diff --git a/sys/net/rtsock.c b/sys/net/rtsock.c
index 5194a2a15c1e..b7a7e5170c74 100644
--- a/sys/net/rtsock.c
+++ b/sys/net/rtsock.c
@@ -1,2617 +1,2700 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1988, 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
  * $FreeBSD$
  */
 #include "opt_ddb.h"
 #include "opt_route.h"
 #include "opt_inet.h"
 #include "opt_inet6.h"
 
 #include <sys/param.h>
 #include <sys/jail.h>
 #include <sys/kernel.h>
 #include <sys/domain.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mbuf.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/protosw.h>
 #include <sys/rmlock.h>
 #include <sys/rwlock.h>
 #include <sys/signalvar.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/sysctl.h>
 #include <sys/systm.h>
 
 #include <net/if.h>
 #include <net/if_var.h>
 #include <net/if_dl.h>
 #include <net/if_llatbl.h>
 #include <net/if_types.h>
 #include <net/netisr.h>
 #include <net/raw_cb.h>
 #include <net/route.h>
 #include <net/route/route_ctl.h>
 #include <net/route/route_var.h>
 #include <net/vnet.h>
 
 #include <netinet/in.h>
 #include <netinet/if_ether.h>
 #include <netinet/ip_carp.h>
 #ifdef INET6
 #include <netinet6/in6_var.h>
 #include <netinet6/ip6_var.h>
 #include <netinet6/scope6_var.h>
 #endif
 #include <net/route/nhop.h>
 
 #ifdef COMPAT_FREEBSD32
 #include <sys/mount.h>
 #include <compat/freebsd32/freebsd32.h>
 
 struct if_msghdr32 {
 	uint16_t ifm_msglen;
 	uint8_t	ifm_version;
 	uint8_t	ifm_type;
 	int32_t	ifm_addrs;
 	int32_t	ifm_flags;
 	uint16_t ifm_index;
 	uint16_t _ifm_spare1;
 	struct	if_data ifm_data;
 };
 
 struct if_msghdrl32 {
 	uint16_t ifm_msglen;
 	uint8_t	ifm_version;
 	uint8_t	ifm_type;
 	int32_t	ifm_addrs;
 	int32_t	ifm_flags;
 	uint16_t ifm_index;
 	uint16_t _ifm_spare1;
 	uint16_t ifm_len;
 	uint16_t ifm_data_off;
 	uint32_t _ifm_spare2;
 	struct	if_data ifm_data;
 };
 
 struct ifa_msghdrl32 {
 	uint16_t ifam_msglen;
 	uint8_t	ifam_version;
 	uint8_t	ifam_type;
 	int32_t	ifam_addrs;
 	int32_t	ifam_flags;
 	uint16_t ifam_index;
 	uint16_t _ifam_spare1;
 	uint16_t ifam_len;
 	uint16_t ifam_data_off;
 	int32_t	ifam_metric;
 	struct	if_data ifam_data;
 };
 
 #define SA_SIZE32(sa)						\
     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
 	sizeof(int)		:				\
 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
 
 #endif /* COMPAT_FREEBSD32 */
 
+struct linear_buffer {
+	char		*base;	/* Base allocated memory pointer */
+	uint32_t	offset;	/* Currently used offset */
+	uint32_t	size;	/* Total buffer size */
+};
+#define	SCRATCH_BUFFER_SIZE	1024
+
 #define	RTS_PID_PRINTF(_fmt, ...) \
     printf("rtsock:%s(): PID %d: " _fmt "\n", __func__, curproc->p_pid, ## __VA_ARGS__)
 
 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
 
 /* NB: these are not modified */
 static struct	sockaddr route_src = { 2, PF_ROUTE, };
 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
 
 /* These are external hooks for CARP. */
 int	(*carp_get_vhid_p)(struct ifaddr *);
 
 /*
  * Used by rtsock/raw_input callback code to decide whether to filter the update
  * notification to a socket bound to a particular FIB.
  */
 #define	RTS_FILTER_FIB	M_PROTO8
 
 typedef struct {
 	int	ip_count;	/* attached w/ AF_INET */
 	int	ip6_count;	/* attached w/ AF_INET6 */
 	int	any_count;	/* total attached */
 } route_cb_t;
 VNET_DEFINE_STATIC(route_cb_t, route_cb);
 #define	V_route_cb VNET(route_cb)
 
 struct mtx rtsock_mtx;
 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
 
 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
 
 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
 
 struct walkarg {
 	int	family;
 	int	w_tmemsize;
 	int	w_op, w_arg;
 	caddr_t	w_tmem;
 	struct sysctl_req *w_req;
 	struct sockaddr *dst;
 	struct sockaddr *mask;
 };
 
 static void	rts_input(struct mbuf *m);
 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
 			struct walkarg *w, int *plen);
 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
 			struct rt_addrinfo *rtinfo);
-static int	cleanup_xaddrs(struct rt_addrinfo *info);
+static int	cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb);
 static int	sysctl_dumpentry(struct rtentry *rt, void *vw);
 static int	sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh,
 			uint32_t weight, struct walkarg *w);
 static int	sysctl_iflist(int af, struct walkarg *w);
 static int	sysctl_ifmalist(int af, struct walkarg *w);
 static int	route_output(struct mbuf *m, struct socket *so, ...);
 static void	rt_getmetrics(const struct rtentry *rt,
 			const struct nhop_object *nh, struct rt_metrics *out);
 static void	rt_dispatch(struct mbuf *, sa_family_t);
 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
 			struct rt_msghdr *rtm, struct rib_cmd_info *rc);
 static int	update_rtm_from_rc(struct rt_addrinfo *info,
 			struct rt_msghdr **prtm, int alloc_len,
 			struct rib_cmd_info *rc, struct nhop_object *nh);
 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
 			struct mbuf *m, sa_family_t saf, u_int fibnum,
 			int rtm_errno);
 static bool	can_export_rte(struct ucred *td_ucred, bool rt_is_host,
 			const struct sockaddr *rt_dst);
 
 static struct netisr_handler rtsock_nh = {
 	.nh_name = "rtsock",
 	.nh_handler = rts_input,
 	.nh_proto = NETISR_ROUTE,
 	.nh_policy = NETISR_POLICY_SOURCE,
 };
 
 static int
 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
 {
 	int error, qlimit;
 
 	netisr_getqlimit(&rtsock_nh, &qlimit);
 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
         if (error || !req->newptr)
                 return (error);
 	if (qlimit < 1)
 		return (EINVAL);
 	return (netisr_setqlimit(&rtsock_nh, qlimit));
 }
 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
     0, 0, sysctl_route_netisr_maxqlen, "I",
     "maximum routing socket dispatch queue length");
 
 static void
 vnet_rts_init(void)
 {
 	int tmp;
 
 	if (IS_DEFAULT_VNET(curvnet)) {
 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
 			rtsock_nh.nh_qlimit = tmp;
 		netisr_register(&rtsock_nh);
 	}
 #ifdef VIMAGE
 	 else
 		netisr_register_vnet(&rtsock_nh);
 #endif
 }
 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
     vnet_rts_init, 0);
 
 #ifdef VIMAGE
 static void
 vnet_rts_uninit(void)
 {
 
 	netisr_unregister_vnet(&rtsock_nh);
 }
 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
     vnet_rts_uninit, 0);
 #endif
 
 static int
 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
     struct rawcb *rp)
 {
 	int fibnum;
 
 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
 
 	/* No filtering requested. */
 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
 		return (0);
 
 	/* Check if it is a rts and the fib matches the one of the socket. */
 	fibnum = M_GETFIB(m);
 	if (proto->sp_family != PF_ROUTE ||
 	    rp->rcb_socket == NULL ||
 	    rp->rcb_socket->so_fibnum == fibnum)
 		return (0);
 
 	/* Filtering requested and no match, the socket shall be skipped. */
 	return (1);
 }
 
 static void
 rts_input(struct mbuf *m)
 {
 	struct sockproto route_proto;
 	unsigned short *family;
 	struct m_tag *tag;
 
 	route_proto.sp_family = PF_ROUTE;
 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
 	if (tag != NULL) {
 		family = (unsigned short *)(tag + 1);
 		route_proto.sp_protocol = *family;
 		m_tag_delete(m, tag);
 	} else
 		route_proto.sp_protocol = 0;
 
 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
 }
 
 /*
  * It really doesn't make any sense at all for this code to share much
  * with raw_usrreq.c, since its functionality is so restricted.  XXX
  */
 static void
 rts_abort(struct socket *so)
 {
 
 	raw_usrreqs.pru_abort(so);
 }
 
 static void
 rts_close(struct socket *so)
 {
 
 	raw_usrreqs.pru_close(so);
 }
 
 /* pru_accept is EOPNOTSUPP */
 
 static int
 rts_attach(struct socket *so, int proto, struct thread *td)
 {
 	struct rawcb *rp;
 	int error;
 
 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
 
 	/* XXX */
 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
 
 	so->so_pcb = (caddr_t)rp;
 	so->so_fibnum = td->td_proc->p_fibnum;
 	error = raw_attach(so, proto);
 	rp = sotorawcb(so);
 	if (error) {
 		so->so_pcb = NULL;
 		free(rp, M_PCB);
 		return error;
 	}
 	RTSOCK_LOCK();
 	switch(rp->rcb_proto.sp_protocol) {
 	case AF_INET:
 		V_route_cb.ip_count++;
 		break;
 	case AF_INET6:
 		V_route_cb.ip6_count++;
 		break;
 	}
 	V_route_cb.any_count++;
 	RTSOCK_UNLOCK();
 	soisconnected(so);
 	so->so_options |= SO_USELOOPBACK;
 	return 0;
 }
 
 static int
 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
 {
 
 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
 }
 
 static int
 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
 {
 
 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
 }
 
 /* pru_connect2 is EOPNOTSUPP */
 /* pru_control is EOPNOTSUPP */
 
 static void
 rts_detach(struct socket *so)
 {
 	struct rawcb *rp = sotorawcb(so);
 
