diff --git a/cmd/zdb/zdb_il.c b/cmd/zdb/zdb_il.c index 55df1f559f6e..970c45c9b3bb 100644 --- a/cmd/zdb/zdb_il.c +++ b/cmd/zdb/zdb_il.c @@ -1,466 +1,485 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2012 Cyril Plisko. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2013, 2017 by Delphix. All rights reserved. */ /* * Print intent log header and statistics. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "zdb.h" extern uint8_t dump_opt[256]; static char tab_prefix[4] = "\t\t\t"; static void print_log_bp(const blkptr_t *bp, const char *prefix) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("%s%s\n", prefix, blkbuf); } static void zil_prt_rec_create(zilog_t *zilog, int txtype, const void *arg) { (void) zilog; const lr_create_t *lr = arg; time_t crtime = lr->lr_crtime[0]; char *name, *link; lr_attr_t *lrattr; name = (char *)(lr + 1); if (lr->lr_common.lrc_txtype == TX_CREATE_ATTR || lr->lr_common.lrc_txtype == TX_MKDIR_ATTR) { lrattr = (lr_attr_t *)(lr + 1); name += ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); } if (txtype == TX_SYMLINK) { link = name + strlen(name) + 1; (void) printf("%s%s -> %s\n", tab_prefix, name, link); } else if (txtype != TX_MKXATTR) { (void) printf("%s%s\n", tab_prefix, name); } (void) printf("%s%s", tab_prefix, ctime(&crtime)); (void) printf("%sdoid %llu, foid %llu, slots %llu, mode %llo\n", tab_prefix, (u_longlong_t)lr->lr_doid, (u_longlong_t)LR_FOID_GET_OBJ(lr->lr_foid), (u_longlong_t)LR_FOID_GET_SLOTS(lr->lr_foid), (longlong_t)lr->lr_mode); (void) printf("%suid %llu, gid %llu, gen %llu, rdev 0x%llx\n", tab_prefix, (u_longlong_t)lr->lr_uid, (u_longlong_t)lr->lr_gid, (u_longlong_t)lr->lr_gen, (u_longlong_t)lr->lr_rdev); } static void zil_prt_rec_remove(zilog_t *zilog, int txtype, const void *arg) { (void) zilog, (void) txtype; const lr_remove_t *lr = arg; (void) printf("%sdoid %llu, name %s\n", tab_prefix, (u_longlong_t)lr->lr_doid, (char *)(lr + 1)); } static void zil_prt_rec_link(zilog_t *zilog, int txtype, const void *arg) { (void) zilog, (void) txtype; const lr_link_t *lr = arg; (void) printf("%sdoid %llu, link_obj %llu, name %s\n", tab_prefix, (u_longlong_t)lr->lr_doid, (u_longlong_t)lr->lr_link_obj, (char *)(lr + 1)); } static void zil_prt_rec_rename(zilog_t *zilog, int txtype, const void *arg) { (void) zilog, (void) txtype; const lr_rename_t *lr = arg; char *snm = (char *)(lr + 1); char *tnm = snm + strlen(snm) + 1; (void) printf("%ssdoid %llu, tdoid %llu\n", tab_prefix, (u_longlong_t)lr->lr_sdoid, (u_longlong_t)lr->lr_tdoid); (void) printf("%ssrc %s tgt %s\n", tab_prefix, snm, tnm); switch (txtype) { case TX_RENAME_EXCHANGE: (void) printf("%sflags RENAME_EXCHANGE\n", tab_prefix); break; case TX_RENAME_WHITEOUT: (void) printf("%sflags RENAME_WHITEOUT\n", tab_prefix); break; } } static int zil_prt_rec_write_cb(void *data, size_t len, void *unused) { (void) unused; char *cdata = data; for (size_t i = 0; i < len; i++) { if (isprint(*cdata)) (void) printf("%c ", *cdata); else (void) printf("%2X", *cdata); cdata++; } return (0); } static void zil_prt_rec_write(zilog_t *zilog, int txtype, const void *arg) { const lr_write_t *lr = arg; abd_t *data; const blkptr_t *bp = &lr->lr_blkptr; zbookmark_phys_t zb; int verbose = MAX(dump_opt['d'], dump_opt['i']); int error; (void) printf("%sfoid %llu, offset %llx, length %llx\n", tab_prefix, (u_longlong_t)lr->lr_foid, (u_longlong_t)lr->lr_offset, (u_longlong_t)lr->lr_length); if (txtype == TX_WRITE2 || verbose < 5) return; if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { (void) printf("%shas blkptr, %s\n", tab_prefix, !BP_IS_HOLE(bp) && bp->blk_birth >= spa_min_claim_txg(zilog->zl_spa) ? "will claim" : "won't claim"); print_log_bp(bp, tab_prefix); if (BP_IS_HOLE(bp)) { (void) printf("\t\t\tLSIZE 0x%llx\n", (u_longlong_t)BP_GET_LSIZE(bp)); (void) printf("%s\n", tab_prefix); return; } if (bp->blk_birth < zilog->zl_header->zh_claim_txg) { (void) printf("%s\n", tab_prefix); return; } ASSERT3U(BP_GET_LSIZE(bp), !=, 0); SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); data = abd_alloc(BP_GET_LSIZE(bp), B_FALSE); error = zio_wait(zio_read(NULL, zilog->zl_spa, bp, data, BP_GET_LSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL, &zb)); if (error) goto out; } else { /* data is stored after the end of the lr_write record */ data = abd_alloc(lr->lr_length, B_FALSE); abd_copy_from_buf(data, lr + 1, lr->lr_length); } (void) printf("%s", tab_prefix); (void) abd_iterate_func(data, 0, MIN(lr->lr_length, (verbose < 6 ? 20 : SPA_MAXBLOCKSIZE)), zil_prt_rec_write_cb, NULL); (void) printf("\n"); out: abd_free(data); } static void zil_prt_rec_truncate(zilog_t *zilog, int txtype, const void *arg) { (void) zilog, (void) txtype; const lr_truncate_t *lr = arg; (void) printf("%sfoid %llu, offset 0x%llx, length 0x%llx\n", tab_prefix, (u_longlong_t)lr->lr_foid, (longlong_t)lr->lr_offset, (u_longlong_t)lr->lr_length); } static void zil_prt_rec_setattr(zilog_t *zilog, int txtype, const void *arg) { (void) zilog, (void) txtype; const lr_setattr_t *lr = arg; time_t atime = (time_t)lr->lr_atime[0]; time_t mtime = (time_t)lr->lr_mtime[0]; (void) printf("%sfoid %llu, mask 0x%llx\n", tab_prefix, (u_longlong_t)lr->lr_foid, (u_longlong_t)lr->lr_mask); if (lr->lr_mask & AT_MODE) { (void) printf("%sAT_MODE %llo\n", tab_prefix, (longlong_t)lr->lr_mode); } if (lr->lr_mask & AT_UID) { (void) printf("%sAT_UID %llu\n", tab_prefix, (u_longlong_t)lr->lr_uid); } if (lr->lr_mask & AT_GID) { (void) printf("%sAT_GID %llu\n", tab_prefix, (u_longlong_t)lr->lr_gid); } if (lr->lr_mask & AT_SIZE) { (void) printf("%sAT_SIZE %llu\n", tab_prefix, (u_longlong_t)lr->lr_size); } if (lr->lr_mask & AT_ATIME) { (void) printf("%sAT_ATIME %llu.%09llu %s", tab_prefix, (u_longlong_t)lr->lr_atime[0], (u_longlong_t)lr->lr_atime[1], ctime(&atime)); } if (lr->lr_mask & AT_MTIME) { (void) printf("%sAT_MTIME %llu.%09llu %s", tab_prefix, (u_longlong_t)lr->lr_mtime[0], (u_longlong_t)lr->lr_mtime[1], ctime(&mtime)); } } static void zil_prt_rec_setsaxattr(zilog_t *zilog, int txtype, const void *arg) { (void) zilog, (void) txtype; const lr_setsaxattr_t *lr = arg; char *name = (char *)(lr + 1); (void) printf("%sfoid %llu\n", tab_prefix, (u_longlong_t)lr->lr_foid); (void) printf("%sXAT_NAME %s\n", tab_prefix, name); if (lr->lr_size == 0) { (void) printf("%sXAT_VALUE NULL\n", tab_prefix); } else { (void) printf("%sXAT_VALUE ", tab_prefix); char *val = name + (strlen(name) + 1); for (int i = 0; i < lr->lr_size; i++) { (void) printf("%c", *val); val++; } } } static void zil_prt_rec_acl(zilog_t *zilog, int txtype, const void *arg) { (void) zilog, (void) txtype; const lr_acl_t *lr = arg; (void) printf("%sfoid %llu, aclcnt %llu\n", tab_prefix, (u_longlong_t)lr->lr_foid, (u_longlong_t)lr->lr_aclcnt); } +static void +zil_prt_rec_clone_range(zilog_t *zilog, int txtype, const void *arg) +{ + (void) zilog, (void) txtype; + const lr_clone_range_t *lr = arg; + + (void) printf("%sfoid %llu, offset %llx, length %llx, blksize %llx\n", + tab_prefix, (u_longlong_t)lr->lr_foid, (u_longlong_t)lr->lr_offset, + (u_longlong_t)lr->lr_length, (u_longlong_t)lr->lr_blksz); + + for (unsigned int i = 0; i < lr->lr_nbps; i++) { + (void) printf("%s[%u/%llu] ", tab_prefix, i + 1, + (u_longlong_t)lr->lr_nbps); + print_log_bp(&lr->lr_bps[i], ""); + } +} + typedef void (*zil_prt_rec_func_t)(zilog_t *, int, const void *); typedef struct zil_rec_info { zil_prt_rec_func_t zri_print; const char *zri_name; uint64_t zri_count; } zil_rec_info_t; static zil_rec_info_t zil_rec_info[TX_MAX_TYPE] = { {.zri_print = NULL, .zri_name = "Total "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_CREATE "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_MKDIR "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_MKXATTR "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_SYMLINK "}, {.zri_print = zil_prt_rec_remove, .zri_name = "TX_REMOVE "}, {.zri_print = zil_prt_rec_remove, .zri_name = "TX_RMDIR "}, {.zri_print = zil_prt_rec_link, .zri_name = "TX_LINK "}, {.zri_print = zil_prt_rec_rename, .zri_name = "TX_RENAME "}, {.zri_print = zil_prt_rec_write, .zri_name = "TX_WRITE "}, {.zri_print = zil_prt_rec_truncate, .zri_name = "TX_TRUNCATE "}, {.zri_print = zil_prt_rec_setattr, .zri_name = "TX_SETATTR "}, {.zri_print = zil_prt_rec_acl, .zri_name = "TX_ACL_V0 "}, {.zri_print = zil_prt_rec_acl, .zri_name = "TX_ACL_ACL "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_CREATE_ACL "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_CREATE_ATTR "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_CREATE_ACL_ATTR "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_MKDIR_ACL "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_MKDIR_ATTR "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_MKDIR_ACL_ATTR "}, {.zri_print = zil_prt_rec_write, .zri_name = "TX_WRITE2 "}, {.zri_print = zil_prt_rec_setsaxattr, .zri_name = "TX_SETSAXATTR "}, {.zri_print = zil_prt_rec_rename, .zri_name = "TX_RENAME_EXCHANGE "}, {.zri_print = zil_prt_rec_rename, .zri_name = "TX_RENAME_WHITEOUT "}, + {.zri_print = zil_prt_rec_clone_range, + .zri_name = "TX_CLONE_RANGE "}, }; static int print_log_record(zilog_t *zilog, const lr_t *lr, void *arg, uint64_t claim_txg) { (void) arg, (void) claim_txg; int txtype; int verbose = MAX(dump_opt['d'], dump_opt['i']); /* reduce size of txtype to strip off TX_CI bit */ txtype = lr->lrc_txtype; ASSERT(txtype != 0 && (uint_t)txtype < TX_MAX_TYPE); ASSERT(lr->lrc_txg); (void) printf("\t\t%s%s len %6llu, txg %llu, seq %llu\n", (lr->lrc_txtype & TX_CI) ? "CI-" : "", zil_rec_info[txtype].zri_name, (u_longlong_t)lr->lrc_reclen, (u_longlong_t)lr->lrc_txg, (u_longlong_t)lr->lrc_seq); if (txtype && verbose >= 3) { if (!zilog->zl_os->os_encrypted) { zil_rec_info[txtype].zri_print(zilog, txtype, lr); } else { (void) printf("%s(encrypted)\n", tab_prefix); } } zil_rec_info[txtype].zri_count++; zil_rec_info[0].zri_count++; return (0); } static int print_log_block(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) { (void) arg; char blkbuf[BP_SPRINTF_LEN + 10]; int verbose = MAX(dump_opt['d'], dump_opt['i']); const char *claim; if (verbose <= 3) return (0); if (verbose >= 5) { (void) strcpy(blkbuf, ", "); snprintf_blkptr(blkbuf + strlen(blkbuf), sizeof (blkbuf) - strlen(blkbuf), bp); } else { blkbuf[0] = '\0'; } if (claim_txg != 0) claim = "already claimed"; else if (bp->blk_birth >= spa_min_claim_txg(zilog->zl_spa)) claim = "will claim"; else claim = "won't claim"; (void) printf("\tBlock seqno %llu, %s%s\n", (u_longlong_t)bp->blk_cksum.zc_word[ZIL_ZC_SEQ], claim, blkbuf); return (0); } static void print_log_stats(int verbose) { unsigned i, w, p10; if (verbose > 3) (void) printf("\n"); if (zil_rec_info[0].zri_count == 0) return; for (w = 1, p10 = 10; zil_rec_info[0].zri_count >= p10; p10 *= 10) w++; for (i = 0; i < TX_MAX_TYPE; i++) if (zil_rec_info[i].zri_count || verbose >= 3) (void) printf("\t\t%s %*llu\n", zil_rec_info[i].zri_name, w, (u_longlong_t)zil_rec_info[i].zri_count); (void) printf("\n"); } void dump_intent_log(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; int verbose = MAX(dump_opt['d'], dump_opt['i']); int i; if (BP_IS_HOLE(&zh->zh_log) || verbose < 1) return; (void) printf("\n ZIL header: claim_txg %llu, " "claim_blk_seq %llu, claim_lr_seq %llu", (u_longlong_t)zh->zh_claim_txg, (u_longlong_t)zh->zh_claim_blk_seq, (u_longlong_t)zh->zh_claim_lr_seq); (void) printf(" replay_seq %llu, flags 0x%llx\n", (u_longlong_t)zh->zh_replay_seq, (u_longlong_t)zh->zh_flags); for (i = 0; i < TX_MAX_TYPE; i++) zil_rec_info[i].zri_count = 0; /* see comment in zil_claim() or zil_check_log_chain() */ if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && zh->zh_claim_txg == 0) return; if (verbose >= 2) { (void) printf("\n"); (void) zil_parse(zilog, print_log_block, print_log_record, NULL, zh->zh_claim_txg, B_FALSE); print_log_stats(verbose); } } diff --git a/cmd/ztest.c b/cmd/ztest.c index fb9f83032e8f..b6b99bfff6db 100644 --- a/cmd/ztest.c +++ b/cmd/ztest.c @@ -1,8324 +1,8324 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Joyent, Inc. * Copyright (c) 2017, Intel Corporation. */ /* * The objective of this program is to provide a DMU/ZAP/SPA stress test * that runs entirely in userland, is easy to use, and easy to extend. * * The overall design of the ztest program is as follows: * * (1) For each major functional area (e.g. adding vdevs to a pool, * creating and destroying datasets, reading and writing objects, etc) * we have a simple routine to test that functionality. These * individual routines do not have to do anything "stressful". * * (2) We turn these simple functionality tests into a stress test by * running them all in parallel, with as many threads as desired, * and spread across as many datasets, objects, and vdevs as desired. * * (3) While all this is happening, we inject faults into the pool to * verify that self-healing data really works. * * (4) Every time we open a dataset, we change its checksum and compression * functions. Thus even individual objects vary from block to block * in which checksum they use and whether they're compressed. * * (5) To verify that we never lose on-disk consistency after a crash, * we run the entire test in a child of the main process. * At random times, the child self-immolates with a SIGKILL. * This is the software equivalent of pulling the power cord. * The parent then runs the test again, using the existing * storage pool, as many times as desired. If backwards compatibility * testing is enabled ztest will sometimes run the "older" version * of ztest after a SIGKILL. * * (6) To verify that we don't have future leaks or temporal incursions, * many of the functional tests record the transaction group number * as part of their data. When reading old data, they verify that * the transaction group number is less than the current, open txg. * If you add a new test, please do this if applicable. * * (7) Threads are created with a reduced stack size, for sanity checking. * Therefore, it's important not to allocate huge buffers on the stack. * * When run with no arguments, ztest runs for about five minutes and * produces no output if successful. To get a little bit of information, * specify -V. To get more information, specify -VV, and so on. * * To turn this into an overnight stress test, use -T to specify run time. * * You can ask more vdevs [-v], datasets [-d], or threads [-t] * to increase the pool capacity, fanout, and overall stress level. * * Use the -k option to set the desired frequency of kills. * * When ztest invokes itself it passes all relevant information through a * temporary file which is mmap-ed in the child process. This allows shared * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always * stored at offset 0 of this file and contains information on the size and * number of shared structures in the file. The information stored in this file * must remain backwards compatible with older versions of ztest so that * ztest can invoke them during backwards compatibility testing (-B). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if (__GLIBC__ && !__UCLIBC__) #include /* for backtrace() */ #endif static int ztest_fd_data = -1; static int ztest_fd_rand = -1; typedef struct ztest_shared_hdr { uint64_t zh_hdr_size; uint64_t zh_opts_size; uint64_t zh_size; uint64_t zh_stats_size; uint64_t zh_stats_count; uint64_t zh_ds_size; uint64_t zh_ds_count; } ztest_shared_hdr_t; static ztest_shared_hdr_t *ztest_shared_hdr; enum ztest_class_state { ZTEST_VDEV_CLASS_OFF, ZTEST_VDEV_CLASS_ON, ZTEST_VDEV_CLASS_RND }; #define ZO_GVARS_MAX_ARGLEN ((size_t)64) #define ZO_GVARS_MAX_COUNT ((size_t)10) typedef struct ztest_shared_opts { char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; char zo_alt_ztest[MAXNAMELEN]; char zo_alt_libpath[MAXNAMELEN]; uint64_t zo_vdevs; uint64_t zo_vdevtime; size_t zo_vdev_size; int zo_ashift; int zo_mirrors; int zo_raid_children; int zo_raid_parity; char zo_raid_type[8]; int zo_draid_data; int zo_draid_spares; int zo_datasets; int zo_threads; uint64_t zo_passtime; uint64_t zo_killrate; int zo_verbose; int zo_init; uint64_t zo_time; uint64_t zo_maxloops; uint64_t zo_metaslab_force_ganging; int zo_mmp_test; int zo_special_vdevs; int zo_dump_dbgmsg; int zo_gvars_count; char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN]; } ztest_shared_opts_t; /* Default values for command line options. */ #define DEFAULT_POOL "ztest" #define DEFAULT_VDEV_DIR "/tmp" #define DEFAULT_VDEV_COUNT 5 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */ #define DEFAULT_VDEV_SIZE_STR "256M" #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT #define DEFAULT_MIRRORS 2 #define DEFAULT_RAID_CHILDREN 4 #define DEFAULT_RAID_PARITY 1 #define DEFAULT_DRAID_DATA 4 #define DEFAULT_DRAID_SPARES 1 #define DEFAULT_DATASETS_COUNT 7 #define DEFAULT_THREADS 23 #define DEFAULT_RUN_TIME 300 /* 300 seconds */ #define DEFAULT_RUN_TIME_STR "300 sec" #define DEFAULT_PASS_TIME 60 /* 60 seconds */ #define DEFAULT_PASS_TIME_STR "60 sec" #define DEFAULT_KILL_RATE 70 /* 70% kill rate */ #define DEFAULT_KILLRATE_STR "70%" #define DEFAULT_INITS 1 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */ #define DEFAULT_FORCE_GANGING (64 << 10) #define DEFAULT_FORCE_GANGING_STR "64K" /* Simplifying assumption: -1 is not a valid default. */ #define NO_DEFAULT -1 static const ztest_shared_opts_t ztest_opts_defaults = { .zo_pool = DEFAULT_POOL, .zo_dir = DEFAULT_VDEV_DIR, .zo_alt_ztest = { '\0' }, .zo_alt_libpath = { '\0' }, .zo_vdevs = DEFAULT_VDEV_COUNT, .zo_ashift = DEFAULT_ASHIFT, .zo_mirrors = DEFAULT_MIRRORS, .zo_raid_children = DEFAULT_RAID_CHILDREN, .zo_raid_parity = DEFAULT_RAID_PARITY, .zo_raid_type = VDEV_TYPE_RAIDZ, .zo_vdev_size = DEFAULT_VDEV_SIZE, .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */ .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */ .zo_datasets = DEFAULT_DATASETS_COUNT, .zo_threads = DEFAULT_THREADS, .zo_passtime = DEFAULT_PASS_TIME, .zo_killrate = DEFAULT_KILL_RATE, .zo_verbose = 0, .zo_mmp_test = 0, .zo_init = DEFAULT_INITS, .zo_time = DEFAULT_RUN_TIME, .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */ .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING, .zo_special_vdevs = ZTEST_VDEV_CLASS_RND, .zo_gvars_count = 0, }; extern uint64_t metaslab_force_ganging; extern uint64_t metaslab_df_alloc_threshold; extern uint64_t zfs_deadman_synctime_ms; extern uint_t metaslab_preload_limit; extern int zfs_compressed_arc_enabled; extern int zfs_abd_scatter_enabled; extern uint_t dmu_object_alloc_chunk_shift; extern boolean_t zfs_force_some_double_word_sm_entries; extern unsigned long zio_decompress_fail_fraction; extern unsigned long zfs_reconstruct_indirect_damage_fraction; static ztest_shared_opts_t *ztest_shared_opts; static ztest_shared_opts_t ztest_opts; static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345"; typedef struct ztest_shared_ds { uint64_t zd_seq; } ztest_shared_ds_t; static ztest_shared_ds_t *ztest_shared_ds; #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) #define BT_MAGIC 0x123456789abcdefULL #define MAXFAULTS(zs) \ (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1) enum ztest_io_type { ZTEST_IO_WRITE_TAG, ZTEST_IO_WRITE_PATTERN, ZTEST_IO_WRITE_ZEROES, ZTEST_IO_TRUNCATE, ZTEST_IO_SETATTR, ZTEST_IO_REWRITE, ZTEST_IO_TYPES }; typedef struct ztest_block_tag { uint64_t bt_magic; uint64_t bt_objset; uint64_t bt_object; uint64_t bt_dnodesize; uint64_t bt_offset; uint64_t bt_gen; uint64_t bt_txg; uint64_t bt_crtxg; } ztest_block_tag_t; typedef struct bufwad { uint64_t bw_index; uint64_t bw_txg; uint64_t bw_data; } bufwad_t; /* * It would be better to use a rangelock_t per object. Unfortunately * the rangelock_t is not a drop-in replacement for rl_t, because we * still need to map from object ID to rangelock_t. */ typedef enum { RL_READER, RL_WRITER, RL_APPEND } rl_type_t; typedef struct rll { void *rll_writer; int rll_readers; kmutex_t rll_lock; kcondvar_t rll_cv; } rll_t; typedef struct rl { uint64_t rl_object; uint64_t rl_offset; uint64_t rl_size; rll_t *rl_lock; } rl_t; #define ZTEST_RANGE_LOCKS 64 #define ZTEST_OBJECT_LOCKS 64 /* * Object descriptor. Used as a template for object lookup/create/remove. */ typedef struct ztest_od { uint64_t od_dir; uint64_t od_object; dmu_object_type_t od_type; dmu_object_type_t od_crtype; uint64_t od_blocksize; uint64_t od_crblocksize; uint64_t od_crdnodesize; uint64_t od_gen; uint64_t od_crgen; char od_name[ZFS_MAX_DATASET_NAME_LEN]; } ztest_od_t; /* * Per-dataset state. */ typedef struct ztest_ds { ztest_shared_ds_t *zd_shared; objset_t *zd_os; pthread_rwlock_t zd_zilog_lock; zilog_t *zd_zilog; ztest_od_t *zd_od; /* debugging aid */ char zd_name[ZFS_MAX_DATASET_NAME_LEN]; kmutex_t zd_dirobj_lock; rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; } ztest_ds_t; /* * Per-iteration state. */ typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); typedef struct ztest_info { ztest_func_t *zi_func; /* test function */ uint64_t zi_iters; /* iterations per execution */ uint64_t *zi_interval; /* execute every seconds */ const char *zi_funcname; /* name of test function */ } ztest_info_t; typedef struct ztest_shared_callstate { uint64_t zc_count; /* per-pass count */ uint64_t zc_time; /* per-pass time */ uint64_t zc_next; /* next time to call this function */ } ztest_shared_callstate_t; static ztest_shared_callstate_t *ztest_shared_callstate; #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) ztest_func_t ztest_dmu_read_write; ztest_func_t ztest_dmu_write_parallel; ztest_func_t ztest_dmu_object_alloc_free; ztest_func_t ztest_dmu_object_next_chunk; ztest_func_t ztest_dmu_commit_callbacks; ztest_func_t ztest_zap; ztest_func_t ztest_zap_parallel; ztest_func_t ztest_zil_commit; ztest_func_t ztest_zil_remount; ztest_func_t ztest_dmu_read_write_zcopy; ztest_func_t ztest_dmu_objset_create_destroy; ztest_func_t ztest_dmu_prealloc; ztest_func_t ztest_fzap; ztest_func_t ztest_dmu_snapshot_create_destroy; ztest_func_t ztest_dsl_prop_get_set; ztest_func_t ztest_spa_prop_get_set; ztest_func_t ztest_spa_create_destroy; ztest_func_t ztest_fault_inject; ztest_func_t ztest_dmu_snapshot_hold; ztest_func_t ztest_mmp_enable_disable; ztest_func_t ztest_scrub; ztest_func_t ztest_dsl_dataset_promote_busy; ztest_func_t ztest_vdev_attach_detach; ztest_func_t ztest_vdev_LUN_growth; ztest_func_t ztest_vdev_add_remove; ztest_func_t ztest_vdev_class_add; ztest_func_t ztest_vdev_aux_add_remove; ztest_func_t ztest_split_pool; ztest_func_t ztest_reguid; ztest_func_t ztest_spa_upgrade; ztest_func_t ztest_device_removal; ztest_func_t ztest_spa_checkpoint_create_discard; ztest_func_t ztest_initialize; ztest_func_t ztest_trim; ztest_func_t ztest_blake3; ztest_func_t ztest_fletcher; ztest_func_t ztest_fletcher_incr; ztest_func_t ztest_verify_dnode_bt; static uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ static uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ static uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ static uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ static uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ #define ZTI_INIT(func, iters, interval) \ { .zi_func = (func), \ .zi_iters = (iters), \ .zi_interval = (interval), \ .zi_funcname = # func } static ztest_info_t ztest_info[] = { ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always), ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always), ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always), ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes), ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always), ZTI_INIT(ztest_zap, 30, &zopt_always), ZTI_INIT(ztest_zap_parallel, 100, &zopt_always), ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes), ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant), ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes), ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often), ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often), ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often), ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes), #if 0 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes), #endif ZTI_INIT(ztest_fzap, 1, &zopt_sometimes), ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes), ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes), ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes), ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes), ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes), ZTI_INIT(ztest_reguid, 1, &zopt_rarely), ZTI_INIT(ztest_scrub, 1, &zopt_rarely), ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely), ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely), ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes), ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely), ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime), ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime), ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime), ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes), ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely), ZTI_INIT(ztest_initialize, 1, &zopt_sometimes), ZTI_INIT(ztest_trim, 1, &zopt_sometimes), ZTI_INIT(ztest_blake3, 1, &zopt_rarely), ZTI_INIT(ztest_fletcher, 1, &zopt_rarely), ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely), ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes), }; #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) /* * The following struct is used to hold a list of uncalled commit callbacks. * The callbacks are ordered by txg number. */ typedef struct ztest_cb_list { kmutex_t zcl_callbacks_lock; list_t zcl_callbacks; } ztest_cb_list_t; /* * Stuff we need to share writably between parent and child. */ typedef struct ztest_shared { boolean_t zs_do_init; hrtime_t zs_proc_start; hrtime_t zs_proc_stop; hrtime_t zs_thread_start; hrtime_t zs_thread_stop; hrtime_t zs_thread_kill; uint64_t zs_enospc_count; uint64_t zs_vdev_next_leaf; uint64_t zs_vdev_aux; uint64_t zs_alloc; uint64_t zs_space; uint64_t zs_splits; uint64_t zs_mirrors; uint64_t zs_metaslab_sz; uint64_t zs_metaslab_df_alloc_threshold; uint64_t zs_guid; } ztest_shared_t; #define ID_PARALLEL -1ULL static char ztest_dev_template[] = "%s/%s.%llua"; static char ztest_aux_template[] = "%s/%s.%s.%llu"; static ztest_shared_t *ztest_shared; static spa_t *ztest_spa = NULL; static ztest_ds_t *ztest_ds; static kmutex_t ztest_vdev_lock; static boolean_t ztest_device_removal_active = B_FALSE; static boolean_t ztest_pool_scrubbed = B_FALSE; static kmutex_t ztest_checkpoint_lock; /* * The ztest_name_lock protects the pool and dataset namespace used by * the individual tests. To modify the namespace, consumers must grab * this lock as writer. Grabbing the lock as reader will ensure that the * namespace does not change while the lock is held. */ static pthread_rwlock_t ztest_name_lock; static boolean_t ztest_dump_core = B_TRUE; static boolean_t ztest_exiting; /* Global commit callback list */ static ztest_cb_list_t zcl; /* Commit cb delay */ static uint64_t zc_min_txg_delay = UINT64_MAX; static int zc_cb_counter = 0; /* * Minimum number of commit callbacks that need to be registered for us to check * whether the minimum txg delay is acceptable. */ #define ZTEST_COMMIT_CB_MIN_REG 100 /* * If a number of txgs equal to this threshold have been created after a commit * callback has been registered but not called, then we assume there is an * implementation bug. */ #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000) enum ztest_object { ZTEST_META_DNODE = 0, ZTEST_DIROBJ, ZTEST_OBJECTS }; static __attribute__((noreturn)) void usage(boolean_t requested); static int ztest_scrub_impl(spa_t *spa); /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init(void) { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } static void dump_debug_buffer(void) { ssize_t ret __attribute__((unused)); if (!ztest_opts.zo_dump_dbgmsg) return; /* * We use write() instead of printf() so that this function * is safe to call from a signal handler. */ ret = write(STDOUT_FILENO, "\n", 1); zfs_dbgmsg_print("ztest"); } #define BACKTRACE_SZ 100 static void sig_handler(int signo) { struct sigaction action; #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */ int nptrs; void *buffer[BACKTRACE_SZ]; nptrs = backtrace(buffer, BACKTRACE_SZ); backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO); #endif dump_debug_buffer(); /* * Restore default action and re-raise signal so SIGSEGV and * SIGABRT can trigger a core dump. */ action.sa_handler = SIG_DFL; sigemptyset(&action.sa_mask); action.sa_flags = 0; (void) sigaction(signo, &action, NULL); raise(signo); } #define FATAL_MSG_SZ 1024 static const char *fatal_msg; static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void fatal(int do_perror, const char *message, ...) { va_list args; int save_errno = errno; char *buf; (void) fflush(stdout); buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL); if (buf == NULL) goto out; va_start(args, message); (void) sprintf(buf, "ztest: "); /* LINTED */ (void) vsprintf(buf + strlen(buf), message, args); va_end(args); if (do_perror) { (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), ": %s", strerror(save_errno)); } (void) fprintf(stderr, "%s\n", buf); fatal_msg = buf; /* to ease debugging */ out: if (ztest_dump_core) abort(); else dump_debug_buffer(); exit(3); } static int str2shift(const char *buf) { const char *ends = "BKMGTPEZ"; int i; if (buf[0] == '\0') return (0); for (i = 0; i < strlen(ends); i++) { if (toupper(buf[0]) == ends[i]) break; } if (i == strlen(ends)) { (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); } if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { return (10*i); } (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); } static uint64_t nicenumtoull(const char *buf) { char *end; uint64_t val; val = strtoull(buf, &end, 0); if (end == buf) { (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); usage(B_FALSE); } else if (end[0] == '.') { double fval = strtod(buf, &end); fval *= pow(2, str2shift(end)); /* * UINT64_MAX is not exactly representable as a double. * The closest representation is UINT64_MAX + 1, so we * use a >= comparison instead of > for the bounds check. */ if (fval >= (double)UINT64_MAX) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val = (uint64_t)fval; } else { int shift = str2shift(end); if (shift >= 64 || (val << shift) >> shift != val) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val <<= shift; } return (val); } typedef struct ztest_option { const char short_opt; const char *long_opt; const char *long_opt_param; const char *comment; unsigned int default_int; const char *default_str; } ztest_option_t; /* * The following option_table is used for generating the usage info as well as * the long and short option information for calling getopt_long(). */ static ztest_option_t option_table[] = { { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT, NULL}, { 's', "vdev-size", "INTEGER", "Size of each vdev", NO_DEFAULT, DEFAULT_VDEV_SIZE_STR}, { 'a', "alignment-shift", "INTEGER", "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL}, { 'm', "mirror-copies", "INTEGER", "Number of mirror copies", DEFAULT_MIRRORS, NULL}, { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks", DEFAULT_RAID_CHILDREN, NULL}, { 'R', "raid-parity", "INTEGER", "Raid parity", DEFAULT_RAID_PARITY, NULL}, { 'K', "raid-kind", "raidz|draid|random", "Raid kind", NO_DEFAULT, "random"}, { 'D', "draid-data", "INTEGER", "Number of draid data drives", DEFAULT_DRAID_DATA, NULL}, { 'S', "draid-spares", "INTEGER", "Number of draid spares", DEFAULT_DRAID_SPARES, NULL}, { 'd', "datasets", "INTEGER", "Number of datasets", DEFAULT_DATASETS_COUNT, NULL}, { 't', "threads", "INTEGER", "Number of ztest threads", DEFAULT_THREADS, NULL}, { 'g', "gang-block-threshold", "INTEGER", "Metaslab gang block threshold", NO_DEFAULT, DEFAULT_FORCE_GANGING_STR}, { 'i', "init-count", "INTEGER", "Number of times to initialize pool", DEFAULT_INITS, NULL}, { 'k', "kill-percentage", "INTEGER", "Kill percentage", NO_DEFAULT, DEFAULT_KILLRATE_STR}, { 'p', "pool-name", "STRING", "Pool name", NO_DEFAULT, DEFAULT_POOL}, { 'f', "vdev-file-directory", "PATH", "File directory for vdev files", NO_DEFAULT, DEFAULT_VDEV_DIR}, { 'M', "multi-host", NULL, "Multi-host; simulate pool imported on remote host", NO_DEFAULT, NULL}, { 'E', "use-existing-pool", NULL, "Use existing pool instead of creating new one", NO_DEFAULT, NULL}, { 'T', "run-time", "INTEGER", "Total run time", NO_DEFAULT, DEFAULT_RUN_TIME_STR}, { 'P', "pass-time", "INTEGER", "Time per pass", NO_DEFAULT, DEFAULT_PASS_TIME_STR}, { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()", DEFAULT_MAX_LOOPS, NULL}, { 'B', "alt-ztest", "PATH", "Alternate ztest path", NO_DEFAULT, NULL}, { 'C', "vdev-class-state", "on|off|random", "vdev class state", NO_DEFAULT, "random"}, { 'o', "option", "\"OPTION=INTEGER\"", "Set global variable to an unsigned 32-bit integer value", NO_DEFAULT, NULL}, { 'G', "dump-debug-msg", NULL, "Dump zfs_dbgmsg buffer before exiting due to an error", NO_DEFAULT, NULL}, { 'V', "verbose", NULL, "Verbose (use multiple times for ever more verbosity)", NO_DEFAULT, NULL}, { 'h', "help", NULL, "Show this help", NO_DEFAULT, NULL}, {0, 0, 0, 0, 0, 0} }; static struct option *long_opts = NULL; static char *short_opts = NULL; static void init_options(void) { ASSERT3P(long_opts, ==, NULL); ASSERT3P(short_opts, ==, NULL); int count = sizeof (option_table) / sizeof (option_table[0]); long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL); short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL); int short_opt_index = 0; for (int i = 0; i < count; i++) { long_opts[i].val = option_table[i].short_opt; long_opts[i].name = option_table[i].long_opt; long_opts[i].has_arg = option_table[i].long_opt_param != NULL ? required_argument : no_argument; long_opts[i].flag = NULL; short_opts[short_opt_index++] = option_table[i].short_opt; if (option_table[i].long_opt_param != NULL) { short_opts[short_opt_index++] = ':'; } } } static void fini_options(void) { int count = sizeof (option_table) / sizeof (option_table[0]); umem_free(long_opts, sizeof (struct option) * count); umem_free(short_opts, sizeof (char) * 2 * count); long_opts = NULL; short_opts = NULL; } static __attribute__((noreturn)) void usage(boolean_t requested) { char option[80]; FILE *fp = requested ? stdout : stderr; (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL); for (int i = 0; option_table[i].short_opt != 0; i++) { if (option_table[i].long_opt_param != NULL) { (void) sprintf(option, " -%c --%s=%s", option_table[i].short_opt, option_table[i].long_opt, option_table[i].long_opt_param); } else { (void) sprintf(option, " -%c --%s", option_table[i].short_opt, option_table[i].long_opt); } (void) fprintf(fp, " %-40s%s", option, option_table[i].comment); if (option_table[i].long_opt_param != NULL) { if (option_table[i].default_str != NULL) { (void) fprintf(fp, " (default: %s)", option_table[i].default_str); } else if (option_table[i].default_int != NO_DEFAULT) { (void) fprintf(fp, " (default: %u)", option_table[i].default_int); } } (void) fprintf(fp, "\n"); } exit(requested ? 0 : 1); } static uint64_t ztest_random(uint64_t range) { uint64_t r; ASSERT3S(ztest_fd_rand, >=, 0); if (range == 0) return (0); if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) fatal(B_TRUE, "short read from /dev/urandom"); return (r % range); } static void ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo) { char name[32]; char *value; int state = ZTEST_VDEV_CLASS_RND; (void) strlcpy(name, input, sizeof (name)); value = strchr(name, '='); if (value == NULL) { (void) fprintf(stderr, "missing value in property=value " "'-C' argument (%s)\n", input); usage(B_FALSE); } *(value) = '\0'; value++; if (strcmp(value, "on") == 0) { state = ZTEST_VDEV_CLASS_ON; } else if (strcmp(value, "off") == 0) { state = ZTEST_VDEV_CLASS_OFF; } else if (strcmp(value, "random") == 0) { state = ZTEST_VDEV_CLASS_RND; } else { (void) fprintf(stderr, "invalid property value '%s'\n", value); usage(B_FALSE); } if (strcmp(name, "special") == 0) { zo->zo_special_vdevs = state; } else { (void) fprintf(stderr, "invalid property name '%s'\n", name); usage(B_FALSE); } if (zo->zo_verbose >= 3) (void) printf("%s vdev state is '%s'\n", name, value); } static void process_options(int argc, char **argv) { char *path; ztest_shared_opts_t *zo = &ztest_opts; int opt; uint64_t value; const char *raid_kind = "random"; memcpy(zo, &ztest_opts_defaults, sizeof (*zo)); init_options(); while ((opt = getopt_long(argc, argv, short_opts, long_opts, NULL)) != EOF) { value = 0; switch (opt) { case 'v': case 's': case 'a': case 'm': case 'r': case 'R': case 'D': case 'S': case 'd': case 't': case 'g': case 'i': case 'k': case 'T': case 'P': case 'F': value = nicenumtoull(optarg); } switch (opt) { case 'v': zo->zo_vdevs = value; break; case 's': zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); break; case 'a': zo->zo_ashift = value; break; case 'm': zo->zo_mirrors = value; break; case 'r': zo->zo_raid_children = MAX(1, value); break; case 'R': zo->zo_raid_parity = MIN(MAX(value, 1), 3); break; case 'K': raid_kind = optarg; break; case 'D': zo->zo_draid_data = MAX(1, value); break; case 'S': zo->zo_draid_spares = MAX(1, value); break; case 'd': zo->zo_datasets = MAX(1, value); break; case 't': zo->zo_threads = MAX(1, value); break; case 'g': zo->zo_metaslab_force_ganging = MAX(SPA_MINBLOCKSIZE << 1, value); break; case 'i': zo->zo_init = value; break; case 'k': zo->zo_killrate = value; break; case 'p': (void) strlcpy(zo->zo_pool, optarg, sizeof (zo->zo_pool)); break; case 'f': path = realpath(optarg, NULL); if (path == NULL) { (void) fprintf(stderr, "error: %s: %s\n", optarg, strerror(errno)); usage(B_FALSE); } else { (void) strlcpy(zo->zo_dir, path, sizeof (zo->zo_dir)); free(path); } break; case 'M': zo->zo_mmp_test = 1; break; case 'V': zo->zo_verbose++; break; case 'E': zo->zo_init = 0; break; case 'T': zo->zo_time = value; break; case 'P': zo->zo_passtime = MAX(1, value); break; case 'F': zo->zo_maxloops = MAX(1, value); break; case 'B': (void) strlcpy(zo->zo_alt_ztest, optarg, sizeof (zo->zo_alt_ztest)); break; case 'C': ztest_parse_name_value(optarg, zo); break; case 'o': if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) { (void) fprintf(stderr, "max global var count (%zu) exceeded\n", ZO_GVARS_MAX_COUNT); usage(B_FALSE); } char *v = zo->zo_gvars[zo->zo_gvars_count]; if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >= ZO_GVARS_MAX_ARGLEN) { (void) fprintf(stderr, "global var option '%s' is too long\n", optarg); usage(B_FALSE); } zo->zo_gvars_count++; break; case 'G': zo->zo_dump_dbgmsg = 1; break; case 'h': usage(B_TRUE); break; case '?': default: usage(B_FALSE); break; } } fini_options(); /* When raid choice is 'random' add a draid pool 50% of the time */ if (strcmp(raid_kind, "random") == 0) { raid_kind = (ztest_random(2) == 0) ? "draid" : "raidz"; if (ztest_opts.zo_verbose >= 3) (void) printf("choosing RAID type '%s'\n", raid_kind); } if (strcmp(raid_kind, "draid") == 0) { uint64_t min_devsize; /* With fewer disk use 256M, otherwise 128M is OK */ min_devsize = (ztest_opts.zo_raid_children < 16) ? (256ULL << 20) : (128ULL << 20); /* No top-level mirrors with dRAID for now */ zo->zo_mirrors = 0; /* Use more appropriate defaults for dRAID */ if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs) zo->zo_vdevs = 1; if (zo->zo_raid_children == ztest_opts_defaults.zo_raid_children) zo->zo_raid_children = 16; if (zo->zo_ashift < 12) zo->zo_ashift = 12; if (zo->zo_vdev_size < min_devsize) zo->zo_vdev_size = min_devsize; if (zo->zo_draid_data + zo->zo_raid_parity > zo->zo_raid_children - zo->zo_draid_spares) { (void) fprintf(stderr, "error: too few draid " "children (%d) for stripe width (%d)\n", zo->zo_raid_children, zo->zo_draid_data + zo->zo_raid_parity); usage(B_FALSE); } (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID, sizeof (zo->zo_raid_type)); } else /* using raidz */ { ASSERT0(strcmp(raid_kind, "raidz")); zo->zo_raid_parity = MIN(zo->zo_raid_parity, zo->zo_raid_children - 1); } zo->zo_vdevtime = (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : UINT64_MAX >> 2); if (*zo->zo_alt_ztest) { const char *invalid_what = "ztest"; char *val = zo->zo_alt_ztest; if (0 != access(val, X_OK) || (strrchr(val, '/') == NULL && (errno == EINVAL))) goto invalid; int dirlen = strrchr(val, '/') - val; strlcpy(zo->zo_alt_libpath, val, MIN(sizeof (zo->zo_alt_libpath), dirlen + 1)); invalid_what = "library path", val = zo->zo_alt_libpath; if (strrchr(val, '/') == NULL && (errno == EINVAL)) goto invalid; *strrchr(val, '/') = '\0'; strlcat(val, "/lib", sizeof (zo->zo_alt_libpath)); if (0 != access(zo->zo_alt_libpath, X_OK)) goto invalid; return; invalid: ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val); } } static void ztest_kill(ztest_shared_t *zs) { zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); /* * Before we kill ourselves, make sure that the config is updated. * See comment above spa_write_cachefile(). */ mutex_enter(&spa_namespace_lock); spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE); mutex_exit(&spa_namespace_lock); (void) raise(SIGKILL); } static void ztest_record_enospc(const char *s) { (void) s; ztest_shared->zs_enospc_count++; } static uint64_t ztest_get_ashift(void) { if (ztest_opts.zo_ashift == 0) return (SPA_MINBLOCKSHIFT + ztest_random(5)); return (ztest_opts.zo_ashift); } static boolean_t ztest_is_draid_spare(const char *name) { uint64_t spare_id = 0, parity = 0, vdev_id = 0; if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"", &parity, &vdev_id, &spare_id) == 3) { return (B_TRUE); } return (B_FALSE); } static nvlist_t * make_vdev_file(const char *path, const char *aux, const char *pool, size_t size, uint64_t ashift) { char *pathbuf = NULL; uint64_t vdev; nvlist_t *file; boolean_t draid_spare = B_FALSE; if (ashift == 0) ashift = ztest_get_ashift(); if (path == NULL) { pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); path = pathbuf; if (aux != NULL) { vdev = ztest_shared->zs_vdev_aux; (void) snprintf(pathbuf, MAXPATHLEN, ztest_aux_template, ztest_opts.zo_dir, pool == NULL ? ztest_opts.zo_pool : pool, aux, vdev); } else { vdev = ztest_shared->zs_vdev_next_leaf++; (void) snprintf(pathbuf, MAXPATHLEN, ztest_dev_template, ztest_opts.zo_dir, pool == NULL ? ztest_opts.zo_pool : pool, vdev); } } else { draid_spare = ztest_is_draid_spare(path); } if (size != 0 && !draid_spare) { int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); if (fd == -1) fatal(B_TRUE, "can't open %s", path); if (ftruncate(fd, size) != 0) fatal(B_TRUE, "can't ftruncate %s", path); (void) close(fd); } file = fnvlist_alloc(); fnvlist_add_string(file, ZPOOL_CONFIG_TYPE, draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE); fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path); fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift); umem_free(pathbuf, MAXPATHLEN); return (file); } static nvlist_t * make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size, uint64_t ashift, int r) { nvlist_t *raid, **child; int c; if (r < 2) return (make_vdev_file(path, aux, pool, size, ashift)); child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < r; c++) child[c] = make_vdev_file(path, aux, pool, size, ashift); raid = fnvlist_alloc(); fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE, ztest_opts.zo_raid_type); fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY, ztest_opts.zo_raid_parity); fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)child, r); if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) { uint64_t ndata = ztest_opts.zo_draid_data; uint64_t nparity = ztest_opts.zo_raid_parity; uint64_t nspares = ztest_opts.zo_draid_spares; uint64_t children = ztest_opts.zo_raid_children; uint64_t ngroups = 1; /* * Calculate the minimum number of groups required to fill a * slice. This is the LCM of the stripe width (data + parity) * and the number of data drives (children - spares). */ while (ngroups * (ndata + nparity) % (children - nspares) != 0) ngroups++; /* Store the basic dRAID configuration. */ fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata); fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares); fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups); } for (c = 0; c < r; c++) fnvlist_free(child[c]); umem_free(child, r * sizeof (nvlist_t *)); return (raid); } static nvlist_t * make_vdev_mirror(const char *path, const char *aux, const char *pool, size_t size, uint64_t ashift, int r, int m) { nvlist_t *mirror, **child; int c; if (m < 1) return (make_vdev_raid(path, aux, pool, size, ashift, r)); child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < m; c++) child[c] = make_vdev_raid(path, aux, pool, size, ashift, r); mirror = fnvlist_alloc(); fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR); fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)child, m); for (c = 0; c < m; c++) fnvlist_free(child[c]); umem_free(child, m * sizeof (nvlist_t *)); return (mirror); } static nvlist_t * make_vdev_root(const char *path, const char *aux, const char *pool, size_t size, uint64_t ashift, const char *class, int r, int m, int t) { nvlist_t *root, **child; int c; boolean_t log; ASSERT3S(t, >, 0); log = (class != NULL && strcmp(class, "log") == 0); child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < t; c++) { child[c] = make_vdev_mirror(path, aux, pool, size, ashift, r, m); fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log); if (class != NULL && class[0] != '\0') { ASSERT(m > 1 || log); /* expecting a mirror */ fnvlist_add_string(child[c], ZPOOL_CONFIG_ALLOCATION_BIAS, class); } } root = fnvlist_alloc(); fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT); fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)child, t); for (c = 0; c < t; c++) fnvlist_free(child[c]); umem_free(child, t * sizeof (nvlist_t *)); return (root); } /* * Find a random spa version. Returns back a random spa version in the * range [initial_version, SPA_VERSION_FEATURES]. */ static uint64_t ztest_random_spa_version(uint64_t initial_version) { uint64_t version = initial_version; if (version <= SPA_VERSION_BEFORE_FEATURES) { version = version + ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); } if (version > SPA_VERSION_BEFORE_FEATURES) version = SPA_VERSION_FEATURES; ASSERT(SPA_VERSION_IS_SUPPORTED(version)); return (version); } static int ztest_random_blocksize(void) { ASSERT3U(ztest_spa->spa_max_ashift, !=, 0); /* * Choose a block size >= the ashift. * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. */ int maxbs = SPA_OLD_MAXBLOCKSHIFT; if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) maxbs = 20; uint64_t block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); return (1 << (SPA_MINBLOCKSHIFT + block_shift)); } static int ztest_random_dnodesize(void) { int slots; int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT; if (max_slots == DNODE_MIN_SLOTS) return (DNODE_MIN_SIZE); /* * Weight the random distribution more heavily toward smaller * dnode sizes since that is more likely to reflect real-world * usage. */ ASSERT3U(max_slots, >, 4); switch (ztest_random(10)) { case 0: slots = 5 + ztest_random(max_slots - 4); break; case 1 ... 4: slots = 2 + ztest_random(3); break; default: slots = 1; break; } return (slots << DNODE_SHIFT); } static int ztest_random_ibshift(void) { return (DN_MIN_INDBLKSHIFT + ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); } static uint64_t ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) { uint64_t top; vdev_t *rvd = spa->spa_root_vdev; vdev_t *tvd; ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); do { top = ztest_random(rvd->vdev_children); tvd = rvd->vdev_child[top]; } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); return (top); } static uint64_t ztest_random_dsl_prop(zfs_prop_t prop) { uint64_t value; do { value = zfs_prop_random_value(prop, ztest_random(-1ULL)); } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); return (value); } static int ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, boolean_t inherit) { const char *propname = zfs_prop_to_name(prop); const char *valname; char *setpoint; uint64_t curval; int error; error = dsl_prop_set_int(osname, propname, (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT0(error); setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); if (ztest_opts.zo_verbose >= 6) { int err; err = zfs_prop_index_to_string(prop, curval, &valname); if (err) (void) printf("%s %s = %llu at '%s'\n", osname, propname, (unsigned long long)curval, setpoint); else (void) printf("%s %s = %s at '%s'\n", osname, propname, valname, setpoint); } umem_free(setpoint, MAXPATHLEN); return (error); } static int ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) { spa_t *spa = ztest_spa; nvlist_t *props = NULL; int error; props = fnvlist_alloc(); fnvlist_add_uint64(props, zpool_prop_to_name(prop), value); error = spa_prop_set(spa, props); fnvlist_free(props); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT0(error); return (error); } static int ztest_dmu_objset_own(const char *name, dmu_objset_type_t type, boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp) { int err; char *cp = NULL; char ddname[ZFS_MAX_DATASET_NAME_LEN]; strlcpy(ddname, name, sizeof (ddname)); cp = strchr(ddname, '@'); if (cp != NULL) *cp = '\0'; err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); while (decrypt && err == EACCES) { dsl_crypto_params_t *dcp; nvlist_t *crypto_args = fnvlist_alloc(); fnvlist_add_uint8_array(crypto_args, "wkeydata", (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, crypto_args, &dcp)); err = spa_keystore_load_wkey(ddname, dcp, B_FALSE); /* * Note: if there was an error loading, the wkey was not * consumed, and needs to be freed. */ dsl_crypto_params_free(dcp, (err != 0)); fnvlist_free(crypto_args); if (err == EINVAL) { /* * We couldn't load a key for this dataset so try * the parent. This loop will eventually hit the * encryption root since ztest only makes clones * as children of their origin datasets. */ cp = strrchr(ddname, '/'); if (cp == NULL) return (err); *cp = '\0'; err = EACCES; continue; } else if (err != 0) { break; } err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); break; } return (err); } static void ztest_rll_init(rll_t *rll) { rll->rll_writer = NULL; rll->rll_readers = 0; mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL); } static void ztest_rll_destroy(rll_t *rll) { ASSERT3P(rll->rll_writer, ==, NULL); ASSERT0(rll->rll_readers); mutex_destroy(&rll->rll_lock); cv_destroy(&rll->rll_cv); } static void ztest_rll_lock(rll_t *rll, rl_type_t type) { mutex_enter(&rll->rll_lock); if (type == RL_READER) { while (rll->rll_writer != NULL) (void) cv_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_readers++; } else { while (rll->rll_writer != NULL || rll->rll_readers) (void) cv_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_writer = curthread; } mutex_exit(&rll->rll_lock); } static void ztest_rll_unlock(rll_t *rll) { mutex_enter(&rll->rll_lock); if (rll->rll_writer) { ASSERT0(rll->rll_readers); rll->rll_writer = NULL; } else { ASSERT3S(rll->rll_readers, >, 0); ASSERT3P(rll->rll_writer, ==, NULL); rll->rll_readers--; } if (rll->rll_writer == NULL && rll->rll_readers == 0) cv_broadcast(&rll->rll_cv); mutex_exit(&rll->rll_lock); } static void ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_lock(rll, type); } static void ztest_object_unlock(ztest_ds_t *zd, uint64_t object) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_unlock(rll); } static rl_t * ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, rl_type_t type) { uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; rl_t *rl; rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); rl->rl_object = object; rl->rl_offset = offset; rl->rl_size = size; rl->rl_lock = rll; ztest_rll_lock(rll, type); return (rl); } static void ztest_range_unlock(rl_t *rl) { rll_t *rll = rl->rl_lock; ztest_rll_unlock(rll); umem_free(rl, sizeof (*rl)); } static void ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) { zd->zd_os = os; zd->zd_zilog = dmu_objset_zil(os); zd->zd_shared = szd; dmu_objset_name(os, zd->zd_name); int l; if (zd->zd_shared != NULL) zd->zd_shared->zd_seq = 0; VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL)); mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL); for (l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_init(&zd->zd_object_lock[l]); for (l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_init(&zd->zd_range_lock[l]); } static void ztest_zd_fini(ztest_ds_t *zd) { int l; mutex_destroy(&zd->zd_dirobj_lock); (void) pthread_rwlock_destroy(&zd->zd_zilog_lock); for (l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_destroy(&zd->zd_object_lock[l]); for (l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_destroy(&zd->zd_range_lock[l]); } #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) static uint64_t ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) { uint64_t txg; int error; /* * Attempt to assign tx to some transaction group. */ error = dmu_tx_assign(tx, txg_how); if (error) { if (error == ERESTART) { ASSERT3U(txg_how, ==, TXG_NOWAIT); dmu_tx_wait(tx); } else { ASSERT3U(error, ==, ENOSPC); ztest_record_enospc(tag); } dmu_tx_abort(tx); return (0); } txg = dmu_tx_get_txg(tx); ASSERT3U(txg, !=, 0); return (txg); } static void ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) { bt->bt_magic = BT_MAGIC; bt->bt_objset = dmu_objset_id(os); bt->bt_object = object; bt->bt_dnodesize = dnodesize; bt->bt_offset = offset; bt->bt_gen = gen; bt->bt_txg = txg; bt->bt_crtxg = crtxg; } static void ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) { ASSERT3U(bt->bt_magic, ==, BT_MAGIC); ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); ASSERT3U(bt->bt_object, ==, object); ASSERT3U(bt->bt_dnodesize, ==, dnodesize); ASSERT3U(bt->bt_offset, ==, offset); ASSERT3U(bt->bt_gen, <=, gen); ASSERT3U(bt->bt_txg, <=, txg); ASSERT3U(bt->bt_crtxg, ==, crtxg); } static ztest_block_tag_t * ztest_bt_bonus(dmu_buf_t *db) { dmu_object_info_t doi; ztest_block_tag_t *bt; dmu_object_info_from_db(db, &doi); ASSERT3U(doi.doi_bonus_size, <=, db->db_size); ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); return (bt); } /* * Generate a token to fill up unused bonus buffer space. Try to make * it unique to the object, generation, and offset to verify that data * is not getting overwritten by data from other dnodes. */ #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \ (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset)) /* * Fill up the unused bonus buffer region before the block tag with a * verifiable pattern. Filling the whole bonus area with non-zero data * helps ensure that all dnode traversal code properly skips the * interior regions of large dnodes. */ static void ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, objset_t *os, uint64_t gen) { uint64_t *bonusp; ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8)); for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), gen, bonusp - (uint64_t *)db->db_data); *bonusp = token; } } /* * Verify that the unused area of a bonus buffer is filled with the * expected tokens. */ static void ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, objset_t *os, uint64_t gen) { uint64_t *bonusp; for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), gen, bonusp - (uint64_t *)db->db_data); VERIFY3U(*bonusp, ==, token); } } /* * ZIL logging ops */ #define lrz_type lr_mode #define lrz_blocksize lr_uid #define lrz_ibshift lr_gid #define lrz_bonustype lr_rdev #define lrz_dnodesize lr_crtime[1] static void ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, sizeof (*lr) + namesize - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, sizeof (*lr) + namesize - sizeof (lr_t)); itx->itx_oid = object; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) { itx_t *itx; itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); if (zil_replaying(zd->zd_zilog, tx)) return; - if (lr->lr_length > zil_max_log_data(zd->zd_zilog)) + if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t))) write_state = WR_INDIRECT; itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); if (write_state == WR_COPIED && dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); write_state = WR_NEED_COPY; } itx->itx_private = zd; itx->itx_wr_state = write_state; itx->itx_sync = (ztest_random(8) == 0); memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, sizeof (*lr) - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } /* * ZIL replay ops */ static int ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_create_t *lr = arg2; char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; ztest_block_tag_t *bbt; dmu_buf_t *db; dmu_tx_t *tx; uint64_t txg; int error = 0; int bonuslen; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ); ASSERT3S(name[0], !=, '\0'); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } else { dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); } txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) return (ENOSPC); ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid); bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { if (lr->lr_foid == 0) { lr->lr_foid = zap_create_dnsize(os, lr->lrz_type, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } else { error = zap_create_claim_dnsize(os, lr->lr_foid, lr->lrz_type, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } } else { if (lr->lr_foid == 0) { lr->lr_foid = dmu_object_alloc_dnsize(os, lr->lrz_type, 0, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } else { error = dmu_object_claim_dnsize(os, lr->lr_foid, lr->lrz_type, 0, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } } if (error) { ASSERT3U(error, ==, EEXIST); ASSERT(zd->zd_zilog->zl_replay); dmu_tx_commit(tx); return (error); } ASSERT3U(lr->lr_foid, !=, 0); if (lr->lrz_type != DMU_OT_ZAP_OTHER) VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid, lr->lrz_blocksize, lr->lrz_ibshift, tx)); VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); bbt = ztest_bt_bonus(db); dmu_buf_will_dirty(db, tx); ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL, lr->lr_gen, txg, txg); ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen); dmu_buf_rele(db, FTAG); VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, &lr->lr_foid, tx)); (void) ztest_log_create(zd, tx, lr); dmu_tx_commit(tx); return (0); } static int ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_remove_t *lr = arg2; char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; dmu_object_info_t doi; dmu_tx_t *tx; uint64_t object, txg; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ); ASSERT3S(name[0], !=, '\0'); VERIFY0( zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); ASSERT3U(object, !=, 0); ztest_object_lock(zd, object, RL_WRITER); VERIFY0(dmu_object_info(os, object, &doi)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_object_unlock(zd, object); return (ENOSPC); } if (doi.doi_type == DMU_OT_ZAP_OTHER) { VERIFY0(zap_destroy(os, object, tx)); } else { VERIFY0(dmu_object_free(os, object, tx)); } VERIFY0(zap_remove(os, lr->lr_doid, name, tx)); (void) ztest_log_remove(zd, tx, lr, object); dmu_tx_commit(tx); ztest_object_unlock(zd, object); return (0); } static int ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_write_t *lr = arg2; objset_t *os = zd->zd_os; void *data = lr + 1; /* data follows lr */ uint64_t offset, length; ztest_block_tag_t *bt = data; ztest_block_tag_t *bbt; uint64_t gen, txg, lrtxg, crtxg; dmu_object_info_t doi; dmu_tx_t *tx; dmu_buf_t *db; arc_buf_t *abuf = NULL; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } } if (bt->bt_magic == BSWAP_64(BT_MAGIC)) byteswap_uint64_array(bt, sizeof (*bt)); if (bt->bt_magic != BT_MAGIC) bt = NULL; ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); gen = bbt->bt_gen; crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; tx = dmu_tx_create(os); dmu_tx_hold_write(tx, lr->lr_foid, offset, length); if (ztest_random(8) == 0 && length == doi.doi_data_block_size && P2PHASE(offset, length) == 0) abuf = dmu_request_arcbuf(db, length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { if (abuf != NULL) dmu_return_arcbuf(abuf); dmu_buf_rele(db, FTAG); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } if (bt != NULL) { /* * Usually, verify the old data before writing new data -- * but not always, because we also want to verify correct * behavior when the data was not recently read into cache. */ ASSERT(doi.doi_data_block_size); ASSERT0(offset % doi.doi_data_block_size); if (ztest_random(4) != 0) { int prefetch = ztest_random(2) ? DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; ztest_block_tag_t rbt; VERIFY(dmu_read(os, lr->lr_foid, offset, sizeof (rbt), &rbt, prefetch) == 0); if (rbt.bt_magic == BT_MAGIC) { ztest_bt_verify(&rbt, os, lr->lr_foid, 0, offset, gen, txg, crtxg); } } /* * Writes can appear to be newer than the bonus buffer because * the ztest_get_data() callback does a dmu_read() of the * open-context data, which may be different than the data * as it was when the write was generated. */ if (zd->zd_zilog->zl_replay) { ztest_bt_verify(bt, os, lr->lr_foid, 0, offset, MAX(gen, bt->bt_gen), MAX(txg, lrtxg), bt->bt_crtxg); } /* * Set the bt's gen/txg to the bonus buffer's gen/txg * so that all of the usual ASSERTs will work. */ ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg, crtxg); } if (abuf == NULL) { dmu_write(os, lr->lr_foid, offset, length, data, tx); } else { memcpy(abuf->b_data, data, length); VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx)); } (void) ztest_log_write(zd, tx, lr); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_truncate_t *lr = arg2; objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset, lr->lr_length, tx)); (void) ztest_log_truncate(zd, tx, lr); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_setattr_t *lr = arg2; objset_t *os = zd->zd_os; dmu_tx_t *tx; dmu_buf_t *db; ztest_block_tag_t *bbt; uint64_t txg, lrtxg, crtxg, dnodesize; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_WRITER); VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, lr->lr_foid); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; dnodesize = bbt->bt_dnodesize; if (zd->zd_zilog->zl_replay) { ASSERT3U(lr->lr_size, !=, 0); ASSERT3U(lr->lr_mode, !=, 0); ASSERT3U(lrtxg, !=, 0); } else { /* * Randomly change the size and increment the generation. */ lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * sizeof (*bbt); lr->lr_mode = bbt->bt_gen + 1; ASSERT0(lrtxg); } /* * Verify that the current bonus buffer is not newer than our txg. */ ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, MAX(txg, lrtxg), crtxg); dmu_buf_will_dirty(db, tx); ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); ASSERT3U(lr->lr_size, <=, db->db_size); VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); bbt = ztest_bt_bonus(db); ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, txg, crtxg); ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen); dmu_buf_rele(db, FTAG); (void) ztest_log_setattr(zd, tx, lr); dmu_tx_commit(tx); ztest_object_unlock(zd, lr->lr_foid); return (0); } static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { NULL, /* 0 no such transaction type */ ztest_replay_create, /* TX_CREATE */ NULL, /* TX_MKDIR */ NULL, /* TX_MKXATTR */ NULL, /* TX_SYMLINK */ ztest_replay_remove, /* TX_REMOVE */ NULL, /* TX_RMDIR */ NULL, /* TX_LINK */ NULL, /* TX_RENAME */ ztest_replay_write, /* TX_WRITE */ ztest_replay_truncate, /* TX_TRUNCATE */ ztest_replay_setattr, /* TX_SETATTR */ NULL, /* TX_ACL */ NULL, /* TX_CREATE_ACL */ NULL, /* TX_CREATE_ATTR */ NULL, /* TX_CREATE_ACL_ATTR */ NULL, /* TX_MKDIR_ACL */ NULL, /* TX_MKDIR_ATTR */ NULL, /* TX_MKDIR_ACL_ATTR */ NULL, /* TX_WRITE2 */ NULL, /* TX_SETSAXATTR */ NULL, /* TX_RENAME_EXCHANGE */ NULL, /* TX_RENAME_WHITEOUT */ }; /* * ZIL get_data callbacks */ static void ztest_get_done(zgd_t *zgd, int error) { (void) error; ztest_ds_t *zd = zgd->zgd_private; uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); ztest_range_unlock((rl_t *)zgd->zgd_lr); ztest_object_unlock(zd, object); umem_free(zgd, sizeof (*zgd)); } static int ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) { (void) arg2; ztest_ds_t *zd = arg; objset_t *os = zd->zd_os; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; uint64_t txg = lr->lr_common.lrc_txg; uint64_t crtxg; dmu_object_info_t doi; dmu_buf_t *db; zgd_t *zgd; int error; ASSERT3P(lwb, !