diff --git a/sys/arm64/arm64/machdep.c b/sys/arm64/arm64/machdep.c
index c48f2ff037c9..33635f732cac 100644
--- a/sys/arm64/arm64/machdep.c
+++ b/sys/arm64/arm64/machdep.c
@@ -1,1011 +1,1010 @@
 /*-
  * Copyright (c) 2014 Andrew Turner
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  */
 
 #include "opt_acpi.h"
 #include "opt_platform.h"
 #include "opt_ddb.h"
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/buf.h>
 #include <sys/bus.h>
 #include <sys/cons.h>
 #include <sys/cpu.h>
 #include <sys/csan.h>
 #include <sys/devmap.h>
 #include <sys/efi.h>
 #include <sys/exec.h>
 #include <sys/imgact.h>
 #include <sys/kdb.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/limits.h>
 #include <sys/linker.h>
 #include <sys/msgbuf.h>
 #include <sys/pcpu.h>
 #include <sys/physmem.h>
 #include <sys/proc.h>
 #include <sys/ptrace.h>
 #include <sys/reboot.h>
 #include <sys/reg.h>
 #include <sys/rwlock.h>
 #include <sys/sched.h>
 #include <sys/signalvar.h>
 #include <sys/syscallsubr.h>
 #include <sys/sysent.h>
 #include <sys/sysproto.h>
 #include <sys/ucontext.h>
 #include <sys/vdso.h>
 #include <sys/vmmeter.h>
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_object.h>
 #include <vm/vm_page.h>
 #include <vm/vm_phys.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_pager.h>
 
 #include <machine/armreg.h>
 #include <machine/cpu.h>
 #include <machine/debug_monitor.h>
 #include <machine/kdb.h>
 #include <machine/machdep.h>
 #include <machine/metadata.h>
 #include <machine/md_var.h>
 #include <machine/pcb.h>
 #include <machine/undefined.h>
 #include <machine/vmparam.h>
 
 #ifdef VFP
 #include <machine/vfp.h>
 #endif
 
 #ifdef DEV_ACPI
 #include <contrib/dev/acpica/include/acpi.h>
 #include <machine/acpica_machdep.h>
 #endif
 
 #ifdef FDT
 #include <dev/fdt/fdt_common.h>
 #include <dev/ofw/openfirm.h>
 #endif
 
 enum arm64_bus arm64_bus_method = ARM64_BUS_NONE;
 
 /*
  * XXX: The .bss is assumed to be in the boot CPU NUMA domain. If not we
  * could relocate this, but will need to keep the same virtual address as
  * it's reverenced by the EARLY_COUNTER macro.
  */
 struct pcpu pcpu0;
 
 #if defined(PERTHREAD_SSP)
 /*
  * The boot SSP canary. Will be replaced with a per-thread canary when
  * scheduling has started.
  */
 uintptr_t boot_canary = 0x49a2d892bc05a0b1ul;
 #endif
 
 static struct trapframe proc0_tf;
 
 int early_boot = 1;
 int cold = 1;
 static int boot_el;
 
 struct kva_md_info kmi;
 
 int64_t dczva_line_size;	/* The size of cache line the dc zva zeroes */
 int has_pan;
 
 /*
  * Physical address of the EFI System Table. Stashed from the metadata hints
  * passed into the kernel and used by the EFI code to call runtime services.
  */
 vm_paddr_t efi_systbl_phys;
 static struct efi_map_header *efihdr;
 
 /* pagezero_* implementations are provided in support.S */
 void pagezero_simple(void *);
 void pagezero_cache(void *);
 
 /* pagezero_simple is default pagezero */
 void (*pagezero)(void *p) = pagezero_simple;
 
 int (*apei_nmi)(void);
 