 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
 
 	RTSOCK_LOCK();
 	switch(rp->rcb_proto.sp_protocol) {
 	case AF_INET:
 		V_route_cb.ip_count--;
 		break;
 	case AF_INET6:
 		V_route_cb.ip6_count--;
 		break;
 	}
 	V_route_cb.any_count--;
 	RTSOCK_UNLOCK();
 	raw_usrreqs.pru_detach(so);
 }
 
 static int
 rts_disconnect(struct socket *so)
 {
 
 	return (raw_usrreqs.pru_disconnect(so));
 }
 
 /* pru_listen is EOPNOTSUPP */
 
 static int
 rts_peeraddr(struct socket *so, struct sockaddr **nam)
 {
 
 	return (raw_usrreqs.pru_peeraddr(so, nam));
 }
 
 /* pru_rcvd is EOPNOTSUPP */
 /* pru_rcvoob is EOPNOTSUPP */
 
 static int
 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
 	 struct mbuf *control, struct thread *td)
 {
 
 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
 }
 
 /* pru_sense is null */
 
 static int
 rts_shutdown(struct socket *so)
 {
 
 	return (raw_usrreqs.pru_shutdown(so));
 }
 
 static int
 rts_sockaddr(struct socket *so, struct sockaddr **nam)
 {
 
 	return (raw_usrreqs.pru_sockaddr(so, nam));
 }
 
 static struct pr_usrreqs route_usrreqs = {
 	.pru_abort =		rts_abort,
 	.pru_attach =		rts_attach,
 	.pru_bind =		rts_bind,
 	.pru_connect =		rts_connect,
 	.pru_detach =		rts_detach,
 	.pru_disconnect =	rts_disconnect,
 	.pru_peeraddr =		rts_peeraddr,
 	.pru_send =		rts_send,
 	.pru_shutdown =		rts_shutdown,
 	.pru_sockaddr =		rts_sockaddr,
 	.pru_close =		rts_close,
 };
 
 #ifndef _SOCKADDR_UNION_DEFINED
 #define	_SOCKADDR_UNION_DEFINED
 /*
  * The union of all possible address formats we handle.
  */
 union sockaddr_union {
 	struct sockaddr		sa;
 	struct sockaddr_in	sin;
 	struct sockaddr_in6	sin6;
 };
 #endif /* _SOCKADDR_UNION_DEFINED */
 
 static int
 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
     struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred)
 {
 #if defined(INET) || defined(INET6)
 	struct epoch_tracker et;
 #endif
 
 	/* First, see if the returned address is part of the jail. */
 	if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) {
 		info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
 		return (0);
 	}
 
 	switch (info->rti_info[RTAX_DST]->sa_family) {
 #ifdef INET
 	case AF_INET:
 	{
 		struct in_addr ia;
 		struct ifaddr *ifa;
 		int found;
 
 		found = 0;
 		/*
 		 * Try to find an address on the given outgoing interface
 		 * that belongs to the jail.
 		 */
 		NET_EPOCH_ENTER(et);
 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 			struct sockaddr *sa;
 			sa = ifa->ifa_addr;
 			if (sa->sa_family != AF_INET)
 				continue;
 			ia = ((struct sockaddr_in *)sa)->sin_addr;
 			if (prison_check_ip4(cred, &ia) == 0) {
 				found = 1;
 				break;
 			}
 		}
 		NET_EPOCH_EXIT(et);
 		if (!found) {
 			/*
 			 * As a last resort return the 'default' jail address.
 			 */
 			ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)->
 			    sin_addr;
 			if (prison_get_ip4(cred, &ia) != 0)
 				return (ESRCH);
 		}
 		bzero(&saun->sin, sizeof(struct sockaddr_in));
 		saun->sin.sin_len = sizeof(struct sockaddr_in);
 		saun->sin.sin_family = AF_INET;
 		saun->sin.sin_addr.s_addr = ia.s_addr;
 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
 		break;
 	}
 #endif
 #ifdef INET6
 	case AF_INET6:
 	{
 		struct in6_addr ia6;
 		struct ifaddr *ifa;
 		int found;
 
 		found = 0;
 		/*
 		 * Try to find an address on the given outgoing interface
 		 * that belongs to the jail.
 		 */
 		NET_EPOCH_ENTER(et);
 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 			struct sockaddr *sa;
 			sa = ifa->ifa_addr;
 			if (sa->sa_family != AF_INET6)
 				continue;
 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
 			    &ia6, sizeof(struct in6_addr));
 			if (prison_check_ip6(cred, &ia6) == 0) {
 				found = 1;
 				break;
 			}
 		}
 		NET_EPOCH_EXIT(et);
 		if (!found) {
 			/*
 			 * As a last resort return the 'default' jail address.
 			 */
 			ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)->
 			    sin6_addr;
 			if (prison_get_ip6(cred, &ia6) != 0)
 				return (ESRCH);
 		}
 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
 		saun->sin6.sin6_family = AF_INET6;
 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
 		if (sa6_recoverscope(&saun->sin6) != 0)
 			return (ESRCH);
 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
 		break;
 	}
 #endif
 	default:
 		return (ESRCH);
 	}
 	return (0);
 }
 
 static int
 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun)
 {
 	struct ifaddr *ifa;
 	sa_family_t saf;
 
 	if (V_loif == NULL) {
 		RTS_PID_PRINTF("Unable to add blackhole/reject nhop without loopback");
 		return (ENOTSUP);
 	}
 	info->rti_ifp = V_loif;
 
 	saf = info->rti_info[RTAX_DST]->sa_family;
 
 	CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) {
 		if (ifa->ifa_addr->sa_family == saf) {
 			info->rti_ifa = ifa;
 			break;
 		}
 	}
 	if (info->rti_ifa == NULL)
 		return (ENOTSUP);
 
 	bzero(saun, sizeof(union sockaddr_union));
 	switch (saf) {
 #ifdef INET
 	case AF_INET:
 		saun->sin.sin_family = AF_INET;
 		saun->sin.sin_len = sizeof(struct sockaddr_in);
 		saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
 		break;
 #endif
 #ifdef INET6
 	case AF_INET6:
 		saun->sin6.sin6_family = AF_INET6;
 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
 		saun->sin6.sin6_addr = in6addr_loopback;
 		break;
 #endif
 	default:
 		return (ENOTSUP);
 	}
 	info->rti_info[RTAX_GATEWAY] = &saun->sa;
 	info->rti_flags |= RTF_GATEWAY;
 
 	return (0);
 }
 
 /*
  * Fills in @info based on userland-provided @rtm message.
  *
  * Returns 0 on success.
  */
 static int
-fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
+fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum,
+    struct rt_addrinfo *info)
 {
 	int error;
 	sa_family_t saf;
 
 	rtm->rtm_pid = curproc->p_pid;
 	info->rti_addrs = rtm->rtm_addrs;
 
 	info->rti_mflags = rtm->rtm_inits;
 	info->rti_rmx = &rtm->rtm_rmx;
 
 	/*
 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
 	 * link-local address because rtrequest requires addresses with
 	 * embedded scope id.
 	 */
 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
 		return (EINVAL);
 
 	info->rti_flags = rtm->rtm_flags;
-	error = cleanup_xaddrs(info);
+	error = cleanup_xaddrs(info, lb);
 	if (error != 0)
 		return (error);
 	saf = info->rti_info[RTAX_DST]->sa_family;
 	/*
 	 * Verify that the caller has the appropriate privilege; RTM_GET
 	 * is the only operation the non-superuser is allowed.
 	 */
 	if (rtm->rtm_type != RTM_GET) {
 		error = priv_check(curthread, PRIV_NET_ROUTE);
 		if (error != 0)
 			return (error);
 	}
 
 	/*
 	 * The given gateway address may be an interface address.
 	 * For example, issuing a "route change" command on a route
 	 * entry that was created from a tunnel, and the gateway
 	 * address given is the local end point. In this case the 
 	 * RTF_GATEWAY flag must be cleared or the destination will
 	 * not be reachable even though there is no error message.
 	 */
 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
 		struct rt_addrinfo ginfo;
 		struct sockaddr *gdst;
 		struct sockaddr_storage ss;
 
 		bzero(&ginfo, sizeof(ginfo));
 		bzero(&ss, sizeof(ss));
 		ss.ss_len = sizeof(ss);
 
 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
 		gdst = info->rti_info[RTAX_GATEWAY];
 
 		/* 
 		 * A host route through the loopback interface is 
 		 * installed for each interface adddress. In pre 8.0
 		 * releases the interface address of a PPP link type
 		 * is not reachable locally. This behavior is fixed as 
 		 * part of the new L2/L3 redesign and rewrite work. The
 		 * signature of this interface address route is the
 		 * AF_LINK sa_family type of the gateway, and the
 		 * rt_ifp has the IFF_LOOPBACK flag set.
 		 */
 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
 			if (ss.ss_family == AF_LINK &&
 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
 				info->rti_flags &= ~RTF_GATEWAY;
 				info->rti_flags |= RTF_GWFLAG_COMPAT;
 			}
 			rib_free_info(&ginfo);
 		}
 	}
 
 	return (0);
 }
 
 static struct nhop_object *
 select_nhop(struct nhop_object *nh, const struct sockaddr *gw)
 {
 	if (!NH_IS_NHGRP(nh))
 		return (nh);
 #ifdef ROUTE_MPATH
 	struct weightened_nhop *wn;
 	uint32_t num_nhops;
 	wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
 	if (gw == NULL)
 		return (wn[0].nh);
 	for (int i = 0; i < num_nhops; i++) {
 		if (match_nhop_gw(wn[i].nh, gw))
 			return (wn[i].nh);
 	}
 #endif
 	return (NULL);
 }
 
