks\n"); (void) printf("------------------------------------\n"); } static void dump_l2arc_log_entries(uint64_t log_entries, l2arc_log_ent_phys_t *le, uint64_t i) { for (int j = 0; j < log_entries; j++) { dva_t dva = le[j].le_dva; (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " "vdev: %llu, offset: %llu\n", (u_longlong_t)i, j + 1, (u_longlong_t)DVA_GET_ASIZE(&dva), (u_longlong_t)DVA_GET_VDEV(&dva), (u_longlong_t)DVA_GET_OFFSET(&dva)); (void) printf("|\t\t\t\tbirth: %llu\n", (u_longlong_t)le[j].le_birth); (void) printf("|\t\t\t\tlsize: %llu\n", (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); (void) printf("|\t\t\t\tpsize: %llu\n", (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); (void) printf("|\t\t\t\tcompr: %llu\n", (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); (void) printf("|\t\t\t\tcomplevel: %llu\n", (u_longlong_t)(&le[j])->le_complevel); (void) printf("|\t\t\t\ttype: %llu\n", (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); (void) printf("|\t\t\t\tprotected: %llu\n", (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); (void) printf("|\t\t\t\tprefetch: %llu\n", (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); (void) printf("|\t\t\t\taddress: %llu\n", (u_longlong_t)le[j].le_daddr); (void) printf("|\t\t\t\tARC state: %llu\n", (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); (void) printf("|\n"); } (void) printf("\n"); } static void dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) { (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); (void) printf("|\t\tpayload_asize: %llu\n", (u_longlong_t)lbps->lbp_payload_asize); (void) printf("|\t\tpayload_start: %llu\n", (u_longlong_t)lbps->lbp_payload_start); (void) printf("|\t\tlsize: %llu\n", (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); (void) printf("|\t\tasize: %llu\n", (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); (void) printf("|\t\tcompralgo: %llu\n", (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); (void) printf("|\t\tcksumalgo: %llu\n", (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); (void) printf("|\n\n"); } static void dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, l2arc_dev_hdr_phys_t *rebuild) { l2arc_log_blk_phys_t this_lb; uint64_t asize; l2arc_log_blkptr_t lbps[2]; abd_t *abd; zio_cksum_t cksum; int failed = 0; l2arc_dev_t dev; if (!dump_opt['q']) print_l2arc_log_blocks(); memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); dev.l2ad_evict = l2dhdr->dh_evict; dev.l2ad_start = l2dhdr->dh_start; dev.l2ad_end = l2dhdr->dh_end; if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { /* no log blocks to read */ if (!dump_opt['q']) { (void) printf("No log blocks to read\n"); (void) printf("\n"); } return; } else { dev.l2ad_hand = lbps[0].lbp_daddr + L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); } dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); for (;;) { if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) break; /* L2BLK_GET_PSIZE returns aligned size for log blocks */ asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { if (!dump_opt['q']) { (void) printf("Error while reading next log " "block\n\n"); } break; } fletcher_4_native_varsize(&this_lb, asize, &cksum); if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { failed++; if (!dump_opt['q']) { (void) printf("Invalid cksum\n"); dump_l2arc_log_blkptr(&lbps[0]); } break; } switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { case ZIO_COMPRESS_OFF: break; default: abd = abd_alloc_for_io(asize, B_TRUE); abd_copy_from_buf_off(abd, &this_lb, 0, asize); if (zio_decompress_data(L2BLK_GET_COMPRESS( (&lbps[0])->lbp_prop), abd, &this_lb, asize, sizeof (this_lb), NULL) != 0) { (void) printf("L2ARC block decompression " "failed\n"); abd_free(abd); goto out; } abd_free(abd); break; } if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) byteswap_uint64_array(&this_lb, sizeof (this_lb)); if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { if (!dump_opt['q']) (void) printf("Invalid log block magic\n\n"); break; } rebuild->dh_lb_count++; rebuild->dh_lb_asize += asize; if (dump_opt['l'] > 1 && !dump_opt['q']) { (void) printf("lb[%4llu]\tmagic: %llu\n", (u_longlong_t)rebuild->dh_lb_count, (u_longlong_t)this_lb.lb_magic); dump_l2arc_log_blkptr(&lbps[0]); } if (dump_opt['l'] > 2 && !dump_opt['q']) dump_l2arc_log_entries(l2dhdr->dh_log_entries, this_lb.lb_entries, rebuild->dh_lb_count); if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, lbps[0].lbp_payload_start, dev.l2ad_evict) && !dev.l2ad_first) break; lbps[0] = lbps[1]; lbps[1] = this_lb.lb_prev_lbp; } out: if (!dump_opt['q']) { (void) printf("log_blk_count:\t %llu with valid cksum\n", (u_longlong_t)rebuild->dh_lb_count); (void) printf("\t\t %d with invalid cksum\n", failed); (void) printf("log_blk_asize:\t %llu\n\n", (u_longlong_t)rebuild->dh_lb_asize); } } static int dump_l2arc_header(int fd) { l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; int error = B_FALSE; if (pread64(fd, &l2dhdr, sizeof (l2dhdr), VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { error = B_TRUE; } else { if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) error = B_TRUE; } if (error) { (void) printf("L2ARC device header not found\n\n"); /* Do not return an error here for backward compatibility */ return (0); } else if (!dump_opt['q']) { print_l2arc_header(); (void) printf(" magic: %llu\n", (u_longlong_t)l2dhdr.dh_magic); (void) printf(" version: %llu\n", (u_longlong_t)l2dhdr.dh_version); (void) printf(" pool_guid: %llu\n", (u_longlong_t)l2dhdr.dh_spa_guid); (void) printf(" flags: %llu\n", (u_longlong_t)l2dhdr.dh_flags); (void) printf(" start_lbps[0]: %llu\n", (u_longlong_t) l2dhdr.dh_start_lbps[0].lbp_daddr); (void) printf(" start_lbps[1]: %llu\n", (u_longlong_t) l2dhdr.dh_start_lbps[1].lbp_daddr); (void) printf(" log_blk_ent: %llu\n", (u_longlong_t)l2dhdr.dh_log_entries); (void) printf(" start: %llu\n", (u_longlong_t)l2dhdr.dh_start); (void) printf(" end: %llu\n", (u_longlong_t)l2dhdr.dh_end); (void) printf(" evict: %llu\n", (u_longlong_t)l2dhdr.dh_evict); (void) printf(" lb_asize_refcount: %llu\n", (u_longlong_t)l2dhdr.dh_lb_asize); (void) printf(" lb_count_refcount: %llu\n", (u_longlong_t)l2dhdr.dh_lb_count); (void) printf(" trim_action_time: %llu\n", (u_longlong_t)l2dhdr.dh_trim_action_time); (void) printf(" trim_state: %llu\n\n", (u_longlong_t)l2dhdr.dh_trim_state); } dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); /* * The total aligned size of log blocks and the number of log blocks * reported in the header of the device may be less than what zdb * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). * This happens because dump_l2arc_log_blocks() lacks the memory * pressure valve that l2arc_rebuild() has. Thus, if we are on a system * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize * and dh_lb_count will be lower to begin with than what exists on the * device. This is normal and zdb should not exit with an error. The * opposite case should never happen though, the values reported in the * header should never be higher than what dump_l2arc_log_blocks() and * l2arc_rebuild() report. If this happens there is a leak in the * accounting of log blocks. */ if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || l2dhdr.dh_lb_count > rebuild.dh_lb_count) return (1); return (0); } static void dump_config_from_label(zdb_label_t *label, size_t buflen, int l) { if (dump_opt['q']) return; if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) return; print_label_header(label, l); dump_nvlist(label->config_nv, 4); print_label_numbers(" labels = ", label->config); if (dump_opt['l'] >= 2) dump_nvlist_stats(label->config_nv, buflen); } #define ZDB_MAX_UB_HEADER_SIZE 32 static void dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) { vdev_t vd; char header[ZDB_MAX_UB_HEADER_SIZE]; vd.vdev_ashift = ashift; vd.vdev_top = &vd; for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); uberblock_t *ub = (void *)((char *)&label->label + uoff); cksum_record_t *rec = label->uberblocks[i]; if (rec == NULL) { if (dump_opt['u'] >= 2) { print_label_header(label, label_num); (void) printf(" Uberblock[%d] invalid\n", i); } continue; } if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) continue; if ((dump_opt['u'] < 4) && (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) continue; print_label_header(label, label_num); (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, " Uberblock[%d]\n", i); dump_uberblock(ub, header, ""); print_label_numbers(" labels = ", rec); } } static char curpath[PATH_MAX]; /* * Iterate through the path components, recursively passing * current one's obj and remaining path until we find the obj * for the last one. */ static int dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) { int err; boolean_t header = B_TRUE; uint64_t child_obj; char *s; dmu_buf_t *db; dmu_object_info_t doi; if ((s = strchr(name, '/')) != NULL) *s = '\0'; err = zap_lookup(os, obj, name, 8, 1, &child_obj); (void) strlcat(curpath, name, sizeof (curpath)); if (err != 0) { (void) fprintf(stderr, "failed to lookup %s: %s\n", curpath, strerror(err)); return (err); } child_obj = ZFS_DIRENT_OBJ(child_obj); err = sa_buf_hold(os, child_obj, FTAG, &db); if (err != 0) { (void) fprintf(stderr, "failed to get SA dbuf for obj %llu: %s\n", (u_longlong_t)child_obj, strerror(err)); return (EINVAL); } dmu_object_info_from_db(db, &doi); sa_buf_rele(db, FTAG); if (doi.doi_bonus_type != DMU_OT_SA && doi.doi_bonus_type != DMU_OT_ZNODE) { (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", doi.doi_bonus_type, (u_longlong_t)child_obj); return (EINVAL); } if (dump_opt['v'] > 6) { (void) printf("obj=%llu %s type=%d bonustype=%d\n", (u_longlong_t)child_obj, curpath, doi.doi_type, doi.doi_bonus_type); } (void) strlcat(curpath, "/", sizeof (curpath)); switch (doi.doi_type) { case DMU_OT_DIRECTORY_CONTENTS: if (s != NULL && *(s + 1) != '\0') return (dump_path_impl(os, child_obj, s + 1, retobj)); zfs_fallthrough; case DMU_OT_PLAIN_FILE_CONTENTS: if (retobj != NULL) { *retobj = child_obj; } else { dump_object(os, child_obj, dump_opt['v'], &header, NULL, 0); } return (0); default: (void) fprintf(stderr, "object %llu has non-file/directory " "type %d\n", (u_longlong_t)obj, doi.doi_type); break; } return (EINVAL); } /* * Dump the blocks for the object specified by path inside the dataset. */ static int dump_path(char *ds, char *path, uint64_t *retobj) { int err; objset_t *os; uint64_t root_obj; err = open_objset(ds, FTAG, &os); if (err != 0) return (err); err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); if (err != 0) { (void) fprintf(stderr, "can't lookup root znode: %s\n", strerror(err)); close_objset(os, FTAG); return (EINVAL); } (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); err = dump_path_impl(os, root_obj, path, retobj); close_objset(os, FTAG); return (err); } static int dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) { const char *p = (const char *)buf; ssize_t nwritten; (void) os; (void) arg; /* Write the data out, handling short writes and signals. */ while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { if (nwritten < 0) { if (errno == EINTR) continue; return (errno); } p += nwritten; len -= nwritten; } return (0); } static void dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) { boolean_t embed = B_FALSE; boolean_t large_block = B_FALSE; boolean_t compress = B_FALSE; boolean_t raw = B_FALSE; const char *c; for (c = flagstr; c != NULL && *c != '\0'; c++) { switch (*c) { case 'e': embed = B_TRUE; break; case 'L': large_block = B_TRUE; break; case 'c': compress = B_TRUE; break; case 'w': raw = B_TRUE; break; default: fprintf(stderr, "dump_backup: invalid flag " "'%c'\n", *c); return; } } if (isatty(STDOUT_FILENO)) { fprintf(stderr, "dump_backup: stream cannot be written " "to a terminal\n"); return; } offset_t off = 0; dmu_send_outparams_t out = { .dso_outfunc = dump_backup_bytes, .dso_dryrun = B_FALSE, }; int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, &off, &out); if (err != 0) { fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", strerror(err)); return; } } static int zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) { int err = 0; uint64_t size, readsize, oursize, offset; ssize_t writesize; sa_handle_t *hdl; (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, destfile); VERIFY3P(os, ==, sa_os); if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { (void) printf("Failed to get handle for SA znode\n"); return (err); } if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { (void) sa_handle_destroy(hdl); return (err); } (void) sa_handle_destroy(hdl); (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, size); if (size == 0) { return (EINVAL); } int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); if (fd == -1) return (errno); /* * We cap the size at 1 mebibyte here to prevent * allocation failures and nigh-infinite printing if the * object is extremely large. */ oursize = MIN(size, 1 << 20); offset = 0; char *buf = kmem_alloc(oursize, KM_NOSLEEP); if (buf == NULL) { (void) close(fd); return (ENOMEM); } while (offset < size) { readsize = MIN(size - offset, 1 << 20); err = dmu_read(os, srcobj, offset, readsize, buf, 0); if (err != 0) { (void) printf("got error %u from dmu_read\n", err); kmem_free(buf, oursize); (void) close(fd); return (err); } if (dump_opt['v'] > 3) { (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 " error=%d\n", offset, readsize, err); } writesize = write(fd, buf, readsize); if (writesize < 0) { err = errno; break; } else if (writesize != readsize) { /* Incomplete write */ (void) fprintf(stderr, "Short write, only wrote %llu of" " %" PRIu64 " bytes, exiting...\n", (u_longlong_t)writesize, readsize); break; } offset += readsize; } (void) close(fd); if (buf != NULL) kmem_free(buf, oursize); return (err); } static boolean_t label_cksum_valid(vdev_label_t *label, uint64_t offset) { zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; zio_cksum_t expected_cksum; zio_cksum_t actual_cksum; zio_cksum_t verifier; zio_eck_t *eck; int byteswap; void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; offset += offsetof(vdev_label_t, vl_vdev_phys); ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); if (byteswap) byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); expected_cksum = eck->zec_cksum; eck->zec_cksum = verifier; abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); abd_free(abd); if (byteswap) byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) return (B_TRUE); return (B_FALSE); } static int dump_label(const char *dev) { char path[MAXPATHLEN]; zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; uint64_t psize, ashift, l2cache; struct stat64 statbuf; boolean_t config_found = B_FALSE; boolean_t error = B_FALSE; boolean_t read_l2arc_header = B_FALSE; avl_tree_t config_tree; avl_tree_t uberblock_tree; void *node, *cookie; int fd; /* * Check if we were given absolute path and use it as is. * Otherwise if the provided vdev name doesn't point to a file, * try prepending expected disk paths and partition numbers. */ (void) strlcpy(path, dev, sizeof (path)); if (dev[0] != '/' && stat64(path, &statbuf) != 0) { int error; error = zfs_resolve_shortname(dev, path, MAXPATHLEN); if (error == 0 && zfs_dev_is_whole_disk(path)) { if (zfs_append_partition(path, MAXPATHLEN) == -1) error = ENOENT; } if (error || (stat64(path, &statbuf) != 0)) { (void) printf("failed to find device %s, try " "specifying absolute path instead\n", dev); return (1); } } if ((fd = open64(path, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", path, strerror(errno)); exit(1); } if (fstat64_blk(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", path, strerror(errno)); (void) close(fd); exit(1); } if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) (void) printf("failed to invalidate cache '%s' : %s\n", path, strerror(errno)); avl_create(&config_tree, cksum_record_compare, sizeof (cksum_record_t), offsetof(cksum_record_t, link)); avl_create(&uberblock_tree, cksum_record_compare, sizeof (cksum_record_t), offsetof(cksum_record_t, link)); psize = statbuf.st_size; psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); ashift = SPA_MINBLOCKSHIFT; /* * 1. Read the label from disk * 2. Verify label cksum * 3. Unpack the configuration and insert in config tree. * 4. Traverse all uberblocks and insert in uberblock tree. */ for (int l = 0; l < VDEV_LABELS; l++) { zdb_label_t *label = &labels[l]; char *buf = label->label.vl_vdev_phys.vp_nvlist; size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); nvlist_t *config; cksum_record_t *rec; zio_cksum_t cksum; vdev_t vd; label->label_offset = vdev_label_offset(psize, l, 0); if (pread64(fd, &label->label, sizeof (label->label), label->label_offset) != sizeof (label->label)) { if (!dump_opt['q']) (void) printf("failed to read label %d\n", l); label->read_failed = B_TRUE; error = B_TRUE; continue; } label->read_failed = B_FALSE; label->cksum_valid = label_cksum_valid(&label->label, label->label_offset); if (nvlist_unpack(buf, buflen, &config, 0) == 0) { nvlist_t *vdev_tree = NULL; size_t size; if ((nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || (nvlist_lookup_uint64(vdev_tree, ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) ashift = SPA_MINBLOCKSHIFT; if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) size = buflen; /* If the device is a cache device clear the header. */ if (!read_l2arc_header) { if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && l2cache == POOL_STATE_L2CACHE) { read_l2arc_header = B_TRUE; } } fletcher_4_native_varsize(buf, size, &cksum); rec = cksum_record_insert(&config_tree, &cksum, l); label->config = rec; label->config_nv = config; config_found = B_TRUE; } else { error = B_TRUE; } vd.vdev_ashift = ashift; vd.vdev_top = &vd; for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); uberblock_t *ub = (void *)((char *)label + uoff); if (uberblock_verify(ub)) continue; fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); rec = cksum_record_insert(&uberblock_tree, &cksum, l); label->uberblocks[i] = rec; } } /* * Dump the label and uberblocks. */ for (int l = 0; l < VDEV_LABELS; l++) { zdb_label_t *label = &labels[l]; size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); if (label->read_failed == B_TRUE) continue; if (label->config_nv) { dump_config_from_label(label, buflen, l); } else { if (!dump_opt['q']) (void) printf("failed to unpack label %d\n", l); } if (dump_opt['u']) dump_label_uberblocks(label, ashift, l); nvlist_free(label->config_nv); } /* * Dump the L2ARC header, if existent. */ if (read_l2arc_header) error |= dump_l2arc_header(fd); cookie = NULL; while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) umem_free(node, sizeof (cksum_record_t)); cookie = NULL; while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) umem_free(node, sizeof (cksum_record_t)); avl_destroy(&config_tree); avl_destroy(&uberblock_tree); (void) close(fd); return (config_found == B_FALSE ? 2 : (error == B_TRUE ? 1 : 0)); } static uint64_t dataset_feature_count[SPA_FEATURES]; static uint64_t global_feature_count[SPA_FEATURES]; static uint64_t remap_deadlist_count = 0; static int dump_one_objset(const char *dsname, void *arg) { (void) arg; int error; objset_t *os; spa_feature_t f; error = open_objset(dsname, FTAG, &os); if (error != 0) return (0); for (f = 0; f < SPA_FEATURES; f++) { if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) continue; ASSERT(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET); dataset_feature_count[f]++; } if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { remap_deadlist_count++; } for (dsl_bookmark_node_t *dbn = avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); if (dbn->dbn_phys.zbm_redaction_obj != 0) global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++; if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; } if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && !dmu_objset_is_snapshot(os)) { global_feature_count[SPA_FEATURE_LIVELIST]++; } dump_objset(os); close_objset(os, FTAG); fuid_table_destroy(); return (0); } /* * Block statistics. */ #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) typedef struct zdb_blkstats { uint64_t zb_asize; uint64_t zb_lsize; uint64_t zb_psize; uint64_t zb_count; uint64_t zb_gangs; uint64_t zb_ditto_samevdev; uint64_t zb_ditto_same_ms; uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; } zdb_blkstats_t; /* * Extended object types to report deferred frees and dedup auto-ditto blocks. */ #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) static const char *zdb_ot_extname[] = { "deferred free", "dedup ditto", "other", "Total", }; #define ZB_TOTAL DN_MAX_LEVELS #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) typedef struct zdb_cb { zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; uint64_t zcb_removing_size; uint64_t zcb_checkpoint_size; uint64_t zcb_dedup_asize; uint64_t zcb_dedup_blocks; uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; uint64_t zcb_psize_total; uint64_t zcb_lsize_total; uint64_t zcb_asize_total; uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] [BPE_PAYLOAD_SIZE + 1]; uint64_t zcb_start; hrtime_t zcb_lastprint; uint64_t zcb_totalasize; uint64_t zcb_errors[256]; int zcb_readfails; int zcb_haderrors; spa_t *zcb_spa; uint32_t **zcb_vd_obsolete_counts; } zdb_cb_t; /* test if two DVA offsets from same vdev are within the same metaslab */ static boolean_t same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) { vdev_t *vd = vdev_lookup_top(spa, vdev); uint64_t ms_shift = vd->vdev_ms_shift; return ((off1 >> ms_shift) == (off2 >> ms_shift)); } /* * Used to simplify reporting of the histogram data. */ typedef struct one_histo { const char *name; uint64_t *count; uint64_t *len; uint64_t cumulative; } one_histo_t; /* * The number of separate histograms processed for psize, lsize and asize. */ #define NUM_HISTO 3 /* * This routine will create a fixed column size output of three different * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M * the count, length and cumulative length of the psize, lsize and * asize blocks. * * All three types of blocks are listed on a single line * * By default the table is printed in nicenumber format (e.g. 123K) but * if the '-P' parameter is specified then the full raw number (parseable) * is printed out. */ static void dump_size_histograms(zdb_cb_t *zcb) { /* * A temporary buffer that allows us to convert a number into * a string using zdb_nicenumber to allow either raw or human * readable numbers to be output. */ char numbuf[32]; /* * Define titles which are used in the headers of the tables * printed by this routine. */ const char blocksize_title1[] = "block"; const char blocksize_title2[] = "size"; const char count_title[] = "Count"; const char length_title[] = "Size"; const char cumulative_title[] = "Cum."; /* * Setup the histogram arrays (psize, lsize, and asize). */ one_histo_t parm_histo[NUM_HISTO]; parm_histo[0].name = "psize"; parm_histo[0].count = zcb->zcb_psize_count; parm_histo[0].len = zcb->zcb_psize_len; parm_histo[0].cumulative = 0; parm_histo[1].name = "lsize"; parm_histo[1].count = zcb->zcb_lsize_count; parm_histo[1].len = zcb->zcb_lsize_len; parm_histo[1].cumulative = 0; parm_histo[2].name = "asize"; parm_histo[2].count = zcb->zcb_asize_count; parm_histo[2].len = zcb->zcb_asize_len; parm_histo[2].cumulative = 0; (void) printf("\nBlock Size Histogram\n"); /* * Print the first line titles */ if (dump_opt['P']) (void) printf("\n%s\t", blocksize_title1); else (void) printf("\n%7s ", blocksize_title1); for (int j = 0; j < NUM_HISTO; j++) { if (dump_opt['P']) { if (j < NUM_HISTO - 1) { (void) printf("%s\t\t\t", parm_histo[j].name); } else { /* Don't print trailing spaces */ (void) printf(" %s", parm_histo[j].name); } } else { if (j < NUM_HISTO - 1) { /* Left aligned strings in the output */ (void) printf("%-7s ", parm_histo[j].name); } else { /* Don't print trailing spaces */ (void) printf("%s", parm_histo[j].name); } } } (void) printf("\n"); /* * Print the second line titles */ if (dump_opt['P']) { (void) printf("%s\t", blocksize_title2); } else { (void) printf("%7s ", blocksize_title2); } for (int i = 0; i < NUM_HISTO; i++) { if (dump_opt['P']) { (void) printf("%s\t%s\t%s\t", count_title, length_title, cumulative_title); } else { (void) printf("%7s%7s%7s", count_title, length_title, cumulative_title); } } (void) printf("\n"); /* * Print the rows */ for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { /* * Print the first column showing the blocksize */ zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); if (dump_opt['P']) { printf("%s", numbuf); } else { printf("%7s:", numbuf); } /* * Print the remaining set of 3 columns per size: * for psize, lsize and asize */ for (int j = 0; j < NUM_HISTO; j++) { parm_histo[j].cumulative += parm_histo[j].len[i]; zdb_nicenum(parm_histo[j].count[i], numbuf, sizeof (numbuf)); if (dump_opt['P']) (void) printf("\t%s", numbuf); else (void) printf("%7s", numbuf); zdb_nicenum(parm_histo[j].len[i], numbuf, sizeof (numbuf)); if (dump_opt['P']) (void) printf("\t%s", numbuf); else (void) printf("%7s", numbuf); zdb_nicenum(parm_histo[j].cumulative, numbuf, sizeof (numbuf)); if (dump_opt['P']) (void) printf("\t%s", numbuf); else (void) printf("%7s", numbuf); } (void) printf("\n"); } } static void zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, dmu_object_type_t type) { uint64_t refcnt = 0; int i; ASSERT(type < ZDB_OT_TOTAL); if (zilog && zil_bp_tree_add(zilog, bp) != 0) return; spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); for (i = 0; i < 4; i++) { int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; int t = (i & 1) ? type : ZDB_OT_TOTAL; int equal; zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; zb->zb_asize += BP_GET_ASIZE(bp); zb->zb_lsize += BP_GET_LSIZE(bp); zb->zb_psize += BP_GET_PSIZE(bp); zb->zb_count++; /* * The histogram is only big enough to record blocks up to * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, * "other", bucket. */ unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); zb->zb_psize_histogram[idx]++; zb->zb_gangs += BP_COUNT_GANG(bp); switch (BP_GET_NDVAS(bp)) { case 2: if (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) { zb->zb_ditto_samevdev++; if (same_metaslab(zcb->zcb_spa, DVA_GET_VDEV(&bp->blk_dva[0]), DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_OFFSET(&bp->blk_dva[1]))) zb->zb_ditto_same_ms++; } break; case 3: equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) + (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[2])) + (DVA_GET_VDEV(&bp->blk_dva[1]) == DVA_GET_VDEV(&bp->blk_dva[2])); if (equal != 0) { zb->zb_ditto_samevdev++; if (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1]) && same_metaslab(zcb->zcb_spa, DVA_GET_VDEV(&bp->blk_dva[0]), DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_OFFSET(&bp->blk_dva[1]))) zb->zb_ditto_same_ms++; else if (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[2]) && same_metaslab(zcb->zcb_spa, DVA_GET_VDEV(&bp->blk_dva[0]), DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_OFFSET(&bp->blk_dva[2]))) zb->zb_ditto_same_ms++; else if (DVA_GET_VDEV(&bp->blk_dva[1]) == DVA_GET_VDEV(&bp->blk_dva[2]) && same_metaslab(zcb->zcb_spa, DVA_GET_VDEV(&bp->blk_dva[1]), DVA_GET_OFFSET(&bp->blk_dva[1]), DVA_GET_OFFSET(&bp->blk_dva[2]))) zb->zb_ditto_same_ms++; } break; } } spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); if (BP_IS_EMBEDDED(bp)) { zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] [BPE_GET_PSIZE(bp)]++; return; } /* * The binning histogram bins by powers of two up to * SPA_MAXBLOCKSIZE rather than creating bins for * every possible blocksize found in the pool. */ int bin = highbit64(BP_GET_PSIZE(bp)) - 1; zcb->zcb_psize_count[bin]++; zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); zcb->zcb_psize_total += BP_GET_PSIZE(bp); bin = highbit64(BP_GET_LSIZE(bp)) - 1; zcb->zcb_lsize_count[bin]++; zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); zcb->zcb_lsize_total += BP_GET_LSIZE(bp); bin = highbit64(BP_GET_ASIZE(bp)) - 1; zcb->zcb_asize_count[bin]++; zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); zcb->zcb_asize_total += BP_GET_ASIZE(bp); if (dump_opt['L']) return; if (BP_GET_DEDUP(bp)) { ddt_t *ddt; ddt_entry_t *dde; ddt = ddt_select(zcb->zcb_spa, bp); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_FALSE); if (dde == NULL) { refcnt = 0; } else { ddt_phys_t *ddp = ddt_phys_select(dde, bp); ddt_phys_decref(ddp); refcnt = ddp->ddp_refcnt; if (ddt_phys_total_refcnt(dde) == 0) ddt_remove(ddt, dde); } ddt_exit(ddt); } VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); } static void zdb_blkptr_done(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; int ioerr = zio->io_error; zdb_cb_t *zcb = zio->io_private; zbookmark_phys_t *zb = &zio->io_bookmark; mutex_enter(&spa->spa_scrub_lock); spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); cv_broadcast(&spa->spa_scrub_io_cv); if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { char blkbuf[BP_SPRINTF_LEN]; zcb->zcb_haderrors = 1; zcb->zcb_errors[ioerr]++; if (dump_opt['b'] >= 2) snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); else blkbuf[0] = '\0'; (void) printf("zdb_blkptr_cb: " "Got error %d reading " "<%llu, %llu, %lld, %llx> %s -- skipping\n", ioerr, (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, blkbuf); } mutex_exit(&spa->spa_scrub_lock); abd_free(zio->io_abd); } static int zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { zdb_cb_t *zcb = arg; dmu_object_type_t type; boolean_t is_metadata; if (zb->zb_level == ZB_DNODE_LEVEL) return (0); if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("objset %llu object %llu " "level %lld offset 0x%llx %s\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (u_longlong_t)blkid2offset(dnp, bp, zb), blkbuf); } if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) return (0); type = BP_GET_TYPE(bp); zdb_count_block(zcb, zilog, bp, (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); if (!BP_IS_EMBEDDED(bp) && (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { size_t size = BP_GET_PSIZE(bp); abd_t *abd = abd_alloc(size, B_FALSE); int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; /* If it's an intent log block, failure is expected. */ if (zb->zb_level == ZB_ZIL_LEVEL) flags |= ZIO_FLAG_SPECULATIVE; mutex_enter(&spa->spa_scrub_lock); while (spa->spa_load_verify_bytes > max_inflight_bytes) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_load_verify_bytes += size; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(NULL, spa, bp, abd, size, zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); } zcb->zcb_readfails = 0; /* only call gethrtime() every 100 blocks */ static int iters; if (++iters > 100) iters = 0; else return (0); if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { uint64_t now = gethrtime(); char buf[10]; uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; uint64_t kb_per_sec = 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); uint64_t sec_remaining = (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; /* make sure nicenum has enough space */ _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); zfs_nicebytes(bytes, buf, sizeof (buf)); (void) fprintf(stderr, "\r%5s completed (%4"PRIu64"MB/s) " "estimated time remaining: " "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", buf, kb_per_sec / 1024, sec_remaining / 60 / 60, sec_remaining / 60 % 60, sec_remaining % 60); zcb->zcb_lastprint = now; } return (0); } static void zdb_leak(void *arg, uint64_t start, uint64_t size) { vdev_t *vd = arg; (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); } static metaslab_ops_t zdb_metaslab_ops = { NULL /* alloc */ }; static int load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) { spa_vdev_removal_t *svr = arg; uint64_t offset = sme->sme_offset; uint64_t size = sme->sme_run; /* skip vdevs we don't care about */ if (sme->sme_vdev != svr->svr_vdev_id) return (0); vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); if (txg < metaslab_unflushed_txg(ms)) return (0); if (sme->sme_type == SM_ALLOC) range_tree_add(svr->svr_allocd_segs, offset, size); else range_tree_remove(svr->svr_allocd_segs, offset, size); return (0); } static void claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, uint64_t size, void *arg) { (void) inner_offset, (void) arg; /* * This callback was called through a remap from * a device being removed. Therefore, the vdev that * this callback is applied to is a concrete * vdev. */ ASSERT(vdev_is_concrete(vd)); VERIFY0(metaslab_claim_impl(vd, offset, size, spa_min_claim_txg(vd->vdev_spa))); } static void claim_segment_cb(void *arg, uint64_t offset, uint64_t size) { vdev_t *vd = arg; vdev_indirect_ops.vdev_op_remap(vd, offset, size, claim_segment_impl_cb, NULL); } /* * After accounting for all allocated blocks that are directly referenced, * we might have missed a reference to a block from a partially complete * (and thus unused) indirect mapping object. We perform a secondary pass * through the metaslabs we have already mapped and claim the destination * blocks. */ static void zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) { if (dump_opt['L']) return; if (spa->spa_vdev_removal == NULL) return; spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_vdev_removal_t *svr = spa->spa_vdev_removal; vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; ASSERT0(range_tree_space(svr->svr_allocd_segs)); range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { metaslab_t *msp = vd->vdev_ms[msi]; ASSERT0(range_tree_space(allocs)); if (msp->ms_sm != NULL) VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); } range_tree_destroy(allocs); iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); /* * Clear everything past what has been synced, * because we have not allocated mappings for * it yet. */ range_tree_clear(svr->svr_allocd_segs, vdev_indirect_mapping_max_offset(vim), vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); spa_config_exit(spa, SCL_CONFIG, FTAG); } static int increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { (void) tx; zdb_cb_t *zcb = arg; spa_t *spa = zcb->zcb_spa; vdev_t *vd; const dva_t *dva = &bp->blk_dva[0]; ASSERT(!bp_freed); ASSERT(!dump_opt['L']); ASSERT3U(BP_GET_NDVAS(bp), ==, 1); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); ASSERT3P(vd, !=, NULL); spa_config_exit(spa, SCL_VDEV, FTAG); ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); vdev_indirect_mapping_increment_obsolete_count( vd->vdev_indirect_mapping, DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), zcb->zcb_vd_obsolete_counts[vd->vdev_id]); return (0); } static uint32_t * zdb_load_obsolete_counts(vdev_t *vd) { vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; spa_t *spa = vd->vdev_spa; spa_condensing_indirect_phys_t *scip = &spa->spa_condensing_indirect_phys; uint64_t obsolete_sm_object; uint32_t *counts; VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); counts = vdev_indirect_mapping_load_obsolete_counts(vim); if (vd->vdev_obsolete_sm != NULL) { vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, vd->vdev_obsolete_sm); } if (scip->scip_vdev == vd->vdev_id && scip->scip_prev_obsolete_sm_object != 0) { space_map_t *prev_obsolete_sm = NULL; VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, prev_obsolete_sm); space_map_close(prev_obsolete_sm); } return (counts); } static void zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) { ddt_bookmark_t ddb = {0}; ddt_entry_t dde; int error; int p; ASSERT(!dump_opt['L']); while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { blkptr_t blk; ddt_phys_t *ddp = dde.dde_phys; if (ddb.ddb_class == DDT_CLASS_UNIQUE) return; ASSERT(ddt_phys_total_refcnt(&dde) > 1); for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddb.ddb_checksum, &dde.dde_key, ddp, &blk); if (p == DDT_PHYS_DITTO) { zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); } else { zcb->zcb_dedup_asize += BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); zcb->zcb_dedup_blocks++; } } ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; ddt_enter(ddt); VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); ddt_exit(ddt); } ASSERT(error == ENOENT); } typedef struct checkpoint_sm_exclude_entry_arg { vdev_t *cseea_vd; uint64_t cseea_checkpoint_size; } checkpoint_sm_exclude_entry_arg_t; static int checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) { checkpoint_sm_exclude_entry_arg_t *cseea = arg; vdev_t *vd = cseea->cseea_vd; metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; uint64_t end = sme->sme_offset + sme->sme_run; ASSERT(sme->sme_type == SM_FREE); /* * Since the vdev_checkpoint_sm exists in the vdev level * and the ms_sm space maps exist in the metaslab level, * an entry in the checkpoint space map could theoretically * cross the boundaries of the metaslab that it belongs. * * In reality, because of the way that we populate and * manipulate the checkpoint's space maps currently, * there shouldn't be any entries that cross metaslabs. * Hence the assertion below. * * That said, there is no fundamental requirement that * the checkpoint's space map entries should not cross * metaslab boundaries. So if needed we could add code * that handles metaslab-crossing segments in the future. */ VERIFY3U(sme->sme_offset, >=, ms->ms_start); VERIFY3U(end, <=, ms->ms_start + ms->ms_size); /* * By removing the entry from the allocated segments we * also verify that the entry is there to begin with. */ mutex_enter(&ms->ms_lock); range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); mutex_exit(&ms->ms_lock); cseea->cseea_checkpoint_size += sme->sme_run; return (0); } static void zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) { spa_t *spa = vd->vdev_spa; space_map_t *checkpoint_sm = NULL; uint64_t checkpoint_sm_obj; /* * If there is no vdev_top_zap, we are in a pool whose * version predates the pool checkpoint feature. */ if (vd->vdev_top_zap == 0) return; /* * If there is no reference of the vdev_checkpoint_sm in * the vdev_top_zap, then one of the following scenarios * is true: * * 1] There is no checkpoint * 2] There is a checkpoint, but no checkpointed blocks * have been freed yet * 3] The current vdev is indirect * * In these cases we return immediately. */ if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) return; VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &checkpoint_sm_obj)); checkpoint_sm_exclude_entry_arg_t cseea; cseea.cseea_vd = vd; cseea.cseea_checkpoint_size = 0; VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); VERIFY0(space_map_iterate(checkpoint_sm, space_map_length(checkpoint_sm), checkpoint_sm_exclude_entry_cb, &cseea)); space_map_close(checkpoint_sm); zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; } static void zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) { ASSERT(!dump_opt['L']); vdev_t *rvd = spa->spa_root_vdev; for (uint64_t c = 0; c < rvd->vdev_children; c++) { ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); } } static int count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) { int64_t *ualloc_space = arg; uint64_t offset = sme->sme_offset; uint64_t vdev_id = sme->sme_vdev; vdev_t *vd = vdev_lookup_top(spa, vdev_id); if (!vdev_is_concrete(vd)) return (0); metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); if (txg < metaslab_unflushed_txg(ms)) return (0); if (sme->sme_type == SM_ALLOC) *ualloc_space += sme->sme_run; else *ualloc_space -= sme->sme_run; return (0); } static int64_t get_unflushed_alloc_space(spa_t *spa) { if (dump_opt['L']) return (0); int64_t ualloc_space = 0; iterate_through_spacemap_logs(spa, count_unflushed_space_cb, &ualloc_space); return (ualloc_space); } static int load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) { maptype_t *uic_maptype = arg; uint64_t offset = sme->sme_offset; uint64_t size = sme->sme_run; uint64_t vdev_id = sme->sme_vdev; vdev_t *vd = vdev_lookup_top(spa, vdev_id); /* skip indirect vdevs */ if (!vdev_is_concrete(vd)) return (0); metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); if (txg < metaslab_unflushed_txg(ms)) return (0); if (*uic_maptype == sme->sme_type) range_tree_add(ms->ms_allocatable, offset, size); else range_tree_remove(ms->ms_allocatable, offset, size); return (0); } static void load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) { iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); } static void load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *vd = rvd->vdev_child[i]; ASSERT3U(i, ==, vd->vdev_id); if (vd->vdev_ops == &vdev_indirect_ops) continue; for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; (void) fprintf(stderr, "\rloading concrete vdev %llu, " "metaslab %llu of %llu ...", (longlong_t)vd->vdev_id, (longlong_t)msp->ms_id, (longlong_t)vd->vdev_ms_count); mutex_enter(&msp->ms_lock); range_tree_vacate(msp->ms_allocatable, NULL, NULL); /* * We don't want to spend the CPU manipulating the * size-ordered tree, so clear the range_tree ops. */ msp->ms_allocatable->rt_ops = NULL; if (msp->ms_sm != NULL) { VERIFY0(space_map_load(msp->ms_sm, msp->ms_allocatable, maptype)); } if (!msp->ms_loaded) msp->ms_loaded = B_TRUE; mutex_exit(&msp->ms_lock); } } load_unflushed_to_ms_allocatables(spa, maptype); } /* * vm_idxp is an in-out parameter which (for indirect vdevs) is the * index in vim_entries that has the first entry in this metaslab. * On return, it will be set to the first entry after this metaslab. */ static void load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, uint64_t *vim_idxp) { vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; mutex_enter(&msp->ms_lock); range_tree_vacate(msp->ms_allocatable, NULL, NULL); /* * We don't want to spend the CPU manipulating the * size-ordered tree, so clear the range_tree ops. */ msp->ms_allocatable->rt_ops = NULL; for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); (*vim_idxp)++) { vdev_indirect_mapping_entry_phys_t *vimep = &vim->vim_entries[*vim_idxp]; uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); ASSERT3U(ent_offset, >=, msp->ms_start); if (ent_offset >= msp->ms_start + msp->ms_size) break; /* * Mappings do not cross metaslab boundaries, * because we create them by walking the metaslabs. */ ASSERT3U(ent_offset + ent_len, <=, msp->ms_start + msp->ms_size); range_tree_add(msp->ms_allocatable, ent_offset, ent_len); } if (!msp->ms_loaded) msp->ms_loaded = B_TRUE; mutex_exit(&msp->ms_lock); } static void zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) { ASSERT(!dump_opt['L']); vdev_t *rvd = spa->spa_root_vdev; for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; ASSERT3U(c, ==, vd->vdev_id); if (vd->vdev_ops != &vdev_indirect_ops) continue; /* * Note: we don't check for mapping leaks on * removing vdevs because their ms_allocatable's * are used to look for leaks in allocated space. */ zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); /* * Normally, indirect vdevs don't have any * metaslabs. We want to set them up for * zio_claim(). */ vdev_metaslab_group_create(vd); VERIFY0(vdev_metaslab_init(vd, 0)); vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; uint64_t vim_idx = 0; for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { (void) fprintf(stderr, "\rloading indirect vdev %llu, " "metaslab %llu of %llu ...", (longlong_t)vd->vdev_id, (longlong_t)vd->vdev_ms[m]->ms_id, (longlong_t)vd->vdev_ms_count); load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], &vim_idx); } ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); } } static void zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) { zcb->zcb_spa = spa; if (dump_opt['L']) return; dsl_pool_t *dp = spa->spa_dsl_pool; vdev_t *rvd = spa->spa_root_vdev; /* * We are going to be changing the meaning of the metaslab's * ms_allocatable. Ensure that the allocator doesn't try to * use the tree. */ spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; spa->spa_log_class->mc_ops = &zdb_metaslab_ops; spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; zcb->zcb_vd_obsolete_counts = umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), UMEM_NOFAIL); /* * For leak detection, we overload the ms_allocatable trees * to contain allocated segments instead of free segments. * As a result, we can't use the normal metaslab_load/unload * interfaces. */ zdb_leak_init_prepare_indirect_vdevs(spa, zcb); load_concrete_ms_allocatable_trees(spa, SM_ALLOC); /* * On load_concrete_ms_allocatable_trees() we loaded all the * allocated entries from the ms_sm to the ms_allocatable for * each metaslab. If the pool has a checkpoint or is in the * middle of discarding a checkpoint, some of these blocks * may have been freed but their ms_sm may not have been * updated because they are referenced by the checkpoint. In * order to avoid false-positives during leak-detection, we * go through the vdev's checkpoint space map and exclude all * its entries from their relevant ms_allocatable. * * We also aggregate the space held by the checkpoint and add * it to zcb_checkpoint_size. * * Note that at this point we are also verifying that all the * entries on the checkpoint_sm are marked as allocated in * the ms_sm of their relevant metaslab. * [see comment in checkpoint_sm_exclude_entry_cb()] */ zdb_leak_init_exclude_checkpoint(spa, zcb); ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); /* for cleaner progress output */ (void) fprintf(stderr, "\n"); if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)); (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, increment_indirect_mapping_cb, zcb, NULL); } spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); zdb_ddt_leak_init(spa, zcb); spa_config_exit(spa, SCL_CONFIG, FTAG); } static boolean_t zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) { boolean_t leaks = B_FALSE; vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; uint64_t total_leaked = 0; boolean_t are_precise = B_FALSE; ASSERT(vim != NULL); for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { vdev_indirect_mapping_entry_phys_t *vimep = &vim->vim_entries[i]; uint64_t obsolete_bytes = 0; uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; /* * This is not very efficient but it's easy to * verify correctness. */ for (uint64_t inner_offset = 0; inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); inner_offset += 1ULL << vd->vdev_ashift) { if (range_tree_contains(msp->ms_allocatable, offset + inner_offset, 1ULL << vd->vdev_ashift)) { obsolete_bytes += 1ULL << vd->vdev_ashift; } } int64_t bytes_leaked = obsolete_bytes - zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { (void) printf("obsolete indirect mapping count " "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", (u_longlong_t)vd->vdev_id, (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), (u_longlong_t)bytes_leaked); } total_leaked += ABS(bytes_leaked); } VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); if (!are_precise && total_leaked > 0) { int pct_leaked = total_leaked * 100 / vdev_indirect_mapping_bytes_mapped(vim); (void) printf("cannot verify obsolete indirect mapping " "counts of vdev %llu because precise feature was not " "enabled when it was removed: %d%% (%llx bytes) of mapping" "unreferenced\n", (u_longlong_t)vd->vdev_id, pct_leaked, (u_longlong_t)total_leaked); } else if (total_leaked > 0) { (void) printf("obsolete indirect mapping count mismatch " "for vdev %llu -- %llx total bytes mismatched\n", (u_longlong_t)vd->vdev_id, (u_longlong_t)total_leaked); leaks |= B_TRUE; } vdev_indirect_mapping_free_obsolete_counts(vim, zcb->zcb_vd_obsolete_counts[vd->vdev_id]); zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; return (leaks); } static boolean_t zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) { if (dump_opt['L']) return (B_FALSE); boolean_t leaks = B_FALSE; vdev_t *rvd = spa->spa_root_vdev; for (unsigned c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; if (zcb->zcb_vd_obsolete_counts[c] != NULL) { leaks |= zdb_check_for_obsolete_leaks(vd, zcb); } for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == spa_embedded_log_class(spa)) ? vd->vdev_log_mg : vd->vdev_mg); /* * ms_allocatable has been overloaded * to contain allocated segments. Now that * we finished traversing all blocks, any * block that remains in the ms_allocatable * represents an allocated block that we * did not claim during the traversal. * Claimed blocks would have been removed * from the ms_allocatable. For indirect * vdevs, space remaining in the tree * represents parts of the mapping that are * not referenced, which is not a bug. */ if (vd->vdev_ops == &vdev_indirect_ops) { range_tree_vacate(msp->ms_allocatable, NULL, NULL); } else { range_tree_vacate(msp->ms_allocatable, zdb_leak, vd); } if (msp->ms_loaded) { msp->ms_loaded = B_FALSE; } } } umem_free(zcb->zcb_vd_obsolete_counts, rvd->vdev_children * sizeof (uint32_t *)); zcb->zcb_vd_obsolete_counts = NULL; return (leaks); } static int count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { (void) tx; zdb_cb_t *zcb = arg; if (dump_opt['b'] >= 5) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("[%s] %s\n", "deferred free", blkbuf); } zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); return (0); } /* * Iterate over livelists which have been destroyed by the user but * are still present in the MOS, waiting to be freed */ static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) { objset_t *mos = spa->spa_meta_objset; uint64_t zap_obj; int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); if (err == ENOENT) return; ASSERT0(err); zap_cursor_t zc; zap_attribute_t attr; dsl_deadlist_t ll; /* NULL out os prior to dsl_deadlist_open in case it's garbage */ ll.dl_os = NULL; for (zap_cursor_init(&zc, mos, zap_obj); zap_cursor_retrieve(&zc, &attr) == 0; (void) zap_cursor_advance(&zc)) { dsl_deadlist_open(&ll, mos, attr.za_first_integer); func(&ll, arg); dsl_deadlist_close(&ll); } zap_cursor_fini(&zc); } static int bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { ASSERT(!bp_freed); return (count_block_cb(arg, bp, tx)); } static int livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) { zdb_cb_t *zbc = args; bplist_t blks; bplist_create(&blks); /* determine which blocks have been alloc'd but not freed */ VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); /* count those blocks */ (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); bplist_destroy(&blks); return (0); } static void livelist_count_blocks(dsl_deadlist_t *ll, void *arg) { dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); } /* * Count the blocks in the livelists that have been destroyed by the user * but haven't yet been freed. */ static void deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) { iterate_deleted_livelists(spa, livelist_count_blocks, zbc); } static void dump_livelist_cb(dsl_deadlist_t *ll, void *arg) { ASSERT3P(arg, ==, NULL); global_feature_count[SPA_FEATURE_LIVELIST]++; dump_blkptr_list(ll, "Deleted Livelist"); dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); } /* * Print out, register object references to, and increment feature counts for * livelists that have been destroyed by the user but haven't yet been freed. */ static void deleted_livelists_dump_mos(spa_t *spa) { uint64_t zap_obj; objset_t *mos = spa->spa_meta_objset; int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); if (err == ENOENT) return; mos_obj_refd(zap_obj); iterate_deleted_livelists(spa, dump_livelist_cb, NULL); } static int dump_block_stats(spa_t *spa) { zdb_cb_t *zcb; zdb_blkstats_t *zb, *tzb; uint64_t norm_alloc, norm_space, total_alloc, total_found; int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; boolean_t leaks = B_FALSE; int e, c, err; bp_embedded_type_t i; zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", (dump_opt['c'] == 1) ? "metadata " : "", dump_opt['c'] ? "checksums " : "", (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", !dump_opt['L'] ? "nothing leaked " : ""); /* * When leak detection is enabled we load all space maps as SM_ALLOC * maps, then traverse the pool claiming each block we discover. If * the pool is perfectly consistent, the segment trees will be empty * when we're done. Anything left over is a leak; any block we can't * claim (because it's not part of any space map) is a double * allocation, reference to a freed block, or an unclaimed log block. * * When leak detection is disabled (-L option) we still traverse the * pool claiming each block we discover, but we skip opening any space * maps. */ zdb_leak_init(spa, zcb); /* * If there's a deferred-free bplist, process that first. */ (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, bpobj_count_block_cb, zcb, NULL); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, bpobj_count_block_cb, zcb, NULL); } zdb_claim_removing(spa, zcb); if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, zcb, NULL)); } deleted_livelists_count_blocks(spa, zcb); if (dump_opt['c'] > 1) flags |= TRAVERSE_PREFETCH_DATA; zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); zcb->zcb_totalasize += metaslab_class_get_alloc(spa_embedded_log_class(spa)); zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); /* * If we've traversed the data blocks then we need to wait for those * I/Os to complete. We leverage "The Godfather" zio to wait on * all async I/Os to complete. */ if (dump_opt['c']) { for (c = 0; c < max_ncpus; c++) { (void) zio_wait(spa->spa_async_zio_root[c]); spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } } ASSERT0(spa->spa_load_verify_bytes); /* * Done after zio_wait() since zcb_haderrors is modified in * zdb_blkptr_done() */ zcb->zcb_haderrors |= err; if (zcb->zcb_haderrors) { (void) printf("\nError counts:\n\n"); (void) printf("\t%5s %s\n", "errno", "count"); for (e = 0; e < 256; e++) { if (zcb->zcb_errors[e] != 0) { (void) printf("\t%5d %llu\n", e, (u_longlong_t)zcb->zcb_errors[e]); } } } /* * Report any leaked segments. */ leaks |= zdb_leak_fini(spa, zcb); tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); norm_space = metaslab_class_get_space(spa_normal_class(spa)); total_alloc = norm_alloc + metaslab_class_get_alloc(spa_log_class(spa)) + metaslab_class_get_alloc(spa_embedded_log_class(spa)) + metaslab_class_get_alloc(spa_special_class(spa)) + metaslab_class_get_alloc(spa_dedup_class(spa)) + get_unflushed_alloc_space(spa); total_found = tzb->zb_asize - zcb->zcb_dedup_asize + zcb->zcb_removing_size + zcb->zcb_checkpoint_size; if (total_found == total_alloc && !dump_opt['L']) { (void) printf("\n\tNo leaks (block sum matches space" " maps exactly)\n"); } else if (!dump_opt['L']) { (void) printf("block traversal size %llu != alloc %llu " "(%s %lld)\n", (u_longlong_t)total_found, (u_longlong_t)total_alloc, (dump_opt['L']) ? "unreachable" : "leaked", (longlong_t)(total_alloc - total_found)); leaks = B_TRUE; } if (tzb->zb_count == 0) { umem_free(zcb, sizeof (zdb_cb_t)); return (2); } (void) printf("\n"); (void) printf("\t%-16s %14llu\n", "bp count:", (u_longlong_t)tzb->zb_count); (void) printf("\t%-16s %14llu\n", "ganged count:", (longlong_t)tzb->zb_gangs); (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", (u_longlong_t)tzb->zb_lsize, (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", "bp physical:", (u_longlong_t)tzb->zb_psize, (u_longlong_t)(tzb->zb_psize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_psize); (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", "bp allocated:", (u_longlong_t)tzb->zb_asize, (u_longlong_t)(tzb->zb_asize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_asize); (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, (u_longlong_t)zcb->zcb_dedup_blocks, (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { uint64_t alloc = metaslab_class_get_alloc( spa_special_class(spa)); uint64_t space = metaslab_class_get_space( spa_special_class(spa)); (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Special class", (u_longlong_t)alloc, 100.0 * alloc / space); } if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { uint64_t alloc = metaslab_class_get_alloc( spa_dedup_class(spa)); uint64_t space = metaslab_class_get_space( spa_dedup_class(spa)); (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Dedup class", (u_longlong_t)alloc, 100.0 * alloc / space); } if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { uint64_t alloc = metaslab_class_get_alloc( spa_embedded_log_class(spa)); uint64_t space = metaslab_class_get_space( spa_embedded_log_class(spa)); (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Embedded log class", (u_longlong_t)alloc, 100.0 * alloc / space); } for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { if (zcb->zcb_embedded_blocks[i] == 0) continue; (void) printf("\n"); (void) printf("\tadditional, non-pointer bps of type %u: " "%10llu\n", i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); if (dump_opt['b'] >= 3) { (void) printf("\t number of (compressed) bytes: " "number of bps\n"); dump_histogram(zcb->zcb_embedded_histogram[i], sizeof (zcb->zcb_embedded_histogram[i]) / sizeof (zcb->zcb_embedded_histogram[i][0]), 0); } } if (tzb->zb_ditto_samevdev != 0) { (void) printf("\tDittoed blocks on same vdev: %llu\n", (longlong_t)tzb->zb_ditto_samevdev); } if (tzb->zb_ditto_same_ms != 0) { (void) printf("\tDittoed blocks in same metaslab: %llu\n", (longlong_t)tzb->zb_ditto_same_ms); } for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; if (vim == NULL) { continue; } char mem[32]; zdb_nicenum(vdev_indirect_mapping_num_entries(vim), mem, vdev_indirect_mapping_size(vim)); (void) printf("\tindirect vdev id %llu has %llu segments " "(%s in memory)\n", (longlong_t)vd->vdev_id, (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); } if (dump_opt['b'] >= 2) { int l, t, level; char csize[32], lsize[32], psize[32], asize[32]; char avg[32], gang[32]; (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" "\t avg\t comp\t%%Total\tType\n"); zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), UMEM_NOFAIL); for (t = 0; t <= ZDB_OT_TOTAL; t++) { const char *typename; /* make sure nicenum has enough space */ _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, "csize truncated"); _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, "psize truncated"); _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, "avg truncated"); _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, "gang truncated"); if (t < DMU_OT_NUMTYPES) typename = dmu_ot[t].ot_name; else typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { (void) printf("%6s\t%5s\t%5s\t%5s" "\t%5s\t%5s\t%6s\t%s\n", "-", "-", "-", "-", "-", "-", "-", typename); continue; } for (l = ZB_TOTAL - 1; l >= -1; l--) { level = (l == -1 ? ZB_TOTAL : l); zb = &zcb->zcb_type[level][t]; if (zb->zb_asize == 0) continue; if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && (level > 0 || DMU_OT_IS_METADATA(t))) { mdstats->zb_count += zb->zb_count; mdstats->zb_lsize += zb->zb_lsize; mdstats->zb_psize += zb->zb_psize; mdstats->zb_asize += zb->zb_asize; mdstats->zb_gangs += zb->zb_gangs; } if (dump_opt['b'] < 3 && level != ZB_TOTAL) continue; if (level == 0 && zb->zb_asize == zcb->zcb_type[ZB_TOTAL][t].zb_asize) continue; zdb_nicenum(zb->zb_count, csize, sizeof (csize)); zdb_nicenum(zb->zb_lsize, lsize, sizeof (lsize)); zdb_nicenum(zb->zb_psize, psize, sizeof (psize)); zdb_nicenum(zb->zb_asize, asize, sizeof (asize)); zdb_nicenum(zb->zb_asize / zb->zb_count, avg, sizeof (avg)); zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" "\t%5.2f\t%6.2f\t", csize, lsize, psize, asize, avg, (double)zb->zb_lsize / zb->zb_psize, 100.0 * zb->zb_asize / tzb->zb_asize); if (level == ZB_TOTAL) (void) printf("%s\n", typename); else (void) printf(" L%d %s\n", level, typename); if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { (void) printf("\t number of ganged " "blocks: %s\n", gang); } if (dump_opt['b'] >= 4) { (void) printf("psize " "(in 512-byte sectors): " "number of blocks\n"); dump_histogram(zb->zb_psize_histogram, PSIZE_HISTO_SIZE, 0); } } } zdb_nicenum(mdstats->zb_count, csize, sizeof (csize)); zdb_nicenum(mdstats->zb_lsize, lsize, sizeof (lsize)); zdb_nicenum(mdstats->zb_psize, psize, sizeof (psize)); zdb_nicenum(mdstats->zb_asize, asize, sizeof (asize)); zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, sizeof (avg)); zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" "\t%5.2f\t%6.2f\t", csize, lsize, psize, asize, avg, (double)mdstats->zb_lsize / mdstats->zb_psize, 100.0 * mdstats->zb_asize / tzb->zb_asize); (void) printf("%s\n", "Metadata Total"); /* Output a table summarizing block sizes in the pool */ if (dump_opt['b'] >= 2) { dump_size_histograms(zcb); } umem_free(mdstats, sizeof (zfs_blkstat_t)); } (void) printf("\n"); if (leaks) { umem_free(zcb, sizeof (zdb_cb_t)); return (2); } if (zcb->zcb_haderrors) { umem_free(zcb, sizeof (zdb_cb_t)); return (3); } umem_free(zcb, sizeof (zdb_cb_t)); return (0); } typedef struct zdb_ddt_entry { ddt_key_t zdde_key; uint64_t zdde_ref_blocks; uint64_t zdde_ref_lsize; uint64_t zdde_ref_psize; uint64_t zdde_ref_dsize; avl_node_t zdde_node; } zdb_ddt_entry_t; static int zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { (void) zilog, (void) dnp; avl_tree_t *t = arg; avl_index_t where; zdb_ddt_entry_t *zdde, zdde_search; if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) return (0); if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { (void) printf("traversing objset %llu, %llu objects, " "%lu blocks so far\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)BP_GET_FILL(bp), avl_numnodes(t)); } if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) return (0); ddt_key_fill(&zdde_search.zdde_key, bp); zdde = avl_find(t, &zdde_search, &where); if (zdde == NULL) { zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); zdde->zdde_key = zdde_search.zdde_key; avl_insert(t, zdde, where); } zdde->zdde_ref_blocks += 1; zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); zdde->zdde_ref_psize += BP_GET_PSIZE(bp); zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); return (0); } static void dump_simulated_ddt(spa_t *spa) { avl_tree_t t; void *cookie = NULL; zdb_ddt_entry_t *zdde; ddt_histogram_t ddh_total = {{{0}}}; ddt_stat_t dds_total = {0}; avl_create(&t, ddt_entry_compare, sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); spa_config_exit(spa, SCL_CONFIG, FTAG); while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { ddt_stat_t dds; uint64_t refcnt = zdde->zdde_ref_blocks; ASSERT(refcnt != 0); dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; dds.dds_psize = zdde->zdde_ref_psize / refcnt; dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; dds.dds_ref_blocks = zdde->zdde_ref_blocks; dds.dds_ref_lsize = zdde->zdde_ref_lsize; dds.dds_ref_psize = zdde->zdde_ref_psize; dds.dds_ref_dsize = zdde->zdde_ref_dsize; ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], &dds, 0); umem_free(zdde, sizeof (*zdde)); } avl_destroy(&t); ddt_histogram_stat(&dds_total, &ddh_total); (void) printf("Simulated DDT histogram:\n"); zpool_dump_ddt(&dds_total, &ddh_total); dump_dedup_ratio(&dds_total); } static int verify_device_removal_feature_counts(spa_t *spa) { uint64_t dr_feature_refcount = 0; uint64_t oc_feature_refcount = 0; uint64_t indirect_vdev_count = 0; uint64_t precise_vdev_count = 0; uint64_t obsolete_counts_object_count = 0; uint64_t obsolete_sm_count = 0; uint64_t obsolete_counts_count = 0; uint64_t scip_count = 0; uint64_t obsolete_bpobj_count = 0; int ret = 0; spa_condensing_indirect_phys_t *scip = &spa->spa_condensing_indirect_phys; if (scip->scip_next_mapping_object != 0) { vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; ASSERT(scip->scip_prev_obsolete_sm_object != 0); ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); (void) printf("Condensing indirect vdev %llu: new mapping " "object %llu, prev obsolete sm %llu\n", (u_longlong_t)scip->scip_vdev, (u_longlong_t)scip->scip_next_mapping_object, (u_longlong_t)scip->scip_prev_obsolete_sm_object); if (scip->scip_prev_obsolete_sm_object != 0) { space_map_t *prev_obsolete_sm = NULL; VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); (void) printf("\n"); space_map_close(prev_obsolete_sm); } scip_count += 2; } for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; vdev_indirect_config_t *vic = &vd->vdev_indirect_config; if (vic->vic_mapping_object != 0) { ASSERT(vd->vdev_ops == &vdev_indirect_ops || vd->vdev_removing); indirect_vdev_count++; if (vd->vdev_indirect_mapping->vim_havecounts) { obsolete_counts_count++; } } boolean_t are_precise; VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); if (are_precise) { ASSERT(vic->vic_mapping_object != 0); precise_vdev_count++; } uint64_t obsolete_sm_object; VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); if (obsolete_sm_object != 0) { ASSERT(vic->vic_mapping_object != 0); obsolete_sm_count++; } } (void) feature_get_refcount(spa, &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], &dr_feature_refcount); (void) feature_get_refcount(spa, &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], &oc_feature_refcount); if (dr_feature_refcount != indirect_vdev_count) { ret = 1; (void) printf("Number of indirect vdevs (%llu) " \ "does not match feature count (%llu)\n", (u_longlong_t)indirect_vdev_count, (u_longlong_t)dr_feature_refcount); } else { (void) printf("Verified device_removal feature refcount " \ "of %llu is correct\n", (u_longlong_t)dr_feature_refcount); } if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_OBSOLETE_BPOBJ) == 0) { obsolete_bpobj_count++; } obsolete_counts_object_count = precise_vdev_count; obsolete_counts_object_count += obsolete_sm_count; obsolete_counts_object_count += obsolete_counts_count; obsolete_counts_object_count += scip_count; obsolete_counts_object_count += obsolete_bpobj_count; obsolete_counts_object_count += remap_deadlist_count; if (oc_feature_refcount != obsolete_counts_object_count) { ret = 1; (void) printf("Number of obsolete counts objects (%llu) " \ "does not match feature count (%llu)\n", (u_longlong_t)obsolete_counts_object_count, (u_longlong_t)oc_feature_refcount); (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " "ob:%llu rd:%llu\n", (u_longlong_t)precise_vdev_count, (u_longlong_t)obsolete_sm_count, (u_longlong_t)obsolete_counts_count, (u_longlong_t)scip_count, (u_longlong_t)obsolete_bpobj_count, (u_longlong_t)remap_deadlist_count); } else { (void) printf("Verified indirect_refcount feature refcount " \ "of %llu is correct\n", (u_longlong_t)oc_feature_refcount); } return (ret); } static void zdb_set_skip_mmp(char *target) { spa_t *spa; /* * Disable the activity check to allow examination of * active pools. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(target)) != NULL) { spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; } mutex_exit(&spa_namespace_lock); } #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" /* * Import the checkpointed state of the pool specified by the target * parameter as readonly. The function also accepts a pool config * as an optional parameter, else it attempts to infer the config by * the name of the target pool. * * Note that the checkpointed state's pool name will be the name of * the original pool with the above suffix appended to it. In addition, * if the target is not a pool name (e.g. a path to a dataset) then * the new_path parameter is populated with the updated path to * reflect the fact that we are looking into the checkpointed state. * * The function returns a newly-allocated copy of the name of the * pool containing the checkpointed state. When this copy is no * longer needed it should be freed with free(3C). Same thing * applies to the new_path parameter if allocated. */ static char * import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) { int error = 0; char *poolname, *bogus_name = NULL; boolean_t freecfg = B_FALSE; /* If the target is not a pool, the extract the pool name */ char *path_start = strchr(target, '/'); if (path_start != NULL) { size_t poolname_len = path_start - target; poolname = strndup(target, poolname_len); } else { poolname = target; } if (cfg == NULL) { zdb_set_skip_mmp(poolname); error = spa_get_stats(poolname, &cfg, NULL, 0); if (error != 0) { fatal("Tried to read config of pool \"%s\" but " "spa_get_stats() failed with error %d\n", poolname, error); } freecfg = B_TRUE; } if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { if (target != poolname) free(poolname); return (NULL); } fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); error = spa_import(bogus_name, cfg, NULL, ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | ZFS_IMPORT_SKIP_MMP); if (freecfg) nvlist_free(cfg); if (error != 0) { fatal("Tried to import pool \"%s\" but spa_import() failed " "with error %d\n", bogus_name, error); } if (new_path != NULL && path_start != NULL) { if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { free(bogus_name); if (path_start != NULL) free(poolname); return (NULL); } } if (target != poolname) free(poolname); return (bogus_name); } typedef struct verify_checkpoint_sm_entry_cb_arg { vdev_t *vcsec_vd; /* the following fields are only used for printing progress */ uint64_t vcsec_entryid; uint64_t vcsec_num_entries; } verify_checkpoint_sm_entry_cb_arg_t; #define ENTRIES_PER_PROGRESS_UPDATE 10000 static int verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) { verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; vdev_t *vd = vcsec->vcsec_vd; metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; uint64_t end = sme->sme_offset + sme->sme_run; ASSERT(sme->sme_type == SM_FREE); if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { (void) fprintf(stderr, "\rverifying vdev %llu, space map entry %llu of %llu ...", (longlong_t)vd->vdev_id, (longlong_t)vcsec->vcsec_entryid, (longlong_t)vcsec->vcsec_num_entries); } vcsec->vcsec_entryid++; /* * See comment in checkpoint_sm_exclude_entry_cb() */ VERIFY3U(sme->sme_offset, >=, ms->ms_start); VERIFY3U(end, <=, ms->ms_start + ms->ms_size); /* * The entries in the vdev_checkpoint_sm should be marked as * allocated in the checkpointed state of the pool, therefore * their respective ms_allocateable trees should not contain them. */ mutex_enter(&ms->ms_lock); range_tree_verify_not_present(ms->ms_allocatable, sme->sme_offset, sme->sme_run); mutex_exit(&ms->ms_lock); return (0); } /* * Verify that all segments in the vdev_checkpoint_sm are allocated * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's * ms_allocatable). * * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of * each vdev in the current state of the pool to the metaslab space maps * (ms_sm) of the checkpointed state of the pool. * * Note that the function changes the state of the ms_allocatable * trees of the current spa_t. The entries of these ms_allocatable * trees are cleared out and then repopulated from with the free * entries of their respective ms_sm space maps. */ static void verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) { vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; vdev_t *current_rvd = current->spa_root_vdev; load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; vdev_t *current_vd = current_rvd->vdev_child[c]; space_map_t *checkpoint_sm = NULL; uint64_t checkpoint_sm_obj; if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { /* * Since we don't allow device removal in a pool * that has a checkpoint, we expect that all removed * vdevs were removed from the pool before the * checkpoint. */ ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); continue; } /* * If the checkpoint space map doesn't exist, then nothing * here is checkpointed so there's nothing to verify. */ if (current_vd->vdev_top_zap == 0 || zap_contains(spa_meta_objset(current), current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) continue; VERIFY0(zap_lookup(spa_meta_objset(current), current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &checkpoint_sm_obj)); VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), checkpoint_sm_obj, 0, current_vd->vdev_asize, current_vd->vdev_ashift)); verify_checkpoint_sm_entry_cb_arg_t vcsec; vcsec.vcsec_vd = ckpoint_vd; vcsec.vcsec_entryid = 0; vcsec.vcsec_num_entries = space_map_length(checkpoint_sm) / sizeof (uint64_t); VERIFY0(space_map_iterate(checkpoint_sm, space_map_length(checkpoint_sm), verify_checkpoint_sm_entry_cb, &vcsec)); if (dump_opt['m'] > 3) dump_spacemap(current->spa_meta_objset, checkpoint_sm); space_map_close(checkpoint_sm); } /* * If we've added vdevs since we took the checkpoint, ensure * that their checkpoint space maps are empty. */ if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { for (uint64_t c = ckpoint_rvd->vdev_children; c < current_rvd->vdev_children; c++) { vdev_t *current_vd = current_rvd->vdev_child[c]; VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); } } /* for cleaner progress output */ (void) fprintf(stderr, "\n"); } /* * Verifies that all space that's allocated in the checkpoint is * still allocated in the current version, by checking that everything * in checkpoint's ms_allocatable (which is actually allocated, not * allocatable/free) is not present in current's ms_allocatable. * * Note that the function changes the state of the ms_allocatable * trees of both spas when called. The entries of all ms_allocatable * trees are cleared out and then repopulated from their respective * ms_sm space maps. In the checkpointed state we load the allocated * entries, and in the current state we load the free entries. */ static void verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) { vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; vdev_t *current_rvd = current->spa_root_vdev; load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); load_concrete_ms_allocatable_trees(current, SM_FREE); for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; vdev_t *current_vd = current_rvd->vdev_child[i]; if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { /* * See comment in verify_checkpoint_vdev_spacemaps() */ ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); continue; } for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; metaslab_t *current_msp = current_vd->vdev_ms[m]; (void) fprintf(stderr, "\rverifying vdev %llu of %llu, " "metaslab %llu of %llu ...", (longlong_t)current_vd->vdev_id, (longlong_t)current_rvd->vdev_children, (longlong_t)current_vd->vdev_ms[m]->ms_id, (longlong_t)current_vd->vdev_ms_count); /* * We walk through the ms_allocatable trees that * are loaded with the allocated blocks from the * ms_sm spacemaps of the checkpoint. For each * one of these ranges we ensure that none of them * exists in the ms_allocatable trees of the * current state which are loaded with the ranges * that are currently free. * * This way we ensure that none of the blocks that * are part of the checkpoint were freed by mistake. */ range_tree_walk(ckpoint_msp->ms_allocatable, (range_tree_func_t *)range_tree_verify_not_present, current_msp->ms_allocatable); } } /* for cleaner progress output */ (void) fprintf(stderr, "\n"); } static void verify_checkpoint_blocks(spa_t *spa) { ASSERT(!dump_opt['L']); spa_t *checkpoint_spa; char *checkpoint_pool; int error = 0; /* * We import the checkpointed state of the pool (under a different * name) so we can do verification on it against the current state * of the pool. */ checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, NULL); ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); if (error != 0) { fatal("Tried to open pool \"%s\" but spa_open() failed with " "error %d\n", checkpoint_pool, error); } /* * Ensure that ranges in the checkpoint space maps of each vdev * are allocated according to the checkpointed state's metaslab * space maps. */ verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); /* * Ensure that allocated ranges in the checkpoint's metaslab * space maps remain allocated in the metaslab space maps of * the current state. */ verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); /* * Once we are done, we get rid of the checkpointed state. */ spa_close(checkpoint_spa, FTAG); free(checkpoint_pool); } static void dump_leftover_checkpoint_blocks(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *vd = rvd->vdev_child[i]; space_map_t *checkpoint_sm = NULL; uint64_t checkpoint_sm_obj; if (vd->vdev_top_zap == 0) continue; if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) continue; VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &checkpoint_sm_obj)); VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); dump_spacemap(spa->spa_meta_objset, checkpoint_sm); space_map_close(checkpoint_sm); } } static int verify_checkpoint(spa_t *spa) { uberblock_t checkpoint; int error; if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) return (0); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); if (error == ENOENT && !dump_opt['L']) { /* * If the feature is active but the uberblock is missing * then we must be in the middle of discarding the * checkpoint. */ (void) printf("\nPartially discarded checkpoint " "state found:\n"); if (dump_opt['m'] > 3) dump_leftover_checkpoint_blocks(spa); return (0); } else if (error != 0) { (void) printf("lookup error %d when looking for " "checkpointed uberblock in MOS\n", error); return (error); } dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); if (checkpoint.ub_checkpoint_txg == 0) { (void) printf("\nub_checkpoint_txg not set in checkpointed " "uberblock\n"); error = 3; } if (error == 0 && !dump_opt['L']) verify_checkpoint_blocks(spa); return (error); } static void mos_leaks_cb(void *arg, uint64_t start, uint64_t size) { (void) arg; for (uint64_t i = start; i < size; i++) { (void) printf("MOS object %llu referenced but not allocated\n", (u_longlong_t)i); } } static void mos_obj_refd(uint64_t obj) { if (obj != 0 && mos_refd_objs != NULL) range_tree_add(mos_refd_objs, obj, 1); } /* * Call on a MOS object that may already have been referenced. */ static void mos_obj_refd_multiple(uint64_t obj) { if (obj != 0 && mos_refd_objs != NULL && !range_tree_contains(mos_refd_objs, obj, 1)) range_tree_add(mos_refd_objs, obj, 1); } static void mos_leak_vdev_top_zap(vdev_t *vd) { uint64_t ms_flush_data_obj; int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); if (error == ENOENT) return; ASSERT0(error); mos_obj_refd(ms_flush_data_obj); } static void mos_leak_vdev(vdev_t *vd) { mos_obj_refd(vd->vdev_dtl_object); mos_obj_refd(vd->vdev_ms_array); mos_obj_refd(vd->vdev_indirect_config.vic_births_object); mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); mos_obj_refd(vd->vdev_leaf_zap); if (vd->vdev_checkpoint_sm != NULL) mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); if (vd->vdev_indirect_mapping != NULL) { mos_obj_refd(vd->vdev_indirect_mapping-> vim_phys->vimp_counts_object); } if (vd->vdev_obsolete_sm != NULL) mos_obj_refd(vd->vdev_obsolete_sm->sm_object); for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *ms = vd->vdev_ms[m]; mos_obj_refd(space_map_object(ms->ms_sm)); } if (vd->vdev_root_zap != 0) mos_obj_refd(vd->vdev_root_zap); if (vd->vdev_top_zap != 0) { mos_obj_refd(vd->vdev_top_zap); mos_leak_vdev_top_zap(vd); } for (uint64_t c = 0; c < vd->vdev_children; c++) { mos_leak_vdev(vd->vdev_child[c]); } } static void mos_leak_log_spacemaps(spa_t *spa) { uint64_t spacemap_zap; int error = zap_lookup(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, sizeof (spacemap_zap), 1, &spacemap_zap); if (error == ENOENT) return; ASSERT0(error); mos_obj_refd(spacemap_zap); for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) mos_obj_refd(sls->sls_sm_obj); } static void errorlog_count_refd(objset_t *mos, uint64_t errlog) { zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, mos, errlog); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { mos_obj_refd(za.za_first_integer); } zap_cursor_fini(&zc); } static int dump_mos_leaks(spa_t *spa) { int rv = 0; objset_t *mos = spa->spa_meta_objset; dsl_pool_t *dp = spa->spa_dsl_pool; /* Visit and mark all referenced objects in the MOS */ mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); mos_obj_refd(spa->spa_pool_props_object); mos_obj_refd(spa->spa_config_object); mos_obj_refd(spa->spa_ddt_stat_object); mos_obj_refd(spa->spa_feat_desc_obj); mos_obj_refd(spa->spa_feat_enabled_txg_obj); mos_obj_refd(spa->spa_feat_for_read_obj); mos_obj_refd(spa->spa_feat_for_write_obj); mos_obj_refd(spa->spa_history); mos_obj_refd(spa->spa_errlog_last); mos_obj_refd(spa->spa_errlog_scrub); if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { errorlog_count_refd(mos, spa->spa_errlog_last); errorlog_count_refd(mos, spa->spa_errlog_scrub); } mos_obj_refd(spa->spa_all_vdev_zaps); mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); bpobj_count_refd(&spa->spa_deferred_bpobj); mos_obj_refd(dp->dp_empty_bpobj); bpobj_count_refd(&dp->dp_obsolete_bpobj); bpobj_count_refd(&dp->dp_free_bpobj); mos_obj_refd(spa->spa_l2cache.sav_object); mos_obj_refd(spa->spa_spares.sav_object); if (spa->spa_syncing_log_sm != NULL) mos_obj_refd(spa->spa_syncing_log_sm->sm_object); mos_leak_log_spacemaps(spa); mos_obj_refd(spa->spa_condensing_indirect_phys. scip_next_mapping_object); mos_obj_refd(spa->spa_condensing_indirect_phys. scip_prev_obsolete_sm_object); if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { vdev_indirect_mapping_t *vim = vdev_indirect_mapping_open(mos, spa->spa_condensing_indirect_phys.scip_next_mapping_object); mos_obj_refd(vim->vim_phys->vimp_counts_object); vdev_indirect_mapping_close(vim); } deleted_livelists_dump_mos(spa); if (dp->dp_origin_snap != NULL) { dsl_dataset_t *ds; dsl_pool_config_enter(dp, FTAG); VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, FTAG, &ds)); count_ds_mos_objects(ds); dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); dsl_dataset_rele(ds, FTAG); dsl_pool_config_exit(dp, FTAG); count_ds_mos_objects(dp->dp_origin_snap); dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); } count_dir_mos_objects(dp->dp_mos_dir); if (dp->dp_free_dir != NULL) count_dir_mos_objects(dp->dp_free_dir); if (dp->dp_leak_dir != NULL) count_dir_mos_objects(dp->dp_leak_dir); mos_leak_vdev(spa->spa_root_vdev); for (uint64_t class = 0; class < DDT_CLASSES; class++) { for (uint64_t type = 0; type < DDT_TYPES; type++) { for (uint64_t cksum = 0; cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { ddt_t *ddt = spa->spa_ddt[cksum]; mos_obj_refd(ddt->ddt_object[type][class]); } } } /* * Visit all allocated objects and make sure they are referenced. */ uint64_t object = 0; while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { if (range_tree_contains(mos_refd_objs, object, 1)) { range_tree_remove(mos_refd_objs, object, 1); } else { dmu_object_info_t doi; const char *name; VERIFY0(dmu_object_info(mos, object, &doi)); if (doi.doi_type & DMU_OT_NEWTYPE) { dmu_object_byteswap_t bswap = DMU_OT_BYTESWAP(doi.doi_type); name = dmu_ot_byteswap[bswap].ob_name; } else { name = dmu_ot[doi.doi_type].ot_name; } (void) printf("MOS object %llu (%s) leaked\n", (u_longlong_t)object, name); rv = 2; } } (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); if (!range_tree_is_empty(mos_refd_objs)) rv = 2; range_tree_vacate(mos_refd_objs, NULL, NULL); range_tree_destroy(mos_refd_objs); return (rv); } typedef struct log_sm_obsolete_stats_arg { uint64_t lsos_current_txg; uint64_t lsos_total_entries; uint64_t lsos_valid_entries; uint64_t lsos_sm_entries; uint64_t lsos_valid_sm_entries; } log_sm_obsolete_stats_arg_t; static int log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) { log_sm_obsolete_stats_arg_t *lsos = arg; uint64_t offset = sme->sme_offset; uint64_t vdev_id = sme->sme_vdev; if (lsos->lsos_current_txg == 0) { /* this is the first log */ lsos->lsos_current_txg = txg; } else if (lsos->lsos_current_txg < txg) { /* we just changed log - print stats and reset */ (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", (u_longlong_t)lsos->lsos_valid_sm_entries, (u_longlong_t)lsos->lsos_sm_entries, (u_longlong_t)lsos->lsos_current_txg); lsos->lsos_valid_sm_entries = 0; lsos->lsos_sm_entries = 0; lsos->lsos_current_txg = txg; } ASSERT3U(lsos->lsos_current_txg, ==, txg); lsos->lsos_sm_entries++; lsos->lsos_total_entries++; vdev_t *vd = vdev_lookup_top(spa, vdev_id); if (!vdev_is_concrete(vd)) return (0); metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); if (txg < metaslab_unflushed_txg(ms)) return (0); lsos->lsos_valid_sm_entries++; lsos->lsos_valid_entries++; return (0); } static void dump_log_spacemap_obsolete_stats(spa_t *spa) { if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) return; log_sm_obsolete_stats_arg_t lsos = {0}; (void) printf("Log Space Map Obsolete Entry Statistics:\n"); iterate_through_spacemap_logs(spa, log_spacemap_obsolete_stats_cb, &lsos); /* print stats for latest log */ (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", (u_longlong_t)lsos.lsos_valid_sm_entries, (u_longlong_t)lsos.lsos_sm_entries, (u_longlong_t)lsos.lsos_current_txg); (void) printf("%-8llu valid entries out of %-8llu - total\n\n", (u_longlong_t)lsos.lsos_valid_entries, (u_longlong_t)lsos.lsos_total_entries); } static void dump_zpool(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); int rc = 0; if (dump_opt['y']) { livelist_metaslab_validate(spa); } if (dump_opt['S']) { dump_simulated_ddt(spa); return; } if (!dump_opt['e'] && dump_opt['C'] > 1) { (void) printf("\nCached configuration:\n"); dump_nvlist(spa->spa_config, 8); } if (dump_opt['C']) dump_config(spa); if (dump_opt['u']) dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); if (dump_opt['D']) dump_all_ddts(spa); if (dump_opt['d'] > 2 || dump_opt['m']) dump_metaslabs(spa); if (dump_opt['M']) dump_metaslab_groups(spa, dump_opt['M'] > 1); if (dump_opt['d'] > 2 || dump_opt['m']) { dump_log_spacemaps(spa); dump_log_spacemap_obsolete_stats(spa); } if (dump_opt['d'] || dump_opt['i']) { spa_feature_t f; mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); dump_objset(dp->dp_meta_objset); if (dump_opt['d'] >= 3) { dsl_pool_t *dp = spa->spa_dsl_pool; dump_full_bpobj(&spa->spa_deferred_bpobj, "Deferred frees", 0); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { dump_full_bpobj(&dp->dp_free_bpobj, "Pool snapshot frees", 0); } if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)); dump_full_bpobj(&dp->dp_obsolete_bpobj, "Pool obsolete blocks", 0); } if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { dump_bptree(spa->spa_meta_objset, dp->dp_bptree_obj, "Pool dataset frees"); } dump_dtl(spa->spa_root_vdev, 0); } for (spa_feature_t f = 0; f < SPA_FEATURES; f++) global_feature_count[f] = UINT64_MAX; global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; global_feature_count[SPA_FEATURE_LIVELIST] = 0; (void) dmu_objset_find(spa_name(spa), dump_one_objset, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); if (rc == 0 && !dump_opt['L']) rc = dump_mos_leaks(spa); for (f = 0; f < SPA_FEATURES; f++) { uint64_t refcount; uint64_t *arr; if (!(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET)) { if (global_feature_count[f] == UINT64_MAX) continue; if (!spa_feature_is_enabled(spa, f)) { ASSERT0(global_feature_count[f]); continue; } arr = global_feature_count; } else { if (!spa_feature_is_enabled(spa, f)) { ASSERT0(dataset_feature_count[f]); continue; } arr = dataset_feature_count; } if (feature_get_refcount(spa, &spa_feature_table[f], &refcount) == ENOTSUP) continue; if (arr[f] != refcount) { (void) printf("%s feature refcount mismatch: " "%lld consumers != %lld refcount\n", spa_feature_table[f].fi_uname, (longlong_t)arr[f], (longlong_t)refcount); rc = 2; } else { (void) printf("Verified %s feature refcount " "of %llu is correct\n", spa_feature_table[f].fi_uname, (longlong_t)refcount); } } if (rc == 0) rc = verify_device_removal_feature_counts(spa); } if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) rc = dump_block_stats(spa); if (rc == 0) rc = verify_spacemap_refcounts(spa); if (dump_opt['s']) show_pool_stats(spa); if (dump_opt['h']) dump_history(spa); if (rc == 0) rc = verify_checkpoint(spa); if (rc != 0) { dump_debug_buffer(); exit(rc); } } #define ZDB_FLAG_CHECKSUM 0x0001 #define ZDB_FLAG_DECOMPRESS 0x0002 #define ZDB_FLAG_BSWAP 0x0004 #define ZDB_FLAG_GBH 0x0008 #define ZDB_FLAG_INDIRECT 0x0010 #define ZDB_FLAG_RAW 0x0020 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 #define ZDB_FLAG_VERBOSE 0x0080 static int flagbits[256]; static char flagbitstr[16]; static void zdb_print_blkptr(const blkptr_t *bp, int flags) { char blkbuf[BP_SPRINTF_LEN]; if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("%s\n", blkbuf); } static void zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) { int i; for (i = 0; i < nbps; i++) zdb_print_blkptr(&bp[i], flags); } static void zdb_dump_gbh(void *buf, int flags) { zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); } static void zdb_dump_block_raw(void *buf, uint64_t size, int flags) { if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array(buf, size); VERIFY(write(fileno(stdout), buf, size) == size); } static void zdb_dump_block(char *label, void *buf, uint64_t size, int flags) { uint64_t *d = (uint64_t *)buf; unsigned nwords = size / sizeof (uint64_t); int do_bswap = !!(flags & ZDB_FLAG_BSWAP); unsigned i, j; const char *hdr; char *c; if (do_bswap) hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; else hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); #ifdef _LITTLE_ENDIAN /* correct the endianness */ do_bswap = !do_bswap; #endif for (i = 0; i < nwords; i += 2) { (void) printf("%06llx: %016llx %016llx ", (u_longlong_t)(i * sizeof (uint64_t)), (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); c = (char *)&d[i]; for (j = 0; j < 2 * sizeof (uint64_t); j++) (void) printf("%c", isprint(c[j]) ? c[j] : '.'); (void) printf("\n"); } } /* * There are two acceptable formats: * leaf_name - For example: c1t0d0 or /tmp/ztest.0a * child[.child]* - For example: 0.1.1 * * The second form can be used to specify arbitrary vdevs anywhere * in the hierarchy. For example, in a pool with a mirror of * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . */ static vdev_t * zdb_vdev_lookup(vdev_t *vdev, const char *path) { char *s, *p, *q; unsigned i; if (vdev == NULL) return (NULL); /* First, assume the x.x.x.x format */ i = strtoul(path, &s, 10); if (s == path || (s && *s != '.' && *s != '\0')) goto name; if (i >= vdev->vdev_children) return (NULL); vdev = vdev->vdev_child[i]; if (s && *s == '\0') return (vdev); return (zdb_vdev_lookup(vdev, s+1)); name: for (i = 0; i < vdev->vdev_children; i++) { vdev_t *vc = vdev->vdev_child[i]; if (vc->vdev_path == NULL) { vc = zdb_vdev_lookup(vc, path); if (vc == NULL) continue; else return (vc); } p = strrchr(vc->vdev_path, '/'); p = p ? p + 1 : vc->vdev_path; q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; if (strcmp(vc->vdev_path, path) == 0) return (vc); if (strcmp(p, path) == 0) return (vc); if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) return (vc); } return (NULL); } static int name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) { dsl_dataset_t *ds; dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, NULL, &ds); if (error != 0) { (void) fprintf(stderr, "failed to hold objset %llu: %s\n", (u_longlong_t)objset_id, strerror(error)); dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); return (error); } dsl_dataset_name(ds, outstr); dsl_dataset_rele(ds, NULL); dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); return (0); } static boolean_t zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) { char *s0, *s1, *tmp = NULL; if (sizes == NULL) return (B_FALSE); s0 = strtok_r(sizes, "/", &tmp); if (s0 == NULL) return (B_FALSE); s1 = strtok_r(NULL, "/", &tmp); *lsize = strtoull(s0, NULL, 16); *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; return (*lsize >= *psize && *psize > 0); } #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) static boolean_t zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, uint64_t psize, int flags) { (void) buf; boolean_t exceeded = B_FALSE; /* * We don't know how the data was compressed, so just try * every decompress function at every inflated blocksize. */ void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; int *cfuncp = cfuncs; uint64_t maxlsize = SPA_MAXBLOCKSIZE; uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0); *cfuncp++ = ZIO_COMPRESS_LZ4; *cfuncp++ = ZIO_COMPRESS_LZJB; mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) if (((1ULL << c) & mask) == 0) *cfuncp++ = c; /* * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this * could take a while and we should let the user know * we are not stuck. On the other hand, printing progress * info gets old after a while. User can specify 'v' flag * to see the progression. */ if (lsize == psize) lsize += SPA_MINBLOCKSIZE; else maxlsize = lsize; for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { for (cfuncp = cfuncs; *cfuncp; cfuncp++) { if (flags & ZDB_FLAG_VERBOSE) { (void) fprintf(stderr, "Trying %05llx -> %05llx (%s)\n", (u_longlong_t)psize, (u_longlong_t)lsize, zio_compress_table[*cfuncp].\ ci_name); } /* * We randomize lbuf2, and decompress to both * lbuf and lbuf2. This way, we will know if * decompression fill exactly to lsize. */ VERIFY0(random_get_pseudo_bytes(lbuf2, lsize)); if (zio_decompress_data(*cfuncp, pabd, lbuf, psize, lsize, NULL) == 0 && zio_decompress_data(*cfuncp, pabd, lbuf2, psize, lsize, NULL) == 0 && memcmp(lbuf, lbuf2, lsize) == 0) break; } if (*cfuncp != 0) break; } umem_free(lbuf2, SPA_MAXBLOCKSIZE); if (lsize > maxlsize) { exceeded = B_TRUE; } if (*cfuncp == ZIO_COMPRESS_ZLE) { printf("\nZLE decompression was selected. If you " "suspect the results are wrong,\ntry avoiding ZLE " "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); } return (exceeded); } /* * Read a block from a pool and print it out. The syntax of the * block descriptor is: * * pool:vdev_specifier:offset:[lsize/]psize[:flags] * * pool - The name of the pool you wish to read from * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) * offset - offset, in hex, in bytes * size - Amount of data to read, in hex, in bytes * flags - A string of characters specifying options * b: Decode a blkptr at given offset within block * c: Calculate and display checksums * d: Decompress data before dumping * e: Byteswap data before dumping * g: Display data as a gang block header * i: Display as an indirect block * r: Dump raw data to stdout * v: Verbose * */ static void zdb_read_block(char *thing, spa_t *spa) { blkptr_t blk, *bp = &blk; dva_t *dva = bp->blk_dva; int flags = 0; uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; zio_t *zio; vdev_t *vd; abd_t *pabd; void *lbuf, *buf; char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; const char *vdev, *errmsg = NULL; int i, error; boolean_t borrowed = B_FALSE, found = B_FALSE; dup = strdup(thing); s = strtok_r(dup, ":", &tmp); vdev = s ?: ""; s = strtok_r(NULL, ":", &tmp); offset = strtoull(s ? s : "", NULL, 16); sizes = strtok_r(NULL, ":", &tmp); s = strtok_r(NULL, ":", &tmp); flagstr = strdup(s ?: ""); if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) errmsg = "invalid size(s)"; if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) errmsg = "size must be a multiple of sector size"; if (!IS_P2ALIGNED(offset, DEV_BSIZE)) errmsg = "offset must be a multiple of sector size"; if (errmsg) { (void) printf("Invalid block specifier: %s - %s\n", thing, errmsg); goto done; } tmp = NULL; for (s = strtok_r(flagstr, ":", &tmp); s != NULL; s = strtok_r(NULL, ":", &tmp)) { for (i = 0; i < strlen(flagstr); i++) { int bit = flagbits[(uchar_t)flagstr[i]]; if (bit == 0) { (void) printf("***Ignoring flag: %c\n", (uchar_t)flagstr[i]); continue; } found = B_TRUE; flags |= bit; p = &flagstr[i + 1]; if (*p != ':' && *p != '\0') { int j = 0, nextbit = flagbits[(uchar_t)*p]; char *end, offstr[8] = { 0 }; if ((bit == ZDB_FLAG_PRINT_BLKPTR) && (nextbit == 0)) { /* look ahead to isolate the offset */ while (nextbit == 0 && strchr(flagbitstr, *p) == NULL) { offstr[j] = *p; j++; if (i + j > strlen(flagstr)) break; p++; nextbit = flagbits[(uchar_t)*p]; } blkptr_offset = strtoull(offstr, &end, 16); i += j; } else if (nextbit == 0) { (void) printf("***Ignoring flag arg:" " '%c'\n", (uchar_t)*p); } } } } if (blkptr_offset % sizeof (blkptr_t)) { printf("Block pointer offset 0x%llx " "must be divisible by 0x%x\n", (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); goto done; } if (found == B_FALSE && strlen(flagstr) > 0) { printf("Invalid flag arg: '%s'\n", flagstr); goto done; } vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); if (vd == NULL) { (void) printf("***Invalid vdev: %s\n", vdev); goto done; } else { if (vd->vdev_path) (void) fprintf(stderr, "Found vdev: %s\n", vd->vdev_path); else (void) fprintf(stderr, "Found vdev type: %s\n", vd->vdev_ops->vdev_op_type); } pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); BP_ZERO(bp); DVA_SET_VDEV(&dva[0], vd->vdev_id); DVA_SET_OFFSET(&dva[0], offset); DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); BP_SET_LSIZE(bp, lsize); BP_SET_PSIZE(bp, psize); BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); BP_SET_TYPE(bp, DMU_OT_NONE); BP_SET_LEVEL(bp, 0); BP_SET_DEDUP(bp, 0); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); zio = zio_root(spa, NULL, NULL, 0); if (vd == vd->vdev_top) { /* * Treat this as a normal block read. */ zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); } else { /* * Treat this as a vdev child I/O. */ zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, - ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE | - ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | - ZIO_FLAG_OPTIONAL, NULL, NULL)); + ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | + ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, + NULL, NULL)); } error = zio_wait(zio); spa_config_exit(spa, SCL_STATE, FTAG); if (error) { (void) printf("Read of %s failed, error: %d\n", thing, error); goto out; } uint64_t orig_lsize = lsize; buf = lbuf; if (flags & ZDB_FLAG_DECOMPRESS) { boolean_t failed = zdb_decompress_block(pabd, buf, lbuf, lsize, psize, flags); if (failed) { (void) printf("Decompress of %s failed\n", thing); goto out; } } else { buf = abd_borrow_buf_copy(pabd, lsize); borrowed = B_TRUE; } /* * Try to detect invalid block pointer. If invalid, try * decompressing. */ if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && !(flags & ZDB_FLAG_DECOMPRESS)) { const blkptr_t *b = (const blkptr_t *)(void *) ((uintptr_t)buf + (uintptr_t)blkptr_offset); if (zfs_blkptr_verify(spa, b, BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { abd_return_buf_copy(pabd, buf, lsize); borrowed = B_FALSE; buf = lbuf; boolean_t failed = zdb_decompress_block(pabd, buf, lbuf, lsize, psize, flags); b = (const blkptr_t *)(void *) ((uintptr_t)buf + (uintptr_t)blkptr_offset); if (failed || zfs_blkptr_verify(spa, b, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { printf("invalid block pointer at this DVA\n"); goto out; } } } if (flags & ZDB_FLAG_PRINT_BLKPTR) zdb_print_blkptr((blkptr_t *)(void *) ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); else if (flags & ZDB_FLAG_RAW) zdb_dump_block_raw(buf, lsize, flags); else if (flags & ZDB_FLAG_INDIRECT) zdb_dump_indirect((blkptr_t *)buf, orig_lsize / sizeof (blkptr_t), flags); else if (flags & ZDB_FLAG_GBH) zdb_dump_gbh(buf, flags); else zdb_dump_block(thing, buf, lsize, flags); /* * If :c was specified, iterate through the checksum table to * calculate and display each checksum for our specified * DVA and length. */ if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && !(flags & ZDB_FLAG_GBH)) { zio_t *czio; (void) printf("\n"); for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { if ((zio_checksum_table[ck].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) || ck == ZIO_CHECKSUM_NOPARITY) { continue; } BP_SET_CHECKSUM(bp, ck); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); czio->io_bp = bp; if (vd == vd->vdev_top) { zio_nowait(zio_read(czio, spa, bp, pabd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_DONT_RETRY, NULL)); } else { zio_nowait(zio_vdev_child_io(czio, bp, vd, offset, pabd, psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, - ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_OPTIONAL, NULL, NULL)); } error = zio_wait(czio); if (error == 0 || error == ECKSUM) { zio_t *ck_zio = zio_root(spa, NULL, NULL, 0); ck_zio->io_offset = DVA_GET_OFFSET(&bp->blk_dva[0]); ck_zio->io_bp = bp; zio_checksum_compute(ck_zio, ck, pabd, lsize); printf( "%12s\t" "cksum=%016llx:%016llx:%016llx:%016llx\n", zio_checksum_table[ck].ci_name, (u_longlong_t)bp->blk_cksum.zc_word[0], (u_longlong_t)bp->blk_cksum.zc_word[1], (u_longlong_t)bp->blk_cksum.zc_word[2], (u_longlong_t)bp->blk_cksum.zc_word[3]); zio_wait(ck_zio); } else { printf("error %d reading block\n", error); } spa_config_exit(spa, SCL_STATE, FTAG); } } if (borrowed) abd_return_buf_copy(pabd, buf, lsize); out: abd_free(pabd); umem_free(lbuf, SPA_MAXBLOCKSIZE); done: free(flagstr); free(dup); } static void zdb_embedded_block(char *thing) { blkptr_t bp = {{{{0}}}}; unsigned long long *words = (void *)&bp; char *buf; int err; err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", words + 0, words + 1, words + 2, words + 3, words + 4, words + 5, words + 6, words + 7, words + 8, words + 9, words + 10, words + 11, words + 12, words + 13, words + 14, words + 15); if (err != 16) { (void) fprintf(stderr, "invalid input format\n"); exit(1); } ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); buf = malloc(SPA_MAXBLOCKSIZE); if (buf == NULL) { (void) fprintf(stderr, "out of memory\n"); exit(1); } err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); if (err != 0) { (void) fprintf(stderr, "decode failed: %u\n", err); exit(1); } zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); free(buf); } /* check for valid hex or decimal numeric string */ static boolean_t zdb_numeric(char *str) { int i = 0; if (strlen(str) == 0) return (B_FALSE); if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) i = 2; for (; i < strlen(str); i++) { if (!isxdigit(str[i])) return (B_FALSE); } return (B_TRUE); } int main(int argc, char **argv) { int c; spa_t *spa = NULL; objset_t *os = NULL; int dump_all = 1; int verbose = 0; int error = 0; char **searchdirs = NULL; int nsearch = 0; char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; nvlist_t *policy = NULL; uint64_t max_txg = UINT64_MAX; int64_t objset_id = -1; uint64_t object; int flags = ZFS_IMPORT_MISSING_LOG; int rewind = ZPOOL_NEVER_REWIND; char *spa_config_path_env, *objset_str; boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; nvlist_t *cfg = NULL; dprintf_setup(&argc, argv); /* * If there is an environment variable SPA_CONFIG_PATH it overrides * default spa_config_path setting. If -U flag is specified it will * override this environment variable settings once again. */ spa_config_path_env = getenv("SPA_CONFIG_PATH"); if (spa_config_path_env != NULL) spa_config_path = spa_config_path_env; /* * For performance reasons, we set this tunable down. We do so before * the arg parsing section so that the user can override this value if * they choose. */ zfs_btree_verify_intensity = 3; struct option long_options[] = { {"ignore-assertions", no_argument, NULL, 'A'}, {"block-stats", no_argument, NULL, 'b'}, {"backup", no_argument, NULL, 'B'}, {"checksum", no_argument, NULL, 'c'}, {"config", no_argument, NULL, 'C'}, {"datasets", no_argument, NULL, 'd'}, {"dedup-stats", no_argument, NULL, 'D'}, {"exported", no_argument, NULL, 'e'}, {"embedded-block-pointer", no_argument, NULL, 'E'}, {"automatic-rewind", no_argument, NULL, 'F'}, {"dump-debug-msg", no_argument, NULL, 'G'}, {"history", no_argument, NULL, 'h'}, {"intent-logs", no_argument, NULL, 'i'}, {"inflight", required_argument, NULL, 'I'}, {"checkpointed-state", no_argument, NULL, 'k'}, {"key", required_argument, NULL, 'K'}, {"label", no_argument, NULL, 'l'}, {"disable-leak-tracking", no_argument, NULL, 'L'}, {"metaslabs", no_argument, NULL, 'm'}, {"metaslab-groups", no_argument, NULL, 'M'}, {"numeric", no_argument, NULL, 'N'}, {"option", required_argument, NULL, 'o'}, {"object-lookups", no_argument, NULL, 'O'}, {"path", required_argument, NULL, 'p'}, {"parseable", no_argument, NULL, 'P'}, {"skip-label", no_argument, NULL, 'q'}, {"copy-object", no_argument, NULL, 'r'}, {"read-block", no_argument, NULL, 'R'}, {"io-stats", no_argument, NULL, 's'}, {"simulate-dedup", no_argument, NULL, 'S'}, {"txg", required_argument, NULL, 't'}, {"uberblock", no_argument, NULL, 'u'}, {"cachefile", required_argument, NULL, 'U'}, {"verbose", no_argument, NULL, 'v'}, {"verbatim", no_argument, NULL, 'V'}, {"dump-blocks", required_argument, NULL, 'x'}, {"extreme-rewind", no_argument, NULL, 'X'}, {"all-reconstruction", no_argument, NULL, 'Y'}, {"livelist", no_argument, NULL, 'y'}, {"zstd-headers", no_argument, NULL, 'Z'}, {0, 0, 0, 0} }; while ((c = getopt_long(argc, argv, "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:uU:vVx:XYyZ", long_options, NULL)) != -1) { switch (c) { case 'b': case 'B': case 'c': case 'C': case 'd': case 'D': case 'E': case 'G': case 'h': case 'i': case 'l': case 'm': case 'M': case 'N': case 'O': case 'r': case 'R': case 's': case 'S': case 'u': case 'y': case 'Z': dump_opt[c]++; dump_all = 0; break; case 'A': case 'e': case 'F': case 'k': case 'L': case 'P': case 'q': case 'X': dump_opt[c]++; break; case 'Y': zfs_reconstruct_indirect_combinations_max = INT_MAX; zfs_deadman_enabled = 0; break; /* NB: Sort single match options below. */ case 'I': max_inflight_bytes = strtoull(optarg, NULL, 0); if (max_inflight_bytes == 0) { (void) fprintf(stderr, "maximum number " "of inflight bytes must be greater " "than 0\n"); usage(); } break; case 'K': dump_opt[c]++; key_material = strdup(optarg); /* redact key material in process table */ while (*optarg != '\0') { *optarg++ = '*'; } break; case 'o': error = set_global_var(optarg); if (error != 0) usage(); break; case 'p': if (searchdirs == NULL) { searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); } else { char **tmp = umem_alloc((nsearch + 1) * sizeof (char *), UMEM_NOFAIL); memcpy(tmp, searchdirs, nsearch * sizeof (char *)); umem_free(searchdirs, nsearch * sizeof (char *)); searchdirs = tmp; } searchdirs[nsearch++] = optarg; break; case 't': max_txg = strtoull(optarg, NULL, 0); if (max_txg < TXG_INITIAL) { (void) fprintf(stderr, "incorrect txg " "specified: %s\n", optarg); usage(); } break; case 'U': spa_config_path = optarg; if (spa_config_path[0] != '/') { (void) fprintf(stderr, "cachefile must be an absolute path " "(i.e. start with a slash)\n"); usage(); } break; case 'v': verbose++; break; case 'V': flags = ZFS_IMPORT_VERBATIM; break; case 'x': vn_dumpdir = optarg; break; default: usage(); break; } } if (!dump_opt['e'] && searchdirs != NULL) { (void) fprintf(stderr, "-p option requires use of -e\n"); usage(); } #if defined(_LP64) /* * ZDB does not typically re-read blocks; therefore limit the ARC * to 256 MB, which can be used entirely for metadata. */ zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; zfs_arc_max = 256 * 1024 * 1024; #endif /* * "zdb -c" uses checksum-verifying scrub i/os which are async reads. * "zdb -b" uses traversal prefetch which uses async reads. * For good performance, let several of them be active at once. */ zfs_vdev_async_read_max_active = 10; /* * Disable reference tracking for better performance. */ reference_tracking_enable = B_FALSE; /* * Do not fail spa_load when spa_load_verify fails. This is needed * to load non-idle pools. */ spa_load_verify_dryrun = B_TRUE; /* * ZDB should have ability to read spacemaps. */ spa_mode_readable_spacemaps = B_TRUE; kernel_init(SPA_MODE_READ); if (dump_all) verbose = MAX(verbose, 1); for (c = 0; c < 256; c++) { if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) dump_opt[c] = 1; if (dump_opt[c]) dump_opt[c] += verbose; } libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); zfs_recover = (dump_opt['A'] > 1); argc -= optind; argv += optind; if (argc < 2 && dump_opt['R']) usage(); if (dump_opt['E']) { if (argc != 1) usage(); zdb_embedded_block(argv[0]); return (0); } if (argc < 1) { if (!dump_opt['e'] && dump_opt['C']) { dump_cachefile(spa_config_path); return (0); } usage(); } if (dump_opt['l']) return (dump_label(argv[0])); if (dump_opt['O']) { if (argc != 2) usage(); dump_opt['v'] = verbose + 3; return (dump_path(argv[0], argv[1], NULL)); } if (dump_opt['r']) { target_is_spa = B_FALSE; if (argc != 3) usage(); dump_opt['v'] = verbose; error = dump_path(argv[0], argv[1], &object); if (error != 0) fatal("internal error: %s", strerror(error)); } if (dump_opt['X'] || dump_opt['F']) rewind = ZPOOL_DO_REWIND | (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); /* -N implies -d */ if (dump_opt['N'] && dump_opt['d'] == 0) dump_opt['d'] = dump_opt['N']; if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) fatal("internal error: %s", strerror(ENOMEM)); error = 0; target = argv[0]; if (strpbrk(target, "/@") != NULL) { size_t targetlen; target_pool = strdup(target); *strpbrk(target_pool, "/@") = '\0'; target_is_spa = B_FALSE; targetlen = strlen(target); if (targetlen && target[targetlen - 1] == '/') target[targetlen - 1] = '\0'; /* * See if an objset ID was supplied (-d /). * To disambiguate tank/100, consider the 100 as objsetID * if -N was given, otherwise 100 is an objsetID iff * tank/100 as a named dataset fails on lookup. */ objset_str = strchr(target, '/'); if (objset_str && strlen(objset_str) > 1 && zdb_numeric(objset_str + 1)) { char *endptr; errno = 0; objset_str++; objset_id = strtoull(objset_str, &endptr, 0); /* dataset 0 is the same as opening the pool */ if (errno == 0 && endptr != objset_str && objset_id != 0) { if (dump_opt['N']) dataset_lookup = B_TRUE; } /* normal dataset name not an objset ID */ if (endptr == objset_str) { objset_id = -1; } } else if (objset_str && !zdb_numeric(objset_str + 1) && dump_opt['N']) { printf("Supply a numeric objset ID with -N\n"); exit(1); } } else { target_pool = target; } if (dump_opt['e']) { importargs_t args = { 0 }; args.paths = nsearch; args.path = searchdirs; args.can_be_active = B_TRUE; libpc_handle_t lpch = { .lpc_lib_handle = NULL, .lpc_ops = &libzpool_config_ops, .lpc_printerr = B_TRUE }; error = zpool_find_config(&lpch, target_pool, &cfg, &args); if (error == 0) { if (nvlist_add_nvlist(cfg, ZPOOL_LOAD_POLICY, policy) != 0) { fatal("can't open '%s': %s", target, strerror(ENOMEM)); } if (dump_opt['C'] > 1) { (void) printf("\nConfiguration for import:\n"); dump_nvlist(cfg, 8); } /* * Disable the activity check to allow examination of * active pools. */ error = spa_import(target_pool, cfg, NULL, flags | ZFS_IMPORT_SKIP_MMP); } } if (searchdirs != NULL) { umem_free(searchdirs, nsearch * sizeof (char *)); searchdirs = NULL; } /* * import_checkpointed_state makes the assumption that the * target pool that we pass it is already part of the spa * namespace. Because of that we need to make sure to call * it always after the -e option has been processed, which * imports the pool to the namespace if it's not in the * cachefile. */ char *checkpoint_pool = NULL; char *checkpoint_target = NULL; if (dump_opt['k']) { checkpoint_pool = import_checkpointed_state(target, cfg, &checkpoint_target); if (checkpoint_target != NULL) target = checkpoint_target; } if (cfg != NULL) { nvlist_free(cfg); cfg = NULL; } if (target_pool != target) free(target_pool); if (error == 0) { if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { ASSERT(checkpoint_pool != NULL); ASSERT(checkpoint_target == NULL); error = spa_open(checkpoint_pool, &spa, FTAG); if (error != 0) { fatal("Tried to open pool \"%s\" but " "spa_open() failed with error %d\n", checkpoint_pool, error); } } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || objset_id == 0) { zdb_set_skip_mmp(target); error = spa_open_rewind(target, &spa, FTAG, policy, NULL); if (error) { /* * If we're missing the log device then * try opening the pool after clearing the * log state. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(target)) != NULL && spa->spa_log_state == SPA_LOG_MISSING) { spa->spa_log_state = SPA_LOG_CLEAR; error = 0; } mutex_exit(&spa_namespace_lock); if (!error) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); } } } else if (strpbrk(target, "#") != NULL) { dsl_pool_t *dp; error = dsl_pool_hold(target, FTAG, &dp); if (error != 0) { fatal("can't dump '%s': %s", target, strerror(error)); } error = dump_bookmark(dp, target, B_TRUE, verbose > 1); dsl_pool_rele(dp, FTAG); if (error != 0) { fatal("can't dump '%s': %s", target, strerror(error)); } return (error); } else { target_pool = strdup(target); if (strpbrk(target, "/@") != NULL) *strpbrk(target_pool, "/@") = '\0'; zdb_set_skip_mmp(target); /* * If -N was supplied, the user has indicated that * zdb -d / is in effect. Otherwise * we first assume that the dataset string is the * dataset name. If dmu_objset_hold fails with the * dataset string, and we have an objset_id, retry the * lookup with the objsetID. */ boolean_t retry = B_TRUE; retry_lookup: if (dataset_lookup == B_TRUE) { /* * Use the supplied id to get the name * for open_objset. */ error = spa_open(target_pool, &spa, FTAG); if (error == 0) { error = name_from_objset_id(spa, objset_id, dsname); spa_close(spa, FTAG); if (error == 0) target = dsname; } } if (error == 0) { if (objset_id > 0 && retry) { int err = dmu_objset_hold(target, FTAG, &os); if (err) { dataset_lookup = B_TRUE; retry = B_FALSE; goto retry_lookup; } else { dmu_objset_rele(os, FTAG); } } error = open_objset(target, FTAG, &os); } if (error == 0) spa = dmu_objset_spa(os); free(target_pool); } } nvlist_free(policy); if (error) fatal("can't open '%s': %s", target, strerror(error)); /* * Set the pool failure mode to panic in order to prevent the pool * from suspending. A suspended I/O will have no way to resume and * can prevent the zdb(8) command from terminating as expected. */ if (spa != NULL) spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; argv++; argc--; if (dump_opt['r']) { error = zdb_copy_object(os, object, argv[1]); } else if (!dump_opt['R']) { flagbits['d'] = ZOR_FLAG_DIRECTORY; flagbits['f'] = ZOR_FLAG_PLAIN_FILE; flagbits['m'] = ZOR_FLAG_SPACE_MAP; flagbits['z'] = ZOR_FLAG_ZAP; flagbits['A'] = ZOR_FLAG_ALL_TYPES; if (argc > 0 && dump_opt['d']) { zopt_object_args = argc; zopt_object_ranges = calloc(zopt_object_args, sizeof (zopt_object_range_t)); for (unsigned i = 0; i < zopt_object_args; i++) { int err; const char *msg = NULL; err = parse_object_range(argv[i], &zopt_object_ranges[i], &msg); if (err != 0) fatal("Bad object or range: '%s': %s\n", argv[i], msg ?: ""); } } else if (argc > 0 && dump_opt['m']) { zopt_metaslab_args = argc; zopt_metaslab = calloc(zopt_metaslab_args, sizeof (uint64_t)); for (unsigned i = 0; i < zopt_metaslab_args; i++) { errno = 0; zopt_metaslab[i] = strtoull(argv[i], NULL, 0); if (zopt_metaslab[i] == 0 && errno != 0) fatal("bad number %s: %s", argv[i], strerror(errno)); } } if (dump_opt['B']) { dump_backup(target, objset_id, argc > 0 ? argv[0] : NULL); } else if (os != NULL) { dump_objset(os); } else if (zopt_object_args > 0 && !dump_opt['m']) { dump_objset(spa->spa_meta_objset); } else { dump_zpool(spa); } } else { flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; flagbits['c'] = ZDB_FLAG_CHECKSUM; flagbits['d'] = ZDB_FLAG_DECOMPRESS; flagbits['e'] = ZDB_FLAG_BSWAP; flagbits['g'] = ZDB_FLAG_GBH; flagbits['i'] = ZDB_FLAG_INDIRECT; flagbits['r'] = ZDB_FLAG_RAW; flagbits['v'] = ZDB_FLAG_VERBOSE; for (int i = 0; i < argc; i++) zdb_read_block(argv[i], spa); } if (dump_opt['k']) { free(checkpoint_pool); if (!target_is_spa) free(checkpoint_target); } if (os != NULL) { close_objset(os, FTAG); } else { spa_close(spa, FTAG); } fuid_table_destroy(); dump_debug_buffer(); kernel_fini(); return (error); } diff --git a/include/os/linux/kernel/linux/mod_compat.h b/include/os/linux/kernel/linux/mod_compat.h index 09d109d191bf..8e20a9613539 100644 --- a/include/os/linux/kernel/linux/mod_compat.h +++ b/include/os/linux/kernel/linux/mod_compat.h @@ -1,205 +1,204 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2016 Gvozden Neskovic . * Copyright (c) 2020 by Delphix. All rights reserved. */ #ifndef _MOD_COMPAT_H #define _MOD_COMPAT_H #include #include /* * Despite constifying struct kernel_param_ops, some older kernels define a * `__check_old_set_param()` function in their headers that checks for a * non-constified `->set()`. This has long been fixed in Linux mainline, but * since we support older kernels, we workaround it by using a preprocessor * definition to disable it. */ #define __check_old_set_param(_) (0) typedef const struct kernel_param zfs_kernel_param_t; #define ZMOD_RW 0644 #define ZMOD_RD 0444 enum scope_prefix_types { zfs, zfs_arc, zfs_brt, zfs_condense, zfs_dbuf, zfs_dbuf_cache, zfs_deadman, zfs_dedup, zfs_l2arc, zfs_livelist, zfs_livelist_condense, zfs_lua, zfs_metaslab, zfs_mg, zfs_multihost, zfs_prefetch, zfs_reconstruct, zfs_recv, zfs_send, zfs_spa, zfs_trim, zfs_txg, zfs_vdev, - zfs_vdev_cache, zfs_vdev_file, zfs_vdev_mirror, zfs_vnops, zfs_zevent, zfs_zio, zfs_zil }; /* * While we define our own s64/u64 types, there is no reason to reimplement the * existing Linux kernel types, so we use the preprocessor to remap our * "custom" implementations to the kernel ones. This is done because the CPP * does not allow us to write conditional definitions. The fourth definition * exists because the CPP will not allow us to replace things like INT with int * before string concatenation. */ #define spl_param_set_int param_set_int #define spl_param_get_int param_get_int #define spl_param_ops_int param_ops_int #define spl_param_ops_INT param_ops_int #define spl_param_set_long param_set_long #define spl_param_get_long param_get_long #define spl_param_ops_long param_ops_long #define spl_param_ops_LONG param_ops_long #define spl_param_set_uint param_set_uint #define spl_param_get_uint param_get_uint #define spl_param_ops_uint param_ops_uint #define spl_param_ops_UINT param_ops_uint #define spl_param_set_ulong param_set_ulong #define spl_param_get_ulong param_get_ulong #define spl_param_ops_ulong param_ops_ulong #define spl_param_ops_ULONG param_ops_ulong #define spl_param_set_charp param_set_charp #define spl_param_get_charp param_get_charp #define spl_param_ops_charp param_ops_charp #define spl_param_ops_STRING param_ops_charp int spl_param_set_s64(const char *val, zfs_kernel_param_t *kp); extern int spl_param_get_s64(char *buffer, zfs_kernel_param_t *kp); extern const struct kernel_param_ops spl_param_ops_s64; #define spl_param_ops_S64 spl_param_ops_s64 extern int spl_param_set_u64(const char *val, zfs_kernel_param_t *kp); extern int spl_param_get_u64(char *buffer, zfs_kernel_param_t *kp); extern const struct kernel_param_ops spl_param_ops_u64; #define spl_param_ops_U64 spl_param_ops_u64 /* * Declare a module parameter / sysctl node * * "scope_prefix" the part of the sysctl / sysfs tree the node resides under * (currently a no-op on Linux) * "name_prefix" the part of the variable name that will be excluded from the * exported names on platforms with a hierarchical namespace * "name" the part of the variable that will be exposed on platforms with a * hierarchical namespace, or as name_prefix ## name on Linux * "type" the variable type * "perm" the permissions (read/write or read only) * "desc" a brief description of the option * * Examples: * ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, UINT, * ZMOD_RW, "Rotating media load increment for non-seeking I/O's"); * on FreeBSD: * vfs.zfs.vdev.mirror.rotating_inc * on Linux: * zfs_vdev_mirror_rotating_inc * * ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW, * "Limit one prefetch call to this size"); * on FreeBSD: * vfs.zfs.dmu_prefetch_max * on Linux: * dmu_prefetch_max */ #define ZFS_MODULE_PARAM(scope_prefix, name_prefix, name, type, perm, desc) \ _Static_assert( \ sizeof (scope_prefix) == sizeof (enum scope_prefix_types), \ "" #scope_prefix " size mismatch with enum scope_prefix_types"); \ module_param_cb(name_prefix ## name, &spl_param_ops_ ## type, \ &name_prefix ## name, perm); \ MODULE_PARM_DESC(name_prefix ## name, desc) /* * Declare a module parameter / sysctl node * * "scope_prefix" the part of the the sysctl / sysfs tree the node resides under * (currently a no-op on Linux) * "name_prefix" the part of the variable name that will be excluded from the * exported names on platforms with a hierarchical namespace * "name" the part of the variable that will be exposed on platforms with a * hierarchical namespace, or as name_prefix ## name on Linux * "setfunc" setter function * "getfunc" getter function * "perm" the permissions (read/write or read only) * "desc" a brief description of the option * * Examples: * ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, * param_get_int, ZMOD_RW, "Reserved free space in pool"); * on FreeBSD: * vfs.zfs.spa_slop_shift * on Linux: * spa_slop_shift */ #define ZFS_MODULE_PARAM_CALL( \ scope_prefix, name_prefix, name, setfunc, getfunc, perm, desc) \ _Static_assert( \ sizeof (scope_prefix) == sizeof (enum scope_prefix_types), \ "" #scope_prefix " size mismatch with enum scope_prefix_types"); \ module_param_call(name_prefix ## name, setfunc, getfunc, \ &name_prefix ## name, perm); \ MODULE_PARM_DESC(name_prefix ## name, desc) /* * As above, but there is no variable with the name name_prefix ## name, * so NULL is passed to module_param_call instead. */ #define ZFS_MODULE_VIRTUAL_PARAM_CALL( \ scope_prefix, name_prefix, name, setfunc, getfunc, perm, desc) \ _Static_assert( \ sizeof (scope_prefix) == sizeof (enum scope_prefix_types), \ "" #scope_prefix " size mismatch with enum scope_prefix_types"); \ module_param_call(name_prefix ## name, setfunc, getfunc, NULL, perm); \ MODULE_PARM_DESC(name_prefix ## name, desc) #define ZFS_MODULE_PARAM_ARGS const char *buf, zfs_kernel_param_t *kp #endif /* _MOD_COMPAT_H */ diff --git a/include/sys/spa.h b/include/sys/spa.h index ed752967cca6..1fa2044008dc 100644 --- a/include/sys/spa.h +++ b/include/sys/spa.h @@ -1,1247 +1,1243 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2021 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Joyent, Inc. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2019, Allan Jude * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019, Datto Inc. */ #ifndef _SYS_SPA_H #define _SYS_SPA_H #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Forward references that lots of things need. */ typedef struct spa spa_t; typedef struct vdev vdev_t; typedef struct metaslab metaslab_t; typedef struct metaslab_group metaslab_group_t; typedef struct metaslab_class metaslab_class_t; typedef struct zio zio_t; typedef struct zilog zilog_t; typedef struct spa_aux_vdev spa_aux_vdev_t; typedef struct ddt ddt_t; typedef struct ddt_entry ddt_entry_t; typedef struct zbookmark_phys zbookmark_phys_t; typedef struct zbookmark_err_phys zbookmark_err_phys_t; struct bpobj; struct bplist; struct dsl_pool; struct dsl_dataset; struct dsl_crypto_params; /* * Alignment Shift (ashift) is an immutable, internal top-level vdev property * which can only be set at vdev creation time. Physical writes are always done * according to it, which makes 2^ashift the smallest possible IO on a vdev. * * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB * (2^16 = 65,536). */ #define ASHIFT_MIN 9 #define ASHIFT_MAX 16 /* * Size of block to hold the configuration data (a packed nvlist) */ #define SPA_CONFIG_BLOCKSIZE (1ULL << 14) /* * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. * The ASIZE encoding should be at least 64 times larger (6 more bits) * to support up to 4-way RAID-Z mirror mode with worst-case gang block * overhead, three DVAs per bp, plus one more bit in case we do anything * else that expands the ASIZE. */ #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ #define SPA_COMPRESSBITS 7 #define SPA_VDEVBITS 24 #define SPA_COMPRESSMASK ((1U << SPA_COMPRESSBITS) - 1) /* * All SPA data is represented by 128-bit data virtual addresses (DVAs). * The members of the dva_t should be considered opaque outside the SPA. */ typedef struct dva { uint64_t dva_word[2]; } dva_t; /* * Some checksums/hashes need a 256-bit initialization salt. This salt is kept * secret and is suitable for use in MAC algorithms as the key. */ typedef struct zio_cksum_salt { uint8_t zcs_bytes[32]; } zio_cksum_salt_t; /* * Each block is described by its DVAs, time of birth, checksum, etc. * The word-by-word, bit-by-bit layout of the blkptr is as follows: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * 0 | pad | vdev1 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 1 |G| offset1 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 2 | pad | vdev2 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 3 |G| offset2 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 4 | pad | vdev3 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 5 |G| offset3 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 7 | padding | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 8 | padding | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 9 | physical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * a | logical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * b | fill count | * +-------+-------+-------+-------+-------+-------+-------+-------+ * c | checksum[0] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * d | checksum[1] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * e | checksum[2] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * f | checksum[3] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * * Legend: * * vdev virtual device ID * offset offset into virtual device * LSIZE logical size * PSIZE physical size (after compression) * ASIZE allocated size (including RAID-Z parity and gang block headers) * GRID RAID-Z layout information (reserved for future use) * cksum checksum function * comp compression function * G gang block indicator * B byteorder (endianness) * D dedup * X encryption * E blkptr_t contains embedded data (see below) * lvl level of indirection * type DMU object type * phys birth txg when dva[0] was written; zero if same as logical birth txg * note that typically all the dva's would be written in this * txg, but they could be different if they were moved by * device removal. * log. birth transaction group in which the block was logically born * fill count number of non-zero blocks under this bp * checksum[4] 256-bit checksum of the data this bp describes */ /* * The blkptr_t's of encrypted blocks also need to store the encryption * parameters so that the block can be decrypted. This layout is as follows: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * 0 | vdev1 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 1 |G| offset1 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 2 | vdev2 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 3 |G| offset2 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 4 | salt | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 5 | IV1 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 7 | padding | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 8 | padding | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 9 | physical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * a | logical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * b | IV2 | fill count | * +-------+-------+-------+-------+-------+-------+-------+-------+ * c | checksum[0] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * d | checksum[1] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * e | MAC[0] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * f | MAC[1] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * * Legend: * * salt Salt for generating encryption keys * IV1 First 64 bits of encryption IV * X Block requires encryption handling (set to 1) * E blkptr_t contains embedded data (set to 0, see below) * fill count number of non-zero blocks under this bp (truncated to 32 bits) * IV2 Last 32 bits of encryption IV * checksum[2] 128-bit checksum of the data this bp describes * MAC[2] 128-bit message authentication code for this data * * The X bit being set indicates that this block is one of 3 types. If this is * a level 0 block with an encrypted object type, the block is encrypted * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted * object type, this block is authenticated with an HMAC (see * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC * words to store a checksum-of-MACs from the level below (see * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED() * refers to both encrypted and authenticated blocks and BP_USES_CRYPT() * refers to any of these 3 kinds of blocks. * * The additional encryption parameters are the salt, IV, and MAC which are * explained in greater detail in the block comment at the top of zio_crypt.c. * The MAC occupies half of the checksum space since it serves a very similar * purpose: to prevent data corruption on disk. The only functional difference * is that the checksum is used to detect on-disk corruption whether or not the * encryption key is loaded and the MAC provides additional protection against * malicious disk tampering. We use the 3rd DVA to store the salt and first * 64 bits of the IV. As a result encrypted blocks can only have 2 copies * maximum instead of the normal 3. The last 32 bits of the IV are stored in * the upper bits of what is usually the fill count. Note that only blocks at * level 0 or -2 are ever encrypted, which allows us to guarantee that these * 32 bits are not trampled over by other code (see zio_crypt.c for details). * The salt and IV are not used for authenticated bps or bps with an indirect * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits * for the fill count. */ /* * "Embedded" blkptr_t's don't actually point to a block, instead they * have a data payload embedded in the blkptr_t itself. See the comment * in blkptr.c for more details. * * The blkptr_t is laid out as follows: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * 0 | payload | * 1 | payload | * 2 | payload | * 3 | payload | * 4 | payload | * 5 | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 7 | payload | * 8 | payload | * 9 | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * a | logical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * b | payload | * c | payload | * d | payload | * e | payload | * f | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * * Legend: * * payload contains the embedded data * B (byteorder) byteorder (endianness) * D (dedup) padding (set to zero) * X encryption (set to zero) * E (embedded) set to one * lvl indirection level * type DMU object type * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*) * comp compression function of payload * PSIZE size of payload after compression, in bytes * LSIZE logical size of payload, in bytes * note that 25 bits is enough to store the largest * "normal" BP's LSIZE (2^16 * 2^9) in bytes * log. birth transaction group in which the block was logically born * * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded * bp's they are stored in units of SPA_MINBLOCKSHIFT. * Generally, the generic BP_GET_*() macros can be used on embedded BP's. * The B, D, X, lvl, type, and comp fields are stored the same as with normal * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before * other macros, as they assert that they are only used on BP's of the correct * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use * the payload space for encryption parameters (see the comment above on * how encryption parameters are stored). */ #define BPE_GET_ETYPE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET((bp)->blk_prop, 40, 8)) #define BPE_SET_ETYPE(bp, t) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET((bp)->blk_prop, 40, 8, t); \ } while (0) #define BPE_GET_LSIZE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1)) #define BPE_SET_LSIZE(bp, x) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \ } while (0) #define BPE_GET_PSIZE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1)) #define BPE_SET_PSIZE(bp, x) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \ } while (0) typedef enum bp_embedded_type { BP_EMBEDDED_TYPE_DATA, BP_EMBEDDED_TYPE_RESERVED, /* Reserved for Delphix byteswap feature. */ BP_EMBEDDED_TYPE_REDACTED, NUM_BP_EMBEDDED_TYPES } bp_embedded_type_t; #define BPE_NUM_WORDS 14 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) #define BPE_IS_PAYLOADWORD(bp, wp) \ ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ #define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */ /* * A block is a hole when it has either 1) never been written to, or * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads * without physically allocating disk space. Holes are represented in the * blkptr_t structure by zeroed blk_dva. Correct checking for holes is * done through the BP_IS_HOLE macro. For holes, the logical size, level, * DMU object type, and birth times are all also stored for holes that * were written to at some point (i.e. were punched after having been filled). */ typedef struct blkptr { dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ uint64_t blk_prop; /* size, compression, type, etc */ uint64_t blk_pad[2]; /* Extra space for the future */ uint64_t blk_phys_birth; /* txg when block was allocated */ uint64_t blk_birth; /* transaction group at birth */ uint64_t blk_fill; /* fill count */ zio_cksum_t blk_cksum; /* 256-bit checksum */ } blkptr_t; /* * Macros to get and set fields in a bp or DVA. */ /* * Note, for gang blocks, DVA_GET_ASIZE() is the total space allocated for * this gang DVA including its children BP's. The space allocated at this * DVA's vdev/offset is vdev_gang_header_asize(vdev). */ #define DVA_GET_ASIZE(dva) \ BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0) #define DVA_SET_ASIZE(dva, x) \ BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \ SPA_MINBLOCKSHIFT, 0, x) #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS) #define DVA_SET_VDEV(dva, x) \ BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x) #define DVA_GET_OFFSET(dva) \ BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) #define DVA_SET_OFFSET(dva, x) \ BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) #define BP_GET_LSIZE(bp) \ (BP_IS_EMBEDDED(bp) ? \ (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \ BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)) #define BP_SET_LSIZE(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, \ 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ } while (0) #define BP_GET_PSIZE(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1)) #define BP_SET_PSIZE(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, \ 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ } while (0) #define BP_GET_COMPRESS(bp) \ BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS) #define BP_SET_COMPRESS(bp, x) \ BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x) #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1) #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x) #define BP_GET_CHECKSUM(bp) \ (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \ BF64_GET((bp)->blk_prop, 40, 8)) #define BP_SET_CHECKSUM(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET((bp)->blk_prop, 40, 8, x); \ } while (0) #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) /* encrypted, authenticated, and MAC cksum bps use the same bit */ #define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1) #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x) #define BP_IS_ENCRYPTED(bp) \ (BP_USES_CRYPT(bp) && \ BP_GET_LEVEL(bp) <= 0 && \ DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp))) #define BP_IS_AUTHENTICATED(bp) \ (BP_USES_CRYPT(bp) && \ BP_GET_LEVEL(bp) <= 0 && \ !DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp))) #define BP_HAS_INDIRECT_MAC_CKSUM(bp) \ (BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0) #define BP_IS_PROTECTED(bp) \ (BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp)) #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1) #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) #define BP_GET_FREE(bp) BF64_GET((bp)->blk_fill, 0, 1) #define BP_SET_FREE(bp, x) BF64_SET((bp)->blk_fill, 0, 1, x) #define BP_PHYSICAL_BIRTH(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) #define BP_SET_BIRTH(bp, logical, physical) \ { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ (bp)->blk_birth = (logical); \ (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \ } #define BP_GET_FILL(bp) \ ((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \ ((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill)) #define BP_SET_FILL(bp, fill) \ { \ if (BP_IS_ENCRYPTED(bp)) \ BF64_SET((bp)->blk_fill, 0, 32, fill); \ else \ (bp)->blk_fill = fill; \ } #define BP_GET_IV2(bp) \ (ASSERT(BP_IS_ENCRYPTED(bp)), \ BF64_GET((bp)->blk_fill, 32, 32)) #define BP_SET_IV2(bp, iv2) \ { \ ASSERT(BP_IS_ENCRYPTED(bp)); \ BF64_SET((bp)->blk_fill, 32, 32, iv2); \ } #define BP_IS_METADATA(bp) \ (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) #define BP_GET_ASIZE(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ (DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))) #define BP_GET_UCSIZE(bp) \ (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)) #define BP_GET_NDVAS(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ (!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))) #define BP_COUNT_GANG(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ (DVA_GET_GANG(&(bp)->blk_dva[0]) + \ DVA_GET_GANG(&(bp)->blk_dva[1]) + \ (DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))) #define DVA_EQUAL(dva1, dva2) \ ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ (dva1)->dva_word[0] == (dva2)->dva_word[0]) #define BP_EQUAL(bp1, bp2) \ (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \ (bp1)->blk_birth == (bp2)->blk_birth && \ DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \ DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \ DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2])) #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0]) #define BP_IS_GANG(bp) \ (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp))) #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \ (dva)->dva_word[1] == 0ULL) #define BP_IS_HOLE(bp) \ (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp))) #define BP_SET_REDACTED(bp) \ { \ BP_SET_EMBEDDED(bp, B_TRUE); \ BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_REDACTED); \ } #define BP_IS_REDACTED(bp) \ (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_REDACTED) /* BP_IS_RAIDZ(bp) assumes no block compression */ #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \ BP_GET_PSIZE(bp)) #define BP_ZERO(bp) \ { \ (bp)->blk_dva[0].dva_word[0] = 0; \ (bp)->blk_dva[0].dva_word[1] = 0; \ (bp)->blk_dva[1].dva_word[0] = 0; \ (bp)->blk_dva[1].dva_word[1] = 0; \ (bp)->blk_dva[2].dva_word[0] = 0; \ (bp)->blk_dva[2].dva_word[1] = 0; \ (bp)->blk_prop = 0; \ (bp)->blk_pad[0] = 0; \ (bp)->blk_pad[1] = 0; \ (bp)->blk_phys_birth = 0; \ (bp)->blk_birth = 0; \ (bp)->blk_fill = 0; \ ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ } #ifdef _ZFS_BIG_ENDIAN #define ZFS_HOST_BYTEORDER (0ULL) #else #define ZFS_HOST_BYTEORDER (1ULL) #endif #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER) #define BP_SPRINTF_LEN 400 /* * This macro allows code sharing between zfs, libzpool, and mdb. * 'func' is either kmem_scnprintf() or mdb_snprintf(). * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line. */ #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \ { \ static const char *const copyname[] = \ { "zero", "single", "double", "triple" }; \ int len = 0; \ int copies = 0; \ const char *crypt_type; \ if (bp != NULL) { \ if (BP_IS_ENCRYPTED(bp)) { \ crypt_type = "encrypted"; \ /* LINTED E_SUSPICIOUS_COMPARISON */ \ } else if (BP_IS_AUTHENTICATED(bp)) { \ crypt_type = "authenticated"; \ } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \ crypt_type = "indirect-MAC"; \ } else { \ crypt_type = "unencrypted"; \ } \ } \ if (bp == NULL) { \ len += func(buf + len, size - len, ""); \ } else if (BP_IS_HOLE(bp)) { \ len += func(buf + len, size - len, \ "HOLE [L%llu %s] " \ "size=%llxL birth=%lluL", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ (u_longlong_t)BP_GET_LSIZE(bp), \ (u_longlong_t)bp->blk_birth); \ } else if (BP_IS_EMBEDDED(bp)) { \ len = func(buf + len, size - len, \ "EMBEDDED [L%llu %s] et=%u %s " \ "size=%llxL/%llxP birth=%lluL", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ (int)BPE_GET_ETYPE(bp), \ compress, \ (u_longlong_t)BPE_GET_LSIZE(bp), \ (u_longlong_t)BPE_GET_PSIZE(bp), \ (u_longlong_t)bp->blk_birth); \ } else if (BP_IS_REDACTED(bp)) { \ len += func(buf + len, size - len, \ "REDACTED [L%llu %s] size=%llxL birth=%lluL", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ (u_longlong_t)BP_GET_LSIZE(bp), \ (u_longlong_t)bp->blk_birth); \ } else { \ for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \ const dva_t *dva = &bp->blk_dva[d]; \ if (DVA_IS_VALID(dva)) \ copies++; \ len += func(buf + len, size - len, \ "DVA[%d]=<%llu:%llx:%llx>%c", d, \ (u_longlong_t)DVA_GET_VDEV(dva), \ (u_longlong_t)DVA_GET_OFFSET(dva), \ (u_longlong_t)DVA_GET_ASIZE(dva), \ ws); \ } \ ASSERT3S(copies, >, 0); \ if (BP_IS_ENCRYPTED(bp)) { \ len += func(buf + len, size - len, \ "salt=%llx iv=%llx:%llx%c", \ (u_longlong_t)bp->blk_dva[2].dva_word[0], \ (u_longlong_t)bp->blk_dva[2].dva_word[1], \ (u_longlong_t)BP_GET_IV2(bp), \ ws); \ } \ if (BP_IS_GANG(bp) && \ DVA_GET_ASIZE(&bp->blk_dva[2]) <= \ DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \ copies--; \ len += func(buf + len, size - len, \ "[L%llu %s] %s %s %s %s %s %s %s%c" \ "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \ "cksum=%016llx:%016llx:%016llx:%016llx", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ checksum, \ compress, \ crypt_type, \ BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \ BP_IS_GANG(bp) ? "gang" : "contiguous", \ BP_GET_DEDUP(bp) ? "dedup" : "unique", \ copyname[copies], \ ws, \ (u_longlong_t)BP_GET_LSIZE(bp), \ (u_longlong_t)BP_GET_PSIZE(bp), \ (u_longlong_t)bp->blk_birth, \ (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \ (u_longlong_t)BP_GET_FILL(bp), \ ws, \ (u_longlong_t)bp->blk_cksum.zc_word[0], \ (u_longlong_t)bp->blk_cksum.zc_word[1], \ (u_longlong_t)bp->blk_cksum.zc_word[2], \ (u_longlong_t)bp->blk_cksum.zc_word[3]); \ } \ ASSERT(len < size); \ } #define BP_GET_BUFC_TYPE(bp) \ (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA) typedef enum spa_import_type { SPA_IMPORT_EXISTING, SPA_IMPORT_ASSEMBLE } spa_import_type_t; typedef enum spa_mode { SPA_MODE_UNINIT = 0, SPA_MODE_READ = 1, SPA_MODE_WRITE = 2, } spa_mode_t; /* * Send TRIM commands in-line during normal pool operation while deleting. * OFF: no * ON: yes * NB: IN_FREEBSD_BASE is defined within the FreeBSD sources. */ typedef enum { SPA_AUTOTRIM_OFF = 0, /* default */ SPA_AUTOTRIM_ON, #ifdef IN_FREEBSD_BASE SPA_AUTOTRIM_DEFAULT = SPA_AUTOTRIM_ON, #else SPA_AUTOTRIM_DEFAULT = SPA_AUTOTRIM_OFF, #endif } spa_autotrim_t; /* * Reason TRIM command was issued, used internally for accounting purposes. */ typedef enum trim_type { TRIM_TYPE_MANUAL = 0, TRIM_TYPE_AUTO = 1, TRIM_TYPE_SIMPLE = 2 } trim_type_t; /* state manipulation functions */ extern int spa_open(const char *pool, spa_t **, const void *tag); extern int spa_open_rewind(const char *pool, spa_t **, const void *tag, nvlist_t *policy, nvlist_t **config); extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot, size_t buflen); extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, nvlist_t *zplprops, struct dsl_crypto_params *dcp); extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags); extern nvlist_t *spa_tryimport(nvlist_t *tryconfig); extern int spa_destroy(const char *pool); extern int spa_checkpoint(const char *pool); extern int spa_checkpoint_discard(const char *pool); extern int spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce); extern int spa_reset(const char *pool); extern void spa_async_request(spa_t *spa, int flag); extern void spa_async_unrequest(spa_t *spa, int flag); extern void spa_async_suspend(spa_t *spa); extern void spa_async_resume(spa_t *spa); extern int spa_async_tasks(spa_t *spa); extern spa_t *spa_inject_addref(char *pool); extern void spa_inject_delref(spa_t *spa); extern void spa_scan_stat_init(spa_t *spa); extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps); extern int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx); extern int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx); #define SPA_ASYNC_CONFIG_UPDATE 0x01 #define SPA_ASYNC_REMOVE 0x02 #define SPA_ASYNC_PROBE 0x04 #define SPA_ASYNC_RESILVER_DONE 0x08 #define SPA_ASYNC_RESILVER 0x10 #define SPA_ASYNC_AUTOEXPAND 0x20 #define SPA_ASYNC_REMOVE_DONE 0x40 #define SPA_ASYNC_REMOVE_STOP 0x80 #define SPA_ASYNC_INITIALIZE_RESTART 0x100 #define SPA_ASYNC_TRIM_RESTART 0x200 #define SPA_ASYNC_AUTOTRIM_RESTART 0x400 #define SPA_ASYNC_L2CACHE_REBUILD 0x800 #define SPA_ASYNC_L2CACHE_TRIM 0x1000 #define SPA_ASYNC_REBUILD_DONE 0x2000 #define SPA_ASYNC_DETACH_SPARE 0x4000 /* device manipulation */ extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot); extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, int rebuild); extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done); extern int spa_vdev_alloc(spa_t *spa, uint64_t guid); extern int spa_vdev_noalloc(spa_t *spa, uint64_t guid); extern boolean_t spa_vdev_remove_active(spa_t *spa); extern int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, nvlist_t *vdev_errlist); extern int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist); extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath); extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru); extern int spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config, nvlist_t *props, boolean_t exp); /* spare state (which is global across all pools) */ extern void spa_spare_add(vdev_t *vd); extern void spa_spare_remove(vdev_t *vd); extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt); extern void spa_spare_activate(vdev_t *vd); /* L2ARC state (which is global across all pools) */ extern void spa_l2cache_add(vdev_t *vd); extern void spa_l2cache_remove(vdev_t *vd); extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool); extern void spa_l2cache_activate(vdev_t *vd); extern void spa_l2cache_drop(spa_t *spa); /* scanning */ extern int spa_scan(spa_t *spa, pool_scan_func_t func); extern int spa_scan_stop(spa_t *spa); extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag); /* spa syncing */ extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */ extern void spa_sync_allpools(void); extern uint_t zfs_sync_pass_deferred_free; /* spa namespace global mutex */ extern kmutex_t spa_namespace_lock; /* * SPA configuration functions in spa_config.c */ #define SPA_CONFIG_UPDATE_POOL 0 #define SPA_CONFIG_UPDATE_VDEVS 1 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t, boolean_t); extern void spa_config_load(void); extern nvlist_t *spa_all_configs(uint64_t *); extern void spa_config_set(spa_t *spa, nvlist_t *config); extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats); extern void spa_config_update(spa_t *spa, int what); extern int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int atype); /* * Miscellaneous SPA routines in spa_misc.c */ /* Namespace manipulation */ extern spa_t *spa_lookup(const char *name); extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot); extern void spa_remove(spa_t *spa); extern spa_t *spa_next(spa_t *prev); /* Refcount functions */ extern void spa_open_ref(spa_t *spa, const void *tag); extern void spa_close(spa_t *spa, const void *tag); extern void spa_async_close(spa_t *spa, const void *tag); extern boolean_t spa_refcount_zero(spa_t *spa); #define SCL_NONE 0x00 #define SCL_CONFIG 0x01 #define SCL_STATE 0x02 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */ #define SCL_ALLOC 0x08 #define SCL_ZIO 0x10 #define SCL_FREE 0x20 #define SCL_VDEV 0x40 #define SCL_LOCKS 7 #define SCL_ALL ((1 << SCL_LOCKS) - 1) #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO) /* Historical pool statistics */ typedef struct spa_history_kstat { kmutex_t lock; uint64_t count; uint64_t size; kstat_t *kstat; void *priv; list_t list; } spa_history_kstat_t; typedef struct spa_history_list { uint64_t size; procfs_list_t procfs_list; } spa_history_list_t; typedef struct spa_stats { spa_history_list_t read_history; spa_history_list_t txg_history; spa_history_kstat_t tx_assign_histogram; spa_history_list_t mmp_history; spa_history_kstat_t state; /* pool state */ spa_history_kstat_t guid; /* pool guid */ spa_history_kstat_t iostats; } spa_stats_t; typedef enum txg_state { TXG_STATE_BIRTH = 0, TXG_STATE_OPEN = 1, TXG_STATE_QUIESCED = 2, TXG_STATE_WAIT_FOR_SYNC = 3, TXG_STATE_SYNCED = 4, TXG_STATE_COMMITTED = 5, } txg_state_t; typedef struct txg_stat { vdev_stat_t vs1; vdev_stat_t vs2; uint64_t txg; uint64_t ndirty; } txg_stat_t; /* Assorted pool IO kstats */ typedef struct spa_iostats { kstat_named_t trim_extents_written; kstat_named_t trim_bytes_written; kstat_named_t trim_extents_skipped; kstat_named_t trim_bytes_skipped; kstat_named_t trim_extents_failed; kstat_named_t trim_bytes_failed; kstat_named_t autotrim_extents_written; kstat_named_t autotrim_bytes_written; kstat_named_t autotrim_extents_skipped; kstat_named_t autotrim_bytes_skipped; kstat_named_t autotrim_extents_failed; kstat_named_t autotrim_bytes_failed; kstat_named_t simple_trim_extents_written; kstat_named_t simple_trim_bytes_written; kstat_named_t simple_trim_extents_skipped; kstat_named_t simple_trim_bytes_skipped; kstat_named_t simple_trim_extents_failed; kstat_named_t simple_trim_bytes_failed; } spa_iostats_t; extern void spa_stats_init(spa_t *spa); extern void spa_stats_destroy(spa_t *spa); extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb, uint32_t aflags); extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time); extern int spa_txg_history_set(spa_t *spa, uint64_t txg, txg_state_t completed_state, hrtime_t completed_time); extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t, struct dsl_pool *); extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *); extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs); extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id); extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error, hrtime_t duration); extern void spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp, uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id, int error); extern void spa_iostats_trim_add(spa_t *spa, trim_type_t type, uint64_t extents_written, uint64_t bytes_written, uint64_t extents_skipped, uint64_t bytes_skipped, uint64_t extents_failed, uint64_t bytes_failed); extern void spa_import_progress_add(spa_t *spa); extern void spa_import_progress_remove(uint64_t spa_guid); extern int spa_import_progress_set_mmp_check(uint64_t pool_guid, uint64_t mmp_sec_remaining); extern int spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t max_txg); extern int spa_import_progress_set_state(uint64_t pool_guid, spa_load_state_t spa_load_state); /* Pool configuration locks */ extern int spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw); extern void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw); extern void spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw); extern void spa_config_exit(spa_t *spa, int locks, const void *tag); extern int spa_config_held(spa_t *spa, int locks, krw_t rw); /* Pool vdev add/remove lock */ extern uint64_t spa_vdev_enter(spa_t *spa); extern uint64_t spa_vdev_detach_enter(spa_t *spa, uint64_t guid); extern uint64_t spa_vdev_config_enter(spa_t *spa); extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, const char *tag); extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error); /* Pool vdev state change lock */ extern void spa_vdev_state_enter(spa_t *spa, int oplock); extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error); /* Log state */ typedef enum spa_log_state { SPA_LOG_UNKNOWN = 0, /* unknown log state */ SPA_LOG_MISSING, /* missing log(s) */ SPA_LOG_CLEAR, /* clear the log(s) */ SPA_LOG_GOOD, /* log(s) are good */ } spa_log_state_t; extern spa_log_state_t spa_get_log_state(spa_t *spa); extern void spa_set_log_state(spa_t *spa, spa_log_state_t state); extern int spa_reset_logs(spa_t *spa); /* Log claim callback */ extern void spa_claim_notify(zio_t *zio); extern void spa_deadman(void *); /* Accessor functions */ extern boolean_t spa_shutting_down(spa_t *spa); extern struct dsl_pool *spa_get_dsl(spa_t *spa); extern boolean_t spa_is_initializing(spa_t *spa); extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa); extern blkptr_t *spa_get_rootblkptr(spa_t *spa); extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp); extern void spa_altroot(spa_t *, char *, size_t); extern uint32_t spa_sync_pass(spa_t *spa); extern char *spa_name(spa_t *spa); extern uint64_t spa_guid(spa_t *spa); extern uint64_t spa_load_guid(spa_t *spa); extern uint64_t spa_last_synced_txg(spa_t *spa); extern uint64_t spa_first_txg(spa_t *spa); extern uint64_t spa_syncing_txg(spa_t *spa); extern uint64_t spa_final_dirty_txg(spa_t *spa); extern uint64_t spa_version(spa_t *spa); extern pool_state_t spa_state(spa_t *spa); extern spa_load_state_t spa_load_state(spa_t *spa); extern uint64_t spa_freeze_txg(spa_t *spa); extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize); extern uint64_t spa_get_dspace(spa_t *spa); extern uint64_t spa_get_checkpoint_space(spa_t *spa); extern uint64_t spa_get_slop_space(spa_t *spa); extern void spa_update_dspace(spa_t *spa); extern uint64_t spa_version(spa_t *spa); extern boolean_t spa_deflate(spa_t *spa); extern metaslab_class_t *spa_normal_class(spa_t *spa); extern metaslab_class_t *spa_log_class(spa_t *spa); extern metaslab_class_t *spa_embedded_log_class(spa_t *spa); extern metaslab_class_t *spa_special_class(spa_t *spa); extern metaslab_class_t *spa_dedup_class(spa_t *spa); extern metaslab_class_t *spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, uint_t level, uint_t special_smallblk); extern void spa_evicting_os_register(spa_t *, objset_t *os); extern void spa_evicting_os_deregister(spa_t *, objset_t *os); extern void spa_evicting_os_wait(spa_t *spa); extern int spa_max_replication(spa_t *spa); extern int spa_prev_software_version(spa_t *spa); extern uint64_t spa_get_failmode(spa_t *spa); extern uint64_t spa_get_deadman_failmode(spa_t *spa); extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode); extern boolean_t spa_suspended(spa_t *spa); extern uint64_t spa_bootfs(spa_t *spa); extern uint64_t spa_delegation(spa_t *spa); extern objset_t *spa_meta_objset(spa_t *spa); extern space_map_t *spa_syncing_log_sm(spa_t *spa); extern uint64_t spa_deadman_synctime(spa_t *spa); extern uint64_t spa_deadman_ziotime(spa_t *spa); extern uint64_t spa_dirty_data(spa_t *spa); extern spa_autotrim_t spa_get_autotrim(spa_t *spa); /* Miscellaneous support routines */ extern void spa_load_failed(spa_t *spa, const char *fmt, ...) __attribute__((format(printf, 2, 3))); extern void spa_load_note(spa_t *spa, const char *fmt, ...) __attribute__((format(printf, 2, 3))); extern void spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx); extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature); extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid); extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid); extern char *spa_strdup(const char *); extern void spa_strfree(char *); extern uint64_t spa_generate_guid(spa_t *spa); extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp); extern void spa_freeze(spa_t *spa); extern int spa_change_guid(spa_t *spa); extern void spa_upgrade(spa_t *spa, uint64_t version); extern void spa_evict_all(void); extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache); extern boolean_t spa_has_l2cache(spa_t *, uint64_t guid); extern boolean_t spa_has_spare(spa_t *, uint64_t guid); extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva); extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp); extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp); extern boolean_t spa_has_slogs(spa_t *spa); extern boolean_t spa_is_root(spa_t *spa); extern boolean_t spa_writeable(spa_t *spa); extern boolean_t spa_has_pending_synctask(spa_t *spa); extern int spa_maxblocksize(spa_t *spa); extern int spa_maxdnodesize(spa_t *spa); extern boolean_t spa_has_checkpoint(spa_t *spa); extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa); extern boolean_t spa_suspend_async_destroy(spa_t *spa); extern uint64_t spa_min_claim_txg(spa_t *spa); extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp); typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size, void *arg); extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg); extern uint64_t spa_get_last_removal_txg(spa_t *spa); extern boolean_t spa_trust_config(spa_t *spa); extern uint64_t spa_missing_tvds_allowed(spa_t *spa); extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing); extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa); extern uint64_t spa_total_metaslabs(spa_t *spa); extern boolean_t spa_multihost(spa_t *spa); extern uint32_t spa_get_hostid(spa_t *spa); extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *); extern boolean_t spa_livelist_delete_check(spa_t *spa); extern spa_mode_t spa_mode(spa_t *spa); extern uint64_t zfs_strtonum(const char *str, char **nptr); extern char *spa_his_ievent_table[]; extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx); extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read, char *his_buf); extern int spa_history_log(spa_t *spa, const char *his_buf); extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl); extern void spa_history_log_version(spa_t *spa, const char *operation, dmu_tx_t *tx); extern void spa_history_log_internal(spa_t *spa, const char *operation, dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5); extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op, dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5); extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation, dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5); extern const char *spa_state_to_name(spa_t *spa); /* error handling */ struct zbookmark_phys; extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb, const uint64_t *birth); extern void spa_remove_error(spa_t *spa, zbookmark_phys_t *zb, const uint64_t *birth); extern int zfs_ereport_post(const char *clazz, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, zio_t *zio, uint64_t state); extern boolean_t zfs_ereport_is_valid(const char *clazz, spa_t *spa, vdev_t *vd, zio_t *zio); extern void zfs_ereport_taskq_fini(void); extern void zfs_ereport_clear(spa_t *spa, vdev_t *vd); extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name, nvlist_t *aux); extern void zfs_post_remove(spa_t *spa, vdev_t *vd); extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate); extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd); extern uint64_t spa_approx_errlog_size(spa_t *spa); extern int spa_get_errlog(spa_t *spa, void *uaddr, uint64_t *count); extern uint64_t spa_get_last_errlog_size(spa_t *spa); extern void spa_errlog_rotate(spa_t *spa); extern void spa_errlog_drain(spa_t *spa); extern void spa_errlog_sync(spa_t *spa, uint64_t txg); extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub); extern void spa_delete_dataset_errlog(spa_t *spa, uint64_t ds, dmu_tx_t *tx); extern void spa_swap_errlog(spa_t *spa, uint64_t new_head_ds, uint64_t old_head_ds, dmu_tx_t *tx); extern void sync_error_list(spa_t *spa, avl_tree_t *t, uint64_t *obj, dmu_tx_t *tx); extern void spa_upgrade_errlog(spa_t *spa, dmu_tx_t *tx); extern int find_top_affected_fs(spa_t *spa, uint64_t head_ds, zbookmark_err_phys_t *zep, uint64_t *top_affected_fs); extern int find_birth_txg(struct dsl_dataset *ds, zbookmark_err_phys_t *zep, uint64_t *birth_txg); extern void zep_to_zb(uint64_t dataset, zbookmark_err_phys_t *zep, zbookmark_phys_t *zb); extern void name_to_errphys(char *buf, zbookmark_err_phys_t *zep); -/* vdev cache */ -extern void vdev_cache_stat_init(void); -extern void vdev_cache_stat_fini(void); - /* vdev mirror */ extern void vdev_mirror_stat_init(void); extern void vdev_mirror_stat_fini(void); /* Initialization and termination */ extern void spa_init(spa_mode_t mode); extern void spa_fini(void); extern void spa_boot_init(void); /* properties */ extern int spa_prop_set(spa_t *spa, nvlist_t *nvp); extern int spa_prop_get(spa_t *spa, nvlist_t **nvp); extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx); extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t); /* asynchronous event notification */ extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl, const char *name); extern void zfs_ereport_zvol_post(const char *subclass, const char *name, const char *device_name, const char *raw_name); /* waiting for pool activities to complete */ extern int spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited); extern int spa_wait_tag(const char *name, zpool_wait_activity_t activity, uint64_t tag, boolean_t *waited); extern void spa_notify_waiters(spa_t *spa); extern void spa_wake_waiters(spa_t *spa); extern void spa_import_os(spa_t *spa); extern void spa_export_os(spa_t *spa); extern void spa_activate_os(spa_t *spa); extern void spa_deactivate_os(spa_t *spa); /* module param call functions */ int param_set_deadman_ziotime(ZFS_MODULE_PARAM_ARGS); int param_set_deadman_synctime(ZFS_MODULE_PARAM_ARGS); int param_set_slop_shift(ZFS_MODULE_PARAM_ARGS); int param_set_deadman_failmode(ZFS_MODULE_PARAM_ARGS); #ifdef ZFS_DEBUG #define dprintf_bp(bp, fmt, ...) do { \ if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \ snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \ dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \ kmem_free(__blkbuf, BP_SPRINTF_LEN); \ } \ } while (0) #else #define dprintf_bp(bp, fmt, ...) #endif extern spa_mode_t spa_mode_global; extern int zfs_deadman_enabled; extern uint64_t zfs_deadman_synctime_ms; extern uint64_t zfs_deadman_ziotime_ms; extern uint64_t zfs_deadman_checktime_ms; extern kmem_cache_t *zio_buf_cache[]; extern kmem_cache_t *zio_data_buf_cache[]; #ifdef __cplusplus } #endif #endif /* _SYS_SPA_H */ diff --git a/include/sys/vdev.h b/include/sys/vdev.h index d529bbcdd9a4..26c834ff57cf 100644 --- a/include/sys/vdev.h +++ b/include/sys/vdev.h @@ -1,231 +1,225 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2019, Datto Inc. All rights reserved. */ #ifndef _SYS_VDEV_H #define _SYS_VDEV_H #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif typedef enum vdev_dtl_type { DTL_MISSING, /* 0% replication: no copies of the data */ DTL_PARTIAL, /* less than 100% replication: some copies missing */ DTL_SCRUB, /* unable to fully repair during scrub/resilver */ DTL_OUTAGE, /* temporarily missing (used to attempt detach) */ DTL_TYPES } vdev_dtl_type_t; extern int zfs_nocacheflush; typedef boolean_t vdev_open_children_func_t(vdev_t *vd); extern void vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) __attribute__((format(printf, 2, 3))); extern void vdev_dbgmsg_print_tree(vdev_t *, int); extern int vdev_open(vdev_t *); extern void vdev_open_children(vdev_t *); extern void vdev_open_children_subset(vdev_t *, vdev_open_children_func_t *); extern int vdev_validate(vdev_t *); extern int vdev_copy_path_strict(vdev_t *, vdev_t *); extern void vdev_copy_path_relaxed(vdev_t *, vdev_t *); extern void vdev_close(vdev_t *); extern int vdev_create(vdev_t *, uint64_t txg, boolean_t isreplace); extern void vdev_reopen(vdev_t *); extern int vdev_validate_aux(vdev_t *vd); extern zio_t *vdev_probe(vdev_t *vd, zio_t *pio); extern boolean_t vdev_is_concrete(vdev_t *vd); extern boolean_t vdev_is_bootable(vdev_t *vd); extern vdev_t *vdev_lookup_top(spa_t *spa, uint64_t vdev); extern vdev_t *vdev_lookup_by_guid(vdev_t *vd, uint64_t guid); extern int vdev_count_leaves(spa_t *spa); extern void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t d, uint64_t txg, uint64_t size); extern boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t d, uint64_t txg, uint64_t size); extern boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t d); extern boolean_t vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, uint64_t phys_birth); extern boolean_t vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, uint64_t phys_birth); extern void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, boolean_t scrub_done, boolean_t rebuild_done); extern boolean_t vdev_dtl_required(vdev_t *vd); extern boolean_t vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp); extern void vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx); extern uint64_t vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx); extern void vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx); extern void vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx); extern void vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size); extern void spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev, uint64_t offset, uint64_t size, dmu_tx_t *tx); extern boolean_t vdev_replace_in_progress(vdev_t *vdev); extern void vdev_hold(vdev_t *); extern void vdev_rele(vdev_t *); extern int vdev_metaslab_init(vdev_t *vd, uint64_t txg); extern void vdev_metaslab_fini(vdev_t *vd); extern void vdev_metaslab_set_size(vdev_t *); extern void vdev_expand(vdev_t *vd, uint64_t txg); extern void vdev_split(vdev_t *vd); extern void vdev_deadman(vdev_t *vd, const char *tag); typedef void vdev_xlate_func_t(void *arg, range_seg64_t *physical_rs); extern boolean_t vdev_xlate_is_empty(range_seg64_t *rs); extern void vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, range_seg64_t *physical_rs, range_seg64_t *remain_rs); extern void vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, vdev_xlate_func_t *func, void *arg); extern void vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx); extern metaslab_group_t *vdev_get_mg(vdev_t *vd, metaslab_class_t *mc); extern void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs); extern void vdev_clear_stats(vdev_t *vd); extern void vdev_stat_update(zio_t *zio, uint64_t psize); extern void vdev_scan_stat_init(vdev_t *vd); extern void vdev_propagate_state(vdev_t *vd); extern void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux); extern boolean_t vdev_children_are_offline(vdev_t *vd); extern void vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, int64_t space_delta); extern int64_t vdev_deflated_space(vdev_t *vd, int64_t space); extern uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize); /* * Return the amount of space allocated for a gang block header. */ static inline uint64_t vdev_gang_header_asize(vdev_t *vd) { return (vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE)); } extern int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux); extern int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux); extern int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *); extern int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags); extern int vdev_remove_wanted(spa_t *spa, uint64_t guid); extern void vdev_clear(spa_t *spa, vdev_t *vd); extern boolean_t vdev_is_dead(vdev_t *vd); extern boolean_t vdev_readable(vdev_t *vd); extern boolean_t vdev_writeable(vdev_t *vd); extern boolean_t vdev_allocatable(vdev_t *vd); extern boolean_t vdev_accessible(vdev_t *vd, zio_t *zio); extern boolean_t vdev_is_spacemap_addressable(vdev_t *vd); -extern void vdev_cache_init(vdev_t *vd); -extern void vdev_cache_fini(vdev_t *vd); -extern boolean_t vdev_cache_read(zio_t *zio); -extern void vdev_cache_write(zio_t *zio); -extern void vdev_cache_purge(vdev_t *vd); - extern void vdev_queue_init(vdev_t *vd); extern void vdev_queue_fini(vdev_t *vd); extern zio_t *vdev_queue_io(zio_t *zio); extern void vdev_queue_io_done(zio_t *zio); extern void vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority); extern int vdev_queue_length(vdev_t *vd); extern uint64_t vdev_queue_last_offset(vdev_t *vd); extern void vdev_config_dirty(vdev_t *vd); extern void vdev_config_clean(vdev_t *vd); extern int vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg); extern void vdev_state_dirty(vdev_t *vd); extern void vdev_state_clean(vdev_t *vd); extern void vdev_defer_resilver(vdev_t *vd); extern boolean_t vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx); typedef enum vdev_config_flag { VDEV_CONFIG_SPARE = 1 << 0, VDEV_CONFIG_L2CACHE = 1 << 1, VDEV_CONFIG_MOS = 1 << 2, VDEV_CONFIG_MISSING = 1 << 3 } vdev_config_flag_t; extern void vdev_post_kobj_evt(vdev_t *vd); extern void vdev_clear_kobj_evt(vdev_t *vd); extern void vdev_top_config_generate(spa_t *spa, nvlist_t *config); extern nvlist_t *vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, vdev_config_flag_t flags); /* * Label routines */ struct uberblock; extern uint64_t vdev_label_offset(uint64_t psize, int l, uint64_t offset); extern int vdev_label_number(uint64_t psise, uint64_t offset); extern nvlist_t *vdev_label_read_config(vdev_t *vd, uint64_t txg); extern void vdev_uberblock_load(vdev_t *, struct uberblock *, nvlist_t **); extern void vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv); extern void vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, uint64_t size, zio_done_func_t *done, void *priv, int flags); extern int vdev_label_read_bootenv(vdev_t *, nvlist_t *); extern int vdev_label_write_bootenv(vdev_t *, nvlist_t *); typedef enum { VDEV_LABEL_CREATE, /* create/add a new device */ VDEV_LABEL_REPLACE, /* replace an existing device */ VDEV_LABEL_SPARE, /* add a new hot spare */ VDEV_LABEL_REMOVE, /* remove an existing device */ VDEV_LABEL_L2CACHE, /* add an L2ARC cache device */ VDEV_LABEL_SPLIT /* generating new label for split-off dev */ } vdev_labeltype_t; extern int vdev_label_init(vdev_t *vd, uint64_t txg, vdev_labeltype_t reason); extern int vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl); extern int vdev_prop_get(vdev_t *vd, nvlist_t *nvprops, nvlist_t *outnvl); #ifdef __cplusplus } #endif #endif /* _SYS_VDEV_H */ diff --git a/include/sys/vdev_impl.h b/include/sys/vdev_impl.h index ea3043c82a39..74b3737d8ee5 100644 --- a/include/sys/vdev_impl.h +++ b/include/sys/vdev_impl.h @@ -1,672 +1,652 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright (c) 2017, Intel Corporation. */ #ifndef _SYS_VDEV_IMPL_H #define _SYS_VDEV_IMPL_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Virtual device descriptors. * * All storage pool operations go through the virtual device framework, * which provides data replication and I/O scheduling. */ /* * Forward declarations that lots of things need. */ typedef struct vdev_queue vdev_queue_t; -typedef struct vdev_cache vdev_cache_t; -typedef struct vdev_cache_entry vdev_cache_entry_t; struct abd; extern uint_t zfs_vdev_queue_depth_pct; extern uint_t zfs_vdev_def_queue_depth; extern uint_t zfs_vdev_async_write_max_active; /* * Virtual device operations */ typedef int vdev_init_func_t(spa_t *spa, nvlist_t *nv, void **tsd); typedef void vdev_kobj_post_evt_func_t(vdev_t *vd); typedef void vdev_fini_func_t(vdev_t *vd); typedef int vdev_open_func_t(vdev_t *vd, uint64_t *size, uint64_t *max_size, uint64_t *ashift, uint64_t *pshift); typedef void vdev_close_func_t(vdev_t *vd); typedef uint64_t vdev_asize_func_t(vdev_t *vd, uint64_t psize); typedef uint64_t vdev_min_asize_func_t(vdev_t *vd); typedef uint64_t vdev_min_alloc_func_t(vdev_t *vd); typedef void vdev_io_start_func_t(zio_t *zio); typedef void vdev_io_done_func_t(zio_t *zio); typedef void vdev_state_change_func_t(vdev_t *vd, int, int); typedef boolean_t vdev_need_resilver_func_t(vdev_t *vd, const dva_t *dva, size_t psize, uint64_t phys_birth); typedef void vdev_hold_func_t(vdev_t *vd); typedef void vdev_rele_func_t(vdev_t *vd); typedef void vdev_remap_cb_t(uint64_t inner_offset, vdev_t *vd, uint64_t offset, uint64_t size, void *arg); typedef void vdev_remap_func_t(vdev_t *vd, uint64_t offset, uint64_t size, vdev_remap_cb_t callback, void *arg); /* * Given a target vdev, translates the logical range "in" to the physical * range "res" */ typedef void vdev_xlation_func_t(vdev_t *cvd, const range_seg64_t *logical, range_seg64_t *physical, range_seg64_t *remain); typedef uint64_t vdev_rebuild_asize_func_t(vdev_t *vd, uint64_t start, uint64_t size, uint64_t max_segment); typedef void vdev_metaslab_init_func_t(vdev_t *vd, uint64_t *startp, uint64_t *sizep); typedef void vdev_config_generate_func_t(vdev_t *vd, nvlist_t *nv); typedef uint64_t vdev_nparity_func_t(vdev_t *vd); typedef uint64_t vdev_ndisks_func_t(vdev_t *vd); typedef const struct vdev_ops { vdev_init_func_t *vdev_op_init; vdev_fini_func_t *vdev_op_fini; vdev_open_func_t *vdev_op_open; vdev_close_func_t *vdev_op_close; vdev_asize_func_t *vdev_op_asize; vdev_min_asize_func_t *vdev_op_min_asize; vdev_min_alloc_func_t *vdev_op_min_alloc; vdev_io_start_func_t *vdev_op_io_start; vdev_io_done_func_t *vdev_op_io_done; vdev_state_change_func_t *vdev_op_state_change; vdev_need_resilver_func_t *vdev_op_need_resilver; vdev_hold_func_t *vdev_op_hold; vdev_rele_func_t *vdev_op_rele; vdev_remap_func_t *vdev_op_remap; vdev_xlation_func_t *vdev_op_xlate; vdev_rebuild_asize_func_t *vdev_op_rebuild_asize; vdev_metaslab_init_func_t *vdev_op_metaslab_init; vdev_config_generate_func_t *vdev_op_config_generate; vdev_nparity_func_t *vdev_op_nparity; vdev_ndisks_func_t *vdev_op_ndisks; vdev_kobj_post_evt_func_t *vdev_op_kobj_evt_post; char vdev_op_type[16]; boolean_t vdev_op_leaf; } vdev_ops_t; /* * Virtual device properties */ -struct vdev_cache_entry { - struct abd *ve_abd; - uint64_t ve_offset; - clock_t ve_lastused; - avl_node_t ve_offset_node; - avl_node_t ve_lastused_node; - uint32_t ve_hits; - uint16_t ve_missed_update; - zio_t *ve_fill_io; -}; - -struct vdev_cache { - avl_tree_t vc_offset_tree; - avl_tree_t vc_lastused_tree; - kmutex_t vc_lock; -}; - typedef struct vdev_queue_class { uint32_t vqc_active; /* * Sorted by offset or timestamp, depending on if the queue is * LBA-ordered vs FIFO. */ avl_tree_t vqc_queued_tree; } vdev_queue_class_t; struct vdev_queue { vdev_t *vq_vdev; vdev_queue_class_t vq_class[ZIO_PRIORITY_NUM_QUEUEABLE]; avl_tree_t vq_active_tree; avl_tree_t vq_read_offset_tree; avl_tree_t vq_write_offset_tree; avl_tree_t vq_trim_offset_tree; uint64_t vq_last_offset; zio_priority_t vq_last_prio; /* Last sent I/O priority. */ uint32_t vq_ia_active; /* Active interactive I/Os. */ uint32_t vq_nia_credit; /* Non-interactive I/Os credit. */ hrtime_t vq_io_complete_ts; /* time last i/o completed */ hrtime_t vq_io_delta_ts; zio_t vq_io_search; /* used as local for stack reduction */ kmutex_t vq_lock; }; typedef enum vdev_alloc_bias { VDEV_BIAS_NONE, VDEV_BIAS_LOG, /* dedicated to ZIL data (SLOG) */ VDEV_BIAS_SPECIAL, /* dedicated to ddt, metadata, and small blks */ VDEV_BIAS_DEDUP /* dedicated to dedup metadata */ } vdev_alloc_bias_t; /* * On-disk indirect vdev state. * * An indirect vdev is described exclusively in the MOS config of a pool. * The config for an indirect vdev includes several fields, which are * accessed in memory by a vdev_indirect_config_t. */ typedef struct vdev_indirect_config { /* * Object (in MOS) which contains the indirect mapping. This object * contains an array of vdev_indirect_mapping_entry_phys_t ordered by * vimep_src. The bonus buffer for this object is a * vdev_indirect_mapping_phys_t. This object is allocated when a vdev * removal is initiated. * * Note that this object can be empty if none of the data on the vdev * has been copied yet. */ uint64_t vic_mapping_object; /* * Object (in MOS) which contains the birth times for the mapping * entries. This object contains an array of * vdev_indirect_birth_entry_phys_t sorted by vibe_offset. The bonus * buffer for this object is a vdev_indirect_birth_phys_t. This object * is allocated when a vdev removal is initiated. * * Note that this object can be empty if none of the vdev has yet been * copied. */ uint64_t vic_births_object; /* * This is the vdev ID which was removed previous to this vdev, or * UINT64_MAX if there are no previously removed vdevs. */ uint64_t vic_prev_indirect_vdev; } vdev_indirect_config_t; /* * Virtual device descriptor */ struct vdev { /* * Common to all vdev types. */ uint64_t vdev_id; /* child number in vdev parent */ uint64_t vdev_guid; /* unique ID for this vdev */ uint64_t vdev_guid_sum; /* self guid + all child guids */ uint64_t vdev_orig_guid; /* orig. guid prior to remove */ uint64_t vdev_asize; /* allocatable device capacity */ uint64_t vdev_min_asize; /* min acceptable asize */ uint64_t vdev_max_asize; /* max acceptable asize */ uint64_t vdev_ashift; /* block alignment shift */ /* * Logical block alignment shift * * The smallest sized/aligned I/O supported by the device. */ uint64_t vdev_logical_ashift; /* * Physical block alignment shift * * The device supports logical I/Os with vdev_logical_ashift * size/alignment, but optimum performance will be achieved by * aligning/sizing requests to vdev_physical_ashift. Smaller * requests may be inflated or incur device level read-modify-write * operations. * * May be 0 to indicate no preference (i.e. use vdev_logical_ashift). */ uint64_t vdev_physical_ashift; uint64_t vdev_state; /* see VDEV_STATE_* #defines */ uint64_t vdev_prevstate; /* used when reopening a vdev */ vdev_ops_t *vdev_ops; /* vdev operations */ spa_t *vdev_spa; /* spa for this vdev */ void *vdev_tsd; /* type-specific data */ vdev_t *vdev_top; /* top-level vdev */ vdev_t *vdev_parent; /* parent vdev */ vdev_t **vdev_child; /* array of children */ uint64_t vdev_children; /* number of children */ vdev_stat_t vdev_stat; /* virtual device statistics */ vdev_stat_ex_t vdev_stat_ex; /* extended statistics */ boolean_t vdev_expanding; /* expand the vdev? */ boolean_t vdev_reopening; /* reopen in progress? */ boolean_t vdev_nonrot; /* true if solid state */ int vdev_load_error; /* error on last load */ int vdev_open_error; /* error on last open */ int vdev_validate_error; /* error on last validate */ kthread_t *vdev_open_thread; /* thread opening children */ kthread_t *vdev_validate_thread; /* thread validating children */ uint64_t vdev_crtxg; /* txg when top-level was added */ uint64_t vdev_root_zap; /* * Top-level vdev state. */ uint64_t vdev_ms_array; /* metaslab array object */ uint64_t vdev_ms_shift; /* metaslab size shift */ uint64_t vdev_ms_count; /* number of metaslabs */ metaslab_group_t *vdev_mg; /* metaslab group */ metaslab_group_t *vdev_log_mg; /* embedded slog metaslab group */ metaslab_t **vdev_ms; /* metaslab array */ uint64_t vdev_pending_fastwrite; /* allocated fastwrites */ txg_list_t vdev_ms_list; /* per-txg dirty metaslab lists */ txg_list_t vdev_dtl_list; /* per-txg dirty DTL lists */ txg_node_t vdev_txg_node; /* per-txg dirty vdev linkage */ boolean_t vdev_remove_wanted; /* async remove wanted? */ boolean_t vdev_probe_wanted; /* async probe wanted? */ list_node_t vdev_config_dirty_node; /* config dirty list */ list_node_t vdev_state_dirty_node; /* state dirty list */ uint64_t vdev_deflate_ratio; /* deflation ratio (x512) */ uint64_t vdev_islog; /* is an intent log device */ uint64_t vdev_noalloc; /* device is passivated? */ uint64_t vdev_removing; /* device is being removed? */ uint64_t vdev_failfast; /* device failfast setting */ boolean_t vdev_ishole; /* is a hole in the namespace */ uint64_t vdev_top_zap; vdev_alloc_bias_t vdev_alloc_bias; /* metaslab allocation bias */ /* pool checkpoint related */ space_map_t *vdev_checkpoint_sm; /* contains reserved blocks */ /* Initialize related */ boolean_t vdev_initialize_exit_wanted; vdev_initializing_state_t vdev_initialize_state; list_node_t vdev_initialize_node; kthread_t *vdev_initialize_thread; /* Protects vdev_initialize_thread and vdev_initialize_state. */ kmutex_t vdev_initialize_lock; kcondvar_t vdev_initialize_cv; uint64_t vdev_initialize_offset[TXG_SIZE]; uint64_t vdev_initialize_last_offset; range_tree_t *vdev_initialize_tree; /* valid while initializing */ uint64_t vdev_initialize_bytes_est; uint64_t vdev_initialize_bytes_done; uint64_t vdev_initialize_action_time; /* start and end time */ /* TRIM related */ boolean_t vdev_trim_exit_wanted; boolean_t vdev_autotrim_exit_wanted; vdev_trim_state_t vdev_trim_state; list_node_t vdev_trim_node; kmutex_t vdev_autotrim_lock; kcondvar_t vdev_autotrim_cv; kcondvar_t vdev_autotrim_kick_cv; kthread_t *vdev_autotrim_thread; /* Protects vdev_trim_thread and vdev_trim_state. */ kmutex_t vdev_trim_lock; kcondvar_t vdev_trim_cv; kthread_t *vdev_trim_thread; uint64_t vdev_trim_offset[TXG_SIZE]; uint64_t vdev_trim_last_offset; uint64_t vdev_trim_bytes_est; uint64_t vdev_trim_bytes_done; uint64_t vdev_trim_rate; /* requested rate (bytes/sec) */ uint64_t vdev_trim_partial; /* requested partial TRIM */ uint64_t vdev_trim_secure; /* requested secure TRIM */ uint64_t vdev_trim_action_time; /* start and end time */ /* Rebuild related */ boolean_t vdev_rebuilding; boolean_t vdev_rebuild_exit_wanted; boolean_t vdev_rebuild_cancel_wanted; boolean_t vdev_rebuild_reset_wanted; kmutex_t vdev_rebuild_lock; kcondvar_t vdev_rebuild_cv; kthread_t *vdev_rebuild_thread; vdev_rebuild_t vdev_rebuild_config; /* For limiting outstanding I/Os (initialize, TRIM) */ kmutex_t vdev_initialize_io_lock; kcondvar_t vdev_initialize_io_cv; uint64_t vdev_initialize_inflight; kmutex_t vdev_trim_io_lock; kcondvar_t vdev_trim_io_cv; uint64_t vdev_trim_inflight[3]; /* * Values stored in the config for an indirect or removing vdev. */ vdev_indirect_config_t vdev_indirect_config; /* * The vdev_indirect_rwlock protects the vdev_indirect_mapping * pointer from changing on indirect vdevs (when it is condensed). * Note that removing (not yet indirect) vdevs have different * access patterns (the mapping is not accessed from open context, * e.g. from zio_read) and locking strategy (e.g. svr_lock). */ krwlock_t vdev_indirect_rwlock; vdev_indirect_mapping_t *vdev_indirect_mapping; vdev_indirect_births_t *vdev_indirect_births; /* * In memory data structures used to manage the obsolete sm, for * indirect or removing vdevs. * * The vdev_obsolete_segments is the in-core record of the segments * that are no longer referenced anywhere in the pool (due to * being freed or remapped and not referenced by any snapshots). * During a sync, segments are added to vdev_obsolete_segments * via vdev_indirect_mark_obsolete(); at the end of each sync * pass, this is appended to vdev_obsolete_sm via * vdev_indirect_sync_obsolete(). The vdev_obsolete_lock * protects against concurrent modifications of vdev_obsolete_segments * from multiple zio threads. */ kmutex_t vdev_obsolete_lock; range_tree_t *vdev_obsolete_segments; space_map_t *vdev_obsolete_sm; /* * Protects the vdev_scan_io_queue field itself as well as the * structure's contents (when present). */ kmutex_t vdev_scan_io_queue_lock; struct dsl_scan_io_queue *vdev_scan_io_queue; /* * Leaf vdev state. */ range_tree_t *vdev_dtl[DTL_TYPES]; /* dirty time logs */ space_map_t *vdev_dtl_sm; /* dirty time log space map */ txg_node_t vdev_dtl_node; /* per-txg dirty DTL linkage */ uint64_t vdev_dtl_object; /* DTL object */ uint64_t vdev_psize; /* physical device capacity */ uint64_t vdev_wholedisk; /* true if this is a whole disk */ uint64_t vdev_offline; /* persistent offline state */ uint64_t vdev_faulted; /* persistent faulted state */ uint64_t vdev_degraded; /* persistent degraded state */ uint64_t vdev_removed; /* persistent removed state */ uint64_t vdev_resilver_txg; /* persistent resilvering state */ uint64_t vdev_rebuild_txg; /* persistent rebuilding state */ char *vdev_path; /* vdev path (if any) */ char *vdev_devid; /* vdev devid (if any) */ char *vdev_physpath; /* vdev device path (if any) */ char *vdev_enc_sysfs_path; /* enclosure sysfs path */ char *vdev_fru; /* physical FRU location */ uint64_t vdev_not_present; /* not present during import */ uint64_t vdev_unspare; /* unspare when resilvering done */ boolean_t vdev_nowritecache; /* true if flushwritecache failed */ boolean_t vdev_has_trim; /* TRIM is supported */ boolean_t vdev_has_securetrim; /* secure TRIM is supported */ boolean_t vdev_checkremove; /* temporary online test */ boolean_t vdev_forcefault; /* force online fault */ boolean_t vdev_splitting; /* split or repair in progress */ boolean_t vdev_delayed_close; /* delayed device close? */ boolean_t vdev_tmpoffline; /* device taken offline temporarily? */ boolean_t vdev_detached; /* device detached? */ boolean_t vdev_cant_read; /* vdev is failing all reads */ boolean_t vdev_cant_write; /* vdev is failing all writes */ boolean_t vdev_isspare; /* was a hot spare */ boolean_t vdev_isl2cache; /* was a l2cache device */ boolean_t vdev_copy_uberblocks; /* post expand copy uberblocks */ boolean_t vdev_resilver_deferred; /* resilver deferred */ boolean_t vdev_kobj_flag; /* kobj event record */ vdev_queue_t vdev_queue; /* I/O deadline schedule queue */ - vdev_cache_t vdev_cache; /* physical block cache */ spa_aux_vdev_t *vdev_aux; /* for l2cache and spares vdevs */ zio_t *vdev_probe_zio; /* root of current probe */ vdev_aux_t vdev_label_aux; /* on-disk aux state */ uint64_t vdev_leaf_zap; hrtime_t vdev_mmp_pending; /* 0 if write finished */ uint64_t vdev_mmp_kstat_id; /* to find kstat entry */ uint64_t vdev_expansion_time; /* vdev's last expansion time */ list_node_t vdev_leaf_node; /* leaf vdev list */ /* * For DTrace to work in userland (libzpool) context, these fields must * remain at the end of the structure. DTrace will use the kernel's * CTF definition for 'struct vdev', and since the size of a kmutex_t is * larger in userland, the offsets for the rest of the fields would be * incorrect. */ kmutex_t vdev_dtl_lock; /* vdev_dtl_{map,resilver} */ kmutex_t vdev_stat_lock; /* vdev_stat */ kmutex_t vdev_probe_lock; /* protects vdev_probe_zio */ /* * We rate limit ZIO delay, deadman, and checksum events, since they * can flood ZED with tons of events when a drive is acting up. */ zfs_ratelimit_t vdev_delay_rl; zfs_ratelimit_t vdev_deadman_rl; zfs_ratelimit_t vdev_checksum_rl; /* * Checksum and IO thresholds for tuning ZED */ uint64_t vdev_checksum_n; uint64_t vdev_checksum_t; uint64_t vdev_io_n; uint64_t vdev_io_t; }; #define VDEV_PAD_SIZE (8 << 10) /* 2 padding areas (vl_pad1 and vl_be) to skip */ #define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2 #define VDEV_PHYS_SIZE (112 << 10) #define VDEV_UBERBLOCK_RING (128 << 10) /* * MMP blocks occupy the last MMP_BLOCKS_PER_LABEL slots in the uberblock * ring when MMP is enabled. */ #define MMP_BLOCKS_PER_LABEL 1 /* The largest uberblock we support is 8k. */ #define MAX_UBERBLOCK_SHIFT (13) #define VDEV_UBERBLOCK_SHIFT(vd) \ MIN(MAX((vd)->vdev_top->vdev_ashift, UBERBLOCK_SHIFT), \ MAX_UBERBLOCK_SHIFT) #define VDEV_UBERBLOCK_COUNT(vd) \ (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd)) #define VDEV_UBERBLOCK_OFFSET(vd, n) \ offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)]) #define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd)) typedef struct vdev_phys { char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)]; zio_eck_t vp_zbt; } vdev_phys_t; typedef enum vbe_vers { /* * The bootenv file is stored as ascii text in the envblock. * It is used by the GRUB bootloader used on Linux to store the * contents of the grubenv file. The file is stored as raw ASCII, * and is protected by an embedded checksum. By default, GRUB will * check if the boot filesystem supports storing the environment data * in a special location, and if so, will invoke filesystem specific * logic to retrieve it. This can be overridden by a variable, should * the user so desire. */ VB_RAW = 0, /* * The bootenv file is converted to an nvlist and then packed into the * envblock. */ VB_NVLIST = 1 } vbe_vers_t; typedef struct vdev_boot_envblock { uint64_t vbe_version; char vbe_bootenv[VDEV_PAD_SIZE - sizeof (uint64_t) - sizeof (zio_eck_t)]; zio_eck_t vbe_zbt; } vdev_boot_envblock_t; _Static_assert(sizeof (vdev_boot_envblock_t) == VDEV_PAD_SIZE, "vdev_boot_envblock_t wrong size"); typedef struct vdev_label { char vl_pad1[VDEV_PAD_SIZE]; /* 8K */ vdev_boot_envblock_t vl_be; /* 8K */ vdev_phys_t vl_vdev_phys; /* 112K */ char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */ } vdev_label_t; /* 256K total */ /* * vdev_dirty() flags */ #define VDD_METASLAB 0x01 #define VDD_DTL 0x02 /* Offset of embedded boot loader region on each label */ #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t)) /* * Size of embedded boot loader region on each label. * The total size of the first two labels plus the boot area is 4MB. */ #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */ /* * Size of label regions at the start and end of each leaf device. */ #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE) #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t)) #define VDEV_LABELS 4 #define VDEV_BEST_LABEL VDEV_LABELS #define VDEV_OFFSET_IS_LABEL(vd, off) \ (((off) < VDEV_LABEL_START_SIZE) || \ ((off) >= ((vd)->vdev_psize - VDEV_LABEL_END_SIZE))) #define VDEV_ALLOC_LOAD 0 #define VDEV_ALLOC_ADD 1 #define VDEV_ALLOC_SPARE 2 #define VDEV_ALLOC_L2CACHE 3 #define VDEV_ALLOC_ROOTPOOL 4 #define VDEV_ALLOC_SPLIT 5 #define VDEV_ALLOC_ATTACH 6 /* * Allocate or free a vdev */ extern vdev_t *vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops); extern int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *config, vdev_t *parent, uint_t id, int alloctype); extern void vdev_free(vdev_t *vd); /* * Add or remove children and parents */ extern void vdev_add_child(vdev_t *pvd, vdev_t *cvd); extern void vdev_remove_child(vdev_t *pvd, vdev_t *cvd); extern void vdev_compact_children(vdev_t *pvd); extern vdev_t *vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops); extern void vdev_remove_parent(vdev_t *cvd); /* * vdev sync load and sync */ extern boolean_t vdev_log_state_valid(vdev_t *vd); extern int vdev_load(vdev_t *vd); extern int vdev_dtl_load(vdev_t *vd); extern void vdev_sync(vdev_t *vd, uint64_t txg); extern void vdev_sync_done(vdev_t *vd, uint64_t txg); extern void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg); extern void vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg); /* * Available vdev types. */ extern vdev_ops_t vdev_root_ops; extern vdev_ops_t vdev_mirror_ops; extern vdev_ops_t vdev_replacing_ops; extern vdev_ops_t vdev_raidz_ops; extern vdev_ops_t vdev_draid_ops; extern vdev_ops_t vdev_draid_spare_ops; extern vdev_ops_t vdev_disk_ops; extern vdev_ops_t vdev_file_ops; extern vdev_ops_t vdev_missing_ops; extern vdev_ops_t vdev_hole_ops; extern vdev_ops_t vdev_spare_ops; extern vdev_ops_t vdev_indirect_ops; /* * Common size functions */ extern void vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, range_seg64_t *physical_rs, range_seg64_t *remain_rs); extern uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize); extern uint64_t vdev_default_min_asize(vdev_t *vd); extern uint64_t vdev_get_min_asize(vdev_t *vd); extern void vdev_set_min_asize(vdev_t *vd); extern uint64_t vdev_get_min_alloc(vdev_t *vd); extern uint64_t vdev_get_nparity(vdev_t *vd); extern uint64_t vdev_get_ndisks(vdev_t *vd); /* * Global variables */ extern int zfs_vdev_standard_sm_blksz; /* * Functions from vdev_indirect.c */ extern void vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx); extern boolean_t vdev_indirect_should_condense(vdev_t *vd); extern void spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx); extern int vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj); extern int vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise); /* * Other miscellaneous functions */ int vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj); void vdev_metaslab_group_create(vdev_t *vd); uint64_t vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b); /* * Vdev ashift optimization tunables */ extern uint_t zfs_vdev_min_auto_ashift; extern uint_t zfs_vdev_max_auto_ashift; int param_set_min_auto_ashift(ZFS_MODULE_PARAM_ARGS); int param_set_max_auto_ashift(ZFS_MODULE_PARAM_ARGS); #ifdef __cplusplus } #endif #endif /* _SYS_VDEV_IMPL_H */ diff --git a/include/sys/zio.h b/include/sys/zio.h index 695bc09e6cb7..6b1352a72b9a 100644 --- a/include/sys/zio.h +++ b/include/sys/zio.h @@ -1,721 +1,720 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2020 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright 2016 Toomas Soome * Copyright (c) 2019, Allan Jude * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019-2020, Michael Niewöhner */ #ifndef _ZIO_H #define _ZIO_H #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Embedded checksum */ #define ZEC_MAGIC 0x210da7ab10c7a11ULL typedef struct zio_eck { uint64_t zec_magic; /* for validation, endianness */ zio_cksum_t zec_cksum; /* 256-bit checksum */ } zio_eck_t; /* * Gang block headers are self-checksumming and contain an array * of block pointers. */ #define SPA_GANGBLOCKSIZE SPA_MINBLOCKSIZE #define SPA_GBH_NBLKPTRS ((SPA_GANGBLOCKSIZE - \ sizeof (zio_eck_t)) / sizeof (blkptr_t)) #define SPA_GBH_FILLER ((SPA_GANGBLOCKSIZE - \ sizeof (zio_eck_t) - \ (SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\ sizeof (uint64_t)) typedef struct zio_gbh { blkptr_t zg_blkptr[SPA_GBH_NBLKPTRS]; uint64_t zg_filler[SPA_GBH_FILLER]; zio_eck_t zg_tail; } zio_gbh_phys_t; enum zio_checksum { ZIO_CHECKSUM_INHERIT = 0, ZIO_CHECKSUM_ON, ZIO_CHECKSUM_OFF, ZIO_CHECKSUM_LABEL, ZIO_CHECKSUM_GANG_HEADER, ZIO_CHECKSUM_ZILOG, ZIO_CHECKSUM_FLETCHER_2, ZIO_CHECKSUM_FLETCHER_4, ZIO_CHECKSUM_SHA256, ZIO_CHECKSUM_ZILOG2, ZIO_CHECKSUM_NOPARITY, ZIO_CHECKSUM_SHA512, ZIO_CHECKSUM_SKEIN, ZIO_CHECKSUM_EDONR, ZIO_CHECKSUM_BLAKE3, ZIO_CHECKSUM_FUNCTIONS }; /* * The number of "legacy" compression functions which can be set on individual * objects. */ #define ZIO_CHECKSUM_LEGACY_FUNCTIONS ZIO_CHECKSUM_ZILOG2 #define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_4 #define ZIO_CHECKSUM_DEFAULT ZIO_CHECKSUM_ON #define ZIO_CHECKSUM_MASK 0xffULL #define ZIO_CHECKSUM_VERIFY (1U << 8) #define ZIO_DEDUPCHECKSUM ZIO_CHECKSUM_SHA256 /* macros defining encryption lengths */ #define ZIO_OBJSET_MAC_LEN 32 #define ZIO_DATA_IV_LEN 12 #define ZIO_DATA_SALT_LEN 8 #define ZIO_DATA_MAC_LEN 16 /* * The number of "legacy" compression functions which can be set on individual * objects. */ #define ZIO_COMPRESS_LEGACY_FUNCTIONS ZIO_COMPRESS_LZ4 /* * The meaning of "compress = on" selected by the compression features enabled * on a given pool. */ #define ZIO_COMPRESS_LEGACY_ON_VALUE ZIO_COMPRESS_LZJB #define ZIO_COMPRESS_LZ4_ON_VALUE ZIO_COMPRESS_LZ4 #define ZIO_COMPRESS_DEFAULT ZIO_COMPRESS_ON #define BOOTFS_COMPRESS_VALID(compress) \ ((compress) == ZIO_COMPRESS_LZJB || \ (compress) == ZIO_COMPRESS_LZ4 || \ (compress) == ZIO_COMPRESS_GZIP_1 || \ (compress) == ZIO_COMPRESS_GZIP_2 || \ (compress) == ZIO_COMPRESS_GZIP_3 || \ (compress) == ZIO_COMPRESS_GZIP_4 || \ (compress) == ZIO_COMPRESS_GZIP_5 || \ (compress) == ZIO_COMPRESS_GZIP_6 || \ (compress) == ZIO_COMPRESS_GZIP_7 || \ (compress) == ZIO_COMPRESS_GZIP_8 || \ (compress) == ZIO_COMPRESS_GZIP_9 || \ (compress) == ZIO_COMPRESS_ZLE || \ (compress) == ZIO_COMPRESS_ZSTD || \ (compress) == ZIO_COMPRESS_ON || \ (compress) == ZIO_COMPRESS_OFF) #define ZIO_COMPRESS_ALGO(x) (x & SPA_COMPRESSMASK) #define ZIO_COMPRESS_LEVEL(x) ((x & ~SPA_COMPRESSMASK) >> SPA_COMPRESSBITS) #define ZIO_COMPRESS_RAW(type, level) (type | ((level) << SPA_COMPRESSBITS)) #define ZIO_COMPLEVEL_ZSTD(level) \ ZIO_COMPRESS_RAW(ZIO_COMPRESS_ZSTD, level) #define ZIO_FAILURE_MODE_WAIT 0 #define ZIO_FAILURE_MODE_CONTINUE 1 #define ZIO_FAILURE_MODE_PANIC 2 typedef enum zio_suspend_reason { ZIO_SUSPEND_NONE = 0, ZIO_SUSPEND_IOERR, ZIO_SUSPEND_MMP, } zio_suspend_reason_t; /* * This was originally an enum type. However, those are 32-bit and there is no * way to make a 64-bit enum type. Since we ran out of bits for flags, we were * forced to upgrade it to a uint64_t. */ typedef uint64_t zio_flag_t; /* * Flags inherited by gang, ddt, and vdev children, * and that must be equal for two zios to aggregate */ #define ZIO_FLAG_DONT_AGGREGATE (1ULL << 0) #define ZIO_FLAG_IO_REPAIR (1ULL << 1) #define ZIO_FLAG_SELF_HEAL (1ULL << 2) #define ZIO_FLAG_RESILVER (1ULL << 3) #define ZIO_FLAG_SCRUB (1ULL << 4) #define ZIO_FLAG_SCAN_THREAD (1ULL << 5) #define ZIO_FLAG_PHYSICAL (1ULL << 6) #define ZIO_FLAG_AGG_INHERIT (ZIO_FLAG_CANFAIL - 1) /* * Flags inherited by ddt, gang, and vdev children. */ #define ZIO_FLAG_CANFAIL (1ULL << 7) /* must be first for INHERIT */ #define ZIO_FLAG_SPECULATIVE (1ULL << 8) #define ZIO_FLAG_CONFIG_WRITER (1ULL << 9) #define ZIO_FLAG_DONT_RETRY (1ULL << 10) -#define ZIO_FLAG_DONT_CACHE (1ULL << 11) #define ZIO_FLAG_NODATA (1ULL << 12) #define ZIO_FLAG_INDUCE_DAMAGE (1ULL << 13) #define ZIO_FLAG_IO_ALLOCATING (1ULL << 14) #define ZIO_FLAG_DDT_INHERIT (ZIO_FLAG_IO_RETRY - 1) #define ZIO_FLAG_GANG_INHERIT (ZIO_FLAG_IO_RETRY - 1) /* * Flags inherited by vdev children. */ #define ZIO_FLAG_IO_RETRY (1ULL << 15) /* must be first for INHERIT */ #define ZIO_FLAG_PROBE (1ULL << 16) #define ZIO_FLAG_TRYHARD (1ULL << 17) #define ZIO_FLAG_OPTIONAL (1ULL << 18) #define ZIO_FLAG_VDEV_INHERIT (ZIO_FLAG_DONT_QUEUE - 1) /* * Flags not inherited by any children. */ #define ZIO_FLAG_DONT_QUEUE (1ULL << 19) /* must be first for INHERIT */ #define ZIO_FLAG_DONT_PROPAGATE (1ULL << 20) #define ZIO_FLAG_IO_BYPASS (1ULL << 21) #define ZIO_FLAG_IO_REWRITE (1ULL << 22) #define ZIO_FLAG_RAW_COMPRESS (1ULL << 23) #define ZIO_FLAG_RAW_ENCRYPT (1ULL << 24) #define ZIO_FLAG_GANG_CHILD (1ULL << 25) #define ZIO_FLAG_DDT_CHILD (1ULL << 26) #define ZIO_FLAG_GODFATHER (1ULL << 27) #define ZIO_FLAG_NOPWRITE (1ULL << 28) #define ZIO_FLAG_REEXECUTED (1ULL << 29) #define ZIO_FLAG_DELEGATED (1ULL << 30) #define ZIO_FLAG_FASTWRITE (1ULL << 31) #define ZIO_FLAG_MUSTSUCCEED 0 #define ZIO_FLAG_RAW (ZIO_FLAG_RAW_COMPRESS | ZIO_FLAG_RAW_ENCRYPT) #define ZIO_DDT_CHILD_FLAGS(zio) \ (((zio)->io_flags & ZIO_FLAG_DDT_INHERIT) | \ ZIO_FLAG_DDT_CHILD | ZIO_FLAG_CANFAIL) #define ZIO_GANG_CHILD_FLAGS(zio) \ (((zio)->io_flags & ZIO_FLAG_GANG_INHERIT) | \ ZIO_FLAG_GANG_CHILD | ZIO_FLAG_CANFAIL) #define ZIO_VDEV_CHILD_FLAGS(zio) \ (((zio)->io_flags & ZIO_FLAG_VDEV_INHERIT) | \ ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_CANFAIL) #define ZIO_CHILD_BIT(x) (1U << (x)) #define ZIO_CHILD_BIT_IS_SET(val, x) ((val) & (1U << (x))) enum zio_child { ZIO_CHILD_VDEV = 0, ZIO_CHILD_GANG, ZIO_CHILD_DDT, ZIO_CHILD_LOGICAL, ZIO_CHILD_TYPES }; #define ZIO_CHILD_VDEV_BIT ZIO_CHILD_BIT(ZIO_CHILD_VDEV) #define ZIO_CHILD_GANG_BIT ZIO_CHILD_BIT(ZIO_CHILD_GANG) #define ZIO_CHILD_DDT_BIT ZIO_CHILD_BIT(ZIO_CHILD_DDT) #define ZIO_CHILD_LOGICAL_BIT ZIO_CHILD_BIT(ZIO_CHILD_LOGICAL) #define ZIO_CHILD_ALL_BITS \ (ZIO_CHILD_VDEV_BIT | ZIO_CHILD_GANG_BIT | \ ZIO_CHILD_DDT_BIT | ZIO_CHILD_LOGICAL_BIT) enum zio_wait_type { ZIO_WAIT_READY = 0, ZIO_WAIT_DONE, ZIO_WAIT_TYPES }; typedef void zio_done_func_t(zio_t *zio); extern int zio_exclude_metadata; extern int zio_dva_throttle_enabled; extern const char *const zio_type_name[ZIO_TYPES]; /* * A bookmark is a four-tuple that uniquely * identifies any block in the pool. By convention, the meta-objset (MOS) * is objset 0, and the meta-dnode is object 0. This covers all blocks * except root blocks and ZIL blocks, which are defined as follows: * * Root blocks (objset_phys_t) are object 0, level -1: . * ZIL blocks are bookmarked . * dmu_sync()ed ZIL data blocks are bookmarked . * dnode visit bookmarks are . * * Note: this structure is called a bookmark because its original purpose * was to remember where to resume a pool-wide traverse. * * Note: this structure is passed between userland and the kernel, and is * stored on disk (by virtue of being incorporated into other on-disk * structures, e.g. dsl_scan_phys_t). * * If the head_errlog feature is enabled a different on-disk format for error * logs is used. This introduces the use of an error bookmark, a four-tuple * that uniquely identifies any error block * in the pool. The birth transaction group is used to track whether the block * has been overwritten by newer data or added to a snapshot since its marking * as an error. */ struct zbookmark_phys { uint64_t zb_objset; uint64_t zb_object; int64_t zb_level; uint64_t zb_blkid; }; struct zbookmark_err_phys { uint64_t zb_object; int64_t zb_level; uint64_t zb_blkid; uint64_t zb_birth; }; #define SET_BOOKMARK(zb, objset, object, level, blkid) \ { \ (zb)->zb_objset = objset; \ (zb)->zb_object = object; \ (zb)->zb_level = level; \ (zb)->zb_blkid = blkid; \ } #define ZB_DESTROYED_OBJSET (-1ULL) #define ZB_ROOT_OBJECT (0ULL) #define ZB_ROOT_LEVEL (-1LL) #define ZB_ROOT_BLKID (0ULL) #define ZB_ZIL_OBJECT (0ULL) #define ZB_ZIL_LEVEL (-2LL) #define ZB_DNODE_LEVEL (-3LL) #define ZB_DNODE_BLKID (0ULL) #define ZB_IS_ZERO(zb) \ ((zb)->zb_objset == 0 && (zb)->zb_object == 0 && \ (zb)->zb_level == 0 && (zb)->zb_blkid == 0) #define ZB_IS_ROOT(zb) \ ((zb)->zb_object == ZB_ROOT_OBJECT && \ (zb)->zb_level == ZB_ROOT_LEVEL && \ (zb)->zb_blkid == ZB_ROOT_BLKID) typedef struct zio_prop { enum zio_checksum zp_checksum; enum zio_compress zp_compress; uint8_t zp_complevel; dmu_object_type_t zp_type; uint8_t zp_level; uint8_t zp_copies; boolean_t zp_dedup; boolean_t zp_dedup_verify; boolean_t zp_nopwrite; boolean_t zp_brtwrite; boolean_t zp_encrypt; boolean_t zp_byteorder; uint8_t zp_salt[ZIO_DATA_SALT_LEN]; uint8_t zp_iv[ZIO_DATA_IV_LEN]; uint8_t zp_mac[ZIO_DATA_MAC_LEN]; uint32_t zp_zpl_smallblk; } zio_prop_t; typedef struct zio_cksum_report zio_cksum_report_t; typedef void zio_cksum_finish_f(zio_cksum_report_t *rep, const abd_t *good_data); typedef void zio_cksum_free_f(void *cbdata, size_t size); struct zio_bad_cksum; /* defined in zio_checksum.h */ struct dnode_phys; struct abd; struct zio_cksum_report { struct zio_cksum_report *zcr_next; nvlist_t *zcr_ereport; nvlist_t *zcr_detector; void *zcr_cbdata; size_t zcr_cbinfo; /* passed to zcr_free() */ uint64_t zcr_sector; uint64_t zcr_align; uint64_t zcr_length; zio_cksum_finish_f *zcr_finish; zio_cksum_free_f *zcr_free; /* internal use only */ struct zio_bad_cksum *zcr_ckinfo; /* information from failure */ }; typedef struct zio_vsd_ops { zio_done_func_t *vsd_free; } zio_vsd_ops_t; typedef struct zio_gang_node { zio_gbh_phys_t *gn_gbh; struct zio_gang_node *gn_child[SPA_GBH_NBLKPTRS]; } zio_gang_node_t; typedef zio_t *zio_gang_issue_func_t(zio_t *zio, blkptr_t *bp, zio_gang_node_t *gn, struct abd *data, uint64_t offset); typedef void zio_transform_func_t(zio_t *zio, struct abd *data, uint64_t size); typedef struct zio_transform { struct abd *zt_orig_abd; uint64_t zt_orig_size; uint64_t zt_bufsize; zio_transform_func_t *zt_transform; struct zio_transform *zt_next; } zio_transform_t; typedef zio_t *zio_pipe_stage_t(zio_t *zio); /* * The io_reexecute flags are distinct from io_flags because the child must * be able to propagate them to the parent. The normal io_flags are local * to the zio, not protected by any lock, and not modifiable by children; * the reexecute flags are protected by io_lock, modifiable by children, * and always propagated -- even when ZIO_FLAG_DONT_PROPAGATE is set. */ #define ZIO_REEXECUTE_NOW 0x01 #define ZIO_REEXECUTE_SUSPEND 0x02 /* * The io_trim flags are used to specify the type of TRIM to perform. They * only apply to ZIO_TYPE_TRIM zios are distinct from io_flags. */ enum trim_flag { ZIO_TRIM_SECURE = 1U << 0, }; typedef struct zio_alloc_list { list_t zal_list; uint64_t zal_size; } zio_alloc_list_t; typedef struct zio_link { zio_t *zl_parent; zio_t *zl_child; list_node_t zl_parent_node; list_node_t zl_child_node; } zio_link_t; struct zio { /* Core information about this I/O */ zbookmark_phys_t io_bookmark; zio_prop_t io_prop; zio_type_t io_type; enum zio_child io_child_type; enum trim_flag io_trim_flags; int io_cmd; zio_priority_t io_priority; uint8_t io_reexecute; uint8_t io_state[ZIO_WAIT_TYPES]; uint64_t io_txg; spa_t *io_spa; blkptr_t *io_bp; blkptr_t *io_bp_override; blkptr_t io_bp_copy; list_t io_parent_list; list_t io_child_list; zio_t *io_logical; zio_transform_t *io_transform_stack; /* Callback info */ zio_done_func_t *io_ready; zio_done_func_t *io_children_ready; zio_done_func_t *io_physdone; zio_done_func_t *io_done; void *io_private; int64_t io_prev_space_delta; /* DMU private */ blkptr_t io_bp_orig; /* io_lsize != io_orig_size iff this is a raw write */ uint64_t io_lsize; /* Data represented by this I/O */ struct abd *io_abd; struct abd *io_orig_abd; uint64_t io_size; uint64_t io_orig_size; /* Stuff for the vdev stack */ vdev_t *io_vd; void *io_vsd; const zio_vsd_ops_t *io_vsd_ops; metaslab_class_t *io_metaslab_class; /* dva throttle class */ uint64_t io_offset; hrtime_t io_timestamp; /* submitted at */ hrtime_t io_queued_timestamp; hrtime_t io_target_timestamp; hrtime_t io_delta; /* vdev queue service delta */ hrtime_t io_delay; /* Device access time (disk or */ /* file). */ avl_node_t io_queue_node; avl_node_t io_offset_node; avl_node_t io_alloc_node; zio_alloc_list_t io_alloc_list; /* Internal pipeline state */ zio_flag_t io_flags; enum zio_stage io_stage; enum zio_stage io_pipeline; zio_flag_t io_orig_flags; enum zio_stage io_orig_stage; enum zio_stage io_orig_pipeline; enum zio_stage io_pipeline_trace; int io_error; int io_child_error[ZIO_CHILD_TYPES]; uint64_t io_children[ZIO_CHILD_TYPES][ZIO_WAIT_TYPES]; uint64_t io_child_count; uint64_t io_phys_children; uint64_t io_parent_count; uint64_t *io_stall; zio_t *io_gang_leader; zio_gang_node_t *io_gang_tree; void *io_executor; void *io_waiter; void *io_bio; kmutex_t io_lock; kcondvar_t io_cv; int io_allocator; /* FMA state */ zio_cksum_report_t *io_cksum_report; uint64_t io_ena; /* Taskq dispatching state */ taskq_ent_t io_tqent; }; enum blk_verify_flag { BLK_VERIFY_ONLY, BLK_VERIFY_LOG, BLK_VERIFY_HALT }; enum blk_config_flag { BLK_CONFIG_HELD, // SCL_VDEV held for writer BLK_CONFIG_NEEDED, // SCL_VDEV should be obtained for reader BLK_CONFIG_SKIP, // skip checks which require SCL_VDEV }; extern int zio_bookmark_compare(const void *, const void *); extern zio_t *zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, void *priv, zio_flag_t flags); extern zio_t *zio_root(spa_t *spa, zio_done_func_t *done, void *priv, zio_flag_t flags); extern void zio_destroy(zio_t *zio); extern zio_t *zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, struct abd *data, uint64_t lsize, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb); extern zio_t *zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, struct abd *data, uint64_t size, uint64_t psize, const zio_prop_t *zp, zio_done_func_t *ready, zio_done_func_t *children_ready, zio_done_func_t *physdone, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb); extern zio_t *zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, struct abd *data, uint64_t size, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb); extern void zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite, boolean_t brtwrite); extern void zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp); extern zio_t *zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, zio_done_func_t *done, void *priv, zio_flag_t flags); extern zio_t *zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, zio_done_func_t *done, void *priv, zio_flag_t flags); extern zio_t *zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, enum trim_flag trim_flags); extern zio_t *zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, struct abd *data, int checksum, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, boolean_t labels); extern zio_t *zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, struct abd *data, int checksum, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, boolean_t labels); extern zio_t *zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, zio_flag_t flags); extern int zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, uint64_t size, boolean_t *slog); extern void zio_flush(zio_t *zio, vdev_t *vd); extern void zio_shrink(zio_t *zio, uint64_t size); extern int zio_wait(zio_t *zio); extern void zio_nowait(zio_t *zio); extern void zio_execute(void *zio); extern void zio_interrupt(void *zio); extern void zio_delay_init(zio_t *zio); extern void zio_delay_interrupt(zio_t *zio); extern void zio_deadman(zio_t *zio, const char *tag); extern zio_t *zio_walk_parents(zio_t *cio, zio_link_t **); extern zio_t *zio_walk_children(zio_t *pio, zio_link_t **); extern zio_t *zio_unique_parent(zio_t *cio); extern void zio_add_child(zio_t *pio, zio_t *cio); extern void *zio_buf_alloc(size_t size); extern void zio_buf_free(void *buf, size_t size); extern void *zio_data_buf_alloc(size_t size); extern void zio_data_buf_free(void *buf, size_t size); extern void zio_push_transform(zio_t *zio, struct abd *abd, uint64_t size, uint64_t bufsize, zio_transform_func_t *transform); extern void zio_pop_transforms(zio_t *zio); extern void zio_resubmit_stage_async(void *); extern zio_t *zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset, struct abd *data, uint64_t size, int type, zio_priority_t priority, zio_flag_t flags, zio_done_func_t *done, void *priv); extern zio_t *zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, struct abd *data, uint64_t size, zio_type_t type, zio_priority_t priority, zio_flag_t flags, zio_done_func_t *done, void *priv); extern void zio_vdev_io_bypass(zio_t *zio); extern void zio_vdev_io_reissue(zio_t *zio); extern void zio_vdev_io_redone(zio_t *zio); extern void zio_change_priority(zio_t *pio, zio_priority_t priority); extern void zio_checksum_verified(zio_t *zio); extern int zio_worst_error(int e1, int e2); extern enum zio_checksum zio_checksum_select(enum zio_checksum child, enum zio_checksum parent); extern enum zio_checksum zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child, enum zio_checksum parent); extern enum zio_compress zio_compress_select(spa_t *spa, enum zio_compress child, enum zio_compress parent); extern uint8_t zio_complevel_select(spa_t *spa, enum zio_compress compress, uint8_t child, uint8_t parent); extern void zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t); extern int zio_resume(spa_t *spa); extern void zio_resume_wait(spa_t *spa); extern boolean_t zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, enum blk_config_flag blk_config, enum blk_verify_flag blk_verify); /* * Initial setup and teardown. */ extern void zio_init(void); extern void zio_fini(void); /* * Fault injection */ struct zinject_record; extern uint32_t zio_injection_enabled; extern int zio_inject_fault(char *name, int flags, int *id, struct zinject_record *record); extern int zio_inject_list_next(int *id, char *name, size_t buflen, struct zinject_record *record); extern int zio_clear_fault(int id); extern void zio_handle_panic_injection(spa_t *spa, const char *tag, uint64_t type); extern int zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb, uint64_t type, int error); extern int zio_handle_fault_injection(zio_t *zio, int error); extern int zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error); extern int zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2); extern int zio_handle_label_injection(zio_t *zio, int error); extern void zio_handle_ignored_writes(zio_t *zio); extern hrtime_t zio_handle_io_delay(zio_t *zio); /* * Checksum ereport functions */ extern int zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, struct zio *zio, uint64_t offset, uint64_t length, struct zio_bad_cksum *info); extern void zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data, const abd_t *bad_data, boolean_t drop_if_identical); extern void zfs_ereport_free_checksum(zio_cksum_report_t *report); /* If we have the good data in hand, this function can be used */ extern int zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, struct zio *zio, uint64_t offset, uint64_t length, const abd_t *good_data, const abd_t *bad_data, struct zio_bad_cksum *info); void zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr); extern void zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name); /* Called from spa_sync(), but primarily an injection handler */ extern void spa_handle_ignored_writes(spa_t *spa); /* zbookmark_phys functions */ boolean_t zbookmark_subtree_completed(const struct dnode_phys *dnp, const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block); boolean_t zbookmark_subtree_tbd(const struct dnode_phys *dnp, const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block); int zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2); #ifdef __cplusplus } #endif #endif /* _ZIO_H */ diff --git a/lib/libzpool/Makefile.am b/lib/libzpool/Makefile.am index ceac2963e647..58d7f07527aa 100644 --- a/lib/libzpool/Makefile.am +++ b/lib/libzpool/Makefile.am @@ -1,214 +1,213 @@ libzpool_la_CFLAGS = $(AM_CFLAGS) $(KERNEL_CFLAGS) $(LIBRARY_CFLAGS) libzpool_la_CFLAGS += $(ZLIB_CFLAGS) libzpool_la_CPPFLAGS = $(AM_CPPFLAGS) $(FORCEDEBUG_CPPFLAGS) libzpool_la_CPPFLAGS += -I$(srcdir)/include/os/@ac_system_l@/zfs libzpool_la_CPPFLAGS += -DLIB_ZPOOL_BUILD lib_LTLIBRARIES += libzpool.la CPPCHECKTARGETS += libzpool.la dist_libzpool_la_SOURCES = \ %D%/kernel.c \ %D%/taskq.c \ %D%/util.c nodist_libzpool_la_SOURCES = \ module/lua/lapi.c \ module/lua/lauxlib.c \ module/lua/lbaselib.c \ module/lua/lcode.c \ module/lua/lcompat.c \ module/lua/lcorolib.c \ module/lua/lctype.c \ module/lua/ldebug.c \ module/lua/ldo.c \ module/lua/lfunc.c \ module/lua/lgc.c \ module/lua/llex.c \ module/lua/lmem.c \ module/lua/lobject.c \ module/lua/lopcodes.c \ module/lua/lparser.c \ module/lua/lstate.c \ module/lua/lstring.c \ module/lua/lstrlib.c \ module/lua/ltable.c \ module/lua/ltablib.c \ module/lua/ltm.c \ module/lua/lvm.c \ module/lua/lzio.c \ \ module/os/linux/zfs/abd_os.c \ module/os/linux/zfs/arc_os.c \ module/os/linux/zfs/trace.c \ module/os/linux/zfs/vdev_file.c \ module/os/linux/zfs/zfs_debug.c \ module/os/linux/zfs/zfs_racct.c \ module/os/linux/zfs/zfs_znode.c \ module/os/linux/zfs/zio_crypt.c \ \ module/zcommon/cityhash.c \ module/zcommon/zfeature_common.c \ module/zcommon/zfs_comutil.c \ module/zcommon/zfs_deleg.c \ module/zcommon/zfs_fletcher.c \ module/zcommon/zfs_fletcher_aarch64_neon.c \ module/zcommon/zfs_fletcher_avx512.c \ module/zcommon/zfs_fletcher_intel.c \ module/zcommon/zfs_fletcher_sse.c \ module/zcommon/zfs_fletcher_superscalar.c \ module/zcommon/zfs_fletcher_superscalar4.c \ module/zcommon/zfs_namecheck.c \ module/zcommon/zfs_prop.c \ module/zcommon/zpool_prop.c \ module/zcommon/zprop_common.c \ \ module/zfs/abd.c \ module/zfs/aggsum.c \ module/zfs/arc.c \ module/zfs/blake3_zfs.c \ module/zfs/blkptr.c \ module/zfs/bplist.c \ module/zfs/bpobj.c \ module/zfs/bptree.c \ module/zfs/bqueue.c \ module/zfs/btree.c \ module/zfs/brt.c \ module/zfs/dbuf.c \ module/zfs/dbuf_stats.c \ module/zfs/ddt.c \ module/zfs/ddt_zap.c \ module/zfs/dmu.c \ module/zfs/dmu_diff.c \ module/zfs/dmu_object.c \ module/zfs/dmu_objset.c \ module/zfs/dmu_recv.c \ module/zfs/dmu_redact.c \ module/zfs/dmu_send.c \ module/zfs/dmu_traverse.c \ module/zfs/dmu_tx.c \ module/zfs/dmu_zfetch.c \ module/zfs/dnode.c \ module/zfs/dnode_sync.c \ module/zfs/dsl_bookmark.c \ module/zfs/dsl_crypt.c \ module/zfs/dsl_dataset.c \ module/zfs/dsl_deadlist.c \ module/zfs/dsl_deleg.c \ module/zfs/dsl_destroy.c \ module/zfs/dsl_dir.c \ module/zfs/dsl_pool.c \ module/zfs/dsl_prop.c \ module/zfs/dsl_scan.c \ module/zfs/dsl_synctask.c \ module/zfs/dsl_userhold.c \ module/zfs/edonr_zfs.c \ module/zfs/fm.c \ module/zfs/gzip.c \ module/zfs/hkdf.c \ module/zfs/lz4.c \ module/zfs/lz4_zfs.c \ module/zfs/lzjb.c \ module/zfs/metaslab.c \ module/zfs/mmp.c \ module/zfs/multilist.c \ module/zfs/objlist.c \ module/zfs/pathname.c \ module/zfs/range_tree.c \ module/zfs/refcount.c \ module/zfs/rrwlock.c \ module/zfs/sa.c \ module/zfs/sha2_zfs.c \ module/zfs/skein_zfs.c \ module/zfs/spa.c \ module/zfs/spa_checkpoint.c \ module/zfs/spa_config.c \ module/zfs/spa_errlog.c \ module/zfs/spa_history.c \ module/zfs/spa_log_spacemap.c \ module/zfs/spa_misc.c \ module/zfs/spa_stats.c \ module/zfs/space_map.c \ module/zfs/space_reftree.c \ module/zfs/txg.c \ module/zfs/uberblock.c \ module/zfs/unique.c \ module/zfs/vdev.c \ - module/zfs/vdev_cache.c \ module/zfs/vdev_draid.c \ module/zfs/vdev_draid_rand.c \ module/zfs/vdev_indirect.c \ module/zfs/vdev_indirect_births.c \ module/zfs/vdev_indirect_mapping.c \ module/zfs/vdev_initialize.c \ module/zfs/vdev_label.c \ module/zfs/vdev_mirror.c \ module/zfs/vdev_missing.c \ module/zfs/vdev_queue.c \ module/zfs/vdev_raidz.c \ module/zfs/vdev_raidz_math.c \ module/zfs/vdev_raidz_math_aarch64_neon.c \ module/zfs/vdev_raidz_math_aarch64_neonx2.c \ module/zfs/vdev_raidz_math_avx2.c \ module/zfs/vdev_raidz_math_avx512bw.c \ module/zfs/vdev_raidz_math_avx512f.c \ module/zfs/vdev_raidz_math_powerpc_altivec.c \ module/zfs/vdev_raidz_math_scalar.c \ module/zfs/vdev_raidz_math_sse2.c \ module/zfs/vdev_raidz_math_ssse3.c \ module/zfs/vdev_rebuild.c \ module/zfs/vdev_removal.c \ module/zfs/vdev_root.c \ module/zfs/vdev_trim.c \ module/zfs/zap.c \ module/zfs/zap_leaf.c \ module/zfs/zap_micro.c \ module/zfs/zcp.c \ module/zfs/zcp_get.c \ module/zfs/zcp_global.c \ module/zfs/zcp_iter.c \ module/zfs/zcp_set.c \ module/zfs/zcp_synctask.c \ module/zfs/zfeature.c \ module/zfs/zfs_byteswap.c \ module/zfs/zfs_chksum.c \ module/zfs/zfs_fm.c \ module/zfs/zfs_fuid.c \ module/zfs/zfs_ratelimit.c \ module/zfs/zfs_rlock.c \ module/zfs/zfs_sa.c \ module/zfs/zil.c \ module/zfs/zio.c \ module/zfs/zio_checksum.c \ module/zfs/zio_compress.c \ module/zfs/zio_inject.c \ module/zfs/zle.c \ module/zfs/zrlock.c \ module/zfs/zthr.c libzpool_la_LIBADD = \ libicp.la \ libunicode.la \ libnvpair.la \ libzstd.la \ libzutil.la libzpool_la_LIBADD += $(LIBCLOCK_GETTIME) $(ZLIB_LIBS) -ldl -lm libzpool_la_LDFLAGS = -pthread if !ASAN_ENABLED libzpool_la_LDFLAGS += -Wl,-z,defs endif if BUILD_FREEBSD libzpool_la_LIBADD += -lgeom endif libzpool_la_LDFLAGS += -version-info 5:0:0 if TARGET_CPU_POWERPC module/zfs/libzpool_la-vdev_raidz_math_powerpc_altivec.$(OBJEXT) : CFLAGS += -maltivec module/zfs/libzpool_la-vdev_raidz_math_powerpc_altivec.l$(OBJEXT): CFLAGS += -maltivec endif diff --git a/man/man4/zfs.4 b/man/man4/zfs.4 index 9ec940a94488..5fbd9d7db93f 100644 --- a/man/man4/zfs.4 +++ b/man/man4/zfs.4 @@ -1,2596 +1,2581 @@ .\" .\" Copyright (c) 2013 by Turbo Fredriksson . All rights reserved. .\" Copyright (c) 2019, 2021 by Delphix. All rights reserved. .\" Copyright (c) 2019 Datto Inc. .\" The contents of this file are subject to the terms of the Common Development .\" and Distribution License (the "License"). You may not use this file except .\" in compliance with the License. You can obtain a copy of the license at .\" usr/src/OPENSOLARIS.LICENSE or https://opensource.org/licenses/CDDL-1.0. .\" .\" See the License for the specific language governing permissions and .\" limitations under the License. When distributing Covered Code, include this .\" CDDL HEADER in each file and include the License file at .\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this .\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your .\" own identifying information: .\" Portions Copyright [yyyy] [name of copyright owner] .\" .Dd January 10, 2023 .Dt ZFS 4 .Os . .Sh NAME .Nm zfs .Nd tuning of the ZFS kernel module . .Sh DESCRIPTION The ZFS module supports these parameters: .Bl -tag -width Ds .It Sy dbuf_cache_max_bytes Ns = Ns Sy UINT64_MAX Ns B Pq u64 Maximum size in bytes of the dbuf cache. The target size is determined by the MIN versus .No 1/2^ Ns Sy dbuf_cache_shift Pq 1/32nd of the target ARC size. The behavior of the dbuf cache and its associated settings can be observed via the .Pa /proc/spl/kstat/zfs/dbufstats kstat. . .It Sy dbuf_metadata_cache_max_bytes Ns = Ns Sy UINT64_MAX Ns B Pq u64 Maximum size in bytes of the metadata dbuf cache. The target size is determined by the MIN versus .No 1/2^ Ns Sy dbuf_metadata_cache_shift Pq 1/64th of the target ARC size. The behavior of the metadata dbuf cache and its associated settings can be observed via the .Pa /proc/spl/kstat/zfs/dbufstats kstat. . .It Sy dbuf_cache_hiwater_pct Ns = Ns Sy 10 Ns % Pq uint The percentage over .Sy dbuf_cache_max_bytes when dbufs must be evicted directly. . .It Sy dbuf_cache_lowater_pct Ns = Ns Sy 10 Ns % Pq uint The percentage below .Sy dbuf_cache_max_bytes when the evict thread stops evicting dbufs. . .It Sy dbuf_cache_shift Ns = Ns Sy 5 Pq uint Set the size of the dbuf cache .Pq Sy dbuf_cache_max_bytes to a log2 fraction of the target ARC size. . .It Sy dbuf_metadata_cache_shift Ns = Ns Sy 6 Pq uint Set the size of the dbuf metadata cache .Pq Sy dbuf_metadata_cache_max_bytes to a log2 fraction of the target ARC size. . .It Sy dbuf_mutex_cache_shift Ns = Ns Sy 0 Pq uint Set the size of the mutex array for the dbuf cache. When set to .Sy 0 the array is dynamically sized based on total system memory. . .It Sy dmu_object_alloc_chunk_shift Ns = Ns Sy 7 Po 128 Pc Pq uint dnode slots allocated in a single operation as a power of 2. The default value minimizes lock contention for the bulk operation performed. . .It Sy dmu_prefetch_max Ns = Ns Sy 134217728 Ns B Po 128 MiB Pc Pq uint Limit the amount we can prefetch with one call to this amount in bytes. This helps to limit the amount of memory that can be used by prefetching. . .It Sy ignore_hole_birth Pq int Alias for .Sy send_holes_without_birth_time . . .It Sy l2arc_feed_again Ns = Ns Sy 1 Ns | Ns 0 Pq int Turbo L2ARC warm-up. When the L2ARC is cold the fill interval will be set as fast as possible. . .It Sy l2arc_feed_min_ms Ns = Ns Sy 200 Pq u64 Min feed interval in milliseconds. Requires .Sy l2arc_feed_again Ns = Ns Ar 1 and only applicable in related situations. . .It Sy l2arc_feed_secs Ns = Ns Sy 1 Pq u64 Seconds between L2ARC writing. . .It Sy l2arc_headroom Ns = Ns Sy 2 Pq u64 How far through the ARC lists to search for L2ARC cacheable content, expressed as a multiplier of .Sy l2arc_write_max . ARC persistence across reboots can be achieved with persistent L2ARC by setting this parameter to .Sy 0 , allowing the full length of ARC lists to be searched for cacheable content. . .It Sy l2arc_headroom_boost Ns = Ns Sy 200 Ns % Pq u64 Scales .Sy l2arc_headroom by this percentage when L2ARC contents are being successfully compressed before writing. A value of .Sy 100 disables this feature. . .It Sy l2arc_exclude_special Ns = Ns Sy 0 Ns | Ns 1 Pq int Controls whether buffers present on special vdevs are eligible for caching into L2ARC. If set to 1, exclude dbufs on special vdevs from being cached to L2ARC. . .It Sy l2arc_mfuonly Ns = Ns Sy 0 Ns | Ns 1 Pq int Controls whether only MFU metadata and data are cached from ARC into L2ARC. This may be desired to avoid wasting space on L2ARC when reading/writing large amounts of data that are not expected to be accessed more than once. .Pp The default is off, meaning both MRU and MFU data and metadata are cached. When turning off this feature, some MRU buffers will still be present in ARC and eventually cached on L2ARC. .No If Sy l2arc_noprefetch Ns = Ns Sy 0 , some prefetched buffers will be cached to L2ARC, and those might later transition to MRU, in which case the .Sy l2arc_mru_asize No arcstat will not be Sy 0 . .Pp Regardless of .Sy l2arc_noprefetch , some MFU buffers might be evicted from ARC, accessed later on as prefetches and transition to MRU as prefetches. If accessed again they are counted as MRU and the .Sy l2arc_mru_asize No arcstat will not be Sy 0 . .Pp The ARC status of L2ARC buffers when they were first cached in L2ARC can be seen in the .Sy l2arc_mru_asize , Sy l2arc_mfu_asize , No and Sy l2arc_prefetch_asize arcstats when importing the pool or onlining a cache device if persistent L2ARC is enabled. .Pp The .Sy evict_l2_eligible_mru arcstat does not take into account if this option is enabled as the information provided by the .Sy evict_l2_eligible_m[rf]u arcstats can be used to decide if toggling this option is appropriate for the current workload. . .It Sy l2arc_meta_percent Ns = Ns Sy 33 Ns % Pq uint Percent of ARC size allowed for L2ARC-only headers. Since L2ARC buffers are not evicted on memory pressure, too many headers on a system with an irrationally large L2ARC can render it slow or unusable. This parameter limits L2ARC writes and rebuilds to achieve the target. . .It Sy l2arc_trim_ahead Ns = Ns Sy 0 Ns % Pq u64 Trims ahead of the current write size .Pq Sy l2arc_write_max on L2ARC devices by this percentage of write size if we have filled the device. If set to .Sy 100 we TRIM twice the space required to accommodate upcoming writes. A minimum of .Sy 64 MiB will be trimmed. It also enables TRIM of the whole L2ARC device upon creation or addition to an existing pool or if the header of the device is invalid upon importing a pool or onlining a cache device. A value of .Sy 0 disables TRIM on L2ARC altogether and is the default as it can put significant stress on the underlying storage devices. This will vary depending of how well the specific device handles these commands. . .It Sy l2arc_noprefetch Ns = Ns Sy 1 Ns | Ns 0 Pq int Do not write buffers to L2ARC if they were prefetched but not used by applications. In case there are prefetched buffers in L2ARC and this option is later set, we do not read the prefetched buffers from L2ARC. Unsetting this option is useful for caching sequential reads from the disks to L2ARC and serve those reads from L2ARC later on. This may be beneficial in case the L2ARC device is significantly faster in sequential reads than the disks of the pool. .Pp Use .Sy 1 to disable and .Sy 0 to enable caching/reading prefetches to/from L2ARC. . .It Sy l2arc_norw Ns = Ns Sy 0 Ns | Ns 1 Pq int No reads during writes. . .It Sy l2arc_write_boost Ns = Ns Sy 8388608 Ns B Po 8 MiB Pc Pq u64 Cold L2ARC devices will have .Sy l2arc_write_max increased by this amount while they remain cold. . .It Sy l2arc_write_max Ns = Ns Sy 8388608 Ns B Po 8 MiB Pc Pq u64 Max write bytes per interval. . .It Sy l2arc_rebuild_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Rebuild the L2ARC when importing a pool (persistent L2ARC). This can be disabled if there are problems importing a pool or attaching an L2ARC device (e.g. the L2ARC device is slow in reading stored log metadata, or the metadata has become somehow fragmented/unusable). . .It Sy l2arc_rebuild_blocks_min_l2size Ns = Ns Sy 1073741824 Ns B Po 1 GiB Pc Pq u64 Mininum size of an L2ARC device required in order to write log blocks in it. The log blocks are used upon importing the pool to rebuild the persistent L2ARC. .Pp For L2ARC devices less than 1 GiB, the amount of data .Fn l2arc_evict evicts is significant compared to the amount of restored L2ARC data. In this case, do not write log blocks in L2ARC in order not to waste space. . .It Sy metaslab_aliquot Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64 Metaslab granularity, in bytes. This is roughly similar to what would be referred to as the "stripe size" in traditional RAID arrays. In normal operation, ZFS will try to write this amount of data to each disk before moving on to the next top-level vdev. . .It Sy metaslab_bias_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Enable metaslab group biasing based on their vdevs' over- or under-utilization relative to the pool. . .It Sy metaslab_force_ganging Ns = Ns Sy 16777217 Ns B Po 16 MiB + 1 B Pc Pq u64 Make some blocks above a certain size be gang blocks. This option is used by the test suite to facilitate testing. . .It Sy zfs_default_bs Ns = Ns Sy 9 Po 512 B Pc Pq int Default dnode block size as a power of 2. . .It Sy zfs_default_ibs Ns = Ns Sy 17 Po 128 KiB Pc Pq int Default dnode indirect block size as a power of 2. . .It Sy zfs_history_output_max Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64 When attempting to log an output nvlist of an ioctl in the on-disk history, the output will not be stored if it is larger than this size (in bytes). This must be less than .Sy DMU_MAX_ACCESS Pq 64 MiB . This applies primarily to .Fn zfs_ioc_channel_program Pq cf. Xr zfs-program 8 . . .It Sy zfs_keep_log_spacemaps_at_export Ns = Ns Sy 0 Ns | Ns 1 Pq int Prevent log spacemaps from being destroyed during pool exports and destroys. . .It Sy zfs_metaslab_segment_weight_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Enable/disable segment-based metaslab selection. . .It Sy zfs_metaslab_switch_threshold Ns = Ns Sy 2 Pq int When using segment-based metaslab selection, continue allocating from the active metaslab until this option's worth of buckets have been exhausted. . .It Sy metaslab_debug_load Ns = Ns Sy 0 Ns | Ns 1 Pq int Load all metaslabs during pool import. . .It Sy metaslab_debug_unload Ns = Ns Sy 0 Ns | Ns 1 Pq int Prevent metaslabs from being unloaded. . .It Sy metaslab_fragmentation_factor_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Enable use of the fragmentation metric in computing metaslab weights. . .It Sy metaslab_df_max_search Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq uint Maximum distance to search forward from the last offset. Without this limit, fragmented pools can see .Em >100`000 iterations and .Fn metaslab_block_picker becomes the performance limiting factor on high-performance storage. .Pp With the default setting of .Sy 16 MiB , we typically see less than .Em 500 iterations, even with very fragmented .Sy ashift Ns = Ns Sy 9 pools. The maximum number of iterations possible is .Sy metaslab_df_max_search / 2^(ashift+1) . With the default setting of .Sy 16 MiB this is .Em 16*1024 Pq with Sy ashift Ns = Ns Sy 9 or .Em 2*1024 Pq with Sy ashift Ns = Ns Sy 12 . . .It Sy metaslab_df_use_largest_segment Ns = Ns Sy 0 Ns | Ns 1 Pq int If not searching forward (due to .Sy metaslab_df_max_search , metaslab_df_free_pct , .No or Sy metaslab_df_alloc_threshold ) , this tunable controls which segment is used. If set, we will use the largest free segment. If unset, we will use a segment of at least the requested size. . .It Sy zfs_metaslab_max_size_cache_sec Ns = Ns Sy 3600 Ns s Po 1 hour Pc Pq u64 When we unload a metaslab, we cache the size of the largest free chunk. We use that cached size to determine whether or not to load a metaslab for a given allocation. As more frees accumulate in that metaslab while it's unloaded, the cached max size becomes less and less accurate. After a number of seconds controlled by this tunable, we stop considering the cached max size and start considering only the histogram instead. . .It Sy zfs_metaslab_mem_limit Ns = Ns Sy 25 Ns % Pq uint When we are loading a new metaslab, we check the amount of memory being used to store metaslab range trees. If it is over a threshold, we attempt to unload the least recently used metaslab to prevent the system from clogging all of its memory with range trees. This tunable sets the percentage of total system memory that is the threshold. . .It Sy zfs_metaslab_try_hard_before_gang Ns = Ns Sy 0 Ns | Ns 1 Pq int .Bl -item -compact .It If unset, we will first try normal allocation. .It If that fails then we will do a gang allocation. .It If that fails then we will do a "try hard" gang allocation. .It If that fails then we will have a multi-layer gang block. .El .Pp .Bl -item -compact .It If set, we will first try normal allocation. .It If that fails then we will do a "try hard" allocation. .It If that fails we will do a gang allocation. .It If that fails we will do a "try hard" gang allocation. .It If that fails then we will have a multi-layer gang block. .El . .It Sy zfs_metaslab_find_max_tries Ns = Ns Sy 100 Pq uint When not trying hard, we only consider this number of the best metaslabs. This improves performance, especially when there are many metaslabs per vdev and the allocation can't actually be satisfied (so we would otherwise iterate all metaslabs). . .It Sy zfs_vdev_default_ms_count Ns = Ns Sy 200 Pq uint When a vdev is added, target this number of metaslabs per top-level vdev. . .It Sy zfs_vdev_default_ms_shift Ns = Ns Sy 29 Po 512 MiB Pc Pq uint Default lower limit for metaslab size. . .It Sy zfs_vdev_max_ms_shift Ns = Ns Sy 34 Po 16 GiB Pc Pq uint Default upper limit for metaslab size. . .It Sy zfs_vdev_max_auto_ashift Ns = Ns Sy 14 Pq uint Maximum ashift used when optimizing for logical \[->] physical sector size on new top-level vdevs. May be increased up to .Sy ASHIFT_MAX Po 16 Pc , but this may negatively impact pool space efficiency. . .It Sy zfs_vdev_min_auto_ashift Ns = Ns Sy ASHIFT_MIN Po 9 Pc Pq uint Minimum ashift used when creating new top-level vdevs. . .It Sy zfs_vdev_min_ms_count Ns = Ns Sy 16 Pq uint Minimum number of metaslabs to create in a top-level vdev. . .It Sy vdev_validate_skip Ns = Ns Sy 0 Ns | Ns 1 Pq int Skip label validation steps during pool import. Changing is not recommended unless you know what you're doing and are recovering a damaged label. . .It Sy zfs_vdev_ms_count_limit Ns = Ns Sy 131072 Po 128k Pc Pq uint Practical upper limit of total metaslabs per top-level vdev. . .It Sy metaslab_preload_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Enable metaslab group preloading. . .It Sy metaslab_lba_weighting_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Give more weight to metaslabs with lower LBAs, assuming they have greater bandwidth, as is typically the case on a modern constant angular velocity disk drive. . .It Sy metaslab_unload_delay Ns = Ns Sy 32 Pq uint After a metaslab is used, we keep it loaded for this many TXGs, to attempt to reduce unnecessary reloading. Note that both this many TXGs and .Sy metaslab_unload_delay_ms milliseconds must pass before unloading will occur. . .It Sy metaslab_unload_delay_ms Ns = Ns Sy 600000 Ns ms Po 10 min Pc Pq uint After a metaslab is used, we keep it loaded for this many milliseconds, to attempt to reduce unnecessary reloading. Note, that both this many milliseconds and .Sy metaslab_unload_delay TXGs must pass before unloading will occur. . .It Sy reference_history Ns = Ns Sy 3 Pq uint Maximum reference holders being tracked when reference_tracking_enable is active. . .It Sy reference_tracking_enable Ns = Ns Sy 0 Ns | Ns 1 Pq int Track reference holders to .Sy refcount_t objects (debug builds only). . .It Sy send_holes_without_birth_time Ns = Ns Sy 1 Ns | Ns 0 Pq int When set, the .Sy hole_birth optimization will not be used, and all holes will always be sent during a .Nm zfs Cm send . This is useful if you suspect your datasets are affected by a bug in .Sy hole_birth . . .It Sy spa_config_path Ns = Ns Pa /etc/zfs/zpool.cache Pq charp SPA config file. . .It Sy spa_asize_inflation Ns = Ns Sy 24 Pq uint Multiplication factor used to estimate actual disk consumption from the size of data being written. The default value is a worst case estimate, but lower values may be valid for a given pool depending on its configuration. Pool administrators who understand the factors involved may wish to specify a more realistic inflation factor, particularly if they operate close to quota or capacity limits. . .It Sy spa_load_print_vdev_tree Ns = Ns Sy 0 Ns | Ns 1 Pq int Whether to print the vdev tree in the debugging message buffer during pool import. . .It Sy spa_load_verify_data Ns = Ns Sy 1 Ns | Ns 0 Pq int Whether to traverse data blocks during an "extreme rewind" .Pq Fl X import. .Pp An extreme rewind import normally performs a full traversal of all blocks in the pool for verification. If this parameter is unset, the traversal skips non-metadata blocks. It can be toggled once the import has started to stop or start the traversal of non-metadata blocks. . .It Sy spa_load_verify_metadata Ns = Ns Sy 1 Ns | Ns 0 Pq int Whether to traverse blocks during an "extreme rewind" .Pq Fl X pool import. .Pp An extreme rewind import normally performs a full traversal of all blocks in the pool for verification. If this parameter is unset, the traversal is not performed. It can be toggled once the import has started to stop or start the traversal. . .It Sy spa_load_verify_shift Ns = Ns Sy 4 Po 1/16th Pc Pq uint Sets the maximum number of bytes to consume during pool import to the log2 fraction of the target ARC size. . .It Sy spa_slop_shift Ns = Ns Sy 5 Po 1/32nd Pc Pq int Normally, we don't allow the last .Sy 3.2% Pq Sy 1/2^spa_slop_shift of space in the pool to be consumed. This ensures that we don't run the pool completely out of space, due to unaccounted changes (e.g. to the MOS). It also limits the worst-case time to allocate space. If we have less than this amount of free space, most ZPL operations (e.g. write, create) will return .Sy ENOSPC . . .It Sy spa_upgrade_errlog_limit Ns = Ns Sy 0 Pq uint Limits the number of on-disk error log entries that will be converted to the new format when enabling the .Sy head_errlog feature. The default is to convert all log entries. . .It Sy vdev_removal_max_span Ns = Ns Sy 32768 Ns B Po 32 KiB Pc Pq uint During top-level vdev removal, chunks of data are copied from the vdev which may include free space in order to trade bandwidth for IOPS. This parameter determines the maximum span of free space, in bytes, which will be included as "unnecessary" data in a chunk of copied data. .Pp The default value here was chosen to align with .Sy zfs_vdev_read_gap_limit , which is a similar concept when doing regular reads (but there's no reason it has to be the same). . .It Sy vdev_file_logical_ashift Ns = Ns Sy 9 Po 512 B Pc Pq u64 Logical ashift for file-based devices. . .It Sy vdev_file_physical_ashift Ns = Ns Sy 9 Po 512 B Pc Pq u64 Physical ashift for file-based devices. . .It Sy zap_iterate_prefetch Ns = Ns Sy 1 Ns | Ns 0 Pq int If set, when we start iterating over a ZAP object, prefetch the entire object (all leaf blocks). However, this is limited by .Sy dmu_prefetch_max . . .It Sy zap_micro_max_size Ns = Ns Sy 131072 Ns B Po 128 KiB Pc Pq int Maximum micro ZAP size. A micro ZAP is upgraded to a fat ZAP, once it grows beyond the specified size. . .It Sy zfetch_array_rd_sz Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64 If prefetching is enabled, disable prefetching for reads larger than this size. . .It Sy zfetch_min_distance Ns = Ns Sy 4194304 Ns B Po 4 MiB Pc Pq uint Min bytes to prefetch per stream. Prefetch distance starts from the demand access size and quickly grows to this value, doubling on each hit. After that it may grow further by 1/8 per hit, but only if some prefetch since last time haven't completed in time to satisfy demand request, i.e. prefetch depth didn't cover the read latency or the pool got saturated. . .It Sy zfetch_max_distance Ns = Ns Sy 67108864 Ns B Po 64 MiB Pc Pq uint Max bytes to prefetch per stream. . .It Sy zfetch_max_idistance Ns = Ns Sy 67108864 Ns B Po 64 MiB Pc Pq uint Max bytes to prefetch indirects for per stream. . .It Sy zfetch_max_streams Ns = Ns Sy 8 Pq uint Max number of streams per zfetch (prefetch streams per file). . .It Sy zfetch_min_sec_reap Ns = Ns Sy 1 Pq uint Min time before inactive prefetch stream can be reclaimed . .It Sy zfetch_max_sec_reap Ns = Ns Sy 2 Pq uint Max time before inactive prefetch stream can be deleted . .It Sy zfs_abd_scatter_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Enables ARC from using scatter/gather lists and forces all allocations to be linear in kernel memory. Disabling can improve performance in some code paths at the expense of fragmented kernel memory. . .It Sy zfs_abd_scatter_max_order Ns = Ns Sy MAX_ORDER\-1 Pq uint Maximum number of consecutive memory pages allocated in a single block for scatter/gather lists. .Pp The value of .Sy MAX_ORDER depends on kernel configuration. . .It Sy zfs_abd_scatter_min_size Ns = Ns Sy 1536 Ns B Po 1.5 KiB Pc Pq uint This is the minimum allocation size that will use scatter (page-based) ABDs. Smaller allocations will use linear ABDs. . .It Sy zfs_arc_dnode_limit Ns = Ns Sy 0 Ns B Pq u64 When the number of bytes consumed by dnodes in the ARC exceeds this number of bytes, try to unpin some of it in response to demand for non-metadata. This value acts as a ceiling to the amount of dnode metadata, and defaults to .Sy 0 , which indicates that a percent which is based on .Sy zfs_arc_dnode_limit_percent of the ARC meta buffers that may be used for dnodes. .It Sy zfs_arc_dnode_limit_percent Ns = Ns Sy 10 Ns % Pq u64 Percentage that can be consumed by dnodes of ARC meta buffers. .Pp See also .Sy zfs_arc_dnode_limit , which serves a similar purpose but has a higher priority if nonzero. . .It Sy zfs_arc_dnode_reduce_percent Ns = Ns Sy 10 Ns % Pq u64 Percentage of ARC dnodes to try to scan in response to demand for non-metadata when the number of bytes consumed by dnodes exceeds .Sy zfs_arc_dnode_limit . . .It Sy zfs_arc_average_blocksize Ns = Ns Sy 8192 Ns B Po 8 KiB Pc Pq uint The ARC's buffer hash table is sized based on the assumption of an average block size of this value. This works out to roughly 1 MiB of hash table per 1 GiB of physical memory with 8-byte pointers. For configurations with a known larger average block size, this value can be increased to reduce the memory footprint. . .It Sy zfs_arc_eviction_pct Ns = Ns Sy 200 Ns % Pq uint When .Fn arc_is_overflowing , .Fn arc_get_data_impl waits for this percent of the requested amount of data to be evicted. For example, by default, for every .Em 2 KiB that's evicted, .Em 1 KiB of it may be "reused" by a new allocation. Since this is above .Sy 100 Ns % , it ensures that progress is made towards getting .Sy arc_size No under Sy arc_c . Since this is finite, it ensures that allocations can still happen, even during the potentially long time that .Sy arc_size No is more than Sy arc_c . . .It Sy zfs_arc_evict_batch_limit Ns = Ns Sy 10 Pq uint Number ARC headers to evict per sub-list before proceeding to another sub-list. This batch-style operation prevents entire sub-lists from being evicted at once but comes at a cost of additional unlocking and locking. . .It Sy zfs_arc_grow_retry Ns = Ns Sy 0 Ns s Pq uint If set to a non zero value, it will replace the .Sy arc_grow_retry value with this value. The .Sy arc_grow_retry .No value Pq default Sy 5 Ns s is the number of seconds the ARC will wait before trying to resume growth after a memory pressure event. . .It Sy zfs_arc_lotsfree_percent Ns = Ns Sy 10 Ns % Pq int Throttle I/O when free system memory drops below this percentage of total system memory. Setting this value to .Sy 0 will disable the throttle. . .It Sy zfs_arc_max Ns = Ns Sy 0 Ns B Pq u64 Max size of ARC in bytes. If .Sy 0 , then the max size of ARC is determined by the amount of system memory installed. Under Linux, half of system memory will be used as the limit. Under .Fx , the larger of .Sy all_system_memory No \- Sy 1 GiB and .Sy 5/8 No \(mu Sy all_system_memory will be used as the limit. This value must be at least .Sy 67108864 Ns B Pq 64 MiB . .Pp This value can be changed dynamically, with some caveats. It cannot be set back to .Sy 0 while running, and reducing it below the current ARC size will not cause the ARC to shrink without memory pressure to induce shrinking. . .It Sy zfs_arc_meta_balance Ns = Ns Sy 500 Pq uint Balance between metadata and data on ghost hits. Values above 100 increase metadata caching by proportionally reducing effect of ghost data hits on target data/metadata rate. . .It Sy zfs_arc_min Ns = Ns Sy 0 Ns B Pq u64 Min size of ARC in bytes. .No If set to Sy 0 , arc_c_min will default to consuming the larger of .Sy 32 MiB and .Sy all_system_memory No / Sy 32 . . .It Sy zfs_arc_min_prefetch_ms Ns = Ns Sy 0 Ns ms Ns Po Ns ≡ Ns 1s Pc Pq uint Minimum time prefetched blocks are locked in the ARC. . .It Sy zfs_arc_min_prescient_prefetch_ms Ns = Ns Sy 0 Ns ms Ns Po Ns ≡ Ns 6s Pc Pq uint Minimum time "prescient prefetched" blocks are locked in the ARC. These blocks are meant to be prefetched fairly aggressively ahead of the code that may use them. . .It Sy zfs_arc_prune_task_threads Ns = Ns Sy 1 Pq int Number of arc_prune threads. .Fx does not need more than one. Linux may theoretically use one per mount point up to number of CPUs, but that was not proven to be useful. . .It Sy zfs_max_missing_tvds Ns = Ns Sy 0 Pq int Number of missing top-level vdevs which will be allowed during pool import (only in read-only mode). . .It Sy zfs_max_nvlist_src_size Ns = Sy 0 Pq u64 Maximum size in bytes allowed to be passed as .Sy zc_nvlist_src_size for ioctls on .Pa /dev/zfs . This prevents a user from causing the kernel to allocate an excessive amount of memory. When the limit is exceeded, the ioctl fails with .Sy EINVAL and a description of the error is sent to the .Pa zfs-dbgmsg log. This parameter should not need to be touched under normal circumstances. If .Sy 0 , equivalent to a quarter of the user-wired memory limit under .Fx and to .Sy 134217728 Ns B Pq 128 MiB under Linux. . .It Sy zfs_multilist_num_sublists Ns = Ns Sy 0 Pq uint To allow more fine-grained locking, each ARC state contains a series of lists for both data and metadata objects. Locking is performed at the level of these "sub-lists". This parameters controls the number of sub-lists per ARC state, and also applies to other uses of the multilist data structure. .Pp If .Sy 0 , equivalent to the greater of the number of online CPUs and .Sy 4 . . .It Sy zfs_arc_overflow_shift Ns = Ns Sy 8 Pq int The ARC size is considered to be overflowing if it exceeds the current ARC target size .Pq Sy arc_c by thresholds determined by this parameter. Exceeding by .Sy ( arc_c No >> Sy zfs_arc_overflow_shift ) No / Sy 2 starts ARC reclamation process. If that appears insufficient, exceeding by .Sy ( arc_c No >> Sy zfs_arc_overflow_shift ) No \(mu Sy 1.5 blocks new buffer allocation until the reclaim thread catches up. Started reclamation process continues till ARC size returns below the target size. .Pp The default value of .Sy 8 causes the ARC to start reclamation if it exceeds the target size by .Em 0.2% of the target size, and block allocations by .Em 0.6% . . .It Sy zfs_arc_shrink_shift Ns = Ns Sy 0 Pq uint If nonzero, this will update .Sy arc_shrink_shift Pq default Sy 7 with the new value. . .It Sy zfs_arc_pc_percent Ns = Ns Sy 0 Ns % Po off Pc Pq uint Percent of pagecache to reclaim ARC to. .Pp This tunable allows the ZFS ARC to play more nicely with the kernel's LRU pagecache. It can guarantee that the ARC size won't collapse under scanning pressure on the pagecache, yet still allows the ARC to be reclaimed down to .Sy zfs_arc_min if necessary. This value is specified as percent of pagecache size (as measured by .Sy NR_FILE_PAGES ) , where that percent may exceed .Sy 100 . This only operates during memory pressure/reclaim. . .It Sy zfs_arc_shrinker_limit Ns = Ns Sy 10000 Pq int This is a limit on how many pages the ARC shrinker makes available for eviction in response to one page allocation attempt. Note that in practice, the kernel's shrinker can ask us to evict up to about four times this for one allocation attempt. .Pp The default limit of .Sy 10000 Pq in practice, Em 160 MiB No per allocation attempt with 4 KiB pages limits the amount of time spent attempting to reclaim ARC memory to less than 100 ms per allocation attempt, even with a small average compressed block size of ~8 KiB. .Pp The parameter can be set to 0 (zero) to disable the limit, and only applies on Linux. . .It Sy zfs_arc_sys_free Ns = Ns Sy 0 Ns B Pq u64 The target number of bytes the ARC should leave as free memory on the system. If zero, equivalent to the bigger of .Sy 512 KiB No and Sy all_system_memory/64 . . .It Sy zfs_autoimport_disable Ns = Ns Sy 1 Ns | Ns 0 Pq int Disable pool import at module load by ignoring the cache file .Pq Sy spa_config_path . . .It Sy zfs_checksum_events_per_second Ns = Ns Sy 20 Ns /s Pq uint Rate limit checksum events to this many per second. Note that this should not be set below the ZED thresholds (currently 10 checksums over 10 seconds) or else the daemon may not trigger any action. . .It Sy zfs_commit_timeout_pct Ns = Ns Sy 5 Ns % Pq uint This controls the amount of time that a ZIL block (lwb) will remain "open" when it isn't "full", and it has a thread waiting for it to be committed to stable storage. The timeout is scaled based on a percentage of the last lwb latency to avoid significantly impacting the latency of each individual transaction record (itx). . .It Sy zfs_condense_indirect_commit_entry_delay_ms Ns = Ns Sy 0 Ns ms Pq int Vdev indirection layer (used for device removal) sleeps for this many milliseconds during mapping generation. Intended for use with the test suite to throttle vdev removal speed. . .It Sy zfs_condense_indirect_obsolete_pct Ns = Ns Sy 25 Ns % Pq uint Minimum percent of obsolete bytes in vdev mapping required to attempt to condense .Pq see Sy zfs_condense_indirect_vdevs_enable . Intended for use with the test suite to facilitate triggering condensing as needed. . .It Sy zfs_condense_indirect_vdevs_enable Ns = Ns Sy 1 Ns | Ns 0 Pq int Enable condensing indirect vdev mappings. When set, attempt to condense indirect vdev mappings if the mapping uses more than .Sy zfs_condense_min_mapping_bytes bytes of memory and if the obsolete space map object uses more than .Sy zfs_condense_max_obsolete_bytes bytes on-disk. The condensing process is an attempt to save memory by removing obsolete mappings. . .It Sy zfs_condense_max_obsolete_bytes Ns = Ns Sy 1073741824 Ns B Po 1 GiB Pc Pq u64 Only attempt to condense indirect vdev mappings if the on-disk size of the obsolete space map object is greater than this number of bytes .Pq see Sy zfs_condense_indirect_vdevs_enable . . .It Sy zfs_condense_min_mapping_bytes Ns = Ns Sy 131072 Ns B Po 128 KiB Pc Pq u64 Minimum size vdev mapping to attempt to condense .Pq see Sy zfs_condense_indirect_vdevs_enable . . .It Sy zfs_dbgmsg_enable Ns = Ns Sy 1 Ns | Ns 0 Pq int Internally ZFS keeps a small log to facilitate debugging. The log is enabled by default, and can be disabled by unsetting this option. The contents of the log can be accessed by reading .Pa /proc/spl/kstat/zfs/dbgmsg . Writing .Sy 0 to the file clears the log. .Pp This setting does not influence debug prints due to .Sy zfs_flags . . .It Sy zfs_dbgmsg_maxsize Ns = Ns Sy 4194304 Ns B Po 4 MiB Pc Pq uint Maximum size of the internal ZFS debug log. . .It Sy zfs_dbuf_state_index Ns = Ns Sy 0 Pq int Historically used for controlling what reporting was available under .Pa /proc/spl/kstat/zfs . No effect. . .It Sy zfs_deadman_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int When a pool sync operation takes longer than .Sy zfs_deadman_synctime_ms , or when an individual I/O operation takes longer than .Sy zfs_deadman_ziotime_ms , then the operation is considered to be "hung". If .Sy zfs_deadman_enabled is set, then the deadman behavior is invoked as described by .Sy zfs_deadman_failmode . By default, the deadman is enabled and set to .Sy wait which results in "hung" I/O operations only being logged. The deadman is automatically disabled when a pool gets suspended. . .It Sy zfs_deadman_failmode Ns = Ns Sy wait Pq charp Controls the failure behavior when the deadman detects a "hung" I/O operation. Valid values are: .Bl -tag -compact -offset 4n -width "continue" .It Sy wait Wait for a "hung" operation to complete. For each "hung" operation a "deadman" event will be posted describing that operation. .It Sy continue Attempt to recover from a "hung" operation by re-dispatching it to the I/O pipeline if possible. .It Sy panic Panic the system. This can be used to facilitate automatic fail-over to a properly configured fail-over partner. .El . .It Sy zfs_deadman_checktime_ms Ns = Ns Sy 60000 Ns ms Po 1 min Pc Pq u64 Check time in milliseconds. This defines the frequency at which we check for hung I/O requests and potentially invoke the .Sy zfs_deadman_failmode behavior. . .It Sy zfs_deadman_synctime_ms Ns = Ns Sy 600000 Ns ms Po 10 min Pc Pq u64 Interval in milliseconds after which the deadman is triggered and also the interval after which a pool sync operation is considered to be "hung". Once this limit is exceeded the deadman will be invoked every .Sy zfs_deadman_checktime_ms milliseconds until the pool sync completes. . .It Sy zfs_deadman_ziotime_ms Ns = Ns Sy 300000 Ns ms Po 5 min Pc Pq u64 Interval in milliseconds after which the deadman is triggered and an individual I/O operation is considered to be "hung". As long as the operation remains "hung", the deadman will be invoked every .Sy zfs_deadman_checktime_ms milliseconds until the operation completes. . .It Sy zfs_dedup_prefetch Ns = Ns Sy 0 Ns | Ns 1 Pq int Enable prefetching dedup-ed blocks which are going to be freed. . .It Sy zfs_delay_min_dirty_percent Ns = Ns Sy 60 Ns % Pq uint Start to delay each transaction once there is this amount of dirty data, expressed as a percentage of .Sy zfs_dirty_data_max . This value should be at least .Sy zfs_vdev_async_write_active_max_dirty_percent . .No See Sx ZFS TRANSACTION DELAY . . .It Sy zfs_delay_scale Ns = Ns Sy 500000 Pq int This controls how quickly the transaction delay approaches infinity. Larger values cause longer delays for a given amount of dirty data. .Pp For the smoothest delay, this value should be about 1 billion divided by the maximum number of operations per second. This will smoothly handle between ten times and a tenth of this number. .No See Sx ZFS TRANSACTION DELAY . .Pp .Sy zfs_delay_scale No \(mu Sy zfs_dirty_data_max Em must No be smaller than Sy 2^64 . . .It Sy zfs_disable_ivset_guid_check Ns = Ns Sy 0 Ns | Ns 1 Pq int Disables requirement for IVset GUIDs to be present and match when doing a raw receive of encrypted datasets. Intended for users whose pools were created with OpenZFS pre-release versions and now have compatibility issues. . .It Sy zfs_key_max_salt_uses Ns = Ns Sy 400000000 Po 4*10^8 Pc Pq ulong Maximum number of uses of a single salt value before generating a new one for encrypted datasets. The default value is also the maximum. . .It Sy zfs_object_mutex_size Ns = Ns Sy 64 Pq uint Size of the znode hashtable used for holds. .Pp Due to the need to hold locks on objects that may not exist yet, kernel mutexes are not created per-object and instead a hashtable is used where collisions will result in objects waiting when there is not actually contention on the same object. . .It Sy zfs_slow_io_events_per_second Ns = Ns Sy 20 Ns /s Pq int Rate limit delay and deadman zevents (which report slow I/O operations) to this many per second. . .It Sy zfs_unflushed_max_mem_amt Ns = Ns Sy 1073741824 Ns B Po 1 GiB Pc Pq u64 Upper-bound limit for unflushed metadata changes to be held by the log spacemap in memory, in bytes. . .It Sy zfs_unflushed_max_mem_ppm Ns = Ns Sy 1000 Ns ppm Po 0.1% Pc Pq u64 Part of overall system memory that ZFS allows to be used for unflushed metadata changes by the log spacemap, in millionths. . .It Sy zfs_unflushed_log_block_max Ns = Ns Sy 131072 Po 128k Pc Pq u64 Describes the maximum number of log spacemap blocks allowed for each pool. The default value means that the space in all the log spacemaps can add up to no more than .Sy 131072 blocks (which means .Em 16 GiB of logical space before compression and ditto blocks, assuming that blocksize is .Em 128 KiB ) . .Pp This tunable is important because it involves a trade-off between import time after an unclean export and the frequency of flushing metaslabs. The higher this number is, the more log blocks we allow when the pool is active which means that we flush metaslabs less often and thus decrease the number of I/O operations for spacemap updates per TXG. At the same time though, that means that in the event of an unclean export, there will be more log spacemap blocks for us to read, inducing overhead in the import time of the pool. The lower the number, the amount of flushing increases, destroying log blocks quicker as they become obsolete faster, which leaves less blocks to be read during import time after a crash. .Pp Each log spacemap block existing during pool import leads to approximately one extra logical I/O issued. This is the reason why this tunable is exposed in terms of blocks rather than space used. . .It Sy zfs_unflushed_log_block_min Ns = Ns Sy 1000 Pq u64 If the number of metaslabs is small and our incoming rate is high, we could get into a situation that we are flushing all our metaslabs every TXG. Thus we always allow at least this many log blocks. . .It Sy zfs_unflushed_log_block_pct Ns = Ns Sy 400 Ns % Pq u64 Tunable used to determine the number of blocks that can be used for the spacemap log, expressed as a percentage of the total number of unflushed metaslabs in the pool. . .It Sy zfs_unflushed_log_txg_max Ns = Ns Sy 1000 Pq u64 Tunable limiting maximum time in TXGs any metaslab may remain unflushed. It effectively limits maximum number of unflushed per-TXG spacemap logs that need to be read after unclean pool export. . .It Sy zfs_unlink_suspend_progress Ns = Ns Sy 0 Ns | Ns 1 Pq uint When enabled, files will not be asynchronously removed from the list of pending unlinks and the space they consume will be leaked. Once this option has been disabled and the dataset is remounted, the pending unlinks will be processed and the freed space returned to the pool. This option is used by the test suite. . .It Sy zfs_delete_blocks Ns = Ns Sy 20480 Pq ulong This is the used to define a large file for the purposes of deletion. Files containing more than .Sy zfs_delete_blocks will be deleted asynchronously, while smaller files are deleted synchronously. Decreasing this value will reduce the time spent in an .Xr unlink 2 system call, at the expense of a longer delay before the freed space is available. This only applies on Linux. . .It Sy zfs_dirty_data_max Ns = Pq int Determines the dirty space limit in bytes. Once this limit is exceeded, new writes are halted until space frees up. This parameter takes precedence over .Sy zfs_dirty_data_max_percent . .No See Sx ZFS TRANSACTION DELAY . .Pp Defaults to .Sy physical_ram/10 , capped at .Sy zfs_dirty_data_max_max . . .It Sy zfs_dirty_data_max_max Ns = Pq int Maximum allowable value of .Sy zfs_dirty_data_max , expressed in bytes. This limit is only enforced at module load time, and will be ignored if .Sy zfs_dirty_data_max is later changed. This parameter takes precedence over .Sy zfs_dirty_data_max_max_percent . .No See Sx ZFS TRANSACTION DELAY . .Pp Defaults to .Sy min(physical_ram/4, 4GiB) , or .Sy min(physical_ram/4, 1GiB) for 32-bit systems. . .It Sy zfs_dirty_data_max_max_percent Ns = Ns Sy 25 Ns % Pq uint Maximum allowable value of .Sy zfs_dirty_data_max , expressed as a percentage of physical RAM. This limit is only enforced at module load time, and will be ignored if .Sy zfs_dirty_data_max is later changed. The parameter .Sy zfs_dirty_data_max_max takes precedence over this one. .No See Sx ZFS TRANSACTION DELAY . . .It Sy zfs_dirty_data_max_percent Ns = Ns Sy 10 Ns % Pq uint Determines the dirty space limit, expressed as a percentage of all memory. Once this limit is exceeded, new writes are halted until space frees up. The parameter .Sy zfs_dirty_data_max takes precedence over this one. .No See Sx ZFS TRANSACTION DELAY . .Pp Subject to .Sy zfs_dirty_data_max_max . . .It Sy zfs_dirty_data_sync_percent Ns = Ns Sy 20 Ns % Pq uint Start syncing out a transaction group if there's at least this much dirty data .Pq as a percentage of Sy zfs_dirty_data_max . This should be less than .Sy zfs_vdev_async_write_active_min_dirty_percent . . .It Sy zfs_wrlog_data_max Ns = Pq int The upper limit of write-transaction zil log data size in bytes. Write operations are throttled when approaching the limit until log data is cleared out after transaction group sync. Because of some overhead, it should be set at least 2 times the size of .Sy zfs_dirty_data_max .No to prevent harming normal write throughput . It also should be smaller than the size of the slog device if slog is present. .Pp Defaults to .Sy zfs_dirty_data_max*2 . .It Sy zfs_fallocate_reserve_percent Ns = Ns Sy 110 Ns % Pq uint Since ZFS is a copy-on-write filesystem with snapshots, blocks cannot be preallocated for a file in order to guarantee that later writes will not run out of space. Instead, .Xr fallocate 2 space preallocation only checks that sufficient space is currently available in the pool or the user's project quota allocation, and then creates a sparse file of the requested size. The requested space is multiplied by .Sy zfs_fallocate_reserve_percent to allow additional space for indirect blocks and other internal metadata. Setting this to .Sy 0 disables support for .Xr fallocate 2 and causes it to return .Sy EOPNOTSUPP . . .It Sy zfs_fletcher_4_impl Ns = Ns Sy fastest Pq string Select a fletcher 4 implementation. .Pp Supported selectors are: .Sy fastest , scalar , sse2 , ssse3 , avx2 , avx512f , avx512bw , .No and Sy aarch64_neon . All except .Sy fastest No and Sy scalar require instruction set extensions to be available, and will only appear if ZFS detects that they are present at runtime. If multiple implementations of fletcher 4 are available, the .Sy fastest will be chosen using a micro benchmark. Selecting .Sy scalar results in the original CPU-based calculation being used. Selecting any option other than .Sy fastest No or Sy scalar results in vector instructions from the respective CPU instruction set being used. . .It Sy zfs_blake3_impl Ns = Ns Sy fastest Pq string Select a BLAKE3 implementation. .Pp Supported selectors are: .Sy cycle , fastest , generic , sse2 , sse41 , avx2 , avx512 . All except .Sy cycle , fastest No and Sy generic require instruction set extensions to be available, and will only appear if ZFS detects that they are present at runtime. If multiple implementations of BLAKE3 are available, the .Sy fastest will be chosen using a micro benchmark. You can see the benchmark results by reading this kstat file: .Pa /proc/spl/kstat/zfs/chksum_bench . . .It Sy zfs_free_bpobj_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Enable/disable the processing of the free_bpobj object. . .It Sy zfs_async_block_max_blocks Ns = Ns Sy UINT64_MAX Po unlimited Pc Pq u64 Maximum number of blocks freed in a single TXG. . .It Sy zfs_max_async_dedup_frees Ns = Ns Sy 100000 Po 10^5 Pc Pq u64 Maximum number of dedup blocks freed in a single TXG. . .It Sy zfs_vdev_async_read_max_active Ns = Ns Sy 3 Pq uint Maximum asynchronous read I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_async_read_min_active Ns = Ns Sy 1 Pq uint Minimum asynchronous read I/O operation active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_async_write_active_max_dirty_percent Ns = Ns Sy 60 Ns % Pq uint When the pool has more than this much dirty data, use .Sy zfs_vdev_async_write_max_active to limit active async writes. If the dirty data is between the minimum and maximum, the active I/O limit is linearly interpolated. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_async_write_active_min_dirty_percent Ns = Ns Sy 30 Ns % Pq uint When the pool has less than this much dirty data, use .Sy zfs_vdev_async_write_min_active to limit active async writes. If the dirty data is between the minimum and maximum, the active I/O limit is linearly interpolated. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_async_write_max_active Ns = Ns Sy 10 Pq uint Maximum asynchronous write I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_async_write_min_active Ns = Ns Sy 2 Pq uint Minimum asynchronous write I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . .Pp Lower values are associated with better latency on rotational media but poorer resilver performance. The default value of .Sy 2 was chosen as a compromise. A value of .Sy 3 has been shown to improve resilver performance further at a cost of further increasing latency. . .It Sy zfs_vdev_initializing_max_active Ns = Ns Sy 1 Pq uint Maximum initializing I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_initializing_min_active Ns = Ns Sy 1 Pq uint Minimum initializing I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_max_active Ns = Ns Sy 1000 Pq uint The maximum number of I/O operations active to each device. Ideally, this will be at least the sum of each queue's .Sy max_active . .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_open_timeout_ms Ns = Ns Sy 1000 Pq uint Timeout value to wait before determining a device is missing during import. This is helpful for transient missing paths due to links being briefly removed and recreated in response to udev events. . .It Sy zfs_vdev_rebuild_max_active Ns = Ns Sy 3 Pq uint Maximum sequential resilver I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_rebuild_min_active Ns = Ns Sy 1 Pq uint Minimum sequential resilver I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_removal_max_active Ns = Ns Sy 2 Pq uint Maximum removal I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_removal_min_active Ns = Ns Sy 1 Pq uint Minimum removal I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_scrub_max_active Ns = Ns Sy 2 Pq uint Maximum scrub I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_scrub_min_active Ns = Ns Sy 1 Pq uint Minimum scrub I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_sync_read_max_active Ns = Ns Sy 10 Pq uint Maximum synchronous read I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_sync_read_min_active Ns = Ns Sy 10 Pq uint Minimum synchronous read I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_sync_write_max_active Ns = Ns Sy 10 Pq uint Maximum synchronous write I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_sync_write_min_active Ns = Ns Sy 10 Pq uint Minimum synchronous write I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_trim_max_active Ns = Ns Sy 2 Pq uint Maximum trim/discard I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_trim_min_active Ns = Ns Sy 1 Pq uint Minimum trim/discard I/O operations active to each device. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_nia_delay Ns = Ns Sy 5 Pq uint For non-interactive I/O (scrub, resilver, removal, initialize and rebuild), the number of concurrently-active I/O operations is limited to .Sy zfs_*_min_active , unless the vdev is "idle". When there are no interactive I/O operations active (synchronous or otherwise), and .Sy zfs_vdev_nia_delay operations have completed since the last interactive operation, then the vdev is considered to be "idle", and the number of concurrently-active non-interactive operations is increased to .Sy zfs_*_max_active . .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_nia_credit Ns = Ns Sy 5 Pq uint Some HDDs tend to prioritize sequential I/O so strongly, that concurrent random I/O latency reaches several seconds. On some HDDs this happens even if sequential I/O operations are submitted one at a time, and so setting .Sy zfs_*_max_active Ns = Sy 1 does not help. To prevent non-interactive I/O, like scrub, from monopolizing the device, no more than .Sy zfs_vdev_nia_credit operations can be sent while there are outstanding incomplete interactive operations. This enforced wait ensures the HDD services the interactive I/O within a reasonable amount of time. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_queue_depth_pct Ns = Ns Sy 1000 Ns % Pq uint Maximum number of queued allocations per top-level vdev expressed as a percentage of .Sy zfs_vdev_async_write_max_active , which allows the system to detect devices that are more capable of handling allocations and to allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced, as fuller devices will tend to be slower than empty devices. .Pp Also see .Sy zio_dva_throttle_enabled . . .It Sy zfs_vdev_def_queue_depth Ns = Ns Sy 32 Pq uint Default queue depth for each vdev IO allocator. Higher values allow for better coalescing of sequential writes before sending them to the disk, but can increase transaction commit times. . .It Sy zfs_vdev_failfast_mask Ns = Ns Sy 1 Pq uint Defines if the driver should retire on a given error type. The following options may be bitwise-ored together: .TS box; lbz r l l . Value Name Description _ 1 Device No driver retries on device errors 2 Transport No driver retries on transport errors. 4 Driver No driver retries on driver errors. .TE . .It Sy zfs_expire_snapshot Ns = Ns Sy 300 Ns s Pq int Time before expiring .Pa .zfs/snapshot . . .It Sy zfs_admin_snapshot Ns = Ns Sy 0 Ns | Ns 1 Pq int Allow the creation, removal, or renaming of entries in the .Sy .zfs/snapshot directory to cause the creation, destruction, or renaming of snapshots. When enabled, this functionality works both locally and over NFS exports which have the .Em no_root_squash option set. . .It Sy zfs_flags Ns = Ns Sy 0 Pq int Set additional debugging flags. The following flags may be bitwise-ored together: .TS box; lbz r l l . Value Name Description _ 1 ZFS_DEBUG_DPRINTF Enable dprintf entries in the debug log. * 2 ZFS_DEBUG_DBUF_VERIFY Enable extra dbuf verifications. * 4 ZFS_DEBUG_DNODE_VERIFY Enable extra dnode verifications. 8 ZFS_DEBUG_SNAPNAMES Enable snapshot name verification. * 16 ZFS_DEBUG_MODIFY Check for illegally modified ARC buffers. 64 ZFS_DEBUG_ZIO_FREE Enable verification of block frees. 128 ZFS_DEBUG_HISTOGRAM_VERIFY Enable extra spacemap histogram verifications. 256 ZFS_DEBUG_METASLAB_VERIFY Verify space accounting on disk matches in-memory \fBrange_trees\fP. 512 ZFS_DEBUG_SET_ERROR Enable \fBSET_ERROR\fP and dprintf entries in the debug log. 1024 ZFS_DEBUG_INDIRECT_REMAP Verify split blocks created by device removal. 2048 ZFS_DEBUG_TRIM Verify TRIM ranges are always within the allocatable range tree. 4096 ZFS_DEBUG_LOG_SPACEMAP Verify that the log summary is consistent with the spacemap log and enable \fBzfs_dbgmsgs\fP for metaslab loading and flushing. .TE .Sy \& * No Requires debug build . . .It Sy zfs_btree_verify_intensity Ns = Ns Sy 0 Pq uint Enables btree verification. The following settings are culminative: .TS box; lbz r l l . Value Description 1 Verify height. 2 Verify pointers from children to parent. 3 Verify element counts. 