diff --git a/sys/cam/mmc/mmc_da.c b/sys/cam/mmc/mmc_da.c index 0809de6e0764..de6e89a4da38 100644 --- a/sys/cam/mmc/mmc_da.c +++ b/sys/cam/mmc/mmc_da.c @@ -1,2074 +1,2079 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2006 Bernd Walter All rights reserved. * Copyright (c) 2009 Alexander Motin All rights reserved. * Copyright (c) 2015-2017 Ilya Bakulin All rights reserved. * Copyright (c) 2006 M. Warner Losh * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Some code derived from the sys/dev/mmc and sys/cam/ata * Thanks to Warner Losh , Alexander Motin * Bernd Walter , and other authors. */ #include //#include "opt_sdda.h" #include #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for PRIu64 */ #endif /* _KERNEL */ #ifndef _KERNEL #include #include #endif /* _KERNEL */ #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL typedef enum { SDDA_FLAG_OPEN = 0x0002, SDDA_FLAG_DIRTY = 0x0004 } sdda_flags; typedef enum { SDDA_STATE_INIT, SDDA_STATE_INVALID, SDDA_STATE_NORMAL, SDDA_STATE_PART_SWITCH, } sdda_state; -#define SDDA_FMT_BOOT "sdda%dboot" -#define SDDA_FMT_GP "sdda%dgp" -#define SDDA_FMT_RPMB "sdda%drpmb" +/* Purposefully ignore a '%d' argument to snprintf in SDDA_FMT! */ +#define SDDA_FMT "%s" +#define SDDA_FMT_BOOT "%s%dboot" +#define SDDA_FMT_GP "%s%dgp" +#define SDDA_FMT_RPMB "%s%drpmb" #define SDDA_LABEL_ENH "enh" #define SDDA_PART_NAMELEN (16 + 1) struct sdda_softc; struct sdda_part { struct disk *disk; struct bio_queue_head bio_queue; sdda_flags flags; struct sdda_softc *sc; u_int cnt; u_int type; bool ro; char name[SDDA_PART_NAMELEN]; }; struct sdda_softc { int outstanding_cmds; /* Number of active commands */ int refcount; /* Active xpt_action() calls */ sdda_state state; struct mmc_data *mmcdata; struct cam_periph *periph; // sdda_quirks quirks; struct task start_init_task; uint32_t raw_csd[4]; uint8_t raw_ext_csd[512]; /* MMC only? */ struct mmc_csd csd; struct mmc_cid cid; struct mmc_scr scr; /* Calculated from CSD */ uint64_t sector_count; uint64_t mediasize; /* Calculated from CID */ char card_id_string[64];/* Formatted CID info (serial, MFG, etc) */ char card_sn_string[16];/* Formatted serial # for disk->d_ident */ /* Determined from CSD + is highspeed card*/ uint32_t card_f_max; /* Generic switch timeout */ uint32_t cmd6_time; uint32_t timings; /* Mask of bus timings supported */ uint32_t vccq_120; /* Mask of bus timings at VCCQ of 1.2 V */ uint32_t vccq_180; /* Mask of bus timings at VCCQ of 1.8 V */ /* MMC partitions support */ struct sdda_part *part[MMC_PART_MAX]; uint8_t part_curr; /* Partition currently switched to */ uint8_t part_requested; /* What partition we're currently switching to */ uint32_t part_time; /* Partition switch timeout [us] */ off_t enh_base; /* Enhanced user data area slice base ... */ off_t enh_size; /* ... and size [bytes] */ int log_count; struct timeval log_time; }; static const char *mmc_errmsg[] = { "None", "Timeout", "Bad CRC", "Fifo", "Failed", "Invalid", "NO MEMORY" }; #define ccb_bp ppriv_ptr1 static disk_strategy_t sddastrategy; static dumper_t sddadump; static periph_init_t sddainit; static void sddaasync(void *callback_arg, uint32_t code, struct cam_path *path, void *arg); static periph_ctor_t sddaregister; static periph_dtor_t sddacleanup; static periph_start_t sddastart; static periph_oninv_t sddaoninvalidate; static void sddadone(struct cam_periph *periph, union ccb *done_ccb); static int sddaerror(union ccb *ccb, uint32_t cam_flags, uint32_t sense_flags); static int mmc_handle_reply(union ccb *ccb); static uint16_t get_rca(struct cam_periph *periph); static void sdda_start_init(void *context, union ccb *start_ccb); static void sdda_start_init_task(void *context, int pending); static void sdda_process_mmc_partitions(struct cam_periph *periph, union ccb *start_ccb); static uint32_t sdda_get_host_caps(struct cam_periph *periph, union ccb *ccb); static int mmc_select_card(struct cam_periph *periph, union ccb *ccb, uint32_t rca); static inline uint32_t mmc_get_sector_size(struct cam_periph *periph) {return MMC_SECTOR_SIZE;} static SYSCTL_NODE(_kern_cam, OID_AUTO, sdda, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "CAM Direct Access Disk driver"); static int sdda_mmcsd_compat = 1; SYSCTL_INT(_kern_cam_sdda, OID_AUTO, mmcsd_compat, CTLFLAG_RDTUN, &sdda_mmcsd_compat, 1, "Enable creation of mmcsd aliases."); /* TODO: actually issue GET_TRAN_SETTINGS to get R/O status */ static inline bool sdda_get_read_only(struct cam_periph *periph, union ccb *start_ccb) { return (false); } static uint32_t mmc_get_spec_vers(struct cam_periph *periph); static uint64_t mmc_get_media_size(struct cam_periph *periph); static uint32_t mmc_get_cmd6_timeout(struct cam_periph *periph); static bool sdda_add_part(struct cam_periph *periph, u_int type, const char *name, u_int cnt, off_t media_size, bool ro); static struct periph_driver sddadriver = { sddainit, "sdda", TAILQ_HEAD_INITIALIZER(sddadriver.units), /* generation */ 0 }; PERIPHDRIVER_DECLARE(sdda, sddadriver); static MALLOC_DEFINE(M_SDDA, "sd_da", "sd_da buffers"); static const int exp[8] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000 }; static const int mant[16] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 }; static const int cur_min[8] = { 500, 1000, 5000, 10000, 25000, 35000, 60000, 100000 }; static const int cur_max[8] = { 1000, 5000, 10000, 25000, 35000, 45000, 800000, 200000 }; static uint16_t get_rca(struct cam_periph *periph) { return periph->path->device->mmc_ident_data.card_rca; } /* * Figure out if CCB execution resulted in error. * Look at both CAM-level errors and on MMC protocol errors. * * Return value is always MMC error. */ static int mmc_handle_reply(union ccb *ccb) { KASSERT(ccb->ccb_h.func_code == XPT_MMC_IO, ("ccb %p: cannot handle non-XPT_MMC_IO errors, got func_code=%d", ccb, ccb->ccb_h.func_code)); /* CAM-level error should always correspond to MMC-level error */ if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) && (ccb->mmcio.cmd.error != MMC_ERR_NONE)) panic("CCB status is OK but MMC error != MMC_ERR_NONE"); if (ccb->mmcio.cmd.error != MMC_ERR_NONE) { xpt_print_path(ccb->ccb_h.path); printf("CMD%d failed, err %d (%s)\n", ccb->mmcio.cmd.opcode, ccb->mmcio.cmd.error, mmc_errmsg[ccb->mmcio.cmd.error]); } return (ccb->mmcio.cmd.error); } static uint32_t mmc_get_bits(uint32_t *bits, int bit_len, int start, int size) { const int i = (bit_len / 32) - (start / 32) - 1; const int shift = start & 31; uint32_t retval = bits[i] >> shift; if (size + shift > 32) retval |= bits[i - 1] << (32 - shift); return (retval & ((1llu << size) - 1)); } static void mmc_decode_csd_sd(uint32_t *raw_csd, struct mmc_csd *csd) { int v; int m; int e; memset(csd, 0, sizeof(*csd)); csd->csd_structure = v = mmc_get_bits(raw_csd, 128, 126, 2); /* Common members between 1.0 and 2.0 */ m = mmc_get_bits(raw_csd, 128, 115, 4); e = mmc_get_bits(raw_csd, 128, 112, 3); csd->tacc = (exp[e] * mant[m] + 9) / 10; csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100; m = mmc_get_bits(raw_csd, 128, 99, 4); e = mmc_get_bits(raw_csd, 128, 96, 3); csd->tran_speed = exp[e] * 10000 * mant[m]; csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12); csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4); csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1); csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1); csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1); csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1); csd->erase_blk_en = mmc_get_bits(raw_csd, 128, 46, 1); csd->erase_sector = mmc_get_bits(raw_csd, 128, 39, 7) + 1; csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 7); csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1); csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3); csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4); csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1); if (v == 0) { csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 59, 3)]; csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 56, 3)]; csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 53, 3)]; csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 50, 3)]; m = mmc_get_bits(raw_csd, 128, 62, 12); e = mmc_get_bits(raw_csd, 128, 47, 3); csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len; } else if (v == 1) { csd->capacity = ((uint64_t)mmc_get_bits(raw_csd, 128, 48, 22) + 1) * 512 * 1024; } else panic("unknown SD CSD version"); } static void mmc_decode_csd_mmc(uint32_t *raw_csd, struct mmc_csd *csd) { int m; int e; memset(csd, 0, sizeof(*csd)); csd->csd_structure = mmc_get_bits(raw_csd, 128, 126, 2); csd->spec_vers = mmc_get_bits(raw_csd, 128, 122, 4); m = mmc_get_bits(raw_csd, 128, 115, 4); e = mmc_get_bits(raw_csd, 128, 112, 3); csd->tacc = exp[e] * mant[m] + 9 / 10; csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100; m = mmc_get_bits(raw_csd, 128, 99, 4); e = mmc_get_bits(raw_csd, 128, 96, 3); csd->tran_speed = exp[e] * 10000 * mant[m]; csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12); csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4); csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1); csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1); csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1); csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1); csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 59, 3)]; csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 56, 3)]; csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 53, 3)]; csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 50, 3)]; m = mmc_get_bits(raw_csd, 128, 62, 12); e = mmc_get_bits(raw_csd, 128, 47, 3); csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len; csd->erase_blk_en = 0; csd->erase_sector = (mmc_get_bits(raw_csd, 128, 42, 5) + 1) * (mmc_get_bits(raw_csd, 128, 37, 5) + 1); csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 5); csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1); csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3); csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4); csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1); } static void mmc_decode_cid_sd(uint32_t *raw_cid, struct mmc_cid *cid) { int i; /* There's no version info, so we take it on faith */ memset(cid, 0, sizeof(*cid)); cid->mid = mmc_get_bits(raw_cid, 128, 120, 8); cid->oid = mmc_get_bits(raw_cid, 128, 104, 16); for (i = 0; i < 5; i++) cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8); cid->pnm[5] = 0; cid->prv = mmc_get_bits(raw_cid, 128, 56, 8); cid->psn = mmc_get_bits(raw_cid, 128, 24, 32); cid->mdt_year = mmc_get_bits(raw_cid, 128, 12, 8) + 2000; cid->mdt_month = mmc_get_bits(raw_cid, 128, 8, 4); } static void mmc_decode_cid_mmc(uint32_t *raw_cid, struct mmc_cid *cid) { int i; /* There's no version info, so we take it on faith */ memset(cid, 0, sizeof(*cid)); cid->mid = mmc_get_bits(raw_cid, 128, 120, 8); cid->oid = mmc_get_bits(raw_cid, 128, 104, 8); for (i = 0; i < 6; i++) cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8); cid->pnm[6] = 0; cid->prv = mmc_get_bits(raw_cid, 128, 48, 8); cid->psn = mmc_get_bits(raw_cid, 128, 16, 32); cid->mdt_month = mmc_get_bits(raw_cid, 128, 12, 4); cid->mdt_year = mmc_get_bits(raw_cid, 128, 8, 4) + 1997; } static void mmc_format_card_id_string(struct sdda_softc *sc, struct mmc_params *mmcp) { char oidstr[8]; uint8_t c1; uint8_t c2; /* * Format a card ID string for use by the mmcsd driver, it's what * appears between the <> in the following: * mmcsd0: 968MB at mmc0 * 22.5MHz/4bit/128-block * * Also format just the card serial number, which the mmcsd driver will * use as the disk->d_ident string. * * The card_id_string in mmc_ivars is currently allocated as 64 bytes, * and our max formatted length is currently 55 bytes if every field * contains the largest value. * * Sometimes the oid is two printable ascii chars; when it's not, * format it as 0xnnnn instead. */ c1 = (sc->cid.oid >> 8) & 0x0ff; c2 = sc->cid.oid & 0x0ff; if (c1 > 0x1f && c1 < 0x7f && c2 > 0x1f && c2 < 0x7f) snprintf(oidstr, sizeof(oidstr), "%c%c", c1, c2); else snprintf(oidstr, sizeof(oidstr), "0x%04x", sc->cid.oid); snprintf(sc->card_sn_string, sizeof(sc->card_sn_string), "%08X", sc->cid.psn); snprintf(sc->card_id_string, sizeof(sc->card_id_string), "%s%s %s %d.%d SN %08X MFG %02d/%04d by %d %s", mmcp->card_features & CARD_FEATURE_MMC ? "MMC" : "SD", mmcp->card_features & CARD_FEATURE_SDHC ? "HC" : "", sc->cid.pnm, sc->cid.prv >> 4, sc->cid.prv & 0x0f, sc->cid.psn, sc->cid.mdt_month, sc->cid.mdt_year, sc->cid.mid, oidstr); } static int sddaopen(struct disk *dp) { struct sdda_part *part; struct cam_periph *periph; struct sdda_softc *softc; int error; part = (struct sdda_part *)dp->d_drv1; softc = part->sc; periph = softc->periph; if (cam_periph_acquire(periph) != 0) { return(ENXIO); } cam_periph_lock(periph); if ((error = cam_periph_hold(periph, PRIBIO|PCATCH)) != 0) { cam_periph_unlock(periph); cam_periph_release(periph); return (error); } CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaopen\n")); part->flags |= SDDA_FLAG_OPEN; cam_periph_unhold(periph); cam_periph_unlock(periph); return (0); } static int sddaclose(struct disk *dp) { struct sdda_part *part; struct cam_periph *periph; struct sdda_softc *softc; part = (struct sdda_part *)dp->d_drv1; softc = part->sc; periph = softc->periph; part->flags &= ~SDDA_FLAG_OPEN; cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaclose\n")); while (softc->refcount != 0) cam_periph_sleep(periph, &softc->refcount, PRIBIO, "sddaclose", 1); cam_periph_unlock(periph); cam_periph_release(periph); return (0); } static void sddaschedule(struct cam_periph *periph) { struct sdda_softc *softc = (struct sdda_softc *)periph->softc; struct sdda_part *part; struct bio *bp; int i; /* Check if we have more work to do. */ /* Find partition that has outstanding commands. Prefer current partition. */ bp = bioq_first(&softc->part[softc->part_curr]->bio_queue); if (bp == NULL) { for (i = 0; i < MMC_PART_MAX; i++) { if ((part = softc->part[i]) != NULL && (bp = bioq_first(&softc->part[i]->bio_queue)) != NULL) break; } } if (bp != NULL) { xpt_schedule(periph, CAM_PRIORITY_NORMAL); } } /* * Actually translate the requested transfer into one the physical driver * can understand. The transfer is described by a buf and will include * only one physical transfer. */ static void sddastrategy(struct bio *bp) { struct cam_periph *periph; struct sdda_part *part; struct sdda_softc *softc; part = (struct sdda_part *)bp->bio_disk->d_drv1; softc = part->sc; periph = softc->periph; cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddastrategy(%p)\n", bp)); /* * If the device has been made invalid, error out */ if ((periph->flags & CAM_PERIPH_INVALID) != 0) { cam_periph_unlock(periph); biofinish(bp, NULL, ENXIO); return; } /* * Place it in the queue of disk activities for this disk */ bioq_disksort(&part->bio_queue, bp); /* * Schedule ourselves for performing the work. */ sddaschedule(periph); cam_periph_unlock(periph); return; } static void sddainit(void) { cam_status status; /* * Install a global async callback. This callback will * receive async callbacks like "new device found". */ status = xpt_register_async(AC_FOUND_DEVICE, sddaasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("sdda: Failed to attach master async callback " "due to status 0x%x!