 /*
  * Handles RTM_GET message from routing socket, returning matching rt.
  *
  * Returns:
  * 0 on success, with locked and referenced matching rt in @rt_nrt
  * errno of failure
  */
 static int
 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
     struct rt_msghdr *rtm, struct rib_cmd_info *rc)
 {
 	RIB_RLOCK_TRACKER;
 	struct rib_head *rnh;
 	struct nhop_object *nh;
 	sa_family_t saf;
 
 	saf = info->rti_info[RTAX_DST]->sa_family;
 
 	rnh = rt_tables_get_rnh(fibnum, saf);
 	if (rnh == NULL)
 		return (EAFNOSUPPORT);
 
 	RIB_RLOCK(rnh);
 
 	/*
 	 * By (implicit) convention host route (one without netmask)
 	 * means longest-prefix-match request and the route with netmask
 	 * means exact-match lookup.
 	 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128
 	 * prefixes, use original data to check for the netmask presence.
 	 */
 	if ((rtm->rtm_addrs & RTA_NETMASK) == 0) {
 		/*
 		 * Provide longest prefix match for
 		 * address lookup (no mask).
 		 * 'route -n get addr'
 		 */
 		rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr(
 		    info->rti_info[RTAX_DST], &rnh->head);
 	} else
 		rc->rc_rt = (struct rtentry *) rnh->rnh_lookup(
 		    info->rti_info[RTAX_DST],
 		    info->rti_info[RTAX_NETMASK], &rnh->head);
 
 	if (rc->rc_rt == NULL) {
 		RIB_RUNLOCK(rnh);
 		return (ESRCH);
 	}
 
 	nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
 	if (nh == NULL) {
 		RIB_RUNLOCK(rnh);
 		return (ESRCH);
 	}
 	/*
 	 * If performing proxied L2 entry insertion, and
 	 * the actual PPP host entry is found, perform
 	 * another search to retrieve the prefix route of
 	 * the local end point of the PPP link.
 	 * TODO: move this logic to userland.
 	 */
 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
 		struct sockaddr laddr;
 
 		if (nh->nh_ifp != NULL &&
 		    nh->nh_ifp->if_type == IFT_PROPVIRTUAL) {
 			struct ifaddr *ifa;
 
 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
 					RT_ALL_FIBS);
 			if (ifa != NULL)
 				rt_maskedcopy(ifa->ifa_addr,
 					      &laddr,
 					      ifa->ifa_netmask);
 		} else
 			rt_maskedcopy(nh->nh_ifa->ifa_addr,
 				      &laddr,
 				      nh->nh_ifa->ifa_netmask);
 		/* 
 		 * refactor rt and no lock operation necessary
 		 */
 		rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
 		    &rnh->head);
 		if (rc->rc_rt == NULL) {
 			RIB_RUNLOCK(rnh);
 			return (ESRCH);
 		}
 		nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
 		if (nh == NULL) {
 			RIB_RUNLOCK(rnh);
 			return (ESRCH);
 		}
 	}
 	rc->rc_nh_new = nh;
 	rc->rc_nh_weight = rc->rc_rt->rt_weight;
 	RIB_RUNLOCK(rnh);
 
 	return (0);
 }
 
 static void
 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask)
 {
 #ifdef INET
 	if (family == AF_INET) {
 		struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
 		struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
 
 		bzero(dst4, sizeof(struct sockaddr_in));
 		bzero(mask4, sizeof(struct sockaddr_in));
 
 		dst4->sin_family = AF_INET;
 		dst4->sin_len = sizeof(struct sockaddr_in);
 		mask4->sin_family = AF_INET;
 		mask4->sin_len = sizeof(struct sockaddr_in);
 	}
 #endif
 #ifdef INET6
 	if (family == AF_INET6) {
 		struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
 		struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
 
 		bzero(dst6, sizeof(struct sockaddr_in6));
 		bzero(mask6, sizeof(struct sockaddr_in6));
 
 		dst6->sin6_family = AF_INET6;
 		dst6->sin6_len = sizeof(struct sockaddr_in6);
 		mask6->sin6_family = AF_INET6;
 		mask6->sin6_len = sizeof(struct sockaddr_in6);
 	}
 #endif
 }
 
 static void
 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst,
     struct sockaddr *mask)
 {
 #ifdef INET
 	if (dst->sa_family == AF_INET) {
 		struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
 		struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
 		uint32_t scopeid = 0;
 		rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr,
 		    &scopeid);
 		return;
 	}
 #endif
 #ifdef INET6
 	if (dst->sa_family == AF_INET6) {
 		struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
 		struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
 		uint32_t scopeid = 0;
 		rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr,
 		    &mask6->sin6_addr, &scopeid);
 		dst6->sin6_scope_id = scopeid;
 		return;
 	}
 #endif
 }
 
+static int
+update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm,
+    int alloc_len)
+{
+	struct rt_msghdr *rtm, *orig_rtm = NULL;
+	struct walkarg w;
+	int len;
+
+	rtm = *prtm;
+	/* Check if we need to realloc storage */
+	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
+	if (len > alloc_len) {
+		struct rt_msghdr *tmp_rtm;
+
+		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
+		if (tmp_rtm == NULL)
+			return (ENOBUFS);
+		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
+		orig_rtm = rtm;
+		rtm = tmp_rtm;
+		alloc_len = len;
+
+		/*
+		 * Delay freeing original rtm as info contains
+		 * data referencing it.
+		 */
+	}
+
+	w.w_tmem = (caddr_t)rtm;
+	w.w_tmemsize = alloc_len;
+	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
+	rtm->rtm_addrs = info->rti_addrs;
+
+	if (orig_rtm != NULL)
+		free(orig_rtm, M_TEMP);
+	*prtm = rtm;
+	return (0);
+}
+
 
 /*
  * Update sockaddrs, flags, etc in @prtm based on @rc data.
  * rtm can be reallocated.
  *
  * Returns 0 on success, along with pointer to (potentially reallocated)
  *  rtm.
  *
  */
 static int
 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm,
     int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh)
 {
-	struct walkarg w;
 	union sockaddr_union saun;
-	struct rt_msghdr *rtm, *orig_rtm = NULL;
+	struct rt_msghdr *rtm;
 	struct ifnet *ifp;
-	int error, len;
+	int error;
 
 	rtm = *prtm;
 	union sockaddr_union sa_dst, sa_mask;
 	int family = info->rti_info[RTAX_DST]->sa_family;
 	init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa);
 	export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa);
 
 	info->rti_info[RTAX_DST] = &sa_dst.sa;
 	info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa;
 	info->rti_info[RTAX_GATEWAY] = &nh->gw_sa;
 	info->rti_info[RTAX_GENMASK] = 0;
 	ifp = nh->nh_ifp;
 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
 		if (ifp) {
 			info->rti_info[RTAX_IFP] =
 			    ifp->if_addr->ifa_addr;
 			error = rtm_get_jailed(info, ifp, nh,
 			    &saun, curthread->td_ucred);
 			if (error != 0)
 				return (error);
 			if (ifp->if_flags & IFF_POINTOPOINT)
 				info->rti_info[RTAX_BRD] =
 				    nh->nh_ifa->ifa_dstaddr;
 			rtm->rtm_index = ifp->if_index;
 		} else {
 			info->rti_info[RTAX_IFP] = NULL;
 			info->rti_info[RTAX_IFA] = NULL;
 		}
 	} else if (ifp != NULL)
 		rtm->rtm_index = ifp->if_index;
 
-	/* Check if we need to realloc storage */
-	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
-	if (len > alloc_len) {
-		struct rt_msghdr *tmp_rtm;
-
-		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
-		if (tmp_rtm == NULL)
-			return (ENOBUFS);
-		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
-		orig_rtm = rtm;
-		rtm = tmp_rtm;
-		alloc_len = len;
-
-		/*
-		 * Delay freeing original rtm as info contains
-		 * data referencing it.
-		 */
-	}
-
-	w.w_tmem = (caddr_t)rtm;
-	w.w_tmemsize = alloc_len;
-	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
+	if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0)
+		return (error);
 
 	rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh);
 	if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
 		rtm->rtm_flags = RTF_GATEWAY | 
 			(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
 	rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx);
 	rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight;
-	rtm->rtm_addrs = info->rti_addrs;
-
-	if (orig_rtm != NULL)
-		free(orig_rtm, M_TEMP);
-	*prtm = rtm;
 
 	return (0);
 }
 
 #ifdef ROUTE_MPATH
 static void
 save_del_notification(struct rib_cmd_info *rc, void *_cbdata)
 {
 	struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
 
 	if (rc->rc_cmd == RTM_DELETE)
 		*rc_new = *rc;
 }
 
 static void
 save_add_notification(struct rib_cmd_info *rc, void *_cbdata)
 {
 	struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
 
 	if (rc->rc_cmd == RTM_ADD)
 		*rc_new = *rc;
 }
 #endif
 
+static struct sockaddr *
+alloc_sockaddr_aligned(struct linear_buffer *lb, int len)
+{
+	len |= (sizeof(uint64_t) - 1);
+	if (lb->offset + len > lb->size)
+		return (NULL);
+	struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset);
+	lb->offset += len;
+	return (sa);
+}
+
 /*ARGSUSED*/
 static int
 route_output(struct mbuf *m, struct socket *so, ...)
 {
 	struct rt_msghdr *rtm = NULL;
 	struct rtentry *rt = NULL;
 	struct rt_addrinfo info;
 	struct epoch_tracker et;
 #ifdef INET6
 	struct sockaddr_storage ss;
 	struct sockaddr_in6 *sin6;
 	int i, rti_need_deembed = 0;
 #endif
 	int alloc_len = 0, len, error = 0, fibnum;
 	sa_family_t saf = AF_UNSPEC;
 	struct rib_cmd_info rc;
 	struct nhop_object *nh;
 
 	fibnum = so->so_fibnum;
 #define senderr(e) { error = e; goto flush;}
 	if (m == NULL || ((m->m_len < sizeof(long)) &&
 		       (m = m_pullup(m, sizeof(long))) == NULL))
 		return (ENOBUFS);
 	if ((m->m_flags & M_PKTHDR) == 0)
 		panic("route_output");
 	NET_EPOCH_ENTER(et);
 	len = m->m_pkthdr.len;
 	if (len < sizeof(*rtm) ||
 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
 		senderr(EINVAL);
 