4 Verify element order. (expensive) * 5 Verify unused memory is poisoned. (expensive) .TE .Sy \& * No Requires debug build . . .It Sy zfs_free_leak_on_eio Ns = Ns Sy 0 Ns | Ns 1 Pq int If destroy encounters an .Sy EIO while reading metadata (e.g. indirect blocks), space referenced by the missing metadata can not be freed. Normally this causes the background destroy to become "stalled", as it is unable to make forward progress. While in this stalled state, all remaining space to free from the error-encountering filesystem is "temporarily leaked". Set this flag to cause it to ignore the .Sy EIO , permanently leak the space from indirect blocks that can not be read, and continue to free everything else that it can. .Pp The default "stalling" behavior is useful if the storage partially fails (i.e. some but not all I/O operations fail), and then later recovers. In this case, we will be able to continue pool operations while it is partially failed, and when it recovers, we can continue to free the space, with no leaks. Note, however, that this case is actually fairly rare. .Pp Typically pools either .Bl -enum -compact -offset 4n -width "1." .It fail completely (but perhaps temporarily, e.g. due to a top-level vdev going offline), or .It have localized, permanent errors (e.g. disk returns the wrong data due to bit flip or firmware bug). .El In the former case, this setting does not matter because the pool will be suspended and the sync thread will not be able to make forward progress regardless. In the latter, because the error is permanent, the best we can do is leak the minimum amount of space, which is what setting this flag will do. It is therefore reasonable for this flag to normally be set, but we chose the more conservative approach of not setting it, so that there is no possibility of leaking space in the "partial temporary" failure case. . .It Sy zfs_free_min_time_ms Ns = Ns Sy 1000 Ns ms Po 1s Pc Pq uint During a .Nm zfs Cm destroy operation using the .Sy async_destroy feature, a minimum of this much time will be spent working on freeing blocks per TXG. . .It Sy zfs_obsolete_min_time_ms Ns = Ns Sy 500 Ns ms Pq uint Similar to .Sy zfs_free_min_time_ms , but for cleanup of old indirection records for removed vdevs. . .It Sy zfs_immediate_write_sz Ns = Ns Sy 32768 Ns B Po 32 KiB Pc Pq s64 Largest data block to write to the ZIL. Larger blocks will be treated as if the dataset being written to had the .Sy logbias Ns = Ns Sy throughput property set. . .It Sy zfs_initialize_value Ns = Ns Sy 16045690984833335022 Po 0xDEADBEEFDEADBEEE Pc Pq u64 Pattern written to vdev free space by .Xr zpool-initialize 8 . . .It Sy zfs_initialize_chunk_size Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64 Size of writes used by .Xr zpool-initialize 8 . This option is used by the test suite. . .It Sy zfs_livelist_max_entries Ns = Ns Sy 500000 Po 5*10^5 Pc Pq u64 The threshold size (in block pointers) at which we create a new sub-livelist. Larger sublists are more costly from a memory perspective but the fewer sublists there are, the lower the cost of insertion. . .It Sy zfs_livelist_min_percent_shared Ns = Ns Sy 75 Ns % Pq int If the amount of shared space between a snapshot and its clone drops below this threshold, the clone turns off the livelist and reverts to the old deletion method. This is in place because livelists no long give us a benefit once a clone has been overwritten enough. . .It Sy zfs_livelist_condense_new_alloc Ns = Ns Sy 0 Pq int Incremented each time an extra ALLOC blkptr is added to a livelist entry while it is being condensed. This option is used by the test suite to track race conditions. . .It Sy zfs_livelist_condense_sync_cancel Ns = Ns Sy 0 Pq int Incremented each time livelist condensing is canceled while in .Fn spa_livelist_condense_sync . This option is used by the test suite to track race conditions. . .It Sy zfs_livelist_condense_sync_pause Ns = Ns Sy 0 Ns | Ns 1 Pq int When set, the livelist condense process pauses indefinitely before executing the synctask \(em .Fn spa_livelist_condense_sync . This option is used by the test suite to trigger race conditions. . .It Sy zfs_livelist_condense_zthr_cancel Ns = Ns Sy 0 Pq int Incremented each time livelist condensing is canceled while in .Fn spa_livelist_condense_cb . This option is used by the test suite to track race conditions. . .It Sy zfs_livelist_condense_zthr_pause Ns = Ns Sy 0 Ns | Ns 1 Pq int When set, the livelist condense process pauses indefinitely before executing the open context condensing work in .Fn spa_livelist_condense_cb . This option is used by the test suite to trigger race conditions. . .It Sy zfs_lua_max_instrlimit Ns = Ns Sy 100000000 Po 10^8 Pc Pq u64 The maximum execution time limit that can be set for a ZFS channel program, specified as a number of Lua instructions. . .It Sy zfs_lua_max_memlimit Ns = Ns Sy 104857600 Po 100 MiB Pc Pq u64 The maximum memory limit that can be set for a ZFS channel program, specified in bytes. . .It Sy zfs_max_dataset_nesting Ns = Ns Sy 50 Pq int The maximum depth of nested datasets. This value can be tuned temporarily to fix existing datasets that exceed the predefined limit. . .It Sy zfs_max_log_walking Ns = Ns Sy 5 Pq u64 The number of past TXGs that the flushing algorithm of the log spacemap feature uses to estimate incoming log blocks. . .It Sy zfs_max_logsm_summary_length Ns = Ns Sy 10 Pq u64 Maximum number of rows allowed in the summary of the spacemap log. . .It Sy zfs_max_recordsize Ns = Ns Sy 16777216 Po 16 MiB Pc Pq uint We currently support block sizes from .Em 512 Po 512 B Pc No to Em 16777216 Po 16 MiB Pc . The benefits of larger blocks, and thus larger I/O, need to be weighed against the cost of COWing a giant block to modify one byte. Additionally, very large blocks can have an impact on I/O latency, and also potentially on the memory allocator. Therefore, we formerly forbade creating blocks larger than 1M. Larger blocks could be created by changing it, and pools with larger blocks can always be imported and used, regardless of this setting. . .It Sy zfs_allow_redacted_dataset_mount Ns = Ns Sy 0 Ns | Ns 1 Pq int Allow datasets received with redacted send/receive to be mounted. Normally disabled because these datasets may be missing key data. . .It Sy zfs_min_metaslabs_to_flush Ns = Ns Sy 1 Pq u64 Minimum number of metaslabs to flush per dirty TXG. . .It Sy zfs_metaslab_fragmentation_threshold Ns = Ns Sy 70 Ns % Pq uint Allow metaslabs to keep their active state as long as their fragmentation percentage is no more than this value. An active metaslab that exceeds this threshold will no longer keep its active status allowing better metaslabs to be selected. . .It Sy zfs_mg_fragmentation_threshold Ns = Ns Sy 95 Ns % Pq uint Metaslab groups are considered eligible for allocations if their fragmentation metric (measured as a percentage) is less than or equal to this value. If a metaslab group exceeds this threshold then it will be skipped unless all metaslab groups within the metaslab class have also crossed this threshold. . .It Sy zfs_mg_noalloc_threshold Ns = Ns Sy 0 Ns % Pq uint Defines a threshold at which metaslab groups should be eligible for allocations. The value is expressed as a percentage of free space beyond which a metaslab group is always eligible for allocations. If a metaslab group's free space is less than or equal to the threshold, the allocator will avoid allocating to that group unless all groups in the pool have reached the threshold. Once all groups have reached the threshold, all groups are allowed to accept allocations. The default value of .Sy 0 disables the feature and causes all metaslab groups to be eligible for allocations. .Pp This parameter allows one to deal with pools having heavily imbalanced vdevs such as would be the case when a new vdev has been added. Setting the threshold to a non-zero percentage will stop allocations from being made to vdevs that aren't filled to the specified percentage and allow lesser filled vdevs to acquire more allocations than they otherwise would under the old .Sy zfs_mg_alloc_failures facility. . .It Sy zfs_ddt_data_is_special Ns = Ns Sy 1 Ns | Ns 0 Pq int If enabled, ZFS will place DDT data into the special allocation class. . .It Sy zfs_user_indirect_is_special Ns = Ns Sy 1 Ns | Ns 0 Pq int If enabled, ZFS will place user data indirect blocks into the special allocation class. . .It Sy zfs_multihost_history Ns = Ns Sy 0 Pq uint Historical statistics for this many latest multihost updates will be available in .Pa /proc/spl/kstat/zfs/ Ns Ao Ar pool Ac Ns Pa /multihost . . .It Sy zfs_multihost_interval Ns = Ns Sy 1000 Ns ms Po 1 s Pc Pq u64 Used to control the frequency of multihost writes which are performed when the .Sy multihost pool property is on. This is one of the factors used to determine the length of the activity check during import. .Pp The multihost write period is .Sy zfs_multihost_interval No / Sy leaf-vdevs . On average a multihost write will be issued for each leaf vdev every .Sy zfs_multihost_interval milliseconds. In practice, the observed period can vary with the I/O load and this observed value is the delay which is stored in the uberblock. . .It Sy zfs_multihost_import_intervals Ns = Ns Sy 20 Pq uint Used to control the duration of the activity test on import. Smaller values of .Sy zfs_multihost_import_intervals will reduce the import time but increase the risk of failing to detect an active pool. The total activity check time is never allowed to drop below one second. .Pp On import the activity check waits a minimum amount of time determined by .Sy zfs_multihost_interval No \(mu Sy zfs_multihost_import_intervals , or the same product computed on the host which last had the pool imported, whichever is greater. The activity check time may be further extended if the value of MMP delay found in the best uberblock indicates actual multihost updates happened at longer intervals than .Sy zfs_multihost_interval . A minimum of .Em 100 ms is enforced. .Pp .Sy 0 No is equivalent to Sy 1 . . .It Sy zfs_multihost_fail_intervals Ns = Ns Sy 10 Pq uint Controls the behavior of the pool when multihost write failures or delays are detected. .Pp When .Sy 0 , multihost write failures or delays are ignored. The failures will still be reported to the ZED which depending on its configuration may take action such as suspending the pool or offlining a device. .Pp Otherwise, the pool will be suspended if .Sy zfs_multihost_fail_intervals No \(mu Sy zfs_multihost_interval milliseconds pass without a successful MMP write. This guarantees the activity test will see MMP writes if the pool is imported. .Sy 1 No is equivalent to Sy 2 ; this is necessary to prevent the pool from being suspended due to normal, small I/O latency variations. . .It Sy zfs_no_scrub_io Ns = Ns Sy 0 Ns | Ns 1 Pq int Set to disable scrub I/O. This results in scrubs not actually scrubbing data and simply doing a metadata crawl of the pool instead. . .It Sy zfs_no_scrub_prefetch Ns = Ns Sy 0 Ns | Ns 1 Pq int Set to disable block prefetching for scrubs. . .It Sy zfs_nocacheflush Ns = Ns Sy 0 Ns | Ns 1 Pq int Disable cache flush operations on disks when writing. Setting this will cause pool corruption on power loss if a volatile out-of-order write cache is enabled. . .It Sy zfs_nopwrite_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Allow no-operation writes. The occurrence of nopwrites will further depend on other pool properties .Pq i.a. the checksumming and compression algorithms . . .It Sy zfs_dmu_offset_next_sync Ns = Ns Sy 1 Ns | Ns 0 Pq int Enable forcing TXG sync to find holes. When enabled forces ZFS to sync data when .Sy SEEK_HOLE No or Sy SEEK_DATA flags are used allowing holes in a file to be accurately reported. When disabled holes will not be reported in recently dirtied files. . .It Sy zfs_pd_bytes_max Ns = Ns Sy 52428800 Ns B Po 50 MiB Pc Pq int The number of bytes which should be prefetched during a pool traversal, like .Nm zfs Cm send or other data crawling operations. . .It Sy zfs_traverse_indirect_prefetch_limit Ns = Ns Sy 32 Pq uint The number of blocks pointed by indirect (non-L0) block which should be prefetched during a pool traversal, like .Nm zfs Cm send or other data crawling operations. . .It Sy zfs_per_txg_dirty_frees_percent Ns = Ns Sy 30 Ns % Pq u64 Control percentage of dirtied indirect blocks from frees allowed into one TXG. After this threshold is crossed, additional frees will wait until the next TXG. .Sy 0 No disables this throttle . . .It Sy zfs_prefetch_disable Ns = Ns Sy 0 Ns | Ns 1 Pq int Disable predictive prefetch. Note that it leaves "prescient" prefetch .Pq for, e.g., Nm zfs Cm send intact. Unlike predictive prefetch, prescient prefetch never issues I/O that ends up not being needed, so it can't hurt performance. . .It Sy zfs_qat_checksum_disable Ns = Ns Sy 0 Ns | Ns 1 Pq int Disable QAT hardware acceleration for SHA256 checksums. May be unset after the ZFS modules have been loaded to initialize the QAT hardware as long as support is compiled in and the QAT driver is present. . .It Sy zfs_qat_compress_disable Ns = Ns Sy 0 Ns | Ns 1 Pq int Disable QAT hardware acceleration for gzip compression. May be unset after the ZFS modules have been loaded to initialize the QAT hardware as long as support is compiled in and the QAT driver is present. . .It Sy zfs_qat_encrypt_disable Ns = Ns Sy 0 Ns | Ns 1 Pq int Disable QAT hardware acceleration for AES-GCM encryption. May be unset after the ZFS modules have been loaded to initialize the QAT hardware as long as support is compiled in and the QAT driver is present. . .It Sy zfs_vnops_read_chunk_size Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64 Bytes to read per chunk. . .It Sy zfs_read_history Ns = Ns Sy 0 Pq uint Historical statistics for this many latest reads will be available in .Pa /proc/spl/kstat/zfs/ Ns Ao Ar pool Ac Ns Pa /reads . . .It Sy zfs_read_history_hits Ns = Ns Sy 0 Ns | Ns 1 Pq int Include cache hits in read history . .It Sy zfs_rebuild_max_segment Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64 Maximum read segment size to issue when sequentially resilvering a top-level vdev. . .It Sy zfs_rebuild_scrub_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Automatically start a pool scrub when the last active sequential resilver completes in order to verify the checksums of all blocks which have been resilvered. This is enabled by default and strongly recommended. . .It Sy zfs_rebuild_vdev_limit Ns = Ns Sy 67108864 Ns B Po 64 MiB Pc Pq u64 Maximum amount of I/O that can be concurrently issued for a sequential resilver per leaf device, given in bytes. . .It Sy zfs_reconstruct_indirect_combinations_max Ns = Ns Sy 4096 Pq int If an indirect split block contains more than this many possible unique combinations when being reconstructed, consider it too computationally expensive to check them all. Instead, try at most this many randomly selected combinations each time the block is accessed. This allows all segment copies to participate fairly in the reconstruction when all combinations cannot be checked and prevents repeated use of one bad copy. . .It Sy zfs_recover Ns = Ns Sy 0 Ns | Ns 1 Pq int Set to attempt to recover from fatal errors. This should only be used as a last resort, as it typically results in leaked space, or worse. . .It Sy zfs_removal_ignore_errors Ns = Ns Sy 0 Ns | Ns 1 Pq int Ignore hard I/O errors during device removal. When set, if a device encounters a hard I/O error during the removal process the removal will not be cancelled. This can result in a normally recoverable block becoming permanently damaged and is hence not recommended. This should only be used as a last resort when the pool cannot be returned to a healthy state prior to removing the device. . .It Sy zfs_removal_suspend_progress Ns = Ns Sy 0 Ns | Ns 1 Pq uint This is used by the test suite so that it can ensure that certain actions happen while in the middle of a removal. . .It Sy zfs_remove_max_segment Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq uint The largest contiguous segment that we will attempt to allocate when removing a device. If there is a performance problem with attempting to allocate large blocks, consider decreasing this. The default value is also the maximum. . .It Sy zfs_resilver_disable_defer Ns = Ns Sy 0 Ns | Ns 1 Pq int Ignore the .Sy resilver_defer feature, causing an operation that would start a resilver to immediately restart the one in progress. . .It Sy zfs_resilver_min_time_ms Ns = Ns Sy 3000 Ns ms Po 3 s Pc Pq uint Resilvers are processed by the sync thread. While resilvering, it will spend at least this much time working on a resilver between TXG flushes. . .It Sy zfs_scan_ignore_errors Ns = Ns Sy 0 Ns | Ns 1 Pq int If set, remove the DTL (dirty time list) upon completion of a pool scan (scrub), even if there were unrepairable errors. Intended to be used during pool repair or recovery to stop resilvering when the pool is next imported. . .It Sy zfs_scrub_min_time_ms Ns = Ns Sy 1000 Ns ms Po 1 s Pc Pq uint Scrubs are processed by the sync thread. While scrubbing, it will spend at least this much time working on a scrub between TXG flushes. . .It Sy zfs_scrub_error_blocks_per_txg Ns = Ns Sy 4096 Pq uint Error blocks to be scrubbed in one txg. . .It Sy zfs_scan_checkpoint_intval Ns = Ns Sy 7200 Ns s Po 2 hour Pc Pq uint To preserve progress across reboots, the sequential scan algorithm periodically needs to stop metadata scanning and issue all the verification I/O to disk. The frequency of this flushing is determined by this tunable. . .It Sy zfs_scan_fill_weight Ns = Ns Sy 3 Pq uint This tunable affects how scrub and resilver I/O segments are ordered. A higher number indicates that we care more about how filled in a segment is, while a lower number indicates we care more about the size of the extent without considering the gaps within a segment. This value is only tunable upon module insertion. Changing the value afterwards will have no effect on scrub or resilver performance. . .It Sy zfs_scan_issue_strategy Ns = Ns Sy 0 Pq uint Determines the order that data will be verified while scrubbing or resilvering: .Bl -tag -compact -offset 4n -width "a" .It Sy 1 Data will be verified as sequentially as possible, given the amount of memory reserved for scrubbing .Pq see Sy zfs_scan_mem_lim_fact . This may improve scrub performance if the pool's data is very fragmented. .It Sy 2 The largest mostly-contiguous chunk of found data will be verified first. By deferring scrubbing of small segments, we may later find adjacent data to coalesce and increase the segment size. .It Sy 0 .No Use strategy Sy 1 No during normal verification .No and strategy Sy 2 No while taking a checkpoint . .El . .It Sy zfs_scan_legacy Ns = Ns Sy 0 Ns | Ns 1 Pq int If unset, indicates that scrubs and resilvers will gather metadata in memory before issuing sequential I/O. Otherwise indicates that the legacy algorithm will be used, where I/O is initiated as soon as it is discovered. Unsetting will not affect scrubs or resilvers that are already in progress. . .It Sy zfs_scan_max_ext_gap Ns = Ns Sy 2097152 Ns B Po 2 MiB Pc Pq int Sets the largest gap in bytes between scrub/resilver I/O operations that will still be considered sequential for sorting purposes. Changing this value will not affect scrubs or resilvers that are already in progress. . .It Sy zfs_scan_mem_lim_fact Ns = Ns Sy 20 Ns ^-1 Pq uint Maximum fraction of RAM used for I/O sorting by sequential scan algorithm. This tunable determines the hard limit for I/O sorting memory usage. When the hard limit is reached we stop scanning metadata and start issuing data verification I/O. This is done until we get below the soft limit. . .It Sy zfs_scan_mem_lim_soft_fact Ns = Ns Sy 20 Ns ^-1 Pq uint The fraction of the hard limit used to determined the soft limit for I/O sorting by the sequential scan algorithm. When we cross this limit from below no action is taken. When we cross this limit from above it is because we are issuing verification I/O. In this case (unless the metadata scan is done) we stop issuing verification I/O and start scanning metadata again until we get to the hard limit. . .It Sy zfs_scan_report_txgs Ns = Ns Sy 0 Ns | Ns 1 Pq uint When reporting resilver throughput and estimated completion time use the performance observed over roughly the last .Sy zfs_scan_report_txgs TXGs. When set to zero performance is calculated over the time between checkpoints. . .It Sy zfs_scan_strict_mem_lim Ns = Ns Sy 0 Ns | Ns 1 Pq int Enforce tight memory limits on pool scans when a sequential scan is in progress. When disabled, the memory limit may be exceeded by fast disks. . .It Sy zfs_scan_suspend_progress Ns = Ns Sy 0 Ns | Ns 1 Pq int Freezes a scrub/resilver in progress without actually pausing it. Intended for testing/debugging. . .It Sy zfs_scan_vdev_limit Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq int Maximum amount of data that can be concurrently issued at once for scrubs and resilvers per leaf device, given in bytes. . .It Sy zfs_send_corrupt_data Ns = Ns Sy 0 Ns | Ns 1 Pq int Allow sending of corrupt data (ignore read/checksum errors when sending). . .It Sy zfs_send_unmodified_spill_blocks Ns = Ns Sy 1 Ns | Ns 0 Pq int Include unmodified spill blocks in the send stream. Under certain circumstances, previous versions of ZFS could incorrectly remove the spill block from an existing object. Including unmodified copies of the spill blocks creates a backwards-compatible stream which will recreate a spill block if it was incorrectly removed. . .It Sy zfs_send_no_prefetch_queue_ff Ns = Ns Sy 20 Ns ^\-1 Pq uint The fill fraction of the .Nm zfs Cm send internal queues. The fill fraction controls the timing with which internal threads are woken up. . .It Sy zfs_send_no_prefetch_queue_length Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq uint The maximum number of bytes allowed in .Nm zfs Cm send Ns 's internal queues. . .It Sy zfs_send_queue_ff Ns = Ns Sy 20 Ns ^\-1 Pq uint The fill fraction of the .Nm zfs Cm send prefetch queue. The fill fraction controls the timing with which internal threads are woken up. . .It Sy zfs_send_queue_length Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq uint The maximum number of bytes allowed that will be prefetched by .Nm zfs Cm send . This value must be at least twice the maximum block size in use. . .It Sy zfs_recv_queue_ff Ns = Ns Sy 20 Ns ^\-1 Pq uint The fill fraction of the .Nm zfs Cm receive queue. The fill fraction controls the timing with which internal threads are woken up. . .It Sy zfs_recv_queue_length Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq uint The maximum number of bytes allowed in the .Nm zfs Cm receive queue. This value must be at least twice the maximum block size in use. . .It Sy zfs_recv_write_batch_size Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq uint The maximum amount of data, in bytes, that .Nm zfs Cm receive will write in one DMU transaction. This is the uncompressed size, even when receiving a compressed send stream. This setting will not reduce the write size below a single block. Capped at a maximum of .Sy 32 MiB . . .It Sy zfs_recv_best_effort_corrective Ns = Ns Sy 0 Pq int When this variable is set to non-zero a corrective receive: .Bl -enum -compact -offset 4n -width "1." .It Does not enforce the restriction of source & destination snapshot GUIDs matching. .It If there is an error during healing, the healing receive is not terminated instead it moves on to the next record. .El . .It Sy zfs_override_estimate_recordsize Ns = Ns Sy 0 Ns | Ns 1 Pq uint Setting this variable overrides the default logic for estimating block sizes when doing a .Nm zfs Cm send . The default heuristic is that the average block size will be the current recordsize. Override this value if most data in your dataset is not of that size and you require accurate zfs send size estimates. . .It Sy zfs_sync_pass_deferred_free Ns = Ns Sy 2 Pq uint Flushing of data to disk is done in passes. Defer frees starting in this pass. . .It Sy zfs_spa_discard_memory_limit Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq int Maximum memory used for prefetching a checkpoint's space map on each vdev while discarding the checkpoint. . .It Sy zfs_special_class_metadata_reserve_pct Ns = Ns Sy 25 Ns % Pq uint Only allow small data blocks to be allocated on the special and dedup vdev types when the available free space percentage on these vdevs exceeds this value. This ensures reserved space is available for pool metadata as the special vdevs approach capacity. . .It Sy zfs_sync_pass_dont_compress Ns = Ns Sy 8 Pq uint Starting in this sync pass, disable compression (including of metadata). With the default setting, in practice, we don't have this many sync passes, so this has no effect. .Pp The original intent was that disabling compression would help the sync passes to converge. However, in practice, disabling compression increases the average number of sync passes; because when we turn compression off, many blocks' size will change, and thus we have to re-allocate (not overwrite) them. It also increases the number of .Em 128 KiB allocations (e.g. for indirect blocks and spacemaps) because these will not be compressed. The .Em 128 KiB allocations are especially detrimental to performance on highly fragmented systems, which may have very few free segments of this size, and may need to load new metaslabs to satisfy these allocations. . .It Sy zfs_sync_pass_rewrite Ns = Ns Sy 2 Pq uint Rewrite new block pointers starting in this pass. . .It Sy zfs_sync_taskq_batch_pct Ns = Ns Sy 75 Ns % Pq int This controls the number of threads used by .Sy dp_sync_taskq . The default value of .Sy 75% will create a maximum of one thread per CPU. . .It Sy zfs_trim_extent_bytes_max Ns = Ns Sy 134217728 Ns B Po 128 MiB Pc Pq uint Maximum size of TRIM command. Larger ranges will be split into chunks no larger than this value before issuing. . .It Sy zfs_trim_extent_bytes_min Ns = Ns Sy 32768 Ns B Po 32 KiB Pc Pq uint Minimum size of TRIM commands. TRIM ranges smaller than this will be skipped, unless they're part of a larger range which was chunked. This is done because it's common for these small TRIMs to negatively impact overall performance. . .It Sy zfs_trim_metaslab_skip Ns = Ns Sy 0 Ns | Ns 1 Pq uint Skip uninitialized metaslabs during the TRIM process. This option is useful for pools constructed from large thinly-provisioned devices where TRIM operations are slow. As a pool ages, an increasing fraction of the pool's metaslabs will be initialized, progressively degrading the usefulness of this option. This setting is stored when starting a manual TRIM and will persist for the duration of the requested TRIM. . .It Sy zfs_trim_queue_limit Ns = Ns Sy 10 Pq uint Maximum number of queued TRIMs outstanding per leaf vdev. The number of concurrent TRIM commands issued to the device is controlled by .Sy zfs_vdev_trim_min_active No and Sy zfs_vdev_trim_max_active . . .It Sy zfs_trim_txg_batch Ns = Ns Sy 32 Pq uint The number of transaction groups' worth of frees which should be aggregated before TRIM operations are issued to the device. This setting represents a trade-off between issuing larger, more efficient TRIM operations and the delay before the recently trimmed space is available for use by the device. .Pp Increasing this value will allow frees to be aggregated for a longer time. This will result is larger TRIM operations and potentially increased memory usage. Decreasing this value will have the opposite effect. The default of .Sy 32 was determined to be a reasonable compromise. . .It Sy zfs_txg_history Ns = Ns Sy 0 Pq uint Historical statistics for this many latest TXGs will be available in .Pa /proc/spl/kstat/zfs/ Ns Ao Ar pool Ac Ns Pa /TXGs . . .It Sy zfs_txg_timeout Ns = Ns Sy 5 Ns s Pq uint Flush dirty data to disk at least every this many seconds (maximum TXG duration). . .It Sy zfs_vdev_aggregate_trim Ns = Ns Sy 0 Ns | Ns 1 Pq uint Allow TRIM I/O operations to be aggregated. This is normally not helpful because the extents to be trimmed will have been already been aggregated by the metaslab. This option is provided for debugging and performance analysis. . .It Sy zfs_vdev_aggregation_limit Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq uint Max vdev I/O aggregation size. . .It Sy zfs_vdev_aggregation_limit_non_rotating Ns = Ns Sy 131072 Ns B Po 128 KiB Pc Pq uint Max vdev I/O aggregation size for non-rotating media. . -.It Sy zfs_vdev_cache_bshift Ns = Ns Sy 16 Po 64 KiB Pc Pq uint -Shift size to inflate reads to. -. -.It Sy zfs_vdev_cache_max Ns = Ns Sy 16384 Ns B Po 16 KiB Pc Pq uint -Inflate reads smaller than this value to meet the -.Sy zfs_vdev_cache_bshift -size -.Pq default Sy 64 KiB . -. -.It Sy zfs_vdev_cache_size Ns = Ns Sy 0 Pq uint -Total size of the per-disk cache in bytes. -.Pp -Currently this feature is disabled, as it has been found to not be helpful -for performance and in some cases harmful. -. .It Sy zfs_vdev_mirror_rotating_inc Ns = Ns Sy 0 Pq int A number by which the balancing algorithm increments the load calculation for the purpose of selecting the least busy mirror member when an I/O operation immediately follows its predecessor on rotational vdevs for the purpose of making decisions based on load. . .It Sy zfs_vdev_mirror_rotating_seek_inc Ns = Ns Sy 5 Pq int A number by which the balancing algorithm increments the load calculation for the purpose of selecting the least busy mirror member when an I/O operation lacks locality as defined by .Sy zfs_vdev_mirror_rotating_seek_offset . Operations within this that are not immediately following the previous operation are incremented by half. . .It Sy zfs_vdev_mirror_rotating_seek_offset Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq int The maximum distance for the last queued I/O operation in which the balancing algorithm considers an operation to have locality. .No See Sx ZFS I/O SCHEDULER . . .It Sy zfs_vdev_mirror_non_rotating_inc Ns = Ns Sy 0 Pq int A number by which the balancing algorithm increments the load calculation for the purpose of selecting the least busy mirror member on non-rotational vdevs when I/O operations do not immediately follow one another. . .It Sy zfs_vdev_mirror_non_rotating_seek_inc Ns = Ns Sy 1 Pq int A number by which the balancing algorithm increments the load calculation for the purpose of selecting the least busy mirror member when an I/O operation lacks locality as defined by the .Sy zfs_vdev_mirror_rotating_seek_offset . Operations within this that are not immediately following the previous operation are incremented by half. . .It Sy zfs_vdev_read_gap_limit Ns = Ns Sy 32768 Ns B Po 32 KiB Pc Pq uint Aggregate read I/O operations if the on-disk gap between them is within this threshold. . .It Sy zfs_vdev_write_gap_limit Ns = Ns Sy 4096 Ns B Po 4 KiB Pc Pq uint Aggregate write I/O operations if the on-disk gap between them is within this threshold. . .It Sy zfs_vdev_raidz_impl Ns = Ns Sy fastest Pq string Select the raidz parity implementation to use. .Pp Variants that don't depend on CPU-specific features may be selected on module load, as they are supported on all systems. The remaining options may only be set after the module is loaded, as they are available only if the implementations are compiled in and supported on the running system. .Pp Once the module is loaded, .Pa /sys/module/zfs/parameters/zfs_vdev_raidz_impl will show the available options, with the currently selected one enclosed in square brackets. .Pp .TS lb l l . fastest selected by built-in benchmark original original implementation scalar scalar implementation sse2 SSE2 instruction set 64-bit x86 ssse3 SSSE3 instruction set 64-bit x86 avx2 AVX2 instruction set 64-bit x86 avx512f AVX512F instruction set 64-bit x86 avx512bw AVX512F & AVX512BW instruction sets 64-bit x86 aarch64_neon NEON Aarch64/64-bit ARMv8 aarch64_neonx2 NEON with more unrolling Aarch64/64-bit ARMv8 powerpc_altivec Altivec PowerPC .TE . .It Sy zfs_vdev_scheduler Pq charp .Sy DEPRECATED . Prints warning to kernel log for compatibility. . .It Sy zfs_zevent_len_max Ns = Ns Sy 512 Pq uint Max event queue length. Events in the queue can be viewed with .Xr zpool-events 8 . . .It Sy zfs_zevent_retain_max Ns = Ns Sy 2000 Pq int Maximum recent zevent records to retain for duplicate checking. Setting this to .Sy 0 disables duplicate detection. . .It Sy zfs_zevent_retain_expire_secs Ns = Ns Sy 900 Ns s Po 15 min Pc Pq int Lifespan for a recent ereport that was retained for duplicate checking. . .It Sy zfs_zil_clean_taskq_maxalloc Ns = Ns Sy 1048576 Pq int The maximum number of taskq entries that are allowed to be cached. When this limit is exceeded transaction records (itxs) will be cleaned synchronously. . .It Sy zfs_zil_clean_taskq_minalloc Ns = Ns Sy 1024 Pq int The number of taskq entries that are pre-populated when the taskq is first created and are immediately available for use. . .It Sy zfs_zil_clean_taskq_nthr_pct Ns = Ns Sy 100 Ns % Pq int This controls the number of threads used by .Sy dp_zil_clean_taskq . The default value of .Sy 100% will create a maximum of one thread per cpu. . .It Sy zil_maxblocksize Ns = Ns Sy 131072 Ns B Po 128 KiB Pc Pq uint This sets the maximum block size used by the ZIL. On very fragmented pools, lowering this .Pq typically to Sy 36 KiB can improve performance. . .It Sy zil_min_commit_timeout Ns = Ns Sy 5000 Pq u64 This sets the minimum delay in nanoseconds ZIL care to delay block commit, waiting for more records. If ZIL writes are too fast, kernel may not be able sleep for so short interval, increasing log latency above allowed by .Sy zfs_commit_timeout_pct . . .It Sy zil_nocacheflush Ns = Ns Sy 0 Ns | Ns 1 Pq int Disable the cache flush commands that are normally sent to disk by the ZIL after an LWB write has completed. Setting this will cause ZIL corruption on power loss if a volatile out-of-order write cache is enabled. . .It Sy zil_replay_disable Ns = Ns Sy 0 Ns | Ns 1 Pq int Disable intent logging replay. Can be disabled for recovery from corrupted ZIL. . .It Sy zil_slog_bulk Ns = Ns Sy 786432 Ns B Po 768 KiB Pc Pq u64 Limit SLOG write size per commit executed with synchronous priority. Any writes above that will be executed with lower (asynchronous) priority to limit potential SLOG device abuse by single active ZIL writer. . .It Sy zfs_zil_saxattr Ns = Ns Sy 1 Ns | Ns 0 Pq int Setting this tunable to zero disables ZIL logging of new .Sy xattr Ns = Ns Sy sa records if the .Sy org.openzfs:zilsaxattr feature is enabled on the pool. This would only be necessary to work around bugs in the ZIL logging or replay code for this record type. The tunable has no effect if the feature is disabled. . .It Sy zfs_embedded_slog_min_ms Ns = Ns Sy 64 Pq uint Usually, one metaslab from each normal-class vdev is dedicated for use by the ZIL to log synchronous writes. However, if there are fewer than .Sy zfs_embedded_slog_min_ms metaslabs in the vdev, this functionality is disabled. This ensures that we don't set aside an unreasonable amount of space for the ZIL. . .It Sy zstd_earlyabort_pass Ns = Ns Sy 1 Pq uint Whether heuristic for detection of incompressible data with zstd levels >= 3 using LZ4 and zstd-1 passes is enabled. . .It Sy zstd_abort_size Ns = Ns Sy 131072 Pq uint Minimal uncompressed size (inclusive) of a record before the early abort heuristic will be attempted. . .It Sy zio_deadman_log_all Ns = Ns Sy 0 Ns | Ns 1 Pq int If non-zero, the zio deadman will produce debugging messages .Pq see Sy zfs_dbgmsg_enable for all zios, rather than only for leaf zios possessing a vdev. This is meant to be used by developers to gain diagnostic information for hang conditions which don't involve a mutex or other locking primitive: typically conditions in which a thread in the zio pipeline is looping indefinitely. . .It Sy zio_slow_io_ms Ns = Ns Sy 30000 Ns ms Po 30 s Pc Pq int When an I/O operation takes more than this much time to complete, it's marked as slow. Each slow operation causes a delay zevent. Slow I/O counters can be seen with .Nm zpool Cm status Fl s . . .It Sy zio_dva_throttle_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int Throttle block allocations in the I/O pipeline. This allows for dynamic allocation distribution when devices are imbalanced. When enabled, the maximum number of pending allocations per top-level vdev is limited by .Sy zfs_vdev_queue_depth_pct . . .It Sy zfs_xattr_compat Ns = Ns 0 Ns | Ns 1 Pq int Control the naming scheme used when setting new xattrs in the user namespace. If .Sy 0 .Pq the default on Linux , user namespace xattr names are prefixed with the namespace, to be backwards compatible with previous versions of ZFS on Linux. If .Sy 1 .Pq the default on Fx , user namespace xattr names are not prefixed, to be backwards compatible with previous versions of ZFS on illumos and .Fx . .Pp Either naming scheme can be read on this and future versions of ZFS, regardless of this tunable, but legacy ZFS on illumos or .Fx are unable to read user namespace xattrs written in the Linux format, and legacy versions of ZFS on Linux are unable to read user namespace xattrs written in the legacy ZFS format. .Pp An existing xattr with the alternate naming scheme is removed when overwriting the xattr so as to not accumulate duplicates. . .It Sy zio_requeue_io_start_cut_in_line Ns = Ns Sy 0 Ns | Ns 1 Pq int Prioritize requeued I/O. . .It Sy zio_taskq_batch_pct Ns = Ns Sy 80 Ns % Pq uint Percentage of online CPUs which will run a worker thread for I/O. These workers are responsible for I/O work such as compression and checksum calculations. Fractional number of CPUs will be rounded down. .Pp The default value of .Sy 80% was chosen to avoid using all CPUs which can result in latency issues and inconsistent application performance, especially when slower compression and/or checksumming is enabled. . .It Sy zio_taskq_batch_tpq Ns = Ns Sy 0 Pq uint Number of worker threads per taskq. Lower values improve I/O ordering and CPU utilization, while higher reduces lock contention. .Pp If .Sy 0 , generate a system-dependent value close to 6 threads per taskq. . .It Sy zvol_inhibit_dev Ns = Ns Sy 0 Ns | Ns 1 Pq uint Do not create zvol device nodes. This may slightly improve startup time on systems with a very large number of zvols. . .It Sy zvol_major Ns = Ns Sy 230 Pq uint Major number for zvol block devices. . .It Sy zvol_max_discard_blocks Ns = Ns Sy 16384 Pq long Discard (TRIM) operations done on zvols will be done in batches of this many blocks, where block size is determined by the .Sy volblocksize property of a zvol. . .It Sy zvol_prefetch_bytes Ns = Ns Sy 131072 Ns B Po 128 KiB Pc Pq uint When adding a zvol to the system, prefetch this many bytes from the start and end of the volume. Prefetching these regions of the volume is desirable, because they are likely to be accessed immediately by .Xr blkid 8 or the kernel partitioner. . .It Sy zvol_request_sync Ns = Ns Sy 0 Ns | Ns 1 Pq uint When processing I/O requests for a zvol, submit them synchronously. This effectively limits the queue depth to .Em 1 for each I/O submitter. When unset, requests are handled asynchronously by a thread pool. The number of requests which can be handled concurrently is controlled by .Sy zvol_threads . .Sy zvol_request_sync is ignored when running on a kernel that supports block multiqueue .Pq Li blk-mq . . .It Sy zvol_threads Ns = Ns Sy 0 Pq uint The number of system wide threads to use for processing zvol block IOs. If .Sy 0 (the default) then internally set .Sy zvol_threads to the number of CPUs present or 32 (whichever is greater). . .It Sy zvol_blk_mq_threads Ns = Ns Sy 0 Pq uint The number of threads per zvol to use for queuing IO requests. This parameter will only appear if your kernel supports .Li blk-mq and is only read and assigned to a zvol at zvol load time. If .Sy 0 (the default) then internally set .Sy zvol_blk_mq_threads to the number of CPUs present. . .It Sy zvol_use_blk_mq Ns = Ns Sy 0 Ns | Ns 1 Pq uint Set to .Sy 1 to use the .Li blk-mq API for zvols. Set to .Sy 0 (the default) to use the legacy zvol APIs. This setting can give better or worse zvol performance depending on the workload. This parameter will only appear if your kernel supports .Li blk-mq and is only read and assigned to a zvol at zvol load time. . .It Sy zvol_blk_mq_blocks_per_thread Ns = Ns Sy 8 Pq uint If .Sy zvol_use_blk_mq is enabled, then process this number of .Sy volblocksize Ns -sized blocks per zvol thread. This tunable can be use to favor better performance for zvol reads (lower values) or writes (higher values). If set to .Sy 0 , then the zvol layer will process the maximum number of blocks per thread that it can. This parameter will only appear if your kernel supports .Li blk-mq and is only applied at each zvol's load time. . .It Sy zvol_blk_mq_queue_depth Ns = Ns Sy 0 Pq uint The queue_depth value for the zvol .Li blk-mq interface. This parameter will only appear if your kernel supports .Li blk-mq and is only applied at each zvol's load time. If .Sy 0 (the default) then use the kernel's default queue depth. Values are clamped to the kernel's .Dv BLKDEV_MIN_RQ and .Dv BLKDEV_MAX_RQ Ns / Ns Dv BLKDEV_DEFAULT_RQ limits. . .It Sy zvol_volmode Ns = Ns Sy 1 Pq uint Defines zvol block devices behaviour when .Sy volmode Ns = Ns Sy default : .Bl -tag -compact -offset 4n -width "a" .It Sy 1 .No equivalent to Sy full .It Sy 2 .No equivalent to Sy dev .It Sy 3 .No equivalent to Sy none .El . .It Sy zvol_enforce_quotas Ns = Ns Sy 0 Ns | Ns 1 Pq uint Enable strict ZVOL quota enforcement. The strict quota enforcement may have a performance impact. .El . .Sh ZFS I/O SCHEDULER ZFS issues I/O operations to leaf vdevs to satisfy and complete I/O operations. The scheduler determines when and in what order those operations are issued. The scheduler divides operations into five I/O classes, prioritized in the following order: sync read, sync write, async read, async write, and scrub/resilver. Each queue defines the minimum and maximum number of concurrent operations that may be issued to the device. In addition, the device has an aggregate maximum, .Sy zfs_vdev_max_active . Note that the sum of the per-queue minima must not exceed the aggregate maximum. If the sum of the per-queue maxima exceeds the aggregate maximum, then the number of active operations may reach .Sy zfs_vdev_max_active , in which case no further operations will be issued, regardless of whether all per-queue minima have been met. .Pp For many physical devices, throughput increases with the number of concurrent operations, but latency typically suffers. Furthermore, physical devices typically have a limit at which more concurrent operations have no effect on throughput or can actually cause it to decrease. .Pp The scheduler selects the next operation to issue by first looking for an I/O class whose minimum has not been satisfied. Once all are satisfied and the aggregate maximum has not been hit, the scheduler looks for classes whose maximum has not been satisfied. Iteration through the I/O classes is done in the order specified above. No further operations are issued if the aggregate maximum number of concurrent operations has been hit, or if there are no operations queued for an I/O class that has not hit its maximum. Every time an I/O operation is queued or an operation completes, the scheduler looks for new operations to issue. .Pp In general, smaller .Sy max_active Ns s will lead to lower latency of synchronous operations. Larger .Sy max_active Ns s may lead to higher overall throughput, depending on underlying storage. .Pp The ratio of the queues' .Sy max_active Ns s determines the balance of performance between reads, writes, and scrubs. For example, increasing .Sy zfs_vdev_scrub_max_active will cause the scrub or resilver to complete more quickly, but reads and writes to have higher latency and lower throughput. .Pp All I/O classes have a fixed maximum number of outstanding operations, except for the async write class. Asynchronous writes represent the data that is committed to stable storage during the syncing stage for transaction groups. Transaction groups enter the syncing state periodically, so the number of queued async writes will quickly burst up and then bleed down to zero. Rather than servicing them as quickly as possible, the I/O scheduler changes the maximum number of active async write operations according to the amount of dirty data in the pool. Since both throughput and latency typically increase with the number of concurrent operations issued to physical devices, reducing the burstiness in the number of simultaneous operations also stabilizes the response time of operations from other queues, in particular synchronous ones. In broad strokes, the I/O scheduler will issue more concurrent operations from the async write queue as there is more dirty data in the pool. . .Ss Async Writes The number of concurrent operations issued for the async write I/O class follows a piece-wise linear function defined by a few adjustable points: .Bd -literal | o---------| <-- \fBzfs_vdev_async_write_max_active\fP ^ | /^ | | | / | | active | / | | I/O | / | | count | / | | | / | | |-------o | | <-- \fBzfs_vdev_async_write_min_active\fP 0|_______^______|_________| 0% | | 100% of \fBzfs_dirty_data_max\fP | | | `-- \fBzfs_vdev_async_write_active_max_dirty_percent\fP `--------- \fBzfs_vdev_async_write_active_min_dirty_percent\fP .Ed .Pp Until the amount of dirty data exceeds a minimum percentage of the dirty data allowed in the pool, the I/O scheduler will limit the number of concurrent operations to the minimum. As that threshold is crossed, the number of concurrent operations issued increases linearly to the maximum at the specified maximum percentage of the dirty data allowed in the pool. .Pp Ideally, the amount of dirty data on a busy pool will stay in the sloped part of the function between .Sy zfs_vdev_async_write_active_min_dirty_percent and .Sy zfs_vdev_async_write_active_max_dirty_percent . If it exceeds the maximum percentage, this indicates that the rate of incoming data is greater than the rate that the backend storage can handle. In this case, we must further throttle incoming writes, as described in the next section. . .Sh ZFS TRANSACTION DELAY We delay transactions when we've determined that the backend storage isn't able to accommodate the rate of incoming writes. .Pp If there is already a transaction waiting, we delay relative to when that transaction will finish waiting. This way the calculated delay time is independent of the number of threads concurrently executing transactions. .Pp If we are the only waiter, wait relative to when the transaction started, rather than the current time. This credits the transaction for "time already served", e.g. reading indirect blocks. .Pp The minimum time for a transaction to take is calculated as .D1 min_time = min( Ns Sy zfs_delay_scale No \(mu Po Sy dirty No \- Sy min Pc / Po Sy max No \- Sy dirty Pc , 100ms) .Pp The delay has two degrees of freedom that can be adjusted via tunables. The percentage of dirty data at which we start to delay is defined by .Sy zfs_delay_min_dirty_percent . This should typically be at or above .Sy zfs_vdev_async_write_active_max_dirty_percent , so that we only start to delay after writing at full speed has failed to keep up with the incoming write rate. The scale of the curve is defined by .Sy zfs_delay_scale . Roughly speaking, this variable determines the amount of delay at the midpoint of the curve. .Bd -literal delay 10ms +-------------------------------------------------------------*+ | *| 9ms + *+ | *| 8ms + *+ | * | 7ms + * + | * | 6ms + * + | * | 5ms + * + | * | 4ms + * + | * | 3ms + * + | * | 2ms + (midpoint) * + | | ** | 1ms + v *** + | \fBzfs_delay_scale\fP ----------> ******** | 0 +-------------------------------------*********----------------+ 0% <- \fBzfs_dirty_data_max\fP -> 100% .Ed .Pp Note, that since the delay is added to the outstanding time remaining on the most recent transaction it's effectively the inverse of IOPS. Here, the midpoint of .Em 500 us translates to .Em 2000 IOPS . The shape of the curve was chosen such that small changes in the amount of accumulated dirty data in the first three quarters of the curve yield relatively small differences in the amount of delay. .Pp The effects can be easier to understand when the amount of delay is represented on a logarithmic scale: .Bd -literal delay 100ms +-------------------------------------------------------------++ + + | | + *+ 10ms + *+ + ** + | (midpoint) ** | + | ** + 1ms + v **** + + \fBzfs_delay_scale\fP ----------> ***** + | **** | + **** + 100us + ** + + * + | * | + * + 10us + * + + + | | + + +--------------------------------------------------------------+ 0% <- \fBzfs_dirty_data_max\fP -> 100% .Ed .Pp Note here that only as the amount of dirty data approaches its limit does the delay start to increase rapidly. The goal of a properly tuned system should be to keep the amount of dirty data out of that range by first ensuring that the appropriate limits are set for the I/O scheduler to reach optimal throughput on the back-end storage, and then by changing the value of .Sy zfs_delay_scale to increase the steepness of the curve. diff --git a/man/man8/zpool-events.8 b/man/man8/zpool-events.8 index 0ba93e4166e7..341f902fe66e 100644 --- a/man/man8/zpool-events.8 +++ b/man/man8/zpool-events.8 @@ -1,488 +1,487 @@ .\" .\" CDDL HEADER START .\" .\" The contents of this file are subject to the terms of the .\" Common Development and Distribution License (the "License"). .\" You may not use this file except in compliance with the License. .\" .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE .\" or https://opensource.org/licenses/CDDL-1.0. .\" See the License for the specific language governing permissions .\" and limitations under the License. .\" .\" When distributing Covered Code, include this CDDL HEADER in each .\" file and include the License file at usr/src/OPENSOLARIS.LICENSE. .\" If applicable, add the following below this CDDL HEADER, with the .\" fields enclosed by brackets "[]" replaced with your own identifying .\" information: Portions Copyright [yyyy] [name of copyright owner] .\" .\" CDDL HEADER END .\" .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved. .\" Copyright (c) 2012, 2018 by Delphix. All rights reserved. .\" Copyright (c) 2012 Cyril Plisko. All Rights Reserved. .\" Copyright (c) 2017 Datto Inc. .\" Copyright (c) 2018 George Melikov. All Rights Reserved. .\" Copyright 2017 Nexenta Systems, Inc. .\" Copyright (c) 2017 Open-E, Inc. All Rights Reserved. .\" .Dd May 27, 2021 .Dt ZPOOL-EVENTS 8 .Os . .Sh NAME .Nm zpool-events .Nd list recent events generated by kernel .Sh SYNOPSIS .Nm zpool .Cm events .Op Fl vHf .Op Ar pool .Nm zpool .Cm events .Fl c . .Sh DESCRIPTION Lists all recent events generated by the ZFS kernel modules. These events are consumed by the .Xr zed 8 and used to automate administrative tasks such as replacing a failed device with a hot spare. For more information about the subclasses and event payloads that can be generated see .Sx EVENTS and the following sections. . .Sh OPTIONS .Bl -tag -compact -width Ds .It Fl c Clear all previous events. .It Fl f Follow mode. .It Fl H Scripted mode. Do not display headers, and separate fields by a single tab instead of arbitrary space. .It Fl v Print the entire payload for each event. .El . .Sh EVENTS These are the different event subclasses. The full event name would be .Sy ereport.fs.zfs.\& Ns Em SUBCLASS , but only the last part is listed here. .Pp .Bl -tag -compact -width "vdev.bad_guid_sum" .It Sy checksum Issued when a checksum error has been detected. .It Sy io Issued when there is an I/O error in a vdev in the pool. .It Sy data Issued when there have been data errors in the pool. .It Sy deadman Issued when an I/O request is determined to be "hung", this can be caused by lost completion events due to flaky hardware or drivers. See .Sy zfs_deadman_failmode in .Xr zfs 4 for additional information regarding "hung" I/O detection and configuration. .It Sy delay Issued when a completed I/O request exceeds the maximum allowed time specified by the .Sy zio_slow_io_ms module parameter. This can be an indicator of problems with the underlying storage device. The number of delay events is ratelimited by the .Sy zfs_slow_io_events_per_second module parameter. .It Sy config Issued every time a vdev change have been done to the pool. .It Sy zpool Issued when a pool cannot be imported. .It Sy zpool.destroy Issued when a pool is destroyed. .It Sy zpool.export Issued when a pool is exported. .It Sy zpool.import Issued when a pool is imported. .It Sy zpool.reguid Issued when a REGUID (new unique identifier for the pool have been regenerated) have been detected. .It Sy vdev.unknown Issued when the vdev is unknown. Such as trying to clear device errors on a vdev that have failed/been kicked from the system/pool and is no longer available. .It Sy vdev.open_failed Issued when a vdev could not be opened (because it didn't exist for example). .It Sy vdev.corrupt_data Issued when corrupt data have been detected on a vdev. .It Sy vdev.no_replicas Issued when there are no more replicas to sustain the pool. This would lead to the pool being .Em DEGRADED . .It Sy vdev.bad_guid_sum Issued when a missing device in the pool have been detected. .It Sy vdev.too_small Issued when the system (kernel) have removed a device, and ZFS notices that the device isn't there any more. This is usually followed by a .Sy probe_failure event. .It Sy vdev.bad_label Issued when the label is OK but invalid. .It Sy vdev.bad_ashift Issued when the ashift alignment requirement has increased. .It Sy vdev.remove Issued when a vdev is detached from a mirror (or a spare detached from a vdev where it have been used to replace a failed drive - only works if the original drive have been re-added). .It Sy vdev.clear Issued when clearing device errors in a pool. Such as running .Nm zpool Cm clear on a device in the pool. .It Sy vdev.check Issued when a check to see if a given vdev could be opened is started. .It Sy vdev.spare Issued when a spare have kicked in to replace a failed device. .It Sy vdev.autoexpand Issued when a vdev can be automatically expanded. .It Sy io_failure Issued when there is an I/O failure in a vdev in the pool. .It Sy probe_failure Issued when a probe fails on a vdev. This would occur if a vdev have been kicked from the system outside of ZFS (such as the kernel have removed the device). .It Sy log_replay Issued when the intent log cannot be replayed. The can occur in the case of a missing or damaged log device. .It Sy resilver.start Issued when a resilver is started. .It Sy resilver.finish Issued when the running resilver have finished. .It Sy scrub.start Issued when a scrub is started on a pool. .It Sy scrub.finish Issued when a pool has finished scrubbing. .It Sy scrub.abort Issued when a scrub is aborted on a pool. .It Sy scrub.resume Issued when a scrub is resumed on a pool. .It Sy scrub.paused Issued when a scrub is paused on a pool. .It Sy bootfs.vdev.attach .El . .Sh PAYLOADS This is the payload (data, information) that accompanies an event. .Pp For .Xr zed 8 , these are set to uppercase and prefixed with .Sy ZEVENT_ . .Pp .Bl -tag -compact -width "vdev_cksum_errors" .It Sy pool Pool name. .It Sy pool_failmode Failmode - .Sy wait , .Sy continue , or .Sy panic . See the .Sy failmode property in .Xr zpoolprops 7 for more information. .It Sy pool_guid The GUID of the pool. .It Sy pool_context The load state for the pool (0=none, 1=open, 2=import, 3=tryimport, 4=recover 5=error). .It Sy vdev_guid The GUID of the vdev in question (the vdev failing or operated upon with .Nm zpool Cm clear , etc.). .It Sy vdev_type Type of vdev - .Sy disk , .Sy file , .Sy mirror , etc. See the .Sy Virtual Devices section of .Xr zpoolconcepts 7 for more information on possible values. .It Sy vdev_path Full path of the vdev, including any .Em -partX . .It Sy vdev_devid ID of vdev (if any). .It Sy vdev_fru Physical FRU location. .It Sy vdev_state State of vdev (0=uninitialized, 1=closed, 2=offline, 3=removed, 4=failed to open, 5=faulted, 6=degraded, 7=healthy). .It Sy vdev_ashift The ashift value of the vdev. .It Sy vdev_complete_ts The time the last I/O request completed for the specified vdev. .It Sy vdev_delta_ts The time since the last I/O request completed for the specified vdev. .It Sy vdev_spare_paths List of spares, including full path and any .Em -partX . .It Sy vdev_spare_guids GUID(s) of spares. .It Sy vdev_read_errors How many read errors that have been detected on the vdev. .It Sy vdev_write_errors How many write errors that have been detected on the vdev. .It Sy vdev_cksum_errors How many checksum errors that have been detected on the vdev. .It Sy parent_guid GUID of the vdev parent. .It Sy parent_type Type of parent. See .Sy vdev_type . .It Sy parent_path Path of the vdev parent (if any). .It Sy parent_devid ID of the vdev parent (if any). .It Sy zio_objset The object set number for a given I/O request. .It Sy zio_object The object number for a given I/O request. .It Sy zio_level The indirect level for the block. Level 0 is the lowest level and includes data blocks. Values > 0 indicate metadata blocks at the appropriate level. .It Sy zio_blkid The block ID for a given I/O request. .It Sy zio_err The error number for a failure when handling a given I/O request, compatible with .Xr errno 3 with the value of .Sy EBADE used to indicate a ZFS checksum error. .It Sy zio_offset The offset in bytes of where to write the I/O request for the specified vdev. .It Sy zio_size The size in bytes of the I/O request. .It Sy zio_flags The current flags describing how the I/O request should be handled. See the .Sy I/O FLAGS section for the full list of I/O flags. .It Sy zio_stage The current stage of the I/O in the pipeline. See the .Sy I/O STAGES section for a full list of all the I/O stages. .It Sy zio_pipeline The valid pipeline stages for the I/O. See the .Sy I/O STAGES section for a full list of all the I/O stages. .It Sy zio_delay The time elapsed (in nanoseconds) waiting for the block layer to complete the I/O request. Unlike .Sy zio_delta , this does not include any vdev queuing time and is therefore solely a measure of the block layer performance. .It Sy zio_timestamp The time when a given I/O request was submitted. .It Sy zio_delta The time required to service a given I/O request. .It Sy prev_state The previous state of the vdev. .It Sy cksum_expected The expected checksum value for the block. .It Sy cksum_actual The actual checksum value for an errant block. .It Sy cksum_algorithm Checksum algorithm used. See .Xr zfsprops 7 for more information on the available checksum algorithms. .It Sy cksum_byteswap Whether or not the data is byteswapped. .It Sy bad_ranges .No [\& Ns Ar start , end ) pairs of corruption offsets. Offsets are always aligned on a 64-bit boundary, and can include some gaps of non-corruption. (See .Sy bad_ranges_min_gap ) .It Sy bad_ranges_min_gap In order to bound the size of the .Sy bad_ranges array, gaps of non-corruption less than or equal to .Sy bad_ranges_min_gap bytes have been merged with adjacent corruption. Always at least 8 bytes, since corruption is detected on a 64-bit word basis. .It Sy bad_range_sets This array has one element per range in .Sy bad_ranges . Each element contains the count of bits in that range which were clear in the good data and set in the bad data. .It Sy bad_range_clears This array has one element per range in .Sy bad_ranges . Each element contains the count of bits for that range which were set in the good data and clear in the bad data. .It Sy bad_set_bits If this field exists, it is an array of .Pq Ar bad data No & ~( Ns Ar good data ) ; that is, the bits set in the bad data which are cleared in the good data. Each element corresponds a byte whose offset is in a range in .Sy bad_ranges , and the array is ordered by offset. Thus, the first element is the first byte in the first .Sy bad_ranges range, and the last element is the last byte in the last .Sy bad_ranges range. .It Sy bad_cleared_bits Like .Sy bad_set_bits , but contains .Pq Ar good data No & ~( Ns Ar bad data ) ; that is, the bits set in the good data which are cleared in the bad data. .It Sy bad_set_histogram If this field exists, it is an array of counters. Each entry counts bits set in a particular bit of a big-endian uint64 type. The first entry counts bits set in the high-order bit of the first byte, the 9th byte, etc, and the last entry counts bits set of the low-order bit of the 8th byte, the 16th byte, etc. This information is useful for observing a stuck bit in a parallel data path, such as IDE or parallel SCSI. .It Sy bad_cleared_histogram If this field exists, it is an array of counters. Each entry counts bit clears in a particular bit of a big-endian uint64 type. The first entry counts bits clears of the high-order bit of the first byte, the 9th byte, etc, and the last entry counts clears of the low-order bit of the 8th byte, the 16th byte, etc. This information is useful for observing a stuck bit in a parallel data path, such as IDE or parallel SCSI. .El . .Sh I/O STAGES The ZFS I/O pipeline is comprised of various stages which are defined below. The individual stages are used to construct these basic I/O operations: Read, Write, Free, Claim, and Ioctl. These stages may be set on an event to describe the life cycle of a given I/O request. .Pp .TS tab(:); l l l . Stage:Bit Mask:Operations _:_:_ ZIO_STAGE_OPEN:0x00000001:RWFCI ZIO_STAGE_READ_BP_INIT:0x00000002:R---- ZIO_STAGE_WRITE_BP_INIT:0x00000004:-W--- ZIO_STAGE_FREE_BP_INIT:0x00000008:--F-- ZIO_STAGE_ISSUE_ASYNC:0x00000010:RWF-- ZIO_STAGE_WRITE_COMPRESS:0x00000020:-W--- ZIO_STAGE_ENCRYPT:0x00000040:-W--- ZIO_STAGE_CHECKSUM_GENERATE:0x00000080:-W--- ZIO_STAGE_NOP_WRITE:0x00000100:-W--- ZIO_STAGE_BRT_FREE:0x00000200:--F-- ZIO_STAGE_DDT_READ_START:0x00000400:R---- ZIO_STAGE_DDT_READ_DONE:0x00000800:R---- ZIO_STAGE_DDT_WRITE:0x00001000:-W--- ZIO_STAGE_DDT_FREE:0x00002000:--F-- ZIO_STAGE_GANG_ASSEMBLE:0x00004000:RWFC- ZIO_STAGE_GANG_ISSUE:0x00008000:RWFC- ZIO_STAGE_DVA_THROTTLE:0x00010000:-W--- ZIO_STAGE_DVA_ALLOCATE:0x00020000:-W--- ZIO_STAGE_DVA_FREE:0x00040000:--F-- ZIO_STAGE_DVA_CLAIM:0x00080000:---C- ZIO_STAGE_READY:0x00100000:RWFCI ZIO_STAGE_VDEV_IO_START:0x00200000:RW--I ZIO_STAGE_VDEV_IO_DONE:0x00400000:RW--I ZIO_STAGE_VDEV_IO_ASSESS:0x00800000:RW--I ZIO_STAGE_CHECKSUM_VERIFY:0x01000000:R---- ZIO_STAGE_DONE:0x02000000:RWFCI .TE . .Sh I/O FLAGS Every I/O request in the pipeline contains a set of flags which describe its function and are used to govern its behavior. These flags will be set in an event as a .Sy zio_flags payload entry. .Pp .TS tab(:); l l . Flag:Bit Mask _:_ ZIO_FLAG_DONT_AGGREGATE:0x00000001 ZIO_FLAG_IO_REPAIR:0x00000002 ZIO_FLAG_SELF_HEAL:0x00000004 ZIO_FLAG_RESILVER:0x00000008 ZIO_FLAG_SCRUB:0x00000010 ZIO_FLAG_SCAN_THREAD:0x00000020 ZIO_FLAG_PHYSICAL:0x00000040 ZIO_FLAG_CANFAIL:0x00000080 ZIO_FLAG_SPECULATIVE:0x00000100 ZIO_FLAG_CONFIG_WRITER:0x00000200 ZIO_FLAG_DONT_RETRY:0x00000400 -ZIO_FLAG_DONT_CACHE:0x00000800 ZIO_FLAG_NODATA:0x00001000 ZIO_FLAG_INDUCE_DAMAGE:0x00002000 ZIO_FLAG_IO_ALLOCATING:0x00004000 ZIO_FLAG_IO_RETRY:0x00008000 ZIO_FLAG_PROBE:0x00010000 ZIO_FLAG_TRYHARD:0x00020000 ZIO_FLAG_OPTIONAL:0x00040000 ZIO_FLAG_DONT_QUEUE:0x00080000 ZIO_FLAG_DONT_PROPAGATE:0x00100000 ZIO_FLAG_IO_BYPASS:0x00200000 ZIO_FLAG_IO_REWRITE:0x00400000 ZIO_FLAG_RAW_COMPRESS:0x00800000 ZIO_FLAG_RAW_ENCRYPT:0x01000000 ZIO_FLAG_GANG_CHILD:0x02000000 ZIO_FLAG_DDT_CHILD:0x04000000 ZIO_FLAG_GODFATHER:0x08000000 ZIO_FLAG_NOPWRITE:0x10000000 ZIO_FLAG_REEXECUTED:0x20000000 ZIO_FLAG_DELEGATED:0x40000000 ZIO_FLAG_FASTWRITE:0x80000000 .TE . .Sh SEE ALSO .Xr zfs 4 , .Xr zed 8 , .Xr zpool-wait 8 diff --git a/module/Kbuild.in b/module/Kbuild.in index 29a55c9778b1..485331ac655e 100644 --- a/module/Kbuild.in +++ b/module/Kbuild.in @@ -1,498 +1,497 @@ # When integrated in to a monolithic kernel the spl module must appear # first. This ensures its module initialization function is run before # any of the other module initialization functions which depend on it. ZFS_MODULE_CFLAGS += -std=gnu99 -Wno-declaration-after-statement ZFS_MODULE_CFLAGS += -Wmissing-prototypes ZFS_MODULE_CFLAGS += @KERNEL_DEBUG_CFLAGS@ @NO_FORMAT_ZERO_LENGTH@ ifneq ($(KBUILD_EXTMOD),) zfs_include = @abs_top_srcdir@/include icp_include = @abs_srcdir@/icp/include zstd_include = @abs_srcdir@/zstd/include ZFS_MODULE_CFLAGS += -include @abs_top_builddir@/zfs_config.h ZFS_MODULE_CFLAGS += -I@abs_top_builddir@/include src = @abs_srcdir@ obj = @abs_builddir@ else zfs_include = $(srctree)/include/zfs icp_include = $(srctree)/$(src)/icp/include zstd_include = $(srctree)/$(src)/zstd/include ZFS_MODULE_CFLAGS += -include $(zfs_include)/zfs_config.h endif ZFS_MODULE_CFLAGS += -I$(zfs_include)/os/linux/kernel ZFS_MODULE_CFLAGS += -I$(zfs_include)/os/linux/spl ZFS_MODULE_CFLAGS += -I$(zfs_include)/os/linux/zfs ZFS_MODULE_CFLAGS += -I$(zfs_include) ZFS_MODULE_CPPFLAGS += -D_KERNEL ZFS_MODULE_CPPFLAGS += @KERNEL_DEBUG_CPPFLAGS@ # KASAN enables -Werror=frame-larger-than=1024, which # breaks oh so many parts of our build. ifeq ($(CONFIG_KASAN),y) ZFS_MODULE_CFLAGS += -Wno-error=frame-larger-than= endif # Generated binary search code is particularly bad with this optimization. # Oddly, range_tree.c is not affected when unrolling is not done and dsl_scan.c # is not affected when unrolling is done. # Disable it until the following upstream issue is resolved: # https://github.com/llvm/llvm-project/issues/62790 ifeq ($(CONFIG_X86),y) ifeq ($(CONFIG_CC_IS_CLANG),y) CFLAGS_zfs/dsl_scan.o += -mllvm -x86-cmov-converter=false CFLAGS_zfs/metaslab.o += -mllvm -x86-cmov-converter=false CFLAGS_zfs/range_tree.o += -mllvm -x86-cmov-converter=false CFLAGS_zfs/zap_micro.o += -mllvm -x86-cmov-converter=false endif endif ifneq ($(KBUILD_EXTMOD),) @CONFIG_QAT_TRUE@ZFS_MODULE_CFLAGS += -I@QAT_SRC@/include @CONFIG_QAT_TRUE@KBUILD_EXTRA_SYMBOLS += @QAT_SYMBOLS@ endif asflags-y := $(ZFS_MODULE_CFLAGS) $(ZFS_MODULE_CPPFLAGS) ccflags-y := $(ZFS_MODULE_CFLAGS) $(ZFS_MODULE_CPPFLAGS) ifeq ($(CONFIG_ARM64),y) CFLAGS_REMOVE_zcommon/zfs_fletcher_aarch64_neon.o += -mgeneral-regs-only CFLAGS_REMOVE_zfs/vdev_raidz_math_aarch64_neon.o += -mgeneral-regs-only CFLAGS_REMOVE_zfs/vdev_raidz_math_aarch64_neonx2.o += -mgeneral-regs-only endif # Suppress unused-value warnings in sparc64 architecture headers ccflags-$(CONFIG_SPARC64) += -Wno-unused-value obj-$(CONFIG_ZFS) := spl.o zfs.o SPL_OBJS := \ spl-atomic.o \ spl-condvar.o \ spl-cred.o \ spl-err.o \ spl-generic.o \ spl-kmem-cache.o \ spl-kmem.o \ spl-kstat.o \ spl-proc.o \ spl-procfs-list.o \ spl-taskq.o \ spl-thread.o \ spl-trace.o \ spl-tsd.o \ spl-vmem.o \ spl-xdr.o \ spl-zlib.o \ spl-zone.o spl-objs += $(addprefix os/linux/spl/,$(SPL_OBJS)) zfs-objs += avl/avl.o ICP_OBJS := \ algs/aes/aes_impl.o \ algs/aes/aes_impl_generic.o \ algs/aes/aes_modes.o \ algs/blake3/blake3.o \ algs/blake3/blake3_generic.o \ algs/blake3/blake3_impl.o \ algs/edonr/edonr.o \ algs/modes/cbc.o \ algs/modes/ccm.o \ algs/modes/ctr.o \ algs/modes/ecb.o \ algs/modes/gcm.o \ algs/modes/gcm_generic.o \ algs/modes/modes.o \ algs/sha2/sha2_generic.o \ algs/sha2/sha256_impl.o \ algs/sha2/sha512_impl.o \ algs/skein/skein.o \ algs/skein/skein_block.o \ algs/skein/skein_iv.o \ api/kcf_cipher.o \ api/kcf_ctxops.o \ api/kcf_mac.o \ core/kcf_callprov.o \ core/kcf_mech_tabs.o \ core/kcf_prov_lib.o \ core/kcf_prov_tabs.o \ core/kcf_sched.o \ illumos-crypto.o \ io/aes.o \ io/sha2_mod.o \ io/skein_mod.o \ spi/kcf_spi.o ICP_OBJS_X86_64 := \ asm-x86_64/aes/aes_aesni.o \ asm-x86_64/aes/aes_amd64.o \ asm-x86_64/aes/aeskey.o \ asm-x86_64/blake3/blake3_avx2.o \ asm-x86_64/blake3/blake3_avx512.o \ asm-x86_64/blake3/blake3_sse2.o \ asm-x86_64/blake3/blake3_sse41.o \ asm-x86_64/sha2/sha256-x86_64.o \ asm-x86_64/sha2/sha512-x86_64.o \ asm-x86_64/modes/aesni-gcm-x86_64.o \ asm-x86_64/modes/gcm_pclmulqdq.o \ asm-x86_64/modes/ghash-x86_64.o ICP_OBJS_X86 := \ algs/aes/aes_impl_aesni.o \ algs/aes/aes_impl_x86-64.o \ algs/modes/gcm_pclmulqdq.o ICP_OBJS_ARM := \ asm-arm/sha2/sha256-armv7.o \ asm-arm/sha2/sha512-armv7.o ICP_OBJS_ARM64 := \ asm-aarch64/blake3/b3_aarch64_sse2.o \ asm-aarch64/blake3/b3_aarch64_sse41.o \ asm-aarch64/sha2/sha256-armv8.o \ asm-aarch64/sha2/sha512-armv8.o ICP_OBJS_PPC_PPC64 := \ asm-ppc64/blake3/b3_ppc64le_sse2.o \ asm-ppc64/blake3/b3_ppc64le_sse41.o \ asm-ppc64/sha2/sha256-p8.o \ asm-ppc64/sha2/sha512-p8.o \ asm-ppc64/sha2/sha256-ppc.o \ asm-ppc64/sha2/sha512-ppc.o zfs-objs += $(addprefix icp/,$(ICP_OBJS)) zfs-$(CONFIG_X86) += $(addprefix icp/,$(ICP_OBJS_X86)) zfs-$(CONFIG_UML_X86)+= $(addprefix icp/,$(ICP_OBJS_X86)) zfs-$(CONFIG_X86_64) += $(addprefix icp/,$(ICP_OBJS_X86_64)) zfs-$(CONFIG_ARM) += $(addprefix icp/,$(ICP_OBJS_ARM)) zfs-$(CONFIG_ARM64) += $(addprefix icp/,$(ICP_OBJS_ARM64)) zfs-$(CONFIG_PPC) += $(addprefix icp/,$(ICP_OBJS_PPC_PPC64)) zfs-$(CONFIG_PPC64) += $(addprefix icp/,$(ICP_OBJS_PPC_PPC64)) $(addprefix $(obj)/icp/,$(ICP_OBJS) $(ICP_OBJS_X86) $(ICP_OBJS_X86_64) \ $(ICP_OBJS_ARM64) $(ICP_OBJS_PPC_PPC64)) : asflags-y += -I$(icp_include) -I$(zfs_include)/os/linux/spl -I$(zfs_include) $(addprefix $(obj)/icp/,$(ICP_OBJS) $(ICP_OBJS_X86) $(ICP_OBJS_X86_64) \ $(ICP_OBJS_ARM64) $(ICP_OBJS_PPC_PPC64)) : ccflags-y += -I$(icp_include) -I$(zfs_include)/os/linux/spl -I$(zfs_include) # Suppress objtool "return with modified stack frame" warnings. OBJECT_FILES_NON_STANDARD_aesni-gcm-x86_64.o := y # Suppress objtool "unsupported stack pointer realignment" warnings. # See #6950 for the reasoning. OBJECT_FILES_NON_STANDARD_sha256-x86_64.o := y OBJECT_FILES_NON_STANDARD_sha512-x86_64.o := y LUA_OBJS := \ lapi.o \ lauxlib.o \ lbaselib.o \ lcode.o \ lcompat.o \ lcorolib.o \ lctype.o \ ldebug.o \ ldo.o \ lfunc.o \ lgc.o \ llex.o \ lmem.o \ lobject.o \ lopcodes.o \ lparser.o \ lstate.o \ lstring.o \ lstrlib.o \ ltable.o \ ltablib.o \ ltm.o \ lvm.o \ lzio.o \ setjmp/setjmp.o zfs-objs += $(addprefix lua/,$(LUA_OBJS)) NVPAIR_OBJS := \ fnvpair.o \ nvpair.o \ nvpair_alloc_fixed.o \ nvpair_alloc_spl.o zfs-objs += $(addprefix nvpair/,$(NVPAIR_OBJS)) UNICODE_OBJS := \ u8_textprep.o \ uconv.o zfs-objs += $(addprefix unicode/,$(UNICODE_OBJS)) ZCOMMON_OBJS := \ cityhash.o \ zfeature_common.o \ zfs_comutil.o \ zfs_deleg.o \ zfs_fletcher.o \ zfs_fletcher_superscalar.o \ zfs_fletcher_superscalar4.o \ zfs_namecheck.o \ zfs_prop.o \ zpool_prop.o \ zprop_common.o ZCOMMON_OBJS_X86 := \ zfs_fletcher_avx512.o \ zfs_fletcher_intel.o \ zfs_fletcher_sse.o ZCOMMON_OBJS_ARM64 := \ zfs_fletcher_aarch64_neon.o zfs-objs += $(addprefix zcommon/,$(ZCOMMON_OBJS)) zfs-$(CONFIG_X86) += $(addprefix zcommon/,$(ZCOMMON_OBJS_X86)) zfs-$(CONFIG_UML_X86)+= $(addprefix zcommon/,$(ZCOMMON_OBJS_X86)) zfs-$(CONFIG_ARM64) += $(addprefix zcommon/,$(ZCOMMON_OBJS_ARM64)) # Zstd uses -O3 by default, so we should follow ZFS_ZSTD_FLAGS := -O3 # -fno-tree-vectorize gets set for gcc in zstd/common/compiler.h # Set it for other compilers, too. ZFS_ZSTD_FLAGS += -fno-tree-vectorize # SSE register return with SSE disabled if -march=znverX is passed ZFS_ZSTD_FLAGS += -U__BMI__ # Quiet warnings about frame size due to unused code in unmodified zstd lib ZFS_ZSTD_FLAGS += -Wframe-larger-than=20480 ZSTD_OBJS := \ zfs_zstd.o \ zstd_sparc.o ZSTD_UPSTREAM_OBJS := \ lib/common/entropy_common.o \ lib/common/error_private.o \ lib/common/fse_decompress.o \ lib/common/pool.o \ lib/common/zstd_common.o \ lib/compress/fse_compress.o \ lib/compress/hist.o \ lib/compress/huf_compress.o \ lib/compress/zstd_compress.o \ lib/compress/zstd_compress_literals.o \ lib/compress/zstd_compress_sequences.o \ lib/compress/zstd_compress_superblock.o \ lib/compress/zstd_double_fast.o \ lib/compress/zstd_fast.o \ lib/compress/zstd_lazy.o \ lib/compress/zstd_ldm.o \ lib/compress/zstd_opt.o \ lib/decompress/huf_decompress.o \ lib/decompress/zstd_ddict.o \ lib/decompress/zstd_decompress.o \ lib/decompress/zstd_decompress_block.o zfs-objs += $(addprefix zstd/,$(ZSTD_OBJS) $(ZSTD_UPSTREAM_OBJS)) # Disable aarch64 neon SIMD instructions for kernel mode $(addprefix $(obj)/zstd/,$(ZSTD_OBJS) $(ZSTD_UPSTREAM_OBJS)) : ccflags-y += -I$(zstd_include) $(ZFS_ZSTD_FLAGS) $(addprefix $(obj)/zstd/,$(ZSTD_OBJS) $(ZSTD_UPSTREAM_OBJS)) : asflags-y += -I$(zstd_include) $(addprefix $(obj)/zstd/,$(ZSTD_UPSTREAM_OBJS)) : ccflags-y += -include $(zstd_include)/aarch64_compat.h -include $(zstd_include)/zstd_compat_wrapper.h -Wp,-w $(obj)/zstd/zfs_zstd.o : ccflags-y += -include $(zstd_include)/zstd_compat_wrapper.h ZFS_OBJS := \ abd.o \ aggsum.o \ arc.o \ blake3_zfs.o \ blkptr.o \ bplist.o \ bpobj.o \ bptree.o \ bqueue.o \ brt.o \ btree.o \ dataset_kstats.o \ dbuf.o \ dbuf_stats.o \ ddt.o \ ddt_zap.o \ dmu.o \ dmu_diff.o \ dmu_object.o \ dmu_objset.o \ dmu_recv.o \ dmu_redact.o \ dmu_send.o \ dmu_traverse.o \ dmu_tx.o \ dmu_zfetch.o \ dnode.o \ dnode_sync.o \ dsl_bookmark.o \ dsl_crypt.o \ dsl_dataset.o \ dsl_deadlist.o \ dsl_deleg.o \ dsl_destroy.o \ dsl_dir.o \ dsl_pool.o \ dsl_prop.o \ dsl_scan.o \ dsl_synctask.o \ dsl_userhold.o \ edonr_zfs.o \ fm.o \ gzip.o \ hkdf.o \ lz4.o \ lz4_zfs.o \ lzjb.o \ metaslab.o \ mmp.o \ multilist.o \ objlist.o \ pathname.o \ range_tree.o \ refcount.o \ rrwlock.o \ sa.o \ sha2_zfs.o \ skein_zfs.o \ spa.o \ spa_checkpoint.o \ spa_config.o \ spa_errlog.o \ spa_history.o \ spa_log_spacemap.o \ spa_misc.o \ spa_stats.o \ space_map.o \ space_reftree.o \ txg.o \ uberblock.o \ unique.o \ vdev.o \ - vdev_cache.o \ vdev_draid.o \ vdev_draid_rand.o \ vdev_indirect.o \ vdev_indirect_births.o \ vdev_indirect_mapping.o \ vdev_initialize.o \ vdev_label.o \ vdev_mirror.o \ vdev_missing.o \ vdev_queue.o \ vdev_raidz.o \ vdev_raidz_math.o \ vdev_raidz_math_scalar.o \ vdev_rebuild.o \ vdev_removal.o \ vdev_root.o \ vdev_trim.o \ zap.o \ zap_leaf.o \ zap_micro.o \ zcp.o \ zcp_get.o \ zcp_global.o \ zcp_iter.o \ zcp_set.o \ zcp_synctask.o \ zfeature.o \ zfs_byteswap.o \ zfs_chksum.o \ zfs_fm.o \ zfs_fuid.o \ zfs_impl.o \ zfs_ioctl.o \ zfs_log.o \ zfs_onexit.o \ zfs_quota.o \ zfs_ratelimit.o \ zfs_replay.o \ zfs_rlock.o \ zfs_sa.o \ zfs_vnops.o \ zil.o \ zio.o \ zio_checksum.o \ zio_compress.o \ zio_inject.o \ zle.o \ zrlock.o \ zthr.o \ zvol.o ZFS_OBJS_OS := \ abd_os.o \ arc_os.o \ mmp_os.o \ policy.o \ qat.o \ qat_compress.o \ qat_crypt.o \ spa_misc_os.o \ trace.o \ vdev_disk.o \ vdev_file.o \ zfs_acl.o \ zfs_ctldir.o \ zfs_debug.o \ zfs_dir.o \ zfs_file_os.o \ zfs_ioctl_os.o \ zfs_racct.o \ zfs_sysfs.o \ zfs_uio.o \ zfs_vfsops.o \ zfs_vnops_os.o \ zfs_znode.o \ zio_crypt.o \ zpl_ctldir.o \ zpl_export.o \ zpl_file.o \ zpl_inode.o \ zpl_super.o \ zpl_xattr.o \ zvol_os.o ZFS_OBJS_X86 := \ vdev_raidz_math_avx2.o \ vdev_raidz_math_avx512bw.o \ vdev_raidz_math_avx512f.o \ vdev_raidz_math_sse2.o \ vdev_raidz_math_ssse3.o ZFS_OBJS_ARM64 := \ vdev_raidz_math_aarch64_neon.o \ vdev_raidz_math_aarch64_neonx2.o ZFS_OBJS_PPC_PPC64 := \ vdev_raidz_math_powerpc_altivec.o zfs-objs += $(addprefix zfs/,$(ZFS_OBJS)) $(addprefix os/linux/zfs/,$(ZFS_OBJS_OS)) zfs-$(CONFIG_X86) += $(addprefix zfs/,$(ZFS_OBJS_X86)) zfs-$(CONFIG_UML_X86)+= $(addprefix zfs/,$(ZFS_OBJS_X86)) zfs-$(CONFIG_ARM64) += $(addprefix zfs/,$(ZFS_OBJS_ARM64)) zfs-$(CONFIG_PPC) += $(addprefix zfs/,$(ZFS_OBJS_PPC_PPC64)) zfs-$(CONFIG_PPC64) += $(addprefix zfs/,$(ZFS_OBJS_PPC_PPC64)) # Suppress incorrect warnings from versions of objtool which are not # aware of x86 EVEX prefix instructions used for AVX512. OBJECT_FILES_NON_STANDARD_vdev_raidz_math_avx512bw.o := y OBJECT_FILES_NON_STANDARD_vdev_raidz_math_avx512f.o := y ifeq ($(CONFIG_ALTIVEC),y) $(obj)/zfs/vdev_raidz_math_powerpc_altivec.o : c_flags += -maltivec endif diff --git a/module/Makefile.bsd b/module/Makefile.bsd index 9464223f6ca6..0c4d8bfe1159 100644 --- a/module/Makefile.bsd +++ b/module/Makefile.bsd @@ -1,544 +1,543 @@ .if !defined(WITH_CTF) WITH_CTF=1 .endif .include SRCDIR=${.CURDIR} INCDIR=${.CURDIR:H}/include KMOD= openzfs .PATH: ${SRCDIR}/avl \ ${SRCDIR}/lua \ ${SRCDIR}/nvpair \ ${SRCDIR}/icp/algs/blake3 \ ${SRCDIR}/icp/algs/edonr \ ${SRCDIR}/icp/algs/sha2 \ ${SRCDIR}/icp/asm-aarch64/blake3 \ ${SRCDIR}/icp/asm-aarch64/sha2 \ ${SRCDIR}/icp/asm-arm/sha2 \ ${SRCDIR}/icp/asm-ppc64/sha2 \ ${SRCDIR}/icp/asm-ppc64/blake3 \ ${SRCDIR}/icp/asm-x86_64/blake3 \ ${SRCDIR}/icp/asm-x86_64/sha2 \ ${SRCDIR}/os/freebsd/spl \ ${SRCDIR}/os/freebsd/zfs \ ${SRCDIR}/unicode \ ${SRCDIR}/zcommon \ ${SRCDIR}/zfs \ ${SRCDIR}/zstd \ ${SRCDIR}/zstd/lib/common \ ${SRCDIR}/zstd/lib/compress \ ${SRCDIR}/zstd/lib/decompress CFLAGS+= -I${INCDIR} CFLAGS+= -I${SRCDIR}/icp/include CFLAGS+= -I${INCDIR}/os/freebsd CFLAGS+= -I${INCDIR}/os/freebsd/spl CFLAGS+= -I${INCDIR}/os/freebsd/zfs CFLAGS+= -I${SRCDIR}/zstd/include CFLAGS+= -include ${INCDIR}/os/freebsd/spl/sys/ccompile.h CFLAGS+= -I${.CURDIR} CFLAGS+= -D__KERNEL__ -DFREEBSD_NAMECACHE -DBUILDING_ZFS -D__BSD_VISIBLE=1 \ -DHAVE_UIO_ZEROCOPY -DWITHOUT_NETDUMP -D__KERNEL -D_SYS_CONDVAR_H_ \ -D_SYS_VMEM_H_ -DKDTRACE_HOOKS -DCOMPAT_FREEBSD11 .if ${MACHINE_ARCH} == "amd64" CFLAGS+= -D__x86_64 -DHAVE_SSE2 -DHAVE_SSSE3 -DHAVE_SSE4_1 -DHAVE_SSE4_2 \ -DHAVE_AVX -DHAVE_AVX2 -DHAVE_AVX512F -DHAVE_AVX512VL -DHAVE_AVX512BW .endif .if defined(WITH_DEBUG) && ${WITH_DEBUG} == "true" CFLAGS+= -DZFS_DEBUG -g .if defined(WITH_INVARIANTS) && ${WITH_INVARIANTS} == "true" CFLAGS+= -DINVARIANTS -DWITNESS -DOPENSOLARIS_WITNESS .endif .if defined(WITH_O0) && ${WITH_O0} == "true" CFLAGS+= -O0 .endif .else CFLAGS += -DNDEBUG .endif .if defined(WITH_VFS_DEBUG) && ${WITH_VFS_DEBUG} == "true" # kernel must also be built with this option for this to work CFLAGS+= -DDEBUG_VFS_LOCKS .endif .if defined(WITH_GCOV) && ${WITH_GCOV} == "true" CFLAGS+= -fprofile-arcs -ftest-coverage .endif DEBUG_FLAGS=-g .if ${MACHINE_ARCH} == "i386" || ${MACHINE_ARCH} == "powerpc" || \ ${MACHINE_ARCH} == "powerpcspe" || ${MACHINE_ARCH} == "arm" CFLAGS+= -DBITS_PER_LONG=32 .else CFLAGS+= -DBITS_PER_LONG=64 .endif SRCS= vnode_if.h device_if.h bus_if.h # avl SRCS+= avl.c # icp SRCS+= edonr.c #icp/algs/blake3 SRCS+= blake3.c \ blake3_generic.c \ blake3_impl.c #icp/asm-aarch64/blake3 SRCS+= b3_aarch64_sse2.S \ b3_aarch64_sse41.S #icp/asm-ppc64/blake3 SRCS+= b3_ppc64le_sse2.S \ b3_ppc64le_sse41.S #icp/asm-x86_64/blake3 SRCS+= blake3_avx2.S \ blake3_avx512.S \ blake3_sse2.S \ blake3_sse41.S #icp/algs/sha2 SRCS+= sha2_generic.c \ sha256_impl.c \ sha512_impl.c #icp/asm-arm/sha2 SRCS+= sha256-armv7.S \ sha512-armv7.S #icp/asm-aarch64/sha2 SRCS+= sha256-armv8.S \ sha512-armv8.S #icp/asm-ppc64/sha2 SRCS+= sha256-p8.S \ sha512-p8.S \ sha256-ppc.S \ sha512-ppc.S #icp/asm-x86_64/sha2 SRCS+= sha256-x86_64.S \ sha512-x86_64.S #lua SRCS+= lapi.c \ lauxlib.c \ lbaselib.c \ lcode.c \ lcompat.c \ lcorolib.c \ lctype.c \ ldebug.c \ ldo.c \ lfunc.c \ lgc.c \ llex.c \ lmem.c \ lobject.c \ lopcodes.c \ lparser.c \ lstate.c \ lstring.c \ lstrlib.c \ ltable.c \ ltablib.c \ ltm.c \ lvm.c \ lzio.c #nvpair SRCS+= nvpair.c \ fnvpair.c \ nvpair_alloc_spl.c \ nvpair_alloc_fixed.c #os/freebsd/spl SRCS+= acl_common.c \ callb.c \ list.c \ spl_acl.c \ spl_cmn_err.c \ spl_dtrace.c \ spl_kmem.c \ spl_kstat.c \ spl_misc.c \ spl_policy.c \ spl_procfs_list.c \ spl_string.c \ spl_sunddi.c \ spl_sysevent.c \ spl_taskq.c \ spl_uio.c \ spl_vfs.c \ spl_vm.c \ spl_zlib.c \ spl_zone.c .if ${MACHINE_ARCH} == "i386" || ${MACHINE_ARCH} == "powerpc" || \ ${MACHINE_ARCH} == "powerpcspe" || ${MACHINE_ARCH} == "arm" SRCS+= spl_atomic.c .endif #os/freebsd/zfs SRCS+= abd_os.c \ arc_os.c \ crypto_os.c \ dmu_os.c \ event_os.c \ hkdf.c \ kmod_core.c \ spa_os.c \ sysctl_os.c \ vdev_file.c \ vdev_geom.c \ vdev_label_os.c \ zfs_acl.c \ zfs_ctldir.c \ zfs_debug.c \ zfs_dir.c \ zfs_ioctl_compat.c \ zfs_ioctl_os.c \ zfs_racct.c \ zfs_vfsops.c \ zfs_vnops_os.c \ zfs_znode.c \ zio_crypt.c \ zvol_os.c #unicode SRCS+= uconv.c \ u8_textprep.c #zcommon SRCS+= zfeature_common.c \ zfs_comutil.c \ zfs_deleg.c \ zfs_fletcher.c \ zfs_fletcher_avx512.c \ zfs_fletcher_intel.c \ zfs_fletcher_sse.c \ zfs_fletcher_superscalar.c \ zfs_fletcher_superscalar4.c \ zfs_namecheck.c \ zfs_prop.c \ zpool_prop.c \ zprop_common.c #zfs SRCS+= abd.c \ aggsum.c \ arc.c \ blake3_zfs.c \ blkptr.c \ bplist.c \ bpobj.c \ brt.c \ btree.c \ cityhash.c \ dbuf.c \ dbuf_stats.c \ bptree.c \ bqueue.c \ dataset_kstats.c \ ddt.c \ ddt_zap.c \ dmu.c \ dmu_diff.c \ dmu_object.c \ dmu_objset.c \ dmu_recv.c \ dmu_redact.c \ dmu_send.c \ dmu_traverse.c \ dmu_tx.c \ dmu_zfetch.c \ dnode.c \ dnode_sync.c \ dsl_dataset.c \ dsl_deadlist.c \ dsl_deleg.c \ dsl_bookmark.c \ dsl_dir.c \ dsl_crypt.c \ dsl_destroy.c \ dsl_pool.c \ dsl_prop.c \ dsl_scan.c \ dsl_synctask.c \ dsl_userhold.c \ edonr_zfs.c \ fm.c \ gzip.c \ lzjb.c \ lz4.c \ lz4_zfs.c \ metaslab.c \ mmp.c \ multilist.c \ objlist.c \ pathname.c \ range_tree.c \ refcount.c \ rrwlock.c \ sa.c \ sha2_zfs.c \ skein_zfs.c \ spa.c \ spa_checkpoint.c \ spa_config.c \ spa_errlog.c \ spa_history.c \ spa_log_spacemap.c \ spa_misc.c \ spa_stats.c \ space_map.c \ space_reftree.c \ txg.c \ uberblock.c \ unique.c \ vdev.c \ - vdev_cache.c \ vdev_draid.c \ vdev_draid_rand.c \ vdev_indirect.c \ vdev_indirect_births.c \ vdev_indirect_mapping.c \ vdev_initialize.c \ vdev_label.c \ vdev_mirror.c \ vdev_missing.c \ vdev_queue.c \ vdev_raidz.c \ vdev_raidz_math.c \ vdev_raidz_math_scalar.c \ vdev_raidz_math_avx2.c \ vdev_raidz_math_avx512bw.c \ vdev_raidz_math_avx512f.c \ vdev_raidz_math_sse2.c \ vdev_raidz_math_ssse3.c \ vdev_rebuild.c \ vdev_removal.c \ vdev_root.c \ vdev_trim.c \ zap.c \ zap_leaf.c \ zap_micro.c \ zcp.c \ zcp_get.c \ zcp_global.c \ zcp_iter.c \ zcp_set.c \ zcp_synctask.c \ zfeature.c \ zfs_byteswap.c \ zfs_chksum.c \ zfs_file_os.c \ zfs_fm.c \ zfs_fuid.c \ zfs_impl.c \ zfs_ioctl.c \ zfs_log.c \ zfs_onexit.c \ zfs_quota.c \ zfs_ratelimit.c \ zfs_replay.c \ zfs_rlock.c \ zfs_sa.c \ zfs_vnops.c \ zil.c \ zio.c \ zio_checksum.c \ zio_compress.c \ zio_inject.c \ zle.c \ zrlock.c \ zthr.c \ zvol.c #zstd SRCS+= zfs_zstd.c \ entropy_common.c \ error_private.c \ fse_compress.c \ fse_decompress.c \ hist.c \ huf_compress.c \ huf_decompress.c \ pool.c \ xxhash.c \ zstd_common.c \ zstd_compress.c \ zstd_compress_literals.c \ zstd_compress_sequences.c \ zstd_compress_superblock.c \ zstd_ddict.c \ zstd_decompress.c \ zstd_decompress_block.c \ zstd_double_fast.c \ zstd_fast.c \ zstd_lazy.c \ zstd_ldm.c \ zstd_opt.c beforeinstall: .if ${MK_DEBUG_FILES} != "no" mtree -eu \ -f /etc/mtree/BSD.debug.dist \ -p ${DESTDIR}/usr/lib .endif .include # Generated binary search code is particularly bad with this optimization. # Oddly, range_tree.c is not affected when unrolling is not done and dsl_scan.c # is not affected when unrolling is done. # Disable it until the following upstream issue is resolved: # https://github.com/llvm/llvm-project/issues/62790 .if ${CC} == "clang" .if ${MACHINE_ARCH} == "i386" || ${MACHINE_ARCH} == "amd64" CFLAGS.dsl_scan.c= -mllvm -x86-cmov-converter=false CFLAGS.metaslab.c= -mllvm -x86-cmov-converter=false CFLAGS.range_tree.c= -mllvm -x86-cmov-converter=false CFLAGS.zap_micro.c= -mllvm -x86-cmov-converter=false .endif .endif CFLAGS.sysctl_os.c= -include ../zfs_config.h CFLAGS.xxhash.c+= -include ${SYSDIR}/sys/_null.h CFLAGS.gcc+= -Wno-pointer-to-int-cast CFLAGS.abd.c= -Wno-cast-qual CFLAGS.ddt.c= -Wno-cast-qual CFLAGS.dmu.c= -Wno-cast-qual CFLAGS.dmu_traverse.c= -Wno-cast-qual CFLAGS.dnode.c= ${NO_WUNUSED_BUT_SET_VARIABLE} CFLAGS.dsl_deadlist.c= -Wno-cast-qual CFLAGS.dsl_dir.c= -Wno-cast-qual CFLAGS.dsl_prop.c= -Wno-cast-qual CFLAGS.edonr.c= -Wno-cast-qual CFLAGS.fm.c= -Wno-cast-qual CFLAGS.hist.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.lapi.c= -Wno-cast-qual CFLAGS.lcompat.c= -Wno-cast-qual CFLAGS.ldo.c= ${NO_WINFINITE_RECURSION} CFLAGS.lobject.c= -Wno-cast-qual CFLAGS.ltable.c= -Wno-cast-qual CFLAGS.lvm.c= -Wno-cast-qual CFLAGS.lz4.c= -Wno-cast-qual CFLAGS.lz4_zfs.c= -Wno-cast-qual CFLAGS.nvpair.c= -Wno-cast-qual -DHAVE_RPC_TYPES ${NO_WSTRINGOP_OVERREAD} CFLAGS.pool.c+= ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.pool.c= -U__BMI__ -fno-tree-vectorize CFLAGS.spa.c= -Wno-cast-qual CFLAGS.spa_misc.c= -Wno-cast-qual CFLAGS.spl_string.c= -Wno-cast-qual CFLAGS.spl_vm.c= -Wno-cast-qual CFLAGS.spl_zlib.c= -Wno-cast-qual CFLAGS.u8_textprep.c= -Wno-cast-qual CFLAGS.vdev_draid.c= -Wno-cast-qual CFLAGS.vdev_raidz.c= -Wno-cast-qual CFLAGS.vdev_raidz_math.c= -Wno-cast-qual CFLAGS.vdev_raidz_math_avx2.c= -Wno-cast-qual -Wno-duplicate-decl-specifier CFLAGS.vdev_raidz_math_avx512f.c= -Wno-cast-qual -Wno-duplicate-decl-specifier CFLAGS.vdev_raidz_math_scalar.c= -Wno-cast-qual CFLAGS.vdev_raidz_math_sse2.c= -Wno-cast-qual -Wno-duplicate-decl-specifier CFLAGS.zap_leaf.c= -Wno-cast-qual CFLAGS.zap_micro.c= -Wno-cast-qual CFLAGS.zcp.c= -Wno-cast-qual CFLAGS.zfs_fletcher.c= -Wno-cast-qual -Wno-pointer-arith CFLAGS.zfs_fletcher_avx512.c= -Wno-cast-qual -Wno-pointer-arith CFLAGS.zfs_fletcher_intel.c= -Wno-cast-qual -Wno-pointer-arith CFLAGS.zfs_fletcher_sse.c= -Wno-cast-qual -Wno-pointer-arith CFLAGS.zfs_fm.c= -Wno-cast-qual ${NO_WUNUSED_BUT_SET_VARIABLE} CFLAGS.zfs_ioctl.c= -Wno-cast-qual CFLAGS.zfs_log.c= -Wno-cast-qual CFLAGS.zfs_vnops_os.c= -Wno-pointer-arith CFLAGS.zfs_zstd.c= -Wno-cast-qual -Wno-pointer-arith CFLAGS.zil.c= -Wno-cast-qual CFLAGS.zio.c= -Wno-cast-qual CFLAGS.zprop_common.c= -Wno-cast-qual CFLAGS.zrlock.c= -Wno-cast-qual #zstd CFLAGS.entropy_common.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.error_private.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.fse_compress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} ${NO_WUNUSED_BUT_SET_VARIABLE} CFLAGS.fse_decompress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.huf_compress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.huf_decompress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.xxhash.c+= -U__BMI__ -fno-tree-vectorize CFLAGS.xxhash.c+= ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_common.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_compress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_compress_literals.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_compress_sequences.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_compress_superblock.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} ${NO_WUNUSED_BUT_SET_VARIABLE} CFLAGS.zstd_ddict.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_decompress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_decompress_block.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_double_fast.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_fast.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_lazy.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_ldm.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_opt.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} .if ${MACHINE_CPUARCH} == "aarch64" __ZFS_ZSTD_AARCH64_FLAGS= -include ${SRCDIR}/zstd/include/aarch64_compat.h CFLAGS.zstd.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.entropy_common.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.error_private.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.fse_compress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.fse_decompress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.hist.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.huf_compress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.huf_decompress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.pool.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.xxhash.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_common.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_compress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_compress_literals.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_compress_sequences.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_compress_superblock.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_ddict.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_decompress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_decompress_block.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_double_fast.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_fast.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_lazy.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_ldm.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_opt.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} sha256-armv8.o: sha256-armv8.S ${CC} -c ${CFLAGS:N-mgeneral-regs-only} ${WERROR} ${.IMPSRC} \ -o ${.TARGET} ${CTFCONVERT_CMD} sha512-armv8.o: sha512-armv8.S ${CC} -c ${CFLAGS:N-mgeneral-regs-only} ${WERROR} ${.IMPSRC} \ -o ${.TARGET} ${CTFCONVERT_CMD} b3_aarch64_sse2.o: b3_aarch64_sse2.S ${CC} -c ${CFLAGS:N-mgeneral-regs-only} ${WERROR} ${.IMPSRC} \ -o ${.TARGET} ${CTFCONVERT_CMD} b3_aarch64_sse41.o: b3_aarch64_sse41.S ${CC} -c ${CFLAGS:N-mgeneral-regs-only} ${WERROR} ${.IMPSRC} \ -o ${.TARGET} ${CTFCONVERT_CMD} .endif diff --git a/module/os/freebsd/zfs/sysctl_os.c b/module/os/freebsd/zfs/sysctl_os.c index cc616f33db96..8ae2f23c3ecf 100644 --- a/module/os/freebsd/zfs/sysctl_os.c +++ b/module/os/freebsd/zfs/sysctl_os.c @@ -1,896 +1,894 @@ /* * Copyright (c) 2020 iXsystems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_vfs_zfs); SYSCTL_NODE(_vfs_zfs, OID_AUTO, arc, CTLFLAG_RW, 0, "ZFS adaptive replacement cache"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, brt, CTLFLAG_RW, 0, "ZFS Block Reference Table"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, condense, CTLFLAG_RW, 0, "ZFS condense"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, dbuf, CTLFLAG_RW, 0, "ZFS disk buf cache"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, dbuf_cache, CTLFLAG_RW, 0, "ZFS disk buf cache"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, deadman, CTLFLAG_RW, 0, "ZFS deadman"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, dedup, CTLFLAG_RW, 0, "ZFS dedup"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, l2arc, CTLFLAG_RW, 0, "ZFS l2arc"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, livelist, CTLFLAG_RW, 0, "ZFS livelist"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, lua, CTLFLAG_RW, 0, "ZFS lua"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, metaslab, CTLFLAG_RW, 0, "ZFS metaslab"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, mg, CTLFLAG_RW, 0, "ZFS metaslab group"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, multihost, CTLFLAG_RW, 0, "ZFS multihost protection"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, prefetch, CTLFLAG_RW, 0, "ZFS prefetch"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, reconstruct, CTLFLAG_RW, 0, "ZFS reconstruct"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, recv, CTLFLAG_RW, 0, "ZFS receive"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, send, CTLFLAG_RW, 0, "ZFS send"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, spa, CTLFLAG_RW, 0, "ZFS space allocation"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, trim, CTLFLAG_RW, 0, "ZFS TRIM"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, txg, CTLFLAG_RW, 0, "ZFS transaction group"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, vnops, CTLFLAG_RW, 0, "ZFS VNOPS"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, zevent, CTLFLAG_RW, 0, "ZFS event"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, zil, CTLFLAG_RW, 0, "ZFS ZIL"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO"); SYSCTL_NODE(_vfs_zfs_livelist, OID_AUTO, condense, CTLFLAG_RW, 0, "ZFS livelist condense"); SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, cache, CTLFLAG_RW, 0, "ZFS VDEV Cache"); SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, file, CTLFLAG_RW, 0, "ZFS VDEV file"); SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, mirror, CTLFLAG_RD, 0, "ZFS VDEV mirror"); SYSCTL_DECL(_vfs_zfs_version); SYSCTL_CONST_STRING(_vfs_zfs_version, OID_AUTO, module, CTLFLAG_RD, (ZFS_META_VERSION "-" ZFS_META_RELEASE), "OpenZFS module version"); /* arc.c */ int param_set_arc_u64(SYSCTL_HANDLER_ARGS) { int err; err = sysctl_handle_64(oidp, arg1, 0, req); if (err != 0 || req->newptr == NULL) return (err); arc_tuning_update(B_TRUE); return (0); } int param_set_arc_int(SYSCTL_HANDLER_ARGS) { int err; err = sysctl_handle_int(oidp, arg1, 0, req); if (err != 0 || req->newptr == NULL) return (err); arc_tuning_update(B_TRUE); return (0); } int param_set_arc_max(SYSCTL_HANDLER_ARGS) { unsigned long val; int err; val = zfs_arc_max; err = sysctl_handle_64(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (SET_ERROR(err)); if (val != 0 && (val < MIN_ARC_MAX || val <= arc_c_min || val >= arc_all_memory())) return (SET_ERROR(EINVAL)); zfs_arc_max = val; arc_tuning_update(B_TRUE); /* Update the sysctl to the tuned value */ if (val != 0) zfs_arc_max = arc_c_max; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_ULONG | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0, param_set_arc_max, "LU", "Maximum ARC size in bytes (LEGACY)"); /* END CSTYLED */ int param_set_arc_min(SYSCTL_HANDLER_ARGS) { unsigned long val; int err; val = zfs_arc_min; err = sysctl_handle_64(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (SET_ERROR(err)); if (val != 0 && (val < 2ULL << SPA_MAXBLOCKSHIFT || val > arc_c_max)) return (SET_ERROR(EINVAL)); zfs_arc_min = val; arc_tuning_update(B_TRUE); /* Update the sysctl to the tuned value */ if (val != 0) zfs_arc_min = arc_c_min; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_ULONG | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0, param_set_arc_min, "LU", "Minimum ARC size in bytes (LEGACY)"); /* END CSTYLED */ extern uint_t zfs_arc_free_target; int param_set_arc_free_target(SYSCTL_HANDLER_ARGS) { uint_t val; int err; val = zfs_arc_free_target; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < minfree) return (EINVAL); if (val > vm_cnt.v_page_count) return (EINVAL); zfs_arc_free_target = val; return (0); } /* * NOTE: This sysctl is CTLFLAG_RW not CTLFLAG_RWTUN due to its dependency on * pagedaemon initialization. */ /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target, CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, param_set_arc_free_target, "IU", "Desired number of free pages below which ARC triggers reclaim" " (LEGACY)"); /* END CSTYLED */ int param_set_arc_no_grow_shift(SYSCTL_HANDLER_ARGS) { int err, val; val = arc_no_grow_shift; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < 0 || val >= arc_shrink_shift) return (EINVAL); arc_no_grow_shift = val; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_no_grow_shift, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0, param_set_arc_no_grow_shift, "I", "log2(fraction of ARC which must be free to allow growing) (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_write_max; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RWTUN, &l2arc_write_max, 0, "Max write bytes per interval (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_write_boost; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RWTUN, &l2arc_write_boost, 0, "Extra write bytes during device warmup (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_headroom; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RWTUN, &l2arc_headroom, 0, "Number of max device writes to precache (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_headroom_boost; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom_boost, CTLFLAG_RWTUN, &l2arc_headroom_boost, 0, "Compressed l2arc_headroom multiplier (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_feed_secs; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RWTUN, &l2arc_feed_secs, 0, "Seconds between L2ARC writing (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_feed_min_ms; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RWTUN, &l2arc_feed_min_ms, 0, "Min feed interval in milliseconds (LEGACY)"); /* END CSTYLED */ extern int l2arc_noprefetch; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RWTUN, &l2arc_noprefetch, 0, "Skip caching prefetched buffers (LEGACY)"); /* END CSTYLED */ extern int l2arc_feed_again; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RWTUN, &l2arc_feed_again, 0, "Turbo L2ARC warmup (LEGACY)"); /* END CSTYLED */ extern int l2arc_norw; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RWTUN, &l2arc_norw, 0, "No reads during writes (LEGACY)"); /* END CSTYLED */ static int param_get_arc_state_size(SYSCTL_HANDLER_ARGS) { arc_state_t *state = (arc_state_t *)arg1; int64_t val; val = zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]) + zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]); return (sysctl_handle_64(oidp, &val, 0, req)); } extern arc_state_t ARC_anon; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, anon_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_anon, 0, param_get_arc_state_size, "Q", "size of anonymous state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD, &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in anonymous state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD, &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in anonymous state"); /* END CSTYLED */ extern arc_state_t ARC_mru; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, mru_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_mru, 0, param_get_arc_state_size, "Q", "size of mru state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD, &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in mru state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD, &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in mru state"); /* END CSTYLED */ extern arc_state_t ARC_mru_ghost; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_mru_ghost, 0, param_get_arc_state_size, "Q", "size of mru ghost state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD, &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in mru ghost state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD, &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in mru ghost state"); /* END CSTYLED */ extern arc_state_t ARC_mfu; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, mfu_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_mfu, 0, param_get_arc_state_size, "Q", "size of mfu state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD, &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in mfu state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD, &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in mfu state"); /* END CSTYLED */ extern arc_state_t ARC_mfu_ghost; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_mfu_ghost, 0, param_get_arc_state_size, "Q", "size of mfu ghost state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD, &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in mfu ghost state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD, &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in mfu ghost state"); /* END CSTYLED */ extern arc_state_t ARC_uncached; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, uncached_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_uncached, 0, param_get_arc_state_size, "Q", "size of uncached state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, uncached_metadata_esize, CTLFLAG_RD, &ARC_uncached.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in uncached state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, uncached_data_esize, CTLFLAG_RD, &ARC_uncached.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in uncached state"); /* END CSTYLED */ extern arc_state_t ARC_l2c_only; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, l2c_only_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_l2c_only, 0, param_get_arc_state_size, "Q", "size of l2c_only state"); /* END CSTYLED */ /* dbuf.c */ /* dmu.c */ /* dmu_zfetch.c */ SYSCTL_NODE(_vfs_zfs, OID_AUTO, zfetch, CTLFLAG_RW, 0, "ZFS ZFETCH (LEGACY)"); extern uint32_t zfetch_max_distance; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_distance, CTLFLAG_RWTUN, &zfetch_max_distance, 0, "Max bytes to prefetch per stream (LEGACY)"); /* END CSTYLED */ extern uint32_t zfetch_max_idistance; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_idistance, CTLFLAG_RWTUN, &zfetch_max_idistance, 0, "Max bytes to prefetch indirects for per stream (LEGACY)"); /* END CSTYLED */ /* dsl_pool.c */ /* dnode.c */ /* dsl_scan.c */ /* metaslab.c */ /* * In pools where the log space map feature is not enabled we touch * multiple metaslabs (and their respective space maps) with each * transaction group. Thus, we benefit from having a small space map * block size since it allows us to issue more I/O operations scattered * around the disk. So a sane default for the space map block size * is 8~16K. */ extern int zfs_metaslab_sm_blksz_no_log; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, sm_blksz_no_log, CTLFLAG_RDTUN, &zfs_metaslab_sm_blksz_no_log, 0, "Block size for space map in pools with log space map disabled. " "Power of 2 greater than 4096."); /* END CSTYLED */ /* * When the log space map feature is enabled, we accumulate a lot of * changes per metaslab that are flushed once in a while so we benefit * from a bigger block size like 128K for the metaslab space maps. */ extern int zfs_metaslab_sm_blksz_with_log; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, sm_blksz_with_log, CTLFLAG_RDTUN, &zfs_metaslab_sm_blksz_with_log, 0, "Block size for space map in pools with log space map enabled. " "Power of 2 greater than 4096."); /* END CSTYLED */ /* * The in-core space map representation is more compact than its on-disk form. * The zfs_condense_pct determines how much more compact the in-core * space map representation must be before we compact it on-disk. * Values should be greater than or equal to 100. */ extern uint_t zfs_condense_pct; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs, OID_AUTO, condense_pct, CTLFLAG_RWTUN, &zfs_condense_pct, 0, "Condense on-disk spacemap when it is more than this many percents" " of in-memory counterpart"); /* END CSTYLED */ extern uint_t zfs_remove_max_segment; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs, OID_AUTO, remove_max_segment, CTLFLAG_RWTUN, &zfs_remove_max_segment, 0, "Largest contiguous segment ZFS will attempt to allocate when removing" " a device"); /* END CSTYLED */ extern int zfs_removal_suspend_progress; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, removal_suspend_progress, CTLFLAG_RWTUN, &zfs_removal_suspend_progress, 0, "Ensures certain actions can happen while in the middle of a removal"); /* END CSTYLED */ /* * Minimum size which forces the dynamic allocator to change * it's allocation strategy. Once the space map cannot satisfy * an allocation of this size then it switches to using more * aggressive strategy (i.e search by size rather than offset). */ extern uint64_t metaslab_df_alloc_threshold; /* BEGIN CSTYLED */ SYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, df_alloc_threshold, CTLFLAG_RWTUN, &metaslab_df_alloc_threshold, 0, "Minimum size which forces the dynamic allocator to change its" " allocation strategy"); /* END CSTYLED */ /* * The minimum free space, in percent, which must be available * in a space map to continue allocations in a first-fit fashion. * Once the space map's free space drops below this level we dynamically * switch to using best-fit allocations. */ extern uint_t metaslab_df_free_pct; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs_metaslab, OID_AUTO, df_free_pct, CTLFLAG_RWTUN, &metaslab_df_free_pct, 0, "The minimum free space, in percent, which must be available in a" " space map to continue allocations in a first-fit fashion"); /* END CSTYLED */ /* * Percentage of all cpus that can be used by the metaslab taskq. */ extern int metaslab_load_pct; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, load_pct, CTLFLAG_RWTUN, &metaslab_load_pct, 0, "Percentage of cpus that can be used by the metaslab taskq"); /* END CSTYLED */ /* * Max number of metaslabs per group to preload. */ extern uint_t metaslab_preload_limit; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs_metaslab, OID_AUTO, preload_limit, CTLFLAG_RWTUN, &metaslab_preload_limit, 0, "Max number of metaslabs per group to preload"); /* END CSTYLED */ /* mmp.c */ int param_set_multihost_interval(SYSCTL_HANDLER_ARGS) { int err; err = sysctl_handle_64(oidp, &zfs_multihost_interval, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (spa_mode_global != SPA_MODE_UNINIT) mmp_signal_all_threads(); return (0); } /* spa.c */ extern int zfs_ccw_retry_interval; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RWTUN, &zfs_ccw_retry_interval, 0, "Configuration cache file write, retry after failure, interval" " (seconds)"); /* END CSTYLED */ extern uint64_t zfs_max_missing_tvds_cachefile; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_cachefile, CTLFLAG_RWTUN, &zfs_max_missing_tvds_cachefile, 0, "Allow importing pools with missing top-level vdevs in cache file"); /* END CSTYLED */ extern uint64_t zfs_max_missing_tvds_scan; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_scan, CTLFLAG_RWTUN, &zfs_max_missing_tvds_scan, 0, "Allow importing pools with missing top-level vdevs during scan"); /* END CSTYLED */ /* spa_misc.c */ extern int zfs_flags; static int sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS) { int err, val; val = zfs_flags; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); /* * ZFS_DEBUG_MODIFY must be enabled prior to boot so all * arc buffers in the system have the necessary additional * checksum data. However, it is safe to disable at any * time. */ if (!(zfs_flags & ZFS_DEBUG_MODIFY)) val &= ~ZFS_DEBUG_MODIFY; zfs_flags = val; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, debugflags, CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, NULL, 0, sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing."); /* END CSTYLED */ int param_set_deadman_synctime(SYSCTL_HANDLER_ARGS) { unsigned long val; int err; val = zfs_deadman_synctime_ms; err = sysctl_handle_64(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); zfs_deadman_synctime_ms = val; spa_set_deadman_synctime(MSEC2NSEC(zfs_deadman_synctime_ms)); return (0); } int param_set_deadman_ziotime(SYSCTL_HANDLER_ARGS) { unsigned long val; int err; val = zfs_deadman_ziotime_ms; err = sysctl_handle_64(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); zfs_deadman_ziotime_ms = val; spa_set_deadman_ziotime(MSEC2NSEC(zfs_deadman_synctime_ms)); return (0); } int param_set_deadman_failmode(SYSCTL_HANDLER_ARGS) { char buf[16]; int rc; if (req->newptr == NULL) strlcpy(buf, zfs_deadman_failmode, sizeof (buf)); rc = sysctl_handle_string(oidp, buf, sizeof (buf), req); if (rc || req->newptr == NULL) return (rc); if (strcmp(buf, zfs_deadman_failmode) == 0) return (0); if (strcmp(buf, "wait") == 0) zfs_deadman_failmode = "wait"; if (strcmp(buf, "continue") == 0) zfs_deadman_failmode = "continue"; if (strcmp(buf, "panic") == 0) zfs_deadman_failmode = "panic"; return (-param_set_deadman_failmode_common(buf)); } int param_set_slop_shift(SYSCTL_HANDLER_ARGS) { int val; int err; val = spa_slop_shift; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < 1 || val > 31) return (EINVAL); spa_slop_shift = val; return (0); } /* spacemap.c */ extern int space_map_ibs; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, space_map_ibs, CTLFLAG_RWTUN, &space_map_ibs, 0, "Space map indirect block shift"); /* END CSTYLED */ /* vdev.c */ int param_set_min_auto_ashift(SYSCTL_HANDLER_ARGS) { int val; int err; val = zfs_vdev_min_auto_ashift; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (SET_ERROR(err)); if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift) return (SET_ERROR(EINVAL)); zfs_vdev_min_auto_ashift = val; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift, CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, &zfs_vdev_min_auto_ashift, sizeof (zfs_vdev_min_auto_ashift), param_set_min_auto_ashift, "IU", "Min ashift used when creating new top-level vdev. (LEGACY)"); /* END CSTYLED */ int param_set_max_auto_ashift(SYSCTL_HANDLER_ARGS) { int val; int err; val = zfs_vdev_max_auto_ashift; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (SET_ERROR(err)); if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift) return (SET_ERROR(EINVAL)); zfs_vdev_max_auto_ashift = val; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift, CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, &zfs_vdev_max_auto_ashift, sizeof (zfs_vdev_max_auto_ashift), param_set_max_auto_ashift, "IU", "Max ashift used when optimizing for logical -> physical sector size on" " new top-level vdevs. (LEGACY)"); /* END CSTYLED */ /* * Since the DTL space map of a vdev is not expected to have a lot of * entries, we default its block size to 4K. */ extern int zfs_vdev_dtl_sm_blksz; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, dtl_sm_blksz, CTLFLAG_RDTUN, &zfs_vdev_dtl_sm_blksz, 0, "Block size for DTL space map. Power of 2 greater than 4096."); /* END CSTYLED */ /* * vdev-wide space maps that have lots of entries written to them at * the end of each transaction can benefit from a higher I/O bandwidth * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. */ extern int zfs_vdev_standard_sm_blksz; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, standard_sm_blksz, CTLFLAG_RDTUN, &zfs_vdev_standard_sm_blksz, 0, "Block size for standard space map. Power of 2 greater than 4096."); /* END CSTYLED */ extern int vdev_validate_skip; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, validate_skip, CTLFLAG_RDTUN, &vdev_validate_skip, 0, "Enable to bypass vdev_validate()."); /* END CSTYLED */ -/* vdev_cache.c */ - /* vdev_mirror.c */ /* vdev_queue.c */ extern uint_t zfs_vdev_max_active; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs, OID_AUTO, top_maxinflight, CTLFLAG_RWTUN, &zfs_vdev_max_active, 0, "The maximum number of I/Os of all types active for each device." " (LEGACY)"); /* END CSTYLED */ /* zio.c */ /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0, "Exclude metadata buffers from dumps as well"); /* END CSTYLED */ diff --git a/module/zfs/arc.c b/module/zfs/arc.c index dcd4620fcd20..3dbaaa76b4a5 100644 --- a/module/zfs/arc.c +++ b/module/zfs/arc.c @@ -1,10919 +1,10916 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2018, Joyent, Inc. * Copyright (c) 2011, 2020, Delphix. All rights reserved. * Copyright (c) 2014, Saso Kiselkov. All rights reserved. * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2019, loli10K . All rights reserved. * Copyright (c) 2020, George Amanakis. All rights reserved. * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019, Allan Jude * Copyright (c) 2020, The FreeBSD Foundation [1] * * [1] Portions of this software were developed by Allan Jude * under sponsorship from the FreeBSD Foundation. */ /* * DVA-based Adjustable Replacement Cache * * While much of the theory of operation used here is * based on the self-tuning, low overhead replacement cache * presented by Megiddo and Modha at FAST 2003, there are some * significant differences: * * 1. The Megiddo and Modha model assumes any page is evictable. * Pages in its cache cannot be "locked" into memory. This makes * the eviction algorithm simple: evict the last page in the list. * This also make the performance characteristics easy to reason * about. Our cache is not so simple. At any given moment, some * subset of the blocks in the cache are un-evictable because we * have handed out a reference to them. Blocks are only evictable * when there are no external references active. This makes * eviction far more problematic: we choose to evict the evictable * blocks that are the "lowest" in the list. * * There are times when it is not possible to evict the requested * space. In these circumstances we are unable to adjust the cache * size. To prevent the cache growing unbounded at these times we * implement a "cache throttle" that slows the flow of new data * into the cache until we can make space available. * * 2. The Megiddo and Modha model assumes a fixed cache size. * Pages are evicted when the cache is full and there is a cache * miss. Our model has a variable sized cache. It grows with * high use, but also tries to react to memory pressure from the * operating system: decreasing its size when system memory is * tight. * * 3. The Megiddo and Modha model assumes a fixed page size. All * elements of the cache are therefore exactly the same size. So * when adjusting the cache size following a cache miss, its simply * a matter of choosing a single page to evict. In our model, we * have variable sized cache blocks (ranging from 512 bytes to * 128K bytes). We therefore choose a set of blocks to evict to make * space for a cache miss that approximates as closely as possible * the space used by the new block. * * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" * by N. Megiddo & D. Modha, FAST 2003 */ /* * The locking model: * * A new reference to a cache buffer can be obtained in two * ways: 1) via a hash table lookup using the DVA as a key, * or 2) via one of the ARC lists. The arc_read() interface * uses method 1, while the internal ARC algorithms for * adjusting the cache use method 2. We therefore provide two * types of locks: 1) the hash table lock array, and 2) the * ARC list locks. * * Buffers do not have their own mutexes, rather they rely on the * hash table mutexes for the bulk of their protection (i.e. most * fields in the arc_buf_hdr_t are protected by these mutexes). * * buf_hash_find() returns the appropriate mutex (held) when it * locates the requested buffer in the hash table. It returns * NULL for the mutex if the buffer was not in the table. * * buf_hash_remove() expects the appropriate hash mutex to be * already held before it is invoked. * * Each ARC state also has a mutex which is used to protect the * buffer list associated with the state. When attempting to * obtain a hash table lock while holding an ARC list lock you * must use: mutex_tryenter() to avoid deadlock. Also note that * the active state mutex must be held before the ghost state mutex. * * It as also possible to register a callback which is run when the * metadata limit is reached and no buffers can be safely evicted. In * this case the arc user should drop a reference on some arc buffers so * they can be reclaimed. For example, when using the ZPL each dentry * holds a references on a znode. These dentries must be pruned before * the arc buffer holding the znode can be safely evicted. * * Note that the majority of the performance stats are manipulated * with atomic operations. * * The L2ARC uses the l2ad_mtx on each vdev for the following: * * - L2ARC buflist creation * - L2ARC buflist eviction * - L2ARC write completion, which walks L2ARC buflists * - ARC header destruction, as it removes from L2ARC buflists * - ARC header release, as it removes from L2ARC buflists */ /* * ARC operation: * * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. * This structure can point either to a block that is still in the cache or to * one that is only accessible in an L2 ARC device, or it can provide * information about a block that was recently evicted. If a block is * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough * information to retrieve it from the L2ARC device. This information is * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block * that is in this state cannot access the data directly. * * Blocks that are actively being referenced or have not been evicted * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within * the arc_buf_hdr_t that will point to the data block in memory. A block can * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). * * The L1ARC's data pointer may or may not be uncompressed. The ARC has the * ability to store the physical data (b_pabd) associated with the DVA of the * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, * it will match its on-disk compression characteristics. This behavior can be * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the * compressed ARC functionality is disabled, the b_pabd will point to an * uncompressed version of the on-disk data. * * Data in the L1ARC is not accessed by consumers of the ARC directly. Each * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC * consumer. The ARC will provide references to this data and will keep it * cached until it is no longer in use. The ARC caches only the L1ARC's physical * data block and will evict any arc_buf_t that is no longer referenced. The * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the * "overhead_size" kstat. * * Depending on the consumer, an arc_buf_t can be requested in uncompressed or * compressed form. The typical case is that consumers will want uncompressed * data, and when that happens a new data buffer is allocated where the data is * decompressed for them to use. Currently the only consumer who wants * compressed arc_buf_t's is "zfs send", when it streams data exactly as it * exists on disk. When this happens, the arc_buf_t's data buffer is shared * with the arc_buf_hdr_t. * * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The * first one is owned by a compressed send consumer (and therefore references * the same compressed data buffer as the arc_buf_hdr_t) and the second could be * used by any other consumer (and has its own uncompressed copy of the data * buffer). * * arc_buf_hdr_t * +-----------+ * | fields | * | common to | * | L1- and | * | L2ARC | * +-----------+ * | l2arc_buf_hdr_t * | | * +-----------+ * | l1arc_buf_hdr_t * | | arc_buf_t * | b_buf +------------>+-----------+ arc_buf_t * | b_pabd +-+ |b_next +---->+-----------+ * +-----------+ | |-----------| |b_next +-->NULL * | |b_comp = T | +-----------+ * | |b_data +-+ |b_comp = F | * | +-----------+ | |b_data +-+ * +->+------+ | +-----------+ | * compressed | | | | * data | |<--------------+ | uncompressed * +------+ compressed, | data * shared +-->+------+ * data | | * | | * +------+ * * When a consumer reads a block, the ARC must first look to see if the * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new * arc_buf_t and either copies uncompressed data into a new data buffer from an * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the * hdr is compressed and the desired compression characteristics of the * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be * the last buffer in the hdr's b_buf list, however a shared compressed buf can * be anywhere in the hdr's list. * * The diagram below shows an example of an uncompressed ARC hdr that is * sharing its data with an arc_buf_t (note that the shared uncompressed buf is * the last element in the buf list): * * arc_buf_hdr_t * +-----------+ * | | * | | * | | * +-----------+ * l2arc_buf_hdr_t| | * | | * +-----------+ * l1arc_buf_hdr_t| | * | | arc_buf_t (shared) * | b_buf +------------>+---------+ arc_buf_t * | | |b_next +---->+---------+ * | b_pabd +-+ |---------| |b_next +-->NULL * +-----------+ | | | +---------+ * | |b_data +-+ | | * | +---------+ | |b_data +-+ * +->+------+ | +---------+ | * | | | | * uncompressed | | | | * data +------+ | | * ^ +->+------+ | * | uncompressed | | | * | data | | | * | +------+ | * +---------------------------------+ * * Writing to the ARC requires that the ARC first discard the hdr's b_pabd * since the physical block is about to be rewritten. The new data contents * will be contained in the arc_buf_t. As the I/O pipeline performs the write, * it may compress the data before writing it to disk. The ARC will be called * with the transformed data and will memcpy the transformed on-disk block into * a newly allocated b_pabd. Writes are always done into buffers which have * either been loaned (and hence are new and don't have other readers) or * buffers which have been released (and hence have their own hdr, if there * were originally other readers of the buf's original hdr). This ensures that * the ARC only needs to update a single buf and its hdr after a write occurs. * * When the L2ARC is in use, it will also take advantage of the b_pabd. The * L2ARC will always write the contents of b_pabd to the L2ARC. This means * that when compressed ARC is enabled that the L2ARC blocks are identical * to the on-disk block in the main data pool. This provides a significant * advantage since the ARC can leverage the bp's checksum when reading from the * L2ARC to determine if the contents are valid. However, if the compressed * ARC is disabled, then the L2ARC's block must be transformed to look * like the physical block in the main data pool before comparing the * checksum and determining its validity. * * The L1ARC has a slightly different system for storing encrypted data. * Raw (encrypted + possibly compressed) data has a few subtle differences from * data that is just compressed. The biggest difference is that it is not * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. * The other difference is that encryption cannot be treated as a suggestion. * If a caller would prefer compressed data, but they actually wind up with * uncompressed data the worst thing that could happen is there might be a * performance hit. If the caller requests encrypted data, however, we must be * sure they actually get it or else secret information could be leaked. Raw * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, * may have both an encrypted version and a decrypted version of its data at * once. When a caller needs a raw arc_buf_t, it is allocated and the data is * copied out of this header. To avoid complications with b_pabd, raw buffers * cannot be shared. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef _KERNEL /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ boolean_t arc_watch = B_FALSE; #endif /* * This thread's job is to keep enough free memory in the system, by * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves * arc_available_memory(). */ static zthr_t *arc_reap_zthr; /* * This thread's job is to keep arc_size under arc_c, by calling * arc_evict(), which improves arc_is_overflowing(). */ static zthr_t *arc_evict_zthr; static arc_buf_hdr_t **arc_state_evict_markers; static int arc_state_evict_marker_count; static kmutex_t arc_evict_lock; static boolean_t arc_evict_needed = B_FALSE; static clock_t arc_last_uncached_flush; /* * Count of bytes evicted since boot. */ static uint64_t arc_evict_count; /* * List of arc_evict_waiter_t's, representing threads waiting for the * arc_evict_count to reach specific values. */ static list_t arc_evict_waiters; /* * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of * the requested amount of data to be evicted. For example, by default for * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. * Since this is above 100%, it ensures that progress is made towards getting * arc_size under arc_c. Since this is finite, it ensures that allocations * can still happen, even during the potentially long time that arc_size is * more than arc_c. */ static uint_t zfs_arc_eviction_pct = 200; /* * The number of headers to evict in arc_evict_state_impl() before * dropping the sublist lock and evicting from another sublist. A lower * value means we're more likely to evict the "correct" header (i.e. the * oldest header in the arc state), but comes with higher overhead * (i.e. more invocations of arc_evict_state_impl()). */ static uint_t zfs_arc_evict_batch_limit = 10; /* number of seconds before growing cache again */ uint_t arc_grow_retry = 5; /* * Minimum time between calls to arc_kmem_reap_soon(). */ static const int arc_kmem_cache_reap_retry_ms = 1000; /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ static int zfs_arc_overflow_shift = 8; /* log2(fraction of arc to reclaim) */ uint_t arc_shrink_shift = 7; /* percent of pagecache to reclaim arc to */ #ifdef _KERNEL uint_t zfs_arc_pc_percent = 0; #endif /* * log2(fraction of ARC which must be free to allow growing). * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, * when reading a new block into the ARC, we will evict an equal-sized block * from the ARC. * * This must be less than arc_shrink_shift, so that when we shrink the ARC, * we will still not allow it to grow. */ uint_t arc_no_grow_shift = 5; /* * minimum lifespan of a prefetch block in clock ticks * (initialized in arc_init()) */ static uint_t arc_min_prefetch_ms; static uint_t arc_min_prescient_prefetch_ms; /* * If this percent of memory is free, don't throttle. */ uint_t arc_lotsfree_percent = 10; /* * The arc has filled available memory and has now warmed up. */ boolean_t arc_warm; /* * These tunables are for performance analysis. */ uint64_t zfs_arc_max = 0; uint64_t zfs_arc_min = 0; static uint64_t zfs_arc_dnode_limit = 0; static uint_t zfs_arc_dnode_reduce_percent = 10; static uint_t zfs_arc_grow_retry = 0; static uint_t zfs_arc_shrink_shift = 0; uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ /* * ARC dirty data constraints for arc_tempreserve_space() throttle: * * total dirty data limit * * anon block dirty limit * * each pool's anon allowance */ static const unsigned long zfs_arc_dirty_limit_percent = 50; static const unsigned long zfs_arc_anon_limit_percent = 25; static const unsigned long zfs_arc_pool_dirty_percent = 20; /* * Enable or disable compressed arc buffers. */ int zfs_compressed_arc_enabled = B_TRUE; /* * Balance between metadata and data on ghost hits. Values above 100 * increase metadata caching by proportionally reducing effect of ghost * data hits on target data/metadata rate. */ static uint_t zfs_arc_meta_balance = 500; /* * Percentage that can be consumed by dnodes of ARC meta buffers. */ static uint_t zfs_arc_dnode_limit_percent = 10; /* * These tunables are Linux-specific */ static uint64_t zfs_arc_sys_free = 0; static uint_t zfs_arc_min_prefetch_ms = 0; static uint_t zfs_arc_min_prescient_prefetch_ms = 0; static uint_t zfs_arc_lotsfree_percent = 10; /* * Number of arc_prune threads */ static int zfs_arc_prune_task_threads = 1; /* The 7 states: */ arc_state_t ARC_anon; arc_state_t ARC_mru; arc_state_t ARC_mru_ghost; arc_state_t ARC_mfu; arc_state_t ARC_mfu_ghost; arc_state_t ARC_l2c_only; arc_state_t ARC_uncached; arc_stats_t arc_stats = { { "hits", KSTAT_DATA_UINT64 }, { "iohits", KSTAT_DATA_UINT64 }, { "misses", KSTAT_DATA_UINT64 }, { "demand_data_hits", KSTAT_DATA_UINT64 }, { "demand_data_iohits", KSTAT_DATA_UINT64 }, { "demand_data_misses", KSTAT_DATA_UINT64 }, { "demand_metadata_hits", KSTAT_DATA_UINT64 }, { "demand_metadata_iohits", KSTAT_DATA_UINT64 }, { "demand_metadata_misses", KSTAT_DATA_UINT64 }, { "prefetch_data_hits", KSTAT_DATA_UINT64 }, { "prefetch_data_iohits", KSTAT_DATA_UINT64 }, { "prefetch_data_misses", KSTAT_DATA_UINT64 }, { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 }, { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, { "mru_hits", KSTAT_DATA_UINT64 }, { "mru_ghost_hits", KSTAT_DATA_UINT64 }, { "mfu_hits", KSTAT_DATA_UINT64 }, { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, { "uncached_hits", KSTAT_DATA_UINT64 }, { "deleted", KSTAT_DATA_UINT64 }, { "mutex_miss", KSTAT_DATA_UINT64 }, { "access_skip", KSTAT_DATA_UINT64 }, { "evict_skip", KSTAT_DATA_UINT64 }, { "evict_not_enough", KSTAT_DATA_UINT64 }, { "evict_l2_cached", KSTAT_DATA_UINT64 }, { "evict_l2_eligible", KSTAT_DATA_UINT64 }, { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, { "evict_l2_skip", KSTAT_DATA_UINT64 }, { "hash_elements", KSTAT_DATA_UINT64 }, { "hash_elements_max", KSTAT_DATA_UINT64 }, { "hash_collisions", KSTAT_DATA_UINT64 }, { "hash_chains", KSTAT_DATA_UINT64 }, { "hash_chain_max", KSTAT_DATA_UINT64 }, { "meta", KSTAT_DATA_UINT64 }, { "pd", KSTAT_DATA_UINT64 }, { "pm", KSTAT_DATA_UINT64 }, { "c", KSTAT_DATA_UINT64 }, { "c_min", KSTAT_DATA_UINT64 }, { "c_max", KSTAT_DATA_UINT64 }, { "size", KSTAT_DATA_UINT64 }, { "compressed_size", KSTAT_DATA_UINT64 }, { "uncompressed_size", KSTAT_DATA_UINT64 }, { "overhead_size", KSTAT_DATA_UINT64 }, { "hdr_size", KSTAT_DATA_UINT64 }, { "data_size", KSTAT_DATA_UINT64 }, { "metadata_size", KSTAT_DATA_UINT64 }, { "dbuf_size", KSTAT_DATA_UINT64 }, { "dnode_size", KSTAT_DATA_UINT64 }, { "bonus_size", KSTAT_DATA_UINT64 }, #if defined(COMPAT_FREEBSD11) { "other_size", KSTAT_DATA_UINT64 }, #endif { "anon_size", KSTAT_DATA_UINT64 }, { "anon_data", KSTAT_DATA_UINT64 }, { "anon_metadata", KSTAT_DATA_UINT64 }, { "anon_evictable_data", KSTAT_DATA_UINT64 }, { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, { "mru_size", KSTAT_DATA_UINT64 }, { "mru_data", KSTAT_DATA_UINT64 }, { "mru_metadata", KSTAT_DATA_UINT64 }, { "mru_evictable_data", KSTAT_DATA_UINT64 }, { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, { "mru_ghost_size", KSTAT_DATA_UINT64 }, { "mru_ghost_data", KSTAT_DATA_UINT64 }, { "mru_ghost_metadata", KSTAT_DATA_UINT64 }, { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, { "mfu_size", KSTAT_DATA_UINT64 }, { "mfu_data", KSTAT_DATA_UINT64 }, { "mfu_metadata", KSTAT_DATA_UINT64 }, { "mfu_evictable_data", KSTAT_DATA_UINT64 }, { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, { "mfu_ghost_size", KSTAT_DATA_UINT64 }, { "mfu_ghost_data", KSTAT_DATA_UINT64 }, { "mfu_ghost_metadata", KSTAT_DATA_UINT64 }, { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, { "uncached_size", KSTAT_DATA_UINT64 }, { "uncached_data", KSTAT_DATA_UINT64 }, { "uncached_metadata", KSTAT_DATA_UINT64 }, { "uncached_evictable_data", KSTAT_DATA_UINT64 }, { "uncached_evictable_metadata", KSTAT_DATA_UINT64 }, { "l2_hits", KSTAT_DATA_UINT64 }, { "l2_misses", KSTAT_DATA_UINT64 }, { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, { "l2_mru_asize", KSTAT_DATA_UINT64 }, { "l2_mfu_asize", KSTAT_DATA_UINT64 }, { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, { "l2_feeds", KSTAT_DATA_UINT64 }, { "l2_rw_clash", KSTAT_DATA_UINT64 }, { "l2_read_bytes", KSTAT_DATA_UINT64 }, { "l2_write_bytes", KSTAT_DATA_UINT64 }, { "l2_writes_sent", KSTAT_DATA_UINT64 }, { "l2_writes_done", KSTAT_DATA_UINT64 }, { "l2_writes_error", KSTAT_DATA_UINT64 }, { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, { "l2_evict_reading", KSTAT_DATA_UINT64 }, { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, { "l2_free_on_write", KSTAT_DATA_UINT64 }, { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, { "l2_cksum_bad", KSTAT_DATA_UINT64 }, { "l2_io_error", KSTAT_DATA_UINT64 }, { "l2_size", KSTAT_DATA_UINT64 }, { "l2_asize", KSTAT_DATA_UINT64 }, { "l2_hdr_size", KSTAT_DATA_UINT64 }, { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, { "l2_log_blk_count", KSTAT_DATA_UINT64 }, { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, { "l2_rebuild_success", KSTAT_DATA_UINT64 }, { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, { "l2_rebuild_size", KSTAT_DATA_UINT64 }, { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, { "memory_throttle_count", KSTAT_DATA_UINT64 }, { "memory_direct_count", KSTAT_DATA_UINT64 }, { "memory_indirect_count", KSTAT_DATA_UINT64 }, { "memory_all_bytes", KSTAT_DATA_UINT64 }, { "memory_free_bytes", KSTAT_DATA_UINT64 }, { "memory_available_bytes", KSTAT_DATA_INT64 }, { "arc_no_grow", KSTAT_DATA_UINT64 }, { "arc_tempreserve", KSTAT_DATA_UINT64 }, { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, { "arc_prune", KSTAT_DATA_UINT64 }, { "arc_meta_used", KSTAT_DATA_UINT64 }, { "arc_dnode_limit", KSTAT_DATA_UINT64 }, { "async_upgrade_sync", KSTAT_DATA_UINT64 }, { "predictive_prefetch", KSTAT_DATA_UINT64 }, { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 }, { "prescient_prefetch", KSTAT_DATA_UINT64 }, { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 }, { "arc_need_free", KSTAT_DATA_UINT64 }, { "arc_sys_free", KSTAT_DATA_UINT64 }, { "arc_raw_size", KSTAT_DATA_UINT64 }, { "cached_only_in_progress", KSTAT_DATA_UINT64 }, { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, }; arc_sums_t arc_sums; #define ARCSTAT_MAX(stat, val) { \ uint64_t m; \ while ((val) > (m = arc_stats.stat.value.ui64) && \ (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ continue; \ } /* * We define a macro to allow ARC hits/misses to be easily broken down by * two separate conditions, giving a total of four different subtypes for * each of hits and misses (so eight statistics total). */ #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ if (cond1) { \ if (cond2) { \ ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ } else { \ ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ } \ } else { \ if (cond2) { \ ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ } else { \ ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ } \ } /* * This macro allows us to use kstats as floating averages. Each time we * update this kstat, we first factor it and the update value by * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall * average. This macro assumes that integer loads and stores are atomic, but * is not safe for multiple writers updating the kstat in parallel (only the * last writer's update will remain). */ #define ARCSTAT_F_AVG_FACTOR 3 #define ARCSTAT_F_AVG(stat, value) \ do { \ uint64_t x = ARCSTAT(stat); \ x = x - x / ARCSTAT_F_AVG_FACTOR + \ (value) / ARCSTAT_F_AVG_FACTOR; \ ARCSTAT(stat) = x; \ } while (0) static kstat_t *arc_ksp; /* * There are several ARC variables that are critical to export as kstats -- * but we don't want to have to grovel around in the kstat whenever we wish to * manipulate them. For these variables, we therefore define them to be in * terms of the statistic variable. This assures that we are not introducing * the possibility of inconsistency by having shadow copies of the variables, * while still allowing the code to be readable. */ #define arc_tempreserve ARCSTAT(arcstat_tempreserve) #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */ #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ hrtime_t arc_growtime; list_t arc_prune_list; kmutex_t arc_prune_mtx; taskq_t *arc_prune_taskq; #define GHOST_STATE(state) \ ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ (state) == arc_l2c_only) #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) #define HDR_PRESCIENT_PREFETCH(hdr) \ ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) #define HDR_COMPRESSION_ENABLED(hdr) \ ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED) #define HDR_L2_READING(hdr) \ (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) #define HDR_ISTYPE_METADATA(hdr) \ ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) #define HDR_HAS_RABD(hdr) \ (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ (hdr)->b_crypt_hdr.b_rabd != NULL) #define HDR_ENCRYPTED(hdr) \ (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) #define HDR_AUTHENTICATED(hdr) \ (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) /* For storing compression mode in b_flags */ #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) /* * Other sizes */ #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) /* * Hash table routines */ #define BUF_LOCKS 2048 typedef struct buf_hash_table { uint64_t ht_mask; arc_buf_hdr_t **ht_table; kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; } buf_hash_table_t; static buf_hash_table_t buf_hash_table; #define BUF_HASH_INDEX(spa, dva, birth) \ (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) #define HDR_LOCK(hdr) \ (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) uint64_t zfs_crc64_table[256]; /* * Level 2 ARC */ #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ #define L2ARC_HEADROOM 2 /* num of writes */ /* * If we discover during ARC scan any buffers to be compressed, we boost * our headroom for the next scanning cycle by this percentage multiple. */ #define L2ARC_HEADROOM_BOOST 200 #define L2ARC_FEED_SECS 1 /* caching interval secs */ #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ /* * We can feed L2ARC from two states of ARC buffers, mru and mfu, * and each of the state has two types: data and metadata. */ #define L2ARC_FEED_TYPES 4 /* L2ARC Performance Tunables */ uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ int l2arc_feed_again = B_TRUE; /* turbo warmup */ int l2arc_norw = B_FALSE; /* no reads during writes */ static uint_t l2arc_meta_percent = 33; /* limit on headers size */ /* * L2ARC Internals */ static list_t L2ARC_dev_list; /* device list */ static list_t *l2arc_dev_list; /* device list pointer */ static kmutex_t l2arc_dev_mtx; /* device list mutex */ static l2arc_dev_t *l2arc_dev_last; /* last device used */ static list_t L2ARC_free_on_write; /* free after write buf list */ static list_t *l2arc_free_on_write; /* free after write list ptr */ static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ static uint64_t l2arc_ndev; /* number of devices */ typedef struct l2arc_read_callback { arc_buf_hdr_t *l2rcb_hdr; /* read header */ blkptr_t l2rcb_bp; /* original blkptr */ zbookmark_phys_t l2rcb_zb; /* original bookmark */ int l2rcb_flags; /* original flags */ abd_t *l2rcb_abd; /* temporary buffer */ } l2arc_read_callback_t; typedef struct l2arc_data_free { /* protected by l2arc_free_on_write_mtx */ abd_t *l2df_abd; size_t l2df_size; arc_buf_contents_t l2df_type; list_node_t l2df_list_node; } l2arc_data_free_t; typedef enum arc_fill_flags { ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ } arc_fill_flags_t; typedef enum arc_ovf_level { ARC_OVF_NONE, /* ARC within target size. */ ARC_OVF_SOME, /* ARC is slightly overflowed. */ ARC_OVF_SEVERE /* ARC is severely overflowed. */ } arc_ovf_level_t; static kmutex_t l2arc_feed_thr_lock; static kcondvar_t l2arc_feed_thr_cv; static uint8_t l2arc_thread_exit; static kmutex_t l2arc_rebuild_thr_lock; static kcondvar_t l2arc_rebuild_thr_cv; enum arc_hdr_alloc_flags { ARC_HDR_ALLOC_RDATA = 0x1, ARC_HDR_USE_RESERVE = 0x4, ARC_HDR_ALLOC_LINEAR = 0x8, }; static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int); static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *); static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int); static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *); static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *); static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag); static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); static void arc_hdr_destroy(arc_buf_hdr_t *); static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t); static void arc_buf_watch(arc_buf_t *); static void arc_change_state(arc_state_t *, arc_buf_hdr_t *); static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); static uint32_t arc_bufc_to_flags(arc_buf_contents_t); static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); static void l2arc_read_done(zio_t *); static void l2arc_do_free_on_write(void); static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, boolean_t state_only); #define l2arc_hdr_arcstats_increment(hdr) \ l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) #define l2arc_hdr_arcstats_decrement(hdr) \ l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) #define l2arc_hdr_arcstats_increment_state(hdr) \ l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) #define l2arc_hdr_arcstats_decrement_state(hdr) \ l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) /* * l2arc_exclude_special : A zfs module parameter that controls whether buffers * present on special vdevs are eligibile for caching in L2ARC. If * set to 1, exclude dbufs on special vdevs from being cached to * L2ARC. */ int l2arc_exclude_special = 0; /* * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU * metadata and data are cached from ARC into L2ARC. */ static int l2arc_mfuonly = 0; /* * L2ARC TRIM * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of * the current write size (l2arc_write_max) we should TRIM if we * have filled the device. It is defined as a percentage of the * write size. If set to 100 we trim twice the space required to * accommodate upcoming writes. A minimum of 64MB will be trimmed. * It also enables TRIM of the whole L2ARC device upon creation or * addition to an existing pool or if the header of the device is * invalid upon importing a pool or onlining a cache device. The * default is 0, which disables TRIM on L2ARC altogether as it can * put significant stress on the underlying storage devices. This * will vary depending of how well the specific device handles * these commands. */ static uint64_t l2arc_trim_ahead = 0; /* * Performance tuning of L2ARC persistence: * * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding * an L2ARC device (either at pool import or later) will attempt * to rebuild L2ARC buffer contents. * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls * whether log blocks are written to the L2ARC device. If the L2ARC * device is less than 1GB, the amount of data l2arc_evict() * evicts is significant compared to the amount of restored L2ARC * data. In this case do not write log blocks in L2ARC in order * not to waste space. */ static int l2arc_rebuild_enabled = B_TRUE; static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; /* L2ARC persistence rebuild control routines. */ void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg); static int l2arc_rebuild(l2arc_dev_t *dev); /* L2ARC persistence read I/O routines. */ static int l2arc_dev_hdr_read(l2arc_dev_t *dev); static int l2arc_log_blk_read(l2arc_dev_t *dev, const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, zio_t *this_io, zio_t **next_io); static zio_t *l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); static void l2arc_log_blk_fetch_abort(zio_t *zio); /* L2ARC persistence block restoration routines. */ static void l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev); /* L2ARC persistence write I/O routines. */ static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb); /* L2ARC persistence auxiliary routines. */ boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp); static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *ab); boolean_t l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check); static void l2arc_blk_fetch_done(zio_t *zio); static inline uint64_t l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); /* * We use Cityhash for this. It's fast, and has good hash properties without * requiring any large static buffers. */ static uint64_t buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) { return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); } #define HDR_EMPTY(hdr) \ ((hdr)->b_dva.dva_word[0] == 0 && \ (hdr)->b_dva.dva_word[1] == 0) #define HDR_EMPTY_OR_LOCKED(hdr) \ (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) #define HDR_EQUAL(spa, dva, birth, hdr) \ ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) static void buf_discard_identity(arc_buf_hdr_t *hdr) { hdr->b_dva.dva_word[0] = 0; hdr->b_dva.dva_word[1] = 0; hdr->b_birth = 0; } static arc_buf_hdr_t * buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) { const dva_t *dva = BP_IDENTITY(bp); uint64_t birth = BP_PHYSICAL_BIRTH(bp); uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); kmutex_t *hash_lock = BUF_HASH_LOCK(idx); arc_buf_hdr_t *hdr; mutex_enter(hash_lock); for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; hdr = hdr->b_hash_next) { if (HDR_EQUAL(spa, dva, birth, hdr)) { *lockp = hash_lock; return (hdr); } } mutex_exit(hash_lock); *lockp = NULL; return (NULL); } /* * Insert an entry into the hash table. If there is already an element * equal to elem in the hash table, then the already existing element * will be returned and the new element will not be inserted. * Otherwise returns NULL. * If lockp == NULL, the caller is assumed to already hold the hash lock. */ static arc_buf_hdr_t * buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) { uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); kmutex_t *hash_lock = BUF_HASH_LOCK(idx); arc_buf_hdr_t *fhdr; uint32_t i; ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); ASSERT(hdr->b_birth != 0); ASSERT(!HDR_IN_HASH_TABLE(hdr)); if (lockp != NULL) { *lockp = hash_lock; mutex_enter(hash_lock); } else { ASSERT(MUTEX_HELD(hash_lock)); } for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; fhdr = fhdr->b_hash_next, i++) { if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) return (fhdr); } hdr->b_hash_next = buf_hash_table.ht_table[idx]; buf_hash_table.ht_table[idx] = hdr; arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); /* collect some hash table performance data */ if (i > 0) { ARCSTAT_BUMP(arcstat_hash_collisions); if (i == 1) ARCSTAT_BUMP(arcstat_hash_chains); ARCSTAT_MAX(arcstat_hash_chain_max, i); } uint64_t he = atomic_inc_64_nv( &arc_stats.arcstat_hash_elements.value.ui64); ARCSTAT_MAX(arcstat_hash_elements_max, he); return (NULL); } static void buf_hash_remove(arc_buf_hdr_t *hdr) { arc_buf_hdr_t *fhdr, **hdrp; uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); ASSERT(HDR_IN_HASH_TABLE(hdr)); hdrp = &buf_hash_table.ht_table[idx]; while ((fhdr = *hdrp) != hdr) { ASSERT3P(fhdr, !=, NULL); hdrp = &fhdr->b_hash_next; } *hdrp = hdr->b_hash_next; hdr->b_hash_next = NULL; arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); /* collect some hash table performance data */ atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); if (buf_hash_table.ht_table[idx] && buf_hash_table.ht_table[idx]->b_hash_next == NULL) ARCSTAT_BUMPDOWN(arcstat_hash_chains); } /* * Global data structures and functions for the buf kmem cache. */ static kmem_cache_t *hdr_full_cache; static kmem_cache_t *hdr_full_crypt_cache; static kmem_cache_t *hdr_l2only_cache; static kmem_cache_t *buf_cache; static void buf_fini(void) { #if defined(_KERNEL) /* * Large allocations which do not require contiguous pages * should be using vmem_free() in the linux kernel\ */ vmem_free(buf_hash_table.ht_table, (buf_hash_table.ht_mask + 1) * sizeof (void *)); #else kmem_free(buf_hash_table.ht_table, (buf_hash_table.ht_mask + 1) * sizeof (void *)); #endif for (int i = 0; i < BUF_LOCKS; i++) mutex_destroy(BUF_HASH_LOCK(i)); kmem_cache_destroy(hdr_full_cache); kmem_cache_destroy(hdr_full_crypt_cache); kmem_cache_destroy(hdr_l2only_cache); kmem_cache_destroy(buf_cache); } /* * Constructor callback - called when the cache is empty * and a new buf is requested. */ static int hdr_full_cons(void *vbuf, void *unused, int kmflag) { (void) unused, (void) kmflag; arc_buf_hdr_t *hdr = vbuf; memset(hdr, 0, HDR_FULL_SIZE); hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); #ifdef ZFS_DEBUG mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); #endif multilist_link_init(&hdr->b_l1hdr.b_arc_node); list_link_init(&hdr->b_l2hdr.b_l2node); arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); return (0); } static int hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) { (void) unused; arc_buf_hdr_t *hdr = vbuf; hdr_full_cons(vbuf, unused, kmflag); memset(&hdr->b_crypt_hdr, 0, sizeof (hdr->b_crypt_hdr)); arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); return (0); } static int hdr_l2only_cons(void *vbuf, void *unused, int kmflag) { (void) unused, (void) kmflag; arc_buf_hdr_t *hdr = vbuf; memset(hdr, 0, HDR_L2ONLY_SIZE); arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); return (0); } static int buf_cons(void *vbuf, void *unused, int kmflag) { (void) unused, (void) kmflag; arc_buf_t *buf = vbuf; memset(buf, 0, sizeof (arc_buf_t)); arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); return (0); } /* * Destructor callback - called when a cached buf is * no longer required. */ static void hdr_full_dest(void *vbuf, void *unused) { (void) unused; arc_buf_hdr_t *hdr = vbuf; ASSERT(HDR_EMPTY(hdr)); cv_destroy(&hdr->b_l1hdr.b_cv); zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); #ifdef ZFS_DEBUG mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); #endif ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); } static void hdr_full_crypt_dest(void *vbuf, void *unused) { (void) vbuf, (void) unused; hdr_full_dest(vbuf, unused); arc_space_return(sizeof (((arc_buf_hdr_t *)NULL)->b_crypt_hdr), ARC_SPACE_HDRS); } static void hdr_l2only_dest(void *vbuf, void *unused) { (void) unused; arc_buf_hdr_t *hdr = vbuf; ASSERT(HDR_EMPTY(hdr)); arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); } static void buf_dest(void *vbuf, void *unused) { (void) unused; (void) vbuf; arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); } static void buf_init(void) { uint64_t *ct = NULL; uint64_t hsize = 1ULL << 12; int i, j; /* * The hash table is big enough to fill all of physical memory * with an average block size of zfs_arc_average_blocksize (default 8K). * By default, the table will take up * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). */ while (hsize * zfs_arc_average_blocksize < arc_all_memory()) hsize <<= 1; retry: buf_hash_table.ht_mask = hsize - 1; #if defined(_KERNEL) /* * Large allocations which do not require contiguous pages * should be using vmem_alloc() in the linux kernel */ buf_hash_table.ht_table = vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); #else buf_hash_table.ht_table = kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); #endif if (buf_hash_table.ht_table == NULL) { ASSERT(hsize > (1ULL << 8)); hsize >>= 1; goto retry; } hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, NULL, NULL, NULL, 0); hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, NULL, NULL, 0); buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); for (i = 0; i < 256; i++) for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); for (i = 0; i < BUF_LOCKS; i++) mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); } #define ARC_MINTIME (hz>>4) /* 62 ms */ /* * This is the size that the buf occupies in memory. If the buf is compressed, * it will correspond to the compressed size. You should use this method of * getting the buf size unless you explicitly need the logical size. */ uint64_t arc_buf_size(arc_buf_t *buf) { return (ARC_BUF_COMPRESSED(buf) ? HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); } uint64_t arc_buf_lsize(arc_buf_t *buf) { return (HDR_GET_LSIZE(buf->b_hdr)); } /* * This function will return B_TRUE if the buffer is encrypted in memory. * This buffer can be decrypted by calling arc_untransform(). */ boolean_t arc_is_encrypted(arc_buf_t *buf) { return (ARC_BUF_ENCRYPTED(buf) != 0); } /* * Returns B_TRUE if the buffer represents data that has not had its MAC * verified yet. */ boolean_t arc_is_unauthenticated(arc_buf_t *buf) { return (HDR_NOAUTH(buf->b_hdr) != 0); } void arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, uint8_t *iv, uint8_t *mac) { arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(HDR_PROTECTED(hdr)); memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; } /* * Indicates how this buffer is compressed in memory. If it is not compressed * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with * arc_untransform() as long as it is also unencrypted. */ enum zio_compress arc_get_compression(arc_buf_t *buf) { return (ARC_BUF_COMPRESSED(buf) ? HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); } /* * Return the compression algorithm used to store this data in the ARC. If ARC * compression is enabled or this is an encrypted block, this will be the same * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. */ static inline enum zio_compress arc_hdr_get_compress(arc_buf_hdr_t *hdr) { return (HDR_COMPRESSION_ENABLED(hdr) ? HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); } uint8_t arc_get_complevel(arc_buf_t *buf) { return (buf->b_hdr->b_complevel); } static inline boolean_t arc_buf_is_shared(arc_buf_t *buf) { boolean_t shared = (buf->b_data != NULL && buf->b_hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); IMPLY(shared, ARC_BUF_SHARED(buf)); IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); /* * It would be nice to assert arc_can_share() too, but the "hdr isn't * already being shared" requirement prevents us from doing that. */ return (shared); } /* * Free the checksum associated with this header. If there is no checksum, this * is a no-op. */ static inline void arc_cksum_free(arc_buf_hdr_t *hdr) { #ifdef ZFS_DEBUG ASSERT(HDR_HAS_L1HDR(hdr)); mutex_enter(&hdr->b_l1hdr.b_freeze_lock); if (hdr->b_l1hdr.b_freeze_cksum != NULL) { kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); hdr->b_l1hdr.b_freeze_cksum = NULL; } mutex_exit(&hdr->b_l1hdr.b_freeze_lock); #endif } /* * Return true iff at least one of the bufs on hdr is not compressed. * Encrypted buffers count as compressed. */ static boolean_t arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) { ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { if (!ARC_BUF_COMPRESSED(b)) { return (B_TRUE); } } return (B_FALSE); } /* * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data * matches the checksum that is stored in the hdr. If there is no checksum, * or if the buf is compressed, this is a no-op. */ static void arc_cksum_verify(arc_buf_t *buf) { #ifdef ZFS_DEBUG arc_buf_hdr_t *hdr = buf->b_hdr; zio_cksum_t zc; if (!(zfs_flags & ZFS_DEBUG_MODIFY)) return; if (ARC_BUF_COMPRESSED(buf)) return; ASSERT(HDR_HAS_L1HDR(hdr)); mutex_enter(&hdr->b_l1hdr.b_freeze_lock); if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { mutex_exit(&hdr->b_l1hdr.b_freeze_lock); return; } fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) panic("buffer modified while frozen!"); mutex_exit(&hdr->b_l1hdr.b_freeze_lock); #endif } /* * This function makes the assumption that data stored in the L2ARC * will be transformed exactly as it is in the main pool. Because of * this we can verify the checksum against the reading process's bp. */ static boolean_t arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) { ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); /* * Block pointers always store the checksum for the logical data. * If the block pointer has the gang bit set, then the checksum * it represents is for the reconstituted data and not for an * individual gang member. The zio pipeline, however, must be able to * determine the checksum of each of the gang constituents so it * treats the checksum comparison differently than what we need * for l2arc blocks. This prevents us from using the * zio_checksum_error() interface directly. Instead we must call the * zio_checksum_error_impl() so that we can ensure the checksum is * generated using the correct checksum algorithm and accounts for the * logical I/O size and not just a gang fragment. */ return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, zio->io_offset, NULL) == 0); } /* * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a * checksum and attaches it to the buf's hdr so that we can ensure that the buf * isn't modified later on. If buf is compressed or there is already a checksum * on the hdr, this is a no-op (we only checksum uncompressed bufs). */ static void arc_cksum_compute(arc_buf_t *buf) { if (!(zfs_flags & ZFS_DEBUG_MODIFY)) return; #ifdef ZFS_DEBUG arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(HDR_HAS_L1HDR(hdr)); mutex_enter(&hdr->b_l1hdr.b_freeze_lock); if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { mutex_exit(&hdr->b_l1hdr.b_freeze_lock); return; } ASSERT(!ARC_BUF_ENCRYPTED(buf)); ASSERT(!ARC_BUF_COMPRESSED(buf)); hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, hdr->b_l1hdr.b_freeze_cksum); mutex_exit(&hdr->b_l1hdr.b_freeze_lock); #endif arc_buf_watch(buf); } #ifndef _KERNEL void arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) { (void) sig, (void) unused; panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); } #endif static void arc_buf_unwatch(arc_buf_t *buf) { #ifndef _KERNEL if (arc_watch) { ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), PROT_READ | PROT_WRITE)); } #else (void) buf; #endif } static void arc_buf_watch(arc_buf_t *buf) { #ifndef _KERNEL if (arc_watch) ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), PROT_READ)); #else (void) buf; #endif } static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *hdr) { arc_buf_contents_t type; if (HDR_ISTYPE_METADATA(hdr)) { type = ARC_BUFC_METADATA; } else { type = ARC_BUFC_DATA; } VERIFY3U(hdr->b_type, ==, type); return (type); } boolean_t arc_is_metadata(arc_buf_t *buf) { return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); } static uint32_t arc_bufc_to_flags(arc_buf_contents_t type) { switch (type) { case ARC_BUFC_DATA: /* metadata field is 0 if buffer contains normal data */ return (0); case ARC_BUFC_METADATA: return (ARC_FLAG_BUFC_METADATA); default: break; } panic("undefined ARC buffer type!"); return ((uint32_t)-1); } void arc_buf_thaw(arc_buf_t *buf) { arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); arc_cksum_verify(buf); /* * Compressed buffers do not manipulate the b_freeze_cksum. */ if (ARC_BUF_COMPRESSED(buf)) return; ASSERT(HDR_HAS_L1HDR(hdr)); arc_cksum_free(hdr); arc_buf_unwatch(buf); } void arc_buf_freeze(arc_buf_t *buf) { if (!(zfs_flags & ZFS_DEBUG_MODIFY)) return; if (ARC_BUF_COMPRESSED(buf)) return; ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); arc_cksum_compute(buf); } /* * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, * the following functions should be used to ensure that the flags are * updated in a thread-safe way. When manipulating the flags either * the hash_lock must be held or the hdr must be undiscoverable. This * ensures that we're not racing with any other threads when updating * the flags. */ static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) { ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); hdr->b_flags |= flags; } static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) { ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); hdr->b_flags &= ~flags; } /* * Setting the compression bits in the arc_buf_hdr_t's b_flags is * done in a special way since we have to clear and set bits * at the same time. Consumers that wish to set the compression bits * must use this function to ensure that the flags are updated in * thread-safe manner. */ static void arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) { ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); /* * Holes and embedded blocks will always have a psize = 0 so * we ignore the compression of the blkptr and set the * want to uncompress them. Mark them as uncompressed. */ if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); } else { arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); ASSERT(HDR_COMPRESSION_ENABLED(hdr)); } HDR_SET_COMPRESS(hdr, cmp); ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); } /* * Looks for another buf on the same hdr which has the data decompressed, copies * from it, and returns true. If no such buf exists, returns false. */ static boolean_t arc_buf_try_copy_decompressed_data(arc_buf_t *buf) { arc_buf_hdr_t *hdr = buf->b_hdr; boolean_t copied = B_FALSE; ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT3P(buf->b_data, !=, NULL); ASSERT(!ARC_BUF_COMPRESSED(buf)); for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; from = from->b_next) { /* can't use our own data buffer */ if (from == buf) { continue; } if (!ARC_BUF_COMPRESSED(from)) { memcpy(buf->b_data, from->b_data, arc_buf_size(buf)); copied = B_TRUE; break; } } #ifdef ZFS_DEBUG /* * There were no decompressed bufs, so there should not be a * checksum on the hdr either. */ if (zfs_flags & ZFS_DEBUG_MODIFY) EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); #endif return (copied); } /* * Allocates an ARC buf header that's in an evicted & L2-cached state. * This is used during l2arc reconstruction to make empty ARC buffers * which circumvent the regular disk->arc->l2arc path and instead come * into being in the reverse order, i.e. l2arc->arc. */ static arc_buf_hdr_t * arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, enum zio_compress compress, uint8_t complevel, boolean_t protected, boolean_t prefetch, arc_state_type_t arcs_state) { arc_buf_hdr_t *hdr; ASSERT(size != 0); hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); hdr->b_birth = birth; hdr->b_type = type; hdr->b_flags = 0; arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); HDR_SET_LSIZE(hdr, size); HDR_SET_PSIZE(hdr, psize); arc_hdr_set_compress(hdr, compress); hdr->b_complevel = complevel; if (protected) arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); if (prefetch) arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); hdr->b_dva = dva; hdr->b_l2hdr.b_dev = dev; hdr->b_l2hdr.b_daddr = daddr; hdr->b_l2hdr.b_arcs_state = arcs_state; return (hdr); } /* * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. */ static uint64_t arc_hdr_size(arc_buf_hdr_t *hdr) { uint64_t size; if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && HDR_GET_PSIZE(hdr) > 0) { size = HDR_GET_PSIZE(hdr); } else { ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); size = HDR_GET_LSIZE(hdr); } return (size); } static int arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) { int ret; uint64_t csize; uint64_t lsize = HDR_GET_LSIZE(hdr); uint64_t psize = HDR_GET_PSIZE(hdr); void *tmpbuf = NULL; abd_t *abd = hdr->b_l1hdr.b_pabd; ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); ASSERT(HDR_AUTHENTICATED(hdr)); ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); /* * The MAC is calculated on the compressed data that is stored on disk. * However, if compressed arc is disabled we will only have the * decompressed data available to us now. Compress it into a temporary * abd so we can verify the MAC. The performance overhead of this will * be relatively low, since most objects in an encrypted objset will * be encrypted (instead of authenticated) anyway. */ if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { csize = zio_compress_data(HDR_GET_COMPRESS(hdr), hdr->b_l1hdr.b_pabd, &tmpbuf, lsize, hdr->b_complevel); ASSERT3P(tmpbuf, !=, NULL); ASSERT3U(csize, <=, psize); abd = abd_get_from_buf(tmpbuf, lsize); abd_take_ownership_of_buf(abd, B_TRUE); abd_zero_off(abd, csize, psize - csize); } /* * Authentication is best effort. We authenticate whenever the key is * available. If we succeed we clear ARC_FLAG_NOAUTH. */ if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); ASSERT3U(lsize, ==, psize); ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); } else { ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, hdr->b_crypt_hdr.b_mac); } if (ret == 0) arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); else if (ret != ENOENT) goto error; if (tmpbuf != NULL) abd_free(abd); return (0); error: if (tmpbuf != NULL) abd_free(abd); return (ret); } /* * This function will take a header that only has raw encrypted data in * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in * b_l1hdr.b_pabd. If designated in the header flags, this function will * also decompress the data. */ static int arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) { int ret; abd_t *cabd = NULL; void *tmp = NULL; boolean_t no_crypt = B_FALSE; boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); ASSERT(HDR_ENCRYPTED(hdr)); arc_hdr_alloc_abd(hdr, 0); ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, &no_crypt); if (ret != 0) goto error; if (no_crypt) { abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, HDR_GET_PSIZE(hdr)); } /* * If this header has disabled arc compression but the b_pabd is * compressed after decrypting it, we need to decompress the newly * decrypted data. */ if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { /* * We want to make sure that we are correctly honoring the * zfs_abd_scatter_enabled setting, so we allocate an abd here * and then loan a buffer from it, rather than allocating a * linear buffer and wrapping it in an abd later. */ cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0); tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), &hdr->b_complevel); if (ret != 0) { abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); goto error; } abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, arc_hdr_size(hdr), hdr); hdr->b_l1hdr.b_pabd = cabd; } return (0); error: arc_hdr_free_abd(hdr, B_FALSE); if (cabd != NULL) arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); return (ret); } /* * This function is called during arc_buf_fill() to prepare the header's * abd plaintext pointer for use. This involves authenticated protected * data and decrypting encrypted data into the plaintext abd. */ static int arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, const zbookmark_phys_t *zb, boolean_t noauth) { int ret; ASSERT(HDR_PROTECTED(hdr)); if (hash_lock != NULL) mutex_enter(hash_lock); if (HDR_NOAUTH(hdr) && !noauth) { /* * The caller requested authenticated data but our data has * not been authenticated yet. Verify the MAC now if we can. */ ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); if (ret != 0) goto error; } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { /* * If we only have the encrypted version of the data, but the * unencrypted version was requested we take this opportunity * to store the decrypted version in the header for future use. */ ret = arc_hdr_decrypt(hdr, spa, zb); if (ret != 0) goto error; } ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); if (hash_lock != NULL) mutex_exit(hash_lock); return (0); error: if (hash_lock != NULL) mutex_exit(hash_lock); return (ret); } /* * This function is used by the dbuf code to decrypt bonus buffers in place. * The dbuf code itself doesn't have any locking for decrypting a shared dnode * block, so we use the hash lock here to protect against concurrent calls to * arc_buf_fill(). */ static void arc_buf_untransform_in_place(arc_buf_t *buf) { arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(HDR_ENCRYPTED(hdr)); ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, arc_buf_size(buf)); buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; hdr->b_crypt_hdr.b_ebufcnt -= 1; } /* * Given a buf that has a data buffer attached to it, this function will * efficiently fill the buf with data of the specified compression setting from * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr * are already sharing a data buf, no copy is performed. * * If the buf is marked as compressed but uncompressed data was requested, this * will allocate a new data buffer for the buf, remove that flag, and fill the * buf with uncompressed data. You can't request a compressed buf on a hdr with * uncompressed data, and (since we haven't added support for it yet) if you * want compressed data your buf must already be marked as compressed and have * the correct-sized data buffer. */ static int arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, arc_fill_flags_t flags) { int error = 0; arc_buf_hdr_t *hdr = buf->b_hdr; boolean_t hdr_compressed = (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); ASSERT3P(buf->b_data, !=, NULL); IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); IMPLY(encrypted, HDR_ENCRYPTED(hdr)); IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); IMPLY(encrypted, !ARC_BUF_SHARED(buf)); /* * If the caller wanted encrypted data we just need to copy it from * b_rabd and potentially byteswap it. We won't be able to do any * further transforms on it. */ if (encrypted) { ASSERT(HDR_HAS_RABD(hdr)); abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, HDR_GET_PSIZE(hdr)); goto byteswap; } /* * Adjust encrypted and authenticated headers to accommodate * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are * allowed to fail decryption due to keys not being loaded * without being marked as an IO error. */ if (HDR_PROTECTED(hdr)) { error = arc_fill_hdr_crypt(hdr, hash_lock, spa, zb, !!