diff --git a/sys/compat/linuxkpi/common/src/linux_firmware.c b/sys/compat/linuxkpi/common/src/linux_firmware.c index d779b509105e..47cccd42da20 100644 --- a/sys/compat/linuxkpi/common/src/linux_firmware.c +++ b/sys/compat/linuxkpi/common/src/linux_firmware.c @@ -1,226 +1,225 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2020-2021 The FreeBSD Foundation * * This software was developed by Björn Zeeb under sponsorship from * the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #undef firmware MALLOC_DEFINE(M_LKPI_FW, "lkpifw", "LinuxKPI firmware"); struct lkpi_fw_task { /* Task and arguments for the "nowait" callback. */ struct task fw_task; gfp_t gfp; const char *fw_name; struct device *dev; void *drv; void(*cont)(const struct linuxkpi_firmware *, void *); }; static int _linuxkpi_request_firmware(const char *fw_name, const struct linuxkpi_firmware **fw, struct device *dev, gfp_t gfp __unused, bool enoentok, bool warn) { const struct firmware *fbdfw; struct linuxkpi_firmware *lfw; const char *fwimg; char *p; uint32_t flags; if (fw_name == NULL || fw == NULL || dev == NULL) { *fw = NULL; return (-EINVAL); } /* Set independent on "warn". To debug, bootverbose is avail. */ flags = FIRMWARE_GET_NOWARN; KASSERT(gfp == GFP_KERNEL, ("%s: gfp %#x\n", __func__, gfp)); lfw = malloc(sizeof(*lfw), M_LKPI_FW, M_WAITOK | M_ZERO); /* * Linux can have a path in the firmware which is hard to replicate * for auto-firmware-module-loading. * On FreeBSD, depending on what people do, the firmware will either * be called "fw", or "dir_fw", or "modname_dir_fw". The latter the * driver author has to deal with herself (requesting the special name). * We also optionally flatten '/'s and '.'s as some firmware modules do. * We probe in the least-of-work order avoiding memory operations. * It will be preferred to build the firmware .ko in a well matching * way rather than adding more name-mangling-hacks here in the future * (though we could if needed). */ /* (1) Try any name removed of path. */ fwimg = strrchr(fw_name, '/'); if (fwimg != NULL) fwimg++; if (fwimg == NULL || *fwimg == '\0') fwimg = fw_name; fbdfw = firmware_get_flags(fwimg, flags); /* (2) Try the original name if we have not yet. */ if (fbdfw == NULL && fwimg != fw_name) { fwimg = fw_name; fbdfw = firmware_get_flags(fwimg, flags); } /* (3) Flatten '/', '.' and '-' to '_' and try with adjusted name. */ if (fbdfw == NULL && (strchr(fw_name, '/') != NULL || strchr(fw_name, '.') != NULL || strchr(fw_name, '-'))) { fwimg = strdup(fw_name, M_LKPI_FW); if (fwimg != NULL) { while ((p = strchr(fwimg, '/')) != NULL) *p = '_'; fbdfw = firmware_get_flags(fwimg, flags); if (fbdfw == NULL) { while ((p = strchr(fwimg, '.')) != NULL) *p = '_'; fbdfw = firmware_get_flags(fwimg, flags); } if (fbdfw == NULL) { while ((p = strchr(fwimg, '-')) != NULL) *p = '_'; fbdfw = firmware_get_flags(fwimg, flags); } free(__DECONST(void *, fwimg), M_LKPI_FW); } } if (fbdfw == NULL) { if (enoentok) *fw = lfw; else { free(lfw, M_LKPI_FW); *fw = NULL; } if (warn) device_printf(dev->bsddev, "could not load firmware " "image '%s'\n", fw_name); return (-ENOENT); } device_printf(dev->bsddev,"successfully loaded firmware image '%s'\n", fw_name); lfw->fbdfw = fbdfw; lfw->data = (const uint8_t *)fbdfw->data; lfw->size = fbdfw->datasize; *fw = lfw; return (0); } static void lkpi_fw_task(void *ctx, int pending) { struct lkpi_fw_task *lfwt; const struct linuxkpi_firmware *fw; - int error; KASSERT(ctx != NULL && pending == 1, ("%s: lfwt %p, pending %d\n", __func__, ctx, pending)); lfwt = ctx; if (lfwt->cont == NULL) goto out; - error = _linuxkpi_request_firmware(lfwt->fw_name, &fw, lfwt->dev, + _linuxkpi_request_firmware(lfwt->fw_name, &fw, lfwt->dev, lfwt->gfp, true, true); /* * Linux seems to run the callback if it cannot find the firmware. * We call it in all cases as it is the only feedback to the requester. */ lfwt->cont(fw, lfwt->drv); /* Do not assume fw is still valid! */ out: free(lfwt, M_LKPI_FW); } int linuxkpi_request_firmware_nowait(struct module *mod __unused, bool _t __unused, const char *fw_name, struct device *dev, gfp_t gfp, void *drv, void(*cont)(const struct linuxkpi_firmware *, void *)) { struct lkpi_fw_task *lfwt; int error; lfwt = malloc(sizeof(*lfwt), M_LKPI_FW, M_WAITOK | M_ZERO); lfwt->gfp = gfp; lfwt->fw_name = fw_name; lfwt->dev = dev; lfwt->drv = drv; lfwt->cont = cont; TASK_INIT(&lfwt->fw_task, 0, lkpi_fw_task, lfwt); error = taskqueue_enqueue(taskqueue_thread, &lfwt->fw_task); if (error) return (-error); return (0); } int linuxkpi_request_firmware(const struct linuxkpi_firmware **fw, const char *fw_name, struct device *dev) { return (_linuxkpi_request_firmware(fw_name, fw, dev, GFP_KERNEL, false, true)); } int linuxkpi_firmware_request_nowarn(const struct linuxkpi_firmware **fw, const char *fw_name, struct device *dev) { return (_linuxkpi_request_firmware(fw_name, fw, dev, GFP_KERNEL, false, false)); } void linuxkpi_release_firmware(const struct linuxkpi_firmware *fw) { if (fw == NULL) return; if (fw->fbdfw) firmware_put(fw->fbdfw, FIRMWARE_UNLOAD); free(__DECONST(void *, fw), M_LKPI_FW); } diff --git a/sys/compat/linuxkpi/common/src/linux_pci.c b/sys/compat/linuxkpi/common/src/linux_pci.c index 8ec6a5af2140..bf28c10fbf96 100644 --- a/sys/compat/linuxkpi/common/src/linux_pci.c +++ b/sys/compat/linuxkpi/common/src/linux_pci.c @@ -1,1272 +1,1268 @@ /*- * Copyright (c) 2015-2016 Mellanox Technologies, Ltd. * All rights reserved. * Copyright (c) 2020-2021 The FreeBSD Foundation * * Portions of this software were developed by Björn Zeeb * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "backlight_if.h" #include "pcib_if.h" /* Undef the linux function macro defined in linux/pci.h */ #undef pci_get_class static device_probe_t linux_pci_probe; static device_attach_t linux_pci_attach; static device_detach_t linux_pci_detach; static device_suspend_t linux_pci_suspend; static device_resume_t linux_pci_resume; static device_shutdown_t linux_pci_shutdown; static pci_iov_init_t linux_pci_iov_init; static pci_iov_uninit_t linux_pci_iov_uninit; static pci_iov_add_vf_t linux_pci_iov_add_vf; static int linux_backlight_get_status(device_t dev, struct backlight_props *props); static int linux_backlight_update_status(device_t dev, struct backlight_props *props); static int linux_backlight_get_info(device_t dev, struct backlight_info *info); static device_method_t pci_methods[] = { DEVMETHOD(device_probe, linux_pci_probe), DEVMETHOD(device_attach, linux_pci_attach), DEVMETHOD(device_detach, linux_pci_detach), DEVMETHOD(device_suspend, linux_pci_suspend), DEVMETHOD(device_resume, linux_pci_resume), DEVMETHOD(device_shutdown, linux_pci_shutdown), DEVMETHOD(pci_iov_init, linux_pci_iov_init), DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit), DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf), /* backlight interface */ DEVMETHOD(backlight_update_status, linux_backlight_update_status), DEVMETHOD(backlight_get_status, linux_backlight_get_status), DEVMETHOD(backlight_get_info, linux_backlight_get_info), DEVMETHOD_END }; struct linux_dma_priv { uint64_t dma_mask; bus_dma_tag_t dmat; uint64_t dma_coherent_mask; bus_dma_tag_t dmat_coherent; struct mtx lock; struct pctrie ptree; }; #define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock) #define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock) static int linux_pdev_dma_uninit(struct pci_dev *pdev) { struct linux_dma_priv *priv; priv = pdev->dev.dma_priv; if (priv->dmat) bus_dma_tag_destroy(priv->dmat); if (priv->dmat_coherent) bus_dma_tag_destroy(priv->dmat_coherent); mtx_destroy(&priv->lock); pdev->dev.dma_priv = NULL; free(priv, M_DEVBUF); return (0); } static int linux_pdev_dma_init(struct pci_dev *pdev) { struct linux_dma_priv *priv; int error; priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO); mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF); pctrie_init(&priv->ptree); pdev->dev.dma_priv = priv; /* Create a default DMA tags. */ error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64)); if (error != 0) goto err; /* Coherent is lower 32bit only by default in Linux. */ error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (error != 0) goto err; return (error); err: linux_pdev_dma_uninit(pdev); return (error); } int linux_dma_tag_init(struct device *dev, u64 dma_mask) { struct linux_dma_priv *priv; int error; priv = dev->dma_priv; if (priv->dmat) { if (priv->dma_mask == dma_mask) return (0); bus_dma_tag_destroy(priv->dmat); } priv->dma_mask = dma_mask; error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 1, 0, /* alignment, boundary */ dma_mask, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ BUS_SPACE_MAXSIZE, /* maxsize */ 1, /* nsegments */ BUS_SPACE_MAXSIZE, /* maxsegsz */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &priv->dmat); return (-error); } int linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask) { struct linux_dma_priv *priv; int error; priv = dev->dma_priv; if (priv->dmat_coherent) { if (priv->dma_coherent_mask == dma_mask) return (0); bus_dma_tag_destroy(priv->dmat_coherent); } priv->dma_coherent_mask = dma_mask; error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 1, 0, /* alignment, boundary */ dma_mask, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ BUS_SPACE_MAXSIZE, /* maxsize */ 