=, NULL); ASSERT3P(zio, !=, NULL); ASSERT3U(size, !=, 0); ztest_object_lock(zd, object, RL_READER); error = dmu_bonus_hold(os, object, FTAG, &db); if (error) { ztest_object_unlock(zd, object); return (error); } crtxg = ztest_bt_bonus(db)->bt_crtxg; if (crtxg == 0 || crtxg > txg) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, object); return (ENOENT); } dmu_object_info_from_db(db, &doi); dmu_buf_rele(db, FTAG); db = NULL; zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); zgd->zgd_lwb = lwb; zgd->zgd_private = zd; if (buf != NULL) { /* immediate write */ zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); ASSERT0(error); } else { size = doi.doi_data_block_size; if (ISP2(size)) { offset = P2ALIGN(offset, size); } else { ASSERT3U(offset, <, size); offset = 0; } zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *bp = &lr->lr_blkptr; zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT3U(db->db_offset, ==, offset); ASSERT3U(db->db_size, ==, size); error = dmu_sync(zio, lr->lr_common.lrc_txg, ztest_get_done, zgd); if (error == 0) return (0); } } ztest_get_done(zgd, error); return (error); } static void * ztest_lr_alloc(size_t lrsize, char *name) { char *lr; size_t namesize = name ? strlen(name) + 1 : 0; lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); if (name) memcpy(lr + lrsize, name, namesize); return (lr); } static void ztest_lr_free(void *lr, size_t lrsize, char *name) { size_t namesize = name ? strlen(name) + 1 : 0; umem_free(lr, lrsize + namesize); } /* * Lookup a bunch of objects. Returns the number of objects not found. */ static int ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; int i; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); for (i = 0; i < count; i++, od++) { od->od_object = 0; error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, sizeof (uint64_t), 1, &od->od_object); if (error) { ASSERT3S(error, ==, ENOENT); ASSERT0(od->od_object); missing++; } else { dmu_buf_t *db; ztest_block_tag_t *bbt; dmu_object_info_t doi; ASSERT3U(od->od_object, !=, 0); ASSERT0(missing); /* there should be no gaps */ ztest_object_lock(zd, od->od_object, RL_READER); VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); od->od_type = doi.doi_type; od->od_blocksize = doi.doi_data_block_size; od->od_gen = bbt->bt_gen; dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, od->od_object); } } return (missing); } static int ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int i; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); for (i = 0; i < count; i++, od++) { if (missing) { od->od_object = 0; missing++; continue; } lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ lr->lrz_type = od->od_crtype; lr->lrz_blocksize = od->od_crblocksize; lr->lrz_ibshift = ztest_random_ibshift(); lr->lrz_bonustype = DMU_OT_UINT64_OTHER; lr->lrz_dnodesize = od->od_crdnodesize; lr->lr_gen = od->od_crgen; lr->lr_crtime[0] = time(NULL); if (ztest_replay_create(zd, lr, B_FALSE) != 0) { ASSERT0(missing); od->od_object = 0; missing++; } else { od->od_object = lr->lr_foid; od->od_type = od->od_crtype; od->od_blocksize = od->od_crblocksize; od->od_gen = od->od_crgen; ASSERT3U(od->od_object, !=, 0); } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; int i; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); od += count - 1; for (i = count - 1; i >= 0; i--, od--) { if (missing) { missing++; continue; } /* * No object was found. */ if (od->od_object == 0) continue; lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { ASSERT3U(error, ==, ENOSPC); missing++; } else { od->od_object = 0; } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, void *data) { lr_write_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); memcpy(lr + 1, data, size); error = ztest_replay_write(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr) + size, NULL); return (error); } static int ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { lr_truncate_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; error = ztest_replay_truncate(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static int ztest_setattr(ztest_ds_t *zd, uint64_t object) { lr_setattr_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_size = 0; lr->lr_mode = 0; error = ztest_replay_setattr(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static void ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; txg_wait_synced(dmu_objset_pool(os), 0); ztest_object_lock(zd, object, RL_READER); rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, object, offset, size); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg != 0) { dmu_prealloc(os, object, offset, size, tx); dmu_tx_commit(tx); txg_wait_synced(dmu_objset_pool(os), txg); } else { (void) dmu_free_long_range(os, object, offset, size); } ztest_range_unlock(rl); ztest_object_unlock(zd, object); } static void ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) { int err; ztest_block_tag_t wbt; dmu_object_info_t doi; enum ztest_io_type io_type; uint64_t blocksize; void *data; VERIFY0(dmu_object_info(zd->zd_os, object, &doi)); blocksize = doi.doi_data_block_size; data = umem_alloc(blocksize, UMEM_NOFAIL); /* * Pick an i/o type at random, biased toward writing block tags. */ io_type = ztest_random(ZTEST_IO_TYPES); if (ztest_random(2) == 0) io_type = ZTEST_IO_WRITE_TAG; (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock); switch (io_type) { case ZTEST_IO_WRITE_TAG: ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize, offset, 0, 0, 0); (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); break; case ZTEST_IO_WRITE_PATTERN: (void) memset(data, 'a' + (object + offset) % 5, blocksize); if (ztest_random(2) == 0) { /* * Induce fletcher2 collisions to ensure that * zio_ddt_collision() detects and resolves them * when using fletcher2-verify for deduplication. */ ((uint64_t *)data)[0] ^= 1ULL << 63; ((uint64_t *)data)[4] ^= 1ULL << 63; } (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_WRITE_ZEROES: memset(data, 0, blocksize); (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_TRUNCATE: (void) ztest_truncate(zd, object, offset, blocksize); break; case ZTEST_IO_SETATTR: (void) ztest_setattr(zd, object); break; default: break; case ZTEST_IO_REWRITE: (void) pthread_rwlock_rdlock(&ztest_name_lock); err = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), B_FALSE); ASSERT(err == 0 || err == ENOSPC); err = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COMPRESSION, ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), B_FALSE); ASSERT(err == 0 || err == ENOSPC); (void) pthread_rwlock_unlock(&ztest_name_lock); VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, DMU_READ_NO_PREFETCH)); (void) ztest_write(zd, object, offset, blocksize, data); break; } (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); umem_free(data, blocksize); } /* * Initialize an object description template. */ static void ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index, dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize, uint64_t gen) { od->od_dir = ZTEST_DIROBJ; od->od_object = 0; od->od_crtype = type; od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize(); od->od_crgen = gen; od->od_type = DMU_OT_NONE; od->od_blocksize = 0; od->od_gen = 0; (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%"PRId64")[%"PRIu64"]", tag, id, index); } /* * Lookup or create the objects for a test using the od template. * If the objects do not all exist, or if 'remove' is specified, * remove any existing objects and create new ones. Otherwise, * use the existing objects. */ static int ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) { int count = size / sizeof (*od); int rv = 0; mutex_enter(&zd->zd_dirobj_lock); if ((ztest_lookup(zd, od, count) != 0 || remove) && (ztest_remove(zd, od, count) != 0 || ztest_create(zd, od, count) != 0)) rv = -1; zd->zd_od = od; mutex_exit(&zd->zd_dirobj_lock); return (rv); } void ztest_zil_commit(ztest_ds_t *zd, uint64_t id) { (void) id; zilog_t *zilog = zd->zd_zilog; (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock); zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); /* * Remember the committed values in zd, which is in parent/child * shared memory. If we die, the next iteration of ztest_run() * will verify that the log really does contain this record. */ mutex_enter(&zilog->zl_lock); ASSERT3P(zd->zd_shared, !=, NULL); ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; mutex_exit(&zilog->zl_lock); (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); } /* * This function is designed to simulate the operations that occur during a * mount/unmount operation. We hold the dataset across these operations in an * attempt to expose any implicit assumptions about ZIL management. */ void ztest_zil_remount(ztest_ds_t *zd, uint64_t id) { (void) id; objset_t *os = zd->zd_os; /* * We hold the ztest_vdev_lock so we don't cause problems with * other threads that wish to remove a log device, such as * ztest_device_removal(). */ mutex_enter(&ztest_vdev_lock); /* * We grab the zd_dirobj_lock to ensure that no other thread is * updating the zil (i.e. adding in-memory log records) and the * zd_zilog_lock to block any I/O. */ mutex_enter(&zd->zd_dirobj_lock); (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock); /* zfsvfs_teardown() */ zil_close(zd->zd_zilog); /* zfsvfs_setup() */ VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog); zil_replay(os, zd, ztest_replay_vector); (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); mutex_exit(&zd->zd_dirobj_lock); mutex_exit(&ztest_vdev_lock); } /* * Verify that we can't destroy an active pool, create an existing pool, * or create a pool with a bad vdev spec. */ void ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_opts_t *zo = &ztest_opts; spa_t *spa; nvlist_t *nvroot; if (zo->zo_mmp_test) return; /* * Attempt to create using a bad file. */ nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); fnvlist_free(nvroot); /* * Attempt to create using a bad mirror. */ nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); fnvlist_free(nvroot); /* * Attempt to create an existing pool. It shouldn't matter * what's in the nvroot; we should fail with EEXIST. */ (void) pthread_rwlock_rdlock(&ztest_name_lock); nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL)); fnvlist_free(nvroot); /* * We open a reference to the spa and then we try to export it * expecting one of the following errors: * * EBUSY * Because of the reference we just opened. * * ZFS_ERR_EXPORT_IN_PROGRESS * For the case that there is another ztest thread doing * an export concurrently. */ VERIFY0(spa_open(zo->zo_pool, &spa, FTAG)); int error = spa_destroy(zo->zo_pool); if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) { fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d", spa->spa_name, error); } spa_close(spa, FTAG); (void) pthread_rwlock_unlock(&ztest_name_lock); } /* * Start and then stop the MMP threads to ensure the startup and shutdown code * works properly. Actual protection and property-related code tested via ZTS. */ void ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_opts_t *zo = &ztest_opts; spa_t *spa = ztest_spa; if (zo->zo_mmp_test) return; /* * Since enabling MMP involves setting a property, it could not be done * while the pool is suspended. */ if (spa_suspended(spa)) return; spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); mutex_enter(&spa->spa_props_lock); zfs_multihost_fail_intervals = 0; if (!spa_multihost(spa)) { spa->spa_multihost = B_TRUE; mmp_thread_start(spa); } mutex_exit(&spa->spa_props_lock); spa_config_exit(spa, SCL_CONFIG, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); mmp_signal_all_threads(); txg_wait_synced(spa_get_dsl(spa), 0); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); mutex_enter(&spa->spa_props_lock); if (spa_multihost(spa)) { mmp_thread_stop(spa); spa->spa_multihost = B_FALSE; } mutex_exit(&spa->spa_props_lock); spa_config_exit(spa, SCL_CONFIG, FTAG); } void ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa; uint64_t initial_version = SPA_VERSION_INITIAL; uint64_t version, newversion; nvlist_t *nvroot, *props; char *name; if (ztest_opts.zo_mmp_test) return; /* dRAID added after feature flags, skip upgrade test. */ if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) return; mutex_enter(&ztest_vdev_lock); name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); /* * Clean up from previous runs. */ (void) spa_destroy(name); nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1); /* * If we're configuring a RAIDZ device then make sure that the * initial version is capable of supporting that feature. */ switch (ztest_opts.zo_raid_parity) { case 0: case 1: initial_version = SPA_VERSION_INITIAL; break; case 2: initial_version = SPA_VERSION_RAIDZ2; break; case 3: initial_version = SPA_VERSION_RAIDZ3; break; } /* * Create a pool with a spa version that can be upgraded. Pick * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. */ do { version = ztest_random_spa_version(initial_version); } while (version > SPA_VERSION_BEFORE_FEATURES); props = fnvlist_alloc(); fnvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), version); VERIFY0(spa_create(name, nvroot, props, NULL, NULL)); fnvlist_free(nvroot); fnvlist_free(props); VERIFY0(spa_open(name, &spa, FTAG)); VERIFY3U(spa_version(spa), ==, version); newversion = ztest_random_spa_version(version + 1); if (ztest_opts.zo_verbose >= 4) { (void) printf("upgrading spa version from " "%"PRIu64" to %"PRIu64"\n", version, newversion); } spa_upgrade(spa, newversion); VERIFY3U(spa_version(spa), >, version); VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, zpool_prop_to_name(ZPOOL_PROP_VERSION))); spa_close(spa, FTAG); kmem_strfree(name); mutex_exit(&ztest_vdev_lock); } static void ztest_spa_checkpoint(spa_t *spa) { ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); int error = spa_checkpoint(spa->spa_name); switch (error) { case 0: case ZFS_ERR_DEVRM_IN_PROGRESS: case ZFS_ERR_DISCARDING_CHECKPOINT: case ZFS_ERR_CHECKPOINT_EXISTS: break; case ENOSPC: ztest_record_enospc(FTAG); break; default: fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error); } } static void ztest_spa_discard_checkpoint(spa_t *spa) { ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); int error = spa_checkpoint_discard(spa->spa_name); switch (error) { case 0: case ZFS_ERR_DISCARDING_CHECKPOINT: case ZFS_ERR_NO_CHECKPOINT: break; default: fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d", spa->spa_name, error); } } void ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; mutex_enter(&ztest_checkpoint_lock); if (ztest_random(2) == 0) { ztest_spa_checkpoint(spa); } else { ztest_spa_discard_checkpoint(spa); } mutex_exit(&ztest_checkpoint_lock); } static vdev_t * vdev_lookup_by_path(vdev_t *vd, const char *path) { vdev_t *mvd; int c; if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) return (vd); for (c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != NULL) return (mvd); return (NULL); } static int spa_num_top_vdevs(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV); return (rvd->vdev_children); } /* * Verify that vdev_add() works as expected. */ void ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; uint64_t leaves; uint64_t guid; nvlist_t *nvroot; int error; if (ztest_opts.zo_mmp_test) return; mutex_enter(&ztest_vdev_lock); leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raid_children; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves; /* * If we have slogs then remove them 1/4 of the time. */ if (spa_has_slogs(spa) && ztest_random(4) == 0) { metaslab_group_t *mg; /* * find the first real slog in log allocation class */ mg = spa_log_class(spa)->mc_allocator[0].mca_rotor; while (!mg->mg_vd->vdev_islog) mg = mg->mg_next; guid = mg->mg_vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); /* * We have to grab the zs_name_lock as writer to * prevent a race between removing a slog (dmu_objset_find) * and destroying a dataset. Removing the slog will * grab a reference on the dataset which may cause * dsl_destroy_head() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ pthread_rwlock_wrlock(&ztest_name_lock); error = spa_vdev_remove(spa, guid, B_FALSE); pthread_rwlock_unlock(&ztest_name_lock); switch (error) { case 0: case EEXIST: /* Generic zil_reset() error */ case EBUSY: /* Replay required */ case EACCES: /* Crypto key not loaded */ case ZFS_ERR_CHECKPOINT_EXISTS: case ZFS_ERR_DISCARDING_CHECKPOINT: break; default: fatal(B_FALSE, "spa_vdev_remove() = %d", error); } } else { spa_config_exit(spa, SCL_VDEV, FTAG); /* * Make 1/4 of the devices be log devices */ nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ? "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1); error = spa_vdev_add(spa, nvroot); fnvlist_free(nvroot); switch (error) { case 0: break; case ENOSPC: ztest_record_enospc("spa_vdev_add"); break; default: fatal(B_FALSE, "spa_vdev_add() = %d", error); } } mutex_exit(&ztest_vdev_lock); } void ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; uint64_t leaves; nvlist_t *nvroot; const char *class = (ztest_random(2) == 0) ? VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP; int error; /* * By default add a special vdev 50% of the time */ if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) || (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND && ztest_random(2) == 0)) { return; } mutex_enter(&ztest_vdev_lock); /* Only test with mirrors */ if (zs->zs_mirrors < 2) { mutex_exit(&ztest_vdev_lock); return; } /* requires feature@allocation_classes */ if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) { mutex_exit(&ztest_vdev_lock); return; } leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raid_children; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves; spa_config_exit(spa, SCL_VDEV, FTAG); nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1); error = spa_vdev_add(spa, nvroot); fnvlist_free(nvroot); if (error == ENOSPC) ztest_record_enospc("spa_vdev_add"); else if (error != 0) fatal(B_FALSE, "spa_vdev_add() = %d", error); /* * 50% of the time allow small blocks in the special class */ if (error == 0 && spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) { if (ztest_opts.zo_verbose >= 3) (void) printf("Enabling special VDEV small blocks\n"); error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE); ASSERT(error == 0 || error == ENOSPC); } mutex_exit(&ztest_vdev_lock); if (ztest_opts.zo_verbose >= 3) { metaslab_class_t *mc; if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0) mc = spa_special_class(spa); else mc = spa_dedup_class(spa); (void) printf("Added a %s mirrored vdev (of %d)\n", class, (int)mc->mc_groups); } } /* * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. */ void ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; vdev_t *rvd = spa->spa_root_vdev; spa_aux_vdev_t *sav; const char *aux; char *path; uint64_t guid = 0; int error, ignore_err = 0; if (ztest_opts.zo_mmp_test) return; path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); if (ztest_random(2) == 0) { sav = &spa->spa_spares; aux = ZPOOL_CONFIG_SPARES; } else { sav = &spa->spa_l2cache; aux = ZPOOL_CONFIG_L2CACHE; } mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); if (sav->sav_count != 0 && ztest_random(4) == 0) { /* * Pick a random device to remove. */ vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)]; /* dRAID spares cannot be removed; try anyways to see ENOTSUP */ if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL) ignore_err = ENOTSUP; guid = svd->vdev_guid; } else { /* * Find an unused device we can add. */ zs->zs_vdev_aux = 0; for (;;) { int c; (void) snprintf(path, MAXPATHLEN, ztest_aux_template, ztest_opts.zo_dir, ztest_opts.zo_pool, aux, zs->zs_vdev_aux); for (c = 0; c < sav->sav_count; c++) if (strcmp(sav->sav_vdevs[c]->vdev_path, path) == 0) break; if (c == sav->sav_count && vdev_lookup_by_path(rvd, path) == NULL) break; zs->zs_vdev_aux++; } } spa_config_exit(spa, SCL_VDEV, FTAG); if (guid == 0) { /* * Add a new device. */ nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1); error = spa_vdev_add(spa, nvroot); switch (error) { case 0: break; default: fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error); } fnvlist_free(nvroot); } else { /* * Remove an existing device. Sometimes, dirty its * vdev state first to make sure we handle removal * of devices that have pending state changes. */ if (ztest_random(2) == 0) (void) vdev_online(spa, guid, 0, NULL); error = spa_vdev_remove(spa, guid, B_FALSE); switch (error) { case 0: case EBUSY: case ZFS_ERR_CHECKPOINT_EXISTS: case ZFS_ERR_DISCARDING_CHECKPOINT: break; default: if (error != ignore_err) fatal(B_FALSE, "spa_vdev_remove(%"PRIu64") = %d", guid, error); } } mutex_exit(&ztest_vdev_lock); umem_free(path, MAXPATHLEN); } /* * split a pool if it has mirror tlvdevs */ void ztest_split_pool(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; vdev_t *rvd = spa->spa_root_vdev; nvlist_t *tree, **child, *config, *split, **schild; uint_t c, children, schildren = 0, lastlogid = 0; int error = 0; if (ztest_opts.zo_mmp_test) return; mutex_enter(&ztest_vdev_lock); /* ensure we have a usable config; mirrors of raidz aren't supported */ if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) { mutex_exit(&ztest_vdev_lock); return; } /* clean up the old pool, if any */ (void) spa_destroy("splitp"); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* generate a config from the existing config */ mutex_enter(&spa->spa_props_lock); tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE); mutex_exit(&spa->spa_props_lock); VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, &children)); schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < children; c++) { vdev_t *tvd = rvd->vdev_child[c]; nvlist_t **mchild; uint_t mchildren; if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { schild[schildren] = fnvlist_alloc(); fnvlist_add_string(schild[schildren], ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE); fnvlist_add_uint64(schild[schildren], ZPOOL_CONFIG_IS_HOLE, 1); if (lastlogid == 0) lastlogid = schildren; ++schildren; continue; } lastlogid = 0; VERIFY0(nvlist_lookup_nvlist_array(child[c], ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren)); schild[schildren++] = fnvlist_dup(mchild[0]); } /* OK, create a config that can be used to split */ split = fnvlist_alloc(); fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT); fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren); config = fnvlist_alloc(); fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split); for (c = 0; c < schildren; c++) fnvlist_free(schild[c]); umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *)); fnvlist_free(split); spa_config_exit(spa, SCL_VDEV, FTAG); (void) pthread_rwlock_wrlock(&ztest_name_lock); error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); (void) pthread_rwlock_unlock(&ztest_name_lock); fnvlist_free(config); if (error == 0) { (void) printf("successful split - results:\n"); mutex_enter(&spa_namespace_lock); show_pool_stats(spa); show_pool_stats(spa_lookup("splitp")); mutex_exit(&spa_namespace_lock); ++zs->zs_splits; --zs->zs_mirrors; } mutex_exit(&ztest_vdev_lock); } /* * Verify that we can attach and detach devices. */ void ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; spa_aux_vdev_t *sav = &spa->spa_spares; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *pvd; nvlist_t *root; uint64_t leaves; uint64_t leaf, top; uint64_t ashift = ztest_get_ashift(); uint64_t oldguid, pguid; uint64_t oldsize, newsize; char *oldpath, *newpath; int replacing; int oldvd_has_siblings = B_FALSE; int newvd_is_spare = B_FALSE; int newvd_is_dspare = B_FALSE; int oldvd_is_log; int oldvd_is_special; int error, expected_error; if (ztest_opts.zo_mmp_test) return; oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); mutex_enter(&ztest_vdev_lock); leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * If a vdev is in the process of being removed, its removal may * finish while we are in progress, leading to an unexpected error * value. Don't bother trying to attach while we are in the middle * of removal. */ if (ztest_device_removal_active) { spa_config_exit(spa, SCL_ALL, FTAG); goto out; } /* * Decide whether to do an attach or a replace. */ replacing = ztest_random(2); /* * Pick a random top-level vdev. */ top = ztest_random_vdev_top(spa, B_TRUE); /* * Pick a random leaf within it. */ leaf = ztest_random(leaves); /* * Locate this vdev. */ oldvd = rvd->vdev_child[top]; /* pick a child from the mirror */ if (zs->zs_mirrors >= 1) { ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops); ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors); oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children]; } /* pick a child out of the raidz group */ if (ztest_opts.zo_raid_children > 1) { if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0) ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops); else ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops); ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children); oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children]; } /* * If we're already doing an attach or replace, oldvd may be a * mirror vdev -- in which case, pick a random child. */ while (oldvd->vdev_children != 0) { oldvd_has_siblings = B_TRUE; ASSERT3U(oldvd->vdev_children, >=, 2); oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; } oldguid = oldvd->vdev_guid; oldsize = vdev_get_min_asize(oldvd); oldvd_is_log = oldvd->vdev_top->vdev_islog; oldvd_is_special = oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL || oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP; (void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN); pvd = oldvd->vdev_parent; pguid = pvd->vdev_guid; /* * If oldvd has siblings, then half of the time, detach it. Prior * to the detach the pool is scrubbed in order to prevent creating * unrepairable blocks as a result of the data corruption injection. */ if (oldvd_has_siblings && ztest_random(2) == 0) { spa_config_exit(spa, SCL_ALL, FTAG); error = ztest_scrub_impl(spa); if (error) goto out; error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); if (error != 0 && error != ENODEV && error != EBUSY && error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS && error != ZFS_ERR_DISCARDING_CHECKPOINT) fatal(B_FALSE, "detach (%s) returned %d", oldpath, error); goto out; } /* * For the new vdev, choose with equal probability between the two * standard paths (ending in either 'a' or 'b') or a random hot spare. */ if (sav->sav_count != 0 && ztest_random(3) == 0) { newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; newvd_is_spare = B_TRUE; if (newvd->vdev_ops == &vdev_draid_spare_ops) newvd_is_dspare = B_TRUE; (void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN); } else { (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + leaf); if (ztest_random(2) == 0) newpath[strlen(newpath) - 1] = 'b'; newvd = vdev_lookup_by_path(rvd, newpath); } if (newvd) { /* * Reopen to ensure the vdev's asize field isn't stale. */ vdev_reopen(newvd); newsize = vdev_get_min_asize(newvd); } else { /* * Make newsize a little bigger or smaller than oldsize. * If it's smaller, the attach should fail. * If it's larger, and we're doing a replace, * we should get dynamic LUN growth when we're done. */ newsize = 10 * oldsize / (9 + ztest_random(3)); } /* * If pvd is not a mirror or root, the attach should fail with ENOTSUP, * unless it's a replace; in that case any non-replacing parent is OK. * * If newvd is already part of the pool, it should fail with EBUSY. * * If newvd is too small, it should fail with EOVERFLOW. * * If newvd is a distributed spare and it's being attached to a * dRAID which is not its parent it should fail with EINVAL. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops && (!replacing || pvd->vdev_ops == &vdev_replacing_ops || pvd->vdev_ops == &vdev_spare_ops)) expected_error = ENOTSUP; else if (newvd_is_spare && (!replacing || oldvd_is_log || oldvd_is_special)) expected_error = ENOTSUP; else if (newvd == oldvd) expected_error = replacing ? 0 : EBUSY; else if (vdev_lookup_by_path(rvd, newpath) != NULL) expected_error = EBUSY; else if (!newvd_is_dspare && newsize < oldsize) expected_error = EOVERFLOW; else if (ashift > oldvd->vdev_top->vdev_ashift) expected_error = EDOM; else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd)) expected_error = ENOTSUP; else expected_error = 0; spa_config_exit(spa, SCL_ALL, FTAG); /* * Build the nvlist describing newpath. */ root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, ashift, NULL, 0, 0, 1); /* * When supported select either a healing or sequential resilver. */ boolean_t rebuilding = B_FALSE; if (pvd->vdev_ops == &vdev_mirror_ops || pvd->vdev_ops == &vdev_root_ops) { rebuilding = !!ztest_random(2); } error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding); fnvlist_free(root); /* * If our parent was the replacing vdev, but the replace completed, * then instead of failing with ENOTSUP we may either succeed, * fail with ENODEV, or fail with EOVERFLOW. */ if (expected_error == ENOTSUP && (error == 0 || error == ENODEV || error == EOVERFLOW)) expected_error = error; /* * If someone grew the LUN, the replacement may be too small. */ if (error == EOVERFLOW || error == EBUSY) expected_error = error; if (error == ZFS_ERR_CHECKPOINT_EXISTS || error == ZFS_ERR_DISCARDING_CHECKPOINT || error == ZFS_ERR_RESILVER_IN_PROGRESS || error == ZFS_ERR_REBUILD_IN_PROGRESS) expected_error = error; if (error != expected_error && expected_error != EBUSY) { fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) " "returned %d, expected %d", oldpath, oldsize, newpath, newsize, replacing, error, expected_error); } out: mutex_exit(&ztest_vdev_lock); umem_free(oldpath, MAXPATHLEN); umem_free(newpath, MAXPATHLEN); } void ztest_device_removal(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; vdev_t *vd; uint64_t guid; int error; mutex_enter(&ztest_vdev_lock); if (ztest_device_removal_active) { mutex_exit(&ztest_vdev_lock); return; } /* * Remove a random top-level vdev and wait for removal to finish. */ spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); guid = vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); error = spa_vdev_remove(spa, guid, B_FALSE); if (error == 0) { ztest_device_removal_active = B_TRUE; mutex_exit(&ztest_vdev_lock); /* * spa->spa_vdev_removal is created in a sync task that * is initiated via dsl_sync_task_nowait(). Since the * task may not run before spa_vdev_remove() returns, we * must wait at least 1 txg to ensure that the removal * struct has been created. */ txg_wait_synced(spa_get_dsl(spa), 0); while (spa->spa_removing_phys.sr_state == DSS_SCANNING) txg_wait_synced(spa_get_dsl(spa), 0); } else { mutex_exit(&ztest_vdev_lock); return; } /* * The pool needs to be scrubbed after completing device removal. * Failure to do so may result in checksum errors due to the * strategy employed by ztest_fault_inject() when selecting which * offset are redundant and can be damaged. */ error = spa_scan(spa, POOL_SCAN_SCRUB); if (error == 0) { while (dsl_scan_scrubbing(spa_get_dsl(spa))) txg_wait_synced(spa_get_dsl(spa), 0); } mutex_enter(&ztest_vdev_lock); ztest_device_removal_active = B_FALSE; mutex_exit(&ztest_vdev_lock); } /* * Callback function which expands the physical size of the vdev. */ static vdev_t * grow_vdev(vdev_t *vd, void *arg) { spa_t *spa __maybe_unused = vd->vdev_spa; size_t *newsize = arg; size_t fsize; int fd; ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); if ((fd = open(vd->vdev_path, O_RDWR)) == -1) return (vd); fsize = lseek(fd, 0, SEEK_END); VERIFY0(ftruncate(fd, *newsize)); if (ztest_opts.zo_verbose >= 6) { (void) printf("%s grew from %lu to %lu bytes\n", vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); } (void) close(fd); return (NULL); } /* * Callback function which expands a given vdev by calling vdev_online(). */ static vdev_t * online_vdev(vdev_t *vd, void *arg) { (void) arg; spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint64_t guid = vd->vdev_guid; uint64_t generation = spa->spa_config_generation + 1; vdev_state_t newstate = VDEV_STATE_UNKNOWN; int error; ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); /* Calling vdev_online will initialize the new metaslabs */ spa_config_exit(spa, SCL_STATE, spa); error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If vdev_online returned an error or the underlying vdev_open * failed then we abort the expand. The only way to know that * vdev_open fails is by checking the returned newstate. */ if (error || newstate != VDEV_STATE_HEALTHY) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Unable to expand vdev, state %u, " "error %d\n", newstate, error); } return (vd); } ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); /* * Since we dropped the lock we need to ensure that we're * still talking to the original vdev. It's possible this * vdev may have been detached/replaced while we were * trying to online it. */ if (generation != spa->spa_config_generation) { if (ztest_opts.zo_verbose >= 5) { (void) printf("vdev configuration has changed, " "guid %"PRIu64", state %"PRIu64", " "expected gen %"PRIu64", got gen %"PRIu64"\n", guid, tvd->vdev_state, generation, spa->spa_config_generation); } return (vd); } return (NULL); } /* * Traverse the vdev tree calling the supplied function. * We continue to walk the tree until we either have walked all * children or we receive a non-NULL return from the callback. * If a NULL callback is passed, then we just return back the first * leaf vdev we encounter. */ static vdev_t * vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) { uint_t c; if (vd->vdev_ops->vdev_op_leaf) { if (func == NULL) return (vd); else return (func(vd, arg)); } for (c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) return (cvd); } return (NULL); } /* * Verify that dynamic LUN growth works as expected. */ void ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; vdev_t *vd, *tvd; metaslab_class_t *mc; metaslab_group_t *mg; size_t psize, newsize; uint64_t top; uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; mutex_enter(&ztest_checkpoint_lock); mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If there is a vdev removal in progress, it could complete while * we are running, in which case we would not be able to verify * that the metaslab_class space increased (because it decreases * when the device removal completes). */ if (ztest_device_removal_active) { spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } top = ztest_random_vdev_top(spa, B_TRUE); tvd = spa->spa_root_vdev->vdev_child[top]; mg = tvd->vdev_mg; mc = mg->mg_class; old_ms_count = tvd->vdev_ms_count; old_class_space = metaslab_class_get_space(mc); /* * Determine the size of the first leaf vdev associated with * our top-level device. */ vd = vdev_walk_tree(tvd, NULL, NULL); ASSERT3P(vd, !=, NULL); ASSERT(vd->vdev_ops->vdev_op_leaf); psize = vd->vdev_psize; /* * We only try to expand the vdev if it's healthy, less than 4x its * original size, and it has a valid psize. */ if (tvd->vdev_state != VDEV_STATE_HEALTHY || psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } ASSERT3U(psize, >, 0); newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE); ASSERT3U(newsize, >, psize); if (ztest_opts.zo_verbose >= 6) { (void) printf("Expanding LUN %s from %lu to %lu\n", vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); } /* * Growing the vdev is a two step process: * 1). expand the physical size (i.e. relabel) * 2). online the vdev to create the new metaslabs */ if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || vdev_walk_tree(tvd, online_vdev, NULL) != NULL || tvd->vdev_state != VDEV_STATE_HEALTHY) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Could not expand LUN because " "the vdev configuration changed.\n"); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } spa_config_exit(spa, SCL_STATE, spa); /* * Expanding the LUN will update the config asynchronously, * thus we must wait for the async thread to complete any * pending tasks before proceeding. */ for (;;) { boolean_t done; mutex_enter(&spa->spa_async_lock); done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); mutex_exit(&spa->spa_async_lock); if (done) break; txg_wait_synced(spa_get_dsl(spa), 0); (void) poll(NULL, 0, 100); } spa_config_enter(spa, SCL_STATE, spa, RW_READER); tvd = spa->spa_root_vdev->vdev_child[top]; new_ms_count = tvd->vdev_ms_count; new_class_space = metaslab_class_get_space(mc); if (tvd->vdev_mg != mg || mg->mg_class != mc) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Could not verify LUN expansion due to " "intervening vdev offline or remove.\n"); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } /* * Make sure we were able to grow the vdev. */ if (new_ms_count <= old_ms_count) { fatal(B_FALSE, "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n", old_ms_count, new_ms_count); } /* * Make sure we were able to grow the pool. */ if (new_class_space <= old_class_space) { fatal(B_FALSE, "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n", old_class_space, new_class_space); } if (ztest_opts.zo_verbose >= 5) { char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); (void) printf("%s grew from %s to %s\n", spa->spa_name, oldnumbuf, newnumbuf); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); } /* * Verify that dmu_objset_{create,destroy,open,close} work as expected. */ static void ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { (void) arg, (void) cr; /* * Create the objects common to all ztest datasets. */ VERIFY0(zap_create_claim(os, ZTEST_DIROBJ, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx)); } static int ztest_dataset_create(char *dsname) { int err; uint64_t rand; dsl_crypto_params_t *dcp = NULL; /* * 50% of the time, we create encrypted datasets * using a random cipher suite and a hard-coded * wrapping key. */ rand = ztest_random(2); if (rand != 0) { nvlist_t *crypto_args = fnvlist_alloc(); nvlist_t *props = fnvlist_alloc(); /* slight bias towards the default cipher suite */ rand = ztest_random(ZIO_CRYPT_FUNCTIONS); if (rand < ZIO_CRYPT_AES_128_CCM) rand = ZIO_CRYPT_ON; fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand); fnvlist_add_uint8_array(crypto_args, "wkeydata", (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); /* * These parameters aren't really used by the kernel. They * are simply stored so that userspace knows how to load * the wrapping key. */ fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW); fnvlist_add_string(props, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt"); fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL); fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL); VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props, crypto_args, &dcp)); /* * Cycle through all available encryption implementations * to verify interoperability. */ VERIFY0(gcm_impl_set("cycle")); VERIFY0(aes_impl_set("cycle")); fnvlist_free(crypto_args); fnvlist_free(props); } err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp, ztest_objset_create_cb, NULL); dsl_crypto_params_free(dcp, !!err); rand = ztest_random(100); if (err || rand < 80) return (err); if (ztest_opts.zo_verbose >= 5) (void) printf("Setting dataset %s to sync always\n", dsname); return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, ZFS_SYNC_ALWAYS, B_FALSE)); } static int ztest_objset_destroy_cb(const char *name, void *arg) { (void) arg; objset_t *os; dmu_object_info_t doi; int error; /* * Verify that the dataset contains a directory object. */ VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE, FTAG, &os)); error = dmu_object_info(os, ZTEST_DIROBJ, &doi); if (error != ENOENT) { /* We could have crashed in the middle of destroying it */ ASSERT0(error); ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); ASSERT3S(doi.doi_physical_blocks_512, >=, 0); } dmu_objset_disown(os, B_TRUE, FTAG); /* * Destroy the dataset. */ if (strchr(name, '@') != NULL) { error = dsl_destroy_snapshot(name, B_TRUE); if (error != ECHRNG) { /* * The program was executed, but encountered a runtime * error, such as insufficient slop, or a hold on the * dataset. */ ASSERT0(error); } } else { error = dsl_destroy_head(name); if (error == ENOSPC) { /* There could be checkpoint or insufficient slop */ ztest_record_enospc(FTAG); } else if (error != EBUSY) { /* There could be a hold on this dataset */ ASSERT0(error); } } return (0); } static boolean_t ztest_snapshot_create(char *osname, uint64_t id) { char snapname[ZFS_MAX_DATASET_NAME_LEN]; int error; (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id); error = dmu_objset_snapshot_one(osname, snapname); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (B_FALSE); } if (error != 0 && error != EEXIST && error != ECHRNG) { fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname, snapname, error); } return (B_TRUE); } static boolean_t ztest_snapshot_destroy(char *osname, uint64_t id) { char snapname[ZFS_MAX_DATASET_NAME_LEN]; int error; (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"", osname, id); error = dsl_destroy_snapshot(snapname, B_FALSE); if (error != 0 && error != ENOENT && error != ECHRNG) fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d", snapname, error); return (B_TRUE); } void ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) { (void) zd; ztest_ds_t *zdtmp; int iters; int error; objset_t *os, *os2; char name[ZFS_MAX_DATASET_NAME_LEN]; zilog_t *zilog; int i; zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL); (void) pthread_rwlock_rdlock(&ztest_name_lock); (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"", ztest_opts.zo_pool, id); /* * If this dataset exists from a previous run, process its replay log * half of the time. If we don't replay it, then dsl_destroy_head() * (invoked from ztest_objset_destroy_cb()) should just throw it away. */ if (ztest_random(2) == 0 && ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, FTAG, &os) == 0) { ztest_zd_init(zdtmp, NULL, os); zil_replay(os, zdtmp, ztest_replay_vector); ztest_zd_fini(zdtmp); dmu_objset_disown(os, B_TRUE, FTAG); } /* * There may be an old instance of the dataset we're about to * create lying around from a previous run. If so, destroy it * and all of its snapshots. */ (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); /* * Verify that the destroyed dataset is no longer in the namespace. * It may still be present if the destroy above fails with ENOSPC. */ error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE, FTAG, &os); if (error == 0) { dmu_objset_disown(os, B_TRUE, FTAG); ztest_record_enospc(FTAG); goto out; } VERIFY3U(ENOENT, ==, error); /* * Verify that we can create a new dataset. */ error = ztest_dataset_create(name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error); } VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, FTAG, &os)); ztest_zd_init(zdtmp, NULL, os); /* * Open the intent log for it. */ zilog = zil_open(os, ztest_get_data, NULL); /* * Put some objects in there, do a little I/O to them, * and randomly take a couple of snapshots along the way. */ iters = ztest_random(5); for (i = 0; i < iters; i++) { ztest_dmu_object_alloc_free(zdtmp, id); if (ztest_random(iters) == 0) (void) ztest_snapshot_create(name, i); } /* * Verify that we cannot create an existing dataset. */ VERIFY3U(EEXIST, ==, dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL)); /* * Verify that we can hold an objset that is also owned. */ VERIFY0(dmu_objset_hold(name, FTAG, &os2)); dmu_objset_rele(os2, FTAG); /* * Verify that we cannot own an objset that is already owned. */ VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, FTAG, &os2)); zil_close(zilog); dmu_objset_disown(os, B_TRUE, FTAG); ztest_zd_fini(zdtmp); out: (void) pthread_rwlock_unlock(&ztest_name_lock); umem_free(zdtmp, sizeof (ztest_ds_t)); } /* * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. */ void ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) { (void) pthread_rwlock_rdlock(&ztest_name_lock); (void) ztest_snapshot_destroy(zd->zd_name, id); (void) ztest_snapshot_create(zd->zd_name, id); (void) pthread_rwlock_unlock(&ztest_name_lock); } /* * Cleanup non-standard snapshots and clones. */ static void ztest_dsl_dataset_cleanup(char *osname, uint64_t id) { char *snap1name; char *clone1name; char *snap2name; char *clone2name; char *snap3name; int error; snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"", osname, id); (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"", osname, id); (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"", clone1name, id); (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"", osname, id); (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"", clone1name, id); error = dsl_destroy_head(clone2name); if (error && error != ENOENT) fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error); error = dsl_destroy_snapshot(snap3name, B_FALSE); if (error && error != ENOENT) fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", snap3name, error); error = dsl_destroy_snapshot(snap2name, B_FALSE); if (error && error != ENOENT) fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", snap2name, error); error = dsl_destroy_head(clone1name); if (error && error != ENOENT) fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error); error = dsl_destroy_snapshot(snap1name, B_FALSE); if (error && error != ENOENT) fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", snap1name, error); umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN); umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN); umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN); umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN); umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN); } /* * Verify dsl_dataset_promote handles EBUSY */ void ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) { objset_t *os; char *snap1name; char *clone1name; char *snap2name; char *clone2name; char *snap3name; char *osname = zd->zd_name; int error; snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); (void) pthread_rwlock_rdlock(&ztest_name_lock); ztest_dsl_dataset_cleanup(osname, id); (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"", osname, id); (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"", osname, id); (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"", clone1name, id); (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"", osname, id); (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"", clone1name, id); error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error); } error = dmu_objset_clone(clone1name, snap1name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error); } error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error); } error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error); } error = dmu_objset_clone(clone2name, snap3name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error); } error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os); if (error) fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error); error = dsl_dataset_promote(clone2name, NULL); if (error == ENOSPC) { dmu_objset_disown(os, B_TRUE, FTAG); ztest_record_enospc(FTAG); goto out; } if (error != EBUSY) fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, error); dmu_objset_disown(os, B_TRUE, FTAG); out: ztest_dsl_dataset_cleanup(osname, id); (void) pthread_rwlock_unlock(&ztest_name_lock); umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN); umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN); umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN); umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN); umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN); } #undef OD_ARRAY_SIZE #define OD_ARRAY_SIZE 4 /* * Verify that dmu_object_{alloc,free} work as expected. */ void ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) { ztest_od_t *od; int batchsize; int size; int b; size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; od = umem_alloc(size, UMEM_NOFAIL); batchsize = OD_ARRAY_SIZE; for (b = 0; b < batchsize; b++) ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0, 0); /* * Destroy the previous batch of objects, create a new batch, * and do some I/O on the new objects. */ if (ztest_object_init(zd, od, size, B_TRUE) != 0) { zd->zd_od = NULL; umem_free(od, size); return; } while (ztest_random(4 * batchsize) != 0) ztest_io(zd, od[ztest_random(batchsize)].od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); umem_free(od, size); } /* * Rewind the global allocator to verify object allocation backfilling. */ void ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id) { (void) id; objset_t *os = zd->zd_os; uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift; uint64_t object; /* * Rewind the global allocator randomly back to a lower object number * to force backfilling and reclamation of recently freed dnodes. */ mutex_enter(&os->os_obj_lock); object = ztest_random(os->os_obj_next_chunk); os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk); mutex_exit(&os->os_obj_lock); } #undef OD_ARRAY_SIZE #define OD_ARRAY_SIZE 2 /* * Verify that dmu_{read,write} work as expected. */ void ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) { int size; ztest_od_t *od; objset_t *os = zd->zd_os; size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; od = umem_alloc(size, UMEM_NOFAIL); dmu_tx_t *tx; int freeit, error; uint64_t i, n, s, txg; bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 40; int free_percent = 5; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is arbitrary. It doesn't have to be a power of two, * and it doesn't have any relation to the object blocksize. * The only requirement is that it can hold at least two bufwads. * * Normally, we write the bufwad to each of these locations. * However, free_percent of the time we instead write zeroes to * packobj and perform a dmu_free_range() on bigobj. By comparing * bigobj to packobj, we can verify that the DMU is correctly * tracking which parts of an object are allocated and free, * and that the contents of the allocated blocks are correct. */ /* * Read the directory info. If it's the first time, set things up. */ ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize); ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, chunksize); if (ztest_object_init(zd, od, size, B_FALSE) != 0) { umem_free(od, size); return; } bigobj = od[0].od_object; packobj = od[1].od_object; chunksize = od[0].od_gen; ASSERT3U(chunksize, ==, od[1].od_gen); /* * Prefetch a random chunk of the big object. * Our aim here is to get some async reads in flight * for blocks that we may free below; the DMU should * handle this race correctly. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(2 * width - 1); dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, ZIO_PRIORITY_SYNC_READ); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_alloc(packsize, UMEM_NOFAIL); bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); /* * free_percent of the time, free a range of bigobj rather than * overwriting it. */ freeit = (ztest_random(100) < free_percent); /* * Read the current contents of our objects. */ error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT0(error); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT0(error); /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); if (freeit) dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); else dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); /* This accounts for setting the checksum/compression. */ dmu_tx_hold_bonus(tx, bigobj); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(od, size); return; } enum zio_checksum cksum; do { cksum = (enum zio_checksum) ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); dmu_object_set_checksum(os, bigobj, cksum, tx); enum zio_compress comp; do { comp = (enum zio_compress) ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); dmu_object_set_compress(os, bigobj, comp, tx); /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize); ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize); if (pack->bw_txg > txg) fatal(B_FALSE, "future leak: got %"PRIx64", open txg is %"PRIx64"", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(B_FALSE, "wrong index: " "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"", pack->bw_index, n, i); if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(B_FALSE, "pack/bigH mismatch in %p/%p", pack, bigH); if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(B_FALSE, "pack/bigT mismatch in %p/%p", pack, bigT); if (freeit) { memset(pack, 0, sizeof (bufwad_t)); } else { pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); } *bigH = *pack; *bigT = *pack; } /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (freeit) { if (ztest_opts.zo_verbose >= 7) { (void) printf("freeing offset %"PRIx64" size %"PRIx64"" " txg %"PRIx64"\n", bigoff, bigsize, txg); } VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx)); } else { if (ztest_opts.zo_verbose >= 7) { (void) printf("writing offset %"PRIx64" size %"PRIx64"" " txg %"PRIx64"\n", bigoff, bigsize, txg); } dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY0(dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY0(dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT0(memcmp(packbuf, packcheck, packsize)); ASSERT0(memcmp(bigbuf, bigcheck, bigsize)); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(od, size); } static void compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) { uint64_t i; bufwad_t *pack; bufwad_t *bigH; bufwad_t *bigT; /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize); ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize); if (pack->bw_txg > txg) fatal(B_FALSE, "future leak: got %"PRIx64", open txg is %"PRIx64"", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(B_FALSE, "wrong index: " "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"", pack->bw_index, n, i); if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(B_FALSE, "pack/bigH mismatch in %p/%p", pack, bigH); if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(B_FALSE, "pack/bigT mismatch in %p/%p", pack, bigT); pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); *bigH = *pack; *bigT = *pack; } } #undef OD_ARRAY_SIZE #define OD_ARRAY_SIZE 2 void ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t *od; dmu_tx_t *tx; uint64_t i; int error; int size; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t blocksize = ztest_random_blocksize(); uint64_t chunksize = blocksize; uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 9; dmu_buf_t *bonus_db; arc_buf_t **bigbuf_arcbufs; dmu_object_info_t doi; size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; od = umem_alloc(size, UMEM_NOFAIL); /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is set equal to bigobj block size so that * dmu_assign_arcbuf_by_dbuf() can be tested for object updates. */ /* * Read the directory info. If it's the first time, set things up. */ ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, chunksize); if (ztest_object_init(zd, od, size, B_FALSE) != 0) { umem_free(od, size); return; } bigobj = od[0].od_object; packobj = od[1].od_object; blocksize = od[0].od_blocksize; chunksize = blocksize; ASSERT3U(chunksize, ==, od[1].od_gen); VERIFY0(dmu_object_info(os, bigobj, &doi)); VERIFY(ISP2(doi.doi_data_block_size)); VERIFY3U(chunksize, ==, doi.doi_data_block_size); VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t)); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_zalloc(packsize, UMEM_NOFAIL); bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); /* * Iteration 0 test zcopy for DB_UNCACHED dbufs. * Iteration 1 test zcopy to already referenced dbufs. * Iteration 2 test zcopy to dirty dbuf in the same txg. * Iteration 3 test zcopy to dbuf dirty in previous txg. * Iteration 4 test zcopy when dbuf is no longer dirty. * Iteration 5 test zcopy when it can't be done. * Iteration 6 one more zcopy write. */ for (i = 0; i < 7; i++) { uint64_t j; uint64_t off; /* * In iteration 5 (i == 5) use arcbufs * that don't match bigobj blksz to test * dmu_assign_arcbuf_by_dbuf() when it can't directly * assign an arcbuf to a dbuf. */ for (j = 0; j < s; j++) { if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { bigbuf_arcbufs[j] = dmu_request_arcbuf(bonus_db, chunksize); } else { bigbuf_arcbufs[2 * j] = dmu_request_arcbuf(bonus_db, chunksize / 2); bigbuf_arcbufs[2 * j + 1] = dmu_request_arcbuf(bonus_db, chunksize / 2); } } /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); for (j = 0; j < s; j++) { if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { dmu_return_arcbuf(bigbuf_arcbufs[j]); } else { dmu_return_arcbuf( bigbuf_arcbufs[2 * j]); dmu_return_arcbuf( bigbuf_arcbufs[2 * j + 1]); } } umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); umem_free(od, size); dmu_buf_rele(bonus_db, FTAG); return; } /* * 50% of the time don't read objects in the 1st iteration to * test dmu_assign_arcbuf_by_dbuf() for the case when there are * no existing dbufs for the specified offsets. */ if (i != 0 || ztest_random(2) != 0) { error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT0(error); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT0(error); } compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, n, chunksize, txg); /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (ztest_opts.zo_verbose >= 7) { (void) printf("writing offset %"PRIx64" size %"PRIx64"" " txg %"PRIx64"\n", bigoff, bigsize, txg); } for (off = bigoff, j = 0; j < s; j++, off += chunksize) { dmu_buf_t *dbt; if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { memcpy(bigbuf_arcbufs[j]->b_data, (caddr_t)bigbuf + (off - bigoff), chunksize); } else { memcpy(bigbuf_arcbufs[2 * j]->b_data, (caddr_t)bigbuf + (off - bigoff), chunksize / 2); memcpy(bigbuf_arcbufs[2 * j + 1]->b_data, (caddr_t)bigbuf + (off - bigoff) + chunksize / 2, chunksize / 2); } if (i == 1) { VERIFY(dmu_buf_hold(os, bigobj, off, FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); } if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, off, bigbuf_arcbufs[j], tx)); } else { VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, off, bigbuf_arcbufs[2 * j], tx)); VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, off + chunksize / 2, bigbuf_arcbufs[2 * j + 1], tx)); } if (i == 1) { dmu_buf_rele(dbt, FTAG); } } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY0(dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY0(dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT0(memcmp(packbuf, packcheck, packsize)); ASSERT0(memcmp(bigbuf, bigcheck, bigsize)); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } if (i == 2) { txg_wait_open(dmu_objset_pool(os), 0, B_TRUE); } else if (i == 3) { txg_wait_synced(dmu_objset_pool(os), 0); } } dmu_buf_rele(bonus_db, FTAG); umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); umem_free(od, size); } void ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) { (void) id; ztest_od_t *od; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); uint64_t offset = (1ULL << (ztest_random(20) + 43)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); /* * Have multiple threads write to large offsets in an object * to verify that parallel writes to an object -- even to the * same blocks within the object -- doesn't cause any trouble. */ ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) return; while (ztest_random(10) != 0) ztest_io(zd, od->od_object, offset); umem_free(od, sizeof (ztest_od_t)); } void ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) { ztest_od_t *od; uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); uint64_t count = ztest_random(20) + 1; uint64_t blocksize = ztest_random_blocksize(); void *data; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), !ztest_random(2)) != 0) { umem_free(od, sizeof (ztest_od_t)); return; } if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) { umem_free(od, sizeof (ztest_od_t)); return; } ztest_prealloc(zd, od->od_object, offset, count * blocksize); data = umem_zalloc(blocksize, UMEM_NOFAIL); while (ztest_random(count) != 0) { uint64_t randoff = offset + (ztest_random(count) * blocksize); if (ztest_write(zd, od->od_object, randoff, blocksize, data) != 0) break; while (ztest_random(4) != 0) ztest_io(zd, od->od_object, randoff); } umem_free(data, blocksize); umem_free(od, sizeof (ztest_od_t)); } /* * Verify that zap_{create,destroy,add,remove,update} work as expected. */ #define ZTEST_ZAP_MIN_INTS 1 #define ZTEST_ZAP_MAX_INTS 4 #define ZTEST_ZAP_MAX_PROPS 1000 void ztest_zap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t *od; uint64_t object; uint64_t txg, last_txg; uint64_t value[ZTEST_ZAP_MAX_INTS]; uint64_t zl_ints, zl_intsize, prop; int i, ints; dmu_tx_t *tx; char propname[100], txgname[100]; int error; const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), !ztest_random(2)) != 0) goto out; object = od->od_object; /* * Generate a known hash collision, and verify that * we can lookup and remove both entries. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) goto out; for (i = 0; i < 2; i++) { value[i] = i; VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); } for (i = 0; i < 2; i++) { VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); VERIFY0( zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); } for (i = 0; i < 2; i++) { VERIFY0(zap_remove(os, object, hc[i], tx)); } dmu_tx_commit(tx); /* * Generate a bunch of random entries. */ ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%"PRIu64"", prop); (void) sprintf(txgname, "txg_%"PRIu64"", prop); memset(value, 0, sizeof (value)); last_txg = 0; /* * If these zap entries already exist, validate their contents. */ error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == 0) { ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); VERIFY0(zap_lookup(os, object, txgname, zl_intsize, zl_ints, &last_txg)); VERIFY0(zap_length(os, object, propname, &zl_intsize, &zl_ints)); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, ints); VERIFY0(zap_lookup(os, object, propname, zl_intsize, zl_ints, value)); for (i = 0; i < ints; i++) { ASSERT3U(value[i], ==, last_txg + object + i); } } else { ASSERT3U(error, ==, ENOENT); } /* * Atomically update two entries in our zap object. * The first is named txg_%llu, and contains the txg * in which the property was last updated. The second * is named prop_%llu, and the nth element of its value * should be txg + object + n. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) goto out; if (last_txg > txg) fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"", last_txg, txg); for (i = 0; i < ints; i++) value[i] = txg + object + i; VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx)); VERIFY0(zap_update(os, object, propname, sizeof (uint64_t), ints, value, tx)); dmu_tx_commit(tx); /* * Remove a random pair of entries. */ prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%"PRIu64"", prop); (void) sprintf(txgname, "txg_%"PRIu64"", prop); error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == ENOENT) goto out; ASSERT0(error); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) goto out; VERIFY0(zap_remove(os, object, txgname, tx)); VERIFY0(zap_remove(os, object, propname, tx)); dmu_tx_commit(tx); out: umem_free(od, sizeof (ztest_od_t)); } /* * Test case to test the upgrading of a microzap to fatzap. */ void ztest_fzap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t *od; uint64_t object, txg, value; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), !ztest_random(2)) != 0) goto out; object = od->od_object; /* * Add entries to this ZAP and make sure it spills over * and gets upgraded to a fatzap. Also, since we are adding * 2050 entries we should see ptrtbl growth and leaf-block split. */ for (value = 0; value < 2050; value++) { char name[ZFS_MAX_DATASET_NAME_LEN]; dmu_tx_t *tx; int error; (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"", id, value); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, name); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) goto out; error = zap_add(os, object, name, sizeof (uint64_t), 1, &value, tx); ASSERT(error == 0 || error == EEXIST); dmu_tx_commit(tx); } out: umem_free(od, sizeof (ztest_od_t)); } void ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) { (void) id; objset_t *os = zd->zd_os; ztest_od_t *od; uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; dmu_tx_t *tx; int i, namelen, error; int micro = ztest_random(2); char name[20], string_value[20]; void *data; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) { umem_free(od, sizeof (ztest_od_t)); return; } object = od->od_object; /* * Generate a random name of the form 'xxx.....' where each * x is a random printable character and the dots are dots. * There are 94 such characters, and the name length goes from * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. */ namelen = ztest_random(sizeof (name) - 5) + 5 + 1; for (i = 0; i < 3; i++) name[i] = '!' + ztest_random('~' - '!' + 1); for (; i < namelen - 1; i++) name[i] = '.'; name[i] = '\0'; if ((namelen & 1) || micro) { wsize = sizeof (txg); wc = 1; data = &txg; } else { wsize = 1; wc = namelen; data = string_value; } count = -1ULL; VERIFY0(zap_count(os, object, &count)); ASSERT3S(count, !=, -1ULL); /* * Select an operation: length, lookup, add, update, remove. */ i = ztest_random(5); if (i >= 2) { tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(od, sizeof (ztest_od_t)); return; } memcpy(string_value, name, namelen); } else { tx = NULL; txg = 0; memset(string_value, 0, namelen); } switch (i) { case 0: error = zap_length(os, object, name, &zl_wsize, &zl_wc); if (error == 0) { ASSERT3U(wsize, ==, zl_wsize); ASSERT3U(wc, ==, zl_wc); } else { ASSERT3U(error, ==, ENOENT); } break; case 1: error = zap_lookup(os, object, name, wsize, wc, data); if (error == 0) { if (data == string_value && memcmp(name, data, namelen) != 0) fatal(B_FALSE, "name '%s' != val '%s' len %d", name, (char *)data, namelen); } else { ASSERT3U(error, ==, ENOENT); } break; case 2: error = zap_add(os, object, name, wsize, wc, data, tx); ASSERT(error == 0 || error == EEXIST); break; case 3: VERIFY0(zap_update(os, object, name, wsize, wc, data, tx)); break; case 4: error = zap_remove(os, object, name, tx); ASSERT(error == 0 || error == ENOENT); break; } if (tx != NULL) dmu_tx_commit(tx); umem_free(od, sizeof (ztest_od_t)); } /* * Commit callback data. */ typedef struct ztest_cb_data { list_node_t zcd_node; uint64_t zcd_txg; int zcd_expected_err; boolean_t zcd_added; boolean_t zcd_called; spa_t *zcd_spa; } ztest_cb_data_t; /* This is the actual commit callback function */ static void ztest_commit_callback(void *arg, int error) { ztest_cb_data_t *data = arg; uint64_t synced_txg; VERIFY3P(data, !=, NULL); VERIFY3S(data->zcd_expected_err, ==, error); VERIFY(!data->zcd_called); synced_txg = spa_last_synced_txg(data->zcd_spa); if (data->zcd_txg > synced_txg) fatal(B_FALSE, "commit callback of txg %"PRIu64" called prematurely, " "last synced txg = %"PRIu64"\n", data->zcd_txg, synced_txg); data->zcd_called = B_TRUE; if (error == ECANCELED) { ASSERT0(data->zcd_txg); ASSERT(!data->zcd_added); /* * The private callback data should be destroyed here, but * since we are going to check the zcd_called field after * dmu_tx_abort(), we will destroy it there. */ return; } ASSERT(data->zcd_added); ASSERT3U(data->zcd_txg, !=, 0); (void) mutex_enter(&zcl.zcl_callbacks_lock); /* See if this cb was called more quickly */ if ((synced_txg - data->zcd_txg) < zc_min_txg_delay) zc_min_txg_delay = synced_txg - data->zcd_txg; /* Remove our callback from the list */ list_remove(&zcl.zcl_callbacks, data); (void) mutex_exit(&zcl.zcl_callbacks_lock); umem_free(data, sizeof (ztest_cb_data_t)); } /* Allocate and initialize callback data structure */ static ztest_cb_data_t * ztest_create_cb_data(objset_t *os, uint64_t txg) { ztest_cb_data_t *cb_data; cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); cb_data->zcd_txg = txg; cb_data->zcd_spa = dmu_objset_spa(os); list_link_init(&cb_data->zcd_node); return (cb_data); } /* * Commit callback test. */ void ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t *od; dmu_tx_t *tx; ztest_cb_data_t *cb_data[3], *tmp_cb; uint64_t old_txg, txg; int i, error = 0; od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) { umem_free(od, sizeof (ztest_od_t)); return; } tx = dmu_tx_create(os); cb_data[0] = ztest_create_cb_data(os, 0); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t)); /* Every once in a while, abort the transaction on purpose */ if (ztest_random(100) == 0) error = -1; if (!error) error = dmu_tx_assign(tx, TXG_NOWAIT); txg = error ? 0 : dmu_tx_get_txg(tx); cb_data[0]->zcd_txg = txg; cb_data[1] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); if (error) { /* * It's not a strict requirement to call the registered * callbacks from inside dmu_tx_abort(), but that's what * it's supposed to happen in the current implementation * so we will check for that. */ for (i = 0; i < 2; i++) { cb_data[i]->zcd_expected_err = ECANCELED; VERIFY(!cb_data[i]->zcd_called); } dmu_tx_abort(tx); for (i = 0; i < 2; i++) { VERIFY(cb_data[i]->zcd_called); umem_free(cb_data[i], sizeof (ztest_cb_data_t)); } umem_free(od, sizeof (ztest_od_t)); return; } cb_data[2] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); /* * Read existing data to make sure there isn't a future leak. */ VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t), &old_txg, DMU_READ_PREFETCH)); if (old_txg > txg) fatal(B_FALSE, "future leak: got %"PRIu64", open txg is %"PRIu64"", old_txg, txg); dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx); (void) mutex_enter(&zcl.zcl_callbacks_lock); /* * Since commit callbacks don't have any ordering requirement and since * it is theoretically possible for a commit callback to be called * after an arbitrary amount of time has elapsed since its txg has been * synced, it is difficult to reliably determine whether a commit * callback hasn't been called due to high load or due to a flawed * implementation. * * In practice, we will assume that if after a certain number of txgs a * commit callback hasn't been called, then most likely there's an * implementation bug.. */ tmp_cb = list_head(&zcl.zcl_callbacks); if (tmp_cb != NULL && tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) { fatal(B_FALSE, "Commit callback threshold exceeded, " "oldest txg: %"PRIu64", open txg: %"PRIu64"\n", tmp_cb->zcd_txg, txg); } /* * Let's find the place to insert our callbacks. * * Even though the list is ordered by txg, it is possible for the * insertion point to not be the end because our txg may already be * quiescing at this point and other callbacks in the open txg * (from other objsets) may have sneaked in. */ tmp_cb = list_tail(&zcl.zcl_callbacks); while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); /* Add the 3 callbacks to the list */ for (i = 0; i < 3; i++) { if (tmp_cb == NULL) list_insert_head(&zcl.zcl_callbacks, cb_data[i]); else list_insert_after(&zcl.zcl_callbacks, tmp_cb, cb_data[i]); cb_data[i]->zcd_added = B_TRUE; VERIFY(!cb_data[i]->zcd_called); tmp_cb = cb_data[i]; } zc_cb_counter += 3; (void) mutex_exit(&zcl.zcl_callbacks_lock); dmu_tx_commit(tx); umem_free(od, sizeof (ztest_od_t)); } /* * Visit each object in the dataset. Verify that its properties * are consistent what was stored in the block tag when it was created, * and that its unused bonus buffer space has not been overwritten. */ void ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id) { (void) id; objset_t *os = zd->zd_os; uint64_t obj; int err = 0; for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) { ztest_block_tag_t *bt = NULL; dmu_object_info_t doi; dmu_buf_t *db; ztest_object_lock(zd, obj, RL_READER); if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) { ztest_object_unlock(zd, obj); continue; } dmu_object_info_from_db(db, &doi); if (doi.doi_bonus_size >= sizeof (*bt)) bt = ztest_bt_bonus(db); if (bt && bt->bt_magic == BT_MAGIC) { ztest_bt_verify(bt, os, obj, doi.doi_dnodesize, bt->bt_offset, bt->bt_gen, bt->bt_txg, bt->bt_crtxg); ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen); } dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, obj); } } void ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) { (void) id; zfs_prop_t proplist[] = { ZFS_PROP_CHECKSUM, ZFS_PROP_COMPRESSION, ZFS_PROP_COPIES, ZFS_PROP_DEDUP }; (void) pthread_rwlock_rdlock(&ztest_name_lock); for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) { int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); ASSERT(error == 0 || error == ENOSPC); } int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE, ztest_random_blocksize(), (int)ztest_random(2)); ASSERT(error == 0 || error == ENOSPC); (void) pthread_rwlock_unlock(&ztest_name_lock); } void ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; nvlist_t *props = NULL; (void) pthread_rwlock_rdlock(&ztest_name_lock); (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2)); VERIFY0(spa_prop_get(ztest_spa, &props)); if (ztest_opts.zo_verbose >= 6) dump_nvlist(props, 4); fnvlist_free(props); (void) pthread_rwlock_unlock(&ztest_name_lock); } static int user_release_one(const char *snapname, const char *holdname) { nvlist_t *snaps, *holds; int error; snaps = fnvlist_alloc(); holds = fnvlist_alloc(); fnvlist_add_boolean(holds, holdname); fnvlist_add_nvlist(snaps, snapname, holds); fnvlist_free(holds); error = dsl_dataset_user_release(snaps, NULL); fnvlist_free(snaps); return (error); } /* * Test snapshot hold/release and deferred destroy. */ void ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) { int error; objset_t *os = zd->zd_os; objset_t *origin; char snapname[100]; char fullname[100]; char clonename[100]; char tag[100]; char osname[ZFS_MAX_DATASET_NAME_LEN]; nvlist_t *holds; (void) pthread_rwlock_rdlock(&ztest_name_lock); dmu_objset_name(os, osname); (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id); (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"", osname, id); (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id); /* * Clean up from any previous run. */ error = dsl_destroy_head(clonename); if (error != ENOENT) ASSERT0(error); error = user_release_one(fullname, tag); if (error != ESRCH && error != ENOENT) ASSERT0(error); error = dsl_destroy_snapshot(fullname, B_FALSE); if (error != ENOENT) ASSERT0(error); /* * Create snapshot, clone it, mark snap for deferred destroy, * destroy clone, verify snap was also destroyed. */ error = dmu_objset_snapshot_one(osname, snapname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error); } error = dmu_objset_clone(clonename, fullname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_clone"); goto out; } fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error); } error = dsl_destroy_snapshot(fullname, B_TRUE); if (error) { fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d", fullname, error); } error = dsl_destroy_head(clonename); if (error) fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error); error = dmu_objset_hold(fullname, FTAG, &origin); if (error != ENOENT) fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error); /* * Create snapshot, add temporary hold, verify that we can't * destroy a held snapshot, mark for deferred destroy, * release hold, verify snapshot was destroyed. */ error = dmu_objset_snapshot_one(osname, snapname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error); } holds = fnvlist_alloc(); fnvlist_add_string(holds, fullname, tag); error = dsl_dataset_user_hold(holds, 0, NULL); fnvlist_free(holds); if (error == ENOSPC) { ztest_record_enospc("dsl_dataset_user_hold"); goto out; } else if (error) { fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u", fullname, tag, error); } error = dsl_destroy_snapshot(fullname, B_FALSE); if (error != EBUSY) { fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d", fullname, error); } error = dsl_destroy_snapshot(fullname, B_TRUE); if (error) { fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d", fullname, error); } error = user_release_one(fullname, tag); if (error) fatal(B_FALSE, "user_release_one(%s, %s) = %d", fullname, tag, error); VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); out: (void) pthread_rwlock_unlock(&ztest_name_lock); } /* * Inject random faults into the on-disk data. */ void ztest_fault_inject(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; int fd; uint64_t offset; uint64_t leaves; uint64_t bad = 0x1990c0ffeedecadeull; uint64_t top, leaf; char *path0; char *pathrand; size_t fsize; int bshift = SPA_MAXBLOCKSHIFT + 2; int iters = 1000; int maxfaults; int mirror_save; vdev_t *vd0 = NULL; uint64_t guid0 = 0; boolean_t islog = B_FALSE; path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); mutex_enter(&ztest_vdev_lock); /* * Device removal is in progress, fault injection must be disabled * until it completes and the pool is scrubbed. The fault injection * strategy for damaging blocks does not take in to account evacuated * blocks which may have already been damaged. */ if (ztest_device_removal_active) { mutex_exit(&ztest_vdev_lock); goto out; } maxfaults = MAXFAULTS(zs); leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children; mirror_save = zs->zs_mirrors; mutex_exit(&ztest_vdev_lock); ASSERT3U(leaves, >=, 1); /* * While ztest is running the number of leaves will not change. This * is critical for the fault injection logic as it determines where * errors can be safely injected such that they are always repairable. * * When restarting ztest a different number of leaves may be requested * which will shift the regions to be damaged. This is fine as long * as the pool has been scrubbed prior to using the new mapping. * Failure to do can result in non-repairable damage being injected. */ if (ztest_pool_scrubbed == B_FALSE) goto out; /* * Grab the name lock as reader. There are some operations * which don't like to have their vdevs changed while * they are in progress (i.e. spa_change_guid). Those * operations will have grabbed the name lock as writer. */ (void) pthread_rwlock_rdlock(&ztest_name_lock); /* * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (ztest_random(2) == 0) { /* * Inject errors on a normal data device or slog device. */ top = ztest_random_vdev_top(spa, B_TRUE); leaf = ztest_random(leaves) + zs->zs_splits; /* * Generate paths to the first leaf in this top-level vdev, * and to the random leaf we selected. We'll induce transient * write failures and random online/offline activity on leaf 0, * and we'll write random garbage to the randomly chosen leaf. */ (void) snprintf(path0, MAXPATHLEN, ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + zs->zs_splits); (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + leaf); vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); if (vd0 != NULL && vd0->vdev_top->vdev_islog) islog = B_TRUE; /* * If the top-level vdev needs to be resilvered * then we only allow faults on the device that is * resilvering. */ if (vd0 != NULL && maxfaults != 1 && (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || vd0->vdev_resilver_txg != 0)) { /* * Make vd0 explicitly claim to be unreadable, * or unwritable, or reach behind its back * and close the underlying fd. We can do this if * maxfaults == 0 because we'll fail and reexecute, * and we can do it if maxfaults >= 2 because we'll * have enough redundancy. If maxfaults == 1, the * combination of this with injection of random data * corruption below exceeds the pool's fault tolerance. */ vdev_file_t *vf = vd0->vdev_tsd; zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", (long long)vd0->vdev_id, (int)maxfaults); if (vf != NULL && ztest_random(3) == 0) { (void) close(vf->vf_file->f_fd); vf->vf_file->f_fd = -1; } else if (ztest_random(2) == 0) { vd0->vdev_cant_read = B_TRUE; } else { vd0->vdev_cant_write = B_TRUE; } guid0 = vd0->vdev_guid; } } else { /* * Inject errors on an l2cache device. */ spa_aux_vdev_t *sav = &spa->spa_l2cache; if (sav->sav_count == 0) { spa_config_exit(spa, SCL_STATE, FTAG); (void) pthread_rwlock_unlock(&ztest_name_lock); goto out; } vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; guid0 = vd0->vdev_guid; (void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN); (void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN); leaf = 0; leaves = 1; maxfaults = INT_MAX; /* no limit on cache devices */ } spa_config_exit(spa, SCL_STATE, FTAG); (void) pthread_rwlock_unlock(&ztest_name_lock); /* * If we can tolerate two or more faults, or we're dealing * with a slog, randomly online/offline vd0. */ if ((maxfaults >= 2 || islog) && guid0 != 0) { if (ztest_random(10) < 6) { int flags = (ztest_random(2) == 0 ? ZFS_OFFLINE_TEMPORARY : 0); /* * We have to grab the zs_name_lock as writer to * prevent a race between offlining a slog and * destroying a dataset. Offlining the slog will * grab a reference on the dataset which may cause * dsl_destroy_head() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ if (islog) (void) pthread_rwlock_wrlock(&ztest_name_lock); VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY); if (islog) (void) pthread_rwlock_unlock(&ztest_name_lock); } else { /* * Ideally we would like to be able to randomly * call vdev_[on|off]line without holding locks * to force unpredictable failures but the side * effects of vdev_[on|off]line prevent us from * doing so. We grab the ztest_vdev_lock here to * prevent a race between injection testing and * aux_vdev removal. */ mutex_enter(&ztest_vdev_lock); (void) vdev_online(spa, guid0, 0, NULL); mutex_exit(&ztest_vdev_lock); } } if (maxfaults == 0) goto out; /* * We have at least single-fault tolerance, so inject data corruption. */ fd = open(pathrand, O_RDWR); if (fd == -1) /* we hit a gap in the device namespace */ goto out; fsize = lseek(fd, 0, SEEK_END); while (--iters != 0) { /* * The offset must be chosen carefully to ensure that * we do not inject a given logical block with errors * on two different leaf devices, because ZFS can not * tolerate that (if maxfaults==1). * * To achieve this we divide each leaf device into * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4). * Each chunk is further divided into error-injection * ranges (can accept errors) and clear ranges (we do * not inject errors in those). Each error-injection * range can accept errors only for a single leaf vdev. * Error-injection ranges are separated by clear ranges. * * For example, with 3 leaves, each chunk looks like: * 0 to 32M: injection range for leaf 0 * 32M to 64M: clear range - no injection allowed * 64M to 96M: injection range for leaf 1 * 96M to 128M: clear range - no injection allowed * 128M to 160M: injection range for leaf 2 * 160M to 192M: clear range - no injection allowed * * Each clear range must be large enough such that a * single block cannot straddle it. This way a block * can't be a target in two different injection ranges * (on different leaf vdevs). */ offset = ztest_random(fsize / (leaves << bshift)) * (leaves << bshift) + (leaf << bshift) + (ztest_random(1ULL << (bshift - 1)) & -8ULL); /* * Only allow damage to the labels at one end of the vdev. * * If all labels are damaged, the device will be totally * inaccessible, which will result in loss of data, * because we also damage (parts of) the other side of * the mirror/raidz. * * Additionally, we will always have both an even and an * odd label, so that we can handle crashes in the * middle of vdev_config_sync(). */ if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) continue; /* * The two end labels are stored at the "end" of the disk, but * the end of the disk (vdev_psize) is aligned to * sizeof (vdev_label_t). */ uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); if ((leaf & 1) == 1 && offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) continue; mutex_enter(&ztest_vdev_lock); if (mirror_save != zs->zs_mirrors) { mutex_exit(&ztest_vdev_lock); (void) close(fd); goto out; } if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) fatal(B_TRUE, "can't inject bad word at 0x%"PRIx64" in %s", offset, pathrand); mutex_exit(&ztest_vdev_lock); if (ztest_opts.zo_verbose >= 7) (void) printf("injected bad word into %s," " offset 0x%"PRIx64"\n", pathrand, offset); } (void) close(fd); out: umem_free(path0, MAXPATHLEN); umem_free(pathrand, MAXPATHLEN); } /* * By design ztest will never inject uncorrectable damage in to the pool. * Issue a scrub, wait for it to complete, and verify there is never any * persistent damage. * * Only after a full scrub has been completed is it safe to start injecting * data corruption. See the comment in zfs_fault_inject(). */ static int ztest_scrub_impl(spa_t *spa) { int error = spa_scan(spa, POOL_SCAN_SCRUB); if (error) return (error); while (dsl_scan_scrubbing(spa_get_dsl(spa))) txg_wait_synced(spa_get_dsl(spa), 0); if (spa_approx_errlog_size(spa) > 0) return (ECKSUM); ztest_pool_scrubbed = B_TRUE; return (0); } /* * Scrub the pool. */ void ztest_scrub(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; int error; /* * Scrub in progress by device removal. */ if (ztest_device_removal_active) return; /* * Start a scrub, wait a moment, then force a restart. */ (void) spa_scan(spa, POOL_SCAN_SCRUB); (void) poll(NULL, 0, 100); error = ztest_scrub_impl(spa); if (error == EBUSY) error = 0; ASSERT0(error); } /* * Change the guid for the pool. */ void ztest_reguid(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; uint64_t orig, load; int error; if (ztest_opts.zo_mmp_test) return; orig = spa_guid(spa); load = spa_load_guid(spa); (void) pthread_rwlock_wrlock(&ztest_name_lock); error = spa_change_guid(spa); (void) pthread_rwlock_unlock(&ztest_name_lock); if (error != 0) return; if (ztest_opts.zo_verbose >= 4) { (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n", orig, spa_guid(spa)); } VERIFY3U(orig, !=, spa_guid(spa)); VERIFY3U(load, ==, spa_load_guid(spa)); } void ztest_blake3(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; hrtime_t end = gethrtime() + NANOSEC; zio_cksum_salt_t salt; void *salt_ptr = &salt.zcs_bytes; struct abd *abd_data, *abd_meta; void *buf, *templ; int i, *ptr; uint32_t size; BLAKE3_CTX ctx; const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3"); size = ztest_random_blocksize(); buf = umem_alloc(size, UMEM_NOFAIL); abd_data = abd_alloc(size, B_FALSE); abd_meta = abd_alloc(size, B_TRUE); for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) *ptr = ztest_random(UINT_MAX); memset(salt_ptr, 'A', 32); abd_copy_from_buf_off(abd_data, buf, 0, size); abd_copy_from_buf_off(abd_meta, buf, 0, size); while (gethrtime() <= end) { int run_count = 100; zio_cksum_t zc_ref1, zc_ref2; zio_cksum_t zc_res1, zc_res2; void *ref1 = &zc_ref1; void *ref2 = &zc_ref2; void *res1 = &zc_res1; void *res2 = &zc_res2; /* BLAKE3_KEY_LEN = 32 */ VERIFY0(blake3->setname("generic")); templ = abd_checksum_blake3_tmpl_init(&salt); Blake3_InitKeyed(&ctx, salt_ptr); Blake3_Update(&ctx, buf, size); Blake3_Final(&ctx, ref1); zc_ref2 = zc_ref1; ZIO_CHECKSUM_BSWAP(&zc_ref2); abd_checksum_blake3_tmpl_free(templ); VERIFY0(blake3->setname("cycle")); while (run_count-- > 0) { /* Test current implementation */ Blake3_InitKeyed(&ctx, salt_ptr); Blake3_Update(&ctx, buf, size); Blake3_Final(&ctx, res1); zc_res2 = zc_res1; ZIO_CHECKSUM_BSWAP(&zc_res2); VERIFY0(memcmp(ref1, res1, 32)); VERIFY0(memcmp(ref2, res2, 32)); /* Test ABD - data */ templ = abd_checksum_blake3_tmpl_init(&salt); abd_checksum_blake3_native(abd_data, size, templ, &zc_res1); abd_checksum_blake3_byteswap(abd_data, size, templ, &zc_res2); VERIFY0(memcmp(ref1, res1, 32)); VERIFY0(memcmp(ref2, res2, 32)); /* Test ABD - metadata */ abd_checksum_blake3_native(abd_meta, size, templ, &zc_res1); abd_checksum_blake3_byteswap(abd_meta, size, templ, &zc_res2); abd_checksum_blake3_tmpl_free(templ); VERIFY0(memcmp(ref1, res1, 32)); VERIFY0(memcmp(ref2, res2, 32)); } } abd_free(abd_data); abd_free(abd_meta); umem_free(buf, size); } void ztest_fletcher(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; hrtime_t end = gethrtime() + NANOSEC; while (gethrtime() <= end) { int run_count = 100; void *buf; struct abd *abd_data, *abd_meta; uint32_t size; int *ptr; int i; zio_cksum_t zc_ref; zio_cksum_t zc_ref_byteswap; size = ztest_random_blocksize(); buf = umem_alloc(size, UMEM_NOFAIL); abd_data = abd_alloc(size, B_FALSE); abd_meta = abd_alloc(size, B_TRUE); for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) *ptr = ztest_random(UINT_MAX); abd_copy_from_buf_off(abd_data, buf, 0, size); abd_copy_from_buf_off(abd_meta, buf, 0, size); VERIFY0(fletcher_4_impl_set("scalar")); fletcher_4_native(buf, size, NULL, &zc_ref); fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap); VERIFY0(fletcher_4_impl_set("cycle")); while (run_count-- > 0) { zio_cksum_t zc; zio_cksum_t zc_byteswap; fletcher_4_byteswap(buf, size, NULL, &zc_byteswap); fletcher_4_native(buf, size, NULL, &zc); VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, sizeof (zc_byteswap))); /* Test ABD - data */ abd_fletcher_4_byteswap(abd_data, size, NULL, &zc_byteswap); abd_fletcher_4_native(abd_data, size, NULL, &zc); VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, sizeof (zc_byteswap))); /* Test ABD - metadata */ abd_fletcher_4_byteswap(abd_meta, size, NULL, &zc_byteswap); abd_fletcher_4_native(abd_meta, size, NULL, &zc); VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, sizeof (zc_byteswap))); } umem_free(buf, size); abd_free(abd_data); abd_free(abd_meta); } } void ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; void *buf; size_t size; int *ptr; int i; zio_cksum_t zc_ref; zio_cksum_t zc_ref_bswap; hrtime_t end = gethrtime() + NANOSEC; while (gethrtime() <= end) { int run_count = 100; size = ztest_random_blocksize(); buf = umem_alloc(size, UMEM_NOFAIL); for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) *ptr = ztest_random(UINT_MAX); VERIFY0(fletcher_4_impl_set("scalar")); fletcher_4_native(buf, size, NULL, &zc_ref); fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap); VERIFY0(fletcher_4_impl_set("cycle")); while (run_count-- > 0) { zio_cksum_t zc; zio_cksum_t zc_bswap; size_t pos = 0; ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0); while (pos < size) { size_t inc = 64 * ztest_random(size / 67); /* sometimes add few bytes to test non-simd */ if (ztest_random(100) < 10) inc += P2ALIGN(ztest_random(64), sizeof (uint32_t)); if (inc > (size - pos)) inc = size - pos; fletcher_4_incremental_native(buf + pos, inc, &zc); fletcher_4_incremental_byteswap(buf + pos, inc, &zc_bswap); pos += inc; } VERIFY3U(pos, ==, size); VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref)); VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap)); /* * verify if incremental on the whole buffer is * equivalent to non-incremental version */ ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0); fletcher_4_incremental_native(buf, size, &zc); fletcher_4_incremental_byteswap(buf, size, &zc_bswap); VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref)); VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap)); } umem_free(buf, size); } } static int ztest_set_global_vars(void) { for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) { char *kv = ztest_opts.zo_gvars[i]; VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN); VERIFY3U(strlen(kv), >, 0); int err = set_global_var(kv); if (ztest_opts.zo_verbose > 0) { (void) printf("setting global var %s ... %s\n", kv, err ? "failed" : "ok"); } if (err != 0) { (void) fprintf(stderr, "failed to set global var '%s'\n", kv); return (err); } } return (0); } static char ** ztest_global_vars_to_zdb_args(void) { char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *)); char **cur = args; if (args == NULL) return (NULL); for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) { *cur++ = (char *)"-o"; *cur++ = ztest_opts.zo_gvars[i]; } ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]); *cur = NULL; return (args); } /* The end of strings is indicated by a NULL element */ static char * join_strings(char **strings, const char *sep) { size_t totallen = 0; for (char **sp = strings; *sp != NULL; sp++) { totallen += strlen(*sp); totallen += strlen(sep); } if (totallen > 0) { ASSERT(totallen >= strlen(sep)); totallen -= strlen(sep); } size_t buflen = totallen + 1; char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */ o[0] = '\0'; for (char **sp = strings; *sp != NULL; sp++) { size_t would; would = strlcat(o, *sp, buflen); VERIFY3U(would, <, buflen); if (*(sp+1) == NULL) { break; } would = strlcat(o, sep, buflen); VERIFY3U(would, <, buflen); } ASSERT3S(strlen(o), ==, totallen); return (o); } static int ztest_check_path(char *path) { struct stat s; /* return true on success */ return (!stat(path, &s)); } static void ztest_get_zdb_bin(char *bin, int len) { char *zdb_path; /* * Try to use $ZDB and in-tree zdb path. If not successful, just * let popen to search through PATH. */ if ((zdb_path = getenv("ZDB"))) { strlcpy(bin, zdb_path, len); /* In env */ if (!ztest_check_path(bin)) { ztest_dump_core = 0; fatal(B_TRUE, "invalid ZDB '%s'", bin); } return; } VERIFY3P(realpath(getexecname(), bin), !=, NULL); if (strstr(bin, ".libs/ztest")) { strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */ strcat(bin, "zdb"); if (ztest_check_path(bin)) return; } strcpy(bin, "zdb"); } static vdev_t * ztest_random_concrete_vdev_leaf(vdev_t *vd) { if (vd == NULL) return (NULL); if (vd->vdev_children == 0) return (vd); vdev_t *eligible[vd->vdev_children]; int eligible_idx = 0, i; for (i = 0; i < vd->vdev_children; i++) { vdev_t *cvd = vd->vdev_child[i]; if (cvd->vdev_top->vdev_removing) continue; if (cvd->vdev_children > 0 || (vdev_is_concrete(cvd) && !cvd->vdev_detached)) { eligible[eligible_idx++] = cvd; } } VERIFY3S(eligible_idx, >, 0); uint64_t child_no = ztest_random(eligible_idx); return (ztest_random_concrete_vdev_leaf(eligible[child_no])); } void ztest_initialize(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; int error = 0; mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* Random leaf vdev */ vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); if (rand_vd == NULL) { spa_config_exit(spa, SCL_VDEV, FTAG); mutex_exit(&ztest_vdev_lock); return; } /* * The random vdev we've selected may change as soon as we * drop the spa_config_lock. We create local copies of things * we're interested in. */ uint64_t guid = rand_vd->vdev_guid; char *path = strdup(rand_vd->vdev_path); boolean_t active = rand_vd->vdev_initialize_thread != NULL; zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid); spa_config_exit(spa, SCL_VDEV, FTAG); uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS); nvlist_t *vdev_guids = fnvlist_alloc(); nvlist_t *vdev_errlist = fnvlist_alloc(); fnvlist_add_uint64(vdev_guids, path, guid); error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist); fnvlist_free(vdev_guids); fnvlist_free(vdev_errlist); switch (cmd) { case POOL_INITIALIZE_CANCEL: if (ztest_opts.zo_verbose >= 4) { (void) printf("Cancel initialize %s", path); if (!active) (void) printf(" failed (no initialize active)"); (void) printf("\n"); } break; case POOL_INITIALIZE_START: if (ztest_opts.zo_verbose >= 4) { (void) printf("Start initialize %s", path); if (active && error == 0) (void) printf(" failed (already active)"); else if (error != 0) (void) printf(" failed (error %d)", error); (void) printf("\n"); } break; case POOL_INITIALIZE_SUSPEND: if (ztest_opts.zo_verbose >= 4) { (void) printf("Suspend initialize %s", path); if (!active) (void) printf(" failed (no initialize active)"); (void) printf("\n"); } break; } free(path); mutex_exit(&ztest_vdev_lock); } void ztest_trim(ztest_ds_t *zd, uint64_t id) { (void) zd, (void) id; spa_t *spa = ztest_spa; int error = 0; mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* Random leaf vdev */ vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); if (rand_vd == NULL) { spa_config_exit(spa, SCL_VDEV, FTAG); mutex_exit(&ztest_vdev_lock); return; } /* * The random vdev we've selected may change as soon as we * drop the spa_config_lock. We create local copies of things * we're interested in. */ uint64_t guid = rand_vd->vdev_guid; char *path = strdup(rand_vd->vdev_path); boolean_t active = rand_vd->vdev_trim_thread != NULL; zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid); spa_config_exit(spa, SCL_VDEV, FTAG); uint64_t cmd = ztest_random(POOL_TRIM_FUNCS); uint64_t rate = 1 << ztest_random(30); boolean_t partial = (ztest_random(5) > 0); boolean_t secure = (ztest_random(5) > 0); nvlist_t *vdev_guids = fnvlist_alloc(); nvlist_t *vdev_errlist = fnvlist_alloc(); fnvlist_add_uint64(vdev_guids, path, guid); error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial, secure, vdev_errlist); fnvlist_free(vdev_guids); fnvlist_free(vdev_errlist); switch (cmd) { case POOL_TRIM_CANCEL: if (ztest_opts.zo_verbose >= 4) { (void) printf("Cancel TRIM %s", path); if (!active) (void) printf(" failed (no TRIM active)"); (void) printf("\n"); } break; case POOL_TRIM_START: if (ztest_opts.zo_verbose >= 4) { (void) printf("Start TRIM %s", path); if (active && error == 0) (void) printf(" failed (already active)"); else if (error != 0) (void) printf(" failed (error %d)", error); (void) printf("\n"); } break; case POOL_TRIM_SUSPEND: if (ztest_opts.zo_verbose >= 4) { (void) printf("Suspend TRIM %s", path); if (!active) (void) printf(" failed (no TRIM active)"); (void) printf("\n"); } break; } free(path); mutex_exit(&ztest_vdev_lock); } /* * Verify pool integrity by running zdb. */ static void ztest_run_zdb(const char *pool) { int status; char *bin; char *zdb; char *zbuf; const int len = MAXPATHLEN + MAXNAMELEN + 20; FILE *fp; bin = umem_alloc(len, UMEM_NOFAIL); zdb = umem_alloc(len, UMEM_NOFAIL); zbuf = umem_alloc(1024, UMEM_NOFAIL); ztest_get_zdb_bin(bin, len); char **set_gvars_args = ztest_global_vars_to_zdb_args(); if (set_gvars_args == NULL) { fatal(B_FALSE, "Failed to allocate memory in " "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n"); } char *set_gvars_args_joined = join_strings(set_gvars_args, " "); free(set_gvars_args); size_t would = snprintf(zdb, len, "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s", bin, ztest_opts.zo_verbose >= 3 ? "s" : "", ztest_opts.zo_verbose >= 4 ? "v" : "", set_gvars_args_joined, ztest_opts.zo_dir, pool); ASSERT3U(would, <, len); umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1); if (ztest_opts.zo_verbose >= 5) (void) printf("Executing %s\n", zdb); fp = popen(zdb, "r"); while (fgets(zbuf, 1024, fp) != NULL) if (ztest_opts.zo_verbose >= 3) (void) printf("%s", zbuf); status = pclose(fp); if (status == 0) goto out; ztest_dump_core = 0; if (WIFEXITED(status)) fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status)); else fatal(B_FALSE, "'%s' died with signal %d", zdb, WTERMSIG(status)); out: umem_free(bin, len); umem_free(zdb, len); umem_free(zbuf, 1024); } static void ztest_walk_pool_directory(const char *header) { spa_t *spa = NULL; if (ztest_opts.zo_verbose >= 6) (void) puts(header); mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) if (ztest_opts.zo_verbose >= 6) (void) printf("\t%s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); } static void ztest_spa_import_export(char *oldname, char *newname) { nvlist_t *config, *newconfig; uint64_t pool_guid; spa_t *spa; int error; if (ztest_opts.zo_verbose >= 4) { (void) printf("import/export: old = %s, new = %s\n", oldname, newname); } /* * Clean up from previous runs. */ (void) spa_destroy(newname); /* * Get the pool's configuration and guid. */ VERIFY0(spa_open(oldname, &spa, FTAG)); /* * Kick off a scrub to tickle scrub/export races. */ if (ztest_random(2) == 0) (void) spa_scan(spa, POOL_SCAN_SCRUB); pool_guid = spa_guid(spa); spa_close(spa, FTAG); ztest_walk_pool_directory("pools before export"); /* * Export it. */ VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE)); ztest_walk_pool_directory("pools after export"); /* * Try to import it. */ newconfig = spa_tryimport(config); ASSERT3P(newconfig, !=, NULL); fnvlist_free(newconfig); /* * Import it under the new name. */ error = spa_import(newname, config, NULL, 0); if (error != 0) { dump_nvlist(config, 0); fatal(B_FALSE, "couldn't import pool %s as %s: error %u", oldname, newname, error); } ztest_walk_pool_directory("pools after import"); /* * Try to import it again -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); /* * Try to import it under a different name -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); /* * Verify that the pool is no longer visible under the old name. */ VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); /* * Verify that we can open and close the pool using the new name. */ VERIFY0(spa_open(newname, &spa, FTAG)); ASSERT3U(pool_guid, ==, spa_guid(spa)); spa_close(spa, FTAG); fnvlist_free(config); } static void ztest_resume(spa_t *spa) { if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) (void) printf("resuming from suspended state\n"); spa_vdev_state_enter(spa, SCL_NONE); vdev_clear(spa, NULL); (void) spa_vdev_state_exit(spa, NULL, 0); (void) zio_resume(spa); } static __attribute__((noreturn)) void ztest_resume_thread(void *arg) { spa_t *spa = arg; while (!ztest_exiting) { if (spa_suspended(spa)) ztest_resume(spa); (void) poll(NULL, 0, 100); /* * Periodically change the zfs_compressed_arc_enabled setting. */ if (ztest_random(10) == 0) zfs_compressed_arc_enabled = ztest_random(2); /* * Periodically change the zfs_abd_scatter_enabled setting. */ if (ztest_random(10) == 0) zfs_abd_scatter_enabled = ztest_random(2); } thread_exit(); } static __attribute__((noreturn)) void ztest_deadman_thread(void *arg) { ztest_shared_t *zs = arg; spa_t *spa = ztest_spa; hrtime_t delay, overdue, last_run = gethrtime(); delay = (zs->zs_thread_stop - zs->zs_thread_start) + MSEC2NSEC(zfs_deadman_synctime_ms); while (!ztest_exiting) { /* * Wait for the delay timer while checking occasionally * if we should stop. */ if (gethrtime() < last_run + delay) { (void) poll(NULL, 0, 1000); continue; } /* * If the pool is suspended then fail immediately. Otherwise, * check to see if the pool is making any progress. If * vdev_deadman() discovers that there hasn't been any recent * I/Os then it will end up aborting the tests. */ if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { fatal(B_FALSE, "aborting test after %llu seconds because " "pool has transitioned to a suspended state.", (u_longlong_t)zfs_deadman_synctime_ms / 1000); } vdev_deadman(spa->spa_root_vdev, FTAG); /* * If the process doesn't complete within a grace period of * zfs_deadman_synctime_ms over the expected finish time, * then it may be hung and is terminated. */ overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms); if (gethrtime() > overdue) { fatal(B_FALSE, "aborting test after %llu seconds because " "the process is overdue for termination.", (gethrtime() - zs->zs_proc_start) / NANOSEC); } (void) printf("ztest has been running for %lld seconds\n", (gethrtime() - zs->zs_proc_start) / NANOSEC); last_run = gethrtime(); delay = MSEC2NSEC(zfs_deadman_checktime_ms); } thread_exit(); } static void ztest_execute(int test, ztest_info_t *zi, uint64_t id) { ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); hrtime_t functime = gethrtime(); int i; for (i = 0; i < zi->zi_iters; i++) zi->zi_func(zd, id); functime = gethrtime() - functime; atomic_add_64(&zc->zc_count, 1); atomic_add_64(&zc->zc_time, functime); if (ztest_opts.zo_verbose >= 4) (void) printf("%6.2f sec in %s\n", (double)functime / NANOSEC, zi->zi_funcname); } static __attribute__((noreturn)) void ztest_thread(void *arg) { int rand; uint64_t id = (uintptr_t)arg; ztest_shared_t *zs = ztest_shared; uint64_t call_next; hrtime_t now; ztest_info_t *zi; ztest_shared_callstate_t *zc; while ((now = gethrtime()) < zs->zs_thread_stop) { /* * See if it's time to force a crash. */ if (now > zs->zs_thread_kill) ztest_kill(zs); /* * If we're getting ENOSPC with some regularity, stop. */ if (zs->zs_enospc_count > 10) break; /* * Pick a random function to execute. */ rand = ztest_random(ZTEST_FUNCS); zi = &ztest_info[rand]; zc = ZTEST_GET_SHARED_CALLSTATE(rand); call_next = zc->zc_next; if (now >= call_next && atomic_cas_64(&zc->zc_next, call_next, call_next + ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { ztest_execute(rand, zi, id); } } thread_exit(); } static void ztest_dataset_name(char *dsname, const char *pool, int d) { (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); } static void ztest_dataset_destroy(int d) { char name[ZFS_MAX_DATASET_NAME_LEN]; int t; ztest_dataset_name(name, ztest_opts.zo_pool, d); if (ztest_opts.zo_verbose >= 3) (void) printf("Destroying %s to free up space\n", name); /* * Cleanup any non-standard clones and snapshots. In general, * ztest thread t operates on dataset (t % zopt_datasets), * so there may be more than one thing to clean up. */ for (t = d; t < ztest_opts.zo_threads; t += ztest_opts.zo_datasets) ztest_dsl_dataset_cleanup(name, t); (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); } static void ztest_dataset_dirobj_verify(ztest_ds_t *zd) { uint64_t usedobjs, dirobjs, scratch; /* * ZTEST_DIROBJ is the object directory for the entire dataset. * Therefore, the number of objects in use should equal the * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. * If not, we have an object leak. * * Note that we can only check this in ztest_dataset_open(), * when the open-context and syncing-context values agree. * That's because zap_count() returns the open-context value, * while dmu_objset_space() returns the rootbp fill count. */ VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); ASSERT3U(dirobjs + 1, ==, usedobjs); } static int ztest_dataset_open(int d) { ztest_ds_t *zd = &ztest_ds[d]; uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; objset_t *os; zilog_t *zilog; char name[ZFS_MAX_DATASET_NAME_LEN]; int error; ztest_dataset_name(name, ztest_opts.zo_pool, d); (void) pthread_rwlock_rdlock(&ztest_name_lock); error = ztest_dataset_create(name); if (error == ENOSPC) { (void) pthread_rwlock_unlock(&ztest_name_lock); ztest_record_enospc(FTAG); return (error); } ASSERT(error == 0 || error == EEXIST); VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, zd, &os)); (void) pthread_rwlock_unlock(&ztest_name_lock); ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); zilog = zd->zd_zilog; if (zilog->zl_header->zh_claim_lr_seq != 0 && zilog->zl_header->zh_claim_lr_seq < committed_seq) fatal(B_FALSE, "missing log records: " "claimed %"PRIu64" < committed %"PRIu64"", zilog->zl_header->zh_claim_lr_seq, committed_seq); ztest_dataset_dirobj_verify(zd); zil_replay(os, zd, ztest_replay_vector); ztest_dataset_dirobj_verify(zd); if (ztest_opts.zo_verbose >= 6) (void) printf("%s replay %"PRIu64" blocks, " "%"PRIu64" records, seq %"PRIu64"\n", zd->zd_name, zilog->zl_parse_blk_count, zilog->zl_parse_lr_count, zilog->zl_replaying_seq); zilog = zil_open(os, ztest_get_data, NULL); if (zilog->zl_replaying_seq != 0 && zilog->zl_replaying_seq < committed_seq) fatal(B_FALSE, "missing log records: " "replayed %"PRIu64" < committed %"PRIu64"", zilog->zl_replaying_seq, committed_seq); return (0); } static void ztest_dataset_close(int d) { ztest_ds_t *zd = &ztest_ds[d]; zil_close(zd->zd_zilog); dmu_objset_disown(zd->zd_os, B_TRUE, zd); ztest_zd_fini(zd); } static int ztest_replay_zil_cb(const char *name, void *arg) { (void) arg; objset_t *os; ztest_ds_t *zdtmp; VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os)); zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL); ztest_zd_init(zdtmp, NULL, os); zil_replay(os, zdtmp, ztest_replay_vector); ztest_zd_fini(zdtmp); if (dmu_objset_zil(os)->zl_parse_lr_count != 0 && ztest_opts.zo_verbose >= 6) { zilog_t *zilog = dmu_objset_zil(os); (void) printf("%s replay %"PRIu64" blocks, " "%"PRIu64" records, seq %"PRIu64"\n", name, zilog->zl_parse_blk_count, zilog->zl_parse_lr_count, zilog->zl_replaying_seq); } umem_free(zdtmp, sizeof (ztest_ds_t)); dmu_objset_disown(os, B_TRUE, FTAG); return (0); } static void ztest_freeze(void) { ztest_ds_t *zd = &ztest_ds[0]; spa_t *spa; int numloops = 0; if (ztest_opts.zo_verbose >= 3) (void) printf("testing spa_freeze()...\n"); kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); VERIFY0(ztest_dataset_open(0)); ztest_spa = spa; /* * Force the first log block to be transactionally allocated. * We have to do this before we freeze the pool -- otherwise * the log chain won't be anchored. */ while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { ztest_dmu_object_alloc_free(zd, 0); zil_commit(zd->zd_zilog, 0); } txg_wait_synced(spa_get_dsl(spa), 0); /* * Freeze the pool. This stops spa_sync() from doing anything, * so that the only way to record changes from now on is the ZIL. */ spa_freeze(spa); /* * Because it is hard to predict how much space a write will actually * require beforehand, we leave ourselves some fudge space to write over * capacity. */ uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; /* * Run tests that generate log records but don't alter the pool config * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). * We do a txg_wait_synced() after each iteration to force the txg * to increase well beyond the last synced value in the uberblock. * The ZIL should be OK with that. * * Run a random number of times less than zo_maxloops and ensure we do * not run out of space on the pool. */ while (ztest_random(10) != 0 && numloops++ < ztest_opts.zo_maxloops && metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { ztest_od_t od; ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); ztest_io(zd, od.od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); txg_wait_synced(spa_get_dsl(spa), 0); } /* * Commit all of the changes we just generated. */ zil_commit(zd->zd_zilog, 0); txg_wait_synced(spa_get_dsl(spa), 0); /* * Close our dataset and close the pool. */ ztest_dataset_close(0); spa_close(spa, FTAG); kernel_fini(); /* * Open and close the pool and dataset to induce log replay. */ kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX); VERIFY0(ztest_dataset_open(0)); ztest_spa = spa; txg_wait_synced(spa_get_dsl(spa), 0); ztest_dataset_close(0); ztest_reguid(NULL, 0); spa_close(spa, FTAG); kernel_fini(); } static void ztest_import_impl(void) { importargs_t args = { 0 }; nvlist_t *cfg = NULL; int nsearch = 1; char *searchdirs[nsearch]; int flags = ZFS_IMPORT_MISSING_LOG; searchdirs[0] = ztest_opts.zo_dir; args.paths = nsearch; args.path = searchdirs; args.can_be_active = B_FALSE; libpc_handle_t lpch = { .lpc_lib_handle = NULL, .lpc_ops = &libzpool_config_ops, .lpc_printerr = B_TRUE }; VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args)); VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags)); fnvlist_free(cfg); } /* * Import a storage pool with the given name. */ static void ztest_import(ztest_shared_t *zs) { spa_t *spa; mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); ztest_import_impl(); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); zs->zs_metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; spa_close(spa, FTAG); kernel_fini(); if (!ztest_opts.zo_mmp_test) { ztest_run_zdb(ztest_opts.zo_pool); ztest_freeze(); ztest_run_zdb(ztest_opts.zo_pool); } (void) pthread_rwlock_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); mutex_destroy(&ztest_checkpoint_lock); } /* * Kick off threads to run tests on all datasets in parallel. */ static void ztest_run(ztest_shared_t *zs) { spa_t *spa; objset_t *os; kthread_t *resume_thread, *deadman_thread; kthread_t **run_threads; uint64_t object; int error; int t, d; ztest_exiting = B_FALSE; /* * Initialize parent/child shared state. */ mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); zs->zs_thread_start = gethrtime(); zs->zs_thread_stop = zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); zs->zs_thread_kill = zs->zs_thread_stop; if (ztest_random(100) < ztest_opts.zo_killrate) { zs->zs_thread_kill -= ztest_random(ztest_opts.zo_passtime * NANOSEC); } mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), offsetof(ztest_cb_data_t, zcd_node)); /* * Open our pool. It may need to be imported first depending on * what tests were running when the previous pass was terminated. */ kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); error = spa_open(ztest_opts.zo_pool, &spa, FTAG); if (error) { VERIFY3S(error, ==, ENOENT); ztest_import_impl(); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); zs->zs_metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; } metaslab_preload_limit = ztest_random(20) + 1; ztest_spa = spa; VERIFY0(vdev_raidz_impl_set("cycle")); dmu_objset_stats_t dds; VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool, DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os)); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); dmu_objset_fast_stat(os, &dds); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); zs->zs_guid = dds.dds_guid; dmu_objset_disown(os, B_TRUE, FTAG); /* * Create a thread to periodically resume suspended I/O. */ resume_thread = thread_create(NULL, 0, ztest_resume_thread, spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri); /* * Create a deadman thread and set to panic if we hang. */ deadman_thread = thread_create(NULL, 0, ztest_deadman_thread, zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri); spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; /* * Verify that we can safely inquire about any object, * whether it's allocated or not. To make it interesting, * we probe a 5-wide window around each power of two. * This hits all edge cases, including zero and the max. */ for (t = 0; t < 64; t++) { for (d = -5; d <= 5; d++) { error = dmu_object_info(spa->spa_meta_objset, (1ULL << t) + d, NULL); ASSERT(error == 0 || error == ENOENT || error == EINVAL); } } /* * If we got any ENOSPC errors on the previous run, destroy something. */ if (zs->zs_enospc_count != 0) { int d = ztest_random(ztest_opts.zo_datasets); ztest_dataset_destroy(d); } zs->zs_enospc_count = 0; /* * If we were in the middle of ztest_device_removal() and were killed * we need to ensure the removal and scrub complete before running * any tests that check ztest_device_removal_active. The removal will * be restarted automatically when the spa is opened, but we need to * initiate the scrub manually if it is not already in progress. Note * that we always run the scrub whenever an indirect vdev exists * because we have no way of knowing for sure if ztest_device_removal() * fully completed its scrub before the pool was reimported. */ if (spa->spa_removing_phys.sr_state == DSS_SCANNING || spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { while (spa->spa_removing_phys.sr_state == DSS_SCANNING) txg_wait_synced(spa_get_dsl(spa), 0); error = ztest_scrub_impl(spa); if (error == EBUSY) error = 0; ASSERT0(error); } run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *), UMEM_NOFAIL); if (ztest_opts.zo_verbose >= 4) (void) printf("starting main threads...\n"); /* * Replay all logs of all datasets in the pool. This is primarily for * temporary datasets which wouldn't otherwise get replayed, which * can trigger failures when attempting to offline a SLOG in * ztest_fault_inject(). */ (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb, NULL, DS_FIND_CHILDREN); /* * Kick off all the tests that run in parallel. */ for (t = 0; t < ztest_opts.zo_threads; t++) { if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) { umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *)); return; } run_threads[t] = thread_create(NULL, 0, ztest_thread, (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri); } /* * Wait for all of the tests to complete. */ for (t = 0; t < ztest_opts.zo_threads; t++) VERIFY0(thread_join(run_threads[t])); /* * Close all datasets. This must be done after all the threads * are joined so we can be sure none of the datasets are in-use * by any of the threads. */ for (t = 0; t < ztest_opts.zo_threads; t++) { if (t < ztest_opts.zo_datasets) ztest_dataset_close(t); } txg_wait_synced(spa_get_dsl(spa), 0); zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *)); /* Kill the resume and deadman threads */ ztest_exiting = B_TRUE; VERIFY0(thread_join(resume_thread)); VERIFY0(thread_join(deadman_thread)); ztest_resume(spa); /* * Right before closing the pool, kick off a bunch of async I/O; * spa_close() should wait for it to complete. */ for (object = 1; object < 50; object++) { dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, ZIO_PRIORITY_SYNC_READ); } /* Verify that at least one commit cb was called in a timely fashion */ if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG) VERIFY0(zc_min_txg_delay); spa_close(spa, FTAG); /* * Verify that we can loop over all pools. */ mutex_enter(&spa_namespace_lock); for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) if (ztest_opts.zo_verbose > 3) (void) printf("spa_next: found %s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); /* * Verify that we can export the pool and reimport it under a * different name. */ if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) { char name[ZFS_MAX_DATASET_NAME_LEN]; (void) snprintf(name, sizeof (name), "%s_import", ztest_opts.zo_pool); ztest_spa_import_export(ztest_opts.zo_pool, name); ztest_spa_import_export(name, ztest_opts.zo_pool); } kernel_fini(); list_destroy(&zcl.zcl_callbacks); mutex_destroy(&zcl.zcl_callbacks_lock); (void) pthread_rwlock_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); mutex_destroy(&ztest_checkpoint_lock); } static void print_time(hrtime_t t, char *timebuf) { hrtime_t s = t / NANOSEC; hrtime_t m = s / 60; hrtime_t h = m / 60; hrtime_t d = h / 24; s -= m * 60; m -= h * 60; h -= d * 24; timebuf[0] = '\0'; if (d) (void) sprintf(timebuf, "%llud%02lluh%02llum%02llus", d, h, m, s); else if (h) (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); else if (m) (void) sprintf(timebuf, "%llum%02llus", m, s); else (void) sprintf(timebuf, "%llus", s); } static nvlist_t * make_random_props(void) { nvlist_t *props; props = fnvlist_alloc(); if (ztest_random(2) == 0) return (props); fnvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1); return (props); } /* * Create a storage pool with the given name and initial vdev size. * Then test spa_freeze() functionality. */ static void ztest_init(ztest_shared_t *zs) { spa_t *spa; nvlist_t *nvroot, *props; int i; mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); /* * Create the storage pool. */ (void) spa_destroy(ztest_opts.zo_pool); ztest_shared->zs_vdev_next_leaf = 0; zs->zs_splits = 0; zs->zs_mirrors = ztest_opts.zo_mirrors; nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1); props = make_random_props(); /* * We don't expect the pool to suspend unless maxfaults == 0, * in which case ztest_fault_inject() temporarily takes away * the only valid replica. */ fnvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT); for (i = 0; i < SPA_FEATURES; i++) { char *buf; if (!spa_feature_table[i].fi_zfs_mod_supported) continue; /* * 75% chance of using the log space map feature. We want ztest * to exercise both the code paths that use the log space map * feature and the ones that don't. */ if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0) continue; VERIFY3S(-1, !=, asprintf(&buf, "feature@%s", spa_feature_table[i].fi_uname)); fnvlist_add_uint64(props, buf, 0); free(buf); } VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL)); fnvlist_free(nvroot); fnvlist_free(props); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); zs->zs_metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; spa_close(spa, FTAG); kernel_fini(); if (!ztest_opts.zo_mmp_test) { ztest_run_zdb(ztest_opts.zo_pool); ztest_freeze(); ztest_run_zdb(ztest_opts.zo_pool); } (void) pthread_rwlock_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); mutex_destroy(&ztest_checkpoint_lock); } static void setup_data_fd(void) { static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; ztest_fd_data = mkstemp(ztest_name_data); ASSERT3S(ztest_fd_data, >=, 0); (void) unlink(ztest_name_data); } static int shared_data_size(ztest_shared_hdr_t *hdr) { int size; size = hdr->zh_hdr_size; size += hdr->zh_opts_size; size += hdr->zh_size; size += hdr->zh_stats_size * hdr->zh_stats_count; size += hdr->zh_ds_size * hdr->zh_ds_count; return (size); } static void setup_hdr(void) { int size; ztest_shared_hdr_t *hdr; hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); ASSERT3P(hdr, !=, MAP_FAILED); VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); hdr->zh_opts_size = sizeof (ztest_shared_opts_t); hdr->zh_size = sizeof (ztest_shared_t); hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); hdr->zh_stats_count = ZTEST_FUNCS; hdr->zh_ds_size = sizeof (ztest_shared_ds_t); hdr->zh_ds_count = ztest_opts.zo_datasets; size = shared_data_size(hdr); VERIFY0(ftruncate(ztest_fd_data, size)); (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); } static void setup_data(void) { int size, offset; ztest_shared_hdr_t *hdr; uint8_t *buf; hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), PROT_READ, MAP_SHARED, ztest_fd_data, 0); ASSERT3P(hdr, !=, MAP_FAILED); size = shared_data_size(hdr); (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); ASSERT3P(hdr, !=, MAP_FAILED); buf = (uint8_t *)hdr; offset = hdr->zh_hdr_size; ztest_shared_opts = (void *)&buf[offset]; offset += hdr->zh_opts_size; ztest_shared = (void *)&buf[offset]; offset += hdr->zh_size; ztest_shared_callstate = (void *)&buf[offset]; offset += hdr->zh_stats_size * hdr->zh_stats_count; ztest_shared_ds = (void *)&buf[offset]; } static boolean_t exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) { pid_t pid; int status; char *cmdbuf = NULL; pid = fork(); if (cmd == NULL) { cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); cmd = cmdbuf; } if (pid == -1) fatal(B_TRUE, "fork failed"); if (pid == 0) { /* child */ char fd_data_str[12]; VERIFY3S(11, >=, snprintf(fd_data_str, 12, "%d", ztest_fd_data)); VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); if (libpath != NULL) { const char *curlp = getenv("LD_LIBRARY_PATH"); if (curlp == NULL) VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1)); else { char *newlp = NULL; VERIFY3S(-1, !=, asprintf(&newlp, "%s:%s", libpath, curlp)); VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1)); free(newlp); } } (void) execl(cmd, cmd, (char *)NULL); ztest_dump_core = B_FALSE; fatal(B_TRUE, "exec failed: %s", cmd); } if (cmdbuf != NULL) { umem_free(cmdbuf, MAXPATHLEN); cmd = NULL; } while (waitpid(pid, &status, 0) != pid) continue; if (statusp != NULL) *statusp = status; if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { (void) fprintf(stderr, "child exited with code %d\n", WEXITSTATUS(status)); exit(2); } return (B_FALSE); } else if (WIFSIGNALED(status)) { if (!ignorekill || WTERMSIG(status) != SIGKILL) { (void) fprintf(stderr, "child died with signal %d\n", WTERMSIG(status)); exit(3); } return (B_TRUE); } else { (void) fprintf(stderr, "something strange happened to child\n"); exit(4); } } static void ztest_run_init(void) { int i; ztest_shared_t *zs = ztest_shared; /* * Blow away any existing copy of zpool.cache */ (void) remove(spa_config_path); if (ztest_opts.zo_init == 0) { if (ztest_opts.zo_verbose >= 1) (void) printf("Importing pool %s\n", ztest_opts.zo_pool); ztest_import(zs); return; } /* * Create and initialize our storage pool. */ for (i = 1; i <= ztest_opts.zo_init; i++) { memset(zs, 0, sizeof (*zs)); if (ztest_opts.zo_verbose >= 3 && ztest_opts.zo_init != 1) { (void) printf("ztest_init(), pass %d\n", i); } ztest_init(zs); } } int main(int argc, char **argv) { int kills = 0; int iters = 0; int older = 0; int newer = 0; ztest_shared_t *zs; ztest_info_t *zi; ztest_shared_callstate_t *zc; char timebuf[100]; char numbuf[NN_NUMBUF_SZ]; char *cmd; boolean_t hasalt; int f, err; char *fd_data_str = getenv("ZTEST_FD_DATA"); struct sigaction action; (void) setvbuf(stdout, NULL, _IOLBF, 0); dprintf_setup(&argc, argv); zfs_deadman_synctime_ms = 300000; zfs_deadman_checktime_ms = 30000; /* * As two-word space map entries may not come up often (especially * if pool and vdev sizes are small) we want to force at least some * of them so the feature get tested. */ zfs_force_some_double_word_sm_entries = B_TRUE; /* * Verify that even extensively damaged split blocks with many * segments can be reconstructed in a reasonable amount of time * when reconstruction is known to be possible. * * Note: the lower this value is, the more damage we inflict, and * the more time ztest spends in recovering that damage. We chose * to induce damage 1/100th of the time so recovery is tested but * not so frequently that ztest doesn't get to test other code paths. */ zfs_reconstruct_indirect_damage_fraction = 100; action.sa_handler = sig_handler; sigemptyset(&action.sa_mask); action.sa_flags = 0; if (sigaction(SIGSEGV, &action, NULL) < 0) { (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n", strerror(errno)); exit(EXIT_FAILURE); } if (sigaction(SIGABRT, &action, NULL) < 0) { (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n", strerror(errno)); exit(EXIT_FAILURE); } /* * Force random_get_bytes() to use /dev/urandom in order to prevent * ztest from needlessly depleting the system entropy pool. */ random_path = "/dev/urandom"; ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC); ASSERT3S(ztest_fd_rand, >=, 0); if (!fd_data_str) { process_options(argc, argv); setup_data_fd(); setup_hdr(); setup_data(); memcpy(ztest_shared_opts, &ztest_opts, sizeof (*ztest_shared_opts)); } else { ztest_fd_data = atoi(fd_data_str); setup_data(); memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts)); } ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); err = ztest_set_global_vars(); if (err != 0 && !fd_data_str) { /* error message done by ztest_set_global_vars */ exit(EXIT_FAILURE); } else { /* children should not be spawned if setting gvars fails */ VERIFY3S(err, ==, 0); } /* Override location of zpool.cache */ VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache", ztest_opts.zo_dir), !=, -1); ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), UMEM_NOFAIL); zs = ztest_shared; if (fd_data_str) { metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging; metaslab_df_alloc_threshold = zs->zs_metaslab_df_alloc_threshold; if (zs->zs_do_init) ztest_run_init(); else ztest_run(zs); exit(0); } hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); if (ztest_opts.zo_verbose >= 1) { (void) printf("%"PRIu64" vdevs, %d datasets, %d threads," "%d %s disks, %"PRIu64" seconds...