diff --git a/sys/kern/kern_proc.c b/sys/kern/kern_proc.c
index 77ae6cbddea5..463ecb025317 100644
--- a/sys/kern/kern_proc.c
+++ b/sys/kern/kern_proc.c
@@ -1,3636 +1,3636 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1989, 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 #include "opt_ddb.h"
 #include "opt_ktrace.h"
 #include "opt_kstack_pages.h"
 #include "opt_stack.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/bitstring.h>
 #include <sys/conf.h>
 #include <sys/elf.h>
 #include <sys/eventhandler.h>
 #include <sys/exec.h>
 #include <sys/fcntl.h>
 #include <sys/ipc.h>
 #include <sys/jail.h>
 #include <sys/kernel.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/loginclass.h>
 #include <sys/malloc.h>
 #include <sys/mman.h>
 #include <sys/mount.h>
 #include <sys/mutex.h>
 #include <sys/namei.h>
 #include <sys/proc.h>
 #include <sys/ptrace.h>
 #include <sys/refcount.h>
 #include <sys/resourcevar.h>
 #include <sys/rwlock.h>
 #include <sys/sbuf.h>
 #include <sys/sysent.h>
 #include <sys/sched.h>
 #include <sys/shm.h>
 #include <sys/smp.h>
 #include <sys/stack.h>
 #include <sys/stat.h>
 #include <sys/dtrace_bsd.h>
 #include <sys/sysctl.h>
 #include <sys/filedesc.h>
 #include <sys/tty.h>
 #include <sys/signalvar.h>
 #include <sys/sdt.h>
 #include <sys/sx.h>
 #include <sys/user.h>
 #include <sys/vnode.h>
 #include <sys/wait.h>
 #ifdef KTRACE
 #include <sys/ktrace.h>
 #endif
 
 #ifdef DDB
 #include <ddb/ddb.h>
 #endif
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/vm_extern.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_object.h>
 #include <vm/vm_page.h>
 #include <vm/uma.h>
 
 #include <fs/devfs/devfs.h>
 
 #ifdef COMPAT_FREEBSD32
 #include <compat/freebsd32/freebsd32.h>
 #include <compat/freebsd32/freebsd32_util.h>
 #endif
 
 SDT_PROVIDER_DEFINE(proc);
 
 MALLOC_DEFINE(M_SESSION, "session", "session header");
 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
 
 static void doenterpgrp(struct proc *, struct pgrp *);
 static void orphanpg(struct pgrp *pg);
 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
     int preferthread);
 static void pgdelete(struct pgrp *);
 static int pgrp_init(void *mem, int size, int flags);
 static int proc_ctor(void *mem, int size, void *arg, int flags);
 static void proc_dtor(void *mem, int size, void *arg);
 static int proc_init(void *mem, int size, int flags);
 static void proc_fini(void *mem, int size);
 static void pargs_free(struct pargs *pa);
 
 /*
  * Other process lists
  */
 struct pidhashhead *pidhashtbl = NULL;
 struct sx *pidhashtbl_lock;
 u_long pidhash;
 u_long pidhashlock;
 struct pgrphashhead *pgrphashtbl;
 u_long pgrphash;
 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
 struct sx __exclusive_cache_line allproc_lock;
 struct sx __exclusive_cache_line proctree_lock;
 struct mtx __exclusive_cache_line ppeers_lock;
 struct mtx __exclusive_cache_line procid_lock;
 uma_zone_t proc_zone;
 uma_zone_t pgrp_zone;
 
 /*
  * The offset of various fields in struct proc and struct thread.
  * These are used by kernel debuggers to enumerate kernel threads and
  * processes.
  */
 const int proc_off_p_pid = offsetof(struct proc, p_pid);
 const int proc_off_p_comm = offsetof(struct proc, p_comm);
 const int proc_off_p_list = offsetof(struct proc, p_list);
 const int proc_off_p_hash = offsetof(struct proc, p_hash);
 const int proc_off_p_threads = offsetof(struct proc, p_threads);
 const int thread_off_td_tid = offsetof(struct thread, td_tid);
 const int thread_off_td_name = offsetof(struct thread, td_name);
 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
 const int thread_off_td_plist = offsetof(struct thread, td_plist);
 
 EVENTHANDLER_LIST_DEFINE(process_ctor);
 EVENTHANDLER_LIST_DEFINE(process_dtor);
 EVENTHANDLER_LIST_DEFINE(process_init);
 EVENTHANDLER_LIST_DEFINE(process_fini);
 EVENTHANDLER_LIST_DEFINE(process_exit);
 EVENTHANDLER_LIST_DEFINE(process_fork);
 EVENTHANDLER_LIST_DEFINE(process_exec);
 
 int kstack_pages = KSTACK_PAGES;
 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
     &kstack_pages, 0,
     "Kernel stack size in pages");
 static int vmmap_skip_res_cnt = 0;
 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
     &vmmap_skip_res_cnt, 0,
     "Skip calculation of the pages resident count in kern.proc.vmmap");
 
 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
 #ifdef COMPAT_FREEBSD32
 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
 #endif
 
 /*
  * Initialize global process hashing structures.
  */
 void
 procinit(void)
 {
 	u_long i;
 
 	sx_init(&allproc_lock, "allproc");
 	sx_init(&proctree_lock, "proctree");
 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
 	mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
 	pidhashlock = (pidhash + 1) / 64;
 	if (pidhashlock > 0)
 		pidhashlock--;
 	pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
 	    M_PROC, M_WAITOK | M_ZERO);
 	for (i = 0; i < pidhashlock + 1; i++)
 		sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
 	    proc_ctor, proc_dtor, proc_init, proc_fini,
 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
 	    pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	uihashinit();
 }
 
 /*
  * Prepare a proc for use.
  */
 static int
 proc_ctor(void *mem, int size, void *arg, int flags)
 {
 	struct proc *p;
 	struct thread *td;
 
 	p = (struct proc *)mem;
 #ifdef KDTRACE_HOOKS
 	kdtrace_proc_ctor(p);
 #endif
 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
 	td = FIRST_THREAD_IN_PROC(p);
 	if (td != NULL) {
 		/* Make sure all thread constructors are executed */
 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
 	}
 	return (0);
 }
 
 /*
  * Reclaim a proc after use.
  */
 static void
 proc_dtor(void *mem, int size, void *arg)
 {
 	struct proc *p;
 	struct thread *td;
 
 	/* INVARIANTS checks go here */
 	p = (struct proc *)mem;
 	td = FIRST_THREAD_IN_PROC(p);
 	if (td != NULL) {
 #ifdef INVARIANTS
 		KASSERT((p->p_numthreads == 1),
 		    ("bad number of threads in exiting process"));
 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
 #endif
 		/* Free all OSD associated to this thread. */
 		osd_thread_exit(td);
 		ast_kclear(td);
 
 		/* Make sure all thread destructors are executed */
 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
 	}
 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
 #ifdef KDTRACE_HOOKS
 	kdtrace_proc_dtor(p);
 #endif
 	if (p->p_ksi != NULL)
 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
 }
 
 /*
  * Initialize type-stable parts of a proc (when newly created).
  */
 static int
 proc_init(void *mem, int size, int flags)
 {
 	struct proc *p;
 
 	p = (struct proc *)mem;
 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
 	cv_init(&p->p_pwait, "ppwait");
 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
 	p->p_stats = pstats_alloc();
 	p->p_pgrp = NULL;
 	TAILQ_INIT(&p->p_kqtim_stop);
 	return (0);
 }
 
 /*
  * UMA should ensure that this function is never called.
  * Freeing a proc structure would violate type stability.
  */
 static void
 proc_fini(void *mem, int size)
 {
 #ifdef notnow
 	struct proc *p;
 
 	p = (struct proc *)mem;
 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
 	pstats_free(p->p_stats);
 	thread_free(FIRST_THREAD_IN_PROC(p));
 	mtx_destroy(&p->p_mtx);
 	if (p->p_ksi != NULL)
 		ksiginfo_free(p->p_ksi);
 #else
 	panic("proc reclaimed");
 #endif
 }
 
 static int
 pgrp_init(void *mem, int size, int flags)
 {
 	struct pgrp *pg;
 
 	pg = mem;
 	mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
 	sx_init(&pg->pg_killsx, "killpg racer");
 	return (0);
 }
 
 /*
  * PID space management.
  *
  * These bitmaps are used by fork_findpid.
  */
 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
 
 static bitstr_t *proc_id_array[] = {
 	proc_id_pidmap,
 	proc_id_grpidmap,
 	proc_id_sessidmap,
 	proc_id_reapmap,
 };
 
 void
 proc_id_set(int type, pid_t id)
 {
 
 	KASSERT(type >= 0 && type < nitems(proc_id_array),
 	    ("invalid type %d\n", type));
 	mtx_lock(&procid_lock);
 	KASSERT(bit_test(proc_id_array[type], id) == 0,
 	    ("bit %d already set in %d\n", id, type));
 	bit_set(proc_id_array[type], id);
 	mtx_unlock(&procid_lock);
 }
 
 void
 proc_id_set_cond(int type, pid_t id)
 {
 
 	KASSERT(type >= 0 && type < nitems(proc_id_array),
 	    ("invalid type %d\n", type));
 	if (bit_test(proc_id_array[type], id))
 		return;
 	mtx_lock(&procid_lock);
 	bit_set(proc_id_array[type], id);
 	mtx_unlock(&procid_lock);
 }
 
 void
 proc_id_clear(int type, pid_t id)
 {
 
 	KASSERT(type >= 0 && type < nitems(proc_id_array),
 	    ("invalid type %d\n", type));
 	mtx_lock(&procid_lock);
 	KASSERT(bit_test(proc_id_array[type], id) != 0,
 	    ("bit %d not set in %d\n", id, type));
 	bit_clear(proc_id_array[type], id);
 	mtx_unlock(&procid_lock);
 }
 
 /*
  * Is p an inferior of the current process?
  */
 int
 inferior(struct proc *p)
 {
 
 	sx_assert(&proctree_lock, SX_LOCKED);
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	for (; p != curproc; p = proc_realparent(p)) {
 		if (p->p_pid == 0)
 			return (0);
 	}
 	return (1);
 }
 
 /*
  * Shared lock all the pid hash lists.
  */
 void
 pidhash_slockall(void)
 {
 	u_long i;
 
 	for (i = 0; i < pidhashlock + 1; i++)
 		sx_slock(&pidhashtbl_lock[i]);
 }
 
 /*
  * Shared unlock all the pid hash lists.
  */
 void
 pidhash_sunlockall(void)
 {
 	u_long i;
 
 	for (i = 0; i < pidhashlock + 1; i++)
 		sx_sunlock(&pidhashtbl_lock[i]);
 }
 
 /*
  * Similar to pfind(), this function locate a process by number.
  */
 struct proc *
 pfind_any_locked(pid_t pid)
 {
 	struct proc *p;
 
 	sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
 		if (p->p_pid == pid) {
 			PROC_LOCK(p);
 			if (p->p_state == PRS_NEW) {
 				PROC_UNLOCK(p);
 				p = NULL;
 			}
 			break;
 		}
 	}
 	return (p);
 }
 
 /*
  * Locate a process by number.
  *
  * By not returning processes in the PRS_NEW state, we allow callers to avoid
  * testing for that condition to avoid dereferencing p_ucred, et al.
  */
 static __always_inline struct proc *
 _pfind(pid_t pid, bool zombie)
 {
 	struct proc *p;
 
 	p = curproc;
 	if (p->p_pid == pid) {
 		PROC_LOCK(p);
 		return (p);
 	}
 	sx_slock(PIDHASHLOCK(pid));
 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
 		if (p->p_pid == pid) {
 			PROC_LOCK(p);
 			if (p->p_state == PRS_NEW ||
 			    (!zombie && p->p_state == PRS_ZOMBIE)) {
 				PROC_UNLOCK(p);
 				p = NULL;
 			}
 			break;
 		}
 	}
 	sx_sunlock(PIDHASHLOCK(pid));
 	return (p);
 }
 
 struct proc *
 pfind(pid_t pid)
 {
 
 	return (_pfind(pid, false));
 }
 
 /*
  * Same as pfind but allow zombies.
  */
 struct proc *
 pfind_any(pid_t pid)
 {
 
 	return (_pfind(pid, true));
 }
 
 /*
  * Locate a process group by number.
  * The caller must hold proctree_lock.
  */
 struct pgrp *
 pgfind(pid_t pgid)
 {
 	struct pgrp *pgrp;
 
 	sx_assert(&proctree_lock, SX_LOCKED);
 
 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
 		if (pgrp->pg_id == pgid) {
 			PGRP_LOCK(pgrp);
 			return (pgrp);
 		}
 	}
 	return (NULL);
 }
 
 /*
  * Locate process and do additional manipulations, depending on flags.
  */
 int
 pget(pid_t pid, int flags, struct proc **pp)
 {
 	struct proc *p;
 	struct thread *td1;
 	int error;
 
 	p = curproc;
 	if (p->p_pid == pid) {
 		PROC_LOCK(p);
 	} else {
 		p = NULL;
 		if (pid <= PID_MAX) {
 			if ((flags & PGET_NOTWEXIT) == 0)
 				p = pfind_any(pid);
 			else
 				p = pfind(pid);
 		} else if ((flags & PGET_NOTID) == 0) {
 			td1 = tdfind(pid, -1);
 			if (td1 != NULL)
 				p = td1->td_proc;
 		}
 		if (p == NULL)
 			return (ESRCH);
 		if ((flags & PGET_CANSEE) != 0) {
 			error = p_cansee(curthread, p);
 			if (error != 0)
 				goto errout;
 		}
 	}
 	if ((flags & PGET_CANDEBUG) != 0) {
 		error = p_candebug(curthread, p);
 		if (error != 0)
 			goto errout;
 	}
 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
 		error = EPERM;
 		goto errout;
 	}
 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
 		error = ESRCH;
 		goto errout;
 	}
 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
 		/*
 		 * XXXRW: Not clear ESRCH is the right error during proc
 		 * execve().
 		 */
 		error = ESRCH;
 		goto errout;
 	}
 	if ((flags & PGET_HOLD) != 0) {
 		_PHOLD(p);
 		PROC_UNLOCK(p);
 	}
 	*pp = p;
 	return (0);
 errout:
 	PROC_UNLOCK(p);
 	return (error);
 }
 
 /*
  * Create a new process group.
  * pgid must be equal to the pid of p.
  * Begin a new session if required.
  */
 int
 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
 {
 	struct pgrp *old_pgrp;
 
 	sx_assert(&proctree_lock, SX_XLOCKED);
 
 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
 	KASSERT(p->p_pid == pgid,
 	    ("enterpgrp: new pgrp and pid != pgid"));
 	KASSERT(pgfind(pgid) == NULL,
 	    ("enterpgrp: pgrp with pgid exists"));
 	KASSERT(!SESS_LEADER(p),
 	    ("enterpgrp: session leader attempted setpgrp"));
 
 	old_pgrp = p->p_pgrp;
 	if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
 		sx_xunlock(&proctree_lock);
 		sx_xlock(&old_pgrp->pg_killsx);
 		sx_xunlock(&old_pgrp->pg_killsx);
 		return (ERESTART);
 	}
 	MPASS(old_pgrp == p->p_pgrp);
 
 	if (sess != NULL) {
 		/*
 		 * new session
 		 */
 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
 		PROC_LOCK(p);
 		p->p_flag &= ~P_CONTROLT;
 		PROC_UNLOCK(p);
 		PGRP_LOCK(pgrp);
 		sess->s_leader = p;
 		sess->s_sid = p->p_pid;
 		proc_id_set(PROC_ID_SESSION, p->p_pid);
 		refcount_init(&sess->s_count, 1);
 		sess->s_ttyvp = NULL;
 		sess->s_ttydp = NULL;
 		sess->s_ttyp = NULL;
 		bcopy(p->p_session->s_login, sess->s_login,
 			    sizeof(sess->s_login));
 		pgrp->pg_session = sess;
 		KASSERT(p == curproc,
 		    ("enterpgrp: mksession and p != curproc"));
 	} else {
 		pgrp->pg_session = p->p_session;
 		sess_hold(pgrp->pg_session);
 		PGRP_LOCK(pgrp);
 	}
 	pgrp->pg_id = pgid;
 	proc_id_set(PROC_ID_GROUP, p->p_pid);
 	LIST_INIT(&pgrp->pg_members);
 	pgrp->pg_flags = 0;
 
 	/*
 	 * As we have an exclusive lock of proctree_lock,
 	 * this should not deadlock.
 	 */
 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
 	SLIST_INIT(&pgrp->pg_sigiolst);
 	PGRP_UNLOCK(pgrp);
 
 	doenterpgrp(p, pgrp);
 
 	sx_xunlock(&old_pgrp->pg_killsx);
 	return (0);
 }
 
 /*
  * Move p to an existing process group
  */
 int
 enterthispgrp(struct proc *p, struct pgrp *pgrp)
 {
 	struct pgrp *old_pgrp;
 
 	sx_assert(&proctree_lock, SX_XLOCKED);
 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
 	KASSERT(pgrp->pg_session == p->p_session,
 	    ("%s: pgrp's session %p, p->p_session %p proc %p\n",
 	    __func__, pgrp->pg_session, p->p_session, p));
 	KASSERT(pgrp != p->p_pgrp,
 	    ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
 
 	old_pgrp = p->p_pgrp;
 	if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
 		sx_xunlock(&proctree_lock);
 		sx_xlock(&old_pgrp->pg_killsx);
 		sx_xunlock(&old_pgrp->pg_killsx);
 		return (ERESTART);
 	}
 	MPASS(old_pgrp == p->p_pgrp);
 	if (!sx_try_xlock(&pgrp->pg_killsx)) {
 		sx_xunlock(&old_pgrp->pg_killsx);
 		sx_xunlock(&proctree_lock);
 		sx_xlock(&pgrp->pg_killsx);
 		sx_xunlock(&pgrp->pg_killsx);
 		return (ERESTART);
 	}
 
 	doenterpgrp(p, pgrp);
 
 	sx_xunlock(&pgrp->pg_killsx);
 	sx_xunlock(&old_pgrp->pg_killsx);
 	return (0);
 }
 
 /*
  * If true, any child of q which belongs to group pgrp, qualifies the
  * process group pgrp as not orphaned.
  */
 static bool
 isjobproc(struct proc *q, struct pgrp *pgrp)
 {
 	sx_assert(&proctree_lock, SX_LOCKED);
 
 	return (q->p_pgrp != pgrp &&
 	    q->p_pgrp->pg_session == pgrp->pg_session);
 }
 
 static struct proc *
 jobc_reaper(struct proc *p)
 {
 	struct proc *pp;
 
 	sx_assert(&proctree_lock, SA_LOCKED);
 
 	for (pp = p;;) {
 		pp = pp->p_reaper;
 		if (pp->p_reaper == pp ||
 		    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
 			return (pp);
 	}
 }
 
 static struct proc *
 jobc_parent(struct proc *p, struct proc *p_exiting)
 {
 	struct proc *pp;
 
 	sx_assert(&proctree_lock, SA_LOCKED);
 
 	pp = proc_realparent(p);
 	if (pp->p_pptr == NULL || pp == p_exiting ||
 	    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
 		return (pp);
 	return (jobc_reaper(pp));
 }
 
-static int
+int
 pgrp_calc_jobc(struct pgrp *pgrp)
 {
 	struct proc *q;
 	int cnt;
 
 #ifdef INVARIANTS
 	if (!mtx_owned(&pgrp->pg_mtx))
 		sx_assert(&proctree_lock, SA_LOCKED);
 #endif
 
 	cnt = 0;
 	LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
 		if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
 		    q->p_pptr == NULL)
 			continue;
 		if (isjobproc(jobc_parent(q, NULL), pgrp))
 			cnt++;
 	}
 	return (cnt);
 }
 
 /*
  * Move p to a process group
  */
 static void
 doenterpgrp(struct proc *p, struct pgrp *pgrp)
 {
 	struct pgrp *savepgrp;
 	struct proc *pp;
 
 	sx_assert(&proctree_lock, SX_XLOCKED);
 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
 
 	savepgrp = p->p_pgrp;
 	pp = jobc_parent(p, NULL);
 
 	PGRP_LOCK(pgrp);
 	PGRP_LOCK(savepgrp);
 	if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
 		orphanpg(savepgrp);
 	PROC_LOCK(p);
 	LIST_REMOVE(p, p_pglist);
 	p->p_pgrp = pgrp;
 	PROC_UNLOCK(p);
 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
 	if (isjobproc(pp, pgrp))
 		pgrp->pg_flags &= ~PGRP_ORPHANED;
 	PGRP_UNLOCK(savepgrp);
 	PGRP_UNLOCK(pgrp);
 	if (LIST_EMPTY(&savepgrp->pg_members))
 		pgdelete(savepgrp);
 }
 