 	/*
 	 * Most of current messages are in range 200-240 bytes,
 	 * minimize possible re-allocation on reply using larger size
 	 * buffer aligned on 1k boundaty.
 	 */
 	alloc_len = roundup2(len, 1024);
-	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
+	int total_len = alloc_len + SCRATCH_BUFFER_SIZE;
+	if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL)
 		senderr(ENOBUFS);
 
 	m_copydata(m, 0, len, (caddr_t)rtm);
 	bzero(&info, sizeof(info));
 	nh = NULL;
+	struct linear_buffer lb = {
+		.base = (char *)rtm + alloc_len,
+		.size = SCRATCH_BUFFER_SIZE,
+	};
 
 	if (rtm->rtm_version != RTM_VERSION) {
 		/* Do not touch message since format is unknown */
 		free(rtm, M_TEMP);
 		rtm = NULL;
 		senderr(EPROTONOSUPPORT);
 	}
 
 	/*
 	 * Starting from here, it is possible
 	 * to alter original message and insert
 	 * caller PID and error value.
 	 */
 
-	if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
+	if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) {
 		senderr(error);
 	}
+	/* fill_addringo() embeds scope into IPv6 addresses */
+#ifdef INET6
+	rti_need_deembed = 1;
+#endif
 
 	saf = info.rti_info[RTAX_DST]->sa_family;
 
 	/* support for new ARP code */
 	if (rtm->rtm_flags & RTF_LLDATA) {
 		error = lla_rt_output(rtm, &info);
-#ifdef INET6
-		if (error == 0)
-			rti_need_deembed = 1;
-#endif
 		goto flush;
 	}
 
 	union sockaddr_union gw_saun;
 	int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT);
 	if (blackhole_flags != 0) {
 		if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT))
 			error = fill_blackholeinfo(&info, &gw_saun);
 		else
 			error = EINVAL;
 		if (error != 0)
 			senderr(error);
-		/* TODO: rebuild rtm from scratch */
 	}
 
 	switch (rtm->rtm_type) {
 	case RTM_ADD:
 	case RTM_CHANGE:
 		if (rtm->rtm_type == RTM_ADD) {
 			if (info.rti_info[RTAX_GATEWAY] == NULL)
 				senderr(EINVAL);
 		}
 		error = rib_action(fibnum, rtm->rtm_type, &info, &rc);
 		if (error == 0) {
-#ifdef INET6
-			rti_need_deembed = 1;
-#endif
 #ifdef ROUTE_MPATH
 			if (NH_IS_NHGRP(rc.rc_nh_new) ||
 			    (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) {
 				struct rib_cmd_info rc_simple = {};
 				rib_decompose_notification(&rc,
 				    save_add_notification, (void *)&rc_simple);
 				rc = rc_simple;
 			}
 #endif
 			nh = rc.rc_nh_new;
 			rtm->rtm_index = nh->nh_ifp->if_index;
 			rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh);
 		}
 		break;
 
 	case RTM_DELETE:
 		error = rib_action(fibnum, RTM_DELETE, &info, &rc);
 		if (error == 0) {
 #ifdef ROUTE_MPATH
 			if (NH_IS_NHGRP(rc.rc_nh_old) ||
 			    (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) {
 				struct rib_cmd_info rc_simple = {};
 				rib_decompose_notification(&rc,
 				    save_del_notification, (void *)&rc_simple);
 				rc = rc_simple;
 			}
 #endif
 			nh = rc.rc_nh_old;
-			goto report;
 		}
-#ifdef INET6
-		/* rt_msg2() will not be used when RTM_DELETE fails. */
-		rti_need_deembed = 1;
-#endif
 		break;
 
 	case RTM_GET:
 		error = handle_rtm_get(&info, fibnum, rtm, &rc);
 		if (error != 0)
 			senderr(error);
 		nh = rc.rc_nh_new;
 
-report:
 		if (!can_export_rte(curthread->td_ucred,
 		    info.rti_info[RTAX_NETMASK] == NULL,
 		    info.rti_info[RTAX_DST])) {
 			senderr(ESRCH);
 		}
+		break;
 
+	default:
+		senderr(EOPNOTSUPP);
+	}
+
+	if (error == 0) {
 		error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh);
 		/*
 		 * Note that some sockaddr pointers may have changed to
 		 * point to memory outsize @rtm. Some may be pointing
 		 * to the on-stack variables.
 		 * Given that, any pointer in @info CANNOT BE USED.
 		 */
 
 		/*
 		 * scopeid deembedding has been performed while
 		 * writing updated rtm in rtsock_msg_buffer().
 		 * With that in mind, skip deembedding procedure below.
 		 */
 #ifdef INET6
 		rti_need_deembed = 0;
 #endif
-		if (error != 0)
-			senderr(error);
-		break;
-
-	default:
-		senderr(EOPNOTSUPP);
 	}
 
 flush:
 	NET_EPOCH_EXIT(et);
 	rt = NULL;
 
 #ifdef INET6
 	if (rtm != NULL) {
 		if (rti_need_deembed) {
 			/* sin6_scope_id is recovered before sending rtm. */
 			sin6 = (struct sockaddr_in6 *)&ss;
 			for (i = 0; i < RTAX_MAX; i++) {
 				if (info.rti_info[i] == NULL)
 					continue;
 				if (info.rti_info[i]->sa_family != AF_INET6)
 					continue;
 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
 				if (sa6_recoverscope(sin6) == 0)
 					bcopy(sin6, info.rti_info[i],
 						    sizeof(*sin6));
 			}
+			if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) {
+				if (error != 0)
+					error = ENOBUFS;
+			}
 		}
 	}
 #endif
 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
 
 	return (error);
 }
 
 /*
  * Sends the prepared reply message in @rtm to all rtsock clients.
  * Frees @m and @rtm.
  *
  */
 static void
 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
     sa_family_t saf, u_int fibnum, int rtm_errno)
 {
 	struct rawcb *rp = NULL;
 
 	/*
 	 * Check to see if we don't want our own messages.
 	 */
 	if ((so->so_options & SO_USELOOPBACK) == 0) {
 		if (V_route_cb.any_count <= 1) {
 			if (rtm != NULL)
 				free(rtm, M_TEMP);
 			m_freem(m);
 			return;
 		}
 		/* There is another listener, so construct message */
 		rp = sotorawcb(so);
 	}
 
 	if (rtm != NULL) {
 		if (rtm_errno!= 0)
 			rtm->rtm_errno = rtm_errno;
 		else
 			rtm->rtm_flags |= RTF_DONE;
 
 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
 			m_freem(m);
 			m = NULL;
 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
 
 		free(rtm, M_TEMP);
 	}
 	if (m != NULL) {
 		M_SETFIB(m, fibnum);
 		m->m_flags |= RTS_FILTER_FIB;
 		if (rp) {
 			/*
 			 * XXX insure we don't get a copy by
 			 * invalidating our protocol
 			 */
 			unsigned short family = rp->rcb_proto.sp_family;
 			rp->rcb_proto.sp_family = 0;
 			rt_dispatch(m, saf);
 			rp->rcb_proto.sp_family = family;
 		} else
 			rt_dispatch(m, saf);
 	}
 }
 
 static void
 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh,
     struct rt_metrics *out)
 {
 
 	bzero(out, sizeof(*out));
 	out->rmx_mtu = nh->nh_mtu;
 	out->rmx_weight = rt->rt_weight;
 	out->rmx_nhidx = nhop_get_idx(nh);
 	/* Kernel -> userland timebase conversion. */
 	out->rmx_expire = rt->rt_expire ?
 	    rt->rt_expire - time_uptime + time_second : 0;
 }
 
 /*
  * Extract the addresses of the passed sockaddrs.
  * Do a little sanity checking so as to avoid bad memory references.
  * This data is derived straight from userland.
  */
 static int
 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
 {
 	struct sockaddr *sa;
 	int i;
 
 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
 			continue;
 		sa = (struct sockaddr *)cp;
 		/*
 		 * It won't fit.
 		 */
 		if (cp + sa->sa_len > cplim)
 			return (EINVAL);
 		/*
 		 * there are no more.. quit now
 		 * If there are more bits, they are in error.
 		 * I've seen this. route(1) can evidently generate these. 
 		 * This causes kernel to core dump.
 		 * for compatibility, If we see this, point to a safe address.
 		 */
 		if (sa->sa_len == 0) {
 			rtinfo->rti_info[i] = &sa_zero;
 			return (0); /* should be EINVAL but for compat */
 		}
 		/* accept it */
 #ifdef INET6
 		if (sa->sa_family == AF_INET6)
 			sa6_embedscope((struct sockaddr_in6 *)sa,
 			    V_ip6_use_defzone);
 #endif
 		rtinfo->rti_info[i] = sa;
 		cp += SA_SIZE(sa);
 	}
 	return (0);
 }
 
 #ifdef INET
 static inline void
 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr)
 {
 
 	const struct sockaddr_in nsin = {
 		.sin_family = AF_INET,
 		.sin_len = sizeof(struct sockaddr_in),
 		.sin_addr = addr,
 	};
 	*sin = nsin;
 }
 #endif
 
 #ifdef INET6
 static inline void
 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6,
     uint32_t scopeid)
 {
 
 	const struct sockaddr_in6 nsin6 = {
 		.sin6_family = AF_INET6,
 		.sin6_len = sizeof(struct sockaddr_in6),
 		.sin6_addr = *addr6,
 		.sin6_scope_id = scopeid,
 	};
 	*sin6 = nsin6;
 }
 #endif
 