1, /* nsegments */ BUS_SPACE_MAXSIZE, /* maxsegsz */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &priv->dmat_coherent); return (-error); } static struct pci_driver * linux_pci_find(device_t dev, const struct pci_device_id **idp) { const struct pci_device_id *id; struct pci_driver *pdrv; uint16_t vendor; uint16_t device; uint16_t subvendor; uint16_t subdevice; vendor = pci_get_vendor(dev); device = pci_get_device(dev); subvendor = pci_get_subvendor(dev); subdevice = pci_get_subdevice(dev); spin_lock(&pci_lock); list_for_each_entry(pdrv, &pci_drivers, node) { for (id = pdrv->id_table; id->vendor != 0; id++) { if (vendor == id->vendor && (PCI_ANY_ID == id->device || device == id->device) && (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) && (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) { *idp = id; spin_unlock(&pci_lock); return (pdrv); } } } spin_unlock(&pci_lock); return (NULL); } static void lkpi_pci_dev_release(struct device *dev) { lkpi_devres_release_free_list(dev); spin_lock_destroy(&dev->devres_lock); } static void lkpifill_pci_dev(device_t dev, struct pci_dev *pdev) { pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev)); pdev->vendor = pci_get_vendor(dev); pdev->device = pci_get_device(dev); pdev->subsystem_vendor = pci_get_subvendor(dev); pdev->subsystem_device = pci_get_subdevice(dev); pdev->class = pci_get_class(dev); pdev->revision = pci_get_revid(dev); pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO); pdev->bus->self = pdev; pdev->bus->number = pci_get_bus(dev); pdev->bus->domain = pci_get_domain(dev); pdev->dev.bsddev = dev; pdev->dev.parent = &linux_root_device; pdev->dev.release = lkpi_pci_dev_release; INIT_LIST_HEAD(&pdev->dev.irqents); kobject_init(&pdev->dev.kobj, &linux_dev_ktype); kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev)); kobject_add(&pdev->dev.kobj, &linux_root_device.kobj, kobject_name(&pdev->dev.kobj)); spin_lock_init(&pdev->dev.devres_lock); INIT_LIST_HEAD(&pdev->dev.devres_head); } static void lkpinew_pci_dev_release(struct device *dev) { struct pci_dev *pdev; pdev = to_pci_dev(dev); if (pdev->root != NULL) pci_dev_put(pdev->root); free(pdev->bus, M_DEVBUF); free(pdev, M_DEVBUF); } struct pci_dev * lkpinew_pci_dev(device_t dev) { struct pci_dev *pdev; pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO); lkpifill_pci_dev(dev, pdev); pdev->dev.release = lkpinew_pci_dev_release; return (pdev); } struct pci_dev * lkpi_pci_get_class(unsigned int class, struct pci_dev *from) { device_t dev; device_t devfrom = NULL; struct pci_dev *pdev; if (from != NULL) devfrom = from->dev.bsddev; dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom); if (dev == NULL) return (NULL); pdev = lkpinew_pci_dev(dev); return (pdev); } struct pci_dev * lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus, unsigned int devfn) { device_t dev; struct pci_dev *pdev; dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); if (dev == NULL) return (NULL); pdev = lkpinew_pci_dev(dev); return (pdev); } static int linux_pci_probe(device_t dev) { const struct pci_device_id *id; struct pci_driver *pdrv; if ((pdrv = linux_pci_find(dev, &id)) == NULL) return (ENXIO); if (device_get_driver(dev) != &pdrv->bsddriver) return (ENXIO); device_set_desc(dev, pdrv->name); return (0); } static int linux_pci_attach(device_t dev) { const struct pci_device_id *id; struct pci_driver *pdrv; struct pci_dev *pdev; pdrv = linux_pci_find(dev, &id); pdev = device_get_softc(dev); MPASS(pdrv != NULL); MPASS(pdev != NULL); return (linux_pci_attach_device(dev, pdrv, id, pdev)); } int linux_pci_attach_device(device_t dev, struct pci_driver *pdrv, const struct pci_device_id *id, struct pci_dev *pdev) { struct resource_list_entry *rle; device_t parent; uintptr_t rid; int error; bool isdrm; linux_set_current(curthread); parent = device_get_parent(dev); isdrm = pdrv != NULL && pdrv->isdrm; if (isdrm) { struct pci_devinfo *dinfo; dinfo = device_get_ivars(parent); device_set_ivars(dev, dinfo); } lkpifill_pci_dev(dev, pdev); if (isdrm) PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid); else PCI_GET_ID(parent, dev, PCI_ID_RID, &rid); pdev->devfn = rid; pdev->pdrv = pdrv; rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false); if (rle != NULL) pdev->dev.irq = rle->start; else pdev->dev.irq = LINUX_IRQ_INVALID; pdev->irq = pdev->dev.irq; error = linux_pdev_dma_init(pdev); if (error) goto out_dma_init; TAILQ_INIT(&pdev->mmio); spin_lock(&pci_lock); list_add(&pdev->links, &pci_devices); spin_unlock(&pci_lock); if (pdrv != NULL) { error = pdrv->probe(pdev, id); if (error) goto out_probe; } return (0); out_probe: free(pdev->bus, M_DEVBUF); linux_pdev_dma_uninit(pdev); out_dma_init: spin_lock(&pci_lock); list_del(&pdev->links); spin_unlock(&pci_lock); put_device(&pdev->dev); return (-error); } static int linux_pci_detach(device_t dev) { struct pci_dev *pdev; pdev = device_get_softc(dev); MPASS(pdev != NULL); device_set_desc(dev, NULL); return (linux_pci_detach_device(pdev)); } int linux_pci_detach_device(struct pci_dev *pdev) { linux_set_current(curthread); if (pdev->pdrv != NULL) pdev->pdrv->remove(pdev); if (pdev->root != NULL) pci_dev_put(pdev->root); free(pdev->bus, M_DEVBUF); linux_pdev_dma_uninit(pdev); spin_lock(&pci_lock); list_del(&pdev->links); spin_unlock(&pci_lock); put_device(&pdev->dev); return (0); } static int lkpi_pci_disable_dev(struct device *dev) { (void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY); (void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT); return (0); } void lkpi_pci_devres_release(struct device *dev, void *p) { struct pci_devres *dr; struct pci_dev *pdev; int bar; pdev = to_pci_dev(dev); dr = p; if (pdev->msix_enabled) lkpi_pci_disable_msix(pdev); if (pdev->msi_enabled) lkpi_pci_disable_msi(pdev); if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0) dr->enable_io = false; if (dr->region_mask == 0) return; for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { if ((dr->region_mask & (1 << bar)) == 0) continue; pci_release_region(pdev, bar); } } void lkpi_pcim_iomap_table_release(struct device *dev, void *p) { struct pcim_iomap_devres *dr; struct pci_dev *pdev; int bar; dr = p; pdev = to_pci_dev(dev); for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { if (dr->mmio_table[bar] == NULL) continue; pci_iounmap(pdev, dr->mmio_table[bar]); } } static int linux_pci_suspend(device_t dev) { const struct dev_pm_ops *pmops; struct pm_message pm = { }; struct pci_dev *pdev; int error; error = 0; linux_set_current(curthread); pdev = device_get_softc(dev); pmops = pdev->pdrv->driver.pm; if (pdev->pdrv->suspend != NULL) error = -pdev->pdrv->suspend(pdev, pm); else if (pmops != NULL && pmops->suspend != NULL) { error = -pmops->suspend(&pdev->dev); if (error == 0 && pmops->suspend_late != NULL) error = -pmops->suspend_late(&pdev->dev); } return (error); } static int linux_pci_resume(device_t dev) { const struct dev_pm_ops *pmops; struct pci_dev *pdev; int error; error = 0; linux_set_current(curthread); pdev = device_get_softc(dev); pmops = pdev->pdrv->driver.pm; if (pdev->pdrv->resume != NULL) error = -pdev->pdrv->resume(pdev); else if (pmops != NULL && pmops->resume != NULL) { if (pmops->resume_early != NULL) error = -pmops->resume_early(&pdev->dev); if (error == 0 && pmops->resume != NULL) error = -pmops->resume(&pdev->dev); } return (error); } static int linux_pci_shutdown(device_t dev) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->shutdown != NULL) pdev->pdrv->shutdown(pdev); return (0); } static int linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config) { struct pci_dev *pdev; int error; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->bsd_iov_init != NULL) error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config); else error = EINVAL; return (error); } static void linux_pci_iov_uninit(device_t dev) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->bsd_iov_uninit != NULL) pdev->pdrv->bsd_iov_uninit(dev); } static int linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config) { struct pci_dev *pdev; int error; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->bsd_iov_add_vf != NULL) error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config); else error = EINVAL; return (error); } static int _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc) { int error; linux_set_current(curthread); spin_lock(&pci_lock); list_add(&pdrv->node, &pci_drivers); spin_unlock(&pci_lock); pdrv->bsddriver.name = pdrv->name; pdrv->bsddriver.methods = pci_methods; pdrv->bsddriver.size = sizeof(struct pci_dev); mtx_lock(&Giant); error = devclass_add_driver(dc, &pdrv->bsddriver, BUS_PASS_DEFAULT, &pdrv->bsdclass); mtx_unlock(&Giant); return (-error); } int linux_pci_register_driver(struct pci_driver *pdrv) { devclass_t dc; dc = devclass_find("pci"); if (dc == NULL) return (-ENXIO); pdrv->isdrm = false; return (_linux_pci_register_driver(pdrv, dc)); } struct resource_list_entry * linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl, int type, int rid) { device_t dev; struct resource *res; KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY, ("trying to reserve non-BAR type %d", type)); dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0, 1, 1, 0); if (res == NULL) return (NULL); return (resource_list_find(rl, type, rid)); } unsigned long