 /*
  * remove process from process group
  */
 int
 leavepgrp(struct proc *p)
 {
 	struct pgrp *savepgrp;
 
 	sx_assert(&proctree_lock, SX_XLOCKED);
 	savepgrp = p->p_pgrp;
 	PGRP_LOCK(savepgrp);
 	PROC_LOCK(p);
 	LIST_REMOVE(p, p_pglist);
 	p->p_pgrp = NULL;
 	PROC_UNLOCK(p);
 	PGRP_UNLOCK(savepgrp);
 	if (LIST_EMPTY(&savepgrp->pg_members))
 		pgdelete(savepgrp);
 	return (0);
 }
 
 /*
  * delete a process group
  */
 static void
 pgdelete(struct pgrp *pgrp)
 {
 	struct session *savesess;
 	struct tty *tp;
 
 	sx_assert(&proctree_lock, SX_XLOCKED);
 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
 
 	/*
 	 * Reset any sigio structures pointing to us as a result of
 	 * F_SETOWN with our pgid.  The proctree lock ensures that
 	 * new sigio structures will not be added after this point.
 	 */
 	funsetownlst(&pgrp->pg_sigiolst);
 
 	PGRP_LOCK(pgrp);
 	tp = pgrp->pg_session->s_ttyp;
 	LIST_REMOVE(pgrp, pg_hash);
 	savesess = pgrp->pg_session;
 	PGRP_UNLOCK(pgrp);
 
 	/* Remove the reference to the pgrp before deallocating it. */
 	if (tp != NULL) {
 		tty_lock(tp);
 		tty_rel_pgrp(tp, pgrp);
 	}
 
 	proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
 	uma_zfree(pgrp_zone, pgrp);
 	sess_release(savesess);
 }
 
 
 static void
 fixjobc_kill(struct proc *p)
 {
 	struct proc *q;
 	struct pgrp *pgrp;
 
 	sx_assert(&proctree_lock, SX_LOCKED);
 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 	pgrp = p->p_pgrp;
 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
 
 	/*
 	 * p no longer affects process group orphanage for children.
 	 * It is marked by the flag because p is only physically
 	 * removed from its process group on wait(2).
 	 */
 	MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
 	p->p_treeflag |= P_TREE_GRPEXITED;
 
 	/*
 	 * Check if exiting p orphans its own group.
 	 */
 	pgrp = p->p_pgrp;
 	if (isjobproc(jobc_parent(p, NULL), pgrp)) {
 		PGRP_LOCK(pgrp);
 		if (pgrp_calc_jobc(pgrp) == 0)
 			orphanpg(pgrp);
 		PGRP_UNLOCK(pgrp);
 	}
 
 	/*
 	 * Check this process' children to see whether they qualify
 	 * their process groups after reparenting to reaper.
 	 */
 	LIST_FOREACH(q, &p->p_children, p_sibling) {
 		pgrp = q->p_pgrp;
 		PGRP_LOCK(pgrp);
 		if (pgrp_calc_jobc(pgrp) == 0) {
 			/*
 			 * We want to handle exactly the children that
 			 * has p as realparent.  Then, when calculating
 			 * jobc_parent for children, we should ignore
 			 * P_TREE_GRPEXITED flag already set on p.
 			 */
 			if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
 				orphanpg(pgrp);
 		} else
 			pgrp->pg_flags &= ~PGRP_ORPHANED;
 		PGRP_UNLOCK(pgrp);
 	}
 	LIST_FOREACH(q, &p->p_orphans, p_orphan) {
 		pgrp = q->p_pgrp;
 		PGRP_LOCK(pgrp);
 		if (pgrp_calc_jobc(pgrp) == 0) {
 			if (isjobproc(p, pgrp))
 				orphanpg(pgrp);
 		} else
 			pgrp->pg_flags &= ~PGRP_ORPHANED;
 		PGRP_UNLOCK(pgrp);
 	}
 }
 
 void
 killjobc(void)
 {
 	struct session *sp;
 	struct tty *tp;
 	struct proc *p;
 	struct vnode *ttyvp;
 
 	p = curproc;
 	MPASS(p->p_flag & P_WEXIT);
 	sx_assert(&proctree_lock, SX_LOCKED);
 
 	if (SESS_LEADER(p)) {
 		sp = p->p_session;
 
 		/*
 		 * s_ttyp is not zero'd; we use this to indicate that
 		 * the session once had a controlling terminal. (for
 		 * logging and informational purposes)
 		 */
 		SESS_LOCK(sp);
 		ttyvp = sp->s_ttyvp;
 		tp = sp->s_ttyp;
 		sp->s_ttyvp = NULL;
 		sp->s_ttydp = NULL;
 		sp->s_leader = NULL;
 		SESS_UNLOCK(sp);
 
 		/*
 		 * Signal foreground pgrp and revoke access to
 		 * controlling terminal if it has not been revoked
 		 * already.
 		 *
 		 * Because the TTY may have been revoked in the mean
 		 * time and could already have a new session associated
 		 * with it, make sure we don't send a SIGHUP to a
 		 * foreground process group that does not belong to this
 		 * session.
 		 */
 
 		if (tp != NULL) {
 			tty_lock(tp);
 			if (tp->t_session == sp)
 				tty_signal_pgrp(tp, SIGHUP);
 			tty_unlock(tp);
 		}
 
 		if (ttyvp != NULL) {
 			sx_xunlock(&proctree_lock);
 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
 				VOP_REVOKE(ttyvp, REVOKEALL);
 				VOP_UNLOCK(ttyvp);
 			}
 			devfs_ctty_unref(ttyvp);
 			sx_xlock(&proctree_lock);
 		}
 	}
 	fixjobc_kill(p);
 }
 
 /*
  * A process group has become orphaned, mark it as such for signal
  * delivery code.  If there are any stopped processes in the group,
  * hang-up all process in that group.
  */
 static void
 orphanpg(struct pgrp *pg)
 {
 	struct proc *p;
 
 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
 
 	pg->pg_flags |= PGRP_ORPHANED;
 
 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
 		PROC_LOCK(p);
 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
 			PROC_UNLOCK(p);
 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
 				PROC_LOCK(p);
 				kern_psignal(p, SIGHUP);
 				kern_psignal(p, SIGCONT);
 				PROC_UNLOCK(p);
 			}
 			return;
 		}
 		PROC_UNLOCK(p);
 	}
 }
 
 void
 sess_hold(struct session *s)
 {
 
 	refcount_acquire(&s->s_count);
 }
 
 void
 sess_release(struct session *s)
 {
 
 	if (refcount_release(&s->s_count)) {
 		if (s->s_ttyp != NULL) {
 			tty_lock(s->s_ttyp);
 			tty_rel_sess(s->s_ttyp, s);
 		}
 		proc_id_clear(PROC_ID_SESSION, s->s_sid);
 		mtx_destroy(&s->s_mtx);
 		free(s, M_SESSION);
 	}
 }
 
 #ifdef DDB
 
 static void
 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
 {
 	db_printf(
 	    "    pid %d at %p pr %d pgrp %p e %d jc %d\n",
 	    p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
 	    p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
 	    p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
 }
 
 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
 {
 	struct pgrp *pgrp;
 	struct proc *p;
 	int i;
 
 	for (i = 0; i <= pgrphash; i++) {
 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
 			db_printf("indx %d\n", i);
 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
 				db_printf(
 			"  pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
 				    pgrp, (int)pgrp->pg_id, pgrp->pg_session,
 				    pgrp->pg_session->s_count,
 				    LIST_FIRST(&pgrp->pg_members));
 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
 					db_print_pgrp_one(pgrp, p);
 			}
 		}
 	}
 }
 #endif /* DDB */
 
 /*
  * Calculate the kinfo_proc members which contain process-wide
  * informations.
  * Must be called with the target process locked.
  */
 static void
 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
 {
 	struct thread *td;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	kp->ki_estcpu = 0;
 	kp->ki_pctcpu = 0;
 	FOREACH_THREAD_IN_PROC(p, td) {
 		thread_lock(td);
 		kp->ki_pctcpu += sched_pctcpu(td);
 		kp->ki_estcpu += sched_estcpu(td);
 		thread_unlock(td);
 	}
 }
 
 /*
  * Fill in any information that is common to all threads in the process.
  * Must be called with the target process locked.
  */
 static void
 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
 {
 	struct thread *td0;
 	struct ucred *cred;
 	struct sigacts *ps;
 	struct timeval boottime;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	kp->ki_structsize = sizeof(*kp);
 	kp->ki_paddr = p;
 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
 	kp->ki_args = p->p_args;
 	kp->ki_textvp = p->p_textvp;
 #ifdef KTRACE
 	kp->ki_tracep = ktr_get_tracevp(p, false);
 	kp->ki_traceflag = p->p_traceflag;
 #endif
 	kp->ki_fd = p->p_fd;
 	kp->ki_pd = p->p_pd;
 	kp->ki_vmspace = p->p_vmspace;
 	kp->ki_flag = p->p_flag;
 	kp->ki_flag2 = p->p_flag2;
 	cred = p->p_ucred;
 	if (cred) {
 		kp->ki_uid = cred->cr_uid;
 		kp->ki_ruid = cred->cr_ruid;
 		kp->ki_svuid = cred->cr_svuid;
 		kp->ki_cr_flags = 0;
 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
 		/* XXX bde doesn't like KI_NGROUPS */
 		if (cred->cr_ngroups > KI_NGROUPS) {
 			kp->ki_ngroups = KI_NGROUPS;
 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
 		} else
 			kp->ki_ngroups = cred->cr_ngroups;
 		bcopy(cred->cr_groups, kp->ki_groups,
 		    kp->ki_ngroups * sizeof(gid_t));
 		kp->ki_rgid = cred->cr_rgid;
 		kp->ki_svgid = cred->cr_svgid;
 		/* If jailed(cred), emulate the old P_JAILED flag. */
 		if (jailed(cred)) {
 			kp->ki_flag |= P_JAILED;
 			/* If inside the jail, use 0 as a jail ID. */
 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
 				kp->ki_jid = cred->cr_prison->pr_id;
 		}
 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
 		    sizeof(kp->ki_loginclass));
 	}
 	ps = p->p_sigacts;
 	if (ps) {
 		mtx_lock(&ps->ps_mtx);
 		kp->ki_sigignore = ps->ps_sigignore;
 		kp->ki_sigcatch = ps->ps_sigcatch;
 		mtx_unlock(&ps->ps_mtx);
 	}
 	if (p->p_state != PRS_NEW &&
 	    p->p_state != PRS_ZOMBIE &&
 	    p->p_vmspace != NULL) {
 		struct vmspace *vm = p->p_vmspace;
 
 		kp->ki_size = vm->vm_map.size;
 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
 		FOREACH_THREAD_IN_PROC(p, td0)
 			kp->ki_rssize += td0->td_kstack_pages;
 		kp->ki_swrss = vm->vm_swrss;
 		kp->ki_tsize = vm->vm_tsize;
 		kp->ki_dsize = vm->vm_dsize;
 		kp->ki_ssize = vm->vm_ssize;
 	} else if (p->p_state == PRS_ZOMBIE)
 		kp->ki_stat = SZOMB;
 	kp->ki_sflag = PS_INMEM;
 	/* Calculate legacy swtime as seconds since 'swtick'. */
 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
 	kp->ki_pid = p->p_pid;
 	kp->ki_nice = p->p_nice;
 	kp->ki_fibnum = p->p_fibnum;
 	kp->ki_start = p->p_stats->p_start;
 	getboottime(&boottime);
 	timevaladd(&kp->ki_start, &boottime);
 	PROC_STATLOCK(p);
 	rufetch(p, &kp->ki_rusage);
 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
 	PROC_STATUNLOCK(p);
 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
 	/* Some callers want child times in a single value. */
 	kp->ki_childtime = kp->ki_childstime;
 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
 
 	FOREACH_THREAD_IN_PROC(p, td0)
 		kp->ki_cow += td0->td_cow;
 
 	if (p->p_comm[0] != '\0')
 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
 	    p->p_sysent->sv_name[0] != '\0')
 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
 	kp->ki_siglist = p->p_siglist;
 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
 	kp->ki_acflag = p->p_acflag;
 	kp->ki_lock = p->p_lock;
 	if (p->p_pptr) {
 		kp->ki_ppid = p->p_oppid;
 		if (p->p_flag & P_TRACED)
 			kp->ki_tracer = p->p_pptr->p_pid;
 	}
 }
 
 /*
  * Fill job-related process information.
  */
 static void
 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
 {
 	struct tty *tp;
 	struct session *sp;
 	struct pgrp *pgrp;
 
 	sx_assert(&proctree_lock, SA_LOCKED);
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	pgrp = p->p_pgrp;
 	if (pgrp == NULL)
 		return;
 
 	kp->ki_pgid = pgrp->pg_id;
 	kp->ki_jobc = pgrp_calc_jobc(pgrp);
 
 	sp = pgrp->pg_session;
 	tp = NULL;
 
 	if (sp != NULL) {
 		kp->ki_sid = sp->s_sid;
 		SESS_LOCK(sp);
 		strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
 		if (sp->s_ttyvp)
 			kp->ki_kiflag |= KI_CTTY;
 		if (SESS_LEADER(p))
 			kp->ki_kiflag |= KI_SLEADER;
 		tp = sp->s_ttyp;
 		SESS_UNLOCK(sp);
 	}
 
 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
 		kp->ki_tdev = tty_udev(tp);
 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
 		if (tp->t_session)
 			kp->ki_tsid = tp->t_session->s_sid;
 	} else {
 		kp->ki_tdev = NODEV;
 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
 	}
 }
 
 /*
  * Fill in information that is thread specific.  Must be called with
  * target process locked.  If 'preferthread' is set, overwrite certain
  * process-related fields that are maintained for both threads and
  * processes.
  */
 static void
 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
 {
 	struct proc *p;
 
 	p = td->td_proc;
 	kp->ki_tdaddr = td;
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	if (preferthread)
 		PROC_STATLOCK(p);
 	thread_lock(td);
 	if (td->td_wmesg != NULL)
 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
 	else
 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
 	    sizeof(kp->ki_tdname)) {
 		strlcpy(kp->ki_moretdname,
 		    td->td_name + sizeof(kp->ki_tdname) - 1,
 		    sizeof(kp->ki_moretdname));
 	} else {
 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
 	}
 	if (TD_ON_LOCK(td)) {
 		kp->ki_kiflag |= KI_LOCKBLOCK;
 		strlcpy(kp->ki_lockname, td->td_lockname,
 		    sizeof(kp->ki_lockname));
 	} else {
 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
 	}
 
 	if (p->p_state == PRS_NORMAL) { /* approximate. */
 		if (TD_ON_RUNQ(td) ||
 		    TD_CAN_RUN(td) ||
 		    TD_IS_RUNNING(td)) {
 			kp->ki_stat = SRUN;
 		} else if (P_SHOULDSTOP(p)) {
 			kp->ki_stat = SSTOP;
 		} else if (TD_IS_SLEEPING(td)) {
 			kp->ki_stat = SSLEEP;
 		} else if (TD_ON_LOCK(td)) {
 			kp->ki_stat = SLOCK;
 		} else {
 			kp->ki_stat = SWAIT;
 		}
 	} else if (p->p_state == PRS_ZOMBIE) {
 		kp->ki_stat = SZOMB;
 	} else {
 		kp->ki_stat = SIDL;
 	}
 
 	/* Things in the thread */
 	kp->ki_wchan = td->td_wchan;
 	kp->ki_pri.pri_level = td->td_priority;
 	kp->ki_pri.pri_native = td->td_base_pri;
 
 	/*
 	 * Note: legacy fields; clamp at the old NOCPU value and/or
 	 * the maximum u_char CPU value.
 	 */
 	if (td->td_lastcpu == NOCPU)
 		kp->ki_lastcpu_old = NOCPU_OLD;
 	else if (td->td_lastcpu > MAXCPU_OLD)
 		kp->ki_lastcpu_old = MAXCPU_OLD;
 	else
 		kp->ki_lastcpu_old = td->td_lastcpu;
 
 	if (td->td_oncpu == NOCPU)
 		kp->ki_oncpu_old = NOCPU_OLD;
 	else if (td->td_oncpu > MAXCPU_OLD)
 		kp->ki_oncpu_old = MAXCPU_OLD;
 	else
 		kp->ki_oncpu_old = td->td_oncpu;
 
 	kp->ki_lastcpu = td->td_lastcpu;
 	kp->ki_oncpu = td->td_oncpu;
 	kp->ki_tdflags = td->td_flags;
 	kp->ki_tid = td->td_tid;
 	kp->ki_numthreads = p->p_numthreads;
 	kp->ki_pcb = td->td_pcb;
 	kp->ki_kstack = (void *)td->td_kstack;
 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
 	kp->ki_pri.pri_class = td->td_pri_class;
 	kp->ki_pri.pri_user = td->td_user_pri;
 
 	if (preferthread) {
 		rufetchtd(td, &kp->ki_rusage);
 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
 		kp->ki_pctcpu = sched_pctcpu(td);
 		kp->ki_estcpu = sched_estcpu(td);
 		kp->ki_cow = td->td_cow;
 	}
 
 	/* We can't get this anymore but ps etc never used it anyway. */
 	kp->ki_rqindex = 0;
 
 	if (preferthread)
 		kp->ki_siglist = td->td_siglist;
 	kp->ki_sigmask = td->td_sigmask;
 	thread_unlock(td);
 	if (preferthread)
 		PROC_STATUNLOCK(p);
 }
 
 /*
  * Fill in a kinfo_proc structure for the specified process.
  * Must be called with the target process locked.
  */
 void
 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 {
 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 
 	bzero(kp, sizeof(*kp));
 
 	fill_kinfo_proc_pgrp(p,kp);
 	fill_kinfo_proc_only(p, kp);
 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 	fill_kinfo_aggregate(p, kp);
 }
 
 struct pstats *
 pstats_alloc(void)
 {
 
 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 }
 
 /*
  * Copy parts of p_stats; zero the rest of p_stats (statistics).
  */
 void
 pstats_fork(struct pstats *src, struct pstats *dst)
 {
 
 	bzero(&dst->pstat_startzero,
 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 }
 
 void
 pstats_free(struct pstats *ps)
 {
 
 	free(ps, M_SUBPROC);
 }
 
 #ifdef COMPAT_FREEBSD32
 
 /*
  * This function is typically used to copy out the kernel address, so
  * it can be replaced by assignment of zero.
  */
 static inline uint32_t
 ptr32_trim(const void *ptr)
 {
 	uintptr_t uptr;
 
 	uptr = (uintptr_t)ptr;
 	return ((uptr > UINT_MAX) ? 0 : uptr);
 }
 
 #define PTRTRIM_CP(src,dst,fld) \
 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
 
 static void
 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 {
 	int i;
 
 	bzero(ki32, sizeof(struct kinfo_proc32));
 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
 	CP(*ki, *ki32, ki_layout);
 	PTRTRIM_CP(*ki, *ki32, ki_args);
 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
 	PTRTRIM_CP(*ki, *ki32, ki_addr);
 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
 	PTRTRIM_CP(*ki, *ki32, ki_fd);
 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
 	CP(*ki, *ki32, ki_pid);
 	CP(*ki, *ki32, ki_ppid);
 	CP(*ki, *ki32, ki_pgid);
 	CP(*ki, *ki32, ki_tpgid);
 	CP(*ki, *ki32, ki_sid);
 	CP(*ki, *ki32, ki_tsid);
 	CP(*ki, *ki32, ki_jobc);
 	CP(*ki, *ki32, ki_tdev);
 	CP(*ki, *ki32, ki_tdev_freebsd11);
 	CP(*ki, *ki32, ki_siglist);
 	CP(*ki, *ki32, ki_sigmask);
 	CP(*ki, *ki32, ki_sigignore);
 	CP(*ki, *ki32, ki_sigcatch);
 	CP(*ki, *ki32, ki_uid);
 	CP(*ki, *ki32, ki_ruid);
 	CP(*ki, *ki32, ki_svuid);
 	CP(*ki, *ki32, ki_rgid);
 	CP(*ki, *ki32, ki_svgid);
 	CP(*ki, *ki32, ki_ngroups);
 	for (i = 0; i < KI_NGROUPS; i++)
 		CP(*ki, *ki32, ki_groups[i]);
 	CP(*ki, *ki32, ki_size);
 	CP(*ki, *ki32, ki_rssize);
 	CP(*ki, *ki32, ki_swrss);
 	CP(*ki, *ki32, ki_tsize);
 	CP(*ki, *ki32, ki_dsize);
 	CP(*ki, *ki32, ki_ssize);
 	CP(*ki, *ki32, ki_xstat);
 	CP(*ki, *ki32, ki_acflag);
 	CP(*ki, *ki32, ki_pctcpu);
 	CP(*ki, *ki32, ki_estcpu);
 	CP(*ki, *ki32, ki_slptime);
 	CP(*ki, *ki32, ki_swtime);
 	CP(*ki, *ki32, ki_cow);
 	CP(*ki, *ki32, ki_runtime);
 	TV_CP(*ki, *ki32, ki_start);
 	TV_CP(*ki, *ki32, ki_childtime);
 	CP(*ki, *ki32, ki_flag);
 	CP(*ki, *ki32, ki_kiflag);
 	CP(*ki, *ki32, ki_traceflag);
 	CP(*ki, *ki32, ki_stat);
 	CP(*ki, *ki32, ki_nice);
 	CP(*ki, *ki32, ki_lock);
 	CP(*ki, *ki32, ki_rqindex);
 	CP(*ki, *ki32, ki_oncpu);
 	CP(*ki, *ki32, ki_lastcpu);
 