 /*
  * Checks if gateway is suitable for lltable operations.
  * Lltable code requires AF_LINK gateway with ifindex
  *  and mac address specified.
  * Returns 0 on success.
  */
 static int
 cleanup_xaddrs_lladdr(struct rt_addrinfo *info)
 {
 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY];
 
 	if (sdl->sdl_family != AF_LINK)
 		return (EINVAL);
 
 	if (sdl->sdl_index == 0)
 		return (EINVAL);
 
 	if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len)
 		return (EINVAL);
 
 	return (0);
 }
 
 static int
-cleanup_xaddrs_gateway(struct rt_addrinfo *info)
+cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb)
 {
 	struct sockaddr *gw = info->rti_info[RTAX_GATEWAY];
+	struct sockaddr *sa;
 
 	if (info->rti_flags & RTF_LLDATA)
 		return (cleanup_xaddrs_lladdr(info));
 
 	switch (gw->sa_family) {
 #ifdef INET
 	case AF_INET:
 		{
 			struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw;
-			if (gw_sin->sin_len < sizeof(struct sockaddr_in)) {
+
+			/* Ensure reads do not go beyoud SA boundary */
+			if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) {
 				RTS_PID_PRINTF("gateway sin_len too small: %d", gw->sa_len);
 				return (EINVAL);
 			}
-			fill_sockaddr_inet(gw_sin, gw_sin->sin_addr);
+			sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in));
+			if (sa == NULL)
+				return (ENOBUFS);
+			fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr);
+			info->rti_info[RTAX_GATEWAY] = sa;
 		}
 		break;
 #endif
 #ifdef INET6
 	case AF_INET6:
 		{
 			struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw;
 			if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) {
 				RTS_PID_PRINTF("gateway sin6_len too small: %d", gw->sa_len);
 				return (EINVAL);
 			}
 			fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0);
 			break;
 		}
 #endif
 	case AF_LINK:
 		{
 			struct sockaddr_dl *gw_sdl;
 
 			size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data);
 			gw_sdl = (struct sockaddr_dl *)gw;
 			if (gw_sdl->sdl_len < sdl_min_len) {
 				RTS_PID_PRINTF("gateway sdl_len too small: %d", gw_sdl->sdl_len);
 				return (EINVAL);
 			}
+			sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short));
+			if (sa == NULL)
+				return (ENOBUFS);
 
 			const struct sockaddr_dl_short sdl = {
 				.sdl_family = AF_LINK,
-				.sdl_len = sdl_min_len,
+				.sdl_len = sizeof(struct sockaddr_dl_short),
 				.sdl_index = gw_sdl->sdl_index,
 			};
-			memcpy(gw_sdl, &sdl, sdl_min_len);
+			*((struct sockaddr_dl_short *)sa) = sdl;
+			info->rti_info[RTAX_GATEWAY] = sa;
 			break;
 		}
 	}
 
 	return (0);
 }
 
 static void
 remove_netmask(struct rt_addrinfo *info)
 {
 	info->rti_info[RTAX_NETMASK] = NULL;
 	info->rti_flags |= RTF_HOST;
 	info->rti_addrs &= ~RTA_NETMASK;
 }
 
 #ifdef INET
 static int
-cleanup_xaddrs_inet(struct rt_addrinfo *info)
+cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb)
 {
 	struct sockaddr_in *dst_sa, *mask_sa;
+	const int sa_len = sizeof(struct sockaddr_in);
+	struct in_addr dst, mask;
 
 	/* Check & fixup dst/netmask combination first */
 	dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST];
 	mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK];
 
-	struct in_addr mask = {
-		.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST,
-	};
-	struct in_addr dst = {
-		.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr))
-	};
-
-	if (dst_sa->sin_len < sizeof(struct sockaddr_in)) {
-		printf("dst sin_len too small\n");
+	/* Ensure reads do not go beyound the buffer size */
+	if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero))
 		return (EINVAL);
-	}
-	if (mask_sa && mask_sa->sin_len < sizeof(struct sockaddr_in)) {
-		RTS_PID_PRINTF("prefix mask sin_len too small: %d", mask_sa->sin_len);
-		return (EINVAL);
-	}
+
+	if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) {
+		/*
+		 * Some older routing software encode mask length into the
+		 * sin_len, thus resulting in "truncated" sockaddr.
+		 */
+		int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr);
+		if (len >= 0) {
+			mask.s_addr = 0;
+			if (len > sizeof(struct in_addr))
+				len = sizeof(struct in_addr);
+			memcpy(&mask, &mask_sa->sin_addr, len);
+		} else {
+			RTS_PID_PRINTF("prefix mask sin_len too small: %d", mask_sa->sin_len);
+			return (EINVAL);
+		}
+	} else
+		mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST;
+
+	dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr));
+
+	/* Construct new "clean" dst/mask sockaddresses */
+	if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL)
+		return (ENOBUFS);
 	fill_sockaddr_inet(dst_sa, dst);
+	info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa;
 
-	if (mask.s_addr != INADDR_BROADCAST)
+	if (mask.s_addr != INADDR_BROADCAST) {
+		if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL)
+			return (ENOBUFS);
 		fill_sockaddr_inet(mask_sa, mask);
-	else
+		info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa;
+	} else
 		remove_netmask(info);
 
 	/* Check gateway */
 	if (info->rti_info[RTAX_GATEWAY] != NULL)
-		return (cleanup_xaddrs_gateway(info));
+		return (cleanup_xaddrs_gateway(info, lb));
 
 	return (0);
 }
 #endif
 
 #ifdef INET6
 static int
-cleanup_xaddrs_inet6(struct rt_addrinfo *info)
+cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb)
 {
+	struct sockaddr *sa;
 	struct sockaddr_in6 *dst_sa, *mask_sa;
-	struct in6_addr mask;
+	struct in6_addr mask, *dst;
+	const int sa_len = sizeof(struct sockaddr_in6);
 
 	/* Check & fixup dst/netmask combination first */
 	dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST];
 	mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK];
 
-	mask = mask_sa ? mask_sa->sin6_addr : in6mask128;
-	IN6_MASK_ADDR(&dst_sa->sin6_addr, &mask);
-
 	if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) {
 		RTS_PID_PRINTF("prefix dst sin6_len too small: %d", dst_sa->sin6_len);
 		return (EINVAL);
 	}
+
 	if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) {
-		RTS_PID_PRINTF("rtsock: prefix mask sin6_len too small: %d", mask_sa->sin6_len);
-		return (EINVAL);
-	}
-	fill_sockaddr_inet6(dst_sa, &dst_sa->sin6_addr, 0);
+		/*
+		 * Some older routing software encode mask length into the
+		 * sin6_len, thus resulting in "truncated" sockaddr.
+		 */
+		int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr);
+		if (len >= 0) {
+			bzero(&mask, sizeof(mask));
+			if (len > sizeof(struct in6_addr))
+				len = sizeof(struct in6_addr);
+			memcpy(&mask, &mask_sa->sin6_addr, len);
+		} else {
+			RTS_PID_PRINTF("rtsock: prefix mask sin6_len too small: %d", mask_sa->sin6_len);
+			return (EINVAL);
+		}
+	} else
+		mask = mask_sa ? mask_sa->sin6_addr : in6mask128;
 
-	if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128))
-		fill_sockaddr_inet6(mask_sa, &mask, 0);
-	else
+	dst = &dst_sa->sin6_addr;
+	IN6_MASK_ADDR(dst, &mask);
+
+	if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL)
+		return (ENOBUFS);
+	fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0);
+	info->rti_info[RTAX_DST] = sa;
+
+	if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) {
+		if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL)
+			return (ENOBUFS);
+		fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0);
+		info->rti_info[RTAX_NETMASK] = sa;
+	} else
 		remove_netmask(info);
 
 	/* Check gateway */
 	if (info->rti_info[RTAX_GATEWAY] != NULL)
-		return (cleanup_xaddrs_gateway(info));
+		return (cleanup_xaddrs_gateway(info, lb));
 
 	return (0);
 }
 #endif
 
 static int
-cleanup_xaddrs(struct rt_addrinfo *info)
+cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb)
 {
 	int error = EAFNOSUPPORT;
 
 	if (info->rti_info[RTAX_DST] == NULL)
 		return (EINVAL);
 
 	if (info->rti_flags & RTF_LLDATA) {
 		/*
 		 * arp(8)/ndp(8) sends RTA_NETMASK for the associated
 		 * prefix along with the actual address in RTA_DST.
 		 * Remove netmask to avoid unnecessary address masking.
 		 */
 		remove_netmask(info);
 	}
 
 	switch (info->rti_info[RTAX_DST]->sa_family) {
 #ifdef INET
 	case AF_INET:
-		error = cleanup_xaddrs_inet(info);
+		error = cleanup_xaddrs_inet(info, lb);
 		break;
 #endif
 #ifdef INET6
 	case AF_INET6:
-		error = cleanup_xaddrs_inet6(info);
+		error = cleanup_xaddrs_inet6(info, lb);
 		break;
 #endif
 	}
 
 	return (error);
 }
 
 /*
  * Fill in @dmask with valid netmask leaving original @smask
  * intact. Mostly used with radix netmasks.
  */
 struct sockaddr *
 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask,
     struct sockaddr_storage *dmask)
 {
 	if (dst == NULL || smask == NULL)
 		return (NULL);
 
 	memset(dmask, 0, dst->sa_len);
 	memcpy(dmask, smask, smask->sa_len);
 	dmask->ss_len = dst->sa_len;
 	dmask->ss_family = dst->sa_family;
 
 	return ((struct sockaddr *)dmask);
 }
 
 /*
  * Writes information related to @rtinfo object to newly-allocated mbuf.
  * Assumes MCLBYTES is enough to construct any message.
  * Used for OS notifications of vaious events (if/ifa announces,etc)
  *
  * Returns allocated mbuf or NULL on failure.
  */
 static struct mbuf *
 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
 {
 	struct sockaddr_storage ss;
 	struct rt_msghdr *rtm;
 	struct mbuf *m;
 	int i;
 	struct sockaddr *sa;
 #ifdef INET6
 	struct sockaddr_in6 *sin6;
 #endif
 	int len, dlen;
 