\n", status); } } /* * Callback from GEOM, called when it has finished cleaning up its * resources. */ static void sddadiskgonecb(struct disk *dp) { struct cam_periph *periph; struct sdda_part *part; part = (struct sdda_part *)dp->d_drv1; periph = part->sc->periph; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddadiskgonecb\n")); cam_periph_release(periph); } static void sddaoninvalidate(struct cam_periph *periph) { struct sdda_softc *softc; struct sdda_part *part; softc = (struct sdda_softc *)periph->softc; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaoninvalidate\n")); /* * De-register any async callbacks. */ xpt_register_async(0, sddaasync, periph, periph->path); /* * Return all queued I/O with ENXIO. * XXX Handle any transactions queued to the card * with XPT_ABORT_CCB. */ CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("bioq_flush start\n")); for (int i = 0; i < MMC_PART_MAX; i++) { if ((part = softc->part[i]) != NULL) { bioq_flush(&part->bio_queue, NULL, ENXIO); disk_gone(part->disk); } } CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("bioq_flush end\n")); } static void sddacleanup(struct cam_periph *periph) { struct sdda_softc *softc; struct sdda_part *part; int i; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddacleanup\n")); softc = (struct sdda_softc *)periph->softc; cam_periph_unlock(periph); for (i = 0; i < MMC_PART_MAX; i++) { if ((part = softc->part[i]) != NULL) { disk_destroy(part->disk); free(part, M_DEVBUF); softc->part[i] = NULL; } } free(softc, M_DEVBUF); cam_periph_lock(periph); } static void sddaasync(void *callback_arg, uint32_t code, struct cam_path *path, void *arg) { struct ccb_getdev cgd; struct cam_periph *periph; periph = (struct cam_periph *)callback_arg; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sddaasync(code=%d)\n", code)); switch (code) { case AC_FOUND_DEVICE: { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_FOUND_DEVICE\n")); struct ccb_getdev *cgd; cam_status status; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) break; if (cgd->protocol != PROTO_MMCSD) break; if (!(path->device->mmc_ident_data.card_features & CARD_FEATURE_MEMORY)) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("No memory on the card!\n")); break; } /* * Allocate a peripheral instance for * this device and start the probe * process. */ status = cam_periph_alloc(sddaregister, sddaoninvalidate, sddacleanup, sddastart, "sdda", CAM_PERIPH_BIO, path, sddaasync, AC_FOUND_DEVICE, cgd); if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) printf("sddaasync: Unable to attach to new device " "due to status 0x%x\n", status); break; } case AC_GETDEV_CHANGED: { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_GETDEV_CHANGED\n")); memset(&cgd, 0, sizeof(cgd)); xpt_setup_ccb(&cgd.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); cam_periph_async(periph, code, path, arg); break; } case AC_ADVINFO_CHANGED: { uintptr_t buftype; int i; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_ADVINFO_CHANGED\n")); buftype = (uintptr_t)arg; if (buftype == CDAI_TYPE_PHYS_PATH) { struct sdda_softc *softc; struct sdda_part *part; softc = periph->softc; for (i = 0; i < MMC_PART_MAX; i++) { if ((part = softc->part[i]) != NULL) { disk_attr_changed(part->disk, "GEOM::physpath", M_NOWAIT); } } } break; } default: CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> default?!\n")); cam_periph_async(periph, code, path, arg); break; } } static int sddagetattr(struct bio *bp) { struct cam_periph *periph; struct sdda_softc *softc; struct sdda_part *part; int ret; part = (struct sdda_part *)bp->bio_disk->d_drv1; softc = part->sc; periph = softc->periph; cam_periph_lock(periph); ret = xpt_getattr(bp->bio_data, bp->bio_length, bp->bio_attribute, periph->path); cam_periph_unlock(periph); if (ret == 0) bp->bio_completed = bp->bio_length; return (ret); } static cam_status sddaregister(struct cam_periph *periph, void *arg) { struct sdda_softc *softc; struct ccb_getdev *cgd; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaregister\n")); cgd = (struct ccb_getdev *)arg; if (cgd == NULL) { printf("sddaregister: no getdev CCB, can't register device\n"); return (CAM_REQ_CMP_ERR); } softc = (struct sdda_softc *)malloc(sizeof(*softc), M_DEVBUF, M_NOWAIT|M_ZERO); if (softc == NULL) { printf("sddaregister: Unable to probe new device. " "Unable to allocate softc\n"); return (CAM_REQ_CMP_ERR); } softc->state = SDDA_STATE_INIT; softc->mmcdata = (struct mmc_data *)malloc(sizeof(struct mmc_data), M_DEVBUF, M_NOWAIT|M_ZERO); if (softc->mmcdata == NULL) { printf("sddaregister: Unable to probe new device. " "Unable to allocate mmcdata\n"); free(softc, M_DEVBUF); return (CAM_REQ_CMP_ERR); } periph->softc = softc; softc->periph = periph; xpt_schedule(periph, CAM_PRIORITY_XPT); TASK_INIT(&softc->start_init_task, 0, sdda_start_init_task, periph); taskqueue_enqueue(taskqueue_thread, &softc->start_init_task); return (CAM_REQ_CMP); } static int mmc_exec_app_cmd(struct cam_periph *periph, union ccb *ccb, struct mmc_command *cmd) { int err; /* Send APP_CMD first */ memset(&ccb->mmcio.cmd, 0, sizeof(struct mmc_command)); memset(&ccb->mmcio.stop, 0, sizeof(struct mmc_command)); cam_fill_mmcio(&ccb->mmcio, /*retries*/ 0, /*cbfcnp*/ NULL, /*flags*/ CAM_DIR_NONE, /*mmc_opcode*/ MMC_APP_CMD, /*mmc_arg*/ get_rca(periph) << 16, /*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_AC, /*mmc_data*/ NULL, /*timeout*/ 0); cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL); err = mmc_handle_reply(ccb); if (err != 0) return (err); if (!