diff --git a/sys/kern/subr_asan.c b/sys/kern/subr_asan.c index 44c96435a499..c3664d9cf6c2 100644 --- a/sys/kern/subr_asan.c +++ b/sys/kern/subr_asan.c @@ -1,1224 +1,1227 @@ /* $NetBSD: subr_asan.c,v 1.26 2020/09/10 14:10:46 maxv Exp $ */ /* * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net * All rights reserved. * * This code is part of the KASAN subsystem of the NetBSD kernel. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define SAN_RUNTIME #include #if 0 __KERNEL_RCSID(0, "$NetBSD: subr_asan.c,v 1.26 2020/09/10 14:10:46 maxv Exp $"); #endif #include #include #include #include #include #include #include #include /* ASAN constants. Part of the compiler ABI. */ #define KASAN_SHADOW_MASK (KASAN_SHADOW_SCALE - 1) #define KASAN_ALLOCA_SCALE_SIZE 32 /* ASAN ABI version. */ #if defined(__clang__) && (__clang_major__ - 0 >= 6) #define ASAN_ABI_VERSION 8 #elif __GNUC_PREREQ__(7, 1) && !defined(__clang__) #define ASAN_ABI_VERSION 8 #elif __GNUC_PREREQ__(6, 1) && !defined(__clang__) #define ASAN_ABI_VERSION 6 #else #error "Unsupported compiler version" #endif #define __RET_ADDR (unsigned long)__builtin_return_address(0) /* Global variable descriptor. Part of the compiler ABI. */ struct __asan_global_source_location { const char *filename; int line_no; int column_no; }; struct __asan_global { const void *beg; /* address of the global variable */ size_t size; /* size of the global variable */ size_t size_with_redzone; /* size with the redzone */ const void *name; /* name of the variable */ const void *module_name; /* name of the module where the var is declared */ unsigned long has_dynamic_init; /* the var has dyn initializer (c++) */ struct __asan_global_source_location *location; #if ASAN_ABI_VERSION >= 7 uintptr_t odr_indicator; /* the address of the ODR indicator symbol */ #endif }; FEATURE(kasan, "Kernel address sanitizer"); static SYSCTL_NODE(_debug, OID_AUTO, kasan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "KASAN options"); static int panic_on_violation = 1; SYSCTL_INT(_debug_kasan, OID_AUTO, panic_on_violation, CTLFLAG_RDTUN, &panic_on_violation, 0, "Panic if an invalid access is detected"); -static bool kasan_enabled __read_mostly = false; +#define kasan_enabled (!kasan_disabled) +static bool kasan_disabled __read_mostly = true; +SYSCTL_BOOL(_debug_kasan, OID_AUTO, disabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, + &kasan_disabled, 0, "KASAN is disabled"); /* -------------------------------------------------------------------------- */ void kasan_shadow_map(vm_offset_t addr, size_t size) { size_t sz, npages, i; vm_offset_t sva, eva; KASSERT(addr % KASAN_SHADOW_SCALE == 0, ("%s: invalid address %#lx", __func__, addr)); sz = roundup(size, KASAN_SHADOW_SCALE) / KASAN_SHADOW_SCALE; sva = kasan_md_addr_to_shad(addr); eva = kasan_md_addr_to_shad(addr) + sz; sva = rounddown(sva, PAGE_SIZE); eva = roundup(eva, PAGE_SIZE); npages = (eva - sva) / PAGE_SIZE; KASSERT(sva >= KASAN_MIN_ADDRESS && eva < KASAN_MAX_ADDRESS, ("%s: invalid address range %#lx-%#lx", __func__, sva, eva)); for (i = 0; i < npages; i++) pmap_san_enter(sva + ptoa(i)); } void kasan_init(void) { int disabled; disabled = 0; TUNABLE_INT_FETCH("debug.kasan.disabled", &disabled); if (disabled) return; /* MD initialization. */ kasan_md_init(); /* Now officially enabled. */ - kasan_enabled = true; + kasan_disabled = false; } void kasan_init_early(vm_offset_t stack, size_t size) { kasan_md_init_early(stack, size); } static inline const char * kasan_code_name(uint8_t code) { switch (code) { case KASAN_GENERIC_REDZONE: return "GenericRedZone"; case KASAN_MALLOC_REDZONE: return "MallocRedZone"; case KASAN_KMEM_REDZONE: return "KmemRedZone"; case KASAN_UMA_FREED: return "UMAUseAfterFree"; case KASAN_KSTACK_FREED: return "KernelStack"; case KASAN_EXEC_ARGS_FREED: return "ExecKVA"; case 1 ... 