 #if defined(PERTHREAD_SSP_WARNING)
 static void
 print_ssp_warning(void *data __unused)
 {
 	printf("WARNING: Per-thread SSP is enabled but the compiler is too old to support it\n");
 }
 SYSINIT(ssp_warn, SI_SUB_COPYRIGHT, SI_ORDER_ANY, print_ssp_warning, NULL);
 SYSINIT(ssp_warn2, SI_SUB_LAST, SI_ORDER_ANY, print_ssp_warning, NULL);
 #endif
 
 static void
 pan_setup(void)
 {
 	uint64_t id_aa64mfr1;
 
 	id_aa64mfr1 = READ_SPECIALREG(id_aa64mmfr1_el1);
 	if (ID_AA64MMFR1_PAN_VAL(id_aa64mfr1) != ID_AA64MMFR1_PAN_NONE)
 		has_pan = 1;
 }
 
 void
 pan_enable(void)
 {
 
 	/*
 	 * The LLVM integrated assembler doesn't understand the PAN
 	 * PSTATE field. Because of this we need to manually create
 	 * the instruction in an asm block. This is equivalent to:
 	 * msr pan, #1
 	 *
 	 * This sets the PAN bit, stopping the kernel from accessing
 	 * memory when userspace can also access it unless the kernel
 	 * uses the userspace load/store instructions.
 	 */
 	if (has_pan) {
 		WRITE_SPECIALREG(sctlr_el1,
 		    READ_SPECIALREG(sctlr_el1) & ~SCTLR_SPAN);
 		__asm __volatile(".inst 0xd500409f | (0x1 << 8)");
 	}
 }
 
 bool
 has_hyp(void)
 {
 
 	return (boot_el == 2);
 }
 
 static void
 cpu_startup(void *dummy)
 {
 	vm_paddr_t size;
 	int i;
 
 	printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)realmem),
 	    ptoa((uintmax_t)realmem) / 1024 / 1024);
 
 	if (bootverbose) {
 		printf("Physical memory chunk(s):\n");
 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
 			size = phys_avail[i + 1] - phys_avail[i];
 			printf("%#016jx - %#016jx, %ju bytes (%ju pages)\n",
 			    (uintmax_t)phys_avail[i],
 			    (uintmax_t)phys_avail[i + 1] - 1,
 			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
 		}
 	}
 
 	printf("avail memory = %ju (%ju MB)\n",
 	    ptoa((uintmax_t)vm_free_count()),
 	    ptoa((uintmax_t)vm_free_count()) / 1024 / 1024);
 
 	undef_init();
 	install_cpu_errata();
 
 	vm_ksubmap_init(&kmi);
 	bufinit();
 	vm_pager_bufferinit();
 }
 
 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
 
 static void
 late_ifunc_resolve(void *dummy __unused)
 {
 	link_elf_late_ireloc();
 }
 SYSINIT(late_ifunc_resolve, SI_SUB_CPU, SI_ORDER_ANY, late_ifunc_resolve, NULL);
 
 int
 cpu_idle_wakeup(int cpu)
 {
 
 	return (0);
 }
 
 void
 cpu_idle(int busy)
 {
 
 	spinlock_enter();
 	if (!busy)
 		cpu_idleclock();
 	if (!sched_runnable())
 		__asm __volatile(
 		    "dsb sy \n"
 		    "wfi    \n");
 	if (!busy)
 		cpu_activeclock();
 	spinlock_exit();
 }
 
 void
 cpu_halt(void)
 {
 
 	/* We should have shutdown by now, if not enter a low power sleep */
 	intr_disable();
 	while (1) {
 		__asm __volatile("wfi");
 	}
 }
 
 /*
  * Flush the D-cache for non-DMA I/O so that the I-cache can
  * be made coherent later.
  */
 void
 cpu_flush_dcache(void *ptr, size_t len)
 {
 
 	/* ARM64TODO TBD */
 }
 
 /* Get current clock frequency for the given CPU ID. */
 int
 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 {
 	struct pcpu *pc;
 
 	pc = pcpu_find(cpu_id);
 	if (pc == NULL || rate == NULL)
 		return (EINVAL);
 
 	if (pc->pc_clock == 0)
 		return (EOPNOTSUPP);
 