pci_resource_start(struct pci_dev *pdev, int bar) { struct resource_list_entry *rle; rman_res_t newstart; device_t dev; int error; if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL) return (0); dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; error = bus_translate_resource(dev, rle->type, rle->start, &newstart); if (error != 0) { device_printf(pdev->dev.bsddev, "translate of %#jx failed: %d\n", (uintmax_t)rle->start, error); return (0); } return (newstart); } unsigned long pci_resource_len(struct pci_dev *pdev, int bar) { struct resource_list_entry *rle; if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL) return (0); return (rle->count); } int linux_pci_register_drm_driver(struct pci_driver *pdrv) { devclass_t dc; dc = devclass_create("vgapci"); if (dc == NULL) return (-ENXIO); pdrv->isdrm = true; pdrv->name = "drmn"; return (_linux_pci_register_driver(pdrv, dc)); } void linux_pci_unregister_driver(struct pci_driver *pdrv) { devclass_t bus; bus = devclass_find("pci"); spin_lock(&pci_lock); list_del(&pdrv->node); spin_unlock(&pci_lock); mtx_lock(&Giant); if (bus != NULL) devclass_delete_driver(bus, &pdrv->bsddriver); mtx_unlock(&Giant); } void linux_pci_unregister_drm_driver(struct pci_driver *pdrv) { devclass_t bus; bus = devclass_find("vgapci"); spin_lock(&pci_lock); list_del(&pdrv->node); spin_unlock(&pci_lock); mtx_lock(&Giant); if (bus != NULL) devclass_delete_driver(bus, &pdrv->bsddriver); mtx_unlock(&Giant); } CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t)); struct linux_dma_obj { void *vaddr; uint64_t dma_addr; bus_dmamap_t dmamap; bus_dma_tag_t dmat; }; static uma_zone_t linux_dma_trie_zone; static uma_zone_t linux_dma_obj_zone; static void linux_dma_init(void *arg) { linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie", pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0); linux_dma_obj_zone = uma_zcreate("linux_dma_object", sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); } SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL); static void linux_dma_uninit(void *arg) { uma_zdestroy(linux_dma_obj_zone); uma_zdestroy(linux_dma_trie_zone); } SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL); static void * linux_dma_trie_alloc(struct pctrie *ptree) { return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT)); } static void linux_dma_trie_free(struct pctrie *ptree, void *node) { uma_zfree(linux_dma_trie_zone, node); } PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc, linux_dma_trie_free); #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) static dma_addr_t linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len, bus_dma_tag_t dmat) { struct linux_dma_priv *priv; struct linux_dma_obj *obj; int error, nseg; bus_dma_segment_t seg; priv = dev->dma_priv; /* * If the resultant mapping will be entirely 1:1 with the * physical address, short-circuit the remainder of the * bus_dma API. This avoids tracking collisions in the pctrie * with the additional benefit of reducing overhead. */ if (bus_dma_id_mapped(dmat, phys, len)) return (phys); obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT); if (obj == NULL) { return (0); } obj->dmat = dmat; DMA_PRIV_LOCK(priv); if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) { DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); return (0); } nseg = -1; if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len, BUS_DMA_NOWAIT, &seg, &nseg) != 0) { bus_dmamap_destroy(obj->dmat, obj->dmamap); DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); return (0); } KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); obj->dma_addr = seg.ds_addr; error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj); if (error != 0) { bus_dmamap_unload(obj->dmat, obj->dmamap); bus_dmamap_destroy(obj->dmat, obj->dmamap); DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); return (0); } DMA_PRIV_UNLOCK(priv); return (obj->dma_addr); } #else static dma_addr_t linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys, size_t len __unused, bus_dma_tag_t dmat __unused) { return (phys); } #endif dma_addr_t linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len) { struct linux_dma_priv *priv; priv = dev->dma_priv; return (linux_dma_map_phys_common(dev, phys, len, priv->dmat)); } #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) void linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) { struct linux_dma_priv *priv; struct linux_dma_obj *obj; priv = dev->dma_priv; if (pctrie_is_empty(&priv->ptree)) return; DMA_PRIV_LOCK(priv); obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); if (obj == NULL) { DMA_PRIV_UNLOCK(priv); return; } LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr); bus_dmamap_unload(obj->dmat, obj->dmamap); bus_dmamap_destroy(obj->dmat, obj->dmamap); DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); } #else void linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) { } #endif void * linux_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { struct linux_dma_priv *priv; vm_paddr_t high; size_t align; void *mem; if (dev == NULL || dev->dma_priv == NULL) { *dma_handle = 0; return (NULL); } priv = dev->dma_priv; if (priv->dma_coherent_mask) high = priv->dma_coherent_mask; else /* Coherent is lower 32bit only by default in Linux. */ high = BUS_SPACE_MAXADDR_32BIT; align = PAGE_SIZE << get_order(size); /* Always zero the allocation. */ flag |= M_ZERO; mem = (void *)kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high, align, 0, VM_MEMATTR_DEFAULT); if (mem != NULL) { *dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size, priv->dmat_coherent); if (*dma_handle == 0) { kmem_free((vm_offset_t)mem, size); mem = NULL; } } else { *dma_handle = 0; } return (mem); } int linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir __unused, unsigned long attrs __unused) { struct linux_dma_priv *priv; struct scatterlist *sg; int i, nseg; bus_dma_segment_t seg; priv = dev->dma_priv; DMA_PRIV_LOCK(priv); /* create common DMA map in the first S/G entry */ if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) { DMA_PRIV_UNLOCK(priv); return (0); } /* load all S/G list entries */ for_each_sg(sgl, sg, nents, i) { nseg = -1; if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map, sg_phys(sg), sg->length, BUS_DMA_NOWAIT, &seg, &nseg) != 0) { bus_dmamap_unload(priv->dmat, sgl->dma_map); bus_dmamap_destroy(priv->dmat, sgl->dma_map); DMA_PRIV_UNLOCK(priv); return (0); } KASSERT(nseg == 0, ("More than one segment (nseg=%d)", nseg + 1)); sg_dma_address(sg) = seg.ds_addr; } DMA_PRIV_UNLOCK(priv); return (nents); } void linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents __unused, enum dma_data_direction dir __unused, unsigned long attrs __unused) { struct linux_dma_priv *priv; priv = dev->dma_priv; DMA_PRIV_LOCK(priv); bus_dmamap_unload(priv->dmat, sgl->dma_map); bus_dmamap_destroy(priv->dmat, sgl->dma_map); DMA_PRIV_UNLOCK(priv); } struct dma_pool { struct device *pool_device; uma_zone_t pool_zone; struct mtx pool_lock; bus_dma_tag_t pool_dmat; size_t pool_entry_size; struct pctrie pool_ptree; }; #define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock) #define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock) static inline int dma_pool_obj_ctor(void *mem, int size, void *arg, int flags) { struct linux_dma_obj *obj = mem; struct dma_pool *pool = arg; int error, nseg; bus_dma_segment_t seg; nseg = -1; DMA_POOL_LOCK(pool); error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap, vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT, &seg, &nseg); DMA_POOL_UNLOCK(pool); if (error != 0) { return (error); } KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); obj->dma_addr = seg.ds_addr; return (0); } static void dma_pool_obj_dtor(void *mem, int size, void *arg) { struct linux_dma_obj *obj = mem; struct dma_pool *pool = arg; DMA_POOL_LOCK(pool); bus_dmamap_unload(pool->pool_dmat, obj->dmamap); DMA_POOL_UNLOCK(pool); } static int dma_pool_obj_import(void *arg, void **store, int count, int domain __unused, int flags) { struct dma_pool *pool = arg; - struct linux_dma_priv *priv; struct linux_dma_obj *obj; int error, i; - priv = pool->pool_device->dma_priv; for (i = 0; i < count; i++) { obj = uma_zalloc(linux_dma_obj_zone, flags); if (obj == NULL) break; error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr, BUS_DMA_NOWAIT, &obj->dmamap); if (error!