7: return "RedZonePartial"; case KASAN_STACK_LEFT: return "StackLeft"; case KASAN_STACK_MID: return "StackMiddle"; case KASAN_STACK_RIGHT: return "StackRight"; case KASAN_USE_AFTER_RET: return "UseAfterRet"; case KASAN_USE_AFTER_SCOPE: return "UseAfterScope"; default: return "Unknown"; } } #define REPORT(f, ...) do { \ if (panic_on_violation) { \ - kasan_enabled = false; \ + kasan_disabled = true; \ panic(f, __VA_ARGS__); \ } else { \ struct stack st; \ \ stack_save(&st); \ printf(f "\n", __VA_ARGS__); \ stack_print_ddb(&st); \ } \ } while (0) static void kasan_report(unsigned long addr, size_t size, bool write, unsigned long pc, uint8_t code) { REPORT("ASan: Invalid access, %zu-byte %s at %#lx, %s(%x)", size, (write ? "write" : "read"), addr, kasan_code_name(code), code); } static __always_inline void kasan_shadow_1byte_markvalid(unsigned long addr) { int8_t *byte = (int8_t *)kasan_md_addr_to_shad(addr); int8_t last = (addr & KASAN_SHADOW_MASK) + 1; *byte = last; } static __always_inline void kasan_shadow_Nbyte_markvalid(const void *addr, size_t size) { size_t i; for (i = 0; i < size; i++) { kasan_shadow_1byte_markvalid((unsigned long)addr + i); } } static __always_inline void kasan_shadow_Nbyte_fill(const void *addr, size_t size, uint8_t code) { void *shad; if (__predict_false(size == 0)) return; if (__predict_false(kasan_md_unsupported((vm_offset_t)addr))) return; KASSERT((vm_offset_t)addr % KASAN_SHADOW_SCALE == 0, ("%s: invalid address %p", __func__, addr)); KASSERT(size % KASAN_SHADOW_SCALE == 0, ("%s: invalid size %zu", __func__, size)); shad = (void *)kasan_md_addr_to_shad((uintptr_t)addr); size = size >> KASAN_SHADOW_SCALE_SHIFT; __builtin_memset(shad, code, size); } /* * In an area of size 'sz_with_redz', mark the 'size' first bytes as valid, * and the rest as invalid. There are generally two use cases: * * o kasan_mark(addr, origsize, size, code), with origsize < size. This marks * the redzone at the end of the buffer as invalid. If the entire is to be * marked invalid, origsize will be 0. * * o kasan_mark(addr, size, size, 0). This marks the entire buffer as valid. */ void kasan_mark(const void *addr, size_t size, size_t redzsize, uint8_t code) { size_t i, n, redz; int8_t *shad; if (__predict_false(!kasan_enabled)) return; if ((vm_offset_t)addr >= DMAP_MIN_ADDRESS && (vm_offset_t)addr < DMAP_MAX_ADDRESS) return; KASSERT((vm_offset_t)addr >= VM_MIN_KERNEL_ADDRESS && (vm_offset_t)addr < VM_MAX_KERNEL_ADDRESS, ("%s: invalid address %p", __func__, addr)); KASSERT((vm_offset_t)addr % KASAN_SHADOW_SCALE == 0, ("%s: invalid address %p", __func__, addr)); redz = redzsize - roundup(size, KASAN_SHADOW_SCALE); KASSERT(redz % KASAN_SHADOW_SCALE == 0, ("%s: invalid size %zu", __func__, redz)); shad = (int8_t *)kasan_md_addr_to_shad((uintptr_t)addr); /* Chunks of 8 bytes, valid. */ n = size / KASAN_SHADOW_SCALE; for (i = 0; i < n; i++) { *shad++ = 0; } /* Possibly one chunk, mid. */ if ((size & KASAN_SHADOW_MASK) != 0) { *shad++ = (size & KASAN_SHADOW_MASK); } /* Chunks of 8 bytes, invalid. */ n = redz / KASAN_SHADOW_SCALE; for (i = 0; i < n; i++) { *shad++ = code; } } /* -------------------------------------------------------------------------- */ #define ADDR_CROSSES_SCALE_BOUNDARY(addr, size) \ (addr >> KASAN_SHADOW_SCALE_SHIFT) != \ ((addr + size - 1) >> KASAN_SHADOW_SCALE_SHIFT) static __always_inline bool kasan_shadow_1byte_isvalid(unsigned long addr, uint8_t *code) { int8_t *byte = (int8_t *)kasan_md_addr_to_shad(addr); int8_t last = (addr & KASAN_SHADOW_MASK) + 1; if (__predict_true(*byte == 0 || last <= *byte)) { return (true); } *code = *byte; return (false); } static __always_inline bool kasan_shadow_2byte_isvalid(unsigned long addr, uint8_t *code) { int8_t *byte, last; if (ADDR_CROSSES_SCALE_BOUNDARY(addr, 2)) { return (kasan_shadow_1byte_isvalid(addr, code) && kasan_shadow_1byte_isvalid(addr+1, code)); } byte = (int8_t *)kasan_md_addr_to_shad(addr); last = ((addr + 1) & KASAN_SHADOW_MASK) + 1; if (__predict_true(*byte == 0 || last <= *byte)) { return (true); } *code = *byte; return (false); } static __always_inline bool kasan_shadow_4byte_isvalid(unsigned long addr, uint8_t *code) { int8_t *byte, last; if (ADDR_CROSSES_SCALE_BOUNDARY(addr, 4)) { return (kasan_shadow_2byte_isvalid(addr, code) && kasan_shadow_2byte_isvalid(addr+2, code)); } byte = (int8_t *)kasan_md_addr_to_shad(addr); last = ((addr + 3) & KASAN_SHADOW_MASK) + 1; if (__predict_true(*byte == 0 || last <= *byte)) { return (true); } *code = *byte; return (false); } static __always_inline bool kasan_shadow_8byte_isvalid(unsigned long addr, uint8_t *code) { int8_t *byte, last; if (ADDR_CROSSES_SCALE_BOUNDARY(addr, 8)) { return (kasan_shadow_4byte_isvalid(addr, code) && kasan_shadow_4byte_isvalid(addr+4, code)); } byte = (int8_t *)kasan_md_addr_to_shad(addr); last = ((addr + 7) & KASAN_SHADOW_MASK) + 1; if (__predict_true(*byte == 0 || last <= *byte)) { return (true); } *code = *byte; return (false); } static __always_inline bool kasan_shadow_Nbyte_isvalid(unsigned long addr, size_t size, uint8_t *code) { size_t i; for (i = 0; i < size; i++) { if (!kasan_shadow_1byte_isvalid(addr+i, code)) return (false); } return (true); } static __always_inline void kasan_shadow_check(unsigned long addr, size_t size, bool write, unsigned long retaddr) { uint8_t code; bool valid; if (__predict_false(!kasan_enabled)) return; if (__predict_false(size == 0)) return; if (__predict_false(kasan_md_unsupported(addr))) return; if (KERNEL_PANICKED()) return; if (__builtin_constant_p(size)) { switch (size) { case 1: valid = kasan_shadow_1byte_isvalid(addr, &code); break; case 2: valid = kasan_shadow_2byte_isvalid(addr, &code); break; case 4: valid = kasan_shadow_4byte_isvalid(addr, &code); break; case 8: valid = kasan_shadow_8byte_isvalid(addr, &code); break; default: valid = kasan_shadow_Nbyte_isvalid(addr, size, &code); break; } } else { valid = kasan_shadow_Nbyte_isvalid(addr, size, &code); } if (__predict_false(!valid)) { kasan_report(addr, size, write, retaddr, code); } } /* -------------------------------------------------------------------------- */ void * kasan_memcpy(void *dst, const void *src, size_t len) { kasan_shadow_check((unsigned long)src, len, false, __RET_ADDR); kasan_shadow_check((unsigned long)dst, len, true, __RET_ADDR); return (__builtin_memcpy(dst, src, len)); } int kasan_memcmp(const void *b1, const void *b2, size_t len) { kasan_shadow_check((unsigned long)b1, len, false, __RET_ADDR); kasan_shadow_check((unsigned long)b2, len, false, __RET_ADDR); return (__builtin_memcmp(b1, b2, len)); } void * kasan_memset(void *b, int c, size_t len) { kasan_shadow_check((unsigned long)b, len, true, __RET_ADDR); return (__builtin_memset(b, c, len)); } void * kasan_memmove(void *dst, const void *src, size_t len) { kasan_shadow_check((unsigned long)src, len, false, __RET_ADDR); kasan_shadow_check((unsigned long)dst, len, true, __RET_ADDR); return (__builtin_memmove(dst, src, len)); } size_t kasan_strlen(const char *str) { const char *s; s = str; while (1) { kasan_shadow_check((unsigned long)s, 1, false, __RET_ADDR); if (*s == '\0') break; s++; } return (s - str); } char * kasan_strcpy(char *dst, const char *src) { char *save = dst; while (1) { kasan_shadow_check((unsigned long)src, 1, false, __RET_ADDR); kasan_shadow_check((unsigned long)dst, 1, true, __RET_ADDR); *dst = *src; if (*src == '\0') break; src++, dst++; } return save; } int kasan_strcmp(const char *s1, const char *s2) { while (1) { kasan_shadow_check((unsigned long)s1, 1, false, __RET_ADDR); kasan_shadow_check((unsigned long)s2, 1, false, __RET_ADDR); if (*s1 != *s2) break; if (*s1 == '\0') return 0; s1++, s2++; } return (*(const unsigned char *)s1 - *(const unsigned