 	*rate = pc->pc_clock;
 	return (0);
 }
 
 void
 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 {
 
 	pcpu->pc_acpi_id = 0xffffffff;
 	pcpu->pc_mpidr_low = 0xffffffff;
 	pcpu->pc_mpidr_high = 0xffffffff;
 }
 
 void
 spinlock_enter(void)
 {
 	struct thread *td;
 	register_t daif;
 
 	td = curthread;
 	if (td->td_md.md_spinlock_count == 0) {
 		daif = intr_disable();
 		td->td_md.md_spinlock_count = 1;
 		td->td_md.md_saved_daif = daif;
 		critical_enter();
 	} else
 		td->td_md.md_spinlock_count++;
 }
 
 void
 spinlock_exit(void)
 {
 	struct thread *td;
 	register_t daif;
 
 	td = curthread;
 	daif = td->td_md.md_saved_daif;
 	td->td_md.md_spinlock_count--;
 	if (td->td_md.md_spinlock_count == 0) {
 		critical_exit();
 		intr_restore(daif);
 	}
 }
 
 /*
  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  * we want to start a backtrace from the function that caused us to enter
  * the debugger. We have the context in the trapframe, but base the trace
  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  * enough for a backtrace.
  */
 void
 makectx(struct trapframe *tf, struct pcb *pcb)
 {
 	int i;
 
 	for (i = 0; i < nitems(pcb->pcb_x); i++)
 		pcb->pcb_x[i] = tf->tf_x[i];
 
 	/* NB: pcb_lr is the PC, see PC_REGS() in db_machdep.h */
 	pcb->pcb_lr = tf->tf_elr;
 	pcb->pcb_sp = tf->tf_sp;
 }
 
 static void
 init_proc0(vm_offset_t kstack)
 {
 	struct pcpu *pcpup;
 
 	pcpup = cpuid_to_pcpu[0];
 	MPASS(pcpup != NULL);
 
 	proc_linkup0(&proc0, &thread0);
 	thread0.td_kstack = kstack;
 	thread0.td_kstack_pages = KSTACK_PAGES;
 #if defined(PERTHREAD_SSP)
 	thread0.td_md.md_canary = boot_canary;
 #endif
 	thread0.td_pcb = (struct pcb *)(thread0.td_kstack +
 	    thread0.td_kstack_pages * PAGE_SIZE) - 1;
 	thread0.td_pcb->pcb_fpflags = 0;
 	thread0.td_pcb->pcb_fpusaved = &thread0.td_pcb->pcb_fpustate;
 	thread0.td_pcb->pcb_vfpcpu = UINT_MAX;
 	thread0.td_frame = &proc0_tf;
 	ptrauth_thread0(&thread0);
 	pcpup->pc_curpcb = thread0.td_pcb;
 
 	/*
 	 * Unmask SError exceptions. They are used to signal a RAS failure,
 	 * or other hardware error.
 	 */
 	serror_enable();
 }
 
 /*
  * Get an address to be used to write to kernel data that may be mapped
  * read-only, e.g. to patch kernel code.
  */
 bool
 arm64_get_writable_addr(vm_offset_t addr, vm_offset_t *out)
 {
 	vm_paddr_t pa;
 
 	/* Check if the page is writable */
 	if (PAR_SUCCESS(arm64_address_translate_s1e1w(addr))) {
 		*out = addr;
 		return (true);
 	}
 
 	/*
 	 * Find the physical address of the given page.
 	 */
 	if (!pmap_klookup(addr, &pa)) {
 		return (false);
 	}
 
 	/*
 	 * If it is within the DMAP region and is writable use that.
 	 */
 	if (PHYS_IN_DMAP(pa)) {
 		addr = PHYS_TO_DMAP(pa);
 		if (PAR_SUCCESS(arm64_address_translate_s1e1w(addr))) {
 			*out = addr;
 			return (true);
 		}
 	}
 
 	return (false);
 }
 
-typedef void (*efi_map_entry_cb)(struct efi_md *);
+typedef void (*efi_map_entry_cb)(struct efi_md *, void *argp);
 
 static void
-foreach_efi_map_entry(struct efi_map_header *efihdr, efi_map_entry_cb cb)
+foreach_efi_map_entry(struct efi_map_header *efihdr, efi_map_entry_cb cb, void *argp)
 {
 	struct efi_md *map, *p;
 	size_t efisz;
 	int ndesc, i;
 