(flags & ARC_FILL_NOAUTH)); if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { return (error); } else if (error != 0) { if (hash_lock != NULL) mutex_enter(hash_lock); arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); if (hash_lock != NULL) mutex_exit(hash_lock); return (error); } } /* * There is a special case here for dnode blocks which are * decrypting their bonus buffers. These blocks may request to * be decrypted in-place. This is necessary because there may * be many dnodes pointing into this buffer and there is * currently no method to synchronize replacing the backing * b_data buffer and updating all of the pointers. Here we use * the hash lock to ensure there are no races. If the need * arises for other types to be decrypted in-place, they must * add handling here as well. */ if ((flags & ARC_FILL_IN_PLACE) != 0) { ASSERT(!hdr_compressed); ASSERT(!compressed); ASSERT(!encrypted); if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); if (hash_lock != NULL) mutex_enter(hash_lock); arc_buf_untransform_in_place(buf); if (hash_lock != NULL) mutex_exit(hash_lock); /* Compute the hdr's checksum if necessary */ arc_cksum_compute(buf); } return (0); } if (hdr_compressed == compressed) { if (!arc_buf_is_shared(buf)) { abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, arc_buf_size(buf)); } } else { ASSERT(hdr_compressed); ASSERT(!compressed); /* * If the buf is sharing its data with the hdr, unlink it and * allocate a new data buffer for the buf. */ if (arc_buf_is_shared(buf)) { ASSERT(ARC_BUF_COMPRESSED(buf)); /* We need to give the buf its own b_data */ buf->b_flags &= ~ARC_BUF_FLAG_SHARED; buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); /* Previously overhead was 0; just add new overhead */ ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); } else if (ARC_BUF_COMPRESSED(buf)) { /* We need to reallocate the buf's b_data */ arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), buf); buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); /* We increased the size of b_data; update overhead */ ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); } /* * Regardless of the buf's previous compression settings, it * should not be compressed at the end of this function. */ buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; /* * Try copying the data from another buf which already has a * decompressed version. If that's not possible, it's time to * bite the bullet and decompress the data from the hdr. */ if (arc_buf_try_copy_decompressed_data(buf)) { /* Skip byteswapping and checksumming (already done) */ return (0); } else { error = zio_decompress_data(HDR_GET_COMPRESS(hdr), hdr->b_l1hdr.b_pabd, buf->b_data, HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), &hdr->b_complevel); /* * Absent hardware errors or software bugs, this should * be impossible, but log it anyway so we can debug it. */ if (error != 0) { zfs_dbgmsg( "hdr %px, compress %d, psize %d, lsize %d", hdr, arc_hdr_get_compress(hdr), HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); if (hash_lock != NULL) mutex_enter(hash_lock); arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); if (hash_lock != NULL) mutex_exit(hash_lock); return (SET_ERROR(EIO)); } } } byteswap: /* Byteswap the buf's data if necessary */ if (bswap != DMU_BSWAP_NUMFUNCS) { ASSERT(!HDR_SHARED_DATA(hdr)); ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); } /* Compute the hdr's checksum if necessary */ arc_cksum_compute(buf); return (0); } /* * If this function is being called to decrypt an encrypted buffer or verify an * authenticated one, the key must be loaded and a mapping must be made * available in the keystore via spa_keystore_create_mapping() or one of its * callers. */ int arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, boolean_t in_place) { int ret; arc_fill_flags_t flags = 0; if (in_place) flags |= ARC_FILL_IN_PLACE; ret = arc_buf_fill(buf, spa, zb, flags); if (ret == ECKSUM) { /* * Convert authentication and decryption errors to EIO * (and generate an ereport) before leaving the ARC. */ ret = SET_ERROR(EIO); spa_log_error(spa, zb, &buf->b_hdr->b_birth); (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, spa, NULL, zb, NULL, 0); } return (ret); } /* * Increment the amount of evictable space in the arc_state_t's refcount. * We account for the space used by the hdr and the arc buf individually * so that we can add and remove them from the refcount individually. */ static void arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) { arc_buf_contents_t type = arc_buf_type(hdr); ASSERT(HDR_HAS_L1HDR(hdr)); if (GHOST_STATE(state)) { ASSERT0(hdr->b_l1hdr.b_bufcnt); ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); ASSERT(!HDR_HAS_RABD(hdr)); (void) zfs_refcount_add_many(&state->arcs_esize[type], HDR_GET_LSIZE(hdr), hdr); return; } if (hdr->b_l1hdr.b_pabd != NULL) { (void) zfs_refcount_add_many(&state->arcs_esize[type], arc_hdr_size(hdr), hdr); } if (HDR_HAS_RABD(hdr)) { (void) zfs_refcount_add_many(&state->arcs_esize[type], HDR_GET_PSIZE(hdr), hdr); } for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { if (arc_buf_is_shared(buf)) continue; (void) zfs_refcount_add_many(&state->arcs_esize[type], arc_buf_size(buf), buf); } } /* * Decrement the amount of evictable space in the arc_state_t's refcount. * We account for the space used by the hdr and the arc buf individually * so that we can add and remove them from the refcount individually. */ static void arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) { arc_buf_contents_t type = arc_buf_type(hdr); ASSERT(HDR_HAS_L1HDR(hdr)); if (GHOST_STATE(state)) { ASSERT0(hdr->b_l1hdr.b_bufcnt); ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); ASSERT(!HDR_HAS_RABD(hdr)); (void) zfs_refcount_remove_many(&state->arcs_esize[type], HDR_GET_LSIZE(hdr), hdr); return; } if (hdr->b_l1hdr.b_pabd != NULL) { (void) zfs_refcount_remove_many(&state->arcs_esize[type], arc_hdr_size(hdr), hdr); } if (HDR_HAS_RABD(hdr)) { (void) zfs_refcount_remove_many(&state->arcs_esize[type], HDR_GET_PSIZE(hdr), hdr); } for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { if (arc_buf_is_shared(buf)) continue; (void) zfs_refcount_remove_many(&state->arcs_esize[type], arc_buf_size(buf), buf); } } /* * Add a reference to this hdr indicating that someone is actively * referencing that memory. When the refcount transitions from 0 to 1, * we remove it from the respective arc_state_t list to indicate that * it is not evictable. */ static void add_reference(arc_buf_hdr_t *hdr, const void *tag) { arc_state_t *state = hdr->b_l1hdr.b_state; ASSERT(HDR_HAS_L1HDR(hdr)); if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { ASSERT(state == arc_anon); ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); } if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && state != arc_anon && state != arc_l2c_only) { /* We don't use the L2-only state list. */ multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr); arc_evictable_space_decrement(hdr, state); } } /* * Remove a reference from this hdr. When the reference transitions from * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's * list making it eligible for eviction. */ static int remove_reference(arc_buf_hdr_t *hdr, const void *tag) { int cnt; arc_state_t *state = hdr->b_l1hdr.b_state; ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr))); ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */ if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0) return (cnt); if (state == arc_anon) { arc_hdr_destroy(hdr); return (0); } if (state == arc_uncached && !HDR_PREFETCH(hdr)) { arc_change_state(arc_anon, hdr); arc_hdr_destroy(hdr); return (0); } multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); arc_evictable_space_increment(hdr, state); return (0); } /* * Returns detailed information about a specific arc buffer. When the * state_index argument is set the function will calculate the arc header * list position for its arc state. Since this requires a linear traversal * callers are strongly encourage not to do this. However, it can be helpful * for targeted analysis so the functionality is provided. */ void arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) { (void) state_index; arc_buf_hdr_t *hdr = ab->b_hdr; l1arc_buf_hdr_t *l1hdr = NULL; l2arc_buf_hdr_t *l2hdr = NULL; arc_state_t *state = NULL; memset(abi, 0, sizeof (arc_buf_info_t)); if (hdr == NULL) return; abi->abi_flags = hdr->b_flags; if (HDR_HAS_L1HDR(hdr)) { l1hdr = &hdr->b_l1hdr; state = l1hdr->b_state; } if (HDR_HAS_L2HDR(hdr)) l2hdr = &hdr->b_l2hdr; if (l1hdr) { abi->abi_bufcnt = l1hdr->b_bufcnt; abi->abi_access = l1hdr->b_arc_access; abi->abi_mru_hits = l1hdr->b_mru_hits; abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; abi->abi_mfu_hits = l1hdr->b_mfu_hits; abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); } if (l2hdr) { abi->abi_l2arc_dattr = l2hdr->b_daddr; abi->abi_l2arc_hits = l2hdr->b_hits; } abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; abi->abi_state_contents = arc_buf_type(hdr); abi->abi_size = arc_hdr_size(hdr); } /* * Move the supplied buffer to the indicated state. The hash lock * for the buffer must be held by the caller. */ static void arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr) { arc_state_t *old_state; int64_t refcnt; uint32_t bufcnt; boolean_t update_old, update_new; arc_buf_contents_t type = arc_buf_type(hdr); /* * We almost always have an L1 hdr here, since we call arc_hdr_realloc() * in arc_read() when bringing a buffer out of the L2ARC. However, the * L1 hdr doesn't always exist when we change state to arc_anon before * destroying a header, in which case reallocating to add the L1 hdr is * pointless. */ if (HDR_HAS_L1HDR(hdr)) { old_state = hdr->b_l1hdr.b_state; refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); bufcnt = hdr->b_l1hdr.b_bufcnt; update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); IMPLY(GHOST_STATE(old_state), bufcnt == 0); IMPLY(GHOST_STATE(new_state), bufcnt == 0); IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL); IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL); IMPLY(old_state == arc_anon, bufcnt <= 1); } else { old_state = arc_l2c_only; refcnt = 0; bufcnt = 0; update_old = B_FALSE; } update_new = update_old; if (GHOST_STATE(old_state)) update_old = B_TRUE; if (GHOST_STATE(new_state)) update_new = B_TRUE; ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); ASSERT3P(new_state, !=, old_state); /* * If this buffer is evictable, transfer it from the * old state list to the new state list. */ if (refcnt == 0) { if (old_state != arc_anon && old_state != arc_l2c_only) { ASSERT(HDR_HAS_L1HDR(hdr)); /* remove_reference() saves on insert. */ if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { multilist_remove(&old_state->arcs_list[type], hdr); arc_evictable_space_decrement(hdr, old_state); } } if (new_state != arc_anon && new_state != arc_l2c_only) { /* * An L1 header always exists here, since if we're * moving to some L1-cached state (i.e. not l2c_only or * anonymous), we realloc the header to add an L1hdr * beforehand. */ ASSERT(HDR_HAS_L1HDR(hdr)); multilist_insert(&new_state->arcs_list[type], hdr); arc_evictable_space_increment(hdr, new_state); } } ASSERT(!HDR_EMPTY(hdr)); if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) buf_hash_remove(hdr); /* adjust state sizes (ignore arc_l2c_only) */ if (update_new && new_state != arc_l2c_only) { ASSERT(HDR_HAS_L1HDR(hdr)); if (GHOST_STATE(new_state)) { ASSERT0(bufcnt); /* * When moving a header to a ghost state, we first * remove all arc buffers. Thus, we'll have a * bufcnt of zero, and no arc buffer to use for * the reference. As a result, we use the arc * header pointer for the reference. */ (void) zfs_refcount_add_many( &new_state->arcs_size[type], HDR_GET_LSIZE(hdr), hdr); ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); ASSERT(!HDR_HAS_RABD(hdr)); } else { uint32_t buffers = 0; /* * Each individual buffer holds a unique reference, * thus we must remove each of these references one * at a time. */ for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { ASSERT3U(bufcnt, !=, 0); buffers++; /* * When the arc_buf_t is sharing the data * block with the hdr, the owner of the * reference belongs to the hdr. Only * add to the refcount if the arc_buf_t is * not shared. */ if (arc_buf_is_shared(buf)) continue; (void) zfs_refcount_add_many( &new_state->arcs_size[type], arc_buf_size(buf), buf); } ASSERT3U(bufcnt, ==, buffers); if (hdr->b_l1hdr.b_pabd != NULL) { (void) zfs_refcount_add_many( &new_state->arcs_size[type], arc_hdr_size(hdr), hdr); } if (HDR_HAS_RABD(hdr)) { (void) zfs_refcount_add_many( &new_state->arcs_size[type], HDR_GET_PSIZE(hdr), hdr); } } } if (update_old && old_state != arc_l2c_only) { ASSERT(HDR_HAS_L1HDR(hdr)); if (GHOST_STATE(old_state)) { ASSERT0(bufcnt); ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); ASSERT(!HDR_HAS_RABD(hdr)); /* * When moving a header off of a ghost state, * the header will not contain any arc buffers. * We use the arc header pointer for the reference * which is exactly what we did when we put the * header on the ghost state. */ (void) zfs_refcount_remove_many( &old_state->arcs_size[type], HDR_GET_LSIZE(hdr), hdr); } else { uint32_t buffers = 0; /* * Each individual buffer holds a unique reference, * thus we must remove each of these references one * at a time. */ for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { ASSERT3U(bufcnt, !=, 0); buffers++; /* * When the arc_buf_t is sharing the data * block with the hdr, the owner of the * reference belongs to the hdr. Only * add to the refcount if the arc_buf_t is * not shared. */ if (arc_buf_is_shared(buf)) continue; (void) zfs_refcount_remove_many( &old_state->arcs_size[type], arc_buf_size(buf), buf); } ASSERT3U(bufcnt, ==, buffers); ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); if (hdr->b_l1hdr.b_pabd != NULL) { (void) zfs_refcount_remove_many( &old_state->arcs_size[type], arc_hdr_size(hdr), hdr); } if (HDR_HAS_RABD(hdr)) { (void) zfs_refcount_remove_many( &old_state->arcs_size[type], HDR_GET_PSIZE(hdr), hdr); } } } if (HDR_HAS_L1HDR(hdr)) { hdr->b_l1hdr.b_state = new_state; if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { l2arc_hdr_arcstats_decrement_state(hdr); hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; l2arc_hdr_arcstats_increment_state(hdr); } } } void arc_space_consume(uint64_t space, arc_space_type_t type) { ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); switch (type) { default: break; case ARC_SPACE_DATA: ARCSTAT_INCR(arcstat_data_size, space); break; case ARC_SPACE_META: ARCSTAT_INCR(arcstat_metadata_size, space); break; case ARC_SPACE_BONUS: ARCSTAT_INCR(arcstat_bonus_size, space); break; case ARC_SPACE_DNODE: ARCSTAT_INCR(arcstat_dnode_size, space); break; case ARC_SPACE_DBUF: ARCSTAT_INCR(arcstat_dbuf_size, space); break; case ARC_SPACE_HDRS: ARCSTAT_INCR(arcstat_hdr_size, space); break; case ARC_SPACE_L2HDRS: aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); break; case ARC_SPACE_ABD_CHUNK_WASTE: /* * Note: this includes space wasted by all scatter ABD's, not * just those allocated by the ARC. But the vast majority of * scatter ABD's come from the ARC, because other users are * very short-lived. */ ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); break; } if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) ARCSTAT_INCR(arcstat_meta_used, space); aggsum_add(&arc_sums.arcstat_size, space); } void arc_space_return(uint64_t space, arc_space_type_t type) { ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); switch (type) { default: break; case ARC_SPACE_DATA: ARCSTAT_INCR(arcstat_data_size, -space); break; case ARC_SPACE_META: ARCSTAT_INCR(arcstat_metadata_size, -space); break; case ARC_SPACE_BONUS: ARCSTAT_INCR(arcstat_bonus_size, -space); break; case ARC_SPACE_DNODE: ARCSTAT_INCR(arcstat_dnode_size, -space); break; case ARC_SPACE_DBUF: ARCSTAT_INCR(arcstat_dbuf_size, -space); break; case ARC_SPACE_HDRS: ARCSTAT_INCR(arcstat_hdr_size, -space); break; case ARC_SPACE_L2HDRS: aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); break; case ARC_SPACE_ABD_CHUNK_WASTE: ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); break; } if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) ARCSTAT_INCR(arcstat_meta_used, -space); ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); aggsum_add(&arc_sums.arcstat_size, -space); } /* * Given a hdr and a buf, returns whether that buf can share its b_data buffer * with the hdr's b_pabd. */ static boolean_t arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) { /* * The criteria for sharing a hdr's data are: * 1. the buffer is not encrypted * 2. the hdr's compression matches the buf's compression * 3. the hdr doesn't need to be byteswapped * 4. the hdr isn't already being shared * 5. the buf is either compressed or it is the last buf in the hdr list * * Criterion #5 maintains the invariant that shared uncompressed * bufs must be the final buf in the hdr's b_buf list. Reading this, you * might ask, "if a compressed buf is allocated first, won't that be the * last thing in the list?", but in that case it's impossible to create * a shared uncompressed buf anyway (because the hdr must be compressed * to have the compressed buf). You might also think that #3 is * sufficient to make this guarantee, however it's possible * (specifically in the rare L2ARC write race mentioned in * arc_buf_alloc_impl()) there will be an existing uncompressed buf that * is shareable, but wasn't at the time of its allocation. Rather than * allow a new shared uncompressed buf to be created and then shuffle * the list around to make it the last element, this simply disallows * sharing if the new buf isn't the first to be added. */ ASSERT3P(buf->b_hdr, ==, hdr); boolean_t hdr_compressed = arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; return (!ARC_BUF_ENCRYPTED(buf) && buf_compressed == hdr_compressed && hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && !HDR_SHARED_DATA(hdr) && (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); } /* * Allocate a buf for this hdr. If you care about the data that's in the hdr, * or if you want a compressed buffer, pass those flags in. Returns 0 if the * copy was made successfully, or an error code otherwise. */ static int arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, const void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, boolean_t fill, arc_buf_t **ret) { arc_buf_t *buf; arc_fill_flags_t flags = ARC_FILL_LOCKED; ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); VERIFY(hdr->b_type == ARC_BUFC_DATA || hdr->b_type == ARC_BUFC_METADATA); ASSERT3P(ret, !=, NULL); ASSERT3P(*ret, ==, NULL); IMPLY(encrypted, compressed); buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); buf->b_hdr = hdr; buf->b_data = NULL; buf->b_next = hdr->b_l1hdr.b_buf; buf->b_flags = 0; add_reference(hdr, tag); /* * We're about to change the hdr's b_flags. We must either * hold the hash_lock or be undiscoverable. */ ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); /* * Only honor requests for compressed bufs if the hdr is actually * compressed. This must be overridden if the buffer is encrypted since * encrypted buffers cannot be decompressed. */ if (encrypted) { buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; } else if (compressed && arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; flags |= ARC_FILL_COMPRESSED; } if (noauth) { ASSERT0(encrypted); flags |= ARC_FILL_NOAUTH; } /* * If the hdr's data can be shared then we share the data buffer and * set the appropriate bit in the hdr's b_flags to indicate the hdr is * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new * buffer to store the buf's data. * * There are two additional restrictions here because we're sharing * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be * actively involved in an L2ARC write, because if this buf is used by * an arc_write() then the hdr's data buffer will be released when the * write completes, even though the L2ARC write might still be using it. * Second, the hdr's ABD must be linear so that the buf's user doesn't * need to be ABD-aware. It must be allocated via * zio_[data_]buf_alloc(), not as a page, because we need to be able * to abd_release_ownership_of_buf(), which isn't allowed on "linear * page" buffers because the ABD code needs to handle freeing them * specially. */ boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) && hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd) && !abd_is_linear_page(hdr->b_l1hdr.b_pabd); /* Set up b_data and sharing */ if (can_share) { buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); buf->b_flags |= ARC_BUF_FLAG_SHARED; arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); } else { buf->b_data = arc_get_data_buf(hdr, arc_buf_size(buf), buf); ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); } VERIFY3P(buf->b_data, !=, NULL); hdr->b_l1hdr.b_buf = buf; hdr->b_l1hdr.b_bufcnt += 1; if (encrypted) hdr->b_crypt_hdr.b_ebufcnt += 1; /* * If the user wants the data from the hdr, we need to either copy or * decompress the data. */ if (fill) { ASSERT3P(zb, !=, NULL); return (arc_buf_fill(buf, spa, zb, flags)); } return (0); } static const char *arc_onloan_tag = "onloan"; static inline void arc_loaned_bytes_update(int64_t delta) { atomic_add_64(&arc_loaned_bytes, delta); /* assert that it did not wrap around */ ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); } /* * Loan out an anonymous arc buffer. Loaned buffers are not counted as in * flight data by arc_tempreserve_space() until they are "returned". Loaned * buffers must be returned to the arc before they can be used by the DMU or * freed. */ arc_buf_t * arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) { arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); arc_loaned_bytes_update(arc_buf_size(buf)); return (buf); } arc_buf_t * arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, enum zio_compress compression_type, uint8_t complevel) { arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, psize, lsize, compression_type, complevel); arc_loaned_bytes_update(arc_buf_size(buf)); return (buf); } arc_buf_t * arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize, enum zio_compress compression_type, uint8_t complevel) { arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, byteorder, salt, iv, mac, ot, psize, lsize, compression_type, complevel); atomic_add_64(&arc_loaned_bytes, psize); return (buf); } /* * Return a loaned arc buffer to the arc. */ void arc_return_buf(arc_buf_t *buf, const void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT3P(buf->b_data, !=, NULL); ASSERT(HDR_HAS_L1HDR(hdr)); (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); arc_loaned_bytes_update(-arc_buf_size(buf)); } /* Detach an arc_buf from a dbuf (tag) */ void arc_loan_inuse_buf(arc_buf_t *buf, const void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT3P(buf->b_data, !=, NULL); ASSERT(HDR_HAS_L1HDR(hdr)); (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); arc_loaned_bytes_update(arc_buf_size(buf)); } static void l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) { l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); df->l2df_abd = abd; df->l2df_size = size; df->l2df_type = type; mutex_enter(&l2arc_free_on_write_mtx); list_insert_head(l2arc_free_on_write, df); mutex_exit(&l2arc_free_on_write_mtx); } static void arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) { arc_state_t *state = hdr->b_l1hdr.b_state; arc_buf_contents_t type = arc_buf_type(hdr); uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); /* protected by hash lock, if in the hash table */ if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); ASSERT(state != arc_anon && state != arc_l2c_only); (void) zfs_refcount_remove_many(&state->arcs_esize[type], size, hdr); } (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr); if (type == ARC_BUFC_METADATA) { arc_space_return(size, ARC_SPACE_META); } else { ASSERT(type == ARC_BUFC_DATA); arc_space_return(size, ARC_SPACE_DATA); } if (free_rdata) { l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); } else { l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); } } /* * Share the arc_buf_t's data with the hdr. Whenever we are sharing the * data buffer, we transfer the refcount ownership to the hdr and update * the appropriate kstats. */ static void arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) { ASSERT(arc_can_share(hdr, buf)); ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); ASSERT(!ARC_BUF_ENCRYPTED(buf)); ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); /* * Start sharing the data buffer. We transfer the * refcount ownership to the hdr since it always owns * the refcount whenever an arc_buf_t is shared. */ zfs_refcount_transfer_ownership_many( &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], arc_hdr_size(hdr), buf, hdr); hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, HDR_ISTYPE_METADATA(hdr)); arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); buf->b_flags |= ARC_BUF_FLAG_SHARED; /* * Since we've transferred ownership to the hdr we need * to increment its compressed and uncompressed kstats and * decrement the overhead size. */ ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); } static void arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) { ASSERT(arc_buf_is_shared(buf)); ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); /* * We are no longer sharing this buffer so we need * to transfer its ownership to the rightful owner. */ zfs_refcount_transfer_ownership_many( &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], arc_hdr_size(hdr), hdr, buf); arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); abd_free(hdr->b_l1hdr.b_pabd); hdr->b_l1hdr.b_pabd = NULL; buf->b_flags &= ~ARC_BUF_FLAG_SHARED; /* * Since the buffer is no longer shared between * the arc buf and the hdr, count it as overhead. */ ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); } /* * Remove an arc_buf_t from the hdr's buf list and return the last * arc_buf_t on the list. If no buffers remain on the list then return * NULL. */ static arc_buf_t * arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) { ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; arc_buf_t *lastbuf = NULL; /* * Remove the buf from the hdr list and locate the last * remaining buffer on the list. */ while (*bufp != NULL) { if (*bufp == buf) *bufp = buf->b_next; /* * If we've removed a buffer in the middle of * the list then update the lastbuf and update * bufp. */ if (*bufp != NULL) { lastbuf = *bufp; bufp = &(*bufp)->b_next; } } buf->b_next = NULL; ASSERT3P(lastbuf, !=, buf); IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); return (lastbuf); } /* * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's * list and free it. */ static void arc_buf_destroy_impl(arc_buf_t *buf) { arc_buf_hdr_t *hdr = buf->b_hdr; /* * Free up the data associated with the buf but only if we're not * sharing this with the hdr. If we are sharing it with the hdr, the * hdr is responsible for doing the free. */ if (buf->b_data != NULL) { /* * We're about to change the hdr's b_flags. We must either * hold the hash_lock or be undiscoverable. */ ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); arc_cksum_verify(buf); arc_buf_unwatch(buf); if (arc_buf_is_shared(buf)) { arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); } else { uint64_t size = arc_buf_size(buf); arc_free_data_buf(hdr, buf->b_data, size, buf); ARCSTAT_INCR(arcstat_overhead_size, -size); } buf->b_data = NULL; ASSERT(hdr->b_l1hdr.b_bufcnt > 0); hdr->b_l1hdr.b_bufcnt -= 1; if (ARC_BUF_ENCRYPTED(buf)) { hdr->b_crypt_hdr.b_ebufcnt -= 1; /* * If we have no more encrypted buffers and we've * already gotten a copy of the decrypted data we can * free b_rabd to save some space. */ if (hdr->b_crypt_hdr.b_ebufcnt == 0 && HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) { arc_hdr_free_abd(hdr, B_TRUE); } } } arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { /* * If the current arc_buf_t is sharing its data buffer with the * hdr, then reassign the hdr's b_pabd to share it with the new * buffer at the end of the list. The shared buffer is always * the last one on the hdr's buffer list. * * There is an equivalent case for compressed bufs, but since * they aren't guaranteed to be the last buf in the list and * that is an exceedingly rare case, we just allow that space be * wasted temporarily. We must also be careful not to share * encrypted buffers, since they cannot be shared. */ if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { /* Only one buf can be shared at once */ VERIFY(!arc_buf_is_shared(lastbuf)); /* hdr is uncompressed so can't have compressed buf */ VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); arc_hdr_free_abd(hdr, B_FALSE); /* * We must setup a new shared block between the * last buffer and the hdr. The data would have * been allocated by the arc buf so we need to transfer * ownership to the hdr since it's now being shared. */ arc_share_buf(hdr, lastbuf); } } else if (HDR_SHARED_DATA(hdr)) { /* * Uncompressed shared buffers are always at the end * of the list. Compressed buffers don't have the * same requirements. This makes it hard to * simply assert that the lastbuf is shared so * we rely on the hdr's compression flags to determine * if we have a compressed, shared buffer. */ ASSERT3P(lastbuf, !=, NULL); ASSERT(arc_buf_is_shared(lastbuf) || arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); } /* * Free the checksum if we're removing the last uncompressed buf from * this hdr. */ if (!arc_hdr_has_uncompressed_buf(hdr)) { arc_cksum_free(hdr); } /* clean up the buf */ buf->b_hdr = NULL; kmem_cache_free(buf_cache, buf); } static void arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) { uint64_t size; boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); if (alloc_rdata) { size = HDR_GET_PSIZE(hdr); ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, alloc_flags); ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); ARCSTAT_INCR(arcstat_raw_size, size); } else { size = arc_hdr_size(hdr); ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, alloc_flags); ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); } ARCSTAT_INCR(arcstat_compressed_size, size); ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); } static void arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) { uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); IMPLY(free_rdata, HDR_HAS_RABD(hdr)); /* * If the hdr is currently being written to the l2arc then * we defer freeing the data by adding it to the l2arc_free_on_write * list. The l2arc will free the data once it's finished * writing it to the l2arc device. */ if (HDR_L2_WRITING(hdr)) { arc_hdr_free_on_write(hdr, free_rdata); ARCSTAT_BUMP(arcstat_l2_free_on_write); } else if (free_rdata) { arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); } else { arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); } if (free_rdata) { hdr->b_crypt_hdr.b_rabd = NULL; ARCSTAT_INCR(arcstat_raw_size, -size); } else { hdr->b_l1hdr.b_pabd = NULL; } if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; ARCSTAT_INCR(arcstat_compressed_size, -size); ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); } /* * Allocate empty anonymous ARC header. The header will get its identity * assigned and buffers attached later as part of read or write operations. * * In case of read arc_read() assigns header its identify (b_dva + b_birth), * inserts it into ARC hash to become globally visible and allocates physical * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read * completion arc_read_done() allocates ARC buffer(s) as needed, potentially * sharing one of them with the physical ABD buffer. * * In case of write arc_alloc_buf() allocates ARC buffer to be filled with * data. Then after compression and/or encryption arc_write_ready() allocates * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD * buffer. On disk write completion arc_write_done() assigns the header its * new identity (b_dva + b_birth) and inserts into ARC hash. * * In case of partial overwrite the old data is read first as described. Then * arc_release() either allocates new anonymous ARC header and moves the ARC * buffer to it, or reuses the old ARC header by discarding its identity and * removing it from ARC hash. After buffer modification normal write process * follows as described. */ static arc_buf_hdr_t * arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, boolean_t protected, enum zio_compress compression_type, uint8_t complevel, arc_buf_contents_t type) { arc_buf_hdr_t *hdr; VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); if (protected) { hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); } else { hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); } ASSERT(HDR_EMPTY(hdr)); #ifdef ZFS_DEBUG ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); #endif HDR_SET_PSIZE(hdr, psize); HDR_SET_LSIZE(hdr, lsize); hdr->b_spa = spa; hdr->b_type = type; hdr->b_flags = 0; arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); arc_hdr_set_compress(hdr, compression_type); hdr->b_complevel = complevel; if (protected) arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); hdr->b_l1hdr.b_state = arc_anon; hdr->b_l1hdr.b_arc_access = 0; hdr->b_l1hdr.b_mru_hits = 0; hdr->b_l1hdr.b_mru_ghost_hits = 0; hdr->b_l1hdr.b_mfu_hits = 0; hdr->b_l1hdr.b_mfu_ghost_hits = 0; hdr->b_l1hdr.b_bufcnt = 0; hdr->b_l1hdr.b_buf = NULL; ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); return (hdr); } /* * Transition between the two allocation states for the arc_buf_hdr struct. * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller * version is used when a cache buffer is only in the L2ARC in order to reduce * memory usage. */ static arc_buf_hdr_t * arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) { ASSERT(HDR_HAS_L2HDR(hdr)); arc_buf_hdr_t *nhdr; l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || (old == hdr_l2only_cache && new == hdr_full_cache)); /* * if the caller wanted a new full header and the header is to be * encrypted we will actually allocate the header from the full crypt * cache instead. The same applies to freeing from the old cache. */ if (HDR_PROTECTED(hdr) && new == hdr_full_cache) new = hdr_full_crypt_cache; if (HDR_PROTECTED(hdr) && old == hdr_full_cache) old = hdr_full_crypt_cache; nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); buf_hash_remove(hdr); memcpy(nhdr, hdr, HDR_L2ONLY_SIZE); if (new == hdr_full_cache || new == hdr_full_crypt_cache) { arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); /* * arc_access and arc_change_state need to be aware that a * header has just come out of L2ARC, so we set its state to * l2c_only even though it's about to change. */ nhdr->b_l1hdr.b_state = arc_l2c_only; /* Verify previous threads set to NULL before freeing */ ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); ASSERT(!HDR_HAS_RABD(hdr)); } else { ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); ASSERT0(hdr->b_l1hdr.b_bufcnt); #ifdef ZFS_DEBUG ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); #endif /* * If we've reached here, We must have been called from * arc_evict_hdr(), as such we should have already been * removed from any ghost list we were previously on * (which protects us from racing with arc_evict_state), * thus no locking is needed during this check. */ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); /* * A buffer must not be moved into the arc_l2c_only * state if it's not finished being written out to the * l2arc device. Otherwise, the b_l1hdr.b_pabd field * might try to be accessed, even though it was removed. */ VERIFY(!HDR_L2_WRITING(hdr)); VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); ASSERT(!HDR_HAS_RABD(hdr)); arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); } /* * The header has been reallocated so we need to re-insert it into any * lists it was on. */ (void) buf_hash_insert(nhdr, NULL); ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); mutex_enter(&dev->l2ad_mtx); /* * We must place the realloc'ed header back into the list at * the same spot. Otherwise, if it's placed earlier in the list, * l2arc_write_buffers() could find it during the function's * write phase, and try to write it out to the l2arc. */ list_insert_after(&dev->l2ad_buflist, hdr, nhdr); list_remove(&dev->l2ad_buflist, hdr); mutex_exit(&dev->l2ad_mtx); /* * Since we're using the pointer address as the tag when * incrementing and decrementing the l2ad_alloc refcount, we * must remove the old pointer (that we're about to destroy) and * add the new pointer to the refcount. Otherwise we'd remove * the wrong pointer address when calling arc_hdr_destroy() later. */ (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); buf_discard_identity(hdr); kmem_cache_free(old, hdr); return (nhdr); } /* * This function allows an L1 header to be reallocated as a crypt * header and vice versa. If we are going to a crypt header, the * new fields will be zeroed out. */ static arc_buf_hdr_t * arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) { arc_buf_hdr_t *nhdr; arc_buf_t *buf; kmem_cache_t *ncache, *ocache; /* * This function requires that hdr is in the arc_anon state. * Therefore it won't have any L2ARC data for us to worry * about copying. */ ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(!HDR_HAS_L2HDR(hdr)); ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); ASSERT3P(hdr->b_hash_next, ==, NULL); if (need_crypt) { ncache = hdr_full_crypt_cache; ocache = hdr_full_cache; } else { ncache = hdr_full_cache; ocache = hdr_full_crypt_cache; } nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); /* * Copy all members that aren't locks or condvars to the new header. * No lists are pointing to us (as we asserted above), so we don't * need to worry about the list nodes. */ nhdr->b_dva = hdr->b_dva; nhdr->b_birth = hdr->b_birth; nhdr->b_type = hdr->b_type; nhdr->b_flags = hdr->b_flags; nhdr->b_psize = hdr->b_psize; nhdr->b_lsize = hdr->b_lsize; nhdr->b_spa = hdr->b_spa; #ifdef ZFS_DEBUG nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; #endif nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; /* * This zfs_refcount_add() exists only to ensure that the individual * arc buffers always point to a header that is referenced, avoiding * a small race condition that could trigger ASSERTs. */ (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) buf->b_hdr = nhdr; zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); if (need_crypt) { arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); } else { arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); } /* unset all members of the original hdr */ memset(&hdr->b_dva, 0, sizeof (dva_t)); hdr->b_birth = 0; hdr->b_type = 0; hdr->b_flags = 0; hdr->b_psize = 0; hdr->b_lsize = 0; hdr->b_spa = 0; #ifdef ZFS_DEBUG hdr->b_l1hdr.b_freeze_cksum = NULL; #endif hdr->b_l1hdr.b_buf = NULL; hdr->b_l1hdr.b_bufcnt = 0; hdr->b_l1hdr.b_byteswap = 0; hdr->b_l1hdr.b_state = NULL; hdr->b_l1hdr.b_arc_access = 0; hdr->b_l1hdr.b_mru_hits = 0; hdr->b_l1hdr.b_mru_ghost_hits = 0; hdr->b_l1hdr.b_mfu_hits = 0; hdr->b_l1hdr.b_mfu_ghost_hits = 0; hdr->b_l1hdr.b_acb = NULL; hdr->b_l1hdr.b_pabd = NULL; if (ocache == hdr_full_crypt_cache) { ASSERT(!HDR_HAS_RABD(hdr)); hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; hdr->b_crypt_hdr.b_ebufcnt = 0; hdr->b_crypt_hdr.b_dsobj = 0; memset(hdr->b_crypt_hdr.b_salt, 0, ZIO_DATA_SALT_LEN); memset(hdr->b_crypt_hdr.b_iv, 0, ZIO_DATA_IV_LEN); memset(hdr->b_crypt_hdr.b_mac, 0, ZIO_DATA_MAC_LEN); } buf_discard_identity(hdr); kmem_cache_free(ocache, hdr); return (nhdr); } /* * This function is used by the send / receive code to convert a newly * allocated arc_buf_t to one that is suitable for a raw encrypted write. It * is also used to allow the root objset block to be updated without altering * its embedded MACs. Both block types will always be uncompressed so we do not * have to worry about compression type or psize. */ void arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, const uint8_t *mac) { arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); if (!HDR_PROTECTED(hdr)) hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); hdr->b_crypt_hdr.b_dsobj = dsobj; hdr->b_crypt_hdr.b_ot = ot; hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); if (!arc_hdr_has_uncompressed_buf(hdr)) arc_cksum_free(hdr); if (salt != NULL) memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); if (iv != NULL) memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); if (mac != NULL) memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); } /* * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. * The buf is returned thawed since we expect the consumer to modify it. */ arc_buf_t * arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type, int32_t size) { arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, B_FALSE, ZIO_COMPRESS_OFF, 0, type); arc_buf_t *buf = NULL; VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, B_FALSE, B_FALSE, &buf)); arc_buf_thaw(buf); return (buf); } /* * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this * for bufs containing metadata. */ arc_buf_t * arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize, uint64_t lsize, enum zio_compress compression_type, uint8_t complevel) { ASSERT3U(lsize, >, 0); ASSERT3U(lsize, >=, psize); ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_FALSE, compression_type, complevel, ARC_BUFC_DATA); arc_buf_t *buf = NULL; VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_TRUE, B_FALSE, B_FALSE, &buf)); arc_buf_thaw(buf); /* * To ensure that the hdr has the correct data in it if we call * arc_untransform() on this buf before it's been written to disk, * it's easiest if we just set up sharing between the buf and the hdr. */ arc_share_buf(hdr, buf); return (buf); } arc_buf_t * arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj, boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize, enum zio_compress compression_type, uint8_t complevel) { arc_buf_hdr_t *hdr; arc_buf_t *buf; arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? ARC_BUFC_METADATA : ARC_BUFC_DATA; ASSERT3U(lsize, >, 0); ASSERT3U(lsize, >=, psize); ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, compression_type, complevel, type); hdr->b_crypt_hdr.b_dsobj = dsobj; hdr->b_crypt_hdr.b_ot = ot; hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); /* * This buffer will be considered encrypted even if the ot is not an * encrypted type. It will become authenticated instead in * arc_write_ready(). */ buf = NULL; VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, B_FALSE, B_FALSE, &buf)); arc_buf_thaw(buf); return (buf); } static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, boolean_t state_only) { l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; l2arc_dev_t *dev = l2hdr->b_dev; uint64_t lsize = HDR_GET_LSIZE(hdr); uint64_t psize = HDR_GET_PSIZE(hdr); uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); arc_buf_contents_t type = hdr->b_type; int64_t lsize_s; int64_t psize_s; int64_t asize_s; if (incr) { lsize_s = lsize; psize_s = psize; asize_s = asize; } else { lsize_s = -lsize; psize_s = -psize; asize_s = -asize; } /* If the buffer is a prefetch, count it as such. */ if (HDR_PREFETCH(hdr)) { ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); } else { /* * We use the value stored in the L2 header upon initial * caching in L2ARC. This value will be updated in case * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC * metadata (log entry) cannot currently be updated. Having * the ARC state in the L2 header solves the problem of a * possibly absent L1 header (apparent in buffers restored * from persistent L2ARC). */ switch (hdr->b_l2hdr.b_arcs_state) { case ARC_STATE_MRU_GHOST: case ARC_STATE_MRU: ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); break; case ARC_STATE_MFU_GHOST: case ARC_STATE_MFU: ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); break; default: break; } } if (state_only) return; ARCSTAT_INCR(arcstat_l2_psize, psize_s); ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); switch (type) { case ARC_BUFC_DATA: ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); break; case ARC_BUFC_METADATA: ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); break; default: break; } } static void arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) { l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; l2arc_dev_t *dev = l2hdr->b_dev; uint64_t psize = HDR_GET_PSIZE(hdr); uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); ASSERT(HDR_HAS_L2HDR(hdr)); list_remove(&dev->l2ad_buflist, hdr); l2arc_hdr_arcstats_decrement(hdr); vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); } static void arc_hdr_destroy(arc_buf_hdr_t *hdr) { if (HDR_HAS_L1HDR(hdr)) { ASSERT(hdr->b_l1hdr.b_buf == NULL || hdr->b_l1hdr.b_bufcnt > 0); ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); } ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT(!HDR_IN_HASH_TABLE(hdr)); if (HDR_HAS_L2HDR(hdr)) { l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); if (!buflist_held) mutex_enter(&dev->l2ad_mtx); /* * Even though we checked this conditional above, we * need to check this again now that we have the * l2ad_mtx. This is because we could be racing with * another thread calling l2arc_evict() which might have * destroyed this header's L2 portion as we were waiting * to acquire the l2ad_mtx. If that happens, we don't * want to re-destroy the header's L2 portion. */ if (HDR_HAS_L2HDR(hdr)) { if (!HDR_EMPTY(hdr)) buf_discard_identity(hdr); arc_hdr_l2hdr_destroy(hdr); } if (!buflist_held) mutex_exit(&dev->l2ad_mtx); } /* * The header's identify can only be safely discarded once it is no * longer discoverable. This requires removing it from the hash table * and the l2arc header list. After this point the hash lock can not * be used to protect the header. */ if (!HDR_EMPTY(hdr)) buf_discard_identity(hdr); if (HDR_HAS_L1HDR(hdr)) { arc_cksum_free(hdr); while (hdr->b_l1hdr.b_buf != NULL) arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); if (hdr->b_l1hdr.b_pabd != NULL) arc_hdr_free_abd(hdr, B_FALSE); if (HDR_HAS_RABD(hdr)) arc_hdr_free_abd(hdr, B_TRUE); } ASSERT3P(hdr->b_hash_next, ==, NULL); if (HDR_HAS_L1HDR(hdr)) { ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); #ifdef ZFS_DEBUG ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); #endif if (!HDR_PROTECTED(hdr)) { kmem_cache_free(hdr_full_cache, hdr); } else { kmem_cache_free(hdr_full_crypt_cache, hdr); } } else { kmem_cache_free(hdr_l2only_cache, hdr); } } void arc_buf_destroy(arc_buf_t *buf, const void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; if (hdr->b_l1hdr.b_state == arc_anon) { ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); VERIFY0(remove_reference(hdr, tag)); return; } kmutex_t *hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); ASSERT3P(hdr, ==, buf->b_hdr); ASSERT(hdr->b_l1hdr.b_bufcnt > 0); ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); ASSERT3P(buf->b_data, !=, NULL); arc_buf_destroy_impl(buf); (void) remove_reference(hdr, tag); mutex_exit(hash_lock); } /* * Evict the arc_buf_hdr that is provided as a parameter. The resultant * state of the header is dependent on its state prior to entering this * function. The following transitions are possible: * * - arc_mru -> arc_mru_ghost * - arc_mfu -> arc_mfu_ghost * - arc_mru_ghost -> arc_l2c_only * - arc_mru_ghost -> deleted * - arc_mfu_ghost -> arc_l2c_only * - arc_mfu_ghost -> deleted * - arc_uncached -> deleted * * Return total size of evicted data buffers for eviction progress tracking. * When evicting from ghost states return logical buffer size to make eviction * progress at the same (or at least comparable) rate as from non-ghost states. * * Return *real_evicted for actual ARC size reduction to wake up threads * waiting for it. For non-ghost states it includes size of evicted data * buffers (the headers are not freed there). For ghost states it includes * only the evicted headers size. */ static int64_t arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted) { arc_state_t *evicted_state, *state; int64_t bytes_evicted = 0; uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT0(hdr->b_l1hdr.b_bufcnt); ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); *real_evicted = 0; state = hdr->b_l1hdr.b_state; if (GHOST_STATE(state)) { /* * l2arc_write_buffers() relies on a header's L1 portion * (i.e. its b_pabd field) during it's write phase. * Thus, we cannot push a header onto the arc_l2c_only * state (removing its L1 piece) until the header is * done being written to the l2arc. */ if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { ARCSTAT_BUMP(arcstat_evict_l2_skip); return (bytes_evicted); } ARCSTAT_BUMP(arcstat_deleted); bytes_evicted += HDR_GET_LSIZE(hdr); DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); if (HDR_HAS_L2HDR(hdr)) { ASSERT(hdr->b_l1hdr.b_pabd == NULL); ASSERT(!HDR_HAS_RABD(hdr)); /* * This buffer is cached on the 2nd Level ARC; * don't destroy the header. */ arc_change_state(arc_l2c_only, hdr); /* * dropping from L1+L2 cached to L2-only, * realloc to remove the L1 header. */ (void) arc_hdr_realloc(hdr, hdr_full_cache, hdr_l2only_cache); *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; } else { arc_change_state(arc_anon, hdr); arc_hdr_destroy(hdr); *real_evicted += HDR_FULL_SIZE; } return (bytes_evicted); } ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached); evicted_state = (state == arc_uncached) ? arc_anon : ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost); /* prefetch buffers have a minimum lifespan */ if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < MSEC_TO_TICK(min_lifetime)) { ARCSTAT_BUMP(arcstat_evict_skip); return (bytes_evicted); } if (HDR_HAS_L2HDR(hdr)) { ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); } else { if (l2arc_write_eligible(hdr->b_spa, hdr)) { ARCSTAT_INCR(arcstat_evict_l2_eligible, HDR_GET_LSIZE(hdr)); switch (state->arcs_state) { case ARC_STATE_MRU: ARCSTAT_INCR( arcstat_evict_l2_eligible_mru, HDR_GET_LSIZE(hdr)); break; case ARC_STATE_MFU: ARCSTAT_INCR( arcstat_evict_l2_eligible_mfu, HDR_GET_LSIZE(hdr)); break; default: break; } } else { ARCSTAT_INCR(arcstat_evict_l2_ineligible, HDR_GET_LSIZE(hdr)); } } bytes_evicted += arc_hdr_size(hdr); *real_evicted += arc_hdr_size(hdr); /* * If this hdr is being evicted and has a compressed buffer then we * discard it here before we change states. This ensures that the * accounting is updated correctly in arc_free_data_impl(). */ if (hdr->b_l1hdr.b_pabd != NULL) arc_hdr_free_abd(hdr, B_FALSE); if (HDR_HAS_RABD(hdr)) arc_hdr_free_abd(hdr, B_TRUE); arc_change_state(evicted_state, hdr); DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); if (evicted_state == arc_anon) { arc_hdr_destroy(hdr); *real_evicted += HDR_FULL_SIZE; } else { ASSERT(HDR_IN_HASH_TABLE(hdr)); } return (bytes_evicted); } static void arc_set_need_free(void) { ASSERT(MUTEX_HELD(&arc_evict_lock)); int64_t remaining = arc_free_memory() - arc_sys_free / 2; arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); if (aw == NULL) { arc_need_free = MAX(-remaining, 0); } else { arc_need_free = MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); } } static uint64_t arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, uint64_t spa, uint64_t bytes) { multilist_sublist_t *mls; uint64_t bytes_evicted = 0, real_evicted = 0; arc_buf_hdr_t *hdr; kmutex_t *hash_lock; uint_t evict_count = zfs_arc_evict_batch_limit; ASSERT3P(marker, !=, NULL); mls = multilist_sublist_lock(ml, idx); for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); hdr = multilist_sublist_prev(mls, marker)) { if ((evict_count == 0) || (bytes_evicted >= bytes)) break; /* * To keep our iteration location, move the marker * forward. Since we're not holding hdr's hash lock, we * must be very careful and not remove 'hdr' from the * sublist. Otherwise, other consumers might mistake the * 'hdr' as not being on a sublist when they call the * multilist_link_active() function (they all rely on * the hash lock protecting concurrent insertions and * removals). multilist_sublist_move_forward() was * specifically implemented to ensure this is the case * (only 'marker' will be removed and re-inserted). */ multilist_sublist_move_forward(mls, marker); /* * The only case where the b_spa field should ever be * zero, is the marker headers inserted by * arc_evict_state(). It's possible for multiple threads * to be calling arc_evict_state() concurrently (e.g. * dsl_pool_close() and zio_inject_fault()), so we must * skip any markers we see from these other threads. */ if (hdr->b_spa == 0) continue; /* we're only interested in evicting buffers of a certain spa */ if (spa != 0 && hdr->b_spa != spa) { ARCSTAT_BUMP(arcstat_evict_skip); continue; } hash_lock = HDR_LOCK(hdr); /* * We aren't calling this function from any code path * that would already be holding a hash lock, so we're * asserting on this assumption to be defensive in case * this ever changes. Without this check, it would be * possible to incorrectly increment arcstat_mutex_miss * below (e.g. if the code changed such that we called * this function with a hash lock held). */ ASSERT(!MUTEX_HELD(hash_lock)); if (mutex_tryenter(hash_lock)) { uint64_t revicted; uint64_t evicted = arc_evict_hdr(hdr, &revicted); mutex_exit(hash_lock); bytes_evicted += evicted; real_evicted += revicted; /* * If evicted is zero, arc_evict_hdr() must have * decided to skip this header, don't increment * evict_count in this case. */ if (evicted != 0) evict_count--; } else { ARCSTAT_BUMP(arcstat_mutex_miss); } } multilist_sublist_unlock(mls); /* * Increment the count of evicted bytes, and wake up any threads that * are waiting for the count to reach this value. Since the list is * ordered by ascending aew_count, we pop off the beginning of the * list until we reach the end, or a waiter that's past the current * "count". Doing this outside the loop reduces the number of times * we need to acquire the global arc_evict_lock. * * Only wake when there's sufficient free memory in the system * (specifically, arc_sys_free/2, which by default is a bit more than * 1/64th of RAM). See the comments in arc_wait_for_eviction(). */ mutex_enter(&arc_evict_lock); arc_evict_count += real_evicted; if (arc_free_memory() > arc_sys_free / 2) { arc_evict_waiter_t *aw; while ((aw = list_head(&arc_evict_waiters)) != NULL && aw->aew_count <= arc_evict_count) { list_remove(&arc_evict_waiters, aw); cv_broadcast(&aw->aew_cv); } } arc_set_need_free(); mutex_exit(&arc_evict_lock); /* * If the ARC size is reduced from arc_c_max to arc_c_min (especially * if the average cached block is small), eviction can be on-CPU for * many seconds. To ensure that other threads that may be bound to * this CPU are able to make progress, make a voluntary preemption * call here. */ kpreempt(KPREEMPT_SYNC); return (bytes_evicted); } /* * Allocate an array of buffer headers used as placeholders during arc state * eviction. */ static arc_buf_hdr_t ** arc_state_alloc_markers(int count) { arc_buf_hdr_t **markers; markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP); for (int i = 0; i < count; i++) { markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); /* * A b_spa of 0 is used to indicate that this header is * a marker. This fact is used in arc_evict_state_impl(). */ markers[i]->b_spa = 0; } return (markers); } static void arc_state_free_markers(arc_buf_hdr_t **markers, int count) { for (int i = 0; i < count; i++) kmem_cache_free(hdr_full_cache, markers[i]); kmem_free(markers, sizeof (*markers) * count); } /* * Evict buffers from the given arc state, until we've removed the * specified number of bytes. Move the removed buffers to the * appropriate evict state. * * This function makes a "best effort". It skips over any buffers * it can't get a hash_lock on, and so, may not catch all candidates. * It may also return without evicting as much space as requested. * * If bytes is specified using the special value ARC_EVICT_ALL, this * will evict all available (i.e. unlocked and evictable) buffers from * the given arc state; which is used by arc_flush(). */ static uint64_t arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa, uint64_t bytes) { uint64_t total_evicted = 0; multilist_t *ml = &state->arcs_list[type]; int num_sublists; arc_buf_hdr_t **markers; num_sublists = multilist_get_num_sublists(ml); /* * If we've tried to evict from each sublist, made some * progress, but still have not hit the target number of bytes * to evict, we want to keep trying. The markers allow us to * pick up where we left off for each individual sublist, rather * than starting from the tail each time. */ if (zthr_iscurthread(arc_evict_zthr)) { markers = arc_state_evict_markers; ASSERT3S(num_sublists, <=, arc_state_evict_marker_count); } else { markers = arc_state_alloc_markers(num_sublists); } for (int i = 0; i < num_sublists; i++) { multilist_sublist_t *mls; mls = multilist_sublist_lock(ml, i); multilist_sublist_insert_tail(mls, markers[i]); multilist_sublist_unlock(mls); } /* * While we haven't hit our target number of bytes to evict, or * we're evicting all available buffers. */ while (total_evicted < bytes) { int sublist_idx = multilist_get_random_index(ml); uint64_t scan_evicted = 0; /* * Start eviction using a randomly selected sublist, * this is to try and evenly balance eviction across all * sublists. Always starting at the same sublist * (e.g. index 0) would cause evictions to favor certain * sublists over others. */ for (int i = 0; i < num_sublists; i++) { uint64_t bytes_remaining; uint64_t bytes_evicted; if (total_evicted < bytes) bytes_remaining = bytes - total_evicted; else break; bytes_evicted = arc_evict_state_impl(ml, sublist_idx, markers[sublist_idx], spa, bytes_remaining); scan_evicted += bytes_evicted; total_evicted += bytes_evicted; /* we've reached the end, wrap to the beginning */ if (++sublist_idx >= num_sublists) sublist_idx = 0; } /* * If we didn't evict anything during this scan, we have * no reason to believe we'll evict more during another * scan, so break the loop. */ if (scan_evicted == 0) { /* This isn't possible, let's make that obvious */ ASSERT3S(bytes, !=, 0); /* * When bytes is ARC_EVICT_ALL, the only way to * break the loop is when scan_evicted is zero. * In that case, we actually have evicted enough, * so we don't want to increment the kstat. */ if (bytes != ARC_EVICT_ALL) { ASSERT3S(total_evicted, <, bytes); ARCSTAT_BUMP(arcstat_evict_not_enough); } break; } } for (int i = 0; i < num_sublists; i++) { multilist_sublist_t *mls = multilist_sublist_lock(ml, i); multilist_sublist_remove(mls, markers[i]); multilist_sublist_unlock(mls); } if (markers != arc_state_evict_markers) arc_state_free_markers(markers, num_sublists); return (total_evicted); } /* * Flush all "evictable" data of the given type from the arc state * specified. This will not evict any "active" buffers (i.e. referenced). * * When 'retry' is set to B_FALSE, the function will make a single pass * over the state and evict any buffers that it can. Since it doesn't * continually retry the eviction, it might end up leaving some buffers * in the ARC due to lock misses. * * When 'retry' is set to B_TRUE, the function will continually retry the * eviction until *all* evictable buffers have been removed from the * state. As a result, if concurrent insertions into the state are * allowed (e.g. if the ARC isn't shutting down), this function might * wind up in an infinite loop, continually trying to evict buffers. */ static uint64_t arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, boolean_t retry) { uint64_t evicted = 0; while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL); if (!retry) break; } return (evicted); } /* * Evict the specified number of bytes from the state specified. This * function prevents us from trying to evict more from a state's list * than is "evictable", and to skip evicting altogether when passed a * negative value for "bytes". In contrast, arc_evict_state() will * evict everything it can, when passed a negative value for "bytes". */ static uint64_t arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes) { uint64_t delta; if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), bytes); return (arc_evict_state(state, type, 0, delta)); } return (0); } /* * Adjust specified fraction, taking into account initial ghost state(s) size, * ghost hit bytes towards increasing the fraction, ghost hit bytes towards * decreasing it, plus a balance factor, controlling the decrease rate, used * to balance metadata vs data. */ static uint64_t arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down, uint_t balance) { if (total < 8 || up + down == 0) return (frac); /* * We should not have more ghost hits than ghost size, but they * may get close. Restrict maximum adjustment in that case. */ if (up + down >= total / 4) { uint64_t scale = (up + down) / (total / 8); up /= scale; down /= scale; } /* Get maximal dynamic range by choosing optimal shifts. */ int s = highbit64(total); s = MIN(64 - s, 32); uint64_t ofrac = (1ULL << 32) - frac; if (frac >= 4 * ofrac) up /= frac / (2 * ofrac + 1); up = (up << s) / (total >> (32 - s)); if (ofrac >= 4 * frac) down /= ofrac / (2 * frac + 1); down = (down << s) / (total >> (32 - s)); down = down * 100 / balance; return (frac + up - down); } /* * Evict buffers from the cache, such that arcstat_size is capped by arc_c. */ static uint64_t arc_evict(void) { uint64_t asize, bytes, total_evicted = 0; int64_t e, mrud, mrum, mfud, mfum, w; static uint64_t ogrd, ogrm, ogfd, ogfm; static uint64_t gsrd, gsrm, gsfd, gsfm; uint64_t ngrd, ngrm, ngfd, ngfm; /* Get current size of ARC states we can evict from. */ mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) + zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]); mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) + zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]); mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]); mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); uint64_t d = mrud + mfud; uint64_t m = mrum + mfum; uint64_t t = d + m; /* Get ARC ghost hits since last eviction. */ ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); uint64_t grd = ngrd - ogrd; ogrd = ngrd; ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); uint64_t grm = ngrm - ogrm; ogrm = ngrm; ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); uint64_t gfd = ngfd - ogfd; ogfd = ngfd; ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); uint64_t gfm = ngfm - ogfm; ogfm = ngfm; /* Adjust ARC states balance based on ghost hits. */ arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm, grm + gfm, grd + gfd, zfs_arc_meta_balance); arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100); arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100); asize = aggsum_value(&arc_sums.arcstat_size); int64_t wt = t - (asize - arc_c); /* * Try to reduce pinned dnodes if more than 3/4 of wanted metadata * target is not evictable or if they go over arc_dnode_limit. */ int64_t prune = 0; int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size); w = wt * (int64_t)(arc_meta >> 16) >> 16; if (zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]) - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]) > w * 3 / 4) { prune = dn / sizeof (dnode_t) * zfs_arc_dnode_reduce_percent / 100; } else if (dn > arc_dnode_limit) { prune = (dn - arc_dnode_limit) / sizeof (dnode_t) * zfs_arc_dnode_reduce_percent / 100; } if (prune > 0) arc_prune_async(prune); /* Evict MRU metadata. */ w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16; e = MIN((int64_t)(asize - arc_c), (int64_t)(mrum - w)); bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e); total_evicted += bytes; mrum -= bytes; asize -= bytes; /* Evict MFU metadata. */ w = wt * (int64_t)(arc_meta >> 16) >> 16; e = MIN((int64_t)(asize - arc_c), (int64_t)(m - w)); bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e); total_evicted += bytes; mfum -= bytes; asize -= bytes; /* Evict MRU data. */ wt -= m - total_evicted; w = wt * (int64_t)(arc_pd >> 16) >> 16; e = MIN((int64_t)(asize - arc_c), (int64_t)(mrud - w)); bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e); total_evicted += bytes; mrud -= bytes; asize -= bytes; /* Evict MFU data. */ e = asize - arc_c; bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e); mfud -= bytes; total_evicted += bytes; /* * Evict ghost lists * * Size of each state's ghost list represents how much that state * may grow by shrinking the other states. Would it need to shrink * other states to zero (that is unlikely), its ghost size would be * equal to sum of other three state sizes. But excessive ghost * size may result in false ghost hits (too far back), that may * never result in real cache hits if several states are competing. * So choose some arbitraty point of 1/2 of other state sizes. */ gsrd = (mrum + mfud + mfum) / 2; e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) - gsrd; (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e); gsrm = (mrud + mfud + mfum) / 2; e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) - gsrm; (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e); gsfd = (mrud + mrum + mfum) / 2; e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) - gsfd; (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e); gsfm = (mrud + mrum + mfud) / 2; e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) - gsfm; (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e); return (total_evicted); } void arc_flush(spa_t *spa, boolean_t retry) { uint64_t guid = 0; /* * If retry is B_TRUE, a spa must not be specified since we have * no good way to determine if all of a spa's buffers have been * evicted from an arc state. */ ASSERT(!retry || spa == NULL); if (spa != NULL) guid = spa_load_guid(spa); (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry); (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry); } void arc_reduce_target_size(int64_t to_free) { uint64_t c = arc_c; if (c <= arc_c_min) return; /* * All callers want the ARC to actually evict (at least) this much * memory. Therefore we reduce from the lower of the current size and * the target size. This way, even if arc_c is much higher than * arc_size (as can be the case after many calls to arc_freed(), we will * immediately have arc_c < arc_size and therefore the arc_evict_zthr * will evict. */ uint64_t asize = aggsum_value(&arc_sums.arcstat_size); if (asize < c) to_free += c - asize; arc_c = MAX((int64_t)c - to_free, (int64_t)arc_c_min); /* See comment in arc_evict_cb_check() on why lock+flag */ mutex_enter(&arc_evict_lock); arc_evict_needed = B_TRUE; mutex_exit(&arc_evict_lock); zthr_wakeup(arc_evict_zthr); } /* * Determine if the system is under memory pressure and is asking * to reclaim memory. A return value of B_TRUE indicates that the system * is under memory pressure and that the arc should adjust accordingly. */ boolean_t arc_reclaim_needed(void) { return (arc_available_memory() < 0); } void arc_kmem_reap_soon(void) { size_t i; kmem_cache_t *prev_cache = NULL; kmem_cache_t *prev_data_cache = NULL; #ifdef _KERNEL #if defined(_ILP32) /* * Reclaim unused memory from all kmem caches. */ kmem_reap(); #endif #endif for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { #if defined(_ILP32) /* reach upper limit of cache size on 32-bit */ if (zio_buf_cache[i] == NULL) break; #endif if (zio_buf_cache[i] != prev_cache) { prev_cache = zio_buf_cache[i]; kmem_cache_reap_now(zio_buf_cache[i]); } if (zio_data_buf_cache[i] != prev_data_cache) { prev_data_cache = zio_data_buf_cache[i]; kmem_cache_reap_now(zio_data_buf_cache[i]); } } kmem_cache_reap_now(buf_cache); kmem_cache_reap_now(hdr_full_cache); kmem_cache_reap_now(hdr_l2only_cache); kmem_cache_reap_now(zfs_btree_leaf_cache); abd_cache_reap_now(); } static boolean_t arc_evict_cb_check(void *arg, zthr_t *zthr) { (void) arg, (void) zthr; #ifdef ZFS_DEBUG /* * This is necessary in order to keep the kstat information * up to date for tools that display kstat data such as the * mdb ::arc dcmd and the Linux crash utility. These tools * typically do not call kstat's update function, but simply * dump out stats from the most recent update. Without * this call, these commands may show stale stats for the * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even * with this call, the data might be out of date if the * evict thread hasn't been woken recently; but that should * suffice. The arc_state_t structures can be queried * directly if more accurate information is needed. */ if (arc_ksp != NULL) arc_ksp->ks_update(arc_ksp, KSTAT_READ); #endif /* * We have to rely on arc_wait_for_eviction() to tell us when to * evict, rather than checking if we are overflowing here, so that we * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. * If we have become "not overflowing" since arc_wait_for_eviction() * checked, we need to wake it up. We could broadcast the CV here, * but arc_wait_for_eviction() may have not yet gone to sleep. We * would need to use a mutex to ensure that this function doesn't * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. * the arc_evict_lock). However, the lock ordering of such a lock * would necessarily be incorrect with respect to the zthr_lock, * which is held before this function is called, and is held by * arc_wait_for_eviction() when it calls zthr_wakeup(). */ if (arc_evict_needed) return (B_TRUE); /* * If we have buffers in uncached state, evict them periodically. */ return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) + zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) && ddi_get_lbolt() - arc_last_uncached_flush > MSEC_TO_TICK(arc_min_prefetch_ms / 2))); } /* * Keep arc_size under arc_c by running arc_evict which evicts data * from the ARC. */ static void arc_evict_cb(void *arg, zthr_t *zthr) { (void) arg, (void) zthr; uint64_t evicted = 0; fstrans_cookie_t cookie = spl_fstrans_mark(); /* Always try to evict from uncached state. */ arc_last_uncached_flush = ddi_get_lbolt(); evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE); evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE); /* Evict from other states only if told to. */ if (arc_evict_needed) evicted += arc_evict(); /* * If evicted is zero, we couldn't evict anything * via arc_evict(). This could be due to hash lock * collisions, but more likely due to the majority of * arc buffers being unevictable. Therefore, even if * arc_size is above arc_c, another pass is unlikely to * be helpful and could potentially cause us to enter an * infinite loop. Additionally, zthr_iscancelled() is * checked here so that if the arc is shutting down, the * broadcast will wake any remaining arc evict waiters. */ mutex_enter(&arc_evict_lock); arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; if (!arc_evict_needed) { /* * We're either no longer overflowing, or we * can't evict anything more, so we should wake * arc_get_data_impl() sooner. */ arc_evict_waiter_t *aw; while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { cv_broadcast(&aw->aew_cv); } arc_set_need_free(); } mutex_exit(&arc_evict_lock); spl_fstrans_unmark(cookie); } static boolean_t arc_reap_cb_check(void *arg, zthr_t *zthr) { (void) arg, (void) zthr; int64_t free_memory = arc_available_memory(); static int reap_cb_check_counter = 0; /* * If a kmem reap is already active, don't schedule more. We must * check for this because kmem_cache_reap_soon() won't actually * block on the cache being reaped (this is to prevent callers from * becoming implicitly blocked by a system-wide kmem reap -- which, * on a system with many, many full magazines, can take minutes). */ if (!kmem_cache_reap_active() && free_memory < 0) { arc_no_grow = B_TRUE; arc_warm = B_TRUE; /* * Wait at least zfs_grow_retry (default 5) seconds * before considering growing. */ arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); return (B_TRUE); } else if (free_memory < arc_c >> arc_no_grow_shift) { arc_no_grow = B_TRUE; } else if (gethrtime() >= arc_growtime) { arc_no_grow = B_FALSE; } /* * Called unconditionally every 60 seconds to reclaim unused * zstd compression and decompression context. This is done * here to avoid the need for an independent thread. */ if (!((reap_cb_check_counter++) % 60)) zfs_zstd_cache_reap_now(); return (B_FALSE); } /* * Keep enough free memory in the system by reaping the ARC's kmem * caches. To cause more slabs to be reapable, we may reduce the * target size of the cache (arc_c), causing the arc_evict_cb() * to free more buffers. */ static void arc_reap_cb(void *arg, zthr_t *zthr) { (void) arg, (void) zthr; int64_t free_memory; fstrans_cookie_t cookie = spl_fstrans_mark(); /* * Kick off asynchronous kmem_reap()'s of all our caches. */ arc_kmem_reap_soon(); /* * Wait at least arc_kmem_cache_reap_retry_ms between * arc_kmem_reap_soon() calls. Without this check it is possible to * end up in a situation where we spend lots of time reaping * caches, while we're near arc_c_min. Waiting here also gives the * subsequent free memory check a chance of finding that the * asynchronous reap has already freed enough memory, and we don't * need to call arc_reduce_target_size(). */ delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); /* * Reduce the target size as needed to maintain the amount of free * memory in the system at a fraction of the arc_size (1/128th by * default). If oversubscribed (free_memory < 0) then reduce the * target arc_size by the deficit amount plus the fractional * amount. If free memory is positive but less than the fractional * amount, reduce by what is needed to hit the fractional amount. */ free_memory = arc_available_memory(); int64_t can_free = arc_c - arc_c_min; if (can_free > 0) { int64_t to_free = (can_free >> arc_shrink_shift) - free_memory; if (to_free > 0) arc_reduce_target_size(to_free); } spl_fstrans_unmark(cookie); } #ifdef _KERNEL /* * Determine the amount of memory eligible for eviction contained in the * ARC. All clean data reported by the ghost lists can always be safely * evicted. Due to arc_c_min, the same does not hold for all clean data * contained by the regular mru and mfu lists. * * In the case of the regular mru and mfu lists, we need to report as * much clean data as possible, such that evicting that same reported * data will not bring arc_size below arc_c_min. Thus, in certain * circumstances, the total amount of clean data in the mru and mfu * lists might not actually be evictable. * * The following two distinct cases are accounted for: * * 1. The sum of the amount of dirty data contained by both the mru and * mfu lists, plus the ARC's other accounting (e.g. the anon list), * is greater than or equal to arc_c_min. * (i.e. amount of dirty data >= arc_c_min) * * This is the easy case; all clean data contained by the mru and mfu * lists is evictable. Evicting all clean data can only drop arc_size * to the amount of dirty data, which is greater than arc_c_min. * * 2. The sum of the amount of dirty data contained by both the mru and * mfu lists, plus the ARC's other accounting (e.g. the anon list), * is less than arc_c_min. * (i.e. arc_c_min > amount of dirty data) * * 2.1. arc_size is greater than or equal arc_c_min. * (i.e. arc_size >= arc_c_min > amount of dirty data) * * In this case, not all clean data from the regular mru and mfu * lists is actually evictable; we must leave enough clean data * to keep arc_size above arc_c_min. Thus, the maximum amount of * evictable data from the two lists combined, is exactly the * difference between arc_size and arc_c_min. * * 2.2. arc_size is less than arc_c_min * (i.e. arc_c_min > arc_size > amount of dirty data) * * In this case, none of the data contained in the mru and mfu * lists is evictable, even if it's clean. Since arc_size is * already below arc_c_min, evicting any more would only * increase this negative difference. */ #endif /* _KERNEL */ /* * Adapt arc info given the number of bytes we are trying to add and * the state that we are coming from. This function is only called * when we are adding new content to the cache. */ static void arc_adapt(uint64_t bytes) { /* * Wake reap thread if we do not have any available memory */ if (arc_reclaim_needed()) { zthr_wakeup(arc_reap_zthr); return; } if (arc_no_grow) return; if (arc_c >= arc_c_max) return; /* * If we're within (2 * maxblocksize) bytes of the target * cache size, increment the target cache size */ if (aggsum_upper_bound(&arc_sums.arcstat_size) + 2 * SPA_MAXBLOCKSIZE >= arc_c) { uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE); if (atomic_add_64_nv(&arc_c, dc) > arc_c_max) arc_c = arc_c_max; } } /* * Check if arc_size has grown past our upper threshold, determined by * zfs_arc_overflow_shift. */ static arc_ovf_level_t arc_is_overflowing(boolean_t use_reserve) { /* Always allow at least one block of overflow */ int64_t overflow = MAX(SPA_MAXBLOCKSIZE, arc_c >> zfs_arc_overflow_shift); /* * We just compare the lower bound here for performance reasons. Our * primary goals are to make sure that the arc never grows without * bound, and that it can reach its maximum size. This check * accomplishes both goals. The maximum amount we could run over by is * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block * in the ARC. In practice, that's in the tens of MB, which is low * enough to be safe. */ int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c - overflow / 2; if (!use_reserve) overflow /= 2; return (over < 0 ? ARC_OVF_NONE : over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); } static abd_t * arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, int alloc_flags) { arc_buf_contents_t type = arc_buf_type(hdr); arc_get_data_impl(hdr, size, tag, alloc_flags); if (alloc_flags & ARC_HDR_ALLOC_LINEAR) return (abd_alloc_linear(size, type == ARC_BUFC_METADATA)); else return (abd_alloc(size, type == ARC_BUFC_METADATA)); } static void * arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) { arc_buf_contents_t type = arc_buf_type(hdr); arc_get_data_impl(hdr, size, tag, 0); if (type == ARC_BUFC_METADATA) { return (zio_buf_alloc(size)); } else { ASSERT(type == ARC_BUFC_DATA); return (zio_data_buf_alloc(size)); } } /* * Wait for the specified amount of data (in bytes) to be evicted from the * ARC, and for there to be sufficient free memory in the system. Waiting for * eviction ensures that the memory used by the ARC decreases. Waiting for * free memory ensures that the system won't run out of free pages, regardless * of ARC behavior and settings. See arc_lowmem_init(). */ void arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve) { switch (arc_is_overflowing(use_reserve)) { case ARC_OVF_NONE: return; case ARC_OVF_SOME: /* * This is a bit racy without taking arc_evict_lock, but the * worst that can happen is we either call zthr_wakeup() extra * time due to race with other thread here, or the set flag * get cleared by arc_evict_cb(), which is unlikely due to * big hysteresis, but also not important since at this level * of overflow the eviction is purely advisory. Same time * taking the global lock here every time without waiting for * the actual eviction creates a significant lock contention. */ if (!arc_evict_needed) { arc_evict_needed = B_TRUE; zthr_wakeup(arc_evict_zthr); } return; case ARC_OVF_SEVERE: default: { arc_evict_waiter_t aw; list_link_init(&aw.aew_node); cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); uint64_t last_count = 0; mutex_enter(&arc_evict_lock); if (!list_is_empty(&arc_evict_waiters)) { arc_evict_waiter_t *last = list_tail(&arc_evict_waiters); last_count = last->aew_count; } else if (!arc_evict_needed) { arc_evict_needed = B_TRUE; zthr_wakeup(arc_evict_zthr); } /* * Note, the last waiter's count may be less than * arc_evict_count if we are low on memory in which * case arc_evict_state_impl() may have deferred * wakeups (but still incremented arc_evict_count). */ aw.aew_count = MAX(last_count, arc_evict_count) + amount; list_insert_tail(&arc_evict_waiters, &aw); arc_set_need_free(); DTRACE_PROBE3(arc__wait__for__eviction, uint64_t, amount, uint64_t, arc_evict_count, uint64_t, aw.aew_count); /* * We will be woken up either when arc_evict_count reaches * aew_count, or when the ARC is no longer overflowing and * eviction completes. * In case of "false" wakeup, we will still be on the list. */ do { cv_wait(&aw.aew_cv, &arc_evict_lock); } while (list_link_active(&aw.aew_node)); mutex_exit(&arc_evict_lock); cv_destroy(&aw.aew_cv); } } } /* * Allocate a block and return it to the caller. If we are hitting the * hard limit for the cache size, we must sleep, waiting for the eviction * thread to catch up. If we're past the target size but below the hard * limit, we'll only signal the reclaim thread and continue on. */ static void arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, int alloc_flags) { arc_adapt(size); /* * If arc_size is currently overflowing, we must be adding data * faster than we are evicting. To ensure we don't compound the * problem by adding more data and forcing arc_size to grow even * further past it's target size, we wait for the eviction thread to * make some progress. We also wait for there to be sufficient free * memory in the system, as measured by arc_free_memory(). * * Specifically, we wait for zfs_arc_eviction_pct percent of the * requested size to be evicted. This should be more than 100%, to * ensure that that progress is also made towards getting arc_size * under arc_c. See the comment above zfs_arc_eviction_pct. */ arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, alloc_flags & ARC_HDR_USE_RESERVE); arc_buf_contents_t type = arc_buf_type(hdr); if (type == ARC_BUFC_METADATA) { arc_space_consume(size, ARC_SPACE_META); } else { arc_space_consume(size, ARC_SPACE_DATA); } /* * Update the state size. Note that ghost states have a * "ghost size" and so don't need to be updated. */ arc_state_t *state = hdr->b_l1hdr.b_state; if (!GHOST_STATE(state)) { (void) zfs_refcount_add_many(&state->arcs_size[type], size, tag); /* * If this is reached via arc_read, the link is * protected by the hash lock. If reached via * arc_buf_alloc, the header should not be accessed by * any other thread. And, if reached via arc_read_done, * the hash lock will protect it if it's found in the * hash table; otherwise no other thread should be * trying to [add|remove]_reference it. */ if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); (void) zfs_refcount_add_many(&state->arcs_esize[type], size, tag); } } } static void arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, const void *tag) { arc_free_data_impl(hdr, size, tag); abd_free(abd); } static void arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag) { arc_buf_contents_t type = arc_buf_type(hdr); arc_free_data_impl(hdr, size, tag); if (type == ARC_BUFC_METADATA) { zio_buf_free(buf, size); } else { ASSERT(type == ARC_BUFC_DATA); zio_data_buf_free(buf, size); } } /* * Free the arc data buffer. */ static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) { arc_state_t *state = hdr->b_l1hdr.b_state; arc_buf_contents_t type = arc_buf_type(hdr); /* protected by hash lock, if in the hash table */ if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); ASSERT(state != arc_anon && state != arc_l2c_only); (void) zfs_refcount_remove_many(&state->arcs_esize[type], size, tag); } (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag); VERIFY3U(hdr->b_type, ==, type); if (type == ARC_BUFC_METADATA) { arc_space_return(size, ARC_SPACE_META); } else { ASSERT(type == ARC_BUFC_DATA); arc_space_return(size, ARC_SPACE_DATA); } } /* * This routine is called whenever a buffer is accessed. */ static void arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit) { ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); ASSERT(HDR_HAS_L1HDR(hdr)); /* * Update buffer prefetch status. */ boolean_t was_prefetch = HDR_PREFETCH(hdr); boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH; if (was_prefetch != now_prefetch) { if (was_prefetch) { ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit, HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive, prefetch); } if (HDR_HAS_L2HDR(hdr)) l2arc_hdr_arcstats_decrement_state(hdr); if (was_prefetch) { arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH); } else { arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); } if (HDR_HAS_L2HDR(hdr)) l2arc_hdr_arcstats_increment_state(hdr); } if (now_prefetch) { if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) { arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); ARCSTAT_BUMP(arcstat_prescient_prefetch); } else { ARCSTAT_BUMP(arcstat_predictive_prefetch); } } if (arc_flags & ARC_FLAG_L2CACHE) arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); clock_t now = ddi_get_lbolt(); if (hdr->b_l1hdr.b_state == arc_anon) { arc_state_t *new_state; /* * This buffer is not in the cache, and does not appear in * our "ghost" lists. Add it to the MRU or uncached state. */ ASSERT0(hdr->b_l1hdr.b_arc_access); hdr->b_l1hdr.b_arc_access = now; if (HDR_UNCACHED(hdr)) { new_state = arc_uncached; DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *, hdr); } else { new_state = arc_mru; DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); } arc_change_state(new_state, hdr); } else if (hdr->b_l1hdr.b_state == arc_mru) { /* * This buffer has been accessed once recently and either * its read is still in progress or it is in the cache. */ if (HDR_IO_IN_PROGRESS(hdr)) { hdr->b_l1hdr.b_arc_access = now; return; } hdr->b_l1hdr.b_mru_hits++; ARCSTAT_BUMP(arcstat_mru_hits); /* * If the previous access was a prefetch, then it already * handled possible promotion, so nothing more to do for now. */ if (was_prefetch) { hdr->b_l1hdr.b_arc_access = now; return; } /* * If more than ARC_MINTIME have passed from the previous * hit, promote the buffer to the MFU state. */ if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + ARC_MINTIME)) { hdr->b_l1hdr.b_arc_access = now; DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); arc_change_state(arc_mfu, hdr); } } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { arc_state_t *new_state; /* * This buffer has been accessed once recently, but was * evicted from the cache. Would we have bigger MRU, it * would be an MRU hit, so handle it the same way, except * we don't need to check the previous access time. */ hdr->b_l1hdr.b_mru_ghost_hits++; ARCSTAT_BUMP(arcstat_mru_ghost_hits); hdr->b_l1hdr.b_arc_access = now; wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)], arc_hdr_size(hdr)); if (was_prefetch) { new_state = arc_mru; DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); } else { new_state = arc_mfu; DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); } arc_change_state(new_state, hdr); } else if (hdr->b_l1hdr.b_state == arc_mfu) { /* * This buffer has been accessed more than once and either * still in the cache or being restored from one of ghosts. */ if (!HDR_IO_IN_PROGRESS(hdr)) { hdr->b_l1hdr.b_mfu_hits++; ARCSTAT_BUMP(arcstat_mfu_hits); } hdr->b_l1hdr.b_arc_access = now; } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { /* * This buffer has been accessed more than once recently, but * has been evicted from the cache. Would we have bigger MFU * it would stay in cache, so move it back to MFU state. */ hdr->b_l1hdr.b_mfu_ghost_hits++; ARCSTAT_BUMP(arcstat_mfu_ghost_hits); hdr->b_l1hdr.b_arc_access = now; wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)], arc_hdr_size(hdr)); DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); arc_change_state(arc_mfu, hdr); } else if (hdr->b_l1hdr.b_state == arc_uncached) { /* * This buffer is uncacheable, but we got a hit. Probably * a demand read after prefetch. Nothing more to do here. */ if (!HDR_IO_IN_PROGRESS(hdr)) ARCSTAT_BUMP(arcstat_uncached_hits); hdr->b_l1hdr.b_arc_access = now; } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { /* * This buffer is on the 2nd Level ARC and was not accessed * for a long time, so treat it as new and put into MRU. */ hdr->b_l1hdr.b_arc_access = now; DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); arc_change_state(arc_mru, hdr); } else { cmn_err(CE_PANIC, "invalid arc state 0x%p", hdr->b_l1hdr.b_state); } } /* * This routine is called by dbuf_hold() to update the arc_access() state * which otherwise would be skipped for entries in the dbuf cache. */ void arc_buf_access(arc_buf_t *buf) { arc_buf_hdr_t *hdr = buf->b_hdr; /* * Avoid taking the hash_lock when possible as an optimization. * The header must be checked again under the hash_lock in order * to handle the case where it is concurrently being released. */ if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) return; kmutex_t *hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_access_skip); return; } ASSERT(hdr->b_l1hdr.b_state == arc_mru || hdr->b_l1hdr.b_state == arc_mfu || hdr->b_l1hdr.b_state == arc_uncached); DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); arc_access(hdr, 0, B_TRUE); mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_hits); ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); } /* a generic arc_read_done_func_t which you can use */ void arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, arc_buf_t *buf, void *arg) { (void) zio, (void) zb, (void) bp; if (buf == NULL) return; memcpy(arg, buf->b_data, arc_buf_size(buf)); arc_buf_destroy(buf, arg); } /* a generic arc_read_done_func_t */ void arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, arc_buf_t *buf, void *arg) { (void) zb, (void) bp; arc_buf_t **bufp = arg; if (buf == NULL) { ASSERT(zio == NULL || zio->io_error != 0); *bufp = NULL; } else { ASSERT(zio == NULL || zio->io_error == 0); *bufp = buf; ASSERT(buf->b_data != NULL); } } static void arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) { if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); } else { if (HDR_COMPRESSION_ENABLED(hdr)) { ASSERT3U(arc_hdr_get_compress(hdr), ==, BP_GET_COMPRESS(bp)); } ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); } } static void arc_read_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; arc_buf_hdr_t *hdr = zio->io_private; kmutex_t *hash_lock = NULL; arc_callback_t *callback_list; arc_callback_t *acb; /* * The hdr was inserted into hash-table and removed from lists * prior to starting I/O. We should find this header, since * it's in the hash table, and it should be legit since it's * not possible to evict it during the I/O. The only possible * reason for it not to be found is if we were freed during the * read. */ if (HDR_IN_HASH_TABLE(hdr)) { arc_buf_hdr_t *found; ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); ASSERT3U(hdr->b_dva.dva_word[0], ==, BP_IDENTITY(zio->io_bp)->dva_word[0]); ASSERT3U(hdr->b_dva.dva_word[1], ==, BP_IDENTITY(zio->io_bp)->dva_word[1]); found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); ASSERT((found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || (found == hdr && HDR_L2_READING(hdr))); ASSERT3P(hash_lock, !=, NULL); } if (BP_IS_PROTECTED(bp)) { hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv); if (zio->io_error == 0) { if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { void *tmpbuf; tmpbuf = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); zio_crypt_decode_mac_zil(tmpbuf, hdr->b_crypt_hdr.b_mac); abd_return_buf(zio->io_abd, tmpbuf, sizeof (zil_chain_t)); } else { zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); } } } if (zio->io_error == 0) { /* byteswap if necessary */ if (BP_SHOULD_BYTESWAP(zio->io_bp)) { if (BP_GET_LEVEL(zio->io_bp) > 0) { hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; } else { hdr->b_l1hdr.b_byteswap = DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); } } else { hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; } if (!HDR_L2_READING(hdr)) { hdr->b_complevel = zio->io_prop.zp_complevel; } } arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); if (l2arc_noprefetch && HDR_PREFETCH(hdr)) arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); callback_list = hdr->b_l1hdr.b_acb; ASSERT3P(callback_list, !=, NULL); hdr->b_l1hdr.b_acb = NULL; /* * If a read request has a callback (i.e. acb_done is not NULL), then we * make a buf containing the data according to the parameters which were * passed in. The implementation of arc_buf_alloc_impl() ensures that we * aren't needlessly decompressing the data multiple times. */ int callback_cnt = 0; for (acb = callback_list; acb != NULL; acb = acb->acb_next) { /* We need the last one to call below in original order. */ callback_list = acb; if (!acb->acb_done || acb->acb_nobuf) continue; callback_cnt++; if (zio->io_error != 0) continue; int error = arc_buf_alloc_impl(hdr, zio->io_spa, &acb->acb_zb, acb->acb_private, acb->acb_encrypted, acb->acb_compressed, acb->acb_noauth, B_TRUE, &acb->acb_buf); /* * Assert non-speculative zios didn't fail because an * encryption key wasn't loaded */ ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || error != EACCES); /* * If we failed to decrypt, report an error now (as the zio * layer would have done if it had done the transforms). */ if (error == ECKSUM) { ASSERT(BP_IS_PROTECTED(bp)); error = SET_ERROR(EIO); if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { spa_log_error(zio->io_spa, &acb->acb_zb, &zio->io_bp->blk_birth); (void) zfs_ereport_post( FM_EREPORT_ZFS_AUTHENTICATION, zio->io_spa, NULL, &acb->acb_zb, zio, 0); } } if (error != 0) { /* * Decompression or decryption failed. Set * io_error so that when we call acb_done * (below), we will indicate that the read * failed. Note that in the unusual case * where one callback is compressed and another * uncompressed, we will mark all of them * as failed, even though the uncompressed * one can't actually fail. In this case, * the hdr will not be anonymous, because * if there are multiple callbacks, it's * because multiple threads found the same * arc buf in the hash table. */ zio->io_error = error; } } /* * If there are multiple callbacks, we must have the hash lock, * because the only way for multiple threads to find this hdr is * in the hash table. This ensures that if there are multiple * callbacks, the hdr is not anonymous. If it were anonymous, * we couldn't use arc_buf_destroy() in the error case below. */ ASSERT(callback_cnt < 2 || hash_lock != NULL); if (zio->io_error == 0) { arc_hdr_verify(hdr, zio->io_bp); } else { arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); if (hdr->b_l1hdr.b_state != arc_anon) arc_change_state(arc_anon, hdr); if (HDR_IN_HASH_TABLE(hdr)) buf_hash_remove(hdr); } /* * Broadcast before we drop the hash_lock to avoid the possibility * that the hdr (and hence the cv) might be freed before we get to * the cv_broadcast(). */ cv_broadcast(&hdr->b_l1hdr.b_cv); arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); (void) remove_reference(hdr, hdr); if (hash_lock != NULL) mutex_exit(hash_lock); /* execute each callback and free its structure */ while ((acb = callback_list) != NULL) { if (acb->acb_done != NULL) { if (zio->io_error != 0 && acb->acb_buf != NULL) { /* * If arc_buf_alloc_impl() fails during * decompression, the buf will still be * allocated, and needs to be freed here. */ arc_buf_destroy(acb->acb_buf, acb->acb_private); acb->acb_buf = NULL; } acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, acb->acb_buf, acb->acb_private); } if (acb->acb_zio_dummy != NULL) { acb->acb_zio_dummy->io_error = zio->io_error; zio_nowait(acb->acb_zio_dummy); } callback_list = acb->acb_prev; if (acb->acb_wait) { mutex_enter(&acb->acb_wait_lock); acb->acb_wait_error = zio->io_error; acb->acb_wait = B_FALSE; cv_signal(&acb->acb_wait_cv); mutex_exit(&acb->acb_wait_lock); /* acb will be freed by the waiting thread. */ } else { kmem_free(acb, sizeof (arc_callback_t)); } } } /* * "Read" the block at the specified DVA (in bp) via the * cache. If the block is found in the cache, invoke the provided * callback immediately and return. Note that the `zio' parameter * in the callback will be NULL in this case, since no IO was * required. If the block is not in the cache pass the read request * on to the spa with a substitute callback function, so that the * requested block will be added to the cache. * * If a read request arrives for a block that has a read in-progress, * either wait for the in-progress read to complete (and return the * results); or, if this is a read with a "done" func, add a record * to the read to invoke the "done" func when the read completes, * and return; or just return. * * arc_read_done() will invoke all the requested "done" functions * for readers of this block. */ int arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done, void *private, zio_priority_t priority, int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) { arc_buf_hdr_t *hdr = NULL; kmutex_t *hash_lock = NULL; zio_t *rzio; uint64_t guid = spa_load_guid(spa); boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; arc_buf_t *buf = NULL; int rc = 0; ASSERT(!embedded_bp || BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); ASSERT(!BP_IS_HOLE(bp)); ASSERT(!BP_IS_REDACTED(bp)); /* * Normally SPL_FSTRANS will already be set since kernel threads which * expect to call the DMU interfaces will set it when created. System * calls are similarly handled by setting/cleaning the bit in the * registered callback (module/os/.../zfs/zpl_*). * * External consumers such as Lustre which call the exported DMU * interfaces may not have set SPL_FSTRANS. To avoid a deadlock * on the hash_lock always set and clear the bit. */ fstrans_cookie_t cookie = spl_fstrans_mark(); top: /* * Verify the block pointer contents are reasonable. This should * always be the case since the blkptr is protected by a checksum. * However, if there is damage it's desirable to detect this early * and treat it as a checksum error. This allows an alternate blkptr * to be tried when one is available (e.g. ditto blocks). */ if (!zfs_blkptr_verify(spa, bp, (zio_flags & ZIO_FLAG_CONFIG_WRITER) ? BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { rc = SET_ERROR(ECKSUM); goto done; } if (!embedded_bp) { /* * Embedded BP's have no DVA and require no I/O to "read". * Create an anonymous arc buf to back it. */ hdr = buf_hash_find(guid, bp, &hash_lock); } /* * Determine if we have an L1 cache hit or a cache miss. For simplicity * we maintain encrypted data separately from compressed / uncompressed * data. If the user is requesting raw encrypted data and we don't have * that in the header we will read from disk to guarantee that we can * get it even if the encryption keys aren't loaded. */ if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { boolean_t is_data = !HDR_ISTYPE_METADATA(hdr); if (HDR_IO_IN_PROGRESS(hdr)) { if (*arc_flags & ARC_FLAG_CACHED_ONLY) { mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_cached_only_in_progress); rc = SET_ERROR(ENOENT); goto done; } zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; ASSERT3P(head_zio, !=, NULL); if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && priority == ZIO_PRIORITY_SYNC_READ) { /* * This is a sync read that needs to wait for * an in-flight async read. Request that the * zio have its priority upgraded. */ zio_change_priority(head_zio, priority); DTRACE_PROBE1(arc__async__upgrade__sync, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_async_upgrade_sync); } DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr); arc_access(hdr, *arc_flags, B_FALSE); /* * If there are multiple threads reading the same block * and that block is not yet in the ARC, then only one * thread will do the physical I/O and all other * threads will wait until that I/O completes. * Synchronous reads use the acb_wait_cv whereas nowait * reads register a callback. Both are signalled/called * in arc_read_done. * * Errors of the physical I/O may need to be propagated. * Synchronous read errors are returned here from * arc_read_done via acb_wait_error. Nowait reads * attach the acb_zio_dummy zio to pio and * arc_read_done propagates the physical I/O's io_error * to acb_zio_dummy, and thereby to pio. */ arc_callback_t *acb = NULL; if (done || pio || *arc_flags & ARC_FLAG_WAIT) { acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); acb->acb_done = done; acb->acb_private = private; acb->acb_compressed = compressed_read; acb->acb_encrypted = encrypted_read; acb->acb_noauth = noauth_read; acb->acb_nobuf = no_buf; if (*arc_flags & ARC_FLAG_WAIT) { acb->acb_wait = B_TRUE; mutex_init(&acb->acb_wait_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT, NULL); } acb->acb_zb = *zb; if (pio != NULL) { acb->acb_zio_dummy = zio_null(pio, spa, NULL, NULL, NULL, zio_flags); } acb->acb_zio_head = head_zio; acb->acb_next = hdr->b_l1hdr.b_acb; if (hdr->b_l1hdr.b_acb) hdr->b_l1hdr.b_acb->acb_prev = acb; hdr->b_l1hdr.b_acb = acb; } mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_iohits); ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), demand, prefetch, is_data, data, metadata, iohits); if (*arc_flags & ARC_FLAG_WAIT) { mutex_enter(&acb->acb_wait_lock); while (acb->acb_wait) { cv_wait(&acb->acb_wait_cv, &acb->acb_wait_lock); } rc = acb->acb_wait_error; mutex_exit(&acb->acb_wait_lock); mutex_destroy(&acb->acb_wait_lock); cv_destroy(&acb->acb_wait_cv); kmem_free(acb, sizeof (arc_callback_t)); } goto out; } ASSERT(hdr->b_l1hdr.b_state == arc_mru || hdr->b_l1hdr.b_state == arc_mfu || hdr->b_l1hdr.b_state == arc_uncached); DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); arc_access(hdr, *arc_flags, B_TRUE); if (done && !no_buf) { ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); /* Get a buf with the desired data in it. */ rc = arc_buf_alloc_impl(hdr, spa, zb, private, encrypted_read, compressed_read, noauth_read, B_TRUE, &buf); if (rc == ECKSUM) { /* * Convert authentication and decryption errors * to EIO (and generate an ereport if needed) * before leaving the ARC. */ rc = SET_ERROR(EIO); if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { spa_log_error(spa, zb, &hdr->b_birth); (void) zfs_ereport_post( FM_EREPORT_ZFS_AUTHENTICATION, spa, NULL, zb, NULL, 0); } } if (rc != 0) { arc_buf_destroy_impl(buf); buf = NULL; (void) remove_reference(hdr, private); } /* assert any errors weren't due to unloaded keys */ ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || rc != EACCES); } mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_hits); ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), demand, prefetch, is_data, data, metadata, hits); *arc_flags |= ARC_FLAG_CACHED; goto done; } else { uint64_t lsize = BP_GET_LSIZE(bp); uint64_t psize = BP_GET_PSIZE(bp); arc_callback_t *acb; vdev_t *vd = NULL; uint64_t addr = 0; boolean_t devw = B_FALSE; uint64_t size; abd_t *hdr_abd; int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); if (*arc_flags & ARC_FLAG_CACHED_ONLY) { if (hash_lock != NULL) mutex_exit(hash_lock); rc = SET_ERROR(ENOENT); goto done; } if (hdr == NULL) { /* * This block is not in the cache or it has * embedded data. */ arc_buf_hdr_t *exists = NULL; hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); if (!embedded_bp) { hdr->b_dva = *BP_IDENTITY(bp); hdr->b_birth = BP_PHYSICAL_BIRTH(bp); exists = buf_hash_insert(hdr, &hash_lock); } if (exists != NULL) { /* somebody beat us to the hash insert */ mutex_exit(hash_lock); buf_discard_identity(hdr); arc_hdr_destroy(hdr); goto top; /* restart the IO request */ } } else { /* * This block is in the ghost cache or encrypted data * was requested and we didn't have it. If it was * L2-only (and thus didn't have an L1 hdr), * we realloc the header to add an L1 hdr. */ if (!HDR_HAS_L1HDR(hdr)) { hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, hdr_full_cache); } if (GHOST_STATE(hdr->b_l1hdr.b_state)) { ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); ASSERT(!HDR_HAS_RABD(hdr)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT0(zfs_refcount_count( &hdr->b_l1hdr.b_refcnt)); ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); #ifdef ZFS_DEBUG ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); #endif } else if (HDR_IO_IN_PROGRESS(hdr)) { /* * If this header already had an IO in progress * and we are performing another IO to fetch * encrypted data we must wait until the first * IO completes so as not to confuse * arc_read_done(). This should be very rare * and so the performance impact shouldn't * matter. */ cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); mutex_exit(hash_lock); goto top; } } if (*arc_flags & ARC_FLAG_UNCACHED) { arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); if (!encrypted_read) alloc_flags |= ARC_HDR_ALLOC_LINEAR; } /* * Take additional reference for IO_IN_PROGRESS. It stops * arc_access() from putting this header without any buffers * and so other references but obviously nonevictable onto * the evictable list of MRU or MFU state. */ add_reference(hdr, hdr); if (!embedded_bp) arc_access(hdr, *arc_flags, B_FALSE); arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); arc_hdr_alloc_abd(hdr, alloc_flags); if (encrypted_read) { ASSERT(HDR_HAS_RABD(hdr)); size = HDR_GET_PSIZE(hdr); hdr_abd = hdr->b_crypt_hdr.b_rabd; zio_flags |= ZIO_FLAG_RAW; } else { ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); size = arc_hdr_size(hdr); hdr_abd = hdr->b_l1hdr.b_pabd; if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { zio_flags |= ZIO_FLAG_RAW_COMPRESS; } /* * For authenticated bp's, we do not ask the ZIO layer * to authenticate them since this will cause the entire * IO to fail if the key isn't loaded. Instead, we * defer authentication until arc_buf_fill(), which will * verify the data when the key is available. */ if (BP_IS_AUTHENTICATED(bp)) zio_flags |= ZIO_FLAG_RAW_ENCRYPT; } if (BP_IS_AUTHENTICATED(bp)) arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); if (BP_GET_LEVEL(bp) > 0) arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); acb->acb_done = done; acb->acb_private = private; acb->acb_compressed = compressed_read; acb->acb_encrypted = encrypted_read; acb->acb_noauth = noauth_read; acb->acb_zb = *zb; ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); hdr->b_l1hdr.b_acb = acb; if (HDR_HAS_L2HDR(hdr) && (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { devw = hdr->b_l2hdr.b_dev->l2ad_writing; addr = hdr->b_l2hdr.b_daddr; /* * Lock out L2ARC device removal. */ if (vdev_is_dead(vd) || !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) vd = NULL; } /* * We count both async reads and scrub IOs as asynchronous so * that both can be upgraded in the event of a cache hit while * the read IO is still in-flight. */ if (priority == ZIO_PRIORITY_ASYNC_READ || priority == ZIO_PRIORITY_SCRUB) arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); else arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); /* * At this point, we have a level 1 cache miss or a blkptr * with embedded data. Try again in L2ARC if possible. */ ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); /* * Skip ARC stat bump for block pointers with embedded * data. The data are read from the blkptr itself via * decode_embedded_bp_compressed(). */ if (!embedded_bp) { DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, uint64_t, lsize, zbookmark_phys_t *, zb); ARCSTAT_BUMP(arcstat_misses); ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, misses); zfs_racct_read(size, 1); } /* Check if the spa even has l2 configured */ const boolean_t spa_has_l2 = l2arc_ndev != 0 && spa->spa_l2cache.sav_count > 0; if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { /* * Read from the L2ARC if the following are true: * 1. The L2ARC vdev was previously cached. * 2. This buffer still has L2ARC metadata. * 3. This buffer isn't currently writing to the L2ARC. * 4. The L2ARC entry wasn't evicted, which may * also have invalidated the vdev. * 5. This isn't prefetch or l2arc_noprefetch is 0. */ if (HDR_HAS_L2HDR(hdr) && !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && !(l2arc_noprefetch && (*arc_flags & ARC_FLAG_PREFETCH))) { l2arc_read_callback_t *cb; abd_t *abd; uint64_t asize; DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_hits); hdr->b_l2hdr.b_hits++; cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); cb->l2rcb_hdr = hdr; cb->l2rcb_bp = *bp; cb->l2rcb_zb = *zb; cb->l2rcb_flags = zio_flags; /* * When Compressed ARC is disabled, but the * L2ARC block is compressed, arc_hdr_size() * will have returned LSIZE rather than PSIZE. */ if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr) && HDR_GET_PSIZE(hdr) != 0) { size = HDR_GET_PSIZE(hdr); } asize = vdev_psize_to_asize(vd, size); if (asize != size) { abd = abd_alloc_for_io(asize, HDR_ISTYPE_METADATA(hdr)); cb->l2rcb_abd = abd; } else { abd = hdr_abd; } ASSERT(addr >= VDEV_LABEL_START_SIZE && addr + asize <= vd->vdev_psize - VDEV_LABEL_END_SIZE); /* * l2arc read. The SCL_L2ARC lock will be * released by l2arc_read_done(). * Issue a null zio if the underlying buffer * was squashed to zero size by compression. */ ASSERT3U(arc_hdr_get_compress(hdr), !=, ZIO_COMPRESS_EMPTY); rzio = zio_read_phys(pio, vd, addr, asize, abd, ZIO_CHECKSUM_OFF, l2arc_read_done, cb, priority, - zio_flags | ZIO_FLAG_DONT_CACHE | - ZIO_FLAG_CANFAIL | + zio_flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE); acb->acb_zio_head = rzio; if (hash_lock != NULL) mutex_exit(hash_lock); DTRACE_PROBE2(l2arc__read, vdev_t *, vd, zio_t *, rzio); ARCSTAT_INCR(arcstat_l2_read_bytes, HDR_GET_PSIZE(hdr)); if (*arc_flags & ARC_FLAG_NOWAIT) { zio_nowait(rzio); goto out; } ASSERT(*arc_flags & ARC_FLAG_WAIT); if (zio_wait(rzio) == 0) goto out; /* l2arc read error; goto zio_read() */ if (hash_lock != NULL) mutex_enter(hash_lock); } else { DTRACE_PROBE1(l2arc__miss, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_misses); if (HDR_L2_WRITING(hdr)) ARCSTAT_BUMP(arcstat_l2_rw_clash); spa_config_exit(spa, SCL_L2ARC, vd); } } else { if (vd != NULL) spa_config_exit(spa, SCL_L2ARC, vd); /* * Only a spa with l2 should contribute to l2 * miss stats. (Including the case of having a * faulted cache device - that's also a miss.) */ if (spa_has_l2) { /* * Skip ARC stat bump for block pointers with * embedded data. The data are read from the * blkptr itself via * decode_embedded_bp_compressed(). */ if (!embedded_bp) { DTRACE_PROBE1(l2arc__miss, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_misses); } } } rzio = zio_read(pio, spa, bp, hdr_abd, size, arc_read_done, hdr, priority, zio_flags, zb); acb->acb_zio_head = rzio; if (hash_lock != NULL) mutex_exit(hash_lock); if (*arc_flags & ARC_FLAG_WAIT) { rc = zio_wait(rzio); goto out; } ASSERT(*arc_flags & ARC_FLAG_NOWAIT); zio_nowait(rzio); } out: /* embedded bps don't actually go to disk */ if (!embedded_bp) spa_read_history_add(spa, zb, *arc_flags); spl_fstrans_unmark(cookie); return (rc); done: if (done) done(NULL, zb, bp, buf, private); if (pio && rc != 0) { zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags); zio->io_error = rc; zio_nowait(zio); } goto out; } arc_prune_t * arc_add_prune_callback(arc_prune_func_t *func, void *private) { arc_prune_t *p; p = kmem_alloc(sizeof (*p), KM_SLEEP); p->p_pfunc = func; p->p_private = private; list_link_init(&p->p_node); zfs_refcount_create(&p->p_refcnt); mutex_enter(&arc_prune_mtx); zfs_refcount_add(&p->p_refcnt, &arc_prune_list); list_insert_head(&arc_prune_list, p); mutex_exit(&arc_prune_mtx); return (p); } void arc_remove_prune_callback(arc_prune_t *p) { boolean_t wait = B_FALSE; mutex_enter(&arc_prune_mtx); list_remove(&arc_prune_list, p); if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) wait = B_TRUE; mutex_exit(&arc_prune_mtx); /* wait for arc_prune_task to finish */ if (wait) taskq_wait_outstanding(arc_prune_taskq, 0); ASSERT0(zfs_refcount_count(&p->p_refcnt)); zfs_refcount_destroy(&p->p_refcnt); kmem_free(p, sizeof (*p)); } /* * Notify the arc that a block was freed, and thus will never be used again. */ void arc_freed(spa_t *spa, const blkptr_t *bp) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock; uint64_t guid = spa_load_guid(spa); ASSERT(!BP_IS_EMBEDDED(bp)); hdr = buf_hash_find(guid, bp, &hash_lock); if (hdr == NULL) return; /* * We might be trying to free a block that is still doing I/O * (i.e. prefetch) or has some other reference (i.e. a dedup-ed, * dmu_sync-ed block). A block may also have a reference if it is * part of a dedup-ed, dmu_synced write. The dmu_sync() function would * have written the new block to its final resting place on disk but * without the dedup flag set. This would have left the hdr in the MRU * state and discoverable. When the txg finally syncs it detects that * the block was overridden in open context and issues an override I/O. * Since this is a dedup block, the override I/O will determine if the * block is already in the DDT. If so, then it will replace the io_bp * with the bp from the DDT and allow the I/O to finish. When the I/O * reaches the done callback, dbuf_write_override_done, it will * check to see if the io_bp and io_bp_override are identical. * If they are not, then it indicates that the bp was replaced with * the bp in the DDT and the override bp is freed. This allows * us to arrive here with a reference on a block that is being * freed. So if we have an I/O in progress, or a reference to * this hdr, then we don't destroy the hdr. */ if (!HDR_HAS_L1HDR(hdr) || zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { arc_change_state(arc_anon, hdr); arc_hdr_destroy(hdr); mutex_exit(hash_lock); } else { mutex_exit(hash_lock); } } /* * Release this buffer from the cache, making it an anonymous buffer. This * must be done after a read and prior to modifying the buffer contents. * If the buffer has more than one reference, we must make * a new hdr for the buffer. */ void arc_release(arc_buf_t *buf, const void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; /* * It would be nice to assert that if its DMU metadata (level > * 0 || it's the dnode file), then it must be syncing context. * But we don't know that information at this level. */ ASSERT(HDR_HAS_L1HDR(hdr)); /* * We don't grab the hash lock prior to this check, because if * the buffer's header is in the arc_anon state, it won't be * linked into the hash table. */ if (hdr->b_l1hdr.b_state == arc_anon) { ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT(!HDR_IN_HASH_TABLE(hdr)); ASSERT(!HDR_HAS_L2HDR(hdr)); ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); hdr->b_l1hdr.b_arc_access = 0; /* * If the buf is being overridden then it may already * have a hdr that is not empty. */ buf_discard_identity(hdr); arc_buf_thaw(buf); return; } kmutex_t *hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); /* * This assignment is only valid as long as the hash_lock is * held, we must be careful not to reference state or the * b_state field after dropping the lock. */ arc_state_t *state = hdr->b_l1hdr.b_state; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); ASSERT3P(state, !=, arc_anon); /* this buffer is not on any list */ ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); if (HDR_HAS_L2HDR(hdr)) { mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); /* * We have to recheck this conditional again now that * we're holding the l2ad_mtx to prevent a race with * another thread which might be concurrently calling * l2arc_evict(). In that case, l2arc_evict() might have * destroyed the header's L2 portion as we were waiting * to acquire the l2ad_mtx. */ if (HDR_HAS_L2HDR(hdr)) arc_hdr_l2hdr_destroy(hdr); mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); } /* * Do we have more than one buf? */ if (hdr->b_l1hdr.b_bufcnt > 1) { arc_buf_hdr_t *nhdr; uint64_t spa = hdr->b_spa; uint64_t psize = HDR_GET_PSIZE(hdr); uint64_t lsize = HDR_GET_LSIZE(hdr); boolean_t protected = HDR_PROTECTED(hdr); enum zio_compress compress = arc_hdr_get_compress(hdr); arc_buf_contents_t type = arc_buf_type(hdr); VERIFY3U(hdr->b_type, ==, type); ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); VERIFY3S(remove_reference(hdr, tag), >, 0); if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); ASSERT(ARC_BUF_LAST(buf)); } /* * Pull the data off of this hdr and attach it to * a new anonymous hdr. Also find the last buffer * in the hdr's buffer list. */ arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); ASSERT3P(lastbuf, !=, NULL); /* * If the current arc_buf_t and the hdr are sharing their data * buffer, then we must stop sharing that block. */ if (arc_buf_is_shared(buf)) { ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); VERIFY(!arc_buf_is_shared(lastbuf)); /* * First, sever the block sharing relationship between * buf and the arc_buf_hdr_t. */ arc_unshare_buf(hdr, buf); /* * Now we need to recreate the hdr's b_pabd. Since we * have lastbuf handy, we try to share with it, but if * we can't then we allocate a new b_pabd and copy the * data from buf into it. */ if (arc_can_share(hdr, lastbuf)) { arc_share_buf(hdr, lastbuf); } else { arc_hdr_alloc_abd(hdr, 0); abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, psize); } VERIFY3P(lastbuf->b_data, !=, NULL); } else if (HDR_SHARED_DATA(hdr)) { /* * Uncompressed shared buffers are always at the end * of the list. Compressed buffers don't have the * same requirements. This makes it hard to * simply assert that the lastbuf is shared so * we rely on the hdr's compression flags to determine * if we have a compressed, shared buffer. */ ASSERT(arc_buf_is_shared(lastbuf) || arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); ASSERT(!ARC_BUF_SHARED(buf)); } ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); ASSERT3P(state, !=, arc_l2c_only); (void) zfs_refcount_remove_many(&state->arcs_size[type], arc_buf_size(buf), buf); if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { ASSERT3P(state, !=, arc_l2c_only); (void) zfs_refcount_remove_many( &state->arcs_esize[type], arc_buf_size(buf), buf); } hdr->b_l1hdr.b_bufcnt -= 1; if (ARC_BUF_ENCRYPTED(buf)) hdr->b_crypt_hdr.b_ebufcnt -= 1; arc_cksum_verify(buf); arc_buf_unwatch(buf); /* if this is the last uncompressed buf free the checksum */ if (!arc_hdr_has_uncompressed_buf(hdr)) arc_cksum_free(hdr); mutex_exit(hash_lock); nhdr = arc_hdr_alloc(spa, psize, lsize, protected, compress, hdr->b_complevel, type); ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); ASSERT0(nhdr->b_l1hdr.b_bufcnt); ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); VERIFY3U(nhdr->b_type, ==, type); ASSERT(!HDR_SHARED_DATA(nhdr)); nhdr->b_l1hdr.b_buf = buf; nhdr->b_l1hdr.b_bufcnt = 1; if (ARC_BUF_ENCRYPTED(buf)) nhdr->b_crypt_hdr.b_ebufcnt = 1; (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); buf->b_hdr = nhdr; (void) zfs_refcount_add_many(&arc_anon->arcs_size[type], arc_buf_size(buf), buf); } else { ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); /* protected by hash lock, or hdr is on arc_anon */ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); hdr->b_l1hdr.b_mru_hits = 0; hdr->b_l1hdr.b_mru_ghost_hits = 0; hdr->b_l1hdr.b_mfu_hits = 0; hdr->b_l1hdr.b_mfu_ghost_hits = 0; arc_change_state(arc_anon, hdr); hdr->b_l1hdr.b_arc_access = 0; mutex_exit(hash_lock); buf_discard_identity(hdr); arc_buf_thaw(buf); } } int arc_released(arc_buf_t *buf) { return (buf->b_data != NULL && buf->b_hdr->b_l1hdr.b_state == arc_anon); } #ifdef ZFS_DEBUG int arc_referenced(arc_buf_t *buf) { return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); } #endif static void arc_write_ready(zio_t *zio) { arc_write_callback_t *callback = zio->io_private; arc_buf_t *buf = callback->awcb_buf; arc_buf_hdr_t *hdr = buf->b_hdr; blkptr_t *bp = zio->io_bp; uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); fstrans_cookie_t cookie = spl_fstrans_mark(); ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); ASSERT(hdr->b_l1hdr.b_bufcnt > 0); /* * If we're reexecuting this zio because the pool suspended, then * cleanup any state that was previously set the first time the * callback was invoked. */ if (zio->io_flags & ZIO_FLAG_REEXECUTED) { arc_cksum_free(hdr); arc_buf_unwatch(buf); if (hdr->b_l1hdr.b_pabd != NULL) { if (arc_buf_is_shared(buf)) { arc_unshare_buf(hdr, buf); } else { arc_hdr_free_abd(hdr, B_FALSE); } } if (HDR_HAS_RABD(hdr)) arc_hdr_free_abd(hdr, B_TRUE); } ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); ASSERT(!HDR_HAS_RABD(hdr)); ASSERT(!HDR_SHARED_DATA(hdr)); ASSERT(!arc_buf_is_shared(buf)); callback->awcb_ready(zio, buf, callback->awcb_private); if (HDR_IO_IN_PROGRESS(hdr)) { ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); } else { arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */ } if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); if (BP_IS_PROTECTED(bp)) { /* ZIL blocks are written through zio_rewrite */ ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); ASSERT(HDR_PROTECTED(hdr)); if (BP_SHOULD_BYTESWAP(bp)) { if (BP_GET_LEVEL(bp) > 0) { hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; } else { hdr->b_l1hdr.b_byteswap = DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); } } else { hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; } hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv); zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); } /* * If this block was written for raw encryption but the zio layer * ended up only authenticating it, adjust the buffer flags now. */ if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; } /* this must be done after the buffer flags are adjusted */ arc_cksum_compute(buf); enum zio_compress compress; if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { compress = ZIO_COMPRESS_OFF; } else { ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); compress = BP_GET_COMPRESS(bp); } HDR_SET_PSIZE(hdr, psize); arc_hdr_set_compress(hdr, compress); hdr->b_complevel = zio->io_prop.zp_complevel; if (zio->io_error != 0 || psize == 0) goto out; /* * Fill the hdr with data. If the buffer is encrypted we have no choice * but to copy the data into b_radb. If the hdr is compressed, the data * we want is available from the zio, otherwise we can take it from * the buf. * * We might be able to share the buf's data with the hdr here. However, * doing so would cause the ARC to be full of linear ABDs if we write a * lot of shareable data. As a compromise, we check whether scattered * ABDs are allowed, and assume that if they are then the user wants * the ARC to be primarily filled with them regardless of the data being * written. Therefore, if they're allowed then we allocate one and copy * the data into it; otherwise, we share the data directly if we can. */ if (ARC_BUF_ENCRYPTED(buf)) { ASSERT3U(psize, >, 0); ASSERT(ARC_BUF_COMPRESSED(buf)); arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE); abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); } else if (!(HDR_UNCACHED(hdr) || abd_size_alloc_linear(arc_buf_size(buf))) || !arc_can_share(hdr, buf)) { /* * Ideally, we would always copy the io_abd into b_pabd, but the * user may have disabled compressed ARC, thus we must check the * hdr's compression setting rather than the io_bp's. */ if (BP_IS_ENCRYPTED(bp)) { ASSERT3U(psize, >, 0); arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE); abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && !ARC_BUF_COMPRESSED(buf)) { ASSERT3U(psize, >, 0); arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); } else { ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, arc_buf_size(buf)); } } else { ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); arc_share_buf(hdr, buf); } out: arc_hdr_verify(hdr, bp); spl_fstrans_unmark(cookie); } static void arc_write_children_ready(zio_t *zio) { arc_write_callback_t *callback = zio->io_private; arc_buf_t *buf = callback->awcb_buf; callback->awcb_children_ready(zio, buf, callback->awcb_private); } /* * The SPA calls this callback for each physical write that happens on behalf * of a logical write. See the comment in dbuf_write_physdone() for details. */ static void arc_write_physdone(zio_t *zio) { arc_write_callback_t *cb = zio->io_private; if (cb->awcb_physdone != NULL) cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); } static void arc_write_done(zio_t *zio) { arc_write_callback_t *callback = zio->io_private; arc_buf_t *buf = callback->awcb_buf; arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); if (zio->io_error == 0) { arc_hdr_verify(hdr, zio->io_bp); if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { buf_discard_identity(hdr); } else { hdr->b_dva = *BP_IDENTITY(zio->io_bp); hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); } } else { ASSERT(HDR_EMPTY(hdr)); } /* * If the block to be written was all-zero or compressed enough to be * embedded in the BP, no write was performed so there will be no * dva/birth/checksum. The buffer must therefore remain anonymous * (and uncached). */ if (!HDR_EMPTY(hdr)) { arc_buf_hdr_t *exists; kmutex_t *hash_lock; ASSERT3U(zio->io_error, ==, 0); arc_cksum_verify(buf); exists = buf_hash_insert(hdr, &hash_lock); if (exists != NULL) { /* * This can only happen if we overwrite for * sync-to-convergence, because we remove * buffers from the hash table when we arc_free(). */ if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) panic("bad overwrite, hdr=%p exists=%p", (void *)hdr, (void *)exists); ASSERT(zfs_refcount_is_zero( &exists->b_l1hdr.b_refcnt)); arc_change_state(arc_anon, exists); arc_hdr_destroy(exists); mutex_exit(hash_lock); exists = buf_hash_insert(hdr, &hash_lock); ASSERT3P(exists, ==, NULL); } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { /* nopwrite */ ASSERT(zio->io_prop.zp_nopwrite); if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) panic("bad nopwrite, hdr=%p exists=%p", (void *)hdr, (void *)exists); } else { /* Dedup */ ASSERT(hdr->b_l1hdr.b_bufcnt == 1); ASSERT(hdr->b_l1hdr.b_state == arc_anon); ASSERT(BP_GET_DEDUP(zio->io_bp)); ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); } } arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); VERIFY3S(remove_reference(hdr, hdr), >, 0); /* if it's not anon, we are doing a scrub */ if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) arc_access(hdr, 0, B_FALSE); mutex_exit(hash_lock); } else { arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); VERIFY3S(remove_reference(hdr, hdr), >, 0); } callback->awcb_done(zio, buf, callback->awcb_private); abd_free(zio->io_abd); kmem_free(callback, sizeof (arc_write_callback_t)); } zio_t * arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready, arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, arc_write_done_func_t *done, void *private, zio_priority_t priority, int zio_flags, const zbookmark_phys_t *zb) { arc_buf_hdr_t *hdr = buf->b_hdr; arc_write_callback_t *callback; zio_t *zio; zio_prop_t localprop = *zp; ASSERT3P(ready, !=, NULL); ASSERT3P(done, !=, NULL); ASSERT(!HDR_IO_ERROR(hdr)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); if (uncached) arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); else if (l2arc) arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); if (ARC_BUF_ENCRYPTED(buf)) { ASSERT(ARC_BUF_COMPRESSED(buf)); localprop.zp_encrypt = B_TRUE; localprop.zp_compress = HDR_GET_COMPRESS(hdr); localprop.zp_complevel = hdr->b_complevel; localprop.zp_byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { localprop.zp_nopwrite = B_FALSE; localprop.zp_copies = MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); } zio_flags |= ZIO_FLAG_RAW; } else if (ARC_BUF_COMPRESSED(buf)) { ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); localprop.zp_compress = HDR_GET_COMPRESS(hdr); localprop.zp_complevel = hdr->b_complevel; zio_flags |= ZIO_FLAG_RAW_COMPRESS; } callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); callback->awcb_ready = ready; callback->awcb_children_ready = children_ready; callback->awcb_physdone = physdone; callback->awcb_done = done; callback->awcb_private = private; callback->awcb_buf = buf; /* * The hdr's b_pabd is now stale, free it now. A new data block * will be allocated when the zio pipeline calls arc_write_ready(). */ if (hdr->b_l1hdr.b_pabd != NULL) { /* * If the buf is currently sharing the data block with * the hdr then we need to break that relationship here. * The hdr will remain with a NULL data pointer and the * buf will take sole ownership of the block. */ if (arc_buf_is_shared(buf)) { arc_unshare_buf(hdr, buf); } else { arc_hdr_free_abd(hdr, B_FALSE); } VERIFY3P(buf->b_data, !=, NULL); } if (HDR_HAS_RABD(hdr)) arc_hdr_free_abd(hdr, B_TRUE); if (!(zio_flags & ZIO_FLAG_RAW)) arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); ASSERT(!arc_buf_is_shared(buf)); ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); zio = zio_write(pio, spa, txg, bp, abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, (children_ready != NULL) ? arc_write_children_ready : NULL, arc_write_physdone, arc_write_done, callback, priority, zio_flags, zb); return (zio); } void arc_tempreserve_clear(uint64_t reserve) { atomic_add_64(&arc_tempreserve, -reserve); ASSERT((int64_t)arc_tempreserve >= 0); } int arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) { int error; uint64_t anon_size; if (!arc_no_grow && reserve > arc_c/4 && reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) arc_c = MIN(arc_c_max, reserve * 4); /* * Throttle when the calculated memory footprint for the TXG * exceeds the target ARC size. */ if (reserve > arc_c) { DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); return (SET_ERROR(ERESTART)); } /* * Don't count loaned bufs as in flight dirty data to prevent long * network delays from blocking transactions that are ready to be * assigned to a txg. */ /* assert that it has not wrapped around */ ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); anon_size = MAX((int64_t) (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) + zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) - arc_loaned_bytes), 0); /* * Writes will, almost always, require additional memory allocations * in order to compress/encrypt/etc the data. We therefore need to * make sure that there is sufficient available memory for this. */ error = arc_memory_throttle(spa, reserve, txg); if (error != 0) return (error); /* * Throttle writes when the amount of dirty data in the cache * gets too large. We try to keep the cache less than half full * of dirty blocks so that our sync times don't grow too large. * * In the case of one pool being built on another pool, we want * to make sure we don't end up throttling the lower (backing) * pool when the upper pool is the majority contributor to dirty * data. To insure we make forward progress during throttling, we * also check the current pool's net dirty data and only throttle * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty * data in the cache. * * Note: if two requests come in concurrently, we might let them * both succeed, when one of them should fail. Not a huge deal. */ uint64_t total_dirty = reserve + arc_tempreserve + anon_size; uint64_t spa_dirty_anon = spa_dirty_data(spa); uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { #ifdef ZFS_DEBUG uint64_t meta_esize = zfs_refcount_count( &arc_anon->arcs_esize[ARC_BUFC_METADATA]); uint64_t data_esize = zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", (u_longlong_t)arc_tempreserve >> 10, (u_longlong_t)meta_esize >> 10, (u_longlong_t)data_esize >> 10, (u_longlong_t)reserve >> 10, (u_longlong_t)rarc_c >> 10); #endif DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); return (SET_ERROR(ERESTART)); } atomic_add_64(&arc_tempreserve, reserve); return (0); } static void arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, kstat_named_t *data, kstat_named_t *metadata, kstat_named_t *evict_data, kstat_named_t *evict_metadata) { data->value.ui64 = zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]); metadata->value.ui64 = zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]); size->value.ui64 = data->value.ui64 + metadata->value.ui64; evict_data->value.ui64 = zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); evict_metadata->value.ui64 = zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); } static int arc_kstat_update(kstat_t *ksp, int rw) { arc_stats_t *as = ksp->ks_data; if (rw == KSTAT_WRITE) return (SET_ERROR(EACCES)); as->arcstat_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_hits); as->arcstat_iohits.value.ui64 = wmsum_value(&arc_sums.arcstat_iohits); as->arcstat_misses.value.ui64 = wmsum_value(&arc_sums.arcstat_misses); as->arcstat_demand_data_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_demand_data_hits); as->arcstat_demand_data_iohits.value.ui64 = wmsum_value(&arc_sums.arcstat_demand_data_iohits); as->arcstat_demand_data_misses.value.ui64 = wmsum_value(&arc_sums.arcstat_demand_data_misses); as->arcstat_demand_metadata_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_demand_metadata_hits); as->arcstat_demand_metadata_iohits.value.ui64 = wmsum_value(&arc_sums.arcstat_demand_metadata_iohits); as->arcstat_demand_metadata_misses.value.ui64 = wmsum_value(&arc_sums.arcstat_demand_metadata_misses); as->arcstat_prefetch_data_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_prefetch_data_hits); as->arcstat_prefetch_data_iohits.value.ui64 = wmsum_value(&arc_sums.arcstat_prefetch_data_iohits); as->arcstat_prefetch_data_misses.value.ui64 = wmsum_value(&arc_sums.arcstat_prefetch_data_misses); as->arcstat_prefetch_metadata_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); as->arcstat_prefetch_metadata_iohits.value.ui64 = wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits); as->arcstat_prefetch_metadata_misses.value.ui64 = wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); as->arcstat_mru_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_mru_hits); as->arcstat_mru_ghost_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_mru_ghost_hits); as->arcstat_mfu_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_mfu_hits); as->arcstat_mfu_ghost_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); as->arcstat_uncached_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_uncached_hits); as->arcstat_deleted.value.ui64 = wmsum_value(&arc_sums.arcstat_deleted); as->arcstat_mutex_miss.value.ui64 = wmsum_value(&arc_sums.arcstat_mutex_miss); as->arcstat_access_skip.value.ui64 = wmsum_value(&arc_sums.arcstat_access_skip); as->arcstat_evict_skip.value.ui64 = wmsum_value(&arc_sums.arcstat_evict_skip); as->arcstat_evict_not_enough.value.ui64 = wmsum_value(&arc_sums.arcstat_evict_not_enough); as->arcstat_evict_l2_cached.value.ui64 = wmsum_value(&arc_sums.arcstat_evict_l2_cached); as->arcstat_evict_l2_eligible.value.ui64 = wmsum_value(&arc_sums.arcstat_evict_l2_eligible); as->arcstat_evict_l2_eligible_mfu.value.ui64 = wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); as->arcstat_evict_l2_eligible_mru.value.ui64 = wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); as->arcstat_evict_l2_ineligible.value.ui64 = wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); as->arcstat_evict_l2_skip.value.ui64 = wmsum_value(&arc_sums.arcstat_evict_l2_skip); as->arcstat_hash_collisions.value.ui64 = wmsum_value(&arc_sums.arcstat_hash_collisions); as->arcstat_hash_chains.value.ui64 = wmsum_value(&arc_sums.arcstat_hash_chains); as->arcstat_size.value.ui64 = aggsum_value(&arc_sums.arcstat_size); as->arcstat_compressed_size.value.ui64 = wmsum_value(&arc_sums.arcstat_compressed_size); as->arcstat_uncompressed_size.value.ui64 = wmsum_value(&arc_sums.arcstat_uncompressed_size); as->arcstat_overhead_size.value.ui64 = wmsum_value(&arc_sums.arcstat_overhead_size); as->arcstat_hdr_size.value.ui64 = wmsum_value(&arc_sums.arcstat_hdr_size); as->arcstat_data_size.value.ui64 = wmsum_value(&arc_sums.arcstat_data_size); as->arcstat_metadata_size.value.ui64 = wmsum_value(&arc_sums.arcstat_metadata_size); as->arcstat_dbuf_size.value.ui64 = wmsum_value(&arc_sums.arcstat_dbuf_size); #if defined(COMPAT_FREEBSD11) as->arcstat_other_size.value.ui64 = wmsum_value(&arc_sums.arcstat_bonus_size) + wmsum_value(&arc_sums.arcstat_dnode_size) + wmsum_value(&arc_sums.arcstat_dbuf_size); #endif arc_kstat_update_state(arc_anon, &as->arcstat_anon_size, &as->arcstat_anon_data, &as->arcstat_anon_metadata, &as->arcstat_anon_evictable_data, &as->arcstat_anon_evictable_metadata); arc_kstat_update_state(arc_mru, &as->arcstat_mru_size, &as->arcstat_mru_data, &as->arcstat_mru_metadata, &as->arcstat_mru_evictable_data, &as->arcstat_mru_evictable_metadata); arc_kstat_update_state(arc_mru_ghost, &as->arcstat_mru_ghost_size, &as->arcstat_mru_ghost_data, &as->arcstat_mru_ghost_metadata, &as->arcstat_mru_ghost_evictable_data, &as->arcstat_mru_ghost_evictable_metadata); arc_kstat_update_state(arc_mfu, &as->arcstat_mfu_size, &as->arcstat_mfu_data, &as->arcstat_mfu_metadata, &as->arcstat_mfu_evictable_data, &as->arcstat_mfu_evictable_metadata); arc_kstat_update_state(arc_mfu_ghost, &as->arcstat_mfu_ghost_size, &as->arcstat_mfu_ghost_data, &as->arcstat_mfu_ghost_metadata, &as->arcstat_mfu_ghost_evictable_data, &as->arcstat_mfu_ghost_evictable_metadata); arc_kstat_update_state(arc_uncached, &as->arcstat_uncached_size, &as->arcstat_uncached_data, &as->arcstat_uncached_metadata, &as->arcstat_uncached_evictable_data, &as->arcstat_uncached_evictable_metadata); as->arcstat_dnode_size.value.ui64 = wmsum_value(&arc_sums.arcstat_dnode_size); as->arcstat_bonus_size.value.ui64 = wmsum_value(&arc_sums.arcstat_bonus_size); as->arcstat_l2_hits.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_hits); as->arcstat_l2_misses.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_misses); as->arcstat_l2_prefetch_asize.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); as->arcstat_l2_mru_asize.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_mru_asize); as->arcstat_l2_mfu_asize.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_mfu_asize); as->arcstat_l2_bufc_data_asize.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); as->arcstat_l2_bufc_metadata_asize.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); as->arcstat_l2_feeds.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_feeds); as->arcstat_l2_rw_clash.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rw_clash); as->arcstat_l2_read_bytes.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_read_bytes); as->arcstat_l2_write_bytes.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_write_bytes); as->arcstat_l2_writes_sent.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_writes_sent); as->arcstat_l2_writes_done.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_writes_done); as->arcstat_l2_writes_error.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_writes_error); as->arcstat_l2_writes_lock_retry.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); as->arcstat_l2_evict_lock_retry.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); as->arcstat_l2_evict_reading.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_evict_reading); as->arcstat_l2_evict_l1cached.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); as->arcstat_l2_free_on_write.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_free_on_write); as->arcstat_l2_abort_lowmem.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); as->arcstat_l2_cksum_bad.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_cksum_bad); as->arcstat_l2_io_error.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_io_error); as->arcstat_l2_lsize.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_lsize); as->arcstat_l2_psize.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_psize); as->arcstat_l2_hdr_size.value.ui64 = aggsum_value(&arc_sums.arcstat_l2_hdr_size); as->arcstat_l2_log_blk_writes.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); as->arcstat_l2_log_blk_asize.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); as->arcstat_l2_log_blk_count.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_log_blk_count); as->arcstat_l2_rebuild_success.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_success); as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); as->arcstat_l2_rebuild_size.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_size); as->arcstat_l2_rebuild_asize.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); as->arcstat_l2_rebuild_bufs.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); as->arcstat_l2_rebuild_bufs_precached.