= 0) { uma_zfree(linux_dma_obj_zone, obj); break; } store[i] = obj; } return (i); } static void dma_pool_obj_release(void *arg, void **store, int count) { struct dma_pool *pool = arg; - struct linux_dma_priv *priv; struct linux_dma_obj *obj; int i; - priv = pool->pool_device->dma_priv; for (i = 0; i < count; i++) { obj = store[i]; bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap); uma_zfree(linux_dma_obj_zone, obj); } } struct dma_pool * linux_dma_pool_create(char *name, struct device *dev, size_t size, size_t align, size_t boundary) { struct linux_dma_priv *priv; struct dma_pool *pool; priv = dev->dma_priv; pool = kzalloc(sizeof(*pool), GFP_KERNEL); pool->pool_device = dev; pool->pool_entry_size = size; if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), align, boundary, /* alignment, boundary */ priv->dma_mask, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ size, /* maxsize */ 1, /* nsegments */ size, /* maxsegsz */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &pool->pool_dmat)) { kfree(pool); return (NULL); } pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor, dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import, dma_pool_obj_release, pool, 0); mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF); pctrie_init(&pool->pool_ptree); return (pool); } void linux_dma_pool_destroy(struct dma_pool *pool) { uma_zdestroy(pool->pool_zone); bus_dma_tag_destroy(pool->pool_dmat); mtx_destroy(&pool->pool_lock); kfree(pool); } void lkpi_dmam_pool_destroy(struct device *dev, void *p) { struct dma_pool *pool; pool = *(struct dma_pool **)p; LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree); linux_dma_pool_destroy(pool); } void * linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, dma_addr_t *handle) { struct linux_dma_obj *obj; obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK); if (obj == NULL) return (NULL); DMA_POOL_LOCK(pool); if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) { DMA_POOL_UNLOCK(pool); uma_zfree_arg(pool->pool_zone, obj, pool); return (NULL); } DMA_POOL_UNLOCK(pool); *handle = obj->dma_addr; return (obj->vaddr); } void linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr) { struct linux_dma_obj *obj; DMA_POOL_LOCK(pool); obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr); if (obj == NULL) { DMA_POOL_UNLOCK(pool); return; } LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr); DMA_POOL_UNLOCK(pool); uma_zfree_arg(pool->pool_zone, obj, pool); } static int linux_backlight_get_status(device_t dev, struct backlight_props *props) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); props->brightness = pdev->dev.bd->props.brightness; props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness; props->nlevels = 0; return (0); } static int linux_backlight_get_info(device_t dev, struct backlight_info *info) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); info->type = BACKLIGHT_TYPE_PANEL; strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH); return (0); } static int linux_backlight_update_status(device_t dev, struct backlight_props *props) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness * props->brightness / 100; pdev->dev.bd->props.power = props->brightness == 0 ? 4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */; return (pdev->dev.bd->ops->update_status(pdev->dev.bd)); } struct backlight_device * linux_backlight_device_register(const char *name, struct device *dev, void *data, const struct backlight_ops *ops, struct backlight_properties *props) { dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO); dev->bd->ops = ops; dev->bd->props.type = props->type; dev->bd->props.max_brightness = props->max_brightness; dev->bd->props.brightness = props->brightness; dev->bd->props.power = props->power; dev->bd->data = data; dev->bd->dev = dev; dev->bd->name = strdup(name, M_DEVBUF); dev->backlight_dev = backlight_register(name, dev->bsddev); return (dev->bd); } void linux_backlight_device_unregister(struct backlight_device *bd) { backlight_destroy(bd->dev->backlight_dev); free(bd->name, M_DEVBUF); free(bd, M_DEVBUF); } diff --git a/sys/compat/linuxkpi/common/src/linux_usb.c b/sys/compat/linuxkpi/common/src/linux_usb.c index e93559f95264..11f400bc2c52 100644 --- a/sys/compat/linuxkpi/common/src/linux_usb.c +++ b/sys/compat/linuxkpi/common/src/linux_usb.c @@ -1,1720 +1,1718 @@ /* $FreeBSD$ */ /*- * Copyright (c) 2007 Luigi Rizzo - Universita` di Pisa. All rights reserved. * Copyright (c) 2007 Hans Petter Selasky. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef USB_GLOBAL_INCLUDE_FILE #include USB_GLOBAL_INCLUDE_FILE #else #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define USB_DEBUG_VAR usb_debug #include #include #include #include #include #include #include #include #include #include #include #endif /* USB_GLOBAL_INCLUDE_FILE */ struct usb_linux_softc { LIST_ENTRY(usb_linux_softc) sc_attached_list; device_t sc_fbsd_dev; struct usb_device *sc_fbsd_udev; struct usb_interface *sc_ui; struct usb_driver *sc_udrv; }; /* prototypes */ static device_probe_t usb_linux_probe; static device_attach_t usb_linux_attach; static device_detach_t usb_linux_detach; static device_suspend_t usb_linux_suspend; static device_resume_t usb_linux_resume; static usb_callback_t usb_linux_isoc_callback; static usb_callback_t usb_linux_non_isoc_callback; static usb_complete_t usb_linux_wait_complete; static uint16_t usb_max_isoc_frames(struct usb_device *); static int usb_start_wait_urb(struct urb *, usb_timeout_t, uint16_t *); static const struct usb_device_id *usb_linux_lookup_id( const struct usb_device_id *, struct usb_attach_arg *); static struct usb_driver *usb_linux_get_usb_driver(struct usb_linux_softc *); static int usb_linux_create_usb_device(struct usb_device *, device_t); static void usb_linux_cleanup_interface(struct usb_device *, struct usb_interface *); static void usb_linux_complete(struct usb_xfer *); static int usb_unlink_urb_sub(struct urb *, uint8_t); /*------------------------------------------------------------------------* * FreeBSD USB interface *------------------------------------------------------------------------*/ static LIST_HEAD(, usb_linux_softc) usb_linux_attached_list; static LIST_HEAD(, usb_driver) usb_linux_driver_list; static device_method_t usb_linux_methods[] = { /* Device interface */ DEVMETHOD(device_probe, usb_linux_probe), DEVMETHOD(device_attach, usb_linux_attach), DEVMETHOD(device_detach, usb_linux_detach), DEVMETHOD(device_suspend, usb_linux_suspend), DEVMETHOD(device_resume, usb_linux_resume), DEVMETHOD_END }; static driver_t usb_linux_driver = { .name = "usb_linux", .methods = usb_linux_methods, .size = sizeof(struct usb_linux_softc), }; static devclass_t usb_linux_devclass; DRIVER_MODULE(usb_linux, uhub, usb_linux_driver, usb_linux_devclass, NULL, 0); MODULE_VERSION(usb_linux, 1); /*------------------------------------------------------------------------* * usb_linux_lookup_id * * This functions takes an array of "struct usb_device_id" and tries * to match the entries with the information in "struct usb_attach_arg". * If it finds a match the matching entry will be returned. * Else "NULL" will be returned. *------------------------------------------------------------------------*/ static const struct usb_device_id * usb_linux_lookup_id(const struct usb_device_id *id, struct usb_attach_arg *uaa) { if (id == NULL) { goto done; } /* * Keep on matching array entries until we find one with * "match_flags" equal to zero, which indicates the end of the * array: */ for (; id->match_flags; id++) { if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) && (id->idVendor != uaa->info.idVendor)) { continue; } if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) && (id->idProduct != uaa->info.idProduct)) { continue; } if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) && (id->bcdDevice_lo > uaa->info.bcdDevice)) { continue; } if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) && (id->bcdDevice_hi < uaa->info.bcdDevice)) { continue; } if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) && (id->bDeviceClass != uaa->info.bDeviceClass)) { continue; } if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) && (id->bDeviceSubClass != uaa->info.bDeviceSubClass)) { continue; } if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) && (id->bDeviceProtocol != uaa->info.bDeviceProtocol)) { continue; } if ((uaa->info.bDeviceClass == 0xFF) && !(id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) && (id->match_flags & (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL))) { continue; } if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) && (id->bInterfaceClass != uaa->info.bInterfaceClass)) { continue; } if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) && (id->bInterfaceSubClass != uaa->info.bInterfaceSubClass)) { continue; } if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) && (id->bInterfaceProtocol != uaa->info.bInterfaceProtocol)) { continue; } /* we found a match! */ return (id); } done: return (NULL); } /*------------------------------------------------------------------------* * usb_linux_probe * * This function is the FreeBSD probe callback. It is called from the * FreeBSD USB stack through the "device_probe_and_attach()" function. *------------------------------------------------------------------------*/ static int usb_linux_probe(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); struct usb_driver *udrv; int err = ENXIO; if (uaa->usb_mode != USB_MODE_HOST) { return (ENXIO); } mtx_lock(&Giant); LIST_FOREACH(udrv, &usb_linux_driver_list, linux_driver_list) { if (usb_linux_lookup_id(udrv->id_table, uaa)) { err = 0; break; } } mtx_unlock(&Giant); return (err); } /*------------------------------------------------------------------------* * usb_linux_get_usb_driver * * This function returns the pointer to the "struct usb_driver" where * the Linux USB device driver "struct usb_device_id" match was found. * We apply a lock before reading out the pointer to avoid races. *------------------------------------------------------------------------*/ static struct usb_driver * usb_linux_get_usb_driver(struct usb_linux_softc *sc) { struct usb_driver *udrv; mtx_lock(&Giant); udrv = sc->sc_udrv; mtx_unlock(&Giant); return (udrv); } /*------------------------------------------------------------------------* * usb_linux_attach * * This function is the FreeBSD attach callback. It is called from the * FreeBSD USB stack through the "device_probe_and_attach()" function. * This function is called when "usb_linux_probe()" returns zero. *------------------------------------------------------------------------*/ static int usb_linux_attach(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); struct usb_linux_softc *sc = device_get_softc(dev); struct usb_driver *udrv; const struct usb_device_id *id = NULL; mtx_lock(&Giant); LIST_FOREACH(udrv, &usb_linux_driver_list, linux_driver_list) { id = usb_linux_lookup_id(udrv->id_table, uaa); if (id) break; } mtx_unlock(&Giant); if (id == NULL) { return (ENXIO); } if (usb_linux_create_usb_device(uaa->device, dev) != 0) return (ENOMEM); device_set_usb_desc(dev); sc->sc_fbsd_udev = uaa->device; sc->sc_fbsd_dev = dev; sc->sc_udrv = udrv; sc->sc_ui = usb_ifnum_to_if(uaa->device, uaa->info.bIfaceNum); if (sc->sc_ui == NULL) { return (EINVAL); } if (udrv->probe) { if ((udrv->probe) (sc->sc_ui, id)) { return (ENXIO); } } mtx_lock(&Giant); LIST_INSERT_HEAD(&usb_linux_attached_list, sc, sc_attached_list); mtx_unlock(&Giant); /* success */ return (0); } /*------------------------------------------------------------------------* * usb_linux_detach * * This function is the FreeBSD detach callback. It is called from the * FreeBSD USB stack through the "device_detach()" function. *------------------------------------------------------------------------*/ static int usb_linux_detach(device_t dev) { struct usb_linux_softc *sc = device_get_softc(dev); struct usb_driver *udrv = NULL; mtx_lock(&Giant); if (sc->sc_attached_list.le_prev) { LIST_REMOVE(sc, sc_attached_list); sc->sc_attached_list.le_prev = NULL; udrv = sc->sc_udrv; sc->sc_udrv = NULL; } mtx_unlock(&Giant); if (udrv && udrv->disconnect) { (udrv->disconnect) (sc->sc_ui); } /* * Make sure that we free all FreeBSD USB transfers belonging to * this Linux "usb_interface", hence they will most likely not be * needed any more. */ usb_linux_cleanup_interface(sc->sc_fbsd_udev, sc->sc_ui); return (0); } /*------------------------------------------------------------------------* * usb_linux_suspend * * This function is the FreeBSD suspend callback. Usually it does nothing. *------------------------------------------------------------------------*/ static int usb_linux_suspend(device_t dev) { struct usb_linux_softc *sc = device_get_softc(dev); struct usb_driver *udrv = usb_linux_get_usb_driver(sc); int err; if (udrv && udrv->suspend) { err = (udrv->suspend) (sc->sc_ui, 0); } return (0); } /*------------------------------------------------------------------------* * usb_linux_resume * * This function is the FreeBSD resume callback. Usually it does nothing. *------------------------------------------------------------------------*/ static int usb_linux_resume(device_t dev) { struct usb_linux_softc *sc = device_get_softc(dev); struct usb_driver *udrv = usb_linux_get_usb_driver(sc); int err; if (udrv && udrv->resume) { err = (udrv->resume) (sc->sc_ui); } return (0); } /*------------------------------------------------------------------------* * Linux emulation layer *------------------------------------------------------------------------*/ /*------------------------------------------------------------------------* * usb_max_isoc_frames * * The following function returns the maximum number of isochronous * frames that we support per URB. It is not part of the Linux USB API. *------------------------------------------------------------------------*/ static uint16_t usb_max_isoc_frames(struct usb_device *dev) { ; /* indent fix */ switch (usbd_get_speed(dev)) { case USB_SPEED_LOW: case USB_SPEED_FULL: return (USB_MAX_FULL_SPEED_ISOC_FRAMES); default: return (USB_MAX_HIGH_SPEED_ISOC_FRAMES); } } /*------------------------------------------------------------------------* * usb_submit_urb * * This function is used to queue an URB after that it has been * initialized. If it returns non-zero, it means that the URB was not * queued. *------------------------------------------------------------------------*/ int usb_submit_urb(struct urb *urb, uint16_t mem_flags) { struct usb_host_endpoint *uhe; uint8_t do_unlock; int err; if (urb == NULL) return (-EINVAL); do_unlock = mtx_owned(&Giant) ? 0 : 1; if (do_unlock) mtx_lock(&Giant); if (urb->endpoint == NULL) { err = -EINVAL; goto done; } /* * Check to see if the urb is in the process of being killed * and stop a urb that is in the process of being killed from * being re-submitted (e.g. from its completion callback * function). */ if (urb->kill_count != 0) { err = -EPERM; goto done; } uhe = urb->endpoint; /* * Check that we have got a FreeBSD USB transfer that will dequeue * the URB structure and do the real transfer. If there are no USB * transfers, then we return an error. */ if (uhe->bsd_xfer[0] || uhe->bsd_xfer[1]) { /* we are ready! */ TAILQ_INSERT_TAIL(&uhe->bsd_urb_list, urb, bsd_urb_list); urb->status = -EINPROGRESS; usbd_transfer_start(uhe->bsd_xfer[0]); usbd_transfer_start(uhe->bsd_xfer[1]); err = 0; } else { /* no pipes have been setup yet! */ urb->status = -EINVAL; err = -EINVAL; } done: if (do_unlock) mtx_unlock(&Giant); return (err); } /*------------------------------------------------------------------------* * usb_unlink_urb * * This function is used to stop an URB after that it is been * submitted, but before the "complete" callback has been called. On *------------------------------------------------------------------------*/ int usb_unlink_urb(struct urb *urb) { return (usb_unlink_urb_sub(urb, 0)); } static void usb_unlink_bsd(struct usb_xfer *xfer, struct urb *urb, uint8_t drain) { if (xfer == NULL) return; if (!usbd_transfer_pending(xfer)) return; if (xfer->priv_fifo == (void *)urb) { if (drain) { mtx_unlock(&Giant); usbd_transfer_drain(xfer); mtx_lock(&Giant); } else { usbd_transfer_stop(xfer); } usbd_transfer_start(xfer); } } static int usb_unlink_urb_sub(struct urb *urb, uint8_t drain) { struct usb_host_endpoint *uhe; uint16_t x; uint8_t do_unlock; int err; if (urb == NULL) return (-EINVAL); do_unlock = mtx_owned(&Giant) ? 0 : 1; if (do_unlock) mtx_lock(&Giant); if (drain) urb->kill_count++; if (urb->endpoint == NULL) { err = -EINVAL; goto done; } uhe = urb->endpoint; if (urb->bsd_urb_list.tqe_prev) { /* not started yet, just remove it from the queue */ TAILQ_REMOVE(&uhe->bsd_urb_list, urb, bsd_urb_list); urb->bsd_urb_list.tqe_prev = NULL; urb->status = -ECONNRESET; urb->actual_length = 0; for (x = 0; x < urb->number_of_packets; x++) { urb->iso_frame_desc[x].actual_length = 0; } if (urb->complete) { (urb->complete) (urb); } } else { /* * If the URB is not on the URB list, then check if one of * the FreeBSD USB transfer are processing the current URB. * If so, re-start that transfer, which will lead to the * termination of that URB: */ usb_unlink_bsd(uhe->bsd_xfer[0], urb, drain); usb_unlink_bsd(uhe->bsd_xfer[1], urb, drain); } err = 0; done: if (drain) urb->kill_count--; if (do_unlock) mtx_unlock(&Giant); return (err); } /*------------------------------------------------------------------------* * usb_clear_halt * * This function must always be used to clear the stall. Stall is when * an USB endpoint returns a stall message to the USB host controller. * Until the stall is cleared, no data can be transferred. *------------------------------------------------------------------------*/ int usb_clear_halt(struct usb_device *dev, struct usb_host_endpoint *uhe) { struct usb_config cfg[1]; struct usb_endpoint *ep; uint8_t type; uint8_t addr; if (uhe == NULL) return (-EINVAL); type = uhe->desc.bmAttributes & UE_XFERTYPE; addr = uhe->desc.bEndpointAddress; memset(cfg, 0, sizeof(cfg)); cfg[0].type = type; cfg[0].endpoint = addr & UE_ADDR; cfg[0].direction = addr & (UE_DIR_OUT | UE_DIR_IN); ep = usbd_get_endpoint(dev, uhe->bsd_iface_index, cfg); if (ep == NULL) return (-EINVAL); usbd_clear_data_toggle(dev, ep); return (usb_control_msg(dev, &dev->ep0, UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT, UF_ENDPOINT_HALT, addr, NULL, 0, 1000)); } /*------------------------------------------------------------------------* * usb_start_wait_urb * * This is an internal function that is used to perform synchronous * Linux USB transfers. *------------------------------------------------------------------------*/ static int usb_start_wait_urb(struct urb *urb, usb_timeout_t timeout, uint16_t *p_actlen) { int err; uint8_t do_unlock; /* you must have a timeout! */ if (timeout == 0) { timeout = 1; } urb->complete = &usb_linux_wait_complete; urb->timeout = timeout; urb->transfer_flags |= URB_WAIT_WAKEUP; urb->transfer_flags &= ~URB_IS_SLEEPING; do_unlock = mtx_owned(&Giant) ? 