 	/*
 	 * Memory map data provided by UEFI via the GetMemoryMap
 	 * Boot Services API.
 	 */
 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
 	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
 
 	if (efihdr->descriptor_size == 0)
 		return;
 	ndesc = efihdr->memory_size / efihdr->descriptor_size;
 
 	for (i = 0, p = map; i < ndesc; i++,
 	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
-		cb(p);
+		cb(p, argp);
 	}
 }
 
 static void
-exclude_efi_map_entry(struct efi_md *p)
+exclude_efi_map_entry(struct efi_md *p, void *argp __unused)
 {
 
 	switch (p->md_type) {
 	case EFI_MD_TYPE_CODE:
 	case EFI_MD_TYPE_DATA:
 	case EFI_MD_TYPE_BS_CODE:
 	case EFI_MD_TYPE_BS_DATA:
 	case EFI_MD_TYPE_FREE:
 		/*
 		 * We're allowed to use any entry with these types.
 		 */
 		break;
 	default:
 		physmem_exclude_region(p->md_phys, p->md_pages * EFI_PAGE_SIZE,
 		    EXFLAG_NOALLOC);
 	}
 }
 
 static void
 exclude_efi_map_entries(struct efi_map_header *efihdr)
 {
 
-	foreach_efi_map_entry(efihdr, exclude_efi_map_entry);
+	foreach_efi_map_entry(efihdr, exclude_efi_map_entry, NULL);
 }
 
 static void
-add_efi_map_entry(struct efi_md *p)
+add_efi_map_entry(struct efi_md *p, void *argp __unused)
 {
 
 	switch (p->md_type) {
 	case EFI_MD_TYPE_RECLAIM:
 		/*
 		 * The recomended location for ACPI tables. Map into the
 		 * DMAP so we can access them from userspace via /dev/mem.
 		 */
 	case EFI_MD_TYPE_RT_CODE:
 		/*
 		 * Some UEFI implementations put the system table in the
 		 * runtime code section. Include it in the DMAP, but will
 		 * be excluded from phys_avail later.
 		 */
 	case EFI_MD_TYPE_RT_DATA:
 		/*
 		 * Runtime data will be excluded after the DMAP
 		 * region is created to stop it from being added
 		 * to phys_avail.
 		 */
 	case EFI_MD_TYPE_CODE:
 	case EFI_MD_TYPE_DATA:
 	case EFI_MD_TYPE_BS_CODE:
 	case EFI_MD_TYPE_BS_DATA:
 	case EFI_MD_TYPE_FREE:
 		/*
 		 * We're allowed to use any entry with these types.
 		 */
 		physmem_hardware_region(p->md_phys,
 		    p->md_pages * EFI_PAGE_SIZE);
 		break;
 	}
 }
 
 static void
 add_efi_map_entries(struct efi_map_header *efihdr)
 {
-
-	foreach_efi_map_entry(efihdr, add_efi_map_entry);
+	foreach_efi_map_entry(efihdr, add_efi_map_entry, NULL);
 }
 
 static void
-print_efi_map_entry(struct efi_md *p)
+print_efi_map_entry(struct efi_md *p, void *argp __unused)
 {
 	const char *type;
 	static const char *types[] = {
 		"Reserved",
 		"LoaderCode",
 		"LoaderData",
 		"BootServicesCode",
 		"BootServicesData",
 		"RuntimeServicesCode",
 		"RuntimeServicesData",
 		"ConventionalMemory",
 		"UnusableMemory",
 		"ACPIReclaimMemory",
 		"ACPIMemoryNVS",
 		"MemoryMappedIO",
 		"MemoryMappedIOPortSpace",
 		"PalCode",
 		"PersistentMemory"
 	};
 