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); as->arcstat_l2_rebuild_log_blks.value.ui64 = wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); as->arcstat_memory_throttle_count.value.ui64 = wmsum_value(&arc_sums.arcstat_memory_throttle_count); as->arcstat_memory_direct_count.value.ui64 = wmsum_value(&arc_sums.arcstat_memory_direct_count); as->arcstat_memory_indirect_count.value.ui64 = wmsum_value(&arc_sums.arcstat_memory_indirect_count); as->arcstat_memory_all_bytes.value.ui64 = arc_all_memory(); as->arcstat_memory_free_bytes.value.ui64 = arc_free_memory(); as->arcstat_memory_available_bytes.value.i64 = arc_available_memory(); as->arcstat_prune.value.ui64 = wmsum_value(&arc_sums.arcstat_prune); as->arcstat_meta_used.value.ui64 = wmsum_value(&arc_sums.arcstat_meta_used); as->arcstat_async_upgrade_sync.value.ui64 = wmsum_value(&arc_sums.arcstat_async_upgrade_sync); as->arcstat_predictive_prefetch.value.ui64 = wmsum_value(&arc_sums.arcstat_predictive_prefetch); as->arcstat_demand_hit_predictive_prefetch.value.ui64 = wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); as->arcstat_demand_iohit_predictive_prefetch.value.ui64 = wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch); as->arcstat_prescient_prefetch.value.ui64 = wmsum_value(&arc_sums.arcstat_prescient_prefetch); as->arcstat_demand_hit_prescient_prefetch.value.ui64 = wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); as->arcstat_demand_iohit_prescient_prefetch.value.ui64 = wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch); as->arcstat_raw_size.value.ui64 = wmsum_value(&arc_sums.arcstat_raw_size); as->arcstat_cached_only_in_progress.value.ui64 = wmsum_value(&arc_sums.arcstat_cached_only_in_progress); as->arcstat_abd_chunk_waste_size.value.ui64 = wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); return (0); } /* * This function *must* return indices evenly distributed between all * sublists of the multilist. This is needed due to how the ARC eviction * code is laid out; arc_evict_state() assumes ARC buffers are evenly * distributed between all sublists and uses this assumption when * deciding which sublist to evict from and how much to evict from it. */ static unsigned int arc_state_multilist_index_func(multilist_t *ml, void *obj) { arc_buf_hdr_t *hdr = obj; /* * We rely on b_dva to generate evenly distributed index * numbers using buf_hash below. So, as an added precaution, * let's make sure we never add empty buffers to the arc lists. */ ASSERT(!HDR_EMPTY(hdr)); /* * The assumption here, is the hash value for a given * arc_buf_hdr_t will remain constant throughout its lifetime * (i.e. its b_spa, b_dva, and b_birth fields don't change). * Thus, we don't need to store the header's sublist index * on insertion, as this index can be recalculated on removal. * * Also, the low order bits of the hash value are thought to be * distributed evenly. Otherwise, in the case that the multilist * has a power of two number of sublists, each sublists' usage * would not be evenly distributed. In this context full 64bit * division would be a waste of time, so limit it to 32 bits. */ return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % multilist_get_num_sublists(ml)); } static unsigned int arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) { panic("Header %p insert into arc_l2c_only %p", obj, ml); } #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ if ((do_warn) && (tuning) && ((tuning) != (value))) { \ cmn_err(CE_WARN, \ "ignoring tunable %s (using %llu instead)", \ (#tuning), (u_longlong_t)(value)); \ } \ } while (0) /* * Called during module initialization and periodically thereafter to * apply reasonable changes to the exposed performance tunings. Can also be * called explicitly by param_set_arc_*() functions when ARC tunables are * updated manually. Non-zero zfs_* values which differ from the currently set * values will be applied. */ void arc_tuning_update(boolean_t verbose) { uint64_t allmem = arc_all_memory(); /* Valid range: 32M - */ if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && (zfs_arc_min <= arc_c_max)) { arc_c_min = zfs_arc_min; arc_c = MAX(arc_c, arc_c_min); } WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); /* Valid range: 64M - */ if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && (zfs_arc_max > arc_c_min)) { arc_c_max = zfs_arc_max; arc_c = MIN(arc_c, arc_c_max); if (arc_dnode_limit > arc_c_max) arc_dnode_limit = arc_c_max; } WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); /* Valid range: 0 - */ arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100; WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose); /* Valid range: 1 - N */ if (zfs_arc_grow_retry) arc_grow_retry = zfs_arc_grow_retry; /* Valid range: 1 - N */ if (zfs_arc_shrink_shift) { arc_shrink_shift = zfs_arc_shrink_shift; arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); } /* Valid range: 1 - N ms */ if (zfs_arc_min_prefetch_ms) arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; /* Valid range: 1 - N ms */ if (zfs_arc_min_prescient_prefetch_ms) { arc_min_prescient_prefetch_ms = zfs_arc_min_prescient_prefetch_ms; } /* Valid range: 0 - 100 */ if (zfs_arc_lotsfree_percent <= 100) arc_lotsfree_percent = zfs_arc_lotsfree_percent; WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, verbose); /* Valid range: 0 - */ if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) arc_sys_free = MIN(zfs_arc_sys_free, allmem); WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); } static void arc_state_multilist_init(multilist_t *ml, multilist_sublist_index_func_t *index_func, int *maxcountp) { multilist_create(ml, sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func); *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml)); } static void arc_state_init(void) { int num_sublists = 0; arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA], arc_state_multilist_index_func, &num_sublists); arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA], arc_state_multilist_index_func, &num_sublists); arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], arc_state_multilist_index_func, &num_sublists); arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], arc_state_multilist_index_func, &num_sublists); arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA], arc_state_multilist_index_func, &num_sublists); arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA], arc_state_multilist_index_func, &num_sublists); arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], arc_state_multilist_index_func, &num_sublists); arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], arc_state_multilist_index_func, &num_sublists); arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA], arc_state_multilist_index_func, &num_sublists); arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA], arc_state_multilist_index_func, &num_sublists); /* * L2 headers should never be on the L2 state list since they don't * have L1 headers allocated. Special index function asserts that. */ arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], arc_state_l2c_multilist_index_func, &num_sublists); arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], arc_state_l2c_multilist_index_func, &num_sublists); /* * Keep track of the number of markers needed to reclaim buffers from * any ARC state. The markers will be pre-allocated so as to minimize * the number of memory allocations performed by the eviction thread. */ arc_state_evict_marker_count = num_sublists; zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]); zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]); zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]); zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]); zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0); wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0); wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0); wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0); wmsum_init(&arc_sums.arcstat_hits, 0); wmsum_init(&arc_sums.arcstat_iohits, 0); wmsum_init(&arc_sums.arcstat_misses, 0); wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0); wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0); wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0); wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0); wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); wmsum_init(&arc_sums.arcstat_mru_hits, 0); wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); wmsum_init(&arc_sums.arcstat_mfu_hits, 0); wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); wmsum_init(&arc_sums.arcstat_uncached_hits, 0); wmsum_init(&arc_sums.arcstat_deleted, 0); wmsum_init(&arc_sums.arcstat_mutex_miss, 0); wmsum_init(&arc_sums.arcstat_access_skip, 0); wmsum_init(&arc_sums.arcstat_evict_skip, 0); wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); wmsum_init(&arc_sums.arcstat_hash_collisions, 0); wmsum_init(&arc_sums.arcstat_hash_chains, 0); aggsum_init(&arc_sums.arcstat_size, 0); wmsum_init(&arc_sums.arcstat_compressed_size, 0); wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); wmsum_init(&arc_sums.arcstat_overhead_size, 0); wmsum_init(&arc_sums.arcstat_hdr_size, 0); wmsum_init(&arc_sums.arcstat_data_size, 0); wmsum_init(&arc_sums.arcstat_metadata_size, 0); wmsum_init(&arc_sums.arcstat_dbuf_size, 0); wmsum_init(&arc_sums.arcstat_dnode_size, 0); wmsum_init(&arc_sums.arcstat_bonus_size, 0); wmsum_init(&arc_sums.arcstat_l2_hits, 0); wmsum_init(&arc_sums.arcstat_l2_misses, 0); wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); wmsum_init(&arc_sums.arcstat_l2_feeds, 0); wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); wmsum_init(&arc_sums.arcstat_l2_io_error, 0); wmsum_init(&arc_sums.arcstat_l2_lsize, 0); wmsum_init(&arc_sums.arcstat_l2_psize, 0); aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); wmsum_init(&arc_sums.arcstat_prune, 0); wmsum_init(&arc_sums.arcstat_meta_used, 0); wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0); wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0); wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0); wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0); wmsum_init(&arc_sums.arcstat_raw_size, 0); wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); arc_anon->arcs_state = ARC_STATE_ANON; arc_mru->arcs_state = ARC_STATE_MRU; arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; arc_mfu->arcs_state = ARC_STATE_MFU; arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; arc_uncached->arcs_state = ARC_STATE_UNCACHED; } static void arc_state_fini(void) { zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]); zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]); multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]); wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); wmsum_fini(&arc_sums.arcstat_hits); wmsum_fini(&arc_sums.arcstat_iohits); wmsum_fini(&arc_sums.arcstat_misses); wmsum_fini(&arc_sums.arcstat_demand_data_hits); wmsum_fini(&arc_sums.arcstat_demand_data_iohits); wmsum_fini(&arc_sums.arcstat_demand_data_misses); wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits); wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits); wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits); wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); wmsum_fini(&arc_sums.arcstat_mru_hits); wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); wmsum_fini(&arc_sums.arcstat_mfu_hits); wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); wmsum_fini(&arc_sums.arcstat_uncached_hits); wmsum_fini(&arc_sums.arcstat_deleted); wmsum_fini(&arc_sums.arcstat_mutex_miss); wmsum_fini(&arc_sums.arcstat_access_skip); wmsum_fini(&arc_sums.arcstat_evict_skip); wmsum_fini(&arc_sums.arcstat_evict_not_enough); wmsum_fini(&arc_sums.arcstat_evict_l2_cached); wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); wmsum_fini(&arc_sums.arcstat_evict_l2_skip); wmsum_fini(&arc_sums.arcstat_hash_collisions); wmsum_fini(&arc_sums.arcstat_hash_chains); aggsum_fini(&arc_sums.arcstat_size); wmsum_fini(&arc_sums.arcstat_compressed_size); wmsum_fini(&arc_sums.arcstat_uncompressed_size); wmsum_fini(&arc_sums.arcstat_overhead_size); wmsum_fini(&arc_sums.arcstat_hdr_size); wmsum_fini(&arc_sums.arcstat_data_size); wmsum_fini(&arc_sums.arcstat_metadata_size); wmsum_fini(&arc_sums.arcstat_dbuf_size); wmsum_fini(&arc_sums.arcstat_dnode_size); wmsum_fini(&arc_sums.arcstat_bonus_size); wmsum_fini(&arc_sums.arcstat_l2_hits); wmsum_fini(&arc_sums.arcstat_l2_misses); wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); wmsum_fini(&arc_sums.arcstat_l2_mru_asize); wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); wmsum_fini(&arc_sums.arcstat_l2_feeds); wmsum_fini(&arc_sums.arcstat_l2_rw_clash); wmsum_fini(&arc_sums.arcstat_l2_read_bytes); wmsum_fini(&arc_sums.arcstat_l2_write_bytes); wmsum_fini(&arc_sums.arcstat_l2_writes_sent); wmsum_fini(&arc_sums.arcstat_l2_writes_done); wmsum_fini(&arc_sums.arcstat_l2_writes_error); wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); wmsum_fini(&arc_sums.arcstat_l2_evict_reading); wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); wmsum_fini(&arc_sums.arcstat_l2_free_on_write); wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); wmsum_fini(&arc_sums.arcstat_l2_io_error); wmsum_fini(&arc_sums.arcstat_l2_lsize); wmsum_fini(&arc_sums.arcstat_l2_psize); aggsum_fini(&arc_sums.arcstat_l2_hdr_size); wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); wmsum_fini(&arc_sums.arcstat_memory_throttle_count); wmsum_fini(&arc_sums.arcstat_memory_direct_count); wmsum_fini(&arc_sums.arcstat_memory_indirect_count); wmsum_fini(&arc_sums.arcstat_prune); wmsum_fini(&arc_sums.arcstat_meta_used); wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); wmsum_fini(&arc_sums.arcstat_predictive_prefetch); wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch); wmsum_fini(&arc_sums.arcstat_prescient_prefetch); wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch); wmsum_fini(&arc_sums.arcstat_raw_size); wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); } uint64_t arc_target_bytes(void) { return (arc_c); } void arc_set_limits(uint64_t allmem) { /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); /* How to set default max varies by platform. */ arc_c_max = arc_default_max(arc_c_min, allmem); } void arc_init(void) { uint64_t percent, allmem = arc_all_memory(); mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), offsetof(arc_evict_waiter_t, aew_node)); arc_min_prefetch_ms = 1000; arc_min_prescient_prefetch_ms = 6000; #if defined(_KERNEL) arc_lowmem_init(); #endif arc_set_limits(allmem); #ifdef _KERNEL /* * If zfs_arc_max is non-zero at init, meaning it was set in the kernel * environment before the module was loaded, don't block setting the * maximum because it is less than arc_c_min, instead, reset arc_c_min * to a lower value. * zfs_arc_min will be handled by arc_tuning_update(). */ if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && zfs_arc_max < allmem) { arc_c_max = zfs_arc_max; if (arc_c_min >= arc_c_max) { arc_c_min = MAX(zfs_arc_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); } } #else /* * In userland, there's only the memory pressure that we artificially * create (see arc_available_memory()). Don't let arc_c get too * small, because it can cause transactions to be larger than * arc_c, causing arc_tempreserve_space() to fail. */ arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); #endif arc_c = arc_c_min; /* * 32-bit fixed point fractions of metadata from total ARC size, * MRU data from all data and MRU metadata from all metadata. */ arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */ arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */ arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */ percent = MIN(zfs_arc_dnode_limit_percent, 100); arc_dnode_limit = arc_c_max * percent / 100; /* Apply user specified tunings */ arc_tuning_update(B_TRUE); /* if kmem_flags are set, lets try to use less memory */ if (kmem_debugging()) arc_c = arc_c / 2; if (arc_c < arc_c_min) arc_c = arc_c_min; arc_register_hotplug(); arc_state_init(); buf_init(); list_create(&arc_prune_list, sizeof (arc_prune_t), offsetof(arc_prune_t, p_node)); mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads, defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (arc_ksp != NULL) { arc_ksp->ks_data = &arc_stats; arc_ksp->ks_update = arc_kstat_update; kstat_install(arc_ksp); } arc_state_evict_markers = arc_state_alloc_markers(arc_state_evict_marker_count); arc_evict_zthr = zthr_create_timer("arc_evict", arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri); arc_reap_zthr = zthr_create_timer("arc_reap", arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); arc_warm = B_FALSE; /* * Calculate maximum amount of dirty data per pool. * * If it has been set by a module parameter, take that. * Otherwise, use a percentage of physical memory defined by * zfs_dirty_data_max_percent (default 10%) with a cap at * zfs_dirty_data_max_max (default 4G or 25% of physical memory). */ #ifdef __LP64__ if (zfs_dirty_data_max_max == 0) zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, allmem * zfs_dirty_data_max_max_percent / 100); #else if (zfs_dirty_data_max_max == 0) zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, allmem * zfs_dirty_data_max_max_percent / 100); #endif if (zfs_dirty_data_max == 0) { zfs_dirty_data_max = allmem * zfs_dirty_data_max_percent / 100; zfs_dirty_data_max = MIN(zfs_dirty_data_max, zfs_dirty_data_max_max); } if (zfs_wrlog_data_max == 0) { /* * dp_wrlog_total is reduced for each txg at the end of * spa_sync(). However, dp_dirty_total is reduced every time * a block is written out. Thus under normal operation, * dp_wrlog_total could grow 2 times as big as * zfs_dirty_data_max. */ zfs_wrlog_data_max = zfs_dirty_data_max * 2; } } void arc_fini(void) { arc_prune_t *p; #ifdef _KERNEL arc_lowmem_fini(); #endif /* _KERNEL */ /* Use B_TRUE to ensure *all* buffers are evicted */ arc_flush(NULL, B_TRUE); if (arc_ksp != NULL) { kstat_delete(arc_ksp); arc_ksp = NULL; } taskq_wait(arc_prune_taskq); taskq_destroy(arc_prune_taskq); mutex_enter(&arc_prune_mtx); while ((p = list_remove_head(&arc_prune_list)) != NULL) { zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); zfs_refcount_destroy(&p->p_refcnt); kmem_free(p, sizeof (*p)); } mutex_exit(&arc_prune_mtx); list_destroy(&arc_prune_list); mutex_destroy(&arc_prune_mtx); (void) zthr_cancel(arc_evict_zthr); (void) zthr_cancel(arc_reap_zthr); arc_state_free_markers(arc_state_evict_markers, arc_state_evict_marker_count); mutex_destroy(&arc_evict_lock); list_destroy(&arc_evict_waiters); /* * Free any buffers that were tagged for destruction. This needs * to occur before arc_state_fini() runs and destroys the aggsum * values which are updated when freeing scatter ABDs. */ l2arc_do_free_on_write(); /* * buf_fini() must proceed arc_state_fini() because buf_fin() may * trigger the release of kmem magazines, which can callback to * arc_space_return() which accesses aggsums freed in act_state_fini(). */ buf_fini(); arc_state_fini(); arc_unregister_hotplug(); /* * We destroy the zthrs after all the ARC state has been * torn down to avoid the case of them receiving any * wakeup() signals after they are destroyed. */ zthr_destroy(arc_evict_zthr); zthr_destroy(arc_reap_zthr); ASSERT0(arc_loaned_bytes); } /* * Level 2 ARC * * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. * It uses dedicated storage devices to hold cached data, which are populated * using large infrequent writes. The main role of this cache is to boost * the performance of random read workloads. The intended L2ARC devices * include short-stroked disks, solid state disks, and other media with * substantially faster read latency than disk. * * +-----------------------+ * | ARC | * +-----------------------+ * | ^ ^ * | | | * l2arc_feed_thread() arc_read() * | | | * | l2arc read | * V | | * +---------------+ | * | L2ARC | | * +---------------+ | * | ^ | * l2arc_write() | | * | | | * V | | * +-------+ +-------+ * | vdev | | vdev | * | cache | | cache | * +-------+ +-------+ * +=========+ .-----. * : L2ARC : |-_____-| * : devices : | Disks | * +=========+ `-_____-' * * Read requests are satisfied from the following sources, in order: * * 1) ARC * 2) vdev cache of L2ARC devices * 3) L2ARC devices * 4) vdev cache of disks * 5) disks * * Some L2ARC device types exhibit extremely slow write performance. * To accommodate for this there are some significant differences between * the L2ARC and traditional cache design: * * 1. There is no eviction path from the ARC to the L2ARC. Evictions from * the ARC behave as usual, freeing buffers and placing headers on ghost * lists. The ARC does not send buffers to the L2ARC during eviction as * this would add inflated write latencies for all ARC memory pressure. * * 2. The L2ARC attempts to cache data from the ARC before it is evicted. * It does this by periodically scanning buffers from the eviction-end of * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are * not already there. It scans until a headroom of buffers is satisfied, * which itself is a buffer for ARC eviction. If a compressible buffer is * found during scanning and selected for writing to an L2ARC device, we * temporarily boost scanning headroom during the next scan cycle to make * sure we adapt to compression effects (which might significantly reduce * the data volume we write to L2ARC). The thread that does this is * l2arc_feed_thread(), illustrated below; example sizes are included to * provide a better sense of ratio than this diagram: * * head --> tail * +---------------------+----------+ * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC * +---------------------+----------+ | o L2ARC eligible * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer * +---------------------+----------+ | * 15.9 Gbytes ^ 32 Mbytes | * headroom | * l2arc_feed_thread() * | * l2arc write hand <--[oooo]--' * | 8 Mbyte * | write max * V * +==============================+ * L2ARC dev |####|#|###|###| |####| ... | * +==============================+ * 32 Gbytes * * 3. If an ARC buffer is copied to the L2ARC but then hit instead of * evicted, then the L2ARC has cached a buffer much sooner than it probably * needed to, potentially wasting L2ARC device bandwidth and storage. It is * safe to say that this is an uncommon case, since buffers at the end of * the ARC lists have moved there due to inactivity. * * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, * then the L2ARC simply misses copying some buffers. This serves as a * pressure valve to prevent heavy read workloads from both stalling the ARC * with waits and clogging the L2ARC with writes. This also helps prevent * the potential for the L2ARC to churn if it attempts to cache content too * quickly, such as during backups of the entire pool. * * 5. After system boot and before the ARC has filled main memory, there are * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru * lists can remain mostly static. Instead of searching from tail of these * lists as pictured, the l2arc_feed_thread() will search from the list heads * for eligible buffers, greatly increasing its chance of finding them. * * The L2ARC device write speed is also boosted during this time so that * the L2ARC warms up faster. Since there have been no ARC evictions yet, * there are no L2ARC reads, and no fear of degrading read performance * through increased writes. * * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that * the vdev queue can aggregate them into larger and fewer writes. Each * device is written to in a rotor fashion, sweeping writes through * available space then repeating. * * 7. The L2ARC does not store dirty content. It never needs to flush * write buffers back to disk based storage. * * 8. If an ARC buffer is written (and dirtied) which also exists in the * L2ARC, the now stale L2ARC buffer is immediately dropped. * * The performance of the L2ARC can be tweaked by a number of tunables, which * may be necessary for different workloads: * * l2arc_write_max max write bytes per interval * l2arc_write_boost extra write bytes during device warmup * l2arc_noprefetch skip caching prefetched buffers * l2arc_headroom number of max device writes to precache * l2arc_headroom_boost when we find compressed buffers during ARC * scanning, we multiply headroom by this * percentage factor for the next scan cycle, * since more compressed buffers are likely to * be present * l2arc_feed_secs seconds between L2ARC writing * * Tunables may be removed or added as future performance improvements are * integrated, and also may become zpool properties. * * There are three key functions that control how the L2ARC warms up: * * l2arc_write_eligible() check if a buffer is eligible to cache * l2arc_write_size() calculate how much to write * l2arc_write_interval() calculate sleep delay between writes * * These three functions determine what to write, how much, and how quickly * to send writes. * * L2ARC persistence: * * When writing buffers to L2ARC, we periodically add some metadata to * make sure we can pick them up after reboot, thus dramatically reducing * the impact that any downtime has on the performance of storage systems * with large caches. * * The implementation works fairly simply by integrating the following two * modifications: * * *) When writing to the L2ARC, we occasionally write a "l2arc log block", * which is an additional piece of metadata which describes what's been * written. This allows us to rebuild the arc_buf_hdr_t structures of the * main ARC buffers. There are 2 linked-lists of log blocks headed by * dh_start_lbps[2]. We alternate which chain we append to, so they are * time-wise and offset-wise interleaved, but that is an optimization rather * than for correctness. The log block also includes a pointer to the * previous block in its chain. * * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device * for our header bookkeeping purposes. This contains a device header, * which contains our top-level reference structures. We update it each * time we write a new log block, so that we're able to locate it in the * L2ARC device. If this write results in an inconsistent device header * (e.g. due to power failure), we detect this by verifying the header's * checksum and simply fail to reconstruct the L2ARC after reboot. * * Implementation diagram: * * +=== L2ARC device (not to scale) ======================================+ * | ___two newest log block pointers__.__________ | * | / \dh_start_lbps[1] | * | / \ \dh_start_lbps[0]| * |.___/__. V V | * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| * || hdr| ^ /^ /^ / / | * |+------+ ...--\-------/ \-----/--\------/ / | * | \--------------/ \--------------/ | * +======================================================================+ * * As can be seen on the diagram, rather than using a simple linked list, * we use a pair of linked lists with alternating elements. This is a * performance enhancement due to the fact that we only find out the * address of the next log block access once the current block has been * completely read in. Obviously, this hurts performance, because we'd be * keeping the device's I/O queue at only a 1 operation deep, thus * incurring a large amount of I/O round-trip latency. Having two lists * allows us to fetch two log blocks ahead of where we are currently * rebuilding L2ARC buffers. * * On-device data structures: * * L2ARC device header: l2arc_dev_hdr_phys_t * L2ARC log block: l2arc_log_blk_phys_t * * L2ARC reconstruction: * * When writing data, we simply write in the standard rotary fashion, * evicting buffers as we go and simply writing new data over them (writing * a new log block every now and then). This obviously means that once we * loop around the end of the device, we will start cutting into an already * committed log block (and its referenced data buffers), like so: * * current write head__ __old tail * \ / * V V * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> * ^ ^^^^^^^^^___________________________________ * | \ * <> may overwrite this blk and/or its bufs --' * * When importing the pool, we detect this situation and use it to stop * our scanning process (see l2arc_rebuild). * * There is one significant caveat to consider when rebuilding ARC contents * from an L2ARC device: what about invalidated buffers? Given the above * construction, we cannot update blocks which we've already written to amend * them to remove buffers which were invalidated. Thus, during reconstruction, * we might be populating the cache with buffers for data that's not on the * main pool anymore, or may have been overwritten! * * As it turns out, this isn't a problem. Every arc_read request includes * both the DVA and, crucially, the birth TXG of the BP the caller is * looking for. So even if the cache were populated by completely rotten * blocks for data that had been long deleted and/or overwritten, we'll * never actually return bad data from the cache, since the DVA with the * birth TXG uniquely identify a block in space and time - once created, * a block is immutable on disk. The worst thing we have done is wasted * some time and memory at l2arc rebuild to reconstruct outdated ARC * entries that will get dropped from the l2arc as it is being updated * with new blocks. * * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write * hand are not restored. This is done by saving the offset (in bytes) * l2arc_evict() has evicted to in the L2ARC device header and taking it * into account when restoring buffers. */ static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) { /* * A buffer is *not* eligible for the L2ARC if it: * 1. belongs to a different spa. * 2. is already cached on the L2ARC. * 3. has an I/O in progress (it may be an incomplete read). * 4. is flagged not eligible (zfs property). */ if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) return (B_FALSE); return (B_TRUE); } static uint64_t l2arc_write_size(l2arc_dev_t *dev) { uint64_t size; /* * Make sure our globals have meaningful values in case the user * altered them. */ size = l2arc_write_max; if (size == 0) { cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " "be greater than zero, resetting it to the default (%d)", L2ARC_WRITE_SIZE); size = l2arc_write_max = L2ARC_WRITE_SIZE; } if (arc_warm == B_FALSE) size += l2arc_write_boost; /* We need to add in the worst case scenario of log block overhead. */ size += l2arc_log_blk_overhead(size, dev); if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) { /* * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) * times the writesize, whichever is greater. */ size += MAX(64 * 1024 * 1024, (size * l2arc_trim_ahead) / 100); } /* * Make sure the write size does not exceed the size of the cache * device. This is important in l2arc_evict(), otherwise infinite * iteration can occur. */ if (size >= dev->l2ad_end - dev->l2ad_start) { cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " "plus the overhead of log blocks (persistent L2ARC, " "%llu bytes) exceeds the size of the cache device " "(guid %llu), resetting them to the default (%d)", (u_longlong_t)l2arc_log_blk_overhead(size, dev), (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; if (arc_warm == B_FALSE) size += l2arc_write_boost; size += l2arc_log_blk_overhead(size, dev); if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) { size += MAX(64 * 1024 * 1024, (size * l2arc_trim_ahead) / 100); } } return (size); } static clock_t l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) { clock_t interval, next, now; /* * If the ARC lists are busy, increase our write rate; if the * lists are stale, idle back. This is achieved by checking * how much we previously wrote - if it was more than half of * what we wanted, schedule the next write much sooner. */ if (l2arc_feed_again && wrote > (wanted / 2)) interval = (hz * l2arc_feed_min_ms) / 1000; else interval = hz * l2arc_feed_secs; now = ddi_get_lbolt(); next = MAX(now, MIN(now + interval, began + interval)); return (next); } /* * Cycle through L2ARC devices. This is how L2ARC load balances. * If a device is returned, this also returns holding the spa config lock. */ static l2arc_dev_t * l2arc_dev_get_next(void) { l2arc_dev_t *first, *next = NULL; /* * Lock out the removal of spas (spa_namespace_lock), then removal * of cache devices (l2arc_dev_mtx). Once a device has been selected, * both locks will be dropped and a spa config lock held instead. */ mutex_enter(&spa_namespace_lock); mutex_enter(&l2arc_dev_mtx); /* if there are no vdevs, there is nothing to do */ if (l2arc_ndev == 0) goto out; first = NULL; next = l2arc_dev_last; do { /* loop around the list looking for a non-faulted vdev */ if (next == NULL) { next = list_head(l2arc_dev_list); } else { next = list_next(l2arc_dev_list, next); if (next == NULL) next = list_head(l2arc_dev_list); } /* if we have come back to the start, bail out */ if (first == NULL) first = next; else if (next == first) break; ASSERT3P(next, !=, NULL); } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || next->l2ad_trim_all); /* if we were unable to find any usable vdevs, return NULL */ if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || next->l2ad_trim_all) next = NULL; l2arc_dev_last = next; out: mutex_exit(&l2arc_dev_mtx); /* * Grab the config lock to prevent the 'next' device from being * removed while we are writing to it. */ if (next != NULL) spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); mutex_exit(&spa_namespace_lock); return (next); } /* * Free buffers that were tagged for destruction. */ static void l2arc_do_free_on_write(void) { l2arc_data_free_t *df; mutex_enter(&l2arc_free_on_write_mtx); while ((df = list_remove_head(l2arc_free_on_write)) != NULL) { ASSERT3P(df->l2df_abd, !=, NULL); abd_free(df->l2df_abd); kmem_free(df, sizeof (l2arc_data_free_t)); } mutex_exit(&l2arc_free_on_write_mtx); } /* * A write to a cache device has completed. Update all headers to allow * reads from these buffers to begin. */ static void l2arc_write_done(zio_t *zio) { l2arc_write_callback_t *cb; l2arc_lb_abd_buf_t *abd_buf; l2arc_lb_ptr_buf_t *lb_ptr_buf; l2arc_dev_t *dev; l2arc_dev_hdr_phys_t *l2dhdr; list_t *buflist; arc_buf_hdr_t *head, *hdr, *hdr_prev; kmutex_t *hash_lock; int64_t bytes_dropped = 0; cb = zio->io_private; ASSERT3P(cb, !=, NULL); dev = cb->l2wcb_dev; l2dhdr = dev->l2ad_dev_hdr; ASSERT3P(dev, !=, NULL); head = cb->l2wcb_head; ASSERT3P(head, !=, NULL); buflist = &dev->l2ad_buflist; ASSERT3P(buflist, !=, NULL); DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, l2arc_write_callback_t *, cb); /* * All writes completed, or an error was hit. */ top: mutex_enter(&dev->l2ad_mtx); for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { hdr_prev = list_prev(buflist, hdr); hash_lock = HDR_LOCK(hdr); /* * We cannot use mutex_enter or else we can deadlock * with l2arc_write_buffers (due to swapping the order * the hash lock and l2ad_mtx are taken). */ if (!mutex_tryenter(hash_lock)) { /* * Missed the hash lock. We must retry so we * don't leave the ARC_FLAG_L2_WRITING bit set. */ ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); /* * We don't want to rescan the headers we've * already marked as having been written out, so * we reinsert the head node so we can pick up * where we left off. */ list_remove(buflist, head); list_insert_after(buflist, hdr, head); mutex_exit(&dev->l2ad_mtx); /* * We wait for the hash lock to become available * to try and prevent busy waiting, and increase * the chance we'll be able to acquire the lock * the next time around. */ mutex_enter(hash_lock); mutex_exit(hash_lock); goto top; } /* * We could not have been moved into the arc_l2c_only * state while in-flight due to our ARC_FLAG_L2_WRITING * bit being set. Let's just ensure that's being enforced. */ ASSERT(HDR_HAS_L1HDR(hdr)); /* * Skipped - drop L2ARC entry and mark the header as no * longer L2 eligibile. */ if (zio->io_error != 0) { /* * Error - drop L2ARC entry. */ list_remove(buflist, hdr); arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); uint64_t psize = HDR_GET_PSIZE(hdr); l2arc_hdr_arcstats_decrement(hdr); bytes_dropped += vdev_psize_to_asize(dev->l2ad_vdev, psize); (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); } /* * Allow ARC to begin reads and ghost list evictions to * this L2ARC entry. */ arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); mutex_exit(hash_lock); } /* * Free the allocated abd buffers for writing the log blocks. * If the zio failed reclaim the allocated space and remove the * pointers to these log blocks from the log block pointer list * of the L2ARC device. */ while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { abd_free(abd_buf->abd); zio_buf_free(abd_buf, sizeof (*abd_buf)); if (zio->io_error != 0) { lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); /* * L2BLK_GET_PSIZE returns aligned size for log * blocks. */ uint64_t asize = L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); bytes_dropped += asize; ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); kmem_free(lb_ptr_buf->lb_ptr, sizeof (l2arc_log_blkptr_t)); kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); } } list_destroy(&cb->l2wcb_abd_list); if (zio->io_error != 0) { ARCSTAT_BUMP(arcstat_l2_writes_error); /* * Restore the lbps array in the header to its previous state. * If the list of log block pointers is empty, zero out the * log block pointers in the device header. */ lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); for (int i = 0; i < 2; i++) { if (lb_ptr_buf == NULL) { /* * If the list is empty zero out the device * header. Otherwise zero out the second log * block pointer in the header. */ if (i == 0) { memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize); } else { memset(&l2dhdr->dh_start_lbps[i], 0, sizeof (l2arc_log_blkptr_t)); } break; } memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr, sizeof (l2arc_log_blkptr_t)); lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, lb_ptr_buf); } } ARCSTAT_BUMP(arcstat_l2_writes_done); list_remove(buflist, head); ASSERT(!HDR_HAS_L1HDR(head)); kmem_cache_free(hdr_l2only_cache, head); mutex_exit(&dev->l2ad_mtx); ASSERT(dev->l2ad_vdev != NULL); vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); l2arc_do_free_on_write(); kmem_free(cb, sizeof (l2arc_write_callback_t)); } static int l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) { int ret; spa_t *spa = zio->io_spa; arc_buf_hdr_t *hdr = cb->l2rcb_hdr; blkptr_t *bp = zio->io_bp; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; boolean_t no_crypt = B_FALSE; /* * ZIL data is never be written to the L2ARC, so we don't need * special handling for its unique MAC storage. */ ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); /* * If the data was encrypted, decrypt it now. Note that * we must check the bp here and not the hdr, since the * hdr does not have its encryption parameters updated * until arc_read_done(). */ if (BP_IS_ENCRYPTED(bp)) { abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, ARC_HDR_USE_RESERVE); zio_crypt_decode_params_bp(bp, salt, iv); zio_crypt_decode_mac_bp(bp, mac); ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, hdr->b_l1hdr.b_pabd, &no_crypt); if (ret != 0) { arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); goto error; } /* * If we actually performed decryption, replace b_pabd * with the decrypted data. Otherwise we can just throw * our decryption buffer away. */ if (!no_crypt) { arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, arc_hdr_size(hdr), hdr); hdr->b_l1hdr.b_pabd = eabd; zio->io_abd = eabd; } else { arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); } } /* * If the L2ARC block was compressed, but ARC compression * is disabled we decompress the data into a new buffer and * replace the existing data. */ if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, ARC_HDR_USE_RESERVE); void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), &hdr->b_complevel); if (ret != 0) { abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); goto error; } abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, arc_hdr_size(hdr), hdr); hdr->b_l1hdr.b_pabd = cabd; zio->io_abd = cabd; zio->io_size = HDR_GET_LSIZE(hdr); } return (0); error: return (ret); } /* * A read to a cache device completed. Validate buffer contents before * handing over to the regular ARC routines. */ static void l2arc_read_done(zio_t *zio) { int tfm_error = 0; l2arc_read_callback_t *cb = zio->io_private; arc_buf_hdr_t *hdr; kmutex_t *hash_lock; boolean_t valid_cksum; boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); ASSERT3P(zio->io_vd, !=, NULL); ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); ASSERT3P(cb, !=, NULL); hdr = cb->l2rcb_hdr; ASSERT3P(hdr, !=, NULL); hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); /* * If the data was read into a temporary buffer, * move it and free the buffer. */ if (cb->l2rcb_abd != NULL) { ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); if (zio->io_error == 0) { if (using_rdata) { abd_copy(hdr->b_crypt_hdr.b_rabd, cb->l2rcb_abd, arc_hdr_size(hdr)); } else { abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd, arc_hdr_size(hdr)); } } /* * The following must be done regardless of whether * there was an error: * - free the temporary buffer * - point zio to the real ARC buffer * - set zio size accordingly * These are required because zio is either re-used for * an I/O of the block in the case of the error * or the zio is passed to arc_read_done() and it * needs real data. */ abd_free(cb->l2rcb_abd); zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); if (using_rdata) { ASSERT(HDR_HAS_RABD(hdr)); zio->io_abd = zio->io_orig_abd = hdr->b_crypt_hdr.b_rabd; } else { ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; } } ASSERT3P(zio->io_abd, !=, NULL); /* * Check this survived the L2ARC journey. */ ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ zio->io_prop.zp_complevel = hdr->b_complevel; valid_cksum = arc_cksum_is_equal(hdr, zio); /* * b_rabd will always match the data as it exists on disk if it is * being used. Therefore if we are reading into b_rabd we do not * attempt to untransform the data. */ if (valid_cksum && !using_rdata) tfm_error = l2arc_untransform(zio, cb); if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { mutex_exit(hash_lock); zio->io_private = hdr; arc_read_done(zio); } else { /* * Buffer didn't survive caching. Increment stats and * reissue to the original storage device. */ if (zio->io_error != 0) { ARCSTAT_BUMP(arcstat_l2_io_error); } else { zio->io_error = SET_ERROR(EIO); } if (!valid_cksum || tfm_error != 0) ARCSTAT_BUMP(arcstat_l2_cksum_bad); /* * If there's no waiter, issue an async i/o to the primary * storage now. If there *is* a waiter, the caller must * issue the i/o in a context where it's OK to block. */ if (zio->io_waiter == NULL) { zio_t *pio = zio_unique_parent(zio); void *abd = (using_rdata) ? hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); zio = zio_read(pio, zio->io_spa, zio->io_bp, abd, zio->io_size, arc_read_done, hdr, zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb); /* * Original ZIO will be freed, so we need to update * ARC header with the new ZIO pointer to be used * by zio_change_priority() in arc_read(). */ for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; acb != NULL; acb = acb->acb_next) acb->acb_zio_head = zio; mutex_exit(hash_lock); zio_nowait(zio); } else { mutex_exit(hash_lock); } } kmem_free(cb, sizeof (l2arc_read_callback_t)); } /* * This is the list priority from which the L2ARC will search for pages to * cache. This is used within loops (0..3) to cycle through lists in the * desired order. This order can have a significant effect on cache * performance. * * Currently the metadata lists are hit first, MFU then MRU, followed by * the data lists. This function returns a locked list, and also returns * the lock pointer. */ static multilist_sublist_t * l2arc_sublist_lock(int list_num) { multilist_t *ml = NULL; unsigned int idx; ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); switch (list_num) { case 0: ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; break; case 1: ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; break; case 2: ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; break; case 3: ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; break; default: return (NULL); } /* * Return a randomly-selected sublist. This is acceptable * because the caller feeds only a little bit of data for each * call (8MB). Subsequent calls will result in different * sublists being selected. */ idx = multilist_get_random_index(ml); return (multilist_sublist_lock(ml, idx)); } /* * Calculates the maximum overhead of L2ARC metadata log blocks for a given * L2ARC write size. l2arc_evict and l2arc_write_size need to include this * overhead in processing to make sure there is enough headroom available * when writing buffers. */ static inline uint64_t l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) { if (dev->l2ad_log_entries == 0) { return (0); } else { uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; uint64_t log_blocks = (log_entries + dev->l2ad_log_entries - 1) / dev->l2ad_log_entries; return (vdev_psize_to_asize(dev->l2ad_vdev, sizeof (l2arc_log_blk_phys_t)) * log_blocks); } } /* * Evict buffers from the device write hand to the distance specified in * bytes. This distance may span populated buffers, it may span nothing. * This is clearing a region on the L2ARC device ready for writing. * If the 'all' boolean is set, every buffer is evicted. */ static void l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) { list_t *buflist; arc_buf_hdr_t *hdr, *hdr_prev; kmutex_t *hash_lock; uint64_t taddr; l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; vdev_t *vd = dev->l2ad_vdev; boolean_t rerun; buflist = &dev->l2ad_buflist; top: rerun = B_FALSE; if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { /* * When there is no space to accommodate upcoming writes, * evict to the end. Then bump the write and evict hands * to the start and iterate. This iteration does not * happen indefinitely as we make sure in * l2arc_write_size() that when the write hand is reset, * the write size does not exceed the end of the device. */ rerun = B_TRUE; taddr = dev->l2ad_end; } else { taddr = dev->l2ad_hand + distance; } DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, uint64_t, taddr, boolean_t, all); if (!all) { /* * This check has to be placed after deciding whether to * iterate (rerun). */ if (dev->l2ad_first) { /* * This is the first sweep through the device. There is * nothing to evict. We have already trimmmed the * whole device. */ goto out; } else { /* * Trim the space to be evicted. */ if (vd->vdev_has_trim && dev->l2ad_evict < taddr && l2arc_trim_ahead > 0) { /* * We have to drop the spa_config lock because * vdev_trim_range() will acquire it. * l2ad_evict already accounts for the label * size. To prevent vdev_trim_ranges() from * adding it again, we subtract it from * l2ad_evict. */ spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); vdev_trim_simple(vd, dev->l2ad_evict - VDEV_LABEL_START_SIZE, taddr - dev->l2ad_evict); spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, RW_READER); } /* * When rebuilding L2ARC we retrieve the evict hand * from the header of the device. Of note, l2arc_evict() * does not actually delete buffers from the cache * device, but trimming may do so depending on the * hardware implementation. Thus keeping track of the * evict hand is useful. */ dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); } } retry: mutex_enter(&dev->l2ad_mtx); /* * We have to account for evicted log blocks. Run vdev_space_update() * on log blocks whose offset (in bytes) is before the evicted offset * (in bytes) by searching in the list of pointers to log blocks * present in the L2ARC device. */ for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; lb_ptr_buf = lb_ptr_buf_prev) { lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); /* L2BLK_GET_PSIZE returns aligned size for log blocks */ uint64_t asize = L2BLK_GET_PSIZE( (lb_ptr_buf->lb_ptr)->lbp_prop); /* * We don't worry about log blocks left behind (ie * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() * will never write more than l2arc_evict() evicts. */ if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { break; } else { vdev_space_update(vd, -asize, 0, 0); ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); kmem_free(lb_ptr_buf->lb_ptr, sizeof (l2arc_log_blkptr_t)); kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); } } for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { hdr_prev = list_prev(buflist, hdr); ASSERT(!HDR_EMPTY(hdr)); hash_lock = HDR_LOCK(hdr); /* * We cannot use mutex_enter or else we can deadlock * with l2arc_write_buffers (due to swapping the order * the hash lock and l2ad_mtx are taken). */ if (!mutex_tryenter(hash_lock)) { /* * Missed the hash lock. Retry. */ ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); mutex_exit(&dev->l2ad_mtx); mutex_enter(hash_lock); mutex_exit(hash_lock); goto retry; } /* * A header can't be on this list if it doesn't have L2 header. */ ASSERT(HDR_HAS_L2HDR(hdr)); /* Ensure this header has finished being written. */ ASSERT(!HDR_L2_WRITING(hdr)); ASSERT(!HDR_L2_WRITE_HEAD(hdr)); if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { /* * We've evicted to the target address, * or the end of the device. */ mutex_exit(hash_lock); break; } if (!HDR_HAS_L1HDR(hdr)) { ASSERT(!HDR_L2_READING(hdr)); /* * This doesn't exist in the ARC. Destroy. * arc_hdr_destroy() will call list_remove() * and decrement arcstat_l2_lsize. */ arc_change_state(arc_anon, hdr); arc_hdr_destroy(hdr); } else { ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); ARCSTAT_BUMP(arcstat_l2_evict_l1cached); /* * Invalidate issued or about to be issued * reads, since we may be about to write * over this location. */ if (HDR_L2_READING(hdr)) { ARCSTAT_BUMP(arcstat_l2_evict_reading); arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); } arc_hdr_l2hdr_destroy(hdr); } mutex_exit(hash_lock); } mutex_exit(&dev->l2ad_mtx); out: /* * We need to check if we evict all buffers, otherwise we may iterate * unnecessarily. */ if (!all && rerun) { /* * Bump device hand to the device start if it is approaching the * end. l2arc_evict() has already evicted ahead for this case. */ dev->l2ad_hand = dev->l2ad_start; dev->l2ad_evict = dev->l2ad_start; dev->l2ad_first = B_FALSE; goto top; } if (!all) { /* * In case of cache device removal (all) the following * assertions may be violated without functional consequences * as the device is about to be removed. */ ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); if (!dev->l2ad_first) ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); } } /* * Handle any abd transforms that might be required for writing to the L2ARC. * If successful, this function will always return an abd with the data * transformed as it is on disk in a new abd of asize bytes. */ static int l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, abd_t **abd_out) { int ret; void *tmp = NULL; abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; enum zio_compress compress = HDR_GET_COMPRESS(hdr); uint64_t psize = HDR_GET_PSIZE(hdr); uint64_t size = arc_hdr_size(hdr); boolean_t ismd = HDR_ISTYPE_METADATA(hdr); boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); dsl_crypto_key_t *dck = NULL; uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; boolean_t no_crypt = B_FALSE; ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) || HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); ASSERT3U(psize, <=, asize); /* * If this data simply needs its own buffer, we simply allocate it * and copy the data. This may be done to eliminate a dependency on a * shared buffer or to reallocate the buffer to match asize. */ if (HDR_HAS_RABD(hdr) && asize != psize) { ASSERT3U(asize, >=, psize); to_write = abd_alloc_for_io(asize, ismd); abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); if (psize != asize) abd_zero_off(to_write, psize, asize - psize); goto out; } if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && !HDR_ENCRYPTED(hdr)) { ASSERT3U(size, ==, psize); to_write = abd_alloc_for_io(asize, ismd); abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); if (size != asize) abd_zero_off(to_write, size, asize - size); goto out; } if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { /* * In some cases, we can wind up with size > asize, so * we need to opt for the larger allocation option here. * * (We also need abd_return_buf_copy in all cases because * it's an ASSERT() to modify the buffer before returning it * with arc_return_buf(), and all the compressors * write things before deciding to fail compression in nearly * every case.) */ cabd = abd_alloc_for_io(size, ismd); tmp = abd_borrow_buf(cabd, size); psize = zio_compress_data(compress, to_write, &tmp, size, hdr->b_complevel); if (psize >= asize) { psize = HDR_GET_PSIZE(hdr); abd_return_buf_copy(cabd, tmp, size); HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); to_write = cabd; abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize); if (psize != asize) abd_zero_off(to_write, psize, asize - psize); goto encrypt; } ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); if (psize < asize) memset((char *)tmp + psize, 0, asize - psize); psize = HDR_GET_PSIZE(hdr); abd_return_buf_copy(cabd, tmp, size); to_write = cabd; } encrypt: if (HDR_ENCRYPTED(hdr)) { eabd = abd_alloc_for_io(asize, ismd); /* * If the dataset was disowned before the buffer * made it to this point, the key to re-encrypt * it won't be available. In this case we simply * won't write the buffer to the L2ARC. */ ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, FTAG, &dck); if (ret != 0) goto error; ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, &no_crypt); if (ret != 0) goto error; if (no_crypt) abd_copy(eabd, to_write, psize); if (psize != asize) abd_zero_off(eabd, psize, asize - psize); /* assert that the MAC we got here matches the one we saved */ ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); spa_keystore_dsl_key_rele(spa, dck, FTAG); if (to_write == cabd) abd_free(cabd); to_write = eabd; } out: ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); *abd_out = to_write; return (0); error: if (dck != NULL) spa_keystore_dsl_key_rele(spa, dck, FTAG); if (cabd != NULL) abd_free(cabd); if (eabd != NULL) abd_free(eabd); *abd_out = NULL; return (ret); } static void l2arc_blk_fetch_done(zio_t *zio) { l2arc_read_callback_t *cb; cb = zio->io_private; if (cb->l2rcb_abd != NULL) abd_free(cb->l2rcb_abd); kmem_free(cb, sizeof (l2arc_read_callback_t)); } /* * Find and write ARC buffers to the L2ARC device. * * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid * for reading until they have completed writing. * The headroom_boost is an in-out parameter used to maintain headroom boost * state between calls to this function. * * Returns the number of bytes actually written (which may be smaller than * the delta by which the device hand has changed due to alignment and the * writing of log blocks). */ static uint64_t l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) { arc_buf_hdr_t *hdr, *hdr_prev, *head; uint64_t write_asize, write_psize, write_lsize, headroom; boolean_t full; l2arc_write_callback_t *cb = NULL; zio_t *pio, *wzio; uint64_t guid = spa_load_guid(spa); l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; ASSERT3P(dev->l2ad_vdev, !=, NULL); pio = NULL; write_lsize = write_asize = write_psize = 0; full = B_FALSE; head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); /* * Copy buffers for L2ARC writing. */ for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { /* * If pass == 1 or 3, we cache MRU metadata and data * respectively. */ if (l2arc_mfuonly) { if (pass == 1 || pass == 3) continue; } multilist_sublist_t *mls = l2arc_sublist_lock(pass); uint64_t passed_sz = 0; VERIFY3P(mls, !=, NULL); /* * L2ARC fast warmup. * * Until the ARC is warm and starts to evict, read from the * head of the ARC lists rather than the tail. */ if (arc_warm == B_FALSE) hdr = multilist_sublist_head(mls); else hdr = multilist_sublist_tail(mls); headroom = target_sz * l2arc_headroom; if (zfs_compressed_arc_enabled) headroom = (headroom * l2arc_headroom_boost) / 100; for (; hdr; hdr = hdr_prev) { kmutex_t *hash_lock; abd_t *to_write = NULL; if (arc_warm == B_FALSE) hdr_prev = multilist_sublist_next(mls, hdr); else hdr_prev = multilist_sublist_prev(mls, hdr); hash_lock = HDR_LOCK(hdr); if (!mutex_tryenter(hash_lock)) { /* * Skip this buffer rather than waiting. */ continue; } passed_sz += HDR_GET_LSIZE(hdr); if (l2arc_headroom != 0 && passed_sz > headroom) { /* * Searched too far. */ mutex_exit(hash_lock); break; } if (!l2arc_write_eligible(guid, hdr)) { mutex_exit(hash_lock); continue; } ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); ASSERT3U(arc_hdr_size(hdr), >, 0); ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); uint64_t psize = HDR_GET_PSIZE(hdr); uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); if ((write_asize + asize) > target_sz) { full = B_TRUE; mutex_exit(hash_lock); break; } /* * We rely on the L1 portion of the header below, so * it's invalid for this header to have been evicted out * of the ghost cache, prior to being written out. The * ARC_FLAG_L2_WRITING bit ensures this won't happen. */ arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); /* * If this header has b_rabd, we can use this since it * must always match the data exactly as it exists on * disk. Otherwise, the L2ARC can normally use the * hdr's data, but if we're sharing data between the * hdr and one of its bufs, L2ARC needs its own copy of * the data so that the ZIO below can't race with the * buf consumer. To ensure that this copy will be * available for the lifetime of the ZIO and be cleaned * up afterwards, we add it to the l2arc_free_on_write * queue. If we need to apply any transforms to the * data (compression, encryption) we will also need the * extra buffer. */ if (HDR_HAS_RABD(hdr) && psize == asize) { to_write = hdr->b_crypt_hdr.b_rabd; } else if ((HDR_COMPRESSION_ENABLED(hdr) || HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && psize == asize) { to_write = hdr->b_l1hdr.b_pabd; } else { int ret; arc_buf_contents_t type = arc_buf_type(hdr); ret = l2arc_apply_transforms(spa, hdr, asize, &to_write); if (ret != 0) { arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); mutex_exit(hash_lock); continue; } l2arc_free_abd_on_write(to_write, asize, type); } if (pio == NULL) { /* * Insert a dummy header on the buflist so * l2arc_write_done() can find where the * write buffers begin without searching. */ mutex_enter(&dev->l2ad_mtx); list_insert_head(&dev->l2ad_buflist, head); mutex_exit(&dev->l2ad_mtx); cb = kmem_alloc( sizeof (l2arc_write_callback_t), KM_SLEEP); cb->l2wcb_dev = dev; cb->l2wcb_head = head; /* * Create a list to save allocated abd buffers * for l2arc_log_blk_commit(). */ list_create(&cb->l2wcb_abd_list, sizeof (l2arc_lb_abd_buf_t), offsetof(l2arc_lb_abd_buf_t, node)); pio = zio_root(spa, l2arc_write_done, cb, ZIO_FLAG_CANFAIL); } hdr->b_l2hdr.b_dev = dev; hdr->b_l2hdr.b_hits = 0; hdr->b_l2hdr.b_daddr = dev->l2ad_hand; hdr->b_l2hdr.b_arcs_state = hdr->b_l1hdr.b_state->arcs_state; arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); mutex_enter(&dev->l2ad_mtx); list_insert_head(&dev->l2ad_buflist, hdr); mutex_exit(&dev->l2ad_mtx); (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); wzio = zio_write_phys(pio, dev->l2ad_vdev, hdr->b_l2hdr.b_daddr, asize, to_write, ZIO_CHECKSUM_OFF, NULL, hdr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); write_lsize += HDR_GET_LSIZE(hdr); DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); write_psize += psize; write_asize += asize; dev->l2ad_hand += asize; l2arc_hdr_arcstats_increment(hdr); vdev_space_update(dev->l2ad_vdev, asize, 0, 0); mutex_exit(hash_lock); /* * Append buf info to current log and commit if full. * arcstat_l2_{size,asize} kstats are updated * internally. */ if (l2arc_log_blk_insert(dev, hdr)) { /* * l2ad_hand has been accounted for in * l2arc_log_blk_commit(). */ write_asize += l2arc_log_blk_commit(dev, pio, cb); } zio_nowait(wzio); } multilist_sublist_unlock(mls); if (full == B_TRUE) break; } /* No buffers selected for writing? */ if (pio == NULL) { ASSERT0(write_lsize); ASSERT(!HDR_HAS_L1HDR(head)); kmem_cache_free(hdr_l2only_cache, head); /* * Although we did not write any buffers l2ad_evict may * have advanced. */ if (dev->l2ad_evict != l2dhdr->dh_evict) l2arc_dev_hdr_update(dev); return (0); } if (!dev->l2ad_first) ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); ASSERT3U(write_asize, <=, target_sz); ARCSTAT_BUMP(arcstat_l2_writes_sent); ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); dev->l2ad_writing = B_TRUE; (void) zio_wait(pio); dev->l2ad_writing = B_FALSE; /* * Update the device header after the zio completes as * l2arc_write_done() may have updated the memory holding the log block * pointers in the device header. */ l2arc_dev_hdr_update(dev); return (write_asize); } static boolean_t l2arc_hdr_limit_reached(void) { int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); return (arc_reclaim_needed() || (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); } /* * This thread feeds the L2ARC at regular intervals. This is the beating * heart of the L2ARC. */ static __attribute__((noreturn)) void l2arc_feed_thread(void *unused) { (void) unused; callb_cpr_t cpr; l2arc_dev_t *dev; spa_t *spa; uint64_t size, wrote; clock_t begin, next = ddi_get_lbolt(); fstrans_cookie_t cookie; CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); mutex_enter(&l2arc_feed_thr_lock); cookie = spl_fstrans_mark(); while (l2arc_thread_exit == 0) { CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait_idle(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, next); CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); next = ddi_get_lbolt() + hz; /* * Quick check for L2ARC devices. */ mutex_enter(&l2arc_dev_mtx); if (l2arc_ndev == 0) { mutex_exit(&l2arc_dev_mtx); continue; } mutex_exit(&l2arc_dev_mtx); begin = ddi_get_lbolt(); /* * This selects the next l2arc device to write to, and in * doing so the next spa to feed from: dev->l2ad_spa. This * will return NULL if there are now no l2arc devices or if * they are all faulted. * * If a device is returned, its spa's config lock is also * held to prevent device removal. l2arc_dev_get_next() * will grab and release l2arc_dev_mtx. */ if ((dev = l2arc_dev_get_next()) == NULL) continue; spa = dev->l2ad_spa; ASSERT3P(spa, !=, NULL); /* * If the pool is read-only then force the feed thread to * sleep a little longer. */ if (!spa_writeable(spa)) { next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; spa_config_exit(spa, SCL_L2ARC, dev); continue; } /* * Avoid contributing to memory pressure. */ if (l2arc_hdr_limit_reached()) { ARCSTAT_BUMP(arcstat_l2_abort_lowmem); spa_config_exit(spa, SCL_L2ARC, dev); continue; } ARCSTAT_BUMP(arcstat_l2_feeds); size = l2arc_write_size(dev); /* * Evict L2ARC buffers that will be overwritten. */ l2arc_evict(dev, size, B_FALSE); /* * Write ARC buffers. */ wrote = l2arc_write_buffers(spa, dev, size); /* * Calculate interval between writes. */ next = l2arc_write_interval(begin, size, wrote); spa_config_exit(spa, SCL_L2ARC, dev); } spl_fstrans_unmark(cookie); l2arc_thread_exit = 0; cv_broadcast(&l2arc_feed_thr_cv); CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ thread_exit(); } boolean_t l2arc_vdev_present(vdev_t *vd) { return (l2arc_vdev_get(vd) != NULL); } /* * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if * the vdev_t isn't an L2ARC device. */ l2arc_dev_t * l2arc_vdev_get(vdev_t *vd) { l2arc_dev_t *dev; mutex_enter(&l2arc_dev_mtx); for (dev = list_head(l2arc_dev_list); dev != NULL; dev = list_next(l2arc_dev_list, dev)) { if (dev->l2ad_vdev == vd) break; } mutex_exit(&l2arc_dev_mtx); return (dev); } static void l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) { l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; spa_t *spa = dev->l2ad_spa; /* * The L2ARC has to hold at least the payload of one log block for * them to be restored (persistent L2ARC). The payload of a log block * depends on the amount of its log entries. We always write log blocks * with 1022 entries. How many of them are committed or restored depends * on the size of the L2ARC device. Thus the maximum payload of * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device * is less than that, we reduce the amount of committed and restored * log entries per block so as to enable persistence. */ if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { dev->l2ad_log_entries = 0; } else { dev->l2ad_log_entries = MIN((dev->l2ad_end - dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, L2ARC_LOG_BLK_MAX_ENTRIES); } /* * Read the device header, if an error is returned do not rebuild L2ARC. */ if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { /* * If we are onlining a cache device (vdev_reopen) that was * still present (l2arc_vdev_present()) and rebuild is enabled, * we should evict all ARC buffers and pointers to log blocks * and reclaim their space before restoring its contents to * L2ARC. */ if (reopen) { if (!l2arc_rebuild_enabled) { return; } else { l2arc_evict(dev, 0, B_TRUE); /* start a new log block */ dev->l2ad_log_ent_idx = 0; dev->l2ad_log_blk_payload_asize = 0; dev->l2ad_log_blk_payload_start = 0; } } /* * Just mark the device as pending for a rebuild. We won't * be starting a rebuild in line here as it would block pool * import. Instead spa_load_impl will hand that off to an * async task which will call l2arc_spa_rebuild_start. */ dev->l2ad_rebuild = B_TRUE; } else if (spa_writeable(spa)) { /* * In this case TRIM the whole device if l2arc_trim_ahead > 0, * otherwise create a new header. We zero out the memory holding * the header to reset dh_start_lbps. If we TRIM the whole * device the new header will be written by * vdev_trim_l2arc_thread() at the end of the TRIM to update the * trim_state in the header too. When reading the header, if * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 * we opt to TRIM the whole device again. */ if (l2arc_trim_ahead > 0) { dev->l2ad_trim_all = B_TRUE; } else { memset(l2dhdr, 0, l2dhdr_asize); l2arc_dev_hdr_update(dev); } } } /* * Add a vdev for use by the L2ARC. By this point the spa has already * validated the vdev and opened it. */ void l2arc_add_vdev(spa_t *spa, vdev_t *vd) { l2arc_dev_t *adddev; uint64_t l2dhdr_asize; ASSERT(!l2arc_vdev_present(vd)); /* * Create a new l2arc device entry. */ adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); adddev->l2ad_spa = spa; adddev->l2ad_vdev = vd; /* leave extra size for an l2arc device header */ l2dhdr_asize = adddev->l2ad_dev_hdr_asize = MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); adddev->l2ad_hand = adddev->l2ad_start; adddev->l2ad_evict = adddev->l2ad_start; adddev->l2ad_first = B_TRUE; adddev->l2ad_writing = B_FALSE; adddev->l2ad_trim_all = B_FALSE; list_link_init(&adddev->l2ad_node); adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); /* * This is a list of all ARC buffers that are still valid on the * device. */ list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); /* * This is a list of pointers to log blocks that are still present * on the device. */ list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), offsetof(l2arc_lb_ptr_buf_t, node)); vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); zfs_refcount_create(&adddev->l2ad_alloc); zfs_refcount_create(&adddev->l2ad_lb_asize); zfs_refcount_create(&adddev->l2ad_lb_count); /* * Decide if dev is eligible for L2ARC rebuild or whole device * trimming. This has to happen before the device is added in the * cache device list and l2arc_dev_mtx is released. Otherwise * l2arc_feed_thread() might already start writing on the * device. */ l2arc_rebuild_dev(adddev, B_FALSE); /* * Add device to global list */ mutex_enter(&l2arc_dev_mtx); list_insert_head(l2arc_dev_list, adddev); atomic_inc_64(&l2arc_ndev); mutex_exit(&l2arc_dev_mtx); } /* * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() * in case of onlining a cache device. */ void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) { l2arc_dev_t *dev = NULL; dev = l2arc_vdev_get(vd); ASSERT3P(dev, !=, NULL); /* * In contrast to l2arc_add_vdev() we do not have to worry about * l2arc_feed_thread() invalidating previous content when onlining a * cache device. The device parameters (l2ad*) are not cleared when * offlining the device and writing new buffers will not invalidate * all previous content. In worst case only buffers that have not had * their log block written to the device will be lost. * When onlining the cache device (ie offline->online without exporting * the pool in between) this happens: * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() * | | * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild * is set to B_TRUE we might write additional buffers to the device. */ l2arc_rebuild_dev(dev, reopen); } /* * Remove a vdev from the L2ARC. */ void l2arc_remove_vdev(vdev_t *vd) { l2arc_dev_t *remdev = NULL; /* * Find the device by vdev */ remdev = l2arc_vdev_get(vd); ASSERT3P(remdev, !=, NULL); /* * Cancel any ongoing or scheduled rebuild. */ mutex_enter(&l2arc_rebuild_thr_lock); if (remdev->l2ad_rebuild_began == B_TRUE) { remdev->l2ad_rebuild_cancel = B_TRUE; while (remdev->l2ad_rebuild == B_TRUE) cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); } mutex_exit(&l2arc_rebuild_thr_lock); /* * Remove device from global list */ mutex_enter(&l2arc_dev_mtx); list_remove(l2arc_dev_list, remdev); l2arc_dev_last = NULL; /* may have been invalidated */ atomic_dec_64(&l2arc_ndev); mutex_exit(&l2arc_dev_mtx); /* * Clear all buflists and ARC references. L2ARC device flush. */ l2arc_evict(remdev, 0, B_TRUE); list_destroy(&remdev->l2ad_buflist); ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); list_destroy(&remdev->l2ad_lbptr_list); mutex_destroy(&remdev->l2ad_mtx); zfs_refcount_destroy(&remdev->l2ad_alloc); zfs_refcount_destroy(&remdev->l2ad_lb_asize); zfs_refcount_destroy(&remdev->l2ad_lb_count); kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); vmem_free(remdev, sizeof (l2arc_dev_t)); } void l2arc_init(void) { l2arc_thread_exit = 0; l2arc_ndev = 0; mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); l2arc_dev_list = &L2ARC_dev_list; l2arc_free_on_write = &L2ARC_free_on_write; list_create(l2arc_dev_list, sizeof (l2arc_dev_t), offsetof(l2arc_dev_t, l2ad_node)); list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), offsetof(l2arc_data_free_t, l2df_list_node)); } void l2arc_fini(void) { mutex_destroy(&l2arc_feed_thr_lock); cv_destroy(&l2arc_feed_thr_cv); mutex_destroy(&l2arc_rebuild_thr_lock); cv_destroy(&l2arc_rebuild_thr_cv); mutex_destroy(&l2arc_dev_mtx); mutex_destroy(&l2arc_free_on_write_mtx); list_destroy(l2arc_dev_list); list_destroy(l2arc_free_on_write); } void l2arc_start(void) { if (!(spa_mode_global & SPA_MODE_WRITE)) return; (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, TS_RUN, defclsyspri); } void l2arc_stop(void) { if (!(spa_mode_global & SPA_MODE_WRITE)) return; mutex_enter(&l2arc_feed_thr_lock); cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ l2arc_thread_exit = 1; while (l2arc_thread_exit != 0) cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); mutex_exit(&l2arc_feed_thr_lock); } /* * Punches out rebuild threads for the L2ARC devices in a spa. This should * be called after pool import from the spa async thread, since starting * these threads directly from spa_import() will make them part of the * "zpool import" context and delay process exit (and thus pool import). */ void l2arc_spa_rebuild_start(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); /* * Locate the spa's l2arc devices and kick off rebuild threads. */ for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { l2arc_dev_t *dev = l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); if (dev == NULL) { /* Don't attempt a rebuild if the vdev is UNAVAIL */ continue; } mutex_enter(&l2arc_rebuild_thr_lock); if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { dev->l2ad_rebuild_began = B_TRUE; (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, dev, 0, &p0, TS_RUN, minclsyspri); } mutex_exit(&l2arc_rebuild_thr_lock); } } /* * Main entry point for L2ARC rebuilding. */ static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg) { l2arc_dev_t *dev = arg; VERIFY(!dev->l2ad_rebuild_cancel); VERIFY(dev->l2ad_rebuild); (void) l2arc_rebuild(dev); mutex_enter(&l2arc_rebuild_thr_lock); dev->l2ad_rebuild_began = B_FALSE; dev->l2ad_rebuild = B_FALSE; mutex_exit(&l2arc_rebuild_thr_lock); thread_exit(); } /* * This function implements the actual L2ARC metadata rebuild. It: * starts reading the log block chain and restores each block's contents * to memory (reconstructing arc_buf_hdr_t's). * * Operation stops under any of the following conditions: * * 1) We reach the end of the log block chain. * 2) We encounter *any* error condition (cksum errors, io errors) */ static int l2arc_rebuild(l2arc_dev_t *dev) { vdev_t *vd = dev->l2ad_vdev; spa_t *spa = vd->vdev_spa; int err = 0; l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; l2arc_log_blk_phys_t *this_lb, *next_lb; zio_t *this_io = NULL, *next_io = NULL; l2arc_log_blkptr_t lbps[2]; l2arc_lb_ptr_buf_t *lb_ptr_buf; boolean_t lock_held; this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); /* * We prevent device removal while issuing reads to the device, * then during the rebuilding phases we drop this lock again so * that a spa_unload or device remove can be initiated - this is * safe, because the spa will signal us to stop before removing * our device and wait for us to stop. */ spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); lock_held = B_TRUE; /* * Retrieve the persistent L2ARC device state. * L2BLK_GET_PSIZE returns aligned size for log blocks. */ dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), dev->l2ad_start); dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; vd->vdev_trim_state = l2dhdr->dh_trim_state; /* * In case the zfs module parameter l2arc_rebuild_enabled is false * we do not start the rebuild process. */ if (!l2arc_rebuild_enabled) goto out; /* Prepare the rebuild process */ memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); /* Start the rebuild process */ for (;;) { if (!l2arc_log_blkptr_valid(dev, &lbps[0])) break; if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], this_lb, next_lb, this_io, &next_io)) != 0) goto out; /* * Our memory pressure valve. If the system is running low * on memory, rather than swamping memory with new ARC buf * hdrs, we opt not to rebuild the L2ARC. At this point, * however, we have already set up our L2ARC dev to chain in * new metadata log blocks, so the user may choose to offline/ * online the L2ARC dev at a later time (or re-import the pool) * to reconstruct it (when there's less memory pressure). */ if (l2arc_hdr_limit_reached()) { ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); cmn_err(CE_NOTE, "System running low on memory, " "aborting L2ARC rebuild."); err = SET_ERROR(ENOMEM); goto out; } spa_config_exit(spa, SCL_L2ARC, vd); lock_held = B_FALSE; /* * Now that we know that the next_lb checks out alright, we * can start reconstruction from this log block. * L2BLK_GET_PSIZE returns aligned size for log blocks. */ uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); l2arc_log_blk_restore(dev, this_lb, asize); /* * log block restored, include its pointer in the list of * pointers to log blocks present in the L2ARC device. */ lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); memcpy(lb_ptr_buf->lb_ptr, &lbps[0], sizeof (l2arc_log_blkptr_t)); mutex_enter(&dev->l2ad_mtx); list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); ARCSTAT_BUMP(arcstat_l2_log_blk_count); zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); mutex_exit(&dev->l2ad_mtx); vdev_space_update(vd, asize, 0, 0); /* * Protection against loops of log blocks: * * l2ad_hand l2ad_evict * V V * l2ad_start |=======================================| l2ad_end * -----|||----|||---|||----||| * (3) (2) (1) (0) * ---|||---|||----|||---||| * (7) (6) (5) (4) * * In this situation the pointer of log block (4) passes * l2arc_log_blkptr_valid() but the log block should not be * restored as it is overwritten by the payload of log block * (0). Only log blocks (0)-(3) should be restored. We check * whether l2ad_evict lies in between the payload starting * offset of the next log block (lbps[1].lbp_payload_start) * and the payload starting offset of the present log block * (lbps[0].lbp_payload_start). If true and this isn't the * first pass, we are looping from the beginning and we should * stop. */ if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, lbps[0].lbp_payload_start, dev->l2ad_evict) && !dev->l2ad_first) goto out; kpreempt(KPREEMPT_SYNC); for (;;) { mutex_enter(&l2arc_rebuild_thr_lock); if (dev->l2ad_rebuild_cancel) { dev->l2ad_rebuild = B_FALSE; cv_signal(&l2arc_rebuild_thr_cv); mutex_exit(&l2arc_rebuild_thr_lock); err = SET_ERROR(ECANCELED); goto out; } mutex_exit(&l2arc_rebuild_thr_lock); if (spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) { lock_held = B_TRUE; break; } /* * L2ARC config lock held by somebody in writer, * possibly due to them trying to remove us. They'll * likely to want us to shut down, so after a little * delay, we check l2ad_rebuild_cancel and retry * the lock again. */ delay(1); } /* * Continue with the next log block. */ lbps[0] = lbps[1]; lbps[1] = this_lb->lb_prev_lbp; PTR_SWAP(this_lb, next_lb); this_io = next_io; next_io = NULL; } if (this_io != NULL) l2arc_log_blk_fetch_abort(this_io); out: if (next_io != NULL) l2arc_log_blk_fetch_abort(next_io); vmem_free(this_lb, sizeof (*this_lb)); vmem_free(next_lb, sizeof (*next_lb)); if (!l2arc_rebuild_enabled) { spa_history_log_internal(spa, "L2ARC rebuild", NULL, "disabled"); } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { ARCSTAT_BUMP(arcstat_l2_rebuild_success); spa_history_log_internal(spa, "L2ARC rebuild", NULL, "successful, restored %llu blocks", (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { /* * No error but also nothing restored, meaning the lbps array * in the device header points to invalid/non-present log * blocks. Reset the header. */ spa_history_log_internal(spa, "L2ARC rebuild", NULL, "no valid log blocks"); memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize); l2arc_dev_hdr_update(dev); } else if (err == ECANCELED) { /* * In case the rebuild was canceled do not log to spa history * log as the pool may be in the process of being removed. */ zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); } else if (err != 0) { spa_history_log_internal(spa, "L2ARC rebuild", NULL, "aborted, restored %llu blocks", (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); } if (lock_held) spa_config_exit(spa, SCL_L2ARC, vd); return (err); } /* * Attempts to read the device header on the provided L2ARC device and writes * it to `hdr'. On success, this function returns 0, otherwise the appropriate * error code is returned. */ static int l2arc_dev_hdr_read(l2arc_dev_t *dev) { int err; uint64_t guid; l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; abd_t *abd; guid = spa_guid(dev->l2ad_vdev->vdev_spa); abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, - ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | - ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | + ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_SPECULATIVE, B_FALSE)); abd_free(abd); if (err != 0) { ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " "vdev guid: %llu", err, (u_longlong_t)dev->l2ad_vdev->vdev_guid); return (err); } if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || l2dhdr->dh_spa_guid != guid || l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || l2dhdr->dh_log_entries != dev->l2ad_log_entries || l2dhdr->dh_end != dev->l2ad_end || !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, l2dhdr->dh_evict) || (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && l2arc_trim_ahead > 0)) { /* * Attempt to rebuild a device containing no actual dev hdr * or containing a header from some other pool or from another * version of persistent L2ARC. */ ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); return (SET_ERROR(ENOTSUP)); } return (0); } /* * Reads L2ARC log blocks from storage and validates their contents. * * This function implements a simple fetcher to make sure that while * we're processing one buffer the L2ARC is already fetching the next * one in the chain. * * The arguments this_lp and next_lp point to the current and next log block * address in the block chain. Similarly, this_lb and next_lb hold the * l2arc_log_blk_phys_t's of the current and next L2ARC blk. * * The `this_io' and `next_io' arguments are used for block fetching. * When issuing the first blk IO during rebuild, you should pass NULL for * `this_io'. This function will then issue a sync IO to read the block and * also issue an async IO to fetch the next block in the block chain. The * fetched IO is returned in `next_io'. On subsequent calls to this * function, pass the value returned in `next_io' from the previous call * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. * Prior to the call, you should initialize your `next_io' pointer to be * NULL. If no fetch IO was issued, the pointer is left set at NULL. * * On success, this function returns 0, otherwise it returns an appropriate * error code. On error the fetching IO is aborted and cleared before * returning from this function. Therefore, if we return `success', the * caller can assume that we have taken care of cleanup of fetch IOs. */ static int l2arc_log_blk_read(l2arc_dev_t *dev, const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, zio_t *this_io, zio_t **next_io) { int err = 0; zio_cksum_t cksum; abd_t *abd = NULL; uint64_t asize; ASSERT(this_lbp != NULL && next_lbp != NULL); ASSERT(this_lb != NULL && next_lb != NULL); ASSERT(next_io != NULL && *next_io == NULL); ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); /* * Check to see if we have issued the IO for this log block in a * previous run. If not, this is the first call, so issue it now. */ if (this_io == NULL) { this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, this_lb); } /* * Peek to see if we can start issuing the next IO immediately. */ if (l2arc_log_blkptr_valid(dev, next_lbp)) { /* * Start issuing IO for the next log block early - this * should help keep the L2ARC device busy while we * decompress and restore this log block. */ *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, next_lb); } /* Wait for the IO to read this log block to complete */ if ((err = zio_wait(this_io)) != 0) { ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " "offset: %llu, vdev guid: %llu", err, (u_longlong_t)this_lbp->lbp_daddr, (u_longlong_t)dev->l2ad_vdev->vdev_guid); goto cleanup; } /* * Make sure the buffer checks out. * L2BLK_GET_PSIZE returns aligned size for log blocks. */ asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); fletcher_4_native(this_lb, asize, NULL, &cksum); if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", (u_longlong_t)this_lbp->lbp_daddr, (u_longlong_t)dev->l2ad_vdev->vdev_guid, (u_longlong_t)dev->l2ad_hand, (u_longlong_t)dev->l2ad_evict); err = SET_ERROR(ECKSUM); goto cleanup; } /* Now we can take our time decoding this buffer */ switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { case ZIO_COMPRESS_OFF: break; case ZIO_COMPRESS_LZ4: abd = abd_alloc_for_io(asize, B_TRUE); abd_copy_from_buf_off(abd, this_lb, 0, asize); if ((err = zio_decompress_data( L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { err = SET_ERROR(EINVAL); goto cleanup; } break; default: err = SET_ERROR(EINVAL); goto cleanup; } if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) byteswap_uint64_array(this_lb, sizeof (*this_lb)); if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { err = SET_ERROR(EINVAL); goto cleanup; } cleanup: /* Abort an in-flight fetch I/O in case of error */ if (err != 0 && *next_io != NULL) { l2arc_log_blk_fetch_abort(*next_io); *next_io = NULL; } if (abd != NULL) abd_free(abd); return (err); } /* * Restores the payload of a log block to ARC. This creates empty ARC hdr * entries which only contain an l2arc hdr, essentially restoring the * buffers to their L2ARC evicted state. This function also updates space * usage on the L2ARC vdev to make sure it tracks restored buffers. */ static void l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, uint64_t lb_asize) { uint64_t size = 0, asize = 0; uint64_t log_entries = dev->l2ad_log_entries; /* * Usually arc_adapt() is called only for data, not headers, but * since we may allocate significant amount of memory here, let ARC * grow its arc_c. */ arc_adapt(log_entries * HDR_L2ONLY_SIZE); for (int i = log_entries - 1; i >= 0; i--) { /* * Restore goes in the reverse temporal direction to preserve * correct temporal ordering of buffers in the l2ad_buflist. * l2arc_hdr_restore also does a list_insert_tail instead of * list_insert_head on the l2ad_buflist: * * LIST l2ad_buflist LIST * HEAD <------ (time) ------ TAIL * direction +-----+-----+-----+-----+-----+ direction * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild * fill +-----+-----+-----+-----+-----+ * ^ ^ * | | * | | * l2arc_feed_thread l2arc_rebuild * will place new bufs here restores bufs here * * During l2arc_rebuild() the device is not used by * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. */ size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); asize += vdev_psize_to_asize(dev->l2ad_vdev, L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); l2arc_hdr_restore(&lb->lb_entries[i], dev); } /* * Record rebuild stats: * size Logical size of restored buffers in the L2ARC * asize Aligned size of restored buffers in the L2ARC */ ARCSTAT_INCR(arcstat_l2_rebuild_size, size); ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); } /* * Restores a single ARC buf hdr from a log entry. The ARC buffer is put * into a state indicating that it has been evicted to L2ARC. */ static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) { arc_buf_hdr_t *hdr, *exists; kmutex_t *hash_lock; arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); uint64_t asize; /* * Do all the allocation before grabbing any locks, this lets us * sleep if memory is full and we don't have to deal with failed * allocations. */ hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, dev, le->le_dva, le->le_daddr, L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, L2BLK_GET_PROTECTED((le)->le_prop), L2BLK_GET_PREFETCH((le)->le_prop), L2BLK_GET_STATE((le)->le_prop)); asize = vdev_psize_to_asize(dev->l2ad_vdev, L2BLK_GET_PSIZE((le)->le_prop)); /* * vdev_space_update() has to be called before arc_hdr_destroy() to * avoid underflow since the latter also calls vdev_space_update(). */ l2arc_hdr_arcstats_increment(hdr); vdev_space_update(dev->l2ad_vdev, asize, 0, 0); mutex_enter(&dev->l2ad_mtx); list_insert_tail(&dev->l2ad_buflist, hdr); (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); mutex_exit(&dev->l2ad_mtx); exists = buf_hash_insert(hdr, &hash_lock); if (exists) { /* Buffer was already cached, no need to restore it. */ arc_hdr_destroy(hdr); /* * If the buffer is already cached, check whether it has * L2ARC metadata. If not, enter them and update the flag. * This is important is case of onlining a cache device, since * we previously evicted all L2ARC metadata from ARC. */ if (!HDR_HAS_L2HDR(exists)) { arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); exists->b_l2hdr.b_dev = dev; exists->b_l2hdr.b_daddr = le->le_daddr; exists->b_l2hdr.b_arcs_state = L2BLK_GET_STATE((le)->le_prop); mutex_enter(&dev->l2ad_mtx); list_insert_tail(&dev->l2ad_buflist, exists); (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(exists), exists); mutex_exit(&dev->l2ad_mtx); l2arc_hdr_arcstats_increment(exists); vdev_space_update(dev->l2ad_vdev, asize, 0, 0); } ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); } mutex_exit(hash_lock); } /* * Starts an asynchronous read IO to read a log block. This is used in log * block reconstruction to start reading the next block before we are done * decoding and reconstructing the current block, to keep the l2arc device * nice and hot with read IO to process. * The returned zio will contain a newly allocated memory buffers for the IO * data which should then be freed by the caller once the zio is no longer * needed (i.e. due to it having completed). If you wish to abort this * zio, you should do so using l2arc_log_blk_fetch_abort, which takes * care of disposing of the allocated buffers correctly. */ static zio_t * l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, l2arc_log_blk_phys_t *lb) { uint32_t asize; zio_t *pio; l2arc_read_callback_t *cb; /* L2BLK_GET_PSIZE returns aligned size for log blocks */ asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); cb->l2rcb_abd = abd_get_from_buf(lb, asize); pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, - ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | - ZIO_FLAG_DONT_RETRY); + ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY); (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, - ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | + ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); return (pio); } /* * Aborts a zio returned from l2arc_log_blk_fetch and frees the data * buffers allocated for it. */ static void l2arc_log_blk_fetch_abort(zio_t *zio) { (void) zio_wait(zio); } /* * Creates a zio to update the device header on an l2arc device. */ void l2arc_dev_hdr_update(l2arc_dev_t *dev) { l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; abd_t *abd; int err; VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; l2dhdr->dh_log_entries = dev->l2ad_log_entries; l2dhdr->dh_evict = dev->l2ad_evict; l2dhdr->dh_start = dev->l2ad_start; l2dhdr->dh_end = dev->l2ad_end; l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); l2dhdr->dh_flags = 0; l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; if (dev->l2ad_first) l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); abd_free(abd); if (err != 0) { zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " "vdev guid: %llu", err, (u_longlong_t)dev->l2ad_vdev->vdev_guid); } } /* * Commits a log block to the L2ARC device. This routine is invoked from * l2arc_write_buffers when the log block fills up. * This function allocates some memory to temporarily hold the serialized * buffer to be written. This is then released in l2arc_write_done. */ static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) { l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; uint64_t psize, asize; zio_t *wzio; l2arc_lb_abd_buf_t *abd_buf; uint8_t *tmpbuf = NULL; l2arc_lb_ptr_buf_t *lb_ptr_buf; VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); abd_buf = zio_buf_alloc(sizeof (*abd_buf)); abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); /* link the buffer into the block chain */ lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; lb->lb_magic = L2ARC_LOG_BLK_MAGIC; /* * l2arc_log_blk_commit() may be called multiple times during a single * l2arc_write_buffers() call. Save the allocated abd buffers in a list * so we can free them in l2arc_write_done() later on. */ list_insert_tail(&cb->l2wcb_abd_list, abd_buf); /* try to compress the buffer */ psize = zio_compress_data(ZIO_COMPRESS_LZ4, abd_buf->abd, (void **) &tmpbuf, sizeof (*lb), 0); /* a log block is never entirely zero */ ASSERT(psize != 0); asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); ASSERT(asize <= sizeof (*lb)); /* * Update the start log block pointer in the device header to point * to the log block we're about to write. */ l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; l2dhdr->dh_start_lbps[0].lbp_payload_asize = dev->l2ad_log_blk_payload_asize; l2dhdr->dh_start_lbps[0].lbp_payload_start = dev->l2ad_log_blk_payload_start; L2BLK_SET_LSIZE( (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); L2BLK_SET_PSIZE( (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); L2BLK_SET_CHECKSUM( (&l2dhdr->dh_start_lbps[0])->lbp_prop, ZIO_CHECKSUM_FLETCHER_4); if (asize < sizeof (*lb)) { /* compression succeeded */ memset(tmpbuf + psize, 0, asize - psize); L2BLK_SET_COMPRESS( (&l2dhdr->dh_start_lbps[0])->lbp_prop, ZIO_COMPRESS_LZ4); } else { /* compression failed */ memcpy(tmpbuf, lb, sizeof (*lb)); L2BLK_SET_COMPRESS( (&l2dhdr->dh_start_lbps[0])->lbp_prop, ZIO_COMPRESS_OFF); } /* checksum what we're about to write */ fletcher_4_native(tmpbuf, asize, NULL, &l2dhdr->dh_start_lbps[0].lbp_cksum); abd_free(abd_buf->abd); /* perform the write itself */ abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); (void) zio_nowait(wzio); dev->l2ad_hand += asize; /* * Include the committed log block's pointer in the list of pointers * to log blocks present in the L2ARC device. */ memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0], sizeof (l2arc_log_blkptr_t)); mutex_enter(&dev->l2ad_mtx); list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); ARCSTAT_BUMP(arcstat_l2_log_blk_count); zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); mutex_exit(&dev->l2ad_mtx); vdev_space_update(dev->l2ad_vdev, asize, 0, 0); /* bump the kstats */ ARCSTAT_INCR(arcstat_l2_write_bytes, asize); ARCSTAT_BUMP(arcstat_l2_log_blk_writes); ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, dev->l2ad_log_blk_payload_asize / asize); /* start a new log block */ dev->l2ad_log_ent_idx = 0; dev->l2ad_log_blk_payload_asize = 0; dev->l2ad_log_blk_payload_start = 0; return (asize); } /* * Validates an L2ARC log block address to make sure that it can be read * from the provided L2ARC device. */ boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) { /* L2BLK_GET_PSIZE returns aligned size for log blocks */ uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); uint64_t end = lbp->lbp_daddr + asize - 1; uint64_t start = lbp->lbp_payload_start; boolean_t evicted = B_FALSE; /* * A log block is valid if all of the following conditions are true: * - it fits entirely (including its payload) between l2ad_start and * l2ad_end * - it has a valid size * - neither the log block itself nor part of its payload was evicted * by l2arc_evict(): * * l2ad_hand l2ad_evict * | | lbp_daddr * | start | | end * | | | | | * V V V V V * l2ad_start ============================================ l2ad_end * --------------------------|||| * ^ ^ * | log block * payload */ evicted = l2arc_range_check_overlap(start, end, dev->l2ad_hand) || l2arc_range_check_overlap(start, end, dev->l2ad_evict) || l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); return (start >= dev->l2ad_start && end <= dev->l2ad_end && asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && (!evicted || dev->l2ad_first)); } /* * Inserts ARC buffer header `hdr' into the current L2ARC log block on * the device. The buffer being inserted must be present in L2ARC. * Returns B_TRUE if the L2ARC log block is full and needs to be committed * to L2ARC, or B_FALSE if it still has room for more ARC buffers. */ static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) { l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; l2arc_log_ent_phys_t *le; if (dev->l2ad_log_entries == 0) return (B_FALSE); int index = dev->l2ad_log_ent_idx++; ASSERT3S(index, <, dev->l2ad_log_entries); ASSERT(HDR_HAS_L2HDR(hdr)); le = &lb->lb_entries[index]; memset(le, 0, sizeof (*le)); le->le_dva = hdr->b_dva; le->le_birth = hdr->b_birth; le->le_daddr = hdr->b_l2hdr.b_daddr; if (index == 0) dev->l2ad_log_blk_payload_start = le->le_daddr; L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); le->le_complevel = hdr->b_complevel; L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, HDR_GET_PSIZE(hdr)); return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); } /* * Checks whether a given L2ARC device address sits in a time-sequential * range. The trick here is that the L2ARC is a rotary buffer, so we can't * just do a range comparison, we need to handle the situation in which the * range wraps around the end of the L2ARC device. Arguments: * bottom -- Lower end of the range to check (written to earlier). * top -- Upper end of the range to check (written to later). * check -- The address for which we want to determine if it sits in * between the top and bottom. * * The 3-way conditional below represents the following cases: * * bottom < top : Sequentially ordered case: * --------+-------------------+ * | (overlap here?) | * L2ARC dev V V * |---------------============--------------| * * bottom > top: Looped-around case: * --------+------------------+ * | (overlap here?) | * L2ARC dev V V * |===============---------------===========| * ^ ^ * | (or here?) | * +---------------+--------- * * top == bottom : Just a single address comparison. */ boolean_t l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) { if (bottom < top) return (bottom <= check && check <= top); else if (bottom > top) return (check <= top || bottom <= check); else return (check == top); } EXPORT_SYMBOL(arc_buf_size); EXPORT_SYMBOL(arc_write); EXPORT_SYMBOL(arc_read); EXPORT_SYMBOL(arc_buf_info); EXPORT_SYMBOL(arc_getbuf_func); EXPORT_SYMBOL(arc_add_prune_callback); EXPORT_SYMBOL(arc_remove_prune_callback); ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes"); ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes"); ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW, "Balance between metadata and data on ghost hits."); ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, param_get_uint, ZMOD_RW, "Seconds before growing ARC size"); ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)"); ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, "Percent of pagecache to reclaim ARC to"); ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD, "Target average block size"); ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, "Disable compressed ARC buffers"); ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, param_get_uint, ZMOD_RW, "Min life of prefetch block in ms"); ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, param_set_arc_int, param_get_uint, ZMOD_RW, "Min life of prescient prefetched block in ms"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW, "Max write bytes per interval"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW, "Extra write bytes during device warmup"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW, "Number of max device writes to precache"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW, "Compressed l2arc_headroom multiplier"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW, "TRIM ahead L2ARC write size multiplier"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW, "Seconds between L2ARC writing"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW, "Min feed interval in milliseconds"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, "Skip caching prefetched buffers"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, "Turbo L2ARC warmup"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, "No reads during writes"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW, "Percent of ARC size allowed for L2ARC-only headers"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, "Rebuild the L2ARC when importing a pool"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW, "Min size in bytes to write rebuild log blocks in L2ARC"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, "Cache only MFU data from ARC into L2ARC"); ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW, "Exclude dbufs on special vdevs from being cached to L2ARC if set."); ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes"); ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64, spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes"); ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64, spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC"); ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, param_set_arc_int, param_get_uint, ZMOD_RW, "Percent of ARC meta buffers for dnodes"); ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW, "Percentage of excess dnodes to try to unpin"); ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW, "When full, ARC allocation waits for eviction of this % of alloc size"); ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW, "The number of headers to evict per sublist before moving to the next"); ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW, "Number of arc_prune threads"); diff --git a/module/zfs/dmu_recv.c b/module/zfs/dmu_recv.c index c22a95f8647f..2fdd7c1ece73 100644 --- a/module/zfs/dmu_recv.c +++ b/module/zfs/dmu_recv.c @@ -1,3799 +1,3799 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright 2014 HybridCluster. All rights reserved. * Copyright (c) 2018, loli10K . All rights reserved. * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019, Allan Jude * Copyright (c) 2019 Datto Inc. * Copyright (c) 2022 Axcient. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #endif #include static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE; static uint_t zfs_recv_queue_ff = 20; static uint_t zfs_recv_write_batch_size = 1024 * 1024; static int zfs_recv_best_effort_corrective = 0; static const void *const dmu_recv_tag = "dmu_recv_tag"; const char *const recv_clone_name = "%recv"; typedef enum { ORNS_NO, ORNS_YES, ORNS_MAYBE } or_need_sync_t; static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, void *buf); struct receive_record_arg { dmu_replay_record_t header; void *payload; /* Pointer to a buffer containing the payload */ /* * If the record is a WRITE or SPILL, pointer to the abd containing the * payload. */ abd_t *abd; int payload_size; uint64_t bytes_read; /* bytes read from stream when record created */ boolean_t eos_marker; /* Marks the end of the stream */ bqueue_node_t node; }; struct receive_writer_arg { objset_t *os; boolean_t byteswap; bqueue_t q; /* * These three members are used to signal to the main thread when * we're done. */ kmutex_t mutex; kcondvar_t cv; boolean_t done; int err; const char *tofs; boolean_t heal; boolean_t resumable; boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ boolean_t full; /* this is a full send stream */ uint64_t last_object; uint64_t last_offset; uint64_t max_object; /* highest object ID referenced in stream */ uint64_t bytes_read; /* bytes read when current record created */ list_t write_batch; /* Encryption parameters for the last received DRR_OBJECT_RANGE */ boolean_t or_crypt_params_present; uint64_t or_firstobj; uint64_t or_numslots; uint8_t or_salt[ZIO_DATA_SALT_LEN]; uint8_t or_iv[ZIO_DATA_IV_LEN]; uint8_t or_mac[ZIO_DATA_MAC_LEN]; boolean_t or_byteorder; zio_t *heal_pio; /* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */ or_need_sync_t or_need_sync; }; typedef struct dmu_recv_begin_arg { const char *drba_origin; dmu_recv_cookie_t *drba_cookie; cred_t *drba_cred; proc_t *drba_proc; dsl_crypto_params_t *drba_dcp; } dmu_recv_begin_arg_t; static void byteswap_record(dmu_replay_record_t *drr) { #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) drr->drr_type = BSWAP_32(drr->drr_type); drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); switch (drr->drr_type) { case DRR_BEGIN: DO64(drr_begin.drr_magic); DO64(drr_begin.drr_versioninfo); DO64(drr_begin.drr_creation_time); DO32(drr_begin.drr_type); DO32(drr_begin.drr_flags); DO64(drr_begin.drr_toguid); DO64(drr_begin.drr_fromguid); break; case DRR_OBJECT: DO64(drr_object.drr_object); DO32(drr_object.drr_type); DO32(drr_object.drr_bonustype); DO32(drr_object.drr_blksz); DO32(drr_object.drr_bonuslen); DO32(drr_object.drr_raw_bonuslen); DO64(drr_object.drr_toguid); DO64(drr_object.drr_maxblkid); break; case DRR_FREEOBJECTS: DO64(drr_freeobjects.drr_firstobj); DO64(drr_freeobjects.drr_numobjs); DO64(drr_freeobjects.drr_toguid); break; case DRR_WRITE: DO64(drr_write.drr_object); DO32(drr_write.drr_type); DO64(drr_write.drr_offset); DO64(drr_write.drr_logical_size); DO64(drr_write.drr_toguid); ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); DO64(drr_write.drr_key.ddk_prop); DO64(drr_write.drr_compressed_size); break; case DRR_WRITE_EMBEDDED: DO64(drr_write_embedded.drr_object); DO64(drr_write_embedded.drr_offset); DO64(drr_write_embedded.drr_length); DO64(drr_write_embedded.drr_toguid); DO32(drr_write_embedded.drr_lsize); DO32(drr_write_embedded.drr_psize); break; case DRR_FREE: DO64(drr_free.drr_object); DO64(drr_free.drr_offset); DO64(drr_free.drr_length); DO64(drr_free.drr_toguid); break; case DRR_SPILL: DO64(drr_spill.drr_object); DO64(drr_spill.drr_length); DO64(drr_spill.drr_toguid); DO64(drr_spill.drr_compressed_size); DO32(drr_spill.drr_type); break; case DRR_OBJECT_RANGE: DO64(drr_object_range.drr_firstobj); DO64(drr_object_range.drr_numslots); DO64(drr_object_range.drr_toguid); break; case DRR_REDACT: DO64(drr_redact.drr_object); DO64(drr_redact.drr_offset); DO64(drr_redact.drr_length); DO64(drr_redact.drr_toguid); break; case DRR_END: DO64(drr_end.drr_toguid); ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); break; default: break; } if (drr->drr_type != DRR_BEGIN) { ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); } #undef DO64 #undef DO32 } static boolean_t redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) { for (int i = 0; i < num_snaps; i++) { if (snaps[i] == guid) return (B_TRUE); } return (B_FALSE); } /* * Check that the new stream we're trying to receive is redacted with respect to * a subset of the snapshots that the origin was redacted with respect to. For * the reasons behind this, see the man page on redacted zfs sends and receives. */ static boolean_t compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, uint64_t *redact_snaps, uint64_t num_redact_snaps) { /* * Short circuit the comparison; if we are redacted with respect to * more snapshots than the origin, we can't be redacted with respect * to a subset. */ if (num_redact_snaps > origin_num_snaps) { return (B_FALSE); } for (int i = 0; i < num_redact_snaps; i++) { if (!redact_snaps_contains(origin_snaps, origin_num_snaps, redact_snaps[i])) { return (B_FALSE); } } return (B_TRUE); } static boolean_t redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) { uint64_t *origin_snaps; uint64_t origin_num_snaps; dmu_recv_cookie_t *drc = drba->drba_cookie; struct drr_begin *drrb = drc->drc_drrb; int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); int err = 0; boolean_t ret = B_TRUE; uint64_t *redact_snaps; uint_t numredactsnaps; /* * If this is a full send stream, we're safe no matter what. */ if (drrb->drr_fromguid == 0) return (ret); VERIFY(dsl_dataset_get_uint64_array_feature(origin, SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 0) { /* * If the send stream was sent from the redaction bookmark or * the redacted version of the dataset, then we're safe. Verify * that this is from the a compatible redaction bookmark or * redacted dataset. */ if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, redact_snaps, numredactsnaps)) { err = EINVAL; } } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { /* * If the stream is redacted, it must be redacted with respect * to a subset of what the origin is redacted with respect to. * See case number 2 in the zfs man page section on redacted zfs * send. */ err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); if (err != 0 || !compatible_redact_snaps(origin_snaps, origin_num_snaps, redact_snaps, numredactsnaps)) { err = EINVAL; } } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, drrb->drr_toguid)) { /* * If the stream isn't redacted but the origin is, this must be * one of the snapshots the origin is redacted with respect to. * See case number 1 in the zfs man page section on redacted zfs * send. */ err = EINVAL; } if (err != 0) ret = B_FALSE; return (ret); } /* * If we previously received a stream with --large-block, we don't support * receiving an incremental on top of it without --large-block. This avoids * forcing a read-modify-write or trying to re-aggregate a string of WRITE * records. */ static int recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) { if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); return (0); } static int recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, uint64_t fromguid, uint64_t featureflags) { uint64_t obj; uint64_t children; int error; dsl_dataset_t *snap; dsl_pool_t *dp = ds->ds_dir->dd_pool; boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; /* Temporary clone name must not exist. */ error = zap_lookup(dp->dp_meta_objset, dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 8, 1, &obj); if (error != ENOENT) return (error == 0 ? SET_ERROR(EBUSY) : error); /* Resume state must not be set. */ if (dsl_dataset_has_resume_receive_state(ds)) return (SET_ERROR(EBUSY)); /* New snapshot name must not exist if we're not healing it. */ error = zap_lookup(dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_snapnames_zapobj, drba->drba_cookie->drc_tosnap, 8, 1, &obj); if (drba->drba_cookie->drc_heal) { if (error != 0) return (error); } else if (error != ENOENT) { return (error == 0 ? SET_ERROR(EEXIST) : error); } /* Must not have children if receiving a ZVOL. */ error = zap_count(dp->dp_meta_objset, dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); if (error != 0) return (error); if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && children > 0) return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); /* * Check snapshot limit before receiving. We'll recheck again at the * end, but might as well abort before receiving if we're already over * the limit. * * Note that we do not check the file system limit with * dsl_dir_fscount_check because the temporary %clones don't count * against that limit. */ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred, drba->drba_proc); if (error != 0) return (error); if (drba->drba_cookie->drc_heal) { /* Encryption is incompatible with embedded data. */ if (encrypted && embed) return (SET_ERROR(EINVAL)); /* Healing is not supported when in 'force' mode. */ if (drba->drba_cookie->drc_force) return (SET_ERROR(EINVAL)); /* Must have keys loaded if doing encrypted non-raw recv. */ if (encrypted && !raw) { if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object, NULL, NULL) != 0) return (SET_ERROR(EACCES)); } error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) return (error); /* * When not doing best effort corrective recv healing can only * be done if the send stream is for the same snapshot as the * one we are trying to heal. */ if (zfs_recv_best_effort_corrective == 0 && drba->drba_cookie->drc_drrb->drr_toguid != dsl_dataset_phys(snap)->ds_guid) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ENOTSUP)); } dsl_dataset_rele(snap, FTAG); } else if (fromguid != 0) { /* Sanity check the incremental recv */ uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; /* Can't perform a raw receive on top of a non-raw receive */ if (!encrypted && raw) return (SET_ERROR(EINVAL)); /* Encryption is incompatible with embedded data */ if (encrypted && embed) return (SET_ERROR(EINVAL)); /* Find snapshot in this dir that matches fromguid. */ while (obj != 0) { error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) return (SET_ERROR(ENODEV)); if (snap->ds_dir != ds->ds_dir) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ENODEV)); } if (dsl_dataset_phys(snap)->ds_guid == fromguid) break; obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_dataset_rele(snap, FTAG); } if (obj == 0) return (SET_ERROR(ENODEV)); if (drba->drba_cookie->drc_force) { drba->drba_cookie->drc_fromsnapobj = obj; } else { /* * If we are not forcing, there must be no * changes since fromsnap. Raw sends have an * additional constraint that requires that * no "noop" snapshots exist between fromsnap * and tosnap for the IVset checking code to * work properly. */ if (dsl_dataset_modified_since_snap(ds, snap) || (raw && dsl_dataset_phys(ds)->ds_prev_snap_obj != snap->ds_object)) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ETXTBSY)); } drba->drba_cookie->drc_fromsnapobj = ds->ds_prev->ds_object; } if (dsl_dataset_feature_is_active(snap, SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, snap)) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(EINVAL)); } error = recv_check_large_blocks(snap, featureflags); if (error != 0) { dsl_dataset_rele(snap, FTAG); return (error); } dsl_dataset_rele(snap, FTAG); } else { /* If full and not healing then must be forced. */ if (!drba->drba_cookie->drc_force) return (SET_ERROR(EEXIST)); /* * We don't support using zfs recv -F to blow away * encrypted filesystems. This would require the * dsl dir to point to the old encryption key and * the new one at the same time during the receive. */ if ((!encrypted && raw) || encrypted) return (SET_ERROR(EINVAL)); /* * Perform the same encryption checks we would if * we were creating a new dataset from scratch. */ if (!raw) { boolean_t will_encrypt; error = dmu_objset_create_crypt_check( ds->ds_dir->dd_parent, drba->drba_dcp, &will_encrypt); if (error != 0) return (error); if (will_encrypt && embed) return (SET_ERROR(EINVAL)); } } return (0); } /* * Check that any feature flags used in the data stream we're receiving are * supported by the pool we are receiving into. * * Note that some of the features we explicitly check here have additional * (implicit) features they depend on, but those dependencies are enforced * through the zfeature_register() calls declaring the features that we * explicitly check. */ static int recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) { /* * Check if there are any unsupported feature flags. */ if (!DMU_STREAM_SUPPORTED(featureflags)) { return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); } /* Verify pool version supports SA if SA_SPILL feature set */ if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && spa_version(spa) < SPA_VERSION_SA) return (SET_ERROR(ENOTSUP)); /* * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, * and large_dnodes in the stream can only be used if those pool * features are enabled because we don't attempt to decompress / * un-embed / un-mooch / split up the blocks / dnodes during the * receive process. */ if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) return (SET_ERROR(ENOTSUP)); /* * Receiving redacted streams requires that redacted datasets are * enabled. */ if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) return (SET_ERROR(ENOTSUP)); return (0); } static int dmu_recv_begin_check(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); struct drr_begin *drrb = drba->drba_cookie->drc_drrb; uint64_t fromguid = drrb->drr_fromguid; int flags = drrb->drr_flags; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; int error; uint64_t featureflags = drba->drba_cookie->drc_featureflags; dsl_dataset_t *ds; const char *tofs = drba->drba_cookie->drc_tofs; /* already checked */ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM || drrb->drr_type >= DMU_OST_NUMTYPES || ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) return (SET_ERROR(EINVAL)); error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); if (error != 0) return (error); /* Resumable receives require extensible datasets */ if (drba->drba_cookie->drc_resumable && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) return (SET_ERROR(ENOTSUP)); if (featureflags & DMU_BACKUP_FEATURE_RAW) { /* raw receives require the encryption feature */ if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) return (SET_ERROR(ENOTSUP)); /* embedded data is incompatible with encryption and raw recv */ if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) return (SET_ERROR(EINVAL)); /* raw receives require spill block allocation flag */ if (!(flags & DRR_FLAG_SPILL_BLOCK)) return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); } else { /* * We support unencrypted datasets below encrypted ones now, * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing * with a dataset we may encrypt. */ if (drba->drba_dcp == NULL || drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) { dsflags |= DS_HOLD_FLAG_DECRYPT; } } error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); if (error == 0) { /* target fs already exists; recv into temp clone */ /* Can't recv a clone into an existing fs */ if (flags & DRR_FLAG_CLONE || drba->drba_origin) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } error = recv_begin_check_existing_impl(drba, ds, fromguid, featureflags); dsl_dataset_rele_flags(ds, dsflags, FTAG); } else if (error == ENOENT) { /* target fs does not exist; must be a full backup or clone */ char buf[ZFS_MAX_DATASET_NAME_LEN]; objset_t *os; /* healing recv must be done "into" an existing snapshot */ if (drba->drba_cookie->drc_heal == B_TRUE) return (SET_ERROR(ENOTSUP)); /* * If it's a non-clone incremental, we are missing the * target fs, so fail the recv. */ if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || drba->drba_origin)) return (SET_ERROR(ENOENT)); /* * If we're receiving a full send as a clone, and it doesn't * contain all the necessary free records and freeobject * records, reject it. */ if (fromguid == 0 && drba->drba_origin != NULL && !(flags & DRR_FLAG_FREERECORDS)) return (SET_ERROR(EINVAL)); /* Open the parent of tofs */ ASSERT3U(strlen(tofs), <, sizeof (buf)); (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); error = dsl_dataset_hold(dp, buf, FTAG, &ds); if (error != 0) return (error); if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && drba->drba_origin == NULL) { boolean_t will_encrypt; /* * Check that we aren't breaking any encryption rules * and that we have all the parameters we need to * create an encrypted dataset if necessary. If we are * making an encrypted dataset the stream can't have * embedded data. */ error = dmu_objset_create_crypt_check(ds->ds_dir, drba->drba_dcp, &will_encrypt); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (will_encrypt && (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } } /* * Check filesystem and snapshot limits before receiving. We'll * recheck snapshot limits again at the end (we create the * filesystems and increment those counts during begin_sync). */ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred, drba->drba_proc); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred, drba->drba_proc); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } /* can't recv below anything but filesystems (eg. no ZVOLs) */ error = dmu_objset_from_ds(ds, &os); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (dmu_objset_type(os) != DMU_OST_ZFS) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); } if (drba->drba_origin != NULL) { dsl_dataset_t *origin; error = dsl_dataset_hold_flags(dp, drba->drba_origin, dsflags, FTAG, &origin); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (!origin->ds_is_snapshot) { dsl_dataset_rele_flags(origin, dsflags, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } if (dsl_dataset_phys(origin)->ds_guid != fromguid && fromguid != 0) { dsl_dataset_rele_flags(origin, dsflags, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENODEV)); } if (origin->ds_dir->dd_crypto_obj != 0 && (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { dsl_dataset_rele_flags(origin, dsflags, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } /* * If the origin is redacted we need to verify that this * send stream can safely be received on top of the * origin. */ if (dsl_dataset_feature_is_active(origin, SPA_FEATURE_REDACTED_DATASETS)) { if (!redact_check(drba, origin)) { dsl_dataset_rele_flags(origin, dsflags, FTAG); dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } } error = recv_check_large_blocks(ds, featureflags); if (error != 0) { dsl_dataset_rele_flags(origin, dsflags, FTAG); dsl_dataset_rele_flags(ds, dsflags, FTAG); return (error); } dsl_dataset_rele_flags(origin, dsflags, FTAG); } dsl_dataset_rele(ds, FTAG); error = 0; } return (error); } static void dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); objset_t *mos = dp->dp_meta_objset; dmu_recv_cookie_t *drc = drba->drba_cookie; struct drr_begin *drrb = drc->drc_drrb; const char *tofs = drc->drc_tofs; uint64_t featureflags = drc->drc_featureflags; dsl_dataset_t *ds, *newds; objset_t *os; uint64_t dsobj; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; int error; uint64_t crflags = 0; dsl_crypto_params_t dummy_dcp = { 0 }; dsl_crypto_params_t *dcp = drba->drba_dcp; if (drrb->drr_flags & DRR_FLAG_CI_DATA) crflags |= DS_FLAG_CI_DATASET; if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) dsflags |= DS_HOLD_FLAG_DECRYPT; /* * Raw, non-incremental recvs always use a dummy dcp with * the raw cmd set. Raw incremental recvs do not use a dcp * since the encryption parameters are already set in stone. */ if (dcp == NULL && drrb->drr_fromguid == 0 && drba->drba_origin == NULL) { ASSERT3P(dcp, ==, NULL); dcp = &dummy_dcp; if (featureflags & DMU_BACKUP_FEATURE_RAW) dcp->cp_cmd = DCP_CMD_RAW_RECV; } error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); if (error == 0) { /* Create temporary clone unless we're doing corrective recv */ dsl_dataset_t *snap = NULL; if (drba->drba_cookie->drc_fromsnapobj != 0) { VERIFY0(dsl_dataset_hold_obj(dp, drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); ASSERT3P(dcp, ==, NULL); } if (drc->drc_heal) { /* When healing we want to use the provided snapshot */ VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap, &dsobj)); } else { dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, snap, crflags, drba->drba_cred, dcp, tx); } if (drba->drba_cookie->drc_fromsnapobj != 0) dsl_dataset_rele(snap, FTAG); dsl_dataset_rele_flags(ds, dsflags, FTAG); } else { dsl_dir_t *dd; const char *tail; dsl_dataset_t *origin = NULL; VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); if (drba->drba_origin != NULL) { VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, FTAG, &origin)); ASSERT3P(dcp, ==, NULL); } /* Create new dataset. */ dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, origin, crflags, drba->drba_cred, dcp, tx); if (origin != NULL) dsl_dataset_rele(origin, FTAG); dsl_dir_rele(dd, FTAG); drc->drc_newfs = B_TRUE; } VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, &newds)); if (dsl_dataset_feature_is_active(newds, SPA_FEATURE_REDACTED_DATASETS)) { /* * If the origin dataset is redacted, the child will be redacted * when we create it. We clear the new dataset's * redaction info; if it should be redacted, we'll fill * in its information later. */ dsl_dataset_deactivate_feature(newds, SPA_FEATURE_REDACTED_DATASETS, tx); } VERIFY0(dmu_objset_from_ds(newds, &os)); if (drc->drc_resumable) { dsl_dataset_zapify(newds, tx); if (drrb->drr_fromguid != 0) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 8, 1, &drrb->drr_fromguid, tx)); } VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 8, 1, &drrb->drr_toguid, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); uint64_t one = 1; uint64_t zero = 0; VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 8, 1, &one, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 8, 1, &zero, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 8, 1, &zero, tx)); if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 8, 1, &one, tx)); } if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 8, 1, &one, tx)); } if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 8, 1, &one, tx)); } if (featureflags & DMU_BACKUP_FEATURE_RAW) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 8, 1, &one, tx)); } uint64_t *redact_snaps; uint_t numredactsnaps; if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 0) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, sizeof (*redact_snaps), numredactsnaps, redact_snaps, tx)); } } /* * Usually the os->os_encrypted value is tied to the presence of a * DSL Crypto Key object in the dd. However, that will not be received * until dmu_recv_stream(), so we set the value manually for now. */ if (featureflags & DMU_BACKUP_FEATURE_RAW) { os->os_encrypted = B_TRUE; drba->drba_cookie->drc_raw = B_TRUE; } if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { uint64_t *redact_snaps; uint_t numredactsnaps; VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); dsl_dataset_activate_redaction(newds, redact_snaps, numredactsnaps, tx); } dmu_buf_will_dirty(newds->ds_dbuf, tx); dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; /* * If we actually created a non-clone, we need to create the objset * in our new dataset. If this is a raw send we postpone this until * dmu_recv_stream() so that we can allocate the metadnode with the * properties from the DRR_BEGIN payload. */ rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && !drc->drc_heal) { (void) dmu_objset_create_impl(dp->dp_spa, newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); } rrw_exit(&newds->ds_bp_rwlock, FTAG); drba->drba_cookie->drc_ds = newds; drba->drba_cookie->drc_os = os; spa_history_log_internal_ds(newds, "receive", tx, " "); } static int dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dmu_recv_cookie_t *drc = drba->drba_cookie; dsl_pool_t *dp = dmu_tx_pool(tx); struct drr_begin *drrb = drc->drc_drrb; int error; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; dsl_dataset_t *ds; const char *tofs = drc->drc_tofs; /* already checked */ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM || drrb->drr_type >= DMU_OST_NUMTYPES) return (SET_ERROR(EINVAL)); /* * This is mostly a sanity check since we should have already done these * checks during a previous attempt to receive the data. */ error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, dp->dp_spa); if (error != 0) return (error); /* 6 extra bytes for /%recv */ char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, recv_clone_name); if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { /* raw receives require spill block allocation flag */ if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); } else { dsflags |= DS_HOLD_FLAG_DECRYPT; } boolean_t recvexist = B_TRUE; if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { /* %recv does not exist; continue in tofs */ recvexist = B_FALSE; error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); if (error != 0) return (error); } /* * Resume of full/newfs recv on existing dataset should be done with * force flag */ if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(ZFS_ERR_RESUME_EXISTS)); } /* check that ds is marked inconsistent */ if (!DS_IS_INCONSISTENT(ds)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } /* check that there is resuming data, and that the toguid matches */ if (!dsl_dataset_is_zapified(ds)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } uint64_t val; error = zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); if (error != 0 || drrb->drr_toguid != val) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } /* * Check if the receive is still running. If so, it will be owned. * Note that nothing else can own the dataset (e.g. after the receive * fails) because it will be marked inconsistent. */ if (dsl_dataset_has_owner(ds)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EBUSY)); } /* There should not be any snapshots of this fs yet. */ if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } /* * Note: resume point will be checked when we process the first WRITE * record. */ /* check that the origin matches */ val = 0; (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); if (drrb->drr_fromguid != val) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) drc->drc_fromsnapobj = ds->ds_prev->ds_object; /* * If we're resuming, and the send is redacted, then the original send * must have been redacted, and must have been redacted with respect to * the same snapshots. */ if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { uint64_t num_ds_redact_snaps; uint64_t *ds_redact_snaps; uint_t num_stream_redact_snaps; uint64_t *stream_redact_snaps; if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, BEGINNV_REDACT_SNAPS, &stream_redact_snaps, &num_stream_redact_snaps) != 0) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } if (!dsl_dataset_get_uint64_array_feature(ds, SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, &ds_redact_snaps)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } for (int i = 0; i < num_ds_redact_snaps; i++) { if (!redact_snaps_contains(ds_redact_snaps, num_ds_redact_snaps, stream_redact_snaps[i])) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } } } error = recv_check_large_blocks(ds, drc->drc_featureflags); if (error != 0) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (error); } dsl_dataset_rele_flags(ds, dsflags, FTAG); return (0); } static void dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); const char *tofs = drba->drba_cookie->drc_tofs; uint64_t featureflags = drba->drba_cookie->drc_featureflags; dsl_dataset_t *ds; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; /* 6 extra bytes for /%recv */ char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, recv_clone_name); if (featureflags & DMU_BACKUP_FEATURE_RAW) { drba->drba_cookie->drc_raw = B_TRUE; } else { dsflags |= DS_HOLD_FLAG_DECRYPT; } if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) != 0) { /* %recv does not exist; continue in tofs */ VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, &ds)); drba->drba_cookie->drc_newfs = B_TRUE; } ASSERT(DS_IS_INCONSISTENT(ds)); rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || drba->drba_cookie->drc_raw); rrw_exit(&ds->ds_bp_rwlock, FTAG); drba->drba_cookie->drc_ds = ds; VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); drba->drba_cookie->drc_should_save = B_TRUE; spa_history_log_internal_ds(ds, "resume receive", tx, " "); } /* * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() * succeeds; otherwise we will leak the holds on the datasets. */ int dmu_recv_begin(const char *tofs, const char *tosnap, dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args, const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp, offset_t *voffp) { dmu_recv_begin_arg_t drba = { 0 }; int err = 0; memset(drc, 0, sizeof (dmu_recv_cookie_t)); drc->drc_drr_begin = drr_begin; drc->drc_drrb = &drr_begin->drr_u.drr_begin; drc->drc_tosnap = tosnap; drc->drc_tofs = tofs; drc->drc_force = force; drc->drc_heal = heal; drc->drc_resumable = resumable; drc->drc_cred = CRED(); drc->drc_proc = curproc; drc->drc_clone = (origin != NULL); if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { drc->drc_byteswap = B_TRUE; (void) fletcher_4_incremental_byteswap(drr_begin, sizeof (dmu_replay_record_t), &drc->drc_cksum); byteswap_record(drr_begin); } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { (void) fletcher_4_incremental_native(drr_begin, sizeof (dmu_replay_record_t), &drc->drc_cksum); } else { return (SET_ERROR(EINVAL)); } drc->drc_fp = fp; drc->drc_voff = *voffp; drc->drc_featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; /* * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard * upper limit. Systems with less than 1GB of RAM will see a lower * limit from `arc_all_memory() / 4`. */ if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4))) return (E2BIG); if (payloadlen != 0) { void *payload = vmem_alloc(payloadlen, KM_SLEEP); /* * For compatibility with recursive send streams, we don't do * this here if the stream could be part of a package. Instead, * we'll do it in dmu_recv_stream. If we pull the next header * too early, and it's the END record, we break the `recv_skip` * logic. */ err = receive_read_payload_and_next_header(drc, payloadlen, payload); if (err != 0) { vmem_free(payload, payloadlen); return (err); } err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, KM_SLEEP); vmem_free(payload, payloadlen); if (err != 0) { kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); return (err); } } if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) drc->drc_spill = B_TRUE; drba.drba_origin = origin; drba.drba_cookie = drc; drba.drba_cred = CRED(); drba.drba_proc = curproc; if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { err = dsl_sync_task(tofs, dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, &drba, 5, ZFS_SPACE_CHECK_NORMAL); } else { /* * For non-raw, non-incremental, non-resuming receives the * user can specify encryption parameters on the command line * with "zfs recv -o". For these receives we create a dcp and * pass it to the sync task. Creating the dcp will implicitly * remove the encryption params from the localprops nvlist, * which avoids errors when trying to set these normally * read-only properties. Any other kind of receive that * attempts to set these properties will fail as a result. */ if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_RAW) == 0 && origin == NULL && drc->drc_drrb->drr_fromguid == 0) { err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, localprops, hidden_args, &drba.drba_dcp); } if (err == 0) { err = dsl_sync_task(tofs, dmu_recv_begin_check, dmu_recv_begin_sync, &drba, 5, ZFS_SPACE_CHECK_NORMAL); dsl_crypto_params_free(drba.drba_dcp, !!err); } } if (err != 0) { kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); nvlist_free(drc->drc_begin_nvl); } return (err); } /* * Holds data need for corrective recv callback */ typedef struct cr_cb_data { uint64_t size; zbookmark_phys_t zb; spa_t *spa; } cr_cb_data_t; static void corrective_read_done(zio_t *zio) { cr_cb_data_t *data = zio->io_private; /* Corruption corrected; update error log if needed */ if (zio->io_error == 0) spa_remove_error(data->spa, &data->zb, &zio->io_bp->blk_birth); kmem_free(data, sizeof (cr_cb_data_t)); abd_free(zio->io_abd); } /* * zio_rewrite the data pointed to by bp with the data from the rrd's abd. */ static int do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw, struct receive_record_arg *rrd, blkptr_t *bp) { int err; zio_t *io; zbookmark_phys_t zb; dnode_t *dn; abd_t *abd = rrd->abd; zio_cksum_t bp_cksum = bp->blk_cksum; - zio_flag_t flags = ZIO_FLAG_SPECULATIVE | - ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL; + zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY | + ZIO_FLAG_CANFAIL; if (rwa->raw) flags |= ZIO_FLAG_RAW; err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn); if (err != 0) return (err); SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0, dbuf_whichblock(dn, 0, drrw->drr_offset)); dnode_rele(dn, FTAG); if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) { /* Decompress the stream data */ abd_t *dabd = abd_alloc_linear( drrw->drr_logical_size, B_FALSE); err = zio_decompress_data(drrw->drr_compressiontype, abd, abd_to_buf(dabd), abd_get_size(abd), abd_get_size(dabd), NULL); if (err != 0) { abd_free(dabd); return (err); } /* Swap in the newly decompressed data into the abd */ abd_free(abd); abd = dabd; } if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { /* Recompress the data */ abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE); void *buf = abd_to_buf(cabd); uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp), abd, &buf, abd_get_size(abd), rwa->os->os_complevel); abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize); /* Swap in newly compressed data into the abd */ abd_free(abd); abd = cabd; flags |= ZIO_FLAG_RAW_COMPRESS; } /* * The stream is not encrypted but the data on-disk is. * We need to re-encrypt the buf using the same * encryption type, salt, iv, and mac that was used to encrypt * the block previosly. */ if (!rwa->raw && BP_USES_CRYPT(bp)) { dsl_dataset_t *ds; dsl_crypto_key_t *dck = NULL; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; boolean_t no_crypt = B_FALSE; dsl_pool_t *dp = dmu_objset_pool(rwa->os); abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE); zio_crypt_decode_params_bp(bp, salt, iv); zio_crypt_decode_mac_bp(bp, mac); dsl_pool_config_enter(dp, FTAG); err = dsl_dataset_hold_flags(dp, rwa->tofs, DS_HOLD_FLAG_DECRYPT, FTAG, &ds); if (err != 0) { dsl_pool_config_exit(dp, FTAG); abd_free(eabd); return (SET_ERROR(EACCES)); } /* Look up the key from the spa's keystore */ err = spa_keystore_lookup_key(rwa->os->os_spa, zb.zb_objset, FTAG, &dck); if (err != 0) { dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); dsl_pool_config_exit(dp, FTAG); abd_free(eabd); return (SET_ERROR(EACCES)); } err = zio_do_crypt_abd(B_TRUE, &dck->dck_key, BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, abd_get_size(abd), abd, eabd, &no_crypt); spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG); dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); dsl_pool_config_exit(dp, FTAG); ASSERT0(no_crypt); if (err != 0) { abd_free(eabd); return (err); } /* Swap in the newly encrypted data into the abd */ abd_free(abd); abd = eabd; /* * We want to prevent zio_rewrite() from trying to * encrypt the data again */ flags |= ZIO_FLAG_RAW_ENCRYPT; } rrd->abd = abd; io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb); ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) || abd_get_size(abd) == BP_GET_PSIZE(bp)); /* compute new bp checksum value and make sure it matches the old one */ zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd)); if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) { zio_destroy(io); if (zfs_recv_best_effort_corrective != 0) return (0); return (SET_ERROR(ECKSUM)); } /* Correct the corruption in place */ err = zio_wait(io); if (err == 0) { cr_cb_data_t *cb_data = kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP); cb_data->spa = rwa->os->os_spa; cb_data->size = drrw->drr_logical_size; cb_data->zb = zb; /* Test if healing worked by re-reading the bp */ err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp, abd_alloc_for_io(drrw->drr_logical_size, B_FALSE), drrw->drr_logical_size, corrective_read_done, cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL)); } if (err != 0 && zfs_recv_best_effort_corrective != 0) err = 0; return (err); } static int receive_read(dmu_recv_cookie_t *drc, int len, void *buf) { int done = 0; /* * The code doesn't rely on this (lengths being multiples of 8). See * comment in dump_bytes. */ ASSERT(len % 8 == 0 || (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); while (done < len) { ssize_t resid = len - done; zfs_file_t *fp = drc->drc_fp; int err = zfs_file_read(fp, (char *)buf + done, len - done, &resid); if (err == 0 && resid == len - done) { /* * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates * that the receive was interrupted and can * potentially be resumed. */ err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); } drc->drc_voff += len - done - resid; done = len - resid; if (err != 0) return (err); } drc->drc_bytes_read += len; ASSERT3U(done, ==, len); return (0); } static inline uint8_t deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) { if (bonus_type == DMU_OT_SA) { return (1); } else { return (1 + ((DN_OLD_MAX_BONUSLEN - MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); } } static void save_resume_state(struct receive_writer_arg *rwa, uint64_t object, uint64_t offset, dmu_tx_t *tx) { int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; if (!rwa->resumable) return; /* * We use ds_resume_bytes[] != 0 to indicate that we need to * update this on disk, so it must not be 0. */ ASSERT(rwa->bytes_read != 0); /* * We only resume from write records, which have a valid * (non-meta-dnode) object number. */ ASSERT(object != 0); /* * For resuming to work correctly, we must receive records in order, * sorted by object,offset. This is checked by the callers, but * assert it here for good measure. */ ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); ASSERT3U(rwa->bytes_read, >=, rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; } static int receive_object_is_same_generation(objset_t *os, uint64_t object, dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, const void *new_bonus, boolean_t *samegenp) { zfs_file_info_t zoi; int err; dmu_buf_t *old_bonus_dbuf; err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); if (err != 0) return (err); err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, &zoi); dmu_buf_rele(old_bonus_dbuf, FTAG); if (err != 0) return (err); uint64_t old_gen = zoi.zfi_generation; err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); if (err != 0) return (err); uint64_t new_gen = zoi.zfi_generation; *samegenp = (old_gen == new_gen); return (0); } static int receive_handle_existing_object(const struct receive_writer_arg *rwa, const struct drr_object *drro, const dmu_object_info_t *doi, const void *bonus_data, uint64_t *object_to_hold, uint32_t *new_blksz) { uint32_t indblksz = drro->drr_indblkshift ? 1ULL << drro->drr_indblkshift : 0; int nblkptr = deduce_nblkptr(drro->drr_bonustype, drro->drr_bonuslen); uint8_t dn_slots = drro->drr_dn_slots != 0 ? drro->drr_dn_slots : DNODE_MIN_SLOTS; boolean_t do_free_range = B_FALSE; int err; *object_to_hold = drro->drr_object; /* nblkptr should be bounded by the bonus size and type */ if (rwa->raw && nblkptr != drro->drr_nblkptr) return (SET_ERROR(EINVAL)); /* * After the previous send stream, the sending system may * have freed this object, and then happened to re-allocate * this object number in a later txg. In this case, we are * receiving a different logical file, and the block size may * appear to be different. i.e. we may have a different * block size for this object than what the send stream says. * In this case we need to remove the object's contents, * so that its structure can be changed and then its contents * entirely replaced by subsequent WRITE records. * * If this is a -L (--large-block) incremental stream, and * the previous stream was not -L, the block size may appear * to increase. i.e. we may have a smaller block size for * this object than what the send stream says. In this case * we need to keep the object's contents and block size * intact, so that we don't lose parts of the object's * contents that are not changed by this incremental send * stream. * * We can distinguish between the two above cases by using * the ZPL's generation number (see * receive_object_is_same_generation()). However, we only * want to rely on the generation number when absolutely * necessary, because with raw receives, the generation is * encrypted. We also want to minimize dependence on the * ZPL, so that other types of datasets can also be received * (e.g. ZVOLs, although note that ZVOLS currently do not * reallocate their objects or change their structure). * Therefore, we check a number of different cases where we * know it is safe to discard the object's contents, before * using the ZPL's generation number to make the above * distinction. */ if (drro->drr_blksz != doi->doi_data_block_size) { if (rwa->raw) { /* * RAW streams always have large blocks, so * we are sure that the data is not needed * due to changing --large-block to be on. * Which is fortunate since the bonus buffer * (which contains the ZPL generation) is * encrypted, and the key might not be * loaded. */ do_free_range = B_TRUE; } else if (rwa->full) { /* * This is a full send stream, so it always * replaces what we have. Even if the * generation numbers happen to match, this * can not actually be the same logical file. * This is relevant when receiving a full * send as a clone. */ do_free_range = B_TRUE; } else if (drro->drr_type != DMU_OT_PLAIN_FILE_CONTENTS || doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { /* * PLAIN_FILE_CONTENTS are the only type of * objects that have ever been stored with * large blocks, so we don't need the special * logic below. ZAP blocks can shrink (when * there's only one block), so we don't want * to hit the error below about block size * only increasing. */ do_free_range = B_TRUE; } else if (doi->doi_max_offset <= doi->doi_data_block_size) { /* * There is only one block. We can free it, * because its contents will be replaced by a * WRITE record. This can not be the no-L -> * -L case, because the no-L case would have * resulted in multiple blocks. If we * supported -L -> no-L, it would not be safe * to free the file's contents. Fortunately, * that is not allowed (see * recv_check_large_blocks()). */ do_free_range = B_TRUE; } else { boolean_t is_same_gen; err = receive_object_is_same_generation(rwa->os, drro->drr_object, doi->doi_bonus_type, drro->drr_bonustype, bonus_data, &is_same_gen); if (err != 0) return (SET_ERROR(EINVAL)); if (is_same_gen) { /* * This is the same logical file, and * the block size must be increasing. * It could only decrease if * --large-block was changed to be * off, which is checked in * recv_check_large_blocks(). */ if (drro->drr_blksz <= doi->doi_data_block_size) return (SET_ERROR(EINVAL)); /* * We keep the existing blocksize and * contents. */ *new_blksz = doi->doi_data_block_size; } else { do_free_range = B_TRUE; } } } /* nblkptr can only decrease if the object was reallocated */ if (nblkptr < doi->doi_nblkptr) do_free_range = B_TRUE; /* number of slots can only change on reallocation */ if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) do_free_range = B_TRUE; /* * For raw sends we also check a few other fields to * ensure we are preserving the objset structure exactly * as it was on the receive side: * - A changed indirect block size * - A smaller nlevels */ if (rwa->raw) { if (indblksz != doi->doi_metadata_block_size) do_free_range = B_TRUE; if (drro->drr_nlevels < doi->doi_indirection) do_free_range = B_TRUE; } if (do_free_range) { err = dmu_free_long_range(rwa->os, drro->drr_object, 0, DMU_OBJECT_END); if (err != 0) return (SET_ERROR(EINVAL)); } /* * The dmu does not currently support decreasing nlevels * or changing the number of dnode slots on an object. For * non-raw sends, this does not matter and the new object * can just use the previous one's nlevels. For raw sends, * however, the structure of the received dnode (including * nlevels and dnode slots) must match that of the send * side. Therefore, instead of using dmu_object_reclaim(), * we must free the object completely and call * dmu_object_claim_dnsize() instead. */ if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) || dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { err = dmu_free_long_object(rwa->os, drro->drr_object); if (err != 0) return (SET_ERROR(EINVAL)); txg_wait_synced(dmu_objset_pool(rwa->os), 0); *object_to_hold = DMU_NEW_OBJECT; } /* * For raw receives, free everything beyond the new incoming * maxblkid. Normally this would be done with a DRR_FREE * record that would come after this DRR_OBJECT record is * processed. However, for raw receives we manually set the * maxblkid from the drr_maxblkid and so we must first free * everything above that blkid to ensure the DMU is always * consistent with itself. We will never free the first block * of the object here because a maxblkid of 0 could indicate * an object with a single block or one with no blocks. This * free may be skipped when dmu_free_long_range() was called * above since it covers the entire object's contents. */ if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { err = dmu_free_long_range(rwa->os, drro->drr_object, (drro->drr_maxblkid + 1) * doi->doi_data_block_size, DMU_OBJECT_END); if (err != 0) return (SET_ERROR(EINVAL)); } return (0); } noinline static int receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, void *data) { dmu_object_info_t doi; dmu_tx_t *tx; int err; uint32_t new_blksz = drro->drr_blksz; uint8_t dn_slots = drro->drr_dn_slots != 0 ? drro->drr_dn_slots : DNODE_MIN_SLOTS; if (drro->drr_type == DMU_OT_NONE || !DMU_OT_IS_VALID(drro->drr_type) || !DMU_OT_IS_VALID(drro->drr_bonustype) || drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || drro->drr_blksz < SPA_MINBLOCKSIZE || drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || drro->drr_bonuslen > DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || dn_slots > (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { return (SET_ERROR(EINVAL)); } if (rwa->raw) { /* * We should have received a DRR_OBJECT_RANGE record * containing this block and stored it in rwa. */ if (drro->drr_object < rwa->or_firstobj || drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || drro->drr_raw_bonuslen < drro->drr_bonuslen || drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || drro->drr_nlevels > DN_MAX_LEVELS || drro->drr_nblkptr > DN_MAX_NBLKPTR || DN_SLOTS_TO_BONUSLEN(dn_slots) < drro->drr_raw_bonuslen) return (SET_ERROR(EINVAL)); } else { /* * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN * record indicates this by setting DRR_FLAG_SPILL_BLOCK. */ if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { return (SET_ERROR(EINVAL)); } if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { return (SET_ERROR(EINVAL)); } } err = dmu_object_info(rwa->os, drro->drr_object, &doi); if (err != 0 && err != ENOENT && err != EEXIST) return (SET_ERROR(EINVAL)); if (drro->drr_object > rwa->max_object) rwa->max_object = drro->drr_object; /* * If we are losing blkptrs or changing the block size this must * be a new file instance. We must clear out the previous file * contents before we can change this type of metadata in the dnode. * Raw receives will also check that the indirect structure of the * dnode hasn't changed. */ uint64_t object_to_hold; if (err == 0) { err = receive_handle_existing_object(rwa, drro, &doi, data, &object_to_hold, &new_blksz); if (err != 0) return (err); } else if (err == EEXIST) { /* * The object requested is currently an interior slot of a * multi-slot dnode. This will be resolved when the next txg * is synced out, since the send stream will have told us * to free this slot when we freed the associated dnode * earlier in the stream. */ txg_wait_synced(dmu_objset_pool(rwa->os), 0); if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) return (SET_ERROR(EINVAL)); /* object was freed and we are about to allocate a new one */ object_to_hold = DMU_NEW_OBJECT; } else { /* * If the only record in this range so far was DRR_FREEOBJECTS * with at least one actually freed object, it's possible that * the block will now be converted to a hole. We need to wait * for the txg to sync to prevent races. */ if (rwa->or_need_sync == ORNS_YES) txg_wait_synced(dmu_objset_pool(rwa->os), 0); /* object is free and we are about to allocate a new one */ object_to_hold = DMU_NEW_OBJECT; } /* Only relevant for the first object in the range */ rwa->or_need_sync = ORNS_NO; /* * If this is a multi-slot dnode there is a chance that this * object will expand into a slot that is already used by * another object from the previous snapshot. We must free * these objects before we attempt to allocate the new dnode. */ if (dn_slots > 1) { boolean_t need_sync = B_FALSE; for (uint64_t slot = drro->drr_object + 1; slot < drro->drr_object + dn_slots; slot++) { dmu_object_info_t slot_doi; err = dmu_object_info(rwa->os, slot, &slot_doi); if (err == ENOENT || err == EEXIST) continue; else if (err != 0) return (err); err = dmu_free_long_object(rwa->os, slot); if (err != 0) return (err); need_sync = B_TRUE; } if (need_sync) txg_wait_synced(dmu_objset_pool(rwa->os), 0); } tx = dmu_tx_create(rwa->os); dmu_tx_hold_bonus(tx, object_to_hold); dmu_tx_hold_write(tx, object_to_hold, 0, 0); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } if (object_to_hold == DMU_NEW_OBJECT) { /* Currently free, wants to be allocated */ err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, drro->drr_type, new_blksz, drro->drr_bonustype, drro->drr_bonuslen, dn_slots << DNODE_SHIFT, tx); } else if (drro->drr_type != doi.doi_type || new_blksz != doi.doi_data_block_size || drro->drr_bonustype != doi.doi_bonus_type || drro->drr_bonuslen != doi.doi_bonus_size) { /* Currently allocated, but with different properties */ err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, drro->drr_type, new_blksz, drro->drr_bonustype, drro->drr_bonuslen, dn_slots << DNODE_SHIFT, rwa->spill ? DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { /* * Currently allocated, the existing version of this object * may reference a spill block that is no longer allocated * at the source and needs to be freed. */ err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); } if (err != 0) { dmu_tx_commit(tx); return (SET_ERROR(EINVAL)); } if (rwa->or_crypt_params_present) { /* * Set the crypt params for the buffer associated with this * range of dnodes. This causes the blkptr_t to have the * same crypt params (byteorder, salt, iv, mac) as on the * sending side. * * Since we are committing this tx now, it is possible for * the dnode block to end up on-disk with the incorrect MAC, * if subsequent objects in this block are received in a * different txg. However, since the dataset is marked as * inconsistent, no code paths will do a non-raw read (or * decrypt the block / verify the MAC). The receive code and * scrub code can safely do raw reads and verify the * checksum. They don't need to verify the MAC. */ dmu_buf_t *db = NULL; uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); if (err != 0) { dmu_tx_commit(tx); return (SET_ERROR(EINVAL)); } dmu_buf_set_crypt_params(db, rwa->or_byteorder, rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); dmu_buf_rele(db, FTAG); rwa->or_crypt_params_present = B_FALSE; } dmu_object_set_checksum(rwa->os, drro->drr_object, drro->drr_checksumtype, tx); dmu_object_set_compress(rwa->os, drro->drr_object, drro->drr_compress, tx); /* handle more restrictive dnode structuring for raw recvs */ if (rwa->raw) { /* * Set the indirect block size, block shift, nlevels. * This will not fail because we ensured all of the * blocks were freed earlier if this is a new object. * For non-new objects block size and indirect block * shift cannot change and nlevels can only increase. */ ASSERT3U(new_blksz, ==, drro->drr_blksz); VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, drro->drr_blksz, drro->drr_indblkshift, tx)); VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, drro->drr_nlevels, tx)); /* * Set the maxblkid. This will always succeed because * we freed all blocks beyond the new maxblkid above. */ VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, drro->drr_maxblkid, tx)); } if (data != NULL) { dmu_buf_t *db; dnode_t *dn; uint32_t flags = DMU_READ_NO_PREFETCH; if (rwa->raw) flags |= DMU_READ_NO_DECRYPT; VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); dmu_buf_will_dirty(db, tx); ASSERT3U(db->db_size, >=, drro->drr_bonuslen); memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro)); /* * Raw bonus buffers have their byteorder determined by the * DRR_OBJECT_RANGE record. */ if (rwa->byteswap && !rwa->raw) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drro->drr_bonustype); dmu_ot_byteswap[byteswap].ob_func(db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); } dmu_buf_rele(db, FTAG); dnode_rele(dn, FTAG); } dmu_tx_commit(tx); return (0); } noinline static int receive_freeobjects(struct receive_writer_arg *rwa, struct drr_freeobjects *drrfo) { uint64_t obj; int next_err = 0; if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) return (SET_ERROR(EINVAL)); for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; obj < drrfo->drr_firstobj + drrfo->drr_numobjs && obj < DN_MAX_OBJECT && next_err == 0; next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { dmu_object_info_t doi; int err; err = dmu_object_info(rwa->os, obj, &doi); if (err == ENOENT) continue; else if (err != 0) return (err); err = dmu_free_long_object(rwa->os, obj); if (err != 0) return (err); if (rwa->or_need_sync == ORNS_MAYBE) rwa->or_need_sync = ORNS_YES; } if (next_err != ESRCH) return (next_err); return (0); } /* * Note: if this fails, the caller will clean up any records left on the * rwa->write_batch list. */ static int flush_write_batch_impl(struct receive_writer_arg *rwa) { dnode_t *dn; int err; if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) return (SET_ERROR(EINVAL)); struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); dmu_tx_t *tx = dmu_tx_create(rwa->os); dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, last_drrw->drr_offset - first_drrw->drr_offset + last_drrw->drr_logical_size); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); dnode_rele(dn, FTAG); return (err); } struct receive_record_arg *rrd; while ((rrd = list_head(&rwa->write_batch)) != NULL) { struct drr_write *drrw = &rrd->header.drr_u.drr_write; abd_t *abd = rrd->abd; ASSERT3U(drrw->drr_object, ==, rwa->last_object); if (drrw->drr_logical_size != dn->dn_datablksz) { /* * The WRITE record is larger than the object's block * size. We must be receiving an incremental * large-block stream into a dataset that previously did * a non-large-block receive. Lightweight writes must * be exactly one block, so we need to decompress the * data (if compressed) and do a normal dmu_write(). */ ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); if (DRR_WRITE_COMPRESSED(drrw)) { abd_t *decomp_abd = abd_alloc_linear(drrw->drr_logical_size, B_FALSE); err = zio_decompress_data( drrw->drr_compressiontype, abd, abd_to_buf(decomp_abd), abd_get_size(abd), abd_get_size(decomp_abd), NULL); if (err == 0) { dmu_write_by_dnode(dn, drrw->drr_offset, drrw->drr_logical_size, abd_to_buf(decomp_abd), tx); } abd_free(decomp_abd); } else { dmu_write_by_dnode(dn, drrw->drr_offset, drrw->drr_logical_size, abd_to_buf(abd), tx); } if (err == 0) abd_free(abd); } else { zio_prop_t zp = {0}; dmu_write_policy(rwa->os, dn, 0, 0, &zp); zio_flag_t zio_flags = 0; if (rwa->raw) { zp.zp_encrypt = B_TRUE; zp.zp_compress = drrw->drr_compressiontype; zp.zp_byteorder = ZFS_HOST_BYTEORDER ^ !