(ccb->mmcio.cmd.resp[0] & R1_APP_CMD)) return (EIO); /* Now exec actual command */ int flags = 0; if (cmd->data != NULL) { ccb->mmcio.cmd.data = cmd->data; if (cmd->data->flags & MMC_DATA_READ) flags |= CAM_DIR_IN; if (cmd->data->flags & MMC_DATA_WRITE) flags |= CAM_DIR_OUT; } else flags = CAM_DIR_NONE; cam_fill_mmcio(&ccb->mmcio, /*retries*/ 0, /*cbfcnp*/ NULL, /*flags*/ flags, /*mmc_opcode*/ cmd->opcode, /*mmc_arg*/ cmd->arg, /*mmc_flags*/ cmd->flags, /*mmc_data*/ cmd->data, /*timeout*/ 0); cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL); err = mmc_handle_reply(ccb); if (err != 0) return (err); memcpy(cmd->resp, ccb->mmcio.cmd.resp, sizeof(cmd->resp)); cmd->error = ccb->mmcio.cmd.error; return (0); } static int mmc_app_get_scr(struct cam_periph *periph, union ccb *ccb, uint32_t *rawscr) { int err; struct mmc_command cmd; struct mmc_data d; memset(&cmd, 0, sizeof(cmd)); memset(&d, 0, sizeof(d)); memset(rawscr, 0, 8); cmd.opcode = ACMD_SEND_SCR; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.arg = 0; d.data = rawscr; d.len = 8; d.flags = MMC_DATA_READ; cmd.data = &d; err = mmc_exec_app_cmd(periph, ccb, &cmd); rawscr[0] = be32toh(rawscr[0]); rawscr[1] = be32toh(rawscr[1]); return (err); } static int mmc_send_ext_csd(struct cam_periph *periph, union ccb *ccb, uint8_t *rawextcsd, size_t buf_len) { int err; struct mmc_data d; KASSERT(buf_len == 512, ("Buffer for ext csd must be 512 bytes")); memset(&d, 0, sizeof(d)); d.data = rawextcsd; d.len = buf_len; d.flags = MMC_DATA_READ; memset(d.data, 0, d.len); cam_fill_mmcio(&ccb->mmcio, /*retries*/ 0, /*cbfcnp*/ NULL, /*flags*/ CAM_DIR_IN, /*mmc_opcode*/ MMC_SEND_EXT_CSD, /*mmc_arg*/ 0, /*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_ADTC, /*mmc_data*/ &d, /*timeout*/ 0); cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL); err = mmc_handle_reply(ccb); return (err); } static void mmc_app_decode_scr(uint32_t *raw_scr, struct mmc_scr *scr) { unsigned int scr_struct; memset(scr, 0, sizeof(*scr)); scr_struct = mmc_get_bits(raw_scr, 64, 60, 4); if (scr_struct != 0) { printf("Unrecognised SCR structure version %d\n", scr_struct); return; } scr->sda_vsn = mmc_get_bits(raw_scr, 64, 56, 4); scr->bus_widths = mmc_get_bits(raw_scr, 64, 48, 4); } static inline void mmc_switch_fill_mmcio(union ccb *ccb, uint8_t set, uint8_t index, uint8_t value, u_int timeout) { int arg = (MMC_SWITCH_FUNC_WR << 24) | (index << 16) | (value << 8) | set; cam_fill_mmcio(&ccb->mmcio, /*retries*/ 0, /*cbfcnp*/ NULL, /*flags*/ CAM_DIR_NONE, /*mmc_opcode*/ MMC_SWITCH_FUNC, /*mmc_arg*/ arg, /*mmc_flags*/ MMC_RSP_R1B | MMC_CMD_AC, /*mmc_data*/ NULL, /*timeout*/ timeout); } static int mmc_select_card(struct cam_periph *periph, union ccb *ccb, uint32_t rca) { int flags, err; flags = (rca ? MMC_RSP_R1B : MMC_RSP_NONE) | MMC_CMD_AC; cam_fill_mmcio(&ccb->mmcio, /*retries*/ 0, /*cbfcnp*/ NULL, /*flags*/ CAM_DIR_IN, /*mmc_opcode*/ MMC_SELECT_CARD, /*mmc_arg*/ rca << 16, /*mmc_flags*/ flags, /*mmc_data*/ NULL, /*timeout*/ 0); cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL); err = mmc_handle_reply(ccb); return (err); } static int mmc_switch(struct cam_periph *periph, union ccb *ccb, uint8_t set, uint8_t index, uint8_t value, u_int timeout) { int err; mmc_switch_fill_mmcio(ccb, set, index, value, timeout); cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL); err = mmc_handle_reply(ccb); return (err); } static uint32_t mmc_get_spec_vers(struct cam_periph *periph) { struct sdda_softc *softc = (struct sdda_softc *)periph->softc; return (softc->csd.spec_vers); } static uint64_t mmc_get_media_size(struct cam_periph *periph) { struct sdda_softc *softc = (struct sdda_softc *)periph->softc; return (softc->mediasize); } static uint32_t mmc_get_cmd6_timeout(struct cam_periph *periph) { struct sdda_softc *softc = (struct sdda_softc *)periph->softc; if (mmc_get_spec_vers(periph) >= 6) return (softc->raw_ext_csd[EXT_CSD_GEN_CMD6_TIME] * 10); return (500 * 1000); } static int mmc_sd_switch(struct cam_periph *periph, union ccb *ccb, uint8_t mode, uint8_t grp, uint8_t value, uint8_t *res) { struct mmc_data mmc_d; uint32_t arg; int err; memset(res, 0, 64); memset(&mmc_d, 0, sizeof(mmc_d)); mmc_d.len = 64; mmc_d.data = res; mmc_d.flags = MMC_DATA_READ; arg = mode << 31; /* 0 - check, 1 - set */ arg |= 0x00FFFFFF; arg &= ~(0xF << (grp * 4)); arg |= value << (grp * 4); cam_fill_mmcio(&ccb->mmcio, /*retries*/ 0, /*cbfcnp*/ NULL, /*flags*/ CAM_DIR_IN, /*mmc_opcode*/ SD_SWITCH_FUNC, /*mmc_arg*/ arg, /*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_ADTC, /*mmc_data*/ &mmc_d, /*timeout*/ 0); cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL); err = mmc_handle_reply(ccb); return (err); } static int mmc_set_timing(struct cam_periph *periph, union ccb *ccb, enum mmc_bus_timing timing) { u_char switch_res[64]; int err; uint8_t value; struct sdda_softc *softc = (struct sdda_softc *)periph->softc; struct mmc_params *mmcp = &periph->path->device->mmc_ident_data; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("mmc_set_timing(timing=%d)", timing)); switch (timing) { case bus_timing_normal: value = 0; break; case bus_timing_hs: value = 1; break; default: return (MMC_ERR_INVALID); } if (mmcp->card_features & CARD_FEATURE_MMC) { err = mmc_switch(periph, ccb, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, value, softc->cmd6_time); } else { err = mmc_sd_switch(periph, ccb, SD_SWITCH_MODE_SET, SD_SWITCH_GROUP1, value, switch_res); } /* Set high-speed timing on the host */ struct ccb_trans_settings_mmc *cts; cts = &ccb->cts.proto_specific.mmc; ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; ccb->ccb_h.flags = CAM_DIR_NONE; ccb->ccb_h.retry_count = 0; ccb->ccb_h.timeout = 100; ccb->ccb_h.cbfcnp = NULL; cts->ios.timing = timing; cts->ios_valid = MMC_BT; xpt_action(ccb); return (err); } static void sdda_start_init_task(void *context, int pending) { union ccb *new_ccb; struct cam_periph *periph; periph = (struct cam_periph *)context; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_start_init_task\n")); new_ccb = xpt_alloc_ccb(); xpt_setup_ccb(&new_ccb->ccb_h, periph->path, CAM_PRIORITY_NONE); cam_periph_lock(periph); cam_periph_hold(periph, PRIBIO|PCATCH); sdda_start_init(context, new_ccb); cam_periph_unhold(periph); cam_periph_unlock(periph); xpt_free_ccb(new_ccb); } static void sdda_set_bus_width(struct cam_periph *periph, union ccb *ccb, int width) { struct sdda_softc *softc = (struct sdda_softc *)periph->softc; struct mmc_params *mmcp = &periph->path->device->mmc_ident_data; int err; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_set_bus_width\n")); /* First set for the card, then for the host */ if (mmcp->card_features & CARD_FEATURE_MMC) { uint8_t value; switch (width) { case bus_width_1: value = EXT_CSD_BUS_WIDTH_1; break; case bus_width_4: value = EXT_CSD_BUS_WIDTH_4; break; case bus_width_8: value = EXT_CSD_BUS_WIDTH_8; break; default: panic("Invalid bus width %d", width); } err = mmc_switch(periph, ccb, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, value, softc->cmd6_time); } else { /* For SD cards we send ACMD6 with the required bus width in arg */ struct mmc_command cmd; memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = ACMD_SET_BUS_WIDTH; cmd.arg = width; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_exec_app_cmd(periph, ccb, &cmd); } if (err != MMC_ERR_NONE) { CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Error %d when setting bus width on the card\n", err)); return; } /* Now card is done, set the host to the same width */ struct ccb_trans_settings_mmc *cts; cts = &ccb->cts.proto_specific.mmc; ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; ccb->ccb_h.flags = CAM_DIR_NONE; ccb->ccb_h.retry_count = 0; ccb->ccb_h.timeout = 100; ccb->ccb_h.cbfcnp = NULL; cts->ios.bus_width = width; cts->ios_valid = MMC_BW; xpt_action(ccb); } static inline const char *part_type(u_int type) { switch (type) { case EXT_CSD_PART_CONFIG_ACC_RPMB: return ("RPMB"); case EXT_CSD_PART_CONFIG_ACC_DEFAULT: return ("default"); case EXT_CSD_PART_CONFIG_ACC_BOOT0: return ("boot0"); case EXT_CSD_PART_CONFIG_ACC_BOOT1: return ("boot1"); case EXT_CSD_PART_CONFIG_ACC_GP0: case EXT_CSD_PART_CONFIG_ACC_GP1: case EXT_CSD_PART_CONFIG_ACC_GP2: case EXT_CSD_PART_CONFIG_ACC_GP3: return ("general purpose"); default: return ("(unknown type)"); } } static inline const char *bus_width_str(enum mmc_bus_width w) { switch (w) { case bus_width_1: return ("1-bit"); case bus_width_4: return ("4-bit"); case bus_width_8: return ("8-bit"); default: __assert_unreachable(); } } static uint32_t sdda_get_host_caps(struct cam_periph *periph, union ccb *ccb) { struct ccb_trans_settings_mmc *cts; cts = &ccb->cts.proto_specific.mmc; ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS; ccb->ccb_h.flags = CAM_DIR_NONE; ccb->ccb_h.retry_count = 0; ccb->ccb_h.timeout = 100; ccb->ccb_h.cbfcnp = NULL; xpt_action(ccb); if (ccb->ccb_h.status != CAM_REQ_CMP) panic("Cannot get host caps"); return (cts->host_caps); } static uint32_t sdda_get_max_data(struct cam_periph *periph, union ccb *ccb) { struct ccb_trans_settings_mmc *cts; cts = &ccb->cts.proto_specific.mmc; memset(cts, 0, sizeof(struct ccb_trans_settings_mmc)); ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS; ccb->ccb_h.flags = CAM_DIR_NONE; ccb->ccb_h.retry_count = 0; ccb->ccb_h.timeout = 100; ccb->ccb_h.cbfcnp = NULL; xpt_action(ccb); if (ccb->ccb_h.status != CAM_REQ_CMP) panic("Cannot get host max data"); KASSERT(cts->host_max_data != 0, ("host_max_data == 0?!")); return (cts->host_max_data); } static void sdda_start_init(void *context, union ccb *start_ccb) { struct cam_periph *periph = (struct cam_periph *)context; struct ccb_trans_settings_mmc *cts; uint32_t host_caps; uint32_t sec_count; int err; int host_f_max; uint8_t card_type; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_start_init\n")); /* periph was held for us when this task was enqueued */ if ((periph->flags & CAM_PERIPH_INVALID) != 0) { cam_periph_release(periph); return; } struct sdda_softc *softc = (struct sdda_softc *)periph->softc; struct mmc_params *mmcp = &periph->path->device->mmc_ident_data; struct cam_ed *device = periph->path->device; if (mmcp->card_features & CARD_FEATURE_MMC) { mmc_decode_csd_mmc(mmcp->card_csd, &softc->csd); mmc_decode_cid_mmc(mmcp->card_cid, &softc->cid); if (mmc_get_spec_vers(periph) >= 4) { err = mmc_send_ext_csd(periph, start_ccb, (uint8_t *)&softc->raw_ext_csd, sizeof(softc->raw_ext_csd)); if (err != 0) { CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Cannot read EXT_CSD, err %d", err)); return; } } } else { mmc_decode_csd_sd(mmcp->card_csd, &softc->csd); mmc_decode_cid_sd(mmcp->card_cid, &softc->cid); } softc->sector_count = softc->csd.capacity / MMC_SECTOR_SIZE; softc->mediasize = softc->csd.capacity; softc->cmd6_time = mmc_get_cmd6_timeout(periph); /* MMC >= 4.x have EXT_CSD that has its own opinion about capacity */ if (mmc_get_spec_vers(periph) >= 4) { sec_count = softc->raw_ext_csd[EXT_CSD_SEC_CNT] + (softc->raw_ext_csd[EXT_CSD_SEC_CNT + 1] << 8) + (softc->raw_ext_csd[EXT_CSD_SEC_CNT + 2] << 16) + (softc->raw_ext_csd[EXT_CSD_SEC_CNT + 3] << 24); if (sec_count != 0) { softc->sector_count = sec_count; softc->mediasize = softc->sector_count * MMC_SECTOR_SIZE; /* FIXME: there should be a better name for this option...*/ mmcp->card_features |= CARD_FEATURE_SDHC; } } CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Capacity: %"PRIu64", sectors: %"PRIu64"\n", softc->mediasize, softc->sector_count)); mmc_format_card_id_string(softc, mmcp); /* Update info for CAM */ device->serial_num_len = strlen(softc->card_sn_string); device->serial_num = (uint8_t *)malloc((device->serial_num_len + 1), M_CAMXPT, M_NOWAIT); strlcpy(device->serial_num, softc->card_sn_string, device->serial_num_len + 1); device->device_id_len = strlen(softc->card_id_string); device->device_id = (uint8_t *)malloc((device->device_id_len + 1), M_CAMXPT, M_NOWAIT); strlcpy(device->device_id, softc->card_id_string, device->device_id_len + 1); strlcpy(mmcp->model, softc->card_id_string, sizeof(mmcp->model)); /* Set the clock frequency that the card can handle */ cts = &start_ccb->cts.proto_specific.mmc; /* First, get the host's max freq */ start_ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS; start_ccb->ccb_h.flags = CAM_DIR_NONE; start_ccb->ccb_h.retry_count = 0; start_ccb->ccb_h.timeout = 100; start_ccb->ccb_h.cbfcnp = NULL; xpt_action(start_ccb); if (start_ccb->ccb_h.status != CAM_REQ_CMP) panic("Cannot get max host freq"); host_f_max = cts->host_f_max; host_caps = cts->host_caps; if (cts->ios.bus_width != bus_width_1) panic("Bus width in ios is not 1-bit"); /* Now check if the card supports High-speed */ softc->card_f_max = softc->csd.tran_speed; if (host_caps & MMC_CAP_HSPEED) { /* Find out if the card supports High speed timing */ if (mmcp->card_features & CARD_FEATURE_SD20) { /* Get and decode SCR */ uint32_t rawscr[2]; uint8_t res[64]; if (mmc_app_get_scr(periph, start_ccb, rawscr)) { CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Cannot get SCR\n")); goto finish_hs_tests; } mmc_app_decode_scr(rawscr, &softc->scr); if ((softc->scr.sda_vsn >= 1) && (softc->csd.ccc & (1<<10))) { mmc_sd_switch(periph, start_ccb, SD_SWITCH_MODE_CHECK, SD_SWITCH_GROUP1, SD_SWITCH_NOCHANGE, res); if (res[13] & 2) { CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports HS\n")); softc->card_f_max = SD_HS_MAX; } /* * We deselect then reselect the card here. Some cards * become unselected and timeout with the above two * commands, although the state tables / diagrams in the * standard suggest they go back to the transfer state. * Other cards don't become deselected, and if we * attempt to blindly re-select them, we get timeout * errors from some controllers. So we deselect then * reselect to handle all situations. */ mmc_select_card(periph, start_ccb, 0); mmc_select_card(periph, start_ccb, get_rca(periph)); } else { CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Not trying the switch\n")); goto finish_hs_tests; } } if (mmcp->card_features & CARD_FEATURE_MMC && mmc_get_spec_vers(periph) >= 4) { card_type = softc->raw_ext_csd[EXT_CSD_CARD_TYPE]; if (card_type & EXT_CSD_CARD_TYPE_HS_52) softc->card_f_max = MMC_TYPE_HS_52_MAX; else if (card_type & EXT_CSD_CARD_TYPE_HS_26) softc->card_f_max = MMC_TYPE_HS_26_MAX; if ((card_type & EXT_CSD_CARD_TYPE_DDR_52_1_2V) != 0 && (host_caps & MMC_CAP_SIGNALING_120) != 0) { setbit(&softc->timings, bus_timing_mmc_ddr52); setbit(&softc->vccq_120, bus_timing_mmc_ddr52); CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports DDR52 at 1.2V\n")); } if ((card_type & EXT_CSD_CARD_TYPE_DDR_52_1_8V) != 0 && (host_caps & MMC_CAP_SIGNALING_180) != 0) { setbit(&softc->timings, bus_timing_mmc_ddr52); setbit(&softc->vccq_180, bus_timing_mmc_ddr52); CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports DDR52 at 1.8V\n")); } if ((card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) != 0 && (host_caps & MMC_CAP_SIGNALING_120) != 0) { setbit(&softc->timings, bus_timing_mmc_hs200); setbit(&softc->vccq_120, bus_timing_mmc_hs200); CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports HS200 at 