 	if (p->md_type < nitems(types))
 		type = types[p->md_type];
 	else
 		type = "<INVALID>";
 	printf("%23s %012lx %012lx %08lx ", type, p->md_phys,
 	    p->md_virt, p->md_pages);
 	if (p->md_attr & EFI_MD_ATTR_UC)
 		printf("UC ");
 	if (p->md_attr & EFI_MD_ATTR_WC)
 		printf("WC ");
 	if (p->md_attr & EFI_MD_ATTR_WT)
 		printf("WT ");
 	if (p->md_attr & EFI_MD_ATTR_WB)
 		printf("WB ");
 	if (p->md_attr & EFI_MD_ATTR_UCE)
 		printf("UCE ");
 	if (p->md_attr & EFI_MD_ATTR_WP)
 		printf("WP ");
 	if (p->md_attr & EFI_MD_ATTR_RP)
 		printf("RP ");
 	if (p->md_attr & EFI_MD_ATTR_XP)
 		printf("XP ");
 	if (p->md_attr & EFI_MD_ATTR_NV)
 		printf("NV ");
 	if (p->md_attr & EFI_MD_ATTR_MORE_RELIABLE)
 		printf("MORE_RELIABLE ");
 	if (p->md_attr & EFI_MD_ATTR_RO)
 		printf("RO ");
 	if (p->md_attr & EFI_MD_ATTR_RT)
 		printf("RUNTIME");
 	printf("\n");
 }
 
 static void
 print_efi_map_entries(struct efi_map_header *efihdr)
 {
 
 	printf("%23s %12s %12s %8s %4s\n",
 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
-	foreach_efi_map_entry(efihdr, print_efi_map_entry);
+	foreach_efi_map_entry(efihdr, print_efi_map_entry, NULL);
 }
 
 #ifdef FDT
 static void
 try_load_dtb(caddr_t kmdp)
 {
 	vm_offset_t dtbp;
 
 	dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
 #if defined(FDT_DTB_STATIC)
 	/*
 	 * In case the device tree blob was not retrieved (from metadata) try
 	 * to use the statically embedded one.
 	 */
 	if (dtbp == 0)
 		dtbp = (vm_offset_t)&fdt_static_dtb;
 #endif
 
 	if (dtbp == (vm_offset_t)NULL) {
 #ifndef TSLOG
 		printf("ERROR loading DTB\n");
 #endif
 		return;
 	}
 
 	if (OF_install(OFW_FDT, 0) == FALSE)
 		panic("Cannot install FDT");
 
 	if (OF_init((void *)dtbp) != 0)
 		panic("OF_init failed with the found device tree");
 
 	parse_fdt_bootargs();
 }
 #endif
 
 static bool
 bus_probe(void)
 {
 	bool has_acpi, has_fdt;
 	char *order, *env;
 
 	has_acpi = has_fdt = false;
 
 #ifdef FDT
 	has_fdt = (OF_peer(0) != 0);
 #endif
 #ifdef DEV_ACPI
 	has_acpi = (AcpiOsGetRootPointer() != 0);
 #endif
 
 	env = kern_getenv("kern.cfg.order");
 	if (env != NULL) {
 		order = env;
 		while (order != NULL) {
 			if (has_acpi &&
 			    strncmp(order, "acpi", 4) == 0 &&
 			    (order[4] == ',' || order[4] == '\0')) {
 				arm64_bus_method = ARM64_BUS_ACPI;
 				break;
 			}
 			if (has_fdt &&
 			    strncmp(order, "fdt", 3) == 0 &&
 			    (order[3] == ',' || order[3] == '\0')) {
 				arm64_bus_method = ARM64_BUS_FDT;
 				break;
 			}
 			order = strchr(order, ',');
 			if (order != NULL)
 				order++;	/* Skip comma */
 		}
 		freeenv(env);
 
 		/* If we set the bus method it is valid */
 		if (arm64_bus_method != ARM64_BUS_NONE)
 			return (true);
 	}
 	/* If no order or an invalid order was set use the default */
 	if (arm64_bus_method == ARM64_BUS_NONE) {
 		if (has_fdt)
 			arm64_bus_method = ARM64_BUS_FDT;
 		else if (has_acpi)
 			arm64_bus_method = ARM64_BUS_ACPI;
 	}
 
 	/*
 	 * If no option was set the default is valid, otherwise we are
 	 * setting one to get cninit() working, then calling panic to tell
 	 * the user about the invalid bus setup.
 	 */
 	return (env == NULL);
 }
 
 static void
 cache_setup(void)
 {
 	int dczva_line_shift;
 	uint32_t dczid_el0;
 
 	identify_cache(READ_SPECIALREG(ctr_el0));
 
 	dczid_el0 = READ_SPECIALREG(dczid_el0);
 