0 : 1; if (do_unlock) mtx_lock(&Giant); err = usb_submit_urb(urb, 0); if (err) goto done; /* * the URB might have completed before we get here, so check that by * using some flags! */ while (urb->transfer_flags & URB_WAIT_WAKEUP) { urb->transfer_flags |= URB_IS_SLEEPING; cv_wait(&urb->cv_wait, &Giant); urb->transfer_flags &= ~URB_IS_SLEEPING; } err = urb->status; done: if (do_unlock) mtx_unlock(&Giant); if (p_actlen != NULL) { if (err) *p_actlen = 0; else *p_actlen = urb->actual_length; } return (err); } /*------------------------------------------------------------------------* * usb_control_msg * * The following function performs a control transfer sequence one any * control, bulk or interrupt endpoint, specified by "uhe". A control * transfer means that you transfer an 8-byte header first followed by * a data-phase as indicated by the 8-byte header. The "timeout" is * given in milliseconds. * * Return values: * 0: Success * < 0: Failure * > 0: Actual length *------------------------------------------------------------------------*/ int usb_control_msg(struct usb_device *dev, struct usb_host_endpoint *uhe, uint8_t request, uint8_t requesttype, uint16_t value, uint16_t index, void *data, uint16_t size, usb_timeout_t timeout) { struct usb_device_request req; struct urb *urb; int err; uint16_t actlen; uint8_t type; uint8_t addr; req.bmRequestType = requesttype; req.bRequest = request; USETW(req.wValue, value); USETW(req.wIndex, index); USETW(req.wLength, size); if (uhe == NULL) { return (-EINVAL); } type = (uhe->desc.bmAttributes & UE_XFERTYPE); addr = (uhe->desc.bEndpointAddress & UE_ADDR); if (type != UE_CONTROL) { return (-EINVAL); } if (addr == 0) { /* * The FreeBSD USB stack supports standard control * transfers on control endpoint zero: */ err = usbd_do_request_flags(dev, NULL, &req, data, USB_SHORT_XFER_OK, &actlen, timeout); if (err) { err = -EPIPE; } else { err = actlen; } return (err); } if (dev->flags.usb_mode != USB_MODE_HOST) { /* not supported */ return (-EINVAL); } err = usb_setup_endpoint(dev, uhe, 1 /* dummy */ ); /* * NOTE: we need to allocate real memory here so that we don't * transfer data to/from the stack! * * 0xFFFF is a FreeBSD specific magic value. */ urb = usb_alloc_urb(0xFFFF, size); urb->dev = dev; urb->endpoint = uhe; memcpy(urb->setup_packet, &req, sizeof(req)); if (size && (!(req.bmRequestType & UT_READ))) { /* move the data to a real buffer */ memcpy(USB_ADD_BYTES(urb->setup_packet, sizeof(req)), data, size); } err = usb_start_wait_urb(urb, timeout, &actlen); if (req.bmRequestType & UT_READ) { if (actlen) { bcopy(USB_ADD_BYTES(urb->setup_packet, sizeof(req)), data, actlen); } } usb_free_urb(urb); if (err == 0) { err = actlen; } return (err); } /*------------------------------------------------------------------------* * usb_set_interface * * The following function will select which alternate setting of an * USB interface you plan to use. By default alternate setting with * index zero is selected. Note that "iface_no" is not the interface * index, but rather the value of "bInterfaceNumber". *------------------------------------------------------------------------*/ int usb_set_interface(struct usb_device *dev, uint8_t iface_no, uint8_t alt_index) { struct usb_interface *p_ui = usb_ifnum_to_if(dev, iface_no); int err; if (p_ui == NULL) return (-EINVAL); if (alt_index >= p_ui->num_altsetting) return (-EINVAL); usb_linux_cleanup_interface(dev, p_ui); err = -usbd_set_alt_interface_index(dev, p_ui->bsd_iface_index, alt_index); if (err == 0) { p_ui->cur_altsetting = p_ui->altsetting + alt_index; } return (err); } /*------------------------------------------------------------------------* * usb_setup_endpoint * * The following function is an extension to the Linux USB API that * allows you to set a maximum buffer size for a given USB endpoint. * The maximum buffer size is per URB. If you don't call this function * to set a maximum buffer size, the endpoint will not be functional. * Note that for isochronous endpoints the maximum buffer size must be * a non-zero dummy, hence this function will base the maximum buffer * size on "wMaxPacketSize". *------------------------------------------------------------------------*/ int usb_setup_endpoint(struct usb_device *dev, struct usb_host_endpoint *uhe, usb_size_t bufsize) { struct usb_config cfg[2]; uint8_t type = uhe->desc.bmAttributes & UE_XFERTYPE; uint8_t addr = uhe->desc.bEndpointAddress; if (uhe->fbsd_buf_size == bufsize) { /* optimize */ return (0); } usbd_transfer_unsetup(uhe->bsd_xfer, 2); uhe->fbsd_buf_size = bufsize; if (bufsize == 0) { return (0); } memset(cfg, 0, sizeof(cfg)); if (type == UE_ISOCHRONOUS) { /* * Isochronous transfers are special in that they don't fit * into the BULK/INTR/CONTROL transfer model. */ cfg[0].type = type; cfg[0].endpoint = addr & UE_ADDR; cfg[0].direction = addr & (UE_DIR_OUT | UE_DIR_IN); cfg[0].callback = &usb_linux_isoc_callback; cfg[0].bufsize = 0; /* use wMaxPacketSize */ cfg[0].frames = usb_max_isoc_frames(dev); cfg[0].flags.proxy_buffer = 1; #if 0 /* * The Linux USB API allows non back-to-back * isochronous frames which we do not support. If the * isochronous frames are not back-to-back we need to * do a copy, and then we need a buffer for * that. Enable this at your own risk. */ cfg[0].flags.ext_buffer = 1; #endif cfg[0].flags.short_xfer_ok = 1; bcopy(cfg, cfg + 1, sizeof(*cfg)); /* Allocate and setup two generic FreeBSD USB transfers */ if (usbd_transfer_setup(dev, &uhe->bsd_iface_index, uhe->bsd_xfer, cfg, 2, uhe, &Giant)) { return (-EINVAL); } } else { if (bufsize > (1 << 22)) { /* limit buffer size */ bufsize = (1 << 22); } /* Allocate and setup one generic FreeBSD USB transfer */ cfg[0].type = type; cfg[0].endpoint = addr & UE_ADDR; cfg[0].direction = addr & (UE_DIR_OUT | UE_DIR_IN); cfg[0].callback = &usb_linux_non_isoc_callback; cfg[0].bufsize = bufsize; cfg[0].flags.ext_buffer = 1; /* enable zero-copy */ cfg[0].flags.proxy_buffer = 1; cfg[0].flags.short_xfer_ok = 1; if (usbd_transfer_setup(dev, &uhe->bsd_iface_index, uhe->bsd_xfer, cfg, 1, uhe, &Giant)) { return (-EINVAL); } } return (0); } /*------------------------------------------------------------------------* * usb_linux_create_usb_device * * The following function is used to build up a per USB device * structure tree, that mimics the Linux one. The root structure * is returned by this function. *------------------------------------------------------------------------*/ static int usb_linux_create_usb_device(struct usb_device *udev, device_t dev) { struct usb_config_descriptor *cd = usbd_get_config_descriptor(udev); struct usb_descriptor *desc; struct usb_interface_descriptor *id; struct usb_endpoint_descriptor *ed; struct usb_interface *p_ui = NULL; struct usb_host_interface *p_uhi = NULL; struct usb_host_endpoint *p_uhe = NULL; usb_size_t size; uint16_t niface_total; uint16_t nedesc; uint16_t iface_no_curr; uint16_t iface_index; uint8_t pass; uint8_t iface_no; /* * We do two passes. One pass for computing necessary memory size * and one pass to initialize all the allocated memory structures. */ for (pass = 0; pass < 2; pass++) { iface_no_curr = 0xFFFF; niface_total = 0; iface_index = 0; nedesc = 0; desc = NULL; /* * Iterate over all the USB descriptors. Use the USB config * descriptor pointer provided by the FreeBSD USB stack. */ while ((desc = usb_desc_foreach(cd, desc))) { /* * Build up a tree according to the descriptors we * find: */ switch (desc->bDescriptorType) { case UDESC_DEVICE: break; case UDESC_ENDPOINT: ed = (void *)desc; if ((ed->bLength < sizeof(*ed)) || (iface_index == 0)) break; if (p_uhe) { bcopy(ed, &p_uhe->desc, sizeof(p_uhe->desc)); p_uhe->bsd_iface_index = iface_index - 1; TAILQ_INIT(&p_uhe->bsd_urb_list); p_uhe++; } if (p_uhi) { (p_uhi - 1)->desc.bNumEndpoints++; } nedesc++; break; case UDESC_INTERFACE: id = (void *)desc; if (id->bLength < sizeof(*id)) break; if (p_uhi) { bcopy(id, &p_uhi->desc, sizeof(p_uhi->desc)); p_uhi->desc.bNumEndpoints = 0; p_uhi->endpoint = p_uhe; p_uhi->string = ""; p_uhi->bsd_iface_index = iface_index; p_uhi++; } iface_no = id->bInterfaceNumber; niface_total++; if (iface_no_curr != iface_no) { if (p_ui) { p_ui->altsetting = p_uhi - 1; p_ui->cur_altsetting = p_uhi - 1; p_ui->bsd_iface_index = iface_index; p_ui->linux_udev = udev; p_ui++; } iface_no_curr = iface_no; iface_index++; } break; default: break; } } if (pass == 0) { size = (sizeof(*p_uhe) * nedesc) + (sizeof(*p_ui) * iface_index) + (sizeof(*p_uhi) * niface_total); p_uhe = malloc(size, M_USBDEV, M_WAITOK | M_ZERO); p_ui = (void *)(p_uhe + nedesc); p_uhi = (void *)(p_ui + iface_index); udev->linux_iface_start = p_ui; udev->linux_iface_end = p_ui + iface_index; udev->linux_endpoint_start = p_uhe; udev->linux_endpoint_end = p_uhe + nedesc; udev->devnum = device_get_unit(dev); bcopy(&udev->ddesc, &udev->descriptor, sizeof(udev->descriptor)); bcopy(udev->ctrl_ep.edesc, &udev->ep0.desc, sizeof(udev->ep0.desc)); } } return (0); } /*------------------------------------------------------------------------* * usb_alloc_urb * * This function should always be used when you allocate an URB for * use with the USB Linux stack. In case of an isochronous transfer * you must specifiy the maximum number of "iso_packets" which you * plan to transfer per URB. This function is always blocking, and * "mem_flags" are not regarded like on Linux. *------------------------------------------------------------------------*/ struct urb * usb_alloc_urb(uint16_t iso_packets, uint16_t mem_flags) { struct urb *urb; usb_size_t size; if (iso_packets == 0xFFFF) { /* * FreeBSD specific magic value to ask for control transfer * memory allocation: */ size = sizeof(*urb) + sizeof(struct usb_device_request) + mem_flags; } else { size = sizeof(*urb) + (iso_packets * sizeof(urb->iso_frame_desc[0])); } urb = malloc(size, M_USBDEV, M_WAITOK | M_ZERO); cv_init(&urb->cv_wait, "URBWAIT"); if (iso_packets == 0xFFFF) { urb->setup_packet = (void *)(urb + 1); urb->transfer_buffer = (void *)(urb->setup_packet + sizeof(struct usb_device_request)); } else { urb->number_of_packets = iso_packets; } return (urb); } /*------------------------------------------------------------------------* * usb_find_host_endpoint * * The following function will return the Linux USB host endpoint * structure that matches the given endpoint type and endpoint * value. If no match is found, NULL is returned. This function is not * part of the Linux USB API and is only used internally. *------------------------------------------------------------------------*/ struct usb_host_endpoint * usb_find_host_endpoint(struct usb_device *dev, uint8_t type, uint8_t ep) { struct usb_host_endpoint *uhe; struct usb_host_endpoint *uhe_end; struct usb_host_interface *uhi; struct usb_interface *ui; uint8_t ea; uint8_t at; uint8_t mask; if (dev == NULL) { return (NULL); } if (type == UE_CONTROL) { mask = UE_ADDR; } else { mask = (UE_DIR_IN | UE_DIR_OUT | UE_ADDR); } ep &= mask; /* * Iterate over all the interfaces searching the selected alternate * setting only, and all belonging endpoints. */ for (ui = dev->linux_iface_start; ui != dev->linux_iface_end; ui++) { uhi = ui->cur_altsetting; if (uhi) { uhe_end = uhi->endpoint + uhi->desc.bNumEndpoints; for (uhe = uhi->endpoint; uhe != uhe_end; uhe++) { ea = uhe->desc.bEndpointAddress; at = uhe->desc.bmAttributes; if (((ea & mask) == ep) && ((at & UE_XFERTYPE) == type)) { return (uhe); } } } } if ((type == UE_CONTROL) && ((ep & UE_ADDR) == 0)) { return (&dev->ep0); } return (NULL); } /*------------------------------------------------------------------------* * usb_altnum_to_altsetting * * The following function returns a pointer to an alternate setting by * index given a "usb_interface" pointer. If the alternate setting by * index does not exist, NULL is returned. And alternate setting is a * variant of an interface, but usually with slightly different * characteristics. *------------------------------------------------------------------------*/ struct usb_host_interface * usb_altnum_to_altsetting(const struct usb_interface *intf, uint8_t alt_index) { if (alt_index >= intf->num_altsetting) { return (NULL); } return (intf->altsetting + alt_index); } /*------------------------------------------------------------------------* * usb_ifnum_to_if * * The following function searches up an USB interface by * "bInterfaceNumber". If no match is found, NULL is returned. *------------------------------------------------------------------------*/ struct usb_interface * usb_ifnum_to_if(struct usb_device *dev, uint8_t iface_no) { struct usb_interface *p_ui; for (p_ui = dev->linux_iface_start; p_ui != dev->linux_iface_end; p_ui++) { if ((p_ui->num_altsetting > 0) && (p_ui->altsetting->desc.bInterfaceNumber == iface_no)) { return (p_ui); } } return (NULL); } /*------------------------------------------------------------------------* * usb_buffer_alloc *------------------------------------------------------------------------*/ void * usb_buffer_alloc(struct usb_device *dev, usb_size_t size, uint16_t mem_flags, uint8_t *dma_addr) { return (malloc(size, M_USBDEV, M_WAITOK | M_ZERO)); } /*------------------------------------------------------------------------* * usbd_get_intfdata *------------------------------------------------------------------------*/ void * usbd_get_intfdata(struct usb_interface *intf) { return (intf->bsd_priv_sc); } /*------------------------------------------------------------------------* * usb_linux_register * * The following function is used by the "USB_DRIVER_EXPORT()" macro, * and is used to register a Linux USB driver, so that its * "usb_device_id" structures gets searched a probe time. This * function is not part of the Linux USB API, and is for internal use * only. *------------------------------------------------------------------------*/ void usb_linux_register(void *arg) { struct usb_driver *drv = arg; mtx_lock(&Giant); LIST_INSERT_HEAD(&usb_linux_driver_list, drv, linux_driver_list); mtx_unlock(&Giant); usb_needs_explore_all(); } /*------------------------------------------------------------------------* * usb_linux_deregister * * The following function is used by the "USB_DRIVER_EXPORT()" macro, * and is used to deregister a Linux USB driver. This function will * ensure that all driver instances belonging to the Linux USB device * driver in question, gets detached before the driver is * unloaded. This function is not part of the Linux USB API, and is * for internal use only. *------------------------------------------------------------------------*/ void usb_linux_deregister(void *arg) { struct usb_driver *drv = arg; struct usb_linux_softc *sc; repeat: mtx_lock(&Giant); LIST_FOREACH(sc, &usb_linux_attached_list, sc_attached_list) { if (sc->sc_udrv == drv) { mtx_unlock(&Giant); device_detach(sc->sc_fbsd_dev); goto repeat; } } LIST_REMOVE(drv, linux_driver_list); mtx_unlock(&Giant); } /*------------------------------------------------------------------------* * usb_linux_free_device * * The following function is only used by the FreeBSD USB stack, to * cleanup and free memory after that a Linux USB device was attached. *------------------------------------------------------------------------*/ void usb_linux_free_device(struct usb_device *dev) { struct usb_host_endpoint *uhe; struct usb_host_endpoint *uhe_end; - int err; uhe = dev->linux_endpoint_start; uhe_end = dev->linux_endpoint_end; while (uhe != uhe_end) { - err = usb_setup_endpoint(dev, uhe, 0); + usb_setup_endpoint(dev, uhe, 0); uhe++; } - err = usb_setup_endpoint(dev, &dev->ep0, 0); + usb_setup_endpoint(dev, &dev->ep0, 0); free(dev->linux_endpoint_start, M_USBDEV); } /*------------------------------------------------------------------------* * usb_buffer_free *------------------------------------------------------------------------*/ void usb_buffer_free(struct usb_device *dev, usb_size_t size, void *addr, uint8_t dma_addr) { free(addr, M_USBDEV); } /*------------------------------------------------------------------------* * usb_free_urb *------------------------------------------------------------------------*/ void usb_free_urb(struct urb *urb) { if (urb == NULL) { return; } /* make sure that the current URB is not active */ usb_kill_urb(urb); /* destroy condition variable */ cv_destroy(&urb->cv_wait); /* just free it */ free(urb, M_USBDEV); } /*------------------------------------------------------------------------* * usb_init_urb * * The following function can be used to initialize a custom URB. It * is not recommended to use this function. Use "usb_alloc_urb()" * instead. *------------------------------------------------------------------------*/ void usb_init_urb(struct urb *urb) { if (urb == NULL) { return; } memset(urb, 0, sizeof(*urb)); } /*------------------------------------------------------------------------* * usb_kill_urb *------------------------------------------------------------------------*/ void usb_kill_urb(struct urb *urb) { usb_unlink_urb_sub(urb, 1); } /*------------------------------------------------------------------------* * usb_set_intfdata * * The following function sets the per Linux USB interface private * data pointer. It is used by most Linux USB device drivers. *------------------------------------------------------------------------*/ void usb_set_intfdata(struct usb_interface *intf, void *data) { intf->bsd_priv_sc = data; } /*------------------------------------------------------------------------* * usb_linux_cleanup_interface * * The following function will release all FreeBSD USB transfers * associated with a Linux USB interface. It is for internal use only. *------------------------------------------------------------------------*/ static void usb_linux_cleanup_interface(struct usb_device *dev, struct usb_interface *iface) { struct usb_host_interface *uhi; struct usb_host_interface *uhi_end; struct usb_host_endpoint *uhe; struct usb_host_endpoint *uhe_end; - int err; uhi = iface->altsetting; uhi_end = iface->altsetting + iface->num_altsetting; while (uhi != uhi_end) { uhe = uhi->endpoint; uhe_end = uhi->endpoint + uhi->desc.bNumEndpoints; while (uhe != uhe_end) { - err = usb_setup_endpoint(dev, uhe, 0); + usb_setup_endpoint(dev, uhe, 0); uhe++; } uhi++; } } /*------------------------------------------------------------------------* * usb_linux_wait_complete * * The following function is used by "usb_start_wait_urb()" to wake it * up, when an USB transfer has finished. *------------------------------------------------------------------------*/ static void usb_linux_wait_complete(struct urb *urb) { if (urb->transfer_flags & URB_IS_SLEEPING) { cv_signal(&urb->cv_wait); } urb->transfer_flags &= ~URB_WAIT_WAKEUP; } /*------------------------------------------------------------------------* * usb_linux_complete *------------------------------------------------------------------------*/ static void usb_linux_complete(struct usb_xfer *xfer) { struct urb *urb; urb = usbd_xfer_get_priv(xfer); usbd_xfer_set_priv(xfer, NULL); if (urb->complete) { (urb->complete) (urb); } } /*------------------------------------------------------------------------* * usb_linux_isoc_callback * * The following is the FreeBSD isochronous USB callback. Isochronous * frames are USB packets transferred 1000 or 8000 times per second, * depending on whether a full- or high- speed USB transfer is * used. *------------------------------------------------------------------------*/ static void usb_linux_isoc_callback(struct usb_xfer *xfer, usb_error_t error) { usb_frlength_t max_frame = xfer->max_frame_size; usb_frlength_t offset; usb_frcount_t x; struct urb *urb = usbd_xfer_get_priv(xfer); struct usb_host_endpoint *uhe = usbd_xfer_softc(xfer); struct usb_iso_packet_descriptor *uipd; DPRINTF("\n"); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: if (urb->bsd_isread) { /* copy in data with regard to the URB */ offset = 0; for (x = 0; x < urb->number_of_packets; x++) { uipd = urb->iso_frame_desc + x; if (uipd->length > xfer->frlengths[x]) { if (urb->transfer_flags & URB_SHORT_NOT_OK) { /* XXX should be EREMOTEIO */ uipd->status = -EPIPE; } else { uipd->status = 0; } } else { uipd->status = 0; } uipd->actual_length = xfer->frlengths[x]; if (!xfer->flags.ext_buffer) { usbd_copy_out(xfer->frbuffers, offset, USB_ADD_BYTES(urb->transfer_buffer, uipd->offset), uipd->actual_length); } offset += max_frame; } } else { for (x = 0; x < urb->number_of_packets; x++) { uipd = urb->iso_frame_desc + x; uipd->actual_length = xfer->frlengths[x]; uipd->status = 0; } } urb->actual_length = xfer->actlen; /* check for short transfer */ if (xfer->actlen < xfer->sumlen) { /* short transfer */ if (urb->transfer_flags & URB_SHORT_NOT_OK) { /* XXX should be EREMOTEIO */ urb->status = -EPIPE; } else { urb->status = 0; } } else { /* success */ urb->status = 0; } /* call callback */ usb_linux_complete(xfer); case USB_ST_SETUP: tr_setup: if (xfer->priv_fifo == NULL) { /* get next transfer */ urb = TAILQ_FIRST(&uhe->bsd_urb_list); if (urb == NULL) { /* nothing to do */ return; } TAILQ_REMOVE(&uhe->bsd_urb_list, urb, bsd_urb_list); urb->bsd_urb_list.tqe_prev = NULL; x = xfer->max_frame_count; if (urb->number_of_packets > x) { /* XXX simply truncate the transfer */ urb->number_of_packets = x; } } else { DPRINTF("Already got a transfer\n"); /* already got a transfer (should not happen) */ urb = usbd_xfer_get_priv(xfer); } urb->bsd_isread = (uhe->desc.bEndpointAddress & UE_DIR_IN) ? 1 : 0; if (xfer->flags.ext_buffer) { /* set virtual address to load */ usbd_xfer_set_frame_data(xfer, 0, urb->transfer_buffer, 0); } if (!(urb->bsd_isread)) { /* copy out data with regard to the URB */ offset = 0; for (x = 0; x < urb->number_of_packets; x++) { uipd = urb->iso_frame_desc + x; usbd_xfer_set_frame_len(xfer, x, uipd->length); if (!xfer->flags.ext_buffer) { usbd_copy_in(xfer->frbuffers, offset, USB_ADD_BYTES(urb->transfer_buffer, uipd->offset), uipd->length); } offset += uipd->length; } } else { /* * compute the transfer length into the "offset" * variable */ offset = urb->number_of_packets * max_frame; /* setup "frlengths" array */ for (x = 0; x < urb->number_of_packets; x++) { uipd = urb->iso_frame_desc + x; usbd_xfer_set_frame_len(xfer, x, max_frame); } } usbd_xfer_set_priv(xfer, urb); xfer->flags.force_short_xfer = 0; xfer->timeout = urb->timeout; xfer->nframes = urb->number_of_packets; usbd_transfer_submit(xfer); return; default: /* Error */ if (xfer->error == USB_ERR_CANCELLED) { urb->status = -ECONNRESET; } else { urb->status = -EPIPE; /* stalled */ } /* Set zero for "actual_length" */ urb->actual_length = 0; /* Set zero for "actual_length" */ for (x = 0; x < urb->number_of_packets; x++) { urb->iso_frame_desc[x].actual_length = 0; urb->iso_frame_desc[x].status = urb->status; } /* call callback */ usb_linux_complete(xfer); if (xfer->error == USB_ERR_CANCELLED) { /* we need to return in this case */ return; } goto tr_setup; } } /*------------------------------------------------------------------------* * usb_linux_non_isoc_callback * * The following is the FreeBSD BULK/INTERRUPT and CONTROL USB * callback. It dequeues Linux USB stack compatible URB's, transforms * the URB fields into a FreeBSD USB transfer, and defragments the USB * transfer as required. When the transfer is complete the "complete" * callback is called. *------------------------------------------------------------------------*/ static void usb_linux_non_isoc_callback(struct usb_xfer *xfer, usb_error_t error) { enum { REQ_SIZE = sizeof(struct usb_device_request) }; struct urb *urb = usbd_xfer_get_priv(xfer); struct usb_host_endpoint *uhe = usbd_xfer_softc(xfer); uint8_t *ptr; usb_frlength_t max_bulk = usbd_xfer_max_len(xfer); uint8_t data_frame = xfer->flags_int.control_xfr ? 1 : 0; DPRINTF("\n"); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: if (xfer->flags_int.control_xfr) { /* don't transfer the setup packet again: */ usbd_xfer_set_frame_len(xfer, 0, 0); } if (urb->bsd_isread && (!xfer->flags.ext_buffer)) { /* copy in data with regard to the URB */ usbd_copy_out(xfer->frbuffers + data_frame, 0, urb->bsd_data_ptr, xfer->frlengths[data_frame]); } urb->bsd_length_rem -= xfer->frlengths[data_frame]; urb->bsd_data_ptr += xfer->frlengths[data_frame]; urb->actual_length += xfer->frlengths[data_frame]; /* check for short transfer */ if (xfer->actlen < xfer->sumlen) { urb->bsd_length_rem = 0; /* short transfer */ if (urb->transfer_flags & URB_SHORT_NOT_OK) { urb->status = -EPIPE; } else { urb->status = 0; } } else { /* check remainder */ if (urb->bsd_length_rem > 0) { goto setup_bulk; } /* success */ urb->status = 0; } /* call callback */ usb_linux_complete(xfer); case USB_ST_SETUP: tr_setup: /* get next transfer */ urb = TAILQ_FIRST(&uhe->bsd_urb_list); if (urb == NULL) { /* nothing to do */ return; } TAILQ_REMOVE(&uhe->bsd_urb_list, urb, bsd_urb_list); urb->bsd_urb_list.tqe_prev = NULL; usbd_xfer_set_priv(xfer, urb); xfer->flags.force_short_xfer = 0; xfer->timeout = urb->timeout; if (xfer->flags_int.control_xfr) { /* * USB control transfers need special handling. * First copy in the header, then copy in data! */ if (!xfer->flags.ext_buffer) { usbd_copy_in(xfer->frbuffers, 0, urb->setup_packet, REQ_SIZE); usbd_xfer_set_frame_len(xfer, 0, REQ_SIZE); } else { /* set virtual address to load */ usbd_xfer_set_frame_data(xfer, 0, urb->setup_packet, REQ_SIZE); } ptr = urb->setup_packet; /* setup data transfer direction and length */ urb->bsd_isread = (ptr[0] & UT_READ) ? 1 : 0; urb->bsd_length_rem = ptr[6] | (ptr[7] << 8); } else { /* setup data transfer direction */ urb->bsd_length_rem = urb->transfer_buffer_length; urb->bsd_isread = (uhe->desc.bEndpointAddress & UE_DIR_IN) ? 1 : 0; } urb->bsd_data_ptr = urb->transfer_buffer; urb->actual_length = 0; setup_bulk: if (max_bulk > urb->bsd_length_rem) { max_bulk = urb->bsd_length_rem; } /* check if we need to force a short transfer */ if ((max_bulk == urb->bsd_length_rem) && (urb->transfer_flags & URB_ZERO_PACKET) && (!xfer->flags_int.control_xfr)) { xfer->flags.force_short_xfer = 1; } /* check if we need to copy in data */ if (xfer->flags.ext_buffer) { /* set virtual address to load */ usbd_xfer_set_frame_data(xfer, data_frame, urb->bsd_data_ptr, max_bulk); } else if (!urb->bsd_isread) { /* copy out data with regard to the URB */ usbd_copy_in(xfer->frbuffers + data_frame, 0, urb->bsd_data_ptr, max_bulk); usbd_xfer_set_frame_len(xfer, data_frame, max_bulk); } if (xfer->flags_int.control_xfr) { if (max_bulk > 0) { xfer->nframes = 2; } else { xfer->nframes = 1; } } else { xfer->nframes = 1; } usbd_transfer_submit(xfer); return; default: if (xfer->error == USB_ERR_CANCELLED) { urb->status = -ECONNRESET; } else { urb->status = -EPIPE; } /* Set zero for "actual_length" */ urb->actual_length = 0; /* call callback */ usb_linux_complete(xfer); if (xfer->error == USB_ERR_CANCELLED) { /* we need to return in this case */ return; } goto tr_setup; } } /*------------------------------------------------------------------------* * usb_fill_bulk_urb *------------------------------------------------------------------------*/ void usb_fill_bulk_urb(struct urb *urb, struct usb_device *udev, struct usb_host_endpoint *uhe, void *buf, int length, usb_complete_t callback, void *arg) { urb->dev = udev; urb->endpoint = uhe; urb->transfer_buffer = buf; urb->transfer_buffer_length = length; urb->complete = callback; urb->context = arg; } /*------------------------------------------------------------------------* * usb_bulk_msg * * NOTE: This function can also be used for interrupt endpoints! * * Return values: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ int usb_bulk_msg(struct usb_device *udev, struct usb_host_endpoint *uhe, void *data, int len, uint16_t *pactlen, usb_timeout_t timeout) { struct urb *urb; int err; if (uhe == NULL) return (-EINVAL); if (len < 0) return (-EINVAL); err = usb_setup_endpoint(udev, uhe, 4096 /* bytes */); if (err) return (err); urb = usb_alloc_urb(0, 0); usb_fill_bulk_urb(urb, udev, uhe, data, len, usb_linux_wait_complete, NULL); err = usb_start_wait_urb(urb, timeout, pactlen); usb_free_urb(urb); return (err); } MODULE_DEPEND(linuxkpi, usb, 1, 1, 1); static void usb_linux_init(void *arg) { /* register our function */ usb_linux_free_device_p = &usb_linux_free_device; } SYSINIT(usb_linux_init, SI_SUB_LOCK, SI_ORDER_FIRST, usb_linux_init, NULL); SYSUNINIT(usb_linux_unload, SI_SUB_LOCK, SI_ORDER_ANY, usb_linux_unload, NULL);