char *)s2); } int kasan_copyin(const void *uaddr, void *kaddr, size_t len) { kasan_shadow_check((unsigned long)kaddr, len, true, __RET_ADDR); return (copyin(uaddr, kaddr, len)); } int kasan_copyinstr(const void *uaddr, void *kaddr, size_t len, size_t *done) { kasan_shadow_check((unsigned long)kaddr, len, true, __RET_ADDR); return (copyinstr(uaddr, kaddr, len, done)); } int kasan_copyout(const void *kaddr, void *uaddr, size_t len) { kasan_shadow_check((unsigned long)kaddr, len, false, __RET_ADDR); return (copyout(kaddr, uaddr, len)); } /* -------------------------------------------------------------------------- */ int kasan_fubyte(volatile const void *base) { return (fubyte(base)); } int kasan_fuword16(volatile const void *base) { return (fuword16(base)); } int kasan_fueword(volatile const void *base, long *val) { kasan_shadow_check((unsigned long)val, sizeof(*val), true, __RET_ADDR); return (fueword(base, val)); } int kasan_fueword32(volatile const void *base, int32_t *val) { kasan_shadow_check((unsigned long)val, sizeof(*val), true, __RET_ADDR); return (fueword32(base, val)); } int kasan_fueword64(volatile const void *base, int64_t *val) { kasan_shadow_check((unsigned long)val, sizeof(*val), true, __RET_ADDR); return (fueword64(base, val)); } int kasan_subyte(volatile void *base, int byte) { return (subyte(base, byte)); } int kasan_suword(volatile void *base, long word) { return (suword(base, word)); } int kasan_suword16(volatile void *base, int word) { return (suword16(base, word)); } int kasan_suword32(volatile void *base, int32_t word) { return (suword32(base, word)); } int kasan_suword64(volatile void *base, int64_t word) { return (suword64(base, word)); } int kasan_casueword32(volatile uint32_t *base, uint32_t oldval, uint32_t *oldvalp, uint32_t newval) { kasan_shadow_check((unsigned long)oldvalp, sizeof(*oldvalp), true, __RET_ADDR); return (casueword32(base, oldval, oldvalp, newval)); } int kasan_casueword(volatile u_long *base, u_long oldval, u_long *oldvalp, u_long newval) { kasan_shadow_check((unsigned long)oldvalp, sizeof(*oldvalp), true, __RET_ADDR); return (casueword(base, oldval, oldvalp, newval)); } /* -------------------------------------------------------------------------- */ #include #include #define _ASAN_ATOMIC_FUNC_ADD(name, type) \ void kasan_atomic_add_##name(volatile type *ptr, type val) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ atomic_add_##name(ptr, val); \ } #define ASAN_ATOMIC_FUNC_ADD(name, type) \ _ASAN_ATOMIC_FUNC_ADD(name, type) \ _ASAN_ATOMIC_FUNC_ADD(acq_##name, type) \ _ASAN_ATOMIC_FUNC_ADD(rel_##name, type) #define _ASAN_ATOMIC_FUNC_SUBTRACT(name, type) \ void kasan_atomic_subtract_##name(volatile type *ptr, type val) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ atomic_subtract_##name(ptr, val); \ } #define ASAN_ATOMIC_FUNC_SUBTRACT(name, type) \ _ASAN_ATOMIC_FUNC_SUBTRACT(name, type) \ _ASAN_ATOMIC_FUNC_SUBTRACT(acq_##name, type) \ _ASAN_ATOMIC_FUNC_SUBTRACT(rel_##name, type) #define _ASAN_ATOMIC_FUNC_SET(name, type) \ void kasan_atomic_set_##name(volatile type *ptr, type val) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ atomic_set_##name(ptr, val); \ } #define ASAN_ATOMIC_FUNC_SET(name, type) \ _ASAN_ATOMIC_FUNC_SET(name, type) \ _ASAN_ATOMIC_FUNC_SET(acq_##name, type) \ _ASAN_ATOMIC_FUNC_SET(rel_##name, type) #define _ASAN_ATOMIC_FUNC_CLEAR(name, type) \ void kasan_atomic_clear_##name(volatile type *ptr, type val) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ atomic_clear_##name(ptr, val); \ } #define ASAN_ATOMIC_FUNC_CLEAR(name, type) \ _ASAN_ATOMIC_FUNC_CLEAR(name, type) \ _ASAN_ATOMIC_FUNC_CLEAR(acq_##name, type) \ _ASAN_ATOMIC_FUNC_CLEAR(rel_##name, type) #define ASAN_ATOMIC_FUNC_FETCHADD(name, type) \ type kasan_atomic_fetchadd_##name(volatile type *ptr, type val) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ return (atomic_fetchadd_##name(ptr, val)); \ } #define ASAN_ATOMIC_FUNC_READANDCLEAR(name, type) \ type kasan_atomic_readandclear_##name(volatile type *ptr) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ return (atomic_readandclear_##name(ptr)); \ } #define ASAN_ATOMIC_FUNC_TESTANDCLEAR(name, type) \ int kasan_atomic_testandclear_##name(volatile type *ptr, u_int v) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ return (atomic_testandclear_##name(ptr, v)); \ } #define ASAN_ATOMIC_FUNC_TESTANDSET(name, type) \ int kasan_atomic_testandset_##name(volatile type *ptr, u_int v) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ return (atomic_testandset_##name(ptr, v)); \ } #define ASAN_ATOMIC_FUNC_SWAP(name, type) \ type kasan_atomic_swap_##name(volatile type *ptr, type val) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ return (atomic_swap_##name(ptr, val)); \ } #define _ASAN_ATOMIC_FUNC_CMPSET(name, type) \ int kasan_atomic_cmpset_##name(volatile type *ptr, type oval, \ type nval) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ return (atomic_cmpset_##name(ptr, oval, nval)); \ } #define ASAN_ATOMIC_FUNC_CMPSET(name, type) \ _ASAN_ATOMIC_FUNC_CMPSET(name, type) \ _ASAN_ATOMIC_FUNC_CMPSET(acq_##name, type) \ _ASAN_ATOMIC_FUNC_CMPSET(rel_##name, type) #define _ASAN_ATOMIC_FUNC_FCMPSET(name, type) \ int kasan_atomic_fcmpset_##name(volatile type *ptr, type *oval, \ type nval) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ return (atomic_fcmpset_##name(ptr, oval, nval)); \ } #define ASAN_ATOMIC_FUNC_FCMPSET(name, type) \ _ASAN_ATOMIC_FUNC_FCMPSET(name, type) \ _ASAN_ATOMIC_FUNC_FCMPSET(acq_##name, type) \ _ASAN_ATOMIC_FUNC_FCMPSET(rel_##name, type) #define ASAN_ATOMIC_FUNC_THREAD_FENCE(name) \ void kasan_atomic_thread_fence_##name(void) \ { \ atomic_thread_fence_##name(); \ } #define _ASAN_ATOMIC_FUNC_LOAD(name, type) \ type kasan_atomic_load_##name(volatile type *ptr) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ return (atomic_load_##name(ptr)); \ } #define ASAN_ATOMIC_FUNC_LOAD(name, type) \ _ASAN_ATOMIC_FUNC_LOAD(name, type) \ _ASAN_ATOMIC_FUNC_LOAD(acq_##name, type) #define _ASAN_ATOMIC_FUNC_STORE(name, type) \ void kasan_atomic_store_##name(volatile type *ptr, type val) \ { \ kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \ __RET_ADDR); \ atomic_store_##name(ptr, val); \ } #define ASAN_ATOMIC_FUNC_STORE(name, type) \ _ASAN_ATOMIC_FUNC_STORE(name, type) \ _ASAN_ATOMIC_FUNC_STORE(rel_##name, type) ASAN_ATOMIC_FUNC_ADD(8, uint8_t); ASAN_ATOMIC_FUNC_ADD(16, uint16_t); ASAN_ATOMIC_FUNC_ADD(32, uint32_t); ASAN_ATOMIC_FUNC_ADD(64, uint64_t); ASAN_ATOMIC_FUNC_ADD(int, u_int); ASAN_ATOMIC_FUNC_ADD(long, u_long); ASAN_ATOMIC_FUNC_ADD(ptr, uintptr_t); ASAN_ATOMIC_FUNC_SUBTRACT(8, uint8_t); ASAN_ATOMIC_FUNC_SUBTRACT(16, uint16_t); ASAN_ATOMIC_FUNC_SUBTRACT(32, uint32_t); ASAN_ATOMIC_FUNC_SUBTRACT(64, uint64_t); ASAN_ATOMIC_FUNC_SUBTRACT(int, u_int); ASAN_ATOMIC_FUNC_SUBTRACT(long, u_long); ASAN_ATOMIC_FUNC_SUBTRACT(ptr, uintptr_t); ASAN_ATOMIC_FUNC_SET(8, uint8_t); ASAN_ATOMIC_FUNC_SET(16, uint16_t); ASAN_ATOMIC_FUNC_SET(32, uint32_t); ASAN_ATOMIC_FUNC_SET(64, uint64_t); ASAN_ATOMIC_FUNC_SET(int, u_int); ASAN_ATOMIC_FUNC_SET(long, u_long); ASAN_ATOMIC_FUNC_SET(ptr, uintptr_t); ASAN_ATOMIC_FUNC_CLEAR(8, uint8_t); ASAN_ATOMIC_FUNC_CLEAR(16, uint16_t); ASAN_ATOMIC_FUNC_CLEAR(32, uint32_t); ASAN_ATOMIC_FUNC_CLEAR(64, uint64_t); ASAN_ATOMIC_FUNC_CLEAR(int, u_int); ASAN_ATOMIC_FUNC_CLEAR(long, u_long); ASAN_ATOMIC_FUNC_CLEAR(ptr, uintptr_t); ASAN_ATOMIC_FUNC_FETCHADD(32, uint32_t); ASAN_ATOMIC_FUNC_FETCHADD(64, uint64_t); ASAN_ATOMIC_FUNC_FETCHADD(int, u_int); ASAN_ATOMIC_FUNC_FETCHADD(long, u_long); ASAN_ATOMIC_FUNC_READANDCLEAR(32, uint32_t); ASAN_ATOMIC_FUNC_READANDCLEAR(64, uint64_t); ASAN_ATOMIC_FUNC_READANDCLEAR(int, u_int); ASAN_ATOMIC_FUNC_READANDCLEAR(long, u_long); ASAN_ATOMIC_FUNC_READANDCLEAR(ptr, uintptr_t); ASAN_ATOMIC_FUNC_TESTANDCLEAR(32, uint32_t); ASAN_ATOMIC_FUNC_TESTANDCLEAR(64, uint64_t); ASAN_ATOMIC_FUNC_TESTANDCLEAR(int, u_int); ASAN_ATOMIC_FUNC_TESTANDCLEAR(long, u_long); ASAN_ATOMIC_FUNC_TESTANDSET(32, uint32_t); ASAN_ATOMIC_FUNC_TESTANDSET(64, uint64_t); ASAN_ATOMIC_FUNC_TESTANDSET(int, u_int); ASAN_ATOMIC_FUNC_TESTANDSET(long, u_long); ASAN_ATOMIC_FUNC_SWAP(32, uint32_t); ASAN_ATOMIC_FUNC_SWAP(64, uint64_t); ASAN_ATOMIC_FUNC_SWAP(int, u_int); ASAN_ATOMIC_FUNC_SWAP(long, u_long); ASAN_ATOMIC_FUNC_SWAP(ptr, uintptr_t); ASAN_ATOMIC_FUNC_CMPSET(8, uint8_t); ASAN_ATOMIC_FUNC_CMPSET(16, uint16_t); ASAN_ATOMIC_FUNC_CMPSET(32, uint32_t); ASAN_ATOMIC_FUNC_CMPSET(64, uint64_t); ASAN_ATOMIC_FUNC_CMPSET(int, u_int); ASAN_ATOMIC_FUNC_CMPSET(long, u_long); ASAN_ATOMIC_FUNC_CMPSET(ptr, uintptr_t); ASAN_ATOMIC_FUNC_FCMPSET(8, uint8_t); ASAN_ATOMIC_FUNC_FCMPSET(16, uint16_t); ASAN_ATOMIC_FUNC_FCMPSET(32, uint32_t); ASAN_ATOMIC_FUNC_FCMPSET(64, uint64_t); ASAN_ATOMIC_FUNC_FCMPSET(int, u_int); ASAN_ATOMIC_FUNC_FCMPSET(long, u_long); ASAN_ATOMIC_FUNC_FCMPSET(ptr, uintptr_t); _ASAN_ATOMIC_FUNC_LOAD(bool, bool); ASAN_ATOMIC_FUNC_LOAD(8, uint8_t); ASAN_ATOMIC_FUNC_LOAD(16, uint16_t); ASAN_ATOMIC_FUNC_LOAD(32, uint32_t); ASAN_ATOMIC_FUNC_LOAD(64, uint64_t); ASAN_ATOMIC_FUNC_LOAD(char, u_char); ASAN_ATOMIC_FUNC_LOAD(short, u_short); ASAN_ATOMIC_FUNC_LOAD(int, u_int); ASAN_ATOMIC_FUNC_LOAD(long, u_long); ASAN_ATOMIC_FUNC_LOAD(ptr, uintptr_t); _ASAN_ATOMIC_FUNC_STORE(bool, bool); ASAN_ATOMIC_FUNC_STORE(8, uint8_t); ASAN_ATOMIC_FUNC_STORE(16, uint16_t); ASAN_ATOMIC_FUNC_STORE(32, uint32_t); ASAN_ATOMIC_FUNC_STORE(64, uint64_t); ASAN_ATOMIC_FUNC_STORE(char, u_char); ASAN_ATOMIC_FUNC_STORE(short, u_short); ASAN_ATOMIC_FUNC_STORE(int, u_int); ASAN_ATOMIC_FUNC_STORE(long, u_long); ASAN_ATOMIC_FUNC_STORE(ptr, uintptr_t); ASAN_ATOMIC_FUNC_THREAD_FENCE(acq); ASAN_ATOMIC_FUNC_THREAD_FENCE(rel); ASAN_ATOMIC_FUNC_THREAD_FENCE(acq_rel); ASAN_ATOMIC_FUNC_THREAD_FENCE(seq_cst); void kasan_atomic_interrupt_fence(void) { } /* -------------------------------------------------------------------------- */ #include #include #include int kasan_bus_space_map(bus_space_tag_t tag, bus_addr_t hnd, bus_size_t size, int flags, bus_space_handle_t *handlep) { return (bus_space_map(tag, hnd, size, flags, handlep)); } void kasan_bus_space_unmap(bus_space_tag_t tag, bus_space_handle_t hnd, bus_size_t size) { bus_space_unmap(tag, hnd, size); } int kasan_bus_space_subregion(bus_space_tag_t tag, bus_space_handle_t hnd, bus_size_t offset, bus_size_t size, bus_space_handle_t *handlep) { return (bus_space_subregion(tag, hnd, offset, size, handlep)); } void kasan_bus_space_free(bus_space_tag_t tag, bus_space_handle_t hnd, bus_size_t size) { bus_space_free(tag, hnd, size); } void kasan_bus_space_barrier(bus_space_tag_t tag, bus_space_handle_t hnd, bus_size_t offset, bus_size_t size, int flags) { bus_space_barrier(tag, hnd, offset, size, flags); } #define ASAN_BUS_READ_FUNC(func, width, type) \ type kasan_bus_space_read##func##_##width(bus_space_tag_t tag, \ bus_space_handle_t hnd, bus_size_t offset) \ { \ return (bus_space_read##func##_##width(tag, hnd, \ offset)); \ } \ #define ASAN_BUS_READ_PTR_FUNC(func, width, type) \ void kasan_bus_space_read_##func##_##width(bus_space_tag_t tag, \ bus_space_handle_t hnd, bus_size_t size, type *buf, \ bus_size_t count) \ { \ kasan_shadow_check((uintptr_t)buf, sizeof(type) * count,\ false, __RET_ADDR); \ bus_space_read_##func##_##width(tag, hnd, size, buf, \ count); \ } ASAN_BUS_READ_FUNC(, 1, uint8_t) ASAN_BUS_READ_FUNC(_stream, 1, uint8_t) ASAN_BUS_READ_PTR_FUNC(multi, 1, uint8_t) ASAN_BUS_READ_PTR_FUNC(multi_stream, 1, uint8_t) ASAN_BUS_READ_PTR_FUNC(region, 1, uint8_t) ASAN_BUS_READ_PTR_FUNC(region_stream, 