\n\n", ztest_opts.zo_vdevs, ztest_opts.zo_datasets, ztest_opts.zo_threads, ztest_opts.zo_raid_children, ztest_opts.zo_raid_type, ztest_opts.zo_time); } cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); (void) strlcpy(cmd, getexecname(), MAXNAMELEN); zs->zs_do_init = B_TRUE; if (strlen(ztest_opts.zo_alt_ztest) != 0) { if (ztest_opts.zo_verbose >= 1) { (void) printf("Executing older ztest for " "initialization: %s\n", ztest_opts.zo_alt_ztest); } VERIFY(!exec_child(ztest_opts.zo_alt_ztest, ztest_opts.zo_alt_libpath, B_FALSE, NULL)); } else { VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); } zs->zs_do_init = B_FALSE; zs->zs_proc_start = gethrtime(); zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; for (f = 0; f < ZTEST_FUNCS; f++) { zi = &ztest_info[f]; zc = ZTEST_GET_SHARED_CALLSTATE(f); if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) zc->zc_next = UINT64_MAX; else zc->zc_next = zs->zs_proc_start + ztest_random(2 * zi->zi_interval[0] + 1); } /* * Run the tests in a loop. These tests include fault injection * to verify that self-healing data works, and forced crashes * to verify that we never lose on-disk consistency. */ while (gethrtime() < zs->zs_proc_stop) { int status; boolean_t killed; /* * Initialize the workload counters for each function. */ for (f = 0; f < ZTEST_FUNCS; f++) { zc = ZTEST_GET_SHARED_CALLSTATE(f); zc->zc_count = 0; zc->zc_time = 0; } /* Set the allocation switch size */ zs->zs_metaslab_df_alloc_threshold = ztest_random(zs->zs_metaslab_sz / 4) + 1; if (!hasalt || ztest_random(2) == 0) { if (hasalt && ztest_opts.zo_verbose >= 1) { (void) printf("Executing newer ztest: %s\n", cmd); } newer++; killed = exec_child(cmd, NULL, B_TRUE, &status); } else { if (hasalt && ztest_opts.zo_verbose >= 1) { (void) printf("Executing older ztest: %s\n", ztest_opts.zo_alt_ztest); } older++; killed = exec_child(ztest_opts.zo_alt_ztest, ztest_opts.zo_alt_libpath, B_TRUE, &status); } if (killed) kills++; iters++; if (ztest_opts.zo_verbose >= 1) { hrtime_t now = gethrtime(); now = MIN(now, zs->zs_proc_stop); print_time(zs->zs_proc_stop - now, timebuf); nicenum(zs->zs_space, numbuf, sizeof (numbuf)); (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, " "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", iters, WIFEXITED(status) ? "Complete" : "SIGKILL", zs->zs_enospc_count, 100.0 * zs->zs_alloc / zs->zs_space, numbuf, 100.0 * (now - zs->zs_proc_start) / (ztest_opts.zo_time * NANOSEC), timebuf); } if (ztest_opts.zo_verbose >= 2) { (void) printf("\nWorkload summary:\n\n"); (void) printf("%7s %9s %s\n", "Calls", "Time", "Function"); (void) printf("%7s %9s %s\n", "-----", "----", "--------"); for (f = 0; f < ZTEST_FUNCS; f++) { zi = &ztest_info[f]; zc = ZTEST_GET_SHARED_CALLSTATE(f); print_time(zc->zc_time, timebuf); (void) printf("%7"PRIu64" %9s %s\n", zc->zc_count, timebuf, zi->zi_funcname); } (void) printf("\n"); } if (!ztest_opts.zo_mmp_test) ztest_run_zdb(ztest_opts.zo_pool); } if (ztest_opts.zo_verbose >= 1) { if (hasalt) { (void) printf("%d runs of older ztest: %s\n", older, ztest_opts.zo_alt_ztest); (void) printf("%d runs of newer ztest: %s\n", newer, cmd); } (void) printf("%d killed, %d completed, %.0f%% kill rate\n", kills, iters - kills, (100.0 * kills) / MAX(1, iters)); } umem_free(cmd, MAXNAMELEN); return (0); } diff --git a/include/Makefile.am b/include/Makefile.am index 6897e3c5e337..569de6dfa781 100644 --- a/include/Makefile.am +++ b/include/Makefile.am @@ -1,203 +1,205 @@ if BUILD_LINUX include $(srcdir)/%D%/os/linux/Makefile.am endif if BUILD_FREEBSD include $(srcdir)/%D%/os/freebsd/Makefile.am endif COMMON_H = \ cityhash.h \ zfeature_common.h \ zfs_comutil.h \ zfs_deleg.h \ zfs_fletcher.h \ zfs_namecheck.h \ zfs_prop.h \ \ sys/abd.h \ sys/abd_impl.h \ sys/aggsum.h \ sys/arc.h \ sys/arc_impl.h \ sys/asm_linkage.h \ sys/avl.h \ sys/avl_impl.h \ + sys/bitmap.h \ sys/bitops.h \ sys/blake3.h \ sys/blkptr.h \ sys/bplist.h \ sys/bpobj.h \ sys/bptree.h \ sys/bqueue.h \ sys/btree.h \ + sys/brt.h \ sys/dataset_kstats.h \ sys/dbuf.h \ sys/ddt.h \ sys/dmu.h \ sys/dmu_impl.h \ sys/dmu_objset.h \ sys/dmu_recv.h \ sys/dmu_redact.h \ sys/dmu_send.h \ sys/dmu_traverse.h \ sys/dmu_tx.h \ sys/dmu_zfetch.h \ sys/dnode.h \ sys/dsl_bookmark.h \ sys/dsl_crypt.h \ sys/dsl_dataset.h \ sys/dsl_deadlist.h \ sys/dsl_deleg.h \ sys/dsl_destroy.h \ sys/dsl_dir.h \ sys/dsl_pool.h \ sys/dsl_prop.h \ sys/dsl_scan.h \ sys/dsl_synctask.h \ sys/dsl_userhold.h \ sys/edonr.h \ sys/efi_partition.h \ sys/frame.h \ sys/hkdf.h \ sys/metaslab.h \ sys/metaslab_impl.h \ sys/mmp.h \ sys/mntent.h \ sys/mod.h \ sys/multilist.h \ sys/nvpair.h \ sys/nvpair_impl.h \ sys/objlist.h \ sys/pathname.h \ sys/qat.h \ sys/range_tree.h \ sys/rrwlock.h \ sys/sa.h \ sys/sa_impl.h \ sys/sha2.h \ sys/skein.h \ sys/spa.h \ sys/spa_checkpoint.h \ sys/spa_checksum.h \ sys/spa_impl.h \ sys/spa_log_spacemap.h \ sys/space_map.h \ sys/space_reftree.h \ sys/sysevent.h \ sys/txg.h \ sys/txg_impl.h \ sys/u8_textprep.h \ sys/u8_textprep_data.h \ sys/uberblock.h \ sys/uberblock_impl.h \ sys/uio_impl.h \ sys/unique.h \ sys/uuid.h \ sys/vdev.h \ sys/vdev_disk.h \ sys/vdev_draid.h \ sys/vdev_file.h \ sys/vdev_impl.h \ sys/vdev_indirect_births.h \ sys/vdev_indirect_mapping.h \ sys/vdev_initialize.h \ sys/vdev_raidz.h \ sys/vdev_raidz_impl.h \ sys/vdev_rebuild.h \ sys/vdev_removal.h \ sys/vdev_trim.h \ sys/xvattr.h \ sys/zap.h \ sys/zap_impl.h \ sys/zap_leaf.h \ sys/zcp.h \ sys/zcp_global.h \ sys/zcp_iter.h \ sys/zcp_prop.h \ sys/zcp_set.h \ sys/zfeature.h \ sys/zfs_acl.h \ sys/zfs_bootenv.h \ sys/zfs_chksum.h \ sys/zfs_context.h \ sys/zfs_debug.h \ sys/zfs_delay.h \ sys/zfs_file.h \ sys/zfs_fuid.h \ sys/zfs_impl.h \ sys/zfs_project.h \ sys/zfs_quota.h \ sys/zfs_racct.h \ sys/zfs_ratelimit.h \ sys/zfs_refcount.h \ sys/zfs_rlock.h \ sys/zfs_sa.h \ sys/zfs_stat.h \ sys/zfs_sysfs.h \ sys/zfs_vfsops.h \ sys/zfs_vnops.h \ sys/zfs_znode.h \ sys/zil.h \ sys/zil_impl.h \ sys/zio.h \ sys/zio_checksum.h \ sys/zio_compress.h \ sys/zio_crypt.h \ sys/zio_impl.h \ sys/zio_priority.h \ sys/zrlock.h \ sys/zthr.h \ \ sys/crypto/api.h \ sys/crypto/common.h \ sys/crypto/icp.h \ \ sys/fm/protocol.h \ sys/fm/util.h \ sys/fm/fs/zfs.h \ \ sys/fs/zfs.h \ \ sys/lua/lauxlib.h \ sys/lua/lua.h \ sys/lua/luaconf.h \ sys/lua/lualib.h \ \ sys/sysevent/dev.h \ sys/sysevent/eventdefs.h \ \ sys/zstd/zstd.h KERNEL_H = \ sys/zfs_ioctl.h \ sys/zfs_ioctl_impl.h \ sys/zfs_onexit.h \ sys/zvol.h \ sys/zvol_impl.h USER_H = \ libnvpair.h \ libuutil.h \ libuutil_common.h \ libuutil_impl.h \ libzfs.h \ libzfs_core.h \ libzfsbootenv.h \ libzutil.h \ thread_pool.h if CONFIG_USER libzfsdir = $(includedir)/libzfs nobase_libzfs_HEADERS = $(COMMON_H) $(USER_H) endif kerneldir = $(prefix)/src/zfs-$(VERSION)/include if CONFIG_KERNEL if BUILD_LINUX nobase_kernel_HEADERS = $(COMMON_H) $(KERNEL_H) endif endif diff --git a/include/os/freebsd/zfs/sys/zfs_znode_impl.h b/include/os/freebsd/zfs/sys/zfs_znode_impl.h index 8cde33dbcbbb..050fc3036f87 100644 --- a/include/os/freebsd/zfs/sys/zfs_znode_impl.h +++ b/include/os/freebsd/zfs/sys/zfs_znode_impl.h @@ -1,186 +1,189 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2015 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ #ifndef _FREEBSD_ZFS_SYS_ZNODE_IMPL_H #define _FREEBSD_ZFS_SYS_ZNODE_IMPL_H #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Directory entry locks control access to directory entries. * They are used to protect creates, deletes, and renames. * Each directory znode has a mutex and a list of locked names. */ #define ZNODE_OS_FIELDS \ struct zfsvfs *z_zfsvfs; \ vnode_t *z_vnode; \ char *z_cached_symlink; \ uint64_t z_uid; \ uint64_t z_gid; \ uint64_t z_gen; \ uint64_t z_atime[2]; \ uint64_t z_links; #define ZFS_LINK_MAX UINT64_MAX /* * ZFS minor numbers can refer to either a control device instance or * a zvol. Depending on the value of zss_type, zss_data points to either * a zvol_state_t or a zfs_onexit_t. */ enum zfs_soft_state_type { ZSST_ZVOL, ZSST_CTLDEV }; typedef struct zfs_soft_state { enum zfs_soft_state_type zss_type; void *zss_data; } zfs_soft_state_t; /* * Range locking rules * -------------------- * 1. When truncating a file (zfs_create, zfs_setattr, zfs_space) the whole * file range needs to be locked as RL_WRITER. Only then can the pages be * freed etc and zp_size reset. zp_size must be set within range lock. * 2. For writes and punching holes (zfs_write & zfs_space) just the range * being written or freed needs to be locked as RL_WRITER. * Multiple writes at the end of the file must coordinate zp_size updates * to ensure data isn't lost. A compare and swap loop is currently used * to ensure the file size is at least the offset last written. * 3. For reads (zfs_read, zfs_get_data & zfs_putapage) just the range being * read needs to be locked as RL_READER. A check against zp_size can then * be made for reading beyond end of file. */ /* * Convert between znode pointers and vnode pointers */ #define ZTOV(ZP) ((ZP)->z_vnode) #define ZTOI(ZP) ((ZP)->z_vnode) #define VTOZ(VP) ((struct znode *)(VP)->v_data) #define VTOZ_SMR(VP) ((znode_t *)vn_load_v_data_smr(VP)) #define ITOZ(VP) ((struct znode *)(VP)->v_data) #define zhold(zp) vhold(ZTOV((zp))) #define zrele(zp) vrele(ZTOV((zp))) #define ZTOZSB(zp) ((zp)->z_zfsvfs) #define ITOZSB(vp) (VTOZ(vp)->z_zfsvfs) #define ZTOTYPE(zp) (ZTOV(zp)->v_type) #define ZTOGID(zp) ((zp)->z_gid) #define ZTOUID(zp) ((zp)->z_uid) #define ZTONLNK(zp) ((zp)->z_links) #define Z_ISBLK(type) ((type) == VBLK) #define Z_ISCHR(type) ((type) == VCHR) #define Z_ISLNK(type) ((type) == VLNK) #define Z_ISDIR(type) ((type) == VDIR) #define zn_has_cached_data(zp, start, end) \ vn_has_cached_data(ZTOV(zp)) #define zn_flush_cached_data(zp, sync) vn_flush_cached_data(ZTOV(zp), sync) -#define zn_rlimit_fsize(zp, uio) \ +#define zn_rlimit_fsize(size) zfs_rlimit_fsize(size) +#define zn_rlimit_fsize_uio(zp, uio) \ vn_rlimit_fsize(ZTOV(zp), GET_UIO_STRUCT(uio), zfs_uio_td(uio)) /* Called on entry to each ZFS vnode and vfs operation */ static inline int zfs_enter(zfsvfs_t *zfsvfs, const char *tag) { ZFS_TEARDOWN_ENTER_READ(zfsvfs, tag); if (__predict_false((zfsvfs)->z_unmounted)) { ZFS_TEARDOWN_EXIT_READ(zfsvfs, tag); return (SET_ERROR(EIO)); } return (0); } /* Must be called before exiting the vop */ static inline void zfs_exit(zfsvfs_t *zfsvfs, const char *tag) { ZFS_TEARDOWN_EXIT_READ(zfsvfs, tag); } /* * Macros for dealing with dmu_buf_hold */ #define ZFS_OBJ_HASH(obj_num) ((obj_num) & (ZFS_OBJ_MTX_SZ - 1)) #define ZFS_OBJ_MUTEX(zfsvfs, obj_num) \ (&(zfsvfs)->z_hold_mtx[ZFS_OBJ_HASH(obj_num)]) #define ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num) \ mutex_enter(ZFS_OBJ_MUTEX((zfsvfs), (obj_num))) #define ZFS_OBJ_HOLD_TRYENTER(zfsvfs, obj_num) \ mutex_tryenter(ZFS_OBJ_MUTEX((zfsvfs), (obj_num))) #define ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num) \ mutex_exit(ZFS_OBJ_MUTEX((zfsvfs), (obj_num))) /* Encode ZFS stored time values from a struct timespec */ #define ZFS_TIME_ENCODE(tp, stmp) \ { \ (stmp)[0] = (uint64_t)(tp)->tv_sec; \ (stmp)[1] = (uint64_t)(tp)->tv_nsec; \ } /* Decode ZFS stored time values to a struct timespec */ #define ZFS_TIME_DECODE(tp, stmp) \ { \ (tp)->tv_sec = (time_t)(stmp)[0]; \ (tp)->tv_nsec = (long)(stmp)[1]; \ } #define ZFS_ACCESSTIME_STAMP(zfsvfs, zp) \ if ((zfsvfs)->z_atime && !((zfsvfs)->z_vfs->vfs_flag & VFS_RDONLY)) \ zfs_tstamp_update_setup_ext(zp, ACCESSED, NULL, NULL, B_FALSE); extern void zfs_tstamp_update_setup_ext(struct znode *, uint_t, uint64_t [2], uint64_t [2], boolean_t have_tx); extern void zfs_znode_free(struct znode *); extern zil_replay_func_t *const zfs_replay_vector[TX_MAX_TYPE]; extern int zfs_znode_parent_and_name(struct znode *zp, struct znode **dzpp, char *buf); + +extern int zfs_rlimit_fsize(off_t fsize); #ifdef __cplusplus } #endif #endif /* _FREEBSD_SYS_FS_ZFS_ZNODE_H */ diff --git a/include/os/linux/kernel/linux/mod_compat.h b/include/os/linux/kernel/linux/mod_compat.h index 67b4fc90653c..09d109d191bf 100644 --- a/include/os/linux/kernel/linux/mod_compat.h +++ b/include/os/linux/kernel/linux/mod_compat.h @@ -1,204 +1,205 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2016 Gvozden Neskovic . * Copyright (c) 2020 by Delphix. All rights reserved. */ #ifndef _MOD_COMPAT_H #define _MOD_COMPAT_H #include #include /* * Despite constifying struct kernel_param_ops, some older kernels define a * `__check_old_set_param()` function in their headers that checks for a * non-constified `->set()`. This has long been fixed in Linux mainline, but * since we support older kernels, we workaround it by using a preprocessor * definition to disable it. */ #define __check_old_set_param(_) (0) typedef const struct kernel_param zfs_kernel_param_t; #define ZMOD_RW 0644 #define ZMOD_RD 0444 enum scope_prefix_types { zfs, zfs_arc, + zfs_brt, zfs_condense, zfs_dbuf, zfs_dbuf_cache, zfs_deadman, zfs_dedup, zfs_l2arc, zfs_livelist, zfs_livelist_condense, zfs_lua, zfs_metaslab, zfs_mg, zfs_multihost, zfs_prefetch, zfs_reconstruct, zfs_recv, zfs_send, zfs_spa, zfs_trim, zfs_txg, zfs_vdev, zfs_vdev_cache, zfs_vdev_file, zfs_vdev_mirror, zfs_vnops, zfs_zevent, zfs_zio, zfs_zil }; /* * While we define our own s64/u64 types, there is no reason to reimplement the * existing Linux kernel types, so we use the preprocessor to remap our * "custom" implementations to the kernel ones. This is done because the CPP * does not allow us to write conditional definitions. The fourth definition * exists because the CPP will not allow us to replace things like INT with int * before string concatenation. */ #define spl_param_set_int param_set_int #define spl_param_get_int param_get_int #define spl_param_ops_int param_ops_int #define spl_param_ops_INT param_ops_int #define spl_param_set_long param_set_long #define spl_param_get_long param_get_long #define spl_param_ops_long param_ops_long #define spl_param_ops_LONG param_ops_long #define spl_param_set_uint param_set_uint #define spl_param_get_uint param_get_uint #define spl_param_ops_uint param_ops_uint #define spl_param_ops_UINT param_ops_uint #define spl_param_set_ulong param_set_ulong #define spl_param_get_ulong param_get_ulong #define spl_param_ops_ulong param_ops_ulong #define spl_param_ops_ULONG param_ops_ulong #define spl_param_set_charp param_set_charp #define spl_param_get_charp param_get_charp #define spl_param_ops_charp param_ops_charp #define spl_param_ops_STRING param_ops_charp int spl_param_set_s64(const char *val, zfs_kernel_param_t *kp); extern int spl_param_get_s64(char *buffer, zfs_kernel_param_t *kp); extern const struct kernel_param_ops spl_param_ops_s64; #define spl_param_ops_S64 spl_param_ops_s64 extern int spl_param_set_u64(const char *val, zfs_kernel_param_t *kp); extern int spl_param_get_u64(char *buffer, zfs_kernel_param_t *kp); extern const struct kernel_param_ops spl_param_ops_u64; #define spl_param_ops_U64 spl_param_ops_u64 /* * Declare a module parameter / sysctl node * * "scope_prefix" the part of the sysctl / sysfs tree the node resides under * (currently a no-op on Linux) * "name_prefix" the part of the variable name that will be excluded from the * exported names on platforms with a hierarchical namespace * "name" the part of the variable that will be exposed on platforms with a * hierarchical namespace, or as name_prefix ## name on Linux * "type" the variable type * "perm" the permissions (read/write or read only) * "desc" a brief description of the option * * Examples: * ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, UINT, * ZMOD_RW, "Rotating media load increment for non-seeking I/O's"); * on FreeBSD: * vfs.zfs.vdev.mirror.rotating_inc * on Linux: * zfs_vdev_mirror_rotating_inc * * ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW, * "Limit one prefetch call to this size"); * on FreeBSD: * vfs.zfs.dmu_prefetch_max * on Linux: * dmu_prefetch_max */ #define ZFS_MODULE_PARAM(scope_prefix, name_prefix, name, type, perm, desc) \ _Static_assert( \ sizeof (scope_prefix) == sizeof (enum scope_prefix_types), \ "" #scope_prefix " size mismatch with enum scope_prefix_types"); \ module_param_cb(name_prefix ## name, &spl_param_ops_ ## type, \ &name_prefix ## name, perm); \ MODULE_PARM_DESC(name_prefix ## name, desc) /* * Declare a module parameter / sysctl node * * "scope_prefix" the part of the the sysctl / sysfs tree the node resides under * (currently a no-op on Linux) * "name_prefix" the part of the variable name that will be excluded from the * exported names on platforms with a hierarchical namespace * "name" the part of the variable that will be exposed on platforms with a * hierarchical namespace, or as name_prefix ## name on Linux * "setfunc" setter function * "getfunc" getter function * "perm" the permissions (read/write or read only) * "desc" a brief description of the option * * Examples: * ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, * param_get_int, ZMOD_RW, "Reserved free space in pool"); * on FreeBSD: * vfs.zfs.spa_slop_shift * on Linux: * spa_slop_shift */ #define ZFS_MODULE_PARAM_CALL( \ scope_prefix, name_prefix, name, setfunc, getfunc, perm, desc) \ _Static_assert( \ sizeof (scope_prefix) == sizeof (enum scope_prefix_types), \ "" #scope_prefix " size mismatch with enum scope_prefix_types"); \ module_param_call(name_prefix ## name, setfunc, getfunc, \ &name_prefix ## name, perm); \ MODULE_PARM_DESC(name_prefix ## name, desc) /* * As above, but there is no variable with the name name_prefix ## name, * so NULL is passed to module_param_call instead. */ #define ZFS_MODULE_VIRTUAL_PARAM_CALL( \ scope_prefix, name_prefix, name, setfunc, getfunc, perm, desc) \ _Static_assert( \ sizeof (scope_prefix) == sizeof (enum scope_prefix_types), \ "" #scope_prefix " size mismatch with enum scope_prefix_types"); \ module_param_call(name_prefix ## name, setfunc, getfunc, NULL, perm); \ MODULE_PARM_DESC(name_prefix ## name, desc) #define ZFS_MODULE_PARAM_ARGS const char *buf, zfs_kernel_param_t *kp #endif /* _MOD_COMPAT_H */ diff --git a/include/os/linux/zfs/sys/zfs_znode_impl.h b/include/os/linux/zfs/sys/zfs_znode_impl.h index 81607ef2a25e..0be2c445ab76 100644 --- a/include/os/linux/zfs/sys/zfs_znode_impl.h +++ b/include/os/linux/zfs/sys/zfs_znode_impl.h @@ -1,198 +1,199 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ #ifndef _SYS_ZFS_ZNODE_IMPL_H #define _SYS_ZFS_ZNODE_IMPL_H #ifndef _KERNEL #error "no user serviceable parts within" #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif #if defined(HAVE_FILEMAP_RANGE_HAS_PAGE) #define ZNODE_OS_FIELDS \ inode_timespec_t z_btime; /* creation/birth time (cached) */ \ struct inode z_inode; #else #define ZNODE_OS_FIELDS \ inode_timespec_t z_btime; /* creation/birth time (cached) */ \ struct inode z_inode; \ boolean_t z_is_mapped; /* we are mmap'ed */ #endif /* * Convert between znode pointers and inode pointers */ #define ZTOI(znode) (&((znode)->z_inode)) #define ITOZ(inode) (container_of((inode), znode_t, z_inode)) #define ZTOZSB(znode) ((zfsvfs_t *)(ZTOI(znode)->i_sb->s_fs_info)) #define ITOZSB(inode) ((zfsvfs_t *)((inode)->i_sb->s_fs_info)) #define ZTOTYPE(zp) (ZTOI(zp)->i_mode) #define ZTOGID(zp) (ZTOI(zp)->i_gid) #define ZTOUID(zp) (ZTOI(zp)->i_uid) #define ZTONLNK(zp) (ZTOI(zp)->i_nlink) #define Z_ISBLK(type) S_ISBLK(type) #define Z_ISCHR(type) S_ISCHR(type) #define Z_ISLNK(type) S_ISLNK(type) #define Z_ISDEV(type) (S_ISCHR(type) || S_ISBLK(type) || S_ISFIFO(type)) #define Z_ISDIR(type) S_ISDIR(type) #if defined(HAVE_FILEMAP_RANGE_HAS_PAGE) #define zn_has_cached_data(zp, start, end) \ filemap_range_has_page(ZTOI(zp)->i_mapping, start, end) #else #define zn_has_cached_data(zp, start, end) \ ((zp)->z_is_mapped) #endif #define zn_flush_cached_data(zp, sync) write_inode_now(ZTOI(zp), sync) -#define zn_rlimit_fsize(zp, uio) (0) +#define zn_rlimit_fsize(size) (0) +#define zn_rlimit_fsize_uio(zp, uio) (0) /* * zhold() wraps igrab() on Linux, and igrab() may fail when the * inode is in the process of being deleted. As zhold() must only be * called when a ref already exists - so the inode cannot be * mid-deletion - we VERIFY() this. */ #define zhold(zp) VERIFY3P(igrab(ZTOI((zp))), !=, NULL) #define zrele(zp) iput(ZTOI((zp))) /* Called on entry to each ZFS inode and vfs operation. */ static inline int zfs_enter(zfsvfs_t *zfsvfs, const char *tag) { ZFS_TEARDOWN_ENTER_READ(zfsvfs, tag); if (unlikely(zfsvfs->z_unmounted)) { ZFS_TEARDOWN_EXIT_READ(zfsvfs, tag); return (SET_ERROR(EIO)); } return (0); } /* Must be called before exiting the operation. */ static inline void zfs_exit(zfsvfs_t *zfsvfs, const char *tag) { zfs_exit_fs(zfsvfs); ZFS_TEARDOWN_EXIT_READ(zfsvfs, tag); } static inline int zpl_enter(zfsvfs_t *zfsvfs, const char *tag) { return (-zfs_enter(zfsvfs, tag)); } static inline void zpl_exit(zfsvfs_t *zfsvfs, const char *tag) { ZFS_TEARDOWN_EXIT_READ(zfsvfs, tag); } /* zfs_verify_zp and zfs_enter_verify_zp are defined in zfs_znode.h */ #define zpl_verify_zp(zp) (-zfs_verify_zp(zp)) #define zpl_enter_verify_zp(zfsvfs, zp, tag) \ (-zfs_enter_verify_zp(zfsvfs, zp, tag)) /* * Macros for dealing with dmu_buf_hold */ #define ZFS_OBJ_MTX_SZ 64 #define ZFS_OBJ_MTX_MAX (1024 * 1024) #define ZFS_OBJ_HASH(zfsvfs, obj) ((obj) & ((zfsvfs->z_hold_size) - 1)) extern unsigned int zfs_object_mutex_size; /* * Encode ZFS stored time values from a struct timespec / struct timespec64. */ #define ZFS_TIME_ENCODE(tp, stmp) \ do { \ (stmp)[0] = (uint64_t)(tp)->tv_sec; \ (stmp)[1] = (uint64_t)(tp)->tv_nsec; \ } while (0) #if defined(HAVE_INODE_TIMESPEC64_TIMES) /* * Decode ZFS stored time values to a struct timespec64 * 4.18 and newer kernels. */ #define ZFS_TIME_DECODE(tp, stmp) \ do { \ (tp)->tv_sec = (time64_t)(stmp)[0]; \ (tp)->tv_nsec = (long)(stmp)[1]; \ } while (0) #else /* * Decode ZFS stored time values to a struct timespec * 4.17 and older kernels. */ #define ZFS_TIME_DECODE(tp, stmp) \ do { \ (tp)->tv_sec = (time_t)(stmp)[0]; \ (tp)->tv_nsec = (long)(stmp)[1]; \ } while (0) #endif /* HAVE_INODE_TIMESPEC64_TIMES */ #define ZFS_ACCESSTIME_STAMP(zfsvfs, zp) struct znode; extern int zfs_sync(struct super_block *, int, cred_t *); extern int zfs_inode_alloc(struct super_block *, struct inode **ip); extern void zfs_inode_destroy(struct inode *); extern void zfs_mark_inode_dirty(struct inode *); extern boolean_t zfs_relatime_need_update(const struct inode *); #if defined(HAVE_UIO_RW) extern caddr_t zfs_map_page(page_t *, enum seg_rw); extern void zfs_unmap_page(page_t *, caddr_t); #endif /* HAVE_UIO_RW */ extern zil_replay_func_t *const zfs_replay_vector[TX_MAX_TYPE]; #ifdef __cplusplus } #endif #endif /* _SYS_ZFS_ZNODE_IMPL_H */ diff --git a/include/sys/bitmap.h b/include/sys/bitmap.h new file mode 100644 index 000000000000..7b92507a7930 --- /dev/null +++ b/include/sys/bitmap.h @@ -0,0 +1,93 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright 2006 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ +/* All Rights Reserved */ + + +#ifndef _SYS_BITMAP_H +#define _SYS_BITMAP_H + +#ifdef __cplusplus +extern "C" { +#endif + +/* + * Operations on bitmaps of arbitrary size + * A bitmap is a vector of 1 or more ulong_t's. + * The user of the package is responsible for range checks and keeping + * track of sizes. + */ + +#ifdef _LP64 +#define BT_ULSHIFT 6 /* log base 2 of BT_NBIPUL, to extract word index */ +#define BT_ULSHIFT32 5 /* log base 2 of BT_NBIPUL, to extract word index */ +#else +#define BT_ULSHIFT 5 /* log base 2 of BT_NBIPUL, to extract word index */ +#endif + +#define BT_NBIPUL (1 << BT_ULSHIFT) /* n bits per ulong_t */ +#define BT_ULMASK (BT_NBIPUL - 1) /* to extract bit index */ + +/* + * bitmap is a ulong_t *, bitindex an index_t + * + * The macros BT_WIM and BT_BIW internal; there is no need + * for users of this package to use them. + */ + +/* + * word in map + */ +#define BT_WIM(bitmap, bitindex) \ + ((bitmap)[(bitindex) >> BT_ULSHIFT]) +/* + * bit in word + */ +#define BT_BIW(bitindex) \ + (1UL << ((bitindex) & BT_ULMASK)) + +/* + * These are public macros + * + * BT_BITOUL == n bits to n ulong_t's + */ +#define BT_BITOUL(nbits) \ + (((nbits) + BT_NBIPUL - 1l) / BT_NBIPUL) +#define BT_SIZEOFMAP(nbits) \ + (BT_BITOUL(nbits) * sizeof (ulong_t)) +#define BT_TEST(bitmap, bitindex) \ + ((BT_WIM((bitmap), (bitindex)) & BT_BIW(bitindex)) ? 1 : 0) +#define BT_SET(bitmap, bitindex) \ + { BT_WIM((bitmap), (bitindex)) |= BT_BIW(bitindex); } +#define BT_CLEAR(bitmap, bitindex) \ + { BT_WIM((bitmap), (bitindex)) &= ~BT_BIW(bitindex); } + +#ifdef __cplusplus +} +#endif + +#endif /* _SYS_BITMAP_H */ diff --git a/include/sys/brt.h b/include/sys/brt.h new file mode 100644 index 000000000000..b1f70107787c --- /dev/null +++ b/include/sys/brt.h @@ -0,0 +1,62 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek + */ + +#ifndef _SYS_BRT_H +#define _SYS_BRT_H + +#include +#include +#include +#include +#include + +#ifdef __cplusplus +extern "C" { +#endif + +extern boolean_t brt_entry_decref(spa_t *spa, const blkptr_t *bp); + +extern uint64_t brt_get_dspace(spa_t *spa); +extern uint64_t brt_get_used(spa_t *spa); +extern uint64_t brt_get_saved(spa_t *spa); +extern uint64_t brt_get_ratio(spa_t *spa); + +extern boolean_t brt_maybe_exists(spa_t *spa, const blkptr_t *bp); +extern void brt_init(void); +extern void brt_fini(void); + +extern void brt_pending_add(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx); +extern void brt_pending_remove(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx); +extern void brt_pending_apply(spa_t *spa, uint64_t txg); + +extern void brt_create(spa_t *spa); +extern int brt_load(spa_t *spa); +extern void brt_unload(spa_t *spa); +extern void brt_sync(spa_t *spa, uint64_t txg); + +#ifdef __cplusplus +} +#endif + +#endif /* _SYS_BRT_H */ diff --git a/include/sys/dbuf.h b/include/sys/dbuf.h index a1ce76b1c763..a06316362e57 100644 --- a/include/sys/dbuf.h +++ b/include/sys/dbuf.h @@ -1,505 +1,506 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2020 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. */ #ifndef _SYS_DBUF_H #define _SYS_DBUF_H #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif #define IN_DMU_SYNC 2 /* * define flags for dbuf_read */ #define DB_RF_MUST_SUCCEED (1 << 0) #define DB_RF_CANFAIL (1 << 1) #define DB_RF_HAVESTRUCT (1 << 2) #define DB_RF_NOPREFETCH (1 << 3) #define DB_RF_NEVERWAIT (1 << 4) #define DB_RF_CACHED (1 << 5) #define DB_RF_NO_DECRYPT (1 << 6) #define DB_RF_PARTIAL_FIRST (1 << 7) #define DB_RF_PARTIAL_MORE (1 << 8) /* * The simplified state transition diagram for dbufs looks like: * * +----> READ ----+ * | | * | V * (alloc)-->UNCACHED CACHED-->EVICTING-->(free) * | ^ ^ * | | | * +----> FILL ----+ | * | | * | | * +--------> NOFILL -------+ * * DB_SEARCH is an invalid state for a dbuf. It is used by dbuf_free_range * to find all dbufs in a range of a dnode and must be less than any other * dbuf_states_t (see comment on dn_dbufs in dnode.h). */ typedef enum dbuf_states { DB_SEARCH = -1, DB_UNCACHED, DB_FILL, DB_NOFILL, DB_READ, DB_CACHED, DB_EVICTING } dbuf_states_t; typedef enum dbuf_cached_state { DB_NO_CACHE = -1, DB_DBUF_CACHE, DB_DBUF_METADATA_CACHE, DB_CACHE_MAX } dbuf_cached_state_t; struct dnode; struct dmu_tx; /* * level = 0 means the user data * level = 1 means the single indirect block * etc. */ struct dmu_buf_impl; typedef enum override_states { DR_NOT_OVERRIDDEN, DR_IN_DMU_SYNC, DR_OVERRIDDEN } override_states_t; typedef enum db_lock_type { DLT_NONE, DLT_PARENT, DLT_OBJSET } db_lock_type_t; typedef struct dbuf_dirty_record { /* link on our parents dirty list */ list_node_t dr_dirty_node; /* transaction group this data will sync in */ uint64_t dr_txg; /* zio of outstanding write IO */ zio_t *dr_zio; /* pointer back to our dbuf */ struct dmu_buf_impl *dr_dbuf; /* list link for dbuf dirty records */ list_node_t dr_dbuf_node; /* * The dnode we are part of. Note that the dnode can not be moved or * evicted due to the hold that's added by dnode_setdirty() or * dmu_objset_sync_dnodes(), and released by dnode_rele_task() or * userquota_updates_task(). This hold is necessary for * dirty_lightweight_leaf-type dirty records, which don't have a hold * on a dbuf. */ dnode_t *dr_dnode; /* pointer to parent dirty record */ struct dbuf_dirty_record *dr_parent; /* How much space was changed to dsl_pool_dirty_space() for this? */ unsigned int dr_accounted; /* A copy of the bp that points to us */ blkptr_t dr_bp_copy; union dirty_types { struct dirty_indirect { /* protect access to list */ kmutex_t dr_mtx; /* Our list of dirty children */ list_t dr_children; } di; struct dirty_leaf { /* * dr_data is set when we dirty the buffer * so that we can retain the pointer even if it * gets COW'd in a subsequent transaction group. */ arc_buf_t *dr_data; blkptr_t dr_overridden_by; override_states_t dr_override_state; uint8_t dr_copies; boolean_t dr_nopwrite; + boolean_t dr_brtwrite; boolean_t dr_has_raw_params; /* * If dr_has_raw_params is set, the following crypt * params will be set on the BP that's written. */ boolean_t dr_byteorder; uint8_t dr_salt[ZIO_DATA_SALT_LEN]; uint8_t dr_iv[ZIO_DATA_IV_LEN]; uint8_t dr_mac[ZIO_DATA_MAC_LEN]; } dl; struct dirty_lightweight_leaf { /* * This dirty record refers to a leaf (level=0) * block, whose dbuf has not been instantiated for * performance reasons. */ uint64_t dr_blkid; abd_t *dr_abd; zio_prop_t dr_props; zio_flag_t dr_flags; } dll; } dt; } dbuf_dirty_record_t; typedef struct dmu_buf_impl { /* * The following members are immutable, with the exception of * db.db_data, which is protected by db_mtx. */ /* the publicly visible structure */ dmu_buf_t db; /* the objset we belong to */ struct objset *db_objset; /* * handle to safely access the dnode we belong to (NULL when evicted) */ struct dnode_handle *db_dnode_handle; /* * our parent buffer; if the dnode points to us directly, * db_parent == db_dnode_handle->dnh_dnode->dn_dbuf * only accessed by sync thread ??? * (NULL when evicted) * May change from NULL to non-NULL under the protection of db_mtx * (see dbuf_check_blkptr()) */ struct dmu_buf_impl *db_parent; /* * link for hash table of all dmu_buf_impl_t's */ struct dmu_buf_impl *db_hash_next; /* * Our link on the owner dnodes's dn_dbufs list. * Protected by its dn_dbufs_mtx. Should be on the same cache line * as db_level and db_blkid for the best avl_add() performance. */ avl_node_t db_link; /* our block number */ uint64_t db_blkid; /* * Pointer to the blkptr_t which points to us. May be NULL if we * don't have one yet. (NULL when evicted) */ blkptr_t *db_blkptr; /* * Our indirection level. Data buffers have db_level==0. * Indirect buffers which point to data buffers have * db_level==1. etc. Buffers which contain dnodes have * db_level==0, since the dnodes are stored in a file. */ uint8_t db_level; /* * Protects db_buf's contents if they contain an indirect block or data * block of the meta-dnode. We use this lock to protect the structure of * the block tree. This means that when modifying this dbuf's data, we * grab its rwlock. When modifying its parent's data (including the * blkptr to this dbuf), we grab the parent's rwlock. The lock ordering * for this lock is: * 1) dn_struct_rwlock * 2) db_rwlock * We don't currently grab multiple dbufs' db_rwlocks at once. */ krwlock_t db_rwlock; /* buffer holding our data */ arc_buf_t *db_buf; /* db_mtx protects the members below */ kmutex_t db_mtx; /* * Current state of the buffer */ dbuf_states_t db_state; /* * Refcount accessed by dmu_buf_{hold,rele}. * If nonzero, the buffer can't be destroyed. * Protected by db_mtx. */ zfs_refcount_t db_holds; kcondvar_t db_changed; dbuf_dirty_record_t *db_data_pending; /* List of dirty records for the buffer sorted newest to oldest. */ list_t db_dirty_records; /* Link in dbuf_cache or dbuf_metadata_cache */ multilist_node_t db_cache_link; /* Tells us which dbuf cache this dbuf is in, if any */ dbuf_cached_state_t db_caching_status; uint64_t db_hash; /* Data which is unique to data (leaf) blocks: */ /* User callback information. */ dmu_buf_user_t *db_user; /* * Evict user data as soon as the dirty and reference * counts are equal. */ uint8_t db_user_immediate_evict; /* * This block was freed while a read or write was * active. */ uint8_t db_freed_in_flight; /* * dnode_evict_dbufs() or dnode_evict_bonus() tried to * evict this dbuf, but couldn't due to outstanding * references. Evict once the refcount drops to 0. */ uint8_t db_pending_evict; uint8_t db_dirtycnt; /* The buffer was partially read. More reads may follow. */ uint8_t db_partial_read; } dmu_buf_impl_t; #define DBUF_HASH_MUTEX(h, idx) \ (&(h)->hash_mutexes[(idx) & ((h)->hash_mutex_mask)]) typedef struct dbuf_hash_table { uint64_t hash_table_mask; uint64_t hash_mutex_mask; dmu_buf_impl_t **hash_table; kmutex_t *hash_mutexes; } dbuf_hash_table_t; typedef void (*dbuf_prefetch_fn)(void *, uint64_t, uint64_t, boolean_t); uint64_t dbuf_whichblock(const struct dnode *di, const int64_t level, const uint64_t offset); void dbuf_create_bonus(struct dnode *dn); int dbuf_spill_set_blksz(dmu_buf_t *db, uint64_t blksz, dmu_tx_t *tx); void dbuf_rm_spill(struct dnode *dn, dmu_tx_t *tx); dmu_buf_impl_t *dbuf_hold(struct dnode *dn, uint64_t blkid, const void *tag); dmu_buf_impl_t *dbuf_hold_level(struct dnode *dn, int level, uint64_t blkid, const void *tag); int dbuf_hold_impl(struct dnode *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse, boolean_t fail_uncached, const void *tag, dmu_buf_impl_t **dbp); int dbuf_prefetch_impl(struct dnode *dn, int64_t level, uint64_t blkid, zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, void *arg); int dbuf_prefetch(struct dnode *dn, int64_t level, uint64_t blkid, zio_priority_t prio, arc_flags_t aflags); void dbuf_add_ref(dmu_buf_impl_t *db, const void *tag); boolean_t dbuf_try_add_ref(dmu_buf_t *db, objset_t *os, uint64_t obj, uint64_t blkid, const void *tag); uint64_t dbuf_refcount(dmu_buf_impl_t *db); void dbuf_rele(dmu_buf_impl_t *db, const void *tag); void dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting); dmu_buf_impl_t *dbuf_find(struct objset *os, uint64_t object, uint8_t level, uint64_t blkid, uint64_t *hash_out); int dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags); void dmu_buf_will_not_fill(dmu_buf_t *db, dmu_tx_t *tx); void dmu_buf_will_fill(dmu_buf_t *db, dmu_tx_t *tx); void dmu_buf_fill_done(dmu_buf_t *db, dmu_tx_t *tx); void dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx); dbuf_dirty_record_t *dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx); dbuf_dirty_record_t *dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx); arc_buf_t *dbuf_loan_arcbuf(dmu_buf_impl_t *db); void dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, bp_embedded_type_t etype, enum zio_compress comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx); int dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd, const struct zio_prop *zp, zio_flag_t flags, dmu_tx_t *tx); void dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx); void dbuf_destroy(dmu_buf_impl_t *db); void dbuf_unoverride(dbuf_dirty_record_t *dr); void dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx); void dbuf_release_bp(dmu_buf_impl_t *db); db_lock_type_t dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag); void dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag); void dbuf_free_range(struct dnode *dn, uint64_t start, uint64_t end, struct dmu_tx *); void dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx); void dbuf_stats_init(dbuf_hash_table_t *hash); void dbuf_stats_destroy(void); int dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift); #define DB_DNODE(_db) ((_db)->db_dnode_handle->dnh_dnode) #define DB_DNODE_LOCK(_db) ((_db)->db_dnode_handle->dnh_zrlock) #define DB_DNODE_ENTER(_db) (zrl_add(&DB_DNODE_LOCK(_db))) #define DB_DNODE_EXIT(_db) (zrl_remove(&DB_DNODE_LOCK(_db))) #define DB_DNODE_HELD(_db) (!zrl_is_zero(&DB_DNODE_LOCK(_db))) void dbuf_init(void); void dbuf_fini(void); boolean_t dbuf_is_metadata(dmu_buf_impl_t *db); static inline dbuf_dirty_record_t * dbuf_find_dirty_lte(dmu_buf_impl_t *db, uint64_t txg) { dbuf_dirty_record_t *dr; for (dr = list_head(&db->db_dirty_records); dr != NULL && dr->dr_txg > txg; dr = list_next(&db->db_dirty_records, dr)) continue; return (dr); } static inline dbuf_dirty_record_t * dbuf_find_dirty_eq(dmu_buf_impl_t *db, uint64_t txg) { dbuf_dirty_record_t *dr; dr = dbuf_find_dirty_lte(db, txg); if (dr && dr->dr_txg == txg) return (dr); return (NULL); } #define DBUF_GET_BUFC_TYPE(_db) \ (dbuf_is_metadata(_db) ? ARC_BUFC_METADATA : ARC_BUFC_DATA) #define DBUF_IS_CACHEABLE(_db) \ ((_db)->db_objset->os_primary_cache == ZFS_CACHE_ALL || \ (dbuf_is_metadata(_db) && \ ((_db)->db_objset->os_primary_cache == ZFS_CACHE_METADATA))) boolean_t dbuf_is_l2cacheable(dmu_buf_impl_t *db); #ifdef ZFS_DEBUG /* * There should be a ## between the string literal and fmt, to make it * clear that we're joining two strings together, but gcc does not * support that preprocessor token. */ #define dprintf_dbuf(dbuf, fmt, ...) do { \ if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ char __db_buf[32]; \ uint64_t __db_obj = (dbuf)->db.db_object; \ if (__db_obj == DMU_META_DNODE_OBJECT) \ (void) strlcpy(__db_buf, "mdn", sizeof (__db_buf)); \ else \ (void) snprintf(__db_buf, sizeof (__db_buf), "%lld", \ (u_longlong_t)__db_obj); \ dprintf_ds((dbuf)->db_objset->os_dsl_dataset, \ "obj=%s lvl=%u blkid=%lld " fmt, \ __db_buf, (dbuf)->db_level, \ (u_longlong_t)(dbuf)->db_blkid, __VA_ARGS__); \ } \ } while (0) #define dprintf_dbuf_bp(db, bp, fmt, ...) do { \ if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \ snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, bp); \ dprintf_dbuf(db, fmt " %s\n", __VA_ARGS__, __blkbuf); \ kmem_free(__blkbuf, BP_SPRINTF_LEN); \ } \ } while (0) #define DBUF_VERIFY(db) dbuf_verify(db) #else #define dprintf_dbuf(db, fmt, ...) #define dprintf_dbuf_bp(db, bp, fmt, ...) #define DBUF_VERIFY(db) #endif #ifdef __cplusplus } #endif #endif /* _SYS_DBUF_H */ diff --git a/include/sys/ddt.h b/include/sys/ddt.h index d72401dcf7a4..6378c042c705 100644 --- a/include/sys/ddt.h +++ b/include/sys/ddt.h @@ -1,257 +1,259 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016 by Delphix. All rights reserved. */ #ifndef _SYS_DDT_H #define _SYS_DDT_H #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct abd; /* * On-disk DDT formats, in the desired search order (newest version first). */ enum ddt_type { DDT_TYPE_ZAP = 0, DDT_TYPES }; /* * DDT classes, in the desired search order (highest replication level first). */ enum ddt_class { DDT_CLASS_DITTO = 0, DDT_CLASS_DUPLICATE, DDT_CLASS_UNIQUE, DDT_CLASSES }; #define DDT_TYPE_CURRENT 0 #define DDT_COMPRESS_BYTEORDER_MASK 0x80 #define DDT_COMPRESS_FUNCTION_MASK 0x7f /* * On-disk ddt entry: key (name) and physical storage (value). */ typedef struct ddt_key { zio_cksum_t ddk_cksum; /* 256-bit block checksum */ /* * Encoded with logical & physical size, encryption, and compression, * as follows: * +-------+-------+-------+-------+-------+-------+-------+-------+ * | 0 | 0 | 0 |X| comp| PSIZE | LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ */ uint64_t ddk_prop; } ddt_key_t; #define DDK_GET_LSIZE(ddk) \ BF64_GET_SB((ddk)->ddk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1) #define DDK_SET_LSIZE(ddk, x) \ BF64_SET_SB((ddk)->ddk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x) #define DDK_GET_PSIZE(ddk) \ BF64_GET_SB((ddk)->ddk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1) #define DDK_SET_PSIZE(ddk, x) \ BF64_SET_SB((ddk)->ddk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1, x) #define DDK_GET_COMPRESS(ddk) BF64_GET((ddk)->ddk_prop, 32, 7) #define DDK_SET_COMPRESS(ddk, x) BF64_SET((ddk)->ddk_prop, 32, 7, x) #define DDK_GET_CRYPT(ddk) BF64_GET((ddk)->ddk_prop, 39, 1) #define DDK_SET_CRYPT(ddk, x) BF64_SET((ddk)->ddk_prop, 39, 1, x) #define DDT_KEY_WORDS (sizeof (ddt_key_t) / sizeof (uint64_t)) #define DDE_GET_NDVAS(dde) (DDK_GET_CRYPT(&dde->dde_key) \ ? SPA_DVAS_PER_BP - 1 : SPA_DVAS_PER_BP) typedef struct ddt_phys { dva_t ddp_dva[SPA_DVAS_PER_BP]; uint64_t ddp_refcnt; uint64_t ddp_phys_birth; } ddt_phys_t; /* * Note, we no longer generate new DDT_PHYS_DITTO-type blocks. However, * we maintain the ability to free existing dedup-ditto blocks. */ enum ddt_phys_type { DDT_PHYS_DITTO = 0, DDT_PHYS_SINGLE = 1, DDT_PHYS_DOUBLE = 2, DDT_PHYS_TRIPLE = 3, DDT_PHYS_TYPES }; /* * In-core ddt entry */ struct ddt_entry { ddt_key_t dde_key; ddt_phys_t dde_phys[DDT_PHYS_TYPES]; zio_t *dde_lead_zio[DDT_PHYS_TYPES]; struct abd *dde_repair_abd; enum ddt_type dde_type; enum ddt_class dde_class; uint8_t dde_loading; uint8_t dde_loaded; kcondvar_t dde_cv; avl_node_t dde_node; }; /* * In-core ddt */ struct ddt { kmutex_t ddt_lock; avl_tree_t ddt_tree; avl_tree_t ddt_repair_tree; enum zio_checksum ddt_checksum; spa_t *ddt_spa; objset_t *ddt_os; uint64_t ddt_stat_object; uint64_t ddt_object[DDT_TYPES][DDT_CLASSES]; ddt_histogram_t ddt_histogram[DDT_TYPES][DDT_CLASSES]; ddt_histogram_t ddt_histogram_cache[DDT_TYPES][DDT_CLASSES]; ddt_object_t ddt_object_stats[DDT_TYPES][DDT_CLASSES]; avl_node_t ddt_node; }; /* * In-core and on-disk bookmark for DDT walks */ typedef struct ddt_bookmark { uint64_t ddb_class; uint64_t ddb_type; uint64_t ddb_checksum; uint64_t ddb_cursor; } ddt_bookmark_t; /* * Ops vector to access a specific DDT object type. */ typedef struct ddt_ops { char ddt_op_name[32]; int (*ddt_op_create)(objset_t *os, uint64_t *object, dmu_tx_t *tx, boolean_t prehash); int (*ddt_op_destroy)(objset_t *os, uint64_t object, dmu_tx_t *tx); int (*ddt_op_lookup)(objset_t *os, uint64_t object, ddt_entry_t *dde); void (*ddt_op_prefetch)(objset_t *os, uint64_t object, ddt_entry_t *dde); int (*ddt_op_update)(objset_t *os, uint64_t object, ddt_entry_t *dde, dmu_tx_t *tx); int (*ddt_op_remove)(objset_t *os, uint64_t object, ddt_entry_t *dde, dmu_tx_t *tx); int (*ddt_op_walk)(objset_t *os, uint64_t object, ddt_entry_t *dde, uint64_t *walk); int (*ddt_op_count)(objset_t *os, uint64_t object, uint64_t *count); } ddt_ops_t; #define DDT_NAMELEN 107 extern void ddt_object_name(ddt_t *ddt, enum ddt_type type, enum ddt_class clazz, char *name); extern int ddt_object_walk(ddt_t *ddt, enum ddt_type type, enum ddt_class clazz, uint64_t *walk, ddt_entry_t *dde); extern int ddt_object_count(ddt_t *ddt, enum ddt_type type, enum ddt_class clazz, uint64_t *count); extern int ddt_object_info(ddt_t *ddt, enum ddt_type type, enum ddt_class clazz, dmu_object_info_t *); extern boolean_t ddt_object_exists(ddt_t *ddt, enum ddt_type type, enum ddt_class clazz); extern void ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp, uint64_t txg); extern void ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk, const ddt_phys_t *ddp, blkptr_t *bp); extern void ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp); extern void ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp); extern void ddt_phys_clear(ddt_phys_t *ddp); extern void ddt_phys_addref(ddt_phys_t *ddp); extern void ddt_phys_decref(ddt_phys_t *ddp); extern void ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp, uint64_t txg); extern ddt_phys_t *ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp); extern uint64_t ddt_phys_total_refcnt(const ddt_entry_t *dde); extern void ddt_stat_add(ddt_stat_t *dst, const ddt_stat_t *src, uint64_t neg); extern void ddt_histogram_add(ddt_histogram_t *dst, const ddt_histogram_t *src); extern void ddt_histogram_stat(ddt_stat_t *dds, const ddt_histogram_t *ddh); extern boolean_t ddt_histogram_empty(const ddt_histogram_t *ddh); extern void ddt_get_dedup_object_stats(spa_t *spa, ddt_object_t *ddo); extern void ddt_get_dedup_histogram(spa_t *spa, ddt_histogram_t *ddh); extern void ddt_get_dedup_stats(spa_t *spa, ddt_stat_t *dds_total); extern uint64_t ddt_get_dedup_dspace(spa_t *spa); extern uint64_t ddt_get_pool_dedup_ratio(spa_t *spa); extern size_t ddt_compress(void *src, uchar_t *dst, size_t s_len, size_t d_len); extern void ddt_decompress(uchar_t *src, void *dst, size_t s_len, size_t d_len); extern ddt_t *ddt_select(spa_t *spa, const blkptr_t *bp); extern void ddt_enter(ddt_t *ddt); extern void ddt_exit(ddt_t *ddt); extern void ddt_init(void); extern void ddt_fini(void); extern ddt_entry_t *ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add); extern void ddt_prefetch(spa_t *spa, const blkptr_t *bp); extern void ddt_remove(ddt_t *ddt, ddt_entry_t *dde); extern boolean_t ddt_class_contains(spa_t *spa, enum ddt_class max_class, const blkptr_t *bp); extern ddt_entry_t *ddt_repair_start(ddt_t *ddt, const blkptr_t *bp); extern void ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde); extern int ddt_entry_compare(const void *x1, const void *x2); extern void ddt_create(spa_t *spa); extern int ddt_load(spa_t *spa); extern void ddt_unload(spa_t *spa); extern void ddt_sync(spa_t *spa, uint64_t txg); extern int ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde); extern int ddt_object_update(ddt_t *ddt, enum ddt_type type, enum ddt_class clazz, ddt_entry_t *dde, dmu_tx_t *tx); +extern boolean_t ddt_addref(spa_t *spa, const blkptr_t *bp); + extern const ddt_ops_t ddt_zap_ops; #ifdef __cplusplus } #endif #endif /* _SYS_DDT_H */ diff --git a/include/sys/dmu.h b/include/sys/dmu.h index 93de991ccd86..1b82ff620f27 100644 --- a/include/sys/dmu.h +++ b/include/sys/dmu.h @@ -1,1086 +1,1094 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. * Copyright 2014 HybridCluster. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2022 Hewlett Packard Enterprise Development LP. */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_DMU_H #define _SYS_DMU_H /* * This file describes the interface that the DMU provides for its * consumers. * * The DMU also interacts with the SPA. That interface is described in * dmu_spa.h. */ #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct page; struct vnode; struct spa; struct zilog; struct zio; struct blkptr; struct zap_cursor; struct dsl_dataset; struct dsl_pool; struct dnode; struct drr_begin; struct drr_end; struct zbookmark_phys; struct spa; struct nvlist; struct arc_buf; struct zio_prop; struct sa_handle; struct dsl_crypto_params; struct locked_range; typedef struct objset objset_t; typedef struct dmu_tx dmu_tx_t; typedef struct dsl_dir dsl_dir_t; typedef struct dnode dnode_t; typedef enum dmu_object_byteswap { DMU_BSWAP_UINT8, DMU_BSWAP_UINT16, DMU_BSWAP_UINT32, DMU_BSWAP_UINT64, DMU_BSWAP_ZAP, DMU_BSWAP_DNODE, DMU_BSWAP_OBJSET, DMU_BSWAP_ZNODE, DMU_BSWAP_OLDACL, DMU_BSWAP_ACL, /* * Allocating a new byteswap type number makes the on-disk format * incompatible with any other format that uses the same number. * * Data can usually be structured to work with one of the * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. */ DMU_BSWAP_NUMFUNCS } dmu_object_byteswap_t; #define DMU_OT_NEWTYPE 0x80 #define DMU_OT_METADATA 0x40 #define DMU_OT_ENCRYPTED 0x20 #define DMU_OT_BYTESWAP_MASK 0x1f /* * Defines a uint8_t object type. Object types specify if the data * in the object is metadata (boolean) and how to byteswap the data * (dmu_object_byteswap_t). All of the types created by this method * are cached in the dbuf metadata cache. */ #define DMU_OT(byteswap, metadata, encrypted) \ (DMU_OT_NEWTYPE | \ ((metadata) ? DMU_OT_METADATA : 0) | \ ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \ ((byteswap) & DMU_OT_BYTESWAP_MASK)) #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ (ot) < DMU_OT_NUMTYPES) #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache) /* * MDB doesn't have dmu_ot; it defines these macros itself. */ #ifndef ZFS_MDB #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata) #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt) #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap) #endif #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ (((ot) & DMU_OT_METADATA) != 0) : \ DMU_OT_IS_METADATA_IMPL(ot)) #define DMU_OT_IS_DDT(ot) \ ((ot) == DMU_OT_DDT_ZAP) #define DMU_OT_IS_CRITICAL(ot) \ (DMU_OT_IS_METADATA(ot) && \ (ot) != DMU_OT_DNODE && \ (ot) != DMU_OT_DIRECTORY_CONTENTS && \ (ot) != DMU_OT_SA) /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */ #define DMU_OT_IS_FILE(ot) \ ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER) #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ (((ot) & DMU_OT_ENCRYPTED) != 0) : \ DMU_OT_IS_ENCRYPTED_IMPL(ot)) /* * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill * is repurposed for embedded BPs. */ #define DMU_OT_HAS_FILL(ot) \ ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET) #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_BYTESWAP_MASK) : \ DMU_OT_BYTESWAP_IMPL(ot)) typedef enum dmu_object_type { DMU_OT_NONE, /* general: */ DMU_OT_OBJECT_DIRECTORY, /* ZAP */ DMU_OT_OBJECT_ARRAY, /* UINT64 */ DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ DMU_OT_BPOBJ, /* UINT64 */ DMU_OT_BPOBJ_HDR, /* UINT64 */ /* spa: */ DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ DMU_OT_SPACE_MAP, /* UINT64 */ /* zil: */ DMU_OT_INTENT_LOG, /* UINT64 */ /* dmu: */ DMU_OT_DNODE, /* DNODE */ DMU_OT_OBJSET, /* OBJSET */ /* dsl: */ DMU_OT_DSL_DIR, /* UINT64 */ DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ DMU_OT_DSL_PROPS, /* ZAP */ DMU_OT_DSL_DATASET, /* UINT64 */ /* zpl: */ DMU_OT_ZNODE, /* ZNODE */ DMU_OT_OLDACL, /* Old ACL */ DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ DMU_OT_MASTER_NODE, /* ZAP */ DMU_OT_UNLINKED_SET, /* ZAP */ /* zvol: */ DMU_OT_ZVOL, /* UINT8 */ DMU_OT_ZVOL_PROP, /* ZAP */ /* other; for testing only! */ DMU_OT_PLAIN_OTHER, /* UINT8 */ DMU_OT_UINT64_OTHER, /* UINT64 */ DMU_OT_ZAP_OTHER, /* ZAP */ /* new object types: */ DMU_OT_ERROR_LOG, /* ZAP */ DMU_OT_SPA_HISTORY, /* UINT8 */ DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ DMU_OT_POOL_PROPS, /* ZAP */ DMU_OT_DSL_PERMS, /* ZAP */ DMU_OT_ACL, /* ACL */ DMU_OT_SYSACL, /* SYSACL */ DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ DMU_OT_NEXT_CLONES, /* ZAP */ DMU_OT_SCAN_QUEUE, /* ZAP */ DMU_OT_USERGROUP_USED, /* ZAP */ DMU_OT_USERGROUP_QUOTA, /* ZAP */ DMU_OT_USERREFS, /* ZAP */ DMU_OT_DDT_ZAP, /* ZAP */ DMU_OT_DDT_STATS, /* ZAP */ DMU_OT_SA, /* System attr */ DMU_OT_SA_MASTER_NODE, /* ZAP */ DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ DMU_OT_SCAN_XLATE, /* ZAP */ DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ DMU_OT_DEADLIST, /* ZAP */ DMU_OT_DEADLIST_HDR, /* UINT64 */ DMU_OT_DSL_CLONES, /* ZAP */ DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ /* * Do not allocate new object types here. Doing so makes the on-disk * format incompatible with any other format that uses the same object * type number. * * When creating an object which does not have one of the above types * use the DMU_OTN_* type with the correct byteswap and metadata * values. * * The DMU_OTN_* types do not have entries in the dmu_ot table, * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead * of indexing into dmu_ot directly (this works for both DMU_OT_* types * and DMU_OTN_* types). */ DMU_OT_NUMTYPES, /* * Names for valid types declared with DMU_OT(). */ DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE), DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE), DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE), DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE), DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE), DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE), DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE), DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE), DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE), DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE), DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE), DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE), DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE), DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE), DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE), DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE), DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE), DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE), DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE), DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE), } dmu_object_type_t; /* * These flags are intended to be used to specify the "txg_how" * parameter when calling the dmu_tx_assign() function. See the comment * above dmu_tx_assign() for more details on the meaning of these flags. */ #define TXG_NOWAIT (0ULL) #define TXG_WAIT (1ULL<<0) #define TXG_NOTHROTTLE (1ULL<<1) void byteswap_uint64_array(void *buf, size_t size); void byteswap_uint32_array(void *buf, size_t size); void byteswap_uint16_array(void *buf, size_t size); void byteswap_uint8_array(void *buf, size_t size); void zap_byteswap(void *buf, size_t size); void zfs_oldacl_byteswap(void *buf, size_t size); void zfs_acl_byteswap(void *buf, size_t size); void zfs_znode_byteswap(void *buf, size_t size); #define DS_FIND_SNAPSHOTS (1<<0) #define DS_FIND_CHILDREN (1<<1) #define DS_FIND_SERIALIZE (1<<2) /* * The maximum number of bytes that can be accessed as part of one * operation, including metadata. */ #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */ #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ #define DMU_USERUSED_OBJECT (-1ULL) #define DMU_GROUPUSED_OBJECT (-2ULL) #define DMU_PROJECTUSED_OBJECT (-3ULL) /* * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT. */ #define DMU_OBJACCT_PREFIX "obj-" #define DMU_OBJACCT_PREFIX_LEN 4 /* * artificial blkids for bonus buffer and spill blocks */ #define DMU_BONUS_BLKID (-1ULL) #define DMU_SPILL_BLKID (-2ULL) /* * Public routines to create, destroy, open, and close objsets. */ typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); int dmu_objset_hold(const char *name, const void *tag, objset_t **osp); int dmu_objset_own(const char *name, dmu_objset_type_t type, boolean_t readonly, boolean_t key_required, const void *tag, objset_t **osp); void dmu_objset_rele(objset_t *os, const void *tag); void dmu_objset_disown(objset_t *os, boolean_t key_required, const void *tag); int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); void dmu_objset_evict_dbufs(objset_t *os); int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func, void *arg); int dmu_objset_clone(const char *name, const char *origin); int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, struct nvlist *errlist); int dmu_objset_snapshot_one(const char *fsname, const char *snapname); int dmu_objset_find(const char *name, int func(const char *, void *), void *arg, int flags); void dmu_objset_byteswap(void *buf, size_t size); int dsl_dataset_rename_snapshot(const char *fsname, const char *oldsnapname, const char *newsnapname, boolean_t recursive); typedef struct dmu_buf { uint64_t db_object; /* object that this buffer is part of */ uint64_t db_offset; /* byte offset in this object */ uint64_t db_size; /* size of buffer in bytes */ void *db_data; /* data in buffer */ } dmu_buf_t; /* * The names of zap entries in the DIRECTORY_OBJECT of the MOS. */ #define DMU_POOL_DIRECTORY_OBJECT 1 #define DMU_POOL_CONFIG "config" #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" #define DMU_POOL_FEATURES_FOR_READ "features_for_read" #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg" #define DMU_POOL_ROOT_DATASET "root_dataset" #define DMU_POOL_SYNC_BPOBJ "sync_bplist" #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" #define DMU_POOL_ERRLOG_LAST "errlog_last" #define DMU_POOL_SPARES "spares" #define DMU_POOL_DEFLATE "deflate" #define DMU_POOL_HISTORY "history" #define DMU_POOL_PROPS "pool_props" #define DMU_POOL_L2CACHE "l2cache" #define DMU_POOL_TMP_USERREFS "tmp_userrefs" #define DMU_POOL_DDT "DDT-%s-%s-%s" #define DMU_POOL_DDT_STATS "DDT-statistics" #define DMU_POOL_CREATION_VERSION "creation_version" #define DMU_POOL_SCAN "scan" #define DMU_POOL_FREE_BPOBJ "free_bpobj" #define DMU_POOL_BPTREE_OBJ "bptree_obj" #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map" #define DMU_POOL_REMOVING "com.delphix:removing" #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj" #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect" #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint" #define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap" #define DMU_POOL_DELETED_CLONES "com.delphix:deleted_clones" /* * Allocate an object from this objset. The range of object numbers * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. * * The transaction must be assigned to a txg. The newly allocated * object will be "held" in the transaction (ie. you can modify the * newly allocated object in this transaction). * * dmu_object_alloc() chooses an object and returns it in *objectp. * * dmu_object_claim() allocates a specific object number. If that * number is already allocated, it fails and returns EEXIST. * * Return 0 on success, or ENOSPC or EEXIST as specified above. */ uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize, int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonus_type, int bonus_len, int dnodesize, dmu_tx_t *tx); uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot, int blocksize, int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, int dnodesize, dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx); int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonus_type, int bonus_len, int dnodesize, dmu_tx_t *tx); int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp); int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx); int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx); /* * Free an object from this objset. * * The object's data will be freed as well (ie. you don't need to call * dmu_free(object, 0, -1, tx)). * * The object need not be held in the transaction. * * If there are any holds on this object's buffers (via dmu_buf_hold()), * or tx holds on the object (via dmu_tx_hold_object()), you can not * free it; it fails and returns EBUSY. * * If the object is not allocated, it fails and returns ENOENT. * * Return 0 on success, or EBUSY or ENOENT as specified above. */ int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); /* * Find the next allocated or free object. * * The objectp parameter is in-out. It will be updated to be the next * object which is allocated. Ignore objects which have not been * modified since txg. * * XXX Can only be called on a objset with no dirty data. * * Returns 0 on success, or ENOENT if there are no more objects. */ int dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg); /* * Set the number of levels on a dnode. nlevels must be greater than the * current number of levels or an EINVAL will be returned. */ int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx); /* * Set the data blocksize for an object. * * The object cannot have any blocks allocated beyond the first. If * the first block is allocated already, the new size must be greater * than the current block size. If these conditions are not met, * ENOTSUP will be returned. * * Returns 0 on success, or EBUSY if there are any holds on the object * contents, or ENOTSUP as described above. */ int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, dmu_tx_t *tx); /* * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly * to accommodate the change. When calling this function, the caller must * ensure that the object's nlevels can sufficiently support the new maxblkid. */ int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, dmu_tx_t *tx); /* * Set the checksum property on a dnode. The new checksum algorithm will * apply to all newly written blocks; existing blocks will not be affected. */ void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, dmu_tx_t *tx); /* * Set the compress property on a dnode. The new compression algorithm will * apply to all newly written blocks; existing blocks will not be affected. */ void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, dmu_tx_t *tx); void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, void *data, uint8_t etype, uint8_t comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx); void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx); /* * Decide how to write a block: checksum, compression, number of copies, etc. */ #define WP_NOFILL 0x1 #define WP_DMU_SYNC 0x2 #define WP_SPILL 0x4 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, struct zio_prop *zp); /* * The bonus data is accessed more or less like a regular buffer. * You must dmu_bonus_hold() to get the buffer, which will give you a * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus * data. As with any normal buffer, you must call dmu_buf_will_dirty() * before modifying it, and the * object must be held in an assigned transaction before calling * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus * buffer as well. You must release what you hold with dmu_buf_rele(). * * Returns ENOENT, EIO, or 0. */ int dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp); int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp, uint32_t flags); int dmu_bonus_max(void); int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); /* * Special spill buffer support used by "SA" framework */ int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag, dmu_buf_t **dbp); int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag, dmu_buf_t **dbp); int dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp); /* * Obtain the DMU buffer from the specified object which contains the * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so * that it will remain in memory. You must release the hold with * dmu_buf_rele(). You must not access the dmu_buf_t after releasing * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU. * * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill * on the returned buffer before reading or writing the buffer's * db_data. The comments for those routines describe what particular * operations are valid after calling them. * * The object number must be a valid, allocated object number. */ int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, const void *tag, dmu_buf_t **, int flags); int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, int read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp); int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, const void *tag, dmu_buf_t **dbp, int flags); int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags); /* * Add a reference to a dmu buffer that has already been held via * dmu_buf_hold() in the current context. */ void dmu_buf_add_ref(dmu_buf_t *db, const void *tag); /* * Attempt to add a reference to a dmu buffer that is in an unknown state, * using a pointer that may have been invalidated by eviction processing. * The request will succeed if the passed in dbuf still represents the * same os/object/blkid, is ineligible for eviction, and has at least * one hold by a user other than the syncer. */ boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object, uint64_t blkid, const void *tag); void dmu_buf_rele(dmu_buf_t *db, const void *tag); uint64_t dmu_buf_refcount(dmu_buf_t *db); uint64_t dmu_buf_user_refcount(dmu_buf_t *db); /* * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a * range of an object. A pointer to an array of dmu_buf_t*'s is * returned (in *dbpp). * * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and * frees the array. The hold on the array of buffers MUST be released * with dmu_buf_rele_array. You can NOT release the hold on each buffer * individually with dmu_buf_rele. */ int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, uint64_t length, boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp); void dmu_buf_rele_array(dmu_buf_t **, int numbufs, const void *tag); typedef void dmu_buf_evict_func_t(void *user_ptr); /* * A DMU buffer user object may be associated with a dbuf for the * duration of its lifetime. This allows the user of a dbuf (client) * to attach private data to a dbuf (e.g. in-core only data such as a * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified * when that dbuf has been evicted. Clients typically respond to the * eviction notification by freeing their private data, thus ensuring * the same lifetime for both dbuf and private data. * * The mapping from a dmu_buf_user_t to any client private data is the * client's responsibility. All current consumers of the API with private * data embed a dmu_buf_user_t as the first member of the structure for * their private data. This allows conversions between the two types * with a simple cast. Since the DMU buf user API never needs access * to the private data, other strategies can be employed if necessary * or convenient for the client (e.g. using container_of() to do the * conversion for private data that cannot have the dmu_buf_user_t as * its first member). * * Eviction callbacks are executed without the dbuf mutex held or any * other type of mechanism to guarantee that the dbuf is still available. * For this reason, users must assume the dbuf has already been freed * and not reference the dbuf from the callback context. * * Users requesting "immediate eviction" are notified as soon as the dbuf * is only referenced by dirty records (dirties == holds). Otherwise the * notification occurs after eviction processing for the dbuf begins. */ typedef struct dmu_buf_user { /* * Asynchronous user eviction callback state. */ taskq_ent_t dbu_tqent; /* * This