1.2V\n")); } if ((card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) != 0 && (host_caps & MMC_CAP_SIGNALING_180) != 0) { setbit(&softc->timings, bus_timing_mmc_hs200); setbit(&softc->vccq_180, bus_timing_mmc_hs200); CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports HS200 at 1.8V\n")); } } } int f_max; finish_hs_tests: f_max = min(host_f_max, softc->card_f_max); CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Set SD freq to %d MHz (min out of host f=%d MHz and card f=%d MHz)\n", f_max / 1000000, host_f_max / 1000000, softc->card_f_max / 1000000)); /* Enable high-speed timing on the card */ if (f_max > 25000000) { err = mmc_set_timing(periph, start_ccb, bus_timing_hs); if (err != MMC_ERR_NONE) { CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("Cannot switch card to high-speed mode")); f_max = 25000000; } } /* If possible, set lower-level signaling */ enum mmc_bus_timing timing; /* FIXME: MMCCAM supports max. bus_timing_mmc_ddr52 at the moment. */ for (timing = bus_timing_mmc_ddr52; timing > bus_timing_normal; timing--) { if (isset(&softc->vccq_120, timing)) { /* Set VCCQ = 1.2V */ start_ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; start_ccb->ccb_h.flags = CAM_DIR_NONE; start_ccb->ccb_h.retry_count = 0; start_ccb->ccb_h.timeout = 100; start_ccb->ccb_h.cbfcnp = NULL; cts->ios.vccq = vccq_120; cts->ios_valid = MMC_VCCQ; xpt_action(start_ccb); break; } else if (isset(&softc->vccq_180, timing)) { /* Set VCCQ = 1.8V */ start_ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; start_ccb->ccb_h.flags = CAM_DIR_NONE; start_ccb->ccb_h.retry_count = 0; start_ccb->ccb_h.timeout = 100; start_ccb->ccb_h.cbfcnp = NULL; cts->ios.vccq = vccq_180; cts->ios_valid = MMC_VCCQ; xpt_action(start_ccb); break; } else { /* Set VCCQ = 3.3V */ start_ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; start_ccb->ccb_h.flags = CAM_DIR_NONE; start_ccb->ccb_h.retry_count = 0; start_ccb->ccb_h.timeout = 100; start_ccb->ccb_h.cbfcnp = NULL; cts->ios.vccq = vccq_330; cts->ios_valid = MMC_VCCQ; xpt_action(start_ccb); break; } } /* Set frequency on the controller */ start_ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; start_ccb->ccb_h.flags = CAM_DIR_NONE; start_ccb->ccb_h.retry_count = 0; start_ccb->ccb_h.timeout = 100; start_ccb->ccb_h.cbfcnp = NULL; cts->ios.clock = f_max; cts->ios_valid = MMC_CLK; xpt_action(start_ccb); /* Set bus width */ enum mmc_bus_width desired_bus_width = bus_width_1; enum mmc_bus_width max_host_bus_width = (host_caps & MMC_CAP_8_BIT_DATA ? bus_width_8 : host_caps & MMC_CAP_4_BIT_DATA ? bus_width_4 : bus_width_1); enum mmc_bus_width max_card_bus_width = bus_width_1; if (mmcp->card_features & CARD_FEATURE_SD20 && softc->scr.bus_widths & SD_SCR_BUS_WIDTH_4) max_card_bus_width = bus_width_4; /* * Unlike SD, MMC cards don't have any information about supported bus width... * So we need to perform read/write test to find out the width. */ /* TODO: figure out bus width for MMC; use 8-bit for now (to test on BBB) */ if (mmcp->card_features & CARD_FEATURE_MMC) max_card_bus_width = bus_width_8; desired_bus_width = min(max_host_bus_width, max_card_bus_width); CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Set bus width to %s (min of host %s and card %s)\n", bus_width_str(desired_bus_width), bus_width_str(max_host_bus_width), bus_width_str(max_card_bus_width))); sdda_set_bus_width(periph, start_ccb, desired_bus_width); softc->state = SDDA_STATE_NORMAL; cam_periph_unhold(periph); /* MMC partitions support */ if (mmcp->card_features & CARD_FEATURE_MMC && mmc_get_spec_vers(periph) >= 4) { sdda_process_mmc_partitions(periph, start_ccb); } else if (mmcp->card_features & CARD_FEATURE_MEMORY) { /* For SD[HC] cards, just add one partition that is the whole card */ - if (sdda_add_part(periph, 0, "sdda", + if (sdda_add_part(periph, 0, SDDA_FMT, periph->unit_number, mmc_get_media_size(periph), sdda_get_read_only(periph, start_ccb)) == false) return; softc->part_curr = 0; } cam_periph_hold(periph, PRIBIO|PCATCH); xpt_announce_periph(periph, softc->card_id_string); /* * Add async callbacks for bus reset and bus device reset calls. * I don't bother checking if this fails as, in most cases, * the system will function just fine without them and the only * alternative would be to not attach the device on failure. */ xpt_register_async(AC_LOST_DEVICE | AC_GETDEV_CHANGED | AC_ADVINFO_CHANGED, sddaasync, periph, periph->path); } static bool sdda_add_part(struct cam_periph *periph, u_int type, const char *name, u_int cnt, off_t media_size, bool ro) { struct sdda_softc *sc = (struct sdda_softc *)periph->softc; struct sdda_part *part; struct ccb_pathinq cpi; CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Partition type '%s', size %ju %s\n", part_type(type), media_size, ro ? "(read-only)" : "")); part = sc->part[type] = malloc(sizeof(*part), M_DEVBUF, M_NOWAIT | M_ZERO); if (part == NULL) { printf("Cannot add partition for sdda\n"); return (false); } part->cnt = cnt; part->type = type; part->ro = ro; part->sc = sc; - snprintf(part->name, sizeof(part->name), name, periph->unit_number); + snprintf(part->name, sizeof(part->name), name, "sdda", periph->unit_number); /* * Due to the nature of RPMB partition it doesn't make much sense * to add it as a disk. It would be more appropriate to create a * userland tool to operate on the partition or leverage the existing * tools from sysutils/mmc-utils. */ if (type == EXT_CSD_PART_CONFIG_ACC_RPMB) { /* TODO: Create device, assign IOCTL handler */ CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Don't know what to do with RPMB partitions yet\n")); return (false); } bioq_init(&part->bio_queue); bzero(&cpi, sizeof(cpi)); xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NONE); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); /* * Register this media as a disk */ (void)cam_periph_hold(periph, PRIBIO); cam_periph_unlock(periph); part->disk = disk_alloc(); part->disk->d_rotation_rate = DISK_RR_NON_ROTATING; part->disk->d_devstat = devstat_new_entry(part->name, cnt, MMC_SECTOR_SIZE, DEVSTAT_ALL_SUPPORTED, DEVSTAT_TYPE_DIRECT | XPORT_DEVSTAT_TYPE(cpi.transport), DEVSTAT_PRIORITY_DISK); part->disk->d_open = sddaopen; part->disk->d_close = sddaclose; part->disk->d_strategy = sddastrategy; if (cam_sim_pollable(periph->sim)) part->disk->d_dump = sddadump; part->disk->d_getattr = sddagetattr; part->disk->d_gone = sddadiskgonecb; part->disk->d_name = part->name; part->disk->d_drv1 = part; part->disk->d_maxsize = MIN(maxphys, sdda_get_max_data(periph, (union ccb *)&cpi) * mmc_get_sector_size(periph)); part->disk->d_unit = cnt; part->disk->d_flags = 0; strlcpy(part->disk->d_descr, sc->card_id_string, MIN(sizeof(part->disk->d_descr), sizeof(sc->card_id_string))); strlcpy(part->disk->d_ident, sc->card_sn_string, MIN(sizeof(part->disk->d_ident), sizeof(sc->card_sn_string))); part->disk->d_hba_vendor = cpi.hba_vendor; part->disk->d_hba_device = cpi.hba_device; part->disk->d_hba_subvendor = cpi.hba_subvendor; part->disk->d_hba_subdevice = cpi.hba_subdevice; snprintf(part->disk->d_attachment, sizeof(part->disk->d_attachment), "%s%d", cpi.dev_name, cpi.unit_number); part->disk->d_sectorsize = mmc_get_sector_size(periph); part->disk->d_mediasize = media_size; part->disk->d_stripesize = 0; part->disk->d_fwsectors = 0; part->disk->d_fwheads = 0; - if (sdda_mmcsd_compat) - disk_add_alias(part->disk, "mmcsd"); + if (sdda_mmcsd_compat) { + char cname[SDDA_PART_NAMELEN]; /* This equals the mmcsd namelen. */ + snprintf(cname, sizeof(cname), name, "mmcsd", periph->unit_number); + disk_add_alias(part->disk, cname); + } /* * Acquire a reference to the periph before we register with GEOM. * We'll release this reference once GEOM calls us back (via * sddadiskgonecb()) telling us that our provider has been freed. */ if (cam_periph_acquire(periph) != 0) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (false); } disk_create(part->disk, DISK_VERSION); cam_periph_lock(periph); cam_periph_unhold(periph); return (true); } /* * For MMC cards, process EXT_CSD and add partitions that are supported by * this device. */ static void sdda_process_mmc_partitions(struct cam_periph *periph, union ccb *ccb) { struct sdda_softc *sc = (struct sdda_softc *)periph->softc; struct mmc_params *mmcp = &periph->path->device->mmc_ident_data; off_t erase_size, sector_size, size, wp_size; int i; const uint8_t *ext_csd; uint8_t rev; bool comp, ro; ext_csd = sc->raw_ext_csd; /* * Enhanced user data area and general purpose partitions are only * supported in revision 1.4 (EXT_CSD_REV == 4) and later, the RPMB * partition in revision 1.5 (MMC v4.41, EXT_CSD_REV == 5) and later. */ rev = ext_csd[EXT_CSD_REV]; /* * Ignore user-creatable enhanced user data area and general purpose * partitions partitions as long as partitioning hasn't been finished. */ comp = (ext_csd[EXT_CSD_PART_SET] & EXT_CSD_PART_SET_COMPLETED) != 0; /* * Add enhanced user data area slice, unless it spans the entirety of * the user data area. The enhanced area is of a multiple of high * capacity write protect groups ((ERASE_GRP_SIZE + HC_WP_GRP_SIZE) * * 512 KB) and its offset given in either sectors or bytes, depending * on whether it's a high capacity device or not. * NB: The slicer and its slices need to be registered before adding * the disk for the corresponding user data area as re-tasting is * racy. */ sector_size = mmc_get_sector_size(periph); size = ext_csd[EXT_CSD_ENH_SIZE_MULT] + (ext_csd[EXT_CSD_ENH_SIZE_MULT + 1] << 8) + (ext_csd[EXT_CSD_ENH_SIZE_MULT + 2] << 16); if (rev >= 4 && comp == TRUE && size > 0 && (ext_csd[EXT_CSD_PART_SUPPORT] & EXT_CSD_PART_SUPPORT_ENH_ATTR_EN) != 0 && (ext_csd[EXT_CSD_PART_ATTR] & (EXT_CSD_PART_ATTR_ENH_USR)) != 0) { erase_size = ext_csd[EXT_CSD_ERASE_GRP_SIZE] * 1024 * MMC_SECTOR_SIZE; wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; size *= erase_size * wp_size; if (size != mmc_get_media_size(periph) * sector_size) { sc->enh_size = size; sc->enh_base = (ext_csd[EXT_CSD_ENH_START_ADDR] + (ext_csd[EXT_CSD_ENH_START_ADDR + 1] << 8) + (ext_csd[EXT_CSD_ENH_START_ADDR + 2] << 16) + (ext_csd[EXT_CSD_ENH_START_ADDR + 3] << 24)) * ((mmcp->card_features & CARD_FEATURE_SDHC) ? 1: MMC_SECTOR_SIZE); } else CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("enhanced user data area spans entire device")); } /* * Add default partition. This may be the only one or the user * data area in case partitions are supported. */ ro = sdda_get_read_only(periph, ccb); - sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_DEFAULT, "sdda", + sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_DEFAULT, SDDA_FMT, periph->unit_number, mmc_get_media_size(periph), ro); sc->part_curr = EXT_CSD_PART_CONFIG_ACC_DEFAULT; if (mmc_get_spec_vers(periph) < 3) return; /* Belatedly announce enhanced user data slice. */ if (sc->enh_size != 0) { CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("enhanced user data area off 0x%jx size %ju bytes\n", sc->enh_base, sc->enh_size)); } /* * Determine partition switch timeout (provided in units of 10 ms) * and ensure it's at least 300 ms as some eMMC chips lie. */ sc->part_time = max(ext_csd[EXT_CSD_PART_SWITCH_TO] * 10 * 1000, 300 * 1000); /* Add boot partitions, which are of a fixed multiple of 128 KB. */ size = ext_csd[EXT_CSD_BOOT_SIZE_MULT] * MMC_BOOT_RPMB_BLOCK_SIZE; if (size > 0 && (sdda_get_host_caps(periph, ccb) & MMC_CAP_BOOT_NOACC) == 0) { sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_BOOT0, SDDA_FMT_BOOT, 0, size, ro | ((ext_csd[EXT_CSD_BOOT_WP_STATUS] & EXT_CSD_BOOT_WP_STATUS_BOOT0_MASK) != 0)); sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_BOOT1, SDDA_FMT_BOOT, 1, size, ro | ((ext_csd[EXT_CSD_BOOT_WP_STATUS] & EXT_CSD_BOOT_WP_STATUS_BOOT1_MASK) != 0)); } /* Add RPMB partition, which also is of a fixed multiple of 128 KB. */ size = ext_csd[EXT_CSD_RPMB_MULT] * MMC_BOOT_RPMB_BLOCK_SIZE; if (rev >= 5 && size > 0) sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_RPMB, SDDA_FMT_RPMB, 0, size, ro); if (rev <= 3 || comp == FALSE) return; /* * Add general purpose partitions, which are of a multiple of high * capacity write protect groups, too. */ if ((ext_csd[EXT_CSD_PART_SUPPORT] & EXT_CSD_PART_SUPPORT_EN) != 0) { erase_size = ext_csd[EXT_CSD_ERASE_GRP_SIZE] * 1024 * MMC_SECTOR_SIZE; wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; for (i = 0; i < MMC_PART_GP_MAX; i++) { size = ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3] + (ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3 + 1] << 8) + (ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3 + 2] << 16); if (size == 0) continue; sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_GP0 + i, SDDA_FMT_GP, i, size * erase_size * wp_size, ro); } } } /* * We cannot just call mmc_switch() since it will sleep, and we are in * GEOM context and cannot sleep. Instead, create an MMCIO request to switch * partitions and send it to h/w, and upon completion resume processing * the I/O queue. * This function cannot fail, instead check switch errors in sddadone(). */ static void sdda_init_switch_part(struct cam_periph *periph, union ccb *start_ccb, uint8_t part) { struct sdda_softc *sc = (struct sdda_softc *)periph->softc; uint8_t value; KASSERT(part < MMC_PART_MAX, ("%s: invalid partition index", __func__)); sc->part_requested = part; value = (sc->raw_ext_csd[EXT_CSD_PART_CONFIG] & ~EXT_CSD_PART_CONFIG_ACC_MASK) | part; mmc_switch_fill_mmcio(start_ccb, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, value, sc->part_time); start_ccb->ccb_h.cbfcnp = sddadone; sc->outstanding_cmds++; cam_periph_unlock(periph); xpt_action(start_ccb); cam_periph_lock(periph); } /* Called with periph lock held! */ static void sddastart(struct cam_periph *periph, union ccb *start_ccb) { struct bio *bp; struct sdda_softc *softc = (struct sdda_softc *)periph->softc; struct sdda_part *part; struct mmc_params *mmcp = &periph->path->device->mmc_ident_data; uint8_t part_index; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddastart\n")); if (softc->state != SDDA_STATE_NORMAL) { CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("device is not in SDDA_STATE_NORMAL yet\n")); xpt_release_ccb(start_ccb); return; } /* Find partition that has outstanding commands. Prefer current partition. */ part_index = softc->part_curr; part = softc->part[softc->part_curr]; bp = bioq_first(&part->bio_queue); if (bp == NULL) { for (part_index = 0; part_index < MMC_PART_MAX; part_index++) { if ((part = softc->part[part_index]) != NULL && (bp = bioq_first(&softc->part[part_index]->bio_queue)) != NULL) break; } } if (bp == NULL) { xpt_release_ccb(start_ccb); return; } if (part_index != softc->part_curr) { CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Partition %d -> %d\n", softc->part_curr, part_index)); /* * According to section "6.2.2 Command restrictions" of the eMMC * specification v5.1, CMD19/CMD21 aren't allowed to be used with * RPMB partitions. So we pause re-tuning along with triggering * it up-front to decrease the likelihood of re-tuning becoming * necessary while accessing an RPMB partition. Consequently, an * RPMB partition should immediately be switched away from again * after an access in order to allow for re-tuning to take place * anew. */ /* TODO: pause retune if switching to RPMB partition */ softc->state = SDDA_STATE_PART_SWITCH; sdda_init_switch_part(periph, start_ccb, part_index); return; } bioq_remove(&part->bio_queue, bp); switch (bp->bio_cmd) { case BIO_WRITE: CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_WRITE\n")); part->flags |= SDDA_FLAG_DIRTY; /* FALLTHROUGH */ case BIO_READ: { struct ccb_mmcio *mmcio; uint64_t blockno = bp->bio_pblkno; uint16_t count = bp->bio_bcount / MMC_SECTOR_SIZE; uint16_t opcode; if (bp->bio_cmd == BIO_READ) CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_READ\n")); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("Block %"PRIu64" cnt %u\n", blockno, count)); /* Construct new MMC command */ if (bp->bio_cmd == BIO_READ) { if (count > 1) opcode = MMC_READ_MULTIPLE_BLOCK; else opcode = MMC_READ_SINGLE_BLOCK; } else { if (count > 1) opcode = MMC_WRITE_MULTIPLE_BLOCK; else opcode = MMC_WRITE_BLOCK; } start_ccb->ccb_h.func_code = XPT_MMC_IO; start_ccb->ccb_h.flags = (bp->bio_cmd == BIO_READ ? CAM_DIR_IN : CAM_DIR_OUT); start_ccb->ccb_h.retry_count = 0; start_ccb->ccb_h.timeout = 15 * 1000; start_ccb->ccb_h.cbfcnp = sddadone; mmcio = &start_ccb->mmcio; mmcio->cmd.opcode = opcode; mmcio->cmd.arg = blockno; if (!(mmcp->card_features & CARD_FEATURE_SDHC)) mmcio->cmd.arg <<= 9; mmcio->cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; mmcio->cmd.data = softc->mmcdata; memset(mmcio->cmd.data, 0, sizeof(struct mmc_data)); mmcio->cmd.data->data = bp->bio_data; mmcio->cmd.data->len = MMC_SECTOR_SIZE * count; mmcio->cmd.data->flags = (bp->bio_cmd == BIO_READ ? MMC_DATA_READ : MMC_DATA_WRITE); /* Direct h/w to issue CMD12 upon completion */ if (count > 1) { mmcio->cmd.data->flags |= MMC_DATA_MULTI; mmcio->stop.opcode = MMC_STOP_TRANSMISSION; mmcio->stop.flags = MMC_RSP_R1B | MMC_CMD_AC; mmcio->stop.arg = 0; } break; } case BIO_FLUSH: CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_FLUSH\n")); sddaschedule(periph); break; case BIO_DELETE: CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_DELETE\n")); sddaschedule(periph); break; default: biofinish(bp, NULL, EOPNOTSUPP); xpt_release_ccb(start_ccb); return; } start_ccb->ccb_h.ccb_bp = bp; softc->outstanding_cmds++; softc->refcount++; cam_periph_unlock(periph); xpt_action(start_ccb); cam_periph_lock(periph); /* May have more work to do, so ensure we stay scheduled */ sddaschedule(periph); } static void sddadone(struct cam_periph *periph, union ccb *done_ccb) { struct bio *bp; struct sdda_softc *softc; struct ccb_mmcio *mmcio; struct cam_path *path; uint32_t card_status; int error = 0; softc = (struct sdda_softc *)periph->softc; mmcio = &done_ccb->mmcio; path = done_ccb->ccb_h.path; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sddadone\n")); if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("Error!!!\n")); if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); error = EIO; } else { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) panic("REQ_CMP with QFRZN"); error = 0; } card_status = mmcio->cmd.resp[0]; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("Card status: %08x\n", R1_STATUS(card_status))); CAM_DEBUG(path, CAM_DEBUG_TRACE, ("Current state: %d\n", R1_CURRENT_STATE(card_status))); /* Process result of switching MMC partitions */ if (softc->state == SDDA_STATE_PART_SWITCH) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("Completing partition switch to %d\n", softc->part_requested)); softc->outstanding_cmds--; /* Complete partition switch */ softc->state = SDDA_STATE_NORMAL; if (error != 0) { /* TODO: Unpause retune if accessing RPMB */ xpt_release_ccb(done_ccb); xpt_schedule(periph, CAM_PRIORITY_NORMAL); return; } softc->raw_ext_csd[EXT_CSD_PART_CONFIG] = (softc->raw_ext_csd[EXT_CSD_PART_CONFIG] & ~EXT_CSD_PART_CONFIG_ACC_MASK) | softc->part_requested; /* TODO: Unpause retune if accessing RPMB */ softc->part_curr = softc->part_requested; xpt_release_ccb(done_ccb); /* Return to processing BIO requests */ xpt_schedule(periph, CAM_PRIORITY_NORMAL); return; } bp = (struct bio *)done_ccb->ccb_h.ccb_bp; bp->bio_error = error; if (error != 0) { bp->bio_resid = bp->bio_bcount; bp->bio_flags |= BIO_ERROR; } else { /* XXX: How many bytes remaining? */ bp->bio_resid = 0; if (bp->bio_resid > 0) bp->bio_flags |= BIO_ERROR; } softc->outstanding_cmds--; xpt_release_ccb(done_ccb); /* * Release the periph refcount taken in sddastart() for each CCB. */ KASSERT(softc->refcount >= 1, ("sddadone softc %p refcount %d", softc, softc->refcount)); softc->refcount--; biodone(bp); } static int sddaerror(union ccb *ccb, uint32_t cam_flags, uint32_t sense_flags) { return(cam_periph_error(ccb, cam_flags, sense_flags)); } static int sddadump(void *arg, void *virtual, off_t offset, size_t length) { struct ccb_mmcio mmcio; struct disk *dp; struct sdda_part *part; struct sdda_softc *softc; struct cam_periph *periph; struct mmc_params *mmcp; uint16_t count; uint16_t opcode; int error; dp = arg; part = dp->d_drv1; softc = part->sc; periph = softc->periph; mmcp = &periph->path->device->mmc_ident_data; if (softc->state != SDDA_STATE_NORMAL) return (ENXIO); count = length / MMC_SECTOR_SIZE; if (count == 0) return (0); if (softc->part[softc->part_curr] != part) return (EIO); /* TODO implement polled partition switch */ memset(&mmcio, 0, sizeof(mmcio)); xpt_setup_ccb(&mmcio.ccb_h, periph->path, CAM_PRIORITY_NORMAL); /* XXX needed? */ mmcio.ccb_h.func_code = XPT_MMC_IO; mmcio.ccb_h.flags = CAM_DIR_OUT; mmcio.ccb_h.retry_count = 0; mmcio.ccb_h.timeout = 15 * 1000; if (count > 1) opcode = MMC_WRITE_MULTIPLE_BLOCK; else opcode = MMC_WRITE_BLOCK; mmcio.cmd.opcode = opcode; mmcio.cmd.arg = offset / MMC_SECTOR_SIZE; if (!(mmcp->card_features & CARD_FEATURE_SDHC)) mmcio.cmd.arg <<= 9; mmcio.cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; mmcio.cmd.data = softc->mmcdata; memset(mmcio.cmd.data, 0, sizeof(struct mmc_data)); mmcio.cmd.data->data = virtual; mmcio.cmd.data->len = MMC_SECTOR_SIZE * count; mmcio.cmd.data->flags = MMC_DATA_WRITE; /* Direct h/w to issue CMD12 upon completion */ if (count > 1) { mmcio.cmd.data->flags |= MMC_DATA_MULTI; mmcio.stop.opcode = MMC_STOP_TRANSMISSION; mmcio.stop.flags = MMC_RSP_R1B | MMC_CMD_AC; mmcio.stop.arg = 0; } error = cam_periph_runccb((union ccb *)&mmcio, cam_periph_error, 0, SF_NO_RECOVERY | SF_NO_RETRY, NULL); if (error != 0) printf("Aborting dump due to I/O error.\n"); return (error); } #endif /* _KERNEL */