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ rwa->byteswap; memcpy(zp.zp_salt, drrw->drr_salt, ZIO_DATA_SALT_LEN); memcpy(zp.zp_iv, drrw->drr_iv, ZIO_DATA_IV_LEN); memcpy(zp.zp_mac, drrw->drr_mac, ZIO_DATA_MAC_LEN); if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) { zp.zp_nopwrite = B_FALSE; zp.zp_copies = MIN(zp.zp_copies, SPA_DVAS_PER_BP - 1); } zio_flags |= ZIO_FLAG_RAW; } else if (DRR_WRITE_COMPRESSED(drrw)) { ASSERT3U(drrw->drr_compressed_size, >, 0); ASSERT3U(drrw->drr_logical_size, >=, drrw->drr_compressed_size); zp.zp_compress = drrw->drr_compressiontype; zio_flags |= ZIO_FLAG_RAW_COMPRESS; } else if (rwa->byteswap) { /* * Note: compressed blocks never need to be * byteswapped, because WRITE records for * metadata blocks are never compressed. The * exception is raw streams, which are written * in the original byteorder, and the byteorder * bit is preserved in the BP by setting * zp_byteorder above. */ dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drrw->drr_type); dmu_ot_byteswap[byteswap].ob_func( abd_to_buf(abd), DRR_WRITE_PAYLOAD_SIZE(drrw)); } /* * Since this data can't be read until the receive * completes, we can do a "lightweight" write for * improved performance. */ err = dmu_lightweight_write_by_dnode(dn, drrw->drr_offset, abd, &zp, zio_flags, tx); } if (err != 0) { /* * This rrd is left on the list, so the caller will * free it (and the abd). */ break; } /* * Note: If the receive fails, we want the resume stream to * start with the same record that we last successfully * received (as opposed to the next record), so that we can * verify that we are resuming from the correct location. */ save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); list_remove(&rwa->write_batch, rrd); kmem_free(rrd, sizeof (*rrd)); } dmu_tx_commit(tx); dnode_rele(dn, FTAG); return (err); } noinline static int flush_write_batch(struct receive_writer_arg *rwa) { if (list_is_empty(&rwa->write_batch)) return (0); int err = rwa->err; if (err == 0) err = flush_write_batch_impl(rwa); if (err != 0) { struct receive_record_arg *rrd; while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { abd_free(rrd->abd); kmem_free(rrd, sizeof (*rrd)); } } ASSERT(list_is_empty(&rwa->write_batch)); return (err); } noinline static int receive_process_write_record(struct receive_writer_arg *rwa, struct receive_record_arg *rrd) { int err = 0; ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); struct drr_write *drrw = &rrd->header.drr_u.drr_write; if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || !DMU_OT_IS_VALID(drrw->drr_type)) return (SET_ERROR(EINVAL)); if (rwa->heal) { blkptr_t *bp; dmu_buf_t *dbp; dnode_t *dn; int flags = DB_RF_CANFAIL; if (rwa->raw) flags |= DB_RF_NO_DECRYPT; if (rwa->byteswap) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drrw->drr_type); dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd), DRR_WRITE_PAYLOAD_SIZE(drrw)); } err = dmu_buf_hold_noread(rwa->os, drrw->drr_object, drrw->drr_offset, FTAG, &dbp); if (err != 0) return (err); /* Try to read the object to see if it needs healing */ err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags); /* * We only try to heal when dbuf_read() returns a ECKSUMs. * Other errors (even EIO) get returned to caller. * EIO indicates that the device is not present/accessible, * so writing to it will likely fail. * If the block is healthy, we don't want to overwrite it * unnecessarily. */ if (err != ECKSUM) { dmu_buf_rele(dbp, FTAG); return (err); } dn = dmu_buf_dnode_enter(dbp); /* Make sure the on-disk block and recv record sizes match */ if (drrw->drr_logical_size != dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) { err = ENOTSUP; dmu_buf_dnode_exit(dbp); dmu_buf_rele(dbp, FTAG); return (err); } /* Get the block pointer for the corrupted block */ bp = dmu_buf_get_blkptr(dbp); err = do_corrective_recv(rwa, drrw, rrd, bp); dmu_buf_dnode_exit(dbp); dmu_buf_rele(dbp, FTAG); return (err); } /* * For resuming to work, records must be in increasing order * by (object, offset). */ if (drrw->drr_object < rwa->last_object || (drrw->drr_object == rwa->last_object && drrw->drr_offset < rwa->last_offset)) { return (SET_ERROR(EINVAL)); } struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; uint64_t batch_size = MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); if (first_rrd != NULL && (drrw->drr_object != first_drrw->drr_object || drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { err = flush_write_batch(rwa); if (err != 0) return (err); } rwa->last_object = drrw->drr_object; rwa->last_offset = drrw->drr_offset; if (rwa->last_object > rwa->max_object) rwa->max_object = rwa->last_object; list_insert_tail(&rwa->write_batch, rrd); /* * Return EAGAIN to indicate that we will use this rrd again, * so the caller should not free it */ return (EAGAIN); } static int receive_write_embedded(struct receive_writer_arg *rwa, struct drr_write_embedded *drrwe, void *data) { dmu_tx_t *tx; int err; if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) return (SET_ERROR(EINVAL)); if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) return (SET_ERROR(EINVAL)); if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) return (SET_ERROR(EINVAL)); if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) return (SET_ERROR(EINVAL)); if (rwa->raw) return (SET_ERROR(EINVAL)); if (drrwe->drr_object > rwa->max_object) rwa->max_object = drrwe->drr_object; tx = dmu_tx_create(rwa->os); dmu_tx_hold_write(tx, drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } dmu_write_embedded(rwa->os, drrwe->drr_object, drrwe->drr_offset, data, drrwe->drr_etype, drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); /* See comment in restore_write. */ save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); dmu_tx_commit(tx); return (0); } static int receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, abd_t *abd) { dmu_buf_t *db, *db_spill; int err; if (drrs->drr_length < SPA_MINBLOCKSIZE || drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) return (SET_ERROR(EINVAL)); /* * This is an unmodified spill block which was added to the stream * to resolve an issue with incorrectly removing spill blocks. It * should be ignored by current versions of the code which support * the DRR_FLAG_SPILL_BLOCK flag. */ if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { abd_free(abd); return (0); } if (rwa->raw) { if (!DMU_OT_IS_VALID(drrs->drr_type) || drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || drrs->drr_compressed_size == 0) return (SET_ERROR(EINVAL)); } if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); if (drrs->drr_object > rwa->max_object) rwa->max_object = drrs->drr_object; VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, &db_spill)) != 0) { dmu_buf_rele(db, FTAG); return (err); } dmu_tx_t *tx = dmu_tx_create(rwa->os); dmu_tx_hold_spill(tx, db->db_object); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_buf_rele(db, FTAG); dmu_buf_rele(db_spill, FTAG); dmu_tx_abort(tx); return (err); } /* * Spill blocks may both grow and shrink. When a change in size * occurs any existing dbuf must be updated to match the logical * size of the provided arc_buf_t. */ if (db_spill->db_size != drrs->drr_length) { dmu_buf_will_fill(db_spill, tx); VERIFY0(dbuf_spill_set_blksz(db_spill, drrs->drr_length, tx)); } arc_buf_t *abuf; if (rwa->raw) { boolean_t byteorder = ZFS_HOST_BYTEORDER ^ !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ rwa->byteswap; abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os), drrs->drr_object, byteorder, drrs->drr_salt, drrs->drr_iv, drrs->drr_mac, drrs->drr_type, drrs->drr_compressed_size, drrs->drr_length, drrs->drr_compressiontype, 0); } else { abuf = arc_loan_buf(dmu_objset_spa(rwa->os), DMU_OT_IS_METADATA(drrs->drr_type), drrs->drr_length); if (rwa->byteswap) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drrs->drr_type); dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs)); } } memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs)); abd_free(abd); dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); dmu_buf_rele(db, FTAG); dmu_buf_rele(db_spill, FTAG); dmu_tx_commit(tx); return (0); } noinline static int receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) { int err; if (drrf->drr_length != -1ULL && drrf->drr_offset + drrf->drr_length < drrf->drr_offset) return (SET_ERROR(EINVAL)); if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); if (drrf->drr_object > rwa->max_object) rwa->max_object = drrf->drr_object; err = dmu_free_long_range(rwa->os, drrf->drr_object, drrf->drr_offset, drrf->drr_length); return (err); } static int receive_object_range(struct receive_writer_arg *rwa, struct drr_object_range *drror) { /* * By default, we assume this block is in our native format * (ZFS_HOST_BYTEORDER). We then take into account whether * the send stream is byteswapped (rwa->byteswap). Finally, * we need to byteswap again if this particular block was * in non-native format on the send side. */ boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); /* * Since dnode block sizes are constant, we should not need to worry * about making sure that the dnode block size is the same on the * sending and receiving sides for the time being. For non-raw sends, * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE * record at all). Raw sends require this record type because the * encryption parameters are used to protect an entire block of bonus * buffers. If the size of dnode blocks ever becomes variable, * handling will need to be added to ensure that dnode block sizes * match on the sending and receiving side. */ if (drror->drr_numslots != DNODES_PER_BLOCK || P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || !rwa->raw) return (SET_ERROR(EINVAL)); if (drror->drr_firstobj > rwa->max_object) rwa->max_object = drror->drr_firstobj; /* * The DRR_OBJECT_RANGE handling must be deferred to receive_object() * so that the block of dnodes is not written out when it's empty, * and converted to a HOLE BP. */ rwa->or_crypt_params_present = B_TRUE; rwa->or_firstobj = drror->drr_firstobj; rwa->or_numslots = drror->drr_numslots; memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN); memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN); memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN); rwa->or_byteorder = byteorder; rwa->or_need_sync = ORNS_MAYBE; return (0); } /* * Until we have the ability to redact large ranges of data efficiently, we * process these records as frees. */ noinline static int receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) { struct drr_free drrf = {0}; drrf.drr_length = drrr->drr_length; drrf.drr_object = drrr->drr_object; drrf.drr_offset = drrr->drr_offset; drrf.drr_toguid = drrr->drr_toguid; return (receive_free(rwa, &drrf)); } /* used to destroy the drc_ds on error */ static void dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) { dsl_dataset_t *ds = drc->drc_ds; ds_hold_flags_t dsflags; dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; /* * Wait for the txg sync before cleaning up the receive. For * resumable receives, this ensures that our resume state has * been written out to disk. For raw receives, this ensures * that the user accounting code will not attempt to do anything * after we stopped receiving the dataset. */ txg_wait_synced(ds->ds_dir->dd_pool, 0); ds->ds_objset->os_raw_receive = B_FALSE; rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); if (drc->drc_resumable && drc->drc_should_save && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { rrw_exit(&ds->ds_bp_rwlock, FTAG); dsl_dataset_disown(ds, dsflags, dmu_recv_tag); } else { char name[ZFS_MAX_DATASET_NAME_LEN]; rrw_exit(&ds->ds_bp_rwlock, FTAG); dsl_dataset_name(ds, name); dsl_dataset_disown(ds, dsflags, dmu_recv_tag); if (!drc->drc_heal) (void) dsl_destroy_head(name); } } static void receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) { if (drc->drc_byteswap) { (void) fletcher_4_incremental_byteswap(buf, len, &drc->drc_cksum); } else { (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); } } /* * Read the payload into a buffer of size len, and update the current record's * payload field. * Allocate drc->drc_next_rrd and read the next record's header into * drc->drc_next_rrd->header. * Verify checksum of payload and next record. */ static int receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) { int err; if (len != 0) { ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); err = receive_read(drc, len, buf); if (err != 0) return (err); receive_cksum(drc, len, buf); /* note: rrd is NULL when reading the begin record's payload */ if (drc->drc_rrd != NULL) { drc->drc_rrd->payload = buf; drc->drc_rrd->payload_size = len; drc->drc_rrd->bytes_read = drc->drc_bytes_read; } } else { ASSERT3P(buf, ==, NULL); } drc->drc_prev_cksum = drc->drc_cksum; drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); err = receive_read(drc, sizeof (drc->drc_next_rrd->header), &drc->drc_next_rrd->header); drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; if (err != 0) { kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); drc->drc_next_rrd = NULL; return (err); } if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); drc->drc_next_rrd = NULL; return (SET_ERROR(EINVAL)); } /* * Note: checksum is of everything up to but not including the * checksum itself. */ ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); receive_cksum(drc, offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), &drc->drc_next_rrd->header); zio_cksum_t cksum_orig = drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; zio_cksum_t *cksump = &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; if (drc->drc_byteswap) byteswap_record(&drc->drc_next_rrd->header); if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); drc->drc_next_rrd = NULL; return (SET_ERROR(ECKSUM)); } receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); return (0); } /* * Issue the prefetch reads for any necessary indirect blocks. * * We use the object ignore list to tell us whether or not to issue prefetches * for a given object. We do this for both correctness (in case the blocksize * of an object has changed) and performance (if the object doesn't exist, don't * needlessly try to issue prefetches). We also trim the list as we go through * the stream to prevent it from growing to an unbounded size. * * The object numbers within will always be in sorted order, and any write * records we see will also be in sorted order, but they're not sorted with * respect to each other (i.e. we can get several object records before * receiving each object's write records). As a result, once we've reached a * given object number, we can safely remove any reference to lower object * numbers in the ignore list. In practice, we receive up to 32 object records * before receiving write records, so the list can have up to 32 nodes in it. */ static void receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, uint64_t length) { if (!objlist_exists(drc->drc_ignore_objlist, object)) { dmu_prefetch(drc->drc_os, object, 1, offset, length, ZIO_PRIORITY_SYNC_READ); } } /* * Read records off the stream, issuing any necessary prefetches. */ static int receive_read_record(dmu_recv_cookie_t *drc) { int err; switch (drc->drc_rrd->header.drr_type) { case DRR_OBJECT: { struct drr_object *drro = &drc->drc_rrd->header.drr_u.drr_object; uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); void *buf = NULL; dmu_object_info_t doi; if (size != 0) buf = kmem_zalloc(size, KM_SLEEP); err = receive_read_payload_and_next_header(drc, size, buf); if (err != 0) { kmem_free(buf, size); return (err); } err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); /* * See receive_read_prefetch for an explanation why we're * storing this object in the ignore_obj_list. */ if (err == ENOENT || err == EEXIST || (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { objlist_insert(drc->drc_ignore_objlist, drro->drr_object); err = 0; } return (err); } case DRR_FREEOBJECTS: { err = receive_read_payload_and_next_header(drc, 0, NULL); return (err); } case DRR_WRITE: { struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; int size = DRR_WRITE_PAYLOAD_SIZE(drrw); abd_t *abd = abd_alloc_linear(size, B_FALSE); err = receive_read_payload_and_next_header(drc, size, abd_to_buf(abd)); if (err != 0) { abd_free(abd); return (err); } drc->drc_rrd->abd = abd; receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, drrw->drr_logical_size); return (err); } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &drc->drc_rrd->header.drr_u.drr_write_embedded; uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); void *buf = kmem_zalloc(size, KM_SLEEP); err = receive_read_payload_and_next_header(drc, size, buf); if (err != 0) { kmem_free(buf, size); return (err); } receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length); return (err); } case DRR_FREE: case DRR_REDACT: { /* * It might be beneficial to prefetch indirect blocks here, but * we don't really have the data to decide for sure. */ err = receive_read_payload_and_next_header(drc, 0, NULL); return (err); } case DRR_END: { struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, drre->drr_checksum)) return (SET_ERROR(ECKSUM)); return (0); } case DRR_SPILL: { struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; int size = DRR_SPILL_PAYLOAD_SIZE(drrs); abd_t *abd = abd_alloc_linear(size, B_FALSE); err = receive_read_payload_and_next_header(drc, size, abd_to_buf(abd)); if (err != 0) abd_free(abd); else drc->drc_rrd->abd = abd; return (err); } case DRR_OBJECT_RANGE: { err = receive_read_payload_and_next_header(drc, 0, NULL); return (err); } default: return (SET_ERROR(EINVAL)); } } static void dprintf_drr(struct receive_record_arg *rrd, int err) { #ifdef ZFS_DEBUG switch (rrd->header.drr_type) { case DRR_OBJECT: { struct drr_object *drro = &rrd->header.drr_u.drr_object; dprintf("drr_type = OBJECT obj = %llu type = %u " "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " "compress = %u dn_slots = %u err = %d\n", (u_longlong_t)drro->drr_object, drro->drr_type, drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen, drro->drr_checksumtype, drro->drr_compress, drro->drr_dn_slots, err); break; } case DRR_FREEOBJECTS: { struct drr_freeobjects *drrfo = &rrd->header.drr_u.drr_freeobjects; dprintf("drr_type = FREEOBJECTS firstobj = %llu " "numobjs = %llu err = %d\n", (u_longlong_t)drrfo->drr_firstobj, (u_longlong_t)drrfo->drr_numobjs, err); break; } case DRR_WRITE: { struct drr_write *drrw = &rrd->header.drr_u.drr_write; dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " "lsize = %llu cksumtype = %u flags = %u " "compress = %u psize = %llu err = %d\n", (u_longlong_t)drrw->drr_object, drrw->drr_type, (u_longlong_t)drrw->drr_offset, (u_longlong_t)drrw->drr_logical_size, drrw->drr_checksumtype, drrw->drr_flags, drrw->drr_compressiontype, (u_longlong_t)drrw->drr_compressed_size, err); break; } case DRR_WRITE_BYREF: { struct drr_write_byref *drrwbr = &rrd->header.drr_u.drr_write_byref; dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " "length = %llu toguid = %llx refguid = %llx " "refobject = %llu refoffset = %llu cksumtype = %u " "flags = %u err = %d\n", (u_longlong_t)drrwbr->drr_object, (u_longlong_t)drrwbr->drr_offset, (u_longlong_t)drrwbr->drr_length, (u_longlong_t)drrwbr->drr_toguid, (u_longlong_t)drrwbr->drr_refguid, (u_longlong_t)drrwbr->drr_refobject, (u_longlong_t)drrwbr->drr_refoffset, drrwbr->drr_checksumtype, drrwbr->drr_flags, err); break; } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &rrd->header.drr_u.drr_write_embedded; dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " "length = %llu compress = %u etype = %u lsize = %u " "psize = %u err = %d\n", (u_longlong_t)drrwe->drr_object, (u_longlong_t)drrwe->drr_offset, (u_longlong_t)drrwe->drr_length, drrwe->drr_compression, drrwe->drr_etype, drrwe->drr_lsize, drrwe->drr_psize, err); break; } case DRR_FREE: { struct drr_free *drrf = &rrd->header.drr_u.drr_free; dprintf("drr_type = FREE obj = %llu offset = %llu " "length = %lld err = %d\n", (u_longlong_t)drrf->drr_object, (u_longlong_t)drrf->drr_offset, (longlong_t)drrf->drr_length, err); break; } case DRR_SPILL: { struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; dprintf("drr_type = SPILL obj = %llu length = %llu " "err = %d\n", (u_longlong_t)drrs->drr_object, (u_longlong_t)drrs->drr_length, err); break; } case DRR_OBJECT_RANGE: { struct drr_object_range *drror = &rrd->header.drr_u.drr_object_range; dprintf("drr_type = OBJECT_RANGE firstobj = %llu " "numslots = %llu flags = %u err = %d\n", (u_longlong_t)drror->drr_firstobj, (u_longlong_t)drror->drr_numslots, drror->drr_flags, err); break; } default: return; } #endif } /* * Commit the records to the pool. */ static int receive_process_record(struct receive_writer_arg *rwa, struct receive_record_arg *rrd) { int err; /* Processing in order, therefore bytes_read should be increasing. */ ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); rwa->bytes_read = rrd->bytes_read; /* We can only heal write records; other ones get ignored */ if (rwa->heal && rrd->header.drr_type != DRR_WRITE) { if (rrd->abd != NULL) { abd_free(rrd->abd); rrd->abd = NULL; } else if (rrd->payload != NULL) { kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; } return (0); } if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) { err = flush_write_batch(rwa); if (err != 0) { if (rrd->abd != NULL) { abd_free(rrd->abd); rrd->abd = NULL; rrd->payload = NULL; } else if (rrd->payload != NULL) { kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; } return (err); } } switch (rrd->header.drr_type) { case DRR_OBJECT: { struct drr_object *drro = &rrd->header.drr_u.drr_object; err = receive_object(rwa, drro, rrd->payload); kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; break; } case DRR_FREEOBJECTS: { struct drr_freeobjects *drrfo = &rrd->header.drr_u.drr_freeobjects; err = receive_freeobjects(rwa, drrfo); break; } case DRR_WRITE: { err = receive_process_write_record(rwa, rrd); if (rwa->heal) { /* * If healing - always free the abd after processing */ abd_free(rrd->abd); rrd->abd = NULL; } else if (err != EAGAIN) { /* * On success, a non-healing * receive_process_write_record() returns * EAGAIN to indicate that we do not want to free * the rrd or arc_buf. */ ASSERT(err != 0); abd_free(rrd->abd); rrd->abd = NULL; } break; } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &rrd->header.drr_u.drr_write_embedded; err = receive_write_embedded(rwa, drrwe, rrd->payload); kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; break; } case DRR_FREE: { struct drr_free *drrf = &rrd->header.drr_u.drr_free; err = receive_free(rwa, drrf); break; } case DRR_SPILL: { struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; err = receive_spill(rwa, drrs, rrd->abd); if (err != 0) abd_free(rrd->abd); rrd->abd = NULL; rrd->payload = NULL; break; } case DRR_OBJECT_RANGE: { struct drr_object_range *drror = &rrd->header.drr_u.drr_object_range; err = receive_object_range(rwa, drror); break; } case DRR_REDACT: { struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; err = receive_redact(rwa, drrr); break; } default: err = (SET_ERROR(EINVAL)); } if (err != 0) dprintf_drr(rrd, err); return (err); } /* * dmu_recv_stream's worker thread; pull records off the queue, and then call * receive_process_record When we're done, signal the main thread and exit. */ static __attribute__((noreturn)) void receive_writer_thread(void *arg) { struct receive_writer_arg *rwa = arg; struct receive_record_arg *rrd; fstrans_cookie_t cookie = spl_fstrans_mark(); for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; rrd = bqueue_dequeue(&rwa->q)) { /* * If there's an error, the main thread will stop putting things * on the queue, but we need to clear everything in it before we * can exit. */ int err = 0; if (rwa->err == 0) { err = receive_process_record(rwa, rrd); } else if (rrd->abd != NULL) { abd_free(rrd->abd); rrd->abd = NULL; rrd->payload = NULL; } else if (rrd->payload != NULL) { kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; } /* * EAGAIN indicates that this record has been saved (on * raw->write_batch), and will be used again, so we don't * free it. * When healing data we always need to free the record. */ if (err != EAGAIN || rwa->heal) { if (rwa->err == 0) rwa->err = err; kmem_free(rrd, sizeof (*rrd)); } } kmem_free(rrd, sizeof (*rrd)); if (rwa->heal) { zio_wait(rwa->heal_pio); } else { int err = flush_write_batch(rwa); if (rwa->err == 0) rwa->err = err; } mutex_enter(&rwa->mutex); rwa->done = B_TRUE; cv_signal(&rwa->cv); mutex_exit(&rwa->mutex); spl_fstrans_unmark(cookie); thread_exit(); } static int resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) { uint64_t val; objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; uint64_t dsobj = dmu_objset_id(drc->drc_os); uint64_t resume_obj, resume_off; if (nvlist_lookup_uint64(begin_nvl, "resume_object", &resume_obj) != 0 || nvlist_lookup_uint64(begin_nvl, "resume_offset", &resume_off) != 0) { return (SET_ERROR(EINVAL)); } VERIFY0(zap_lookup(mos, dsobj, DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); if (resume_obj != val) return (SET_ERROR(EINVAL)); VERIFY0(zap_lookup(mos, dsobj, DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); if (resume_off != val) return (SET_ERROR(EINVAL)); return (0); } /* * Read in the stream's records, one by one, and apply them to the pool. There * are two threads involved; the thread that calls this function will spin up a * worker thread, read the records off the stream one by one, and issue * prefetches for any necessary indirect blocks. It will then push the records * onto an internal blocking queue. The worker thread will pull the records off * the queue, and actually write the data into the DMU. This way, the worker * thread doesn't have to wait for reads to complete, since everything it needs * (the indirect blocks) will be prefetched. * * NB: callers *must* call dmu_recv_end() if this succeeds. */ int dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) { int err = 0; struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) { uint64_t bytes = 0; (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, sizeof (bytes), 1, &bytes); drc->drc_bytes_read += bytes; } drc->drc_ignore_objlist = objlist_create(); /* these were verified in dmu_recv_begin */ ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, DMU_SUBSTREAM); ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); ASSERT0(drc->drc_os->os_encrypted && (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); /* handle DSL encryption key payload */ if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { nvlist_t *keynvl = NULL; ASSERT(drc->drc_os->os_encrypted); ASSERT(drc->drc_raw); err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", &keynvl); if (err != 0) goto out; if (!drc->drc_heal) { /* * If this is a new dataset we set the key immediately. * Otherwise we don't want to change the key until we * are sure the rest of the receive succeeded so we * stash the keynvl away until then. */ err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), drc->drc_ds->ds_object, drc->drc_fromsnapobj, drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); if (err != 0) goto out; } /* see comment in dmu_recv_end_sync() */ drc->drc_ivset_guid = 0; (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", &drc->drc_ivset_guid); if (!drc->drc_newfs) drc->drc_keynvl = fnvlist_dup(keynvl); } if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { err = resume_check(drc, drc->drc_begin_nvl); if (err != 0) goto out; } /* * For compatibility with recursive send streams, we do this here, * rather than in dmu_recv_begin. If we pull the next header too * early, and it's the END record, we break the `recv_skip` logic. */ if (drc->drc_drr_begin->drr_payloadlen == 0) { err = receive_read_payload_and_next_header(drc, 0, NULL); if (err != 0) goto out; } /* * If we failed before this point we will clean up any new resume * state that was created. Now that we've gotten past the initial * checks we are ok to retain that resume state. */ drc->drc_should_save = B_TRUE; (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), offsetof(struct receive_record_arg, node)); cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); rwa->os = drc->drc_os; rwa->byteswap = drc->drc_byteswap; rwa->heal = drc->drc_heal; rwa->tofs = drc->drc_tofs; rwa->resumable = drc->drc_resumable; rwa->raw = drc->drc_raw; rwa->spill = drc->drc_spill; rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); rwa->os->os_raw_receive = drc->drc_raw; if (drc->drc_heal) { rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL, ZIO_FLAG_GODFATHER); } list_create(&rwa->write_batch, sizeof (struct receive_record_arg), offsetof(struct receive_record_arg, node.bqn_node)); (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, TS_RUN, minclsyspri); /* * We're reading rwa->err without locks, which is safe since we are the * only reader, and the worker thread is the only writer. It's ok if we * miss a write for an iteration or two of the loop, since the writer * thread will keep freeing records we send it until we send it an eos * marker. * * We can leave this loop in 3 ways: First, if rwa->err is * non-zero. In that case, the writer thread will free the rrd we just * pushed. Second, if we're interrupted; in that case, either it's the * first loop and drc->drc_rrd was never allocated, or it's later, and * drc->drc_rrd has been handed off to the writer thread who will free * it. Finally, if receive_read_record fails or we're at the end of the * stream, then we free drc->drc_rrd and exit. */ while (rwa->err == 0) { if (issig(JUSTLOOKING) && issig(FORREAL)) { err = SET_ERROR(EINTR); break; } ASSERT3P(drc->drc_rrd, ==, NULL); drc->drc_rrd = drc->drc_next_rrd; drc->drc_next_rrd = NULL; /* Allocates and loads header into drc->drc_next_rrd */ err = receive_read_record(drc); if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); drc->drc_rrd = NULL; break; } bqueue_enqueue(&rwa->q, drc->drc_rrd, sizeof (struct receive_record_arg) + drc->drc_rrd->payload_size); drc->drc_rrd = NULL; } ASSERT3P(drc->drc_rrd, ==, NULL); drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); drc->drc_rrd->eos_marker = B_TRUE; bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); mutex_enter(&rwa->mutex); while (!rwa->done) { /* * We need to use cv_wait_sig() so that any process that may * be sleeping here can still fork. */ (void) cv_wait_sig(&rwa->cv, &rwa->mutex); } mutex_exit(&rwa->mutex); /* * If we are receiving a full stream as a clone, all object IDs which * are greater than the maximum ID referenced in the stream are * by definition unused and must be freed. */ if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { uint64_t obj = rwa->max_object + 1; int free_err = 0; int next_err = 0; while (next_err == 0) { free_err = dmu_free_long_object(rwa->os, obj); if (free_err != 0 && free_err != ENOENT) break; next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); } if (err == 0) { if (free_err != 0 && free_err != ENOENT) err = free_err; else if (next_err != ESRCH) err = next_err; } } cv_destroy(&rwa->cv); mutex_destroy(&rwa->mutex); bqueue_destroy(&rwa->q); list_destroy(&rwa->write_batch); if (err == 0) err = rwa->err; out: /* * If we hit an error before we started the receive_writer_thread * we need to clean up the next_rrd we create by processing the * DRR_BEGIN record. */ if (drc->drc_next_rrd != NULL) kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); /* * The objset will be invalidated by dmu_recv_end() when we do * dsl_dataset_clone_swap_sync_impl(). */ drc->drc_os = NULL; kmem_free(rwa, sizeof (*rwa)); nvlist_free(drc->drc_begin_nvl); if (err != 0) { /* * Clean up references. If receive is not resumable, * destroy what we created, so we don't leave it in * the inconsistent state. */ dmu_recv_cleanup_ds(drc); nvlist_free(drc->drc_keynvl); } objlist_destroy(drc->drc_ignore_objlist); drc->drc_ignore_objlist = NULL; *voffp = drc->drc_voff; return (err); } static int dmu_recv_end_check(void *arg, dmu_tx_t *tx) { dmu_recv_cookie_t *drc = arg; dsl_pool_t *dp = dmu_tx_pool(tx); int error; ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); if (drc->drc_heal) { error = 0; } else if (!drc->drc_newfs) { dsl_dataset_t *origin_head; error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); if (error != 0) return (error); if (drc->drc_force) { /* * We will destroy any snapshots in tofs (i.e. before * origin_head) that are after the origin (which is * the snap before drc_ds, because drc_ds can not * have any snaps of its own). */ uint64_t obj; obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; while (obj != dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { dsl_dataset_t *snap; error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) break; if (snap->ds_dir != origin_head->ds_dir) error = SET_ERROR(EINVAL); if (error == 0) { error = dsl_destroy_snapshot_check_impl( snap, B_FALSE); } obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_dataset_rele(snap, FTAG); if (error != 0) break; } if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } } if (drc->drc_keynvl != NULL) { error = dsl_crypto_recv_raw_key_check(drc->drc_ds, drc->drc_keynvl, tx); if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } } error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, origin_head, drc->drc_force, drc->drc_owner, tx); if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } error = dsl_dataset_snapshot_check_impl(origin_head, drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred, drc->drc_proc); dsl_dataset_rele(origin_head, FTAG); if (error != 0) return (error); error = dsl_destroy_head_check_impl(drc->drc_ds, 1); } else { error = dsl_dataset_snapshot_check_impl(drc->drc_ds, drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred, drc->drc_proc); } return (error); } static void dmu_recv_end_sync(void *arg, dmu_tx_t *tx) { dmu_recv_cookie_t *drc = arg; dsl_pool_t *dp = dmu_tx_pool(tx); boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; uint64_t newsnapobj = 0; spa_history_log_internal_ds(drc->drc_ds, "finish receiving", tx, "snap=%s", drc->drc_tosnap); drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; if (drc->drc_heal) { if (drc->drc_keynvl != NULL) { nvlist_free(drc->drc_keynvl); drc->drc_keynvl = NULL; } } else if (!drc->drc_newfs) { dsl_dataset_t *origin_head; VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head)); if (drc->drc_force) { /* * Destroy any snapshots of drc_tofs (origin_head) * after the origin (the snap before drc_ds). */ uint64_t obj; obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; while (obj != dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { dsl_dataset_t *snap; VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &snap)); ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_destroy_snapshot_sync_impl(snap, B_FALSE, tx); dsl_dataset_rele(snap, FTAG); } } if (drc->drc_keynvl != NULL) { dsl_crypto_recv_raw_key_sync(drc->drc_ds, drc->drc_keynvl, tx); nvlist_free(drc->drc_keynvl); drc->drc_keynvl = NULL; } VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev); dsl_dataset_clone_swap_sync_impl(drc->drc_ds, origin_head, tx); /* * The objset was evicted by dsl_dataset_clone_swap_sync_impl, * so drc_os is no longer valid. */ drc->drc_os = NULL; dsl_dataset_snapshot_sync_impl(origin_head, drc->drc_tosnap, tx); /* set snapshot's creation time and guid */ dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = drc->drc_drrb->drr_creation_time; dsl_dataset_phys(origin_head->ds_prev)->ds_guid = drc->drc_drrb->drr_toguid; dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= ~DS_FLAG_INCONSISTENT; dmu_buf_will_dirty(origin_head->ds_dbuf, tx); dsl_dataset_phys(origin_head)->ds_flags &= ~DS_FLAG_INCONSISTENT; newsnapobj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; dsl_dataset_rele(origin_head, FTAG); dsl_destroy_head_sync_impl(drc->drc_ds, tx); if (drc->drc_owner != NULL) VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); } else { dsl_dataset_t *ds = drc->drc_ds; dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); /* set snapshot's creation time and guid */ dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); dsl_dataset_phys(ds->ds_prev)->ds_creation_time = drc->drc_drrb->drr_creation_time; dsl_dataset_phys(ds->ds_prev)->ds_guid = drc->drc_drrb->drr_toguid; dsl_dataset_phys(ds->ds_prev)->ds_flags &= ~DS_FLAG_INCONSISTENT; dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; if (dsl_dataset_has_resume_receive_state(ds)) { (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_FROMGUID, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OBJECT, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OFFSET, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_BYTES, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TOGUID, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TONAME, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); } newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; } /* * If this is a raw receive, the crypt_keydata nvlist will include * a to_ivset_guid for us to set on the new snapshot. This value * will override the value generated by the snapshot code. However, * this value may not be present, because older implementations of * the raw send code did not include this value, and we are still * allowed to receive them if the zfs_disable_ivset_guid_check * tunable is set, in which case we will leave the newly-generated * value. */ if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) { dmu_object_zapify(dp->dp_meta_objset, newsnapobj, DMU_OT_DSL_DATASET, tx); VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, &drc->drc_ivset_guid, tx)); } /* * Release the hold from dmu_recv_begin. This must be done before * we return to open context, so that when we free the dataset's dnode * we can evict its bonus buffer. Since the dataset may be destroyed * at this point (and therefore won't have a valid pointer to the spa) * we release the key mapping manually here while we do have a valid * pointer, if it exists. */ if (!drc->drc_raw && encrypted) { (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, drc->drc_ds->ds_object, drc->drc_ds); } dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); drc->drc_ds = NULL; } static int dmu_recv_end_modified_blocks = 3; static int dmu_recv_existing_end(dmu_recv_cookie_t *drc) { #ifdef _KERNEL /* * We will be destroying the ds; make sure its origin is unmounted if * necessary. */ char name[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(drc->drc_ds, name); zfs_destroy_unmount_origin(name); #endif return (dsl_sync_task(drc->drc_tofs, dmu_recv_end_check, dmu_recv_end_sync, drc, dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); } static int dmu_recv_new_end(dmu_recv_cookie_t *drc) { return (dsl_sync_task(drc->drc_tofs, dmu_recv_end_check, dmu_recv_end_sync, drc, dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); } int dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) { int error; drc->drc_owner = owner; if (drc->drc_newfs) error = dmu_recv_new_end(drc); else error = dmu_recv_existing_end(drc); if (error != 0) { dmu_recv_cleanup_ds(drc); nvlist_free(drc->drc_keynvl); } else if (!drc->drc_heal) { if (drc->drc_newfs) { zvol_create_minor(drc->drc_tofs); } char *snapname = kmem_asprintf("%s@%s", drc->drc_tofs, drc->drc_tosnap); zvol_create_minor(snapname); kmem_strfree(snapname); } return (error); } /* * Return TRUE if this objset is currently being received into. */ boolean_t dmu_objset_is_receiving(objset_t *os) { return (os->os_dsl_dataset != NULL && os->os_dsl_dataset->ds_owner == dmu_recv_tag); } ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW, "Maximum receive queue length"); ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW, "Receive queue fill fraction"); ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW, "Maximum amount of writes to batch into one transaction"); ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW, "Ignore errors during corrective receive"); /* END CSTYLED */ diff --git a/module/zfs/spa_misc.c b/module/zfs/spa_misc.c index 014c539eb683..9ef948e9e434 100644 --- a/module/zfs/spa_misc.c +++ b/module/zfs/spa_misc.c @@ -1,3006 +1,3004 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2019 by Delphix. All rights reserved. * Copyright 2015 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2017 Datto Inc. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2019, loli10K . All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_prop.h" #include #include #include #include /* * SPA locking * * There are three basic locks for managing spa_t structures: * * spa_namespace_lock (global mutex) * * This lock must be acquired to do any of the following: * * - Lookup a spa_t by name * - Add or remove a spa_t from the namespace * - Increase spa_refcount from non-zero * - Check if spa_refcount is zero * - Rename a spa_t * - add/remove/attach/detach devices * - Held for the duration of create/destroy/import/export * * It does not need to handle recursion. A create or destroy may * reference objects (files or zvols) in other pools, but by * definition they must have an existing reference, and will never need * to lookup a spa_t by name. * * spa_refcount (per-spa zfs_refcount_t protected by mutex) * * This reference count keep track of any active users of the spa_t. The * spa_t cannot be destroyed or freed while this is non-zero. Internally, * the refcount is never really 'zero' - opening a pool implicitly keeps * some references in the DMU. Internally we check against spa_minref, but * present the image of a zero/non-zero value to consumers. * * spa_config_lock[] (per-spa array of rwlocks) * * This protects the spa_t from config changes, and must be held in * the following circumstances: * * - RW_READER to perform I/O to the spa * - RW_WRITER to change the vdev config * * The locking order is fairly straightforward: * * spa_namespace_lock -> spa_refcount * * The namespace lock must be acquired to increase the refcount from 0 * or to check if it is zero. * * spa_refcount -> spa_config_lock[] * * There must be at least one valid reference on the spa_t to acquire * the config lock. * * spa_namespace_lock -> spa_config_lock[] * * The namespace lock must always be taken before the config lock. * * * The spa_namespace_lock can be acquired directly and is globally visible. * * The namespace is manipulated using the following functions, all of which * require the spa_namespace_lock to be held. * * spa_lookup() Lookup a spa_t by name. * * spa_add() Create a new spa_t in the namespace. * * spa_remove() Remove a spa_t from the namespace. This also * frees up any memory associated with the spa_t. * * spa_next() Returns the next spa_t in the system, or the * first if NULL is passed. * * spa_evict_all() Shutdown and remove all spa_t structures in * the system. * * spa_guid_exists() Determine whether a pool/device guid exists. * * The spa_refcount is manipulated using the following functions: * * spa_open_ref() Adds a reference to the given spa_t. Must be * called with spa_namespace_lock held if the * refcount is currently zero. * * spa_close() Remove a reference from the spa_t. This will * not free the spa_t or remove it from the * namespace. No locking is required. * * spa_refcount_zero() Returns true if the refcount is currently * zero. Must be called with spa_namespace_lock * held. * * The spa_config_lock[] is an array of rwlocks, ordered as follows: * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). * * To read the configuration, it suffices to hold one of these locks as reader. * To modify the configuration, you must hold all locks as writer. To modify * vdev state without altering the vdev tree's topology (e.g. online/offline), * you must hold SCL_STATE and SCL_ZIO as writer. * * We use these distinct config locks to avoid recursive lock entry. * For example, spa_sync() (which holds SCL_CONFIG as reader) induces * block allocations (SCL_ALLOC), which may require reading space maps * from disk (dmu_read() -> zio_read() -> SCL_ZIO). * * The spa config locks cannot be normal rwlocks because we need the * ability to hand off ownership. For example, SCL_ZIO is acquired * by the issuing thread and later released by an interrupt thread. * They do, however, obey the usual write-wanted semantics to prevent * writer (i.e. system administrator) starvation. * * The lock acquisition rules are as follows: * * SCL_CONFIG * Protects changes to the vdev tree topology, such as vdev * add/remove/attach/detach. Protects the dirty config list * (spa_config_dirty_list) and the set of spares and l2arc devices. * * SCL_STATE * Protects changes to pool state and vdev state, such as vdev * online/offline/fault/degrade/clear. Protects the dirty state list * (spa_state_dirty_list) and global pool state (spa_state). * * SCL_ALLOC * Protects changes to metaslab groups and classes. * Held as reader by metaslab_alloc() and metaslab_claim(). * * SCL_ZIO * Held by bp-level zios (those which have no io_vd upon entry) * to prevent changes to the vdev tree. The bp-level zio implicitly * protects all of its vdev child zios, which do not hold SCL_ZIO. * * SCL_FREE * Protects changes to metaslab groups and classes. * Held as reader by metaslab_free(). SCL_FREE is distinct from * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free * blocks in zio_done() while another i/o that holds either * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. * * SCL_VDEV * Held as reader to prevent changes to the vdev tree during trivial * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the * other locks, and lower than all of them, to ensure that it's safe * to acquire regardless of caller context. * * In addition, the following rules apply: * * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. * The lock ordering is SCL_CONFIG > spa_props_lock. * * (b) I/O operations on leaf vdevs. For any zio operation that takes * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), * or zio_write_phys() -- the caller must ensure that the config cannot * cannot change in the interim, and that the vdev cannot be reopened. * SCL_STATE as reader suffices for both. * * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). * * spa_vdev_enter() Acquire the namespace lock and the config lock * for writing. * * spa_vdev_exit() Release the config lock, wait for all I/O * to complete, sync the updated configs to the * cache, and release the namespace lock. * * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual * locking is, always, based on spa_namespace_lock and spa_config_lock[]. */ static avl_tree_t spa_namespace_avl; kmutex_t spa_namespace_lock; static kcondvar_t spa_namespace_cv; static const int spa_max_replication_override = SPA_DVAS_PER_BP; static kmutex_t spa_spare_lock; static avl_tree_t spa_spare_avl; static kmutex_t spa_l2cache_lock; static avl_tree_t spa_l2cache_avl; spa_mode_t spa_mode_global = SPA_MODE_UNINIT; #ifdef ZFS_DEBUG /* * Everything except dprintf, set_error, spa, and indirect_remap is on * by default in debug builds. */ int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | ZFS_DEBUG_INDIRECT_REMAP); #else int zfs_flags = 0; #endif /* * zfs_recover can be set to nonzero to attempt to recover from * otherwise-fatal errors, typically caused by on-disk corruption. When * set, calls to zfs_panic_recover() will turn into warning messages. * This should only be used as a last resort, as it typically results * in leaked space, or worse. */ int zfs_recover = B_FALSE; /* * If destroy encounters an EIO while reading metadata (e.g. indirect * blocks), space referenced by the missing metadata can not be freed. * Normally this causes the background destroy to become "stalled", as * it is unable to make forward progress. While in this stalled state, * all remaining space to free from the error-encountering filesystem is * "temporarily leaked". Set this flag to cause it to ignore the EIO, * permanently leak the space from indirect blocks that can not be read, * and continue to free everything else that it can. * * The default, "stalling" behavior is useful if the storage partially * fails (i.e. some but not all i/os fail), and then later recovers. In * this case, we will be able to continue pool operations while it is * partially failed, and when it recovers, we can continue to free the * space, with no leaks. However, note that this case is actually * fairly rare. * * Typically pools either (a) fail completely (but perhaps temporarily, * e.g. a top-level vdev going offline), or (b) have localized, * permanent errors (e.g. disk returns the wrong data due to bit flip or * firmware bug). In case (a), this setting does not matter because the * pool will be suspended and the sync thread will not be able to make * forward progress regardless. In case (b), because the error is * permanent, the best we can do is leak the minimum amount of space, * which is what setting this flag will do. Therefore, it is reasonable * for this flag to normally be set, but we chose the more conservative * approach of not setting it, so that there is no possibility of * leaking space in the "partial temporary" failure case. */ int zfs_free_leak_on_eio = B_FALSE; /* * Expiration time in milliseconds. This value has two meanings. First it is * used to determine when the spa_deadman() logic should fire. By default the * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. * Secondly, the value determines if an I/O is considered "hung". Any I/O that * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting * in one of three behaviors controlled by zfs_deadman_failmode. */ uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ /* * This value controls the maximum amount of time zio_wait() will block for an * outstanding IO. By default this is 300 seconds at which point the "hung" * behavior will be applied as described for zfs_deadman_synctime_ms. */ uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ /* * Check time in milliseconds. This defines the frequency at which we check * for hung I/O. */ uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ /* * By default the deadman is enabled. */ int zfs_deadman_enabled = B_TRUE; /* * Controls the behavior of the deadman when it detects a "hung" I/O. * Valid values are zfs_deadman_failmode=. * * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system */ const char *zfs_deadman_failmode = "wait"; /* * The worst case is single-sector max-parity RAID-Z blocks, in which * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) * times the size; so just assume that. Add to this the fact that * we can have up to 3 DVAs per bp, and one more factor of 2 because * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, * the worst case is: * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 */ uint_t spa_asize_inflation = 24; /* * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in * the pool to be consumed (bounded by spa_max_slop). This ensures that we * don't run the pool completely out of space, due to unaccounted changes (e.g. * to the MOS). It also limits the worst-case time to allocate space. If we * have less than this amount of free space, most ZPL operations (e.g. write, * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are * also part of this 3.2% of space which can't be consumed by normal writes; * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded * log space. * * Certain operations (e.g. file removal, most administrative actions) can * use half the slop space. They will only return ENOSPC if less than half * the slop space is free. Typically, once the pool has less than the slop * space free, the user will use these operations to free up space in the pool. * These are the operations that call dsl_pool_adjustedsize() with the netfree * argument set to TRUE. * * Operations that are almost guaranteed to free up space in the absence of * a pool checkpoint can use up to three quarters of the slop space * (e.g zfs destroy). * * A very restricted set of operations are always permitted, regardless of * the amount of free space. These are the operations that call * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net * increase in the amount of space used, it is possible to run the pool * completely out of space, causing it to be permanently read-only. * * Note that on very small pools, the slop space will be larger than * 3.2%, in an effort to have it be at least spa_min_slop (128MB), * but we never allow it to be more than half the pool size. * * Further, on very large pools, the slop space will be smaller than * 3.2%, to avoid reserving much more space than we actually need; bounded * by spa_max_slop (128GB). * * See also the comments in zfs_space_check_t. */ uint_t spa_slop_shift = 5; static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; static const int spa_allocators = 4; void spa_load_failed(spa_t *spa, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, spa->spa_trust_config ? "trusted" : "untrusted", buf); } void spa_load_note(spa_t *spa, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, spa->spa_trust_config ? "trusted" : "untrusted", buf); } /* * By default dedup and user data indirects land in the special class */ static int zfs_ddt_data_is_special = B_TRUE; static int zfs_user_indirect_is_special = B_TRUE; /* * The percentage of special class final space reserved for metadata only. * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only * let metadata into the class. */ static uint_t zfs_special_class_metadata_reserve_pct = 25; /* * ========================================================================== * SPA config locking * ========================================================================== */ static void spa_config_lock_init(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); scl->scl_writer = NULL; scl->scl_write_wanted = 0; scl->scl_count = 0; } } static void spa_config_lock_destroy(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_destroy(&scl->scl_lock); cv_destroy(&scl->scl_cv); ASSERT(scl->scl_writer == NULL); ASSERT(scl->scl_write_wanted == 0); ASSERT(scl->scl_count == 0); } } int spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { if (scl->scl_writer || scl->scl_write_wanted) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks & ((1 << i) - 1), tag); return (0); } } else { ASSERT(scl->scl_writer != curthread); if (scl->scl_count != 0) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks & ((1 << i) - 1), tag); return (0); } scl->scl_writer = curthread; } scl->scl_count++; mutex_exit(&scl->scl_lock); } return (1); } static void spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw, int mmp_flag) { (void) tag; int wlocks_held = 0; ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (scl->scl_writer == curthread) wlocks_held |= (1 << i); if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { while (scl->scl_writer || (!mmp_flag && scl->scl_write_wanted)) { cv_wait(&scl->scl_cv, &scl->scl_lock); } } else { ASSERT(scl->scl_writer != curthread); while (scl->scl_count != 0) { scl->scl_write_wanted++; cv_wait(&scl->scl_cv, &scl->scl_lock); scl->scl_write_wanted--; } scl->scl_writer = curthread; } scl->scl_count++; mutex_exit(&scl->scl_lock); } ASSERT3U(wlocks_held, <=, locks); } void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) { spa_config_enter_impl(spa, locks, tag, rw, 0); } /* * The spa_config_enter_mmp() allows the mmp thread to cut in front of * outstanding write lock requests. This is needed since the mmp updates are * time sensitive and failure to service them promptly will result in a * suspended pool. This pool suspension has been seen in practice when there is * a single disk in a pool that is responding slowly and presumably about to * fail. */ void spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw) { spa_config_enter_impl(spa, locks, tag, rw, 1); } void spa_config_exit(spa_t *spa, int locks, const void *tag) { (void) tag; for (int i = SCL_LOCKS - 1; i >= 0; i--) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); ASSERT(scl->scl_count > 0); if (--scl->scl_count == 0) { ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread); scl->scl_writer = NULL; /* OK in either case */ cv_broadcast(&scl->scl_cv); } mutex_exit(&scl->scl_lock); } } int spa_config_held(spa_t *spa, int locks, krw_t rw) { int locks_held = 0; for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; if ((rw == RW_READER && scl->scl_count != 0) || (rw == RW_WRITER && scl->scl_writer == curthread)) locks_held |= 1 << i; } return (locks_held); } /* * ========================================================================== * SPA namespace functions * ========================================================================== */ /* * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. * Returns NULL if no matching spa_t is found. */ spa_t * spa_lookup(const char *name) { static spa_t search; /* spa_t is large; don't allocate on stack */ spa_t *spa; avl_index_t where; char *cp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); /* * If it's a full dataset name, figure out the pool name and * just use that. */ cp = strpbrk(search.spa_name, "/@#"); if (cp != NULL) *cp = '\0'; spa = avl_find(&spa_namespace_avl, &search, &where); return (spa); } /* * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. * If the zfs_deadman_enabled flag is set then it inspects all vdev queues * looking for potentially hung I/Os. */ void spa_deadman(void *arg) { spa_t *spa = arg; /* Disable the deadman if the pool is suspended. */ if (spa_suspended(spa)) return; zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", (gethrtime() - spa->spa_sync_starttime) / NANOSEC, (u_longlong_t)++spa->spa_deadman_calls); if (zfs_deadman_enabled) vdev_deadman(spa->spa_root_vdev, FTAG); spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + MSEC_TO_TICK(zfs_deadman_checktime_ms)); } static int spa_log_sm_sort_by_txg(const void *va, const void *vb) { const spa_log_sm_t *a = va; const spa_log_sm_t *b = vb; return (TREE_CMP(a->sls_txg, b->sls_txg)); } /* * Create an uninitialized spa_t with the given name. Requires * spa_namespace_lock. The caller must ensure that the spa_t doesn't already * exist by calling spa_lookup() first. */ spa_t * spa_add(const char *name, nvlist_t *config, const char *altroot) { spa_t *spa; spa_config_dirent_t *dp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); for (int t = 0; t < TXG_SIZE; t++) bplist_create(&spa->spa_free_bplist[t]); (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); spa->spa_state = POOL_STATE_UNINITIALIZED; spa->spa_freeze_txg = UINT64_MAX; spa->spa_final_txg = UINT64_MAX; spa->spa_load_max_txg = UINT64_MAX; spa->spa_proc = &p0; spa->spa_proc_state = SPA_PROC_NONE; spa->spa_trust_config = B_TRUE; spa->spa_hostid = zone_get_hostid(NULL); spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); spa_set_deadman_failmode(spa, zfs_deadman_failmode); zfs_refcount_create(&spa->spa_refcount); spa_config_lock_init(spa); spa_stats_init(spa); avl_add(&spa_namespace_avl, spa); /* * Set the alternate root, if there is one. */ if (altroot) spa->spa_root = spa_strdup(altroot); spa->spa_alloc_count = spa_allocators; spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * sizeof (spa_alloc_t), KM_SLEEP); for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, sizeof (zio_t), offsetof(zio_t, io_alloc_node)); } avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), offsetof(log_summary_entry_t, lse_node)); /* * Every pool starts with the default cachefile */ list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), offsetof(spa_config_dirent_t, scd_link)); dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); list_insert_head(&spa->spa_config_list, dp); VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (config != NULL) { nvlist_t *features; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) == 0) { VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); } VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); } if (spa->spa_label_features == NULL) { VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, KM_SLEEP) == 0); } spa->spa_min_ashift = INT_MAX; spa->spa_max_ashift = 0; spa->spa_min_alloc = INT_MAX; /* Reset cached value */ spa->spa_dedup_dspace = ~0ULL; /* * As a pool is being created, treat all features as disabled by * setting SPA_FEATURE_DISABLED for all entries in the feature * refcount cache. */ for (int i = 0; i < SPA_FEATURES; i++) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } list_create(&spa->spa_leaf_list, sizeof (vdev_t), offsetof(vdev_t, vdev_leaf_node)); return (spa); } /* * Removes a spa_t from the namespace, freeing up any memory used. Requires * spa_namespace_lock. This is called only after the spa_t has been closed and * deactivated. */ void spa_remove(spa_t *spa) { spa_config_dirent_t *dp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); ASSERT0(spa->spa_waiters); nvlist_free(spa->spa_config_splitting); avl_remove(&spa_namespace_avl, spa); cv_broadcast(&spa_namespace_cv); if (spa->spa_root) spa_strfree(spa->spa_root); while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) { if (dp->scd_path != NULL) spa_strfree(dp->scd_path); kmem_free(dp, sizeof (spa_config_dirent_t)); } for (int i = 0; i < spa->spa_alloc_count; i++) { avl_destroy(&spa->spa_allocs[i].spaa_tree); mutex_destroy(&spa->spa_allocs[i].spaa_lock); } kmem_free(spa->spa_allocs, spa->spa_alloc_count * sizeof (spa_alloc_t)); avl_destroy(&spa->spa_metaslabs_by_flushed); avl_destroy(&spa->spa_sm_logs_by_txg); list_destroy(&spa->spa_log_summary); list_destroy(&spa->spa_config_list); list_destroy(&spa->spa_leaf_list); nvlist_free(spa->spa_label_features); nvlist_free(spa->spa_load_info); nvlist_free(spa->spa_feat_stats); spa_config_set(spa, NULL); zfs_refcount_destroy(&spa->spa_refcount); spa_stats_destroy(spa); spa_config_lock_destroy(spa); for (int t = 0; t < TXG_SIZE; t++) bplist_destroy(&spa->spa_free_bplist[t]); zio_checksum_templates_free(spa); cv_destroy(&spa->spa_async_cv); cv_destroy(&spa->spa_evicting_os_cv); cv_destroy(&spa->spa_proc_cv); cv_destroy(&spa->spa_scrub_io_cv); cv_destroy(&spa->spa_suspend_cv); cv_destroy(&spa->spa_activities_cv); cv_destroy(&spa->spa_waiters_cv); mutex_destroy(&spa->spa_flushed_ms_lock); mutex_destroy(&spa->spa_async_lock); mutex_destroy(&spa->spa_errlist_lock); mutex_destroy(&spa->spa_errlog_lock); mutex_destroy(&spa->spa_evicting_os_lock); mutex_destroy(&spa->spa_history_lock); mutex_destroy(&spa->spa_proc_lock); mutex_destroy(&spa->spa_props_lock); mutex_destroy(&spa->spa_cksum_tmpls_lock); mutex_destroy(&spa->spa_scrub_lock); mutex_destroy(&spa->spa_suspend_lock); mutex_destroy(&spa->spa_vdev_top_lock); mutex_destroy(&spa->spa_feat_stats_lock); mutex_destroy(&spa->spa_activities_lock); kmem_free(spa, sizeof (spa_t)); } /* * Given a pool, return the next pool in the namespace, or NULL if there is * none. If 'prev' is NULL, return the first pool. */ spa_t * spa_next(spa_t *prev) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (prev) return (AVL_NEXT(&spa_namespace_avl, prev)); else return (avl_first(&spa_namespace_avl)); } /* * ========================================================================== * SPA refcount functions * ========================================================================== */ /* * Add a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_open_ref(spa_t *spa, const void *tag) { ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) zfs_refcount_add(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_close(spa_t *spa, const void *tag) { ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) zfs_refcount_remove(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t held by a dsl dir that is * being asynchronously released. Async releases occur from a taskq * performing eviction of dsl datasets and dirs. The namespace lock * isn't held and the hold by the object being evicted may contribute to * spa_minref (e.g. dataset or directory released during pool export), * so the asserts in spa_close() do not apply. */ void spa_async_close(spa_t *spa, const void *tag) { (void) zfs_refcount_remove(&spa->spa_refcount, tag); } /* * Check to see if the spa refcount is zero. Must be called with * spa_namespace_lock held. We really compare against spa_minref, which is the * number of references acquired when opening a pool */ boolean_t spa_refcount_zero(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); } /* * ========================================================================== * SPA spare and l2cache tracking * ========================================================================== */ /* * Hot spares and cache devices are tracked using the same code below, * for 'auxiliary' devices. */ typedef struct spa_aux { uint64_t aux_guid; uint64_t aux_pool; avl_node_t aux_avl; int aux_count; } spa_aux_t; static inline int spa_aux_compare(const void *a, const void *b) { const spa_aux_t *sa = (const spa_aux_t *)a; const spa_aux_t *sb = (const spa_aux_t *)b; return (TREE_CMP(sa->aux_guid, sb->aux_guid)); } static void spa_aux_add(vdev_t *vd, avl_tree_t *avl) { avl_index_t where; spa_aux_t search; spa_aux_t *aux; search.aux_guid = vd->vdev_guid; if ((aux = avl_find(avl, &search, &where)) != NULL) { aux->aux_count++; } else { aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); aux->aux_guid = vd->vdev_guid; aux->aux_count = 1; avl_insert(avl, aux, where); } } static void spa_aux_remove(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search; spa_aux_t *aux; avl_index_t where; search.aux_guid = vd->vdev_guid; aux = avl_find(avl, &search, &where); ASSERT(aux != NULL); if (--aux->aux_count == 0) { avl_remove(avl, aux); kmem_free(aux, sizeof (spa_aux_t)); } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { aux->aux_pool = 0ULL; } } static boolean_t spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) { spa_aux_t search, *found; search.aux_guid = guid; found = avl_find(avl, &search, NULL); if (pool) { if (found) *pool = found->aux_pool; else *pool = 0ULL; } if (refcnt) { if (found) *refcnt = found->aux_count; else *refcnt = 0; } return (found != NULL); } static void spa_aux_activate(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search, *found; avl_index_t where; search.aux_guid = vd->vdev_guid; found = avl_find(avl, &search, &where); ASSERT(found != NULL); ASSERT(found->aux_pool == 0ULL); found->aux_pool = spa_guid(vd->vdev_spa); } /* * Spares are tracked globally due to the following constraints: * * - A spare may be part of multiple pools. * - A spare may be added to a pool even if it's actively in use within * another pool. * - A spare in use in any pool can only be the source of a replacement if * the target is a spare in the same pool. * * We keep track of all spares on the system through the use of a reference * counted AVL tree. When a vdev is added as a spare, or used as a replacement * spare, then we bump the reference count in the AVL tree. In addition, we set * the 'vdev_isspare' member to indicate that the device is a spare (active or * inactive). When a spare is made active (used to replace a device in the * pool), we also keep track of which pool its been made a part of. * * The 'spa_spare_lock' protects the AVL tree. These functions are normally * called under the spa_namespace lock as part of vdev reconfiguration. The * separate spare lock exists for the status query path, which does not need to * be completely consistent with respect to other vdev configuration changes. */ static int spa_spare_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_spare_add(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(!vd->vdev_isspare); spa_aux_add(vd, &spa_spare_avl); vd->vdev_isspare = B_TRUE; mutex_exit(&spa_spare_lock); } void spa_spare_remove(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_remove(vd, &spa_spare_avl); vd->vdev_isspare = B_FALSE; mutex_exit(&spa_spare_lock); } boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) { boolean_t found; mutex_enter(&spa_spare_lock); found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); mutex_exit(&spa_spare_lock); return (found); } void spa_spare_activate(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_activate(vd, &spa_spare_avl); mutex_exit(&spa_spare_lock); } /* * Level 2 ARC devices are tracked globally for the same reasons as spares. * Cache devices currently only support one pool per cache device, and so * for these devices the aux reference count is currently unused beyond 1. */ static int spa_l2cache_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_l2cache_add(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(!vd->vdev_isl2cache); spa_aux_add(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_TRUE; mutex_exit(&spa_l2cache_lock); } void spa_l2cache_remove(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_remove(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_FALSE; mutex_exit(&spa_l2cache_lock); } boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool) { boolean_t found; mutex_enter(&spa_l2cache_lock); found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); return (found); } void spa_l2cache_activate(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_activate(vd, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); } /* * ========================================================================== * SPA vdev locking * ========================================================================== */ /* * Lock the given spa_t for the purpose of adding or removing a vdev. * Grabs the global spa_namespace_lock plus the spa config lock for writing. * It returns the next transaction group for the spa_t. */ uint64_t spa_vdev_enter(spa_t *spa) { mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); vdev_autotrim_stop_all(spa); return (spa_vdev_config_enter(spa)); } /* * The same as spa_vdev_enter() above but additionally takes the guid of * the vdev being detached. When there is a rebuild in process it will be * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). * The rebuild is canceled if only a single child remains after the detach. */ uint64_t spa_vdev_detach_enter(spa_t *spa, uint64_t guid) { mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); vdev_autotrim_stop_all(spa); if (guid != 0) { vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd) { vdev_rebuild_stop_wait(vd->vdev_top); } } return (spa_vdev_config_enter(spa)); } /* * Internal implementation for spa_vdev_enter(). Used when a vdev * operation requires multiple syncs (i.e. removing a device) while * keeping the spa_namespace_lock held. */ uint64_t spa_vdev_config_enter(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); return (spa_last_synced_txg(spa) + 1); } /* * Used in combination with spa_vdev_config_enter() to allow the syncing * of multiple transactions without releasing the spa_namespace_lock. */ void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, const char *tag) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); int config_changed = B_FALSE; ASSERT(txg > spa_last_synced_txg(spa)); spa->spa_pending_vdev = NULL; /* * Reassess the DTLs. */ vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { config_changed = B_TRUE; spa->spa_config_generation++; } /* * Verify the metaslab classes. */ ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); spa_config_exit(spa, SCL_ALL, spa); /* * Panic the system if the specified tag requires it. This * is useful for ensuring that configurations are updated * transactionally. */ if (zio_injection_enabled) zio_handle_panic_injection(spa, tag, 0); /* * Note: this txg_wait_synced() is important because it ensures * that there won't be more than one config change per txg. * This allows us to use the txg as the generation number. */ if (error == 0) txg_wait_synced(spa->spa_dsl_pool, txg); if (vd != NULL) { ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); if (vd->vdev_ops->vdev_op_leaf) { mutex_enter(&vd->vdev_initialize_lock); vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, NULL); mutex_exit(&vd->vdev_initialize_lock); mutex_enter(&vd->vdev_trim_lock); vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); mutex_exit(&vd->vdev_trim_lock); } /* * The vdev may be both a leaf and top-level device. */ vdev_autotrim_stop_wait(vd); spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); vdev_free(vd); spa_config_exit(spa, SCL_STATE_ALL, spa); } /* * If the config changed, update the config cache. */ if (config_changed) spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); } /* * Unlock the spa_t after adding or removing a vdev. Besides undoing the * locking of spa_vdev_enter(), we also want make sure the transactions have * synced to disk, and then update the global configuration cache with the new * information. */ int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) { vdev_autotrim_restart(spa); vdev_rebuild_restart(spa); spa_vdev_config_exit(spa, vd, txg, error, FTAG); mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * Lock the given spa_t for the purpose of changing vdev state. */ void spa_vdev_state_enter(spa_t *spa, int oplocks) { int locks = SCL_STATE_ALL | oplocks; /* * Root pools may need to read of the underlying devfs filesystem * when opening up a vdev. Unfortunately if we're holding the * SCL_ZIO lock it will result in a deadlock when we try to issue * the read from the root filesystem. Instead we "prefetch" * the associated vnodes that we need prior to opening the * underlying devices and cache them so that we can prevent * any I/O when we are doing the actual open. */ if (spa_is_root(spa)) { int low = locks & ~(SCL_ZIO - 1); int high = locks & ~low; spa_config_enter(spa, high, spa, RW_WRITER); vdev_hold(spa->spa_root_vdev); spa_config_enter(spa, low, spa, RW_WRITER); } else { spa_config_enter(spa, locks, spa, RW_WRITER); } spa->spa_vdev_locks = locks; } int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) { boolean_t config_changed = B_FALSE; vdev_t *vdev_top; if (vd == NULL || vd == spa->spa_root_vdev) { vdev_top = spa->spa_root_vdev; } else { vdev_top = vd->vdev_top; } if (vd != NULL || error == 0) vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); if (vd != NULL) { if (vd != spa->spa_root_vdev) vdev_state_dirty(vdev_top); config_changed = B_TRUE; spa->spa_config_generation++; } if (spa_is_root(spa)) vdev_rele(spa->spa_root_vdev); ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); spa_config_exit(spa, spa->spa_vdev_locks, spa); /* * If anything changed, wait for it to sync. This ensures that, * from the system administrator's perspective, zpool(8) commands * are synchronous. This is important for things like zpool offline: * when the command completes, you expect no further I/O from ZFS. */ if (vd != NULL) txg_wait_synced(spa->spa_dsl_pool, 0); /* * If the config changed, update the config cache. */ if (config_changed) { mutex_enter(&spa_namespace_lock); spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); mutex_exit(&spa_namespace_lock); } return (error); } /* * ========================================================================== * Miscellaneous functions * ========================================================================== */ void spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) { if (!nvlist_exists(spa->spa_label_features, feature)) { fnvlist_add_boolean(spa->spa_label_features, feature); /* * When we are creating the pool (tx_txg==TXG_INITIAL), we can't * dirty the vdev config because lock SCL_CONFIG is not held. * Thankfully, in this case we don't need to dirty the config * because it will be written out anyway when we finish * creating the pool. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); } } void spa_deactivate_mos_feature(spa_t *spa, const char *feature) { if (nvlist_remove_all(spa->spa_label_features, feature) == 0) vdev_config_dirty(spa->spa_root_vdev); } /* * Return the spa_t associated with given pool_guid, if it exists. If * device_guid is non-zero, determine whether the pool exists *and* contains * a device with the specified device_guid. */ spa_t * spa_by_guid(uint64_t pool_guid, uint64_t device_guid) { spa_t *spa; avl_tree_t *t = &spa_namespace_avl; ASSERT(MUTEX_HELD(&spa_namespace_lock)); for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { if (spa->spa_state == POOL_STATE_UNINITIALIZED) continue; if (spa->spa_root_vdev == NULL) continue; if (spa_guid(spa) == pool_guid) { if (device_guid == 0) break; if (vdev_lookup_by_guid(spa->spa_root_vdev, device_guid) != NULL) break; /* * Check any devices we may be in the process of adding. */ if (spa->spa_pending_vdev) { if (vdev_lookup_by_guid(spa->spa_pending_vdev, device_guid) != NULL) break; } } } return (spa); } /* * Determine whether a pool with the given pool_guid exists. */ boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) { return (spa_by_guid(pool_guid, device_guid) != NULL); } char * spa_strdup(const char *s) { size_t len; char *new; len = strlen(s); new = kmem_alloc(len + 1, KM_SLEEP); memcpy(new, s, len + 1); return (new); } void spa_strfree(char *s) { kmem_free(s, strlen(s) + 1); } uint64_t spa_generate_guid(spa_t *spa) { uint64_t guid; if (spa != NULL) { do { (void) random_get_pseudo_bytes((void *)&guid, sizeof (guid)); } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); } else { do { (void) random_get_pseudo_bytes((void *)&guid, sizeof (guid)); } while (guid == 0 || spa_guid_exists(guid, 0)); } return (guid); } void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) { char type[256]; const char *checksum = NULL; const char *compress = NULL; if (bp != NULL) { if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { dmu_object_byteswap_t bswap = DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); (void) snprintf(type, sizeof (type), "bswap %s %s", DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? "metadata" : "data", dmu_ot_byteswap[bswap].ob_name); } else { (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, sizeof (type)); } if (!BP_IS_EMBEDDED(bp)) { checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; } compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; } SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum, compress); } void spa_freeze(spa_t *spa) { uint64_t freeze_txg = 0; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); if (spa->spa_freeze_txg == UINT64_MAX) { freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; spa->spa_freeze_txg = freeze_txg; } spa_config_exit(spa, SCL_ALL, FTAG); if (freeze_txg != 0) txg_wait_synced(spa_get_dsl(spa), freeze_txg); } void zfs_panic_recover(const char *fmt, ...) { va_list adx; va_start(adx, fmt); vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); va_end(adx); } /* * This is a stripped-down version of strtoull, suitable only for converting * lowercase hexadecimal numbers that don't overflow. */ uint64_t zfs_strtonum(const char *str, char **nptr) { uint64_t val = 0; char c; int digit; while ((c = *str) != '\0') { if (c >= '0' && c <= '9') digit = c - '0'; else if (c >= 'a' && c <= 'f') digit = 10 + c - 'a'; else break; val *= 16; val += digit; str++; } if (nptr) *nptr = (char *)str; return (val); } void spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) { /* * We bump the feature refcount for each special vdev added to the pool */ ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); } /* * ========================================================================== * Accessor functions * ========================================================================== */ boolean_t spa_shutting_down(spa_t *spa) { return (spa->spa_async_suspended); } dsl_pool_t * spa_get_dsl(spa_t *spa) { return (spa->spa_dsl_pool); } boolean_t spa_is_initializing(spa_t *spa) { return (spa->spa_is_initializing); } boolean_t spa_indirect_vdevs_loaded(spa_t *spa) { return (spa->spa_indirect_vdevs_loaded); } blkptr_t * spa_get_rootblkptr(spa_t *spa) { return (&spa->spa_ubsync.ub_rootbp); } void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) { spa->spa_uberblock.ub_rootbp = *bp; } void spa_altroot(spa_t *spa, char *buf, size_t buflen) { if (spa->spa_root == NULL) buf[0] = '\0'; else (void) strlcpy(buf, spa->spa_root, buflen); } uint32_t spa_sync_pass(spa_t *spa) { return (spa->spa_sync_pass); } char * spa_name(spa_t *spa) { return (spa->spa_name); } uint64_t spa_guid(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); uint64_t guid; /* * If we fail to parse the config during spa_load(), we can go through * the error path (which posts an ereport) and end up here with no root * vdev. We stash the original pool guid in 'spa_config_guid' to handle * this case. */ if (spa->spa_root_vdev == NULL) return (spa->spa_config_guid); guid = spa->spa_last_synced_guid != 0 ? spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; /* * Return the most recently synced out guid unless we're * in syncing context. */ if (dp && dsl_pool_sync_context(dp)) return (spa->spa_root_vdev->vdev_guid); else return (guid); } uint64_t spa_load_guid(spa_t *spa) { /* * This is a GUID that exists solely as a reference for the * purposes of the arc. It is generated at load time, and * is never written to persistent storage. */ return (spa->spa_load_guid); } uint64_t spa_last_synced_txg(spa_t *spa) { return (spa->spa_ubsync.ub_txg); } uint64_t spa_first_txg(spa_t *spa) { return (spa->spa_first_txg); } uint64_t spa_syncing_txg(spa_t *spa) { return (spa->spa_syncing_txg); } /* * Return the last txg where data can be dirtied. The final txgs * will be used to just clear out any deferred frees that remain. */ uint64_t spa_final_dirty_txg(spa_t *spa) { return (spa->spa_final_txg - TXG_DEFER_SIZE); } pool_state_t spa_state(spa_t *spa) { return (spa->spa_state); } spa_load_state_t spa_load_state(spa_t *spa) { return (spa->spa_load_state); } uint64_t spa_freeze_txg(spa_t *spa) { return (spa->spa_freeze_txg); } /* * Return the inflated asize for a logical write in bytes. This is used by the * DMU to calculate the space a logical write will require on disk. * If lsize is smaller than the largest physical block size allocatable on this * pool we use its value instead, since the write will end up using the whole * block anyway. */ uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) { if (lsize == 0) return (0); /* No inflation needed */ return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); } /* * Return the amount of slop space in bytes. It is typically 1/32 of the pool * (3.2%), minus the embedded log space. On very small pools, it may be * slightly larger than this. On very large pools, it will be capped to * the value of spa_max_slop. The embedded log space is not included in * spa_dspace. By subtracting it, the usable space (per "zfs list") is a * constant 97% of the total space, regardless of metaslab size (assuming the * default spa_slop_shift=5 and a non-tiny pool). * * See the comment above spa_slop_shift for more details. */ uint64_t spa_get_slop_space(spa_t *spa) { uint64_t space = 0; uint64_t slop = 0; /* * Make sure spa_dedup_dspace has been set. */ if (spa->spa_dedup_dspace == ~0ULL) spa_update_dspace(spa); /* * spa_get_dspace() includes the space only logically "used" by * deduplicated data, so since it's not useful to reserve more * space with more deduplicated data, we subtract that out here. */ space = spa_get_dspace(spa) - spa->spa_dedup_dspace; slop = MIN(space >> spa_slop_shift, spa_max_slop); /* * Subtract the embedded log space, but no more than half the (3.2%) * unusable space. Note, the "no more than half" is only relevant if * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by * default. */ uint64_t embedded_log = metaslab_class_get_dspace(spa_embedded_log_class(spa)); slop -= MIN(embedded_log, slop >> 1); /* * Slop space should be at least spa_min_slop, but no more than half * the entire pool. */ slop = MAX(slop, MIN(space >> 1, spa_min_slop)); return (slop); } uint64_t spa_get_dspace(spa_t *spa) { return (spa->spa_dspace); } uint64_t spa_get_checkpoint_space(spa_t *spa) { return (spa->spa_checkpoint_info.sci_dspace); } void spa_update_dspace(spa_t *spa) { spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + ddt_get_dedup_dspace(spa) + brt_get_dspace(spa); if (spa->spa_nonallocating_dspace > 0) { /* * Subtract the space provided by all non-allocating vdevs that * contribute to dspace. If a file is overwritten, its old * blocks are freed and new blocks are allocated. If there are * no snapshots of the file, the available space should remain * the same. The old blocks could be freed from the * non-allocating vdev, but the new blocks must be allocated on * other (allocating) vdevs. By reserving the entire size of * the non-allocating vdevs (including allocated space), we * ensure that there will be enough space on the allocating * vdevs for this file overwrite to succeed. * * Note that the DMU/DSL doesn't actually know or care * how much space is allocated (it does its own tracking * of how much space has been logically used). So it * doesn't matter that the data we are moving may be * allocated twice (on the old device and the new device). */ ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace); spa->spa_dspace -= spa->spa_nonallocating_dspace; } } /* * Return the failure mode that has been set to this pool. The default * behavior will be to block all I/Os when a complete failure occurs. */ uint64_t spa_get_failmode(spa_t *spa) { return (spa->spa_failmode); } boolean_t spa_suspended(spa_t *spa) { return (spa->spa_suspended != ZIO_SUSPEND_NONE); } uint64_t spa_version(spa_t *spa) { return (spa->spa_ubsync.ub_version); } boolean_t spa_deflate(spa_t *spa) { return (spa->spa_deflate); } metaslab_class_t * spa_normal_class(spa_t *spa) { return (spa->spa_normal_class); } metaslab_class_t * spa_log_class(spa_t *spa) { return (spa->spa_log_class); } metaslab_class_t * spa_embedded_log_class(spa_t *spa) { return (spa->spa_embedded_log_class); } metaslab_class_t * spa_special_class(spa_t *spa) { return (spa->spa_special_class); } metaslab_class_t * spa_dedup_class(spa_t *spa) { return (spa->spa_dedup_class); } /* * Locate an appropriate allocation class */ metaslab_class_t * spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, uint_t level, uint_t special_smallblk) { /* * ZIL allocations determine their class in zio_alloc_zil(). */ ASSERT(objtype != DMU_OT_INTENT_LOG); boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; if (DMU_OT_IS_DDT(objtype)) { if (spa->spa_dedup_class->mc_groups != 0) return (spa_dedup_class(spa)); else if (has_special_class && zfs_ddt_data_is_special) return (spa_special_class(spa)); else return (spa_normal_class(spa)); } /* Indirect blocks for user data can land in special if allowed */ if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { if (has_special_class && zfs_user_indirect_is_special) return (spa_special_class(spa)); else return (spa_normal_class(spa)); } if (DMU_OT_IS_METADATA(objtype) || level > 0) { if (has_special_class) return (spa_special_class(spa)); else return (spa_normal_class(spa)); } /* * Allow small file blocks in special class in some cases (like * for the dRAID vdev feature). But always leave a reserve of * zfs_special_class_metadata_reserve_pct exclusively for metadata. */ if (DMU_OT_IS_FILE(objtype) && has_special_class && size <= special_smallblk) { metaslab_class_t *special = spa_special_class(spa); uint64_t alloc = metaslab_class_get_alloc(special); uint64_t space = metaslab_class_get_space(special); uint64_t limit = (space * (100 - zfs_special_class_metadata_reserve_pct)) / 100; if (alloc < limit) return (special); } return (spa_normal_class(spa)); } void spa_evicting_os_register(spa_t *spa, objset_t *os) { mutex_enter(&spa->spa_evicting_os_lock); list_insert_head(&spa->spa_evicting_os_list, os); mutex_exit(&spa->spa_evicting_os_lock); } void spa_evicting_os_deregister(spa_t *spa, objset_t *os) { mutex_enter(&spa->spa_evicting_os_lock); list_remove(&spa->spa_evicting_os_list, os); cv_broadcast(&spa->spa_evicting_os_cv); mutex_exit(&spa->spa_evicting_os_lock); } void spa_evicting_os_wait(spa_t *spa) { mutex_enter(&spa->spa_evicting_os_lock); while (!list_is_empty(&spa->spa_evicting_os_list)) cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); mutex_exit(&spa->spa_evicting_os_lock); dmu_buf_user_evict_wait(); } int spa_max_replication(spa_t *spa) { /* * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to * handle BPs with more than one DVA allocated. Set our max * replication level accordingly. */ if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) return (1); return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); } int spa_prev_software_version(spa_t *spa) { return (spa->spa_prev_software_version); } uint64_t spa_deadman_synctime(spa_t *spa) { return (spa->spa_deadman_synctime); } spa_autotrim_t spa_get_autotrim(spa_t *spa) { return (spa->spa_autotrim); } uint64_t spa_deadman_ziotime(spa_t *spa) { return (spa->spa_deadman_ziotime); } uint64_t spa_get_deadman_failmode(spa_t *spa) { return (spa->spa_deadman_failmode); } void spa_set_deadman_failmode(spa_t *spa, const char *failmode) { if (strcmp(failmode, "wait") == 0) spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; else if (strcmp(failmode, "continue") == 0) spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; else if (strcmp(failmode, "panic") == 0) spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; else spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; } void spa_set_deadman_ziotime(hrtime_t ns) { spa_t *spa = NULL; if (spa_mode_global != SPA_MODE_UNINIT) { mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) spa->spa_deadman_ziotime = ns; mutex_exit(&spa_namespace_lock); } } void spa_set_deadman_synctime(hrtime_t ns) { spa_t *spa = NULL; if (spa_mode_global != SPA_MODE_UNINIT) { mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) spa->spa_deadman_synctime = ns; mutex_exit(&spa_namespace_lock); } } uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva) { uint64_t asize = DVA_GET_ASIZE(dva); uint64_t dsize = asize; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (asize != 0 && spa->spa_deflate) { vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); if (vd != NULL) dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; } return (dsize); } uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); return (dsize); } uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); spa_config_exit(spa, SCL_VDEV, FTAG); return (dsize); } uint64_t spa_dirty_data(spa_t *spa) { return (spa->spa_dsl_pool->dp_dirty_total); } /* * ========================================================================== * SPA Import Progress Routines * ========================================================================== */ typedef struct spa_import_progress { uint64_t pool_guid; /* unique id for updates */ char *pool_name; spa_load_state_t spa_load_state; uint64_t mmp_sec_remaining; /* MMP activity check */ uint64_t spa_load_max_txg; /* rewind txg */ procfs_list_node_t smh_node; } spa_import_progress_t; spa_history_list_t *spa_import_progress_list = NULL; static int spa_import_progress_show_header(struct seq_file *f) { seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", "load_state", "multihost_secs", "max_txg", "pool_name"); return (0); } static int spa_import_progress_show(struct seq_file *f, void *data) { spa_import_progress_t *sip = (spa_import_progress_t *)data; seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, (u_longlong_t)sip->mmp_sec_remaining, (u_longlong_t)sip->spa_load_max_txg, (sip->pool_name ? sip->pool_name : "-")); return (0); } /* Remove oldest elements from list until there are no more than 'size' left */ static void spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) { spa_import_progress_t *sip; while (shl->size > size) { sip = list_remove_head(&shl->procfs_list.pl_list); if (sip->pool_name) spa_strfree(sip->pool_name); kmem_free(sip, sizeof (spa_import_progress_t)); shl->size--; } IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); } static void spa_import_progress_init(void) { spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), KM_SLEEP); spa_import_progress_list->size = 0; spa_import_progress_list->procfs_list.pl_private = spa_import_progress_list; procfs_list_install("zfs", NULL, "import_progress", 0644, &spa_import_progress_list->procfs_list, spa_import_progress_show, spa_import_progress_show_header, NULL, offsetof(spa_import_progress_t, smh_node)); } static void spa_import_progress_destroy(void) { spa_history_list_t *shl = spa_import_progress_list; procfs_list_uninstall(&shl->procfs_list); spa_import_progress_truncate(shl, 0); procfs_list_destroy(&shl->procfs_list); kmem_free(shl, sizeof (spa_history_list_t)); } int spa_import_progress_set_state(uint64_t pool_guid, spa_load_state_t load_state) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; int error = ENOENT; if (shl->size == 0) return (0); mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { sip->spa_load_state = load_state; error = 0; break; } } mutex_exit(&shl->procfs_list.pl_lock); return (error); } int spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; int error = ENOENT; if (shl->size == 0) return (0); mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { sip->spa_load_max_txg = load_max_txg; error = 0; break; } } mutex_exit(&shl->procfs_list.pl_lock); return (error); } int spa_import_progress_set_mmp_check(uint64_t pool_guid, uint64_t mmp_sec_remaining) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; int error = ENOENT; if (shl->size == 0) return (0); mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { sip->mmp_sec_remaining = mmp_sec_remaining; error = 0; break; } } mutex_exit(&shl->procfs_list.pl_lock); return (error); } /* * A new import is in progress, add an entry. */ void spa_import_progress_add(spa_t *spa) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; const char *poolname = NULL; sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); sip->pool_guid = spa_guid(spa); (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, &poolname); if (poolname == NULL) poolname = spa_name(spa); sip->pool_name = spa_strdup(poolname); sip->spa_load_state = spa_load_state(spa); mutex_enter(&shl->procfs_list.pl_lock); procfs_list_add(&shl->procfs_list, sip); shl->size++; mutex_exit(&shl->procfs_list.pl_lock); } void spa_import_progress_remove(uint64_t pool_guid) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { if (sip->pool_name) spa_strfree(sip->pool_name); list_remove(&shl->procfs_list.pl_list, sip); shl->size--; kmem_free(sip, sizeof (spa_import_progress_t)); break; } } mutex_exit(&shl->procfs_list.pl_lock); } /* * ========================================================================== * Initialization and Termination * ========================================================================== */ static int spa_name_compare(const void *a1, const void *a2) { const spa_t *s1 = a1; const spa_t *s2 = a2; int s; s = strcmp(s1->spa_name, s2->spa_name); return (TREE_ISIGN(s)); } void spa_boot_init(void) { spa_config_load(); } void spa_init(spa_mode_t mode) { mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), offsetof(spa_t, spa_avl)); avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); spa_mode_global = mode; #ifndef _KERNEL if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { struct sigaction sa; sa.sa_flags = SA_SIGINFO; sigemptyset(&sa.sa_mask); sa.sa_sigaction = arc_buf_sigsegv; if (sigaction(SIGSEGV, &sa, NULL) == -1) { perror("could not enable watchpoints: " "sigaction(SIGSEGV, ...) = "); } else { arc_watch = B_TRUE; } } #endif fm_init(); zfs_refcount_init(); unique_init(); zfs_btree_init(); metaslab_stat_init(); brt_init(); ddt_init(); zio_init(); dmu_init(); zil_init(); - vdev_cache_stat_init(); vdev_mirror_stat_init(); vdev_raidz_math_init(); vdev_file_init(); zfs_prop_init(); chksum_init(); zpool_prop_init(); zpool_feature_init(); spa_config_load(); vdev_prop_init(); l2arc_start(); scan_init(); qat_init(); spa_import_progress_init(); } void spa_fini(void) { l2arc_stop(); spa_evict_all(); vdev_file_fini(); - vdev_cache_stat_fini(); vdev_mirror_stat_fini(); vdev_raidz_math_fini(); chksum_fini(); zil_fini(); dmu_fini(); zio_fini(); ddt_fini(); brt_fini(); metaslab_stat_fini(); zfs_btree_fini(); unique_fini(); zfs_refcount_fini(); fm_fini(); scan_fini(); qat_fini(); spa_import_progress_destroy(); avl_destroy(&spa_namespace_avl); avl_destroy(&spa_spare_avl); avl_destroy(&spa_l2cache_avl); cv_destroy(&spa_namespace_cv); mutex_destroy(&spa_namespace_lock); mutex_destroy(&spa_spare_lock); mutex_destroy(&spa_l2cache_lock); } /* * Return whether this pool has a dedicated slog device. No locking needed. * It's not a problem if the wrong answer is returned as it's only for * performance and not correctness. */ boolean_t spa_has_slogs(spa_t *spa) { return (spa->spa_log_class->mc_groups != 0); } spa_log_state_t spa_get_log_state(spa_t *spa) { return (spa->spa_log_state); } void spa_set_log_state(spa_t *spa, spa_log_state_t state) { spa->spa_log_state = state; } boolean_t spa_is_root(spa_t *spa) { return (spa->spa_is_root); } boolean_t spa_writeable(spa_t *spa) { return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); } /* * Returns true if there is a pending sync task in any of the current * syncing txg, the current quiescing txg, or the current open txg. */ boolean_t spa_has_pending_synctask(spa_t *spa) { return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); } spa_mode_t spa_mode(spa_t *spa) { return (spa->spa_mode); } uint64_t spa_bootfs(spa_t *spa) { return (spa->spa_bootfs); } uint64_t spa_delegation(spa_t *spa) { return (spa->spa_delegation); } objset_t * spa_meta_objset(spa_t *spa) { return (spa->spa_meta_objset); } enum zio_checksum spa_dedup_checksum(spa_t *spa) { return (spa->spa_dedup_checksum); } /* * Reset pool scan stat per scan pass (or reboot). */ void spa_scan_stat_init(spa_t *spa) { /* data not stored on disk */ spa->spa_scan_pass_start = gethrestime_sec(); if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; else spa->spa_scan_pass_scrub_pause = 0; if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start; else spa->spa_scan_pass_errorscrub_pause = 0; spa->spa_scan_pass_scrub_spent_paused = 0; spa->spa_scan_pass_exam = 0; spa->spa_scan_pass_issued = 0; // error scrub stats spa->spa_scan_pass_errorscrub_spent_paused = 0; } /* * Get scan stats for zpool status reports */ int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) { dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE && scn->errorscrub_phys.dep_func == POOL_SCAN_NONE)) return (SET_ERROR(ENOENT)); memset(ps, 0, sizeof (pool_scan_stat_t)); /* data stored on disk */ ps->pss_func = scn->scn_phys.scn_func; ps->pss_state = scn->scn_phys.scn_state; ps->pss_start_time = scn->scn_phys.scn_start_time; ps->pss_end_time = scn->scn_phys.scn_end_time; ps->pss_to_examine = scn->scn_phys.scn_to_examine; ps->pss_examined = scn->scn_phys.scn_examined; ps->pss_to_process = scn->scn_phys.scn_to_process; ps->pss_processed = scn->scn_phys.scn_processed; ps->pss_errors = scn->scn_phys.scn_errors; /* data not stored on disk */ ps->pss_pass_exam = spa->spa_scan_pass_exam; ps->pss_pass_start = spa->spa_scan_pass_start; ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; ps->pss_pass_issued = spa->spa_scan_pass_issued; ps->pss_issued = scn->scn_issued_before_pass + spa->spa_scan_pass_issued; /* error scrub data stored on disk */ ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func; ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state; ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time; ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time; ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined; ps->pss_error_scrub_to_be_examined = scn->errorscrub_phys.dep_to_examine; /* error scrub data not stored on disk */ ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause; return (0); } int spa_maxblocksize(spa_t *spa) { if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) return (SPA_MAXBLOCKSIZE); else return (SPA_OLD_MAXBLOCKSIZE); } /* * Returns the txg that the last device removal completed. No indirect mappings * have been added since this txg. */ uint64_t spa_get_last_removal_txg(spa_t *spa) { uint64_t vdevid; uint64_t ret = -1ULL; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* * sr_prev_indirect_vdev is only modified while holding all the * config locks, so it is sufficient to hold SCL_VDEV as reader when * examining it. */ vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; while (vdevid != -1ULL) { vdev_t *vd = vdev_lookup_top(spa, vdevid); vdev_indirect_births_t *vib = vd->vdev_indirect_births; ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); /* * If the removal did not remap any data, we don't care. */ if (vdev_indirect_births_count(vib) != 0) { ret = vdev_indirect_births_last_entry_txg(vib); break; } vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; } spa_config_exit(spa, SCL_VDEV, FTAG); IMPLY(ret != -1ULL, spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); return (ret); } int spa_maxdnodesize(spa_t *spa) { if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) return (DNODE_MAX_SIZE); else return (DNODE_MIN_SIZE); } boolean_t spa_multihost(spa_t *spa) { return (spa->spa_multihost ? B_TRUE : B_FALSE); } uint32_t spa_get_hostid(spa_t *spa) { return (spa->spa_hostid); } boolean_t spa_trust_config(spa_t *spa) { return (spa->spa_trust_config); } uint64_t spa_missing_tvds_allowed(spa_t *spa) { return (spa->spa_missing_tvds_allowed); } space_map_t * spa_syncing_log_sm(spa_t *spa) { return (spa->spa_syncing_log_sm); } void spa_set_missing_tvds(spa_t *spa, uint64_t missing) { spa->spa_missing_tvds = missing; } /* * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). */ const char * spa_state_to_name(spa_t *spa) { ASSERT3P(spa, !=, NULL); /* * it is possible for the spa to exist, without root vdev * as the spa transitions during import/export */ vdev_t *rvd = spa->spa_root_vdev; if (rvd == NULL) { return ("TRANSITIONING"); } vdev_state_t state = rvd->vdev_state; vdev_aux_t aux = rvd->vdev_stat.vs_aux; if (spa_suspended(spa) && (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)) return ("SUSPENDED"); switch (state) { case VDEV_STATE_CLOSED: case VDEV_STATE_OFFLINE: return ("OFFLINE"); case VDEV_STATE_REMOVED: return ("REMOVED"); case VDEV_STATE_CANT_OPEN: if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) return ("FAULTED"); else if (aux == VDEV_AUX_SPLIT_POOL) return ("SPLIT"); else return ("UNAVAIL"); case VDEV_STATE_FAULTED: return ("FAULTED"); case VDEV_STATE_DEGRADED: return ("DEGRADED"); case VDEV_STATE_HEALTHY: return ("ONLINE"); default: break; } return ("UNKNOWN"); } boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t c = 0; c < rvd->vdev_children; c++) { if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) return (B_FALSE); } return (B_TRUE); } boolean_t spa_has_checkpoint(spa_t *spa) { return (spa->spa_checkpoint_txg != 0); } boolean_t spa_importing_readonly_checkpoint(spa_t *spa) { return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && spa->spa_mode == SPA_MODE_READ); } uint64_t spa_min_claim_txg(spa_t *spa) { uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; if (checkpoint_txg != 0) return (checkpoint_txg + 1); return (spa->spa_first_txg); } /* * If there is a checkpoint, async destroys may consume more space from * the pool instead of freeing it. In an attempt to save the pool from * getting suspended when it is about to run out of space, we stop * processing async destroys. */ boolean_t spa_suspend_async_destroy(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); uint64_t unreserved = dsl_pool_unreserved_space(dp, ZFS_SPACE_CHECK_EXTRA_RESERVED); uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; if (spa_has_checkpoint(spa) && avail == 0) return (B_TRUE); return (B_FALSE); } #if defined(_KERNEL) int param_set_deadman_failmode_common(const char *val) { spa_t *spa = NULL; char *p; if (val == NULL) return (SET_ERROR(EINVAL)); if ((p = strchr(val, '\n')) != NULL) *p = '\0'; if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && strcmp(val, "panic")) return (SET_ERROR(EINVAL)); if (spa_mode_global != SPA_MODE_UNINIT) { mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) spa_set_deadman_failmode(spa, val); mutex_exit(&spa_namespace_lock); } return (0); } #endif /* Namespace manipulation */ EXPORT_SYMBOL(spa_lookup); EXPORT_SYMBOL(spa_add); EXPORT_SYMBOL(spa_remove); EXPORT_SYMBOL(spa_next); /* Refcount functions */ EXPORT_SYMBOL(spa_open_ref); EXPORT_SYMBOL(spa_close); EXPORT_SYMBOL(spa_refcount_zero); /* Pool configuration lock */ EXPORT_SYMBOL(spa_config_tryenter); EXPORT_SYMBOL(spa_config_enter); EXPORT_SYMBOL(spa_config_exit); EXPORT_SYMBOL(spa_config_held); /* Pool vdev add/remove lock */ EXPORT_SYMBOL(spa_vdev_enter); EXPORT_SYMBOL(spa_vdev_exit); /* Pool vdev state change lock */ EXPORT_SYMBOL(spa_vdev_state_enter); EXPORT_SYMBOL(spa_vdev_state_exit); /* Accessor functions */ EXPORT_SYMBOL(spa_shutting_down); EXPORT_SYMBOL(spa_get_dsl); EXPORT_SYMBOL(spa_get_rootblkptr); EXPORT_SYMBOL(spa_set_rootblkptr); EXPORT_SYMBOL(spa_altroot); EXPORT_SYMBOL(spa_sync_pass); EXPORT_SYMBOL(spa_name); EXPORT_SYMBOL(spa_guid); EXPORT_SYMBOL(spa_last_synced_txg); EXPORT_SYMBOL(spa_first_txg); EXPORT_SYMBOL(spa_syncing_txg); EXPORT_SYMBOL(spa_version); EXPORT_SYMBOL(spa_state); EXPORT_SYMBOL(spa_load_state); EXPORT_SYMBOL(spa_freeze_txg); EXPORT_SYMBOL(spa_get_dspace); EXPORT_SYMBOL(spa_update_dspace); EXPORT_SYMBOL(spa_deflate); EXPORT_SYMBOL(spa_normal_class); EXPORT_SYMBOL(spa_log_class); EXPORT_SYMBOL(spa_special_class); EXPORT_SYMBOL(spa_preferred_class); EXPORT_SYMBOL(spa_max_replication); EXPORT_SYMBOL(spa_prev_software_version); EXPORT_SYMBOL(spa_get_failmode); EXPORT_SYMBOL(spa_suspended); EXPORT_SYMBOL(spa_bootfs); EXPORT_SYMBOL(spa_delegation); EXPORT_SYMBOL(spa_meta_objset); EXPORT_SYMBOL(spa_maxblocksize); EXPORT_SYMBOL(spa_maxdnodesize); /* Miscellaneous support routines */ EXPORT_SYMBOL(spa_guid_exists); EXPORT_SYMBOL(spa_strdup); EXPORT_SYMBOL(spa_strfree); EXPORT_SYMBOL(spa_generate_guid); EXPORT_SYMBOL(snprintf_blkptr); EXPORT_SYMBOL(spa_freeze); EXPORT_SYMBOL(spa_upgrade); EXPORT_SYMBOL(spa_evict_all); EXPORT_SYMBOL(spa_lookup_by_guid); EXPORT_SYMBOL(spa_has_spare); EXPORT_SYMBOL(dva_get_dsize_sync); EXPORT_SYMBOL(bp_get_dsize_sync); EXPORT_SYMBOL(bp_get_dsize); EXPORT_SYMBOL(spa_has_slogs); EXPORT_SYMBOL(spa_is_root); EXPORT_SYMBOL(spa_writeable); EXPORT_SYMBOL(spa_mode); EXPORT_SYMBOL(spa_namespace_lock); EXPORT_SYMBOL(spa_trust_config); EXPORT_SYMBOL(spa_missing_tvds_allowed); EXPORT_SYMBOL(spa_set_missing_tvds); EXPORT_SYMBOL(spa_state_to_name); EXPORT_SYMBOL(spa_importing_readonly_checkpoint); EXPORT_SYMBOL(spa_min_claim_txg); EXPORT_SYMBOL(spa_suspend_async_destroy); EXPORT_SYMBOL(spa_has_checkpoint); EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, "Set additional debugging flags"); ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, "Set to attempt to recover from fatal errors"); ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, "Set to ignore IO errors during free and permanently leak the space"); ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW, "Dead I/O check interval in milliseconds"); ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, "Enable deadman timer"); ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW, "SPA size estimate multiplication factor"); ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, "Place DDT data into the special class"); ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, "Place user data indirect blocks into the special class"); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, param_set_deadman_failmode, param_get_charp, ZMOD_RW, "Failmode for deadman timer"); ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW, "Pool sync expiration time in milliseconds"); ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW, "IO expiration time in milliseconds"); ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW, "Small file blocks in special vdevs depends on this much " "free space available"); /* END CSTYLED */ ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, param_get_uint, ZMOD_RW, "Reserved free space in pool"); diff --git a/module/zfs/vdev.c b/module/zfs/vdev.c index 58dcd9f79799..612e66c3a8a8 100644 --- a/module/zfs/vdev.c +++ b/module/zfs/vdev.c @@ -1,6383 +1,6378 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2021 by Delphix. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright 2017 Joyent, Inc. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2019, Datto Inc. All rights reserved. * Copyright (c) 2021, Klara Inc. * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_prop.h" /* * One metaslab from each (normal-class) vdev is used by the ZIL. These are * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are * part of the spa_embedded_log_class. The metaslab with the most free space * in each vdev is selected for this purpose when the pool is opened (or a * vdev is added). See vdev_metaslab_init(). * * Log blocks can be allocated from the following locations. Each one is tried * in order until the allocation succeeds: * 1. dedicated log vdevs, aka "slog" (spa_log_class) * 2. embedded slog metaslabs (spa_embedded_log_class) * 3. other metaslabs in normal vdevs (spa_normal_class) * * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer * than this number of metaslabs in the vdev. This ensures that we don't set * aside an unreasonable amount of space for the ZIL. If set to less than * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced * (by more than 1<vdev_path != NULL) { zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, vd->vdev_path, buf); } else { zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", vd->vdev_ops->vdev_op_type, (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid, buf); } } void vdev_dbgmsg_print_tree(vdev_t *vd, int indent) { char state[20]; if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { zfs_dbgmsg("%*svdev %llu: %s", indent, "", (u_longlong_t)vd->vdev_id, vd->vdev_ops->vdev_op_type); return; } switch (vd->vdev_state) { case VDEV_STATE_UNKNOWN: (void) snprintf(state, sizeof (state), "unknown"); break; case VDEV_STATE_CLOSED: (void) snprintf(state, sizeof (state), "closed"); break; case VDEV_STATE_OFFLINE: (void) snprintf(state, sizeof (state), "offline"); break; case VDEV_STATE_REMOVED: (void) snprintf(state, sizeof (state), "removed"); break; case VDEV_STATE_CANT_OPEN: (void) snprintf(state, sizeof (state), "can't open"); break; case VDEV_STATE_FAULTED: (void) snprintf(state, sizeof (state), "faulted"); break; case VDEV_STATE_DEGRADED: (void) snprintf(state, sizeof (state), "degraded"); break; case VDEV_STATE_HEALTHY: (void) snprintf(state, sizeof (state), "healthy"); break; default: (void) snprintf(state, sizeof (state), "", (uint_t)vd->vdev_state); } zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, vd->vdev_islog ? " (log)" : "", (u_longlong_t)vd->vdev_guid, vd->vdev_path ? vd->vdev_path : "N/A", state); for (uint64_t i = 0; i < vd->vdev_children; i++) vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); } /* * Virtual device management. */ static vdev_ops_t *const vdev_ops_table[] = { &vdev_root_ops, &vdev_raidz_ops, &vdev_draid_ops, &vdev_draid_spare_ops, &vdev_mirror_ops, &vdev_replacing_ops, &vdev_spare_ops, &vdev_disk_ops, &vdev_file_ops, &vdev_missing_ops, &vdev_hole_ops, &vdev_indirect_ops, NULL }; /* * Given a vdev type, return the appropriate ops vector. */ static vdev_ops_t * vdev_getops(const char *type) { vdev_ops_t *ops, *const *opspp; for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) if (strcmp(ops->vdev_op_type, type) == 0) break; return (ops); } /* * Given a vdev and a metaslab class, find which metaslab group we're * interested in. All vdevs may belong to two different metaslab classes. * Dedicated slog devices use only the primary metaslab group, rather than a * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. */ metaslab_group_t * vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) { if (mc == spa_embedded_log_class(vd->vdev_spa) && vd->vdev_log_mg != NULL) return (vd->vdev_log_mg); else return (vd->vdev_mg); } void vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, range_seg64_t *physical_rs, range_seg64_t *remain_rs) { (void) vd, (void) remain_rs; physical_rs->rs_start = logical_rs->rs_start; physical_rs->rs_end = logical_rs->rs_end; } /* * Derive the enumerated allocation bias from string input. * String origin is either the per-vdev zap or zpool(8). */ static vdev_alloc_bias_t vdev_derive_alloc_bias(const char *bias) { vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) alloc_bias = VDEV_BIAS_LOG; else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) alloc_bias = VDEV_BIAS_SPECIAL; else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) alloc_bias = VDEV_BIAS_DEDUP; return (alloc_bias); } /* * Default asize function: return the MAX of psize with the asize of * all children. This is what's used by anything other than RAID-Z. */ uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize) { uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); uint64_t csize; for (int c = 0; c < vd->vdev_children; c++) { csize = vdev_psize_to_asize(vd->vdev_child[c], psize); asize = MAX(asize, csize); } return (asize); } uint64_t vdev_default_min_asize(vdev_t *vd) { return (vd->vdev_min_asize); } /* * Get the minimum allocatable size. We define the allocatable size as * the vdev's asize rounded to the nearest metaslab. This allows us to * replace or attach devices which don't have the same physical size but * can still satisfy the same number of allocations. */ uint64_t vdev_get_min_asize(vdev_t *vd) { vdev_t *pvd = vd->vdev_parent; /* * If our parent is NULL (inactive spare or cache) or is the root, * just return our own asize. */ if (pvd == NULL) return (vd->vdev_asize); /* * The top-level vdev just returns the allocatable size rounded * to the nearest metaslab. */ if (vd == vd->vdev_top) return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); return (pvd->vdev_ops->vdev_op_min_asize(pvd)); } void vdev_set_min_asize(vdev_t *vd) { vd->vdev_min_asize = vdev_get_min_asize(vd); for (int c = 0; c < vd->vdev_children; c++) vdev_set_min_asize(vd->vdev_child[c]); } /* * Get the minimal allocation size for the top-level vdev. */ uint64_t vdev_get_min_alloc(vdev_t *vd) { uint64_t min_alloc = 1ULL << vd->vdev_ashift; if (vd->vdev_ops->vdev_op_min_alloc != NULL) min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); return (min_alloc); } /* * Get the parity level for a top-level vdev. */ uint64_t vdev_get_nparity(vdev_t *vd) { uint64_t nparity = 0; if (vd->vdev_ops->vdev_op_nparity != NULL) nparity = vd->vdev_ops->vdev_op_nparity(vd); return (nparity); } static int vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; uint64_t objid; int err; if (vd->vdev_root_zap != 0) { objid = vd->vdev_root_zap; } else if (vd->vdev_top_zap != 0) { objid = vd->vdev_top_zap; } else if (vd->vdev_leaf_zap != 0) { objid = vd->vdev_leaf_zap; } else { return (EINVAL); } err = zap_lookup(mos, objid, vdev_prop_to_name(prop), sizeof (uint64_t), 1, value); if (err == ENOENT) *value = vdev_prop_default_numeric(prop); return (err); } /* * Get the number of data disks for a top-level vdev. */ uint64_t vdev_get_ndisks(vdev_t *vd) { uint64_t ndisks = 1; if (vd->vdev_ops->vdev_op_ndisks != NULL) ndisks = vd->vdev_ops->vdev_op_ndisks(vd); return (ndisks); } vdev_t * vdev_lookup_top(spa_t *spa, uint64_t vdev) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (vdev < rvd->vdev_children) { ASSERT(rvd->vdev_child[vdev] != NULL); return (rvd->vdev_child[vdev]); } return (NULL); } vdev_t * vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) { vdev_t *mvd; if (vd->vdev_guid == guid) return (vd); for (int c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != NULL) return (mvd); return (NULL); } static int vdev_count_leaves_impl(vdev_t *vd) { int n = 0; if (vd->vdev_ops->vdev_op_leaf) return (1); for (int c = 0; c < vd->vdev_children; c++) n += vdev_count_leaves_impl(vd->vdev_child[c]); return (n); } int vdev_count_leaves(spa_t *spa) { int rc; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); rc = vdev_count_leaves_impl(spa->spa_root_vdev); spa_config_exit(spa, SCL_VDEV, FTAG); return (rc); } void vdev_add_child(vdev_t *pvd, vdev_t *cvd) { size_t oldsize, newsize; uint64_t id = cvd->vdev_id; vdev_t **newchild; ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(cvd->vdev_parent == NULL); cvd->vdev_parent = pvd; if (pvd == NULL) return; ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); oldsize = pvd->vdev_children * sizeof (vdev_t *); pvd->vdev_children = MAX(pvd->vdev_children, id + 1); newsize = pvd->vdev_children * sizeof (vdev_t *); newchild = kmem_alloc(newsize, KM_SLEEP); if (pvd->vdev_child != NULL) { memcpy(newchild, pvd->vdev_child, oldsize); kmem_free(pvd->vdev_child, oldsize); } pvd->vdev_child = newchild; pvd->vdev_child[id] = cvd; cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum += cvd->vdev_guid_sum; if (cvd->vdev_ops->vdev_op_leaf) { list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); cvd->vdev_spa->spa_leaf_list_gen++; } } void vdev_remove_child(vdev_t *pvd, vdev_t *cvd) { int c; uint_t id = cvd->vdev_id; ASSERT(cvd->vdev_parent == pvd); if (pvd == NULL) return; ASSERT(id < pvd->vdev_children); ASSERT(pvd->vdev_child[id] == cvd); pvd->vdev_child[id] = NULL; cvd->vdev_parent = NULL; for (c = 0; c < pvd->vdev_children; c++) if (pvd->vdev_child[c]) break; if (c == pvd->vdev_children) { kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); pvd->vdev_child = NULL; pvd->vdev_children = 0; } if (cvd->vdev_ops->vdev_op_leaf) { spa_t *spa = cvd->vdev_spa; list_remove(&spa->spa_leaf_list, cvd); spa->spa_leaf_list_gen++; } /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum -= cvd->vdev_guid_sum; } /* * Remove any holes in the child array. */ void vdev_compact_children(vdev_t *pvd) { vdev_t **newchild, *cvd; int oldc = pvd->vdev_children; int newc; ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); if (oldc == 0) return; for (int c = newc = 0; c < oldc; c++) if (pvd->vdev_child[c]) newc++; if (newc > 0) { newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); for (int c = newc = 0; c < oldc; c++) { if ((cvd = pvd->vdev_child[c]) != NULL) { newchild[newc] = cvd; cvd->vdev_id = newc++; } } } else { newchild = NULL; } kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); pvd->vdev_child = newchild; pvd->vdev_children = newc; } /* * Allocate and minimally initialize a vdev_t. */ vdev_t * vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) { vdev_t *vd; vdev_indirect_config_t *vic; vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); vic = &vd->vdev_indirect_config; if (spa->spa_root_vdev == NULL) { ASSERT(ops == &vdev_root_ops); spa->spa_root_vdev = vd; spa->spa_load_guid = spa_generate_guid(NULL); } if (guid == 0 && ops != &vdev_hole_ops) { if (spa->spa_root_vdev == vd) { /* * The root vdev's guid will also be the pool guid, * which must be unique among all pools. */ guid = spa_generate_guid(NULL); } else { /* * Any other vdev's guid must be unique within the pool. */ guid = spa_generate_guid(spa); } ASSERT(!spa_guid_exists(spa_guid(spa), guid)); } vd->vdev_spa = spa; vd->vdev_id = id; vd->vdev_guid = guid; vd->vdev_guid_sum = guid; vd->vdev_ops = ops; vd->vdev_state = VDEV_STATE_CLOSED; vd->vdev_ishole = (ops == &vdev_hole_ops); vic->vic_prev_indirect_vdev = UINT64_MAX; rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); /* * Initialize rate limit structs for events. We rate limit ZIO delay * and checksum events so that we don't overwhelm ZED with thousands * of events when a disk is acting up. */ zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 1); zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 1); zfs_ratelimit_init(&vd->vdev_checksum_rl, &zfs_checksum_events_per_second, 1); /* * Default Thresholds for tuning ZED */ vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); list_link_init(&vd->vdev_config_dirty_node); list_link_init(&vd->vdev_state_dirty_node); list_link_init(&vd->vdev_initialize_node); list_link_init(&vd->vdev_leaf_node); list_link_init(&vd->vdev_trim_node); mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); for (int t = 0; t < DTL_TYPES; t++) { vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); } txg_list_create(&vd->vdev_ms_list, spa, offsetof(struct metaslab, ms_txg_node)); txg_list_create(&vd->vdev_dtl_list, spa, offsetof(struct vdev, vdev_dtl_node)); vd->vdev_stat.vs_timestamp = gethrtime(); vdev_queue_init(vd); - vdev_cache_init(vd); return (vd); } /* * Allocate a new vdev. The 'alloctype' is used to control whether we are * creating a new vdev or loading an existing one - the behavior is slightly * different for each case. */ int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype) { vdev_ops_t *ops; const char *type; uint64_t guid = 0, islog; vdev_t *vd; vdev_indirect_config_t *vic; const char *tmp = NULL; int rc; vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; boolean_t top_level = (parent && !parent->vdev_parent); ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) return (SET_ERROR(EINVAL)); if ((ops = vdev_getops(type)) == NULL) return (SET_ERROR(EINVAL)); /* * If this is a load, get the vdev guid from the nvlist. * Otherwise, vdev_alloc_common() will generate one for us. */ if (alloctype == VDEV_ALLOC_LOAD) { uint64_t label_id; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || label_id != id) return (SET_ERROR(EINVAL)); if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } else if (alloctype == VDEV_ALLOC_SPARE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } else if (alloctype == VDEV_ALLOC_L2CACHE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } /* * The first allocated vdev must be of type 'root'. */ if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) return (SET_ERROR(EINVAL)); /* * Determine whether we're a log vdev. */ islog = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); if (islog && spa_version(spa) < SPA_VERSION_SLOGS) return (SET_ERROR(ENOTSUP)); if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) return (SET_ERROR(ENOTSUP)); if (top_level && alloctype == VDEV_ALLOC_ADD) { const char *bias; /* * If creating a top-level vdev, check for allocation * classes input. */ if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, &bias) == 0) { alloc_bias = vdev_derive_alloc_bias(bias); /* spa_vdev_add() expects feature to be enabled */ if (spa->spa_load_state != SPA_LOAD_CREATE && !spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) { return (SET_ERROR(ENOTSUP)); } } /* spa_vdev_add() expects feature to be enabled */ if (ops == &vdev_draid_ops && spa->spa_load_state != SPA_LOAD_CREATE && !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { return (SET_ERROR(ENOTSUP)); } } /* * Initialize the vdev specific data. This is done before calling * vdev_alloc_common() since it may fail and this simplifies the * error reporting and cleanup code paths. */ void *tsd = NULL; if (ops->vdev_op_init != NULL) { rc = ops->vdev_op_init(spa, nv, &tsd); if (rc != 0) { return (rc); } } vd = vdev_alloc_common(spa, id, guid, ops); vd->vdev_tsd = tsd; vd->vdev_islog = islog; if (top_level && alloc_bias != VDEV_BIAS_NONE) vd->vdev_alloc_bias = alloc_bias; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) vd->vdev_path = spa_strdup(tmp); /* * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a * fault on a vdev and want it to persist across imports (like with * zpool offline -f). */ rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; vd->vdev_faulted = 1; vd->vdev_label_aux = VDEV_AUX_EXTERNAL; } if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) vd->vdev_devid = spa_strdup(tmp); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) vd->vdev_physpath = spa_strdup(tmp); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, &tmp) == 0) vd->vdev_enc_sysfs_path = spa_strdup(tmp); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) vd->vdev_fru = spa_strdup(tmp); /* * Set the whole_disk property. If it's not specified, leave the value * as -1. */ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &vd->vdev_wholedisk) != 0) vd->vdev_wholedisk = -1ULL; vic = &vd->vdev_indirect_config; ASSERT0(vic->vic_mapping_object); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, &vic->vic_mapping_object); ASSERT0(vic->vic_births_object); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, &vic->vic_births_object); ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, &vic->vic_prev_indirect_vdev); /* * Look for the 'not present' flag. This will only be set if the device * was not present at the time of import. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, &vd->vdev_not_present); /* * Get the alignment requirement. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); /* * Retrieve the vdev creation time. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, &vd->vdev_crtxg); if (vd->vdev_ops == &vdev_root_ops && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT || alloctype == VDEV_ALLOC_ROOTPOOL)) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, &vd->vdev_root_zap); } /* * If we're a top-level vdev, try to load the allocation parameters. */ if (top_level && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, &vd->vdev_ms_array); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, &vd->vdev_ms_shift); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, &vd->vdev_asize); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, &vd->vdev_noalloc); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, &vd->vdev_removing); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, &vd->vdev_top_zap); } else { ASSERT0(vd->vdev_top_zap); } if (top_level && alloctype != VDEV_ALLOC_ATTACH) { ASSERT(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_ADD || alloctype == VDEV_ALLOC_SPLIT || alloctype == VDEV_ALLOC_ROOTPOOL); /* Note: metaslab_group_create() is now deferred */ } if (vd->vdev_ops->vdev_op_leaf && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); } else { ASSERT0(vd->vdev_leaf_zap); } /* * If we're a leaf vdev, try to load the DTL object and other state. */ if (vd->vdev_ops->vdev_op_leaf && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || alloctype == VDEV_ALLOC_ROOTPOOL)) { if (alloctype == VDEV_ALLOC_LOAD) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, &vd->vdev_dtl_object); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, &vd->vdev_unspare); } if (alloctype == VDEV_ALLOC_ROOTPOOL) { uint64_t spare = 0; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, &spare) == 0 && spare) spa_spare_add(vd); } (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &vd->vdev_offline); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, &vd->vdev_resilver_txg); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, &vd->vdev_rebuild_txg); if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) vdev_defer_resilver(vd); /* * In general, when importing a pool we want to ignore the * persistent fault state, as the diagnosis made on another * system may not be valid in the current context. The only * exception is if we forced a vdev to a persistently faulted * state with 'zpool offline -f'. The persistent fault will * remain across imports until cleared. * * Local vdevs will remain in the faulted state. */ if (spa_load_state(spa) == SPA_LOAD_OPEN || spa_load_state(spa) == SPA_LOAD_IMPORT) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &vd->vdev_faulted); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, &vd->vdev_degraded); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &vd->vdev_removed); if (vd->vdev_faulted || vd->vdev_degraded) { const char *aux; vd->vdev_label_aux = VDEV_AUX_ERR_EXCEEDED; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && strcmp(aux, "external") == 0) vd->vdev_label_aux = VDEV_AUX_EXTERNAL; else vd->vdev_faulted = 0ULL; } } } /* * Add ourselves to the parent's list of children. */ vdev_add_child(parent, vd); *vdp = vd; return (0); } void vdev_free(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT3P(vd->vdev_initialize_thread, ==, NULL); ASSERT3P(vd->vdev_trim_thread, ==, NULL); ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); /* * Scan queues are normally destroyed at the end of a scan. If the * queue exists here, that implies the vdev is being removed while * the scan is still running. */ if (vd->vdev_scan_io_queue != NULL) { mutex_enter(&vd->vdev_scan_io_queue_lock); dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); vd->vdev_scan_io_queue = NULL; mutex_exit(&vd->vdev_scan_io_queue_lock); } /* * vdev_free() implies closing the vdev first. This is simpler than * trying to ensure complicated semantics for all callers. */ vdev_close(vd); ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); /* * Free all children. */ for (int c = 0; c < vd->vdev_children; c++) vdev_free(vd->vdev_child[c]); ASSERT(vd->vdev_child == NULL); ASSERT(vd->vdev_guid_sum == vd->vdev_guid); if (vd->vdev_ops->vdev_op_fini != NULL) vd->vdev_ops->vdev_op_fini(vd); /* * Discard allocation state. */ if (vd->vdev_mg != NULL) { vdev_metaslab_fini(vd); metaslab_group_destroy(vd->vdev_mg); vd->vdev_mg = NULL; } if (vd->vdev_log_mg != NULL) { ASSERT0(vd->vdev_ms_count); metaslab_group_destroy(vd->vdev_log_mg); vd->vdev_log_mg = NULL; } ASSERT0(vd->vdev_stat.vs_space); ASSERT0(vd->vdev_stat.vs_dspace); ASSERT0(vd->vdev_stat.vs_alloc); /* * Remove this vdev from its parent's child list. */ vdev_remove_child(vd->vdev_parent, vd); ASSERT(vd->vdev_parent == NULL); ASSERT(!list_link_active(&vd->vdev_leaf_node)); /* * Clean up vdev structure. */ vdev_queue_fini(vd); - vdev_cache_fini(vd); if (vd->vdev_path) spa_strfree(vd->vdev_path); if (vd->vdev_devid) spa_strfree(vd->vdev_devid); if (vd->vdev_physpath) spa_strfree(vd->vdev_physpath); if (vd->vdev_enc_sysfs_path) spa_strfree(vd->vdev_enc_sysfs_path); if (vd->vdev_fru) spa_strfree(vd->vdev_fru); if (vd->vdev_isspare) spa_spare_remove(vd); if (vd->vdev_isl2cache) spa_l2cache_remove(vd); txg_list_destroy(&vd->vdev_ms_list); txg_list_destroy(&vd->vdev_dtl_list); mutex_enter(&vd->vdev_dtl_lock); space_map_close(vd->vdev_dtl_sm); for (int t = 0; t < DTL_TYPES; t++) { range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); range_tree_destroy(vd->vdev_dtl[t]); } mutex_exit(&vd->vdev_dtl_lock); EQUIV(vd->vdev_indirect_births != NULL, vd->vdev_indirect_mapping != NULL); if (vd->vdev_indirect_births != NULL) { vdev_indirect_mapping_close(vd->vdev_indirect_mapping); vdev_indirect_births_close(vd->vdev_indirect_births); } if (vd->vdev_obsolete_sm != NULL) { ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); space_map_close(vd->vdev_obsolete_sm); vd->vdev_obsolete_sm = NULL; } range_tree_destroy(vd->vdev_obsolete_segments); rw_destroy(&vd->vdev_indirect_rwlock); mutex_destroy(&vd->vdev_obsolete_lock); mutex_destroy(&vd->vdev_dtl_lock); mutex_destroy(&vd->vdev_stat_lock); mutex_destroy(&vd->vdev_probe_lock); mutex_destroy(&vd->vdev_scan_io_queue_lock); mutex_destroy(&vd->vdev_initialize_lock); mutex_destroy(&vd->vdev_initialize_io_lock); cv_destroy(&vd->vdev_initialize_io_cv); cv_destroy(&vd->vdev_initialize_cv); mutex_destroy(&vd->vdev_trim_lock); mutex_destroy(&vd->vdev_autotrim_lock); mutex_destroy(&vd->vdev_trim_io_lock); cv_destroy(&vd->vdev_trim_cv); cv_destroy(&vd->vdev_autotrim_cv); cv_destroy(&vd->vdev_autotrim_kick_cv); cv_destroy(&vd->vdev_trim_io_cv); mutex_destroy(&vd->vdev_rebuild_lock); cv_destroy(&vd->vdev_rebuild_cv); zfs_ratelimit_fini(&vd->vdev_delay_rl); zfs_ratelimit_fini(&vd->vdev_deadman_rl); zfs_ratelimit_fini(&vd->vdev_checksum_rl); if (vd == spa->spa_root_vdev) spa->spa_root_vdev = NULL; kmem_free(vd, sizeof (vdev_t)); } /* * Transfer top-level vdev state from svd to tvd. */ static void vdev_top_transfer(vdev_t *svd, vdev_t *tvd) { spa_t *spa = svd->vdev_spa; metaslab_t *msp; vdev_t *vd; int t; ASSERT(tvd == tvd->vdev_top); tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; tvd->vdev_ms_array = svd->vdev_ms_array; tvd->vdev_ms_shift = svd->vdev_ms_shift; tvd->vdev_ms_count = svd->vdev_ms_count; tvd->vdev_top_zap = svd->vdev_top_zap; svd->vdev_ms_array = 0; svd->vdev_ms_shift = 0; svd->vdev_ms_count = 0; svd->vdev_top_zap = 0; if (tvd->vdev_mg) ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); if (tvd->vdev_log_mg) ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); tvd->vdev_mg = svd->vdev_mg; tvd->vdev_log_mg = svd->vdev_log_mg; tvd->vdev_ms = svd->vdev_ms; svd->vdev_mg = NULL; svd->vdev_log_mg = NULL; svd->vdev_ms = NULL; if (tvd->vdev_mg != NULL) tvd->vdev_mg->mg_vd = tvd; if (tvd->vdev_log_mg != NULL) tvd->vdev_log_mg->mg_vd = tvd; tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; svd->vdev_checkpoint_sm = NULL; tvd->vdev_alloc_bias = svd->vdev_alloc_bias; svd->vdev_alloc_bias = VDEV_BIAS_NONE; tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; svd->vdev_stat.vs_alloc = 0; svd->vdev_stat.vs_space = 0; svd->vdev_stat.vs_dspace = 0; /* * State which may be set on a top-level vdev that's in the * process of being removed. */ ASSERT0(tvd->vdev_indirect_config.vic_births_object); ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); ASSERT3P(tvd->vdev_indirect_births, ==, NULL); ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); ASSERT0(tvd->vdev_noalloc); ASSERT0(tvd->vdev_removing); ASSERT0(tvd->vdev_rebuilding); tvd->vdev_noalloc = svd->vdev_noalloc; tvd->vdev_removing = svd->vdev_removing; tvd->vdev_rebuilding = svd->vdev_rebuilding; tvd->vdev_rebuild_config = svd->vdev_rebuild_config; tvd->vdev_indirect_config = svd->vdev_indirect_config; tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; tvd->vdev_indirect_births = svd->vdev_indirect_births; range_tree_swap(&svd->vdev_obsolete_segments, &tvd->vdev_obsolete_segments); tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; svd->vdev_indirect_config.vic_mapping_object = 0; svd->vdev_indirect_config.vic_births_object = 0; svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; svd->vdev_indirect_mapping = NULL; svd->vdev_indirect_births = NULL; svd->vdev_obsolete_sm = NULL; svd->vdev_noalloc = 0; svd->vdev_removing = 0; svd->vdev_rebuilding = 0; for (t = 0; t < TXG_SIZE; t++) { while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_ms_list, msp, t); while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); } if (list_link_active(&svd->vdev_config_dirty_node)) { vdev_config_clean(svd); vdev_config_dirty(tvd); } if (list_link_active(&svd->vdev_state_dirty_node)) { vdev_state_clean(svd); vdev_state_dirty(tvd); } tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; svd->vdev_deflate_ratio = 0; tvd->vdev_islog = svd->vdev_islog; svd->vdev_islog = 0; dsl_scan_io_queue_vdev_xfer(svd, tvd); } static void vdev_top_update(vdev_t *tvd, vdev_t *vd) { if (vd == NULL) return; vd->vdev_top = tvd; for (int c = 0; c < vd->vdev_children; c++) vdev_top_update(tvd, vd->vdev_child[c]); } /* * Add a mirror/replacing vdev above an existing vdev. There is no need to * call .vdev_op_init() since mirror/replacing vdevs do not have private state. */ vdev_t * vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) { spa_t *spa = cvd->vdev_spa; vdev_t *pvd = cvd->vdev_parent; vdev_t *mvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); mvd->vdev_asize = cvd->vdev_asize; mvd->vdev_min_asize = cvd->vdev_min_asize; mvd->vdev_max_asize = cvd->vdev_max_asize; mvd->vdev_psize = cvd->vdev_psize; mvd->vdev_ashift = cvd->vdev_ashift; mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; mvd->vdev_state = cvd->vdev_state; mvd->vdev_crtxg = cvd->vdev_crtxg; vdev_remove_child(pvd, cvd); vdev_add_child(pvd, mvd); cvd->vdev_id = mvd->vdev_children; vdev_add_child(mvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (mvd == mvd->vdev_top) vdev_top_transfer(cvd, mvd); return (mvd); } /* * Remove a 1-way mirror/replacing vdev from the tree. */ void vdev_remove_parent(vdev_t *cvd) { vdev_t *mvd = cvd->vdev_parent; vdev_t *pvd = mvd->vdev_parent; ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(mvd->vdev_children == 1); ASSERT(mvd->vdev_ops == &vdev_mirror_ops || mvd->vdev_ops == &vdev_replacing_ops || mvd->vdev_ops == &vdev_spare_ops); cvd->vdev_ashift = mvd->vdev_ashift; cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; vdev_remove_child(mvd, cvd); vdev_remove_child(pvd, mvd); /* * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. * Otherwise, we could have detached an offline device, and when we * go to import the pool we'll think we have two top-level vdevs, * instead of a different version of the same top-level vdev. */ if (mvd->vdev_top == mvd) { uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; cvd->vdev_orig_guid = cvd->vdev_guid; cvd->vdev_guid += guid_delta; cvd->vdev_guid_sum += guid_delta; /* * If pool not set for autoexpand, we need to also preserve * mvd's asize to prevent automatic expansion of cvd. * Otherwise if we are adjusting the mirror by attaching and * detaching children of non-uniform sizes, the mirror could * autoexpand, unexpectedly requiring larger devices to * re-establish the mirror. */ if (!cvd->vdev_spa->spa_autoexpand) cvd->vdev_asize = mvd->vdev_asize; } cvd->vdev_id = mvd->vdev_id; vdev_add_child(pvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (cvd == cvd->vdev_top) vdev_top_transfer(mvd, cvd); ASSERT(mvd->vdev_children == 0); vdev_free(mvd); } void vdev_metaslab_group_create(vdev_t *vd) { spa_t *spa = vd->vdev_spa; /* * metaslab_group_create was delayed until allocation bias was available */ if (vd->vdev_mg == NULL) { metaslab_class_t *mc; if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) vd->vdev_alloc_bias = VDEV_BIAS_LOG; ASSERT3U(vd->vdev_islog, ==, (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); switch (vd->vdev_alloc_bias) { case VDEV_BIAS_LOG: mc = spa_log_class(spa); break; case VDEV_BIAS_SPECIAL: mc = spa_special_class(spa); break; case VDEV_BIAS_DEDUP: mc = spa_dedup_class(spa); break; default: mc = spa_normal_class(spa); } vd->vdev_mg = metaslab_group_create(mc, vd, spa->spa_alloc_count); if (!vd->vdev_islog) { vd->vdev_log_mg = metaslab_group_create( spa_embedded_log_class(spa), vd, 1); } /* * The spa ashift min/max only apply for the normal metaslab * class. Class destination is late binding so ashift boundary * setting had to wait until now. */ if (vd->vdev_top == vd && vd->vdev_ashift != 0 && mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { if (vd->vdev_ashift > spa->spa_max_ashift) spa->spa_max_ashift = vd->vdev_ashift; if (vd->vdev_ashift < spa->spa_min_ashift) spa->spa_min_ashift = vd->vdev_ashift; uint64_t min_alloc = vdev_get_min_alloc(vd); if (min_alloc < spa->spa_min_alloc) spa->spa_min_alloc = min_alloc; } } } int vdev_metaslab_init(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; uint64_t oldc = vd->vdev_ms_count; uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; metaslab_t **mspp; int error; boolean_t expanding = (oldc != 0); ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); /* * This vdev is not being allocated from yet or is a hole. */ if (vd->vdev_ms_shift == 0) return (0); ASSERT(!vd->vdev_ishole); ASSERT(oldc <= newc); mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); if (expanding) { memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); } vd->vdev_ms = mspp; vd->vdev_ms_count = newc; for (uint64_t m = oldc; m < newc; m++) { uint64_t object = 0; /* * vdev_ms_array may be 0 if we are creating the "fake" * metaslabs for an indirect vdev for zdb's leak detection. * See zdb_leak_init(). */ if (txg == 0 && vd->vdev_ms_array != 0) { error = dmu_read(spa->spa_meta_objset, vd->vdev_ms_array, m * sizeof (uint64_t), sizeof (uint64_t), &object, DMU_READ_PREFETCH); if (error != 0) { vdev_dbgmsg(vd, "unable to read the metaslab " "array [error=%d]", error); return (error); } } error = metaslab_init(vd->vdev_mg, m, object, txg, &(vd->vdev_ms[m])); if (error != 0) { vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", error); return (error); } } /* * Find the emptiest metaslab on the vdev and mark it for use for * embedded slog by moving it from the regular to the log metaslab * group. */ if (vd->vdev_mg->mg_class == spa_normal_class(spa) && vd->vdev_ms_count > zfs_embedded_slog_min_ms && avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { uint64_t slog_msid = 0; uint64_t smallest = UINT64_MAX; /* * Note, we only search the new metaslabs, because the old * (pre-existing) ones may be active (e.g. have non-empty * range_tree's), and we don't move them to the new * metaslab_t. */ for (uint64_t m = oldc; m < newc; m++) { uint64_t alloc = space_map_allocated(vd->vdev_ms[m]->ms_sm); if (alloc < smallest) { slog_msid = m; smallest = alloc; } } metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; /* * The metaslab was marked as dirty at the end of * metaslab_init(). Remove it from the dirty list so that we * can uninitialize and reinitialize it to the new class. */ if (txg != 0) { (void) txg_list_remove_this(&vd->vdev_ms_list, slog_ms, txg); } uint64_t sm_obj = space_map_object(slog_ms->ms_sm); metaslab_fini(slog_ms); VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, &vd->vdev_ms[slog_msid])); } if (txg == 0) spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); /* * If the vdev is marked as non-allocating then don't * activate the metaslabs since we want to ensure that * no allocations are performed on this device. */ if (vd->vdev_noalloc) { /* track non-allocating vdev space */ spa->spa_nonallocating_dspace += spa_deflate(spa) ? vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; } else if (!expanding) { metaslab_group_activate(vd->vdev_mg); if (vd->vdev_log_mg != NULL) metaslab_group_activate(vd->vdev_log_mg); } if (txg == 0) spa_config_exit(spa, SCL_ALLOC, FTAG); return (0); } void vdev_metaslab_fini(vdev_t *vd) { if (vd->vdev_checkpoint_sm != NULL) { ASSERT(spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_POOL_CHECKPOINT)); space_map_close(vd->vdev_checkpoint_sm); /* * Even though we close the space map, we need to set its * pointer to NULL. The reason is that vdev_metaslab_fini() * may be called multiple times for certain operations * (i.e. when destroying a pool) so we need to ensure that * this clause never executes twice. This logic is similar * to the one used for the vdev_ms clause below. */ vd->vdev_checkpoint_sm = NULL; } if (vd->vdev_ms != NULL) { metaslab_group_t *mg = vd->vdev_mg; metaslab_group_passivate(mg); if (vd->vdev_log_mg != NULL) { ASSERT(!vd->vdev_islog); metaslab_group_passivate(vd->vdev_log_mg); } uint64_t count = vd->vdev_ms_count; for (uint64_t m = 0; m < count; m++) { metaslab_t *msp = vd->vdev_ms[m]; if (msp != NULL) metaslab_fini(msp); } vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); vd->vdev_ms = NULL; vd->vdev_ms_count = 0; for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { ASSERT0(mg->mg_histogram[i]); if (vd->vdev_log_mg != NULL) ASSERT0(vd->vdev_log_mg->mg_histogram[i]); } } ASSERT0(vd->vdev_ms_count); ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); } typedef struct vdev_probe_stats { boolean_t vps_readable; boolean_t vps_writeable; int vps_flags; } vdev_probe_stats_t; static void vdev_probe_done(zio_t *zio) { spa_t *spa = zio->io_spa; vdev_t *vd = zio->io_vd; vdev_probe_stats_t *vps = zio->io_private; ASSERT(vd->vdev_probe_zio != NULL); if (zio->io_type == ZIO_TYPE_READ) { if (zio->io_error == 0) vps->vps_readable = 1; if (zio->io_error == 0 && spa_writeable(spa)) { zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, zio->io_offset, zio->io_size, zio->io_abd, ZIO_CHECKSUM_OFF, vdev_probe_done, vps, ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); } else { abd_free(zio->io_abd); } } else if (zio->io_type == ZIO_TYPE_WRITE) { if (zio->io_error == 0) vps->vps_writeable = 1; abd_free(zio->io_abd); } else if (zio->io_type == ZIO_TYPE_NULL) { zio_t *pio; zio_link_t *zl; vd->vdev_cant_read |= !vps->vps_readable; vd->vdev_cant_write |= !vps->vps_writeable; if (vdev_readable(vd) && (vdev_writeable(vd) || !spa_writeable(spa))) { zio->io_error = 0; } else { ASSERT(zio->io_error != 0); vdev_dbgmsg(vd, "failed probe"); (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, spa, vd, NULL, NULL, 0); zio->io_error = SET_ERROR(ENXIO); } mutex_enter(&vd->vdev_probe_lock); ASSERT(vd->vdev_probe_zio == zio); vd->vdev_probe_zio = NULL; mutex_exit(&vd->vdev_probe_lock); zl = NULL; while ((pio = zio_walk_parents(zio, &zl)) != NULL) if (!vdev_accessible(vd, pio)) pio->io_error = SET_ERROR(ENXIO); kmem_free(vps, sizeof (*vps)); } } /* * Determine whether this device is accessible. * * Read and write to several known locations: the pad regions of each * vdev label but the first, which we leave alone in case it contains * a VTOC. */ zio_t * vdev_probe(vdev_t *vd, zio_t *zio) { spa_t *spa = vd->vdev_spa; vdev_probe_stats_t *vps = NULL; zio_t *pio; ASSERT(vd->vdev_ops->vdev_op_leaf); /* * Don't probe the probe. */ if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) return (NULL); /* * To prevent 'probe storms' when a device fails, we create * just one probe i/o at a time. All zios that want to probe * this vdev will become parents of the probe io. */ mutex_enter(&vd->vdev_probe_lock); if ((pio = vd->vdev_probe_zio) == NULL) { vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | - ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | - ZIO_FLAG_TRYHARD; + ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { /* * vdev_cant_read and vdev_cant_write can only * transition from TRUE to FALSE when we have the * SCL_ZIO lock as writer; otherwise they can only * transition from FALSE to TRUE. This ensures that * any zio looking at these values can assume that * failures persist for the life of the I/O. That's * important because when a device has intermittent * connectivity problems, we want to ensure that * they're ascribed to the device (ENXIO) and not * the zio (EIO). * * Since we hold SCL_ZIO as writer here, clear both * values so the probe can reevaluate from first * principles. */ vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; } vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, vdev_probe_done, vps, vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); /* * We can't change the vdev state in this context, so we * kick off an async task to do it on our behalf. */ if (zio != NULL) { vd->vdev_probe_wanted = B_TRUE; spa_async_request(spa, SPA_ASYNC_PROBE); } } if (zio != NULL) zio_add_child(zio, pio); mutex_exit(&vd->vdev_probe_lock); if (vps == NULL) { ASSERT(zio != NULL); return (NULL); } for (int l = 1; l < VDEV_LABELS; l++) { zio_nowait(zio_read_phys(pio, vd, vdev_label_offset(vd->vdev_psize, l, offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), ZIO_CHECKSUM_OFF, vdev_probe_done, vps, ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); } if (zio == NULL) return (pio); zio_nowait(pio); return (NULL); } static void vdev_load_child(void *arg) { vdev_t *vd = arg; vd->vdev_load_error = vdev_load(vd); } static void vdev_open_child(void *arg) { vdev_t *vd = arg; vd->vdev_open_thread = curthread; vd->vdev_open_error = vdev_open(vd); vd->vdev_open_thread = NULL; } static boolean_t vdev_uses_zvols(vdev_t *vd) { #ifdef _KERNEL if (zvol_is_zvol(vd->vdev_path)) return (B_TRUE); #endif for (int c = 0; c < vd->vdev_children; c++) if (vdev_uses_zvols(vd->vdev_child[c])) return (B_TRUE); return (B_FALSE); } /* * Returns B_TRUE if the passed child should be opened. */ static boolean_t vdev_default_open_children_func(vdev_t *vd) { (void) vd; return (B_TRUE); } /* * Open the requested child vdevs. If any of the leaf vdevs are using * a ZFS volume then do the opens in a single thread. This avoids a * deadlock when the current thread is holding the spa_namespace_lock. */ static void vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) { int children = vd->vdev_children; taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, children, children, TASKQ_PREPOPULATE); vd->vdev_nonrot = B_TRUE; for (int c = 0; c < children; c++) { vdev_t *cvd = vd->vdev_child[c]; if (open_func(cvd) == B_FALSE) continue; if (tq == NULL || vdev_uses_zvols(vd)) { cvd->vdev_open_error = vdev_open(cvd); } else { VERIFY(taskq_dispatch(tq, vdev_open_child, cvd, TQ_SLEEP) != TASKQID_INVALID); } vd->vdev_nonrot &= cvd->vdev_nonrot; } if (tq != NULL) { taskq_wait(tq); taskq_destroy(tq); } } /* * Open all child vdevs. */ void vdev_open_children(vdev_t *vd) { vdev_open_children_impl(vd, vdev_default_open_children_func); } /* * Conditionally open a subset of child vdevs. */ void vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) { vdev_open_children_impl(vd, open_func); } /* * Compute the raidz-deflation ratio. Note, we hard-code * in 128k (1 << 17) because it is the "typical" blocksize. * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, * otherwise it would inconsistently account for existing bp's. */ static void vdev_set_deflate_ratio(vdev_t *vd) { if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { vd->vdev_deflate_ratio = (1 << 17) / (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); } } /* * Choose the best of two ashifts, preferring one between logical ashift * (absolute minimum) and administrator defined maximum, otherwise take * the biggest of the two. */ uint64_t vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) { if (a > logical && a <= zfs_vdev_max_auto_ashift) { if (b <= logical || b > zfs_vdev_max_auto_ashift) return (a); else return (MAX(a, b)); } else if (b <= logical || b > zfs_vdev_max_auto_ashift) return (MAX(a, b)); return (b); } /* * Maximize performance by inflating the configured ashift for top level * vdevs to be as close to the physical ashift as possible while maintaining * administrator defined limits and ensuring it doesn't go below the * logical ashift. */ static void vdev_ashift_optimize(vdev_t *vd) { ASSERT(vd == vd->vdev_top); if (vd->vdev_ashift < vd->vdev_physical_ashift && vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { vd->vdev_ashift = MIN( MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), MAX(zfs_vdev_min_auto_ashift, vd->vdev_physical_ashift)); } else { /* * If the logical and physical ashifts are the same, then * we ensure that the top-level vdev's ashift is not smaller * than our minimum ashift value. For the unusual case * where logical ashift > physical ashift, we can't cap * the calculated ashift based on max ashift as that * would cause failures. * We still check if we need to increase it to match * the min ashift. */ vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, vd->vdev_ashift); } } /* * Prepare a virtual device for access. */ int vdev_open(vdev_t *vd) { spa_t *spa = vd->vdev_spa; int error; uint64_t osize = 0; uint64_t max_osize = 0; uint64_t asize, max_asize, psize; uint64_t logical_ashift = 0; uint64_t physical_ashift = 0; ASSERT(vd->vdev_open_thread == curthread || spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || vd->vdev_state == VDEV_STATE_CANT_OPEN || vd->vdev_state == VDEV_STATE_OFFLINE); vd->vdev_stat.vs_aux = VDEV_AUX_NONE; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; vd->vdev_min_asize = vdev_get_min_asize(vd); /* * If this vdev is not removed, check its fault status. If it's * faulted, bail out of the open. */ if (!vd->vdev_removed && vd->vdev_faulted) { ASSERT(vd->vdev_children == 0); ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || vd->vdev_label_aux == VDEV_AUX_EXTERNAL); vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, vd->vdev_label_aux); return (SET_ERROR(ENXIO)); } else if (vd->vdev_offline) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); return (SET_ERROR(ENXIO)); } error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &logical_ashift, &physical_ashift); /* Keep the device in removed state if unplugged */ if (error == ENOENT && vd->vdev_removed) { vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); return (error); } /* * Physical volume size should never be larger than its max size, unless * the disk has shrunk while we were reading it or the device is buggy * or damaged: either way it's not safe for use, bail out of the open. */ if (osize > max_osize) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_OPEN_FAILED); return (SET_ERROR(ENXIO)); } /* * Reset the vdev_reopening flag so that we actually close * the vdev on error. */ vd->vdev_reopening = B_FALSE; if (zio_injection_enabled && error == 0) error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); if (error) { if (vd->vdev_removed && vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) vd->vdev_removed = B_FALSE; if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, vd->vdev_stat.vs_aux); } else { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, vd->vdev_stat.vs_aux); } return (error); } vd->vdev_removed = B_FALSE; /* * Recheck the faulted flag now that we have confirmed that * the vdev is accessible. If we're faulted, bail. */ if (vd->vdev_faulted) { ASSERT(vd->vdev_children == 0); ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || vd->vdev_label_aux == VDEV_AUX_EXTERNAL); vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, vd->vdev_label_aux); return (SET_ERROR(ENXIO)); } if (vd->vdev_degraded) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_ERR_EXCEEDED); } else { vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); } /* * For hole or missing vdevs we just return success. */ if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) return (0); for (int c = 0; c < vd->vdev_children; c++) { if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); break; } } osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); if (vd->vdev_children == 0) { if (osize < SPA_MINDEVSIZE) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (SET_ERROR(EOVERFLOW)); } psize = osize; asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); max_asize = max_osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); } else { if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (SET_ERROR(EOVERFLOW)); } psize = 0; asize = osize; max_asize = max_osize; } /* * If the vdev was expanded, record this so that we can re-create the * uberblock rings in labels {2,3}, during the next sync. */ if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) vd->vdev_copy_uberblocks = B_TRUE; vd->vdev_psize = psize; /* * Make sure the allocatable size hasn't shrunk too much. */ if (asize < vd->vdev_min_asize) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (SET_ERROR(EINVAL)); } /* * We can always set the logical/physical ashift members since * their values are only used to calculate the vdev_ashift when * the device is first added to the config. These values should * not be used for anything else since they may change whenever * the device is reopened and we don't store them in the label. */ vd->vdev_physical_ashift = MAX(physical_ashift, vd->vdev_physical_ashift); vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift); if (vd->vdev_asize == 0) { /* * This is the first-ever open, so use the computed values. * For compatibility, a different ashift can be requested. */ vd->vdev_asize = asize; vd->vdev_max_asize = max_asize; /* * If the vdev_ashift was not overridden at creation time, * then set it the logical ashift and optimize the ashift. */ if (vd->vdev_ashift == 0) { vd->vdev_ashift = vd->vdev_logical_ashift; if (vd->vdev_logical_ashift > ASHIFT_MAX) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_ASHIFT_TOO_BIG); return (SET_ERROR(EDOM)); } if (vd->vdev_top == vd) { vdev_ashift_optimize(vd); } } if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || vd->vdev_ashift > ASHIFT_MAX)) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_ASHIFT); return (SET_ERROR(EDOM)); } } else { /* * Make sure the alignment required hasn't increased. */ if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && vd->vdev_ops->vdev_op_leaf) { (void) zfs_ereport_post( FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, spa, vd, NULL, NULL, 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (SET_ERROR(EDOM)); } vd->vdev_max_asize = max_asize; } /* * If all children are healthy we update asize if either: * The asize has increased, due to a device expansion caused by dynamic * LUN growth or vdev replacement, and automatic expansion is enabled; * making the additional space available. * * The asize has decreased, due to a device shrink usually caused by a * vdev replace with a smaller device. This ensures that calculations * based of max_asize and asize e.g. esize are always valid. It's safe * to do this as we've already validated that asize is greater than * vdev_min_asize. */ if (vd->vdev_state == VDEV_STATE_HEALTHY && ((asize > vd->vdev_asize && (vd->vdev_expanding || spa->spa_autoexpand)) || (asize < vd->vdev_asize))) vd->vdev_asize = asize; vdev_set_min_asize(vd); /* * Ensure we can issue some IO before declaring the * vdev open for business. */ if (vd->vdev_ops->vdev_op_leaf && (error = zio_wait(vdev_probe(vd, NULL))) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); return (error); } /* * Track the minimum allocation size. */ if (vd->vdev_top == vd && vd->vdev_ashift != 0 && vd->vdev_islog == 0 && vd->vdev_aux == NULL) { uint64_t min_alloc = vdev_get_min_alloc(vd); if (min_alloc < spa->spa_min_alloc) spa->spa_min_alloc = min_alloc; } /* * If this is a leaf vdev, assess whether a resilver is needed. * But don't do this if we are doing a reopen for a scrub, since * this would just restart the scrub we are already doing. */ if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); return (0); } static void vdev_validate_child(void *arg) { vdev_t *vd = arg; vd->vdev_validate_thread = curthread; vd->vdev_validate_error = vdev_validate(vd); vd->vdev_validate_thread = NULL; } /* * Called once the vdevs are all opened, this routine validates the label * contents. This needs to be done before vdev_load() so that we don't * inadvertently do repair I/Os to the wrong device. * * This function will only return failure if one of the vdevs indicates that it * has since been destroyed or exported. This is only possible if * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state * will be updated but the function will return 0. */ int vdev_validate(vdev_t *vd) { spa_t *spa = vd->vdev_spa; taskq_t *tq = NULL; nvlist_t *label; uint64_t guid = 0, aux_guid = 0, top_guid; uint64_t state; nvlist_t *nvl; uint64_t txg; int children = vd->vdev_children; if (vdev_validate_skip) return (0); if (children > 0) { tq = taskq_create("vdev_validate", children, minclsyspri, children, children, TASKQ_PREPOPULATE); } for (uint64_t c = 0; c < children; c++) { vdev_t *cvd = vd->vdev_child[c]; if (tq == NULL || vdev_uses_zvols(cvd)) { vdev_validate_child(cvd); } else { VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, TQ_SLEEP) != TASKQID_INVALID); } } if (tq != NULL) { taskq_wait(tq); taskq_destroy(tq); } for (int c = 0; c < children; c++) { int error = vd->vdev_child[c]->vdev_validate_error; if (error != 0) return (SET_ERROR(EBADF)); } /* * If the device has already failed, or was marked offline, don't do * any further validation. Otherwise, label I/O will fail and we will * overwrite the previous state. */ if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) return (0); /* * If we are performing an extreme rewind, we allow for a label that * was modified at a point after the current txg. * If config lock is not held do not check for the txg. spa_sync could * be updating the vdev's label before updating spa_last_synced_txg. */ if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) txg = UINT64_MAX; else txg = spa_last_synced_txg(spa); if ((label = vdev_label_read_config(vd, txg)) == NULL) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); vdev_dbgmsg(vd, "vdev_validate: failed reading config for " "txg %llu", (u_longlong_t)txg); return (0); } /* * Determine if this vdev has been split off into another * pool. If so, then refuse to open it. */ if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, &aux_guid) == 0 && aux_guid == spa_guid(spa)) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_SPLIT_POOL); nvlist_free(label); vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); return (0); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", ZPOOL_CONFIG_POOL_GUID); return (0); } /* * If config is not trusted then ignore the spa guid check. This is * necessary because if the machine crashed during a re-guid the new * guid might have been written to all of the vdev labels, but not the * cached config. The check will be performed again once we have the * trusted config from the MOS. */ if (spa->spa_trust_config && guid != spa_guid(spa)) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " "match config (%llu != %llu)", (u_longlong_t)guid, (u_longlong_t)spa_guid(spa)); return (0); } if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, &aux_guid) != 0) aux_guid = 0; if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", ZPOOL_CONFIG_GUID); return (0); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", ZPOOL_CONFIG_TOP_GUID); return (0); } /* * If this vdev just became a top-level vdev because its sibling was * detached, it will have adopted the parent's vdev guid -- but the * label may or may not be on disk yet. Fortunately, either version * of the label will have the same top guid, so if we're a top-level * vdev, we can safely compare to that instead. * However, if the config comes from a cachefile that failed to update * after the detach, a top-level vdev will appear as a non top-level * vdev in the config. Also relax the constraints if we perform an * extreme rewind. * * If we split this vdev off instead, then we also check the * original pool's guid. We don't want to consider the vdev * corrupt if it is partway through a split operation. */ if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { boolean_t mismatch = B_FALSE; if (spa->spa_trust_config && !spa->spa_extreme_rewind) { if (vd != vd->vdev_top || vd->vdev_guid != top_guid) mismatch = B_TRUE; } else { if (vd->vdev_guid != top_guid && vd->vdev_top->vdev_guid != guid) mismatch = B_TRUE; } if (mismatch) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); vdev_dbgmsg(vd, "vdev_validate: config guid " "doesn't match label guid"); vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", (u_longlong_t)vd->vdev_guid, (u_longlong_t)vd->vdev_top->vdev_guid); vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " "aux_guid %llu", (u_longlong_t)guid, (u_longlong_t)top_guid, (u_longlong_t)aux_guid); return (0); } } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", ZPOOL_CONFIG_POOL_STATE); return (0); } nvlist_free(label); /* * If this is a verbatim import, no need to check the * state of the pool. */ if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && spa_load_state(spa) == SPA_LOAD_OPEN && state != POOL_STATE_ACTIVE) { vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " "for spa %s", (u_longlong_t)state, spa->spa_name); return (SET_ERROR(EBADF)); } /* * If we were able to open and validate a vdev that was * previously marked permanently unavailable, clear that state * now. */ if (vd->vdev_not_present) vd->vdev_not_present = 0; return (0); } static void vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) { char *old, *new; if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, dvd->vdev_path, svd->vdev_path); spa_strfree(dvd->vdev_path); dvd->vdev_path = spa_strdup(svd->vdev_path); } } else if (svd->vdev_path != NULL) { dvd->vdev_path = spa_strdup(svd->vdev_path); zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); } /* * Our enclosure sysfs path may have changed between imports */ old = dvd->vdev_enc_sysfs_path; new = svd->vdev_enc_sysfs_path; if ((old != NULL && new == NULL) || (old == NULL && new != NULL) || ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, old, new); if (dvd->vdev_enc_sysfs_path) spa_strfree(dvd->vdev_enc_sysfs_path); if (svd->vdev_enc_sysfs_path) { dvd->vdev_enc_sysfs_path = spa_strdup( svd->vdev_enc_sysfs_path); } else { dvd->vdev_enc_sysfs_path = NULL; } } } /* * Recursively copy vdev paths from one vdev to another. Source and destination * vdev trees must have same geometry otherwise return error. Intended to copy * paths from userland config into MOS config. */ int vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) { if ((svd->vdev_ops == &vdev_missing_ops) || (svd->vdev_ishole && dvd->vdev_ishole) || (dvd->vdev_ops == &vdev_indirect_ops)) return (0); if (svd->vdev_ops != dvd->vdev_ops) { vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); return (SET_ERROR(EINVAL)); } if (svd->vdev_guid != dvd->vdev_guid) { vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " "%llu)", (u_longlong_t)svd->vdev_guid, (u_longlong_t)dvd->vdev_guid); return (SET_ERROR(EINVAL)); } if (svd->vdev_children != dvd->vdev_children) { vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " "%llu != %llu", (u_longlong_t)svd->vdev_children, (u_longlong_t)dvd->vdev_children); return (SET_ERROR(EINVAL)); } for (uint64_t i = 0; i < svd->vdev_children; i++) { int error = vdev_copy_path_strict(svd->vdev_child[i], dvd->vdev_child[i]); if (error != 0) return (error); } if (svd->vdev_ops->vdev_op_leaf) vdev_copy_path_impl(svd, dvd); return (0); } static void vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) { ASSERT(stvd->vdev_top == stvd); ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); for (uint64_t i = 0; i < dvd->vdev_children; i++) { vdev_copy_path_search(stvd, dvd->vdev_child[i]); } if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) return; /* * The idea here is that while a vdev can shift positions within * a top vdev (when replacing, attaching mirror, etc.) it cannot * step outside of it. */ vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) return; ASSERT(vd->vdev_ops->vdev_op_leaf); vdev_copy_path_impl(vd, dvd); } /* * Recursively copy vdev paths from one root vdev to another. Source and * destination vdev trees may differ in geometry. For each destination leaf * vdev, search a vdev with the same guid and top vdev id in the source. * Intended to copy paths from userland config into MOS config. */ void vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) { uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); ASSERT(srvd->vdev_ops == &vdev_root_ops); ASSERT(drvd->vdev_ops == &vdev_root_ops); for (uint64_t i = 0; i < children; i++) { vdev_copy_path_search(srvd->vdev_child[i], drvd->vdev_child[i]); } } /* * Close a virtual device. */ void vdev_close(vdev_t *vd) { vdev_t *pvd = vd->vdev_parent; spa_t *spa __maybe_unused = vd->vdev_spa; ASSERT(vd != NULL); ASSERT(vd->vdev_open_thread == curthread || spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); /* * If our parent is reopening, then we are as well, unless we are * going offline. */ if (pvd != NULL && pvd->vdev_reopening) vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); vd->vdev_ops->vdev_op_close(vd); - vdev_cache_purge(vd); - /* * We record the previous state before we close it, so that if we are * doing a reopen(), we don't generate FMA ereports if we notice that * it's still faulted. */ vd->vdev_prevstate = vd->vdev_state; if (vd->vdev_offline) vd->vdev_state = VDEV_STATE_OFFLINE; else vd->vdev_state = VDEV_STATE_CLOSED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } void vdev_hold(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_is_root(spa)); if (spa->spa_state == POOL_STATE_UNINITIALIZED) return; for (int c = 0; c < vd->vdev_children; c++) vdev_hold(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) vd->vdev_ops->vdev_op_hold(vd); } void vdev_rele(vdev_t *vd) { ASSERT(spa_is_root(vd->vdev_spa)); for (int c = 0; c < vd->vdev_children; c++) vdev_rele(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) vd->vdev_ops->vdev_op_rele(vd); } /* * Reopen all interior vdevs and any unopened leaves. We don't actually * reopen leaf vdevs which had previously been opened as they might deadlock * on the spa_config_lock. Instead we only obtain the leaf's physical size. * If the leaf has never been opened then open it, as usual. */ void vdev_reopen(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); /* set the reopening flag unless we're taking the vdev offline */ vd->vdev_reopening = !vd->vdev_offline; vdev_close(vd); (void) vdev_open(vd); /* * Call vdev_validate() here to make sure we have the same device. * Otherwise, a device with an invalid label could be successfully * opened in response to vdev_reopen(). */ if (vd->vdev_aux) { (void) vdev_validate_aux(vd); if (vdev_readable(vd) && vdev_writeable(vd) && vd->vdev_aux == &spa->spa_l2cache) { /* * In case the vdev is present we should evict all ARC * buffers and pointers to log blocks and reclaim their * space before restoring its contents to L2ARC. */ if (l2arc_vdev_present(vd)) { l2arc_rebuild_vdev(vd, B_TRUE); } else { l2arc_add_vdev(spa, vd); } spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); } } else { (void) vdev_validate(vd); } /* * Recheck if resilver is still needed and cancel any * scheduled resilver if resilver is unneeded. */ if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && spa->spa_async_tasks & SPA_ASYNC_RESILVER) { mutex_enter(&spa->spa_async_lock); spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; mutex_exit(&spa->spa_async_lock); } /* * Reassess parent vdev's health. */ vdev_propagate_state(vd); } int vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) { int error; /* * Normally, partial opens (e.g. of a mirror) are allowed. * For a create, however, we want to fail the request if * there are any components we can't open. */ error = vdev_open(vd); if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { vdev_close(vd); return (error ? error : SET_ERROR(ENXIO)); } /* * Recursively load DTLs and initialize all labels. */ if ((error = vdev_dtl_load(vd)) != 0 || (error = vdev_label_init(vd, txg, isreplacing ? VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { vdev_close(vd); return (error); } return (0); } void vdev_metaslab_set_size(vdev_t *vd) { uint64_t asize = vd->vdev_asize; uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; uint64_t ms_shift; /* * There are two dimensions to the metaslab sizing calculation: * the size of the metaslab and the count of metaslabs per vdev. * * The default values used below are a good balance between memory * usage (larger metaslab size means more memory needed for loaded * metaslabs; more metaslabs means more memory needed for the * metaslab_t structs), metaslab load time (larger metaslabs take * longer to load), and metaslab sync time (more metaslabs means * more time spent syncing all of them). * * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. * The range of the dimensions are as follows: * * 2^29 <= ms_size <= 2^34 * 16 <= ms_count <= 131,072 * * On the lower end of vdev sizes, we aim for metaslabs sizes of * at least 512MB (2^29) to minimize fragmentation effects when * testing with smaller devices. However, the count constraint * of at least 16 metaslabs will override this minimum size goal. * * On the upper end of vdev sizes, we aim for a maximum metaslab * size of 16GB. However, we will cap the total count to 2^17 * metaslabs to keep our memory footprint in check and let the * metaslab size grow from there if that limit is hit. * * The net effect of applying above constrains is summarized below. * * vdev size metaslab count * --------------|----------------- * < 8GB ~16 * 8GB - 100GB one per 512MB * 100GB - 3TB ~200 * 3TB - 2PB one per 16GB * > 2PB ~131,072 * -------------------------------- * * Finally, note that all of the above calculate the initial * number of metaslabs. Expanding a top-level vdev will result * in additional metaslabs being allocated making it possible * to exceed the zfs_vdev_ms_count_limit. */ if (ms_count < zfs_vdev_min_ms_count) ms_shift = highbit64(asize / zfs_vdev_min_ms_count); else if (ms_count > zfs_vdev_default_ms_count) ms_shift = highbit64(asize / zfs_vdev_default_ms_count); else ms_shift = zfs_vdev_default_ms_shift; if (ms_shift < SPA_MAXBLOCKSHIFT) { ms_shift = SPA_MAXBLOCKSHIFT; } else if (ms_shift > zfs_vdev_max_ms_shift) { ms_shift = zfs_vdev_max_ms_shift; /* cap the total count to constrain memory footprint */ if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); } vd->vdev_ms_shift = ms_shift; ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); } void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) { ASSERT(vd == vd->vdev_top); /* indirect vdevs don't have metaslabs or dtls */ ASSERT(vdev_is_concrete(vd) || flags == 0); ASSERT(ISP2(flags)); ASSERT(spa_writeable(vd->vdev_spa)); if (flags & VDD_METASLAB) (void) txg_list_add(&vd->vdev_ms_list, arg, txg); if (flags & VDD_DTL) (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); } void vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) { for (int c = 0; c < vd->vdev_children; c++) vdev_dirty_leaves(vd->vdev_child[c], flags, txg); if (vd->vdev_ops->vdev_op_leaf) vdev_dirty(vd->vdev_top, flags, vd, txg); } /* * DTLs. * * A vdev's DTL (dirty time log) is the set of transaction groups for which * the vdev has less than perfect replication. There are four kinds of DTL: * * DTL_MISSING: txgs for which the vdev has no valid copies of the data * * DTL_PARTIAL: txgs for which data is available, but not fully replicated * * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of * txgs that was scrubbed. * * DTL_OUTAGE: txgs which cannot currently be read, whether due to * persistent errors or just some device being offline. * Unlike the other three, the DTL_OUTAGE map is not generally * maintained; it's only computed when needed, typically to * determine whether a device can be detached. * * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device * either has the data or it doesn't. * * For interior vdevs such as mirror and RAID-Z the picture is more complex. * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because * if any child is less than fully replicated, then so is its parent. * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, * comprising only those txgs which appear in 'maxfaults' or more children; * those are the txgs we don't have enough replication to read. For example, * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); * thus, its DTL_MISSING consists of the set of txgs that appear in more than * two child DTL_MISSING maps. * * It should be clear from the above that to compute the DTLs and outage maps * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. * Therefore, that is all we keep on disk. When loading the pool, or after * a configuration change, we generate all other DTLs from first principles. */ void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) { range_tree_t *rt = vd->vdev_dtl[t]; ASSERT(t < DTL_TYPES); ASSERT(vd != vd->vdev_spa->spa_root_vdev); ASSERT(spa_writeable(vd->vdev_spa)); mutex_enter(&vd->vdev_dtl_lock); if (!range_tree_contains(rt, txg, size)) range_tree_add(rt, txg, size); mutex_exit(&vd->vdev_dtl_lock); } boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) { range_tree_t *rt = vd->vdev_dtl[t]; boolean_t dirty = B_FALSE; ASSERT(t < DTL_TYPES); ASSERT(vd != vd->vdev_spa->spa_root_vdev); /* * While we are loading the pool, the DTLs have not been loaded yet. * This isn't a problem but it can result in devices being tried * which are known to not have the data. In which case, the import * is relying on the checksum to ensure that we get the right data. * Note that while importing we are only reading the MOS, which is * always checksummed. */ mutex_enter(&vd->vdev_dtl_lock); if (!range_tree_is_empty(rt)) dirty = range_tree_contains(rt, txg, size); mutex_exit(&vd->vdev_dtl_lock); return (dirty); } boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) { range_tree_t *rt = vd->vdev_dtl[t]; boolean_t empty; mutex_enter(&vd->vdev_dtl_lock); empty = range_tree_is_empty(rt); mutex_exit(&vd->vdev_dtl_lock); return (empty); } /* * Check if the txg falls within the range which must be * resilvered. DVAs outside this range can always be skipped. */ boolean_t vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, uint64_t phys_birth) { (void) dva, (void) psize; /* Set by sequential resilver. */ if (phys_birth == TXG_UNKNOWN) return (B_TRUE); return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); } /* * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. */ boolean_t vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, uint64_t phys_birth) { ASSERT(vd != vd->vdev_spa->spa_root_vdev); if (vd->vdev_ops->vdev_op_need_resilver == NULL || vd->vdev_ops->vdev_op_leaf) return (B_TRUE); return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, phys_birth)); } /* * Returns the lowest txg in the DTL range. */ static uint64_t vdev_dtl_min(vdev_t *vd) { ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); ASSERT0(vd->vdev_children); return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); } /* * Returns the highest txg in the DTL. */ static uint64_t vdev_dtl_max(vdev_t *vd) { ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); ASSERT0(vd->vdev_children); return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); } /* * Determine if a resilvering vdev should remove any DTL entries from * its range. If the vdev was resilvering for the entire duration of the * scan then it should excise that range from its DTLs. Otherwise, this * vdev is considered partially resilvered and should leave its DTL * entries intact. The comment in vdev_dtl_reassess() describes how we * excise the DTLs. */ static boolean_t vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) { ASSERT0(vd->vdev_children); if (vd->vdev_state < VDEV_STATE_DEGRADED) return (B_FALSE); if (vd->vdev_resilver_deferred) return (B_FALSE); if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) return (B_TRUE); if (rebuild_done) { vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; /* Rebuild not initiated by attach */ if (vd->vdev_rebuild_txg == 0) return (B_TRUE); /* * When a rebuild completes without error then all missing data * up to the rebuild max txg has been reconstructed and the DTL * is eligible for excision. */ if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && vdev_dtl_max(vd) <= vrp->vrp_max_txg) { ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); return (B_TRUE); } } else { dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; /* Resilver not initiated by attach */ if (vd->vdev_resilver_txg == 0) return (B_TRUE); /* * When a resilver is initiated the scan will assign the * scn_max_txg value to the highest txg value that exists * in all DTLs. If this device's max DTL is not part of this * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] * then it is not eligible for excision. */ if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); return (B_TRUE); } } return (B_FALSE); } /* * Reassess DTLs after a config change or scrub completion. If txg == 0 no * write operations will be issued to the pool. */ void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, boolean_t scrub_done, boolean_t rebuild_done) { spa_t *spa = vd->vdev_spa; avl_tree_t reftree; int minref; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); for (int c = 0; c < vd->vdev_children; c++) vdev_dtl_reassess(vd->vdev_child[c], txg, scrub_txg, scrub_done, rebuild_done); if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) return; if (vd->vdev_ops->vdev_op_leaf) { dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; boolean_t check_excise = B_FALSE; boolean_t wasempty = B_TRUE; mutex_enter(&vd->vdev_dtl_lock); /* * If requested, pretend the scan or rebuild completed cleanly. */ if (zfs_scan_ignore_errors) { if (scn != NULL) scn->scn_phys.scn_errors = 0; if (vr != NULL) vr->vr_rebuild_phys.vrp_errors = 0; } if (scrub_txg != 0 && !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { wasempty = B_FALSE; zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " "dtl:%llu/%llu errors:%llu", (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, (u_longlong_t)scrub_txg, spa->spa_scrub_started, (u_longlong_t)vdev_dtl_min(vd), (u_longlong_t)vdev_dtl_max(vd), (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); } /* * If we've completed a scrub/resilver or a rebuild cleanly * then determine if this vdev should remove any DTLs. We * only want to excise regions on vdevs that were available * during the entire duration of this scan. */ if (rebuild_done && vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { check_excise = B_TRUE; } else { if (spa->spa_scrub_started || (scn != NULL && scn->scn_phys.scn_errors == 0)) { check_excise = B_TRUE; } } if (scrub_txg && check_excise && vdev_dtl_should_excise(vd, rebuild_done)) { /* * We completed a scrub, resilver or rebuild up to * scrub_txg. If we did it without rebooting, then * the scrub dtl will be valid, so excise the old * region and fold in the scrub dtl. Otherwise, * leave the dtl as-is if there was an error. * * There's little trick here: to excise the beginning * of the DTL_MISSING map, we put it into a reference * tree and then add a segment with refcnt -1 that * covers the range [0, scrub_txg). This means * that each txg in that range has refcnt -1 or 0. * We then add DTL_SCRUB with a refcnt of 2, so that * entries in the range [0, scrub_txg) will have a * positive refcnt -- either 1 or 2. We then convert * the reference tree into the new DTL_MISSING map. */ space_reftree_create(&reftree); space_reftree_add_map(&reftree, vd->vdev_dtl[DTL_MISSING], 1); space_reftree_add_seg(&reftree, 0, scrub_txg, -1); space_reftree_add_map(&reftree, vd->vdev_dtl[DTL_SCRUB], 2); space_reftree_generate_map(&reftree, vd->vdev_dtl[DTL_MISSING], 1); space_reftree_destroy(&reftree); if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { zfs_dbgmsg("update DTL_MISSING:%llu/%llu", (u_longlong_t)vdev_dtl_min(vd), (u_longlong_t)vdev_dtl_max(vd)); } else if (!wasempty) { zfs_dbgmsg("DTL_MISSING is now empty"); } } range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); range_tree_walk(vd->vdev_dtl[DTL_MISSING], range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); if (scrub_done) range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); if (!vdev_readable(vd)) range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); else range_tree_walk(vd->vdev_dtl[DTL_MISSING], range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); /* * If the vdev was resilvering or rebuilding and no longer * has any DTLs then reset the appropriate flag and dirty * the top level so that we persist the change. */ if (txg != 0 && range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { if (vd->vdev_rebuild_txg != 0) { vd->vdev_rebuild_txg = 0; vdev_config_dirty(vd->vdev_top); } else if (vd->vdev_resilver_txg != 0) { vd->vdev_resilver_txg = 0; vdev_config_dirty(vd->vdev_top); } } mutex_exit(&vd->vdev_dtl_lock); if (txg != 0) vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); return; } mutex_enter(&vd->vdev_dtl_lock); for (int t = 0; t < DTL_TYPES; t++) { /* account for child's outage in parent's missing map */ int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; if (t == DTL_SCRUB) continue; /* leaf vdevs only */ if (t == DTL_PARTIAL) minref = 1; /* i.e. non-zero */ else if (vdev_get_nparity(vd) != 0) minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */ else minref = vd->vdev_children; /* any kind of mirror */ space_reftree_create(&reftree); for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; mutex_enter(&cvd->vdev_dtl_lock); space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); mutex_exit(&cvd->vdev_dtl_lock); } space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); space_reftree_destroy(&reftree); } mutex_exit(&vd->vdev_dtl_lock); } /* * Iterate over all the vdevs except spare, and post kobj events */ void vdev_post_kobj_evt(vdev_t *vd) { if (vd->vdev_ops->vdev_op_kobj_evt_post && vd->vdev_kobj_flag == B_FALSE) { vd->vdev_kobj_flag = B_TRUE; vd->vdev_ops->vdev_op_kobj_evt_post(vd); } for (int c = 0; c < vd->vdev_children; c++) vdev_post_kobj_evt(vd->vdev_child[c]); } /* * Iterate over all the vdevs except spare, and clear kobj events */ void vdev_clear_kobj_evt(vdev_t *vd) { vd->vdev_kobj_flag = B_FALSE; for (int c = 0; c < vd->vdev_children; c++) vdev_clear_kobj_evt(vd->vdev_child[c]); } int vdev_dtl_load(vdev_t *vd) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; range_tree_t *rt; int error = 0; if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { ASSERT(vdev_is_concrete(vd)); /* * If the dtl cannot be sync'd there is no need to open it. */ if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) return (0); error = space_map_open(&vd->vdev_dtl_sm, mos, vd->vdev_dtl_object, 0, -1ULL, 0); if (error) return (error); ASSERT(vd->vdev_dtl_sm != NULL); rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); if (error == 0) { mutex_enter(&vd->vdev_dtl_lock); range_tree_walk(rt, range_tree_add, vd->vdev_dtl[DTL_MISSING]); mutex_exit(&vd->vdev_dtl_lock); } range_tree_vacate(rt, NULL, NULL); range_tree_destroy(rt); return (error); } for (int c = 0; c < vd->vdev_children; c++) { error = vdev_dtl_load(vd->vdev_child[c]); if (error != 0) break; } return (error); } static void vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; const char *string; ASSERT(alloc_bias != VDEV_BIAS_NONE); string = (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; ASSERT(string != NULL); VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, strlen(string) + 1, string, tx)); if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { spa_activate_allocation_classes(spa, tx); } } void vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) { spa_t *spa = vd->vdev_spa; VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, zapobj, tx)); } uint64_t vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) { spa_t *spa = vd->vdev_spa; uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); ASSERT(zap != 0); VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, zap, tx)); return (zap); } void vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) { if (vd->vdev_ops != &vdev_hole_ops && vd->vdev_ops != &vdev_missing_ops && vd->vdev_ops != &vdev_root_ops && !vd->vdev_top->vdev_removing) { if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); } if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { vd->vdev_top_zap = vdev_create_link_zap(vd, tx); if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) vdev_zap_allocation_data(vd, tx); } } if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); vd->vdev_root_zap = vdev_create_link_zap(vd, tx); } for (uint64_t i = 0; i < vd->vdev_children; i++) { vdev_construct_zaps(vd->vdev_child[i], tx); } } static void vdev_dtl_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; objset_t *mos = spa->spa_meta_objset; range_tree_t *rtsync; dmu_tx_t *tx; uint64_t object = space_map_object(vd->vdev_dtl_sm); ASSERT(vdev_is_concrete(vd)); ASSERT(vd->vdev_ops->vdev_op_leaf); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); if (vd->vdev_detached || vd->vdev_top->vdev_removing) { mutex_enter(&vd->vdev_dtl_lock); space_map_free(vd->vdev_dtl_sm, tx); space_map_close(vd->vdev_dtl_sm); vd->vdev_dtl_sm = NULL; mutex_exit(&vd->vdev_dtl_lock); /* * We only destroy the leaf ZAP for detached leaves or for * removed log devices. Removed data devices handle leaf ZAP * cleanup later, once cancellation is no longer possible. */ if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || vd->vdev_top->vdev_islog)) { vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); vd->vdev_leaf_zap = 0; } dmu_tx_commit(tx); return; } if (vd->vdev_dtl_sm == NULL) { uint64_t new_object; new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); VERIFY3U(new_object, !=, 0); VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 0, -1ULL, 0)); ASSERT(vd->vdev_dtl_sm != NULL); } rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); mutex_enter(&vd->vdev_dtl_lock); range_tree_walk(rt, range_tree_add, rtsync); mutex_exit(&vd->vdev_dtl_lock); space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); range_tree_vacate(rtsync, NULL, NULL); range_tree_destroy(rtsync); /* * If the object for the space map has changed then dirty * the top level so that we update the config. */ if (object != space_map_object(vd->vdev_dtl_sm)) { vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " "new object %llu", (u_longlong_t)txg, spa_name(spa), (u_longlong_t)object, (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); vdev_config_dirty(vd->vdev_top); } dmu_tx_commit(tx); } /* * Determine whether the specified vdev can be offlined/detached/removed * without losing data. */ boolean_t vdev_dtl_required(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint8_t cant_read = vd->vdev_cant_read; boolean_t required; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (vd == spa->spa_root_vdev || vd == tvd) return (B_TRUE); /* * Temporarily mark the device as unreadable, and then determine * whether this results in any DTL outages in the top-level vdev. * If not, we can safely offline/detach/remove the device. */ vd->vdev_cant_read = B_TRUE; vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); required = !vdev_dtl_empty(tvd, DTL_OUTAGE); vd->vdev_cant_read = cant_read; vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); if (!required && zio_injection_enabled) { required = !!zio_handle_device_injection(vd, NULL, SET_ERROR(ECHILD)); } return (required); } /* * Determine if resilver is needed, and if so the txg range. */ boolean_t vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) { boolean_t needed = B_FALSE; uint64_t thismin = UINT64_MAX; uint64_t thismax = 0; if (vd->vdev_children == 0) { mutex_enter(&vd->vdev_dtl_lock); if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && vdev_writeable(vd)) { thismin = vdev_dtl_min(vd); thismax = vdev_dtl_max(vd); needed = B_TRUE; } mutex_exit(&vd->vdev_dtl_lock); } else { for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; uint64_t cmin, cmax; if (vdev_resilver_needed(cvd, &cmin, &cmax)) { thismin = MIN(thismin, cmin); thismax = MAX(thismax, cmax); needed = B_TRUE; } } } if (needed && minp) { *minp = thismin; *maxp = thismax; } return (needed); } /* * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj * will contain either the checkpoint spacemap object or zero if none exists. * All other errors are returned to the caller. */ int vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) { ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); if (vd->vdev_top_zap == 0) { *sm_obj = 0; return (0); } int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); if (error == ENOENT) { *sm_obj = 0; error = 0; } return (error); } int vdev_load(vdev_t *vd) { int children = vd->vdev_children; int error = 0; taskq_t *tq = NULL; /* * It's only worthwhile to use the taskq for the root vdev, because the * slow part is metaslab_init, and that only happens for top-level * vdevs. */ if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { tq = taskq_create("vdev_load", children, minclsyspri, children, children, TASKQ_PREPOPULATE); } /* * Recursively load all children. */ for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if (tq == NULL || vdev_uses_zvols(cvd)) { cvd->vdev_load_error = vdev_load(cvd); } else { VERIFY(taskq_dispatch(tq, vdev_load_child, cvd, TQ_SLEEP) != TASKQID_INVALID); } } if (tq != NULL) { taskq_wait(tq); taskq_destroy(tq); } for (int c = 0; c < vd->vdev_children; c++) { int error = vd->vdev_child[c]->vdev_load_error; if (error != 0) return (error); } vdev_set_deflate_ratio(vd); /* * On spa_load path, grab the allocation bias from our zap */ if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { spa_t *spa = vd->vdev_spa; char bias_str[64]; error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), bias_str); if (error == 0) { ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); } else if (error != ENOENT) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " "failed [error=%d]", (u_longlong_t)vd->vdev_top_zap, error); return (error); } } if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { spa_t *spa = vd->vdev_spa; uint64_t failfast; error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 1, &failfast); if (error == 0) { vd->vdev_failfast = failfast & 1; } else if (error == ENOENT) { vd->vdev_failfast = vdev_prop_default_numeric( VDEV_PROP_FAILFAST); } else { vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " "failed [error=%d]", (u_longlong_t)vd->vdev_top_zap, error); } } /* * Load any rebuild state from the top-level vdev zap. */ if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { error = vdev_rebuild_load(vd); if (error && error != ENOTSUP) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " "failed [error=%d]", error); return (error); } } if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { uint64_t zapobj; if (vd->vdev_top_zap != 0) zapobj = vd->vdev_top_zap; else zapobj = vd->vdev_leaf_zap; error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, &vd->vdev_checksum_n); if (error && error != ENOENT) vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " "failed [error=%d]", (u_longlong_t)zapobj, error); error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, &vd->vdev_checksum_t); if (error && error != ENOENT) vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " "failed [error=%d]", (u_longlong_t)zapobj, error); error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, &vd->vdev_io_n); if (error && error != ENOENT) vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " "failed [error=%d]", (u_longlong_t)zapobj, error); error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, &vd->vdev_io_t); if (error && error != ENOENT) vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " "failed [error=%d]", (u_longlong_t)zapobj, error); } /* * If this is a top-level vdev, initialize its metaslabs. */ if (vd == vd->vdev_top && vdev_is_concrete(vd)) { vdev_metaslab_group_create(vd); if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " "asize=%llu", (u_longlong_t)vd->vdev_ashift, (u_longlong_t)vd->vdev_asize); return (SET_ERROR(ENXIO)); } error = vdev_metaslab_init(vd, 0); if (error != 0) { vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " "[error=%d]", error); vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); return (error); } uint64_t checkpoint_sm_obj; error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); if (error == 0 && checkpoint_sm_obj != 0) { objset_t *mos = spa_meta_objset(vd->vdev_spa); ASSERT(vd->vdev_asize != 0); ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); error = space_map_open(&vd->vdev_checkpoint_sm, mos, checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift); if (error != 0) { vdev_dbgmsg(vd, "vdev_load: space_map_open " "failed for checkpoint spacemap (obj %llu) " "[error=%d]", (u_longlong_t)checkpoint_sm_obj, error); return (error); } ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); /* * Since the checkpoint_sm contains free entries * exclusively we can use space_map_allocated() to * indicate the cumulative checkpointed space that * has been freed. */ vd->vdev_stat.vs_checkpoint_space = -space_map_allocated(vd->vdev_checkpoint_sm); vd->vdev_spa->spa_checkpoint_info.sci_dspace += vd->vdev_stat.vs_checkpoint_space; } else if (error != 0) { vdev_dbgmsg(vd, "vdev_load: failed to retrieve " "checkpoint space map object from vdev ZAP " "[error=%d]", error); return (error); } } /* * If this is a leaf vdev, load its DTL. */ if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " "[error=%d]", error); return (error); } uint64_t obsolete_sm_object; error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); if (error == 0 && obsolete_sm_object != 0) { objset_t *mos = vd->vdev_spa->spa_meta_objset; ASSERT(vd->vdev_asize != 0); ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, obsolete_sm_object, 0, vd->vdev_asize, 0))) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " "obsolete spacemap (obj %llu) [error=%d]", (u_longlong_t)obsolete_sm_object, error); return (error); } } else if (error != 0) { vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " "space map object from vdev ZAP [error=%d]", error); return (error); } return (0); } /* * The special vdev case is used for hot spares and l2cache devices. Its * sole purpose it to set the vdev state for the associated vdev. To do this, * we make sure that we can open the underlying device, then try to read the * label, and make sure that the label is sane and that it hasn't been * repurposed to another pool. */ int vdev_validate_aux(vdev_t *vd) { nvlist_t *label; uint64_t guid, version; uint64_t state; if (!vdev_readable(vd)) return (0); if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); return (-1); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || !SPA_VERSION_IS_SUPPORTED(version) || nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || guid != vd->vdev_guid || nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (-1); } /* * We don't actually check the pool state here. If it's in fact in * use by another pool, we update this fact on the fly when requested. */ nvlist_free(label); return (0); } static void vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) { objset_t *mos = spa_meta_objset(vd->vdev_spa); if (vd->vdev_top_zap == 0) return; uint64_t object = 0; int err = zap_lookup(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); if (err == ENOENT) return; VERIFY0(err); VERIFY0(dmu_object_free(mos, object, tx)); VERIFY0(zap_remove(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); } /* * Free the objects used to store this vdev's spacemaps, and the array * that points to them. */ void vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) { if (vd->vdev_ms_array == 0) return; objset_t *mos = vd->vdev_spa->spa_meta_objset; uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; size_t array_bytes = array_count * sizeof (uint64_t); uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, array_bytes, smobj_array, 0)); for (uint64_t i = 0; i < array_count; i++) { uint64_t smobj = smobj_array[i]; if (smobj == 0) continue; space_map_free_obj(mos, smobj, tx); } kmem_free(smobj_array, array_bytes); VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); vdev_destroy_ms_flush_data(vd, tx); vd->vdev_ms_array = 0; } static void vdev_remove_empty_log(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; ASSERT(vd->vdev_islog); ASSERT(vd == vd->vdev_top); ASSERT3U(txg, ==, spa_syncing_txg(spa)); dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); vdev_destroy_spacemaps(vd, tx); if (vd->vdev_top_zap != 0) { vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); vd->vdev_top_zap = 0; } dmu_tx_commit(tx); } void vdev_sync_done(vdev_t *vd, uint64_t txg) { metaslab_t *msp; boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); ASSERT(vdev_is_concrete(vd)); while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) != NULL) metaslab_sync_done(msp, txg); if (reassess) { metaslab_sync_reassess(vd->vdev_mg); if (vd->vdev_log_mg != NULL) metaslab_sync_reassess(vd->vdev_log_mg); } } void vdev_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; vdev_t *lvd; metaslab_t *msp; ASSERT3U(txg, ==, spa->spa_syncing_txg); dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); if (range_tree_space(vd->vdev_obsolete_segments) > 0) { ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); vdev_indirect_sync_obsolete(vd, tx); /* * If the vdev is indirect, it can't have dirty * metaslabs or DTLs. */ if (vd->vdev_ops == &vdev_indirect_ops) { ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); dmu_tx_commit(tx); return; } } ASSERT(vdev_is_concrete(vd)); if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && !vd->vdev_removing) { ASSERT(vd == vd->vdev_top); ASSERT0(vd->vdev_indirect_config.vic_mapping_object); vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); ASSERT(vd->vdev_ms_array != 0); vdev_config_dirty(vd); } while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { metaslab_sync(msp, txg); (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); } while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) vdev_dtl_sync(lvd, txg); /* * If this is an empty log device being removed, destroy the * metadata associated with it. */ if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) vdev_remove_empty_log(vd, txg); (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); dmu_tx_commit(tx); } uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize) { return (vd->vdev_ops->vdev_op_asize(vd, psize)); } /* * Mark the given vdev faulted. A faulted vdev behaves as if the device could * not be opened, and no I/O is attempted. */ int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) { vdev_t *vd, *tvd; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); tvd = vd->vdev_top; /* * If user did a 'zpool offline -f' then make the fault persist across * reboots. */ if (aux == VDEV_AUX_EXTERNAL_PERSIST) { /* * There are two kinds of forced faults: temporary and * persistent. Temporary faults go away at pool import, while * persistent faults stay set. Both types of faults can be * cleared with a zpool clear. * * We tell if a vdev is persistently faulted by looking at the * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at * import then it's a persistent fault. Otherwise, it's * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This * tells vdev_config_generate() (which gets run later) to set * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. */ vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; vd->vdev_tmpoffline = B_FALSE; aux = VDEV_AUX_EXTERNAL; } else { vd->vdev_tmpoffline = B_TRUE; } /* * We don't directly use the aux state here, but if we do a * vdev_reopen(), we need this value to be present to remember why we * were faulted. */ vd->vdev_label_aux = aux; /* * Faulted state takes precedence over degraded. */ vd->vdev_delayed_close = B_FALSE; vd->vdev_faulted = 1ULL; vd->vdev_degraded = 0ULL; vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); /* * If this device has the only valid copy of the data, then * back off and simply mark the vdev as degraded instead. */ if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { vd->vdev_degraded = 1ULL; vd->vdev_faulted = 0ULL; /* * If we reopen the device and it's not dead, only then do we * mark it degraded. */ vdev_reopen(tvd); if (vdev_readable(vd)) vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); } return (spa_vdev_state_exit(spa, vd, 0)); } /* * Mark the given vdev degraded. A degraded vdev is purely an indication to the * user that something is wrong. The vdev continues to operate as normal as far * as I/O is concerned. */ int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) { vdev_t *vd; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); /* * If the vdev is already faulted, then don't do anything. */ if (vd->vdev_faulted || vd->vdev_degraded) return (spa_vdev_state_exit(spa, NULL, 0)); vd->vdev_degraded = 1ULL; if (!vdev_is_dead(vd)) vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); return (spa_vdev_state_exit(spa, vd, 0)); } int vdev_remove_wanted(spa_t *spa, uint64_t guid) { vdev_t *vd; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); /* * If the vdev is already removed, or expanding which can trigger * repartition add/remove events, then don't do anything. */ if (vd->vdev_removed || vd->vdev_expanding) return (spa_vdev_state_exit(spa, NULL, 0)); /* * Confirm the vdev has been removed, otherwise don't do anything. */ if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); vd->vdev_remove_wanted = B_TRUE; spa_async_request(spa, SPA_ASYNC_REMOVE); return (spa_vdev_state_exit(spa, vd, 0)); } /* * Online the given vdev. * * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached * spare device should be detached when the device finishes resilvering. * Second, the online should be treated like a 'test' online case, so no FMA * events are generated if the device fails to open. */ int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) { vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; boolean_t wasoffline; vdev_state_t oldstate; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); oldstate = vd->vdev_state; tvd = vd->vdev_top; vd->vdev_offline = B_FALSE; vd->vdev_tmpoffline = B_FALSE; vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); /* XXX - L2ARC 1.0 does not support expansion */ if (!vd->vdev_aux) { for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand); vd->vdev_expansion_time = gethrestime_sec(); } vdev_reopen(tvd); vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; if (!vd->vdev_aux) { for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) pvd->vdev_expanding = B_FALSE; } if (newstate) *newstate = vd->vdev_state; if ((flags & ZFS_ONLINE_UNSPARE) && !vdev_is_dead(vd) && vd->vdev_parent && vd->vdev_parent->vdev_ops == &vdev_spare_ops && vd->vdev_parent->vdev_child[0] == vd) vd->vdev_unspare = B_TRUE; if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { /* XXX - L2ARC 1.0 does not support expansion */ if (vd->vdev_aux) return (spa_vdev_state_exit(spa, vd, ENOTSUP)); spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } /* Restart initializing if necessary */ mutex_enter(&vd->vdev_initialize_lock); if (vdev_writeable(vd) && vd->vdev_initialize_thread == NULL && vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { (void) vdev_initialize(vd); } mutex_exit(&vd->vdev_initialize_lock); /* * Restart trimming if necessary. We do not restart trimming for cache * devices here. This is triggered by l2arc_rebuild_vdev() * asynchronously for the whole device or in l2arc_evict() as it evicts * space for upcoming writes. */ mutex_enter(&vd->vdev_trim_lock); if (vdev_writeable(vd) && !vd->vdev_isl2cache && vd->vdev_trim_thread == NULL && vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, vd->vdev_trim_secure); } mutex_exit(&vd->vdev_trim_lock); if (wasoffline || (oldstate < VDEV_STATE_DEGRADED && vd->vdev_state >= VDEV_STATE_DEGRADED)) { spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); /* * Asynchronously detach spare vdev if resilver or * rebuild is not required */ if (vd->vdev_unspare && !dsl_scan_resilvering(spa->spa_dsl_pool) && !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && !vdev_rebuild_active(tvd)) spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); } return (spa_vdev_state_exit(spa, vd, 0)); } static int vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) { vdev_t *vd, *tvd; int error = 0; uint64_t generation; metaslab_group_t *mg; top: spa_vdev_state_enter(spa, SCL_ALLOC); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); if (vd->vdev_ops == &vdev_draid_spare_ops) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); tvd = vd->vdev_top; mg = tvd->vdev_mg; generation = spa->spa_config_generation + 1; /* * If the device isn't already offline, try to offline it. */ if (!vd->vdev_offline) { /* * If this device has the only valid copy of some data, * don't allow it to be offlined. Log devices are always * expendable. */ if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EBUSY))); /* * If the top-level is a slog and it has had allocations * then proceed. We check that the vdev's metaslab group * is not NULL since it's possible that we may have just * added this vdev but not yet initialized its metaslabs. */ if (tvd->vdev_islog && mg != NULL) { /* * Prevent any future allocations. */ ASSERT3P(tvd->vdev_log_mg, ==, NULL); metaslab_group_passivate(mg); (void) spa_vdev_state_exit(spa, vd, 0); error = spa_reset_logs(spa); /* * If the log device was successfully reset but has * checkpointed data, do not offline it. */ if (error == 0 && tvd->vdev_checkpoint_sm != NULL) { ASSERT3U(space_map_allocated( tvd->vdev_checkpoint_sm), !=, 0); error = ZFS_ERR_CHECKPOINT_EXISTS; } spa_vdev_state_enter(spa, SCL_ALLOC); /* * Check to see if the config has changed. */ if (error || generation != spa->spa_config_generation) { metaslab_group_activate(mg); if (error) return (spa_vdev_state_exit(spa, vd, error)); (void) spa_vdev_state_exit(spa, vd, 0); goto top; } ASSERT0(tvd->vdev_stat.vs_alloc); } /* * Offline this device and reopen its top-level vdev. * If the top-level vdev is a log device then just offline * it. Otherwise, if this action results in the top-level * vdev becoming unusable, undo it and fail the request. */ vd->vdev_offline = B_TRUE; vdev_reopen(tvd); if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_is_dead(tvd)) { vd->vdev_offline = B_FALSE; vdev_reopen(tvd); return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EBUSY))); } /* * Add the device back into the metaslab rotor so that * once we online the device it's open for business. */ if (tvd->vdev_islog && mg != NULL) metaslab_group_activate(mg); } vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); return (spa_vdev_state_exit(spa, vd, 0)); } int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) { int error; mutex_enter(&spa->spa_vdev_top_lock); error = vdev_offline_locked(spa, guid, flags); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * Clear the error counts associated with this vdev. Unlike vdev_online() and * vdev_offline(), we assume the spa config is locked. We also clear all * children. If 'vd' is NULL, then the user wants to clear all vdevs. */ void vdev_clear(spa_t *spa, vdev_t *vd) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (vd == NULL) vd = rvd; vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; vd->vdev_stat.vs_slow_ios = 0; for (int c = 0; c < vd->vdev_children; c++) vdev_clear(spa, vd->vdev_child[c]); /* * It makes no sense to "clear" an indirect or removed vdev. */ if (!vdev_is_concrete(vd) || vd->vdev_removed) return; /* * If we're in the FAULTED state or have experienced failed I/O, then * clear the persistent state and attempt to reopen the device. We * also mark the vdev config dirty, so that the new faulted state is * written out to disk. */ if (vd->vdev_faulted || vd->vdev_degraded || !vdev_readable(vd) || !vdev_writeable(vd)) { /* * When reopening in response to a clear event, it may be due to * a fmadm repair request. In this case, if the device is * still broken, we want to still post the ereport again. */ vd->vdev_forcefault = B_TRUE; vd->vdev_faulted = vd->vdev_degraded = 0ULL; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; vd->vdev_stat.vs_aux = 0; vdev_reopen(vd == rvd ? rvd : vd->vdev_top); vd->vdev_forcefault = B_FALSE; if (vd != rvd && vdev_writeable(vd->vdev_top)) vdev_state_dirty(vd->vdev_top); /* If a resilver isn't required, check if vdevs can be culled */ if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && !dsl_scan_resilvering(spa->spa_dsl_pool) && !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); } /* * When clearing a FMA-diagnosed fault, we always want to * unspare the device, as we assume that the original spare was * done in response to the FMA fault. */ if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && vd->vdev_parent->vdev_ops == &vdev_spare_ops && vd->vdev_parent->vdev_child[0] == vd) vd->vdev_unspare = B_TRUE; /* Clear recent error events cache (i.e. duplicate events tracking) */ zfs_ereport_clear(spa, vd); } boolean_t vdev_is_dead(vdev_t *vd) { /* * Holes and missing devices are always considered "dead". * This simplifies the code since we don't have to check for * these types of devices in the various code paths. * Instead we rely on the fact that we skip over dead devices * before issuing I/O to them. */ return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ops == &vdev_hole_ops || vd->vdev_ops == &vdev_missing_ops); } boolean_t vdev_readable(vdev_t *vd) { return (!vdev_is_dead(vd) && !vd->vdev_cant_read); } boolean_t vdev_writeable(vdev_t *vd) { return (!vdev_is_dead(vd) && !vd->vdev_cant_write && vdev_is_concrete(vd)); } boolean_t vdev_allocatable(vdev_t *vd) { uint64_t state = vd->vdev_state; /* * We currently allow allocations from vdevs which may be in the * process of reopening (i.e. VDEV_STATE_CLOSED). If the device * fails to reopen then we'll catch it later when we're holding * the proper locks. Note that we have to get the vdev state * in a local variable because although it changes atomically, * we're asking two separate questions about it. */ return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && !vd->vdev_cant_write && vdev_is_concrete(vd) && vd->vdev_mg->mg_initialized); } boolean_t vdev_accessible(vdev_t *vd, zio_t *zio) { ASSERT(zio->io_vd == vd); if (vdev_is_dead(vd) || vd->vdev_remove_wanted) return (B_FALSE); if (zio->io_type == ZIO_TYPE_READ) return (!vd->vdev_cant_read); if (zio->io_type == ZIO_TYPE_WRITE) return (!vd->vdev_cant_write); return (B_TRUE); } static void vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) { /* * Exclude the dRAID spare when aggregating to avoid double counting * the ops and bytes. These IOs are counted by the physical leaves. */ if (cvd->vdev_ops == &vdev_draid_spare_ops) return; for (int t = 0; t < VS_ZIO_TYPES; t++) { vs->vs_ops[t] += cvs->vs_ops[t]; vs->vs_bytes[t] += cvs->vs_bytes[t]; } cvs->vs_scan_removing = cvd->vdev_removing; } /* * Get extended stats */ static void vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) { (void) cvd; int t, b; for (t = 0; t < ZIO_TYPES; t++) { for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { vsx->vsx_total_histo[t][b] += cvsx->vsx_total_histo[t][b]; } } for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { vsx->vsx_queue_histo[t][b] += cvsx->vsx_queue_histo[t][b]; } vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; } } boolean_t vdev_is_spacemap_addressable(vdev_t *vd) { if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) return (B_TRUE); /* * If double-word space map entries are not enabled we assume * 47 bits of the space map entry are dedicated to the entry's * offset (see SM_OFFSET_BITS in space_map.h). We then use that * to calculate the maximum address that can be described by a * space map entry for the given device. */ uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; if (shift >= 63) /* detect potential overflow */ return (B_TRUE); return (vd->vdev_asize < (1ULL << shift)); } /* * Get statistics for the given vdev. */ static void vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) { int t; /* * If we're getting stats on the root vdev, aggregate the I/O counts * over all top-level vdevs (i.e. the direct children of the root). */ if (!vd->vdev_ops->vdev_op_leaf) { if (vs) { memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); } if (vsx) memset(vsx, 0, sizeof (*vsx)); for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; vdev_stat_t *cvs = &cvd->vdev_stat; vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; vdev_get_stats_ex_impl(cvd, cvs, cvsx); if (vs) vdev_get_child_stat(cvd, vs, cvs); if (vsx) vdev_get_child_stat_ex(cvd, vsx, cvsx); } } else { /* * We're a leaf. Just copy our ZIO active queue stats in. The * other leaf stats are updated in vdev_stat_update(). */ if (!vsx) return; memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { vsx->vsx_active_queue[t] = vd->vdev_queue.vq_class[t].vqc_active; vsx->vsx_pend_queue[t] = avl_numnodes( &vd->vdev_queue.vq_class[t].vqc_queued_tree); } } } void vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) { vdev_t *tvd = vd->vdev_top; mutex_enter(&vd->vdev_stat_lock); if (vs) { memcpy(vs, &vd->vdev_stat, sizeof (*vs)); vs->vs_timestamp = gethrtime() - vs->vs_timestamp; vs->vs_state = vd->vdev_state; vs->vs_rsize = vdev_get_min_asize(vd); if (vd->vdev_ops->vdev_op_leaf) { vs->vs_pspace = vd->vdev_psize; vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; /* * Report initializing progress. Since we don't * have the initializing locks held, this is only * an estimate (although a fairly accurate one). */ vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done; vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est; vs->vs_initialize_state = vd->vdev_initialize_state; vs->vs_initialize_action_time = vd->vdev_initialize_action_time; /* * Report manual TRIM progress. Since we don't have * the manual TRIM locks held, this is only an * estimate (although fairly accurate one). */ vs->vs_trim_notsup = !vd->vdev_has_trim; vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; vs->vs_trim_state = vd->vdev_trim_state; vs->vs_trim_action_time = vd->vdev_trim_action_time; /* Set when there is a deferred resilver. */ vs->vs_resilver_deferred = vd->vdev_resilver_deferred; } /* * Report expandable space on top-level, non-auxiliary devices * only. The expandable space is reported in terms of metaslab * sized units since that determines how much space the pool * can expand. */ if (vd->vdev_aux == NULL && tvd != NULL) { vs->vs_esize = P2ALIGN( vd->vdev_max_asize - vd->vdev_asize, 1ULL << tvd->vdev_ms_shift); } vs->vs_configured_ashift = vd->vdev_top != NULL ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; vs->vs_logical_ashift = vd->vdev_logical_ashift; if (vd->vdev_physical_ashift <= ASHIFT_MAX) vs->vs_physical_ashift = vd->vdev_physical_ashift; else vs->vs_physical_ashift = 0; /* * Report fragmentation and rebuild progress for top-level, * non-auxiliary, concrete devices. */ if (vd->vdev_aux == NULL && vd == vd->vdev_top && vdev_is_concrete(vd)) { /* * The vdev fragmentation rating doesn't take into * account the embedded slog metaslab (vdev_log_mg). * Since it's only one metaslab, it would have a tiny * impact on the overall fragmentation. */ vs->vs_fragmentation = (vd->vdev_mg != NULL) ? vd->vdev_mg->mg_fragmentation : 0; } vs->vs_noalloc = MAX(vd->vdev_noalloc, tvd ? tvd->vdev_noalloc : 0); } vdev_get_stats_ex_impl(vd, vs, vsx); mutex_exit(&vd->vdev_stat_lock); } void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) { return (vdev_get_stats_ex(vd, vs, NULL)); } void vdev_clear_stats(vdev_t *vd) { mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_space = 0; vd->vdev_stat.vs_dspace = 0; vd->vdev_stat.vs_alloc = 0; mutex_exit(&vd->vdev_stat_lock); } void vdev_scan_stat_init(vdev_t *vd) { vdev_stat_t *vs = &vd->vdev_stat; for (int c = 0; c < vd->vdev_children; c++) vdev_scan_stat_init(vd->vdev_child[c]); mutex_enter(&vd->vdev_stat_lock); vs->vs_scan_processed = 0; mutex_exit(&vd->vdev_stat_lock); } void vdev_stat_update(zio_t *zio, uint64_t psize) { spa_t *spa = zio->io_spa; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; vdev_t *pvd; uint64_t txg = zio->io_txg; /* Suppress ASAN false positive */ #ifdef __SANITIZE_ADDRESS__ vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; #else vdev_stat_t *vs = &vd->vdev_stat; vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; #endif zio_type_t type = zio->io_type; int flags = zio->io_flags; /* * If this i/o is a gang leader, it didn't do any actual work. */ if (zio->io_gang_tree) return; if (zio->io_error == 0) { /* * If this is a root i/o, don't count it -- we've already * counted the top-level vdevs, and vdev_get_stats() will * aggregate them when asked. This reduces contention on * the root vdev_stat_lock and implicitly handles blocks * that compress away to holes, for which there is no i/o. * (Holes never create vdev children, so all the counters * remain zero, which is what we want.) * * Note: this only applies to successful i/o (io_error == 0) * because unlike i/o counts, errors are not additive. * When reading a ditto block, for example, failure of * one top-level vdev does not imply a root-level error. */ if (vd == rvd) return; ASSERT(vd == zio->io_vd); if (flags & ZIO_FLAG_IO_BYPASS) return; mutex_enter(&vd->vdev_stat_lock); if (flags & ZIO_FLAG_IO_REPAIR) { /* * Repair is the result of a resilver issued by the * scan thread (spa_sync). */ if (flags & ZIO_FLAG_SCAN_THREAD) { dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; dsl_scan_phys_t *scn_phys = &scn->scn_phys; uint64_t *processed = &scn_phys->scn_processed; if (vd->vdev_ops->vdev_op_leaf) atomic_add_64(processed, psize); vs->vs_scan_processed += psize; } /* * Repair is the result of a rebuild issued by the * rebuild thread (vdev_rebuild_thread). To avoid * double counting repaired bytes the virtual dRAID * spare vdev is excluded from the processed bytes. */ if (zio->io_priority == ZIO_PRIORITY_REBUILD) { vdev_t *tvd = vd->vdev_top; vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops != &vdev_draid_spare_ops) { atomic_add_64(rebuilt, psize); } vs->vs_rebuild_processed += psize; } if (flags & ZIO_FLAG_SELF_HEAL) vs->vs_self_healed += psize; } /* * The bytes/ops/histograms are recorded at the leaf level and * aggregated into the higher level vdevs in vdev_get_stats(). */ if (vd->vdev_ops->vdev_op_leaf && (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { zio_type_t vs_type = type; zio_priority_t priority = zio->io_priority; /* * TRIM ops and bytes are reported to user space as * ZIO_TYPE_IOCTL. This is done to preserve the * vdev_stat_t structure layout for user space. */ if (type == ZIO_TYPE_TRIM) vs_type = ZIO_TYPE_IOCTL; /* * Solely for the purposes of 'zpool iostat -lqrw' * reporting use the priority to categorize the IO. * Only the following are reported to user space: * * ZIO_PRIORITY_SYNC_READ, * ZIO_PRIORITY_SYNC_WRITE, * ZIO_PRIORITY_ASYNC_READ, * ZIO_PRIORITY_ASYNC_WRITE, * ZIO_PRIORITY_SCRUB, * ZIO_PRIORITY_TRIM, * ZIO_PRIORITY_REBUILD. */ if (priority == ZIO_PRIORITY_INITIALIZING) { ASSERT3U(type, ==, ZIO_TYPE_WRITE); priority = ZIO_PRIORITY_ASYNC_WRITE; } else if (priority == ZIO_PRIORITY_REMOVAL) { priority = ((type == ZIO_TYPE_WRITE) ? ZIO_PRIORITY_ASYNC_WRITE : ZIO_PRIORITY_ASYNC_READ); } vs->vs_ops[vs_type]++; vs->vs_bytes[vs_type] += psize; if (flags & ZIO_FLAG_DELEGATED) { vsx->vsx_agg_histo[priority] [RQ_HISTO(zio->io_size)]++; } else { vsx->vsx_ind_histo[priority] [RQ_HISTO(zio->io_size)]++; } if (zio->io_delta && zio->io_delay) { vsx->vsx_queue_histo[priority] [L_HISTO(zio->io_delta - zio->io_delay)]++; vsx->vsx_disk_histo[type] [L_HISTO(zio->io_delay)]++; vsx->vsx_total_histo[type] [L_HISTO(zio->io_delta)]++; } } mutex_exit(&vd->vdev_stat_lock); return; } if (flags & ZIO_FLAG_SPECULATIVE) return; /* * If this is an I/O error that is going to be retried, then ignore the * error. Otherwise, the user may interpret B_FAILFAST I/O errors as * hard errors, when in reality they can happen for any number of * innocuous reasons (bus resets, MPxIO link failure, etc). */ if (zio->io_error == EIO && !(zio->io_flags & ZIO_FLAG_IO_RETRY)) return; /* * Intent logs writes won't propagate their error to the root * I/O so don't mark these types of failures as pool-level * errors. */ if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) return; if (type == ZIO_TYPE_WRITE && txg != 0 && (!(flags & ZIO_FLAG_IO_REPAIR) || (flags & ZIO_FLAG_SCAN_THREAD) || spa->spa_claiming)) { /* * This is either a normal write (not a repair), or it's * a repair induced by the scrub thread, or it's a repair * made by zil_claim() during spa_load() in the first txg. * In the normal case, we commit the DTL change in the same * txg as the block was born. In the scrub-induced repair * case, we know that scrubs run in first-pass syncing context, * so we commit the DTL change in spa_syncing_txg(spa). * In the zil_claim() case, we commit in spa_first_txg(spa). * * We currently do not make DTL entries for failed spontaneous * self-healing writes triggered by normal (non-scrubbing) * reads, because we have no transactional context in which to * do so -- and it's not clear that it'd be desirable anyway. */ if (vd->vdev_ops->vdev_op_leaf) { uint64_t commit_txg = txg; if (flags & ZIO_FLAG_SCAN_THREAD) { ASSERT(flags & ZIO_FLAG_IO_REPAIR); ASSERT(spa_sync_pass(spa) == 1); vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); commit_txg = spa_syncing_txg(spa); } else if (spa->spa_claiming) { ASSERT(flags & ZIO_FLAG_IO_REPAIR); commit_txg = spa_first_txg(spa); } ASSERT(commit_txg >= spa_syncing_txg(spa)); if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) return; for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); } if (vd != rvd) vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); } } int64_t vdev_deflated_space(vdev_t *vd, int64_t space) { ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); } /* * Update the in-core space usage stats for this vdev, its metaslab class, * and the root vdev. */ void vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, int64_t space_delta) { (void) defer_delta; int64_t dspace_delta; spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; ASSERT(vd == vd->vdev_top); /* * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion * factor. We must calculate this here and not at the root vdev * because the root vdev's psize-to-asize is simply the max of its * children's, thus not accurate enough for us. */ dspace_delta = vdev_deflated_space(vd, space_delta); mutex_enter(&vd->vdev_stat_lock); /* ensure we won't underflow */ if (alloc_delta < 0) { ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); } vd->vdev_stat.vs_alloc += alloc_delta; vd->vdev_stat.vs_space += space_delta; vd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&vd->vdev_stat_lock); /* every class but log contributes to root space stats */ if (vd->vdev_mg != NULL && !vd->vdev_islog) { ASSERT(!vd->vdev_isl2cache); mutex_enter(&rvd->vdev_stat_lock); rvd->vdev_stat.vs_alloc += alloc_delta; rvd->vdev_stat.vs_space += space_delta; rvd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&rvd->vdev_stat_lock); } /* Note: metaslab_class_space_update moved to metaslab_space_update */ } /* * Mark a top-level vdev's config as dirty, placing it on the dirty list * so that it will be written out next time the vdev configuration is synced. * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. */ void vdev_config_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int c; ASSERT(spa_writeable(spa)); /* * If this is an aux vdev (as with l2cache and spare devices), then we * update the vdev config manually and set the sync flag. */ if (vd->vdev_aux != NULL) { spa_aux_vdev_t *sav = vd->vdev_aux; nvlist_t **aux; uint_t naux; for (c = 0; c < sav->sav_count; c++) { if (sav->sav_vdevs[c] == vd) break; } if (c == sav->sav_count) { /* * We're being removed. There's nothing more to do. */ ASSERT(sav->sav_sync == B_TRUE); return; } sav->sav_sync = B_TRUE; if (nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); } ASSERT(c < naux); /* * Setting the nvlist in the middle if the array is a little * sketchy, but it will work. */ nvlist_free(aux[c]); aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); return; } /* * The dirty list is protected by the SCL_CONFIG lock. The caller * must either hold SCL_CONFIG as writer, or must be the sync thread * (which holds SCL_CONFIG as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_CONFIG, RW_READER))); if (vd == rvd) { for (c = 0; c < rvd->vdev_children; c++) vdev_config_dirty(rvd->vdev_child[c]); } else { ASSERT(vd == vd->vdev_top); if (!list_link_active(&vd->vdev_config_dirty_node) && vdev_is_concrete(vd)) { list_insert_head(&spa->spa_config_dirty_list, vd); } } } void vdev_config_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_CONFIG, RW_READER))); ASSERT(list_link_active(&vd->vdev_config_dirty_node)); list_remove(&spa->spa_config_dirty_list, vd); } /* * Mark a top-level vdev's state as dirty, so that the next pass of * spa_sync() can convert this into vdev_config_dirty(). We distinguish * the state changes from larger config changes because they require * much less locking, and are often needed for administrative actions. */ void vdev_state_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_writeable(spa)); ASSERT(vd == vd->vdev_top); /* * The state list is protected by the SCL_STATE lock. The caller * must either hold SCL_STATE as writer, or must be the sync thread * (which holds SCL_STATE as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_STATE, RW_READER))); if (!list_link_active(&vd->vdev_state_dirty_node) && vdev_is_concrete(vd)) list_insert_head(&spa->spa_state_dirty_list, vd); } void vdev_state_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_STATE, RW_READER))); ASSERT(list_link_active(&vd->vdev_state_dirty_node)); list_remove(&spa->spa_state_dirty_list, vd); } /* * Propagate vdev state up from children to parent. */ void vdev_propagate_state(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int degraded = 0, faulted = 0; int corrupted = 0; vdev_t *child; if (vd->vdev_children > 0) { for (int c = 0; c < vd->vdev_children; c++) { child = vd->vdev_child[c]; /* * Don't factor holes or indirect vdevs into the * decision. */ if (!vdev_is_concrete(child)) continue; if (!vdev_readable(child) || (!vdev_writeable(child) && spa_writeable(spa))) { /* * Root special: if there is a top-level log * device, treat the root vdev as if it were * degraded. */ if (child->vdev_islog && vd == rvd) degraded++; else faulted++; } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { degraded++; } if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) corrupted++; } vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); /* * Root special: if there is a top-level vdev that cannot be * opened due to corrupted metadata, then propagate the root * vdev's aux state as 'corrupt' rather than 'insufficient * replicas'. */ if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); } if (vd->vdev_parent) vdev_propagate_state(vd->vdev_parent); } /* * Set a vdev's state. If this is during an open, we don't update the parent * state, because we're in the process of opening children depth-first. * Otherwise, we propagate the change to the parent. * * If this routine places a device in a faulted state, an appropriate ereport is * generated. */ void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) { uint64_t save_state; spa_t *spa = vd->vdev_spa; if (state == vd->vdev_state) { /* * Since vdev_offline() code path is already in an offline * state we can miss a statechange event to OFFLINE. Check * the previous state to catch this condition. */ if (vd->vdev_ops->vdev_op_leaf && (state == VDEV_STATE_OFFLINE) && (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { /* post an offline state change */ zfs_post_state_change(spa, vd, vd->vdev_prevstate); } vd->vdev_stat.vs_aux = aux; return; } save_state = vd->vdev_state; vd->vdev_state = state; vd->vdev_stat.vs_aux = aux; /* * If we are setting the vdev state to anything but an open state, then * always close the underlying device unless the device has requested * a delayed close (i.e. we're about to remove or fault the device). * Otherwise, we keep accessible but invalid devices open forever. * We don't call vdev_close() itself, because that implies some extra * checks (offline, etc) that we don't want here. This is limited to * leaf devices, because otherwise closing the device will affect other * children. */ if (!vd->vdev_delayed_close && vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_close(vd); if (vd->vdev_removed && state == VDEV_STATE_CANT_OPEN && (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { /* * If the previous state is set to VDEV_STATE_REMOVED, then this * device was previously marked removed and someone attempted to * reopen it. If this failed due to a nonexistent device, then * keep the device in the REMOVED state. We also let this be if * it is one of our special test online cases, which is only * attempting to online the device and shouldn't generate an FMA * fault. */ vd->vdev_state = VDEV_STATE_REMOVED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } else if (state == VDEV_STATE_REMOVED) { vd->vdev_removed = B_TRUE; } else if (state == VDEV_STATE_CANT_OPEN) { /* * If we fail to open a vdev during an import or recovery, we * mark it as "not available", which signifies that it was * never there to begin with. Failure to open such a device * is not considered an error. */ if ((spa_load_state(spa) == SPA_LOAD_IMPORT || spa_load_state(spa) == SPA_LOAD_RECOVER) && vd->vdev_ops->vdev_op_leaf) vd->vdev_not_present = 1; /* * Post the appropriate ereport. If the 'prevstate' field is * set to something other than VDEV_STATE_UNKNOWN, it indicates * that this is part of a vdev_reopen(). In this case, we don't * want to post the ereport if the device was already in the * CANT_OPEN state beforehand. * * If the 'checkremove' flag is set, then this is an attempt to * online the device in response to an insertion event. If we * hit this case, then we have detected an insertion event for a * faulted or offline device that wasn't in the removed state. * In this scenario, we don't post an ereport because we are * about to replace the device, or attempt an online with * vdev_forcefault, which will generate the fault for us. */ if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && !vd->vdev_not_present && !vd->vdev_checkremove && vd != spa->spa_root_vdev) { const char *class; switch (aux) { case VDEV_AUX_OPEN_FAILED: class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; break; case VDEV_AUX_CORRUPT_DATA: class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; break; case VDEV_AUX_NO_REPLICAS: class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; break; case VDEV_AUX_BAD_GUID_SUM: class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; break; case VDEV_AUX_TOO_SMALL: class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; break; case VDEV_AUX_BAD_LABEL: class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; break; case VDEV_AUX_BAD_ASHIFT: class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; break; default: class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; } (void) zfs_ereport_post(class, spa, vd, NULL, NULL, save_state); } /* Erase any notion of persistent removed state */ vd->vdev_removed = B_FALSE; } else { vd->vdev_removed = B_FALSE; } /* * Notify ZED of any significant state-change on a leaf vdev. * */ if (vd->vdev_ops->vdev_op_leaf) { /* preserve original state from a vdev_reopen() */ if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && (vd->vdev_prevstate != vd->vdev_state) && (save_state <= VDEV_STATE_CLOSED)) save_state = vd->vdev_prevstate; /* filter out state change due to initial vdev_open */ if (save_state > VDEV_STATE_CLOSED) zfs_post_state_change(spa, vd, save_state); } if (!isopen && vd->vdev_parent) vdev_propagate_state(vd->vdev_parent); } boolean_t vdev_children_are_offline(vdev_t *vd) { ASSERT(!vd->vdev_ops->vdev_op_leaf); for (uint64_t i = 0; i < vd->vdev_children; i++) { if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) return (B_FALSE); } return (B_TRUE); } /* * Check the vdev configuration to ensure that it's capable of supporting * a root pool. We do not support partial configuration. */ boolean_t vdev_is_bootable(vdev_t *vd) { if (!vd->vdev_ops->vdev_op_leaf) { const char *vdev_type = vd->vdev_ops->vdev_op_type; if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) return (B_FALSE); } for (int c = 0; c < vd->vdev_children; c++) { if (!vdev_is_bootable(vd->vdev_child[c])) return (B_FALSE); } return (B_TRUE); } boolean_t vdev_is_concrete(vdev_t *vd) { vdev_ops_t *ops = vd->vdev_ops; if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || ops == &vdev_missing_ops || ops == &vdev_root_ops) { return (B_FALSE); } else { return (B_TRUE); } } /* * Determine if a log device has valid content. If the vdev was * removed or faulted in the MOS config then we know that * the content on the log device has already been written to the pool. */ boolean_t vdev_log_state_valid(vdev_t *vd) { if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && !vd->vdev_removed) return (B_TRUE); for (int c = 0; c < vd->vdev_children; c++) if (vdev_log_state_valid(vd->vdev_child[c])) return (B_TRUE); return (B_FALSE); } /* * Expand a vdev if possible. */ void vdev_expand(vdev_t *vd, uint64_t txg) { ASSERT(vd->vdev_top == vd); ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(vdev_is_concrete(vd)); vdev_set_deflate_ratio(vd); if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && vdev_is_concrete(vd)) { vdev_metaslab_group_create(vd); VERIFY(vdev_metaslab_init(vd, txg) == 0); vdev_config_dirty(vd); } } /* * Split a vdev. */ void vdev_split(vdev_t *vd) { vdev_t *cvd, *pvd = vd->vdev_parent; VERIFY3U(pvd->vdev_children, >, 1); vdev_remove_child(pvd, vd); vdev_compact_children(pvd); ASSERT3P(pvd->vdev_child, !=, NULL); cvd = pvd->vdev_child[0]; if (pvd->vdev_children == 1) { vdev_remove_parent(cvd); cvd->vdev_splitting = B_TRUE; } vdev_propagate_state(cvd); } void vdev_deadman(vdev_t *vd, const char *tag) { for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; vdev_deadman(cvd, tag); } if (vd->vdev_ops->vdev_op_leaf) { vdev_queue_t *vq = &vd->vdev_queue; mutex_enter(&vq->vq_lock); if (avl_numnodes(&vq->vq_active_tree) > 0) { spa_t *spa = vd->vdev_spa; zio_t *fio; uint64_t delta; zfs_dbgmsg("slow vdev: %s has %lu active IOs", vd->vdev_path, avl_numnodes(&vq->vq_active_tree)); /* * Look at the head of all the pending queues, * if any I/O has been outstanding for longer than * the spa_deadman_synctime invoke the deadman logic. */ fio = avl_first(&vq->vq_active_tree); delta = gethrtime() - fio->io_timestamp; if (delta > spa_deadman_synctime(spa)) zio_deadman(fio, tag); } mutex_exit(&vq->vq_lock); } } void vdev_defer_resilver(vdev_t *vd) { ASSERT(vd->vdev_ops->vdev_op_leaf); vd->vdev_resilver_deferred = B_TRUE; vd->vdev_spa->spa_resilver_deferred = B_TRUE; } /* * Clears the resilver deferred flag on all leaf devs under vd. Returns * B_TRUE if we have devices that need to be resilvered and are available to * accept resilver I/Os. */ boolean_t vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) { boolean_t resilver_needed = B_FALSE; spa_t *spa = vd->vdev_spa; for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); } if (vd == spa->spa_root_vdev && spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); vdev_config_dirty(vd); spa->spa_resilver_deferred = B_FALSE; return (resilver_needed); } if (!vdev_is_concrete(vd) || vd->vdev_aux || !vd->vdev_ops->vdev_op_leaf) return (resilver_needed); vd->vdev_resilver_deferred = B_FALSE; return (!vdev_is_dead(vd) && !vd->vdev_offline && vdev_resilver_needed(vd, NULL, NULL)); } boolean_t vdev_xlate_is_empty(range_seg64_t *rs) { return (rs->rs_start == rs->rs_end); } /* * Translate a logical range to the first contiguous physical range for the * specified vdev_t. This function is initially called with a leaf vdev and * will walk each parent vdev until it reaches a top-level vdev. Once the * top-level is reached the physical range is initialized and the recursive * function begins to unwind. As it unwinds it calls the parent's vdev * specific translation function to do the real conversion. */ void vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, range_seg64_t *physical_rs, range_seg64_t *remain_rs) { /* * Walk up the vdev tree */ if (vd != vd->vdev_top) { vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, remain_rs); } else { /* * We've reached the top-level vdev, initialize the physical * range to the logical range and set an empty remaining * range then start to unwind. */ physical_rs->rs_start = logical_rs->rs_start; physical_rs->rs_end = logical_rs->rs_end; remain_rs->rs_start = logical_rs->rs_start; remain_rs->rs_end = logical_rs->rs_start; return; } vdev_t *pvd = vd->vdev_parent; ASSERT3P(pvd, !=, NULL); ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); /* * As this recursive function unwinds, translate the logical * range into its physical and any remaining components by calling * the vdev specific translate function. */ range_seg64_t intermediate = { 0 }; pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); physical_rs->rs_start = intermediate.rs_start; physical_rs->rs_end = intermediate.rs_end; } void vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, vdev_xlate_func_t *func, void *arg) { range_seg64_t iter_rs = *logical_rs; range_seg64_t physical_rs; range_seg64_t remain_rs; while (!vdev_xlate_is_empty(&iter_rs)) { vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); /* * With raidz and dRAID, it's possible that the logical range * does not live on this leaf vdev. Only when there is a non- * zero physical size call the provided function. */ if (!vdev_xlate_is_empty(&physical_rs)) func(arg, &physical_rs); iter_rs = remain_rs; } } static char * vdev_name(vdev_t *vd, char *buf, int buflen) { if (vd->vdev_path == NULL) { if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { strlcpy(buf, vd->vdev_spa->spa_name, buflen); } else if (!vd->vdev_ops->vdev_op_leaf) { snprintf(buf, buflen, "%s-%llu", vd->vdev_ops->vdev_op_type, (u_longlong_t)vd->vdev_id); } } else { strlcpy(buf, vd->vdev_path, buflen); } return (buf); } /* * Look at the vdev tree and determine whether any devices are currently being * replaced. */ boolean_t vdev_replace_in_progress(vdev_t *vdev) { ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); if (vdev->vdev_ops == &vdev_replacing_ops) return (B_TRUE); /* * A 'spare' vdev indicates that we have a replace in progress, unless * it has exactly two children, and the second, the hot spare, has * finished being resilvered. */ if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) return (B_TRUE); for (int i = 0; i < vdev->vdev_children; i++) { if (vdev_replace_in_progress(vdev->vdev_child[i])) return (B_TRUE); } return (B_FALSE); } /* * Add a (source=src, propname=propval) list to an nvlist. */ static void vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, uint64_t intval, zprop_source_t src) { nvlist_t *propval; propval = fnvlist_alloc(); fnvlist_add_uint64(propval, ZPROP_SOURCE, src); if (strval != NULL) fnvlist_add_string(propval, ZPROP_VALUE, strval); else fnvlist_add_uint64(propval, ZPROP_VALUE, intval); fnvlist_add_nvlist(nvl, propname, propval); nvlist_free(propval); } static void vdev_props_set_sync(void *arg, dmu_tx_t *tx) { vdev_t *vd; nvlist_t *nvp = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = spa->spa_meta_objset; nvpair_t *elem = NULL; uint64_t vdev_guid; nvlist_t *nvprops; vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); /* this vdev could get removed while waiting for this sync task */ if (vd == NULL) return; mutex_enter(&spa->spa_props_lock); while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { uint64_t intval, objid = 0; const char *strval; vdev_prop_t prop; const char *propname = nvpair_name(elem); zprop_type_t proptype; /* * Set vdev property values in the vdev props mos object. */ if (vd->vdev_root_zap != 0) { objid = vd->vdev_root_zap; } else if (vd->vdev_top_zap != 0) { objid = vd->vdev_top_zap; } else if (vd->vdev_leaf_zap != 0) { objid = vd->vdev_leaf_zap; } else { /* * XXX: implement vdev_props_set_check() */ panic("vdev not root/top/leaf"); } switch (prop = vdev_name_to_prop(propname)) { case VDEV_PROP_USERPROP: if (vdev_prop_user(propname)) { strval = fnvpair_value_string(elem); if (strlen(strval) == 0) { /* remove the property if value == "" */ (void) zap_remove(mos, objid, propname, tx); } else { VERIFY0(zap_update(mos, objid, propname, 1, strlen(strval) + 1, strval, tx)); } spa_history_log_internal(spa, "vdev set", tx, "vdev_guid=%llu: %s=%s", (u_longlong_t)vdev_guid, nvpair_name(elem), strval); } break; default: /* normalize the property name */ propname = vdev_prop_to_name(prop); proptype = vdev_prop_get_type(prop); if (nvpair_type(elem) == DATA_TYPE_STRING) { ASSERT(proptype == PROP_TYPE_STRING); strval = fnvpair_value_string(elem); VERIFY0(zap_update(mos, objid, propname, 1, strlen(strval) + 1, strval, tx)); spa_history_log_internal(spa, "vdev set", tx, "vdev_guid=%llu: %s=%s", (u_longlong_t)vdev_guid, nvpair_name(elem), strval); } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { intval = fnvpair_value_uint64(elem); if (proptype == PROP_TYPE_INDEX) { const char *unused; VERIFY0(vdev_prop_index_to_string( prop, intval, &unused)); } VERIFY0(zap_update(mos, objid, propname, sizeof (uint64_t), 1, &intval, tx)); spa_history_log_internal(spa, "vdev set", tx, "vdev_guid=%llu: %s=%lld", (u_longlong_t)vdev_guid, nvpair_name(elem), (longlong_t)intval); } else { panic("invalid vdev property type %u", nvpair_type(elem)); } } } mutex_exit(&spa->spa_props_lock); } int vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa = vd->vdev_spa; nvpair_t *elem = NULL; uint64_t vdev_guid; nvlist_t *nvprops; int error = 0; ASSERT(vd != NULL); if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, &vdev_guid) != 0) return (SET_ERROR(EINVAL)); if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, &nvprops) != 0) return (SET_ERROR(EINVAL)); if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) return (SET_ERROR(EINVAL)); while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { const char *propname = nvpair_name(elem); vdev_prop_t prop = vdev_name_to_prop(propname); uint64_t intval = 0; const char *strval = NULL; if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { error = EINVAL; goto end; } if (vdev_prop_readonly(prop)) { error = EROFS; goto end; } /* Special Processing */ switch (prop) { case VDEV_PROP_PATH: if (vd->vdev_path == NULL) { error = EROFS; break; } if (nvpair_value_string(elem, &strval) != 0) { error = EINVAL; break; } /* New path must start with /dev/ */ if (strncmp(strval, "/dev/", 5)) { error = EINVAL; break; } error = spa_vdev_setpath(spa, vdev_guid, strval); break; case VDEV_PROP_ALLOCATING: if (nvpair_value_uint64(elem, &intval) != 0) { error = EINVAL; break; } if (intval != vd->vdev_noalloc) break; if (intval == 0) error = spa_vdev_noalloc(spa, vdev_guid); else error = spa_vdev_alloc(spa, vdev_guid); break; case VDEV_PROP_FAILFAST: if (nvpair_value_uint64(elem, &intval) != 0) { error = EINVAL; break; } vd->vdev_failfast = intval & 1; break; case VDEV_PROP_CHECKSUM_N: if (nvpair_value_uint64(elem, &intval) != 0) { error = EINVAL; break; } vd->vdev_checksum_n = intval; break; case VDEV_PROP_CHECKSUM_T: if (nvpair_value_uint64(elem, &intval) != 0) { error = EINVAL; break; } vd->vdev_checksum_t = intval; break; case VDEV_PROP_IO_N: if (nvpair_value_uint64(elem, &intval) != 0) { error = EINVAL; break; } vd->vdev_io_n = intval; break; case VDEV_PROP_IO_T: if (nvpair_value_uint64(elem, &intval) != 0) { error = EINVAL; break; } vd->vdev_io_t = intval; break; default: /* Most processing is done in vdev_props_set_sync */ break; } end: if (error != 0) { intval = error; vdev_prop_add_list(outnvl, propname, strval, intval, 0); return (error); } } return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); } int vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; int err = 0; uint64_t objid; uint64_t vdev_guid; nvpair_t *elem = NULL; nvlist_t *nvprops = NULL; uint64_t intval = 0; char *strval = NULL; const char *propname = NULL; vdev_prop_t prop; ASSERT(vd != NULL); ASSERT(mos != NULL); if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, &vdev_guid) != 0) return (SET_ERROR(EINVAL)); nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); if (vd->vdev_root_zap != 0) { objid = vd->vdev_root_zap; } else if (vd->vdev_top_zap != 0) { objid = vd->vdev_top_zap; } else if (vd->vdev_leaf_zap != 0) { objid = vd->vdev_leaf_zap; } else { return (SET_ERROR(EINVAL)); } ASSERT(objid != 0); mutex_enter(&spa->spa_props_lock); if (nvprops != NULL) { char namebuf[64] = { 0 }; while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { intval = 0; strval = NULL; propname = nvpair_name(elem); prop = vdev_name_to_prop(propname); zprop_source_t src = ZPROP_SRC_DEFAULT; uint64_t integer_size, num_integers; switch (prop) { /* Special Read-only Properties */ case VDEV_PROP_NAME: strval = vdev_name(vd, namebuf, sizeof (namebuf)); if (strval == NULL) continue; vdev_prop_add_list(outnvl, propname, strval, 0, ZPROP_SRC_NONE); continue; case VDEV_PROP_CAPACITY: /* percent used */ intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : (vd->vdev_stat.vs_alloc * 100 / vd->vdev_stat.vs_dspace); vdev_prop_add_list(outnvl, propname, NULL, intval, ZPROP_SRC_NONE); continue; case VDEV_PROP_STATE: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_state, ZPROP_SRC_NONE); continue; case VDEV_PROP_GUID: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_guid, ZPROP_SRC_NONE); continue; case VDEV_PROP_ASIZE: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_asize, ZPROP_SRC_NONE); continue; case VDEV_PROP_PSIZE: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_psize, ZPROP_SRC_NONE); continue; case VDEV_PROP_ASHIFT: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_ashift, ZPROP_SRC_NONE); continue; case VDEV_PROP_SIZE: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); continue; case VDEV_PROP_FREE: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_dspace - vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); continue; case VDEV_PROP_ALLOCATED: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); continue; case VDEV_PROP_EXPANDSZ: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); continue; case VDEV_PROP_FRAGMENTATION: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_fragmentation, ZPROP_SRC_NONE); continue; case VDEV_PROP_PARITY: vdev_prop_add_list(outnvl, propname, NULL, vdev_get_nparity(vd), ZPROP_SRC_NONE); continue; case VDEV_PROP_PATH: if (vd->vdev_path == NULL) continue; vdev_prop_add_list(outnvl, propname, vd->vdev_path, 0, ZPROP_SRC_NONE); continue; case VDEV_PROP_DEVID: if (vd->vdev_devid == NULL) continue; vdev_prop_add_list(outnvl, propname, vd->vdev_devid, 0, ZPROP_SRC_NONE); continue; case VDEV_PROP_PHYS_PATH: if (vd->vdev_physpath == NULL) continue; vdev_prop_add_list(outnvl, propname, vd->vdev_physpath, 0, ZPROP_SRC_NONE); continue; case VDEV_PROP_ENC_PATH: if (vd->vdev_enc_sysfs_path == NULL) continue; vdev_prop_add_list(outnvl, propname, vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); continue; case VDEV_PROP_FRU: if (vd->vdev_fru == NULL) continue; vdev_prop_add_list(outnvl, propname, vd->vdev_fru, 0, ZPROP_SRC_NONE); continue; case VDEV_PROP_PARENT: if (vd->vdev_parent != NULL) { strval = vdev_name(vd->vdev_parent, namebuf, sizeof (namebuf)); vdev_prop_add_list(outnvl, propname, strval, 0, ZPROP_SRC_NONE); } continue; case VDEV_PROP_CHILDREN: if (vd->vdev_children > 0) strval = kmem_zalloc(ZAP_MAXVALUELEN, KM_SLEEP); for (uint64_t i = 0; i < vd->vdev_children; i++) { const char *vname; vname = vdev_name(vd->vdev_child[i], namebuf, sizeof (namebuf)); if (vname == NULL) vname = "(unknown)"; if (strlen(strval) > 0) strlcat(strval, ",", ZAP_MAXVALUELEN); strlcat(strval, vname, ZAP_MAXVALUELEN); } if (strval != NULL) { vdev_prop_add_list(outnvl, propname, strval, 0, ZPROP_SRC_NONE); kmem_free(strval, ZAP_MAXVALUELEN); } continue; case VDEV_PROP_NUMCHILDREN: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_children, ZPROP_SRC_NONE); continue; case VDEV_PROP_READ_ERRORS: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_read_errors, ZPROP_SRC_NONE); continue; case VDEV_PROP_WRITE_ERRORS: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_write_errors, ZPROP_SRC_NONE); continue; case VDEV_PROP_CHECKSUM_ERRORS: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_checksum_errors, ZPROP_SRC_NONE); continue; case VDEV_PROP_INITIALIZE_ERRORS: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_initialize_errors, ZPROP_SRC_NONE); continue; case VDEV_PROP_OPS_NULL: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], ZPROP_SRC_NONE); continue; case VDEV_PROP_OPS_READ: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_ops[ZIO_TYPE_READ], ZPROP_SRC_NONE); continue; case VDEV_PROP_OPS_WRITE: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], ZPROP_SRC_NONE); continue; case VDEV_PROP_OPS_FREE: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], ZPROP_SRC_NONE); continue; case VDEV_PROP_OPS_CLAIM: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], ZPROP_SRC_NONE); continue; case VDEV_PROP_OPS_TRIM: /* * TRIM ops and bytes are reported to user * space as ZIO_TYPE_IOCTL. This is done to * preserve the vdev_stat_t structure layout * for user space. */ vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], ZPROP_SRC_NONE); continue; case VDEV_PROP_BYTES_NULL: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], ZPROP_SRC_NONE); continue; case VDEV_PROP_BYTES_READ: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], ZPROP_SRC_NONE); continue; case VDEV_PROP_BYTES_WRITE: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], ZPROP_SRC_NONE); continue; case VDEV_PROP_BYTES_FREE: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], ZPROP_SRC_NONE); continue; case VDEV_PROP_BYTES_CLAIM: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], ZPROP_SRC_NONE); continue; case VDEV_PROP_BYTES_TRIM: /* * TRIM ops and bytes are reported to user * space as ZIO_TYPE_IOCTL. This is done to * preserve the vdev_stat_t structure layout * for user space. */ vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], ZPROP_SRC_NONE); continue; case VDEV_PROP_REMOVING: vdev_prop_add_list(outnvl, propname, NULL, vd->vdev_removing, ZPROP_SRC_NONE); continue; /* Numeric Properites */ case VDEV_PROP_ALLOCATING: /* Leaf vdevs cannot have this property */ if (vd->vdev_mg == NULL && vd->vdev_top != NULL) { src = ZPROP_SRC_NONE; intval = ZPROP_BOOLEAN_NA; } else { err = vdev_prop_get_int(vd, prop, &intval); if (err && err != ENOENT) break; if (intval == vdev_prop_default_numeric(prop)) src = ZPROP_SRC_DEFAULT; else src = ZPROP_SRC_LOCAL; } vdev_prop_add_list(outnvl, propname, NULL, intval, src); break; case VDEV_PROP_FAILFAST: src = ZPROP_SRC_LOCAL; strval = NULL; err = zap_lookup(mos, objid, nvpair_name(elem), sizeof (uint64_t), 1, &intval); if (err == ENOENT) { intval = vdev_prop_default_numeric( prop); err = 0; } else if (err) { break; } if (intval == vdev_prop_default_numeric(prop)) src = ZPROP_SRC_DEFAULT; vdev_prop_add_list(outnvl, propname, strval, intval, src); break; case VDEV_PROP_CHECKSUM_N: case VDEV_PROP_CHECKSUM_T: case VDEV_PROP_IO_N: case VDEV_PROP_IO_T: err = vdev_prop_get_int(vd, prop, &intval); if (err && err != ENOENT) break; if (intval == vdev_prop_default_numeric(prop)) src = ZPROP_SRC_DEFAULT; else src = ZPROP_SRC_LOCAL; vdev_prop_add_list(outnvl, propname, NULL, intval, src); break; /* Text Properties */ case VDEV_PROP_COMMENT: /* Exists in the ZAP below */ /* FALLTHRU */ case VDEV_PROP_USERPROP: /* User Properites */ src = ZPROP_SRC_LOCAL; err = zap_length(mos, objid, nvpair_name(elem), &integer_size, &num_integers); if (err) break; switch (integer_size) { case 8: /* User properties cannot be integers */ err = EINVAL; break; case 1: /* string property */ strval = kmem_alloc(num_integers, KM_SLEEP); err = zap_lookup(mos, objid, nvpair_name(elem), 1, num_integers, strval); if (err) { kmem_free(strval, num_integers); break; } vdev_prop_add_list(outnvl, propname, strval, 0, src); kmem_free(strval, num_integers); break; } break; default: err = ENOENT; break; } if (err) break; } } else { /* * Get all properties from the MOS vdev property object. */ zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, mos, objid); (err = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { intval = 0; strval = NULL; zprop_source_t src = ZPROP_SRC_DEFAULT; propname = za.za_name; switch (za.za_integer_length) { case 8: /* We do not allow integer user properties */ /* This is likely an internal value */ break; case 1: /* string property */ strval = kmem_alloc(za.za_num_integers, KM_SLEEP); err = zap_lookup(mos, objid, za.za_name, 1, za.za_num_integers, strval); if (err) { kmem_free(strval, za.za_num_integers); break; } vdev_prop_add_list(outnvl, propname, strval, 0, src); kmem_free(strval, za.za_num_integers); break; default: break; } } zap_cursor_fini(&zc); } mutex_exit(&spa->spa_props_lock); if (err && err != ENOENT) { return (err); } return (0); } EXPORT_SYMBOL(vdev_fault); EXPORT_SYMBOL(vdev_degrade); EXPORT_SYMBOL(vdev_online); EXPORT_SYMBOL(vdev_offline); EXPORT_SYMBOL(vdev_clear); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, "Target number of metaslabs per top-level vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, "Default lower limit for metaslab size"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, "Default upper limit for metaslab size"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, "Minimum number of metaslabs per top-level vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, "Practical upper limit of total metaslabs per top-level vdev"); ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, "Rate limit slow IO (delay) events to this many per second"); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, "Rate limit checksum events to this many checksum errors per second " "(do not set below ZED threshold)."); /* END CSTYLED */ ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, "Ignore errors during resilver/scrub"); ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, "Bypass vdev_validate()"); ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, "Disable cache flushes"); ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, "Minimum number of metaslabs required to dedicate one for log blocks"); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, param_set_min_auto_ashift, param_get_uint, ZMOD_RW, "Minimum ashift used when creating new top-level vdevs"); ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, param_set_max_auto_ashift, param_get_uint, ZMOD_RW, "Maximum ashift used when optimizing for logical -> physical sector " "size on new top-level vdevs"); /* END CSTYLED */ diff --git a/module/zfs/vdev_cache.c b/module/zfs/vdev_cache.c deleted file mode 100644 index f0a17600d58e..000000000000 --- a/module/zfs/vdev_cache.c +++ /dev/null @@ -1,436 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or https://opensource.org/licenses/CDDL-1.0. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ -/* - * Copyright (c) 2013, 2016 by Delphix. All rights reserved. - */ - -#include -#include -#include -#include -#include -#include - -/* - * Virtual device read-ahead caching. - * - * This file implements a simple LRU read-ahead cache. When the DMU reads - * a given block, it will often want other, nearby blocks soon thereafter. - * We take advantage of this by reading a larger disk region and caching - * the result. In the best case, this can turn 128 back-to-back 512-byte - * reads into a single 64k read followed by 127 cache hits; this reduces - * latency dramatically. In the worst case, it can turn an isolated 512-byte - * read into a 64k read, which doesn't affect latency all that much but is - * terribly wasteful of bandwidth. A more intelligent version of the cache - * could keep track of access patterns and not do read-ahead unless it sees - * at least two temporally close I/Os to the same region. Currently, only - * metadata I/O is inflated. A further enhancement could take advantage of - * more semantic information about the I/O. And it could use something - * faster than an AVL tree; that was chosen solely for convenience. - * - * There are five cache operations: allocate, fill, read, write, evict. - * - * (1) Allocate. This reserves a cache entry for the specified region. - * We separate the allocate and fill operations so that multiple threads - * don't generate I/O for the same cache miss. - * - * (2) Fill. When the I/O for a cache miss completes, the fill routine - * places the data in the previously allocated cache entry. - * - * (3) Read. Read data from the cache. - * - * (4) Write. Update cache contents after write completion. - * - * (5) Evict. When allocating a new entry, we evict the oldest (LRU) entry - * if the total cache size exceeds zfs_vdev_cache_size. - */ - -/* - * These tunables are for performance analysis. - */ -/* - * All i/os smaller than zfs_vdev_cache_max will be turned into - * 1<ve_offset, ve2->ve_offset)); -} - -static int -vdev_cache_lastused_compare(const void *a1, const void *a2) -{ - const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1; - const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2; - - int cmp = TREE_CMP(ve1->ve_lastused, ve2->ve_lastused); - if (likely(cmp)) - return (cmp); - - /* - * Among equally old entries, sort by offset to ensure uniqueness. - */ - return (vdev_cache_offset_compare(a1, a2)); -} - -/* - * Evict the specified entry from the cache. - */ -static void -vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve) -{ - ASSERT(MUTEX_HELD(&vc->vc_lock)); - ASSERT3P(ve->ve_fill_io, ==, NULL); - ASSERT3P(ve->ve_abd, !=, NULL); - - avl_remove(&vc->vc_lastused_tree, ve); - avl_remove(&vc->vc_offset_tree, ve); - abd_free(ve->ve_abd); - kmem_free(ve, sizeof (vdev_cache_entry_t)); -} - -/* - * Allocate an entry in the cache. At the point we don't have the data, - * we're just creating a placeholder so that multiple threads don't all - * go off and read the same blocks. - */ -static vdev_cache_entry_t * -vdev_cache_allocate(zio_t *zio) -{ - vdev_cache_t *vc = &zio->io_vd->vdev_cache; - uint64_t offset = P2ALIGN(zio->io_offset, VCBS); - vdev_cache_entry_t *ve; - - ASSERT(MUTEX_HELD(&vc->vc_lock)); - - if (zfs_vdev_cache_size == 0) - return (NULL); - - /* - * If adding a new entry would exceed the cache size, - * evict the oldest entry (LRU). - */ - if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) > - zfs_vdev_cache_size) { - ve = avl_first(&vc->vc_lastused_tree); - if (ve->ve_fill_io != NULL) - return (NULL); - ASSERT3U(ve->ve_hits, !=, 0); - vdev_cache_evict(vc, ve); - } - - ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP); - ve->ve_offset = offset; - ve->ve_lastused = ddi_get_lbolt(); - ve->ve_abd = abd_alloc_for_io(VCBS, B_TRUE); - - avl_add(&vc->vc_offset_tree, ve); - avl_add(&vc->vc_lastused_tree, ve); - - return (ve); -} - -static void -vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio) -{ - uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS); - - ASSERT(MUTEX_HELD(&vc->vc_lock)); - ASSERT3P(ve->ve_fill_io, ==, NULL); - - if (ve->ve_lastused != ddi_get_lbolt()) { - avl_remove(&vc->vc_lastused_tree, ve); - ve->ve_lastused = ddi_get_lbolt(); - avl_add(&vc->vc_lastused_tree, ve); - } - - ve->ve_hits++; - abd_copy_off(zio->io_abd, ve->ve_abd, 0, cache_phase, zio->io_size); -} - -/* - * Fill a previously allocated cache entry with data. - */ -static void -vdev_cache_fill(zio_t *fio) -{ - vdev_t *vd = fio->io_vd; - vdev_cache_t *vc = &vd->vdev_cache; - vdev_cache_entry_t *ve = fio->io_private; - zio_t *pio; - - ASSERT3U(fio->io_size, ==, VCBS); - - /* - * Add data to the cache. - */ - mutex_enter(&vc->vc_lock); - - ASSERT3P(ve->ve_fill_io, ==, fio); - ASSERT3U(ve->ve_offset, ==, fio->io_offset); - ASSERT3P(ve->ve_abd, ==, fio->io_abd); - - ve->ve_fill_io = NULL; - - /* - * Even if this cache line was invalidated by a missed write update, - * any reads that were queued up before the missed update are still - * valid, so we can satisfy them from this line before we evict it. - */ - zio_link_t *zl = NULL; - while ((pio = zio_walk_parents(fio, &zl)) != NULL) - vdev_cache_hit(vc, ve, pio); - - if (fio->io_error || ve->ve_missed_update) - vdev_cache_evict(vc, ve); - - mutex_exit(&vc->vc_lock); -} - -/* - * Read data from the cache. Returns B_TRUE cache hit, B_FALSE on miss. - */ -boolean_t -vdev_cache_read(zio_t *zio) -{ - vdev_cache_t *vc = &zio->io_vd->vdev_cache; - vdev_cache_entry_t *ve, ve_search; - uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS); - zio_t *fio; - uint64_t cache_phase __maybe_unused = P2PHASE(zio->io_offset, VCBS); - - ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); - - if (zfs_vdev_cache_size == 0) - return (B_FALSE); - - if (zio->io_flags & ZIO_FLAG_DONT_CACHE) - return (B_FALSE); - - if (zio->io_size > zfs_vdev_cache_max) - return (B_FALSE); - - /* - * If the I/O straddles two or more cache blocks, don't cache it. - */ - if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS)) - return (B_FALSE); - - ASSERT3U(cache_phase + zio->io_size, <=, VCBS); - - mutex_enter(&vc->vc_lock); - - ve_search.ve_offset = cache_offset; - ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL); - - if (ve != NULL) { - if (ve->ve_missed_update) { - mutex_exit(&vc->vc_lock); - return (B_FALSE); - } - - if ((fio = ve->ve_fill_io) != NULL) { - zio_vdev_io_bypass(zio); - zio_add_child(zio, fio); - mutex_exit(&vc->vc_lock); - VDCSTAT_BUMP(vdc_stat_delegations); - return (B_TRUE); - } - - vdev_cache_hit(vc, ve, zio); - zio_vdev_io_bypass(zio); - - mutex_exit(&vc->vc_lock); - VDCSTAT_BUMP(vdc_stat_hits); - return (B_TRUE); - } - - ve = vdev_cache_allocate(zio); - - if (ve == NULL) { - mutex_exit(&vc->vc_lock); - return (B_FALSE); - } - - fio = zio_vdev_delegated_io(zio->io_vd, cache_offset, - ve->ve_abd, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW, - ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve); - - ve->ve_fill_io = fio; - zio_vdev_io_bypass(zio); - zio_add_child(zio, fio); - - mutex_exit(&vc->vc_lock); - zio_nowait(fio); - VDCSTAT_BUMP(vdc_stat_misses); - - return (B_TRUE); -} - -/* - * Update cache contents upon write completion. - */ -void -vdev_cache_write(zio_t *zio) -{ - vdev_cache_t *vc = &zio->io_vd->vdev_cache; - vdev_cache_entry_t *ve, ve_search; - uint64_t io_start = zio->io_offset; - uint64_t io_end = io_start + zio->io_size; - uint64_t min_offset = P2ALIGN(io_start, VCBS); - uint64_t max_offset = P2ROUNDUP(io_end, VCBS); - avl_index_t where; - - ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); - - mutex_enter(&vc->vc_lock); - - ve_search.ve_offset = min_offset; - ve = avl_find(&vc->vc_offset_tree, &ve_search, &where); - - if (ve == NULL) - ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER); - - while (ve != NULL && ve->ve_offset < max_offset) { - uint64_t start = MAX(ve->ve_offset, io_start); - uint64_t end = MIN(ve->ve_offset + VCBS, io_end); - - if (ve->ve_fill_io != NULL) { - ve->ve_missed_update = 1; - } else { - abd_copy_off(ve->ve_abd, zio->io_abd, - start - ve->ve_offset, start - io_start, - end - start); - } - ve = AVL_NEXT(&vc->vc_offset_tree, ve); - } - mutex_exit(&vc->vc_lock); -} - -void -vdev_cache_purge(vdev_t *vd) -{ - vdev_cache_t *vc = &vd->vdev_cache; - vdev_cache_entry_t *ve; - - mutex_enter(&vc->vc_lock); - while ((ve = avl_first(&vc->vc_offset_tree)) != NULL) - vdev_cache_evict(vc, ve); - mutex_exit(&vc->vc_lock); -} - -void -vdev_cache_init(vdev_t *vd) -{ - vdev_cache_t *vc = &vd->vdev_cache; - - mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL); - - avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare, - sizeof (vdev_cache_entry_t), - offsetof(struct vdev_cache_entry, ve_offset_node)); - - avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare, - sizeof (vdev_cache_entry_t), - offsetof(struct vdev_cache_entry, ve_lastused_node)); -} - -void -vdev_cache_fini(vdev_t *vd) -{ - vdev_cache_t *vc = &vd->vdev_cache; - - vdev_cache_purge(vd); - - avl_destroy(&vc->vc_offset_tree); - avl_destroy(&vc->vc_lastused_tree); - - mutex_destroy(&vc->vc_lock); -} - -void -vdev_cache_stat_init(void) -{ - vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc", - KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t), - KSTAT_FLAG_VIRTUAL); - if (vdc_ksp != NULL) { - vdc_ksp->ks_data = &vdc_stats; - kstat_install(vdc_ksp); - } -} - -void -vdev_cache_stat_fini(void) -{ - if (vdc_ksp != NULL) { - kstat_delete(vdc_ksp); - vdc_ksp = NULL; - } -} - -ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_max, UINT, ZMOD_RW, - "Inflate reads small than max"); - -ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_size, UINT, ZMOD_RD, - "Total size of the per-disk cache"); - -ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_bshift, UINT, ZMOD_RW, - "Shift size to inflate reads too"); diff --git a/module/zfs/vdev_queue.c b/module/zfs/vdev_queue.c index 1a75d68abd9e..abb7d0662b8c 100644 --- a/module/zfs/vdev_queue.c +++ b/module/zfs/vdev_queue.c @@ -1,1124 +1,1123 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012, 2018 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include /* * ZFS I/O Scheduler * --------------- * * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The * I/O scheduler determines when and in what order those operations are * issued. The I/O scheduler divides operations into five I/O classes * prioritized in the following order: sync read, sync write, async read, * async write, and scrub/resilver. Each queue defines the minimum and * maximum number of concurrent operations that may be issued to the device. * In addition, the device has an aggregate maximum. Note that the sum of the * per-queue minimums must not exceed the aggregate maximum. If the * sum of the per-queue maximums exceeds the aggregate maximum, then the * number of active i/os may reach zfs_vdev_max_active, in which case no * further i/os will be issued regardless of whether all per-queue * minimums have been met. * * For many physical devices, throughput increases with the number of * concurrent operations, but latency typically suffers. Further, physical * devices typically have a limit at which more concurrent operations have no * effect on throughput or can actually cause it to decrease. * * The scheduler selects the next operation to issue by first looking for an * I/O class whose minimum has not been satisfied. Once all are satisfied and * the aggregate maximum has not been hit, the scheduler looks for classes * whose maximum has not been satisfied. Iteration through the I/O classes is * done in the order specified above. No further operations are issued if the * aggregate maximum number of concurrent operations has been hit or if there * are no operations queued for an I/O class that has not hit its maximum. * Every time an i/o is queued or an operation completes, the I/O scheduler * looks for new operations to issue. * * All I/O classes have a fixed maximum number of outstanding operations * except for the async write class. Asynchronous writes represent the data * that is committed to stable storage during the syncing stage for * transaction groups (see txg.c). Transaction groups enter the syncing state * periodically so the number of queued async writes will quickly burst up and * then bleed down to zero. Rather than servicing them as quickly as possible, * the I/O scheduler changes the maximum number of active async write i/os * according to the amount of dirty data in the pool (see dsl_pool.c). Since * both throughput and latency typically increase with the number of * concurrent operations issued to physical devices, reducing the burstiness * in the number of concurrent operations also stabilizes the response time of * operations from other -- and in particular synchronous -- queues. In broad * strokes, the I/O scheduler will issue more concurrent operations from the * async write queue as there's more dirty data in the pool. * * Async Writes * * The number of concurrent operations issued for the async write I/O class * follows a piece-wise linear function defined by a few adjustable points. * * | o---------| <-- zfs_vdev_async_write_max_active * ^ | /^ | * | | / | | * active | / | | * I/O | / | | * count | / | | * | / | | * |------------o | | <-- zfs_vdev_async_write_min_active * 0|____________^______|_________| * 0% | | 100% of zfs_dirty_data_max * | | * | `-- zfs_vdev_async_write_active_max_dirty_percent * `--------- zfs_vdev_async_write_active_min_dirty_percent * * Until the amount of dirty data exceeds a minimum percentage of the dirty * data allowed in the pool, the I/O scheduler will limit the number of * concurrent operations to the minimum. As that threshold is crossed, the * number of concurrent operations issued increases linearly to the maximum at * the specified maximum percentage of the dirty data allowed in the pool. * * Ideally, the amount of dirty data on a busy pool will stay in the sloped * part of the function between zfs_vdev_async_write_active_min_dirty_percent * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the * maximum percentage, this indicates that the rate of incoming data is * greater than the rate that the backend storage can handle. In this case, we * must further throttle incoming writes (see dmu_tx_delay() for details). */ /* * The maximum number of i/os active to each device. Ideally, this will be >= * the sum of each queue's max_active. */ uint_t zfs_vdev_max_active = 1000; /* * Per-queue limits on the number of i/os active to each device. If the * number of active i/os is < zfs_vdev_max_active, then the min_active comes * into play. We will send min_active from each queue round-robin, and then * send from queues in the order defined by zio_priority_t up to max_active. * Some queues have additional mechanisms to limit number of active I/Os in * addition to min_active and max_active, see below. * * In general, smaller max_active's will lead to lower latency of synchronous * operations. Larger max_active's may lead to higher overall throughput, * depending on underlying storage. * * The ratio of the queues' max_actives determines the balance of performance * between reads, writes, and scrubs. E.g., increasing * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete * more quickly, but reads and writes to have higher latency and lower * throughput. */ static uint_t zfs_vdev_sync_read_min_active = 10; static uint_t zfs_vdev_sync_read_max_active = 10; static uint_t zfs_vdev_sync_write_min_active = 10; static uint_t zfs_vdev_sync_write_max_active = 10; static uint_t zfs_vdev_async_read_min_active = 1; /* */ uint_t zfs_vdev_async_read_max_active = 3; static uint_t zfs_vdev_async_write_min_active = 2; /* */ uint_t zfs_vdev_async_write_max_active = 10; static uint_t zfs_vdev_scrub_min_active = 1; static uint_t zfs_vdev_scrub_max_active = 3; static uint_t zfs_vdev_removal_min_active = 1; static uint_t zfs_vdev_removal_max_active = 2; static uint_t zfs_vdev_initializing_min_active = 1; static uint_t zfs_vdev_initializing_max_active = 1; static uint_t zfs_vdev_trim_min_active = 1; static uint_t zfs_vdev_trim_max_active = 2; static uint_t zfs_vdev_rebuild_min_active = 1; static uint_t zfs_vdev_rebuild_max_active = 3; /* * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent * dirty data, use zfs_vdev_async_write_min_active. When it has more than * zfs_vdev_async_write_active_max_dirty_percent, use * zfs_vdev_async_write_max_active. The value is linearly interpolated * between min and max. */ uint_t zfs_vdev_async_write_active_min_dirty_percent = 30; uint_t zfs_vdev_async_write_active_max_dirty_percent = 60; /* * For non-interactive I/O (scrub, resilver, removal, initialize and rebuild), * the number of concurrently-active I/O's is limited to *_min_active, unless * the vdev is "idle". When there are no interactive I/Os active (sync or * async), and zfs_vdev_nia_delay I/Os have completed since the last * interactive I/O, then the vdev is considered to be "idle", and the number * of concurrently-active non-interactive I/O's is increased to *_max_active. */ static uint_t zfs_vdev_nia_delay = 5; /* * Some HDDs tend to prioritize sequential I/O so high that concurrent * random I/O latency reaches several seconds. On some HDDs it happens * even if sequential I/Os are submitted one at a time, and so setting * *_max_active to 1 does not help. To prevent non-interactive I/Os, like * scrub, from monopolizing the device no more than zfs_vdev_nia_credit * I/Os can be sent while there are outstanding incomplete interactive * I/Os. This enforced wait ensures the HDD services the interactive I/O * within a reasonable amount of time. */ static uint_t zfs_vdev_nia_credit = 5; /* * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. * For read I/Os, we also aggregate across small adjacency gaps; for writes * we include spans of optional I/Os to aid aggregation at the disk even when * they aren't able to help us aggregate at this level. */ static uint_t zfs_vdev_aggregation_limit = 1 << 20; static uint_t zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE; static uint_t zfs_vdev_read_gap_limit = 32 << 10; static uint_t zfs_vdev_write_gap_limit = 4 << 10; /* * Define the queue depth percentage for each top-level. This percentage is * used in conjunction with zfs_vdev_async_max_active to determine how many * allocations a specific top-level vdev should handle. Once the queue depth * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100 * then allocator will stop allocating blocks on that top-level device. * The default kernel setting is 1000% which will yield 100 allocations per * device. For userland testing, the default setting is 300% which equates * to 30 allocations per device. */ #ifdef _KERNEL uint_t zfs_vdev_queue_depth_pct = 1000; #else uint_t zfs_vdev_queue_depth_pct = 300; #endif /* * When performing allocations for a given metaslab, we want to make sure that * there are enough IOs to aggregate together to improve throughput. We want to * ensure that there are at least 128k worth of IOs that can be aggregated, and * we assume that the average allocation size is 4k, so we need the queue depth * to be 32 per allocator to get good aggregation of sequential writes. */ uint_t zfs_vdev_def_queue_depth = 32; /* * Allow TRIM I/Os to be aggregated. This should normally not be needed since * TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M) can be submitted * by the TRIM code in zfs_trim.c. */ static uint_t zfs_vdev_aggregate_trim = 0; static int vdev_queue_offset_compare(const void *x1, const void *x2) { const zio_t *z1 = (const zio_t *)x1; const zio_t *z2 = (const zio_t *)x2; int cmp = TREE_CMP(z1->io_offset, z2->io_offset); if (likely(cmp)) return (cmp); return (TREE_PCMP(z1, z2)); } static inline avl_tree_t * vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p) { return (&vq->vq_class[p].vqc_queued_tree); } static inline avl_tree_t * vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t) { ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE || t == ZIO_TYPE_TRIM); if (t == ZIO_TYPE_READ) return (&vq->vq_read_offset_tree); else if (t == ZIO_TYPE_WRITE) return (&vq->vq_write_offset_tree); else return (&vq->vq_trim_offset_tree); } static int vdev_queue_timestamp_compare(const void *x1, const void *x2) { const zio_t *z1 = (const zio_t *)x1; const zio_t *z2 = (const zio_t *)x2; int cmp = TREE_CMP(z1->io_timestamp, z2->io_timestamp); if (likely(cmp)) return (cmp); return (TREE_PCMP(z1, z2)); } static uint_t vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p) { switch (p) { case ZIO_PRIORITY_SYNC_READ: return (zfs_vdev_sync_read_min_active); case ZIO_PRIORITY_SYNC_WRITE: return (zfs_vdev_sync_write_min_active); case ZIO_PRIORITY_ASYNC_READ: return (zfs_vdev_async_read_min_active); case ZIO_PRIORITY_ASYNC_WRITE: return (zfs_vdev_async_write_min_active); case ZIO_PRIORITY_SCRUB: return (vq->vq_ia_active == 0 ? zfs_vdev_scrub_min_active : MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active)); case ZIO_PRIORITY_REMOVAL: return (vq->vq_ia_active == 0 ? zfs_vdev_removal_min_active : MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active)); case ZIO_PRIORITY_INITIALIZING: return (vq->vq_ia_active == 0 ?zfs_vdev_initializing_min_active: MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active)); case ZIO_PRIORITY_TRIM: return (zfs_vdev_trim_min_active); case ZIO_PRIORITY_REBUILD: return (vq->vq_ia_active == 0 ? zfs_vdev_rebuild_min_active : MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active)); default: panic("invalid priority %u", p); return (0); } } static uint_t vdev_queue_max_async_writes(spa_t *spa) { uint_t writes; uint64_t dirty = 0; dsl_pool_t *dp = spa_get_dsl(spa); uint64_t min_bytes = zfs_dirty_data_max * zfs_vdev_async_write_active_min_dirty_percent / 100; uint64_t max_bytes = zfs_dirty_data_max * zfs_vdev_async_write_active_max_dirty_percent / 100; /* * Async writes may occur before the assignment of the spa's * dsl_pool_t if a self-healing zio is issued prior to the * completion of dmu_objset_open_impl(). */ if (dp == NULL) return (zfs_vdev_async_write_max_active); /* * Sync tasks correspond to interactive user actions. To reduce the * execution time of those actions we push data out as fast as possible. */ dirty = dp->dp_dirty_total; if (dirty > max_bytes || spa_has_pending_synctask(spa)) return (zfs_vdev_async_write_max_active); if (dirty < min_bytes) return (zfs_vdev_async_write_min_active); /* * linear interpolation: * slope = (max_writes - min_writes) / (max_bytes - min_bytes) * move right by min_bytes * move up by min_writes */ writes = (dirty - min_bytes) * (zfs_vdev_async_write_max_active - zfs_vdev_async_write_min_active) / (max_bytes - min_bytes) + zfs_vdev_async_write_min_active; ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); return (writes); } static uint_t vdev_queue_class_max_active(spa_t *spa, vdev_queue_t *vq, zio_priority_t p) { switch (p) { case ZIO_PRIORITY_SYNC_READ: return (zfs_vdev_sync_read_max_active); case ZIO_PRIORITY_SYNC_WRITE: return (zfs_vdev_sync_write_max_active); case ZIO_PRIORITY_ASYNC_READ: return (zfs_vdev_async_read_max_active); case ZIO_PRIORITY_ASYNC_WRITE: return (vdev_queue_max_async_writes(spa)); case ZIO_PRIORITY_SCRUB: if (vq->vq_ia_active > 0) { return (MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active)); } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) return (MAX(1, zfs_vdev_scrub_min_active)); return (zfs_vdev_scrub_max_active); case ZIO_PRIORITY_REMOVAL: if (vq->vq_ia_active > 0) { return (MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active)); } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) return (MAX(1, zfs_vdev_removal_min_active)); return (zfs_vdev_removal_max_active); case ZIO_PRIORITY_INITIALIZING: if (vq->vq_ia_active > 0) { return (MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active)); } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) return (MAX(1, zfs_vdev_initializing_min_active)); return (zfs_vdev_initializing_max_active); case ZIO_PRIORITY_TRIM: return (zfs_vdev_trim_max_active); case ZIO_PRIORITY_REBUILD: if (vq->vq_ia_active > 0) { return (MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active)); } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) return (MAX(1, zfs_vdev_rebuild_min_active)); return (zfs_vdev_rebuild_max_active); default: panic("invalid priority %u", p); return (0); } } /* * Return the i/o class to issue from, or ZIO_PRIORITY_NUM_QUEUEABLE if * there is no eligible class. */ static zio_priority_t vdev_queue_class_to_issue(vdev_queue_t *vq) { spa_t *spa = vq->vq_vdev->vdev_spa; zio_priority_t p, n; if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) return (ZIO_PRIORITY_NUM_QUEUEABLE); /* * Find a queue that has not reached its minimum # outstanding i/os. * Do round-robin to reduce starvation due to zfs_vdev_max_active * and vq_nia_credit limits. */ for (n = 0; n < ZIO_PRIORITY_NUM_QUEUEABLE; n++) { p = (vq->vq_last_prio + n + 1) % ZIO_PRIORITY_NUM_QUEUEABLE; if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && vq->vq_class[p].vqc_active < vdev_queue_class_min_active(vq, p)) { vq->vq_last_prio = p; return (p); } } /* * If we haven't found a queue, look for one that hasn't reached its * maximum # outstanding i/os. */ for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && vq->vq_class[p].vqc_active < vdev_queue_class_max_active(spa, vq, p)) { vq->vq_last_prio = p; return (p); } } /* No eligible queued i/os */ return (ZIO_PRIORITY_NUM_QUEUEABLE); } void vdev_queue_init(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; zio_priority_t p; mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); vq->vq_vdev = vd; taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent); avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_queue_node)); avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ), vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_offset_node)); avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE), vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_offset_node)); avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM), vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_offset_node)); for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { int (*compfn) (const void *, const void *); /* * The synchronous/trim i/o queues are dispatched in FIFO rather * than LBA order. This provides more consistent latency for * these i/os. */ if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE || p == ZIO_PRIORITY_TRIM) { compfn = vdev_queue_timestamp_compare; } else { compfn = vdev_queue_offset_compare; } avl_create(vdev_queue_class_tree(vq, p), compfn, sizeof (zio_t), offsetof(struct zio, io_queue_node)); } vq->vq_last_offset = 0; } void vdev_queue_fini(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) avl_destroy(vdev_queue_class_tree(vq, p)); avl_destroy(&vq->vq_active_tree); avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ)); avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE)); avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM)); mutex_destroy(&vq->vq_lock); } static void vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) { ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); avl_add(vdev_queue_type_tree(vq, zio->io_type), zio); } static void vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) { ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio); } static boolean_t vdev_queue_is_interactive(zio_priority_t p) { switch (p) { case ZIO_PRIORITY_SCRUB: case ZIO_PRIORITY_REMOVAL: case ZIO_PRIORITY_INITIALIZING: case ZIO_PRIORITY_REBUILD: return (B_FALSE); default: return (B_TRUE); } } static void vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) { ASSERT(MUTEX_HELD(&vq->vq_lock)); ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); vq->vq_class[zio->io_priority].vqc_active++; if (vdev_queue_is_interactive(zio->io_priority)) { if (++vq->vq_ia_active == 1) vq->vq_nia_credit = 1; } else if (vq->vq_ia_active > 0) { vq->vq_nia_credit--; } avl_add(&vq->vq_active_tree, zio); } static void vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) { ASSERT(MUTEX_HELD(&vq->vq_lock)); ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); vq->vq_class[zio->io_priority].vqc_active--; if (vdev_queue_is_interactive(zio->io_priority)) { if (--vq->vq_ia_active == 0) vq->vq_nia_credit = 0; else vq->vq_nia_credit = zfs_vdev_nia_credit; } else if (vq->vq_ia_active == 0) vq->vq_nia_credit++; avl_remove(&vq->vq_active_tree, zio); } static void vdev_queue_agg_io_done(zio_t *aio) { abd_free(aio->io_abd); } /* * Compute the range spanned by two i/os, which is the endpoint of the last * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. */ #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) /* * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this * by creating a gang ABD from the adjacent ZIOs io_abd's. By using * a gang ABD we avoid doing memory copies to and from the parent, * child ZIOs. The gang ABD also accounts for gaps between adjacent * io_offsets by simply getting the zero ABD for writes or allocating * a new ABD for reads and placing them in the gang ABD as well. */ static zio_t * vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) { zio_t *first, *last, *aio, *dio, *mandatory, *nio; uint64_t maxgap = 0; uint64_t size; uint64_t limit; int maxblocksize; boolean_t stretch = B_FALSE; avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); zio_flag_t flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; uint64_t next_offset; abd_t *abd; maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa); if (vq->vq_vdev->vdev_nonrot) limit = zfs_vdev_aggregation_limit_non_rotating; else limit = zfs_vdev_aggregation_limit; limit = MIN(limit, maxblocksize); if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0) return (NULL); /* * While TRIM commands could be aggregated based on offset this * behavior is disabled until it's determined to be beneficial. */ if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim) return (NULL); /* * I/Os to distributed spares are directly dispatched to the dRAID * leaf vdevs for aggregation. See the comment at the end of the * zio_vdev_io_start() function. */ ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops); first = last = zio; if (zio->io_type == ZIO_TYPE_READ) maxgap = zfs_vdev_read_gap_limit; /* * We can aggregate I/Os that are sufficiently adjacent and of * the same flavor, as expressed by the AGG_INHERIT flags. * The latter requirement is necessary so that certain * attributes of the I/O, such as whether it's a normal I/O * or a scrub/resilver, can be preserved in the aggregate. * We can include optional I/Os, but don't allow them * to begin a range as they add no benefit in that situation. */ /* * We keep track of the last non-optional I/O. */ mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; /* * Walk backwards through sufficiently contiguous I/Os * recording the last non-optional I/O. */ while ((dio = AVL_PREV(t, first)) != NULL && (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && IO_SPAN(dio, last) <= limit && IO_GAP(dio, first) <= maxgap && dio->io_type == zio->io_type) { first = dio; if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) mandatory = first; } /* * Skip any initial optional I/Os. */ while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { first = AVL_NEXT(t, first); ASSERT(first != NULL); } /* * Walk forward through sufficiently contiguous I/Os. * The aggregation limit does not apply to optional i/os, so that * we can issue contiguous writes even if they are larger than the * aggregation limit. */ while ((dio = AVL_NEXT(t, last)) != NULL && (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && (IO_SPAN(first, dio) <= limit || (dio->io_flags & ZIO_FLAG_OPTIONAL)) && IO_SPAN(first, dio) <= maxblocksize && IO_GAP(last, dio) <= maxgap && dio->io_type == zio->io_type) { last = dio; if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) mandatory = last; } /* * Now that we've established the range of the I/O aggregation * we must decide what to do with trailing optional I/Os. * For reads, there's nothing to do. While we are unable to * aggregate further, it's possible that a trailing optional * I/O would allow the underlying device to aggregate with * subsequent I/Os. We must therefore determine if the next * non-optional I/O is close enough to make aggregation * worthwhile. */ if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { zio_t *nio = last; while ((dio = AVL_NEXT(t, nio)) != NULL && IO_GAP(nio, dio) == 0 && IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { nio = dio; if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { stretch = B_TRUE; break; } } } if (stretch) { /* * We are going to include an optional io in our aggregated * span, thus closing the write gap. Only mandatory i/os can * start aggregated spans, so make sure that the next i/o * after our span is mandatory. */ dio = AVL_NEXT(t, last); ASSERT3P(dio, !