 	/* XXX TODO: wrap cpu value as appropriate */
 	CP(*ki, *ki32, ki_oncpu_old);
 	CP(*ki, *ki32, ki_lastcpu_old);
 
 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
 	CP(*ki, *ki32, ki_tracer);
 	CP(*ki, *ki32, ki_flag2);
 	CP(*ki, *ki32, ki_fibnum);
 	CP(*ki, *ki32, ki_cr_flags);
 	CP(*ki, *ki32, ki_jid);
 	CP(*ki, *ki32, ki_numthreads);
 	CP(*ki, *ki32, ki_tid);
 	CP(*ki, *ki32, ki_pri);
 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
 	PTRTRIM_CP(*ki, *ki32, ki_udata);
 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
 	CP(*ki, *ki32, ki_sflag);
 	CP(*ki, *ki32, ki_tdflags);
 }
 #endif
 
 static ssize_t
 kern_proc_out_size(struct proc *p, int flags)
 {
 	ssize_t size = 0;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
 #ifdef COMPAT_FREEBSD32
 		if ((flags & KERN_PROC_MASK32) != 0) {
 			size += sizeof(struct kinfo_proc32);
 		} else
 #endif
 			size += sizeof(struct kinfo_proc);
 	} else {
 #ifdef COMPAT_FREEBSD32
 		if ((flags & KERN_PROC_MASK32) != 0)
 			size += sizeof(struct kinfo_proc32) * p->p_numthreads;
 		else
 #endif
 			size += sizeof(struct kinfo_proc) * p->p_numthreads;
 	}
 	PROC_UNLOCK(p);
 	return (size);
 }
 
 int
 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 {
 	struct thread *td;
 	struct kinfo_proc ki;
 #ifdef COMPAT_FREEBSD32
 	struct kinfo_proc32 ki32;
 #endif
 	int error;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 
 	error = 0;
 	fill_kinfo_proc(p, &ki);
 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
 #ifdef COMPAT_FREEBSD32
 		if ((flags & KERN_PROC_MASK32) != 0) {
 			freebsd32_kinfo_proc_out(&ki, &ki32);
 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 				error = ENOMEM;
 		} else
 #endif
 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 				error = ENOMEM;
 	} else {
 		FOREACH_THREAD_IN_PROC(p, td) {
 			fill_kinfo_thread(td, &ki, 1);
 #ifdef COMPAT_FREEBSD32
 			if ((flags & KERN_PROC_MASK32) != 0) {
 				freebsd32_kinfo_proc_out(&ki, &ki32);
 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 					error = ENOMEM;
 			} else
 #endif
 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 					error = ENOMEM;
 			if (error != 0)
 				break;
 		}
 	}
 	PROC_UNLOCK(p);
 	return (error);
 }
 
 static int
 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
 {
 	struct sbuf sb;
 	struct kinfo_proc ki;
 	int error, error2;
 
 	if (req->oldptr == NULL)
 		return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
 
 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = kern_proc_out(p, &sb, flags);
 	error2 = sbuf_finish(&sb);
 	sbuf_delete(&sb);
 	if (error != 0)
 		return (error);
 	else if (error2 != 0)
 		return (error2);
 	return (0);
 }
 
 int
 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
 {
 	struct proc *p;
 	int error, i, j;
 
 	for (i = 0; i < pidhashlock + 1; i++) {
 		sx_slock(&proctree_lock);
 		sx_slock(&pidhashtbl_lock[i]);
 		for (j = i; j <= pidhash; j += pidhashlock + 1) {
 			LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
 				if (p->p_state == PRS_NEW)
 					continue;
 				error = cb(p, cbarg);
 				PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 				if (error != 0) {
 					sx_sunlock(&pidhashtbl_lock[i]);
 					sx_sunlock(&proctree_lock);
 					return (error);
 				}
 			}
 		}
 		sx_sunlock(&pidhashtbl_lock[i]);
 		sx_sunlock(&proctree_lock);
 	}
 	return (0);
 }
 
 struct kern_proc_out_args {
 	struct sysctl_req *req;
 	int flags;
 	int oid_number;
 	int *name;
 };
 
 static int
 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
 {
 	struct kern_proc_out_args *arg = origarg;
 	int *name = arg->name;
 	int oid_number = arg->oid_number;
 	int flags = arg->flags;
 	struct sysctl_req *req = arg->req;
 	int error = 0;
 
 	PROC_LOCK(p);
 
 	KASSERT(p->p_ucred != NULL,
 	    ("process credential is NULL for non-NEW proc"));
 	/*
 	 * Show a user only appropriate processes.
 	 */
 	if (p_cansee(curthread, p))
 		goto skip;
 	/*
 	 * TODO - make more efficient (see notes below).
 	 * do by session.
 	 */
 	switch (oid_number) {
 	case KERN_PROC_GID:
 		if (p->p_ucred->cr_gid != (gid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_PGRP:
 		/* could do this by traversing pgrp */
 		if (p->p_pgrp == NULL ||
 		    p->p_pgrp->pg_id != (pid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_RGID:
 		if (p->p_ucred->cr_rgid != (gid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_SESSION:
 		if (p->p_session == NULL ||
 		    p->p_session->s_sid != (pid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_TTY:
 		if ((p->p_flag & P_CONTROLT) == 0 ||
 		    p->p_session == NULL)
 			goto skip;
 		/* XXX proctree_lock */
 		SESS_LOCK(p->p_session);
 		if (p->p_session->s_ttyp == NULL ||
 		    tty_udev(p->p_session->s_ttyp) !=
 		    (dev_t)name[0]) {
 			SESS_UNLOCK(p->p_session);
 			goto skip;
 		}
 		SESS_UNLOCK(p->p_session);
 		break;
 
 	case KERN_PROC_UID:
 		if (p->p_ucred->cr_uid != (uid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_RUID:
 		if (p->p_ucred->cr_ruid != (uid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_PROC:
 		break;
 
 	default:
 		break;
 	}
 	error = sysctl_out_proc(p, req, flags);
 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 	return (error);
 skip:
 	PROC_UNLOCK(p);
 	return (0);
 }
 
 static int
 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 {
 	struct kern_proc_out_args iterarg;
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	int flags, oid_number;
 	int error = 0;
 
 	oid_number = oidp->oid_number;
 	if (oid_number != KERN_PROC_ALL &&
 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
 		flags = KERN_PROC_NOTHREADS;
 	else {
 		flags = 0;
 		oid_number &= ~KERN_PROC_INC_THREAD;
 	}
 #ifdef COMPAT_FREEBSD32
 	if (req->flags & SCTL_MASK32)
 		flags |= KERN_PROC_MASK32;
 #endif
 	if (oid_number == KERN_PROC_PID) {
 		if (namelen != 1)
 			return (EINVAL);
 		error = sysctl_wire_old_buffer(req, 0);
 		if (error)
 			return (error);
 		sx_slock(&proctree_lock);
 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
 		if (error == 0)
 			error = sysctl_out_proc(p, req, flags);
 		sx_sunlock(&proctree_lock);
 		return (error);
 	}
 
 	switch (oid_number) {
 	case KERN_PROC_ALL:
 		if (namelen != 0)
 			return (EINVAL);
 		break;
 	case KERN_PROC_PROC:
 		if (namelen != 0 && namelen != 1)
 			return (EINVAL);
 		break;
 	default:
 		if (namelen != 1)
 			return (EINVAL);
 		break;
 	}
 
 	if (req->oldptr == NULL) {
 		/* overestimate by 5 procs */
 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 		if (error)
 			return (error);
 	} else {
 		error = sysctl_wire_old_buffer(req, 0);
 		if (error != 0)
 			return (error);
 	}
 	iterarg.flags = flags;
 	iterarg.oid_number = oid_number;
 	iterarg.req = req;
 	iterarg.name = name;
 	error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
 	return (error);
 }
 
 struct pargs *
 pargs_alloc(int len)
 {
 	struct pargs *pa;
 
 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 		M_WAITOK);
 	refcount_init(&pa->ar_ref, 1);
 	pa->ar_length = len;
 	return (pa);
 }
 
 static void
 pargs_free(struct pargs *pa)
 {
 
 	free(pa, M_PARGS);
 }
 
 void
 pargs_hold(struct pargs *pa)
 {
 
 	if (pa == NULL)
 		return;
 	refcount_acquire(&pa->ar_ref);
 }
 
 void
 pargs_drop(struct pargs *pa)
 {
 
 	if (pa == NULL)
 		return;
 	if (refcount_release(&pa->ar_ref))
 		pargs_free(pa);
 }
 
 static int
 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
     size_t len)
 {
 	ssize_t n;
 
 	/*
 	 * This may return a short read if the string is shorter than the chunk
 	 * and is aligned at the end of the page, and the following page is not
 	 * mapped.
 	 */
 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
 	if (n <= 0)
 		return (ENOMEM);
 	return (0);
 }
 
 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
 
 enum proc_vector_type {
 	PROC_ARG,
 	PROC_ENV,
 	PROC_AUX,
 };
 
 #ifdef COMPAT_FREEBSD32
 static int
 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
     size_t *vsizep, enum proc_vector_type type)
 {
 	struct freebsd32_ps_strings pss;
 	Elf32_Auxinfo aux;
 	vm_offset_t vptr, ptr;
 	uint32_t *proc_vector32;
 	char **proc_vector;
 	size_t vsize, size;
 	int i, error;
 
 	error = 0;
 	if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
 	    sizeof(pss))
 		return (ENOMEM);
 	switch (type) {
 	case PROC_ARG:
 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 		vsize = pss.ps_nargvstr;
 		if (vsize > ARG_MAX)
 			return (ENOEXEC);
 		size = vsize * sizeof(int32_t);
 		break;
 	case PROC_ENV:
 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 		vsize = pss.ps_nenvstr;
 		if (vsize > ARG_MAX)
 			return (ENOEXEC);
 		size = vsize * sizeof(int32_t);
 		break;
 	case PROC_AUX:
 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
 		if (vptr % 4 != 0)
 			return (ENOEXEC);
 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 			    sizeof(aux))
 				return (ENOMEM);
 			if (aux.a_type == AT_NULL)
 				break;
 			ptr += sizeof(aux);
 		}
 		if (aux.a_type != AT_NULL)
 			return (ENOEXEC);
 		vsize = i + 1;
 		size = vsize * sizeof(aux);
 		break;
 	default:
 		KASSERT(0, ("Wrong proc vector type: %d", type));
 		return (EINVAL);
 	}
 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
 		error = ENOMEM;
 		goto done;
 	}
 	if (type == PROC_AUX) {
 		*proc_vectorp = (char **)proc_vector32;
 		*vsizep = vsize;
 		return (0);
 	}
 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 	for (i = 0; i < (int)vsize; i++)
 		proc_vector[i] = PTRIN(proc_vector32[i]);
 	*proc_vectorp = proc_vector;
 	*vsizep = vsize;
 done:
 	free(proc_vector32, M_TEMP);
 	return (error);
 }
 #endif
 
 static int
 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
     size_t *vsizep, enum proc_vector_type type)
 {
 	struct ps_strings pss;
 	Elf_Auxinfo aux;
 	vm_offset_t vptr, ptr;
 	char **proc_vector;
 	size_t vsize, size;
 	int i;
 
 #ifdef COMPAT_FREEBSD32
 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 #endif
 	if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
 	    sizeof(pss))
 		return (ENOMEM);
 	switch (type) {
 	case PROC_ARG:
 		vptr = (vm_offset_t)pss.ps_argvstr;
 		vsize = pss.ps_nargvstr;
 		if (vsize > ARG_MAX)
 			return (ENOEXEC);
 		size = vsize * sizeof(char *);
 		break;
 	case PROC_ENV:
 		vptr = (vm_offset_t)pss.ps_envstr;
 		vsize = pss.ps_nenvstr;
 		if (vsize > ARG_MAX)
 			return (ENOEXEC);
 		size = vsize * sizeof(char *);
 		break;
 	case PROC_AUX:
 		/*
 		 * The aux array is just above env array on the stack. Check
 		 * that the address is naturally aligned.
 		 */
 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 		    * sizeof(char *);
 #if __ELF_WORD_SIZE == 64
 		if (vptr % sizeof(uint64_t) != 0)
 #else
 		if (vptr % sizeof(uint32_t) != 0)
 #endif
 			return (ENOEXEC);
 		/*
 		 * We count the array size reading the aux vectors from the
 		 * stack until AT_NULL vector is returned.  So (to keep the code
 		 * simple) we read the process stack twice: the first time here
 		 * to find the size and the second time when copying the vectors
 		 * to the allocated proc_vector.
 		 */
 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 			    sizeof(aux))
 				return (ENOMEM);
 			if (aux.a_type == AT_NULL)
 				break;
 			ptr += sizeof(aux);
 		}
 		/*
 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
 		 * not reached AT_NULL, it is most likely we are reading wrong
 		 * data: either the process doesn't have auxv array or data has
 		 * been modified. Return the error in this case.
 		 */
 		if (aux.a_type != AT_NULL)
 			return (ENOEXEC);
 		vsize = i + 1;
 		size = vsize * sizeof(aux);
 		break;
 	default:
 		KASSERT(0, ("Wrong proc vector type: %d", type));
 		return (EINVAL); /* In case we are built without INVARIANTS. */
 	}
 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
 		free(proc_vector, M_TEMP);
 		return (ENOMEM);
 	}
 	*proc_vectorp = proc_vector;
 	*vsizep = vsize;
 
 	return (0);
 }
 
 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
 
 static int
 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
     enum proc_vector_type type)
 {
 	size_t done, len, nchr, vsize;
 	int error, i;
 	char **proc_vector, *sptr;
 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 
 	PROC_ASSERT_HELD(p);
 
 	/*
 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 	 */
 	nchr = 2 * (PATH_MAX + ARG_MAX);
 
 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 	if (error != 0)
 		return (error);
 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 		/*
 		 * The program may have scribbled into its argv array, e.g. to
 		 * remove some arguments.  If that has happened, break out
 		 * before trying to read from NULL.
 		 */
 		if (proc_vector[i] == NULL)
 			break;
 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 			error = proc_read_string(td, p, sptr, pss_string,
 			    sizeof(pss_string));
 			if (error != 0)
 				goto done;
 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 			if (done + len >= nchr)
 				len = nchr - done - 1;
 			sbuf_bcat(sb, pss_string, len);
 			if (len != GET_PS_STRINGS_CHUNK_SZ)
 				break;
 			done += GET_PS_STRINGS_CHUNK_SZ;
 		}
 		sbuf_bcat(sb, "", 1);
 		done += len + 1;
 	}
 done:
 	free(proc_vector, M_TEMP);
 	return (error);
 }
 
 int
 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 {
 
 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
 }
 
 int
 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 {
 
 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
 }
 
 int
 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 {
 	size_t vsize, size;
 	char **auxv;
 	int error;
 
 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 	if (error == 0) {
 #ifdef COMPAT_FREEBSD32
 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 			size = vsize * sizeof(Elf32_Auxinfo);
 		else
 #endif
 			size = vsize * sizeof(Elf_Auxinfo);
 		if (sbuf_bcat(sb, auxv, size) != 0)
 			error = ENOMEM;
 		free(auxv, M_TEMP);
 	}
 	return (error);
 }
 
 /*
  * This sysctl allows a process to retrieve the argument list or process
  * title for another process without groping around in the address space
  * of the other process.  It also allow a process to set its own "process 
  * title to a string of its own choice.
  */
 static int
 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct pargs *newpa, *pa;
 	struct proc *p;
 	struct sbuf sb;
 	int flags, error = 0, error2;
 	pid_t pid;
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	p = curproc;
 	pid = (pid_t)name[0];
 	if (pid == -1) {
 		pid = p->p_pid;
 	}
 
 	/*
 	 * If the query is for this process and it is single-threaded, there
 	 * is nobody to modify pargs, thus we can just read.
 	 */
 	if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
 	    (pa = p->p_args) != NULL)
 		return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
 
 	flags = PGET_CANSEE;
 	if (req->newptr != NULL)
 		flags |= PGET_ISCURRENT;
 	error = pget(pid, flags, &p);
 	if (error)
 		return (error);
 
 	pa = p->p_args;
 	if (pa != NULL) {
 		pargs_hold(pa);
 		PROC_UNLOCK(p);
 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 		pargs_drop(pa);
 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 		_PHOLD(p);
 		PROC_UNLOCK(p);
 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 		error = proc_getargv(curthread, p, &sb);
 		error2 = sbuf_finish(&sb);
 		PRELE(p);
 		sbuf_delete(&sb);
 		if (error == 0 && error2 != 0)
 			error = error2;
 	} else {
 		PROC_UNLOCK(p);
 	}
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 
 	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
 		return (ENOMEM);
 
 	if (req->newlen == 0) {
 		/*
 		 * Clear the argument pointer, so that we'll fetch arguments
 		 * with proc_getargv() until further notice.
 		 */
 		newpa = NULL;
 	} else {
 		newpa = pargs_alloc(req->newlen);
 		error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 		if (error != 0) {
 			pargs_free(newpa);
 			return (error);
 		}
 	}
 	PROC_LOCK(p);
 	pa = p->p_args;
 	p->p_args = newpa;
 	PROC_UNLOCK(p);
 	pargs_drop(pa);
 	return (0);
 }
 
 /*
  * This sysctl allows a process to retrieve environment of another process.
  */
 static int
 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	struct sbuf sb;
 	int error, error2;
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 	if (error != 0)
 		return (error);
 	if ((p->p_flag & P_SYSTEM) != 0) {
 		PRELE(p);
 		return (0);
 	}
 
 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = proc_getenvv(curthread, p, &sb);
 	error2 = sbuf_finish(&sb);
 	PRELE(p);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 /*
  * This sysctl allows a process to retrieve ELF auxiliary vector of
  * another process.
  */
 static int
 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	struct sbuf sb;
 	int error, error2;
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 	if (error != 0)
 		return (error);
 	if ((p->p_flag & P_SYSTEM) != 0) {
 		PRELE(p);
 		return (0);
 	}
 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = proc_getauxv(curthread, p, &sb);
 	error2 = sbuf_finish(&sb);
 	PRELE(p);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 /*
  * Look up the canonical executable path running in the specified process.
  * It tries to return the same hardlink name as was used for execve(2).
  * This allows the programs that modify their behavior based on their progname,
  * to operate correctly.
  *
  * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
  *   calling conventions.
  * binname is a pointer to temporary string buffer of length MAXPATHLEN,
  *   allocated and freed by caller.
  * freebuf should be freed by caller, from the M_TEMP malloc type.
  */
 int
 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
     char **freebuf)
 {
 	struct nameidata nd;
 	struct vnode *vp, *dvp;
 	size_t freepath_size;
 	int error;
 	bool do_fullpath;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	vp = p->p_textvp;
 	if (vp == NULL) {
 		PROC_UNLOCK(p);
 		*retbuf = "";
 		*freebuf = NULL;
 		return (0);
 	}
 	vref(vp);
 	dvp = p->p_textdvp;
 	if (dvp != NULL)
 		vref(dvp);
 	if (p->p_binname != NULL)
 		strlcpy(binname, p->p_binname, MAXPATHLEN);
 	PROC_UNLOCK(p);
 
 	do_fullpath = true;
 	*freebuf = NULL;
 	if (dvp != NULL && binname[0] != '\0') {
 		freepath_size = MAXPATHLEN;
 		if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
 		    retbuf, freebuf, &freepath_size) == 0) {
 			/*
 			 * Recheck the looked up path.  The binary
 			 * might have been renamed or replaced, in
 			 * which case we should not report old name.
 			 */
 			NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
 			error = namei(&nd);
 			if (error == 0) {
 				if (nd.ni_vp == vp)
 					do_fullpath = false;
 				vrele(nd.ni_vp);
 				NDFREE_PNBUF(&nd);
 			}
 		}
 	}
 	if (do_fullpath) {
 		free(*freebuf, M_TEMP);
 		*freebuf = NULL;
 		error = vn_fullpath(vp, retbuf, freebuf);
 	}
 	vrele(vp);
 	if (dvp != NULL)
 		vrele(dvp);
 	return (error);
 }
 