1, uint8_t) ASAN_BUS_READ_FUNC(, 2, uint16_t) ASAN_BUS_READ_FUNC(_stream, 2, uint16_t) ASAN_BUS_READ_PTR_FUNC(multi, 2, uint16_t) ASAN_BUS_READ_PTR_FUNC(multi_stream, 2, uint16_t) ASAN_BUS_READ_PTR_FUNC(region, 2, uint16_t) ASAN_BUS_READ_PTR_FUNC(region_stream, 2, uint16_t) ASAN_BUS_READ_FUNC(, 4, uint32_t) ASAN_BUS_READ_FUNC(_stream, 4, uint32_t) ASAN_BUS_READ_PTR_FUNC(multi, 4, uint32_t) ASAN_BUS_READ_PTR_FUNC(multi_stream, 4, uint32_t) ASAN_BUS_READ_PTR_FUNC(region, 4, uint32_t) ASAN_BUS_READ_PTR_FUNC(region_stream, 4, uint32_t) ASAN_BUS_READ_FUNC(, 8, uint64_t) #if defined(__aarch64__) ASAN_BUS_READ_FUNC(_stream, 8, uint64_t) ASAN_BUS_READ_PTR_FUNC(multi, 8, uint64_t) ASAN_BUS_READ_PTR_FUNC(multi_stream, 8, uint64_t) ASAN_BUS_READ_PTR_FUNC(region, 8, uint64_t) ASAN_BUS_READ_PTR_FUNC(region_stream, 8, uint64_t) #endif #define ASAN_BUS_WRITE_FUNC(func, width, type) \ void kasan_bus_space_write##func##_##width(bus_space_tag_t tag, \ bus_space_handle_t hnd, bus_size_t offset, type value) \ { \ bus_space_write##func##_##width(tag, hnd, offset, value);\ } \ #define ASAN_BUS_WRITE_PTR_FUNC(func, width, type) \ void kasan_bus_space_write_##func##_##width(bus_space_tag_t tag,\ bus_space_handle_t hnd, bus_size_t size, const type *buf, \ bus_size_t count) \ { \ kasan_shadow_check((uintptr_t)buf, sizeof(type) * count,\ true, __RET_ADDR); \ bus_space_write_##func##_##width(tag, hnd, size, buf, \ count); \ } ASAN_BUS_WRITE_FUNC(, 1, uint8_t) ASAN_BUS_WRITE_FUNC(_stream, 1, uint8_t) ASAN_BUS_WRITE_PTR_FUNC(multi, 1, uint8_t) ASAN_BUS_WRITE_PTR_FUNC(multi_stream, 1, uint8_t) ASAN_BUS_WRITE_PTR_FUNC(region, 1, uint8_t) ASAN_BUS_WRITE_PTR_FUNC(region_stream, 1, uint8_t) ASAN_BUS_WRITE_FUNC(, 2, uint16_t) ASAN_BUS_WRITE_FUNC(_stream, 2, uint16_t) ASAN_BUS_WRITE_PTR_FUNC(multi, 2, uint16_t) ASAN_BUS_WRITE_PTR_FUNC(multi_stream, 2, uint16_t) ASAN_BUS_WRITE_PTR_FUNC(region, 2, uint16_t) ASAN_BUS_WRITE_PTR_FUNC(region_stream, 2, uint16_t) ASAN_BUS_WRITE_FUNC(, 4, uint32_t) ASAN_BUS_WRITE_FUNC(_stream, 4, uint32_t) ASAN_BUS_WRITE_PTR_FUNC(multi, 4, uint32_t) ASAN_BUS_WRITE_PTR_FUNC(multi_stream, 4, uint32_t) ASAN_BUS_WRITE_PTR_FUNC(region, 4, uint32_t) ASAN_BUS_WRITE_PTR_FUNC(region_stream, 4, uint32_t) ASAN_BUS_WRITE_FUNC(, 8, uint64_t) #define ASAN_BUS_SET_FUNC(func, width, type) \ void kasan_bus_space_set_##func##_##width(bus_space_tag_t tag, \ bus_space_handle_t hnd, bus_size_t offset, type value, \ bus_size_t count) \ { \ bus_space_set_##func##_##width(tag, hnd, offset, value, \ count); \ } ASAN_BUS_SET_FUNC(multi, 1, uint8_t) ASAN_BUS_SET_FUNC(region, 1, uint8_t) ASAN_BUS_SET_FUNC(multi_stream, 1, uint8_t) ASAN_BUS_SET_FUNC(region_stream, 1, uint8_t) ASAN_BUS_SET_FUNC(multi, 2, uint16_t) ASAN_BUS_SET_FUNC(region, 2, uint16_t) ASAN_BUS_SET_FUNC(multi_stream, 2, uint16_t) ASAN_BUS_SET_FUNC(region_stream, 2, uint16_t) ASAN_BUS_SET_FUNC(multi, 4, uint32_t) ASAN_BUS_SET_FUNC(region, 4, uint32_t) ASAN_BUS_SET_FUNC(multi_stream, 4, uint32_t) ASAN_BUS_SET_FUNC(region_stream, 4, uint32_t) #define ASAN_BUS_PEEK_FUNC(width, type) \ int kasan_bus_space_peek_##width(bus_space_tag_t tag, \ bus_space_handle_t hnd, bus_size_t offset, type *valuep) \ { \ return (bus_space_peek_##width(tag, hnd, offset, \ valuep)); \ } ASAN_BUS_PEEK_FUNC(1, uint8_t) ASAN_BUS_PEEK_FUNC(2, uint16_t) ASAN_BUS_PEEK_FUNC(4, uint32_t) ASAN_BUS_PEEK_FUNC(8, uint64_t) #define ASAN_BUS_POKE_FUNC(width, type) \ int kasan_bus_space_poke_##width(bus_space_tag_t tag, \ bus_space_handle_t hnd, bus_size_t offset, type value) \ { \ return (bus_space_poke_##width(tag, hnd, offset, \ value)); \ } ASAN_BUS_POKE_FUNC(1, uint8_t) ASAN_BUS_POKE_FUNC(2, uint16_t) ASAN_BUS_POKE_FUNC(4, uint32_t) ASAN_BUS_POKE_FUNC(8, uint64_t) /* -------------------------------------------------------------------------- */ void __asan_register_globals(struct __asan_global *, size_t); void __asan_unregister_globals(struct __asan_global *, size_t); void __asan_register_globals(struct __asan_global *globals, size_t n) { size_t i; for (i = 0; i < n; i++) { kasan_mark(globals[i].beg, globals[i].size, globals[i].size_with_redzone, KASAN_GENERIC_REDZONE); } } void __asan_unregister_globals(struct __asan_global *globals, size_t n) { size_t i; for (i = 0; i < n; i++) { kasan_mark(globals[i].beg, globals[i].size_with_redzone, globals[i].size_with_redzone, 0); } } #define ASAN_LOAD_STORE(size) \ void __asan_load##size(unsigned long); \ void __asan_load##size(unsigned long addr) \ { \ kasan_shadow_check(addr, size, false, __RET_ADDR);\ } \ void __asan_load##size##_noabort(unsigned long); \ void __asan_load##size##_noabort(unsigned long addr) \ { \ kasan_shadow_check(addr, size, false, __RET_ADDR);\ } \ void __asan_store##size(unsigned long); \ void __asan_store##size(unsigned long addr) \ { \ kasan_shadow_check(addr, size, true, __RET_ADDR);\ } \ void __asan_store##size##_noabort(unsigned long); \ void __asan_store##size##_noabort(unsigned long addr) \ { \ kasan_shadow_check(addr, size, true, __RET_ADDR);\ } ASAN_LOAD_STORE(1); ASAN_LOAD_STORE(2); ASAN_LOAD_STORE(4); ASAN_LOAD_STORE(8); ASAN_LOAD_STORE(16); void __asan_loadN(unsigned long, size_t); void __asan_loadN_noabort(unsigned long, size_t); void __asan_storeN(unsigned long, size_t); void __asan_storeN_noabort(unsigned long, size_t); void __asan_handle_no_return(void); void __asan_loadN(unsigned long addr, size_t size) { kasan_shadow_check(addr, size, false, __RET_ADDR); } void __asan_loadN_noabort(unsigned long addr, size_t size) { kasan_shadow_check(addr, size, false, __RET_ADDR); } void __asan_storeN(unsigned long addr, size_t size) { kasan_shadow_check(addr, size, true, __RET_ADDR); } void __asan_storeN_noabort(unsigned long addr, size_t size) { kasan_shadow_check(addr, size, true, __RET_ADDR); } void __asan_handle_no_return(void) { /* nothing */ } #define ASAN_SET_SHADOW(byte) \ void __asan_set_shadow_##byte(void *, size_t); \ void __asan_set_shadow_##byte(void *addr, size_t size) \ { \ __builtin_memset((void *)addr, 0x##byte, size); \ } ASAN_SET_SHADOW(00); ASAN_SET_SHADOW(f1); ASAN_SET_SHADOW(f2); ASAN_SET_SHADOW(f3); ASAN_SET_SHADOW(f5); ASAN_SET_SHADOW(f8); void __asan_poison_stack_memory(const void *, size_t); void __asan_unpoison_stack_memory(const void *, size_t); void __asan_poison_stack_memory(const void *addr, size_t size) { size = roundup(size, KASAN_SHADOW_SCALE); kasan_shadow_Nbyte_fill(addr, size, KASAN_USE_AFTER_SCOPE); } void __asan_unpoison_stack_memory(const void *addr, size_t size) { kasan_shadow_Nbyte_markvalid(addr, size); } void __asan_alloca_poison(const void *, size_t); void __asan_allocas_unpoison(const void *, const void *); void __asan_alloca_poison(const void *addr, size_t size) { const void *l, *r; KASSERT((vm_offset_t)addr % KASAN_ALLOCA_SCALE_SIZE == 0, ("%s: invalid address %p", __func__, addr)); l = (const uint8_t *)addr - KASAN_ALLOCA_SCALE_SIZE; r = (const uint8_t *)addr + roundup(size, KASAN_ALLOCA_SCALE_SIZE); kasan_shadow_Nbyte_fill(l, KASAN_ALLOCA_SCALE_SIZE, KASAN_STACK_LEFT); kasan_mark(addr, size, roundup(size, KASAN_ALLOCA_SCALE_SIZE), KASAN_STACK_MID); kasan_shadow_Nbyte_fill(r, KASAN_ALLOCA_SCALE_SIZE, KASAN_STACK_RIGHT); } void __asan_allocas_unpoison(const void *stkbegin, const void *stkend) { size_t size; if (__predict_false(!stkbegin)) return; if (__predict_false((uintptr_t)stkbegin > (uintptr_t)stkend)) return; size = (uintptr_t)stkend - (uintptr_t)stkbegin; kasan_shadow_Nbyte_fill(stkbegin, size, 0); } void __asan_poison_memory_region(const void *addr, size_t size); void __asan_unpoison_memory_region(const void *addr, size_t size); void __asan_poison_memory_region(const void *addr, size_t size) { } void __asan_unpoison_memory_region(const void *addr, size_t size) { }