=, NULL); dio->io_flags &= ~ZIO_FLAG_OPTIONAL; } else { /* do not include the optional i/o */ while (last != mandatory && last != first) { ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); last = AVL_PREV(t, last); ASSERT(last != NULL); } } if (first == last) return (NULL); size = IO_SPAN(first, last); ASSERT3U(size, <=, maxblocksize); abd = abd_alloc_gang(); if (abd == NULL) return (NULL); aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, abd, size, first->io_type, zio->io_priority, - flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, - vdev_queue_agg_io_done, NULL); + flags | ZIO_FLAG_DONT_QUEUE, vdev_queue_agg_io_done, NULL); aio->io_timestamp = first->io_timestamp; nio = first; next_offset = first->io_offset; do { dio = nio; nio = AVL_NEXT(t, dio); ASSERT3P(dio, !=, NULL); zio_add_child(dio, aio); vdev_queue_io_remove(vq, dio); if (dio->io_offset != next_offset) { /* allocate a buffer for a read gap */ ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ); ASSERT3U(dio->io_offset, >, next_offset); abd = abd_alloc_for_io( dio->io_offset - next_offset, B_TRUE); abd_gang_add(aio->io_abd, abd, B_TRUE); } if (dio->io_abd && (dio->io_size != abd_get_size(dio->io_abd))) { /* abd size not the same as IO size */ ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size); abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size); abd_gang_add(aio->io_abd, abd, B_TRUE); } else { if (dio->io_flags & ZIO_FLAG_NODATA) { /* allocate a buffer for a write gap */ ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); ASSERT3P(dio->io_abd, ==, NULL); abd_gang_add(aio->io_abd, abd_get_zeros(dio->io_size), B_TRUE); } else { /* * We pass B_FALSE to abd_gang_add() * because we did not allocate a new * ABD, so it is assumed the caller * will free this ABD. */ abd_gang_add(aio->io_abd, dio->io_abd, B_FALSE); } } next_offset = dio->io_offset + dio->io_size; } while (dio != last); ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size); /* * Callers must call zio_vdev_io_bypass() and zio_execute() for * aggregated (parent) I/Os so that we could avoid dropping the * queue's lock here to avoid a deadlock that we could encounter * due to lock order reversal between vq_lock and io_lock in * zio_change_priority(). */ return (aio); } static zio_t * vdev_queue_io_to_issue(vdev_queue_t *vq) { zio_t *zio, *aio; zio_priority_t p; avl_index_t idx; avl_tree_t *tree; again: ASSERT(MUTEX_HELD(&vq->vq_lock)); p = vdev_queue_class_to_issue(vq); if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { /* No eligible queued i/os */ return (NULL); } /* * For LBA-ordered queues (async / scrub / initializing), issue the * i/o which follows the most recently issued i/o in LBA (offset) order. * * For FIFO queues (sync/trim), issue the i/o with the lowest timestamp. */ tree = vdev_queue_class_tree(vq, p); vq->vq_io_search.io_timestamp = 0; vq->vq_io_search.io_offset = vq->vq_last_offset - 1; VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL); zio = avl_nearest(tree, idx, AVL_AFTER); if (zio == NULL) zio = avl_first(tree); ASSERT3U(zio->io_priority, ==, p); aio = vdev_queue_aggregate(vq, zio); if (aio != NULL) { zio = aio; } else { vdev_queue_io_remove(vq, zio); /* * If the I/O is or was optional and therefore has no data, we * need to simply discard it. We need to drop the vdev queue's * lock to avoid a deadlock that we could encounter since this * I/O will complete immediately. */ if (zio->io_flags & ZIO_FLAG_NODATA) { mutex_exit(&vq->vq_lock); zio_vdev_io_bypass(zio); zio_execute(zio); mutex_enter(&vq->vq_lock); goto again; } } vdev_queue_pending_add(vq, zio); vq->vq_last_offset = zio->io_offset + zio->io_size; return (zio); } zio_t * vdev_queue_io(zio_t *zio) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; zio_t *dio, *nio; zio_link_t *zl = NULL; if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) return (zio); /* * Children i/os inherent their parent's priority, which might * not match the child's i/o type. Fix it up here. */ if (zio->io_type == ZIO_TYPE_READ) { ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && zio->io_priority != ZIO_PRIORITY_ASYNC_READ && zio->io_priority != ZIO_PRIORITY_SCRUB && zio->io_priority != ZIO_PRIORITY_REMOVAL && zio->io_priority != ZIO_PRIORITY_INITIALIZING && zio->io_priority != ZIO_PRIORITY_REBUILD) { zio->io_priority = ZIO_PRIORITY_ASYNC_READ; } } else if (zio->io_type == ZIO_TYPE_WRITE) { ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE && zio->io_priority != ZIO_PRIORITY_REMOVAL && zio->io_priority != ZIO_PRIORITY_INITIALIZING && zio->io_priority != ZIO_PRIORITY_REBUILD) { zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; } } else { ASSERT(zio->io_type == ZIO_TYPE_TRIM); ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM); } - zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; + zio->io_flags |= ZIO_FLAG_DONT_QUEUE; zio->io_timestamp = gethrtime(); mutex_enter(&vq->vq_lock); vdev_queue_io_add(vq, zio); nio = vdev_queue_io_to_issue(vq); mutex_exit(&vq->vq_lock); if (nio == NULL) return (NULL); if (nio->io_done == vdev_queue_agg_io_done) { while ((dio = zio_walk_parents(nio, &zl)) != NULL) { ASSERT3U(dio->io_type, ==, nio->io_type); zio_vdev_io_bypass(dio); zio_execute(dio); } zio_nowait(nio); return (NULL); } return (nio); } void vdev_queue_io_done(zio_t *zio) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; zio_t *dio, *nio; zio_link_t *zl = NULL; hrtime_t now = gethrtime(); vq->vq_io_complete_ts = now; vq->vq_io_delta_ts = zio->io_delta = now - zio->io_timestamp; mutex_enter(&vq->vq_lock); vdev_queue_pending_remove(vq, zio); while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { mutex_exit(&vq->vq_lock); if (nio->io_done == vdev_queue_agg_io_done) { while ((dio = zio_walk_parents(nio, &zl)) != NULL) { ASSERT3U(dio->io_type, ==, nio->io_type); zio_vdev_io_bypass(dio); zio_execute(dio); } zio_nowait(nio); } else { zio_vdev_io_reissue(nio); zio_execute(nio); } mutex_enter(&vq->vq_lock); } mutex_exit(&vq->vq_lock); } void vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; avl_tree_t *tree; /* * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio * code to issue IOs without adding them to the vdev queue. In this * case, the zio is already going to be issued as quickly as possible * and so it doesn't need any reprioritization to help. */ if (zio->io_priority == ZIO_PRIORITY_NOW) return; ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); if (zio->io_type == ZIO_TYPE_READ) { if (priority != ZIO_PRIORITY_SYNC_READ && priority != ZIO_PRIORITY_ASYNC_READ && priority != ZIO_PRIORITY_SCRUB) priority = ZIO_PRIORITY_ASYNC_READ; } else { ASSERT(zio->io_type == ZIO_TYPE_WRITE); if (priority != ZIO_PRIORITY_SYNC_WRITE && priority != ZIO_PRIORITY_ASYNC_WRITE) priority = ZIO_PRIORITY_ASYNC_WRITE; } mutex_enter(&vq->vq_lock); /* * If the zio is in none of the queues we can simply change * the priority. If the zio is waiting to be submitted we must * remove it from the queue and re-insert it with the new priority. * Otherwise, the zio is currently active and we cannot change its * priority. */ tree = vdev_queue_class_tree(vq, zio->io_priority); if (avl_find(tree, zio, NULL) == zio) { avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); zio->io_priority = priority; avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); } else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) { zio->io_priority = priority; } mutex_exit(&vq->vq_lock); } /* * As these two methods are only used for load calculations we're not * concerned if we get an incorrect value on 32bit platforms due to lack of * vq_lock mutex use here, instead we prefer to keep it lock free for * performance. */ int vdev_queue_length(vdev_t *vd) { return (avl_numnodes(&vd->vdev_queue.vq_active_tree)); } uint64_t vdev_queue_last_offset(vdev_t *vd) { return (vd->vdev_queue.vq_last_offset); } ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, UINT, ZMOD_RW, "Max vdev I/O aggregation size"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, UINT, ZMOD_RW, "Max vdev I/O aggregation size for non-rotating media"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregate_trim, UINT, ZMOD_RW, "Allow TRIM I/O to be aggregated"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, UINT, ZMOD_RW, "Aggregate read I/O over gap"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, UINT, ZMOD_RW, "Aggregate write I/O over gap"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, UINT, ZMOD_RW, "Maximum number of active I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent, UINT, ZMOD_RW, "Async write concurrency max threshold"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent, UINT, ZMOD_RW, "Async write concurrency min threshold"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, UINT, ZMOD_RW, "Max active async read I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, UINT, ZMOD_RW, "Min active async read I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, UINT, ZMOD_RW, "Max active async write I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, UINT, ZMOD_RW, "Min active async write I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, UINT, ZMOD_RW, "Max active initializing I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, UINT, ZMOD_RW, "Min active initializing I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, UINT, ZMOD_RW, "Max active removal I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, UINT, ZMOD_RW, "Min active removal I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, UINT, ZMOD_RW, "Max active scrub I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, UINT, ZMOD_RW, "Min active scrub I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, UINT, ZMOD_RW, "Max active sync read I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, UINT, ZMOD_RW, "Min active sync read I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, UINT, ZMOD_RW, "Max active sync write I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, UINT, ZMOD_RW, "Min active sync write I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, UINT, ZMOD_RW, "Max active trim/discard I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, UINT, ZMOD_RW, "Min active trim/discard I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, UINT, ZMOD_RW, "Max active rebuild I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, UINT, ZMOD_RW, "Min active rebuild I/Os per vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, UINT, ZMOD_RW, "Number of non-interactive I/Os to allow in sequence"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, UINT, ZMOD_RW, "Number of non-interactive I/Os before _max_active"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, queue_depth_pct, UINT, ZMOD_RW, "Queue depth percentage for each top-level vdev"); ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, def_queue_depth, UINT, ZMOD_RW, "Default queue depth for each allocator"); diff --git a/module/zfs/zio.c b/module/zfs/zio.c index c17ca5e1d651..d7b2217623e6 100644 --- a/module/zfs/zio.c +++ b/module/zfs/zio.c @@ -1,5167 +1,5154 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2022 by Delphix. All rights reserved. * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019, Allan Jude * Copyright (c) 2021, Datto, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * ========================================================================== * I/O type descriptions * ========================================================================== */ const char *const zio_type_name[ZIO_TYPES] = { /* * Note: Linux kernel thread name length is limited * so these names will differ from upstream open zfs. */ "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" }; int zio_dva_throttle_enabled = B_TRUE; static int zio_deadman_log_all = B_FALSE; /* * ========================================================================== * I/O kmem caches * ========================================================================== */ static kmem_cache_t *zio_cache; static kmem_cache_t *zio_link_cache; kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; #if defined(ZFS_DEBUG) && !defined(_KERNEL) static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; #endif /* Mark IOs as "slow" if they take longer than 30 seconds */ static uint_t zio_slow_io_ms = (30 * MILLISEC); #define BP_SPANB(indblkshift, level) \ (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) #define COMPARE_META_LEVEL 0x80000000ul /* * The following actions directly effect the spa's sync-to-convergence logic. * The values below define the sync pass when we start performing the action. * Care should be taken when changing these values as they directly impact * spa_sync() performance. Tuning these values may introduce subtle performance * pathologies and should only be done in the context of performance analysis. * These tunables will eventually be removed and replaced with #defines once * enough analysis has been done to determine optimal values. * * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that * regular blocks are not deferred. * * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable * compression (including of metadata). In practice, we don't have this * many sync passes, so this has no effect. * * The original intent was that disabling compression would help the sync * passes to converge. However, in practice disabling compression increases * the average number of sync passes, because when we turn compression off, a * lot of block's size will change and thus we have to re-allocate (not * overwrite) them. It also increases the number of 128KB allocations (e.g. * for indirect blocks and spacemaps) because these will not be compressed. * The 128K allocations are especially detrimental to performance on highly * fragmented systems, which may have very few free segments of this size, * and may need to load new metaslabs to satisfy 128K allocations. */ /* defer frees starting in this pass */ uint_t zfs_sync_pass_deferred_free = 2; /* don't compress starting in this pass */ static uint_t zfs_sync_pass_dont_compress = 8; /* rewrite new bps starting in this pass */ static uint_t zfs_sync_pass_rewrite = 2; /* * An allocating zio is one that either currently has the DVA allocate * stage set or will have it later in its lifetime. */ #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) /* * Enable smaller cores by excluding metadata * allocations as well. */ int zio_exclude_metadata = 0; static int zio_requeue_io_start_cut_in_line = 1; #ifdef ZFS_DEBUG static const int zio_buf_debug_limit = 16384; #else static const int zio_buf_debug_limit = 0; #endif static inline void __zio_execute(zio_t *zio); static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); void zio_init(void) { size_t c; zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); zio_link_cache = kmem_cache_create("zio_link_cache", sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); /* * For small buffers, we want a cache for each multiple of * SPA_MINBLOCKSIZE. For larger buffers, we want a cache * for each quarter-power of 2. */ for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { size_t size = (c + 1) << SPA_MINBLOCKSHIFT; size_t p2 = size; size_t align = 0; size_t data_cflags, cflags; data_cflags = KMC_NODEBUG; cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; while (!ISP2(p2)) p2 &= p2 - 1; #ifndef _KERNEL /* * If we are using watchpoints, put each buffer on its own page, * to eliminate the performance overhead of trapping to the * kernel when modifying a non-watched buffer that shares the * page with a watched buffer. */ if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) continue; /* * Here's the problem - on 4K native devices in userland on * Linux using O_DIRECT, buffers must be 4K aligned or I/O * will fail with EINVAL, causing zdb (and others) to coredump. * Since userland probably doesn't need optimized buffer caches, * we just force 4K alignment on everything. */ align = 8 * SPA_MINBLOCKSIZE; #else if (size < PAGESIZE) { align = SPA_MINBLOCKSIZE; } else if (IS_P2ALIGNED(size, p2 >> 2)) { align = PAGESIZE; } #endif if (align != 0) { char name[36]; if (cflags == data_cflags) { /* * Resulting kmem caches would be identical. * Save memory by creating only one. */ (void) snprintf(name, sizeof (name), "zio_buf_comb_%lu", (ulong_t)size); zio_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, NULL, cflags); zio_data_buf_cache[c] = zio_buf_cache[c]; continue; } (void) snprintf(name, sizeof (name), "zio_buf_%lu", (ulong_t)size); zio_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, NULL, cflags); (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", (ulong_t)size); zio_data_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, NULL, data_cflags); } } while (--c != 0) { ASSERT(zio_buf_cache[c] != NULL); if (zio_buf_cache[c - 1] == NULL) zio_buf_cache[c - 1] = zio_buf_cache[c]; ASSERT(zio_data_buf_cache[c] != NULL); if (zio_data_buf_cache[c - 1] == NULL) zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; } zio_inject_init(); lz4_init(); } void zio_fini(void) { size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; #if defined(ZFS_DEBUG) && !defined(_KERNEL) for (size_t i = 0; i < n; i++) { if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) (void) printf("zio_fini: [%d] %llu != %llu\n", (int)((i + 1) << SPA_MINBLOCKSHIFT), (long long unsigned)zio_buf_cache_allocs[i], (long long unsigned)zio_buf_cache_frees[i]); } #endif /* * The same kmem cache can show up multiple times in both zio_buf_cache * and zio_data_buf_cache. Do a wasteful but trivially correct scan to * sort it out. */ for (size_t i = 0; i < n; i++) { kmem_cache_t *cache = zio_buf_cache[i]; if (cache == NULL) continue; for (size_t j = i; j < n; j++) { if (cache == zio_buf_cache[j]) zio_buf_cache[j] = NULL; if (cache == zio_data_buf_cache[j]) zio_data_buf_cache[j] = NULL; } kmem_cache_destroy(cache); } for (size_t i = 0; i < n; i++) { kmem_cache_t *cache = zio_data_buf_cache[i]; if (cache == NULL) continue; for (size_t j = i; j < n; j++) { if (cache == zio_data_buf_cache[j]) zio_data_buf_cache[j] = NULL; } kmem_cache_destroy(cache); } for (size_t i = 0; i < n; i++) { VERIFY3P(zio_buf_cache[i], ==, NULL); VERIFY3P(zio_data_buf_cache[i], ==, NULL); } kmem_cache_destroy(zio_link_cache); kmem_cache_destroy(zio_cache); zio_inject_fini(); lz4_fini(); } /* * ========================================================================== * Allocate and free I/O buffers * ========================================================================== */ /* * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a * crashdump if the kernel panics, so use it judiciously. Obviously, it's * useful to inspect ZFS metadata, but if possible, we should avoid keeping * excess / transient data in-core during a crashdump. */ void * zio_buf_alloc(size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); #if defined(ZFS_DEBUG) && !defined(_KERNEL) atomic_add_64(&zio_buf_cache_allocs[c], 1); #endif return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); } /* * Use zio_data_buf_alloc to allocate data. The data will not appear in a * crashdump if the kernel panics. This exists so that we will limit the amount * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount * of kernel heap dumped to disk when the kernel panics) */ void * zio_data_buf_alloc(size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); } void zio_buf_free(void *buf, size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); #if defined(ZFS_DEBUG) && !defined(_KERNEL) atomic_add_64(&zio_buf_cache_frees[c], 1); #endif kmem_cache_free(zio_buf_cache[c], buf); } void zio_data_buf_free(void *buf, size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); kmem_cache_free(zio_data_buf_cache[c], buf); } static void zio_abd_free(void *abd, size_t size) { (void) size; abd_free((abd_t *)abd); } /* * ========================================================================== * Push and pop I/O transform buffers * ========================================================================== */ void zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, zio_transform_func_t *transform) { zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); zt->zt_orig_abd = zio->io_abd; zt->zt_orig_size = zio->io_size; zt->zt_bufsize = bufsize; zt->zt_transform = transform; zt->zt_next = zio->io_transform_stack; zio->io_transform_stack = zt; zio->io_abd = data; zio->io_size = size; } void zio_pop_transforms(zio_t *zio) { zio_transform_t *zt; while ((zt = zio->io_transform_stack) != NULL) { if (zt->zt_transform != NULL) zt->zt_transform(zio, zt->zt_orig_abd, zt->zt_orig_size); if (zt->zt_bufsize != 0) abd_free(zio->io_abd); zio->io_abd = zt->zt_orig_abd; zio->io_size = zt->zt_orig_size; zio->io_transform_stack = zt->zt_next; kmem_free(zt, sizeof (zio_transform_t)); } } /* * ========================================================================== * I/O transform callbacks for subblocks, decompression, and decryption * ========================================================================== */ static void zio_subblock(zio_t *zio, abd_t *data, uint64_t size) { ASSERT(zio->io_size > size); if (zio->io_type == ZIO_TYPE_READ) abd_copy(data, zio->io_abd, size); } static void zio_decompress(zio_t *zio, abd_t *data, uint64_t size) { if (zio->io_error == 0) { void *tmp = abd_borrow_buf(data, size); int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), zio->io_abd, tmp, zio->io_size, size, &zio->io_prop.zp_complevel); abd_return_buf_copy(data, tmp, size); if (zio_injection_enabled && ret == 0) ret = zio_handle_fault_injection(zio, EINVAL); if (ret != 0) zio->io_error = SET_ERROR(EIO); } } static void zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) { int ret; void *tmp; blkptr_t *bp = zio->io_bp; spa_t *spa = zio->io_spa; uint64_t dsobj = zio->io_bookmark.zb_objset; uint64_t lsize = BP_GET_LSIZE(bp); dmu_object_type_t ot = BP_GET_TYPE(bp); uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; boolean_t no_crypt = B_FALSE; ASSERT(BP_USES_CRYPT(bp)); ASSERT3U(size, !=, 0); if (zio->io_error != 0) return; /* * Verify the cksum of MACs stored in an indirect bp. It will always * be possible to verify this since it does not require an encryption * key. */ if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { zio_crypt_decode_mac_bp(bp, mac); if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { /* * We haven't decompressed the data yet, but * zio_crypt_do_indirect_mac_checksum() requires * decompressed data to be able to parse out the MACs * from the indirect block. We decompress it now and * throw away the result after we are finished. */ tmp = zio_buf_alloc(lsize); ret = zio_decompress_data(BP_GET_COMPRESS(bp), zio->io_abd, tmp, zio->io_size, lsize, &zio->io_prop.zp_complevel); if (ret != 0) { ret = SET_ERROR(EIO); goto error; } ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); zio_buf_free(tmp, lsize); } else { ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); } abd_copy(data, zio->io_abd, size); if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { ret = zio_handle_decrypt_injection(spa, &zio->io_bookmark, ot, ECKSUM); } if (ret != 0) goto error; return; } /* * If this is an authenticated block, just check the MAC. It would be * nice to separate this out into its own flag, but when this was done, * we had run out of bits in what is now zio_flag_t. Future cleanup * could make this a flag bit. */ if (BP_IS_AUTHENTICATED(bp)) { if (ot == DMU_OT_OBJSET) { ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); } else { zio_crypt_decode_mac_bp(bp, mac); ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, zio->io_abd, size, mac); if (zio_injection_enabled && ret == 0) { ret = zio_handle_decrypt_injection(spa, &zio->io_bookmark, ot, ECKSUM); } } abd_copy(data, zio->io_abd, size); if (ret != 0) goto error; return; } zio_crypt_decode_params_bp(bp, salt, iv); if (ot == DMU_OT_INTENT_LOG) { tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); zio_crypt_decode_mac_zil(tmp, mac); abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); } else { zio_crypt_decode_mac_bp(bp, mac); } ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, zio->io_abd, &no_crypt); if (no_crypt) abd_copy(data, zio->io_abd, size); if (ret != 0) goto error; return; error: /* assert that the key was found unless this was speculative */ ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); /* * If there was a decryption / authentication error return EIO as * the io_error. If this was not a speculative zio, create an ereport. */ if (ret == ECKSUM) { zio->io_error = SET_ERROR(EIO); if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { spa_log_error(spa, &zio->io_bookmark, &zio->io_bp->blk_birth); (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, spa, NULL, &zio->io_bookmark, zio, 0); } } else { zio->io_error = ret; } } /* * ========================================================================== * I/O parent/child relationships and pipeline interlocks * ========================================================================== */ zio_t * zio_walk_parents(zio_t *cio, zio_link_t **zl) { list_t *pl = &cio->io_parent_list; *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); if (*zl == NULL) return (NULL); ASSERT((*zl)->zl_child == cio); return ((*zl)->zl_parent); } zio_t * zio_walk_children(zio_t *pio, zio_link_t **zl) { list_t *cl = &pio->io_child_list; ASSERT(MUTEX_HELD(&pio->io_lock)); *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); if (*zl == NULL) return (NULL); ASSERT((*zl)->zl_parent == pio); return ((*zl)->zl_child); } zio_t * zio_unique_parent(zio_t *cio) { zio_link_t *zl = NULL; zio_t *pio = zio_walk_parents(cio, &zl); VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); return (pio); } void zio_add_child(zio_t *pio, zio_t *cio) { zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); /* * Logical I/Os can have logical, gang, or vdev children. * Gang I/Os can have gang or vdev children. * Vdev I/Os can only have vdev children. * The following ASSERT captures all of these constraints. */ ASSERT3S(cio->io_child_type, <=, pio->io_child_type); zl->zl_parent = pio; zl->zl_child = cio; mutex_enter(&pio->io_lock); mutex_enter(&cio->io_lock); ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; list_insert_head(&pio->io_child_list, zl); list_insert_head(&cio->io_parent_list, zl); pio->io_child_count++; cio->io_parent_count++; mutex_exit(&cio->io_lock); mutex_exit(&pio->io_lock); } static void zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) { ASSERT(zl->zl_parent == pio); ASSERT(zl->zl_child == cio); mutex_enter(&pio->io_lock); mutex_enter(&cio->io_lock); list_remove(&pio->io_child_list, zl); list_remove(&cio->io_parent_list, zl); pio->io_child_count--; cio->io_parent_count--; mutex_exit(&cio->io_lock); mutex_exit(&pio->io_lock); kmem_cache_free(zio_link_cache, zl); } static boolean_t zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) { boolean_t waiting = B_FALSE; mutex_enter(&zio->io_lock); ASSERT(zio->io_stall == NULL); for (int c = 0; c < ZIO_CHILD_TYPES; c++) { if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) continue; uint64_t *countp = &zio->io_children[c][wait]; if (*countp != 0) { zio->io_stage >>= 1; ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); zio->io_stall = countp; waiting = B_TRUE; break; } } mutex_exit(&zio->io_lock); return (waiting); } __attribute__((always_inline)) static inline void zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, zio_t **next_to_executep) { uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; int *errorp = &pio->io_child_error[zio->io_child_type]; mutex_enter(&pio->io_lock); if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) *errorp = zio_worst_error(*errorp, zio->io_error); pio->io_reexecute |= zio->io_reexecute; ASSERT3U(*countp, >, 0); (*countp)--; if (*countp == 0 && pio->io_stall == countp) { zio_taskq_type_t type = pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : ZIO_TASKQ_INTERRUPT; pio->io_stall = NULL; mutex_exit(&pio->io_lock); /* * If we can tell the caller to execute this parent next, do * so. We only do this if the parent's zio type matches the * child's type. Otherwise dispatch the parent zio in its * own taskq. * * Having the caller execute the parent when possible reduces * locking on the zio taskq's, reduces context switch * overhead, and has no recursion penalty. Note that one * read from disk typically causes at least 3 zio's: a * zio_null(), the logical zio_read(), and then a physical * zio. When the physical ZIO completes, we are able to call * zio_done() on all 3 of these zio's from one invocation of * zio_execute() by returning the parent back to * zio_execute(). Since the parent isn't executed until this * thread returns back to zio_execute(), the caller should do * so promptly. * * In other cases, dispatching the parent prevents * overflowing the stack when we have deeply nested * parent-child relationships, as we do with the "mega zio" * of writes for spa_sync(), and the chain of ZIL blocks. */ if (next_to_executep != NULL && *next_to_executep == NULL && pio->io_type == zio->io_type) { *next_to_executep = pio; } else { zio_taskq_dispatch(pio, type, B_FALSE); } } else { mutex_exit(&pio->io_lock); } } static void zio_inherit_child_errors(zio_t *zio, enum zio_child c) { if (zio->io_child_error[c] != 0 && zio->io_error == 0) zio->io_error = zio->io_child_error[c]; } int zio_bookmark_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) return (-1); if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) return (1); if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) return (-1); if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) return (1); if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) return (-1); if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) return (1); if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) return (-1); if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) return (1); if (z1 < z2) return (-1); if (z1 > z2) return (1); return (0); } /* * ========================================================================== * Create the various types of I/O (read, write, free, etc) * ========================================================================== */ static zio_t * zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, void *private, zio_type_t type, zio_priority_t priority, zio_flag_t flags, vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) { zio_t *zio; IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); ASSERT(vd || stage == ZIO_STAGE_OPEN); IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); zio = kmem_cache_alloc(zio_cache, KM_SLEEP); memset(zio, 0, sizeof (zio_t)); mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); list_create(&zio->io_parent_list, sizeof (zio_link_t), offsetof(zio_link_t, zl_parent_node)); list_create(&zio->io_child_list, sizeof (zio_link_t), offsetof(zio_link_t, zl_child_node)); metaslab_trace_init(&zio->io_alloc_list); if (vd != NULL) zio->io_child_type = ZIO_CHILD_VDEV; else if (flags & ZIO_FLAG_GANG_CHILD) zio->io_child_type = ZIO_CHILD_GANG; else if (flags & ZIO_FLAG_DDT_CHILD) zio->io_child_type = ZIO_CHILD_DDT; else zio->io_child_type = ZIO_CHILD_LOGICAL; if (bp != NULL) { zio->io_bp = (blkptr_t *)bp; zio->io_bp_copy = *bp; zio->io_bp_orig = *bp; if (type != ZIO_TYPE_WRITE || zio->io_child_type == ZIO_CHILD_DDT) zio->io_bp = &zio->io_bp_copy; /* so caller can free */ if (zio->io_child_type == ZIO_CHILD_LOGICAL) zio->io_logical = zio; if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) pipeline |= ZIO_GANG_STAGES; } zio->io_spa = spa; zio->io_txg = txg; zio->io_done = done; zio->io_private = private; zio->io_type = type; zio->io_priority = priority; zio->io_vd = vd; zio->io_offset = offset; zio->io_orig_abd = zio->io_abd = data; zio->io_orig_size = zio->io_size = psize; zio->io_lsize = lsize; zio->io_orig_flags = zio->io_flags = flags; zio->io_orig_stage = zio->io_stage = stage; zio->io_orig_pipeline = zio->io_pipeline = pipeline; zio->io_pipeline_trace = ZIO_STAGE_OPEN; zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); if (zb != NULL) zio->io_bookmark = *zb; if (pio != NULL) { zio->io_metaslab_class = pio->io_metaslab_class; if (zio->io_logical == NULL) zio->io_logical = pio->io_logical; if (zio->io_child_type == ZIO_CHILD_GANG) zio->io_gang_leader = pio->io_gang_leader; zio_add_child(pio, zio); } taskq_init_ent(&zio->io_tqent); return (zio); } void zio_destroy(zio_t *zio) { metaslab_trace_fini(&zio->io_alloc_list); list_destroy(&zio->io_parent_list); list_destroy(&zio->io_child_list); mutex_destroy(&zio->io_lock); cv_destroy(&zio->io_cv); kmem_cache_free(zio_cache, zio); } zio_t * zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, void *private, zio_flag_t flags) { zio_t *zio; zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); return (zio); } zio_t * zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) { return (zio_null(NULL, spa, NULL, done, private, flags)); } static int zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, enum blk_verify_flag blk_verify, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); zfs_dbgmsg("bad blkptr at %px: " "DVA[0]=%#llx/%#llx " "DVA[1]=%#llx/%#llx " "DVA[2]=%#llx/%#llx " "prop=%#llx " "pad=%#llx,%#llx " "phys_birth=%#llx " "birth=%#llx " "fill=%#llx " "cksum=%#llx/%#llx/%#llx/%#llx", bp, (long long)bp->blk_dva[0].dva_word[0], (long long)bp->blk_dva[0].dva_word[1], (long long)bp->blk_dva[1].dva_word[0], (long long)bp->blk_dva[1].dva_word[1], (long long)bp->blk_dva[2].dva_word[0], (long long)bp->blk_dva[2].dva_word[1], (long long)bp->blk_prop, (long long)bp->blk_pad[0], (long long)bp->blk_pad[1], (long long)bp->blk_phys_birth, (long long)bp->blk_birth, (long long)bp->blk_fill, (long long)bp->blk_cksum.zc_word[0], (long long)bp->blk_cksum.zc_word[1], (long long)bp->blk_cksum.zc_word[2], (long long)bp->blk_cksum.zc_word[3]); switch (blk_verify) { case BLK_VERIFY_HALT: zfs_panic_recover("%s: %s", spa_name(spa), buf); break; case BLK_VERIFY_LOG: zfs_dbgmsg("%s: %s", spa_name(spa), buf); break; case BLK_VERIFY_ONLY: break; } return (1); } /* * Verify the block pointer fields contain reasonable values. This means * it only contains known object types, checksum/compression identifiers, * block sizes within the maximum allowed limits, valid DVAs, etc. * * If everything checks out B_TRUE is returned. The zfs_blkptr_verify * argument controls the behavior when an invalid field is detected. * * Values for blk_verify_flag: * BLK_VERIFY_ONLY: evaluate the block * BLK_VERIFY_LOG: evaluate the block and log problems * BLK_VERIFY_HALT: call zfs_panic_recover on error * * Values for blk_config_flag: * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be * obtained for reader * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better * performance */ boolean_t zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, enum blk_config_flag blk_config, enum blk_verify_flag blk_verify) { int errors = 0; if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %px has invalid TYPE %llu", bp, (longlong_t)BP_GET_TYPE(bp)); } if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %px has invalid CHECKSUM %llu", bp, (longlong_t)BP_GET_CHECKSUM(bp)); } if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %px has invalid COMPRESS %llu", bp, (longlong_t)BP_GET_COMPRESS(bp)); } if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %px has invalid LSIZE %llu", bp, (longlong_t)BP_GET_LSIZE(bp)); } if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %px has invalid PSIZE %llu", bp, (longlong_t)BP_GET_PSIZE(bp)); } if (BP_IS_EMBEDDED(bp)) { if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %px has invalid ETYPE %llu", bp, (longlong_t)BPE_GET_ETYPE(bp)); } } /* * Do not verify individual DVAs if the config is not trusted. This * will be done once the zio is executed in vdev_mirror_map_alloc. */ if (!spa->spa_trust_config) return (errors == 0); switch (blk_config) { case BLK_CONFIG_HELD: ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); break; case BLK_CONFIG_NEEDED: spa_config_enter(spa, SCL_VDEV, bp, RW_READER); break; case BLK_CONFIG_SKIP: return (errors == 0); default: panic("invalid blk_config %u", blk_config); } /* * Pool-specific checks. * * Note: it would be nice to verify that the blk_birth and * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() * allows the birth time of log blocks (and dmu_sync()-ed blocks * that are in the log) to be arbitrarily large. */ for (int i = 0; i < BP_GET_NDVAS(bp); i++) { const dva_t *dva = &bp->blk_dva[i]; uint64_t vdevid = DVA_GET_VDEV(dva); if (vdevid >= spa->spa_root_vdev->vdev_children) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %px DVA %u has invalid VDEV %llu", bp, i, (longlong_t)vdevid); continue; } vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; if (vd == NULL) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %px DVA %u has invalid VDEV %llu", bp, i, (longlong_t)vdevid); continue; } if (vd->vdev_ops == &vdev_hole_ops) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %px DVA %u has hole VDEV %llu", bp, i, (longlong_t)vdevid); continue; } if (vd->vdev_ops == &vdev_missing_ops) { /* * "missing" vdevs are valid during import, but we * don't have their detailed info (e.g. asize), so * we can't perform any more checks on them. */ continue; } uint64_t offset = DVA_GET_OFFSET(dva); uint64_t asize = DVA_GET_ASIZE(dva); if (DVA_GET_GANG(dva)) asize = vdev_gang_header_asize(vd); if (offset + asize > vd->vdev_asize) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %px DVA %u has invalid OFFSET %llu", bp, i, (longlong_t)offset); } } if (blk_config == BLK_CONFIG_NEEDED) spa_config_exit(spa, SCL_VDEV, bp); return (errors == 0); } boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) { (void) bp; uint64_t vdevid = DVA_GET_VDEV(dva); if (vdevid >= spa->spa_root_vdev->vdev_children) return (B_FALSE); vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; if (vd == NULL) return (B_FALSE); if (vd->vdev_ops == &vdev_hole_ops) return (B_FALSE); if (vd->vdev_ops == &vdev_missing_ops) { return (B_FALSE); } uint64_t offset = DVA_GET_OFFSET(dva); uint64_t asize = DVA_GET_ASIZE(dva); if (DVA_GET_GANG(dva)) asize = vdev_gang_header_asize(vd); if (offset + asize > vd->vdev_asize) return (B_FALSE); return (B_TRUE); } zio_t * zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, abd_t *data, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) { zio_t *zio; zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, data, size, size, done, private, ZIO_TYPE_READ, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); return (zio); } zio_t * zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, zio_done_func_t *ready, zio_done_func_t *children_ready, zio_done_func_t *physdone, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) { zio_t *zio; ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && zp->zp_compress >= ZIO_COMPRESS_OFF && zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && DMU_OT_IS_VALID(zp->zp_type) && zp->zp_level < 32 && zp->zp_copies > 0 && zp->zp_copies <= spa_max_replication(spa)); zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); zio->io_ready = ready; zio->io_children_ready = children_ready; zio->io_physdone = physdone; zio->io_prop = *zp; /* * Data can be NULL if we are going to call zio_write_override() to * provide the already-allocated BP. But we may need the data to * verify a dedup hit (if requested). In this case, don't try to * dedup (just take the already-allocated BP verbatim). Encrypted * dedup blocks need data as well so we also disable dedup in this * case. */ if (data == NULL && (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; } return (zio); } zio_t * zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) { zio_t *zio; zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); return (zio); } void zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite, boolean_t brtwrite) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(zio->io_stage == ZIO_STAGE_OPEN); ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); ASSERT(!brtwrite || !nopwrite); /* * We must reset the io_prop to match the values that existed * when the bp was first written by dmu_sync() keeping in mind * that nopwrite and dedup are mutually exclusive. */ zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; zio->io_prop.zp_nopwrite = nopwrite; zio->io_prop.zp_brtwrite = brtwrite; zio->io_prop.zp_copies = copies; zio->io_bp_override = bp; } void zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) { (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); /* * The check for EMBEDDED is a performance optimization. We * process the free here (by ignoring it) rather than * putting it on the list and then processing it in zio_free_sync(). */ if (BP_IS_EMBEDDED(bp)) return; /* * Frees that are for the currently-syncing txg, are not going to be * deferred, and which will not need to do a read (i.e. not GANG or * DEDUP), can be processed immediately. Otherwise, put them on the * in-memory list for later processing. * * Note that we only defer frees after zfs_sync_pass_deferred_free * when the log space map feature is disabled. [see relevant comment * in spa_sync_iterate_to_convergence()] */ if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || txg != spa->spa_syncing_txg || (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || brt_maybe_exists(spa, bp)) { metaslab_check_free(spa, bp); bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); } else { VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); } } /* * To improve performance, this function may return NULL if we were able * to do the free immediately. This avoids the cost of creating a zio * (and linking it to the parent, etc). */ zio_t * zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, zio_flag_t flags) { ASSERT(!BP_IS_HOLE(bp)); ASSERT(spa_syncing_txg(spa) == txg); if (BP_IS_EMBEDDED(bp)) return (NULL); metaslab_check_free(spa, bp); arc_freed(spa, bp); dsl_scan_freed(spa, bp); if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || brt_maybe_exists(spa, bp)) { /* * GANG, DEDUP and BRT blocks can induce a read (for the gang * block header, the DDT or the BRT), so issue them * asynchronously so that this thread is not tied up. */ enum zio_stage stage = ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); } else { metaslab_free(spa, bp, txg, B_FALSE); return (NULL); } } zio_t * zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, zio_done_func_t *done, void *private, zio_flag_t flags) { zio_t *zio; (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ? BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); if (BP_IS_EMBEDDED(bp)) return (zio_null(pio, spa, NULL, NULL, NULL, 0)); /* * A claim is an allocation of a specific block. Claims are needed * to support immediate writes in the intent log. The issue is that * immediate writes contain committed data, but in a txg that was * *not* committed. Upon opening the pool after an unclean shutdown, * the intent log claims all blocks that contain immediate write data * so that the SPA knows they're in use. * * All claims *must* be resolved in the first txg -- before the SPA * starts allocating blocks -- so that nothing is allocated twice. * If txg == 0 we just verify that the block is claimable. */ ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_min_claim_txg(spa)); ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); ASSERT0(zio->io_queued_timestamp); return (zio); } zio_t * zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, zio_done_func_t *done, void *private, zio_flag_t flags) { zio_t *zio; int c; if (vd->vdev_children == 0) { zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); zio->io_cmd = cmd; } else { zio = zio_null(pio, spa, NULL, NULL, NULL, flags); for (c = 0; c < vd->vdev_children; c++) zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, done, private, flags)); } return (zio); } zio_t * zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, enum trim_flag trim_flags) { zio_t *zio; ASSERT0(vd->vdev_children); ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); ASSERT3U(size, !=, 0); zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); zio->io_trim_flags = trim_flags; return (zio); } zio_t * zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, abd_t *data, int checksum, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, boolean_t labels) { zio_t *zio; ASSERT(vd->vdev_children == 0); ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); ASSERT3U(offset + size, <=, vd->vdev_psize); zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); zio->io_prop.zp_checksum = checksum; return (zio); } zio_t * zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, abd_t *data, int checksum, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, boolean_t labels) { zio_t *zio; ASSERT(vd->vdev_children == 0); ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); ASSERT3U(offset + size, <=, vd->vdev_psize); zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); zio->io_prop.zp_checksum = checksum; if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { /* * zec checksums are necessarily destructive -- they modify * the end of the write buffer to hold the verifier/checksum. * Therefore, we must make a local copy in case the data is * being written to multiple places in parallel. */ abd_t *wbuf = abd_alloc_sametype(data, size); abd_copy(wbuf, data, size); zio_push_transform(zio, wbuf, size, size, NULL); } return (zio); } /* * Create a child I/O to do some work for us. */ zio_t * zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, int type, zio_priority_t priority, zio_flag_t flags, zio_done_func_t *done, void *private) { enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; zio_t *zio; /* * vdev child I/Os do not propagate their error to the parent. * Therefore, for correct operation the caller *must* check for * and handle the error in the child i/o's done callback. * The only exceptions are i/os that we don't care about * (OPTIONAL or REPAIR). */ ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || done != NULL); if (type == ZIO_TYPE_READ && bp != NULL) { /* * If we have the bp, then the child should perform the * checksum and the parent need not. This pushes error * detection as close to the leaves as possible and * eliminates redundant checksums in the interior nodes. */ pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; } if (vd->vdev_ops->vdev_op_leaf) { ASSERT0(vd->vdev_children); offset += VDEV_LABEL_START_SIZE; } flags |= ZIO_VDEV_CHILD_FLAGS(pio); /* * If we've decided to do a repair, the write is not speculative -- * even if the original read was. */ if (flags & ZIO_FLAG_IO_REPAIR) flags &= ~ZIO_FLAG_SPECULATIVE; /* * If we're creating a child I/O that is not associated with a * top-level vdev, then the child zio is not an allocating I/O. * If this is a retried I/O then we ignore it since we will * have already processed the original allocating I/O. */ if (flags & ZIO_FLAG_IO_ALLOCATING && (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { ASSERT(pio->io_metaslab_class != NULL); ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); ASSERT(type == ZIO_TYPE_WRITE); ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || pio->io_child_type == ZIO_CHILD_GANG); flags &= ~ZIO_FLAG_IO_ALLOCATING; } zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, done, private, type, priority, flags, vd, offset, &pio->io_bookmark, ZIO_STAGE_VDEV_IO_START >> 1, pipeline); ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); zio->io_physdone = pio->io_physdone; if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) zio->io_logical->io_phys_children++; return (zio); } zio_t * zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, zio_type_t type, zio_priority_t priority, zio_flag_t flags, zio_done_func_t *done, void *private) { zio_t *zio; ASSERT(vd->vdev_ops->vdev_op_leaf); zio = zio_create(NULL, vd->vdev_spa, 0, NULL, data, size, size, done, private, type, priority, flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, vd, offset, NULL, ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); return (zio); } void zio_flush(zio_t *zio, vdev_t *vd) { zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); } void zio_shrink(zio_t *zio, uint64_t size) { ASSERT3P(zio->io_executor, ==, NULL); ASSERT3U(zio->io_orig_size, ==, zio->io_size); ASSERT3U(size, <=, zio->io_size); /* * We don't shrink for raidz because of problems with the * reconstruction when reading back less than the block size. * Note, BP_IS_RAIDZ() assumes no compression. */ ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); if (!BP_IS_RAIDZ(zio->io_bp)) { /* we are not doing a raw write */ ASSERT3U(zio->io_size, ==, zio->io_lsize); zio->io_orig_size = zio->io_size = zio->io_lsize = size; } } /* * ========================================================================== * Prepare to read and write logical blocks * ========================================================================== */ static zio_t * zio_read_bp_init(zio_t *zio) { blkptr_t *bp = zio->io_bp; uint64_t psize = BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && zio->io_child_type == ZIO_CHILD_LOGICAL && !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), psize, psize, zio_decompress); } if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || BP_HAS_INDIRECT_MAC_CKSUM(bp)) && zio->io_child_type == ZIO_CHILD_LOGICAL) { zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), psize, psize, zio_decrypt); } if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { int psize = BPE_GET_PSIZE(bp); void *data = abd_borrow_buf(zio->io_abd, psize); zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; decode_embedded_bp_compressed(bp, data); abd_return_buf_copy(zio->io_abd, data, psize); } else { ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); } - if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) - zio->io_flags |= ZIO_FLAG_DONT_CACHE; - - if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) - zio->io_flags |= ZIO_FLAG_DONT_CACHE; - if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) zio->io_pipeline = ZIO_DDT_READ_PIPELINE; return (zio); } static zio_t * zio_write_bp_init(zio_t *zio) { if (!IO_IS_ALLOCATING(zio)) return (zio); ASSERT(zio->io_child_type != ZIO_CHILD_DDT); if (zio->io_bp_override) { blkptr_t *bp = zio->io_bp; zio_prop_t *zp = &zio->io_prop; ASSERT(bp->blk_birth != zio->io_txg); *bp = *zio->io_bp_override; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (zp->zp_brtwrite) return (zio); ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); if (BP_IS_EMBEDDED(bp)) return (zio); /* * If we've been overridden and nopwrite is set then * set the flag accordingly to indicate that a nopwrite * has already occurred. */ if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { ASSERT(!zp->zp_dedup); ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); zio->io_flags |= ZIO_FLAG_NOPWRITE; return (zio); } ASSERT(!zp->zp_nopwrite); if (BP_IS_HOLE(bp) || !zp->zp_dedup) return (zio); ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && !zp->zp_encrypt) { BP_SET_DEDUP(bp, 1); zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; return (zio); } /* * We were unable to handle this as an override bp, treat * it as a regular write I/O. */ zio->io_bp_override = NULL; *bp = zio->io_bp_orig; zio->io_pipeline = zio->io_orig_pipeline; } return (zio); } static zio_t * zio_write_compress(zio_t *zio) { spa_t *spa = zio->io_spa; zio_prop_t *zp = &zio->io_prop; enum zio_compress compress = zp->zp_compress; blkptr_t *bp = zio->io_bp; uint64_t lsize = zio->io_lsize; uint64_t psize = zio->io_size; uint32_t pass = 1; /* * If our children haven't all reached the ready stage, * wait for them and then repeat this pipeline stage. */ if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { return (NULL); } if (!IO_IS_ALLOCATING(zio)) return (zio); if (zio->io_children_ready != NULL) { /* * Now that all our children are ready, run the callback * associated with this zio in case it wants to modify the * data to be written. */ ASSERT3U(zp->zp_level, >, 0); zio->io_children_ready(zio); } ASSERT(zio->io_child_type != ZIO_CHILD_DDT); ASSERT(zio->io_bp_override == NULL); if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { /* * We're rewriting an existing block, which means we're * working on behalf of spa_sync(). For spa_sync() to * converge, it must eventually be the case that we don't * have to allocate new blocks. But compression changes * the blocksize, which forces a reallocate, and makes * convergence take longer. Therefore, after the first * few passes, stop compressing to ensure convergence. */ pass = spa_sync_pass(spa); ASSERT(zio->io_txg == spa_syncing_txg(spa)); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!BP_GET_DEDUP(bp)); if (pass >= zfs_sync_pass_dont_compress) compress = ZIO_COMPRESS_OFF; /* Make sure someone doesn't change their mind on overwrites */ ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), spa_max_replication(spa)) == BP_GET_NDVAS(bp)); } /* If it's a compressed write that is not raw, compress the buffer. */ if (compress != ZIO_COMPRESS_OFF && !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { void *cbuf = NULL; psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize, zp->zp_complevel); if (psize == 0) { compress = ZIO_COMPRESS_OFF; } else if (psize >= lsize) { compress = ZIO_COMPRESS_OFF; if (cbuf != NULL) zio_buf_free(cbuf, lsize); } else if (!zp->zp_dedup && !zp->zp_encrypt && psize <= BPE_PAYLOAD_SIZE && zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { encode_embedded_bp_compressed(bp, cbuf, compress, lsize, psize); BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); BP_SET_TYPE(bp, zio->io_prop.zp_type); BP_SET_LEVEL(bp, zio->io_prop.zp_level); zio_buf_free(cbuf, lsize); bp->blk_birth = zio->io_txg; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; ASSERT(spa_feature_is_active(spa, SPA_FEATURE_EMBEDDED_DATA)); return (zio); } else { /* * Round compressed size up to the minimum allocation * size of the smallest-ashift device, and zero the * tail. This ensures that the compressed size of the * BP (and thus compressratio property) are correct, * in that we charge for the padding used to fill out * the last sector. */ ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); size_t rounded = (size_t)roundup(psize, spa->spa_min_alloc); if (rounded >= lsize) { compress = ZIO_COMPRESS_OFF; zio_buf_free(cbuf, lsize); psize = lsize; } else { abd_t *cdata = abd_get_from_buf(cbuf, lsize); abd_take_ownership_of_buf(cdata, B_TRUE); abd_zero_off(cdata, psize, rounded - psize); psize = rounded; zio_push_transform(zio, cdata, psize, lsize, NULL); } } /* * We were unable to handle this as an override bp, treat * it as a regular write I/O. */ zio->io_bp_override = NULL; *bp = zio->io_bp_orig; zio->io_pipeline = zio->io_orig_pipeline; } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && zp->zp_type == DMU_OT_DNODE) { /* * The DMU actually relies on the zio layer's compression * to free metadnode blocks that have had all contained * dnodes freed. As a result, even when doing a raw * receive, we must check whether the block can be compressed * to a hole. */ psize = zio_compress_data(ZIO_COMPRESS_EMPTY, zio->io_abd, NULL, lsize, zp->zp_complevel); if (psize == 0 || psize >= lsize) compress = ZIO_COMPRESS_OFF; } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { /* * If we are raw receiving an encrypted dataset we should not * take this codepath because it will change the on-disk block * and decryption will fail. */ size_t rounded = MIN((size_t)roundup(psize, spa->spa_min_alloc), lsize); if (rounded != psize) { abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); abd_zero_off(cdata, psize, rounded - psize); abd_copy_off(cdata, zio->io_abd, 0, 0, psize); psize = rounded; zio_push_transform(zio, cdata, psize, rounded, NULL); } } else { ASSERT3U(psize, !=, 0); } /* * The final pass of spa_sync() must be all rewrites, but the first * few passes offer a trade-off: allocating blocks defers convergence, * but newly allocated blocks are sequential, so they can be written * to disk faster. Therefore, we allow the first few passes of * spa_sync() to allocate new blocks, but force rewrites after that. * There should only be a handful of blocks after pass 1 in any case. */ if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize && pass >= zfs_sync_pass_rewrite) { VERIFY3U(psize, !=, 0); enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; zio->io_flags |= ZIO_FLAG_IO_REWRITE; } else { BP_ZERO(bp); zio->io_pipeline = ZIO_WRITE_PIPELINE; } if (psize == 0) { if (zio->io_bp_orig.blk_birth != 0 && spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { BP_SET_LSIZE(bp, lsize); BP_SET_TYPE(bp, zp->zp_type); BP_SET_LEVEL(bp, zp->zp_level); BP_SET_BIRTH(bp, zio->io_txg, 0); } zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; } else { ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); BP_SET_LSIZE(bp, lsize); BP_SET_TYPE(bp, zp->zp_type); BP_SET_LEVEL(bp, zp->zp_level); BP_SET_PSIZE(bp, psize); BP_SET_COMPRESS(bp, compress); BP_SET_CHECKSUM(bp, zp->zp_checksum); BP_SET_DEDUP(bp, zp->zp_dedup); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); if (zp->zp_dedup) { ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(!zp->zp_encrypt || DMU_OT_IS_ENCRYPTED(zp->zp_type)); zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; } if (zp->zp_nopwrite) { ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; } } return (zio); } static zio_t * zio_free_bp_init(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio->io_child_type == ZIO_CHILD_LOGICAL) { if (BP_GET_DEDUP(bp)) zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; } ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); return (zio); } /* * ========================================================================== * Execute the I/O pipeline * ========================================================================== */ static void zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) { spa_t *spa = zio->io_spa; zio_type_t t = zio->io_type; int flags = (cutinline ? TQ_FRONT : 0); /* * If we're a config writer or a probe, the normal issue and * interrupt threads may all be blocked waiting for the config lock. * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. */ if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) t = ZIO_TYPE_NULL; /* * A similar issue exists for the L2ARC write thread until L2ARC 2.0. */ if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) t = ZIO_TYPE_NULL; /* * If this is a high priority I/O, then use the high priority taskq if * available. */ if ((zio->io_priority == ZIO_PRIORITY_NOW || zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && spa->spa_zio_taskq[t][q + 1].stqs_count != 0) q++; ASSERT3U(q, <, ZIO_TASKQ_TYPES); /* * NB: We are assuming that the zio can only be dispatched * to a single taskq at a time. It would be a grievous error * to dispatch the zio to another taskq at the same time. */ ASSERT(taskq_empty_ent(&zio->io_tqent)); spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, &zio->io_tqent); } static boolean_t zio_taskq_member(zio_t *zio, zio_taskq_type_t q) { spa_t *spa = zio->io_spa; taskq_t *tq = taskq_of_curthread(); for (zio_type_t t = 0; t < ZIO_TYPES; t++) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; uint_t i; for (i = 0; i < tqs->stqs_count; i++) { if (tqs->stqs_taskq[i] == tq) return (B_TRUE); } } return (B_FALSE); } static zio_t * zio_issue_async(zio_t *zio) { zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); return (NULL); } void zio_interrupt(void *zio) { zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); } void zio_delay_interrupt(zio_t *zio) { /* * The timeout_generic() function isn't defined in userspace, so * rather than trying to implement the function, the zio delay * functionality has been disabled for userspace builds. */ #ifdef _KERNEL /* * If io_target_timestamp is zero, then no delay has been registered * for this IO, thus jump to the end of this function and "skip" the * delay; issuing it directly to the zio layer. */ if (zio->io_target_timestamp != 0) { hrtime_t now = gethrtime(); if (now >= zio->io_target_timestamp) { /* * This IO has already taken longer than the target * delay to complete, so we don't want to delay it * any longer; we "miss" the delay and issue it * directly to the zio layer. This is likely due to * the target latency being set to a value less than * the underlying hardware can satisfy (e.g. delay * set to 1ms, but the disks take 10ms to complete an * IO request). */ DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, hrtime_t, now); zio_interrupt(zio); } else { taskqid_t tid; hrtime_t diff = zio->io_target_timestamp - now; clock_t expire_at_tick = ddi_get_lbolt() + NSEC_TO_TICK(diff); DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, hrtime_t, now, hrtime_t, diff); if (NSEC_TO_TICK(diff) == 0) { /* Our delay is less than a jiffy - just spin */ zfs_sleep_until(zio->io_target_timestamp); zio_interrupt(zio); } else { /* * Use taskq_dispatch_delay() in the place of * OpenZFS's timeout_generic(). */ tid = taskq_dispatch_delay(system_taskq, zio_interrupt, zio, TQ_NOSLEEP, expire_at_tick); if (tid == TASKQID_INVALID) { /* * Couldn't allocate a task. Just * finish the zio without a delay. */ zio_interrupt(zio); } } } return; } #endif DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); zio_interrupt(zio); } static void zio_deadman_impl(zio_t *pio, int ziodepth) { zio_t *cio, *cio_next; zio_link_t *zl = NULL; vdev_t *vd = pio->io_vd; if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; zbookmark_phys_t *zb = &pio->io_bookmark; uint64_t delta = gethrtime() - pio->io_timestamp; uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " "delta=%llu queued=%llu io=%llu " "path=%s " "last=%llu type=%d " "priority=%d flags=0x%llx stage=0x%x " "pipeline=0x%x pipeline-trace=0x%x " "objset=%llu object=%llu " "level=%llu blkid=%llu " "offset=%llu size=%llu " "error=%d", ziodepth, pio, pio->io_timestamp, (u_longlong_t)delta, pio->io_delta, pio->io_delay, vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0, pio->io_type, pio->io_priority, (u_longlong_t)pio->io_flags, pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, pio->io_error); (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, pio->io_spa, vd, zb, pio, 0); if (failmode == ZIO_FAILURE_MODE_CONTINUE && taskq_empty_ent(&pio->io_tqent)) { zio_interrupt(pio); } } mutex_enter(&pio->io_lock); for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio, &zl); zio_deadman_impl(cio, ziodepth + 1); } mutex_exit(&pio->io_lock); } /* * Log the critical information describing this zio and all of its children * using the zfs_dbgmsg() interface then post deadman event for the ZED. */ void zio_deadman(zio_t *pio, const char *tag) { spa_t *spa = pio->io_spa; char *name = spa_name(spa); if (!zfs_deadman_enabled || spa_suspended(spa)) return; zio_deadman_impl(pio, 0); switch (spa_get_deadman_failmode(spa)) { case ZIO_FAILURE_MODE_WAIT: zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); break; case ZIO_FAILURE_MODE_CONTINUE: zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); break; case ZIO_FAILURE_MODE_PANIC: fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); break; } } /* * Execute the I/O pipeline until one of the following occurs: * (1) the I/O completes; (2) the pipeline stalls waiting for * dependent child I/Os; (3) the I/O issues, so we're waiting * for an I/O completion interrupt; (4) the I/O is delegated by * vdev-level caching or aggregation; (5) the I/O is deferred * due to vdev-level queueing; (6) the I/O is handed off to * another thread. In all cases, the pipeline stops whenever * there's no CPU work; it never burns a thread in cv_wait_io(). * * There's no locking on io_stage because there's no legitimate way * for multiple threads to be attempting to process the same I/O. */ static zio_pipe_stage_t *zio_pipeline[]; /* * zio_execute() is a wrapper around the static function * __zio_execute() so that we can force __zio_execute() to be * inlined. This reduces stack overhead which is important * because __zio_execute() is called recursively in several zio * code paths. zio_execute() itself cannot be inlined because * it is externally visible. */ void zio_execute(void *zio) { fstrans_cookie_t cookie; cookie = spl_fstrans_mark(); __zio_execute(zio); spl_fstrans_unmark(cookie); } /* * Used to determine if in the current context the stack is sized large * enough to allow zio_execute() to be called recursively. A minimum * stack size of 16K is required to avoid needing to re-dispatch the zio. */ static boolean_t zio_execute_stack_check(zio_t *zio) { #if !defined(HAVE_LARGE_STACKS) dsl_pool_t *dp = spa_get_dsl(zio->io_spa); /* Executing in txg_sync_thread() context. */ if (dp && curthread == dp->dp_tx.tx_sync_thread) return (B_TRUE); /* Pool initialization outside of zio_taskq context. */ if (dp && spa_is_initializing(dp->dp_spa) && !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) return (B_TRUE); #else (void) zio; #endif /* HAVE_LARGE_STACKS */ return (B_FALSE); } __attribute__((always_inline)) static inline void __zio_execute(zio_t *zio) { ASSERT3U(zio->io_queued_timestamp, >, 0); while (zio->io_stage < ZIO_STAGE_DONE) { enum zio_stage pipeline = zio->io_pipeline; enum zio_stage stage = zio->io_stage; zio->io_executor = curthread; ASSERT(!MUTEX_HELD(&zio->io_lock)); ASSERT(ISP2(stage)); ASSERT(zio->io_stall == NULL); do { stage <<= 1; } while ((stage & pipeline) == 0); ASSERT(stage <= ZIO_STAGE_DONE); /* * If we are in interrupt context and this pipeline stage * will grab a config lock that is held across I/O, * or may wait for an I/O that needs an interrupt thread * to complete, issue async to avoid deadlock. * * For VDEV_IO_START, we cut in line so that the io will * be sent to disk promptly. */ if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? zio_requeue_io_start_cut_in_line : B_FALSE; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); return; } /* * If the current context doesn't have large enough stacks * the zio must be issued asynchronously to prevent overflow. */ if (zio_execute_stack_check(zio)) { boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? zio_requeue_io_start_cut_in_line : B_FALSE; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); return; } zio->io_stage = stage; zio->io_pipeline_trace |= zio->io_stage; /* * The zio pipeline stage returns the next zio to execute * (typically the same as this one), or NULL if we should * stop. */ zio = zio_pipeline[highbit64(stage) - 1](zio); if (zio == NULL) return; } } /* * ========================================================================== * Initiate I/O, either sync or async * ========================================================================== */ int zio_wait(zio_t *zio) { /* * Some routines, like zio_free_sync(), may return a NULL zio * to avoid the performance overhead of creating and then destroying * an unneeded zio. For the callers' simplicity, we accept a NULL * zio and ignore it. */ if (zio == NULL) return (0); long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); int error; ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); ASSERT3P(zio->io_executor, ==, NULL); zio->io_waiter = curthread; ASSERT0(zio->io_queued_timestamp); zio->io_queued_timestamp = gethrtime(); __zio_execute(zio); mutex_enter(&zio->io_lock); while (zio->io_executor != NULL) { error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, ddi_get_lbolt() + timeout); if (zfs_deadman_enabled && error == -1 && gethrtime() - zio->io_queued_timestamp > spa_deadman_ziotime(zio->io_spa)) { mutex_exit(&zio->io_lock); timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); zio_deadman(zio, FTAG); mutex_enter(&zio->io_lock); } } mutex_exit(&zio->io_lock); error = zio->io_error; zio_destroy(zio); return (error); } void zio_nowait(zio_t *zio) { /* * See comment in zio_wait(). */ if (zio == NULL) return; ASSERT3P(zio->io_executor, ==, NULL); if (zio->io_child_type == ZIO_CHILD_LOGICAL && list_is_empty(&zio->io_parent_list)) { zio_t *pio; /* * This is a logical async I/O with no parent to wait for it. * We add it to the spa_async_root_zio "Godfather" I/O which * will ensure they complete prior to unloading the pool. */ spa_t *spa = zio->io_spa; pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; zio_add_child(pio, zio); } ASSERT0(zio->io_queued_timestamp); zio->io_queued_timestamp = gethrtime(); __zio_execute(zio); } /* * ========================================================================== * Reexecute, cancel, or suspend/resume failed I/O * ========================================================================== */ static void zio_reexecute(void *arg) { zio_t *pio = arg; zio_t *cio, *cio_next; ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); ASSERT(pio->io_gang_leader == NULL); ASSERT(pio->io_gang_tree == NULL); pio->io_flags = pio->io_orig_flags; pio->io_stage = pio->io_orig_stage; pio->io_pipeline = pio->io_orig_pipeline; pio->io_reexecute = 0; pio->io_flags |= ZIO_FLAG_REEXECUTED; pio->io_pipeline_trace = 0; pio->io_error = 0; for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_state[w] = 0; for (int c = 0; c < ZIO_CHILD_TYPES; c++) pio->io_child_error[c] = 0; if (IO_IS_ALLOCATING(pio)) BP_ZERO(pio->io_bp); /* * As we reexecute pio's children, new children could be created. * New children go to the head of pio's io_child_list, however, * so we will (correctly) not reexecute them. The key is that * the remainder of pio's io_child_list, from 'cio_next' onward, * cannot be affected by any side effects of reexecuting 'cio'. */ zio_link_t *zl = NULL; mutex_enter(&pio->io_lock); for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio, &zl); for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_children[cio->io_child_type][w]++; mutex_exit(&pio->io_lock); zio_reexecute(cio); mutex_enter(&pio->io_lock); } mutex_exit(&pio->io_lock); /* * Now that all children have been reexecuted, execute the parent. * We don't reexecute "The Godfather" I/O here as it's the * responsibility of the caller to wait on it. */ if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { pio->io_queued_timestamp = gethrtime(); __zio_execute(pio); } } void zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) { if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) fm_panic("Pool '%s' has encountered an uncorrectable I/O " "failure and the failure mode property for this pool " "is set to panic.", spa_name(spa)); cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " "failure and has been suspended.\n", spa_name(spa)); (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, NULL, 0); mutex_enter(&spa->spa_suspend_lock); if (spa->spa_suspend_zio_root == NULL) spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); spa->spa_suspended = reason; if (zio != NULL) { ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); ASSERT(zio != spa->spa_suspend_zio_root); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(zio_unique_parent(zio) == NULL); ASSERT(zio->io_stage == ZIO_STAGE_DONE); zio_add_child(spa->spa_suspend_zio_root, zio); } mutex_exit(&spa->spa_suspend_lock); } int zio_resume(spa_t *spa) { zio_t *pio; /* * Reexecute all previously suspended i/o. */ mutex_enter(&spa->spa_suspend_lock); spa->spa_suspended = ZIO_SUSPEND_NONE; cv_broadcast(&spa->spa_suspend_cv); pio = spa->spa_suspend_zio_root; spa->spa_suspend_zio_root = NULL; mutex_exit(&spa->spa_suspend_lock); if (pio == NULL) return (0); zio_reexecute(pio); return (zio_wait(pio)); } void zio_resume_wait(spa_t *spa) { mutex_enter(&spa->spa_suspend_lock); while (spa_suspended(spa)) cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); mutex_exit(&spa->spa_suspend_lock); } /* * ========================================================================== * Gang blocks. * * A gang block is a collection of small blocks that looks to the DMU * like one large block. When zio_dva_allocate() cannot find a block * of the requested size, due to either severe fragmentation or the pool * being nearly full, it calls zio_write_gang_block() to construct the * block from smaller fragments. * * A gang block consists of a gang header (zio_gbh_phys_t) and up to * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like * an indirect block: it's an array of block pointers. It consumes * only one sector and hence is allocatable regardless of fragmentation. * The gang header's bps point to its gang members, which hold the data. * * Gang blocks are self-checksumming, using the bp's * as the verifier to ensure uniqueness of the SHA256 checksum. * Critically, the gang block bp's blk_cksum is the checksum of the data, * not the gang header. This ensures that data block signatures (needed for * deduplication) are independent of how the block is physically stored. * * Gang blocks can be nested: a gang member may itself be a gang block. * Thus every gang block is a tree in which root and all interior nodes are * gang headers, and the leaves are normal blocks that contain user data. * The root of the gang tree is called the gang leader. * * To perform any operation (read, rewrite, free, claim) on a gang block, * zio_gang_assemble() first assembles the gang tree (minus data leaves) * in the io_gang_tree field of the original logical i/o by recursively * reading the gang leader and all gang headers below it. This yields * an in-core tree containing the contents of every gang header and the * bps for every constituent of the gang block. * * With the gang tree now assembled, zio_gang_issue() just walks the gang tree * and invokes a callback on each bp. To free a gang block, zio_gang_issue() * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). * zio_read_gang() is a wrapper around zio_read() that omits reading gang * headers, since we already have those in io_gang_tree. zio_rewrite_gang() * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() * of the gang header plus zio_checksum_compute() of the data to update the * gang header's blk_cksum as described above. * * The two-phase assemble/issue model solves the problem of partial failure -- * what if you'd freed part of a gang block but then couldn't read the * gang header for another part? Assembling the entire gang tree first * ensures that all the necessary gang header I/O has succeeded before * starting the actual work of free, claim, or write. Once the gang tree * is assembled, free and claim are in-memory operations that cannot fail. * * In the event that a gang write fails, zio_dva_unallocate() walks the * gang tree to immediately free (i.e. insert back into the space map) * everything we've allocated. This ensures that we don't get ENOSPC * errors during repeated suspend/resume cycles due to a flaky device. * * Gang rewrites only happen during sync-to-convergence. If we can't assemble * the gang tree, we won't modify the block, so we can safely defer the free * (knowing that the block is still intact). If we *can* assemble the gang * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free * each constituent bp and we can allocate a new block on the next sync pass. * * In all cases, the gang tree allows complete recovery from partial failure. * ========================================================================== */ static void zio_gang_issue_func_done(zio_t *zio) { abd_free(zio->io_abd); } static zio_t * zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { if (gn != NULL) return (pio); return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), BP_GET_PSIZE(bp), zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark)); } static zio_t * zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { zio_t *zio; if (gn != NULL) { abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); /* * As we rewrite each gang header, the pipeline will compute * a new gang block header checksum for it; but no one will * compute a new data checksum, so we do that here. The one * exception is the gang leader: the pipeline already computed * its data checksum because that stage precedes gang assembly. * (Presently, nothing actually uses interior data checksums; * this is just good hygiene.) */ if (gn != pio->io_gang_leader->io_gang_tree) { abd_t *buf = abd_get_offset(data, offset); zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), buf, BP_GET_PSIZE(bp)); abd_free(buf); } /* * If we are here to damage data for testing purposes, * leave the GBH alone so that we can detect the damage. */ if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; } else { zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, abd_get_offset(data, offset), BP_GET_PSIZE(bp), zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); } return (zio); } static zio_t * zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { (void) gn, (void) data, (void) offset; zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, ZIO_GANG_CHILD_FLAGS(pio)); if (zio == NULL) { zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); } return (zio); } static zio_t * zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { (void) gn, (void) data, (void) offset; return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); } static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { NULL, zio_read_gang, zio_rewrite_gang, zio_free_gang, zio_claim_gang, NULL }; static void zio_gang_tree_assemble_done(zio_t *zio); static zio_gang_node_t * zio_gang_node_alloc(zio_gang_node_t **gnpp) { zio_gang_node_t *gn; ASSERT(*gnpp == NULL); gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); *gnpp = gn; return (gn); } static void zio_gang_node_free(zio_gang_node_t **gnpp) { zio_gang_node_t *gn = *gnpp; for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) ASSERT(gn->gn_child[g] == NULL); zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); kmem_free(gn, sizeof (*gn)); *gnpp = NULL; } static void zio_gang_tree_free(zio_gang_node_t **gnpp) { zio_gang_node_t *gn = *gnpp; if (gn == NULL) return; for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) zio_gang_tree_free(&gn->gn_child[g]); zio_gang_node_free(gnpp); } static void zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) { zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); ASSERT(gio->io_gang_leader == gio); ASSERT(BP_IS_GANG(bp)); zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); } static void zio_gang_tree_assemble_done(zio_t *zio) { zio_t *gio = zio->io_gang_leader; zio_gang_node_t *gn = zio->io_private; blkptr_t *bp = zio->io_bp; ASSERT(gio == zio_unique_parent(zio)); ASSERT(zio->io_child_count == 0); if (zio->io_error) return; /* this ABD was created from a linear buf in zio_gang_tree_assemble */ if (BP_SHOULD_BYTESWAP(bp)) byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); abd_free(zio->io_abd); for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; if (!BP_IS_GANG(gbp)) continue; zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); } } static void zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, uint64_t offset) { zio_t *gio = pio->io_gang_leader; zio_t *zio; ASSERT(BP_IS_GANG(bp) == !!gn); ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); /* * If you're a gang header, your data is in gn->gn_gbh. * If you're a gang member, your data is in 'data' and gn == NULL. */ zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); if (gn != NULL) { ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; if (BP_IS_HOLE(gbp)) continue; zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, offset); offset += BP_GET_PSIZE(gbp); } } if (gn == gio->io_gang_tree) ASSERT3U(gio->io_size, ==, offset); if (zio != pio) zio_nowait(zio); } static zio_t * zio_gang_assemble(zio_t *zio) { blkptr_t *bp = zio->io_bp; ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); zio->io_gang_leader = zio; zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); return (zio); } static zio_t * zio_gang_issue(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { return (NULL); } ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); if (zio->io_child_error[ZIO_CHILD_GANG] == 0) zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 0); else zio_gang_tree_free(&zio->io_gang_tree); zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; return (zio); } static void zio_write_gang_member_ready(zio_t *zio) { zio_t *pio = zio_unique_parent(zio); dva_t *cdva = zio->io_bp->blk_dva; dva_t *pdva = pio->io_bp->blk_dva; uint64_t asize; zio_t *gio __maybe_unused = zio->io_gang_leader; if (BP_IS_HOLE(zio->io_bp)) return; ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); ASSERT(zio->io_child_type == ZIO_CHILD_GANG); ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); mutex_enter(&pio->io_lock); for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { ASSERT(DVA_GET_GANG(&pdva[d])); asize = DVA_GET_ASIZE(&pdva[d]); asize += DVA_GET_ASIZE(&cdva[d]); DVA_SET_ASIZE(&pdva[d], asize); } mutex_exit(&pio->io_lock); } static void zio_write_gang_done(zio_t *zio) { /* * The io_abd field will be NULL for a zio with no data. The io_flags * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't * check for it here as it is cleared in zio_ready. */ if (zio->io_abd != NULL) abd_free(zio->io_abd); } static zio_t * zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) { spa_t *spa = pio->io_spa; blkptr_t *bp = pio->io_bp; zio_t *gio = pio->io_gang_leader; zio_t *zio; zio_gang_node_t *gn, **gnpp; zio_gbh_phys_t *gbh; abd_t *gbh_abd; uint64_t txg = pio->io_txg; uint64_t resid = pio->io_size; uint64_t lsize; int copies = gio->io_prop.zp_copies; zio_prop_t zp; int error; boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); /* * If one copy was requested, store 2 copies of the GBH, so that we * can still traverse all the data (e.g. to free or scrub) even if a * block is damaged. Note that we can't store 3 copies of the GBH in * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt. */ int gbh_copies = copies; if (gbh_copies == 1) { gbh_copies = MIN(2, spa_max_replication(spa)); } int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(has_data); flags |= METASLAB_ASYNC_ALLOC; VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. mca_alloc_slots, pio)); /* * The logical zio has already placed a reservation for * 'copies' allocation slots but gang blocks may require * additional copies. These additional copies * (i.e. gbh_copies - copies) are guaranteed to succeed * since metaslab_class_throttle_reserve() always allows * additional reservations for gang blocks. */ VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, pio->io_allocator, pio, flags)); } error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, &pio->io_alloc_list, pio, pio->io_allocator); if (error) { if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(has_data); /* * If we failed to allocate the gang block header then * we remove any additional allocation reservations that * we placed here. The original reservation will * be removed when the logical I/O goes to the ready * stage. */ metaslab_class_throttle_unreserve(mc, gbh_copies - copies, pio->io_allocator, pio); } pio->io_error = error; return (pio); } if (pio == gio) { gnpp = &gio->io_gang_tree; } else { gnpp = pio->io_private; ASSERT(pio->io_ready == zio_write_gang_member_ready); } gn = zio_gang_node_alloc(gnpp); gbh = gn->gn_gbh; memset(gbh, 0, SPA_GANGBLOCKSIZE); gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); /* * Create the gang header. */ zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_write_gang_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); /* * Create and nowait the gang children. */ for (int g = 0; resid != 0; resid -= lsize, g++) { lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), SPA_MINBLOCKSIZE); ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); zp.zp_checksum = gio->io_prop.zp_checksum; zp.zp_compress = ZIO_COMPRESS_OFF; zp.zp_complevel = gio->io_prop.zp_complevel; zp.zp_type = DMU_OT_NONE; zp.zp_level = 0; zp.zp_copies = gio->io_prop.zp_copies; zp.zp_dedup = B_FALSE; zp.zp_dedup_verify = B_FALSE; zp.zp_nopwrite = B_FALSE; zp.zp_encrypt = gio->io_prop.zp_encrypt; zp.zp_byteorder = gio->io_prop.zp_byteorder; memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], has_data ? abd_get_offset(pio->io_abd, pio->io_size - resid) : NULL, lsize, lsize, &zp, zio_write_gang_member_ready, NULL, NULL, zio_write_gang_done, &gn->gn_child[g], pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(has_data); /* * Gang children won't throttle but we should * account for their work, so reserve an allocation * slot for them here. */ VERIFY(metaslab_class_throttle_reserve(mc, zp.zp_copies, cio->io_allocator, cio, flags)); } zio_nowait(cio); } /* * Set pio's pipeline to just wait for zio to finish. */ pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; /* * We didn't allocate this bp, so make sure it doesn't get unmarked. */ pio->io_flags &= ~ZIO_FLAG_FASTWRITE; zio_nowait(zio); return (pio); } /* * The zio_nop_write stage in the pipeline determines if allocating a * new bp is necessary. The nopwrite feature can handle writes in * either syncing or open context (i.e. zil writes) and as a result is * mutually exclusive with dedup. * * By leveraging a cryptographically secure checksum, such as SHA256, we * can compare the checksums of the new data and the old to determine if * allocating a new block is required. Note that our requirements for * cryptographic strength are fairly weak: there can't be any accidental * hash collisions, but we don't need to be secure against intentional * (malicious) collisions. To trigger a nopwrite, you have to be able * to write the file to begin with, and triggering an incorrect (hash * collision) nopwrite is no worse than simply writing to the file. * That said, there are no known attacks against the checksum algorithms * used for nopwrite, assuming that the salt and the checksums * themselves remain secret. */ static zio_t * zio_nop_write(zio_t *zio) { blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; zio_prop_t *zp = &zio->io_prop; ASSERT(BP_IS_HOLE(bp)); ASSERT(BP_GET_LEVEL(bp) == 0); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(zp->zp_nopwrite); ASSERT(!zp->zp_dedup); ASSERT(zio->io_bp_override == NULL); ASSERT(IO_IS_ALLOCATING(zio)); /* * Check to see if the original bp and the new bp have matching * characteristics (i.e. same checksum, compression algorithms, etc). * If they don't then just continue with the pipeline which will * allocate a new bp. */ if (BP_IS_HOLE(bp_orig) || !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & ZCHECKSUM_FLAG_NOPWRITE) || BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || zp->zp_copies != BP_GET_NDVAS(bp_orig)) return (zio); /* * If the checksums match then reset the pipeline so that we * avoid allocating a new bp and issuing any I/O. */ if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_NOPWRITE); ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); /* * If we're overwriting a block that is currently on an * indirect vdev, then ignore the nopwrite request and * allow a new block to be allocated on a concrete vdev. */ spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { vdev_t *tvd = vdev_lookup_top(zio->io_spa, DVA_GET_VDEV(&bp_orig->blk_dva[d])); if (tvd->vdev_ops == &vdev_indirect_ops) { spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); return (zio); } } spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); *bp = *bp_orig; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; zio->io_flags |= ZIO_FLAG_NOPWRITE; } return (zio); } /* * ========================================================================== * Block Reference Table * ========================================================================== */ static zio_t * zio_brt_free(zio_t *zio) { blkptr_t *bp; bp = zio->io_bp; if (BP_GET_LEVEL(bp) > 0 || BP_IS_METADATA(bp) || !brt_maybe_exists(zio->io_spa, bp)) { return (zio); } if (!brt_entry_decref(zio->io_spa, bp)) { /* * This isn't the last reference, so we cannot free * the data yet. */ zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; } return (zio); } /* * ========================================================================== * Dedup * ========================================================================== */ static void zio_ddt_child_read_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp; zio_t *pio = zio_unique_parent(zio); mutex_enter(&pio->io_lock); ddp = ddt_phys_select(dde, bp); if (zio->io_error == 0) ddt_phys_clear(ddp); /* this ddp doesn't need repair */ if (zio->io_error == 0 && dde->dde_repair_abd == NULL) dde->dde_repair_abd = zio->io_abd; else abd_free(zio->io_abd); mutex_exit(&pio->io_lock); } static zio_t * zio_ddt_read_start(zio_t *zio) { blkptr_t *bp = zio->io_bp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_PSIZE(bp) == zio->io_size); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (zio->io_child_error[ZIO_CHILD_DDT]) { ddt_t *ddt = ddt_select(zio->io_spa, bp); ddt_entry_t *dde = ddt_repair_start(ddt, bp); ddt_phys_t *ddp = dde->dde_phys; ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); blkptr_t blk; ASSERT(zio->io_vsd == NULL); zio->io_vsd = dde; if (ddp_self == NULL) return (zio); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) continue; ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, &blk); zio_nowait(zio_read(zio, zio->io_spa, &blk, abd_alloc_for_io(zio->io_size, B_TRUE), zio->io_size, zio_ddt_child_read_done, dde, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); } return (zio); } zio_nowait(zio_read(zio, zio->io_spa, bp, zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); return (zio); } static zio_t * zio_ddt_read_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { return (NULL); } ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_PSIZE(bp) == zio->io_size); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (zio->io_child_error[ZIO_CHILD_DDT]) { ddt_t *ddt = ddt_select(zio->io_spa, bp); ddt_entry_t *dde = zio->io_vsd; if (ddt == NULL) { ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); return (zio); } if (dde == NULL) { zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); return (NULL); } if (dde->dde_repair_abd != NULL) { abd_copy(zio->io_abd, dde->dde_repair_abd, zio->io_size); zio->io_child_error[ZIO_CHILD_DDT] = 0; } ddt_repair_done(ddt, dde); zio->io_vsd = NULL; } ASSERT(zio->io_vsd == NULL); return (zio); } static boolean_t zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) { spa_t *spa = zio->io_spa; boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); ASSERT(!(zio->io_bp_override && do_raw)); /* * Note: we compare the original data, not the transformed data, * because when zio->io_bp is an override bp, we will not have * pushed the I/O transforms. That's an important optimization * because otherwise we'd compress/encrypt all dmu_sync() data twice. * However, we should never get a raw, override zio so in these * cases we can compare the io_abd directly. This is useful because * it allows us to do dedup verification even if we don't have access * to the original data (for instance, if the encryption keys aren't * loaded). */ for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { zio_t *lio = dde->dde_lead_zio[p]; if (lio != NULL && do_raw) { return (lio->io_size != zio->io_size || abd_cmp(zio->io_abd, lio->io_abd) != 0); } else if (lio != NULL) { return (lio->io_orig_size != zio->io_orig_size || abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); } } for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { ddt_phys_t *ddp = &dde->dde_phys[p]; if (ddp->ddp_phys_birth != 0 && do_raw) { blkptr_t blk = *zio->io_bp; uint64_t psize; abd_t *tmpabd; int error; ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); psize = BP_GET_PSIZE(&blk); if (psize != zio->io_size) return (B_TRUE); ddt_exit(ddt); tmpabd = abd_alloc_for_io(psize, B_TRUE); error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_RAW, &zio->io_bookmark)); if (error == 0) { if (abd_cmp(tmpabd, zio->io_abd) != 0) error = SET_ERROR(ENOENT); } abd_free(tmpabd); ddt_enter(ddt); return (error != 0); } else if (ddp->ddp_phys_birth != 0) { arc_buf_t *abuf = NULL; arc_flags_t aflags = ARC_FLAG_WAIT; blkptr_t blk = *zio->io_bp; int error; ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); if (BP_GET_LSIZE(&blk) != zio->io_orig_size) return (B_TRUE); ddt_exit(ddt); error = arc_read(NULL, spa, &blk, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &aflags, &zio->io_bookmark); if (error == 0) { if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, zio->io_orig_size) != 0) error = SET_ERROR(ENOENT); arc_buf_destroy(abuf, &abuf); } ddt_enter(ddt); return (error != 0); } } return (B_FALSE); } static void zio_ddt_child_write_ready(zio_t *zio) { int p = zio->io_prop.zp_copies; ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp = &dde->dde_phys[p]; zio_t *pio; if (zio->io_error) return; ddt_enter(ddt); ASSERT(dde->dde_lead_zio[p] == zio); ddt_phys_fill(ddp, zio->io_bp); zio_link_t *zl = NULL; while ((pio = zio_walk_parents(zio, &zl)) != NULL) ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); ddt_exit(ddt); } static void zio_ddt_child_write_done(zio_t *zio) { int p = zio->io_prop.zp_copies; ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp = &dde->dde_phys[p]; ddt_enter(ddt); ASSERT(ddp->ddp_refcnt == 0); ASSERT(dde->dde_lead_zio[p] == zio); dde->dde_lead_zio[p] = NULL; if (zio->io_error == 0) { zio_link_t *zl = NULL; while (zio_walk_parents(zio, &zl) != NULL) ddt_phys_addref(ddp); } else { ddt_phys_clear(ddp); } ddt_exit(ddt); } static zio_t * zio_ddt_write(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; uint64_t txg = zio->io_txg; zio_prop_t *zp = &zio->io_prop; int p = zp->zp_copies; zio_t *cio = NULL; ddt_t *ddt = ddt_select(spa, bp); ddt_entry_t *dde; ddt_phys_t *ddp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_TRUE); ddp = &dde->dde_phys[p]; if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { /* * If we're using a weak checksum, upgrade to a strong checksum * and try again. If we're already using a strong checksum, * we can't resolve it, so just convert to an ordinary write. * (And automatically e-mail a paper to Nature?) */ if (!(zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP)) { zp->zp_checksum = spa_dedup_checksum(spa); zio_pop_transforms(zio); zio->io_stage = ZIO_STAGE_OPEN; BP_ZERO(bp); } else { zp->zp_dedup = B_FALSE; BP_SET_DEDUP(bp, B_FALSE); } ASSERT(!BP_GET_DEDUP(bp)); zio->io_pipeline = ZIO_WRITE_PIPELINE; ddt_exit(ddt); return (zio); } if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { if (ddp->ddp_phys_birth != 0) ddt_bp_fill(ddp, bp, txg); if (dde->dde_lead_zio[p] != NULL) zio_add_child(zio, dde->dde_lead_zio[p]); else ddt_phys_addref(ddp); } else if (zio->io_bp_override) { ASSERT(bp->blk_birth == txg); ASSERT(BP_EQUAL(bp, zio->io_bp_override)); ddt_phys_fill(ddp, bp); ddt_phys_addref(ddp); } else { cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, zio->io_orig_size, zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL, NULL, zio_ddt_child_write_done, dde, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); dde->dde_lead_zio[p] = cio; } ddt_exit(ddt); zio_nowait(cio); return (zio); } static ddt_entry_t *freedde; /* for debugging */ static zio_t * zio_ddt_free(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; ddt_t *ddt = ddt_select(spa, bp); ddt_entry_t *dde; ddt_phys_t *ddp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ddt_enter(ddt); freedde = dde = ddt_lookup(ddt, bp, B_TRUE); if (dde) { ddp = ddt_phys_select(dde, bp); if (ddp) ddt_phys_decref(ddp); } ddt_exit(ddt); return (zio); } /* * ========================================================================== * Allocate and free blocks * ========================================================================== */ static zio_t * zio_io_to_allocate(spa_t *spa, int allocator) { zio_t *zio; ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); if (zio == NULL) return (NULL); ASSERT(IO_IS_ALLOCATING(zio)); /* * Try to place a reservation for this zio. If we're unable to * reserve then we throttle. */ ASSERT3U(zio->io_allocator, ==, allocator); if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, zio->io_prop.zp_copies, allocator, zio, 0)) { return (NULL); } avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); return (zio); } static zio_t * zio_dva_throttle(zio_t *zio) { spa_t *spa = zio->io_spa; zio_t *nio; metaslab_class_t *mc; /* locate an appropriate allocation class */ mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || !mc->mc_alloc_throttle_enabled || zio->io_child_type == ZIO_CHILD_GANG || zio->io_flags & ZIO_FLAG_NODATA) { return (zio); } ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); ASSERT3U(zio->io_queued_timestamp, >, 0); ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); zbookmark_phys_t *bm = &zio->io_bookmark; /* * We want to try to use as many allocators as possible to help improve * performance, but we also want logically adjacent IOs to be physically * adjacent to improve sequential read performance. We chunk each object * into 2^20 block regions, and then hash based on the objset, object, * level, and region to accomplish both of these goals. */ int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; zio->io_allocator = allocator; zio->io_metaslab_class = mc; mutex_enter(&spa->spa_allocs[allocator].spaa_lock); avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); nio = zio_io_to_allocate(spa, allocator); mutex_exit(&spa->spa_allocs[allocator].spaa_lock); return (nio); } static void zio_allocate_dispatch(spa_t *spa, int allocator) { zio_t *zio; mutex_enter(&spa->spa_allocs[allocator].spaa_lock); zio = zio_io_to_allocate(spa, allocator); mutex_exit(&spa->spa_allocs[allocator].spaa_lock); if (zio == NULL) return; ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); ASSERT0(zio->io_error); zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); } static zio_t * zio_dva_allocate(zio_t *zio) { spa_t *spa = zio->io_spa; metaslab_class_t *mc; blkptr_t *bp = zio->io_bp; int error; int flags = 0; if (zio->io_gang_leader == NULL) { ASSERT(zio->io_child_type > ZIO_CHILD_GANG); zio->io_gang_leader = zio; } ASSERT(BP_IS_HOLE(bp)); ASSERT0(BP_GET_NDVAS(bp)); ASSERT3U(zio->io_prop.zp_copies, >, 0); ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; if (zio->io_flags & ZIO_FLAG_NODATA) flags |= METASLAB_DONT_THROTTLE; if (zio->io_flags & ZIO_FLAG_GANG_CHILD) flags |= METASLAB_GANG_CHILD; if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) flags |= METASLAB_ASYNC_ALLOC; /* * if not already chosen, locate an appropriate allocation class */ mc = zio->io_metaslab_class; if (mc == NULL) { mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); zio->io_metaslab_class = mc; } /* * Try allocating the block in the usual metaslab class. * If that's full, allocate it in the normal class. * If that's full, allocate as a gang block, * and if all are full, the allocation fails (which shouldn't happen). * * Note that we do not fall back on embedded slog (ZIL) space, to * preserve unfragmented slog space, which is critical for decent * sync write performance. If a log allocation fails, we will fall * back to spa_sync() which is abysmal for performance. */ error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_prop.zp_copies, zio->io_txg, NULL, flags, &zio->io_alloc_list, zio, zio->io_allocator); /* * Fallback to normal class when an alloc class is full */ if (error == ENOSPC && mc != spa_normal_class(spa)) { /* * If throttling, transfer reservation over to normal class. * The io_allocator slot can remain the same even though we * are switching classes. */ if (mc->mc_alloc_throttle_enabled && (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { metaslab_class_throttle_unreserve(mc, zio->io_prop.zp_copies, zio->io_allocator, zio); zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; VERIFY(metaslab_class_throttle_reserve( spa_normal_class(spa), zio->io_prop.zp_copies, zio->io_allocator, zio, flags | METASLAB_MUST_RESERVE)); } zio->io_metaslab_class = mc = spa_normal_class(spa); if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { zfs_dbgmsg("%s: metaslab allocation failure, " "trying normal class: zio %px, size %llu, error %d", spa_name(spa), zio, (u_longlong_t)zio->io_size, error); } error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_prop.zp_copies, zio->io_txg, NULL, flags, &zio->io_alloc_list, zio, zio->io_allocator); } if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { zfs_dbgmsg("%s: metaslab allocation failure, " "trying ganging: zio %px, size %llu, error %d", spa_name(spa), zio, (u_longlong_t)zio->io_size, error); } return (zio_write_gang_block(zio, mc)); } if (error != 0) { if (error != ENOSPC || (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " "size %llu, error %d", spa_name(spa), zio, (u_longlong_t)zio->io_size, error); } zio->io_error = error; } return (zio); } static zio_t * zio_dva_free(zio_t *zio) { metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); return (zio); } static zio_t * zio_dva_claim(zio_t *zio) { int error; error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); if (error) zio->io_error = error; return (zio); } /* * Undo an allocation. This is used by zio_done() when an I/O fails * and we want to give back the block we just allocated. * This handles both normal blocks and gang blocks. */ static void zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) { ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); ASSERT(zio->io_bp_override == NULL); if (!BP_IS_HOLE(bp)) metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); if (gn != NULL) { for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { zio_dva_unallocate(zio, gn->gn_child[g], &gn->gn_gbh->zg_blkptr[g]); } } } /* * Try to allocate an intent log block. Return 0 on success, errno on failure. */ int zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, uint64_t size, boolean_t *slog) { int error = 1; zio_alloc_list_t io_alloc_list; ASSERT(txg > spa_syncing_txg(spa)); metaslab_trace_init(&io_alloc_list); /* * Block pointer fields are useful to metaslabs for stats and debugging. * Fill in the obvious ones before calling into metaslab_alloc(). */ BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); BP_SET_PSIZE(new_bp, size); BP_SET_LEVEL(new_bp, 0); /* * When allocating a zil block, we don't have information about * the final destination of the block except the objset it's part * of, so we just hash the objset ID to pick the allocator to get * some parallelism. */ int flags = METASLAB_FASTWRITE | METASLAB_ZIL; int allocator = (uint_t)cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, txg, NULL, flags, &io_alloc_list, NULL, allocator); *slog = (error == 0); if (error != 0) { error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, new_bp, 1, txg, NULL, flags, &io_alloc_list, NULL, allocator); } if (error != 0) { error = metaslab_alloc(spa, spa_normal_class(spa), size, new_bp, 1, txg, NULL, flags, &io_alloc_list, NULL, allocator); } metaslab_trace_fini(&io_alloc_list); if (error == 0) { BP_SET_LSIZE(new_bp, size); BP_SET_PSIZE(new_bp, size); BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(new_bp, spa_version(spa) >= SPA_VERSION_SLIM_ZIL ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); BP_SET_LEVEL(new_bp, 0); BP_SET_DEDUP(new_bp, 0); BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); /* * encrypted blocks will require an IV and salt. We generate * these now since we will not be rewriting the bp at * rewrite time. */ if (os->os_encrypted) { uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t salt[ZIO_DATA_SALT_LEN]; BP_SET_CRYPT(new_bp, B_TRUE); VERIFY0(spa_crypt_get_salt(spa, dmu_objset_id(os), salt)); VERIFY0(zio_crypt_generate_iv(iv)); zio_crypt_encode_params_bp(new_bp, salt, iv); } } else { zfs_dbgmsg("%s: zil block allocation failure: " "size %llu, error %d", spa_name(spa), (u_longlong_t)size, error); } return (error); } /* * ========================================================================== * Read and write to physical devices * ========================================================================== */ /* * Issue an I/O to the underlying vdev. Typically the issue pipeline * stops after this stage and will resume upon I/O completion. * However, there are instances where the vdev layer may need to * continue the pipeline when an I/O was not issued. Since the I/O * that was sent to the vdev layer might be different than the one * currently active in the pipeline (see vdev_queue_io()), we explicitly * force the underlying vdev layers to call either zio_execute() or * zio_interrupt() to ensure that the pipeline continues with the correct I/O. */ static zio_t * zio_vdev_io_start(zio_t *zio) { vdev_t *vd = zio->io_vd; uint64_t align; spa_t *spa = zio->io_spa; zio->io_delay = 0; ASSERT(zio->io_error == 0); ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); if (vd == NULL) { if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) spa_config_enter(spa, SCL_ZIO, zio, RW_READER); /* * The mirror_ops handle multiple DVAs in a single BP. */ vdev_mirror_ops.vdev_op_io_start(zio); return (NULL); } ASSERT3P(zio->io_logical, !=, zio); if (zio->io_type == ZIO_TYPE_WRITE) { ASSERT(spa->spa_trust_config); /* * Note: the code can handle other kinds of writes, * but we don't expect them. */ if (zio->io_vd->vdev_noalloc) { ASSERT(zio->io_flags & (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); } } align = 1ULL << vd->vdev_top->vdev_ashift; if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && P2PHASE(zio->io_size, align) != 0) { /* Transform logical writes to be a full physical block size. */ uint64_t asize = P2ROUNDUP(zio->io_size, align); abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); ASSERT(vd == vd->vdev_top); if (zio->io_type == ZIO_TYPE_WRITE) { abd_copy(abuf, zio->io_abd, zio->io_size); abd_zero_off(abuf, zio->io_size, asize - zio->io_size); } zio_push_transform(zio, abuf, asize, asize, zio_subblock); } /* * If this is not a physical io, make sure that it is properly aligned * before proceeding. */ if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { ASSERT0(P2PHASE(zio->io_offset, align)); ASSERT0(P2PHASE(zio->io_size, align)); } else { /* * For physical writes, we allow 512b aligned writes and assume * the device will perform a read-modify-write as necessary. */ ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); } VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); /* * If this is a repair I/O, and there's no self-healing involved -- * that is, we're just resilvering what we expect to resilver -- * then don't do the I/O unless zio's txg is actually in vd's DTL. * This prevents spurious resilvering. * * There are a few ways that we can end up creating these spurious * resilver i/os: * * 1. A resilver i/o will be issued if any DVA in the BP has a * dirty DTL. The mirror code will issue resilver writes to * each DVA, including the one(s) that are not on vdevs with dirty * DTLs. * * 2. With nested replication, which happens when we have a * "replacing" or "spare" vdev that's a child of a mirror or raidz. * For example, given mirror(replacing(A+B), C), it's likely that * only A is out of date (it's the new device). In this case, we'll * read from C, then use the data to resilver A+B -- but we don't * actually want to resilver B, just A. The top-level mirror has no * way to know this, so instead we just discard unnecessary repairs * as we work our way down the vdev tree. * * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. * The same logic applies to any form of nested replication: ditto * + mirror, RAID-Z + replacing, etc. * * However, indirect vdevs point off to other vdevs which may have * DTL's, so we never bypass them. The child i/os on concrete vdevs * will be properly bypassed instead. * * Leaf DTL_PARTIAL can be empty when a legitimate write comes from * a dRAID spare vdev. For example, when a dRAID spare is first * used, its spare blocks need to be written to but the leaf vdev's * of such blocks can have empty DTL_PARTIAL. * * There seemed no clean way to allow such writes while bypassing * spurious ones. At this point, just avoid all bypassing for dRAID * for correctness. */ if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && zio->io_txg != 0 && /* not a delegated i/o */ vd->vdev_ops != &vdev_indirect_ops && vd->vdev_top->vdev_ops != &vdev_draid_ops && !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); zio_vdev_io_bypass(zio); return (zio); } /* * Select the next best leaf I/O to process. Distributed spares are * excluded since they dispatch the I/O directly to a leaf vdev after * applying the dRAID mapping. */ if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops != &vdev_draid_spare_ops && (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) { - if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) - return (zio); - if ((zio = vdev_queue_io(zio)) == NULL) return (NULL); if (!vdev_accessible(vd, zio)) { zio->io_error = SET_ERROR(ENXIO); zio_interrupt(zio); return (NULL); } zio->io_delay = gethrtime(); } vd->vdev_ops->vdev_op_io_start(zio); return (NULL); } static zio_t * zio_vdev_io_done(zio_t *zio) { vdev_t *vd = zio->io_vd; vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; boolean_t unexpected_error = B_FALSE; if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { return (NULL); } ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); if (zio->io_delay) zio->io_delay = gethrtime() - zio->io_delay; if (vd != NULL && vd->vdev_ops->vdev_op_leaf && vd->vdev_ops != &vdev_draid_spare_ops) { vdev_queue_io_done(zio); - if (zio->io_type == ZIO_TYPE_WRITE) - vdev_cache_write(zio); - if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_device_injections(vd, zio, EIO, EILSEQ); if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_label_injection(zio, EIO); if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { if (!vdev_accessible(vd, zio)) { zio->io_error = SET_ERROR(ENXIO); } else { unexpected_error = B_TRUE; } } } ops->vdev_op_io_done(zio); if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) VERIFY(vdev_probe(vd, zio) == NULL); return (zio); } /* * This function is used to change the priority of an existing zio that is * currently in-flight. This is used by the arc to upgrade priority in the * event that a demand read is made for a block that is currently queued * as a scrub or async read IO. Otherwise, the high priority read request * would end up having to wait for the lower priority IO. */ void zio_change_priority(zio_t *pio, zio_priority_t priority) { zio_t *cio, *cio_next; zio_link_t *zl = NULL; ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { vdev_queue_change_io_priority(pio, priority); } else { pio->io_priority = priority; } mutex_enter(&pio->io_lock); for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio, &zl); zio_change_priority(cio, priority); } mutex_exit(&pio->io_lock); } /* * For non-raidz ZIOs, we can just copy aside the bad data read from the * disk, and use that to finish the checksum ereport later. */ static void zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_buf) { /* no processing needed */ zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); } void zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) { void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); abd_copy(abd, zio->io_abd, zio->io_size); zcr->zcr_cbinfo = zio->io_size; zcr->zcr_cbdata = abd; zcr->zcr_finish = zio_vsd_default_cksum_finish; zcr->zcr_free = zio_abd_free; } static zio_t * zio_vdev_io_assess(zio_t *zio) { vdev_t *vd = zio->io_vd; if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { return (NULL); } if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) spa_config_exit(zio->io_spa, SCL_ZIO, zio); if (zio->io_vsd != NULL) { zio->io_vsd_ops->vsd_free(zio); zio->io_vsd = NULL; } if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_fault_injection(zio, EIO); /* * If the I/O failed, determine whether we should attempt to retry it. * * On retry, we cut in line in the issue queue, since we don't want * compression/checksumming/etc. work to prevent our (cheap) IO reissue. */ if (zio->io_error && vd == NULL && !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ zio->io_error = 0; - zio->io_flags |= ZIO_FLAG_IO_RETRY | - ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; + zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE; zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, zio_requeue_io_start_cut_in_line); return (NULL); } /* * If we got an error on a leaf device, convert it to ENXIO * if the device is not accessible at all. */ if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && !vdev_accessible(vd, zio)) zio->io_error = SET_ERROR(ENXIO); /* * If we can't write to an interior vdev (mirror or RAID-Z), * set vdev_cant_write so that we stop trying to allocate from it. */ if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && vd != NULL && !vd->vdev_ops->vdev_op_leaf) { vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " "cant_write=TRUE due to write failure with ENXIO", zio); vd->vdev_cant_write = B_TRUE; } /* * If a cache flush returns ENOTSUP or ENOTTY, we know that no future * attempts will ever succeed. In this case we set a persistent * boolean flag so that we don't bother with it in the future. */ if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) vd->vdev_nowritecache = B_TRUE; if (zio->io_error) zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (vd != NULL && vd->vdev_ops->vdev_op_leaf && zio->io_physdone != NULL) { ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); zio->io_physdone(zio->io_logical); } return (zio); } void zio_vdev_io_reissue(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); ASSERT(zio->io_error == 0); zio->io_stage >>= 1; } void zio_vdev_io_redone(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); zio->io_stage >>= 1; } void zio_vdev_io_bypass(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); ASSERT(zio->io_error == 0); zio->io_flags |= ZIO_FLAG_IO_BYPASS; zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; } /* * ========================================================================== * Encrypt and store encryption parameters * ========================================================================== */ /* * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for * managing the storage of encryption parameters and passing them to the * lower-level encryption functions. */ static zio_t * zio_encrypt(zio_t *zio) { zio_prop_t *zp = &zio->io_prop; spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; uint64_t psize = BP_GET_PSIZE(bp); uint64_t dsobj = zio->io_bookmark.zb_objset; dmu_object_type_t ot = BP_GET_TYPE(bp); void *enc_buf = NULL; abd_t *eabd = NULL; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; boolean_t no_crypt = B_FALSE; /* the root zio already encrypted the data */ if (zio->io_child_type == ZIO_CHILD_GANG) return (zio); /* only ZIL blocks are re-encrypted on rewrite */ if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) return (zio); if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { BP_SET_CRYPT(bp, B_FALSE); return (zio); } /* if we are doing raw encryption set the provided encryption params */ if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { ASSERT0(BP_GET_LEVEL(bp)); BP_SET_CRYPT(bp, B_TRUE); BP_SET_BYTEORDER(bp, zp->zp_byteorder); if (ot != DMU_OT_OBJSET) zio_crypt_encode_mac_bp(bp, zp->zp_mac); /* dnode blocks must be written out in the provided byteorder */ if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && ot == DMU_OT_DNODE) { void *bswap_buf = zio_buf_alloc(psize); abd_t *babd = abd_get_from_buf(bswap_buf, psize); ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); abd_copy_to_buf(bswap_buf, zio->io_abd, psize); dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, psize); abd_take_ownership_of_buf(babd, B_TRUE); zio_push_transform(zio, babd, psize, psize, NULL); } if (DMU_OT_IS_ENCRYPTED(ot)) zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); return (zio); } /* indirect blocks only maintain a cksum of the lower level MACs */ if (BP_GET_LEVEL(bp) > 0) { BP_SET_CRYPT(bp, B_TRUE); VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), mac)); zio_crypt_encode_mac_bp(bp, mac); return (zio); } /* * Objset blocks are a special case since they have 2 256-bit MACs * embedded within them. */ if (ot == DMU_OT_OBJSET) { ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); BP_SET_CRYPT(bp, B_TRUE); VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); return (zio); } /* unencrypted object types are only authenticated with a MAC */ if (!DMU_OT_IS_ENCRYPTED(ot)) { BP_SET_CRYPT(bp, B_TRUE); VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, zio->io_abd, psize, mac)); zio_crypt_encode_mac_bp(bp, mac); return (zio); } /* * Later passes of sync-to-convergence may decide to rewrite data * in place to avoid more disk reallocations. This presents a problem * for encryption because this constitutes rewriting the new data with * the same encryption key and IV. However, this only applies to blocks * in the MOS (particularly the spacemaps) and we do not encrypt the * MOS. We assert that the zio is allocating or an intent log write * to enforce this. */ ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); ASSERT3U(psize, !=, 0); enc_buf = zio_buf_alloc(psize); eabd = abd_get_from_buf(enc_buf, psize); abd_take_ownership_of_buf(eabd, B_TRUE); /* * For an explanation of what encryption parameters are stored * where, see the block comment in zio_crypt.c. */ if (ot == DMU_OT_INTENT_LOG) { zio_crypt_decode_params_bp(bp, salt, iv); } else { BP_SET_CRYPT(bp, B_TRUE); } /* Perform the encryption. This should not fail */ VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); /* encode encryption metadata into the bp */ if (ot == DMU_OT_INTENT_LOG) { /* * ZIL blocks store the MAC in the embedded checksum, so the * transform must always be applied. */ zio_crypt_encode_mac_zil(enc_buf, mac); zio_push_transform(zio, eabd, psize, psize, NULL); } else { BP_SET_CRYPT(bp, B_TRUE); zio_crypt_encode_params_bp(bp, salt, iv); zio_crypt_encode_mac_bp(bp, mac); if (no_crypt) { ASSERT3U(ot, ==, DMU_OT_DNODE); abd_free(eabd); } else { zio_push_transform(zio, eabd, psize, psize, NULL); } } return (zio); } /* * ========================================================================== * Generate and verify checksums * ========================================================================== */ static zio_t * zio_checksum_generate(zio_t *zio) { blkptr_t *bp = zio->io_bp; enum zio_checksum checksum; if (bp == NULL) { /* * This is zio_write_phys(). * We're either generating a label checksum, or none at all. */ checksum = zio->io_prop.zp_checksum; if (checksum == ZIO_CHECKSUM_OFF) return (zio); ASSERT(checksum == ZIO_CHECKSUM_LABEL); } else { if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { ASSERT(!IO_IS_ALLOCATING(zio)); checksum = ZIO_CHECKSUM_GANG_HEADER; } else { checksum = BP_GET_CHECKSUM(bp); } } zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); return (zio); } static zio_t * zio_checksum_verify(zio_t *zio) { zio_bad_cksum_t info; blkptr_t *bp = zio->io_bp; int error; ASSERT(zio->io_vd != NULL); if (bp == NULL) { /* * This is zio_read_phys(). * We're either verifying a label checksum, or nothing at all. */ if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) return (zio); ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); } if ((error = zio_checksum_error(zio, &info)) != 0) { zio->io_error = error; if (error == ECKSUM && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { mutex_enter(&zio->io_vd->vdev_stat_lock); zio->io_vd->vdev_stat.vs_checksum_errors++; mutex_exit(&zio->io_vd->vdev_stat_lock); (void) zfs_ereport_start_checksum(zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, zio->io_offset, zio->io_size, &info); } } return (zio); } /* * Called by RAID-Z to ensure we don't compute the checksum twice. */ void zio_checksum_verified(zio_t *zio) { zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; } /* * ========================================================================== * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. * An error of 0 indicates success. ENXIO indicates whole-device failure, * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO * indicate errors that are specific to one I/O, and most likely permanent. * Any other error is presumed to be worse because we weren't expecting it. * ========================================================================== */ int zio_worst_error(int e1, int e2) { static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; int r1, r2; for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) if (e1 == zio_error_rank[r1]) break; for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) if (e2 == zio_error_rank[r2]) break; return (r1 > r2 ? e1 : e2); } /* * ========================================================================== * I/O completion * ========================================================================== */ static zio_t * zio_ready(zio_t *zio) { blkptr_t *bp = zio->io_bp; zio_t *pio, *pio_next; zio_link_t *zl = NULL; if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) { return (NULL); } if (zio->io_ready) { ASSERT(IO_IS_ALLOCATING(zio)); ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE)); ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); zio->io_ready(zio); } if (bp != NULL && bp != &zio->io_bp_copy) zio->io_bp_copy = *bp; if (zio->io_error != 0) { zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(IO_IS_ALLOCATING(zio)); ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(zio->io_metaslab_class != NULL); /* * We were unable to allocate anything, unreserve and * issue the next I/O to allocate. */ metaslab_class_throttle_unreserve( zio->io_metaslab_class, zio->io_prop.zp_copies, zio->io_allocator, zio); zio_allocate_dispatch(zio->io_spa, zio->io_allocator); } } mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_READY] = 1; pio = zio_walk_parents(zio, &zl); mutex_exit(&zio->io_lock); /* * As we notify zio's parents, new parents could be added. * New parents go to the head of zio's io_parent_list, however, * so we will (correctly) not notify them. The remainder of zio's * io_parent_list, from 'pio_next' onward, cannot change because * all parents must wait for us to be done before they can be done. */ for (; pio != NULL; pio = pio_next) { pio_next = zio_walk_parents(zio, &zl); zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); } if (zio->io_flags & ZIO_FLAG_NODATA) { if (bp != NULL && BP_IS_GANG(bp)) { zio->io_flags &= ~ZIO_FLAG_NODATA; } else { ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; } } if (zio_injection_enabled && zio->io_spa->spa_syncing_txg == zio->io_txg) zio_handle_ignored_writes(zio); return (zio); } /* * Update the allocation throttle accounting. */ static void zio_dva_throttle_done(zio_t *zio) { zio_t *lio __maybe_unused = zio->io_logical; zio_t *pio = zio_unique_parent(zio); vdev_t *vd = zio->io_vd; int flags = METASLAB_ASYNC_ALLOC; ASSERT3P(zio->io_bp, !=, NULL); ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); ASSERT(vd != NULL); ASSERT3P(vd, ==, vd->vdev_top); ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); /* * Parents of gang children can have two flavors -- ones that * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) * and ones that allocated the constituent blocks. The allocation * throttle needs to know the allocating parent zio so we must find * it here. */ if (pio->io_child_type == ZIO_CHILD_GANG) { /* * If our parent is a rewrite gang child then our grandparent * would have been the one that performed the allocation. */ if (pio->io_flags & ZIO_FLAG_IO_REWRITE) pio = zio_unique_parent(pio); flags |= METASLAB_GANG_CHILD; } ASSERT(IO_IS_ALLOCATING(pio)); ASSERT3P(zio, !=, zio->io_logical); ASSERT(zio->io_logical != NULL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); ASSERT(zio->io_metaslab_class != NULL); mutex_enter(&pio->io_lock); metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, pio->io_allocator, B_TRUE); mutex_exit(&pio->io_lock); metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, pio->io_allocator, pio); /* * Call into the pipeline to see if there is more work that * needs to be done. If there is work to be done it will be * dispatched to another taskq thread. */ zio_allocate_dispatch(zio->io_spa, pio->io_allocator); } static zio_t * zio_done(zio_t *zio) { /* * Always attempt to keep stack usage minimal here since * we can be called recursively up to 19 levels deep. */ const uint64_t psize = zio->io_size; zio_t *pio, *pio_next; zio_link_t *zl = NULL; /* * If our children haven't all completed, * wait for them and then repeat this pipeline stage. */ if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { return (NULL); } /* * If the allocation throttle is enabled, then update the accounting. * We only track child I/Os that are part of an allocating async * write. We must do this since the allocation is performed * by the logical I/O but the actual write is done by child I/Os. */ if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && zio->io_child_type == ZIO_CHILD_VDEV) { ASSERT(zio->io_metaslab_class != NULL); ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); zio_dva_throttle_done(zio); } /* * If the allocation throttle is enabled, verify that * we have decremented the refcounts for every I/O that was throttled. */ if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(zio->io_bp != NULL); metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, zio->io_allocator); VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); } for (int c = 0; c < ZIO_CHILD_TYPES; c++) for (int w = 0; w < ZIO_WAIT_TYPES; w++) ASSERT(zio->io_children[c][w] == 0); if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { ASSERT(zio->io_bp->blk_pad[0] == 0); ASSERT(zio->io_bp->blk_pad[1] == 0); ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || (zio->io_bp == zio_unique_parent(zio)->io_bp)); if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && zio->io_bp_override == NULL && !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || (BP_COUNT_GANG(zio->io_bp) == BP_GET_NDVAS(zio->io_bp))); } if (zio->io_flags & ZIO_FLAG_NOPWRITE) VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); } /* * If there were child vdev/gang/ddt errors, they apply to us now. */ zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); zio_inherit_child_errors(zio, ZIO_CHILD_GANG); zio_inherit_child_errors(zio, ZIO_CHILD_DDT); /* * If the I/O on the transformed data was successful, generate any * checksum reports now while we still have the transformed data. */ if (zio->io_error == 0) { while (zio->io_cksum_report != NULL) { zio_cksum_report_t *zcr = zio->io_cksum_report; uint64_t align = zcr->zcr_align; uint64_t asize = P2ROUNDUP(psize, align); abd_t *adata = zio->io_abd; if (adata != NULL && asize != psize) { adata = abd_alloc(asize, B_TRUE); abd_copy(adata, zio->io_abd, psize); abd_zero_off(adata, psize, asize - psize); } zio->io_cksum_report = zcr->zcr_next; zcr->zcr_next = NULL; zcr->zcr_finish(zcr, adata); zfs_ereport_free_checksum(zcr); if (adata != NULL && asize != psize) abd_free(adata); } } zio_pop_transforms(zio); /* note: may set zio->io_error */ vdev_stat_update(zio, psize); /* * If this I/O is attached to a particular vdev is slow, exceeding * 30 seconds to complete, post an error described the I/O delay. * We ignore these errors if the device is currently unavailable. */ if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { /* * We want to only increment our slow IO counters if * the IO is valid (i.e. not if the drive is removed). * * zfs_ereport_post() will also do these checks, but * it can also ratelimit and have other failures, so we * need to increment the slow_io counters independent * of it. */ if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, zio->io_spa, zio->io_vd, zio)) { mutex_enter(&zio->io_vd->vdev_stat_lock); zio->io_vd->vdev_stat.vs_slow_ios++; mutex_exit(&zio->io_vd->vdev_stat_lock); (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); } } } if (zio->io_error) { /* * If this I/O is attached to a particular vdev, * generate an error message describing the I/O failure * at the block level. We ignore these errors if the * device is currently unavailable. */ if (zio->io_error != ECKSUM && zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); if (ret != EALREADY) { mutex_enter(&zio->io_vd->vdev_stat_lock); if (zio->io_type == ZIO_TYPE_READ) zio->io_vd->vdev_stat.vs_read_errors++; else if (zio->io_type == ZIO_TYPE_WRITE) zio->io_vd->vdev_stat.vs_write_errors++; mutex_exit(&zio->io_vd->vdev_stat_lock); } } if ((zio->io_error == EIO || !(zio->io_flags & (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && zio == zio->io_logical) { /* * For logical I/O requests, tell the SPA to log the * error and generate a logical data ereport. */ spa_log_error(zio->io_spa, &zio->io_bookmark, &zio->io_bp->blk_birth); (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa, NULL, &zio->io_bookmark, zio, 0); } } if (zio->io_error && zio == zio->io_logical) { /* * Determine whether zio should be reexecuted. This will * propagate all the way to the root via zio_notify_parent(). */ ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (IO_IS_ALLOCATING(zio) && !(zio->io_flags & ZIO_FLAG_CANFAIL)) { if (zio->io_error != ENOSPC) zio->io_reexecute |= ZIO_REEXECUTE_NOW; else zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; } if ((zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_FREE) && !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_error == ENXIO && spa_load_state(zio->io_spa) == SPA_LOAD_NONE && spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; /* * Here is a possibly good place to attempt to do * either combinatorial reconstruction or error correction * based on checksums. It also might be a good place * to send out preliminary ereports before we suspend * processing. */ } /* * If there were logical child errors, they apply to us now. * We defer this until now to avoid conflating logical child * errors with errors that happened to the zio itself when * updating vdev stats and reporting FMA events above. */ zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); if ((zio->io_error || zio->io_reexecute) && IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); zio_gang_tree_free(&zio->io_gang_tree); /* * Godfather I/Os should never suspend. */ if ((zio->io_flags & ZIO_FLAG_GODFATHER) && (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; if (zio->io_reexecute) { /* * This is a logical I/O that wants to reexecute. * * Reexecute is top-down. When an i/o fails, if it's not * the root, it simply notifies its parent and sticks around. * The parent, seeing that it still has children in zio_done(), * does the same. This percolates all the way up to the root. * The root i/o will reexecute or suspend the entire tree. * * This approach ensures that zio_reexecute() honors * all the original i/o dependency relationships, e.g. * parents not executing until children are ready. */ ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); zio->io_gang_leader = NULL; mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_DONE] = 1; mutex_exit(&zio->io_lock); /* * "The Godfather" I/O monitors its children but is * not a true parent to them. It will track them through * the pipeline but severs its ties whenever they get into * trouble (e.g. suspended). This allows "The Godfather" * I/O to return status without blocking. */ zl = NULL; for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { zio_link_t *remove_zl = zl; pio_next = zio_walk_parents(zio, &zl); if ((pio->io_flags & ZIO_FLAG_GODFATHER) && (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { zio_remove_child(pio, zio, remove_zl); /* * This is a rare code path, so we don't * bother with "next_to_execute". */ zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); } } if ((pio = zio_unique_parent(zio)) != NULL) { /* * We're not a root i/o, so there's nothing to do * but notify our parent. Don't propagate errors * upward since we haven't permanently failed yet. */ ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; /* * This is a rare code path, so we don't bother with * "next_to_execute". */ zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { /* * We'd fail again if we reexecuted now, so suspend * until conditions improve (e.g. device comes online). */ zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); } else { /* * Reexecution is potentially a huge amount of work. * Hand it off to the otherwise-unused claim taskq. */ ASSERT(taskq_empty_ent(&zio->io_tqent)); spa_taskq_dispatch_ent(zio->io_spa, ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, zio_reexecute, zio, 0, &zio->io_tqent); } return (NULL); } ASSERT(zio->io_child_count == 0); ASSERT(zio->io_reexecute == 0); ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); /* * Report any checksum errors, since the I/O is complete. */ while (zio->io_cksum_report != NULL) { zio_cksum_report_t *zcr = zio->io_cksum_report; zio->io_cksum_report = zcr->zcr_next; zcr->zcr_next = NULL; zcr->zcr_finish(zcr, NULL); zfs_ereport_free_checksum(zcr); } if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); } /* * It is the responsibility of the done callback to ensure that this * particular zio is no longer discoverable for adoption, and as * such, cannot acquire any new parents. */ if (zio->io_done) zio->io_done(zio); mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_DONE] = 1; mutex_exit(&zio->io_lock); /* * We are done executing this zio. We may want to execute a parent * next. See the comment in zio_notify_parent(). */ zio_t *next_to_execute = NULL; zl = NULL; for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { zio_link_t *remove_zl = zl; pio_next = zio_walk_parents(zio, &zl); zio_remove_child(pio, zio, remove_zl); zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); } if (zio->io_waiter != NULL) { mutex_enter(&zio->io_lock); zio->io_executor = NULL; cv_broadcast(&zio->io_cv); mutex_exit(&zio->io_lock); } else { zio_destroy(zio); } return (next_to_execute); } /* * ========================================================================== * I/O pipeline definition * ========================================================================== */ static zio_pipe_stage_t *zio_pipeline[] = { NULL, zio_read_bp_init, zio_write_bp_init, zio_free_bp_init, zio_issue_async, zio_write_compress, zio_encrypt, zio_checksum_generate, zio_nop_write, zio_brt_free, zio_ddt_read_start, zio_ddt_read_done, zio_ddt_write, zio_ddt_free, zio_gang_assemble, zio_gang_issue, zio_dva_throttle, zio_dva_allocate, zio_dva_free, zio_dva_claim, zio_ready, zio_vdev_io_start, zio_vdev_io_done, zio_vdev_io_assess, zio_checksum_verify, zio_done }; /* * Compare two zbookmark_phys_t's to see which we would reach first in a * pre-order traversal of the object tree. * * This is simple in every case aside from the meta-dnode object. For all other * objects, we traverse them in order (object 1 before object 2, and so on). * However, all of these objects are traversed while traversing object 0, since * the data it points to is the list of objects. Thus, we need to convert to a * canonical representation so we can compare meta-dnode bookmarks to * non-meta-dnode bookmarks. * * We do this by calculating "equivalents" for each field of the zbookmark. * zbookmarks outside of the meta-dnode use their own object and level, and * calculate the level 0 equivalent (the first L0 blkid that is contained in the * blocks this bookmark refers to) by multiplying their blkid by their span * (the number of L0 blocks contained within one block at their level). * zbookmarks inside the meta-dnode calculate their object equivalent * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use * level + 1<<31 (any value larger than a level could ever be) for their level. * This causes them to always compare before a bookmark in their object * equivalent, compare appropriately to bookmarks in other objects, and to * compare appropriately to other bookmarks in the meta-dnode. */ int zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) { /* * These variables represent the "equivalent" values for the zbookmark, * after converting zbookmarks inside the meta dnode to their * normal-object equivalents. */ uint64_t zb1obj, zb2obj; uint64_t zb1L0, zb2L0; uint64_t zb1level, zb2level; if (zb1->zb_object == zb2->zb_object && zb1->zb_level == zb2->zb_level && zb1->zb_blkid == zb2->zb_blkid) return (0); IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); /* * BP_SPANB calculates the span in blocks. */ zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); if (zb1->zb_object == DMU_META_DNODE_OBJECT) { zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); zb1L0 = 0; zb1level = zb1->zb_level + COMPARE_META_LEVEL; } else { zb1obj = zb1->zb_object; zb1level = zb1->zb_level; } if (zb2->zb_object == DMU_META_DNODE_OBJECT) { zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); zb2L0 = 0; zb2level = zb2->zb_level + COMPARE_META_LEVEL; } else { zb2obj = zb2->zb_object; zb2level = zb2->zb_level; } /* Now that we have a canonical representation, do the comparison. */ if (zb1obj != zb2obj) return (zb1obj < zb2obj ? -1 : 1); else if (zb1L0 != zb2L0) return (zb1L0 < zb2L0 ? -1 : 1); else if (zb1level != zb2level) return (zb1level > zb2level ? -1 : 1); /* * This can (theoretically) happen if the bookmarks have the same object * and level, but different blkids, if the block sizes are not the same. * There is presently no way to change the indirect block sizes */ return (0); } /* * This function checks the following: given that last_block is the place that * our traversal stopped last time, does that guarantee that we've visited * every node under subtree_root? Therefore, we can't just use the raw output * of zbookmark_compare. We have to pass in a modified version of * subtree_root; by incrementing the block id, and then checking whether * last_block is before or equal to that, we can tell whether or not having * visited last_block implies that all of subtree_root's children have been * visited. */ boolean_t zbookmark_subtree_completed(const dnode_phys_t *dnp, const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) { zbookmark_phys_t mod_zb = *subtree_root; mod_zb.zb_blkid++; ASSERT0(last_block->zb_level); /* The objset_phys_t isn't before anything. */ if (dnp == NULL) return (B_FALSE); /* * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the * data block size in sectors, because that variable is only used if * the bookmark refers to a block in the meta-dnode. Since we don't * know without examining it what object it refers to, and there's no * harm in passing in this value in other cases, we always pass it in. * * We pass in 0 for the indirect block size shift because zb2 must be * level 0. The indirect block size is only used to calculate the span * of the bookmark, but since the bookmark must be level 0, the span is * always 1, so the math works out. * * If you make changes to how the zbookmark_compare code works, be sure * to make sure that this code still works afterwards. */ return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, last_block) <= 0); } /* * This function is similar to zbookmark_subtree_completed(), but returns true * if subtree_root is equal or ahead of last_block, i.e. still to be done. */ boolean_t zbookmark_subtree_tbd(const dnode_phys_t *dnp, const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) { ASSERT0(last_block->zb_level); if (dnp == NULL) return (B_FALSE); return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, last_block) >= 0); } EXPORT_SYMBOL(zio_type_name); EXPORT_SYMBOL(zio_buf_alloc); EXPORT_SYMBOL(zio_data_buf_alloc); EXPORT_SYMBOL(zio_buf_free); EXPORT_SYMBOL(zio_data_buf_free); ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, "Max I/O completion time (milliseconds) before marking it as slow"); ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, "Prioritize requeued I/O"); ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, "Defer frees starting in this pass"); ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, "Don't compress starting in this pass"); ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, "Rewrite new bps starting in this pass"); ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, "Throttle block allocations in the ZIO pipeline"); ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, "Log all slow ZIOs, not just those with vdevs");