 /*
  * This sysctl allows a process to retrieve the path of the executable for
  * itself or another process.
  */
 static int
 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 {
 	pid_t *pidp = (pid_t *)arg1;
 	unsigned int arglen = arg2;
 	struct proc *p;
 	char *retbuf, *freebuf, *binname;
 	int error;
 
 	if (arglen != 1)
 		return (EINVAL);
 	binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
 	binname[0] = '\0';
 	if (*pidp == -1) {	/* -1 means this process */
 		error = 0;
 		p = req->td->td_proc;
 		PROC_LOCK(p);
 	} else {
 		error = pget(*pidp, PGET_CANSEE, &p);
 	}
 
 	if (error == 0)
 		error = proc_get_binpath(p, binname, &retbuf, &freebuf);
 	free(binname, M_TEMP);
 	if (error != 0)
 		return (error);
 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 	free(freebuf, M_TEMP);
 	return (error);
 }
 
 static int
 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 {
 	struct proc *p;
 	char *sv_name;
 	int *name;
 	int namelen;
 	int error;
 
 	namelen = arg2;
 	if (namelen != 1)
 		return (EINVAL);
 
 	name = (int *)arg1;
 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
 	if (error != 0)
 		return (error);
 	sv_name = p->p_sysent->sv_name;
 	PROC_UNLOCK(p);
 	return (sysctl_handle_string(oidp, sv_name, 0, req));
 }
 
 #ifdef KINFO_OVMENTRY_SIZE
 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 #endif
 
 #ifdef COMPAT_FREEBSD7
 static int
 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 {
 	vm_map_entry_t entry, tmp_entry;
 	unsigned int last_timestamp, namelen;
 	char *fullpath, *freepath;
 	struct kinfo_ovmentry *kve;
 	struct vattr va;
 	struct ucred *cred;
 	int error, *name;
 	struct vnode *vp;
 	struct proc *p;
 	vm_map_t map;
 	struct vmspace *vm;
 
 	namelen = arg2;
 	if (namelen != 1)
 		return (EINVAL);
 
 	name = (int *)arg1;
 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 	if (error != 0)
 		return (error);
 	vm = vmspace_acquire_ref(p);
 	if (vm == NULL) {
 		PRELE(p);
 		return (ESRCH);
 	}
 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 
 	map = &vm->vm_map;
 	vm_map_lock_read(map);
 	VM_MAP_ENTRY_FOREACH(entry, map) {
 		vm_object_t obj, tobj, lobj;
 		vm_offset_t addr;
 
 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 			continue;
 
 		bzero(kve, sizeof(*kve));
 		kve->kve_structsize = sizeof(*kve);
 
 		kve->kve_private_resident = 0;
 		obj = entry->object.vm_object;
 		if (obj != NULL) {
 			VM_OBJECT_RLOCK(obj);
 			if (obj->shadow_count == 1)
 				kve->kve_private_resident =
 				    obj->resident_page_count;
 		}
 		kve->kve_resident = 0;
 		addr = entry->start;
 		while (addr < entry->end) {
 			if (pmap_extract(map->pmap, addr))
 				kve->kve_resident++;
 			addr += PAGE_SIZE;
 		}
 
 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 			if (tobj != obj) {
 				VM_OBJECT_RLOCK(tobj);
 				kve->kve_offset += tobj->backing_object_offset;
 			}
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 			lobj = tobj;
 		}
 
 		kve->kve_start = (void*)entry->start;
 		kve->kve_end = (void*)entry->end;
 		kve->kve_offset += (off_t)entry->offset;
 
 		if (entry->protection & VM_PROT_READ)
 			kve->kve_protection |= KVME_PROT_READ;
 		if (entry->protection & VM_PROT_WRITE)
 			kve->kve_protection |= KVME_PROT_WRITE;
 		if (entry->protection & VM_PROT_EXECUTE)
 			kve->kve_protection |= KVME_PROT_EXEC;
 
 		if (entry->eflags & MAP_ENTRY_COW)
 			kve->kve_flags |= KVME_FLAG_COW;
 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 
 		last_timestamp = map->timestamp;
 		vm_map_unlock_read(map);
 
 		kve->kve_fileid = 0;
 		kve->kve_fsid = 0;
 		freepath = NULL;
 		fullpath = "";
 		if (lobj) {
 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
 			if (kve->kve_type == KVME_TYPE_MGTDEVICE)
 				kve->kve_type = KVME_TYPE_UNKNOWN;
 			if (vp != NULL)
 				vref(vp);
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 
 			kve->kve_ref_count = obj->ref_count;
 			kve->kve_shadow_count = obj->shadow_count;
 			VM_OBJECT_RUNLOCK(obj);
 			if (vp != NULL) {
 				vn_fullpath(vp, &fullpath, &freepath);
 				cred = curthread->td_ucred;
 				vn_lock(vp, LK_SHARED | LK_RETRY);
 				if (VOP_GETATTR(vp, &va, cred) == 0) {
 					kve->kve_fileid = va.va_fileid;
 					/* truncate */
 					kve->kve_fsid = va.va_fsid;
 				}
 				vput(vp);
 			}
 		} else {
 			kve->kve_type = KVME_TYPE_NONE;
 			kve->kve_ref_count = 0;
 			kve->kve_shadow_count = 0;
 		}
 
 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 		if (freepath != NULL)
 			free(freepath, M_TEMP);
 
 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
 		vm_map_lock_read(map);
 		if (error)
 			break;
 		if (last_timestamp != map->timestamp) {
 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 			entry = tmp_entry;
 		}
 	}
 	vm_map_unlock_read(map);
 	vmspace_free(vm);
 	PRELE(p);
 	free(kve, M_TEMP);
 	return (error);
 }
 #endif	/* COMPAT_FREEBSD7 */
 
 #ifdef KINFO_VMENTRY_SIZE
 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 #endif
 
 void
 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
     int *resident_count, bool *super)
 {
 	vm_object_t obj, tobj;
 	vm_page_t m, m_adv;
 	vm_offset_t addr;
 	vm_paddr_t pa;
 	vm_pindex_t pi, pi_adv, pindex;
 	int incore;
 
 	*super = false;
 	*resident_count = 0;
 	if (vmmap_skip_res_cnt)
 		return;
 
 	pa = 0;
 	obj = entry->object.vm_object;
 	addr = entry->start;
 	m_adv = NULL;
 	pi = OFF_TO_IDX(entry->offset);
 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
 		if (m_adv != NULL) {
 			m = m_adv;
 		} else {
 			pi_adv = atop(entry->end - addr);
 			pindex = pi;
 			for (tobj = obj;; tobj = tobj->backing_object) {
 				m = vm_page_find_least(tobj, pindex);
 				if (m != NULL) {
 					if (m->pindex == pindex)
 						break;
 					if (pi_adv > m->pindex - pindex) {
 						pi_adv = m->pindex - pindex;
 						m_adv = m;
 					}
 				}
 				if (tobj->backing_object == NULL)
 					goto next;
 				pindex += OFF_TO_IDX(tobj->
 				    backing_object_offset);
 			}
 		}
 		m_adv = NULL;
 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
 		    (addr & (pagesizes[1] - 1)) == 0 && (incore =
 		    pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
 			*super = true;
 			/*
 			 * The virtual page might be smaller than the physical
 			 * page, so we use the page size reported by the pmap
 			 * rather than m->psind.
 			 */
 			pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]);
 		} else {
 			/*
 			 * We do not test the found page on validity.
 			 * Either the page is busy and being paged in,
 			 * or it was invalidated.  The first case
 			 * should be counted as resident, the second
 			 * is not so clear; we do account both.
 			 */
 			pi_adv = 1;
 		}
 		*resident_count += pi_adv;
 next:;
 	}
 }
 
 /*
  * Must be called with the process locked and will return unlocked.
  */
 int
 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
 {
 	vm_map_entry_t entry, tmp_entry;
 	struct vattr va;
 	vm_map_t map;
 	vm_object_t lobj, nobj, obj, tobj;
 	char *fullpath, *freepath;
 	struct kinfo_vmentry *kve;
 	struct ucred *cred;
 	struct vnode *vp;
 	struct vmspace *vm;
 	struct cdev *cdev;
 	struct cdevsw *csw;
 	vm_offset_t addr;
 	unsigned int last_timestamp;
 	int error, ref;
 	key_t key;
 	unsigned short seq;
 	bool guard, super;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	_PHOLD(p);
 	PROC_UNLOCK(p);
 	vm = vmspace_acquire_ref(p);
 	if (vm == NULL) {
 		PRELE(p);
 		return (ESRCH);
 	}
 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
 
 	error = 0;
 	map = &vm->vm_map;
 	vm_map_lock_read(map);
 	VM_MAP_ENTRY_FOREACH(entry, map) {
 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 			continue;
 
 		addr = entry->end;
 		bzero(kve, sizeof(*kve));
 		obj = entry->object.vm_object;
 		if (obj != NULL) {
 			if ((obj->flags & OBJ_ANON) != 0)
 				kve->kve_obj = (uintptr_t)obj;
 
 			for (tobj = obj; tobj != NULL;
 			    tobj = tobj->backing_object) {
 				VM_OBJECT_RLOCK(tobj);
 				kve->kve_offset += tobj->backing_object_offset;
 				lobj = tobj;
 			}
 			if (obj->backing_object == NULL)
 				kve->kve_private_resident =
 				    obj->resident_page_count;
 			kern_proc_vmmap_resident(map, entry,
 			    &kve->kve_resident, &super);
 			if (super)
 				kve->kve_flags |= KVME_FLAG_SUPER;
 			for (tobj = obj; tobj != NULL; tobj = nobj) {
 				nobj = tobj->backing_object;
 				if (tobj != obj && tobj != lobj)
 					VM_OBJECT_RUNLOCK(tobj);
 			}
 		} else {
 			lobj = NULL;
 		}
 
 		kve->kve_start = entry->start;
 		kve->kve_end = entry->end;
 		kve->kve_offset += entry->offset;
 
 		if (entry->protection & VM_PROT_READ)
 			kve->kve_protection |= KVME_PROT_READ;
 		if (entry->protection & VM_PROT_WRITE)
 			kve->kve_protection |= KVME_PROT_WRITE;
 		if (entry->protection & VM_PROT_EXECUTE)
 			kve->kve_protection |= KVME_PROT_EXEC;
 		if (entry->max_protection & VM_PROT_READ)
 			kve->kve_protection |= KVME_MAX_PROT_READ;
 		if (entry->max_protection & VM_PROT_WRITE)
 			kve->kve_protection |= KVME_MAX_PROT_WRITE;
 		if (entry->max_protection & VM_PROT_EXECUTE)
 			kve->kve_protection |= KVME_MAX_PROT_EXEC;
 
 		if (entry->eflags & MAP_ENTRY_COW)
 			kve->kve_flags |= KVME_FLAG_COW;
 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 		if (entry->eflags & MAP_ENTRY_USER_WIRED)
 			kve->kve_flags |= KVME_FLAG_USER_WIRED;
 
 		guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
 
 		last_timestamp = map->timestamp;
 		vm_map_unlock_read(map);
 
 		freepath = NULL;
 		fullpath = "";
 		if (lobj != NULL) {
 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
 			if (vp != NULL)
 				vref(vp);
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 
 			kve->kve_ref_count = obj->ref_count;
 			kve->kve_shadow_count = obj->shadow_count;
 			if ((obj->type == OBJT_DEVICE ||
 			    obj->type == OBJT_MGTDEVICE) &&
 			    (obj->flags & OBJ_CDEVH) != 0) {
 				cdev = obj->un_pager.devp.handle;
 				if (cdev != NULL) {
 					csw = dev_refthread(cdev, &ref);
 					if (csw != NULL) {
 						strlcpy(kve->kve_path,
 						    cdev->si_name, sizeof(
 						    kve->kve_path));
 						dev_relthread(cdev, ref);
 					}
 				}
 			}
 			VM_OBJECT_RUNLOCK(obj);
 			if ((lobj->flags & OBJ_SYSVSHM) != 0) {
 				kve->kve_flags |= KVME_FLAG_SYSVSHM;
 				shmobjinfo(lobj, &key, &seq);
 				kve->kve_vn_fileid = key;
 				kve->kve_vn_fsid_freebsd11 = seq;
 			}
 			if ((lobj->flags & OBJ_POSIXSHM) != 0) {
 				kve->kve_flags |= KVME_FLAG_POSIXSHM;
 				shm_get_path(lobj, kve->kve_path,
 				    sizeof(kve->kve_path));
 			}
 			if (vp != NULL) {
 				vn_fullpath(vp, &fullpath, &freepath);
 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 				cred = curthread->td_ucred;
 				vn_lock(vp, LK_SHARED | LK_RETRY);
 				if (VOP_GETATTR(vp, &va, cred) == 0) {
 					kve->kve_vn_fileid = va.va_fileid;
 					kve->kve_vn_fsid = va.va_fsid;
 					kve->kve_vn_fsid_freebsd11 =
 					    kve->kve_vn_fsid; /* truncate */
 					kve->kve_vn_mode =
 					    MAKEIMODE(va.va_type, va.va_mode);
 					kve->kve_vn_size = va.va_size;
 					kve->kve_vn_rdev = va.va_rdev;
 					kve->kve_vn_rdev_freebsd11 =
 					    kve->kve_vn_rdev; /* truncate */
 					kve->kve_status = KF_ATTR_VALID;
 				}
 				vput(vp);
 				strlcpy(kve->kve_path, fullpath, sizeof(
 				    kve->kve_path));
 				free(freepath, M_TEMP);
 			}
 		} else {
 			kve->kve_type = guard ? KVME_TYPE_GUARD :
 			    KVME_TYPE_NONE;
 			kve->kve_ref_count = 0;
 			kve->kve_shadow_count = 0;
 		}
 
 		/* Pack record size down */
 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
 			kve->kve_structsize =
 			    offsetof(struct kinfo_vmentry, kve_path) +
 			    strlen(kve->kve_path) + 1;
 		else
 			kve->kve_structsize = sizeof(*kve);
 		kve->kve_structsize = roundup(kve->kve_structsize,
 		    sizeof(uint64_t));
 
 		/* Halt filling and truncate rather than exceeding maxlen */
 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
 			error = 0;
 			vm_map_lock_read(map);
 			break;
 		} else if (maxlen != -1)
 			maxlen -= kve->kve_structsize;
 
 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
 			error = ENOMEM;
 		vm_map_lock_read(map);
 		if (error != 0)
 			break;
 		if (last_timestamp != map->timestamp) {
 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 			entry = tmp_entry;
 		}
 	}
 	vm_map_unlock_read(map);
 	vmspace_free(vm);
 	PRELE(p);
 	free(kve, M_TEMP);
 	return (error);
 }
 
 static int
 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 {
 	struct proc *p;
 	struct sbuf sb;
 	u_int namelen;
 	int error, error2, *name;
 
 	namelen = arg2;
 	if (namelen != 1)
 		return (EINVAL);
 
 	name = (int *)arg1;
 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 	if (error != 0) {
 		sbuf_delete(&sb);
 		return (error);
 	}
 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
 	error2 = sbuf_finish(&sb);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 #if defined(STACK) || defined(DDB)
 static int
 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 {
 	struct kinfo_kstack *kkstp;
 	int error, i, *name, numthreads;
 	lwpid_t *lwpidarray;
 	struct thread *td;
 	struct stack *st;
 	struct sbuf sb;
 	struct proc *p;
 	u_int namelen;
 
 	namelen = arg2;
 	if (namelen != 1)
 		return (EINVAL);
 
 	name = (int *)arg1;
 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 	if (error != 0)
 		return (error);
 
 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 	st = stack_create(M_WAITOK);
 
 	lwpidarray = NULL;
 	PROC_LOCK(p);
 	do {
 		if (lwpidarray != NULL) {
 			free(lwpidarray, M_TEMP);
 			lwpidarray = NULL;
 		}
 		numthreads = p->p_numthreads;
 		PROC_UNLOCK(p);
 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 		    M_WAITOK | M_ZERO);
 		PROC_LOCK(p);
 	} while (numthreads < p->p_numthreads);
 
 	/*
 	 * XXXRW: During the below loop, execve(2) and countless other sorts
 	 * of changes could have taken place.  Should we check to see if the
 	 * vmspace has been replaced, or the like, in order to prevent
 	 * giving a snapshot that spans, say, execve(2), with some threads
 	 * before and some after?  Among other things, the credentials could
 	 * have changed, in which case the right to extract debug info might
 	 * no longer be assured.
 	 */
 	i = 0;
 	FOREACH_THREAD_IN_PROC(p, td) {
 		KASSERT(i < numthreads,
 		    ("sysctl_kern_proc_kstack: numthreads"));
 		lwpidarray[i] = td->td_tid;
 		i++;
 	}
 	PROC_UNLOCK(p);
 	numthreads = i;
 	for (i = 0; i < numthreads; i++) {
 		td = tdfind(lwpidarray[i], p->p_pid);
 		if (td == NULL) {
 			continue;
 		}
 		bzero(kkstp, sizeof(*kkstp));
 		(void)sbuf_new(&sb, kkstp->kkst_trace,
 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 		thread_lock(td);
 		kkstp->kkst_tid = td->td_tid;
 		if (stack_save_td(st, td) == 0)
 			kkstp->kkst_state = KKST_STATE_STACKOK;
 		else
 			kkstp->kkst_state = KKST_STATE_RUNNING;
 		thread_unlock(td);
 		PROC_UNLOCK(p);
 		stack_sbuf_print(&sb, st);
 		sbuf_finish(&sb);
 		sbuf_delete(&sb);
 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 		if (error)
 			break;
 	}
 	PRELE(p);
 	if (lwpidarray != NULL)
 		free(lwpidarray, M_TEMP);
 	stack_destroy(st);
 	free(kkstp, M_TEMP);
 	return (error);
 }
 #endif
 
 /*
  * This sysctl allows a process to retrieve the full list of groups from
  * itself or another process.
  */
 static int
 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 {
 	pid_t *pidp = (pid_t *)arg1;
 	unsigned int arglen = arg2;
 	struct proc *p;
 	struct ucred *cred;
 	int error;
 
 	if (arglen != 1)
 		return (EINVAL);
 	if (*pidp == -1) {	/* -1 means this process */
 		p = req->td->td_proc;
 		PROC_LOCK(p);
 	} else {
 		error = pget(*pidp, PGET_CANSEE, &p);
 		if (error != 0)
 			return (error);
 	}
 
 	cred = crhold(p->p_ucred);
 	PROC_UNLOCK(p);
 
 	error = SYSCTL_OUT(req, cred->cr_groups,
 	    cred->cr_ngroups * sizeof(gid_t));
 	crfree(cred);
 	return (error);
 }
 
 /*
  * This sysctl allows a process to retrieve or/and set the resource limit for
  * another process.
  */
 static int
 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct rlimit rlim;
 	struct proc *p;
 	u_int which;
 	int flags, error;
 
 	if (namelen != 2)
 		return (EINVAL);
 
 	which = (u_int)name[1];
 	if (which >= RLIM_NLIMITS)
 		return (EINVAL);
 
 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
 		return (EINVAL);
 
 	flags = PGET_HOLD | PGET_NOTWEXIT;
 	if (req->newptr != NULL)
 		flags |= PGET_CANDEBUG;
 	else
 		flags |= PGET_CANSEE;
 	error = pget((pid_t)name[0], flags, &p);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Retrieve limit.
 	 */
 	if (req->oldptr != NULL) {
 		PROC_LOCK(p);
 		lim_rlimit_proc(p, which, &rlim);
 		PROC_UNLOCK(p);
 	}
 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 	if (error != 0)
 		goto errout;
 