instance's eviction function pointers. * * dbu_evict_func_sync is called synchronously and then * dbu_evict_func_async is executed asynchronously on a taskq. */ dmu_buf_evict_func_t *dbu_evict_func_sync; dmu_buf_evict_func_t *dbu_evict_func_async; #ifdef ZFS_DEBUG /* * Pointer to user's dbuf pointer. NULL for clients that do * not associate a dbuf with their user data. * * The dbuf pointer is cleared upon eviction so as to catch * use-after-evict bugs in clients. */ dmu_buf_t **dbu_clear_on_evict_dbufp; #endif } dmu_buf_user_t; /* * Initialize the given dmu_buf_user_t instance with the eviction function * evict_func, to be called when the user is evicted. * * NOTE: This function should only be called once on a given dmu_buf_user_t. * To allow enforcement of this, dbu must already be zeroed on entry. */ static inline void dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync, dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp __maybe_unused) { ASSERT(dbu->dbu_evict_func_sync == NULL); ASSERT(dbu->dbu_evict_func_async == NULL); /* must have at least one evict func */ IMPLY(evict_func_sync == NULL, evict_func_async != NULL); dbu->dbu_evict_func_sync = evict_func_sync; dbu->dbu_evict_func_async = evict_func_async; taskq_init_ent(&dbu->dbu_tqent); #ifdef ZFS_DEBUG dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp; #endif } /* * Attach user data to a dbuf and mark it for normal (when the dbuf's * data is cleared or its reference count goes to zero) eviction processing. * * Returns NULL on success, or the existing user if another user currently * owns the buffer. */ void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user); /* * Attach user data to a dbuf and mark it for immediate (its dirty and * reference counts are equal) eviction processing. * * Returns NULL on success, or the existing user if another user currently * owns the buffer. */ void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user); /* * Replace the current user of a dbuf. * * If given the current user of a dbuf, replaces the dbuf's user with * "new_user" and returns the user data pointer that was replaced. * Otherwise returns the current, and unmodified, dbuf user pointer. */ void *dmu_buf_replace_user(dmu_buf_t *db, dmu_buf_user_t *old_user, dmu_buf_user_t *new_user); /* * Remove the specified user data for a DMU buffer. * * Returns the user that was removed on success, or the current user if * another user currently owns the buffer. */ void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user); /* * Returns the user data (dmu_buf_user_t *) associated with this dbuf. */ void *dmu_buf_get_user(dmu_buf_t *db); objset_t *dmu_buf_get_objset(dmu_buf_t *db); dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db); void dmu_buf_dnode_exit(dmu_buf_t *db); /* Block until any in-progress dmu buf user evictions complete. */ void dmu_buf_user_evict_wait(void); /* * Returns the blkptr associated with this dbuf, or NULL if not set. */ struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); /* * Indicate that you are going to modify the buffer's data (db_data). * * The transaction (tx) must be assigned to a txg (ie. you've called * dmu_tx_assign()). The buffer's object must be held in the tx * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). */ void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx); void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx); /* * You must create a transaction, then hold the objects which you will * (or might) modify as part of this transaction. Then you must assign * the transaction to a transaction group. Once the transaction has * been assigned, you can modify buffers which belong to held objects as * part of this transaction. You can't modify buffers before the * transaction has been assigned; you can't modify buffers which don't * belong to objects which this transaction holds; you can't hold * objects once the transaction has been assigned. You may hold an * object which you are going to free (with dmu_object_free()), but you * don't have to. * * You can abort the transaction before it has been assigned. * * Note that you may hold buffers (with dmu_buf_hold) at any time, * regardless of transaction state. */ #define DMU_NEW_OBJECT (-1ULL) #define DMU_OBJECT_END (-1ULL) dmu_tx_t *dmu_tx_create(objset_t *os); void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len); +void dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, + int len); void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len); void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len); void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name); void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn); void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); void dmu_tx_abort(dmu_tx_t *tx); int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how); void dmu_tx_wait(dmu_tx_t *tx); void dmu_tx_commit(dmu_tx_t *tx); void dmu_tx_mark_netfree(dmu_tx_t *tx); /* * To register a commit callback, dmu_tx_callback_register() must be called. * * dcb_data is a pointer to caller private data that is passed on as a * callback parameter. The caller is responsible for properly allocating and * freeing it. * * When registering a callback, the transaction must be already created, but * it cannot be committed or aborted. It can be assigned to a txg or not. * * The callback will be called after the transaction has been safely written * to stable storage and will also be called if the dmu_tx is aborted. * If there is any error which prevents the transaction from being committed to * disk, the callback will be called with a value of error != 0. * * When multiple callbacks are registered to the transaction, the callbacks * will be called in reverse order to let Lustre, the only user of commit * callback currently, take the fast path of its commit callback handling. */ typedef void dmu_tx_callback_func_t(void *dcb_data, int error); void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, void *dcb_data); void dmu_tx_do_callbacks(list_t *cb_list, int error); /* * Free up the data blocks for a defined range of a file. If size is * -1, the range from offset to end-of-file is freed. */ int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx); int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size); int dmu_free_long_object(objset_t *os, uint64_t object); /* * Convenience functions. * * Canfail routines will return 0 on success, or an errno if there is a * nonrecoverable I/O error. */ #define DMU_READ_PREFETCH 0 /* prefetch */ #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */ int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, void *buf, uint32_t flags); int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, uint32_t flags); void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx); void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx); void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx); #ifdef _KERNEL int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size); int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size); int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size); int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx); int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx); int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx); #endif struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); void dmu_return_arcbuf(struct arc_buf *buf); int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, struct arc_buf *buf, dmu_tx_t *tx); int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf, dmu_tx_t *tx); #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf extern uint_t zfs_max_recordsize; /* * Asynchronously try to read in the data. */ void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, uint64_t len, enum zio_priority pri); typedef struct dmu_object_info { /* All sizes are in bytes unless otherwise indicated. */ uint32_t doi_data_block_size; uint32_t doi_metadata_block_size; dmu_object_type_t doi_type; dmu_object_type_t doi_bonus_type; uint64_t doi_bonus_size; uint8_t doi_indirection; /* 2 = dnode->indirect->data */ uint8_t doi_checksum; uint8_t doi_compress; uint8_t doi_nblkptr; uint8_t doi_pad[4]; uint64_t doi_dnodesize; uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ uint64_t doi_max_offset; uint64_t doi_fill_count; /* number of non-empty blocks */ } dmu_object_info_t; typedef void (*const arc_byteswap_func_t)(void *buf, size_t size); typedef struct dmu_object_type_info { dmu_object_byteswap_t ot_byteswap; boolean_t ot_metadata; boolean_t ot_dbuf_metadata_cache; boolean_t ot_encrypt; const char *ot_name; } dmu_object_type_info_t; typedef const struct dmu_object_byteswap_info { arc_byteswap_func_t ob_func; const char *ob_name; } dmu_object_byteswap_info_t; extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; extern dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; /* * Get information on a DMU object. * * Return 0 on success or ENOENT if object is not allocated. * * If doi is NULL, just indicates whether the object exists. */ int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi); /* Like dmu_object_info, but faster if you have a held dnode in hand. */ void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi); /* Like dmu_object_info, but faster if you have a held dbuf in hand. */ void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); /* * Like dmu_object_info_from_db, but faster still when you only care about * the size. */ void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512); void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize); typedef struct dmu_objset_stats { uint64_t dds_num_clones; /* number of clones of this */ uint64_t dds_creation_txg; uint64_t dds_guid; dmu_objset_type_t dds_type; uint8_t dds_is_snapshot; uint8_t dds_inconsistent; uint8_t dds_redacted; char dds_origin[ZFS_MAX_DATASET_NAME_LEN]; } dmu_objset_stats_t; /* * Get stats on a dataset. */ void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); /* * Add entries to the nvlist for all the objset's properties. See * zfs_prop_table[] and zfs(1m) for details on the properties. */ void dmu_objset_stats(objset_t *os, struct nvlist *nv); /* * Get the space usage statistics for statvfs(). * * refdbytes is the amount of space "referenced" by this objset. * availbytes is the amount of space available to this objset, taking * into account quotas & reservations, assuming that no other objsets * use the space first. These values correspond to the 'referenced' and * 'available' properties, described in the zfs(1m) manpage. * * usedobjs and availobjs are the number of objects currently allocated, * and available. */ void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp); /* * The fsid_guid is a 56-bit ID that can change to avoid collisions. * (Contrast with the ds_guid which is a 64-bit ID that will never * change, so there is a small probability that it will collide.) */ uint64_t dmu_objset_fsid_guid(objset_t *os); /* * Get the [cm]time for an objset's snapshot dir */ inode_timespec_t dmu_objset_snap_cmtime(objset_t *os); int dmu_objset_is_snapshot(objset_t *os); extern struct spa *dmu_objset_spa(objset_t *os); extern struct zilog *dmu_objset_zil(objset_t *os); extern struct dsl_pool *dmu_objset_pool(objset_t *os); extern struct dsl_dataset *dmu_objset_ds(objset_t *os); extern void dmu_objset_name(objset_t *os, char *buf); extern dmu_objset_type_t dmu_objset_type(objset_t *os); extern uint64_t dmu_objset_id(objset_t *os); extern uint64_t dmu_objset_dnodesize(objset_t *os); extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os); extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os); extern int dmu_objset_blksize(objset_t *os); extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, uint64_t *id, uint64_t *offp, boolean_t *case_conflict); extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val); extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real, int maxlen, boolean_t *conflict); extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, uint64_t *idp, uint64_t *offp); typedef struct zfs_file_info { uint64_t zfi_user; uint64_t zfi_group; uint64_t zfi_project; uint64_t zfi_generation; } zfs_file_info_t; typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data, struct zfs_file_info *zoi); extern void dmu_objset_register_type(dmu_objset_type_t ost, file_info_cb_t *cb); extern void dmu_objset_set_user(objset_t *os, void *user_ptr); extern void *dmu_objset_get_user(objset_t *os); /* * Return the txg number for the given assigned transaction. */ uint64_t dmu_tx_get_txg(dmu_tx_t *tx); /* * Synchronous write. * If a parent zio is provided this function initiates a write on the * provided buffer as a child of the parent zio. * In the absence of a parent zio, the write is completed synchronously. * At write completion, blk is filled with the bp of the written block. * Note that while the data covered by this function will be on stable * storage when the write completes this new data does not become a * permanent part of the file until the associated transaction commits. */ /* * {zfs,zvol,ztest}_get_done() args */ typedef struct zgd { struct lwb *zgd_lwb; struct blkptr *zgd_bp; dmu_buf_t *zgd_db; struct zfs_locked_range *zgd_lr; void *zgd_private; } zgd_t; typedef void dmu_sync_cb_t(zgd_t *arg, int error); int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); /* * Find the next hole or data block in file starting at *off * Return found offset in *off. Return ESRCH for end of file. */ int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off); +int dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, + uint64_t length, dmu_tx_t *tx, struct blkptr *bps, size_t *nbpsp); +void dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, + uint64_t length, dmu_tx_t *tx, const struct blkptr *bps, size_t nbps, + boolean_t replay); + /* * Initial setup and final teardown. */ extern void dmu_init(void); extern void dmu_fini(void); typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, uint64_t object, uint64_t offset, int len); void dmu_traverse_objset(objset_t *os, uint64_t txg_start, dmu_traverse_cb_t cb, void *arg); int dmu_diff(const char *tosnap_name, const char *fromsnap_name, zfs_file_t *fp, offset_t *offp); /* CRC64 table */ #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ extern uint64_t zfs_crc64_table[256]; extern uint_t dmu_prefetch_max; #ifdef __cplusplus } #endif #endif /* _SYS_DMU_H */ diff --git a/include/sys/dmu_tx.h b/include/sys/dmu_tx.h index 81e1ef6c1477..ca8514e5d2d0 100644 --- a/include/sys/dmu_tx.h +++ b/include/sys/dmu_tx.h @@ -1,178 +1,179 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012, 2016 by Delphix. All rights reserved. */ #ifndef _SYS_DMU_TX_H #define _SYS_DMU_TX_H #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct dmu_buf_impl; struct dmu_tx_hold; struct dnode_link; struct dsl_pool; struct dnode; struct dsl_dir; struct dmu_tx { /* * No synchronization is needed because a tx can only be handled * by one thread. */ list_t tx_holds; /* list of dmu_tx_hold_t */ objset_t *tx_objset; struct dsl_dir *tx_dir; struct dsl_pool *tx_pool; uint64_t tx_txg; uint64_t tx_lastsnap_txg; uint64_t tx_lasttried_txg; txg_handle_t tx_txgh; void *tx_tempreserve_cookie; struct dmu_tx_hold *tx_needassign_txh; /* list of dmu_tx_callback_t on this dmu_tx */ list_t tx_callbacks; /* placeholder for syncing context, doesn't need specific holds */ boolean_t tx_anyobj; /* transaction is marked as being a "net free" of space */ boolean_t tx_netfree; /* time this transaction was created */ hrtime_t tx_start; /* need to wait for sufficient dirty space */ boolean_t tx_wait_dirty; /* has this transaction already been delayed? */ boolean_t tx_dirty_delayed; int tx_err; }; enum dmu_tx_hold_type { THT_NEWOBJECT, THT_WRITE, THT_BONUS, THT_FREE, THT_ZAP, THT_SPACE, THT_SPILL, + THT_CLONE, THT_NUMTYPES }; typedef struct dmu_tx_hold { dmu_tx_t *txh_tx; list_node_t txh_node; struct dnode *txh_dnode; zfs_refcount_t txh_space_towrite; zfs_refcount_t txh_memory_tohold; enum dmu_tx_hold_type txh_type; uint64_t txh_arg1; uint64_t txh_arg2; } dmu_tx_hold_t; typedef struct dmu_tx_callback { list_node_t dcb_node; /* linked to tx_callbacks list */ dmu_tx_callback_func_t *dcb_func; /* caller function pointer */ void *dcb_data; /* caller private data */ } dmu_tx_callback_t; /* * Used for dmu tx kstat. */ typedef struct dmu_tx_stats { kstat_named_t dmu_tx_assigned; kstat_named_t dmu_tx_delay; kstat_named_t dmu_tx_error; kstat_named_t dmu_tx_suspended; kstat_named_t dmu_tx_group; kstat_named_t dmu_tx_memory_reserve; kstat_named_t dmu_tx_memory_reclaim; kstat_named_t dmu_tx_dirty_throttle; kstat_named_t dmu_tx_dirty_delay; kstat_named_t dmu_tx_dirty_over_max; kstat_named_t dmu_tx_dirty_frees_delay; kstat_named_t dmu_tx_wrlog_delay; kstat_named_t dmu_tx_quota; } dmu_tx_stats_t; extern dmu_tx_stats_t dmu_tx_stats; #define DMU_TX_STAT_INCR(stat, val) \ atomic_add_64(&dmu_tx_stats.stat.value.ui64, (val)); #define DMU_TX_STAT_BUMP(stat) \ DMU_TX_STAT_INCR(stat, 1); /* * These routines are defined in dmu.h, and are called by the user. */ dmu_tx_t *dmu_tx_create(objset_t *dd); int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how); void dmu_tx_commit(dmu_tx_t *tx); void dmu_tx_abort(dmu_tx_t *tx); uint64_t dmu_tx_get_txg(dmu_tx_t *tx); struct dsl_pool *dmu_tx_pool(dmu_tx_t *tx); void dmu_tx_wait(dmu_tx_t *tx); /* * These routines are defined in dmu_spa.h, and are called by the SPA. */ extern dmu_tx_t *dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg); /* * These routines are only called by the DMU. */ dmu_tx_t *dmu_tx_create_dd(dsl_dir_t *dd); int dmu_tx_is_syncing(dmu_tx_t *tx); int dmu_tx_private_ok(dmu_tx_t *tx); void dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn); void dmu_tx_dirty_buf(dmu_tx_t *tx, struct dmu_buf_impl *db); void dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space); #ifdef ZFS_DEBUG #define DMU_TX_DIRTY_BUF(tx, db) dmu_tx_dirty_buf(tx, db) #else #define DMU_TX_DIRTY_BUF(tx, db) #endif void dmu_tx_init(void); void dmu_tx_fini(void); #ifdef __cplusplus } #endif #endif /* _SYS_DMU_TX_H */ diff --git a/include/sys/fs/zfs.h b/include/sys/fs/zfs.h index e869685c5e2d..25babd4ea8cf 100644 --- a/include/sys/fs/zfs.h +++ b/include/sys/fs/zfs.h @@ -1,1837 +1,1840 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2013, 2017 Joyent, Inc. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2019 Datto Inc. * Portions Copyright 2010 Robert Milkowski * Copyright (c) 2021, Colm Buckley * Copyright (c) 2022 Hewlett Packard Enterprise Development LP. */ #ifndef _SYS_FS_ZFS_H #define _SYS_FS_ZFS_H extern __attribute__((visibility("default"))) #include #include #ifdef __cplusplus extern "C" { #endif /* * Types and constants shared between userland and the kernel. */ /* * Each dataset can be one of the following types. These constants can be * combined into masks that can be passed to various functions. */ typedef enum { ZFS_TYPE_INVALID = 0, ZFS_TYPE_FILESYSTEM = (1 << 0), ZFS_TYPE_SNAPSHOT = (1 << 1), ZFS_TYPE_VOLUME = (1 << 2), ZFS_TYPE_POOL = (1 << 3), ZFS_TYPE_BOOKMARK = (1 << 4), ZFS_TYPE_VDEV = (1 << 5), } zfs_type_t; /* * NB: lzc_dataset_type should be updated whenever a new objset type is added, * if it represents a real type of a dataset that can be created from userland. */ typedef enum dmu_objset_type { DMU_OST_NONE, DMU_OST_META, DMU_OST_ZFS, DMU_OST_ZVOL, DMU_OST_OTHER, /* For testing only! */ DMU_OST_ANY, /* Be careful! */ DMU_OST_NUMTYPES } dmu_objset_type_t; #define ZFS_TYPE_DATASET \ (ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME | ZFS_TYPE_SNAPSHOT) /* * All of these include the terminating NUL byte. */ #define ZAP_MAXNAMELEN 256 #define ZAP_MAXVALUELEN (1024 * 8) #define ZAP_OLDMAXVALUELEN 1024 #define ZFS_MAX_DATASET_NAME_LEN 256 /* * Dataset properties are identified by these constants and must be added to * the end of this list to ensure that external consumers are not affected * by the change. If you make any changes to this list, be sure to update * the property table in module/zcommon/zfs_prop.c. */ typedef enum { ZPROP_CONT = -2, ZPROP_INVAL = -1, ZPROP_USERPROP = ZPROP_INVAL, ZFS_PROP_TYPE = 0, ZFS_PROP_CREATION, ZFS_PROP_USED, ZFS_PROP_AVAILABLE, ZFS_PROP_REFERENCED, ZFS_PROP_COMPRESSRATIO, ZFS_PROP_MOUNTED, ZFS_PROP_ORIGIN, ZFS_PROP_QUOTA, ZFS_PROP_RESERVATION, ZFS_PROP_VOLSIZE, ZFS_PROP_VOLBLOCKSIZE, ZFS_PROP_RECORDSIZE, ZFS_PROP_MOUNTPOINT, ZFS_PROP_SHARENFS, ZFS_PROP_CHECKSUM, ZFS_PROP_COMPRESSION, ZFS_PROP_ATIME, ZFS_PROP_DEVICES, ZFS_PROP_EXEC, ZFS_PROP_SETUID, ZFS_PROP_READONLY, ZFS_PROP_ZONED, ZFS_PROP_SNAPDIR, ZFS_PROP_ACLMODE, ZFS_PROP_ACLINHERIT, ZFS_PROP_CREATETXG, ZFS_PROP_NAME, /* not exposed to the user */ ZFS_PROP_CANMOUNT, ZFS_PROP_ISCSIOPTIONS, /* not exposed to the user */ ZFS_PROP_XATTR, ZFS_PROP_NUMCLONES, /* not exposed to the user */ ZFS_PROP_COPIES, ZFS_PROP_VERSION, ZFS_PROP_UTF8ONLY, ZFS_PROP_NORMALIZE, ZFS_PROP_CASE, ZFS_PROP_VSCAN, ZFS_PROP_NBMAND, ZFS_PROP_SHARESMB, ZFS_PROP_REFQUOTA, ZFS_PROP_REFRESERVATION, ZFS_PROP_GUID, ZFS_PROP_PRIMARYCACHE, ZFS_PROP_SECONDARYCACHE, ZFS_PROP_USEDSNAP, ZFS_PROP_USEDDS, ZFS_PROP_USEDCHILD, ZFS_PROP_USEDREFRESERV, ZFS_PROP_USERACCOUNTING, /* not exposed to the user */ ZFS_PROP_STMF_SHAREINFO, /* not exposed to the user */ ZFS_PROP_DEFER_DESTROY, ZFS_PROP_USERREFS, ZFS_PROP_LOGBIAS, ZFS_PROP_UNIQUE, /* not exposed to the user */ ZFS_PROP_OBJSETID, ZFS_PROP_DEDUP, ZFS_PROP_MLSLABEL, ZFS_PROP_SYNC, ZFS_PROP_DNODESIZE, ZFS_PROP_REFRATIO, ZFS_PROP_WRITTEN, ZFS_PROP_CLONES, ZFS_PROP_LOGICALUSED, ZFS_PROP_LOGICALREFERENCED, ZFS_PROP_INCONSISTENT, /* not exposed to the user */ ZFS_PROP_VOLMODE, ZFS_PROP_FILESYSTEM_LIMIT, ZFS_PROP_SNAPSHOT_LIMIT, ZFS_PROP_FILESYSTEM_COUNT, ZFS_PROP_SNAPSHOT_COUNT, ZFS_PROP_SNAPDEV, ZFS_PROP_ACLTYPE, ZFS_PROP_SELINUX_CONTEXT, ZFS_PROP_SELINUX_FSCONTEXT, ZFS_PROP_SELINUX_DEFCONTEXT, ZFS_PROP_SELINUX_ROOTCONTEXT, ZFS_PROP_RELATIME, ZFS_PROP_REDUNDANT_METADATA, ZFS_PROP_OVERLAY, ZFS_PROP_PREV_SNAP, ZFS_PROP_RECEIVE_RESUME_TOKEN, ZFS_PROP_ENCRYPTION, ZFS_PROP_KEYLOCATION, ZFS_PROP_KEYFORMAT, ZFS_PROP_PBKDF2_SALT, ZFS_PROP_PBKDF2_ITERS, ZFS_PROP_ENCRYPTION_ROOT, ZFS_PROP_KEY_GUID, ZFS_PROP_KEYSTATUS, ZFS_PROP_REMAPTXG, /* obsolete - no longer used */ ZFS_PROP_SPECIAL_SMALL_BLOCKS, ZFS_PROP_IVSET_GUID, /* not exposed to the user */ ZFS_PROP_REDACTED, ZFS_PROP_REDACT_SNAPS, ZFS_PROP_SNAPSHOTS_CHANGED, ZFS_NUM_PROPS } zfs_prop_t; typedef enum { ZFS_PROP_USERUSED, ZFS_PROP_USERQUOTA, ZFS_PROP_GROUPUSED, ZFS_PROP_GROUPQUOTA, ZFS_PROP_USEROBJUSED, ZFS_PROP_USEROBJQUOTA, ZFS_PROP_GROUPOBJUSED, ZFS_PROP_GROUPOBJQUOTA, ZFS_PROP_PROJECTUSED, ZFS_PROP_PROJECTQUOTA, ZFS_PROP_PROJECTOBJUSED, ZFS_PROP_PROJECTOBJQUOTA, ZFS_NUM_USERQUOTA_PROPS } zfs_userquota_prop_t; _SYS_FS_ZFS_H const char *const zfs_userquota_prop_prefixes[ ZFS_NUM_USERQUOTA_PROPS]; /* * Pool properties are identified by these constants and must be added to the * end of this list to ensure that external consumers are not affected * by the change. Properties must be registered in zfs_prop_init(). */ typedef enum { ZPOOL_PROP_INVAL = -1, ZPOOL_PROP_NAME, ZPOOL_PROP_SIZE, ZPOOL_PROP_CAPACITY, ZPOOL_PROP_ALTROOT, ZPOOL_PROP_HEALTH, ZPOOL_PROP_GUID, ZPOOL_PROP_VERSION, ZPOOL_PROP_BOOTFS, ZPOOL_PROP_DELEGATION, ZPOOL_PROP_AUTOREPLACE, ZPOOL_PROP_CACHEFILE, ZPOOL_PROP_FAILUREMODE, ZPOOL_PROP_LISTSNAPS, ZPOOL_PROP_AUTOEXPAND, ZPOOL_PROP_DEDUPDITTO, ZPOOL_PROP_DEDUPRATIO, ZPOOL_PROP_FREE, ZPOOL_PROP_ALLOCATED, ZPOOL_PROP_READONLY, ZPOOL_PROP_ASHIFT, ZPOOL_PROP_COMMENT, ZPOOL_PROP_EXPANDSZ, ZPOOL_PROP_FREEING, ZPOOL_PROP_FRAGMENTATION, ZPOOL_PROP_LEAKED, ZPOOL_PROP_MAXBLOCKSIZE, ZPOOL_PROP_TNAME, ZPOOL_PROP_MAXDNODESIZE, ZPOOL_PROP_MULTIHOST, ZPOOL_PROP_CHECKPOINT, ZPOOL_PROP_LOAD_GUID, ZPOOL_PROP_AUTOTRIM, ZPOOL_PROP_COMPATIBILITY, + ZPOOL_PROP_BCLONEUSED, + ZPOOL_PROP_BCLONESAVED, + ZPOOL_PROP_BCLONERATIO, ZPOOL_NUM_PROPS } zpool_prop_t; /* Small enough to not hog a whole line of printout in zpool(8). */ #define ZPROP_MAX_COMMENT 32 #define ZPROP_BOOLEAN_NA 2 #define ZPROP_VALUE "value" #define ZPROP_SOURCE "source" typedef enum { ZPROP_SRC_NONE = 0x1, ZPROP_SRC_DEFAULT = 0x2, ZPROP_SRC_TEMPORARY = 0x4, ZPROP_SRC_LOCAL = 0x8, ZPROP_SRC_INHERITED = 0x10, ZPROP_SRC_RECEIVED = 0x20 } zprop_source_t; #define ZPROP_SRC_ALL 0x3f #define ZPROP_SOURCE_VAL_RECVD "$recvd" #define ZPROP_N_MORE_ERRORS "N_MORE_ERRORS" /* * Dataset flag implemented as a special entry in the props zap object * indicating that the dataset has received properties on or after * SPA_VERSION_RECVD_PROPS. The first such receive blows away local properties * just as it did in earlier versions, and thereafter, local properties are * preserved. */ #define ZPROP_HAS_RECVD "$hasrecvd" typedef enum { ZPROP_ERR_NOCLEAR = 0x1, /* failure to clear existing props */ ZPROP_ERR_NORESTORE = 0x2 /* failure to restore props on error */ } zprop_errflags_t; typedef int (*zprop_func)(int, void *); /* * Properties to be set on the root file system of a new pool * are stuffed into their own nvlist, which is then included in * the properties nvlist with the pool properties. */ #define ZPOOL_ROOTFS_PROPS "root-props-nvl" /* * Length of 'written@' and 'written#' */ #define ZFS_WRITTEN_PROP_PREFIX_LEN 8 /* * VDEV properties are identified by these constants and must be added to the * end of this list to ensure that external consumers are not affected * by the change. If you make any changes to this list, be sure to update * the property table in usr/src/common/zfs/zpool_prop.c. */ typedef enum { VDEV_PROP_INVAL = -1, VDEV_PROP_USERPROP = VDEV_PROP_INVAL, VDEV_PROP_NAME, VDEV_PROP_CAPACITY, VDEV_PROP_STATE, VDEV_PROP_GUID, VDEV_PROP_ASIZE, VDEV_PROP_PSIZE, VDEV_PROP_ASHIFT, VDEV_PROP_SIZE, VDEV_PROP_FREE, VDEV_PROP_ALLOCATED, VDEV_PROP_COMMENT, VDEV_PROP_EXPANDSZ, VDEV_PROP_FRAGMENTATION, VDEV_PROP_BOOTSIZE, VDEV_PROP_PARITY, VDEV_PROP_PATH, VDEV_PROP_DEVID, VDEV_PROP_PHYS_PATH, VDEV_PROP_ENC_PATH, VDEV_PROP_FRU, VDEV_PROP_PARENT, VDEV_PROP_CHILDREN, VDEV_PROP_NUMCHILDREN, VDEV_PROP_READ_ERRORS, VDEV_PROP_WRITE_ERRORS, VDEV_PROP_CHECKSUM_ERRORS, VDEV_PROP_INITIALIZE_ERRORS, VDEV_PROP_OPS_NULL, VDEV_PROP_OPS_READ, VDEV_PROP_OPS_WRITE, VDEV_PROP_OPS_FREE, VDEV_PROP_OPS_CLAIM, VDEV_PROP_OPS_TRIM, VDEV_PROP_BYTES_NULL, VDEV_PROP_BYTES_READ, VDEV_PROP_BYTES_WRITE, VDEV_PROP_BYTES_FREE, VDEV_PROP_BYTES_CLAIM, VDEV_PROP_BYTES_TRIM, VDEV_PROP_REMOVING, VDEV_PROP_ALLOCATING, VDEV_PROP_FAILFAST, VDEV_PROP_CHECKSUM_N, VDEV_PROP_CHECKSUM_T, VDEV_PROP_IO_N, VDEV_PROP_IO_T, VDEV_NUM_PROPS } vdev_prop_t; /* * Dataset property functions shared between libzfs and kernel. */ _SYS_FS_ZFS_H const char *zfs_prop_default_string(zfs_prop_t); _SYS_FS_ZFS_H uint64_t zfs_prop_default_numeric(zfs_prop_t); _SYS_FS_ZFS_H boolean_t zfs_prop_readonly(zfs_prop_t); _SYS_FS_ZFS_H boolean_t zfs_prop_visible(zfs_prop_t prop); _SYS_FS_ZFS_H boolean_t zfs_prop_inheritable(zfs_prop_t); _SYS_FS_ZFS_H boolean_t zfs_prop_setonce(zfs_prop_t); _SYS_FS_ZFS_H boolean_t zfs_prop_encryption_key_param(zfs_prop_t); _SYS_FS_ZFS_H boolean_t zfs_prop_valid_keylocation(const char *, boolean_t); _SYS_FS_ZFS_H const char *zfs_prop_to_name(zfs_prop_t); _SYS_FS_ZFS_H zfs_prop_t zfs_name_to_prop(const char *); _SYS_FS_ZFS_H boolean_t zfs_prop_user(const char *); _SYS_FS_ZFS_H boolean_t zfs_prop_userquota(const char *); _SYS_FS_ZFS_H boolean_t zfs_prop_written(const char *); _SYS_FS_ZFS_H int zfs_prop_index_to_string(zfs_prop_t, uint64_t, const char **); _SYS_FS_ZFS_H int zfs_prop_string_to_index(zfs_prop_t, const char *, uint64_t *); _SYS_FS_ZFS_H uint64_t zfs_prop_random_value(zfs_prop_t, uint64_t seed); _SYS_FS_ZFS_H boolean_t zfs_prop_valid_for_type(int, zfs_type_t, boolean_t); /* * Pool property functions shared between libzfs and kernel. */ _SYS_FS_ZFS_H zpool_prop_t zpool_name_to_prop(const char *); _SYS_FS_ZFS_H const char *zpool_prop_to_name(zpool_prop_t); _SYS_FS_ZFS_H const char *zpool_prop_default_string(zpool_prop_t); _SYS_FS_ZFS_H uint64_t zpool_prop_default_numeric(zpool_prop_t); _SYS_FS_ZFS_H boolean_t zpool_prop_readonly(zpool_prop_t); _SYS_FS_ZFS_H boolean_t zpool_prop_setonce(zpool_prop_t); _SYS_FS_ZFS_H boolean_t zpool_prop_feature(const char *); _SYS_FS_ZFS_H boolean_t zpool_prop_unsupported(const char *); _SYS_FS_ZFS_H int zpool_prop_index_to_string(zpool_prop_t, uint64_t, const char **); _SYS_FS_ZFS_H int zpool_prop_string_to_index(zpool_prop_t, const char *, uint64_t *); _SYS_FS_ZFS_H uint64_t zpool_prop_random_value(zpool_prop_t, uint64_t seed); /* * VDEV property functions shared between libzfs and kernel. */ _SYS_FS_ZFS_H vdev_prop_t vdev_name_to_prop(const char *); _SYS_FS_ZFS_H boolean_t vdev_prop_user(const char *name); _SYS_FS_ZFS_H const char *vdev_prop_to_name(vdev_prop_t); _SYS_FS_ZFS_H const char *vdev_prop_default_string(vdev_prop_t); _SYS_FS_ZFS_H uint64_t vdev_prop_default_numeric(vdev_prop_t); _SYS_FS_ZFS_H boolean_t vdev_prop_readonly(vdev_prop_t prop); _SYS_FS_ZFS_H int vdev_prop_index_to_string(vdev_prop_t, uint64_t, const char **); _SYS_FS_ZFS_H int vdev_prop_string_to_index(vdev_prop_t, const char *, uint64_t *); _SYS_FS_ZFS_H boolean_t zpool_prop_vdev(const char *name); _SYS_FS_ZFS_H uint64_t vdev_prop_random_value(vdev_prop_t prop, uint64_t seed); /* * Definitions for the Delegation. */ typedef enum { ZFS_DELEG_WHO_UNKNOWN = 0, ZFS_DELEG_USER = 'u', ZFS_DELEG_USER_SETS = 'U', ZFS_DELEG_GROUP = 'g', ZFS_DELEG_GROUP_SETS = 'G', ZFS_DELEG_EVERYONE = 'e', ZFS_DELEG_EVERYONE_SETS = 'E', ZFS_DELEG_CREATE = 'c', ZFS_DELEG_CREATE_SETS = 'C', ZFS_DELEG_NAMED_SET = 's', ZFS_DELEG_NAMED_SET_SETS = 'S' } zfs_deleg_who_type_t; typedef enum { ZFS_DELEG_NONE = 0, ZFS_DELEG_PERM_LOCAL = 1, ZFS_DELEG_PERM_DESCENDENT = 2, ZFS_DELEG_PERM_LOCALDESCENDENT = 3, ZFS_DELEG_PERM_CREATE = 4 } zfs_deleg_inherit_t; #define ZFS_DELEG_PERM_UID "uid" #define ZFS_DELEG_PERM_GID "gid" #define ZFS_DELEG_PERM_GROUPS "groups" #define ZFS_MLSLABEL_DEFAULT "none" #define ZFS_SMB_ACL_SRC "src" #define ZFS_SMB_ACL_TARGET "target" typedef enum { ZFS_CANMOUNT_OFF = 0, ZFS_CANMOUNT_ON = 1, ZFS_CANMOUNT_NOAUTO = 2 } zfs_canmount_type_t; typedef enum { ZFS_LOGBIAS_LATENCY = 0, ZFS_LOGBIAS_THROUGHPUT = 1 } zfs_logbias_op_t; typedef enum zfs_share_op { ZFS_SHARE_NFS = 0, ZFS_UNSHARE_NFS = 1, ZFS_SHARE_SMB = 2, ZFS_UNSHARE_SMB = 3 } zfs_share_op_t; typedef enum zfs_smb_acl_op { ZFS_SMB_ACL_ADD, ZFS_SMB_ACL_REMOVE, ZFS_SMB_ACL_RENAME, ZFS_SMB_ACL_PURGE } zfs_smb_acl_op_t; typedef enum zfs_cache_type { ZFS_CACHE_NONE = 0, ZFS_CACHE_METADATA = 1, ZFS_CACHE_ALL = 2 } zfs_cache_type_t; typedef enum { ZFS_SYNC_STANDARD = 0, ZFS_SYNC_ALWAYS = 1, ZFS_SYNC_DISABLED = 2 } zfs_sync_type_t; typedef enum { ZFS_XATTR_OFF = 0, ZFS_XATTR_DIR = 1, ZFS_XATTR_SA = 2 } zfs_xattr_type_t; typedef enum { ZFS_DNSIZE_LEGACY = 0, ZFS_DNSIZE_AUTO = 1, ZFS_DNSIZE_1K = 1024, ZFS_DNSIZE_2K = 2048, ZFS_DNSIZE_4K = 4096, ZFS_DNSIZE_8K = 8192, ZFS_DNSIZE_16K = 16384 } zfs_dnsize_type_t; typedef enum { ZFS_REDUNDANT_METADATA_ALL, ZFS_REDUNDANT_METADATA_MOST, ZFS_REDUNDANT_METADATA_SOME, ZFS_REDUNDANT_METADATA_NONE } zfs_redundant_metadata_type_t; typedef enum { ZFS_VOLMODE_DEFAULT = 0, ZFS_VOLMODE_GEOM = 1, ZFS_VOLMODE_DEV = 2, ZFS_VOLMODE_NONE = 3 } zfs_volmode_t; typedef enum zfs_keystatus { ZFS_KEYSTATUS_NONE = 0, ZFS_KEYSTATUS_UNAVAILABLE, ZFS_KEYSTATUS_AVAILABLE, } zfs_keystatus_t; typedef enum zfs_keyformat { ZFS_KEYFORMAT_NONE = 0, ZFS_KEYFORMAT_RAW, ZFS_KEYFORMAT_HEX, ZFS_KEYFORMAT_PASSPHRASE, ZFS_KEYFORMAT_FORMATS } zfs_keyformat_t; typedef enum zfs_key_location { ZFS_KEYLOCATION_NONE = 0, ZFS_KEYLOCATION_PROMPT, ZFS_KEYLOCATION_URI, ZFS_KEYLOCATION_LOCATIONS } zfs_keylocation_t; #define DEFAULT_PBKDF2_ITERATIONS 350000 #define MIN_PBKDF2_ITERATIONS 100000 /* * On-disk version number. */ #define SPA_VERSION_1 1ULL #define SPA_VERSION_2 2ULL #define SPA_VERSION_3 3ULL #define SPA_VERSION_4 4ULL #define SPA_VERSION_5 5ULL #define SPA_VERSION_6 6ULL #define SPA_VERSION_7 7ULL #define SPA_VERSION_8 8ULL #define SPA_VERSION_9 9ULL #define SPA_VERSION_10 10ULL #define SPA_VERSION_11 11ULL #define SPA_VERSION_12 12ULL #define SPA_VERSION_13 13ULL #define SPA_VERSION_14 14ULL #define SPA_VERSION_15 15ULL #define SPA_VERSION_16 16ULL #define SPA_VERSION_17 17ULL #define SPA_VERSION_18 18ULL #define SPA_VERSION_19 19ULL #define SPA_VERSION_20 20ULL #define SPA_VERSION_21 21ULL #define SPA_VERSION_22 22ULL #define SPA_VERSION_23 23ULL #define SPA_VERSION_24 24ULL #define SPA_VERSION_25 25ULL #define SPA_VERSION_26 26ULL #define SPA_VERSION_27 27ULL #define SPA_VERSION_28 28ULL #define SPA_VERSION_5000 5000ULL /* * The incrementing pool version number has been replaced by pool feature * flags. For more details, see zfeature.c. */ #define SPA_VERSION SPA_VERSION_5000 #define SPA_VERSION_STRING "5000" /* * Symbolic names for the changes that caused a SPA_VERSION switch. * Used in the code when checking for presence or absence of a feature. * Feel free to define multiple symbolic names for each version if there * were multiple changes to on-disk structures during that version. * * NOTE: When checking the current SPA_VERSION in your code, be sure * to use spa_version() since it reports the version of the * last synced uberblock. Checking the in-flight version can * be dangerous in some cases. */ #define SPA_VERSION_INITIAL SPA_VERSION_1 #define SPA_VERSION_DITTO_BLOCKS SPA_VERSION_2 #define SPA_VERSION_SPARES SPA_VERSION_3 #define SPA_VERSION_RAIDZ2 SPA_VERSION_3 #define SPA_VERSION_BPOBJ_ACCOUNT SPA_VERSION_3 #define SPA_VERSION_RAIDZ_DEFLATE SPA_VERSION_3 #define SPA_VERSION_DNODE_BYTES SPA_VERSION_3 #define SPA_VERSION_ZPOOL_HISTORY SPA_VERSION_4 #define SPA_VERSION_GZIP_COMPRESSION SPA_VERSION_5 #define SPA_VERSION_BOOTFS SPA_VERSION_6 #define SPA_VERSION_SLOGS SPA_VERSION_7 #define SPA_VERSION_DELEGATED_PERMS SPA_VERSION_8 #define SPA_VERSION_FUID SPA_VERSION_9 #define SPA_VERSION_REFRESERVATION SPA_VERSION_9 #define SPA_VERSION_REFQUOTA SPA_VERSION_9 #define SPA_VERSION_UNIQUE_ACCURATE SPA_VERSION_9 #define SPA_VERSION_L2CACHE SPA_VERSION_10 #define SPA_VERSION_NEXT_CLONES SPA_VERSION_11 #define SPA_VERSION_ORIGIN SPA_VERSION_11 #define SPA_VERSION_DSL_SCRUB SPA_VERSION_11 #define SPA_VERSION_SNAP_PROPS SPA_VERSION_12 #define SPA_VERSION_USED_BREAKDOWN SPA_VERSION_13 #define SPA_VERSION_PASSTHROUGH_X SPA_VERSION_14 #define SPA_VERSION_USERSPACE SPA_VERSION_15 #define SPA_VERSION_STMF_PROP SPA_VERSION_16 #define SPA_VERSION_RAIDZ3 SPA_VERSION_17 #define SPA_VERSION_USERREFS SPA_VERSION_18 #define SPA_VERSION_HOLES SPA_VERSION_19 #define SPA_VERSION_ZLE_COMPRESSION SPA_VERSION_20 #define SPA_VERSION_DEDUP SPA_VERSION_21 #define SPA_VERSION_RECVD_PROPS SPA_VERSION_22 #define SPA_VERSION_SLIM_ZIL SPA_VERSION_23 #define SPA_VERSION_SA SPA_VERSION_24 #define SPA_VERSION_SCAN SPA_VERSION_25 #define SPA_VERSION_DIR_CLONES SPA_VERSION_26 #define SPA_VERSION_DEADLISTS SPA_VERSION_26 #define SPA_VERSION_FAST_SNAP SPA_VERSION_27 #define SPA_VERSION_MULTI_REPLACE SPA_VERSION_28 #define SPA_VERSION_BEFORE_FEATURES SPA_VERSION_28 #define SPA_VERSION_FEATURES SPA_VERSION_5000 #define SPA_VERSION_IS_SUPPORTED(v) \ (((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \ ((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION)) /* * ZPL version - rev'd whenever an incompatible on-disk format change * occurs. This is independent of SPA/DMU/ZAP versioning. You must * also update the version_table[] and help message in zfs_prop.c. */ #define ZPL_VERSION_1 1ULL #define ZPL_VERSION_2 2ULL #define ZPL_VERSION_3 3ULL #define ZPL_VERSION_4 4ULL #define ZPL_VERSION_5 5ULL #define ZPL_VERSION ZPL_VERSION_5 #define ZPL_VERSION_STRING "5" #define ZPL_VERSION_INITIAL ZPL_VERSION_1 #define ZPL_VERSION_DIRENT_TYPE ZPL_VERSION_2 #define ZPL_VERSION_FUID ZPL_VERSION_3 #define ZPL_VERSION_NORMALIZATION ZPL_VERSION_3 #define ZPL_VERSION_SYSATTR ZPL_VERSION_3 #define ZPL_VERSION_USERSPACE ZPL_VERSION_4 #define ZPL_VERSION_SA ZPL_VERSION_5 /* Persistent L2ARC version */ #define L2ARC_PERSISTENT_VERSION_1 1ULL #define L2ARC_PERSISTENT_VERSION L2ARC_PERSISTENT_VERSION_1 #define L2ARC_PERSISTENT_VERSION_STRING "1" /* Rewind policy information */ #define ZPOOL_NO_REWIND 1 /* No policy - default behavior */ #define ZPOOL_NEVER_REWIND 2 /* Do not search for best txg or rewind */ #define ZPOOL_TRY_REWIND 4 /* Search for best txg, but do not rewind */ #define ZPOOL_DO_REWIND 8 /* Rewind to best txg w/in deferred frees */ #define ZPOOL_EXTREME_REWIND 16 /* Allow extreme measures to find best txg */ #define ZPOOL_REWIND_MASK 28 /* All the possible rewind bits */ #define ZPOOL_REWIND_POLICIES 31 /* All the possible policy bits */ typedef struct zpool_load_policy { uint32_t zlp_rewind; /* rewind policy requested */ uint64_t zlp_maxmeta; /* max acceptable meta-data errors */ uint64_t zlp_maxdata; /* max acceptable data errors */ uint64_t zlp_txg; /* specific txg to load */ } zpool_load_policy_t; /* * The following are configuration names used in the nvlist describing a pool's * configuration. New on-disk names should be prefixed with ":" * (e.g. "org.openzfs:") to avoid conflicting names being developed * independently. */ #define ZPOOL_CONFIG_VERSION "version" #define ZPOOL_CONFIG_POOL_NAME "name" #define ZPOOL_CONFIG_POOL_STATE "state" #define ZPOOL_CONFIG_POOL_TXG "txg" #define ZPOOL_CONFIG_POOL_GUID "pool_guid" #define ZPOOL_CONFIG_CREATE_TXG "create_txg" #define ZPOOL_CONFIG_TOP_GUID "top_guid" #define ZPOOL_CONFIG_VDEV_TREE "vdev_tree" #define ZPOOL_CONFIG_TYPE "type" #define ZPOOL_CONFIG_CHILDREN "children" #define ZPOOL_CONFIG_ID "id" #define ZPOOL_CONFIG_GUID "guid" #define ZPOOL_CONFIG_INDIRECT_OBJECT "com.delphix:indirect_object" #define ZPOOL_CONFIG_INDIRECT_BIRTHS "com.delphix:indirect_births" #define ZPOOL_CONFIG_PREV_INDIRECT_VDEV "com.delphix:prev_indirect_vdev" #define ZPOOL_CONFIG_PATH "path" #define ZPOOL_CONFIG_DEVID "devid" #define ZPOOL_CONFIG_SPARE_ID "spareid" #define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array" #define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift" #define ZPOOL_CONFIG_ASHIFT "ashift" #define ZPOOL_CONFIG_ASIZE "asize" #define ZPOOL_CONFIG_DTL "DTL" #define ZPOOL_CONFIG_SCAN_STATS "scan_stats" /* not stored on disk */ #define ZPOOL_CONFIG_REMOVAL_STATS "removal_stats" /* not stored on disk */ #define ZPOOL_CONFIG_CHECKPOINT_STATS "checkpoint_stats" /* not on disk */ #define ZPOOL_CONFIG_VDEV_STATS "vdev_stats" /* not stored on disk */ #define ZPOOL_CONFIG_INDIRECT_SIZE "indirect_size" /* not stored on disk */ /* container nvlist of extended stats */ #define ZPOOL_CONFIG_VDEV_STATS_EX "vdev_stats_ex" /* Active queue read/write stats */ #define ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE "vdev_sync_r_active_queue" #define ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE "vdev_sync_w_active_queue" #define ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE "vdev_async_r_active_queue" #define ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE "vdev_async_w_active_queue" #define ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE "vdev_async_scrub_active_queue" #define ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE "vdev_async_trim_active_queue" #define ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE "vdev_rebuild_active_queue" /* Queue sizes */ #define ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE "vdev_sync_r_pend_queue" #define ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE "vdev_sync_w_pend_queue" #define ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE "vdev_async_r_pend_queue" #define ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE "vdev_async_w_pend_queue" #define ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE "vdev_async_scrub_pend_queue" #define ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE "vdev_async_trim_pend_queue" #define ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE "vdev_rebuild_pend_queue" /* Latency read/write histogram stats */ #define ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO "vdev_tot_r_lat_histo" #define ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO "vdev_tot_w_lat_histo" #define ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO "vdev_disk_r_lat_histo" #define ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO "vdev_disk_w_lat_histo" #define ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO "vdev_sync_r_lat_histo" #define ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO "vdev_sync_w_lat_histo" #define ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO "vdev_async_r_lat_histo" #define ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO "vdev_async_w_lat_histo" #define ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO "vdev_scrub_histo" #define ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO "vdev_trim_histo" #define ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO "vdev_rebuild_histo" /* Request size histograms */ #define ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO "vdev_sync_ind_r_histo" #define ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO "vdev_sync_ind_w_histo" #define ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO "vdev_async_ind_r_histo" #define ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO "vdev_async_ind_w_histo" #define ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO "vdev_ind_scrub_histo" #define ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO "vdev_ind_trim_histo" #define ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO "vdev_ind_rebuild_histo" #define ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO "vdev_sync_agg_r_histo" #define ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO "vdev_sync_agg_w_histo" #define ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO "vdev_async_agg_r_histo" #define ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO "vdev_async_agg_w_histo" #define ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO "vdev_agg_scrub_histo" #define ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO "vdev_agg_trim_histo" #define ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO "vdev_agg_rebuild_histo" /* Number of slow IOs */ #define ZPOOL_CONFIG_VDEV_SLOW_IOS "vdev_slow_ios" /* vdev enclosure sysfs path */ #define ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH "vdev_enc_sysfs_path" #define ZPOOL_CONFIG_WHOLE_DISK "whole_disk" #define ZPOOL_CONFIG_ERRCOUNT "error_count" #define ZPOOL_CONFIG_NOT_PRESENT "not_present" #define ZPOOL_CONFIG_SPARES "spares" #define ZPOOL_CONFIG_IS_SPARE "is_spare" #define ZPOOL_CONFIG_NPARITY "nparity" #define ZPOOL_CONFIG_HOSTID "hostid" #define ZPOOL_CONFIG_HOSTNAME "hostname" #define ZPOOL_CONFIG_LOADED_TIME "initial_load_time" #define ZPOOL_CONFIG_UNSPARE "unspare" #define ZPOOL_CONFIG_PHYS_PATH "phys_path" #define ZPOOL_CONFIG_IS_LOG "is_log" #define ZPOOL_CONFIG_L2CACHE "l2cache" #define ZPOOL_CONFIG_HOLE_ARRAY "hole_array" #define ZPOOL_CONFIG_VDEV_CHILDREN "vdev_children" #define ZPOOL_CONFIG_IS_HOLE "is_hole" #define ZPOOL_CONFIG_DDT_HISTOGRAM "ddt_histogram" #define ZPOOL_CONFIG_DDT_OBJ_STATS "ddt_object_stats" #define ZPOOL_CONFIG_DDT_STATS "ddt_stats" #define ZPOOL_CONFIG_SPLIT "splitcfg" #define ZPOOL_CONFIG_ORIG_GUID "orig_guid" #define ZPOOL_CONFIG_SPLIT_GUID "split_guid" #define ZPOOL_CONFIG_SPLIT_LIST "guid_list" #define ZPOOL_CONFIG_NONALLOCATING "non_allocating" #define ZPOOL_CONFIG_REMOVING "removing" #define ZPOOL_CONFIG_RESILVER_TXG "resilver_txg" #define ZPOOL_CONFIG_REBUILD_TXG "rebuild_txg" #define ZPOOL_CONFIG_COMMENT "comment" #define ZPOOL_CONFIG_SUSPENDED "suspended" /* not stored on disk */ #define ZPOOL_CONFIG_SUSPENDED_REASON "suspended_reason" /* not stored */ #define ZPOOL_CONFIG_TIMESTAMP "timestamp" /* not stored on disk */ #define ZPOOL_CONFIG_BOOTFS "bootfs" /* not stored on disk */ #define ZPOOL_CONFIG_MISSING_DEVICES "missing_vdevs" /* not stored on disk */ #define ZPOOL_CONFIG_LOAD_INFO "load_info" /* not stored on disk */ #define ZPOOL_CONFIG_REWIND_INFO "rewind_info" /* not stored on disk */ #define ZPOOL_CONFIG_UNSUP_FEAT "unsup_feat" /* not stored on disk */ #define ZPOOL_CONFIG_ENABLED_FEAT "enabled_feat" /* not stored on disk */ #define ZPOOL_CONFIG_CAN_RDONLY "can_rdonly" /* not stored on disk */ #define ZPOOL_CONFIG_FEATURES_FOR_READ "features_for_read" #define ZPOOL_CONFIG_FEATURE_STATS "feature_stats" /* not stored on disk */ #define ZPOOL_CONFIG_ERRATA "errata" /* not stored on disk */ #define ZPOOL_CONFIG_VDEV_TOP_ZAP "com.delphix:vdev_zap_top" #define ZPOOL_CONFIG_VDEV_LEAF_ZAP "com.delphix:vdev_zap_leaf" #define ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS "com.delphix:has_per_vdev_zaps" #define ZPOOL_CONFIG_RESILVER_DEFER "com.datto:resilver_defer" #define ZPOOL_CONFIG_CACHEFILE "cachefile" /* not stored on disk */ #define ZPOOL_CONFIG_MMP_STATE "mmp_state" /* not stored on disk */ #define ZPOOL_CONFIG_MMP_TXG "mmp_txg" /* not stored on disk */ #define ZPOOL_CONFIG_MMP_SEQ "mmp_seq" /* not stored on disk */ #define ZPOOL_CONFIG_MMP_HOSTNAME "mmp_hostname" /* not stored on disk */ #define ZPOOL_CONFIG_MMP_HOSTID "mmp_hostid" /* not stored on disk */ #define ZPOOL_CONFIG_ALLOCATION_BIAS "alloc_bias" /* not stored on disk */ #define ZPOOL_CONFIG_EXPANSION_TIME "expansion_time" /* not stored */ #define ZPOOL_CONFIG_REBUILD_STATS "org.openzfs:rebuild_stats" #define ZPOOL_CONFIG_COMPATIBILITY "compatibility" /* * The persistent vdev state is stored as separate values rather than a single * 'vdev_state' entry. This is because a device can be in multiple states, such * as offline and degraded. */ #define ZPOOL_CONFIG_OFFLINE "offline" #define ZPOOL_CONFIG_FAULTED "faulted" #define ZPOOL_CONFIG_DEGRADED "degraded" #define ZPOOL_CONFIG_REMOVED "removed" #define ZPOOL_CONFIG_FRU "fru" #define ZPOOL_CONFIG_AUX_STATE "aux_state" /* Pool load policy parameters */ #define ZPOOL_LOAD_POLICY "load-policy" #define ZPOOL_LOAD_REWIND_POLICY "load-rewind-policy" #define ZPOOL_LOAD_REQUEST_TXG "load-request-txg" #define ZPOOL_LOAD_META_THRESH "load-meta-thresh" #define ZPOOL_LOAD_DATA_THRESH "load-data-thresh" /* Rewind data discovered */ #define ZPOOL_CONFIG_LOAD_TIME "rewind_txg_ts" #define ZPOOL_CONFIG_LOAD_META_ERRORS "verify_meta_errors" #define ZPOOL_CONFIG_LOAD_DATA_ERRORS "verify_data_errors" #define ZPOOL_CONFIG_REWIND_TIME "seconds_of_rewind" /* dRAID configuration */ #define ZPOOL_CONFIG_DRAID_NDATA "draid_ndata" #define ZPOOL_CONFIG_DRAID_NSPARES "draid_nspares" #define ZPOOL_CONFIG_DRAID_NGROUPS "draid_ngroups" #define VDEV_TYPE_ROOT "root" #define VDEV_TYPE_MIRROR "mirror" #define VDEV_TYPE_REPLACING "replacing" #define VDEV_TYPE_RAIDZ "raidz" #define VDEV_TYPE_DRAID "draid" #define VDEV_TYPE_DRAID_SPARE "dspare" #define VDEV_TYPE_DISK "disk" #define VDEV_TYPE_FILE "file" #define VDEV_TYPE_MISSING "missing" #define VDEV_TYPE_HOLE "hole" #define VDEV_TYPE_SPARE "spare" #define VDEV_TYPE_LOG "log" #define VDEV_TYPE_L2CACHE "l2cache" #define VDEV_TYPE_INDIRECT "indirect" #define VDEV_RAIDZ_MAXPARITY 3 #define VDEV_DRAID_MAXPARITY 3 #define VDEV_DRAID_MIN_CHILDREN 2 #define VDEV_DRAID_MAX_CHILDREN UINT8_MAX /* VDEV_TOP_ZAP_* are used in top-level vdev ZAP objects. */ #define VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM \ "com.delphix:indirect_obsolete_sm" #define VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE \ "com.delphix:obsolete_counts_are_precise" #define VDEV_TOP_ZAP_POOL_CHECKPOINT_SM \ "com.delphix:pool_checkpoint_sm" #define VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS \ "com.delphix:ms_unflushed_phys_txgs" #define VDEV_TOP_ZAP_VDEV_REBUILD_PHYS \ "org.openzfs:vdev_rebuild" #define VDEV_TOP_ZAP_ALLOCATION_BIAS \ "org.zfsonlinux:allocation_bias" /* vdev metaslab allocation bias */ #define VDEV_ALLOC_BIAS_LOG "log" #define VDEV_ALLOC_BIAS_SPECIAL "special" #define VDEV_ALLOC_BIAS_DEDUP "dedup" /* vdev initialize state */ #define VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET \ "com.delphix:next_offset_to_initialize" #define VDEV_LEAF_ZAP_INITIALIZE_STATE \ "com.delphix:vdev_initialize_state" #define VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME \ "com.delphix:vdev_initialize_action_time" /* vdev TRIM state */ #define VDEV_LEAF_ZAP_TRIM_LAST_OFFSET \ "org.zfsonlinux:next_offset_to_trim" #define VDEV_LEAF_ZAP_TRIM_STATE \ "org.zfsonlinux:vdev_trim_state" #define VDEV_LEAF_ZAP_TRIM_ACTION_TIME \ "org.zfsonlinux:vdev_trim_action_time" #define VDEV_LEAF_ZAP_TRIM_RATE \ "org.zfsonlinux:vdev_trim_rate" #define VDEV_LEAF_ZAP_TRIM_PARTIAL \ "org.zfsonlinux:vdev_trim_partial" #define VDEV_LEAF_ZAP_TRIM_SECURE \ "org.zfsonlinux:vdev_trim_secure" /* * This is needed in userland to report the minimum necessary device size. */ #define SPA_MINDEVSIZE (64ULL << 20) /* * Set if the fragmentation has not yet been calculated. This can happen * because the space maps have not been upgraded or the histogram feature * is not enabled. */ #define ZFS_FRAG_INVALID UINT64_MAX /* * The location of the pool configuration repository, shared between kernel and * userland. */ #define ZPOOL_CACHE_BOOT "/boot/zfs/zpool.cache" #define ZPOOL_CACHE "/etc/zfs/zpool.cache" /* * Settings for zpool compatibility features files */ #define ZPOOL_SYSCONF_COMPAT_D SYSCONFDIR "/zfs/compatibility.d" #define ZPOOL_DATA_COMPAT_D PKGDATADIR "/compatibility.d" #define ZPOOL_COMPAT_MAXSIZE 16384 /* * Hard-wired compatibility settings */ #define ZPOOL_COMPAT_LEGACY "legacy" #define ZPOOL_COMPAT_OFF "off" /* * vdev states are ordered from least to most healthy. * A vdev that's CANT_OPEN or below is considered unusable. */ typedef enum vdev_state { VDEV_STATE_UNKNOWN = 0, /* Uninitialized vdev */ VDEV_STATE_CLOSED, /* Not currently open */ VDEV_STATE_OFFLINE, /* Not allowed to open */ VDEV_STATE_REMOVED, /* Explicitly removed from system */ VDEV_STATE_CANT_OPEN, /* Tried to open, but failed */ VDEV_STATE_FAULTED, /* External request to fault device */ VDEV_STATE_DEGRADED, /* Replicated vdev with unhealthy kids */ VDEV_STATE_HEALTHY /* Presumed good */ } vdev_state_t; #define VDEV_STATE_ONLINE VDEV_STATE_HEALTHY /* * vdev aux states. When a vdev is in the CANT_OPEN state, the aux field * of the vdev stats structure uses these constants to distinguish why. */ typedef enum vdev_aux { VDEV_AUX_NONE, /* no error */ VDEV_AUX_OPEN_FAILED, /* ldi_open_*() or vn_open() failed */ VDEV_AUX_CORRUPT_DATA, /* bad label or disk contents */ VDEV_AUX_NO_REPLICAS, /* insufficient number of replicas */ VDEV_AUX_BAD_GUID_SUM, /* vdev guid sum doesn't match */ VDEV_AUX_TOO_SMALL, /* vdev size is too small */ VDEV_AUX_BAD_LABEL, /* the label is OK but invalid */ VDEV_AUX_VERSION_NEWER, /* on-disk version is too new */ VDEV_AUX_VERSION_OLDER, /* on-disk version is too old */ VDEV_AUX_UNSUP_FEAT, /* unsupported features */ VDEV_AUX_SPARED, /* hot spare used in another pool */ VDEV_AUX_ERR_EXCEEDED, /* too many errors */ VDEV_AUX_IO_FAILURE, /* experienced I/O failure */ VDEV_AUX_BAD_LOG, /* cannot read log chain(s) */ VDEV_AUX_EXTERNAL, /* external diagnosis or forced fault */ VDEV_AUX_SPLIT_POOL, /* vdev was split off into another pool */ VDEV_AUX_BAD_ASHIFT, /* vdev ashift is invalid */ VDEV_AUX_EXTERNAL_PERSIST, /* persistent forced fault */ VDEV_AUX_ACTIVE, /* vdev active on a different host */ VDEV_AUX_CHILDREN_OFFLINE, /* all children are offline */ VDEV_AUX_ASHIFT_TOO_BIG, /* vdev's min block size is too large */ } vdev_aux_t; /* * pool state. The following states are written to disk as part of the normal * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE, L2CACHE. The remaining * states are software abstractions used at various levels to communicate * pool state. */ typedef enum pool_state { POOL_STATE_ACTIVE = 0, /* In active use */ POOL_STATE_EXPORTED, /* Explicitly exported */ POOL_STATE_DESTROYED, /* Explicitly destroyed */ POOL_STATE_SPARE, /* Reserved for hot spare use */ POOL_STATE_L2CACHE, /* Level 2 ARC device */ POOL_STATE_UNINITIALIZED, /* Internal spa_t state */ POOL_STATE_UNAVAIL, /* Internal libzfs state */ POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */ } pool_state_t; /* * mmp state. The following states provide additional detail describing * why a pool couldn't be safely imported. */ typedef enum mmp_state { MMP_STATE_ACTIVE = 0, /* In active use */ MMP_STATE_INACTIVE, /* Inactive and safe to import */ MMP_STATE_NO_HOSTID /* System hostid is not set */ } mmp_state_t; /* * Scan Functions. */ typedef enum pool_scan_func { POOL_SCAN_NONE, POOL_SCAN_SCRUB, POOL_SCAN_RESILVER, POOL_SCAN_FUNCS } pool_scan_func_t; /* * Used to control scrub pause and resume. */ typedef enum pool_scrub_cmd { POOL_SCRUB_NORMAL = 0, POOL_SCRUB_PAUSE, POOL_SCRUB_FLAGS_END } pool_scrub_cmd_t; typedef enum { CS_NONE, CS_CHECKPOINT_EXISTS, CS_CHECKPOINT_DISCARDING, CS_NUM_STATES } checkpoint_state_t; typedef struct pool_checkpoint_stat { uint64_t pcs_state; /* checkpoint_state_t */ uint64_t pcs_start_time; /* time checkpoint/discard started */ uint64_t pcs_space; /* checkpointed space */ } pool_checkpoint_stat_t; /* * ZIO types. Needed to interpret vdev statistics below. */ typedef enum zio_type { ZIO_TYPE_NULL = 0, ZIO_TYPE_READ, ZIO_TYPE_WRITE, ZIO_TYPE_FREE, ZIO_TYPE_CLAIM, ZIO_TYPE_IOCTL, ZIO_TYPE_TRIM, ZIO_TYPES } zio_type_t; /* * Pool statistics. Note: all fields should be 64-bit because this * is passed between kernel and userland as an nvlist uint64 array. */ typedef struct pool_scan_stat { /* values stored on disk */ uint64_t pss_func; /* pool_scan_func_t */ uint64_t pss_state; /* dsl_scan_state_t */ uint64_t pss_start_time; /* scan start time */ uint64_t pss_end_time; /* scan end time */ uint64_t pss_to_examine; /* total bytes to scan */ uint64_t pss_examined; /* total bytes located by scanner */ uint64_t pss_to_process; /* total bytes to process */ uint64_t pss_processed; /* total processed bytes */ uint64_t pss_errors; /* scan errors */ /* values not stored on disk */ uint64_t pss_pass_exam; /* examined bytes per scan pass */ uint64_t pss_pass_start; /* start time of a scan pass */ uint64_t pss_pass_scrub_pause; /* pause time of a scrub pass */ /* cumulative time scrub spent paused, needed for rate calculation */ uint64_t pss_pass_scrub_spent_paused; uint64_t pss_pass_issued; /* issued bytes per scan pass */ uint64_t pss_issued; /* total bytes checked by scanner */ } pool_scan_stat_t; typedef struct pool_removal_stat { uint64_t prs_state; /* dsl_scan_state_t */ uint64_t prs_removing_vdev; uint64_t prs_start_time; uint64_t prs_end_time; uint64_t prs_to_copy; /* bytes that need to be copied */ uint64_t prs_copied; /* bytes copied so far */ /* * bytes of memory used for indirect mappings. * This includes all removed vdevs. */ uint64_t prs_mapping_memory; } pool_removal_stat_t; typedef enum dsl_scan_state { DSS_NONE, DSS_SCANNING, DSS_FINISHED, DSS_CANCELED, DSS_NUM_STATES } dsl_scan_state_t; typedef struct vdev_rebuild_stat { uint64_t vrs_state; /* vdev_rebuild_state_t */ uint64_t vrs_start_time; /* time_t */ uint64_t vrs_end_time; /* time_t */ uint64_t vrs_scan_time_ms; /* total run time (millisecs) */ uint64_t vrs_bytes_scanned; /* allocated bytes scanned */ uint64_t vrs_bytes_issued; /* read bytes issued */ uint64_t vrs_bytes_rebuilt; /* rebuilt bytes */ uint64_t vrs_bytes_est; /* total bytes to scan */ uint64_t vrs_errors; /* scanning errors */ uint64_t vrs_pass_time_ms; /* pass run time (millisecs) */ uint64_t vrs_pass_bytes_scanned; /* bytes scanned since start/resume */ uint64_t vrs_pass_bytes_issued; /* bytes rebuilt since start/resume */ } vdev_rebuild_stat_t; /* * Errata described by https://openzfs.github.io/openzfs-docs/msg/ZFS-8000-ER. * The ordering of this enum must be maintained to ensure the errata identifiers * map to the correct documentation. New errata may only be appended to the * list and must contain corresponding documentation at the above link. */ typedef enum zpool_errata { ZPOOL_ERRATA_NONE, ZPOOL_ERRATA_ZOL_2094_SCRUB, ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY, ZPOOL_ERRATA_ZOL_6845_ENCRYPTION, ZPOOL_ERRATA_ZOL_8308_ENCRYPTION, } zpool_errata_t; /* * Vdev statistics. Note: all fields should be 64-bit because this * is passed between kernel and user land as an nvlist uint64 array. * * The vs_ops[] and vs_bytes[] arrays must always be an array size of 6 in * order to keep subsequent members at their known fixed offsets. When * adding a new field it must be added to the end the structure. */ #define VS_ZIO_TYPES 6 typedef struct vdev_stat { hrtime_t vs_timestamp; /* time since vdev load */ uint64_t vs_state; /* vdev state */ uint64_t vs_aux; /* see vdev_aux_t */ uint64_t vs_alloc; /* space allocated */ uint64_t vs_space; /* total capacity */ uint64_t vs_dspace; /* deflated capacity */ uint64_t vs_rsize; /* replaceable dev size */ uint64_t vs_esize; /* expandable dev size */ uint64_t vs_ops[VS_ZIO_TYPES]; /* operation count */ uint64_t vs_bytes[VS_ZIO_TYPES]; /* bytes read/written */ uint64_t vs_read_errors; /* read errors */ uint64_t vs_write_errors; /* write errors */ uint64_t vs_checksum_errors; /* checksum errors */ uint64_t vs_initialize_errors; /* initializing errors */ uint64_t vs_self_healed; /* self-healed bytes */ uint64_t vs_scan_removing; /* removing? */ uint64_t vs_scan_processed; /* scan processed bytes */ uint64_t vs_fragmentation; /* device fragmentation */ uint64_t vs_initialize_bytes_done; /* bytes initialized */ uint64_t vs_initialize_bytes_est; /* total bytes to initialize */ uint64_t vs_initialize_state; /* vdev_initializing_state_t */ uint64_t vs_initialize_action_time; /* time_t */ uint64_t vs_checkpoint_space; /* checkpoint-consumed space */ uint64_t vs_resilver_deferred; /* resilver deferred */ uint64_t vs_slow_ios; /* slow IOs */ uint64_t vs_trim_errors; /* trimming errors */ uint64_t vs_trim_notsup; /* supported by device */ uint64_t vs_trim_bytes_done; /* bytes trimmed */ uint64_t vs_trim_bytes_est; /* total bytes to trim */ uint64_t vs_trim_state; /* vdev_trim_state_t */ uint64_t vs_trim_action_time; /* time_t */ uint64_t vs_rebuild_processed; /* bytes rebuilt */ uint64_t vs_configured_ashift; /* TLV vdev_ashift */ uint64_t vs_logical_ashift; /* vdev_logical_ashift */ uint64_t vs_physical_ashift; /* vdev_physical_ashift */ uint64_t vs_noalloc; /* allocations halted? */ uint64_t vs_pspace; /* physical capacity */ } vdev_stat_t; #define VDEV_STAT_VALID(field, uint64_t_field_count) \ ((uint64_t_field_count * sizeof (uint64_t)) >= \ (offsetof(vdev_stat_t, field) + sizeof (((vdev_stat_t *)NULL)->field))) /* * Extended stats * * These are stats which aren't included in the original iostat output. For * convenience, they are grouped together in vdev_stat_ex, although each stat * is individually exported as an nvlist. */ typedef struct vdev_stat_ex { /* Number of ZIOs issued to disk and waiting to finish */ uint64_t vsx_active_queue[ZIO_PRIORITY_NUM_QUEUEABLE]; /* Number of ZIOs pending to be issued to disk */ uint64_t vsx_pend_queue[ZIO_PRIORITY_NUM_QUEUEABLE]; /* * Below are the histograms for various latencies. Buckets are in * units of nanoseconds. */ /* * 2^37 nanoseconds = 134s. Timeouts will probably start kicking in * before this. */ #define VDEV_L_HISTO_BUCKETS 37 /* Latency histo buckets */ #define VDEV_RQ_HISTO_BUCKETS 25 /* Request size histo buckets */ /* Amount of time in ZIO queue (ns) */ uint64_t vsx_queue_histo[ZIO_PRIORITY_NUM_QUEUEABLE] [VDEV_L_HISTO_BUCKETS]; /* Total ZIO latency (ns). Includes queuing and disk access time */ uint64_t vsx_total_histo[ZIO_TYPES][VDEV_L_HISTO_BUCKETS]; /* Amount of time to read/write the disk (ns) */ uint64_t vsx_disk_histo[ZIO_TYPES][VDEV_L_HISTO_BUCKETS]; /* "lookup the bucket for a value" histogram macros */ #define HISTO(val, buckets) (val != 0 ? MIN(highbit64(val) - 1, \ buckets - 1) : 0) #define L_HISTO(a) HISTO(a, VDEV_L_HISTO_BUCKETS) #define RQ_HISTO(a) HISTO(a, VDEV_RQ_HISTO_BUCKETS) /* Physical IO histogram */ uint64_t vsx_ind_histo[ZIO_PRIORITY_NUM_QUEUEABLE] [VDEV_RQ_HISTO_BUCKETS]; /* Delegated (aggregated) physical IO histogram */ uint64_t vsx_agg_histo[ZIO_PRIORITY_NUM_QUEUEABLE] [VDEV_RQ_HISTO_BUCKETS]; } vdev_stat_ex_t; /* * Initialize functions. */ typedef enum pool_initialize_func { POOL_INITIALIZE_START, POOL_INITIALIZE_CANCEL, POOL_INITIALIZE_SUSPEND, POOL_INITIALIZE_FUNCS } pool_initialize_func_t; /* * TRIM functions. */ typedef enum pool_trim_func { POOL_TRIM_START, POOL_TRIM_CANCEL, POOL_TRIM_SUSPEND, POOL_TRIM_FUNCS } pool_trim_func_t; /* * DDT statistics. Note: all fields should be 64-bit because this * is passed between kernel and userland as an nvlist uint64 array. */ typedef struct ddt_object { uint64_t ddo_count; /* number of elements in ddt */ uint64_t ddo_dspace; /* size of ddt on disk */ uint64_t ddo_mspace; /* size of ddt in-core */ } ddt_object_t; typedef struct ddt_stat { uint64_t dds_blocks; /* blocks */ uint64_t dds_lsize; /* logical size */ uint64_t dds_psize; /* physical size */ uint64_t dds_dsize; /* deflated allocated size */ uint64_t dds_ref_blocks; /* referenced blocks */ uint64_t dds_ref_lsize; /* referenced lsize * refcnt */ uint64_t dds_ref_psize; /* referenced psize * refcnt */ uint64_t dds_ref_dsize; /* referenced dsize * refcnt */ } ddt_stat_t; typedef struct ddt_histogram { ddt_stat_t ddh_stat[64]; /* power-of-two histogram buckets */ } ddt_histogram_t; #define ZVOL_DRIVER "zvol" #define ZFS_DRIVER "zfs" #define ZFS_DEV "/dev/zfs" #define ZFS_DEVDIR "/dev" #define ZFS_SUPER_MAGIC 0x2fc12fc1 /* general zvol path */ #define ZVOL_DIR "/dev/zvol/" #define ZVOL_MAJOR 230 #define ZVOL_MINOR_BITS 4 #define ZVOL_MINOR_MASK ((1U << ZVOL_MINOR_BITS) - 1) #define ZVOL_MINORS (1 << 4) #define ZVOL_DEV_NAME "zd" #define ZVOL_PROP_NAME "name" #define ZVOL_DEFAULT_BLOCKSIZE 16384 typedef enum { VDEV_INITIALIZE_NONE, VDEV_INITIALIZE_ACTIVE, VDEV_INITIALIZE_CANCELED, VDEV_INITIALIZE_SUSPENDED, VDEV_INITIALIZE_COMPLETE } vdev_initializing_state_t; typedef enum { VDEV_TRIM_NONE, VDEV_TRIM_ACTIVE, VDEV_TRIM_CANCELED, VDEV_TRIM_SUSPENDED, VDEV_TRIM_COMPLETE, } vdev_trim_state_t; typedef enum { VDEV_REBUILD_NONE, VDEV_REBUILD_ACTIVE, VDEV_REBUILD_CANCELED, VDEV_REBUILD_COMPLETE, } vdev_rebuild_state_t; /* * nvlist name constants. Facilitate restricting snapshot iteration range for * the "list next snapshot" ioctl */ #define SNAP_ITER_MIN_TXG "snap_iter_min_txg" #define SNAP_ITER_MAX_TXG "snap_iter_max_txg" /* * /dev/zfs ioctl numbers. * * These numbers cannot change over time. New ioctl numbers must be appended. */ typedef enum zfs_ioc { /* * Core features - 81/128 numbers reserved. */ #ifdef __FreeBSD__ ZFS_IOC_FIRST = 0, #else ZFS_IOC_FIRST = ('Z' << 8), #endif ZFS_IOC = ZFS_IOC_FIRST, ZFS_IOC_POOL_CREATE = ZFS_IOC_FIRST, /* 0x5a00 */ ZFS_IOC_POOL_DESTROY, /* 0x5a01 */ ZFS_IOC_POOL_IMPORT, /* 0x5a02 */ ZFS_IOC_POOL_EXPORT, /* 0x5a03 */ ZFS_IOC_POOL_CONFIGS, /* 0x5a04 */ ZFS_IOC_POOL_STATS, /* 0x5a05 */ ZFS_IOC_POOL_TRYIMPORT, /* 0x5a06 */ ZFS_IOC_POOL_SCAN, /* 0x5a07 */ ZFS_IOC_POOL_FREEZE, /* 0x5a08 */ ZFS_IOC_POOL_UPGRADE, /* 0x5a09 */ ZFS_IOC_POOL_GET_HISTORY, /* 0x5a0a */ ZFS_IOC_VDEV_ADD, /* 0x5a0b */ ZFS_IOC_VDEV_REMOVE, /* 0x5a0c */ ZFS_IOC_VDEV_SET_STATE, /* 0x5a0d */ ZFS_IOC_VDEV_ATTACH, /* 0x5a0e */ ZFS_IOC_VDEV_DETACH, /* 0x5a0f */ ZFS_IOC_VDEV_SETPATH, /* 0x5a10 */ ZFS_IOC_VDEV_SETFRU, /* 0x5a11 */ ZFS_IOC_OBJSET_STATS, /* 0x5a12 */ ZFS_IOC_OBJSET_ZPLPROPS, /* 0x5a13 */ ZFS_IOC_DATASET_LIST_NEXT, /* 0x5a14 */ ZFS_IOC_SNAPSHOT_LIST_NEXT, /* 0x5a15 */ ZFS_IOC_SET_PROP, /* 0x5a16 */ ZFS_IOC_CREATE, /* 0x5a17 */ ZFS_IOC_DESTROY, /* 0x5a18 */ ZFS_IOC_ROLLBACK, /* 0x5a19 */ ZFS_IOC_RENAME, /* 0x5a1a */ ZFS_IOC_RECV, /* 0x5a1b */ ZFS_IOC_SEND, /* 0x5a1c */ ZFS_IOC_INJECT_FAULT, /* 0x5a1d */ ZFS_IOC_CLEAR_FAULT, /* 0x5a1e */ ZFS_IOC_INJECT_LIST_NEXT, /* 0x5a1f */ ZFS_IOC_ERROR_LOG, /* 0x5a20 */ ZFS_IOC_CLEAR, /* 0x5a21 */ ZFS_IOC_PROMOTE, /* 0x5a22 */ ZFS_IOC_SNAPSHOT, /* 0x5a23 */ ZFS_IOC_DSOBJ_TO_DSNAME, /* 0x5a24 */ ZFS_IOC_OBJ_TO_PATH, /* 0x5a25 */ ZFS_IOC_POOL_SET_PROPS, /* 0x5a26 */ ZFS_IOC_POOL_GET_PROPS, /* 0x5a27 */ ZFS_IOC_SET_FSACL, /* 0x5a28 */ ZFS_IOC_GET_FSACL, /* 0x5a29 */ ZFS_IOC_SHARE, /* 0x5a2a */ ZFS_IOC_INHERIT_PROP, /* 