 	/* Check if dc zva is not prohibited */
 	if (dczid_el0 & DCZID_DZP)
 		dczva_line_size = 0;
 	else {
 		/* Same as with above calculations */
 		dczva_line_shift = DCZID_BS_SIZE(dczid_el0);
 		dczva_line_size = sizeof(int) << dczva_line_shift;
 
 		/* Change pagezero function */
 		pagezero = pagezero_cache;
 	}
 }
 
 int
 memory_mapping_mode(vm_paddr_t pa)
 {
 	struct efi_md *map, *p;
 	size_t efisz;
 	int ndesc, i;
 
 	if (efihdr == NULL)
 		return (VM_MEMATTR_WRITE_BACK);
 
 	/*
 	 * Memory map data provided by UEFI via the GetMemoryMap
 	 * Boot Services API.
 	 */
 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
 	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
 
 	if (efihdr->descriptor_size == 0)
 		return (VM_MEMATTR_WRITE_BACK);
 	ndesc = efihdr->memory_size / efihdr->descriptor_size;
 
 	for (i = 0, p = map; i < ndesc; i++,
 	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
 		if (pa < p->md_phys ||
 		    pa >= p->md_phys + p->md_pages * EFI_PAGE_SIZE)
 			continue;
 		if (p->md_type == EFI_MD_TYPE_IOMEM ||
 		    p->md_type == EFI_MD_TYPE_IOPORT)
 			return (VM_MEMATTR_DEVICE);
 		else if ((p->md_attr & EFI_MD_ATTR_WB) != 0 ||
 		    p->md_type == EFI_MD_TYPE_RECLAIM)
 			return (VM_MEMATTR_WRITE_BACK);
 		else if ((p->md_attr & EFI_MD_ATTR_WT) != 0)
 			return (VM_MEMATTR_WRITE_THROUGH);
 		else if ((p->md_attr & EFI_MD_ATTR_WC) != 0)
 			return (VM_MEMATTR_WRITE_COMBINING);
 		break;
 	}
 
 	return (VM_MEMATTR_DEVICE);
 }
 
 void
 initarm(struct arm64_bootparams *abp)
 {
 	struct efi_fb *efifb;
 	struct pcpu *pcpup;
 	char *env;
 #ifdef FDT
 	struct mem_region mem_regions[FDT_MEM_REGIONS];
 	int mem_regions_sz;
 	phandle_t root;
 	char dts_version[255];
 #endif
 	vm_offset_t lastaddr;
 	caddr_t kmdp;
 	bool valid;
 
 	TSRAW(&thread0, TS_ENTER, __func__, NULL);
 
 	boot_el = abp->boot_el;
 
 	/* Parse loader or FDT boot parametes. Determine last used address. */
 	lastaddr = parse_boot_param(abp);
 
 	/* Find the kernel address */
 	kmdp = preload_search_by_type("elf kernel");
 	if (kmdp == NULL)
 		kmdp = preload_search_by_type("elf64 kernel");
 
 	identify_cpu(0);
 	update_special_regs(0);
 
 	link_elf_ireloc(kmdp);
 #ifdef FDT
 	try_load_dtb(kmdp);
 #endif
 
 	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
 
 	/* Load the physical memory ranges */
 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
 	if (efihdr != NULL)
 		add_efi_map_entries(efihdr);
 #ifdef FDT
 	else {
 		/* Grab physical memory regions information from device tree. */
 		if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,
 		    NULL) != 0)
 			panic("Cannot get physical memory regions");
 		physmem_hardware_regions(mem_regions, mem_regions_sz);
 	}
 	if (fdt_get_reserved_mem(mem_regions, &mem_regions_sz) == 0)
 		physmem_exclude_regions(mem_regions, mem_regions_sz,
 		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
 #endif
 