 	/*
 	 * Set limit.
 	 */
 	if (req->newptr != NULL) {
 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 		if (error == 0)
 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
 	}
 
 errout:
 	PRELE(p);
 	return (error);
 }
 
 /*
  * This sysctl allows a process to retrieve ps_strings structure location of
  * another process.
  */
 static int
 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	vm_offset_t ps_strings;
 	int error;
 #ifdef COMPAT_FREEBSD32
 	uint32_t ps_strings32;
 #endif
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 	if (error != 0)
 		return (error);
 #ifdef COMPAT_FREEBSD32
 	if ((req->flags & SCTL_MASK32) != 0) {
 		/*
 		 * We return 0 if the 32 bit emulation request is for a 64 bit
 		 * process.
 		 */
 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 		    PTROUT(PROC_PS_STRINGS(p)) : 0;
 		PROC_UNLOCK(p);
 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 		return (error);
 	}
 #endif
 	ps_strings = PROC_PS_STRINGS(p);
 	PROC_UNLOCK(p);
 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 	return (error);
 }
 
 /*
  * This sysctl allows a process to retrieve umask of another process.
  */
 static int
 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	int error;
 	u_short cmask;
 	pid_t pid;
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	pid = (pid_t)name[0];
 	p = curproc;
 	if (pid == p->p_pid || pid == 0) {
 		cmask = p->p_pd->pd_cmask;
 		goto out;
 	}
 
 	error = pget(pid, PGET_WANTREAD, &p);
 	if (error != 0)
 		return (error);
 
 	cmask = p->p_pd->pd_cmask;
 	PRELE(p);
 out:
 	error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
 	return (error);
 }
 
 /*
  * This sysctl allows a process to set and retrieve binary osreldate of
  * another process.
  */
 static int
 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	int flags, error, osrel;
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
 		return (EINVAL);
 
 	flags = PGET_HOLD | PGET_NOTWEXIT;
 	if (req->newptr != NULL)
 		flags |= PGET_CANDEBUG;
 	else
 		flags |= PGET_CANSEE;
 	error = pget((pid_t)name[0], flags, &p);
 	if (error != 0)
 		return (error);
 
 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 	if (error != 0)
 		goto errout;
 
 	if (req->newptr != NULL) {
 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 		if (error != 0)
 			goto errout;
 		if (osrel < 0) {
 			error = EINVAL;
 			goto errout;
 		}
 		p->p_osrel = osrel;
 	}
 errout:
 	PRELE(p);
 	return (error);
 }
 
 static int
 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	struct kinfo_sigtramp kst;
 	const struct sysentvec *sv;
 	int error;
 #ifdef COMPAT_FREEBSD32
 	struct kinfo_sigtramp32 kst32;
 #endif
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 	if (error != 0)
 		return (error);
 	sv = p->p_sysent;
 #ifdef COMPAT_FREEBSD32
 	if ((req->flags & SCTL_MASK32) != 0) {
 		bzero(&kst32, sizeof(kst32));
 		if (SV_PROC_FLAG(p, SV_ILP32)) {
 			if (PROC_HAS_SHP(p)) {
 				kst32.ksigtramp_start = PROC_SIGCODE(p);
 				kst32.ksigtramp_end = kst32.ksigtramp_start +
 				    ((sv->sv_flags & SV_DSO_SIG) == 0 ?
 				    *sv->sv_szsigcode :
 				    (uintptr_t)sv->sv_szsigcode);
 			} else {
 				kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
 				    *sv->sv_szsigcode;
 				kst32.ksigtramp_end = PROC_PS_STRINGS(p);
 			}
 		}
 		PROC_UNLOCK(p);
 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
 		return (error);
 	}
 #endif
 	bzero(&kst, sizeof(kst));
 	if (PROC_HAS_SHP(p)) {
 		kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
 		kst.ksigtramp_end = (char *)kst.ksigtramp_start +
 		    ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
 		    (uintptr_t)sv->sv_szsigcode);
 	} else {
 		kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
 		    *sv->sv_szsigcode;
 		kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
 	}
 	PROC_UNLOCK(p);
 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
 	return (error);
 }
 
 static int
 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	pid_t pid;
 	struct proc *p;
 	struct thread *td1;
 	uintptr_t addr;
 #ifdef COMPAT_FREEBSD32
 	uint32_t addr32;
 #endif
 	int error;
 
 	if (namelen != 1 || req->newptr != NULL)
 		return (EINVAL);
 
 	pid = (pid_t)name[0];
 	error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
 	if (error != 0)
 		return (error);
 
 	PROC_LOCK(p);
 #ifdef COMPAT_FREEBSD32
 	if (SV_CURPROC_FLAG(SV_ILP32)) {
 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
 			error = EINVAL;
 			goto errlocked;
 		}
 	}
 #endif
 	if (pid <= PID_MAX) {
 		td1 = FIRST_THREAD_IN_PROC(p);
 	} else {
 		FOREACH_THREAD_IN_PROC(p, td1) {
 			if (td1->td_tid == pid)
 				break;
 		}
 	}
 	if (td1 == NULL) {
 		error = ESRCH;
 		goto errlocked;
 	}
 	/*
 	 * The access to the private thread flags.  It is fine as far
 	 * as no out-of-thin-air values are read from td_pflags, and
 	 * usermode read of the td_sigblock_ptr is racy inherently,
 	 * since target process might have already changed it
 	 * meantime.
 	 */
 	if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
 		addr = (uintptr_t)td1->td_sigblock_ptr;
 	else
 		error = ENOTTY;
 
 errlocked:
 	_PRELE(p);
 	PROC_UNLOCK(p);
 	if (error != 0)
 		return (error);
 
 #ifdef COMPAT_FREEBSD32
 	if (SV_CURPROC_FLAG(SV_ILP32)) {
 		addr32 = addr;
 		error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
 	} else
 #endif
 		error = SYSCTL_OUT(req, &addr, sizeof(addr));
 	return (error);
 }
 
 static int
 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
 {
 	struct kinfo_vm_layout kvm;
 	struct proc *p;
 	struct vmspace *vmspace;
 	int error, *name;
 
 	name = (int *)arg1;
 	if ((u_int)arg2 != 1)
 		return (EINVAL);
 
 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 	if (error != 0)
 		return (error);
 #ifdef COMPAT_FREEBSD32
 	if (SV_CURPROC_FLAG(SV_ILP32)) {
 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
 			PROC_UNLOCK(p);
 			return (EINVAL);
 		}
 	}
 #endif
 	vmspace = vmspace_acquire_ref(p);
 	PROC_UNLOCK(p);
 
 	memset(&kvm, 0, sizeof(kvm));
 	kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
 	kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
 	kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
 	kvm.kvm_text_size = vmspace->vm_tsize;
 	kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
 	kvm.kvm_data_size = vmspace->vm_dsize;
 	kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
 	kvm.kvm_stack_size = vmspace->vm_ssize;
 	kvm.kvm_shp_addr = vmspace->vm_shp_base;
 	kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
 	if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
 		kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
 	if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
 	if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
 	if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
 		kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
 	if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
 	if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
 	    PROC_HAS_SHP(p))
 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
 
 #ifdef COMPAT_FREEBSD32
 	if (SV_CURPROC_FLAG(SV_ILP32)) {
 		struct kinfo_vm_layout32 kvm32;
 
 		memset(&kvm32, 0, sizeof(kvm32));
 		kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
 		kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
 		kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
 		kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
 		kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
 		kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
 		kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
 		kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
 		kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
 		kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
 		kvm32.kvm_map_flags = kvm.kvm_map_flags;
 		error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
 		goto out;
 	}
 #endif
 
 	error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
 #ifdef COMPAT_FREEBSD32
 out:
 #endif
 	vmspace_free(vmspace);
 	return (error);
 }
 
 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
     "Process table");
 
 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 	"Return entire process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Return process table, no threads");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 	sysctl_kern_proc_args, "Process argument list");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc_env, "Process environment");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 	"Process syscall vector name (ABI type)");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 	"Return process table, including threads");
 
 #ifdef COMPAT_FREEBSD7
 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 #endif
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 
 #if defined(STACK) || defined(DDB)
 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 #endif
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 	"Process resource limits");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 	"Process ps_strings location");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 	"Process binary osreldate");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
 	"Process signal trampoline location");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
 	"Thread sigfastblock address");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
 	"Process virtual address space layout info");
 
 static struct sx stop_all_proc_blocker;
 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
 
 bool
 stop_all_proc_block(void)
 {
 	return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
 }
 
 void
 stop_all_proc_unblock(void)
 {
 	sx_xunlock(&stop_all_proc_blocker);
 }
 
 int allproc_gen;
 
 /*
  * stop_all_proc() purpose is to stop all process which have usermode,
  * except current process for obvious reasons.  This makes it somewhat
  * unreliable when invoked from multithreaded process.  The service
  * must not be user-callable anyway.
  */
 void
 stop_all_proc(void)
 {
 	struct proc *cp, *p;
 	int r, gen;
 	bool restart, seen_stopped, seen_exiting, stopped_some;
 
 	if (!stop_all_proc_block())
 		return;
 
 	cp = curproc;
 allproc_loop:
 	sx_xlock(&allproc_lock);
 	gen = allproc_gen;
 	seen_exiting = seen_stopped = stopped_some = restart = false;
 	LIST_REMOVE(cp, p_list);
 	LIST_INSERT_HEAD(&allproc, cp, p_list);
 	for (;;) {
 		p = LIST_NEXT(cp, p_list);
 		if (p == NULL)
 			break;
 		LIST_REMOVE(cp, p_list);
 		LIST_INSERT_AFTER(p, cp, p_list);
 		PROC_LOCK(p);
 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP |
 		    P_STOPPED_SIG)) != 0) {
 			PROC_UNLOCK(p);
 			continue;
 		}
 		if ((p->p_flag2 & P2_WEXIT) != 0) {
 			seen_exiting = true;
 			PROC_UNLOCK(p);
 			continue;
 		}
 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
 			/*
 			 * Stopped processes are tolerated when there
 			 * are no other processes which might continue
 			 * them.  P_STOPPED_SINGLE but not
 			 * P_TOTAL_STOP process still has at least one
 			 * thread running.
 			 */
 			seen_stopped = true;
 			PROC_UNLOCK(p);
 			continue;
 		}
 		if ((p->p_flag & P_TRACED) != 0) {
 			/*
 			 * thread_single() below cannot stop traced p,
 			 * so skip it.  OTOH, we cannot require
 			 * restart because debugger might be either
 			 * already stopped or traced as well.
 			 */
 			PROC_UNLOCK(p);
 			continue;
 		}
 		sx_xunlock(&allproc_lock);
 		_PHOLD(p);
 		r = thread_single(p, SINGLE_ALLPROC);
 		if (r != 0)
 			restart = true;
 		else
 			stopped_some = true;
 		_PRELE(p);
 		PROC_UNLOCK(p);
 		sx_xlock(&allproc_lock);
 	}
 	/* Catch forked children we did not see in iteration. */
 	if (gen != allproc_gen)
 		restart = true;
 	sx_xunlock(&allproc_lock);
 	if (restart || stopped_some || seen_exiting || seen_stopped) {
 		kern_yield(PRI_USER);
 		goto allproc_loop;
 	}
 }
 
 void
 resume_all_proc(void)
 {
 	struct proc *cp, *p;
 
 	cp = curproc;
 	sx_xlock(&allproc_lock);
 again:
 	LIST_REMOVE(cp, p_list);
 	LIST_INSERT_HEAD(&allproc, cp, p_list);
 	for (;;) {
 		p = LIST_NEXT(cp, p_list);
 		if (p == NULL)
 			break;
 		LIST_REMOVE(cp, p_list);
 		LIST_INSERT_AFTER(p, cp, p_list);
 		PROC_LOCK(p);
 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
 			sx_xunlock(&allproc_lock);
 			_PHOLD(p);
 			thread_single_end(p, SINGLE_ALLPROC);
 			_PRELE(p);
 			PROC_UNLOCK(p);
 			sx_xlock(&allproc_lock);
 		} else {
 			PROC_UNLOCK(p);
 		}
 	}
 	/*  Did the loop above missed any stopped process ? */
 	FOREACH_PROC_IN_SYSTEM(p) {
 		/* No need for proc lock. */
 		if ((p->p_flag & P_TOTAL_STOP) != 0)
 			goto again;
 	}
 	sx_xunlock(&allproc_lock);
 
 	stop_all_proc_unblock();
 }
 
 /* #define	TOTAL_STOP_DEBUG	1 */
 #ifdef TOTAL_STOP_DEBUG
 volatile static int ap_resume;
 #include <sys/mount.h>
 
 static int
 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
 {
 	int error, val;
 
 	val = 0;
 	ap_resume = 0;
 	error = sysctl_handle_int(oidp, &val, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	if (val != 0) {
 		stop_all_proc();
 		syncer_suspend();
 		while (ap_resume == 0)
 			;
 		syncer_resume();
 		resume_all_proc();
 	}
 	return (0);
 }
 
 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
     sysctl_debug_stop_all_proc, "I",
     "");
 #endif
diff --git a/sys/sys/proc.h b/sys/sys/proc.h
index df7ce6de91d9..2615fa0dc275 100644
--- a/sys/sys/proc.h
+++ b/sys/sys/proc.h
@@ -1,1342 +1,1343 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1986, 1989, 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  * (c) UNIX System Laboratories, Inc.
  * All or some portions of this file are derived from material licensed
  * to the University of California by American Telephone and Telegraph
  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
  * the permission of UNIX System Laboratories, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #ifndef _SYS_PROC_H_
 #define	_SYS_PROC_H_
 
 #include <sys/callout.h>		/* For struct callout. */
 #include <sys/event.h>			/* For struct klist. */
 #ifdef _KERNEL
 #include <sys/_eventhandler.h>
 #endif
 #include <sys/condvar.h>
 #ifndef _KERNEL
 #include <sys/filedesc.h>
 #endif
 #include <sys/queue.h>
 #include <sys/_lock.h>
 #include <sys/lock_profile.h>
 #include <sys/_mutex.h>
 #include <sys/osd.h>
 #include <sys/priority.h>
 #include <sys/rtprio.h>			/* XXX. */
 #include <sys/runq.h>
 #include <sys/resource.h>
 #include <sys/sigio.h>
 #include <sys/signal.h>
 #include <sys/signalvar.h>
 #ifndef _KERNEL
 #include <sys/time.h>			/* For structs itimerval, timeval. */
 #else
 #include <sys/pcpu.h>
 #include <sys/systm.h>
 #endif
 #include <sys/ucontext.h>
 #include <sys/ucred.h>
 #include <sys/types.h>
 #include <sys/_domainset.h>
 
 #include <machine/proc.h>		/* Machine-dependent proc substruct. */
 #ifdef _KERNEL
 #include <machine/cpu.h>
 #endif
 
 /*
  * One structure allocated per session.
  *
  * List of locks
  * (m)		locked by s_mtx mtx
  * (e)		locked by proctree_lock sx
  * (c)		const until freeing
  */
 struct session {
 	u_int		s_count;	/* Ref cnt; pgrps in session - atomic. */
 	struct proc	*s_leader;	/* (m + e) Session leader. */
 	struct vnode	*s_ttyvp;	/* (m) Vnode of controlling tty. */
 	struct cdev_priv *s_ttydp;	/* (m) Device of controlling tty.  */
 	struct tty	*s_ttyp;	/* (e) Controlling tty. */
 	pid_t		s_sid;		/* (c) Session ID. */
 					/* (m) Setlogin() name: */
 	char		s_login[roundup(MAXLOGNAME, sizeof(long))];
 	struct mtx	s_mtx;		/* Mutex to protect members. */
 };
 
 /*
  * One structure allocated per process group.
  *
  * List of locks
  * (m)		locked by pg_mtx mtx
  * (e)		locked by proctree_lock sx
  * (c)		const until freeing
  */
 struct pgrp {
 	LIST_ENTRY(pgrp) pg_hash;	/* (e) Hash chain. */
 	LIST_HEAD(, proc) pg_members;	/* (m + e) Pointer to pgrp members. */
 	struct session	*pg_session;	/* (c) Pointer to session. */
 	struct sigiolst	pg_sigiolst;	/* (m) List of sigio sources. */
 	pid_t		pg_id;		/* (c) Process group id. */
 	struct mtx	pg_mtx;		/* Mutex to protect members */
 	int		pg_flags;	/* (m) PGRP_ flags */
 	struct sx	pg_killsx;	/* Mutual exclusion between group member
 					 * fork() and killpg() */
 };
 
 #define	PGRP_ORPHANED	0x00000001	/* Group is orphaned */
 
 /*
  * pargs, used to hold a copy of the command line, if it had a sane length.
  */
 struct pargs {
 	u_int	ar_ref;		/* Reference count. */
 	u_int	ar_length;	/* Length. */
 	u_char	ar_args[1];	/* Arguments. */
 };
 
 /*-
  * Description of a process.
  *
  * This structure contains the information needed to manage a thread of
  * control, known in UN*X as a process; it has references to substructures
  * containing descriptions of things that the process uses, but may share
  * with related processes.  The process structure and the substructures
  * are always addressable except for those marked "(CPU)" below,
  * which might be addressable only on a processor on which the process
  * is running.
  *
  * Below is a key of locks used to protect each member of struct proc.  The
  * lock is indicated by a reference to a specific character in parens in the
  * associated comment.
  *      * - not yet protected
  *      a - only touched by curproc or parent during fork/wait
  *      b - created at fork, never changes
  *		(exception aiods switch vmspaces, but they are also
  *		marked 'P_SYSTEM' so hopefully it will be left alone)
  *      c - locked by proc mtx
  *      d - locked by allproc_lock lock
  *      e - locked by proctree_lock lock
  *      f - session mtx
  *      g - process group mtx
  *      h - callout_lock mtx
  *      i - by curproc or the master session mtx
  *      j - locked by proc slock
  *      k - only accessed by curthread
  *	k*- only accessed by curthread and from an interrupt
  *	kx- only accessed by curthread and by debugger
  *      l - the attaching proc or attaching proc parent
  *      n - not locked, lazy
  *      o - ktrace lock
  *      q - td_contested lock
  *      r - p_peers lock
  *      s - see sleepq_switch(), sleeping_on_old_rtc(), and sleep(9)
  *      t - thread lock
  *	u - process stat lock
  *	w - process timer lock
  *      x - created at fork, only changes during single threading in exec
  *      y - created at first aio, doesn't change until exit or exec at which
  *          point we are single-threaded and only curthread changes it
  *
  * If the locking key specifies two identifiers (for example, p_pptr) then
  * either lock is sufficient for read access, but both locks must be held
  * for write access.
  */
 struct cpuset;
 struct filecaps;
 struct filemon;
 struct kaioinfo;
 struct kaudit_record;
 struct kcov_info;
 struct kdtrace_proc;
 struct kdtrace_thread;
 struct kmsan_td;
 struct kq_timer_cb_data;
 struct mqueue_notifier;
 struct p_sched;
 struct proc;
 struct procdesc;
 struct racct;
 struct sbuf;
 struct sleepqueue;
 struct socket;
 struct td_sched;
 struct thread;
 struct trapframe;
 struct turnstile;
 struct vm_map;
 struct vm_map_entry;
 struct epoch_tracker;
 
 struct syscall_args {
 	u_int code;
 	u_int original_code;
 	struct sysent *callp;
 	register_t args[8];
 };
 
 /*
  * XXX: Does this belong in resource.h or resourcevar.h instead?
  * Resource usage extension.  The times in rusage structs in the kernel are
  * never up to date.  The actual times are kept as runtimes and tick counts
  * (with control info in the "previous" times), and are converted when
  * userland asks for rusage info.  Backwards compatibility prevents putting
  * this directly in the user-visible rusage struct.
  *
  * Locking for p_rux: (cu) means (u) for p_rux and (c) for p_crux.
  * Locking for td_rux: (t) for all fields.
  */
 struct rusage_ext {
 	uint64_t	rux_runtime;    /* (cu) Real time. */
 	uint64_t	rux_uticks;     /* (cu) Statclock hits in user mode. */
 	uint64_t	rux_sticks;     /* (cu) Statclock hits in sys mode. */
 	uint64_t	rux_iticks;     /* (cu) Statclock hits in intr mode. */
 	uint64_t	rux_uu;         /* (c) Previous user time in usec. */
 	uint64_t	rux_su;         /* (c) Previous sys time in usec. */
 	uint64_t	rux_tu;         /* (c) Previous total time in usec. */
 };
 