0x5a2b */ ZFS_IOC_SMB_ACL, /* 0x5a2c */ ZFS_IOC_USERSPACE_ONE, /* 0x5a2d */ ZFS_IOC_USERSPACE_MANY, /* 0x5a2e */ ZFS_IOC_USERSPACE_UPGRADE, /* 0x5a2f */ ZFS_IOC_HOLD, /* 0x5a30 */ ZFS_IOC_RELEASE, /* 0x5a31 */ ZFS_IOC_GET_HOLDS, /* 0x5a32 */ ZFS_IOC_OBJSET_RECVD_PROPS, /* 0x5a33 */ ZFS_IOC_VDEV_SPLIT, /* 0x5a34 */ ZFS_IOC_NEXT_OBJ, /* 0x5a35 */ ZFS_IOC_DIFF, /* 0x5a36 */ ZFS_IOC_TMP_SNAPSHOT, /* 0x5a37 */ ZFS_IOC_OBJ_TO_STATS, /* 0x5a38 */ ZFS_IOC_SPACE_WRITTEN, /* 0x5a39 */ ZFS_IOC_SPACE_SNAPS, /* 0x5a3a */ ZFS_IOC_DESTROY_SNAPS, /* 0x5a3b */ ZFS_IOC_POOL_REGUID, /* 0x5a3c */ ZFS_IOC_POOL_REOPEN, /* 0x5a3d */ ZFS_IOC_SEND_PROGRESS, /* 0x5a3e */ ZFS_IOC_LOG_HISTORY, /* 0x5a3f */ ZFS_IOC_SEND_NEW, /* 0x5a40 */ ZFS_IOC_SEND_SPACE, /* 0x5a41 */ ZFS_IOC_CLONE, /* 0x5a42 */ ZFS_IOC_BOOKMARK, /* 0x5a43 */ ZFS_IOC_GET_BOOKMARKS, /* 0x5a44 */ ZFS_IOC_DESTROY_BOOKMARKS, /* 0x5a45 */ ZFS_IOC_RECV_NEW, /* 0x5a46 */ ZFS_IOC_POOL_SYNC, /* 0x5a47 */ ZFS_IOC_CHANNEL_PROGRAM, /* 0x5a48 */ ZFS_IOC_LOAD_KEY, /* 0x5a49 */ ZFS_IOC_UNLOAD_KEY, /* 0x5a4a */ ZFS_IOC_CHANGE_KEY, /* 0x5a4b */ ZFS_IOC_REMAP, /* 0x5a4c */ ZFS_IOC_POOL_CHECKPOINT, /* 0x5a4d */ ZFS_IOC_POOL_DISCARD_CHECKPOINT, /* 0x5a4e */ ZFS_IOC_POOL_INITIALIZE, /* 0x5a4f */ ZFS_IOC_POOL_TRIM, /* 0x5a50 */ ZFS_IOC_REDACT, /* 0x5a51 */ ZFS_IOC_GET_BOOKMARK_PROPS, /* 0x5a52 */ ZFS_IOC_WAIT, /* 0x5a53 */ ZFS_IOC_WAIT_FS, /* 0x5a54 */ ZFS_IOC_VDEV_GET_PROPS, /* 0x5a55 */ ZFS_IOC_VDEV_SET_PROPS, /* 0x5a56 */ /* * Per-platform (Optional) - 8/128 numbers reserved. */ ZFS_IOC_PLATFORM = ZFS_IOC_FIRST + 0x80, ZFS_IOC_EVENTS_NEXT, /* 0x81 (Linux) */ ZFS_IOC_EVENTS_CLEAR, /* 0x82 (Linux) */ ZFS_IOC_EVENTS_SEEK, /* 0x83 (Linux) */ ZFS_IOC_NEXTBOOT, /* 0x84 (FreeBSD) */ ZFS_IOC_JAIL, /* 0x85 (FreeBSD) */ ZFS_IOC_USERNS_ATTACH = ZFS_IOC_JAIL, /* 0x85 (Linux) */ ZFS_IOC_UNJAIL, /* 0x86 (FreeBSD) */ ZFS_IOC_USERNS_DETACH = ZFS_IOC_UNJAIL, /* 0x86 (Linux) */ ZFS_IOC_SET_BOOTENV, /* 0x87 */ ZFS_IOC_GET_BOOTENV, /* 0x88 */ ZFS_IOC_LAST } zfs_ioc_t; /* * zvol ioctl to get dataset name */ #define BLKZNAME _IOR(0x12, 125, char[ZFS_MAX_DATASET_NAME_LEN]) #ifdef __linux__ /* * IOCTLs to update and retrieve additional file level attributes on * Linux. */ #define ZFS_IOC_GETDOSFLAGS _IOR(0x83, 1, uint64_t) #define ZFS_IOC_SETDOSFLAGS _IOW(0x83, 2, uint64_t) /* * Additional file level attributes, that are stored * in the upper half of z_pflags */ #define ZFS_READONLY 0x0000000100000000ull #define ZFS_HIDDEN 0x0000000200000000ull #define ZFS_SYSTEM 0x0000000400000000ull #define ZFS_ARCHIVE 0x0000000800000000ull #define ZFS_IMMUTABLE 0x0000001000000000ull #define ZFS_NOUNLINK 0x0000002000000000ull #define ZFS_APPENDONLY 0x0000004000000000ull #define ZFS_NODUMP 0x0000008000000000ull #define ZFS_OPAQUE 0x0000010000000000ull #define ZFS_AV_QUARANTINED 0x0000020000000000ull #define ZFS_AV_MODIFIED 0x0000040000000000ull #define ZFS_REPARSE 0x0000080000000000ull #define ZFS_OFFLINE 0x0000100000000000ull #define ZFS_SPARSE 0x0000200000000000ull #define ZFS_DOS_FL_USER_VISIBLE (ZFS_IMMUTABLE | ZFS_APPENDONLY | \ ZFS_NOUNLINK | ZFS_ARCHIVE | ZFS_NODUMP | ZFS_SYSTEM | \ ZFS_HIDDEN | ZFS_READONLY | ZFS_REPARSE | ZFS_OFFLINE | \ ZFS_SPARSE) #endif /* * ZFS-specific error codes used for returning descriptive errors * to the userland through zfs ioctls. * * The enum implicitly includes all the error codes from errno.h. * New code should use and extend this enum for errors that are * not described precisely by generic errno codes. * * These numbers should not change over time. New entries should be appended. * * (Keep in sync with contrib/pyzfs/libzfs_core/_constants.py) */ typedef enum { ZFS_ERR_CHECKPOINT_EXISTS = 1024, ZFS_ERR_DISCARDING_CHECKPOINT, ZFS_ERR_NO_CHECKPOINT, ZFS_ERR_DEVRM_IN_PROGRESS, ZFS_ERR_VDEV_TOO_BIG, ZFS_ERR_IOC_CMD_UNAVAIL, ZFS_ERR_IOC_ARG_UNAVAIL, ZFS_ERR_IOC_ARG_REQUIRED, ZFS_ERR_IOC_ARG_BADTYPE, ZFS_ERR_WRONG_PARENT, ZFS_ERR_FROM_IVSET_GUID_MISSING, ZFS_ERR_FROM_IVSET_GUID_MISMATCH, ZFS_ERR_SPILL_BLOCK_FLAG_MISSING, ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE, ZFS_ERR_EXPORT_IN_PROGRESS, ZFS_ERR_BOOKMARK_SOURCE_NOT_ANCESTOR, ZFS_ERR_STREAM_TRUNCATED, ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH, ZFS_ERR_RESILVER_IN_PROGRESS, ZFS_ERR_REBUILD_IN_PROGRESS, ZFS_ERR_BADPROP, ZFS_ERR_VDEV_NOTSUP, ZFS_ERR_NOT_USER_NAMESPACE, ZFS_ERR_RESUME_EXISTS, ZFS_ERR_CRYPTO_NOTSUP, } zfs_errno_t; /* * Internal SPA load state. Used by FMA diagnosis engine. */ typedef enum { SPA_LOAD_NONE, /* no load in progress */ SPA_LOAD_OPEN, /* normal open */ SPA_LOAD_IMPORT, /* import in progress */ SPA_LOAD_TRYIMPORT, /* tryimport in progress */ SPA_LOAD_RECOVER, /* recovery requested */ SPA_LOAD_ERROR, /* load failed */ SPA_LOAD_CREATE /* creation in progress */ } spa_load_state_t; typedef enum { ZPOOL_WAIT_CKPT_DISCARD, ZPOOL_WAIT_FREE, ZPOOL_WAIT_INITIALIZE, ZPOOL_WAIT_REPLACE, ZPOOL_WAIT_REMOVE, ZPOOL_WAIT_RESILVER, ZPOOL_WAIT_SCRUB, ZPOOL_WAIT_TRIM, ZPOOL_WAIT_NUM_ACTIVITIES } zpool_wait_activity_t; typedef enum { ZFS_WAIT_DELETEQ, ZFS_WAIT_NUM_ACTIVITIES } zfs_wait_activity_t; /* * Bookmark name values. */ #define ZPOOL_ERR_LIST "error list" #define ZPOOL_ERR_DATASET "dataset" #define ZPOOL_ERR_OBJECT "object" #define HIS_MAX_RECORD_LEN (MAXPATHLEN + MAXPATHLEN + 1) /* * The following are names used in the nvlist describing * the pool's history log. */ #define ZPOOL_HIST_RECORD "history record" #define ZPOOL_HIST_TIME "history time" #define ZPOOL_HIST_CMD "history command" #define ZPOOL_HIST_WHO "history who" #define ZPOOL_HIST_ZONE "history zone" #define ZPOOL_HIST_HOST "history hostname" #define ZPOOL_HIST_TXG "history txg" #define ZPOOL_HIST_INT_EVENT "history internal event" #define ZPOOL_HIST_INT_STR "history internal str" #define ZPOOL_HIST_INT_NAME "internal_name" #define ZPOOL_HIST_IOCTL "ioctl" #define ZPOOL_HIST_INPUT_NVL "in_nvl" #define ZPOOL_HIST_OUTPUT_NVL "out_nvl" #define ZPOOL_HIST_OUTPUT_SIZE "out_size" #define ZPOOL_HIST_DSNAME "dsname" #define ZPOOL_HIST_DSID "dsid" #define ZPOOL_HIST_ERRNO "errno" #define ZPOOL_HIST_ELAPSED_NS "elapsed_ns" /* * Special nvlist name that will not have its args recorded in the pool's * history log. */ #define ZPOOL_HIDDEN_ARGS "hidden_args" /* * The following are names used when invoking ZFS_IOC_POOL_INITIALIZE. */ #define ZPOOL_INITIALIZE_COMMAND "initialize_command" #define ZPOOL_INITIALIZE_VDEVS "initialize_vdevs" /* * The following are names used when invoking ZFS_IOC_POOL_TRIM. */ #define ZPOOL_TRIM_COMMAND "trim_command" #define ZPOOL_TRIM_VDEVS "trim_vdevs" #define ZPOOL_TRIM_RATE "trim_rate" #define ZPOOL_TRIM_SECURE "trim_secure" /* * The following are names used when invoking ZFS_IOC_POOL_WAIT. */ #define ZPOOL_WAIT_ACTIVITY "wait_activity" #define ZPOOL_WAIT_TAG "wait_tag" #define ZPOOL_WAIT_WAITED "wait_waited" /* * The following are names used when invoking ZFS_IOC_VDEV_GET_PROP. */ #define ZPOOL_VDEV_PROPS_GET_VDEV "vdevprops_get_vdev" #define ZPOOL_VDEV_PROPS_GET_PROPS "vdevprops_get_props" /* * The following are names used when invoking ZFS_IOC_VDEV_SET_PROP. */ #define ZPOOL_VDEV_PROPS_SET_VDEV "vdevprops_set_vdev" #define ZPOOL_VDEV_PROPS_SET_PROPS "vdevprops_set_props" /* * The following are names used when invoking ZFS_IOC_WAIT_FS. */ #define ZFS_WAIT_ACTIVITY "wait_activity" #define ZFS_WAIT_WAITED "wait_waited" /* * Flags for ZFS_IOC_VDEV_SET_STATE */ #define ZFS_ONLINE_CHECKREMOVE 0x1 #define ZFS_ONLINE_UNSPARE 0x2 #define ZFS_ONLINE_FORCEFAULT 0x4 #define ZFS_ONLINE_EXPAND 0x8 #define ZFS_ONLINE_SPARE 0x10 #define ZFS_OFFLINE_TEMPORARY 0x1 /* * Flags for ZFS_IOC_POOL_IMPORT */ #define ZFS_IMPORT_NORMAL 0x0 #define ZFS_IMPORT_VERBATIM 0x1 #define ZFS_IMPORT_ANY_HOST 0x2 #define ZFS_IMPORT_MISSING_LOG 0x4 #define ZFS_IMPORT_ONLY 0x8 #define ZFS_IMPORT_TEMP_NAME 0x10 #define ZFS_IMPORT_SKIP_MMP 0x20 #define ZFS_IMPORT_LOAD_KEYS 0x40 #define ZFS_IMPORT_CHECKPOINT 0x80 /* * Channel program argument/return nvlist keys and defaults. */ #define ZCP_ARG_PROGRAM "program" #define ZCP_ARG_ARGLIST "arg" #define ZCP_ARG_SYNC "sync" #define ZCP_ARG_INSTRLIMIT "instrlimit" #define ZCP_ARG_MEMLIMIT "memlimit" #define ZCP_ARG_CLIARGV "argv" #define ZCP_RET_ERROR "error" #define ZCP_RET_RETURN "return" #define ZCP_DEFAULT_INSTRLIMIT (10 * 1000 * 1000) #define ZCP_MAX_INSTRLIMIT (10 * ZCP_DEFAULT_INSTRLIMIT) #define ZCP_DEFAULT_MEMLIMIT (10 * 1024 * 1024) #define ZCP_MAX_MEMLIMIT (10 * ZCP_DEFAULT_MEMLIMIT) /* * Sysevent payload members. ZFS will generate the following sysevents with the * given payloads: * * ESC_ZFS_RESILVER_START * ESC_ZFS_RESILVER_FINISH * * ZFS_EV_POOL_NAME DATA_TYPE_STRING * ZFS_EV_POOL_GUID DATA_TYPE_UINT64 * ZFS_EV_RESILVER_TYPE DATA_TYPE_STRING * * ESC_ZFS_POOL_DESTROY * ESC_ZFS_POOL_REGUID * * ZFS_EV_POOL_NAME DATA_TYPE_STRING * ZFS_EV_POOL_GUID DATA_TYPE_UINT64 * * ESC_ZFS_VDEV_REMOVE * ESC_ZFS_VDEV_CLEAR * ESC_ZFS_VDEV_CHECK * * ZFS_EV_POOL_NAME DATA_TYPE_STRING * ZFS_EV_POOL_GUID DATA_TYPE_UINT64 * ZFS_EV_VDEV_PATH DATA_TYPE_STRING (optional) * ZFS_EV_VDEV_GUID DATA_TYPE_UINT64 * * ESC_ZFS_HISTORY_EVENT * * ZFS_EV_POOL_NAME DATA_TYPE_STRING * ZFS_EV_POOL_GUID DATA_TYPE_UINT64 * ZFS_EV_HIST_TIME DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_CMD DATA_TYPE_STRING (optional) * ZFS_EV_HIST_WHO DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_ZONE DATA_TYPE_STRING (optional) * ZFS_EV_HIST_HOST DATA_TYPE_STRING (optional) * ZFS_EV_HIST_TXG DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_INT_EVENT DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_INT_STR DATA_TYPE_STRING (optional) * ZFS_EV_HIST_INT_NAME DATA_TYPE_STRING (optional) * ZFS_EV_HIST_IOCTL DATA_TYPE_STRING (optional) * ZFS_EV_HIST_DSNAME DATA_TYPE_STRING (optional) * ZFS_EV_HIST_DSID DATA_TYPE_UINT64 (optional) * * The ZFS_EV_HIST_* members will correspond to the ZPOOL_HIST_* members in the * history log nvlist. The keynames will be free of any spaces or other * characters that could be potentially unexpected to consumers of the * sysevents. */ #define ZFS_EV_POOL_NAME "pool_name" #define ZFS_EV_POOL_GUID "pool_guid" #define ZFS_EV_VDEV_PATH "vdev_path" #define ZFS_EV_VDEV_GUID "vdev_guid" #define ZFS_EV_HIST_TIME "history_time" #define ZFS_EV_HIST_CMD "history_command" #define ZFS_EV_HIST_WHO "history_who" #define ZFS_EV_HIST_ZONE "history_zone" #define ZFS_EV_HIST_HOST "history_hostname" #define ZFS_EV_HIST_TXG "history_txg" #define ZFS_EV_HIST_INT_EVENT "history_internal_event" #define ZFS_EV_HIST_INT_STR "history_internal_str" #define ZFS_EV_HIST_INT_NAME "history_internal_name" #define ZFS_EV_HIST_IOCTL "history_ioctl" #define ZFS_EV_HIST_DSNAME "history_dsname" #define ZFS_EV_HIST_DSID "history_dsid" #define ZFS_EV_RESILVER_TYPE "resilver_type" /* * We currently support block sizes from 512 bytes to 16MB. * The benefits of larger blocks, and thus larger IO, need to be weighed * against the cost of COWing a giant block to modify one byte, and the * large latency of reading or writing a large block. * * The recordsize property can not be set larger than zfs_max_recordsize * (default 16MB on 64-bit and 1MB on 32-bit). See the comment near * zfs_max_recordsize in dsl_dataset.c for details. * * Note that although the LSIZE field of the blkptr_t can store sizes up * to 32MB, the dnode's dn_datablkszsec can only store sizes up to * 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB. */ #define SPA_MINBLOCKSHIFT 9 #define SPA_OLD_MAXBLOCKSHIFT 17 #define SPA_MAXBLOCKSHIFT 24 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) #define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) /* supported encryption algorithms */ enum zio_encrypt { ZIO_CRYPT_INHERIT = 0, ZIO_CRYPT_ON, ZIO_CRYPT_OFF, ZIO_CRYPT_AES_128_CCM, ZIO_CRYPT_AES_192_CCM, ZIO_CRYPT_AES_256_CCM, ZIO_CRYPT_AES_128_GCM, ZIO_CRYPT_AES_192_GCM, ZIO_CRYPT_AES_256_GCM, ZIO_CRYPT_FUNCTIONS }; #define ZIO_CRYPT_ON_VALUE ZIO_CRYPT_AES_256_GCM #define ZIO_CRYPT_DEFAULT ZIO_CRYPT_OFF /* * xattr namespace prefixes. These are forbidden in xattr names. * * For cross-platform compatibility, xattrs in the user namespace should not be * prefixed with the namespace name, but for backwards compatibility with older * ZFS on Linux versions we do prefix the namespace. */ #define ZFS_XA_NS_FREEBSD_PREFIX "freebsd:" #define ZFS_XA_NS_FREEBSD_PREFIX_LEN strlen("freebsd:") #define ZFS_XA_NS_LINUX_SECURITY_PREFIX "security." #define ZFS_XA_NS_LINUX_SECURITY_PREFIX_LEN strlen("security.") #define ZFS_XA_NS_LINUX_SYSTEM_PREFIX "system." #define ZFS_XA_NS_LINUX_SYSTEM_PREFIX_LEN strlen("system.") #define ZFS_XA_NS_LINUX_TRUSTED_PREFIX "trusted." #define ZFS_XA_NS_LINUX_TRUSTED_PREFIX_LEN strlen("trusted.") #define ZFS_XA_NS_LINUX_USER_PREFIX "user." #define ZFS_XA_NS_LINUX_USER_PREFIX_LEN strlen("user.") #define ZFS_XA_NS_PREFIX_MATCH(ns, name) \ (strncmp(name, ZFS_XA_NS_##ns##_PREFIX, \ ZFS_XA_NS_##ns##_PREFIX_LEN) == 0) #define ZFS_XA_NS_PREFIX_FORBIDDEN(name) \ (ZFS_XA_NS_PREFIX_MATCH(FREEBSD, name) || \ ZFS_XA_NS_PREFIX_MATCH(LINUX_SECURITY, name) || \ ZFS_XA_NS_PREFIX_MATCH(LINUX_SYSTEM, name) || \ ZFS_XA_NS_PREFIX_MATCH(LINUX_TRUSTED, name) || \ ZFS_XA_NS_PREFIX_MATCH(LINUX_USER, name)) #ifdef __cplusplus } #endif #endif /* _SYS_FS_ZFS_H */ diff --git a/include/sys/spa_impl.h b/include/sys/spa_impl.h index cde08ec9b0f4..8ccd58b584ca 100644 --- a/include/sys/spa_impl.h +++ b/include/sys/spa_impl.h @@ -1,468 +1,469 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2019 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2016 Actifio, Inc. All rights reserved. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2019 Datto Inc. */ #ifndef _SYS_SPA_IMPL_H #define _SYS_SPA_IMPL_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif typedef struct spa_alloc { kmutex_t spaa_lock; avl_tree_t spaa_tree; } ____cacheline_aligned spa_alloc_t; typedef struct spa_error_entry { zbookmark_phys_t se_bookmark; char *se_name; avl_node_t se_avl; } spa_error_entry_t; typedef struct spa_history_phys { uint64_t sh_pool_create_len; /* ending offset of zpool create */ uint64_t sh_phys_max_off; /* physical EOF */ uint64_t sh_bof; /* logical BOF */ uint64_t sh_eof; /* logical EOF */ uint64_t sh_records_lost; /* num of records overwritten */ } spa_history_phys_t; /* * All members must be uint64_t, for byteswap purposes. */ typedef struct spa_removing_phys { uint64_t sr_state; /* dsl_scan_state_t */ /* * The vdev ID that we most recently attempted to remove, * or -1 if no removal has been attempted. */ uint64_t sr_removing_vdev; /* * The vdev ID that we most recently successfully removed, * or -1 if no devices have been removed. */ uint64_t sr_prev_indirect_vdev; uint64_t sr_start_time; uint64_t sr_end_time; /* * Note that we can not use the space map's or indirect mapping's * accounting as a substitute for these values, because we need to * count frees of not-yet-copied data as though it did the copy. * Otherwise, we could get into a situation where copied > to_copy, * or we complete before copied == to_copy. */ uint64_t sr_to_copy; /* bytes that need to be copied */ uint64_t sr_copied; /* bytes that have been copied or freed */ } spa_removing_phys_t; /* * This struct is stored as an entry in the DMU_POOL_DIRECTORY_OBJECT * (with key DMU_POOL_CONDENSING_INDIRECT). It is present if a condense * of an indirect vdev's mapping object is in progress. */ typedef struct spa_condensing_indirect_phys { /* * The vdev ID of the indirect vdev whose indirect mapping is * being condensed. */ uint64_t scip_vdev; /* * The vdev's old obsolete spacemap. This spacemap's contents are * being integrated into the new mapping. */ uint64_t scip_prev_obsolete_sm_object; /* * The new mapping object that is being created. */ uint64_t scip_next_mapping_object; } spa_condensing_indirect_phys_t; struct spa_aux_vdev { uint64_t sav_object; /* MOS object for device list */ nvlist_t *sav_config; /* cached device config */ vdev_t **sav_vdevs; /* devices */ int sav_count; /* number devices */ boolean_t sav_sync; /* sync the device list */ nvlist_t **sav_pending; /* pending device additions */ uint_t sav_npending; /* # pending devices */ }; typedef struct spa_config_lock { kmutex_t scl_lock; kthread_t *scl_writer; int scl_write_wanted; int scl_count; kcondvar_t scl_cv; } ____cacheline_aligned spa_config_lock_t; typedef struct spa_config_dirent { list_node_t scd_link; char *scd_path; } spa_config_dirent_t; typedef enum zio_taskq_type { ZIO_TASKQ_ISSUE = 0, ZIO_TASKQ_ISSUE_HIGH, ZIO_TASKQ_INTERRUPT, ZIO_TASKQ_INTERRUPT_HIGH, ZIO_TASKQ_TYPES } zio_taskq_type_t; /* * State machine for the zpool-poolname process. The states transitions * are done as follows: * * From To Routine * PROC_NONE -> PROC_CREATED spa_activate() * PROC_CREATED -> PROC_ACTIVE spa_thread() * PROC_ACTIVE -> PROC_DEACTIVATE spa_deactivate() * PROC_DEACTIVATE -> PROC_GONE spa_thread() * PROC_GONE -> PROC_NONE spa_deactivate() */ typedef enum spa_proc_state { SPA_PROC_NONE, /* spa_proc = &p0, no process created */ SPA_PROC_CREATED, /* spa_activate() has proc, is waiting */ SPA_PROC_ACTIVE, /* taskqs created, spa_proc set */ SPA_PROC_DEACTIVATE, /* spa_deactivate() requests process exit */ SPA_PROC_GONE /* spa_thread() is exiting, spa_proc = &p0 */ } spa_proc_state_t; typedef struct spa_taskqs { uint_t stqs_count; taskq_t **stqs_taskq; } spa_taskqs_t; typedef enum spa_all_vdev_zap_action { AVZ_ACTION_NONE = 0, AVZ_ACTION_DESTROY, /* Destroy all per-vdev ZAPs and the AVZ. */ AVZ_ACTION_REBUILD, /* Populate the new AVZ, see spa_avz_rebuild */ AVZ_ACTION_INITIALIZE } spa_avz_action_t; typedef enum spa_config_source { SPA_CONFIG_SRC_NONE = 0, SPA_CONFIG_SRC_SCAN, /* scan of path (default: /dev/dsk) */ SPA_CONFIG_SRC_CACHEFILE, /* any cachefile */ SPA_CONFIG_SRC_TRYIMPORT, /* returned from call to tryimport */ SPA_CONFIG_SRC_SPLIT, /* new pool in a pool split */ SPA_CONFIG_SRC_MOS /* MOS, but not always from right txg */ } spa_config_source_t; struct spa { /* * Fields protected by spa_namespace_lock. */ char spa_name[ZFS_MAX_DATASET_NAME_LEN]; /* pool name */ char *spa_comment; /* comment */ avl_node_t spa_avl; /* node in spa_namespace_avl */ nvlist_t *spa_config; /* last synced config */ nvlist_t *spa_config_syncing; /* currently syncing config */ nvlist_t *spa_config_splitting; /* config for splitting */ nvlist_t *spa_load_info; /* info and errors from load */ uint64_t spa_config_txg; /* txg of last config change */ uint32_t spa_sync_pass; /* iterate-to-convergence */ pool_state_t spa_state; /* pool state */ int spa_inject_ref; /* injection references */ uint8_t spa_sync_on; /* sync threads are running */ spa_load_state_t spa_load_state; /* current load operation */ boolean_t spa_indirect_vdevs_loaded; /* mappings loaded? */ boolean_t spa_trust_config; /* do we trust vdev tree? */ boolean_t spa_is_splitting; /* in the middle of a split? */ spa_config_source_t spa_config_source; /* where config comes from? */ uint64_t spa_import_flags; /* import specific flags */ spa_taskqs_t spa_zio_taskq[ZIO_TYPES][ZIO_TASKQ_TYPES]; dsl_pool_t *spa_dsl_pool; boolean_t spa_is_initializing; /* true while opening pool */ boolean_t spa_is_exporting; /* true while exporting pool */ metaslab_class_t *spa_normal_class; /* normal data class */ metaslab_class_t *spa_log_class; /* intent log data class */ metaslab_class_t *spa_embedded_log_class; /* log on normal vdevs */ metaslab_class_t *spa_special_class; /* special allocation class */ metaslab_class_t *spa_dedup_class; /* dedup allocation class */ uint64_t spa_first_txg; /* first txg after spa_open() */ uint64_t spa_final_txg; /* txg of export/destroy */ uint64_t spa_freeze_txg; /* freeze pool at this txg */ uint64_t spa_load_max_txg; /* best initial ub_txg */ uint64_t spa_claim_max_txg; /* highest claimed birth txg */ inode_timespec_t spa_loaded_ts; /* 1st successful open time */ objset_t *spa_meta_objset; /* copy of dp->dp_meta_objset */ kmutex_t spa_evicting_os_lock; /* Evicting objset list lock */ list_t spa_evicting_os_list; /* Objsets being evicted. */ kcondvar_t spa_evicting_os_cv; /* Objset Eviction Completion */ txg_list_t spa_vdev_txg_list; /* per-txg dirty vdev list */ vdev_t *spa_root_vdev; /* top-level vdev container */ uint64_t spa_min_ashift; /* of vdevs in normal class */ uint64_t spa_max_ashift; /* of vdevs in normal class */ uint64_t spa_min_alloc; /* of vdevs in normal class */ uint64_t spa_config_guid; /* config pool guid */ uint64_t spa_load_guid; /* spa_load initialized guid */ uint64_t spa_last_synced_guid; /* last synced guid */ list_t spa_config_dirty_list; /* vdevs with dirty config */ list_t spa_state_dirty_list; /* vdevs with dirty state */ /* * spa_allocs is an array, whose lengths is stored in spa_alloc_count. * There is one tree and one lock for each allocator, to help improve * allocation performance in write-heavy workloads. */ spa_alloc_t *spa_allocs; int spa_alloc_count; spa_aux_vdev_t spa_spares; /* hot spares */ spa_aux_vdev_t spa_l2cache; /* L2ARC cache devices */ nvlist_t *spa_label_features; /* Features for reading MOS */ uint64_t spa_config_object; /* MOS object for pool config */ uint64_t spa_config_generation; /* config generation number */ uint64_t spa_syncing_txg; /* txg currently syncing */ bpobj_t spa_deferred_bpobj; /* deferred-free bplist */ bplist_t spa_free_bplist[TXG_SIZE]; /* bplist of stuff to free */ zio_cksum_salt_t spa_cksum_salt; /* secret salt for cksum */ /* checksum context templates */ kmutex_t spa_cksum_tmpls_lock; void *spa_cksum_tmpls[ZIO_CHECKSUM_FUNCTIONS]; uberblock_t spa_ubsync; /* last synced uberblock */ uberblock_t spa_uberblock; /* current uberblock */ boolean_t spa_extreme_rewind; /* rewind past deferred frees */ kmutex_t spa_scrub_lock; /* resilver/scrub lock */ uint64_t spa_scrub_inflight; /* in-flight scrub bytes */ /* in-flight verification bytes */ uint64_t spa_load_verify_bytes; kcondvar_t spa_scrub_io_cv; /* scrub I/O completion */ uint8_t spa_scrub_active; /* active or suspended? */ uint8_t spa_scrub_type; /* type of scrub we're doing */ uint8_t spa_scrub_finished; /* indicator to rotate logs */ uint8_t spa_scrub_started; /* started since last boot */ uint8_t spa_scrub_reopen; /* scrub doing vdev_reopen */ uint64_t spa_scan_pass_start; /* start time per pass/reboot */ uint64_t spa_scan_pass_scrub_pause; /* scrub pause time */ uint64_t spa_scan_pass_scrub_spent_paused; /* total paused */ uint64_t spa_scan_pass_exam; /* examined bytes per pass */ uint64_t spa_scan_pass_issued; /* issued bytes per pass */ /* * We are in the middle of a resilver, and another resilver * is needed once this one completes. This is set iff any * vdev_resilver_deferred is set. */ boolean_t spa_resilver_deferred; kmutex_t spa_async_lock; /* protect async state */ kthread_t *spa_async_thread; /* thread doing async task */ int spa_async_suspended; /* async tasks suspended */ kcondvar_t spa_async_cv; /* wait for thread_exit() */ uint16_t spa_async_tasks; /* async task mask */ uint64_t spa_missing_tvds; /* unopenable tvds on load */ uint64_t spa_missing_tvds_allowed; /* allow loading spa? */ uint64_t spa_nonallocating_dspace; spa_removing_phys_t spa_removing_phys; spa_vdev_removal_t *spa_vdev_removal; spa_condensing_indirect_phys_t spa_condensing_indirect_phys; spa_condensing_indirect_t *spa_condensing_indirect; zthr_t *spa_condense_zthr; /* zthr doing condense. */ uint64_t spa_checkpoint_txg; /* the txg of the checkpoint */ spa_checkpoint_info_t spa_checkpoint_info; /* checkpoint accounting */ zthr_t *spa_checkpoint_discard_zthr; space_map_t *spa_syncing_log_sm; /* current log space map */ avl_tree_t spa_sm_logs_by_txg; kmutex_t spa_flushed_ms_lock; /* for metaslabs_by_flushed */ avl_tree_t spa_metaslabs_by_flushed; spa_unflushed_stats_t spa_unflushed_stats; list_t spa_log_summary; uint64_t spa_log_flushall_txg; zthr_t *spa_livelist_delete_zthr; /* deleting livelists */ zthr_t *spa_livelist_condense_zthr; /* condensing livelists */ uint64_t spa_livelists_to_delete; /* set of livelists to free */ livelist_condense_entry_t spa_to_condense; /* next to condense */ char *spa_root; /* alternate root directory */ uint64_t spa_ena; /* spa-wide ereport ENA */ int spa_last_open_failed; /* error if last open failed */ uint64_t spa_last_ubsync_txg; /* "best" uberblock txg */ uint64_t spa_last_ubsync_txg_ts; /* timestamp from that ub */ uint64_t spa_load_txg; /* ub txg that loaded */ uint64_t spa_load_txg_ts; /* timestamp from that ub */ uint64_t spa_load_meta_errors; /* verify metadata err count */ uint64_t spa_load_data_errors; /* verify data err count */ uint64_t spa_verify_min_txg; /* start txg of verify scrub */ kmutex_t spa_errlog_lock; /* error log lock */ uint64_t spa_errlog_last; /* last error log object */ uint64_t spa_errlog_scrub; /* scrub error log object */ kmutex_t spa_errlist_lock; /* error list/ereport lock */ avl_tree_t spa_errlist_last; /* last error list */ avl_tree_t spa_errlist_scrub; /* scrub error list */ avl_tree_t spa_errlist_healed; /* list of healed blocks */ uint64_t spa_deflate; /* should we deflate? */ uint64_t spa_history; /* history object */ kmutex_t spa_history_lock; /* history lock */ vdev_t *spa_pending_vdev; /* pending vdev additions */ kmutex_t spa_props_lock; /* property lock */ uint64_t spa_pool_props_object; /* object for properties */ uint64_t spa_bootfs; /* default boot filesystem */ uint64_t spa_failmode; /* failure mode for the pool */ uint64_t spa_deadman_failmode; /* failure mode for deadman */ uint64_t spa_delegation; /* delegation on/off */ list_t spa_config_list; /* previous cache file(s) */ /* per-CPU array of root of async I/O: */ zio_t **spa_async_zio_root; zio_t *spa_suspend_zio_root; /* root of all suspended I/O */ zio_t *spa_txg_zio[TXG_SIZE]; /* spa_sync() waits for this */ kmutex_t spa_suspend_lock; /* protects suspend_zio_root */ kcondvar_t spa_suspend_cv; /* notification of resume */ zio_suspend_reason_t spa_suspended; /* pool is suspended */ uint8_t spa_claiming; /* pool is doing zil_claim() */ boolean_t spa_is_root; /* pool is root */ int spa_minref; /* num refs when first opened */ spa_mode_t spa_mode; /* SPA_MODE_{READ|WRITE} */ boolean_t spa_read_spacemaps; /* spacemaps available if ro */ spa_log_state_t spa_log_state; /* log state */ uint64_t spa_autoexpand; /* lun expansion on/off */ ddt_t *spa_ddt[ZIO_CHECKSUM_FUNCTIONS]; /* in-core DDTs */ uint64_t spa_ddt_stat_object; /* DDT statistics */ uint64_t spa_dedup_dspace; /* Cache get_dedup_dspace() */ uint64_t spa_dedup_checksum; /* default dedup checksum */ uint64_t spa_dspace; /* dspace in normal class */ + struct brt *spa_brt; /* in-core BRT */ kmutex_t spa_vdev_top_lock; /* dueling offline/remove */ kmutex_t spa_proc_lock; /* protects spa_proc* */ kcondvar_t spa_proc_cv; /* spa_proc_state transitions */ spa_proc_state_t spa_proc_state; /* see definition */ proc_t *spa_proc; /* "zpool-poolname" process */ uintptr_t spa_did; /* if procp != p0, did of t1 */ boolean_t spa_autoreplace; /* autoreplace set in open */ int spa_vdev_locks; /* locks grabbed */ uint64_t spa_creation_version; /* version at pool creation */ uint64_t spa_prev_software_version; /* See ub_software_version */ uint64_t spa_feat_for_write_obj; /* required to write to pool */ uint64_t spa_feat_for_read_obj; /* required to read from pool */ uint64_t spa_feat_desc_obj; /* Feature descriptions */ uint64_t spa_feat_enabled_txg_obj; /* Feature enabled txg */ kmutex_t spa_feat_stats_lock; /* protects spa_feat_stats */ nvlist_t *spa_feat_stats; /* Cache of enabled features */ /* cache feature refcounts */ uint64_t spa_feat_refcount_cache[SPA_FEATURES]; taskqid_t spa_deadman_tqid; /* Task id */ uint64_t spa_deadman_calls; /* number of deadman calls */ hrtime_t spa_sync_starttime; /* starting time of spa_sync */ uint64_t spa_deadman_synctime; /* deadman sync expiration */ uint64_t spa_deadman_ziotime; /* deadman zio expiration */ uint64_t spa_all_vdev_zaps; /* ZAP of per-vd ZAP obj #s */ spa_avz_action_t spa_avz_action; /* destroy/rebuild AVZ? */ uint64_t spa_autotrim; /* automatic background trim? */ uint64_t spa_errata; /* errata issues detected */ spa_stats_t spa_stats; /* assorted spa statistics */ spa_keystore_t spa_keystore; /* loaded crypto keys */ /* arc_memory_throttle() parameters during low memory condition */ uint64_t spa_lowmem_page_load; /* memory load during txg */ uint64_t spa_lowmem_last_txg; /* txg window start */ hrtime_t spa_ccw_fail_time; /* Conf cache write fail time */ taskq_t *spa_zvol_taskq; /* Taskq for minor management */ taskq_t *spa_prefetch_taskq; /* Taskq for prefetch threads */ uint64_t spa_multihost; /* multihost aware (mmp) */ mmp_thread_t spa_mmp; /* multihost mmp thread */ list_t spa_leaf_list; /* list of leaf vdevs */ uint64_t spa_leaf_list_gen; /* track leaf_list changes */ uint32_t spa_hostid; /* cached system hostid */ /* synchronization for threads in spa_wait */ kmutex_t spa_activities_lock; kcondvar_t spa_activities_cv; kcondvar_t spa_waiters_cv; int spa_waiters; /* number of waiting threads */ boolean_t spa_waiters_cancel; /* waiters should return */ char *spa_compatibility; /* compatibility file(s) */ /* * spa_refcount & spa_config_lock must be the last elements * because zfs_refcount_t changes size based on compilation options. * In order for the MDB module to function correctly, the other * fields must remain in the same location. */ spa_config_lock_t spa_config_lock[SCL_LOCKS]; /* config changes */ zfs_refcount_t spa_refcount; /* number of opens */ taskq_t *spa_upgrade_taskq; /* taskq for upgrade jobs */ }; extern char *spa_config_path; extern const char *zfs_deadman_failmode; extern uint_t spa_slop_shift; extern void spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent); extern void spa_taskq_dispatch_sync(spa_t *, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags); extern void spa_load_spares(spa_t *spa); extern void spa_load_l2cache(spa_t *spa); extern sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name); extern void spa_event_post(sysevent_t *ev); extern int param_set_deadman_failmode_common(const char *val); extern void spa_set_deadman_synctime(hrtime_t ns); extern void spa_set_deadman_ziotime(hrtime_t ns); extern const char *spa_history_zone(void); #ifdef __cplusplus } #endif #endif /* _SYS_SPA_IMPL_H */ diff --git a/include/sys/zfs_debug.h b/include/sys/zfs_debug.h index 481209b241aa..a1dfef1d89ff 100644 --- a/include/sys/zfs_debug.h +++ b/include/sys/zfs_debug.h @@ -1,112 +1,113 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2019 by Delphix. All rights reserved. */ #ifndef _SYS_ZFS_DEBUG_H #define _SYS_ZFS_DEBUG_H #ifdef __cplusplus extern "C" { #endif #ifndef TRUE #define TRUE 1 #endif #ifndef FALSE #define FALSE 0 #endif extern int zfs_flags; extern int zfs_recover; extern int zfs_free_leak_on_eio; extern int zfs_dbgmsg_enable; #define ZFS_DEBUG_DPRINTF (1 << 0) #define ZFS_DEBUG_DBUF_VERIFY (1 << 1) #define ZFS_DEBUG_DNODE_VERIFY (1 << 2) #define ZFS_DEBUG_SNAPNAMES (1 << 3) #define ZFS_DEBUG_MODIFY (1 << 4) /* 1<<5 was previously used, try not to reuse */ #define ZFS_DEBUG_ZIO_FREE (1 << 6) #define ZFS_DEBUG_HISTOGRAM_VERIFY (1 << 7) #define ZFS_DEBUG_METASLAB_VERIFY (1 << 8) #define ZFS_DEBUG_SET_ERROR (1 << 9) #define ZFS_DEBUG_INDIRECT_REMAP (1 << 10) #define ZFS_DEBUG_TRIM (1 << 11) #define ZFS_DEBUG_LOG_SPACEMAP (1 << 12) #define ZFS_DEBUG_METASLAB_ALLOC (1 << 13) +#define ZFS_DEBUG_BRT (1 << 14) extern void __set_error(const char *file, const char *func, int line, int err); extern void __zfs_dbgmsg(char *buf); extern void __dprintf(boolean_t dprint, const char *file, const char *func, int line, const char *fmt, ...) __attribute__((format(printf, 5, 6))); /* * Some general principles for using zfs_dbgmsg(): * 1. We don't want to pollute the log with typically-irrelevant messages, * so don't print too many messages in the "normal" code path - O(1) * per txg. * 2. We want to know for sure what happened, so make the message specific * (e.g. *which* thing am I operating on). * 3. Do print a message when something unusual or unexpected happens * (e.g. error cases). * 4. Print a message when making user-initiated on-disk changes. * * Note that besides principle 1, another reason that we don't want to * use zfs_dbgmsg in high-frequency routines is the potential impact * that it can have on performance. */ #define zfs_dbgmsg(...) \ if (zfs_dbgmsg_enable) \ __dprintf(B_FALSE, __FILE__, __func__, __LINE__, __VA_ARGS__) #ifdef ZFS_DEBUG /* * To enable this: * * $ echo 1 >/sys/module/zfs/parameters/zfs_flags */ #define dprintf(...) \ if (zfs_flags & ZFS_DEBUG_DPRINTF) \ __dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__) #else #define dprintf(...) ((void)0) #endif /* ZFS_DEBUG */ extern void zfs_panic_recover(const char *fmt, ...); extern void zfs_dbgmsg_init(void); extern void zfs_dbgmsg_fini(void); #ifndef _KERNEL extern int dprintf_find_string(const char *string); extern void zfs_dbgmsg_print(const char *tag); #endif #ifdef __cplusplus } #endif #endif /* _SYS_ZFS_DEBUG_H */ diff --git a/include/sys/zfs_vnops.h b/include/sys/zfs_vnops.h index edff8f681dd4..5da103f17783 100644 --- a/include/sys/zfs_vnops.h +++ b/include/sys/zfs_vnops.h @@ -1,55 +1,59 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. */ #ifndef _SYS_FS_ZFS_VNOPS_H #define _SYS_FS_ZFS_VNOPS_H #include extern int zfs_fsync(znode_t *, int, cred_t *); extern int zfs_read(znode_t *, zfs_uio_t *, int, cred_t *); extern int zfs_write(znode_t *, zfs_uio_t *, int, cred_t *); extern int zfs_holey(znode_t *, ulong_t, loff_t *); extern int zfs_access(znode_t *, int, int, cred_t *); +extern int zfs_clone_range(znode_t *, uint64_t *, znode_t *, uint64_t *, + uint64_t *, cred_t *); +extern int zfs_clone_range_replay(znode_t *, uint64_t, uint64_t, uint64_t, + const blkptr_t *, size_t); extern int zfs_getsecattr(znode_t *, vsecattr_t *, int, cred_t *); extern int zfs_setsecattr(znode_t *, vsecattr_t *, int, cred_t *); extern int mappedread(znode_t *, int, zfs_uio_t *); extern int mappedread_sf(znode_t *, int, zfs_uio_t *); extern void update_pages(znode_t *, int64_t, int, objset_t *); /* * Platform code that asynchronously drops zp's inode / vnode_t. * * Asynchronous dropping ensures that the caller will never drop the * last reference on an inode / vnode_t in the current context. * Doing so while holding open a tx could result in a deadlock if * the platform calls into filesystem again in the implementation * of inode / vnode_t dropping (e.g. call from iput_final()). */ extern void zfs_zrele_async(znode_t *zp); extern zil_get_data_t zfs_get_data; #endif diff --git a/include/sys/zfs_znode.h b/include/sys/zfs_znode.h index fcee55b0199d..012e7403e2a6 100644 --- a/include/sys/zfs_znode.h +++ b/include/sys/zfs_znode.h @@ -1,330 +1,333 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ #ifndef _SYS_FS_ZFS_ZNODE_H #define _SYS_FS_ZFS_ZNODE_H #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Additional file level attributes, that are stored * in the upper half of z_pflags */ #define ZFS_READONLY 0x0000000100000000ull #define ZFS_HIDDEN 0x0000000200000000ull #define ZFS_SYSTEM 0x0000000400000000ull #define ZFS_ARCHIVE 0x0000000800000000ull #define ZFS_IMMUTABLE 0x0000001000000000ull #define ZFS_NOUNLINK 0x0000002000000000ull #define ZFS_APPENDONLY 0x0000004000000000ull #define ZFS_NODUMP 0x0000008000000000ull #define ZFS_OPAQUE 0x0000010000000000ull #define ZFS_AV_QUARANTINED 0x0000020000000000ull #define ZFS_AV_MODIFIED 0x0000040000000000ull #define ZFS_REPARSE 0x0000080000000000ull #define ZFS_OFFLINE 0x0000100000000000ull #define ZFS_SPARSE 0x0000200000000000ull /* * PROJINHERIT attribute is used to indicate that the child object under the * directory which has the PROJINHERIT attribute needs to inherit its parent * project ID that is used by project quota. */ #define ZFS_PROJINHERIT 0x0000400000000000ull /* * PROJID attr is used internally to indicate that the object has project ID. */ #define ZFS_PROJID 0x0000800000000000ull #define ZFS_ATTR_SET(zp, attr, value, pflags, tx) \ { \ if (value) \ pflags |= attr; \ else \ pflags &= ~attr; \ VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_FLAGS(ZTOZSB(zp)), \ &pflags, sizeof (pflags), tx)); \ } /* * Define special zfs pflags */ #define ZFS_XATTR 0x1 /* is an extended attribute */ #define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */ #define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */ #define ZFS_ACL_OBJ_ACE 0x8 /* ACL has CMPLX Object ACE */ #define ZFS_ACL_PROTECTED 0x10 /* ACL protected */ #define ZFS_ACL_DEFAULTED 0x20 /* ACL should be defaulted */ #define ZFS_ACL_AUTO_INHERIT 0x40 /* ACL should be inherited */ #define ZFS_BONUS_SCANSTAMP 0x80 /* Scanstamp in bonus area */ #define ZFS_NO_EXECS_DENIED 0x100 /* exec was given to everyone */ #define SA_ZPL_ATIME(z) z->z_attr_table[ZPL_ATIME] #define SA_ZPL_MTIME(z) z->z_attr_table[ZPL_MTIME] #define SA_ZPL_CTIME(z) z->z_attr_table[ZPL_CTIME] #define SA_ZPL_CRTIME(z) z->z_attr_table[ZPL_CRTIME] #define SA_ZPL_GEN(z) z->z_attr_table[ZPL_GEN] #define SA_ZPL_DACL_ACES(z) z->z_attr_table[ZPL_DACL_ACES] #define SA_ZPL_XATTR(z) z->z_attr_table[ZPL_XATTR] #define SA_ZPL_SYMLINK(z) z->z_attr_table[ZPL_SYMLINK] #define SA_ZPL_RDEV(z) z->z_attr_table[ZPL_RDEV] #define SA_ZPL_SCANSTAMP(z) z->z_attr_table[ZPL_SCANSTAMP] #define SA_ZPL_UID(z) z->z_attr_table[ZPL_UID] #define SA_ZPL_GID(z) z->z_attr_table[ZPL_GID] #define SA_ZPL_PARENT(z) z->z_attr_table[ZPL_PARENT] #define SA_ZPL_LINKS(z) z->z_attr_table[ZPL_LINKS] #define SA_ZPL_MODE(z) z->z_attr_table[ZPL_MODE] #define SA_ZPL_DACL_COUNT(z) z->z_attr_table[ZPL_DACL_COUNT] #define SA_ZPL_FLAGS(z) z->z_attr_table[ZPL_FLAGS] #define SA_ZPL_SIZE(z) z->z_attr_table[ZPL_SIZE] #define SA_ZPL_ZNODE_ACL(z) z->z_attr_table[ZPL_ZNODE_ACL] #define SA_ZPL_DXATTR(z) z->z_attr_table[ZPL_DXATTR] #define SA_ZPL_PAD(z) z->z_attr_table[ZPL_PAD] #define SA_ZPL_PROJID(z) z->z_attr_table[ZPL_PROJID] /* * Is ID ephemeral? */ #define IS_EPHEMERAL(x) (x > MAXUID) /* * Should we use FUIDs? */ #define USE_FUIDS(version, os) (version >= ZPL_VERSION_FUID && \ spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) #define USE_SA(version, os) (version >= ZPL_VERSION_SA && \ spa_version(dmu_objset_spa(os)) >= SPA_VERSION_SA) #define MASTER_NODE_OBJ 1 /* * Special attributes for master node. * "userquota@", "groupquota@" and "projectquota@" are also valid (from * zfs_userquota_prop_prefixes[]). */ #define ZFS_FSID "FSID" #define ZFS_UNLINKED_SET "DELETE_QUEUE" #define ZFS_ROOT_OBJ "ROOT" #define ZPL_VERSION_STR "VERSION" #define ZFS_FUID_TABLES "FUID" #define ZFS_SHARES_DIR "SHARES" #define ZFS_SA_ATTRS "SA_ATTRS" /* * Convert mode bits (zp_mode) to BSD-style DT_* values for storing in * the directory entries. On Linux systems this value is already * defined correctly as part of the /usr/include/dirent.h header file. */ #ifndef IFTODT #define IFTODT(mode) (((mode) & S_IFMT) >> 12) #endif /* * The directory entry has the type (currently unused on Solaris) in the * top 4 bits, and the object number in the low 48 bits. The "middle" * 12 bits are unused. */ #define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4) #define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48) extern int zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len); #ifdef _KERNEL #include /* * Directory entry locks control access to directory entries. * They are used to protect creates, deletes, and renames. * Each directory znode has a mutex and a list of locked names. */ typedef struct zfs_dirlock { char *dl_name; /* directory entry being locked */ uint32_t dl_sharecnt; /* 0 if exclusive, > 0 if shared */ uint8_t dl_namelock; /* 1 if z_name_lock is NOT held */ uint16_t dl_namesize; /* set if dl_name was allocated */ kcondvar_t dl_cv; /* wait for entry to be unlocked */ struct znode *dl_dzp; /* directory znode */ struct zfs_dirlock *dl_next; /* next in z_dirlocks list */ } zfs_dirlock_t; typedef struct znode { uint64_t z_id; /* object ID for this znode */ kmutex_t z_lock; /* znode modification lock */ krwlock_t z_parent_lock; /* parent lock for directories */ krwlock_t z_name_lock; /* "master" lock for dirent locks */ zfs_dirlock_t *z_dirlocks; /* directory entry lock list */ zfs_rangelock_t z_rangelock; /* file range locks */ boolean_t z_unlinked; /* file has been unlinked */ boolean_t z_atime_dirty; /* atime needs to be synced */ boolean_t z_zn_prefetch; /* Prefetch znodes? */ boolean_t z_is_sa; /* are we native sa? */ boolean_t z_is_ctldir; /* are we .zfs entry */ boolean_t z_suspended; /* extra ref from a suspend? */ uint_t z_blksz; /* block size in bytes */ uint_t z_seq; /* modification sequence number */ uint64_t z_mapcnt; /* number of pages mapped to file */ uint64_t z_dnodesize; /* dnode size */ uint64_t z_size; /* file size (cached) */ uint64_t z_pflags; /* pflags (cached) */ uint32_t z_sync_cnt; /* synchronous open count */ uint32_t z_sync_writes_cnt; /* synchronous write count */ uint32_t z_async_writes_cnt; /* asynchronous write count */ mode_t z_mode; /* mode (cached) */ kmutex_t z_acl_lock; /* acl data lock */ zfs_acl_t *z_acl_cached; /* cached acl */ krwlock_t z_xattr_lock; /* xattr data lock */ nvlist_t *z_xattr_cached; /* cached xattrs */ uint64_t z_xattr_parent; /* parent obj for this xattr */ uint64_t z_projid; /* project ID */ list_node_t z_link_node; /* all znodes in fs link */ sa_handle_t *z_sa_hdl; /* handle to sa data */ /* * Platform specific field, defined by each platform and only * accessible from platform specific code. */ ZNODE_OS_FIELDS; } znode_t; /* Verifies the znode is valid. */ static inline int zfs_verify_zp(znode_t *zp) { if (unlikely(zp->z_sa_hdl == NULL)) return (SET_ERROR(EIO)); return (0); } /* zfs_enter and zfs_verify_zp together */ static inline int zfs_enter_verify_zp(zfsvfs_t *zfsvfs, znode_t *zp, const char *tag) { int error; if ((error = zfs_enter(zfsvfs, tag)) != 0) return (error); if ((error = zfs_verify_zp(zp)) != 0) { zfs_exit(zfsvfs, tag); return (error); } return (0); } typedef struct znode_hold { uint64_t zh_obj; /* object id */ avl_node_t zh_node; /* avl tree linkage */ kmutex_t zh_lock; /* lock serializing object access */ int zh_refcount; /* active consumer reference count */ } znode_hold_t; static inline uint64_t zfs_inherit_projid(znode_t *dzp) { return ((dzp->z_pflags & ZFS_PROJINHERIT) ? dzp->z_projid : ZFS_DEFAULT_PROJID); } /* * Timestamp defines */ #define ACCESSED (ATTR_ATIME) #define STATE_CHANGED (ATTR_CTIME) #define CONTENT_MODIFIED (ATTR_MTIME | ATTR_CTIME) extern int zfs_init_fs(zfsvfs_t *, znode_t **); extern void zfs_set_dataprop(objset_t *); extern void zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *, dmu_tx_t *tx); extern void zfs_tstamp_update_setup(znode_t *, uint_t, uint64_t [2], uint64_t [2]); extern void zfs_grow_blocksize(znode_t *, uint64_t, dmu_tx_t *); extern int zfs_freesp(znode_t *, uint64_t, uint64_t, int, boolean_t); extern void zfs_znode_init(void); extern void zfs_znode_fini(void); extern int zfs_znode_hold_compare(const void *, const void *); extern znode_hold_t *zfs_znode_hold_enter(zfsvfs_t *, uint64_t); extern void zfs_znode_hold_exit(zfsvfs_t *, znode_hold_t *); extern int zfs_zget(zfsvfs_t *, uint64_t, znode_t **); extern int zfs_rezget(znode_t *); extern void zfs_zinactive(znode_t *); extern void zfs_znode_delete(znode_t *, dmu_tx_t *); extern void zfs_remove_op_tables(void); extern int zfs_create_op_tables(void); extern dev_t zfs_cmpldev(uint64_t); extern int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value); extern int zfs_get_stats(objset_t *os, nvlist_t *nv); extern boolean_t zfs_get_vfs_flag_unmounted(objset_t *os); extern void zfs_znode_dmu_fini(znode_t *); extern void zfs_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, const char *name, vsecattr_t *, zfs_fuid_info_t *, vattr_t *vap); extern int zfs_log_create_txtype(zil_create_t, vsecattr_t *vsecp, vattr_t *vap); extern void zfs_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, const char *name, uint64_t foid, boolean_t unlinked); #define ZFS_NO_OBJECT 0 /* no object id */ extern void zfs_log_link(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, const char *name); extern void zfs_log_symlink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, const char *name, const char *link); extern void zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, const char *sname, znode_t *tdzp, const char *dname, znode_t *szp); extern void zfs_log_rename_exchange(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, const char *sname, znode_t *tdzp, const char *dname, znode_t *szp); extern void zfs_log_rename_whiteout(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, const char *sname, znode_t *tdzp, const char *dname, znode_t *szp, znode_t *wzp); extern void zfs_log_write(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, offset_t off, ssize_t len, int ioflag, zil_callback_t callback, void *callback_data); extern void zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, uint64_t off, uint64_t len); extern void zfs_log_setattr(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, vattr_t *vap, uint_t mask_applied, zfs_fuid_info_t *fuidp); extern void zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp); +extern void zfs_log_clone_range(zilog_t *zilog, dmu_tx_t *tx, int txtype, + znode_t *zp, uint64_t offset, uint64_t length, uint64_t blksz, + const blkptr_t *bps, size_t nbps); extern void zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx); extern void zfs_upgrade(zfsvfs_t *zfsvfs, dmu_tx_t *tx); extern void zfs_log_setsaxattr(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, const char *name, const void *value, size_t size); extern void zfs_znode_update_vfs(struct znode *); #endif #ifdef __cplusplus } #endif #endif /* _SYS_FS_ZFS_ZNODE_H */ diff --git a/include/sys/zil.h b/include/sys/zil.h index 9ac421043377..cff8ebcad819 100644 --- a/include/sys/zil.h +++ b/include/sys/zil.h @@ -1,590 +1,603 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_ZIL_H #define _SYS_ZIL_H #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct dsl_pool; struct dsl_dataset; struct lwb; /* * Intent log format: * * Each objset has its own intent log. The log header (zil_header_t) * for objset N's intent log is kept in the Nth object of the SPA's * intent_log objset. The log header points to a chain of log blocks, * each of which contains log records (i.e., transactions) followed by * a log block trailer (zil_trailer_t). The format of a log record * depends on the record (or transaction) type, but all records begin * with a common structure that defines the type, length, and txg. */ /* * Intent log header - this on disk structure holds fields to manage * the log. All fields are 64 bit to easily handle cross architectures. */ typedef struct zil_header { uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ uint64_t zh_replay_seq; /* highest replayed sequence number */ blkptr_t zh_log; /* log chain */ uint64_t zh_claim_blk_seq; /* highest claimed block sequence number */ uint64_t zh_flags; /* header flags */ uint64_t zh_claim_lr_seq; /* highest claimed lr sequence number */ uint64_t zh_pad[3]; } zil_header_t; /* * zh_flags bit settings */ #define ZIL_REPLAY_NEEDED 0x1 /* replay needed - internal only */ #define ZIL_CLAIM_LR_SEQ_VALID 0x2 /* zh_claim_lr_seq field is valid */ /* * Log block chaining. * * Log blocks are chained together. Originally they were chained at the * end of the block. For performance reasons the chain was moved to the * beginning of the block which allows writes for only the data being used. * The older position is supported for backwards compatibility. * * The zio_eck_t contains a zec_cksum which for the intent log is * the sequence number of this log block. A seq of 0 is invalid. * The zec_cksum is checked by the SPA against the sequence * number passed in the blk_cksum field of the blkptr_t */ typedef struct zil_chain { uint64_t zc_pad; blkptr_t zc_next_blk; /* next block in chain */ uint64_t zc_nused; /* bytes in log block used */ zio_eck_t zc_eck; /* block trailer */ } zil_chain_t; #define ZIL_MIN_BLKSZ 4096ULL /* * ziltest is by and large an ugly hack, but very useful in * checking replay without tedious work. * When running ziltest we want to keep all itx's and so maintain * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG * We subtract TXG_CONCURRENT_STATES to allow for common code. */ #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) /* * The words of a log block checksum. */ #define ZIL_ZC_GUID_0 0 #define ZIL_ZC_GUID_1 1 #define ZIL_ZC_OBJSET 2 #define ZIL_ZC_SEQ 3 typedef enum zil_create { Z_FILE, Z_DIR, Z_XATTRDIR, } zil_create_t; /* * size of xvattr log section. * its composed of lr_attr_t + xvattr bitmap + 2 64 bit timestamps * for create time and a single 64 bit integer for all of the attributes, * and 4 64 bit integers (32 bytes) for the scanstamp. * */ #define ZIL_XVAT_SIZE(mapsize) \ sizeof (lr_attr_t) + (sizeof (uint32_t) * (mapsize - 1)) + \ (sizeof (uint64_t) * 7) /* * Size of ACL in log. The ACE data is padded out to properly align * on 8 byte boundary. */ #define ZIL_ACE_LENGTH(x) (roundup(x, sizeof (uint64_t))) /* * Intent log transaction types and record structures */ #define TX_COMMIT 0 /* Commit marker (no on-disk state) */ #define TX_CREATE 1 /* Create file */ #define TX_MKDIR 2 /* Make directory */ #define TX_MKXATTR 3 /* Make XATTR directory */ #define TX_SYMLINK 4 /* Create symbolic link to a file */ #define TX_REMOVE 5 /* Remove file */ #define TX_RMDIR 6 /* Remove directory */ #define TX_LINK 7 /* Create hard link to a file */ #define TX_RENAME 8 /* Rename a file */ #define TX_WRITE 9 /* File write */ #define TX_TRUNCATE 10 /* Truncate a file */ #define TX_SETATTR 11 /* Set file attributes */ #define TX_ACL_V0 12 /* Set old formatted ACL */ #define TX_ACL 13 /* Set ACL */ #define TX_CREATE_ACL 14 /* create with ACL */ #define TX_CREATE_ATTR 15 /* create + attrs */ #define TX_CREATE_ACL_ATTR 16 /* create with ACL + attrs */ #define TX_MKDIR_ACL 17 /* mkdir with ACL */ #define TX_MKDIR_ATTR 18 /* mkdir with attr */ #define TX_MKDIR_ACL_ATTR 19 /* mkdir with ACL + attrs */ #define TX_WRITE2 20 /* dmu_sync EALREADY write */ #define TX_SETSAXATTR 21 /* Set sa xattrs on file */ #define TX_RENAME_EXCHANGE 22 /* Atomic swap via renameat2 */ #define TX_RENAME_WHITEOUT 23 /* Atomic whiteout via renameat2 */ -#define TX_MAX_TYPE 24 /* Max transaction type */ +#define TX_CLONE_RANGE 24 /* Clone a file range */ +#define TX_MAX_TYPE 25 /* Max transaction type */ /* * The transactions for mkdir, symlink, remove, rmdir, link, and rename * may have the following bit set, indicating the original request * specified case-insensitive handling of names. */ #define TX_CI ((uint64_t)0x1 << 63) /* case-insensitive behavior requested */ /* - * Transactions for write, truncate, setattr, acl_v0, and acl can be logged - * out of order. For convenience in the code, all such records must have - * lr_foid at the same offset. + * Transactions for operations below can be logged out of order. + * For convenience in the code, all such records must have lr_foid + * at the same offset. */ #define TX_OOO(txtype) \ ((txtype) == TX_WRITE || \ (txtype) == TX_TRUNCATE || \ (txtype) == TX_SETATTR || \ (txtype) == TX_ACL_V0 || \ (txtype) == TX_ACL || \ (txtype) == TX_WRITE2 || \ - (txtype) == TX_SETSAXATTR) + (txtype) == TX_SETSAXATTR || \ + (txtype) == TX_CLONE_RANGE) /* * The number of dnode slots consumed by the object is stored in the 8 * unused upper bits of the object ID. We subtract 1 from the value * stored on disk for compatibility with implementations that don't * support large dnodes. The slot count for a single-slot dnode will * contain 0 for those bits to preserve the log record format for * "small" dnodes. */ #define LR_FOID_GET_SLOTS(oid) (BF64_GET((oid), 56, 8) + 1) #define LR_FOID_SET_SLOTS(oid, x) BF64_SET((oid), 56, 8, (x) - 1) #define LR_FOID_GET_OBJ(oid) BF64_GET((oid), 0, DN_MAX_OBJECT_SHIFT) #define LR_FOID_SET_OBJ(oid, x) BF64_SET((oid), 0, DN_MAX_OBJECT_SHIFT, (x)) /* * Format of log records. * The fields are carefully defined to allow them to be aligned * and sized the same on sparc & intel architectures. * Each log record has a common structure at the beginning. * * The log record on disk (lrc_seq) holds the sequence number of all log * records which is used to ensure we don't replay the same record. */ typedef struct { /* common log record header */ uint64_t lrc_txtype; /* intent log transaction type */ uint64_t lrc_reclen; /* transaction record length */ uint64_t lrc_txg; /* dmu transaction group number */ uint64_t lrc_seq; /* see comment above */ } lr_t; /* * Common start of all out-of-order record types (TX_OOO() above). */ typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* object id */ } lr_ooo_t; /* * Additional lr_attr_t fields. */ typedef struct { uint64_t lr_attr_attrs; /* all of the attributes */ uint64_t lr_attr_crtime[2]; /* create time */ uint8_t lr_attr_scanstamp[32]; } lr_attr_end_t; /* * Handle option extended vattr attributes. * * Whenever new attributes are added the version number * will need to be updated as will code in * zfs_log.c and zfs_replay.c */ typedef struct { uint32_t lr_attr_masksize; /* number of elements in array */ uint32_t lr_attr_bitmap; /* First entry of array */ /* remainder of array and additional lr_attr_end_t fields */ } lr_attr_t; /* * log record for creates without optional ACL. * This log record does support optional xvattr_t attributes. */ typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* object id of directory */ uint64_t lr_foid; /* object id of created file object */ uint64_t lr_mode; /* mode of object */ uint64_t lr_uid; /* uid of object */ uint64_t lr_gid; /* gid of object */ uint64_t lr_gen; /* generation (txg of creation) */ uint64_t lr_crtime[2]; /* creation time */ uint64_t lr_rdev; /* rdev of object to create */ /* name of object to create follows this */ /* for symlinks, link content follows name */ /* for creates with xvattr data, the name follows the xvattr info */ } lr_create_t; /* * FUID ACL record will be an array of ACEs from the original ACL. * If this array includes ephemeral IDs, the record will also include * an array of log-specific FUIDs to replace the ephemeral IDs. * Only one copy of each unique domain will be present, so the log-specific * FUIDs will use an index into a compressed domain table. On replay this * information will be used to construct real FUIDs (and bypass idmap, * since it may not be available). */ /* * Log record for creates with optional ACL * This log record is also used for recording any FUID * information needed for replaying the create. If the * file doesn't have any actual ACEs then the lr_aclcnt * would be zero. * * After lr_acl_flags, there are a lr_acl_bytes number of variable sized ace's. * If create is also setting xvattr's, then acl data follows xvattr. * If ACE FUIDs are needed then they will follow the xvattr_t. Following * the FUIDs will be the domain table information. The FUIDs for the owner * and group will be in lr_create. Name follows ACL data. */ typedef struct { lr_create_t lr_create; /* common create portion */ uint64_t lr_aclcnt; /* number of ACEs in ACL */ uint64_t lr_domcnt; /* number of unique domains */ uint64_t lr_fuidcnt; /* number of real fuids */ uint64_t lr_acl_bytes; /* number of bytes in ACL */ uint64_t lr_acl_flags; /* ACL flags */ } lr_acl_create_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* obj id of directory */ /* name of object to remove follows this */ } lr_remove_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* obj id of directory */ uint64_t lr_link_obj; /* obj id of link */ /* name of object to link follows this */ } lr_link_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_sdoid; /* obj id of source directory */ uint64_t lr_tdoid; /* obj id of target directory */ /* 2 strings: names of source and destination follow this */ } lr_rename_t; typedef struct { lr_rename_t lr_rename; /* common rename portion */ /* members related to the whiteout file (based on lr_create_t) */ uint64_t lr_wfoid; /* obj id of the new whiteout file */ uint64_t lr_wmode; /* mode of object */ uint64_t lr_wuid; /* uid of whiteout */ uint64_t lr_wgid; /* gid of whiteout */ uint64_t lr_wgen; /* generation (txg of creation) */ uint64_t lr_wcrtime[2]; /* creation time */ uint64_t lr_wrdev; /* always makedev(0, 0) */ /* 2 strings: names of source and destination follow this */ } lr_rename_whiteout_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to write */ uint64_t lr_offset; /* offset to write to */ uint64_t lr_length; /* user data length to write */ uint64_t lr_blkoff; /* no longer used */ blkptr_t lr_blkptr; /* spa block pointer for replay */ /* write data will follow for small writes */ } lr_write_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* object id of file to truncate */ uint64_t lr_offset; /* offset to truncate from */ uint64_t lr_length; /* length to truncate */ } lr_truncate_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to change attributes */ uint64_t lr_mask; /* mask of attributes to set */ uint64_t lr_mode; /* mode to set */ uint64_t lr_uid; /* uid to set */ uint64_t lr_gid; /* gid to set */ uint64_t lr_size; /* size to set */ uint64_t lr_atime[2]; /* access time */ uint64_t lr_mtime[2]; /* modification time */ /* optional attribute lr_attr_t may be here */ } lr_setattr_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to change attributes */ uint64_t lr_size; /* xattr name and value follows */ } lr_setsaxattr_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* obj id of file */ uint64_t lr_aclcnt; /* number of acl entries */ /* lr_aclcnt number of ace_t entries follow this */ } lr_acl_v0_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* obj id of file */ uint64_t lr_aclcnt; /* number of ACEs in ACL */ uint64_t lr_domcnt; /* number of unique domains */ uint64_t lr_fuidcnt; /* number of real fuids */ uint64_t lr_acl_bytes; /* number of bytes in ACL */ uint64_t lr_acl_flags; /* ACL flags */ /* lr_acl_bytes number of variable sized ace's follows */ } lr_acl_t; +typedef struct { + lr_t lr_common; /* common portion of log record */ + uint64_t lr_foid; /* file object to clone into */ + uint64_t lr_offset; /* offset to clone to */ + uint64_t lr_length; /* length of the blocks to clone */ + uint64_t lr_blksz; /* file's block size */ + uint64_t lr_nbps; /* number of block pointers */ + blkptr_t lr_bps[]; + /* block pointers of the blocks to clone follows */ +} lr_clone_range_t; + /* * ZIL structure definitions, interface function prototype and globals. */ /* * Writes are handled in three different ways: * * WR_INDIRECT: * In this mode, if we need to commit the write later, then the block * is immediately written into the file system (using dmu_sync), * and a pointer to the block is put into the log record. * When the txg commits the block is linked in. * This saves additionally writing the data into the log record. * There are a few requirements for this to occur: * - write is greater than zfs/zvol_immediate_write_sz * - not using slogs (as slogs are assumed to always be faster * than writing into the main pool) * - the write occupies only one block * WR_COPIED: * If we know we'll immediately be committing the * transaction (O_SYNC or O_DSYNC), then we allocate a larger * log record here for the data and copy the data in. * WR_NEED_COPY: * Otherwise we don't allocate a buffer, and *if* we need to * flush the write later then a buffer is allocated and * we retrieve the data using the dmu. */ typedef enum { WR_INDIRECT, /* indirect - a large write (dmu_sync() data */ /* and put blkptr in log, rather than actual data) */ WR_COPIED, /* immediate - data is copied into lr_write_t */ WR_NEED_COPY, /* immediate - data needs to be copied if pushed */ WR_NUM_STATES /* number of states */ } itx_wr_state_t; typedef void (*zil_callback_t)(void *data); typedef struct itx { list_node_t itx_node; /* linkage on zl_itx_list */ void *itx_private; /* type-specific opaque data */ itx_wr_state_t itx_wr_state; /* write state */ uint8_t itx_sync; /* synchronous transaction */ zil_callback_t itx_callback; /* Called when the itx is persistent */ void *itx_callback_data; /* User data for the callback */ size_t itx_size; /* allocated itx structure size */ uint64_t itx_oid; /* object id */ uint64_t itx_gen; /* gen number for zfs_get_data */ lr_t itx_lr; /* common part of log record */ /* followed by type-specific part of lr_xx_t and its immediate data */ } itx_t; /* * Used for zil kstat. */ typedef struct zil_stats { /* * Number of times a ZIL commit (e.g. fsync) has been requested. */ kstat_named_t zil_commit_count; /* * Number of times the ZIL has been flushed to stable storage. * This is less than zil_commit_count when commits are "merged" * (see the documentation above zil_commit()). */ kstat_named_t zil_commit_writer_count; /* * Number of transactions (reads, writes, renames, etc.) * that have been committed. */ kstat_named_t zil_itx_count; /* * See the documentation for itx_wr_state_t above. * Note that "bytes" accumulates the length of the transactions * (i.e. data), not the actual log record sizes. */ kstat_named_t zil_itx_indirect_count; kstat_named_t zil_itx_indirect_bytes; kstat_named_t zil_itx_copied_count; kstat_named_t zil_itx_copied_bytes; kstat_named_t zil_itx_needcopy_count; kstat_named_t zil_itx_needcopy_bytes; /* * Transactions which have been allocated to the "normal" * (i.e. not slog) storage pool. Note that "bytes" accumulate * the actual log record sizes - which do not include the actual * data in case of indirect writes. */ kstat_named_t zil_itx_metaslab_normal_count; kstat_named_t zil_itx_metaslab_normal_bytes; /* * Transactions which have been allocated to the "slog" storage pool. * If there are no separate log devices, this is the same as the * "normal" pool. */ kstat_named_t zil_itx_metaslab_slog_count; kstat_named_t zil_itx_metaslab_slog_bytes; } zil_kstat_values_t; typedef struct zil_sums { wmsum_t zil_commit_count; wmsum_t zil_commit_writer_count; wmsum_t zil_itx_count; wmsum_t zil_itx_indirect_count; wmsum_t zil_itx_indirect_bytes; wmsum_t zil_itx_copied_count; wmsum_t zil_itx_copied_bytes; wmsum_t zil_itx_needcopy_count; wmsum_t zil_itx_needcopy_bytes; wmsum_t zil_itx_metaslab_normal_count; wmsum_t zil_itx_metaslab_normal_bytes; wmsum_t zil_itx_metaslab_slog_count; wmsum_t zil_itx_metaslab_slog_bytes; } zil_sums_t; #define ZIL_STAT_INCR(zil, stat, val) \ do { \ int64_t tmpval = (val); \ wmsum_add(&(zil_sums_global.stat), tmpval); \ if ((zil)->zl_sums) \ wmsum_add(&((zil)->zl_sums->stat), tmpval); \ } while (0) #define ZIL_STAT_BUMP(zil, stat) \ ZIL_STAT_INCR(zil, stat, 1); typedef int zil_parse_blk_func_t(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t txg); typedef int zil_parse_lr_func_t(zilog_t *zilog, const lr_t *lr, void *arg, uint64_t txg); typedef int zil_replay_func_t(void *arg1, void *arg2, boolean_t byteswap); typedef int zil_get_data_t(void *arg, uint64_t arg2, lr_write_t *lr, char *dbuf, struct lwb *lwb, zio_t *zio); extern int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, boolean_t decrypt); extern void zil_init(void); extern void zil_fini(void); extern zilog_t *zil_alloc(objset_t *os, zil_header_t *zh_phys); extern void zil_free(zilog_t *zilog); extern zilog_t *zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums); extern void zil_close(zilog_t *zilog); extern boolean_t zil_replay(objset_t *os, void *arg, zil_replay_func_t *const replay_func[TX_MAX_TYPE]); extern boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx); extern boolean_t zil_destroy(zilog_t *zilog, boolean_t keep_first); extern void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx); extern itx_t *zil_itx_create(uint64_t txtype, size_t lrsize); extern void zil_itx_destroy(itx_t *itx); extern void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx); extern void zil_async_to_sync(zilog_t *zilog, uint64_t oid); extern void zil_commit(zilog_t *zilog, uint64_t oid); extern void zil_commit_impl(zilog_t *zilog, uint64_t oid); extern void zil_remove_async(zilog_t *zilog, uint64_t oid); extern int zil_reset(const char *osname, void *txarg); extern int zil_claim(struct dsl_pool *dp, struct