 	switch (type) {
 	case RTM_DELADDR:
 	case RTM_NEWADDR:
 		len = sizeof(struct ifa_msghdr);
 		break;
 
 	case RTM_DELMADDR:
 	case RTM_NEWMADDR:
 		len = sizeof(struct ifma_msghdr);
 		break;
 
 	case RTM_IFINFO:
 		len = sizeof(struct if_msghdr);
 		break;
 
 	case RTM_IFANNOUNCE:
 	case RTM_IEEE80211:
 		len = sizeof(struct if_announcemsghdr);
 		break;
 
 	default:
 		len = sizeof(struct rt_msghdr);
 	}
 
 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
 	if (len > MHLEN)
 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 	else
 		m = m_gethdr(M_NOWAIT, MT_DATA);
 	if (m == NULL)
 		return (m);
 
 	m->m_pkthdr.len = m->m_len = len;
 	rtm = mtod(m, struct rt_msghdr *);
 	bzero((caddr_t)rtm, len);
 	for (i = 0; i < RTAX_MAX; i++) {
 		if ((sa = rtinfo->rti_info[i]) == NULL)
 			continue;
 		rtinfo->rti_addrs |= (1 << i);
 
 		dlen = SA_SIZE(sa);
 		KASSERT(dlen <= sizeof(ss),
 		    ("%s: sockaddr size overflow", __func__));
 		bzero(&ss, sizeof(ss));
 		bcopy(sa, &ss, sa->sa_len);
 		sa = (struct sockaddr *)&ss;
 #ifdef INET6
 		if (sa->sa_family == AF_INET6) {
 			sin6 = (struct sockaddr_in6 *)sa;
 			(void)sa6_recoverscope(sin6);
 		}
 #endif
 		m_copyback(m, len, dlen, (caddr_t)sa);
 		len += dlen;
 	}
 	if (m->m_pkthdr.len != len) {
 		m_freem(m);
 		return (NULL);
 	}
 	rtm->rtm_msglen = len;
 	rtm->rtm_version = RTM_VERSION;
 	rtm->rtm_type = type;
 	return (m);
 }
 
 /*
  * Writes information related to @rtinfo object to preallocated buffer.
  * Stores needed size in @plen. If @w is NULL, calculates size without
  * writing.
  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
  *
  * Returns 0 on success.
  *
  */
 static int
 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
 {
 	struct sockaddr_storage ss;
 	int len, buflen = 0, dlen, i;
 	caddr_t cp = NULL;
 	struct rt_msghdr *rtm = NULL;
 #ifdef INET6
 	struct sockaddr_in6 *sin6;
 #endif
 #ifdef COMPAT_FREEBSD32
 	bool compat32 = false;
 #endif
 
 	switch (type) {
 	case RTM_DELADDR:
 	case RTM_NEWADDR:
 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
 #ifdef COMPAT_FREEBSD32
 			if (w->w_req->flags & SCTL_MASK32) {
 				len = sizeof(struct ifa_msghdrl32);
 				compat32 = true;
 			} else
 #endif
 				len = sizeof(struct ifa_msghdrl);
 		} else
 			len = sizeof(struct ifa_msghdr);
 		break;
 
 	case RTM_IFINFO:
 #ifdef COMPAT_FREEBSD32
 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
 			if (w->w_op == NET_RT_IFLISTL)
 				len = sizeof(struct if_msghdrl32);
 			else
 				len = sizeof(struct if_msghdr32);
 			compat32 = true;
 			break;
 		}
 #endif
 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
 			len = sizeof(struct if_msghdrl);
 		else
 			len = sizeof(struct if_msghdr);
 		break;
 
 	case RTM_NEWMADDR:
 		len = sizeof(struct ifma_msghdr);
 		break;
 
 	default:
 		len = sizeof(struct rt_msghdr);
 	}
 
 	if (w != NULL) {
 		rtm = (struct rt_msghdr *)w->w_tmem;
 		buflen = w->w_tmemsize - len;
 		cp = (caddr_t)w->w_tmem + len;
 	}
 
 	rtinfo->rti_addrs = 0;
 	for (i = 0; i < RTAX_MAX; i++) {
 		struct sockaddr *sa;
 
 		if ((sa = rtinfo->rti_info[i]) == NULL)
 			continue;
 		rtinfo->rti_addrs |= (1 << i);
 #ifdef COMPAT_FREEBSD32
 		if (compat32)
 			dlen = SA_SIZE32(sa);
 		else
 #endif
 			dlen = SA_SIZE(sa);
 		if (cp != NULL && buflen >= dlen) {
 			KASSERT(dlen <= sizeof(ss),
 			    ("%s: sockaddr size overflow", __func__));
 			bzero(&ss, sizeof(ss));
 			bcopy(sa, &ss, sa->sa_len);
 			sa = (struct sockaddr *)&ss;
 #ifdef INET6
 			if (sa->sa_family == AF_INET6) {
 				sin6 = (struct sockaddr_in6 *)sa;
 				(void)sa6_recoverscope(sin6);
 			}
 #endif
 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
 			cp += dlen;
 			buflen -= dlen;
 		} else if (cp != NULL) {
 			/*
 			 * Buffer too small. Count needed size
 			 * and return with error.
 			 */
 			cp = NULL;
 		}
 
 		len += dlen;
 	}
 
 	if (cp != NULL) {
 		dlen = ALIGN(len) - len;
 		if (buflen < dlen)
 			cp = NULL;
 		else {
 			bzero(cp, dlen);
 			cp += dlen;
 			buflen -= dlen;
 		}
 	}
 	len = ALIGN(len);
 
 	if (cp != NULL) {
 		/* fill header iff buffer is large enough */
 		rtm->rtm_version = RTM_VERSION;
 		rtm->rtm_type = type;
 		rtm->rtm_msglen = len;
 	}
 
 	*plen = len;
 
 	if (w != NULL && cp == NULL)
 		return (ENOBUFS);
 
 	return (0);
 }
 
 /*
  * This routine is called to generate a message from the routing
  * socket indicating that a redirect has occurred, a routing lookup
  * has failed, or that a protocol has detected timeouts to a particular
  * destination.
  */
 void
 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
     int fibnum)
 {
 	struct rt_msghdr *rtm;
 	struct mbuf *m;
 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
 
 	if (V_route_cb.any_count == 0)
 		return;
 	m = rtsock_msg_mbuf(type, rtinfo);
 	if (m == NULL)
 		return;
 
 	if (fibnum != RT_ALL_FIBS) {
 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
 		M_SETFIB(m, fibnum);
 		m->m_flags |= RTS_FILTER_FIB;
 	}
 
 	rtm = mtod(m, struct rt_msghdr *);
 	rtm->rtm_flags = RTF_DONE | flags;
 	rtm->rtm_errno = error;
 	rtm->rtm_addrs = rtinfo->rti_addrs;
 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
 }
 
 void
 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
 {
 
 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
 }
 
 /*
  * This routine is called to generate a message from the routing
  * socket indicating that the status of a network interface has changed.
  */
 void
 rt_ifmsg(struct ifnet *ifp)
 {
 	struct if_msghdr *ifm;
 	struct mbuf *m;
 	struct rt_addrinfo info;
 
 	if (V_route_cb.any_count == 0)
 		return;
 	bzero((caddr_t)&info, sizeof(info));
 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
 	if (m == NULL)
 		return;
 	ifm = mtod(m, struct if_msghdr *);
 	ifm->ifm_index = ifp->if_index;
 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 	if_data_copy(ifp, &ifm->ifm_data);
 	ifm->ifm_addrs = 0;
 	rt_dispatch(m, AF_UNSPEC);
 }
 
 /*
  * Announce interface address arrival/withdraw.
  * Please do not call directly, use rt_addrmsg().
  * Assume input data to be valid.
  * Returns 0 on success.
  */
 int
 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
 {
 	struct rt_addrinfo info;
 	struct sockaddr *sa;
 	int ncmd;
 	struct mbuf *m;
 	struct ifa_msghdr *ifam;
 	struct ifnet *ifp = ifa->ifa_ifp;
 	struct sockaddr_storage ss;
 
 	if (V_route_cb.any_count == 0)
 		return (0);
 
 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
 
 	bzero((caddr_t)&info, sizeof(info));
 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
 		return (ENOBUFS);
 	ifam = mtod(m, struct ifa_msghdr *);
 	ifam->ifam_index = ifp->if_index;
 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
 	ifam->ifam_flags = ifa->ifa_flags;
 	ifam->ifam_addrs = info.rti_addrs;
 
 	if (fibnum != RT_ALL_FIBS) {
 		M_SETFIB(m, fibnum);
 		m->m_flags |= RTS_FILTER_FIB;
 	}
 