 /*
  * Kernel runnable context (thread).
  * This is what is put to sleep and reactivated.
  * Thread context.  Processes may have multiple threads.
  */
 struct thread {
 	struct mtx	*volatile td_lock; /* replaces sched lock */
 	struct proc	*td_proc;	/* (*) Associated process. */
 	TAILQ_ENTRY(thread) td_plist;	/* (*) All threads in this proc. */
 	TAILQ_ENTRY(thread) td_runq;	/* (t) Run queue. */
 	union	{
 		TAILQ_ENTRY(thread) td_slpq;	/* (t) Sleep queue. */
 		struct thread *td_zombie; /* Zombie list linkage */
 	};
 	TAILQ_ENTRY(thread) td_lockq;	/* (t) Lock queue. */
 	LIST_ENTRY(thread) td_hash;	/* (d) Hash chain. */
 	struct cpuset	*td_cpuset;	/* (t) CPU affinity mask. */
 	struct domainset_ref td_domain;	/* (a) NUMA policy */
 	struct seltd	*td_sel;	/* Select queue/channel. */
 	struct sleepqueue *td_sleepqueue; /* (k) Associated sleep queue. */
 	struct turnstile *td_turnstile;	/* (k) Associated turnstile. */
 	void		*td_pad1;	/* Available */
 	struct umtx_q   *td_umtxq;	/* (c?) Link for when we're blocked. */
 	lwpid_t		td_tid;		/* (b) Thread ID. */
 	sigqueue_t	td_sigqueue;	/* (c) Sigs arrived, not delivered. */
 #define	td_siglist	td_sigqueue.sq_signals
 	u_char		td_lend_user_pri; /* (t) Lend user pri. */
 	u_char		td_allocdomain;	/* (b) NUMA domain backing this struct thread. */
 	u_char		td_base_ithread_pri; /* (t) Base ithread pri */
 	struct kmsan_td	*td_kmsan;	/* (k) KMSAN state */
 
 /* Cleared during fork1(), thread_create(), or kthread_add(). */
 #define	td_startzero td_flags
 	int		td_flags;	/* (t) TDF_* flags. */
 	int		td_ast;		/* (t) TDA_* indicators */
 	int		td_inhibitors;	/* (t) Why can not run. */
 	int		td_pflags;	/* (k) Private thread (TDP_*) flags. */
 	int		td_pflags2;	/* (k) Private thread (TDP2_*) flags. */
 	int		td_dupfd;	/* (k) Ret value from fdopen. XXX */
 	int		td_sqqueue;	/* (t) Sleepqueue queue blocked on. */
 	const void	*td_wchan;	/* (t) Sleep address. */
 	const char	*td_wmesg;	/* (t) Reason for sleep. */
 	volatile u_char td_owepreempt;  /* (k*) Preempt on last critical_exit */
 	u_char		td_tsqueue;	/* (t) Turnstile queue blocked on. */
 	u_char		_td_pad0[2];	/* Available. */
 	int		td_locks;	/* (k) Debug: count of non-spin locks */
 	int		td_rw_rlocks;	/* (k) Count of rwlock read locks. */
 	int		td_sx_slocks;	/* (k) Count of sx shared locks. */
 	int		td_lk_slocks;	/* (k) Count of lockmgr shared locks. */
 	struct lock_object *td_wantedlock; /* (k) Lock we are contending on */
 	struct turnstile *td_blocked;	/* (t) Lock thread is blocked on. */
 	const char	*td_lockname;	/* (t) Name of lock blocked on. */
 	LIST_HEAD(, turnstile) td_contested;	/* (q) Contested locks. */
 	struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */
 	int		td_intr_nesting_level; /* (k) Interrupt recursion. */
 	int		td_pinned;	/* (k) Temporary cpu pin count. */
 	struct ucred	*td_realucred;	/* (k) Reference to credentials. */
 	struct ucred	*td_ucred;	/* (k) Used credentials, temporarily switchable. */
 	struct plimit	*td_limit;	/* (k) Resource limits. */
 	int		td_slptick;	/* (t) Time at sleep. */
 	int		td_blktick;	/* (t) Time spent blocked. */
 	int		td_swvoltick;	/* (t) Time at last SW_VOL switch. */
 	int		td_swinvoltick;	/* (t) Time at last SW_INVOL switch. */
 	u_int		td_cow;		/* (*) Number of copy-on-write faults */
 	struct rusage	td_ru;		/* (t) rusage information. */
 	struct rusage_ext td_rux;	/* (t) Internal rusage information. */
 	uint64_t	td_incruntime;	/* (t) Cpu ticks to transfer to proc. */
 	uint64_t	td_runtime;	/* (t) How many cpu ticks we've run. */
 	u_int 		td_pticks;	/* (t) Statclock hits for profiling */
 	u_int		td_sticks;	/* (t) Statclock hits in system mode. */
 	u_int		td_iticks;	/* (t) Statclock hits in intr mode. */
 	u_int		td_uticks;	/* (t) Statclock hits in user mode. */
 	int		td_intrval;	/* (t) Return value for sleepq. */
 	sigset_t	td_oldsigmask;	/* (k) Saved mask from pre sigpause. */
 	volatile u_int	td_generation;	/* (k) For detection of preemption */
 	stack_t		td_sigstk;	/* (k) Stack ptr and on-stack flag. */
 	int		td_xsig;	/* (c) Signal for ptrace */
 	u_long		td_profil_addr;	/* (k) Temporary addr until AST. */
 	u_int		td_profil_ticks; /* (k) Temporary ticks until AST. */
 	char		td_name[MAXCOMLEN + 1];	/* (*) Thread name. */
 	struct file	*td_fpop;	/* (k) file referencing cdev under op */
 	int		td_dbgflags;	/* (c) Userland debugger flags */
 	siginfo_t	td_si;		/* (c) For debugger or core file */
 	int		td_ng_outbound;	/* (k) Thread entered ng from above. */
 	struct osd	td_osd;		/* (k) Object specific data. */
 	struct vm_map_entry *td_map_def_user; /* (k) Deferred entries. */
 	pid_t		td_dbg_forked;	/* (c) Child pid for debugger. */
 	u_int		td_no_sleeping;	/* (k) Sleeping disabled count. */
 	struct vnode	*td_vp_reserved;/* (k) Preallocated vnode. */
 	void		*td_su;		/* (k) FFS SU private */
 	sbintime_t	td_sleeptimo;	/* (t) Sleep timeout. */
 	int		td_rtcgen;	/* (s) rtc_generation of abs. sleep */
 	int		td_errno;	/* (k) Error from last syscall. */
 	size_t		td_vslock_sz;	/* (k) amount of vslock-ed space */
 	struct kcov_info *td_kcov_info;	/* (*) Kernel code coverage data */
 	long		td_ucredref;	/* (k) references on td_realucred */
 #define	td_endzero td_sigmask
 
 /* Copied during fork1(), thread_create(), or kthread_add(). */
 #define	td_startcopy td_endzero
 	sigset_t	td_sigmask;	/* (c) Current signal mask. */
 	u_char		td_rqindex;	/* (t) Run queue index. */
 	u_char		td_base_pri;	/* (t) Thread base kernel priority. */
 	u_char		td_priority;	/* (t) Thread active priority. */
 	u_char		td_pri_class;	/* (t) Scheduling class. */
 	u_char		td_user_pri;	/* (t) User pri from estcpu and nice. */
 	u_char		td_base_user_pri; /* (t) Base user pri */
 	uintptr_t	td_rb_list;	/* (k) Robust list head. */
 	uintptr_t	td_rbp_list;	/* (k) Robust priv list head. */
 	uintptr_t	td_rb_inact;	/* (k) Current in-action mutex loc. */
 	struct syscall_args td_sa;	/* (kx) Syscall parameters. Copied on
 					   fork for child tracing. */
 	void		*td_sigblock_ptr; /* (k) uptr for fast sigblock. */
 	uint32_t	td_sigblock_val;  /* (k) fast sigblock value read at
 					     td_sigblock_ptr on kern entry */
 #define	td_endcopy td_pcb
 
 /*
  * Fields that must be manually set in fork1(), thread_create(), kthread_add(),
  * or already have been set in the allocator, constructor, etc.
  */
 	struct pcb	*td_pcb;	/* (k) Kernel VA of pcb and kstack. */
 	enum td_states {
 		TDS_INACTIVE = 0x0,
 		TDS_INHIBITED,
 		TDS_CAN_RUN,
 		TDS_RUNQ,
 		TDS_RUNNING
 	} td_state;			/* (t) thread state */
 	/* Note: td_state must be accessed using TD_{GET,SET}_STATE(). */
 	union {
 		syscallarg_t	tdu_retval[2];
 		off_t		tdu_off;
 	} td_uretoff;			/* (k) Syscall aux returns. */
 #define td_retval	td_uretoff.tdu_retval
 	u_int		td_cowgen;	/* (k) Generation of COW pointers. */
 	/* LP64 hole */
 	struct callout	td_slpcallout;	/* (h) Callout for sleep. */
 	struct trapframe *td_frame;	/* (k) */
 	vm_offset_t	td_kstack;	/* (a) Kernel VA of kstack. */
 	u_short td_kstack_pages;	/* (a) Size of the kstack. */
 	u_short td_kstack_domain;		/* (a) Domain backing kstack KVA. */
 	volatile u_int	td_critnest;	/* (k*) Critical section nest level. */
 	struct mdthread td_md;		/* (k) Any machine-dependent fields. */
 	struct kaudit_record	*td_ar;	/* (k) Active audit record, if any. */
 	struct lpohead	td_lprof[2];	/* (a) lock profiling objects. */
 	struct kdtrace_thread	*td_dtrace; /* (*) DTrace-specific data. */
 	struct vnet	*td_vnet;	/* (k) Effective vnet. */
 	const char	*td_vnet_lpush;	/* (k) Debugging vnet push / pop. */
 	struct trapframe *td_intr_frame;/* (k) Frame of the current irq */
 	struct proc	*td_rfppwait_p;	/* (k) The vforked child */
 	struct vm_page	**td_ma;	/* (k) uio pages held */
 	int		td_ma_cnt;	/* (k) size of *td_ma */
 	/* LP64 hole */
 	void		*td_emuldata;	/* Emulator state data */
 	int		td_lastcpu;	/* (t) Last cpu we were on. */
 	int		td_oncpu;	/* (t) Which cpu we are on. */
 	void		*td_lkpi_task;	/* LinuxKPI task struct pointer */
 	int		td_pmcpend;
 	void		*td_remotereq;	/* (c) dbg remote request. */
 	off_t		td_ktr_io_lim;	/* (k) limit for ktrace file size */
 #ifdef EPOCH_TRACE
 	SLIST_HEAD(, epoch_tracker) td_epochs;
 #endif
 };
 
 struct thread0_storage {
 	struct thread t0st_thread;
 	uint64_t t0st_sched[10];
 };
 
 struct mtx *thread_lock_block(struct thread *);
 void thread_lock_block_wait(struct thread *);
 void thread_lock_set(struct thread *, struct mtx *);
 void thread_lock_unblock(struct thread *, struct mtx *);
 #define	THREAD_LOCK_ASSERT(td, type)					\
 	mtx_assert((td)->td_lock, (type))
 
 #define	THREAD_LOCK_BLOCKED_ASSERT(td, type)				\
 do {									\
 	struct mtx *__m = (td)->td_lock;				\
 	if (__m != &blocked_lock)					\
 		mtx_assert(__m, (type));				\
 } while (0)
 
 #ifdef INVARIANTS
 #define	THREAD_LOCKPTR_ASSERT(td, lock)					\
 do {									\
 	struct mtx *__m;						\
 	__m = (td)->td_lock;						\
 	KASSERT(__m == (lock),						\
 	    ("Thread %p lock %p does not match %p", td, __m, (lock)));	\
 } while (0)
 
 #define	THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock)				\
 do {									\
 	struct mtx *__m;						\
 	__m = (td)->td_lock;						\
 	KASSERT(__m == (lock) || __m == &blocked_lock,			\
 	    ("Thread %p lock %p does not match %p", td, __m, (lock)));	\
 } while (0)
 
 #define	TD_LOCKS_INC(td)	((td)->td_locks++)
 #define	TD_LOCKS_DEC(td) do {						\
 	KASSERT(SCHEDULER_STOPPED() || (td)->td_locks > 0,		\
 	    ("Thread %p owns no locks", (td)));				\
 	(td)->td_locks--;						\
 } while (0)
 #else
 #define	THREAD_LOCKPTR_ASSERT(td, lock)
 #define	THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock)
 
 #define	TD_LOCKS_INC(td)
 #define	TD_LOCKS_DEC(td)
 #endif
 
 /*
  * Flags kept in td_flags:
  * To change these you MUST have the scheduler lock.
  */
 #define	TDF_BORROWING	0x00000001 /* Thread is borrowing pri from another. */
 #define	TDF_INPANIC	0x00000002 /* Caused a panic, let it drive crashdump. */
 #define	TDF_INMEM	0x00000004 /* Thread's stack is in memory. */
 #define	TDF_SINTR	0x00000008 /* Sleep is interruptible. */
 #define	TDF_TIMEOUT	0x00000010 /* Timing out during sleep. */
 #define	TDF_IDLETD	0x00000020 /* This is a per-CPU idle thread. */
 #define	TDF_UNUSED11	0x00000040 /* Available */
 #define	TDF_SIGWAIT	0x00000080 /* Ignore ignored signals */
 #define	TDF_KTH_SUSP	0x00000100 /* kthread is suspended */
 #define	TDF_ALLPROCSUSP	0x00000200 /* suspended by SINGLE_ALLPROC */
 #define	TDF_BOUNDARY	0x00000400 /* Thread suspended at user boundary */
 #define	TDF_UNUSED1	0x00000800 /* Available */
 #define	TDF_UNUSED2	0x00001000 /* Available */
 #define	TDF_SBDRY	0x00002000 /* Stop only on usermode boundary. */
 #define	TDF_UPIBLOCKED	0x00004000 /* Thread blocked on user PI mutex. */
 #define	TDF_UNUSED3	0x00008000 /* Available */
 #define	TDF_UNUSED4	0x00010000 /* Available */
 #define	TDF_UNUSED5	0x00020000 /* Available */
 #define	TDF_NOLOAD	0x00040000 /* Ignore during load avg calculations. */
 #define	TDF_SERESTART	0x00080000 /* ERESTART on stop attempts. */
 #define	TDF_THRWAKEUP	0x00100000 /* Libthr thread must not suspend itself. */
 #define	TDF_SEINTR	0x00200000 /* EINTR on stop attempts. */
 #define	TDF_UNUSED12	0x00400000 /* Available */
 #define	TDF_UNUSED6	0x00800000 /* Available */
 #define	TDF_SCHED0	0x01000000 /* Reserved for scheduler private use */
 #define	TDF_SCHED1	0x02000000 /* Reserved for scheduler private use */
 #define	TDF_SCHED2	0x04000000 /* Reserved for scheduler private use */
 #define	TDF_SCHED3	0x08000000 /* Reserved for scheduler private use */
 #define	TDF_UNUSED7	0x10000000 /* Available */
 #define	TDF_UNUSED8	0x20000000 /* Available */
 #define	TDF_UNUSED9	0x40000000 /* Available */
 #define	TDF_UNUSED10	0x80000000 /* Available */
 
 enum {
 	TDA_AST = 0,		/* Special: call all non-flagged AST handlers */
 	TDA_OWEUPC,
 	TDA_HWPMC,
 	TDA_VFORK,
 	TDA_ALRM,
 	TDA_PROF,
 	TDA_MAC,
 	TDA_SCHED,
 	TDA_UFS,
 	TDA_GEOM,
 	TDA_KQUEUE,
 	TDA_RACCT,
 	TDA_MOD1,		/* For third party use, before signals are */
 	TDA_MOD2,		/* processed .. */
 	TDA_PSELECT,		/* For discarding temporary signal mask */
 	TDA_SIG,
 	TDA_KTRACE,
 	TDA_SUSPEND,
 	TDA_SIGSUSPEND,
 	TDA_MOD3,		/* .. and after */
 	TDA_MOD4,
 	TDA_MAX,
 };
 #define	TDAI(tda)		(1U << (tda))
 #define	td_ast_pending(td, tda)	((td->td_ast & TDAI(tda)) != 0)
 
 /* Userland debug flags */
 #define	TDB_SUSPEND	0x00000001 /* Thread is suspended by debugger */
 #define	TDB_XSIG	0x00000002 /* Thread is exchanging signal under trace */
 #define	TDB_USERWR	0x00000004 /* Debugger modified memory or registers */
 #define	TDB_SCE		0x00000008 /* Thread performs syscall enter */
 #define	TDB_SCX		0x00000010 /* Thread performs syscall exit */
 #define	TDB_EXEC	0x00000020 /* TDB_SCX from exec(2) family */
 #define	TDB_FORK	0x00000040 /* TDB_SCX from fork(2) that created new
 				      process */
 #define	TDB_STOPATFORK	0x00000080 /* Stop at the return from fork (child
 				      only) */
 #define	TDB_CHILD	0x00000100 /* New child indicator for ptrace() */
 #define	TDB_BORN	0x00000200 /* New LWP indicator for ptrace() */
 #define	TDB_EXIT	0x00000400 /* Exiting LWP indicator for ptrace() */
 #define	TDB_VFORK	0x00000800 /* vfork indicator for ptrace() */
 #define	TDB_FSTP	0x00001000 /* The thread is PT_ATTACH leader */
 #define	TDB_STEP	0x00002000 /* (x86) PSL_T set for PT_STEP */
 #define	TDB_SSWITCH	0x00004000 /* Suspended in ptracestop */
 #define	TDB_BOUNDARY	0x00008000 /* ptracestop() at boundary */
 #define	TDB_COREDUMPREQ	0x00010000 /* Coredump request */
 #define	TDB_SCREMOTEREQ	0x00020000 /* Remote syscall request */
 
 /*
  * "Private" flags kept in td_pflags:
  * These are only written by curthread and thus need no locking.
  */
 #define	TDP_OLDMASK	0x00000001 /* Need to restore mask after suspend. */
 #define	TDP_INKTR	0x00000002 /* Thread is currently in KTR code. */
 #define	TDP_INKTRACE	0x00000004 /* Thread is currently in KTRACE code. */
 #define	TDP_BUFNEED	0x00000008 /* Do not recurse into the buf flush */
 #define	TDP_COWINPROGRESS 0x00000010 /* Snapshot copy-on-write in progress. */
 #define	TDP_ALTSTACK	0x00000020 /* Have alternate signal stack. */
 #define	TDP_DEADLKTREAT	0x00000040 /* Lock acquisition - deadlock treatment. */
 #define	TDP_NOFAULTING	0x00000080 /* Do not handle page faults. */
 #define	TDP_SIGFASTBLOCK 0x00000100 /* Fast sigblock active */
 #define	TDP_OWEUPC	0x00000200 /* Call addupc() at next AST. */
 #define	TDP_ITHREAD	0x00000400 /* Thread is an interrupt thread. */
 #define	TDP_SYNCIO	0x00000800 /* Local override, disable async i/o. */
 #define	TDP_SCHED1	0x00001000 /* Reserved for scheduler private use */
 #define	TDP_SCHED2	0x00002000 /* Reserved for scheduler private use */
 #define	TDP_SCHED3	0x00004000 /* Reserved for scheduler private use */
 #define	TDP_SCHED4	0x00008000 /* Reserved for scheduler private use */
 #define	TDP_GEOM	0x00010000 /* Settle GEOM before finishing syscall */
 #define	TDP_SOFTDEP	0x00020000 /* Stuck processing softdep worklist */
 #define	TDP_NORUNNINGBUF 0x00040000 /* Ignore runningbufspace check */
 #define	TDP_WAKEUP	0x00080000 /* Don't sleep in umtx cond_wait */
 #define	TDP_INBDFLUSH	0x00100000 /* Already in BO_BDFLUSH, do not recurse */
 #define	TDP_KTHREAD	0x00200000 /* This is an official kernel thread */
 #define	TDP_CALLCHAIN	0x00400000 /* Capture thread's callchain */
 #define	TDP_IGNSUSP	0x00800000 /* Permission to ignore the MNTK_SUSPEND* */
 #define	TDP_AUDITREC	0x01000000 /* Audit record pending on thread */
 #define	TDP_RFPPWAIT	0x02000000 /* Handle RFPPWAIT on syscall exit */
 #define	TDP_RESETSPUR	0x04000000 /* Reset spurious page fault history. */
 #define	TDP_NERRNO	0x08000000 /* Last errno is already in td_errno */
 #define	TDP_UIOHELD	0x10000000 /* Current uio has pages held in td_ma */
 #define	TDP_EFIRT	0x20000000 /* In firmware (EFI RT) call */
 #define	TDP_EXECVMSPC	0x40000000 /* Execve destroyed old vmspace */
 #define	TDP_SIGFASTPENDING 0x80000000 /* Pending signal due to sigfastblock */
 