 	/* Exclude the EFI framebuffer from our view of physical memory. */
 	efifb = (struct efi_fb *)preload_search_info(kmdp,
 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
 	if (efifb != NULL)
 		physmem_exclude_region(efifb->fb_addr, efifb->fb_size,
 		    EXFLAG_NOALLOC);
 
 	/* Set the pcpu data, this is needed by pmap_bootstrap */
 	pcpup = &pcpu0;
 	pcpu_init(pcpup, 0, sizeof(struct pcpu));
 
 	/*
 	 * Set the pcpu pointer with a backup in tpidr_el1 to be
 	 * loaded when entering the kernel from userland.
 	 */
 	__asm __volatile(
 	    "mov x18, %0 \n"
 	    "msr tpidr_el1, %0" :: "r"(pcpup));
 
 	/* locore.S sets sp_el0 to &thread0 so no need to set it here. */
 	PCPU_SET(curthread, &thread0);
 	PCPU_SET(midr, get_midr());
 
 	/* Do basic tuning, hz etc */
 	init_param1();
 
 	cache_setup();
 	pan_setup();
 
 	/* Bootstrap enough of pmap  to enter the kernel proper */
 	pmap_bootstrap(KERNBASE - abp->kern_delta, lastaddr - KERNBASE);
 	/* Exclude entries needed in the DMAP region, but not phys_avail */
 	if (efihdr != NULL)
 		exclude_efi_map_entries(efihdr);
 	physmem_init_kernel_globals();
 
 	devmap_bootstrap(0, NULL);
 
 	valid = bus_probe();
 
 	cninit();
 	set_ttbr0(abp->kern_ttbr0);
 	cpu_tlb_flushID();
 
 	if (!valid)
 		panic("Invalid bus configuration: %s",
 		    kern_getenv("kern.cfg.order"));
 
 	/*
 	 * Check if pointer authentication is available on this system, and
 	 * if so enable its use. This needs to be called before init_proc0
 	 * as that will configure the thread0 pointer authentication keys.
 	 */
 	ptrauth_init();
 
 	/*
 	 * Dump the boot metadata. We have to wait for cninit() since console
 	 * output is required. If it's grossly incorrect the kernel will never
 	 * make it this far.
 	 */
 	if (getenv_is_true("debug.dump_modinfo_at_boot"))
 		preload_dump();
 
 	init_proc0(abp->kern_stack);
 	msgbufinit(msgbufp, msgbufsize);
 	mutex_init();
 	init_param2(physmem);
 
 	dbg_init();
 	kdb_init();
 #ifdef KDB
 	if ((boothowto & RB_KDB) != 0)
 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 #endif
 	pan_enable();
 
 	kcsan_cpu_init(0);
 
 	env = kern_getenv("kernelname");
 	if (env != NULL)
 		strlcpy(kernelname, env, sizeof(kernelname));
 
 #ifdef FDT
 	if (arm64_bus_method == ARM64_BUS_FDT) {
 		root = OF_finddevice("/");
 		if (OF_getprop(root, "freebsd,dts-version", dts_version, sizeof(dts_version)) > 0) {
 			if (strcmp(LINUX_DTS_VERSION, dts_version) != 0)
 				printf("WARNING: DTB version is %s while kernel expects %s, "
 				    "please update the DTB in the ESP\n",
 				    dts_version,
 				    LINUX_DTS_VERSION);
 		} else {
 			printf("WARNING: Cannot find freebsd,dts-version property, "
 			    "cannot check DTB compliance\n");
 		}
 	}
 #endif
 
 	if (boothowto & RB_VERBOSE) {
 		if (efihdr != NULL)
 			print_efi_map_entries(efihdr);
 		physmem_print_tables();
 	}
 
 	early_boot = 0;
 
 	TSEXIT();
 }
 
 void
 dbg_init(void)
 {
 
 	/* Clear OS lock */
 	WRITE_SPECIALREG(oslar_el1, 0);
 
 	/* This permits DDB to use debug registers for watchpoints. */
 	dbg_monitor_init();
 
 	/* TODO: Eventually will need to initialize debug registers here. */
 }
 
 #ifdef DDB
 #include <ddb/ddb.h>
 
 DB_SHOW_COMMAND(specialregs, db_show_spregs)
 {
 #define	PRINT_REG(reg)	\
     db_printf(__STRING(reg) " = %#016lx\n", READ_SPECIALREG(reg))
 