 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
 
 	return (0);
 }
 
 /*
  * Announce route addition/removal to rtsock based on @rt data.
  * Callers are advives to use rt_routemsg() instead of using this
  *  function directly.
  * Assume @rt data is consistent.
  *
  * Returns 0 on success.
  */
 int
 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh,
     int fibnum)
 {
 	union sockaddr_union dst, mask;
 	struct rt_addrinfo info;
 
 	if (V_route_cb.any_count == 0)
 		return (0);
 
 	int family = rt_get_family(rt);
 	init_sockaddrs_family(family, &dst.sa, &mask.sa);
 	export_rtaddrs(rt, &dst.sa, &mask.sa);
 
 	bzero((caddr_t)&info, sizeof(info));
 	info.rti_info[RTAX_DST] = &dst.sa;
 	info.rti_info[RTAX_NETMASK] = &mask.sa;
 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
 	info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh);
 	info.rti_ifp = nh->nh_ifp;
 
 	return (rtsock_routemsg_info(cmd, &info, fibnum));
 }
 
 int
 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
 {
 	struct rt_msghdr *rtm;
 	struct sockaddr *sa;
 	struct mbuf *m;
 
 	if (V_route_cb.any_count == 0)
 		return (0);
 
 	if (info->rti_flags & RTF_HOST)
 		info->rti_info[RTAX_NETMASK] = NULL;
 
 	m = rtsock_msg_mbuf(cmd, info);
 	if (m == NULL)
 		return (ENOBUFS);
 
 	if (fibnum != RT_ALL_FIBS) {
 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
 		M_SETFIB(m, fibnum);
 		m->m_flags |= RTS_FILTER_FIB;
 	}
 
 	rtm = mtod(m, struct rt_msghdr *);
 	rtm->rtm_addrs = info->rti_addrs;
 	if (info->rti_ifp != NULL)
 		rtm->rtm_index = info->rti_ifp->if_index;
 	/* Add RTF_DONE to indicate command 'completion' required by API */
 	info->rti_flags |= RTF_DONE;
 	/* Reported routes has to be up */
 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
 		info->rti_flags |= RTF_UP;
 	rtm->rtm_flags = info->rti_flags;
 
 	sa = info->rti_info[RTAX_DST];
 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
 
 	return (0);
 }
 
 /*
  * This is the analogue to the rt_newaddrmsg which performs the same
  * function but for multicast group memberhips.  This is easier since
  * there is no route state to worry about.
  */
 void
 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
 {
 	struct rt_addrinfo info;
 	struct mbuf *m = NULL;
 	struct ifnet *ifp = ifma->ifma_ifp;
 	struct ifma_msghdr *ifmam;
 
 	if (V_route_cb.any_count == 0)
 		return;
 
 	bzero((caddr_t)&info, sizeof(info));
 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
 	if (ifp && ifp->if_addr)
 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
 	else
 		info.rti_info[RTAX_IFP] = NULL;
 	/*
 	 * If a link-layer address is present, present it as a ``gateway''
 	 * (similarly to how ARP entries, e.g., are presented).
 	 */
 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
 	m = rtsock_msg_mbuf(cmd, &info);
 	if (m == NULL)
 		return;
 	ifmam = mtod(m, struct ifma_msghdr *);
 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
 	    __func__));
 	ifmam->ifmam_index = ifp->if_index;
 	ifmam->ifmam_addrs = info.rti_addrs;
 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
 }
 
 static struct mbuf *
 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
 	struct rt_addrinfo *info)
 {
 	struct if_announcemsghdr *ifan;
 	struct mbuf *m;
 
 	if (V_route_cb.any_count == 0)
 		return NULL;
 	bzero((caddr_t)info, sizeof(*info));
 	m = rtsock_msg_mbuf(type, info);
 	if (m != NULL) {
 		ifan = mtod(m, struct if_announcemsghdr *);
 		ifan->ifan_index = ifp->if_index;
 		strlcpy(ifan->ifan_name, ifp->if_xname,
 			sizeof(ifan->ifan_name));
 		ifan->ifan_what = what;
 	}
 	return m;
 }
 
 /*
  * This is called to generate routing socket messages indicating
  * IEEE80211 wireless events.
  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
  */
 void
 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
 {
 	struct mbuf *m;
 	struct rt_addrinfo info;
 
 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
 	if (m != NULL) {
 		/*
 		 * Append the ieee80211 data.  Try to stick it in the
 		 * mbuf containing the ifannounce msg; otherwise allocate
 		 * a new mbuf and append.
 		 *
 		 * NB: we assume m is a single mbuf.
 		 */
 		if (data_len > M_TRAILINGSPACE(m)) {
 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
 			if (n == NULL) {
 				m_freem(m);
 				return;
 			}
 			bcopy(data, mtod(n, void *), data_len);
 			n->m_len = data_len;
 			m->m_next = n;
 		} else if (data_len > 0) {
 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
 			m->m_len += data_len;
 		}
 		if (m->m_flags & M_PKTHDR)
 			m->m_pkthdr.len += data_len;
 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
 		rt_dispatch(m, AF_UNSPEC);
 	}
 }
 
 /*
  * This is called to generate routing socket messages indicating
  * network interface arrival and departure.
  */
 void
 rt_ifannouncemsg(struct ifnet *ifp, int what)
 {
 	struct mbuf *m;
 	struct rt_addrinfo info;
 
 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
 	if (m != NULL)
 		rt_dispatch(m, AF_UNSPEC);
 }
 
 static void
 rt_dispatch(struct mbuf *m, sa_family_t saf)
 {
 	struct m_tag *tag;
 
 	/*
 	 * Preserve the family from the sockaddr, if any, in an m_tag for
 	 * use when injecting the mbuf into the routing socket buffer from
 	 * the netisr.
 	 */
 	if (saf != AF_UNSPEC) {
 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
 		    M_NOWAIT);
 		if (tag == NULL) {
 			m_freem(m);
 			return;
 		}
 		*(unsigned short *)(tag + 1) = saf;
 		m_tag_prepend(m, tag);
 	}
 #ifdef VIMAGE
 	if (V_loif)
 		m->m_pkthdr.rcvif = V_loif;
 	else {
 		m_freem(m);
 		return;
 	}
 #endif
 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
 }
 
 /*
  * Checks if rte can be exported w.r.t jails/vnets.
  *
  * Returns true if it can, false otherwise.
  */
 static bool
 can_export_rte(struct ucred *td_ucred, bool rt_is_host,
     const struct sockaddr *rt_dst)
 {
 
 	if ((!rt_is_host) ? jailed_without_vnet(td_ucred)
 	    : prison_if(td_ucred, rt_dst) != 0)
 		return (false);
 	return (true);
 }
 
 
 /*
  * This is used in dumping the kernel table via sysctl().
  */
 static int
 sysctl_dumpentry(struct rtentry *rt, void *vw)
 {
 	struct walkarg *w = vw;
 	struct nhop_object *nh;
 	int error = 0;
 
 	NET_EPOCH_ASSERT();
 
 	export_rtaddrs(rt, w->dst, w->mask);
 	if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst))
 		return (0);
 	nh = rt_get_raw_nhop(rt);
 #ifdef ROUTE_MPATH
 	if (NH_IS_NHGRP(nh)) {
 		struct weightened_nhop *wn;
 		uint32_t num_nhops;
 		wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
 		for (int i = 0; i < num_nhops; i++) {
 			error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w);
 			if (error != 0)
 				return (error);
 		}
 	} else
 #endif
 		error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w);
 
 	return (0);
 }
 
 
 static int
 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight,
     struct walkarg *w)
 {
 	struct rt_addrinfo info;
 	int error = 0, size;
 	uint32_t rtflags;
 
 	rtflags = nhop_get_rtflags(nh);
 
 	if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg))
 		return (0);
 
 	bzero((caddr_t)&info, sizeof(info));
 	info.rti_info[RTAX_DST] = w->dst;
 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
 	info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask;
 	info.rti_info[RTAX_GENMASK] = 0;
 	if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) {
 		info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr;
 		info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
 		if (nh->nh_ifp->if_flags & IFF_POINTOPOINT)
 			info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr;
 	}
 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
 		return (error);
 	if (w->w_req && w->w_tmem) {
 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
 
 		bzero(&rtm->rtm_index,
 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
 
 		/*
 		 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags)
 		 * and RTF_UP (if entry is linked, which is always true here).
 		 * Given that, use nhop rtflags & add RTF_UP.
 		 */
 		rtm->rtm_flags = rtflags | RTF_UP;
 		if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
 			rtm->rtm_flags = RTF_GATEWAY | 
 				(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
 		rt_getmetrics(rt, nh, &rtm->rtm_rmx);
 		rtm->rtm_rmx.rmx_weight = weight;
 		rtm->rtm_index = nh->nh_ifp->if_index;
 		rtm->rtm_addrs = info.rti_addrs;
 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
 		return (error);
 	}
 	return (error);
 }
 
 static int
 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
     struct rt_addrinfo *info, struct walkarg *w, int len)
 {
 	struct if_msghdrl *ifm;
 	struct if_data *ifd;
 
 	ifm = (struct if_msghdrl *)w->w_tmem;
 
 #ifdef COMPAT_FREEBSD32
 	if (w->w_req->flags & SCTL_MASK32) {
 		struct if_msghdrl32 *ifm32;
 
 		ifm32 = (struct if_msghdrl32 *)ifm;
 		ifm32->ifm_addrs = info->rti_addrs;
 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 		ifm32->ifm_index = ifp->if_index;
 		ifm32->_ifm_spare1 = 0;
 		ifm32->ifm_len = sizeof(*ifm32);
 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
 		ifm32->_ifm_spare2 = 0;
 		ifd = &ifm32->ifm_data;
 	} else
 #endif
 	{
 		ifm->ifm_addrs = info->rti_addrs;
 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 		ifm->ifm_index = ifp->if_index;
 		ifm->_ifm_spare1 = 0;
 		ifm->ifm_len = sizeof(*ifm);
 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
 		ifm->_ifm_spare2 = 0;
 		ifd = &ifm->ifm_data;
 	}
 
 	memcpy(ifd, src_ifd, sizeof(*ifd));
 
 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
 }
 
 static int
 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
     struct rt_addrinfo *info, struct walkarg *w, int len)
 {
 	struct if_msghdr *ifm;
 	struct if_data *ifd;
 
 	ifm = (struct if_msghdr *)w->w_tmem;
 
 #ifdef COMPAT_FREEBSD32
 	if (w->w_req->flags & SCTL_MASK32) {
 		struct if_msghdr32 *ifm32;
 
 		ifm32 = (struct if_msghdr32 *)ifm;
 		ifm32->ifm_addrs = info->rti_addrs;
 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 		ifm32->ifm_index = ifp->if_index;
 		ifm32->_ifm_spare1 = 0;
 		ifd = &ifm32->ifm_data;
 	} else
 #endif
 	{
 		ifm->ifm_addrs = info->rti_addrs;
 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 		ifm->ifm_index = ifp->if_index;
 		ifm->_ifm_spare1 = 0;
 		ifd = &ifm->ifm_data;
 	}
 
 	memcpy(ifd, src_ifd, sizeof(*ifd));
 