 #define	TDP2_SBPAGES	0x00000001 /* Owns sbusy on some pages */
 #define	TDP2_COMPAT32RB	0x00000002 /* compat32 ABI for robust lists */
 #define	TDP2_ACCT	0x00000004 /* Doing accounting */
 #define	TDP2_SAN_QUIET	0x00000008 /* Disable warnings from K(A|M)SAN */
 
 /*
  * Reasons that the current thread can not be run yet.
  * More than one may apply.
  */
 #define	TDI_SUSPENDED	0x0001	/* On suspension queue. */
 #define	TDI_SLEEPING	0x0002	/* Actually asleep! (tricky). */
 #define	TDI_LOCK	0x0008	/* Stopped on a lock. */
 #define	TDI_IWAIT	0x0010	/* Awaiting interrupt. */
 
 #define	TD_IS_SLEEPING(td)	((td)->td_inhibitors & TDI_SLEEPING)
 #define	TD_ON_SLEEPQ(td)	((td)->td_wchan != NULL)
 #define	TD_IS_SUSPENDED(td)	((td)->td_inhibitors & TDI_SUSPENDED)
 #define	TD_ON_LOCK(td)		((td)->td_inhibitors & TDI_LOCK)
 #define	TD_AWAITING_INTR(td)	((td)->td_inhibitors & TDI_IWAIT)
 #ifdef _KERNEL
 #define	TD_GET_STATE(td)	atomic_load_int(&(td)->td_state)
 #else
 #define	TD_GET_STATE(td)	((td)->td_state)
 #endif
 #define	TD_IS_RUNNING(td)	(TD_GET_STATE(td) == TDS_RUNNING)
 #define	TD_ON_RUNQ(td)		(TD_GET_STATE(td) == TDS_RUNQ)
 #define	TD_CAN_RUN(td)		(TD_GET_STATE(td) == TDS_CAN_RUN)
 #define	TD_IS_INHIBITED(td)	(TD_GET_STATE(td) == TDS_INHIBITED)
 #define	TD_ON_UPILOCK(td)	((td)->td_flags & TDF_UPIBLOCKED)
 #define TD_IS_IDLETHREAD(td)	((td)->td_flags & TDF_IDLETD)
 
 #define	TD_CAN_ABORT(td)	(TD_ON_SLEEPQ((td)) &&			\
 				    ((td)->td_flags & TDF_SINTR) != 0)
 
 #define	KTDSTATE(td)							\
 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
 
 #define	TD_SET_INHIB(td, inhib) do {		\
 	TD_SET_STATE(td, TDS_INHIBITED);	\
 	(td)->td_inhibitors |= (inhib);		\
 } while (0)
 
 #define	TD_CLR_INHIB(td, inhib) do {			\
 	if (((td)->td_inhibitors & (inhib)) &&		\
 	    (((td)->td_inhibitors &= ~(inhib)) == 0))	\
 		TD_SET_STATE(td, TDS_CAN_RUN);		\
 } while (0)
 
 #define	TD_SET_SLEEPING(td)	TD_SET_INHIB((td), TDI_SLEEPING)
 #define	TD_SET_LOCK(td)		TD_SET_INHIB((td), TDI_LOCK)
 #define	TD_SET_SUSPENDED(td)	TD_SET_INHIB((td), TDI_SUSPENDED)
 #define	TD_SET_IWAIT(td)	TD_SET_INHIB((td), TDI_IWAIT)
 #define	TD_SET_EXITING(td)	TD_SET_INHIB((td), TDI_EXITING)
 
 #define	TD_CLR_SLEEPING(td)	TD_CLR_INHIB((td), TDI_SLEEPING)
 #define	TD_CLR_LOCK(td)		TD_CLR_INHIB((td), TDI_LOCK)
 #define	TD_CLR_SUSPENDED(td)	TD_CLR_INHIB((td), TDI_SUSPENDED)
 #define	TD_CLR_IWAIT(td)	TD_CLR_INHIB((td), TDI_IWAIT)
 
 #ifdef _KERNEL
 #define	TD_SET_STATE(td, state)	atomic_store_int(&(td)->td_state, state)
 #else
 #define	TD_SET_STATE(td, state)	(td)->td_state = state
 #endif
 #define	TD_SET_RUNNING(td)	TD_SET_STATE(td, TDS_RUNNING)
 #define	TD_SET_RUNQ(td)		TD_SET_STATE(td, TDS_RUNQ)
 #define	TD_SET_CAN_RUN(td)	TD_SET_STATE(td, TDS_CAN_RUN)
 
 
 #define	TD_SBDRY_INTR(td) \
     (((td)->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 0)
 #define	TD_SBDRY_ERRNO(td) \
     (((td)->td_flags & TDF_SEINTR) != 0 ? EINTR : ERESTART)
 
 /*
  * Process structure.
  */
 struct proc {
 	LIST_ENTRY(proc) p_list;	/* (d) List of all processes. */
 	TAILQ_HEAD(, thread) p_threads;	/* (c) all threads. */
 	struct mtx	p_slock;	/* process spin lock */
 	struct ucred	*p_ucred;	/* (c) Process owner's identity. */
 	struct filedesc	*p_fd;		/* (b) Open files. */
 	struct filedesc_to_leader *p_fdtol; /* (b) Tracking node */
 	struct pwddesc	*p_pd;		/* (b) Cwd, chroot, jail, umask */
 	struct pstats	*p_stats;	/* (b) Accounting/statistics (CPU). */
 	struct plimit	*p_limit;	/* (c) Resource limits. */
 	struct callout	p_limco;	/* (c) Limit callout handle */
 	struct sigacts	*p_sigacts;	/* (x) Signal actions, state (CPU). */
 
 	int		p_flag;		/* (c) P_* flags. */
 	int		p_flag2;	/* (c) P2_* flags. */
 	enum p_states {
 		PRS_NEW = 0,		/* In creation */
 		PRS_NORMAL,		/* threads can be run. */
 		PRS_ZOMBIE
 	} p_state;			/* (j/c) Process status. */
 	pid_t		p_pid;		/* (b) Process identifier. */
 	LIST_ENTRY(proc) p_hash;	/* (d) Hash chain. */
 	LIST_ENTRY(proc) p_pglist;	/* (g + e) List of processes in pgrp. */
 	struct proc	*p_pptr;	/* (c + e) Pointer to parent process. */
 	LIST_ENTRY(proc) p_sibling;	/* (e) List of sibling processes. */
 	LIST_HEAD(, proc) p_children;	/* (e) Pointer to list of children. */
 	struct proc	*p_reaper;	/* (e) My reaper. */
 	LIST_HEAD(, proc) p_reaplist;	/* (e) List of my descendants
 					       (if I am reaper). */
 	LIST_ENTRY(proc) p_reapsibling;	/* (e) List of siblings - descendants of
 					       the same reaper. */
 	struct mtx	p_mtx;		/* (n) Lock for this struct. */
 	struct mtx	p_statmtx;	/* Lock for the stats */
 	struct mtx	p_itimmtx;	/* Lock for the virt/prof timers */
 	struct mtx	p_profmtx;	/* Lock for the profiling */
 	struct ksiginfo *p_ksi;	/* Locked by parent proc lock */
 	sigqueue_t	p_sigqueue;	/* (c) Sigs not delivered to a td. */
 #define p_siglist	p_sigqueue.sq_signals
 	pid_t		p_oppid;	/* (c + e) Real parent pid. */
 
 /* The following fields are all zeroed upon creation in fork. */
 #define	p_startzero	p_vmspace
 	struct vmspace	*p_vmspace;	/* (b) Address space. */
 	u_int		p_swtick;	/* (c) Tick when swapped in or out. */
 	u_int		p_cowgen;	/* (c) Generation of COW pointers. */
 	struct itimerval p_realtimer;	/* (c) Alarm timer. */
 	struct rusage	p_ru;		/* (a) Exit information. */
 	struct rusage_ext p_rux;	/* (cu) Internal resource usage. */
 	struct rusage_ext p_crux;	/* (c) Internal child resource usage. */
 	int		p_profthreads;	/* (c) Num threads in addupc_task. */
 	volatile int	p_exitthreads;	/* (j) Number of threads exiting */
 	int		p_traceflag;	/* (o) Kernel trace points. */
 	struct ktr_io_params	*p_ktrioparms;	/* (c + o) Params for ktrace. */
 	struct vnode	*p_textvp;	/* (b) Vnode of executable. */
 	struct vnode	*p_textdvp;	/* (b) Dir containing textvp. */
 	char		*p_binname;	/* (b) Binary hardlink name. */
 	u_int		p_lock;		/* (c) Prevent exit. */
 	struct sigiolst	p_sigiolst;	/* (c) List of sigio sources. */
 	int		p_sigparent;	/* (c) Signal to parent on exit. */
 	int		p_sig;		/* (n) For core dump/debugger XXX. */
 	u_int		p_ptevents;	/* (c + e) ptrace() event mask. */
 	struct kaioinfo	*p_aioinfo;	/* (y) ASYNC I/O info. */
 	struct thread	*p_singlethread;/* (c + j) If single threading this is it */
 	int		p_suspcount;	/* (j) Num threads in suspended mode. */
 	struct thread	*p_xthread;	/* (c) Trap thread */
 	int		p_boundary_count;/* (j) Num threads at user boundary */
 	int		p_pendingcnt;	/* (c) how many signals are pending */
 	struct itimers	*p_itimers;	/* (c) POSIX interval timers. */
 	struct procdesc	*p_procdesc;	/* (e) Process descriptor, if any. */
 	u_int		p_treeflag;	/* (e) P_TREE flags */
 	int		p_pendingexits; /* (c) Count of pending thread exits. */
 	struct filemon	*p_filemon;	/* (c) filemon-specific data. */
 	int		p_pdeathsig;	/* (c) Signal from parent on exit. */
 /* End area that is zeroed on creation. */
 #define	p_endzero	p_magic
 
 /* The following fields are all copied upon creation in fork. */
 #define	p_startcopy	p_endzero
 	u_int		p_magic;	/* (b) Magic number. */
 	int		p_osrel;	/* (x) osreldate for the
 					       binary (from ELF note, if any) */
 	uint32_t	p_fctl0;	/* (x) ABI feature control, ELF note */
 	char		p_comm[MAXCOMLEN + 1];	/* (x) Process name. */
 	struct sysentvec *p_sysent;	/* (b) Syscall dispatch info. */
 	struct pargs	*p_args;	/* (c) Process arguments. */
 	rlim_t		p_cpulimit;	/* (c) Current CPU limit in seconds. */
 	signed char	p_nice;		/* (c) Process "nice" value. */
 	int		p_fibnum;	/* in this routing domain XXX MRT */
 	pid_t		p_reapsubtree;	/* (e) Pid of the direct child of the
 					       reaper which spawned
 					       our subtree. */
 	uint64_t	p_elf_flags;	/* (x) ELF flags */
 	void		*p_elf_brandinfo; /* (x) Elf_Brandinfo, NULL for
 						 non ELF binaries. */
 	sbintime_t	p_umtx_min_timeout;
 /* End area that is copied on creation. */
 #define	p_endcopy	p_xexit
 
 	u_int		p_xexit;	/* (c) Exit code. */
 	u_int		p_xsig;		/* (c) Stop/kill sig. */
 	struct pgrp	*p_pgrp;	/* (c + e) Pointer to process group. */
 	struct knlist	*p_klist;	/* (c) Knotes attached to this proc. */
 	int		p_numthreads;	/* (c) Number of threads. */
 	struct mdproc	p_md;		/* Any machine-dependent fields. */
 	struct callout	p_itcallout;	/* (h + c) Interval timer callout. */
 	u_short		p_acflag;	/* (c) Accounting flags. */
 	struct proc	*p_peers;	/* (r) */
 	struct proc	*p_leader;	/* (b) */
 	void		*p_emuldata;	/* (c) Emulator state data. */
 	struct label	*p_label;	/* (*) Proc (not subject) MAC label. */
 	STAILQ_HEAD(, ktr_request)	p_ktr;	/* (o) KTR event queue. */
 	LIST_HEAD(, mqueue_notifier)	p_mqnotifier; /* (c) mqueue notifiers.*/
 	struct kdtrace_proc	*p_dtrace; /* (*) DTrace-specific data. */
 	struct cv	p_pwait;	/* (*) wait cv for exit/exec. */
 	uint64_t	p_prev_runtime;	/* (c) Resource usage accounting. */
 	struct racct	*p_racct;	/* (b) Resource accounting. */
 	int		p_throttled;	/* (c) Flag for racct pcpu throttling */
 	/*
 	 * An orphan is the child that has been re-parented to the
 	 * debugger as a result of attaching to it.  Need to keep
 	 * track of them for parent to be able to collect the exit
 	 * status of what used to be children.
 	 */
 	LIST_ENTRY(proc) p_orphan;	/* (e) List of orphan processes. */
 	LIST_HEAD(, proc) p_orphans;	/* (e) Pointer to list of orphans. */
 
 	TAILQ_HEAD(, kq_timer_cb_data)	p_kqtim_stop;	/* (c) */
 	LIST_ENTRY(proc) p_jaillist;	/* (d) Jail process linkage. */
 };
 
 #define	p_session	p_pgrp->pg_session
 #define	p_pgid		p_pgrp->pg_id
 
 #define	NOCPU		(-1)	/* For when we aren't on a CPU. */
 #define	NOCPU_OLD	(255)
 #define	MAXCPU_OLD	(254)
 
 #define	PROC_SLOCK(p)	mtx_lock_spin(&(p)->p_slock)
 #define	PROC_SUNLOCK(p)	mtx_unlock_spin(&(p)->p_slock)
 #define	PROC_SLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_slock, (type))
 
 #define	PROC_STATLOCK(p)	mtx_lock_spin(&(p)->p_statmtx)
 #define	PROC_STATUNLOCK(p)	mtx_unlock_spin(&(p)->p_statmtx)
 #define	PROC_STATLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_statmtx, (type))
 
 #define	PROC_ITIMLOCK(p)	mtx_lock_spin(&(p)->p_itimmtx)
 #define	PROC_ITIMUNLOCK(p)	mtx_unlock_spin(&(p)->p_itimmtx)
 #define	PROC_ITIMLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_itimmtx, (type))
 
 #define	PROC_PROFLOCK(p)	mtx_lock_spin(&(p)->p_profmtx)
 #define	PROC_PROFUNLOCK(p)	mtx_unlock_spin(&(p)->p_profmtx)
 #define	PROC_PROFLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_profmtx, (type))
 
 /* These flags are kept in p_flag. */
 #define	P_ADVLOCK	0x00000001	/* Process may hold a POSIX advisory
 					   lock. */
 #define	P_CONTROLT	0x00000002	/* Has a controlling terminal. */
 #define	P_KPROC		0x00000004	/* Kernel process. */
 #define	P_UNUSED3	0x00000008	/* --available-- */
 #define	P_PPWAIT	0x00000010	/* Parent is waiting for child to
 					   exec/exit. */
 #define	P_PROFIL	0x00000020	/* Has started profiling. */
 #define	P_STOPPROF	0x00000040	/* Has thread requesting to stop
 					   profiling. */
 #define	P_HADTHREADS	0x00000080	/* Has had threads (no cleanup
 					   shortcuts) */
 #define	P_SUGID		0x00000100	/* Had set id privileges since last
 					   exec. */
 #define	P_SYSTEM	0x00000200	/* System proc: no sigs or stats. */
 #define	P_SINGLE_EXIT	0x00000400	/* Threads suspending should exit,
 					   not wait. */
 #define	P_TRACED	0x00000800	/* Debugged process being traced. */
 #define	P_WAITED	0x00001000	/* Someone is waiting for us. */
 #define	P_WEXIT		0x00002000	/* Working on exiting. */
 #define	P_EXEC		0x00004000	/* Process called exec. */
 #define	P_WKILLED	0x00008000	/* Killed, go to kernel/user boundary
 					   ASAP. */
 #define	P_CONTINUED	0x00010000	/* Proc has continued from a stopped
 					   state. */
 #define	P_STOPPED_SIG	0x00020000	/* Stopped due to SIGSTOP/SIGTSTP. */
 #define	P_STOPPED_TRACE	0x00040000	/* Stopped because of tracing. */
 #define	P_STOPPED_SINGLE 0x00080000	/* Only 1 thread can continue (not to
 					   user). */
 #define	P_PROTECTED	0x00100000	/* Do not kill on memory overcommit. */
 #define	P_SIGEVENT	0x00200000	/* Process pending signals changed. */
 #define	P_SINGLE_BOUNDARY 0x00400000	/* Threads should suspend at user
 					   boundary. */
 #define	P_HWPMC		0x00800000	/* Process is using HWPMCs */
 #define	P_JAILED	0x01000000	/* Process is in jail. */
 #define	P_TOTAL_STOP	0x02000000	/* Stopped in stop_all_proc. */
 #define	P_INEXEC	0x04000000	/* Process is in execve(). */
 #define	P_STATCHILD	0x08000000	/* Child process stopped or exited. */
 #define	P_INMEM		0x10000000	/* Loaded into memory, always set. */
 #define	P_UNUSED1	0x20000000	/* --available-- */
 #define	P_UNUSED2	0x40000000	/* --available-- */
 #define	P_PPTRACE	0x80000000	/* PT_TRACEME by vforked child. */
 
 #define	P_STOPPED	(P_STOPPED_SIG|P_STOPPED_SINGLE|P_STOPPED_TRACE)
 #define	P_SHOULDSTOP(p)	((p)->p_flag & P_STOPPED)
 #define	P_KILLED(p)	((p)->p_flag & P_WKILLED)
 
 /* These flags are kept in p_flag2. */
 #define	P2_INHERIT_PROTECTED	0x00000001	/* New children get
 						   P_PROTECTED. */
 #define	P2_NOTRACE		0x00000002	/* No ptrace(2) attach or
 						   coredumps. */
 #define	P2_NOTRACE_EXEC		0x00000004	/* Keep P2_NOPTRACE on
 						   exec(2). */
 #define	P2_AST_SU		0x00000008	/* Handles SU ast for
 						   kthreads. */
 #define	P2_PTRACE_FSTP		0x00000010	/* SIGSTOP from PT_ATTACH not
 						   yet handled. */
 #define	P2_TRAPCAP		0x00000020	/* SIGTRAP on ENOTCAPABLE */
 #define	P2_ASLR_ENABLE		0x00000040	/* Force enable ASLR. */
 #define	P2_ASLR_DISABLE		0x00000080	/* Force disable ASLR. */
 #define	P2_ASLR_IGNSTART	0x00000100	/* Enable ASLR to consume sbrk
 						   area. */
 #define	P2_PROTMAX_ENABLE	0x00000200	/* Force enable implied
 						   PROT_MAX. */
 #define	P2_PROTMAX_DISABLE	0x00000400	/* Force disable implied
 						   PROT_MAX. */
 #define	P2_STKGAP_DISABLE	0x00000800	/* Disable stack gap for
 						   MAP_STACK */
 #define	P2_STKGAP_DISABLE_EXEC	0x00001000	/* Stack gap disabled
 						   after exec */
 #define	P2_ITSTOPPED		0x00002000	/* itimers stopped */
 #define	P2_PTRACEREQ		0x00004000	/* Active ptrace req */
 #define	P2_NO_NEW_PRIVS		0x00008000	/* Ignore setuid */
 #define	P2_WXORX_DISABLE	0x00010000	/* WX mappings enabled */
 #define	P2_WXORX_ENABLE_EXEC	0x00020000	/* WXORX enabled after exec */
 #define	P2_WEXIT		0x00040000	/* exit just started, no
 						   external thread_single() is
 						   permitted */
 #define	P2_REAPKILLED		0x00080000	/* REAP_KILL pass touched me */
 #define	P2_MEMBAR_PRIVE		0x00100000	/* membar private expedited
 						   registered */
 #define	P2_MEMBAR_PRIVE_SYNCORE	0x00200000	/* membar private expedited
 						   sync core registered */
 #define	P2_MEMBAR_GLOBE		0x00400000	/* membar global expedited
 						   registered */
 
 /* Flags protected by proctree_lock, kept in p_treeflags. */
 #define	P_TREE_ORPHANED		0x00000001	/* Reparented, on orphan list */
 #define	P_TREE_FIRST_ORPHAN	0x00000002	/* First element of orphan
 						   list */
 #define	P_TREE_REAPER		0x00000004	/* Reaper of subtree */
 #define	P_TREE_GRPEXITED	0x00000008	/* exit1() done with job ctl */
 