 	PRINT_REG(actlr_el1);
 	PRINT_REG(afsr0_el1);
 	PRINT_REG(afsr1_el1);
 	PRINT_REG(aidr_el1);
 	PRINT_REG(amair_el1);
 	PRINT_REG(ccsidr_el1);
 	PRINT_REG(clidr_el1);
 	PRINT_REG(contextidr_el1);
 	PRINT_REG(cpacr_el1);
 	PRINT_REG(csselr_el1);
 	PRINT_REG(ctr_el0);
 	PRINT_REG(currentel);
 	PRINT_REG(daif);
 	PRINT_REG(dczid_el0);
 	PRINT_REG(elr_el1);
 	PRINT_REG(esr_el1);
 	PRINT_REG(far_el1);
 #if 0
 	/* ARM64TODO: Enable VFP before reading floating-point registers */
 	PRINT_REG(fpcr);
 	PRINT_REG(fpsr);
 #endif
 	PRINT_REG(id_aa64afr0_el1);
 	PRINT_REG(id_aa64afr1_el1);
 	PRINT_REG(id_aa64dfr0_el1);
 	PRINT_REG(id_aa64dfr1_el1);
 	PRINT_REG(id_aa64isar0_el1);
 	PRINT_REG(id_aa64isar1_el1);
 	PRINT_REG(id_aa64pfr0_el1);
 	PRINT_REG(id_aa64pfr1_el1);
 	PRINT_REG(id_afr0_el1);
 	PRINT_REG(id_dfr0_el1);
 	PRINT_REG(id_isar0_el1);
 	PRINT_REG(id_isar1_el1);
 	PRINT_REG(id_isar2_el1);
 	PRINT_REG(id_isar3_el1);
 	PRINT_REG(id_isar4_el1);
 	PRINT_REG(id_isar5_el1);
 	PRINT_REG(id_mmfr0_el1);
 	PRINT_REG(id_mmfr1_el1);
 	PRINT_REG(id_mmfr2_el1);
 	PRINT_REG(id_mmfr3_el1);
 #if 0
 	/* Missing from llvm */
 	PRINT_REG(id_mmfr4_el1);
 #endif
 	PRINT_REG(id_pfr0_el1);
 	PRINT_REG(id_pfr1_el1);
 	PRINT_REG(isr_el1);
 	PRINT_REG(mair_el1);
 	PRINT_REG(midr_el1);
 	PRINT_REG(mpidr_el1);
 	PRINT_REG(mvfr0_el1);
 	PRINT_REG(mvfr1_el1);
 	PRINT_REG(mvfr2_el1);
 	PRINT_REG(revidr_el1);
 	PRINT_REG(sctlr_el1);
 	PRINT_REG(sp_el0);
 	PRINT_REG(spsel);
 	PRINT_REG(spsr_el1);
 	PRINT_REG(tcr_el1);
 	PRINT_REG(tpidr_el0);
 	PRINT_REG(tpidr_el1);
 	PRINT_REG(tpidrro_el0);
 	PRINT_REG(ttbr0_el1);
 	PRINT_REG(ttbr1_el1);
 	PRINT_REG(vbar_el1);
 #undef PRINT_REG
 }
 
 DB_SHOW_COMMAND(vtop, db_show_vtop)
 {
 	uint64_t phys;
 
 	if (have_addr) {
 		phys = arm64_address_translate_s1e1r(addr);
 		db_printf("EL1 physical address reg (read):  0x%016lx\n", phys);
 		phys = arm64_address_translate_s1e1w(addr);
 		db_printf("EL1 physical address reg (write): 0x%016lx\n", phys);
 		phys = arm64_address_translate_s1e0r(addr);
 		db_printf("EL0 physical address reg (read):  0x%016lx\n", phys);
 		phys = arm64_address_translate_s1e0w(addr);
 		db_printf("EL0 physical address reg (write): 0x%016lx\n", phys);
 	} else
 		db_printf("show vtop <virt_addr>\n");
 }
 #endif