 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
 }
 
 static int
 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
     struct walkarg *w, int len)
 {
 	struct ifa_msghdrl *ifam;
 	struct if_data *ifd;
 
 	ifam = (struct ifa_msghdrl *)w->w_tmem;
 
 #ifdef COMPAT_FREEBSD32
 	if (w->w_req->flags & SCTL_MASK32) {
 		struct ifa_msghdrl32 *ifam32;
 
 		ifam32 = (struct ifa_msghdrl32 *)ifam;
 		ifam32->ifam_addrs = info->rti_addrs;
 		ifam32->ifam_flags = ifa->ifa_flags;
 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
 		ifam32->_ifam_spare1 = 0;
 		ifam32->ifam_len = sizeof(*ifam32);
 		ifam32->ifam_data_off =
 		    offsetof(struct ifa_msghdrl32, ifam_data);
 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
 		ifd = &ifam32->ifam_data;
 	} else
 #endif
 	{
 		ifam->ifam_addrs = info->rti_addrs;
 		ifam->ifam_flags = ifa->ifa_flags;
 		ifam->ifam_index = ifa->ifa_ifp->if_index;
 		ifam->_ifam_spare1 = 0;
 		ifam->ifam_len = sizeof(*ifam);
 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
 		ifd = &ifam->ifam_data;
 	}
 
 	bzero(ifd, sizeof(*ifd));
 	ifd->ifi_datalen = sizeof(struct if_data);
 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
 
 	/* Fixup if_data carp(4) vhid. */
 	if (carp_get_vhid_p != NULL)
 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
 
 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
 }
 
 static int
 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
     struct walkarg *w, int len)
 {
 	struct ifa_msghdr *ifam;
 
 	ifam = (struct ifa_msghdr *)w->w_tmem;
 	ifam->ifam_addrs = info->rti_addrs;
 	ifam->ifam_flags = ifa->ifa_flags;
 	ifam->ifam_index = ifa->ifa_ifp->if_index;
 	ifam->_ifam_spare1 = 0;
 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
 
 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
 }
 
 static int
 sysctl_iflist(int af, struct walkarg *w)
 {
 	struct ifnet *ifp;
 	struct ifaddr *ifa;
 	struct if_data ifd;
 	struct rt_addrinfo info;
 	int len, error = 0;
 	struct sockaddr_storage ss;
 
 	bzero((caddr_t)&info, sizeof(info));
 	bzero(&ifd, sizeof(ifd));
 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 		if (w->w_arg && w->w_arg != ifp->if_index)
 			continue;
 		if_data_copy(ifp, &ifd);
 		ifa = ifp->if_addr;
 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
 		if (error != 0)
 			goto done;
 		info.rti_info[RTAX_IFP] = NULL;
 		if (w->w_req && w->w_tmem) {
 			if (w->w_op == NET_RT_IFLISTL)
 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
 				    len);
 			else
 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
 				    len);
 			if (error)
 				goto done;
 		}
 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
 			if (af && af != ifa->ifa_addr->sa_family)
 				continue;
 			if (prison_if(w->w_req->td->td_ucred,
 			    ifa->ifa_addr) != 0)
 				continue;
 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
 			if (error != 0)
 				goto done;
 			if (w->w_req && w->w_tmem) {
 				if (w->w_op == NET_RT_IFLISTL)
 					error = sysctl_iflist_ifaml(ifa, &info,
 					    w, len);
 				else
 					error = sysctl_iflist_ifam(ifa, &info,
 					    w, len);
 				if (error)
 					goto done;
 			}
 		}
 		info.rti_info[RTAX_IFA] = NULL;
 		info.rti_info[RTAX_NETMASK] = NULL;
 		info.rti_info[RTAX_BRD] = NULL;
 	}
 done:
 	return (error);
 }
 
 static int
 sysctl_ifmalist(int af, struct walkarg *w)
 {
 	struct rt_addrinfo info;
 	struct ifaddr *ifa;
 	struct ifmultiaddr *ifma;
 	struct ifnet *ifp;
 	int error, len;
 
 	NET_EPOCH_ASSERT();
 
 	error = 0;
 	bzero((caddr_t)&info, sizeof(info));
 
 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 		if (w->w_arg && w->w_arg != ifp->if_index)
 			continue;
 		ifa = ifp->if_addr;
 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 			if (af && af != ifma->ifma_addr->sa_family)
 				continue;
 			if (prison_if(w->w_req->td->td_ucred,
 			    ifma->ifma_addr) != 0)
 				continue;
 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
 			info.rti_info[RTAX_GATEWAY] =
 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
 			    ifma->ifma_lladdr : NULL;
 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
 			if (error != 0)
 				break;
 			if (w->w_req && w->w_tmem) {
 				struct ifma_msghdr *ifmam;
 
 				ifmam = (struct ifma_msghdr *)w->w_tmem;
 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
 				ifmam->ifmam_flags = 0;
 				ifmam->ifmam_addrs = info.rti_addrs;
 				ifmam->_ifmam_spare1 = 0;
 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
 				if (error != 0)
 					break;
 			}
 		}
 		if (error != 0)
 			break;
 	}
 	return (error);
 }
 
 static void
 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w)
 {
 	union sockaddr_union sa_dst, sa_mask;
 
 	w->family = family;
 	w->dst = (struct sockaddr *)&sa_dst;
 	w->mask = (struct sockaddr *)&sa_mask;
 
 	init_sockaddrs_family(family, w->dst, w->mask);
 
 	rib_walk(fibnum, family, false, sysctl_dumpentry, w);
 }
 
 static int
 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
 {
 	struct epoch_tracker et;
 	int	*name = (int *)arg1;
 	u_int	namelen = arg2;
 	struct rib_head *rnh = NULL; /* silence compiler. */
 	int	i, lim, error = EINVAL;
 	int	fib = 0;
 	u_char	af;
 	struct	walkarg w;
 
 	name ++;
 	namelen--;
 	if (req->newptr)
 		return (EPERM);
 	if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) {
 		if (namelen == 3)
 			fib = req->td->td_proc->p_fibnum;
 		else if (namelen == 4)
 			fib = (name[3] == RT_ALL_FIBS) ?
 			    req->td->td_proc->p_fibnum : name[3];
 		else
 			return ((namelen < 3) ? EISDIR : ENOTDIR);
 		if (fib < 0 || fib >= rt_numfibs)
 			return (EINVAL);
 	} else if (namelen != 3)
 		return ((namelen < 3) ? EISDIR : ENOTDIR);
 	af = name[0];
 	if (af > AF_MAX)
 		return (EINVAL);
 	bzero(&w, sizeof(w));
 	w.w_op = name[1];
 	w.w_arg = name[2];
 	w.w_req = req;
 
 	error = sysctl_wire_old_buffer(req, 0);
 	if (error)
 		return (error);
 
 	/*
 	 * Allocate reply buffer in advance.
 	 * All rtsock messages has maximum length of u_short.
 	 */
 	w.w_tmemsize = 65536;
 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
 
 	NET_EPOCH_ENTER(et);
 	switch (w.w_op) {
 	case NET_RT_DUMP:
 	case NET_RT_FLAGS:
 		if (af == 0) {			/* dump all tables */
 			i = 1;
 			lim = AF_MAX;
 		} else				/* dump only one table */
 			i = lim = af;
 
 		/*
 		 * take care of llinfo entries, the caller must
 		 * specify an AF
 		 */
 		if (w.w_op == NET_RT_FLAGS &&
 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
 			if (af != 0)
 				error = lltable_sysctl_dumparp(af, w.w_req);
 			else
 				error = EINVAL;
 			break;
 		}
 		/*
 		 * take care of routing entries
 		 */
 		for (error = 0; error == 0 && i <= lim; i++) {
 			rnh = rt_tables_get_rnh(fib, i);
 			if (rnh != NULL) {
 				rtable_sysctl_dump(fib, i, &w);
 			} else if (af != 0)
 				error = EAFNOSUPPORT;
 		}
 		break;
 	case NET_RT_NHOP:
 	case NET_RT_NHGRP:
 		/* Allow dumping one specific af/fib at a time */
 		if (namelen < 4) {
 			error = EINVAL;
 			break;
 		}
 		fib = name[3];
 		if (fib < 0 || fib > rt_numfibs) {
 			error = EINVAL;
 			break;
 		}
 		rnh = rt_tables_get_rnh(fib, af);
 		if (rnh == NULL) {
 			error = EAFNOSUPPORT;
 			break;
 		}
 		if (w.w_op == NET_RT_NHOP)
 			error = nhops_dump_sysctl(rnh, w.w_req);
 		else
 #ifdef ROUTE_MPATH
 			error = nhgrp_dump_sysctl(rnh, w.w_req);
 #else
 			error = ENOTSUP;
 #endif
 		break;
 	case NET_RT_IFLIST:
 	case NET_RT_IFLISTL:
 		error = sysctl_iflist(af, &w);
 		break;
 
 	case NET_RT_IFMALIST:
 		error = sysctl_ifmalist(af, &w);
 		break;
 	}
 	NET_EPOCH_EXIT(et);
 
 	free(w.w_tmem, M_TEMP);
 	return (error);
 }
 
 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
     sysctl_rtsock, "Return route tables and interface/address lists");
 
 /*
  * Definitions of protocols supported in the ROUTE domain.
  */
 
 static struct domain routedomain;		/* or at least forward */
 
 static struct protosw routesw[] = {
 {
 	.pr_type =		SOCK_RAW,
 	.pr_domain =		&routedomain,
 	.pr_flags =		PR_ATOMIC|PR_ADDR,
 	.pr_output =		route_output,
 	.pr_ctlinput =		raw_ctlinput,
 	.pr_init =		raw_init,
 	.pr_usrreqs =		&route_usrreqs
 }
 };
 
 static struct domain routedomain = {
 	.dom_family =		PF_ROUTE,
 	.dom_name =		"route",
 	.dom_protosw =		routesw,
 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
 };
 
 VNET_DOMAIN_SET(route);