 /*
  * These were process status values (p_stat), now they are only used in
  * legacy conversion code.
  */
 #define	SIDL	1		/* Process being created by fork. */
 #define	SRUN	2		/* Currently runnable. */
 #define	SSLEEP	3		/* Sleeping on an address. */
 #define	SSTOP	4		/* Process debugging or suspension. */
 #define	SZOMB	5		/* Awaiting collection by parent. */
 #define	SWAIT	6		/* Waiting for interrupt. */
 #define	SLOCK	7		/* Blocked on a lock. */
 
 #define	P_MAGIC		0xbeefface
 
 #ifdef _KERNEL
 
 /* Types and flags for mi_switch(9). */
 #define	SW_TYPE_MASK		0xff	/* First 8 bits are switch type */
 #define	SWT_OWEPREEMPT		1	/* Switching due to owepreempt. */
 #define	SWT_TURNSTILE		2	/* Turnstile contention. */
 #define	SWT_SLEEPQ		3	/* Sleepq wait. */
 #define	SWT_RELINQUISH		4	/* yield call. */
 #define	SWT_NEEDRESCHED		5	/* NEEDRESCHED was set. */
 #define	SWT_IDLE		6	/* Switching from the idle thread. */
 #define	SWT_IWAIT		7	/* Waiting for interrupts. */
 #define	SWT_SUSPEND		8	/* Thread suspended. */
 #define	SWT_REMOTEPREEMPT	9	/* Remote processor preempted. */
 #define	SWT_REMOTEWAKEIDLE	10	/* Remote processor preempted idle. */
 #define	SWT_BIND		11	/* Thread bound to a new CPU. */
 #define	SWT_COUNT		12	/* Number of switch types. */
 /* Flags */
 #define	SW_VOL		0x0100		/* Voluntary switch. */
 #define	SW_INVOL	0x0200		/* Involuntary switch. */
 #define SW_PREEMPT	0x0400		/* The invol switch is a preemption */
 
 /* How values for thread_single(). */
 #define	SINGLE_NO_EXIT	0
 #define	SINGLE_EXIT	1
 #define	SINGLE_BOUNDARY	2
 #define	SINGLE_ALLPROC	3
 
 #define	FOREACH_PROC_IN_SYSTEM(p)					\
 	LIST_FOREACH((p), &allproc, p_list)
 #define	FOREACH_THREAD_IN_PROC(p, td)					\
 	TAILQ_FOREACH((td), &(p)->p_threads, td_plist)
 
 #define	FIRST_THREAD_IN_PROC(p)	TAILQ_FIRST(&(p)->p_threads)
 
 /*
  * We use process IDs <= pid_max <= PID_MAX; PID_MAX + 1 must also fit
  * in a pid_t, as it is used to represent "no process group".
  */
 #define	PID_MAX		99999
 #define	NO_PID		(PID_MAX + 1)
 #define	THREAD0_TID	NO_PID
 extern pid_t pid_max;
 
 #define	SESS_LEADER(p)	((p)->p_session->s_leader == (p))
 
 /* Lock and unlock a process. */
 #define	PROC_LOCK(p)	mtx_lock(&(p)->p_mtx)
 #define	PROC_TRYLOCK(p)	mtx_trylock(&(p)->p_mtx)
 #define	PROC_UNLOCK(p)	mtx_unlock(&(p)->p_mtx)
 #define	PROC_LOCKED(p)	mtx_owned(&(p)->p_mtx)
 #define	PROC_WAIT_UNLOCKED(p)	mtx_wait_unlocked(&(p)->p_mtx)
 #define	PROC_LOCK_ASSERT(p, type)	mtx_assert(&(p)->p_mtx, (type))
 
 /* Lock and unlock a process group. */
 #define	PGRP_LOCK(pg)	mtx_lock(&(pg)->pg_mtx)
 #define	PGRP_UNLOCK(pg)	mtx_unlock(&(pg)->pg_mtx)
 #define	PGRP_LOCKED(pg)	mtx_owned(&(pg)->pg_mtx)
 #define	PGRP_LOCK_ASSERT(pg, type)	mtx_assert(&(pg)->pg_mtx, (type))
 
 #define	PGRP_LOCK_PGSIGNAL(pg) do {					\
 	if ((pg) != NULL)						\
 		PGRP_LOCK(pg);						\
 } while (0)
 #define	PGRP_UNLOCK_PGSIGNAL(pg) do {					\
 	if ((pg) != NULL)						\
 		PGRP_UNLOCK(pg);					\
 } while (0)
 
 /* Lock and unlock a session. */
 #define	SESS_LOCK(s)	mtx_lock(&(s)->s_mtx)
 #define	SESS_UNLOCK(s)	mtx_unlock(&(s)->s_mtx)
 #define	SESS_LOCKED(s)	mtx_owned(&(s)->s_mtx)
 #define	SESS_LOCK_ASSERT(s, type)	mtx_assert(&(s)->s_mtx, (type))
 
 /*
  * A non-zero p_lock prevents the process from exiting; it will sleep in exit1()
  * until the count reaches zero.
  *
  * PHOLD() asserts that the process (except the current process) is
  * not exiting and increments p_lock.
  * _PHOLD() is same as PHOLD(), it takes the process locked.
  */
 #define	PHOLD(p) do {							\
 	PROC_LOCK(p);							\
 	_PHOLD(p);							\
 	PROC_UNLOCK(p);							\
 } while (0)
 #define	_PHOLD(p) do {							\
 	PROC_LOCK_ASSERT((p), MA_OWNED);				\
 	KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc,		\
 	    ("PHOLD of exiting process %p", p));			\
 	(p)->p_lock++;							\
 } while (0)
 #define	PROC_ASSERT_HELD(p) do {					\
 	KASSERT((p)->p_lock > 0, ("process %p not held", p));		\
 } while (0)
 
 #define	PRELE(p) do {							\
 	PROC_LOCK((p));							\
 	_PRELE((p));							\
 	PROC_UNLOCK((p));						\
 } while (0)
 #define	_PRELE(p) do {							\
 	PROC_LOCK_ASSERT((p), MA_OWNED);				\
 	PROC_ASSERT_HELD(p);						\
 	(--(p)->p_lock);						\
 	if (((p)->p_flag & P_WEXIT) && (p)->p_lock == 0)		\
 		wakeup(&(p)->p_lock);					\
 } while (0)
 #define	PROC_ASSERT_NOT_HELD(p) do {					\
 	KASSERT((p)->p_lock == 0, ("process %p held", p));		\
 } while (0)
 
 #define	PROC_UPDATE_COW(p) do {						\
 	struct proc *_p = (p);						\
 	PROC_LOCK_ASSERT((_p), MA_OWNED);				\
 	atomic_store_int(&_p->p_cowgen, _p->p_cowgen + 1);		\
 } while (0)
 
 #define	PROC_COW_CHANGECOUNT(td, p) ({					\
 	struct thread *_td = (td);					\
 	struct proc *_p = (p);						\
 	MPASS(_td == curthread);					\
 	PROC_LOCK_ASSERT(_p, MA_OWNED);					\
 	_p->p_cowgen - _td->td_cowgen;					\
 })
 
 /* Control whether or not it is safe for curthread to sleep. */
 #define	THREAD_NO_SLEEPING()		do {				\
 	curthread->td_no_sleeping++;					\
 	MPASS(curthread->td_no_sleeping > 0);				\
 } while (0)
 
 #define	THREAD_SLEEPING_OK()		do {				\
 	MPASS(curthread->td_no_sleeping > 0);				\
 	curthread->td_no_sleeping--;					\
 } while (0)
 
 #define	THREAD_CAN_SLEEP()		((curthread)->td_no_sleeping == 0)
 
 #define	THREAD_CONTENDS_ON_LOCK(lo)		do {			\
 	MPASS(curthread->td_wantedlock == NULL);			\
 	curthread->td_wantedlock = lo;					\
 } while (0)
 
 #define	THREAD_CONTENTION_DONE(lo)		do {			\
 	MPASS(curthread->td_wantedlock == lo);				\
 	curthread->td_wantedlock = NULL;				\
 } while (0)
 
 #define	PIDHASH(pid)	(&pidhashtbl[(pid) & pidhash])
 #define	PIDHASHLOCK(pid) (&pidhashtbl_lock[((pid) & pidhashlock)])
 extern LIST_HEAD(pidhashhead, proc) *pidhashtbl;
 extern struct sx *pidhashtbl_lock;
 extern u_long pidhash;
 extern u_long pidhashlock;
 
 #define	PGRPHASH(pgid)	(&pgrphashtbl[(pgid) & pgrphash])
 extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl;
 extern u_long pgrphash;
 
 extern struct sx allproc_lock;
 extern int allproc_gen;
 extern struct sx proctree_lock;
 extern struct mtx ppeers_lock;
 extern struct mtx procid_lock;
 extern struct proc proc0;		/* Process slot for swapper. */
 extern struct thread0_storage thread0_st;	/* Primary thread in proc0. */
 #define	thread0 (thread0_st.t0st_thread)
 extern struct vmspace vmspace0;		/* VM space for proc0. */
 extern int hogticks;			/* Limit on kernel cpu hogs. */
 extern int lastpid;
 extern int nprocs, maxproc;		/* Current and max number of procs. */
 extern int maxprocperuid;		/* Max procs per uid. */
 extern u_long ps_arg_cache_limit;
 
 LIST_HEAD(proclist, proc);
 TAILQ_HEAD(procqueue, proc);
 TAILQ_HEAD(threadqueue, thread);
 extern struct proclist allproc;		/* List of all processes. */
 extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */
 
 extern struct uma_zone *proc_zone;
 extern struct uma_zone *pgrp_zone;
 
 struct	proc *pfind(pid_t);		/* Find process by id. */
 struct	proc *pfind_any(pid_t);		/* Find (zombie) process by id. */
 struct	proc *pfind_any_locked(pid_t pid); /* Find process by id, locked. */
 struct	pgrp *pgfind(pid_t);		/* Find process group by id. */
 void	pidhash_slockall(void);		/* Shared lock all pid hash lists. */
 void	pidhash_sunlockall(void);	/* Shared unlock all pid hash lists. */
 
 struct	fork_req {
 	int		fr_flags;
 	int		fr_pages;
 	int 		*fr_pidp;
 	struct proc 	**fr_procp;
 	int 		*fr_pd_fd;
 	int 		fr_pd_flags;
 	struct filecaps	*fr_pd_fcaps;
 	int 		fr_flags2;
 #define	FR2_DROPSIG_CAUGHT	0x00000001 /* Drop caught non-DFL signals */
 #define	FR2_SHARE_PATHS		0x00000002 /* Invert sense of RFFDG for paths */
 #define	FR2_KPROC		0x00000004 /* Create a kernel process */
 };
 
 /*
  * pget() flags.
  */
 #define	PGET_HOLD	0x00001	/* Hold the process. */
 #define	PGET_CANSEE	0x00002	/* Check against p_cansee(). */
 #define	PGET_CANDEBUG	0x00004	/* Check against p_candebug(). */
 #define	PGET_ISCURRENT	0x00008	/* Check that the found process is current. */
 #define	PGET_NOTWEXIT	0x00010	/* Check that the process is not in P_WEXIT. */
 #define	PGET_NOTINEXEC	0x00020	/* Check that the process is not in P_INEXEC. */
 #define	PGET_NOTID	0x00040	/* Do not assume tid if pid > PID_MAX. */
 
 #define	PGET_WANTREAD	(PGET_HOLD | PGET_CANDEBUG | PGET_NOTWEXIT)
 
 int	pget(pid_t pid, int flags, struct proc **pp);
 
 /* ast_register() flags */
 #define	ASTR_ASTF_REQUIRED	0x0001	/* td_ast TDAI(TDA_X) flag set is
 					   required for call */
 #define	ASTR_TDP		0x0002	/* td_pflags flag set is required */
 #define	ASTR_KCLEAR		0x0004	/* call me on ast_kclear() */
 #define	ASTR_UNCOND		0x0008	/* call me always */
 
 void	ast(struct trapframe *framep);
 void	ast_kclear(struct thread *td);
 void	ast_register(int ast, int ast_flags, int tdp,
 	    void (*f)(struct thread *td, int asts));
 void	ast_deregister(int tda);
 void	ast_sched_locked(struct thread *td, int tda);
 void	ast_sched_mask(struct thread *td, int ast);
 void	ast_sched(struct thread *td, int tda);
 void	ast_unsched_locked(struct thread *td, int tda);
 
 struct	thread *choosethread(void);
 int	cr_bsd_visible(struct ucred *u1, struct ucred *u2);
 int	cr_cansee(struct ucred *u1, struct ucred *u2);
 int	cr_canseesocket(struct ucred *cred, struct socket *so);
 int	cr_cansignal(struct ucred *cred, struct proc *proc, int signum);
 int	enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp,
 	    struct session *sess);
 int	enterthispgrp(struct proc *p, struct pgrp *pgrp);
 int	fork1(struct thread *, struct fork_req *);
 void	fork_exit(void (*)(void *, struct trapframe *), void *,
 	    struct trapframe *);
 void	fork_return(struct thread *, struct trapframe *);
 int	inferior(struct proc *p);
 void	itimer_proc_continue(struct proc *p);
 void	kqtimer_proc_continue(struct proc *p);
 void	kern_proc_vmmap_resident(struct vm_map *map, struct vm_map_entry *entry,
 	    int *resident_count, bool *super);
 void	kern_yield(int);
 void	killjobc(void);
 int	leavepgrp(struct proc *p);
 int	maybe_preempt(struct thread *td);
 void	maybe_yield(void);
 void	mi_switch(int flags);
 int	p_candebug(struct thread *td, struct proc *p);
 int	p_cansee(struct thread *td, struct proc *p);
 int	p_cansched(struct thread *td, struct proc *p);
 int	p_cansignal(struct thread *td, struct proc *p, int signum);
 int	p_canwait(struct thread *td, struct proc *p);
 struct	pargs *pargs_alloc(int len);
 void	pargs_drop(struct pargs *pa);
 void	pargs_hold(struct pargs *pa);
+int	pgrp_calc_jobc(struct pgrp *pgrp);
 void	proc_add_orphan(struct proc *child, struct proc *parent);
 int	proc_get_binpath(struct proc *p, char *binname, char **fullpath,
 	    char **freepath);
 int	proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb);
 int	proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb);
 int	proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb);
 void	procinit(void);
 int	proc_iterate(int (*cb)(struct proc *, void *), void *cbarg);
 void	proc_linkup0(struct proc *p, struct thread *td);
 void	proc_linkup(struct proc *p, struct thread *td);
 struct proc *proc_realparent(struct proc *child);
 void	proc_reap(struct thread *td, struct proc *p, int *status, int options);
 void	proc_reparent(struct proc *child, struct proc *newparent, bool set_oppid);
 void	proc_set_p2_wexit(struct proc *p);
 void	proc_set_traced(struct proc *p, bool stop);
 void	proc_wkilled(struct proc *p);
 struct	pstats *pstats_alloc(void);
 void	pstats_fork(struct pstats *src, struct pstats *dst);
 void	pstats_free(struct pstats *ps);
 void	proc_clear_orphan(struct proc *p);
 void	reaper_abandon_children(struct proc *p, bool exiting);
 int	securelevel_ge(struct ucred *cr, int level);
 int	securelevel_gt(struct ucred *cr, int level);
 void	sess_hold(struct session *);
 void	sess_release(struct session *);
 void	setrunnable(struct thread *, int);
 void	setsugid(struct proc *p);
 bool	should_yield(void);
 int	sigonstack(size_t sp);
 void	stopevent(struct proc *, u_int, u_int);
 struct	thread *tdfind(lwpid_t, pid_t);
 void	threadinit(void);
 void	tidhash_add(struct thread *);
 void	tidhash_remove(struct thread *);
 void	cpu_idle(int);
 int	cpu_idle_wakeup(int);
 extern	void (*cpu_idle_hook)(sbintime_t);	/* Hook to machdep CPU idler. */
 void	cpu_switch(struct thread *, struct thread *, struct mtx *);
 void	cpu_sync_core(void);
 void	cpu_throw(struct thread *, struct thread *) __dead2;
 bool	curproc_sigkilled(void);
 void	userret(struct thread *, struct trapframe *);
 
 void	cpu_exit(struct thread *);
 void	exit1(struct thread *, int, int) __dead2;
 void	cpu_copy_thread(struct thread *td, struct thread *td0);
 bool	cpu_exec_vmspace_reuse(struct proc *p, struct vm_map *map);
 int	cpu_fetch_syscall_args(struct thread *td);
 void	cpu_fork(struct thread *, struct proc *, struct thread *, int);
 void	cpu_fork_kthread_handler(struct thread *, void (*)(void *), void *);
 int	cpu_procctl(struct thread *td, int idtype, id_t id, int com,
 	    void *data);
 void	cpu_set_syscall_retval(struct thread *, int);
 int	cpu_set_upcall(struct thread *, void (*)(void *), void *,
 	    stack_t *);
 int	cpu_set_user_tls(struct thread *, void *tls_base);
 void	cpu_thread_alloc(struct thread *);
 void	cpu_thread_clean(struct thread *);
 void	cpu_thread_exit(struct thread *);
 void	cpu_thread_free(struct thread *);
 struct	thread *thread_alloc(int pages);
 int	thread_check_susp(struct thread *td, bool sleep);
 void	thread_cow_get_proc(struct thread *newtd, struct proc *p);
 void	thread_cow_get(struct thread *newtd, struct thread *td);
 void	thread_cow_free(struct thread *td);
 void	thread_cow_update(struct thread *td);
 void	thread_cow_synced(struct thread *td);
 int	thread_create(struct thread *td, struct rtprio *rtp,
 	    int (*initialize_thread)(struct thread *, void *), void *thunk);
 void	thread_exit(void) __dead2;
 void	thread_free(struct thread *td);
 void	thread_link(struct thread *td, struct proc *p);
 void	thread_reap_barrier(void);
 int	thread_recycle(struct thread *, int pages);
 int	thread_single(struct proc *p, int how);
 void	thread_single_end(struct proc *p, int how);
 void	thread_stash(struct thread *td);
 void	thread_stopped(struct proc *p);
 void	childproc_stopped(struct proc *child, int reason);
 void	childproc_continued(struct proc *child);
 void	childproc_exited(struct proc *child);
 void	thread_run_flash(struct thread *td);
 int	thread_suspend_check(int how);
 bool	thread_suspend_check_needed(void);
 void	thread_suspend_switch(struct thread *, struct proc *p);
 void	thread_suspend_one(struct thread *td);
 void	thread_unlink(struct thread *td);
 void	thread_unsuspend(struct proc *p);
 void	thread_wait(struct proc *p);
 
 bool	stop_all_proc_block(void);
 void	stop_all_proc_unblock(void);
 void	stop_all_proc(void);
 void	resume_all_proc(void);
 
 static __inline int
 curthread_pflags_set(int flags)
 {
 	struct thread *td;
 	int save;
 
 	td = curthread;
 	save = ~flags | (td->td_pflags & flags);
 	td->td_pflags |= flags;
 	return (save);
 }
 
 static __inline void
 curthread_pflags_restore(int save)
 {
 
 	curthread->td_pflags &= save;
 }
 
 static __inline int
 curthread_pflags2_set(int flags)
 {
 	struct thread *td;
 	int save;
 
 	td = curthread;
 	save = ~flags | (td->td_pflags2 & flags);
 	td->td_pflags2 |= flags;
 	return (save);
 }
 
 static __inline void
 curthread_pflags2_restore(int save)
 {
 
 	curthread->td_pflags2 &= save;
 }
 
 static __inline __pure2 struct td_sched *
 td_get_sched(struct thread *td)
 {
 
 	return ((struct td_sched *)&td[1]);
 }
 
 #define	PROC_ID_PID	0
 #define	PROC_ID_GROUP	1
 #define	PROC_ID_SESSION	2
 #define	PROC_ID_REAP	3
 
 void	proc_id_set(int type, pid_t id);
 void	proc_id_set_cond(int type, pid_t id);
 void	proc_id_clear(int type, pid_t id);
 
 EVENTHANDLER_LIST_DECLARE(process_ctor);
 EVENTHANDLER_LIST_DECLARE(process_dtor);
 EVENTHANDLER_LIST_DECLARE(process_init);
 EVENTHANDLER_LIST_DECLARE(process_fini);
 EVENTHANDLER_LIST_DECLARE(process_exit);
 EVENTHANDLER_LIST_DECLARE(process_fork);
 EVENTHANDLER_LIST_DECLARE(process_exec);
 
 EVENTHANDLER_LIST_DECLARE(thread_ctor);
 EVENTHANDLER_LIST_DECLARE(thread_dtor);
 EVENTHANDLER_LIST_DECLARE(thread_init);
 
 #endif	/* _KERNEL */
 
 #endif	/* !_SYS_PROC_H_ */