dsl_dataset *ds, void *txarg); extern int zil_check_log_chain(struct dsl_pool *dp, struct dsl_dataset *ds, void *tx); extern void zil_sync(zilog_t *zilog, dmu_tx_t *tx); extern void zil_clean(zilog_t *zilog, uint64_t synced_txg); extern int zil_suspend(const char *osname, void **cookiep); extern void zil_resume(void *cookie); extern void zil_lwb_add_block(struct lwb *lwb, const blkptr_t *bp); extern void zil_lwb_add_txg(struct lwb *lwb, uint64_t txg); extern int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp); extern void zil_set_sync(zilog_t *zilog, uint64_t syncval); extern void zil_set_logbias(zilog_t *zilog, uint64_t slogval); extern uint64_t zil_max_copied_data(zilog_t *zilog); -extern uint64_t zil_max_log_data(zilog_t *zilog); +extern uint64_t zil_max_log_data(zilog_t *zilog, size_t hdrsize); extern void zil_sums_init(zil_sums_t *zs); extern void zil_sums_fini(zil_sums_t *zs); extern void zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums); extern int zil_replay_disable; #ifdef __cplusplus } #endif #endif /* _SYS_ZIL_H */ diff --git a/include/sys/zio.h b/include/sys/zio.h index 28ed837d829e..78603d0ebeba 100644 --- a/include/sys/zio.h +++ b/include/sys/zio.h @@ -1,714 +1,715 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2020 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright 2016 Toomas Soome * Copyright (c) 2019, Allan Jude * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019-2020, Michael Niewöhner */ #ifndef _ZIO_H #define _ZIO_H #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Embedded checksum */ #define ZEC_MAGIC 0x210da7ab10c7a11ULL typedef struct zio_eck { uint64_t zec_magic; /* for validation, endianness */ zio_cksum_t zec_cksum; /* 256-bit checksum */ } zio_eck_t; /* * Gang block headers are self-checksumming and contain an array * of block pointers. */ #define SPA_GANGBLOCKSIZE SPA_MINBLOCKSIZE #define SPA_GBH_NBLKPTRS ((SPA_GANGBLOCKSIZE - \ sizeof (zio_eck_t)) / sizeof (blkptr_t)) #define SPA_GBH_FILLER ((SPA_GANGBLOCKSIZE - \ sizeof (zio_eck_t) - \ (SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\ sizeof (uint64_t)) typedef struct zio_gbh { blkptr_t zg_blkptr[SPA_GBH_NBLKPTRS]; uint64_t zg_filler[SPA_GBH_FILLER]; zio_eck_t zg_tail; } zio_gbh_phys_t; enum zio_checksum { ZIO_CHECKSUM_INHERIT = 0, ZIO_CHECKSUM_ON, ZIO_CHECKSUM_OFF, ZIO_CHECKSUM_LABEL, ZIO_CHECKSUM_GANG_HEADER, ZIO_CHECKSUM_ZILOG, ZIO_CHECKSUM_FLETCHER_2, ZIO_CHECKSUM_FLETCHER_4, ZIO_CHECKSUM_SHA256, ZIO_CHECKSUM_ZILOG2, ZIO_CHECKSUM_NOPARITY, ZIO_CHECKSUM_SHA512, ZIO_CHECKSUM_SKEIN, ZIO_CHECKSUM_EDONR, ZIO_CHECKSUM_BLAKE3, ZIO_CHECKSUM_FUNCTIONS }; /* * The number of "legacy" compression functions which can be set on individual * objects. */ #define ZIO_CHECKSUM_LEGACY_FUNCTIONS ZIO_CHECKSUM_ZILOG2 #define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_4 #define ZIO_CHECKSUM_DEFAULT ZIO_CHECKSUM_ON #define ZIO_CHECKSUM_MASK 0xffULL #define ZIO_CHECKSUM_VERIFY (1U << 8) #define ZIO_DEDUPCHECKSUM ZIO_CHECKSUM_SHA256 /* macros defining encryption lengths */ #define ZIO_OBJSET_MAC_LEN 32 #define ZIO_DATA_IV_LEN 12 #define ZIO_DATA_SALT_LEN 8 #define ZIO_DATA_MAC_LEN 16 /* * The number of "legacy" compression functions which can be set on individual * objects. */ #define ZIO_COMPRESS_LEGACY_FUNCTIONS ZIO_COMPRESS_LZ4 /* * The meaning of "compress = on" selected by the compression features enabled * on a given pool. */ #define ZIO_COMPRESS_LEGACY_ON_VALUE ZIO_COMPRESS_LZJB #define ZIO_COMPRESS_LZ4_ON_VALUE ZIO_COMPRESS_LZ4 #define ZIO_COMPRESS_DEFAULT ZIO_COMPRESS_ON #define BOOTFS_COMPRESS_VALID(compress) \ ((compress) == ZIO_COMPRESS_LZJB || \ (compress) == ZIO_COMPRESS_LZ4 || \ (compress) == ZIO_COMPRESS_GZIP_1 || \ (compress) == ZIO_COMPRESS_GZIP_2 || \ (compress) == ZIO_COMPRESS_GZIP_3 || \ (compress) == ZIO_COMPRESS_GZIP_4 || \ (compress) == ZIO_COMPRESS_GZIP_5 || \ (compress) == ZIO_COMPRESS_GZIP_6 || \ (compress) == ZIO_COMPRESS_GZIP_7 || \ (compress) == ZIO_COMPRESS_GZIP_8 || \ (compress) == ZIO_COMPRESS_GZIP_9 || \ (compress) == ZIO_COMPRESS_ZLE || \ (compress) == ZIO_COMPRESS_ZSTD || \ (compress) == ZIO_COMPRESS_ON || \ (compress) == ZIO_COMPRESS_OFF) #define ZIO_COMPRESS_ALGO(x) (x & SPA_COMPRESSMASK) #define ZIO_COMPRESS_LEVEL(x) ((x & ~SPA_COMPRESSMASK) >> SPA_COMPRESSBITS) #define ZIO_COMPRESS_RAW(type, level) (type | ((level) << SPA_COMPRESSBITS)) #define ZIO_COMPLEVEL_ZSTD(level) \ ZIO_COMPRESS_RAW(ZIO_COMPRESS_ZSTD, level) #define ZIO_FAILURE_MODE_WAIT 0 #define ZIO_FAILURE_MODE_CONTINUE 1 #define ZIO_FAILURE_MODE_PANIC 2 typedef enum zio_suspend_reason { ZIO_SUSPEND_NONE = 0, ZIO_SUSPEND_IOERR, ZIO_SUSPEND_MMP, } zio_suspend_reason_t; /* * This was originally an enum type. However, those are 32-bit and there is no * way to make a 64-bit enum type. Since we ran out of bits for flags, we were * forced to upgrade it to a uint64_t. */ typedef uint64_t zio_flag_t; /* * Flags inherited by gang, ddt, and vdev children, * and that must be equal for two zios to aggregate */ #define ZIO_FLAG_DONT_AGGREGATE (1ULL << 0) #define ZIO_FLAG_IO_REPAIR (1ULL << 1) #define ZIO_FLAG_SELF_HEAL (1ULL << 2) #define ZIO_FLAG_RESILVER (1ULL << 3) #define ZIO_FLAG_SCRUB (1ULL << 4) #define ZIO_FLAG_SCAN_THREAD (1ULL << 5) #define ZIO_FLAG_PHYSICAL (1ULL << 6) #define ZIO_FLAG_AGG_INHERIT (ZIO_FLAG_CANFAIL - 1) /* * Flags inherited by ddt, gang, and vdev children. */ #define ZIO_FLAG_CANFAIL (1ULL << 7) /* must be first for INHERIT */ #define ZIO_FLAG_SPECULATIVE (1ULL << 8) #define ZIO_FLAG_CONFIG_WRITER (1ULL << 9) #define ZIO_FLAG_DONT_RETRY (1ULL << 10) #define ZIO_FLAG_DONT_CACHE (1ULL << 11) #define ZIO_FLAG_NODATA (1ULL << 12) #define ZIO_FLAG_INDUCE_DAMAGE (1ULL << 13) #define ZIO_FLAG_IO_ALLOCATING (1ULL << 14) #define ZIO_FLAG_DDT_INHERIT (ZIO_FLAG_IO_RETRY - 1) #define ZIO_FLAG_GANG_INHERIT (ZIO_FLAG_IO_RETRY - 1) /* * Flags inherited by vdev children. */ #define ZIO_FLAG_IO_RETRY (1ULL << 15) /* must be first for INHERIT */ #define ZIO_FLAG_PROBE (1ULL << 16) #define ZIO_FLAG_TRYHARD (1ULL << 17) #define ZIO_FLAG_OPTIONAL (1ULL << 18) #define ZIO_FLAG_VDEV_INHERIT (ZIO_FLAG_DONT_QUEUE - 1) /* * Flags not inherited by any children. */ #define ZIO_FLAG_DONT_QUEUE (1ULL << 19) /* must be first for INHERIT */ #define ZIO_FLAG_DONT_PROPAGATE (1ULL << 20) #define ZIO_FLAG_IO_BYPASS (1ULL << 21) #define ZIO_FLAG_IO_REWRITE (1ULL << 22) #define ZIO_FLAG_RAW_COMPRESS (1ULL << 23) #define ZIO_FLAG_RAW_ENCRYPT (1ULL << 24) #define ZIO_FLAG_GANG_CHILD (1ULL << 25) #define ZIO_FLAG_DDT_CHILD (1ULL << 26) #define ZIO_FLAG_GODFATHER (1ULL << 27) #define ZIO_FLAG_NOPWRITE (1ULL << 28) #define ZIO_FLAG_REEXECUTED (1ULL << 29) #define ZIO_FLAG_DELEGATED (1ULL << 30) #define ZIO_FLAG_FASTWRITE (1ULL << 31) #define ZIO_FLAG_MUSTSUCCEED 0 #define ZIO_FLAG_RAW (ZIO_FLAG_RAW_COMPRESS | ZIO_FLAG_RAW_ENCRYPT) #define ZIO_DDT_CHILD_FLAGS(zio) \ (((zio)->io_flags & ZIO_FLAG_DDT_INHERIT) | \ ZIO_FLAG_DDT_CHILD | ZIO_FLAG_CANFAIL) #define ZIO_GANG_CHILD_FLAGS(zio) \ (((zio)->io_flags & ZIO_FLAG_GANG_INHERIT) | \ ZIO_FLAG_GANG_CHILD | ZIO_FLAG_CANFAIL) #define ZIO_VDEV_CHILD_FLAGS(zio) \ (((zio)->io_flags & ZIO_FLAG_VDEV_INHERIT) | \ ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_CANFAIL) #define ZIO_CHILD_BIT(x) (1U << (x)) #define ZIO_CHILD_BIT_IS_SET(val, x) ((val) & (1U << (x))) enum zio_child { ZIO_CHILD_VDEV = 0, ZIO_CHILD_GANG, ZIO_CHILD_DDT, ZIO_CHILD_LOGICAL, ZIO_CHILD_TYPES }; #define ZIO_CHILD_VDEV_BIT ZIO_CHILD_BIT(ZIO_CHILD_VDEV) #define ZIO_CHILD_GANG_BIT ZIO_CHILD_BIT(ZIO_CHILD_GANG) #define ZIO_CHILD_DDT_BIT ZIO_CHILD_BIT(ZIO_CHILD_DDT) #define ZIO_CHILD_LOGICAL_BIT ZIO_CHILD_BIT(ZIO_CHILD_LOGICAL) #define ZIO_CHILD_ALL_BITS \ (ZIO_CHILD_VDEV_BIT | ZIO_CHILD_GANG_BIT | \ ZIO_CHILD_DDT_BIT | ZIO_CHILD_LOGICAL_BIT) enum zio_wait_type { ZIO_WAIT_READY = 0, ZIO_WAIT_DONE, ZIO_WAIT_TYPES }; typedef void zio_done_func_t(zio_t *zio); extern int zio_exclude_metadata; extern int zio_dva_throttle_enabled; extern const char *const zio_type_name[ZIO_TYPES]; /* * A bookmark is a four-tuple that uniquely * identifies any block in the pool. By convention, the meta-objset (MOS) * is objset 0, and the meta-dnode is object 0. This covers all blocks * except root blocks and ZIL blocks, which are defined as follows: * * Root blocks (objset_phys_t) are object 0, level -1: . * ZIL blocks are bookmarked . * dmu_sync()ed ZIL data blocks are bookmarked . * dnode visit bookmarks are . * * Note: this structure is called a bookmark because its original purpose * was to remember where to resume a pool-wide traverse. * * Note: this structure is passed between userland and the kernel, and is * stored on disk (by virtue of being incorporated into other on-disk * structures, e.g. dsl_scan_phys_t). * * If the head_errlog feature is enabled a different on-disk format for error * logs is used. This introduces the use of an error bookmark, a four-tuple * that uniquely identifies any error block * in the pool. The birth transaction group is used to track whether the block * has been overwritten by newer data or added to a snapshot since its marking * as an error. */ struct zbookmark_phys { uint64_t zb_objset; uint64_t zb_object; int64_t zb_level; uint64_t zb_blkid; }; typedef struct zbookmark_err_phys { uint64_t zb_object; int64_t zb_level; uint64_t zb_blkid; uint64_t zb_birth; } zbookmark_err_phys_t; #define SET_BOOKMARK(zb, objset, object, level, blkid) \ { \ (zb)->zb_objset = objset; \ (zb)->zb_object = object; \ (zb)->zb_level = level; \ (zb)->zb_blkid = blkid; \ } #define ZB_DESTROYED_OBJSET (-1ULL) #define ZB_ROOT_OBJECT (0ULL) #define ZB_ROOT_LEVEL (-1LL) #define ZB_ROOT_BLKID (0ULL) #define ZB_ZIL_OBJECT (0ULL) #define ZB_ZIL_LEVEL (-2LL) #define ZB_DNODE_LEVEL (-3LL) #define ZB_DNODE_BLKID (0ULL) #define ZB_IS_ZERO(zb) \ ((zb)->zb_objset == 0 && (zb)->zb_object == 0 && \ (zb)->zb_level == 0 && (zb)->zb_blkid == 0) #define ZB_IS_ROOT(zb) \ ((zb)->zb_object == ZB_ROOT_OBJECT && \ (zb)->zb_level == ZB_ROOT_LEVEL && \ (zb)->zb_blkid == ZB_ROOT_BLKID) typedef struct zio_prop { enum zio_checksum zp_checksum; enum zio_compress zp_compress; uint8_t zp_complevel; dmu_object_type_t zp_type; uint8_t zp_level; uint8_t zp_copies; boolean_t zp_dedup; boolean_t zp_dedup_verify; boolean_t zp_nopwrite; + boolean_t zp_brtwrite; boolean_t zp_encrypt; boolean_t zp_byteorder; uint8_t zp_salt[ZIO_DATA_SALT_LEN]; uint8_t zp_iv[ZIO_DATA_IV_LEN]; uint8_t zp_mac[ZIO_DATA_MAC_LEN]; uint32_t zp_zpl_smallblk; } zio_prop_t; typedef struct zio_cksum_report zio_cksum_report_t; typedef void zio_cksum_finish_f(zio_cksum_report_t *rep, const abd_t *good_data); typedef void zio_cksum_free_f(void *cbdata, size_t size); struct zio_bad_cksum; /* defined in zio_checksum.h */ struct dnode_phys; struct abd; struct zio_cksum_report { struct zio_cksum_report *zcr_next; nvlist_t *zcr_ereport; nvlist_t *zcr_detector; void *zcr_cbdata; size_t zcr_cbinfo; /* passed to zcr_free() */ uint64_t zcr_sector; uint64_t zcr_align; uint64_t zcr_length; zio_cksum_finish_f *zcr_finish; zio_cksum_free_f *zcr_free; /* internal use only */ struct zio_bad_cksum *zcr_ckinfo; /* information from failure */ }; typedef struct zio_vsd_ops { zio_done_func_t *vsd_free; } zio_vsd_ops_t; typedef struct zio_gang_node { zio_gbh_phys_t *gn_gbh; struct zio_gang_node *gn_child[SPA_GBH_NBLKPTRS]; } zio_gang_node_t; typedef zio_t *zio_gang_issue_func_t(zio_t *zio, blkptr_t *bp, zio_gang_node_t *gn, struct abd *data, uint64_t offset); typedef void zio_transform_func_t(zio_t *zio, struct abd *data, uint64_t size); typedef struct zio_transform { struct abd *zt_orig_abd; uint64_t zt_orig_size; uint64_t zt_bufsize; zio_transform_func_t *zt_transform; struct zio_transform *zt_next; } zio_transform_t; typedef zio_t *zio_pipe_stage_t(zio_t *zio); /* * The io_reexecute flags are distinct from io_flags because the child must * be able to propagate them to the parent. The normal io_flags are local * to the zio, not protected by any lock, and not modifiable by children; * the reexecute flags are protected by io_lock, modifiable by children, * and always propagated -- even when ZIO_FLAG_DONT_PROPAGATE is set. */ #define ZIO_REEXECUTE_NOW 0x01 #define ZIO_REEXECUTE_SUSPEND 0x02 /* * The io_trim flags are used to specify the type of TRIM to perform. They * only apply to ZIO_TYPE_TRIM zios are distinct from io_flags. */ enum trim_flag { ZIO_TRIM_SECURE = 1U << 0, }; typedef struct zio_alloc_list { list_t zal_list; uint64_t zal_size; } zio_alloc_list_t; typedef struct zio_link { zio_t *zl_parent; zio_t *zl_child; list_node_t zl_parent_node; list_node_t zl_child_node; } zio_link_t; struct zio { /* Core information about this I/O */ zbookmark_phys_t io_bookmark; zio_prop_t io_prop; zio_type_t io_type; enum zio_child io_child_type; enum trim_flag io_trim_flags; int io_cmd; zio_priority_t io_priority; uint8_t io_reexecute; uint8_t io_state[ZIO_WAIT_TYPES]; uint64_t io_txg; spa_t *io_spa; blkptr_t *io_bp; blkptr_t *io_bp_override; blkptr_t io_bp_copy; list_t io_parent_list; list_t io_child_list; zio_t *io_logical; zio_transform_t *io_transform_stack; /* Callback info */ zio_done_func_t *io_ready; zio_done_func_t *io_children_ready; zio_done_func_t *io_physdone; zio_done_func_t *io_done; void *io_private; int64_t io_prev_space_delta; /* DMU private */ blkptr_t io_bp_orig; /* io_lsize != io_orig_size iff this is a raw write */ uint64_t io_lsize; /* Data represented by this I/O */ struct abd *io_abd; struct abd *io_orig_abd; uint64_t io_size; uint64_t io_orig_size; /* Stuff for the vdev stack */ vdev_t *io_vd; void *io_vsd; const zio_vsd_ops_t *io_vsd_ops; metaslab_class_t *io_metaslab_class; /* dva throttle class */ uint64_t io_offset; hrtime_t io_timestamp; /* submitted at */ hrtime_t io_queued_timestamp; hrtime_t io_target_timestamp; hrtime_t io_delta; /* vdev queue service delta */ hrtime_t io_delay; /* Device access time (disk or */ /* file). */ avl_node_t io_queue_node; avl_node_t io_offset_node; avl_node_t io_alloc_node; zio_alloc_list_t io_alloc_list; /* Internal pipeline state */ zio_flag_t io_flags; enum zio_stage io_stage; enum zio_stage io_pipeline; zio_flag_t io_orig_flags; enum zio_stage io_orig_stage; enum zio_stage io_orig_pipeline; enum zio_stage io_pipeline_trace; int io_error; int io_child_error[ZIO_CHILD_TYPES]; uint64_t io_children[ZIO_CHILD_TYPES][ZIO_WAIT_TYPES]; uint64_t io_child_count; uint64_t io_phys_children; uint64_t io_parent_count; uint64_t *io_stall; zio_t *io_gang_leader; zio_gang_node_t *io_gang_tree; void *io_executor; void *io_waiter; void *io_bio; kmutex_t io_lock; kcondvar_t io_cv; int io_allocator; /* FMA state */ zio_cksum_report_t *io_cksum_report; uint64_t io_ena; /* Taskq dispatching state */ taskq_ent_t io_tqent; }; enum blk_verify_flag { BLK_VERIFY_ONLY, BLK_VERIFY_LOG, BLK_VERIFY_HALT }; extern int zio_bookmark_compare(const void *, const void *); extern zio_t *zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, void *priv, zio_flag_t flags); extern zio_t *zio_root(spa_t *spa, zio_done_func_t *done, void *priv, zio_flag_t flags); extern void zio_destroy(zio_t *zio); extern zio_t *zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, struct abd *data, uint64_t lsize, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb); extern zio_t *zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, struct abd *data, uint64_t size, uint64_t psize, const zio_prop_t *zp, zio_done_func_t *ready, zio_done_func_t *children_ready, zio_done_func_t *physdone, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb); extern zio_t *zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, struct abd *data, uint64_t size, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb); extern void zio_write_override(zio_t *zio, blkptr_t *bp, int copies, - boolean_t nopwrite); + boolean_t nopwrite, boolean_t brtwrite); extern void zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp); extern zio_t *zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, zio_done_func_t *done, void *priv, zio_flag_t flags); extern zio_t *zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, zio_done_func_t *done, void *priv, zio_flag_t flags); extern zio_t *zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, enum trim_flag trim_flags); extern zio_t *zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, struct abd *data, int checksum, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, boolean_t labels); extern zio_t *zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, struct abd *data, int checksum, zio_done_func_t *done, void *priv, zio_priority_t priority, zio_flag_t flags, boolean_t labels); extern zio_t *zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, zio_flag_t flags); extern int zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, uint64_t size, boolean_t *slog); extern void zio_flush(zio_t *zio, vdev_t *vd); extern void zio_shrink(zio_t *zio, uint64_t size); extern int zio_wait(zio_t *zio); extern void zio_nowait(zio_t *zio); extern void zio_execute(void *zio); extern void zio_interrupt(void *zio); extern void zio_delay_init(zio_t *zio); extern void zio_delay_interrupt(zio_t *zio); extern void zio_deadman(zio_t *zio, const char *tag); extern zio_t *zio_walk_parents(zio_t *cio, zio_link_t **); extern zio_t *zio_walk_children(zio_t *pio, zio_link_t **); extern zio_t *zio_unique_parent(zio_t *cio); extern void zio_add_child(zio_t *pio, zio_t *cio); extern void *zio_buf_alloc(size_t size); extern void zio_buf_free(void *buf, size_t size); extern void *zio_data_buf_alloc(size_t size); extern void zio_data_buf_free(void *buf, size_t size); extern void zio_push_transform(zio_t *zio, struct abd *abd, uint64_t size, uint64_t bufsize, zio_transform_func_t *transform); extern void zio_pop_transforms(zio_t *zio); extern void zio_resubmit_stage_async(void *); extern zio_t *zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset, struct abd *data, uint64_t size, int type, zio_priority_t priority, zio_flag_t flags, zio_done_func_t *done, void *priv); extern zio_t *zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, struct abd *data, uint64_t size, zio_type_t type, zio_priority_t priority, zio_flag_t flags, zio_done_func_t *done, void *priv); extern void zio_vdev_io_bypass(zio_t *zio); extern void zio_vdev_io_reissue(zio_t *zio); extern void zio_vdev_io_redone(zio_t *zio); extern void zio_change_priority(zio_t *pio, zio_priority_t priority); extern void zio_checksum_verified(zio_t *zio); extern int zio_worst_error(int e1, int e2); extern enum zio_checksum zio_checksum_select(enum zio_checksum child, enum zio_checksum parent); extern enum zio_checksum zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child, enum zio_checksum parent); extern enum zio_compress zio_compress_select(spa_t *spa, enum zio_compress child, enum zio_compress parent); extern uint8_t zio_complevel_select(spa_t *spa, enum zio_compress compress, uint8_t child, uint8_t parent); extern void zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t); extern int zio_resume(spa_t *spa); extern void zio_resume_wait(spa_t *spa); extern boolean_t zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, enum blk_verify_flag blk_verify); /* * Initial setup and teardown. */ extern void zio_init(void); extern void zio_fini(void); /* * Fault injection */ struct zinject_record; extern uint32_t zio_injection_enabled; extern int zio_inject_fault(char *name, int flags, int *id, struct zinject_record *record); extern int zio_inject_list_next(int *id, char *name, size_t buflen, struct zinject_record *record); extern int zio_clear_fault(int id); extern void zio_handle_panic_injection(spa_t *spa, const char *tag, uint64_t type); extern int zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb, uint64_t type, int error); extern int zio_handle_fault_injection(zio_t *zio, int error); extern int zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error); extern int zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2); extern int zio_handle_label_injection(zio_t *zio, int error); extern void zio_handle_ignored_writes(zio_t *zio); extern hrtime_t zio_handle_io_delay(zio_t *zio); /* * Checksum ereport functions */ extern int zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, struct zio *zio, uint64_t offset, uint64_t length, struct zio_bad_cksum *info); extern void zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data, const abd_t *bad_data, boolean_t drop_if_identical); extern void zfs_ereport_free_checksum(zio_cksum_report_t *report); /* If we have the good data in hand, this function can be used */ extern int zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, struct zio *zio, uint64_t offset, uint64_t length, const abd_t *good_data, const abd_t *bad_data, struct zio_bad_cksum *info); void zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr); extern void zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name); /* Called from spa_sync(), but primarily an injection handler */ extern void spa_handle_ignored_writes(spa_t *spa); /* zbookmark_phys functions */ boolean_t zbookmark_subtree_completed(const struct dnode_phys *dnp, const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block); boolean_t zbookmark_subtree_tbd(const struct dnode_phys *dnp, const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block); int zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2); #ifdef __cplusplus } #endif #endif /* _ZIO_H */ diff --git a/include/sys/zio_impl.h b/include/sys/zio_impl.h index 199cca291edf..29a05986cd4f 100644 --- a/include/sys/zio_impl.h +++ b/include/sys/zio_impl.h @@ -1,270 +1,279 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012, 2015 by Delphix. All rights reserved. */ #ifndef _ZIO_IMPL_H #define _ZIO_IMPL_H #ifdef __cplusplus extern "C" { #endif /* * XXX -- Describe ZFS I/O pipeline here. Fill in as needed. * * The ZFS I/O pipeline is comprised of various stages which are defined * in the zio_stage enum below. The individual stages are used to construct * these basic I/O operations: Read, Write, Free, Claim, and Ioctl. * * I/O operations: (XXX - provide detail for each of the operations) * * Read: * Write: * Free: * Claim: * Ioctl: * * Although the most common pipeline are used by the basic I/O operations * above, there are some helper pipelines (one could consider them * sub-pipelines) which are used internally by the ZIO module and are * explained below: * * Interlock Pipeline: * The interlock pipeline is the most basic pipeline and is used by all * of the I/O operations. The interlock pipeline does not perform any I/O * and is used to coordinate the dependencies between I/Os that are being * issued (i.e. the parent/child relationship). * * Vdev child Pipeline: * The vdev child pipeline is responsible for performing the physical I/O. * It is in this pipeline where the I/O are queued and possibly cached. * * In addition to performing I/O, the pipeline is also responsible for * data transformations. The transformations performed are based on the * specific properties that user may have selected and modify the * behavior of the pipeline. Examples of supported transformations are * compression, dedup, and nop writes. Transformations will either modify * the data or the pipeline. This list below further describes each of * the supported transformations: * * Compression: * ZFS supports five different flavors of compression -- gzip, lzjb, lz4, zle, * and zstd. Compression occurs as part of the write pipeline and is * performed in the ZIO_STAGE_WRITE_BP_INIT stage. * + * Block cloning: + * The block cloning functionality introduces ZIO_STAGE_BRT_FREE stage which + * is called during a free pipeline. If the block is referenced in the + * Block Cloning Table (BRT) we will just decrease its reference counter + * instead of actually freeing the block. + * * Dedup: * Dedup reads are handled by the ZIO_STAGE_DDT_READ_START and * ZIO_STAGE_DDT_READ_DONE stages. These stages are added to an existing * read pipeline if the dedup bit is set on the block pointer. * Writing a dedup block is performed by the ZIO_STAGE_DDT_WRITE stage * and added to a write pipeline if a user has enabled dedup on that * particular dataset. * * NOP Write: * The NOP write feature is performed by the ZIO_STAGE_NOP_WRITE stage * and is added to an existing write pipeline if a cryptographically * secure checksum (i.e. SHA256) is enabled and compression is turned on. * The NOP write stage will compare the checksums of the current data * on-disk (level-0 blocks only) and the data that is currently being written. * If the checksum values are identical then the pipeline is converted to * an interlock pipeline skipping block allocation and bypassing the * physical I/O. The nop write feature can handle writes in either * syncing or open context (i.e. zil writes) and as a result is mutually * exclusive with dedup. * * Encryption: * Encryption and authentication is handled by the ZIO_STAGE_ENCRYPT stage. * This stage determines how the encryption metadata is stored in the bp. * Decryption and MAC verification is performed during zio_decrypt() as a * transform callback. Encryption is mutually exclusive with nopwrite, because * blocks with the same plaintext will be encrypted with different salts and * IV's (if dedup is off), and therefore have different ciphertexts. For dedup * blocks we deterministically generate the IV and salt by performing an HMAC * of the plaintext, which is computationally expensive, but allows us to keep * support for encrypted dedup. See the block comment in zio_crypt.c for * details. */ /* * zio pipeline stage definitions */ enum zio_stage { ZIO_STAGE_OPEN = 1 << 0, /* RWFCI */ ZIO_STAGE_READ_BP_INIT = 1 << 1, /* R---- */ ZIO_STAGE_WRITE_BP_INIT = 1 << 2, /* -W--- */ ZIO_STAGE_FREE_BP_INIT = 1 << 3, /* --F-- */ ZIO_STAGE_ISSUE_ASYNC = 1 << 4, /* RWF-- */ ZIO_STAGE_WRITE_COMPRESS = 1 << 5, /* -W--- */ ZIO_STAGE_ENCRYPT = 1 << 6, /* -W--- */ ZIO_STAGE_CHECKSUM_GENERATE = 1 << 7, /* -W--- */ ZIO_STAGE_NOP_WRITE = 1 << 8, /* -W--- */ - ZIO_STAGE_DDT_READ_START = 1 << 9, /* R---- */ - ZIO_STAGE_DDT_READ_DONE = 1 << 10, /* R---- */ - ZIO_STAGE_DDT_WRITE = 1 << 11, /* -W--- */ - ZIO_STAGE_DDT_FREE = 1 << 12, /* --F-- */ + ZIO_STAGE_BRT_FREE = 1 << 9, /* --F-- */ + + ZIO_STAGE_DDT_READ_START = 1 << 10, /* R---- */ + ZIO_STAGE_DDT_READ_DONE = 1 << 11, /* R---- */ + ZIO_STAGE_DDT_WRITE = 1 << 12, /* -W--- */ + ZIO_STAGE_DDT_FREE = 1 << 13, /* --F-- */ - ZIO_STAGE_GANG_ASSEMBLE = 1 << 13, /* RWFC- */ - ZIO_STAGE_GANG_ISSUE = 1 << 14, /* RWFC- */ + ZIO_STAGE_GANG_ASSEMBLE = 1 << 14, /* RWFC- */ + ZIO_STAGE_GANG_ISSUE = 1 << 15, /* RWFC- */ - ZIO_STAGE_DVA_THROTTLE = 1 << 15, /* -W--- */ - ZIO_STAGE_DVA_ALLOCATE = 1 << 16, /* -W--- */ - ZIO_STAGE_DVA_FREE = 1 << 17, /* --F-- */ - ZIO_STAGE_DVA_CLAIM = 1 << 18, /* ---C- */ + ZIO_STAGE_DVA_THROTTLE = 1 << 16, /* -W--- */ + ZIO_STAGE_DVA_ALLOCATE = 1 << 17, /* -W--- */ + ZIO_STAGE_DVA_FREE = 1 << 18, /* --F-- */ + ZIO_STAGE_DVA_CLAIM = 1 << 19, /* ---C- */ - ZIO_STAGE_READY = 1 << 19, /* RWFCI */ + ZIO_STAGE_READY = 1 << 20, /* RWFCI */ - ZIO_STAGE_VDEV_IO_START = 1 << 20, /* RW--I */ - ZIO_STAGE_VDEV_IO_DONE = 1 << 21, /* RW--I */ - ZIO_STAGE_VDEV_IO_ASSESS = 1 << 22, /* RW--I */ + ZIO_STAGE_VDEV_IO_START = 1 << 21, /* RW--I */ + ZIO_STAGE_VDEV_IO_DONE = 1 << 22, /* RW--I */ + ZIO_STAGE_VDEV_IO_ASSESS = 1 << 23, /* RW--I */ - ZIO_STAGE_CHECKSUM_VERIFY = 1 << 23, /* R---- */ + ZIO_STAGE_CHECKSUM_VERIFY = 1 << 24, /* R---- */ - ZIO_STAGE_DONE = 1 << 24 /* RWFCI */ + ZIO_STAGE_DONE = 1 << 25 /* RWFCI */ }; #define ZIO_INTERLOCK_STAGES \ (ZIO_STAGE_READY | \ ZIO_STAGE_DONE) #define ZIO_INTERLOCK_PIPELINE \ ZIO_INTERLOCK_STAGES #define ZIO_VDEV_IO_STAGES \ (ZIO_STAGE_VDEV_IO_START | \ ZIO_STAGE_VDEV_IO_DONE | \ ZIO_STAGE_VDEV_IO_ASSESS) #define ZIO_VDEV_CHILD_PIPELINE \ (ZIO_VDEV_IO_STAGES | \ ZIO_STAGE_DONE) #define ZIO_READ_COMMON_STAGES \ (ZIO_INTERLOCK_STAGES | \ ZIO_VDEV_IO_STAGES | \ ZIO_STAGE_CHECKSUM_VERIFY) #define ZIO_READ_PHYS_PIPELINE \ ZIO_READ_COMMON_STAGES #define ZIO_READ_PIPELINE \ (ZIO_READ_COMMON_STAGES | \ ZIO_STAGE_READ_BP_INIT) #define ZIO_DDT_CHILD_READ_PIPELINE \ ZIO_READ_COMMON_STAGES #define ZIO_DDT_READ_PIPELINE \ (ZIO_INTERLOCK_STAGES | \ ZIO_STAGE_READ_BP_INIT | \ ZIO_STAGE_DDT_READ_START | \ ZIO_STAGE_DDT_READ_DONE) #define ZIO_WRITE_COMMON_STAGES \ (ZIO_INTERLOCK_STAGES | \ ZIO_VDEV_IO_STAGES | \ ZIO_STAGE_ISSUE_ASYNC | \ ZIO_STAGE_CHECKSUM_GENERATE) #define ZIO_WRITE_PHYS_PIPELINE \ ZIO_WRITE_COMMON_STAGES #define ZIO_REWRITE_PIPELINE \ (ZIO_WRITE_COMMON_STAGES | \ ZIO_STAGE_WRITE_COMPRESS | \ ZIO_STAGE_ENCRYPT | \ ZIO_STAGE_WRITE_BP_INIT) #define ZIO_WRITE_PIPELINE \ (ZIO_WRITE_COMMON_STAGES | \ ZIO_STAGE_WRITE_BP_INIT | \ ZIO_STAGE_WRITE_COMPRESS | \ ZIO_STAGE_ENCRYPT | \ ZIO_STAGE_DVA_THROTTLE | \ ZIO_STAGE_DVA_ALLOCATE) #define ZIO_DDT_CHILD_WRITE_PIPELINE \ (ZIO_INTERLOCK_STAGES | \ ZIO_VDEV_IO_STAGES | \ ZIO_STAGE_DVA_THROTTLE | \ ZIO_STAGE_DVA_ALLOCATE) #define ZIO_DDT_WRITE_PIPELINE \ (ZIO_INTERLOCK_STAGES | \ ZIO_STAGE_WRITE_BP_INIT | \ ZIO_STAGE_ISSUE_ASYNC | \ ZIO_STAGE_WRITE_COMPRESS | \ ZIO_STAGE_ENCRYPT | \ ZIO_STAGE_CHECKSUM_GENERATE | \ ZIO_STAGE_DDT_WRITE) #define ZIO_GANG_STAGES \ (ZIO_STAGE_GANG_ASSEMBLE | \ ZIO_STAGE_GANG_ISSUE) #define ZIO_FREE_PIPELINE \ (ZIO_INTERLOCK_STAGES | \ ZIO_STAGE_FREE_BP_INIT | \ + ZIO_STAGE_BRT_FREE | \ ZIO_STAGE_DVA_FREE) #define ZIO_DDT_FREE_PIPELINE \ (ZIO_INTERLOCK_STAGES | \ ZIO_STAGE_FREE_BP_INIT | \ ZIO_STAGE_ISSUE_ASYNC | \ ZIO_STAGE_DDT_FREE) #define ZIO_CLAIM_PIPELINE \ (ZIO_INTERLOCK_STAGES | \ ZIO_STAGE_DVA_CLAIM) #define ZIO_IOCTL_PIPELINE \ (ZIO_INTERLOCK_STAGES | \ ZIO_STAGE_VDEV_IO_START | \ ZIO_STAGE_VDEV_IO_ASSESS) #define ZIO_TRIM_PIPELINE \ (ZIO_INTERLOCK_STAGES | \ ZIO_STAGE_ISSUE_ASYNC | \ ZIO_VDEV_IO_STAGES) #define ZIO_BLOCKING_STAGES \ (ZIO_STAGE_DVA_ALLOCATE | \ ZIO_STAGE_DVA_CLAIM | \ ZIO_STAGE_VDEV_IO_START) extern void zio_inject_init(void); extern void zio_inject_fini(void); #ifdef __cplusplus } #endif #endif /* _ZIO_IMPL_H */ diff --git a/include/zfeature_common.h b/include/zfeature_common.h index 0930bc900f82..ef915a70952e 100644 --- a/include/zfeature_common.h +++ b/include/zfeature_common.h @@ -1,138 +1,139 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2017, Intel Corporation. */ #ifndef _ZFEATURE_COMMON_H #define _ZFEATURE_COMMON_H extern __attribute__((visibility("default"))) #include #include #include #ifdef __cplusplus extern "C" { #endif struct zfeature_info; typedef enum spa_feature { SPA_FEATURE_NONE = -1, SPA_FEATURE_ASYNC_DESTROY, SPA_FEATURE_EMPTY_BPOBJ, SPA_FEATURE_LZ4_COMPRESS, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP, SPA_FEATURE_SPACEMAP_HISTOGRAM, SPA_FEATURE_ENABLED_TXG, SPA_FEATURE_HOLE_BIRTH, SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_EMBEDDED_DATA, SPA_FEATURE_BOOKMARKS, SPA_FEATURE_FS_SS_LIMIT, SPA_FEATURE_LARGE_BLOCKS, SPA_FEATURE_LARGE_DNODE, SPA_FEATURE_SHA512, SPA_FEATURE_SKEIN, SPA_FEATURE_EDONR, SPA_FEATURE_USEROBJ_ACCOUNTING, SPA_FEATURE_ENCRYPTION, SPA_FEATURE_PROJECT_QUOTA, SPA_FEATURE_DEVICE_REMOVAL, SPA_FEATURE_OBSOLETE_COUNTS, SPA_FEATURE_POOL_CHECKPOINT, SPA_FEATURE_SPACEMAP_V2, SPA_FEATURE_ALLOCATION_CLASSES, SPA_FEATURE_RESILVER_DEFER, SPA_FEATURE_BOOKMARK_V2, SPA_FEATURE_REDACTION_BOOKMARKS, SPA_FEATURE_REDACTED_DATASETS, SPA_FEATURE_BOOKMARK_WRITTEN, SPA_FEATURE_LOG_SPACEMAP, SPA_FEATURE_LIVELIST, SPA_FEATURE_DEVICE_REBUILD, SPA_FEATURE_ZSTD_COMPRESS, SPA_FEATURE_DRAID, SPA_FEATURE_ZILSAXATTR, SPA_FEATURE_HEAD_ERRLOG, SPA_FEATURE_BLAKE3, + SPA_FEATURE_BLOCK_CLONING, SPA_FEATURES } spa_feature_t; #define SPA_FEATURE_DISABLED (-1ULL) typedef enum zfeature_flags { /* Can open pool readonly even if this feature is not supported. */ ZFEATURE_FLAG_READONLY_COMPAT = (1 << 0), /* * Is this feature necessary to load the pool? i.e. do we need this * feature to read the full feature list out of the MOS? */ ZFEATURE_FLAG_MOS = (1 << 1), /* Activate this feature at the same time it is enabled. */ ZFEATURE_FLAG_ACTIVATE_ON_ENABLE = (1 << 2), /* Each dataset has a field set if it has ever used this feature. */ ZFEATURE_FLAG_PER_DATASET = (1 << 3) } zfeature_flags_t; typedef enum zfeature_type { ZFEATURE_TYPE_BOOLEAN, ZFEATURE_TYPE_UINT64_ARRAY, ZFEATURE_NUM_TYPES } zfeature_type_t; typedef struct zfeature_info { spa_feature_t fi_feature; const char *fi_uname; /* User-facing feature name */ const char *fi_guid; /* On-disk feature identifier */ const char *fi_desc; /* Feature description */ zfeature_flags_t fi_flags; boolean_t fi_zfs_mod_supported; /* supported by running zfs module */ zfeature_type_t fi_type; /* Only relevant for PER_DATASET features */ /* array of dependencies, terminated by SPA_FEATURE_NONE */ const spa_feature_t *fi_depends; } zfeature_info_t; typedef int (zfeature_func_t)(zfeature_info_t *, void *); #define ZFS_FEATURE_DEBUG _ZFEATURE_COMMON_H zfeature_info_t spa_feature_table[SPA_FEATURES]; _ZFEATURE_COMMON_H boolean_t zfeature_checks_disable; _ZFEATURE_COMMON_H boolean_t zfeature_is_valid_guid(const char *); _ZFEATURE_COMMON_H boolean_t zfeature_is_supported(const char *); _ZFEATURE_COMMON_H int zfeature_lookup_guid(const char *, spa_feature_t *); _ZFEATURE_COMMON_H int zfeature_lookup_name(const char *, spa_feature_t *); _ZFEATURE_COMMON_H boolean_t zfeature_depends_on(spa_feature_t, spa_feature_t); _ZFEATURE_COMMON_H void zpool_feature_init(void); #ifdef __cplusplus } #endif #endif /* _ZFEATURE_COMMON_H */ diff --git a/lib/libzfs/libzfs.abi b/lib/libzfs/libzfs.abi index 16fea63f895c..79c0201678b0 100644 --- a/lib/libzfs/libzfs.abi +++ b/lib/libzfs/libzfs.abi @@ -1,5907 +1,5911 @@ - + - + + + + - - + + - + + diff --git a/lib/libzfs/libzfs_pool.c b/lib/libzfs/libzfs_pool.c index b3e12bd84a2d..82965f8b993a 100644 --- a/lib/libzfs/libzfs_pool.c +++ b/lib/libzfs/libzfs_pool.c @@ -1,5219 +1,5222 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2015 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright 2016 Igor Kozhukhov * Copyright (c) 2018 Datto Inc. * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2018, loli10K * Copyright (c) 2021, Colm Buckley * Copyright (c) 2021, Klara Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "libzfs_impl.h" #include "zfs_comutil.h" #include "zfeature_common.h" static boolean_t zpool_vdev_is_interior(const char *name); typedef struct prop_flags { unsigned int create:1; /* Validate property on creation */ unsigned int import:1; /* Validate property on import */ unsigned int vdevprop:1; /* Validate property as a VDEV property */ } prop_flags_t; /* * ==================================================================== * zpool property functions * ==================================================================== */ static int zpool_get_all_props(zpool_handle_t *zhp) { zfs_cmd_t zc = {"\0"}; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zcmd_alloc_dst_nvlist(hdl, &zc, 0); while (zfs_ioctl(hdl, ZFS_IOC_POOL_GET_PROPS, &zc) != 0) { if (errno == ENOMEM) zcmd_expand_dst_nvlist(hdl, &zc); else { zcmd_free_nvlists(&zc); return (-1); } } if (zcmd_read_dst_nvlist(hdl, &zc, &zhp->zpool_props) != 0) { zcmd_free_nvlists(&zc); return (-1); } zcmd_free_nvlists(&zc); return (0); } int zpool_props_refresh(zpool_handle_t *zhp) { nvlist_t *old_props; old_props = zhp->zpool_props; if (zpool_get_all_props(zhp) != 0) return (-1); nvlist_free(old_props); return (0); } static const char * zpool_get_prop_string(zpool_handle_t *zhp, zpool_prop_t prop, zprop_source_t *src) { nvlist_t *nv, *nvl; const char *value; zprop_source_t source; nvl = zhp->zpool_props; if (nvlist_lookup_nvlist(nvl, zpool_prop_to_name(prop), &nv) == 0) { source = fnvlist_lookup_uint64(nv, ZPROP_SOURCE); value = fnvlist_lookup_string(nv, ZPROP_VALUE); } else { source = ZPROP_SRC_DEFAULT; if ((value = zpool_prop_default_string(prop)) == NULL) value = "-"; } if (src) *src = source; return (value); } uint64_t zpool_get_prop_int(zpool_handle_t *zhp, zpool_prop_t prop, zprop_source_t *src) { nvlist_t *nv, *nvl; uint64_t value; zprop_source_t source; if (zhp->zpool_props == NULL && zpool_get_all_props(zhp)) { /* * zpool_get_all_props() has most likely failed because * the pool is faulted, but if all we need is the top level * vdev's guid then get it from the zhp config nvlist. */ if ((prop == ZPOOL_PROP_GUID) && (nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0) && (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &value) == 0)) { return (value); } return (zpool_prop_default_numeric(prop)); } nvl = zhp->zpool_props; if (nvlist_lookup_nvlist(nvl, zpool_prop_to_name(prop), &nv) == 0) { source = fnvlist_lookup_uint64(nv, ZPROP_SOURCE); value = fnvlist_lookup_uint64(nv, ZPROP_VALUE); } else { source = ZPROP_SRC_DEFAULT; value = zpool_prop_default_numeric(prop); } if (src) *src = source; return (value); } /* * Map VDEV STATE to printed strings. */ const char * zpool_state_to_name(vdev_state_t state, vdev_aux_t aux) { switch (state) { case VDEV_STATE_CLOSED: case VDEV_STATE_OFFLINE: return (gettext("OFFLINE")); case VDEV_STATE_REMOVED: return (gettext("REMOVED")); case VDEV_STATE_CANT_OPEN: if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) return (gettext("FAULTED")); else if (aux == VDEV_AUX_SPLIT_POOL) return (gettext("SPLIT")); else return (gettext("UNAVAIL")); case VDEV_STATE_FAULTED: return (gettext("FAULTED")); case VDEV_STATE_DEGRADED: return (gettext("DEGRADED")); case VDEV_STATE_HEALTHY: return (gettext("ONLINE")); default: break; } return (gettext("UNKNOWN")); } /* * Map POOL STATE to printed strings. */ const char * zpool_pool_state_to_name(pool_state_t state) { switch (state) { default: break; case POOL_STATE_ACTIVE: return (gettext("ACTIVE")); case POOL_STATE_EXPORTED: return (gettext("EXPORTED")); case POOL_STATE_DESTROYED: return (gettext("DESTROYED")); case POOL_STATE_SPARE: return (gettext("SPARE")); case POOL_STATE_L2CACHE: return (gettext("L2CACHE")); case POOL_STATE_UNINITIALIZED: return (gettext("UNINITIALIZED")); case POOL_STATE_UNAVAIL: return (gettext("UNAVAIL")); case POOL_STATE_POTENTIALLY_ACTIVE: return (gettext("POTENTIALLY_ACTIVE")); } return (gettext("UNKNOWN")); } /* * Given a pool handle, return the pool health string ("ONLINE", "DEGRADED", * "SUSPENDED", etc). */ const char * zpool_get_state_str(zpool_handle_t *zhp) { zpool_errata_t errata; zpool_status_t status; const char *str; status = zpool_get_status(zhp, NULL, &errata); if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { str = gettext("FAULTED"); } else if (status == ZPOOL_STATUS_IO_FAILURE_WAIT || status == ZPOOL_STATUS_IO_FAILURE_MMP) { str = gettext("SUSPENDED"); } else { nvlist_t *nvroot = fnvlist_lookup_nvlist( zpool_get_config(zhp, NULL), ZPOOL_CONFIG_VDEV_TREE); uint_t vsc; vdev_stat_t *vs = (vdev_stat_t *)fnvlist_lookup_uint64_array( nvroot, ZPOOL_CONFIG_VDEV_STATS, &vsc); str = zpool_state_to_name(vs->vs_state, vs->vs_aux); } return (str); } /* * Get a zpool property value for 'prop' and return the value in * a pre-allocated buffer. */ int zpool_get_prop(zpool_handle_t *zhp, zpool_prop_t prop, char *buf, size_t len, zprop_source_t *srctype, boolean_t literal) { uint64_t intval; const char *strval; zprop_source_t src = ZPROP_SRC_NONE; if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { switch (prop) { case ZPOOL_PROP_NAME: (void) strlcpy(buf, zpool_get_name(zhp), len); break; case ZPOOL_PROP_HEALTH: (void) strlcpy(buf, zpool_get_state_str(zhp), len); break; case ZPOOL_PROP_GUID: intval = zpool_get_prop_int(zhp, prop, &src); (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); break; case ZPOOL_PROP_ALTROOT: case ZPOOL_PROP_CACHEFILE: case ZPOOL_PROP_COMMENT: case ZPOOL_PROP_COMPATIBILITY: if (zhp->zpool_props != NULL || zpool_get_all_props(zhp) == 0) { (void) strlcpy(buf, zpool_get_prop_string(zhp, prop, &src), len); break; } zfs_fallthrough; default: (void) strlcpy(buf, "-", len); break; } if (srctype != NULL) *srctype = src; return (0); } if (zhp->zpool_props == NULL && zpool_get_all_props(zhp) && prop != ZPOOL_PROP_NAME) return (-1); switch (zpool_prop_get_type(prop)) { case PROP_TYPE_STRING: (void) strlcpy(buf, zpool_get_prop_string(zhp, prop, &src), len); break; case PROP_TYPE_NUMBER: intval = zpool_get_prop_int(zhp, prop, &src); switch (prop) { case ZPOOL_PROP_SIZE: case ZPOOL_PROP_ALLOCATED: case ZPOOL_PROP_FREE: case ZPOOL_PROP_FREEING: case ZPOOL_PROP_LEAKED: case ZPOOL_PROP_ASHIFT: case ZPOOL_PROP_MAXBLOCKSIZE: case ZPOOL_PROP_MAXDNODESIZE: + case ZPOOL_PROP_BCLONESAVED: + case ZPOOL_PROP_BCLONEUSED: if (literal) (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); else (void) zfs_nicenum(intval, buf, len); break; case ZPOOL_PROP_EXPANDSZ: case ZPOOL_PROP_CHECKPOINT: if (intval == 0) { (void) strlcpy(buf, "-", len); } else if (literal) { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } else { (void) zfs_nicebytes(intval, buf, len); } break; case ZPOOL_PROP_CAPACITY: if (literal) { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } else { (void) snprintf(buf, len, "%llu%%", (u_longlong_t)intval); } break; case ZPOOL_PROP_FRAGMENTATION: if (intval == UINT64_MAX) { (void) strlcpy(buf, "-", len); } else if (literal) { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } else { (void) snprintf(buf, len, "%llu%%", (u_longlong_t)intval); } break; + case ZPOOL_PROP_BCLONERATIO: case ZPOOL_PROP_DEDUPRATIO: if (literal) (void) snprintf(buf, len, "%llu.%02llu", (u_longlong_t)(intval / 100), (u_longlong_t)(intval % 100)); else (void) snprintf(buf, len, "%llu.%02llux", (u_longlong_t)(intval / 100), (u_longlong_t)(intval % 100)); break; case ZPOOL_PROP_HEALTH: (void) strlcpy(buf, zpool_get_state_str(zhp), len); break; case ZPOOL_PROP_VERSION: if (intval >= SPA_VERSION_FEATURES) { (void) snprintf(buf, len, "-"); break; } zfs_fallthrough; default: (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } break; case PROP_TYPE_INDEX: intval = zpool_get_prop_int(zhp, prop, &src); if (zpool_prop_index_to_string(prop, intval, &strval) != 0) return (-1); (void) strlcpy(buf, strval, len); break; default: abort(); } if (srctype) *srctype = src; return (0); } /* * Check if the bootfs name has the same pool name as it is set to. * Assuming bootfs is a valid dataset name. */ static boolean_t bootfs_name_valid(const char *pool, const char *bootfs) { int len = strlen(pool); if (bootfs[0] == '\0') return (B_TRUE); if (!zfs_name_valid(bootfs, ZFS_TYPE_FILESYSTEM|ZFS_TYPE_SNAPSHOT)) return (B_FALSE); if (strncmp(pool, bootfs, len) == 0 && (bootfs[len] == '/' || bootfs[len] == '\0')) return (B_TRUE); return (B_FALSE); } /* * Given an nvlist of zpool properties to be set, validate that they are * correct, and parse any numeric properties (index, boolean, etc) if they are * specified as strings. */ static nvlist_t * zpool_valid_proplist(libzfs_handle_t *hdl, const char *poolname, nvlist_t *props, uint64_t version, prop_flags_t flags, char *errbuf) { nvpair_t *elem; nvlist_t *retprops; zpool_prop_t prop; char *strval; uint64_t intval; char *slash, *check; struct stat64 statbuf; zpool_handle_t *zhp; char report[1024]; if (nvlist_alloc(&retprops, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { const char *propname = nvpair_name(elem); if (flags.vdevprop && zpool_prop_vdev(propname)) { vdev_prop_t vprop = vdev_name_to_prop(propname); if (vdev_prop_readonly(vprop)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' " "is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (zprop_parse_value(hdl, elem, vprop, ZFS_TYPE_VDEV, retprops, &strval, &intval, errbuf) != 0) goto error; continue; } else if (flags.vdevprop && vdev_prop_user(propname)) { if (nvlist_add_nvpair(retprops, elem) != 0) { (void) no_memory(hdl); goto error; } continue; } else if (flags.vdevprop) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property: '%s'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } prop = zpool_name_to_prop(propname); if (prop == ZPOOL_PROP_INVAL && zpool_prop_feature(propname)) { int err; char *fname = strchr(propname, '@') + 1; err = zfeature_lookup_name(fname, NULL); if (err != 0) { ASSERT3U(err, ==, ENOENT); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "feature '%s' unsupported by kernel"), fname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (nvpair_type(elem) != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } (void) nvpair_value_string(elem, &strval); if (strcmp(strval, ZFS_FEATURE_ENABLED) != 0 && strcmp(strval, ZFS_FEATURE_DISABLED) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set to " "'enabled' or 'disabled'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (!flags.create && strcmp(strval, ZFS_FEATURE_DISABLED) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set to " "'disabled' at creation time"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (nvlist_add_uint64(retprops, propname, 0) != 0) { (void) no_memory(hdl); goto error; } continue; } /* * Make sure this property is valid and applies to this type. */ if (prop == ZPOOL_PROP_INVAL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (zpool_prop_readonly(prop)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' " "is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (!flags.create && zpool_prop_setonce(prop)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set at " "creation time"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (zprop_parse_value(hdl, elem, prop, ZFS_TYPE_POOL, retprops, &strval, &intval, errbuf) != 0) goto error; /* * Perform additional checking for specific properties. */ switch (prop) { case ZPOOL_PROP_VERSION: if (intval < version || !SPA_VERSION_IS_SUPPORTED(intval)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' number %llu is invalid."), propname, (unsigned long long)intval); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); goto error; } break; case ZPOOL_PROP_ASHIFT: if (intval != 0 && (intval < ASHIFT_MIN || intval > ASHIFT_MAX)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' number %llu is invalid, " "only values between %" PRId32 " and %" PRId32 " are allowed."), propname, (unsigned long long)intval, ASHIFT_MIN, ASHIFT_MAX); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZPOOL_PROP_BOOTFS: if (flags.create || flags.import) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' cannot be set at creation " "or import time"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (version < SPA_VERSION_BOOTFS) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to support " "'%s' property"), propname); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); goto error; } /* * bootfs property value has to be a dataset name and * the dataset has to be in the same pool as it sets to. */ if (!bootfs_name_valid(poolname, strval)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' " "is an invalid name"), strval); (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf); goto error; } if ((zhp = zpool_open_canfail(hdl, poolname)) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "could not open pool '%s'"), poolname); (void) zfs_error(hdl, EZFS_OPENFAILED, errbuf); goto error; } zpool_close(zhp); break; case ZPOOL_PROP_ALTROOT: if (!flags.create && !flags.import) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set during pool " "creation or import"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (strval[0] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "bad alternate root '%s'"), strval); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } break; case ZPOOL_PROP_CACHEFILE: if (strval[0] == '\0') break; if (strcmp(strval, "none") == 0) break; if (strval[0] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' must be empty, an " "absolute path, or 'none'"), propname); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } slash = strrchr(strval, '/'); if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || strcmp(slash, "/..") == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is not a valid file"), strval); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } *slash = '\0'; if (strval[0] != '\0' && (stat64(strval, &statbuf) != 0 || !S_ISDIR(statbuf.st_mode))) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is not a valid directory"), strval); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } *slash = '/'; break; case ZPOOL_PROP_COMPATIBILITY: switch (zpool_load_compat(strval, NULL, report, 1024)) { case ZPOOL_COMPATIBILITY_OK: case ZPOOL_COMPATIBILITY_WARNTOKEN: break; case ZPOOL_COMPATIBILITY_BADFILE: case ZPOOL_COMPATIBILITY_BADTOKEN: case ZPOOL_COMPATIBILITY_NOFILES: zfs_error_aux(hdl, "%s", report); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZPOOL_PROP_COMMENT: for (check = strval; *check != '\0'; check++) { if (!isprint(*check)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "comment may only have printable " "characters")); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } if (strlen(strval) > ZPROP_MAX_COMMENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "comment must not exceed %d characters"), ZPROP_MAX_COMMENT); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZPOOL_PROP_READONLY: if (!flags.import) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set at " "import time"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZPOOL_PROP_MULTIHOST: if (get_system_hostid() == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "requires a non-zero system hostid")); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZPOOL_PROP_DEDUPDITTO: printf("Note: property '%s' no longer has " "any effect\n", propname); break; default: break; } } return (retprops); error: nvlist_free(retprops); return (NULL); } /* * Set zpool property : propname=propval. */ int zpool_set_prop(zpool_handle_t *zhp, const char *propname, const char *propval) { zfs_cmd_t zc = {"\0"}; int ret = -1; char errbuf[ERRBUFLEN]; nvlist_t *nvl = NULL; nvlist_t *realprops; uint64_t version; prop_flags_t flags = { 0 }; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot set property for '%s'"), zhp->zpool_name); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) return (no_memory(zhp->zpool_hdl)); if (nvlist_add_string(nvl, propname, propval) != 0) { nvlist_free(nvl); return (no_memory(zhp->zpool_hdl)); } version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if ((realprops = zpool_valid_proplist(zhp->zpool_hdl, zhp->zpool_name, nvl, version, flags, errbuf)) == NULL) { nvlist_free(nvl); return (-1); } nvlist_free(nvl); nvl = realprops; /* * Execute the corresponding ioctl() to set this property. */ (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zcmd_write_src_nvlist(zhp->zpool_hdl, &zc, nvl); ret = zfs_ioctl(zhp->zpool_hdl, ZFS_IOC_POOL_SET_PROPS, &zc); zcmd_free_nvlists(&zc); nvlist_free(nvl); if (ret) (void) zpool_standard_error(zhp->zpool_hdl, errno, errbuf); else (void) zpool_props_refresh(zhp); return (ret); } int zpool_expand_proplist(zpool_handle_t *zhp, zprop_list_t **plp, zfs_type_t type, boolean_t literal) { libzfs_handle_t *hdl = zhp->zpool_hdl; zprop_list_t *entry; char buf[ZFS_MAXPROPLEN]; nvlist_t *features = NULL; nvpair_t *nvp; zprop_list_t **last; boolean_t firstexpand = (NULL == *plp); int i; if (zprop_expand_list(hdl, plp, type) != 0) return (-1); if (type == ZFS_TYPE_VDEV) return (0); last = plp; while (*last != NULL) last = &(*last)->pl_next; if ((*plp)->pl_all) features = zpool_get_features(zhp); if ((*plp)->pl_all && firstexpand) { for (i = 0; i < SPA_FEATURES; i++) { zprop_list_t *entry = zfs_alloc(hdl, sizeof (zprop_list_t)); entry->pl_prop = ZPROP_USERPROP; entry->pl_user_prop = zfs_asprintf(hdl, "feature@%s", spa_feature_table[i].fi_uname); entry->pl_width = strlen(entry->pl_user_prop); entry->pl_all = B_TRUE; *last = entry; last = &entry->pl_next; } } /* add any unsupported features */ for (nvp = nvlist_next_nvpair(features, NULL); nvp != NULL; nvp = nvlist_next_nvpair(features, nvp)) { char *propname; boolean_t found; zprop_list_t *entry; if (zfeature_is_supported(nvpair_name(nvp))) continue; propname = zfs_asprintf(hdl, "unsupported@%s", nvpair_name(nvp)); /* * Before adding the property to the list make sure that no * other pool already added the same property. */ found = B_FALSE; entry = *plp; while (entry != NULL) { if (entry->pl_user_prop != NULL && strcmp(propname, entry->pl_user_prop) == 0) { found = B_TRUE; break; } entry = entry->pl_next; } if (found) { free(propname); continue; } entry = zfs_alloc(hdl, sizeof (zprop_list_t)); entry->pl_prop = ZPROP_USERPROP; entry->pl_user_prop = propname; entry->pl_width = strlen(entry->pl_user_prop); entry->pl_all = B_TRUE; *last = entry; last = &entry->pl_next; } for (entry = *plp; entry != NULL; entry = entry->pl_next) { if (entry->pl_fixed && !literal) continue; if (entry->pl_prop != ZPROP_USERPROP && zpool_get_prop(zhp, entry->pl_prop, buf, sizeof (buf), NULL, literal) == 0) { if (strlen(buf) > entry->pl_width) entry->pl_width = strlen(buf); } } return (0); } int vdev_expand_proplist(zpool_handle_t *zhp, const char *vdevname, zprop_list_t **plp) { zprop_list_t *entry; char buf[ZFS_MAXPROPLEN]; char *strval = NULL; int err = 0; nvpair_t *elem = NULL; nvlist_t *vprops = NULL; nvlist_t *propval = NULL; const char *propname; vdev_prop_t prop; zprop_list_t **last; for (entry = *plp; entry != NULL; entry = entry->pl_next) { if (entry->pl_fixed) continue; if (zpool_get_vdev_prop(zhp, vdevname, entry->pl_prop, entry->pl_user_prop, buf, sizeof (buf), NULL, B_FALSE) == 0) { if (strlen(buf) > entry->pl_width) entry->pl_width = strlen(buf); } if (entry->pl_prop == VDEV_PROP_NAME && strlen(vdevname) > entry->pl_width) entry->pl_width = strlen(vdevname); } /* Handle the all properties case */ last = plp; if (*last != NULL && (*last)->pl_all == B_TRUE) { while (*last != NULL) last = &(*last)->pl_next; err = zpool_get_all_vdev_props(zhp, vdevname, &vprops); if (err != 0) return (err); while ((elem = nvlist_next_nvpair(vprops, elem)) != NULL) { propname = nvpair_name(elem); /* Skip properties that are not user defined */ if ((prop = vdev_name_to_prop(propname)) != VDEV_PROP_USERPROP) continue; if (nvpair_value_nvlist(elem, &propval) != 0) continue; strval = fnvlist_lookup_string(propval, ZPROP_VALUE); entry = zfs_alloc(zhp->zpool_hdl, sizeof (zprop_list_t)); entry->pl_prop = prop; entry->pl_user_prop = zfs_strdup(zhp->zpool_hdl, propname); entry->pl_width = strlen(strval); entry->pl_all = B_TRUE; *last = entry; last = &entry->pl_next; } } return (0); } /* * Get the state for the given feature on the given ZFS pool. */ int zpool_prop_get_feature(zpool_handle_t *zhp, const char *propname, char *buf, size_t len) { uint64_t refcount; boolean_t found = B_FALSE; nvlist_t *features = zpool_get_features(zhp); boolean_t supported; const char *feature = strchr(propname, '@') + 1; supported = zpool_prop_feature(propname); ASSERT(supported || zpool_prop_unsupported(propname)); /* * Convert from feature name to feature guid. This conversion is * unnecessary for unsupported@... properties because they already * use guids. */ if (supported) { int ret; spa_feature_t fid; ret = zfeature_lookup_name(feature, &fid); if (ret != 0) { (void) strlcpy(buf, "-", len); return (ENOTSUP); } feature = spa_feature_table[fid].fi_guid; } if (nvlist_lookup_uint64(features, feature, &refcount) == 0) found = B_TRUE; if (supported) { if (!found) { (void) strlcpy(buf, ZFS_FEATURE_DISABLED, len); } else { if (refcount == 0) (void) strlcpy(buf, ZFS_FEATURE_ENABLED, len); else (void) strlcpy(buf, ZFS_FEATURE_ACTIVE, len); } } else { if (found) { if (refcount == 0) { (void) strcpy(buf, ZFS_UNSUPPORTED_INACTIVE); } else { (void) strcpy(buf, ZFS_UNSUPPORTED_READONLY); } } else { (void) strlcpy(buf, "-", len); return (ENOTSUP); } } return (0); } /* * Validate the given pool name, optionally putting an extended error message in * 'buf'. */ boolean_t zpool_name_valid(libzfs_handle_t *hdl, boolean_t isopen, const char *pool) { namecheck_err_t why; char what; int ret; ret = pool_namecheck(pool, &why, &what); /* * The rules for reserved pool names were extended at a later point. * But we need to support users with existing pools that may now be * invalid. So we only check for this expanded set of names during a * create (or import), and only in userland. */ if (ret == 0 && !isopen && (strncmp(pool, "mirror", 6) == 0 || strncmp(pool, "raidz", 5) == 0 || strncmp(pool, "draid", 5) == 0 || strncmp(pool, "spare", 5) == 0 || strcmp(pool, "log") == 0)) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); return (B_FALSE); } if (ret != 0) { if (hdl != NULL) { switch (why) { case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is too long")); break; case NAME_ERR_INVALCHAR: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character " "'%c' in pool name"), what); break; case NAME_ERR_NOLETTER: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name must begin with a letter")); break; case NAME_ERR_RESERVED: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); break; case NAME_ERR_DISKLIKE: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool name is reserved")); break; case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "leading slash in name")); break; case NAME_ERR_EMPTY_COMPONENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "empty component in name")); break; case NAME_ERR_TRAILING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "trailing slash in name")); break; case NAME_ERR_MULTIPLE_DELIMITERS: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "multiple '@' and/or '#' delimiters in " "name")); break; case NAME_ERR_NO_AT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "permission set is missing '@'")); break; default: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "(%d) not defined"), why); break; } } return (B_FALSE); } return (B_TRUE); } /* * Open a handle to the given pool, even if the pool is currently in the FAULTED * state. */ zpool_handle_t * zpool_open_canfail(libzfs_handle_t *hdl, const char *pool) { zpool_handle_t *zhp; boolean_t missing; /* * Make sure the pool name is valid. */ if (!zpool_name_valid(hdl, B_TRUE, pool)) { (void) zfs_error_fmt(hdl, EZFS_INVALIDNAME, dgettext(TEXT_DOMAIN, "cannot open '%s'"), pool); return (NULL); } zhp = zfs_alloc(hdl, sizeof (zpool_handle_t)); zhp->zpool_hdl = hdl; (void) strlcpy(zhp->zpool_name, pool, sizeof (zhp->zpool_name)); if (zpool_refresh_stats(zhp, &missing) != 0) { zpool_close(zhp); return (NULL); } if (missing) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool")); (void) zfs_error_fmt(hdl, EZFS_NOENT, dgettext(TEXT_DOMAIN, "cannot open '%s'"), pool); zpool_close(zhp); return (NULL); } return (zhp); } /* * Like the above, but silent on error. Used when iterating over pools (because * the configuration cache may be out of date). */ int zpool_open_silent(libzfs_handle_t *hdl, const char *pool, zpool_handle_t **ret) { zpool_handle_t *zhp; boolean_t missing; zhp = zfs_alloc(hdl, sizeof (zpool_handle_t)); zhp->zpool_hdl = hdl; (void) strlcpy(zhp->zpool_name, pool, sizeof (zhp->zpool_name)); if (zpool_refresh_stats(zhp, &missing) != 0) { zpool_close(zhp); return (-1); } if (missing) { zpool_close(zhp); *ret = NULL; return (0); } *ret = zhp; return (0); } /* * Similar to zpool_open_canfail(), but refuses to open pools in the faulted * state. */ zpool_handle_t * zpool_open(libzfs_handle_t *hdl, const char *pool) { zpool_handle_t *zhp; if ((zhp = zpool_open_canfail(hdl, pool)) == NULL) return (NULL); if (zhp->zpool_state == POOL_STATE_UNAVAIL) { (void) zfs_error_fmt(hdl, EZFS_POOLUNAVAIL, dgettext(TEXT_DOMAIN, "cannot open '%s'"), zhp->zpool_name); zpool_close(zhp); return (NULL); } return (zhp); } /* * Close the handle. Simply frees the memory associated with the handle. */ void zpool_close(zpool_handle_t *zhp) { nvlist_free(zhp->zpool_config); nvlist_free(zhp->zpool_old_config); nvlist_free(zhp->zpool_props); free(zhp); } /* * Return the name of the pool. */ const char * zpool_get_name(zpool_handle_t *zhp) { return (zhp->zpool_name); } /* * Return the state of the pool (ACTIVE or UNAVAILABLE) */ int zpool_get_state(zpool_handle_t *zhp) { return (zhp->zpool_state); } /* * Check if vdev list contains a special vdev */ static boolean_t zpool_has_special_vdev(nvlist_t *nvroot) { nvlist_t **child; uint_t children; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (uint_t c = 0; c < children; c++) { char *bias; if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_ALLOCATION_BIAS, &bias) == 0 && strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) { return (B_TRUE); } } } return (B_FALSE); } /* * Check if vdev list contains a dRAID vdev */ static boolean_t zpool_has_draid_vdev(nvlist_t *nvroot) { nvlist_t **child; uint_t children; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (uint_t c = 0; c < children; c++) { char *type; if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_TYPE, &type) == 0 && strcmp(type, VDEV_TYPE_DRAID) == 0) { return (B_TRUE); } } } return (B_FALSE); } /* * Output a dRAID top-level vdev name in to the provided buffer. */ static char * zpool_draid_name(char *name, int len, uint64_t data, uint64_t parity, uint64_t spares, uint64_t children) { snprintf(name, len, "%s%llu:%llud:%lluc:%llus", VDEV_TYPE_DRAID, (u_longlong_t)parity, (u_longlong_t)data, (u_longlong_t)children, (u_longlong_t)spares); return (name); } /* * Return B_TRUE if the provided name is a dRAID spare name. */ boolean_t zpool_is_draid_spare(const char *name) { uint64_t spare_id, parity, vdev_id; if (sscanf(name, VDEV_TYPE_DRAID "%llu-%llu-%llu", (u_longlong_t *)&parity, (u_longlong_t *)&vdev_id, (u_longlong_t *)&spare_id) == 3) { return (B_TRUE); } return (B_FALSE); } /* * Create the named pool, using the provided vdev list. It is assumed * that the consumer has already validated the contents of the nvlist, so we * don't have to worry about error semantics. */ int zpool_create(libzfs_handle_t *hdl, const char *pool, nvlist_t *nvroot, nvlist_t *props, nvlist_t *fsprops) { zfs_cmd_t zc = {"\0"}; nvlist_t *zc_fsprops = NULL; nvlist_t *zc_props = NULL; nvlist_t *hidden_args = NULL; uint8_t *wkeydata = NULL; uint_t wkeylen = 0; char errbuf[ERRBUFLEN]; int ret = -1; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), pool); if (!zpool_name_valid(hdl, B_FALSE, pool)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); zcmd_write_conf_nvlist(hdl, &zc, nvroot); if (props) { prop_flags_t flags = { .create = B_TRUE, .import = B_FALSE }; if ((zc_props = zpool_valid_proplist(hdl, pool, props, SPA_VERSION_1, flags, errbuf)) == NULL) { goto create_failed; } } if (fsprops) { uint64_t zoned; char *zonestr; zoned = ((nvlist_lookup_string(fsprops, zfs_prop_to_name(ZFS_PROP_ZONED), &zonestr) == 0) && strcmp(zonestr, "on") == 0); if ((zc_fsprops = zfs_valid_proplist(hdl, ZFS_TYPE_FILESYSTEM, fsprops, zoned, NULL, NULL, B_TRUE, errbuf)) == NULL) { goto create_failed; } if (nvlist_exists(zc_fsprops, zfs_prop_to_name(ZFS_PROP_SPECIAL_SMALL_BLOCKS)) && !zpool_has_special_vdev(nvroot)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "%s property requires a special vdev"), zfs_prop_to_name(ZFS_PROP_SPECIAL_SMALL_BLOCKS)); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto create_failed; } if (!zc_props && (nvlist_alloc(&zc_props, NV_UNIQUE_NAME, 0) != 0)) { goto create_failed; } if (zfs_crypto_create(hdl, NULL, zc_fsprops, props, B_TRUE, &wkeydata, &wkeylen) != 0) { zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf); goto create_failed; } if (nvlist_add_nvlist(zc_props, ZPOOL_ROOTFS_PROPS, zc_fsprops) != 0) { goto create_failed; } if (wkeydata != NULL) { if (nvlist_alloc(&hidden_args, NV_UNIQUE_NAME, 0) != 0) goto create_failed; if (nvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata, wkeylen) != 0) goto create_failed; if (nvlist_add_nvlist(zc_props, ZPOOL_HIDDEN_ARGS, hidden_args) != 0) goto create_failed; } } if (zc_props) zcmd_write_src_nvlist(hdl, &zc, zc_props); (void) strlcpy(zc.zc_name, pool, sizeof (zc.zc_name)); if ((ret = zfs_ioctl(hdl, ZFS_IOC_POOL_CREATE, &zc)) != 0) { zcmd_free_nvlists(&zc); nvlist_free(zc_props); nvlist_free(zc_fsprops); nvlist_free(hidden_args); if (wkeydata != NULL) free(wkeydata); switch (errno) { case EBUSY: /* * This can happen if the user has specified the same * device multiple times. We can't reliably detect this * until we try to add it and see we already have a * label. This can also happen under if the device is * part of an active md or lvm device. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more vdevs refer to the same device, or " "one of\nthe devices is part of an active md or " "lvm device")); return (zfs_error(hdl, EZFS_BADDEV, errbuf)); case ERANGE: /* * This happens if the record size is smaller or larger * than the allowed size range, or not a power of 2. * * NOTE: although zfs_valid_proplist is called earlier, * this case may have slipped through since the * pool does not exist yet and it is therefore * impossible to read properties e.g. max blocksize * from the pool. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "record size invalid")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); case EOVERFLOW: /* * This occurs when one of the devices is below * SPA_MINDEVSIZE. Unfortunately, we can't detect which * device was the problem device since there's no * reliable way to determine device size from userland. */ { char buf[64]; zfs_nicebytes(SPA_MINDEVSIZE, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is less than the " "minimum size (%s)"), buf); } return (zfs_error(hdl, EZFS_BADDEV, errbuf)); case ENOSPC: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is out of space")); return (zfs_error(hdl, EZFS_BADDEV, errbuf)); case EINVAL: if (zpool_has_draid_vdev(nvroot) && zfeature_lookup_name("draid", NULL) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dRAID vdevs are unsupported by the " "kernel")); return (zfs_error(hdl, EZFS_BADDEV, errbuf)); } else { return (zpool_standard_error(hdl, errno, errbuf)); } default: return (zpool_standard_error(hdl, errno, errbuf)); } } create_failed: zcmd_free_nvlists(&zc); nvlist_free(zc_props); nvlist_free(zc_fsprops); nvlist_free(hidden_args); if (wkeydata != NULL) free(wkeydata); return (ret); } /* * Destroy the given pool. It is up to the caller to ensure that there are no * datasets left in the pool. */ int zpool_destroy(zpool_handle_t *zhp, const char *log_str) { zfs_cmd_t zc = {"\0"}; zfs_handle_t *zfp = NULL; libzfs_handle_t *hdl = zhp->zpool_hdl; char errbuf[ERRBUFLEN]; if (zhp->zpool_state == POOL_STATE_ACTIVE && (zfp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_FILESYSTEM)) == NULL) return (-1); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_history = (uint64_t)(uintptr_t)log_str; if (zfs_ioctl(hdl, ZFS_IOC_POOL_DESTROY, &zc) != 0) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot destroy '%s'"), zhp->zpool_name); if (errno == EROFS) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is read only")); (void) zfs_error(hdl, EZFS_BADDEV, errbuf); } else { (void) zpool_standard_error(hdl, errno, errbuf); } if (zfp) zfs_close(zfp); return (-1); } if (zfp) { remove_mountpoint(zfp); zfs_close(zfp); } return (0); } /* * Create a checkpoint in the given pool. */ int zpool_checkpoint(zpool_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zpool_hdl; char errbuf[ERRBUFLEN]; int error; error = lzc_pool_checkpoint(zhp->zpool_name); if (error != 0) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot checkpoint '%s'"), zhp->zpool_name); (void) zpool_standard_error(hdl, error, errbuf); return (-1); } return (0); } /* * Discard the checkpoint from the given pool. */ int zpool_discard_checkpoint(zpool_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zpool_hdl; char errbuf[ERRBUFLEN]; int error; error = lzc_pool_checkpoint_discard(zhp->zpool_name); if (error != 0) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot discard checkpoint in '%s'"), zhp->zpool_name); (void) zpool_standard_error(hdl, error, errbuf); return (-1); } return (0); } /* * Add the given vdevs to the pool. The caller must have already performed the * necessary verification to ensure that the vdev specification is well-formed. */ int zpool_add(zpool_handle_t *zhp, nvlist_t *nvroot) { zfs_cmd_t zc = {"\0"}; int ret; libzfs_handle_t *hdl = zhp->zpool_hdl; char errbuf[ERRBUFLEN]; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot add to '%s'"), zhp->zpool_name); if (zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL) < SPA_VERSION_SPARES && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be " "upgraded to add hot spares")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); } if (zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL) < SPA_VERSION_L2CACHE && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be " "upgraded to add cache devices")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); } zcmd_write_conf_nvlist(hdl, &zc, nvroot); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zfs_ioctl(hdl, ZFS_IOC_VDEV_ADD, &zc) != 0) { switch (errno) { case EBUSY: /* * This can happen if the user has specified the same * device multiple times. We can't reliably detect this * until we try to add it and see we already have a * label. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more vdevs refer to the same device")); (void) zfs_error(hdl, EZFS_BADDEV, errbuf); break; case EINVAL: if (zpool_has_draid_vdev(nvroot) && zfeature_lookup_name("draid", NULL) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dRAID vdevs are unsupported by the " "kernel")); } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid config; a pool with removing/" "removed vdevs does not support adding " "raidz or dRAID vdevs")); } (void) zfs_error(hdl, EZFS_BADDEV, errbuf); break; case EOVERFLOW: /* * This occurs when one of the devices is below * SPA_MINDEVSIZE. Unfortunately, we can't detect which * device was the problem device since there's no * reliable way to determine device size from userland. */ { char buf[64]; zfs_nicebytes(SPA_MINDEVSIZE, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "device is less than the minimum " "size (%s)"), buf); } (void) zfs_error(hdl, EZFS_BADDEV, errbuf); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to add these vdevs")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; default: (void) zpool_standard_error(hdl, errno, errbuf); } ret = -1; } else { ret = 0; } zcmd_free_nvlists(&zc); return (ret); } /* * Exports the pool from the system. The caller must ensure that there are no * mounted datasets in the pool. */ static int zpool_export_common(zpool_handle_t *zhp, boolean_t force, boolean_t hardforce, const char *log_str) { zfs_cmd_t zc = {"\0"}; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_cookie = force; zc.zc_guid = hardforce; zc.zc_history = (uint64_t)(uintptr_t)log_str; if (zfs_ioctl(zhp->zpool_hdl, ZFS_IOC_POOL_EXPORT, &zc) != 0) { switch (errno) { case EXDEV: zfs_error_aux(zhp->zpool_hdl, dgettext(TEXT_DOMAIN, "use '-f' to override the following errors:\n" "'%s' has an active shared spare which could be" " used by other pools once '%s' is exported."), zhp->zpool_name, zhp->zpool_name); return (zfs_error_fmt(zhp->zpool_hdl, EZFS_ACTIVE_SPARE, dgettext(TEXT_DOMAIN, "cannot export '%s'"), zhp->zpool_name)); default: return (zpool_standard_error_fmt(zhp->zpool_hdl, errno, dgettext(TEXT_DOMAIN, "cannot export '%s'"), zhp->zpool_name)); } } return (0); } int zpool_export(zpool_handle_t *zhp, boolean_t force, const char *log_str) { return (zpool_export_common(zhp, force, B_FALSE, log_str)); } int zpool_export_force(zpool_handle_t *zhp, const char *log_str) { return (zpool_export_common(zhp, B_TRUE, B_TRUE, log_str)); } static void zpool_rewind_exclaim(libzfs_handle_t *hdl, const char *name, boolean_t dryrun, nvlist_t *config) { nvlist_t *nv = NULL; uint64_t rewindto; int64_t loss = -1; struct tm t; char timestr[128]; if (!hdl->libzfs_printerr || config == NULL) return; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, &nv) != 0 || nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_REWIND_INFO, &nv) != 0) { return; } if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_LOAD_TIME, &rewindto) != 0) return; (void) nvlist_lookup_int64(nv, ZPOOL_CONFIG_REWIND_TIME, &loss); if (localtime_r((time_t *)&rewindto, &t) != NULL && strftime(timestr, 128, "%c", &t) != 0) { if (dryrun) { (void) printf(dgettext(TEXT_DOMAIN, "Would be able to return %s " "to its state as of %s.\n"), name, timestr); } else { (void) printf(dgettext(TEXT_DOMAIN, "Pool %s returned to its state as of %s.\n"), name, timestr); } if (loss > 120) { (void) printf(dgettext(TEXT_DOMAIN, "%s approximately %lld "), dryrun ? "Would discard" : "Discarded", ((longlong_t)loss + 30) / 60); (void) printf(dgettext(TEXT_DOMAIN, "minutes of transactions.\n")); } else if (loss > 0) { (void) printf(dgettext(TEXT_DOMAIN, "%s approximately %lld "), dryrun ? "Would discard" : "Discarded", (longlong_t)loss); (void) printf(dgettext(TEXT_DOMAIN, "seconds of transactions.\n")); } } } void zpool_explain_recover(libzfs_handle_t *hdl, const char *name, int reason, nvlist_t *config) { nvlist_t *nv = NULL; int64_t loss = -1; uint64_t edata = UINT64_MAX; uint64_t rewindto; struct tm t; char timestr[128]; if (!hdl->libzfs_printerr) return; if (reason >= 0) (void) printf(dgettext(TEXT_DOMAIN, "action: ")); else (void) printf(dgettext(TEXT_DOMAIN, "\t")); /* All attempted rewinds failed if ZPOOL_CONFIG_LOAD_TIME missing */ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, &nv) != 0 || nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_REWIND_INFO, &nv) != 0 || nvlist_lookup_uint64(nv, ZPOOL_CONFIG_LOAD_TIME, &rewindto) != 0) goto no_info; (void) nvlist_lookup_int64(nv, ZPOOL_CONFIG_REWIND_TIME, &loss); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_LOAD_DATA_ERRORS, &edata); (void) printf(dgettext(TEXT_DOMAIN, "Recovery is possible, but will result in some data loss.\n")); if (localtime_r((time_t *)&rewindto, &t) != NULL && strftime(timestr, 128, "%c", &t) != 0) { (void) printf(dgettext(TEXT_DOMAIN, "\tReturning the pool to its state as of %s\n" "\tshould correct the problem. "), timestr); } else { (void) printf(dgettext(TEXT_DOMAIN, "\tReverting the pool to an earlier state " "should correct the problem.\n\t")); } if (loss > 120) { (void) printf(dgettext(TEXT_DOMAIN, "Approximately %lld minutes of data\n" "\tmust be discarded, irreversibly. "), ((longlong_t)loss + 30) / 60); } else if (loss > 0) { (void) printf(dgettext(TEXT_DOMAIN, "Approximately %lld seconds of data\n" "\tmust be discarded, irreversibly. "), (longlong_t)loss); } if (edata != 0 && edata != UINT64_MAX) { if (edata == 1) { (void) printf(dgettext(TEXT_DOMAIN, "After rewind, at least\n" "\tone persistent user-data error will remain. ")); } else { (void) printf(dgettext(TEXT_DOMAIN, "After rewind, several\n" "\tpersistent user-data errors will remain. ")); } } (void) printf(dgettext(TEXT_DOMAIN, "Recovery can be attempted\n\tby executing 'zpool %s -F %s'. "), reason >= 0 ? "clear" : "import", name); (void) printf(dgettext(TEXT_DOMAIN, "A scrub of the pool\n" "\tis strongly recommended after recovery.\n")); return; no_info: (void) printf(dgettext(TEXT_DOMAIN, "Destroy and re-create the pool from\n\ta backup source.\n")); } /* * zpool_import() is a contracted interface. Should be kept the same * if possible. * * Applications should use zpool_import_props() to import a pool with * new properties value to be set. */ int zpool_import(libzfs_handle_t *hdl, nvlist_t *config, const char *newname, char *altroot) { nvlist_t *props = NULL; int ret; if (altroot != NULL) { if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) { return (zfs_error_fmt(hdl, EZFS_NOMEM, dgettext(TEXT_DOMAIN, "cannot import '%s'"), newname)); } if (nvlist_add_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), altroot) != 0 || nvlist_add_string(props, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), "none") != 0) { nvlist_free(props); return (zfs_error_fmt(hdl, EZFS_NOMEM, dgettext(TEXT_DOMAIN, "cannot import '%s'"), newname)); } } ret = zpool_import_props(hdl, config, newname, props, ZFS_IMPORT_NORMAL); nvlist_free(props); return (ret); } static void print_vdev_tree(libzfs_handle_t *hdl, const char *name, nvlist_t *nv, int indent) { nvlist_t **child; uint_t c, children; char *vname; uint64_t is_log = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); if (name != NULL) (void) printf("\t%*s%s%s\n", indent, "", name, is_log ? " [log]" : ""); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return; for (c = 0; c < children; c++) { vname = zpool_vdev_name(hdl, NULL, child[c], VDEV_NAME_TYPE_ID); print_vdev_tree(hdl, vname, child[c], indent + 2); free(vname); } } void zpool_print_unsup_feat(nvlist_t *config) { nvlist_t *nvinfo, *unsup_feat; nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); unsup_feat = fnvlist_lookup_nvlist(nvinfo, ZPOOL_CONFIG_UNSUP_FEAT); for (nvpair_t *nvp = nvlist_next_nvpair(unsup_feat, NULL); nvp != NULL; nvp = nvlist_next_nvpair(unsup_feat, nvp)) { char *desc = fnvpair_value_string(nvp); if (strlen(desc) > 0) (void) printf("\t%s (%s)\n", nvpair_name(nvp), desc); else (void) printf("\t%s\n", nvpair_name(nvp)); } } /* * Import the given pool using the known configuration and a list of * properties to be set. The configuration should have come from * zpool_find_import(). The 'newname' parameters control whether the pool * is imported with a different name. */ int zpool_import_props(libzfs_handle_t *hdl, nvlist_t *config, const char *newname, nvlist_t *props, int flags) { zfs_cmd_t zc = {"\0"}; zpool_load_policy_t policy; nvlist_t *nv = NULL; nvlist_t *nvinfo = NULL; nvlist_t *missing = NULL; const char *thename; char *origname; int ret; int error = 0; char errbuf[ERRBUFLEN]; origname = fnvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot import pool '%s'"), origname); if (newname != NULL) { if (!zpool_name_valid(hdl, B_FALSE, newname)) return (zfs_error_fmt(hdl, EZFS_INVALIDNAME, dgettext(TEXT_DOMAIN, "cannot import '%s'"), newname)); thename = newname; } else { thename = origname; } if (props != NULL) { uint64_t version; prop_flags_t flags = { .create = B_FALSE, .import = B_TRUE }; version = fnvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION); if ((props = zpool_valid_proplist(hdl, origname, props, version, flags, errbuf)) == NULL) return (-1); zcmd_write_src_nvlist(hdl, &zc, props); nvlist_free(props); } (void) strlcpy(zc.zc_name, thename, sizeof (zc.zc_name)); zc.zc_guid = fnvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID); zcmd_write_conf_nvlist(hdl, &zc, config); zcmd_alloc_dst_nvlist(hdl, &zc, zc.zc_nvlist_conf_size * 2); zc.zc_cookie = flags; while ((ret = zfs_ioctl(hdl, ZFS_IOC_POOL_IMPORT, &zc)) != 0 && errno == ENOMEM) zcmd_expand_dst_nvlist(hdl, &zc); if (ret != 0) error = errno; (void) zcmd_read_dst_nvlist(hdl, &zc, &nv); zcmd_free_nvlists(&zc); zpool_get_load_policy(config, &policy); if (error) { char desc[1024]; char aux[256]; /* * Dry-run failed, but we print out what success * looks like if we found a best txg */ if (policy.zlp_rewind & ZPOOL_TRY_REWIND) { zpool_rewind_exclaim(hdl, newname ? origname : thename, B_TRUE, nv); nvlist_free(nv); return (-1); } if (newname == NULL) (void) snprintf(desc, sizeof (desc), dgettext(TEXT_DOMAIN, "cannot import '%s'"), thename); else (void) snprintf(desc, sizeof (desc), dgettext(TEXT_DOMAIN, "cannot import '%s' as '%s'"), origname, thename); switch (error) { case ENOTSUP: if (nv != NULL && nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_LOAD_INFO, &nvinfo) == 0 && nvlist_exists(nvinfo, ZPOOL_CONFIG_UNSUP_FEAT)) { (void) printf(dgettext(TEXT_DOMAIN, "This " "pool uses the following feature(s) not " "supported by this system:\n")); zpool_print_unsup_feat(nv); if (nvlist_exists(nvinfo, ZPOOL_CONFIG_CAN_RDONLY)) { (void) printf(dgettext(TEXT_DOMAIN, "All unsupported features are only " "required for writing to the pool." "\nThe pool can be imported using " "'-o readonly=on'.\n")); } } /* * Unsupported version. */ (void) zfs_error(hdl, EZFS_BADVERSION, desc); break; case EREMOTEIO: if (nv != NULL && nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_LOAD_INFO, &nvinfo) == 0) { const char *hostname = ""; uint64_t hostid = 0; mmp_state_t mmp_state; mmp_state = fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_STATE); if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_HOSTNAME)) hostname = fnvlist_lookup_string(nvinfo, ZPOOL_CONFIG_MMP_HOSTNAME); if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_HOSTID)) hostid = fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_HOSTID); if (mmp_state == MMP_STATE_ACTIVE) { (void) snprintf(aux, sizeof (aux), dgettext(TEXT_DOMAIN, "pool is imp" "orted on host '%s' (hostid=%lx).\n" "Export the pool on the other " "system, then run 'zpool import'."), hostname, (unsigned long) hostid); } else if (mmp_state == MMP_STATE_NO_HOSTID) { (void) snprintf(aux, sizeof (aux), dgettext(TEXT_DOMAIN, "pool has " "the multihost property on and " "the\nsystem's hostid is not set. " "Set a unique system hostid with " "the zgenhostid(8) command.\n")); } (void) zfs_error_aux(hdl, "%s", aux); } (void) zfs_error(hdl, EZFS_ACTIVE_POOL, desc); break; case EINVAL: (void) zfs_error(hdl, EZFS_INVALCONFIG, desc); break; case EROFS: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is read only")); (void) zfs_error(hdl, EZFS_BADDEV, desc); break; case ENXIO: if (nv && nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_LOAD_INFO, &nvinfo) == 0 && nvlist_lookup_nvlist(nvinfo, ZPOOL_CONFIG_MISSING_DEVICES, &missing) == 0) { (void) printf(dgettext(TEXT_DOMAIN, "The devices below are missing or " "corrupted, use '-m' to import the pool " "anyway:\n")); print_vdev_tree(hdl, NULL, missing, 2); (void) printf("\n"); } (void) zpool_standard_error(hdl, error, desc); break; case EEXIST: (void) zpool_standard_error(hdl, error, desc); break; case EBUSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices are already in use\n")); (void) zfs_error(hdl, EZFS_BADDEV, desc); break; case ENAMETOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "new name of at least one dataset is longer than " "the maximum allowable length")); (void) zfs_error(hdl, EZFS_NAMETOOLONG, desc); break; default: (void) zpool_standard_error(hdl, error, desc); zpool_explain_recover(hdl, newname ? origname : thename, -error, nv); break; } nvlist_free(nv); ret = -1; } else { zpool_handle_t *zhp; /* * This should never fail, but play it safe anyway. */ if (zpool_open_silent(hdl, thename, &zhp) != 0) ret = -1; else if (zhp != NULL) zpool_close(zhp); if (policy.zlp_rewind & (ZPOOL_DO_REWIND | ZPOOL_TRY_REWIND)) { zpool_rewind_exclaim(hdl, newname ? origname : thename, ((policy.zlp_rewind & ZPOOL_TRY_REWIND) != 0), nv); } nvlist_free(nv); } return (ret); } /* * Translate vdev names to guids. If a vdev_path is determined to be * unsuitable then a vd_errlist is allocated and the vdev path and errno * are added to it. */ static int zpool_translate_vdev_guids(zpool_handle_t *zhp, nvlist_t *vds, nvlist_t *vdev_guids, nvlist_t *guids_to_paths, nvlist_t **vd_errlist) { nvlist_t *errlist = NULL; int error = 0; for (nvpair_t *elem = nvlist_next_nvpair(vds, NULL); elem != NULL; elem = nvlist_next_nvpair(vds, elem)) { boolean_t spare, cache; char *vd_path = nvpair_name(elem); nvlist_t *tgt = zpool_find_vdev(zhp, vd_path, &spare, &cache, NULL); if ((tgt == NULL) || cache || spare) { if (errlist == NULL) { errlist = fnvlist_alloc(); error = EINVAL; } uint64_t err = (tgt == NULL) ? EZFS_NODEVICE : (spare ? EZFS_ISSPARE : EZFS_ISL2CACHE); fnvlist_add_int64(errlist, vd_path, err); continue; } uint64_t guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID); fnvlist_add_uint64(vdev_guids, vd_path, guid); char msg[MAXNAMELEN]; (void) snprintf(msg, sizeof (msg), "%llu", (u_longlong_t)guid); fnvlist_add_string(guids_to_paths, msg, vd_path); } if (error != 0) { verify(errlist != NULL); if (vd_errlist != NULL) *vd_errlist = errlist; else fnvlist_free(errlist); } return (error); } static int xlate_init_err(int err) { switch (err) { case ENODEV: return (EZFS_NODEVICE); case EINVAL: case EROFS: return (EZFS_BADDEV); case EBUSY: return (EZFS_INITIALIZING); case ESRCH: return (EZFS_NO_INITIALIZE); } return (err); } /* * Begin, suspend, or cancel the initialization (initializing of all free * blocks) for the given vdevs in the given pool. */ static int zpool_initialize_impl(zpool_handle_t *zhp, pool_initialize_func_t cmd_type, nvlist_t *vds, boolean_t wait) { int err; nvlist_t *vdev_guids = fnvlist_alloc(); nvlist_t *guids_to_paths = fnvlist_alloc(); nvlist_t *vd_errlist = NULL; nvlist_t *errlist; nvpair_t *elem; err = zpool_translate_vdev_guids(zhp, vds, vdev_guids, guids_to_paths, &vd_errlist); if (err != 0) { verify(vd_errlist != NULL); goto list_errors; } err = lzc_initialize(zhp->zpool_name, cmd_type, vdev_guids, &errlist); if (err != 0) { if (errlist != NULL) { vd_errlist = fnvlist_lookup_nvlist(errlist, ZPOOL_INITIALIZE_VDEVS); goto list_errors; } (void) zpool_standard_error(zhp->zpool_hdl, err, dgettext(TEXT_DOMAIN, "operation failed")); goto out; } if (wait) { for (elem = nvlist_next_nvpair(vdev_guids, NULL); elem != NULL; elem = nvlist_next_nvpair(vdev_guids, elem)) { uint64_t guid = fnvpair_value_uint64(elem); err = lzc_wait_tag(zhp->zpool_name, ZPOOL_WAIT_INITIALIZE, guid, NULL); if (err != 0) { (void) zpool_standard_error_fmt(zhp->zpool_hdl, err, dgettext(TEXT_DOMAIN, "error " "waiting for '%s' to initialize"), nvpair_name(elem)); goto out; } } } goto out; list_errors: for (elem = nvlist_next_nvpair(vd_errlist, NULL); elem != NULL; elem = nvlist_next_nvpair(vd_errlist, elem)) { int64_t vd_error = xlate_init_err(fnvpair_value_int64(elem)); char *path; if (nvlist_lookup_string(guids_to_paths, nvpair_name(elem), &path) != 0) path = nvpair_name(elem); (void) zfs_error_fmt(zhp->zpool_hdl, vd_error, "cannot initialize '%s'", path); } out: fnvlist_free(vdev_guids); fnvlist_free(guids_to_paths); if (vd_errlist != NULL) fnvlist_free(vd_errlist); return (err == 0 ? 0 : -1); } int zpool_initialize(zpool_handle_t *zhp, pool_initialize_func_t cmd_type, nvlist_t *vds) { return (zpool_initialize_impl(zhp, cmd_type, vds, B_FALSE)); } int zpool_initialize_wait(zpool_handle_t *zhp, pool_initialize_func_t cmd_type, nvlist_t *vds) { return (zpool_initialize_impl(zhp, cmd_type, vds, B_TRUE)); } static int xlate_trim_err(int err) { switch (err) { case ENODEV: return (EZFS_NODEVICE); case EINVAL: case EROFS: return (EZFS_BADDEV); case EBUSY: return (EZFS_TRIMMING); case ESRCH: return (EZFS_NO_TRIM); case EOPNOTSUPP: return (EZFS_TRIM_NOTSUP); } return (err); } static int zpool_trim_wait(zpool_handle_t *zhp, nvlist_t *vdev_guids) { int err; nvpair_t *elem; for (elem = nvlist_next_nvpair(vdev_guids, NULL); elem != NULL; elem = nvlist_next_nvpair(vdev_guids, elem)) { uint64_t guid = fnvpair_value_uint64(elem); err = lzc_wait_tag(zhp->zpool_name, ZPOOL_WAIT_TRIM, guid, NULL); if (err != 0) { (void) zpool_standard_error_fmt(zhp->zpool_hdl, err, dgettext(TEXT_DOMAIN, "error " "waiting to trim '%s'"), nvpair_name(elem)); return (err); } } return (0); } /* * Check errlist and report any errors, omitting ones which should be * suppressed. Returns B_TRUE if any errors were reported. */ static boolean_t check_trim_errs(zpool_handle_t *zhp, trimflags_t *trim_flags, nvlist_t *guids_to_paths, nvlist_t *vds, nvlist_t *errlist) { nvpair_t *elem; boolean_t reported_errs = B_FALSE; int num_vds = 0; int num_suppressed_errs = 0; for (elem = nvlist_next_nvpair(vds, NULL); elem != NULL; elem = nvlist_next_nvpair(vds, elem)) { num_vds++; } for (elem = nvlist_next_nvpair(errlist, NULL); elem != NULL; elem = nvlist_next_nvpair(errlist, elem)) { int64_t vd_error = xlate_trim_err(fnvpair_value_int64(elem)); char *path; /* * If only the pool was specified, and it was not a secure * trim then suppress warnings for individual vdevs which * do not support trimming. */ if (vd_error == EZFS_TRIM_NOTSUP && trim_flags->fullpool && !trim_flags->secure) { num_suppressed_errs++; continue; } reported_errs = B_TRUE; if (nvlist_lookup_string(guids_to_paths, nvpair_name(elem), &path) != 0) path = nvpair_name(elem); (void) zfs_error_fmt(zhp->zpool_hdl, vd_error, "cannot trim '%s'", path); } if (num_suppressed_errs == num_vds) { (void) zfs_error_aux(zhp->zpool_hdl, dgettext(TEXT_DOMAIN, "no devices in pool support trim operations")); (void) (zfs_error(zhp->zpool_hdl, EZFS_TRIM_NOTSUP, dgettext(TEXT_DOMAIN, "cannot trim"))); reported_errs = B_TRUE; } return (reported_errs); } /* * Begin, suspend, or cancel the TRIM (discarding of all free blocks) for * the given vdevs in the given pool. */ int zpool_trim(zpool_handle_t *zhp, pool_trim_func_t cmd_type, nvlist_t *vds, trimflags_t *trim_flags) { int err; int retval = 0; nvlist_t *vdev_guids = fnvlist_alloc(); nvlist_t *guids_to_paths = fnvlist_alloc(); nvlist_t *errlist = NULL; err = zpool_translate_vdev_guids(zhp, vds, vdev_guids, guids_to_paths, &errlist); if (err != 0) { check_trim_errs(zhp, trim_flags, guids_to_paths, vds, errlist); retval = -1; goto out; } err = lzc_trim(zhp->zpool_name, cmd_type, trim_flags->rate, trim_flags->secure, vdev_guids, &errlist); if (err != 0) { nvlist_t *vd_errlist; if (errlist != NULL && nvlist_lookup_nvlist(errlist, ZPOOL_TRIM_VDEVS, &vd_errlist) == 0) { if (check_trim_errs(zhp, trim_flags, guids_to_paths, vds, vd_errlist)) { retval = -1; goto out; } } else { char errbuf[ERRBUFLEN]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "operation failed")); zpool_standard_error(zhp->zpool_hdl, err, errbuf); retval = -1; goto out; } } if (trim_flags->wait) retval = zpool_trim_wait(zhp, vdev_guids); out: if (errlist != NULL) fnvlist_free(errlist); fnvlist_free(vdev_guids); fnvlist_free(guids_to_paths); return (retval); } /* * Scan the pool. */ int zpool_scan(zpool_handle_t *zhp, pool_scan_func_t func, pool_scrub_cmd_t cmd) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; int err; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_cookie = func; zc.zc_flags = cmd; if (zfs_ioctl(hdl, ZFS_IOC_POOL_SCAN, &zc) == 0) return (0); err = errno; /* ECANCELED on a scrub means we resumed a paused scrub */ if (err == ECANCELED && func == POOL_SCAN_SCRUB && cmd == POOL_SCRUB_NORMAL) return (0); if (err == ENOENT && func != POOL_SCAN_NONE && cmd == POOL_SCRUB_NORMAL) return (0); if (func == POOL_SCAN_SCRUB) { if (cmd == POOL_SCRUB_PAUSE) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot pause scrubbing %s"), zc.zc_name); } else { assert(cmd == POOL_SCRUB_NORMAL); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot scrub %s"), zc.zc_name); } } else if (func == POOL_SCAN_RESILVER) { assert(cmd == POOL_SCRUB_NORMAL); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot restart resilver on %s"), zc.zc_name); } else if (func == POOL_SCAN_NONE) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot cancel scrubbing %s"), zc.zc_name); } else { assert(!"unexpected result"); } if (err == EBUSY) { nvlist_t *nvroot; pool_scan_stat_t *ps = NULL; uint_t psc; nvroot = fnvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE); (void) nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_SCAN_STATS, (uint64_t **)&ps, &psc); if (ps && ps->pss_func == POOL_SCAN_SCRUB && ps->pss_state == DSS_SCANNING) { if (cmd == POOL_SCRUB_PAUSE) return (zfs_error(hdl, EZFS_SCRUB_PAUSED, errbuf)); else return (zfs_error(hdl, EZFS_SCRUBBING, errbuf)); } else { return (zfs_error(hdl, EZFS_RESILVERING, errbuf)); } } else if (err == ENOENT) { return (zfs_error(hdl, EZFS_NO_SCRUB, errbuf)); } else if (err == ENOTSUP && func == POOL_SCAN_RESILVER) { return (zfs_error(hdl, EZFS_NO_RESILVER_DEFER, errbuf)); } else { return (zpool_standard_error(hdl, err, errbuf)); } } /* * Find a vdev that matches the search criteria specified. We use the * the nvpair name to determine how we should look for the device. * 'avail_spare' is set to TRUE if the provided guid refers to an AVAIL * spare; but FALSE if its an INUSE spare. */ static nvlist_t * vdev_to_nvlist_iter(nvlist_t *nv, nvlist_t *search, boolean_t *avail_spare, boolean_t *l2cache, boolean_t *log) { uint_t c, children; nvlist_t **child; nvlist_t *ret; uint64_t is_log; char *srchkey; nvpair_t *pair = nvlist_next_nvpair(search, NULL); /* Nothing to look for */ if (search == NULL || pair == NULL) return (NULL); /* Obtain the key we will use to search */ srchkey = nvpair_name(pair); switch (nvpair_type(pair)) { case DATA_TYPE_UINT64: if (strcmp(srchkey, ZPOOL_CONFIG_GUID) == 0) { uint64_t srchval = fnvpair_value_uint64(pair); uint64_t theguid = fnvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID); if (theguid == srchval) return (nv); } break; case DATA_TYPE_STRING: { char *srchval, *val; srchval = fnvpair_value_string(pair); if (nvlist_lookup_string(nv, srchkey, &val) != 0) break; /* * Search for the requested value. Special cases: * * - ZPOOL_CONFIG_PATH for whole disk entries. These end in * "-part1", or "p1". The suffix is hidden from the user, * but included in the string, so this matches around it. * - ZPOOL_CONFIG_PATH for short names zfs_strcmp_shortname() * is used to check all possible expanded paths. * - looking for a top-level vdev name (i.e. ZPOOL_CONFIG_TYPE). * * Otherwise, all other searches are simple string compares. */ if (strcmp(srchkey, ZPOOL_CONFIG_PATH) == 0) { uint64_t wholedisk = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); if (zfs_strcmp_pathname(srchval, val, wholedisk) == 0) return (nv); } else if (strcmp(srchkey, ZPOOL_CONFIG_TYPE) == 0) { char *type, *idx, *end, *p; uint64_t id, vdev_id; /* * Determine our vdev type, keeping in mind * that the srchval is composed of a type and * vdev id pair (i.e. mirror-4). */ if ((type = strdup(srchval)) == NULL) return (NULL); if ((p = strrchr(type, '-')) == NULL) { free(type); break; } idx = p + 1; *p = '\0'; /* * If the types don't match then keep looking. */ if (strncmp(val, type, strlen(val)) != 0) { free(type); break; } verify(zpool_vdev_is_interior(type)); id = fnvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID); errno = 0; vdev_id = strtoull(idx, &end, 10); /* * If we are looking for a raidz and a parity is * specified, make sure it matches. */ int rzlen = strlen(VDEV_TYPE_RAIDZ); assert(rzlen == strlen(VDEV_TYPE_DRAID)); int typlen = strlen(type); if ((strncmp(type, VDEV_TYPE_RAIDZ, rzlen) == 0 || strncmp(type, VDEV_TYPE_DRAID, rzlen) == 0) && typlen != rzlen) { uint64_t vdev_parity; int parity = *(type + rzlen) - '0'; if (parity <= 0 || parity > 3 || (typlen - rzlen) != 1) { /* * Nonsense parity specified, can * never match */ free(type); return (NULL); } vdev_parity = fnvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY); if ((int)vdev_parity != parity) { free(type); break; } } free(type); if (errno != 0) return (NULL); /* * Now verify that we have the correct vdev id. */ if (vdev_id == id) return (nv); } /* * Common case */ if (strcmp(srchval, val) == 0) return (nv); break; } default: break; } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (NULL); for (c = 0; c < children; c++) { if ((ret = vdev_to_nvlist_iter(child[c], search, avail_spare, l2cache, NULL)) != NULL) { /* * The 'is_log' value is only set for the toplevel * vdev, not the leaf vdevs. So we always lookup the * log device from the root of the vdev tree (where * 'log' is non-NULL). */ if (log != NULL && nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log) == 0 && is_log) { *log = B_TRUE; } return (ret); } } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) == 0) { for (c = 0; c < children; c++) { if ((ret = vdev_to_nvlist_iter(child[c], search, avail_spare, l2cache, NULL)) != NULL) { *avail_spare = B_TRUE; return (ret); } } } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0) { for (c = 0; c < children; c++) { if ((ret = vdev_to_nvlist_iter(child[c], search, avail_spare, l2cache, NULL)) != NULL) { *l2cache = B_TRUE; return (ret); } } } return (NULL); } /* * Given a physical path or guid, find the associated vdev. */ nvlist_t * zpool_find_vdev_by_physpath(zpool_handle_t *zhp, const char *ppath, boolean_t *avail_spare, boolean_t *l2cache, boolean_t *log) { nvlist_t *search, *nvroot, *ret; uint64_t guid; char *end; search = fnvlist_alloc(); guid = strtoull(ppath, &end, 0); if (guid != 0 && *end == '\0') { fnvlist_add_uint64(search, ZPOOL_CONFIG_GUID, guid); } else { fnvlist_add_string(search, ZPOOL_CONFIG_PHYS_PATH, ppath); } nvroot = fnvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE); *avail_spare = B_FALSE; *l2cache = B_FALSE; if (log != NULL) *log = B_FALSE; ret = vdev_to_nvlist_iter(nvroot, search, avail_spare, l2cache, log); fnvlist_free(search); return (ret); } /* * Determine if we have an "interior" top-level vdev (i.e mirror/raidz). */ static boolean_t zpool_vdev_is_interior(const char *name) { if (strncmp(name, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 || strncmp(name, VDEV_TYPE_SPARE, strlen(VDEV_TYPE_SPARE)) == 0 || strncmp(name, VDEV_TYPE_REPLACING, strlen(VDEV_TYPE_REPLACING)) == 0 || strncmp(name, VDEV_TYPE_MIRROR, strlen(VDEV_TYPE_MIRROR)) == 0) return (B_TRUE); if (strncmp(name, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0 && !zpool_is_draid_spare(name)) return (B_TRUE); return (B_FALSE); } nvlist_t * zpool_find_vdev(zpool_handle_t *zhp, const char *path, boolean_t *avail_spare, boolean_t *l2cache, boolean_t *log) { char *end; nvlist_t *nvroot, *search, *ret; uint64_t guid; search = fnvlist_alloc(); guid = strtoull(path, &end, 0); if (guid != 0 && *end == '\0') { fnvlist_add_uint64(search, ZPOOL_CONFIG_GUID, guid); } else if (zpool_vdev_is_interior(path)) { fnvlist_add_string(search, ZPOOL_CONFIG_TYPE, path); } else { fnvlist_add_string(search, ZPOOL_CONFIG_PATH, path); } nvroot = fnvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE); *avail_spare = B_FALSE; *l2cache = B_FALSE; if (log != NULL) *log = B_FALSE; ret = vdev_to_nvlist_iter(nvroot, search, avail_spare, l2cache, log); fnvlist_free(search); return (ret); } /* * Convert a vdev path to a GUID. Returns GUID or 0 on error. * * If is_spare, is_l2cache, or is_log is non-NULL, then store within it * if the VDEV is a spare, l2cache, or log device. If they're NULL then * ignore them. */ static uint64_t zpool_vdev_path_to_guid_impl(zpool_handle_t *zhp, const char *path, boolean_t *is_spare, boolean_t *is_l2cache, boolean_t *is_log) { boolean_t spare = B_FALSE, l2cache = B_FALSE, log = B_FALSE; nvlist_t *tgt; if ((tgt = zpool_find_vdev(zhp, path, &spare, &l2cache, &log)) == NULL) return (0); if (is_spare != NULL) *is_spare = spare; if (is_l2cache != NULL) *is_l2cache = l2cache; if (is_log != NULL) *is_log = log; return (fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID)); } /* Convert a vdev path to a GUID. Returns GUID or 0 on error. */ uint64_t zpool_vdev_path_to_guid(zpool_handle_t *zhp, const char *path) { return (zpool_vdev_path_to_guid_impl(zhp, path, NULL, NULL, NULL)); } /* * Bring the specified vdev online. The 'flags' parameter is a set of the * ZFS_ONLINE_* flags. */ int zpool_vdev_online(zpool_handle_t *zhp, const char *path, int flags, vdev_state_t *newstate) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; libzfs_handle_t *hdl = zhp->zpool_hdl; if (flags & ZFS_ONLINE_EXPAND) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot expand %s"), path); } else { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot online %s"), path); } (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, &islog)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, errbuf)); zc.zc_guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID); if (!(flags & ZFS_ONLINE_SPARE) && avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, errbuf)); #ifndef __FreeBSD__ char *pathname; if ((flags & ZFS_ONLINE_EXPAND || zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) && nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &pathname) == 0) { uint64_t wholedisk = 0; (void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); /* * XXX - L2ARC 1.0 devices can't support expansion. */ if (l2cache) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot expand cache devices")); return (zfs_error(hdl, EZFS_VDEVNOTSUP, errbuf)); } if (wholedisk) { const char *fullpath = path; char buf[MAXPATHLEN]; int error; if (path[0] != '/') { error = zfs_resolve_shortname(path, buf, sizeof (buf)); if (error != 0) return (zfs_error(hdl, EZFS_NODEVICE, errbuf)); fullpath = buf; } error = zpool_relabel_disk(hdl, fullpath, errbuf); if (error != 0) return (error); } } #endif zc.zc_cookie = VDEV_STATE_ONLINE; zc.zc_obj = flags; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SET_STATE, &zc) != 0) { if (errno == EINVAL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "was split " "from this pool into a new one. Use '%s' " "instead"), "zpool detach"); return (zfs_error(hdl, EZFS_POSTSPLIT_ONLINE, errbuf)); } return (zpool_standard_error(hdl, errno, errbuf)); } *newstate = zc.zc_cookie; return (0); } /* * Take the specified vdev offline */ int zpool_vdev_offline(zpool_handle_t *zhp, const char *path, boolean_t istmp) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; nvlist_t *tgt; boolean_t avail_spare, l2cache; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot offline %s"), path); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, NULL)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, errbuf)); zc.zc_guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, errbuf)); zc.zc_cookie = VDEV_STATE_OFFLINE; zc.zc_obj = istmp ? ZFS_OFFLINE_TEMPORARY : 0; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SET_STATE, &zc) == 0) return (0); switch (errno) { case EBUSY: /* * There are no other replicas of this device. */ return (zfs_error(hdl, EZFS_NOREPLICAS, errbuf)); case EEXIST: /* * The log device has unplayed logs */ return (zfs_error(hdl, EZFS_UNPLAYED_LOGS, errbuf)); default: return (zpool_standard_error(hdl, errno, errbuf)); } } /* * Remove the specified vdev asynchronously from the configuration, so * that it may come ONLINE if reinserted. This is called from zed on * Udev remove event. * Note: We also have a similar function zpool_vdev_remove() that * removes the vdev from the pool. */ int zpool_vdev_remove_wanted(zpool_handle_t *zhp, const char *path) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; nvlist_t *tgt; boolean_t avail_spare, l2cache; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot remove %s"), path); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, NULL)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, errbuf)); zc.zc_guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID); zc.zc_cookie = VDEV_STATE_REMOVED; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SET_STATE, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, errbuf)); } /* * Mark the given vdev faulted. */ int zpool_vdev_fault(zpool_handle_t *zhp, uint64_t guid, vdev_aux_t aux) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot fault %llu"), (u_longlong_t)guid); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_guid = guid; zc.zc_cookie = VDEV_STATE_FAULTED; zc.zc_obj = aux; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SET_STATE, &zc) == 0) return (0); switch (errno) { case EBUSY: /* * There are no other replicas of this device. */ return (zfs_error(hdl, EZFS_NOREPLICAS, errbuf)); default: return (zpool_standard_error(hdl, errno, errbuf)); } } /* * Mark the given vdev degraded. */ int zpool_vdev_degrade(zpool_handle_t *zhp, uint64_t guid, vdev_aux_t aux) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot degrade %llu"), (u_longlong_t)guid); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_guid = guid; zc.zc_cookie = VDEV_STATE_DEGRADED; zc.zc_obj = aux; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SET_STATE, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, errbuf)); } /* * Returns TRUE if the given nvlist is a vdev that was originally swapped in as * a hot spare. */ static boolean_t is_replacing_spare(nvlist_t *search, nvlist_t *tgt, int which) { nvlist_t **child; uint_t c, children; if (nvlist_lookup_nvlist_array(search, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { char *type = fnvlist_lookup_string(search, ZPOOL_CONFIG_TYPE); if ((strcmp(type, VDEV_TYPE_SPARE) == 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0) && children == 2 && child[which] == tgt) return (B_TRUE); for (c = 0; c < children; c++) if (is_replacing_spare(child[c], tgt, which)) return (B_TRUE); } return (B_FALSE); } /* * Attach new_disk (fully described by nvroot) to old_disk. * If 'replacing' is specified, the new disk will replace the old one. */ int zpool_vdev_attach(zpool_handle_t *zhp, const char *old_disk, const char *new_disk, nvlist_t *nvroot, int replacing, boolean_t rebuild) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; int ret; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; uint64_t val; char *newname; nvlist_t **child; uint_t children; nvlist_t *config_root; libzfs_handle_t *hdl = zhp->zpool_hdl; if (replacing) (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot replace %s with %s"), old_disk, new_disk); else (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot attach %s to %s"), new_disk, old_disk); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, old_disk, &avail_spare, &l2cache, &islog)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, errbuf)); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, errbuf)); if (l2cache) return (zfs_error(hdl, EZFS_ISL2CACHE, errbuf)); zc.zc_guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID); zc.zc_cookie = replacing; zc.zc_simple = rebuild; if (rebuild && zfeature_lookup_guid("org.openzfs:device_rebuild", NULL) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "the loaded zfs module doesn't support device rebuilds")); return (zfs_error(hdl, EZFS_POOL_NOTSUP, errbuf)); } if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0 || children != 1) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "new device must be a single disk")); return (zfs_error(hdl, EZFS_INVALCONFIG, errbuf)); } config_root = fnvlist_lookup_nvlist(zpool_get_config(zhp, NULL), ZPOOL_CONFIG_VDEV_TREE); if ((newname = zpool_vdev_name(NULL, NULL, child[0], 0)) == NULL) return (-1); /* * If the target is a hot spare that has been swapped in, we can only * replace it with another hot spare. */ if (replacing && nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_IS_SPARE, &val) == 0 && (zpool_find_vdev(zhp, newname, &avail_spare, &l2cache, NULL) == NULL || !avail_spare) && is_replacing_spare(config_root, tgt, 1)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "can only be replaced by another hot spare")); free(newname); return (zfs_error(hdl, EZFS_BADTARGET, errbuf)); } free(newname); zcmd_write_conf_nvlist(hdl, &zc, nvroot); ret = zfs_ioctl(hdl, ZFS_IOC_VDEV_ATTACH, &zc); zcmd_free_nvlists(&zc); if (ret == 0) return (0); switch (errno) { case ENOTSUP: /* * Can't attach to or replace this type of vdev. */ if (replacing) { uint64_t version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if (islog) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot replace a log with a spare")); } else if (rebuild) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "only mirror and dRAID vdevs support " "sequential reconstruction")); } else if (zpool_is_draid_spare(new_disk)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dRAID spares can only replace child " "devices in their parent's dRAID vdev")); } else if (version >= SPA_VERSION_MULTI_REPLACE) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "already in replacing/spare config; wait " "for completion or use 'zpool detach'")); } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot replace a replacing device")); } } else { char status[64] = {0}; zpool_prop_get_feature(zhp, "feature@device_rebuild", status, 63); if (rebuild && strncmp(status, ZFS_FEATURE_DISABLED, 64) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "device_rebuild feature must be enabled " "in order to use sequential " "reconstruction")); } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "can only attach to mirrors and top-level " "disks")); } } (void) zfs_error(hdl, EZFS_BADTARGET, errbuf); break; case EINVAL: /* * The new device must be a single disk. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "new device must be a single disk")); (void) zfs_error(hdl, EZFS_INVALCONFIG, errbuf); break; case EBUSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "%s is busy, " "or device removal is in progress"), new_disk); (void) zfs_error(hdl, EZFS_BADDEV, errbuf); break; case EOVERFLOW: /* * The new device is too small. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "device is too small")); (void) zfs_error(hdl, EZFS_BADDEV, errbuf); break; case EDOM: /* * The new device has a different optimal sector size. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "new device has a different optimal sector size; use the " "option '-o ashift=N' to override the optimal size")); (void) zfs_error(hdl, EZFS_BADDEV, errbuf); break; case ENAMETOOLONG: /* * The resulting top-level vdev spec won't fit in the label. */ (void) zfs_error(hdl, EZFS_DEVOVERFLOW, errbuf); break; default: (void) zpool_standard_error(hdl, errno, errbuf); } return (-1); } /* * Detach the specified device. */ int zpool_vdev_detach(zpool_handle_t *zhp, const char *path) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; nvlist_t *tgt; boolean_t avail_spare, l2cache; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot detach %s"), path); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, NULL)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, errbuf)); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, errbuf)); if (l2cache) return (zfs_error(hdl, EZFS_ISL2CACHE, errbuf)); zc.zc_guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID); if (zfs_ioctl(hdl, ZFS_IOC_VDEV_DETACH, &zc) == 0) return (0); switch (errno) { case ENOTSUP: /* * Can't detach from this type of vdev. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "only " "applicable to mirror and replacing vdevs")); (void) zfs_error(hdl, EZFS_BADTARGET, errbuf); break; case EBUSY: /* * There are no other replicas of this device. */ (void) zfs_error(hdl, EZFS_NOREPLICAS, errbuf); break; default: (void) zpool_standard_error(hdl, errno, errbuf); } return (-1); } /* * Find a mirror vdev in the source nvlist. * * The mchild array contains a list of disks in one of the top-level mirrors * of the source pool. The schild array contains a list of disks that the * user specified on the command line. We loop over the mchild array to * see if any entry in the schild array matches. * * If a disk in the mchild array is found in the schild array, we return * the index of that entry. Otherwise we return -1. */ static int find_vdev_entry(zpool_handle_t *zhp, nvlist_t **mchild, uint_t mchildren, nvlist_t **schild, uint_t schildren) { uint_t mc; for (mc = 0; mc < mchildren; mc++) { uint_t sc; char *mpath = zpool_vdev_name(zhp->zpool_hdl, zhp, mchild[mc], 0); for (sc = 0; sc < schildren; sc++) { char *spath = zpool_vdev_name(zhp->zpool_hdl, zhp, schild[sc], 0); boolean_t result = (strcmp(mpath, spath) == 0); free(spath); if (result) { free(mpath); return (mc); } } free(mpath); } return (-1); } /* * Split a mirror pool. If newroot points to null, then a new nvlist * is generated and it is the responsibility of the caller to free it. */ int zpool_vdev_split(zpool_handle_t *zhp, char *newname, nvlist_t **newroot, nvlist_t *props, splitflags_t flags) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN], *bias; nvlist_t *tree, *config, **child, **newchild, *newconfig = NULL; nvlist_t **varray = NULL, *zc_props = NULL; uint_t c, children, newchildren, lastlog = 0, vcount, found = 0; libzfs_handle_t *hdl = zhp->zpool_hdl; uint64_t vers, readonly = B_FALSE; boolean_t freelist = B_FALSE, memory_err = B_TRUE; int retval = 0; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "Unable to split %s"), zhp->zpool_name); if (!zpool_name_valid(hdl, B_FALSE, newname)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); if ((config = zpool_get_config(zhp, NULL)) == NULL) { (void) fprintf(stderr, gettext("Internal error: unable to " "retrieve pool configuration\n")); return (-1); } tree = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); vers = fnvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION); if (props) { prop_flags_t flags = { .create = B_FALSE, .import = B_TRUE }; if ((zc_props = zpool_valid_proplist(hdl, zhp->zpool_name, props, vers, flags, errbuf)) == NULL) return (-1); (void) nvlist_lookup_uint64(zc_props, zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); if (readonly) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property %s can only be set at import time"), zpool_prop_to_name(ZPOOL_PROP_READONLY)); return (-1); } } if (nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Source pool is missing vdev tree")); nvlist_free(zc_props); return (-1); } varray = zfs_alloc(hdl, children * sizeof (nvlist_t *)); vcount = 0; if (*newroot == NULL || nvlist_lookup_nvlist_array(*newroot, ZPOOL_CONFIG_CHILDREN, &newchild, &newchildren) != 0) newchildren = 0; for (c = 0; c < children; c++) { uint64_t is_log = B_FALSE, is_hole = B_FALSE; boolean_t is_special = B_FALSE, is_dedup = B_FALSE; char *type; nvlist_t **mchild, *vdev; uint_t mchildren; int entry; /* * Unlike cache & spares, slogs are stored in the * ZPOOL_CONFIG_CHILDREN array. We filter them out here. */ (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log); (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &is_hole); if (is_log || is_hole) { /* * Create a hole vdev and put it in the config. */ if (nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) != 0) goto out; if (nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) != 0) goto out; if (nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_HOLE, 1) != 0) goto out; if (lastlog == 0) lastlog = vcount; varray[vcount++] = vdev; continue; } lastlog = 0; type = fnvlist_lookup_string(child[c], ZPOOL_CONFIG_TYPE); if (strcmp(type, VDEV_TYPE_INDIRECT) == 0) { vdev = child[c]; if (nvlist_dup(vdev, &varray[vcount++], 0) != 0) goto out; continue; } else if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Source pool must be composed only of mirrors\n")); retval = zfs_error(hdl, EZFS_INVALCONFIG, errbuf); goto out; } if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_ALLOCATION_BIAS, &bias) == 0) { if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) is_special = B_TRUE; else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) is_dedup = B_TRUE; } verify(nvlist_lookup_nvlist_array(child[c], ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); /* find or add an entry for this top-level vdev */ if (newchildren > 0 && (entry = find_vdev_entry(zhp, mchild, mchildren, newchild, newchildren)) >= 0) { /* We found a disk that the user specified. */ vdev = mchild[entry]; ++found; } else { /* User didn't specify a disk for this vdev. */ vdev = mchild[mchildren - 1]; } if (nvlist_dup(vdev, &varray[vcount++], 0) != 0) goto out; if (flags.dryrun != 0) { if (is_dedup == B_TRUE) { if (nvlist_add_string(varray[vcount - 1], ZPOOL_CONFIG_ALLOCATION_BIAS, VDEV_ALLOC_BIAS_DEDUP) != 0) goto out; } else if (is_special == B_TRUE) { if (nvlist_add_string(varray[vcount - 1], ZPOOL_CONFIG_ALLOCATION_BIAS, VDEV_ALLOC_BIAS_SPECIAL) != 0) goto out; } } } /* did we find every disk the user specified? */ if (found != newchildren) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Device list must " "include at most one disk from each mirror")); retval = zfs_error(hdl, EZFS_INVALCONFIG, errbuf); goto out; } /* Prepare the nvlist for populating. */ if (*newroot == NULL) { if (nvlist_alloc(newroot, NV_UNIQUE_NAME, 0) != 0) goto out; freelist = B_TRUE; if (nvlist_add_string(*newroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0) goto out; } else { verify(nvlist_remove_all(*newroot, ZPOOL_CONFIG_CHILDREN) == 0); } /* Add all the children we found */ if (nvlist_add_nvlist_array(*newroot, ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)varray, lastlog == 0 ? vcount : lastlog) != 0) goto out; /* * If we're just doing a dry run, exit now with success. */ if (flags.dryrun) { memory_err = B_FALSE; freelist = B_FALSE; goto out; } /* now build up the config list & call the ioctl */ if (nvlist_alloc(&newconfig, NV_UNIQUE_NAME, 0) != 0) goto out; if (nvlist_add_nvlist(newconfig, ZPOOL_CONFIG_VDEV_TREE, *newroot) != 0 || nvlist_add_string(newconfig, ZPOOL_CONFIG_POOL_NAME, newname) != 0 || nvlist_add_uint64(newconfig, ZPOOL_CONFIG_VERSION, vers) != 0) goto out; /* * The new pool is automatically part of the namespace unless we * explicitly export it. */ if (!flags.import) zc.zc_cookie = ZPOOL_EXPORT_AFTER_SPLIT; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_string, newname, sizeof (zc.zc_string)); zcmd_write_conf_nvlist(hdl, &zc, newconfig); if (zc_props != NULL) zcmd_write_src_nvlist(hdl, &zc, zc_props); if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SPLIT, &zc) != 0) { retval = zpool_standard_error(hdl, errno, errbuf); goto out; } freelist = B_FALSE; memory_err = B_FALSE; out: if (varray != NULL) { int v; for (v = 0; v < vcount; v++) nvlist_free(varray[v]); free(varray); } zcmd_free_nvlists(&zc); nvlist_free(zc_props); nvlist_free(newconfig); if (freelist) { nvlist_free(*newroot); *newroot = NULL; } if (retval != 0) return (retval); if (memory_err) return (no_memory(hdl)); return (0); } /* * Remove the given device. */ int zpool_vdev_remove(zpool_handle_t *zhp, const char *path) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; libzfs_handle_t *hdl = zhp->zpool_hdl; uint64_t version; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot remove %s"), path); if (zpool_is_draid_spare(path)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dRAID spares cannot be removed")); return (zfs_error(hdl, EZFS_NODEVICE, errbuf)); } (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, &islog)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, errbuf)); version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if (islog && version < SPA_VERSION_HOLES) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to support log removal")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); } zc.zc_guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID); if (zfs_ioctl(hdl, ZFS_IOC_VDEV_REMOVE, &zc) == 0) return (0); switch (errno) { case EINVAL: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid config; all top-level vdevs must " "have the same sector size and not be raidz.")); (void) zfs_error(hdl, EZFS_INVALCONFIG, errbuf); break; case EBUSY: if (islog) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Mount encrypted datasets to replay logs.")); } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Pool busy; removal may already be in progress")); } (void) zfs_error(hdl, EZFS_BUSY, errbuf); break; case EACCES: if (islog) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Mount encrypted datasets to replay logs.")); (void) zfs_error(hdl, EZFS_BUSY, errbuf); } else { (void) zpool_standard_error(hdl, errno, errbuf); } break; default: (void) zpool_standard_error(hdl, errno, errbuf); } return (-1); } int zpool_vdev_remove_cancel(zpool_handle_t *zhp) { zfs_cmd_t zc = {{0}}; char errbuf[ERRBUFLEN]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot cancel removal")); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_cookie = 1; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_REMOVE, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, errbuf)); } int zpool_vdev_indirect_size(zpool_handle_t *zhp, const char *path, uint64_t *sizep) { char errbuf[ERRBUFLEN]; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot determine indirect size of %s"), path); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, &islog)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, errbuf)); if (avail_spare || l2cache || islog) { *sizep = 0; return (0); } if (nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_INDIRECT_SIZE, sizep) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "indirect size not available")); return (zfs_error(hdl, EINVAL, errbuf)); } return (0); } /* * Clear the errors for the pool, or the particular device if specified. */ int zpool_clear(zpool_handle_t *zhp, const char *path, nvlist_t *rewindnvl) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; nvlist_t *tgt; zpool_load_policy_t policy; boolean_t avail_spare, l2cache; libzfs_handle_t *hdl = zhp->zpool_hdl; nvlist_t *nvi = NULL; int error; if (path) (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot clear errors for %s"), path); else (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot clear errors for %s"), zhp->zpool_name); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (path) { if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, NULL)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, errbuf)); /* * Don't allow error clearing for hot spares. Do allow * error clearing for l2cache devices. */ if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, errbuf)); zc.zc_guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID); } zpool_get_load_policy(rewindnvl, &policy); zc.zc_cookie = policy.zlp_rewind; zcmd_alloc_dst_nvlist(hdl, &zc, zhp->zpool_config_size * 2); zcmd_write_src_nvlist(hdl, &zc, rewindnvl); while ((error = zfs_ioctl(hdl, ZFS_IOC_CLEAR, &zc)) != 0 && errno == ENOMEM) zcmd_expand_dst_nvlist(hdl, &zc); if (!error || ((policy.zlp_rewind & ZPOOL_TRY_REWIND) && errno != EPERM && errno != EACCES)) { if (policy.zlp_rewind & (ZPOOL_DO_REWIND | ZPOOL_TRY_REWIND)) { (void) zcmd_read_dst_nvlist(hdl, &zc, &nvi); zpool_rewind_exclaim(hdl, zc.zc_name, ((policy.zlp_rewind & ZPOOL_TRY_REWIND) != 0), nvi); nvlist_free(nvi); } zcmd_free_nvlists(&zc); return (0); } zcmd_free_nvlists(&zc); return (zpool_standard_error(hdl, errno, errbuf)); } /* * Similar to zpool_clear(), but takes a GUID (used by fmd). */ int zpool_vdev_clear(zpool_handle_t *zhp, uint64_t guid) { zfs_cmd_t zc = {"\0"}; char errbuf[ERRBUFLEN]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot clear errors for %llx"), (u_longlong_t)guid); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_guid = guid; zc.zc_cookie = ZPOOL_NO_REWIND; if (zfs_ioctl(hdl, ZFS_IOC_CLEAR, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, errbuf)); } /* * Change the GUID for a pool. */ int zpool_reguid(zpool_handle_t *zhp) { char errbuf[ERRBUFLEN]; libzfs_handle_t *hdl = zhp->zpool_hdl; zfs_cmd_t zc = {"\0"}; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot reguid '%s'"), zhp->zpool_name); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zfs_ioctl(hdl, ZFS_IOC_POOL_REGUID, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, errbuf)); } /* * Reopen the pool. */ int zpool_reopen_one(zpool_handle_t *zhp, void *data) { libzfs_handle_t *hdl = zpool_get_handle(zhp); const char *pool_name = zpool_get_name(zhp); boolean_t *scrub_restart = data; int error; error = lzc_reopen(pool_name, *scrub_restart); if (error) { return (zpool_standard_error_fmt(hdl, error, dgettext(TEXT_DOMAIN, "cannot reopen '%s'"), pool_name)); } return (0); } /* call into libzfs_core to execute the sync IOCTL per pool */ int zpool_sync_one(zpool_handle_t *zhp, void *data) { int ret; libzfs_handle_t *hdl = zpool_get_handle(zhp); const char *pool_name = zpool_get_name(zhp); boolean_t *force = data; nvlist_t *innvl = fnvlist_alloc(); fnvlist_add_boolean_value(innvl, "force", *force); if ((ret = lzc_sync(pool_name, innvl, NULL)) != 0) { nvlist_free(innvl); return (zpool_standard_error_fmt(hdl, ret, dgettext(TEXT_DOMAIN, "sync '%s' failed"), pool_name)); } nvlist_free(innvl); return (0); } #define PATH_BUF_LEN 64 /* * Given a vdev, return the name to display in iostat. If the vdev has a path, * we use that, stripping off any leading "/dev/dsk/"; if not, we use the type. * We also check if this is a whole disk, in which case we strip off the * trailing 's0' slice name. * * This routine is also responsible for identifying when disks have been * reconfigured in a new location. The kernel will have opened the device by * devid, but the path will still refer to the old location. To catch this, we * first do a path -> devid translation (which is fast for the common case). If * the devid matches, we're done. If not, we do a reverse devid -> path * translation and issue the appropriate ioctl() to update the path of the vdev. * If 'zhp' is NULL, then this is an exported pool, and we don't need to do any * of these checks. */ char * zpool_vdev_name(libzfs_handle_t *hdl, zpool_handle_t *zhp, nvlist_t *nv, int name_flags) { char *type, *tpath; const char *path; uint64_t value; char buf[PATH_BUF_LEN]; char tmpbuf[PATH_BUF_LEN * 2]; /* * vdev_name will be "root"/"root-0" for the root vdev, but it is the * zpool name that will be displayed to the user. */ type = fnvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE); if (zhp != NULL && strcmp(type, "root") == 0) return (zfs_strdup(hdl, zpool_get_name(zhp))); if (libzfs_envvar_is_set("ZPOOL_VDEV_NAME_PATH")) name_flags |= VDEV_NAME_PATH; if (libzfs_envvar_is_set("ZPOOL_VDEV_NAME_GUID")) name_flags |= VDEV_NAME_GUID; if (libzfs_envvar_is_set("ZPOOL_VDEV_NAME_FOLLOW_LINKS")) name_flags |= VDEV_NAME_FOLLOW_LINKS; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, &value) == 0 || name_flags & VDEV_NAME_GUID) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &value); (void) snprintf(buf, sizeof (buf), "%llu", (u_longlong_t)value); path = buf; } else if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tpath) == 0) { path = tpath; if (name_flags & VDEV_NAME_FOLLOW_LINKS) { char *rp = realpath(path, NULL); if (rp) { strlcpy(buf, rp, sizeof (buf)); path = buf; free(rp); } } /* * For a block device only use the name. */ if ((strcmp(type, VDEV_TYPE_DISK) == 0) && !(name_flags & VDEV_NAME_PATH)) { path = zfs_strip_path(path); } /* * Remove the partition from the path if this is a whole disk. */ if (strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0 && nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &value) == 0 && value && !(name_flags & VDEV_NAME_PATH)) { return (zfs_strip_partition(path)); } } else { path = type; /* * If it's a raidz device, we need to stick in the parity level. */ if (strcmp(path, VDEV_TYPE_RAIDZ) == 0) { value = fnvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY); (void) snprintf(buf, sizeof (buf), "%s%llu", path, (u_longlong_t)value); path = buf; } /* * If it's a dRAID device, we add parity, groups, and spares. */ if (strcmp(path, VDEV_TYPE_DRAID) == 0) { uint64_t ndata, nparity, nspares; nvlist_t **child; uint_t children; verify(nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); nparity = fnvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY); ndata = fnvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA); nspares = fnvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES); path = zpool_draid_name(buf, sizeof (buf), ndata, nparity, nspares, children); } /* * We identify each top-level vdev by using a * naming convention. */ if (name_flags & VDEV_NAME_TYPE_ID) { uint64_t id = fnvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID); (void) snprintf(tmpbuf, sizeof (tmpbuf), "%s-%llu", path, (u_longlong_t)id); path = tmpbuf; } } return (zfs_strdup(hdl, path)); } static int zbookmark_mem_compare(const void *a, const void *b) { return (memcmp(a, b, sizeof (zbookmark_phys_t))); } /* * Retrieve the persistent error log, uniquify the members, and return to the * caller. */ int zpool_get_errlog(zpool_handle_t *zhp, nvlist_t **nverrlistp) { zfs_cmd_t zc = {"\0"}; libzfs_handle_t *hdl = zhp->zpool_hdl; zbookmark_phys_t *buf; uint64_t buflen = 10000; /* approx. 1MB of RAM */ if (fnvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_ERRCOUNT) == 0) return (0); /* * Retrieve the raw error list from the kernel. If it doesn't fit, * allocate a larger buffer and retry. */ (void) strcpy(zc.zc_name, zhp->zpool_name); for (;;) { buf = zfs_alloc(zhp->zpool_hdl, buflen * sizeof (zbookmark_phys_t)); zc.zc_nvlist_dst = (uintptr_t)buf; zc.zc_nvlist_dst_size = buflen; if (zfs_ioctl(zhp->zpool_hdl, ZFS_IOC_ERROR_LOG, &zc) != 0) { free(buf); if (errno == ENOMEM) { buflen *= 2; } else { return (zpool_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "errors: List of " "errors unavailable"))); } } else { break; } } /* * Sort the resulting bookmarks. This is a little confusing due to the * implementation of ZFS_IOC_ERROR_LOG. The bookmarks are copied last * to first, and 'zc_nvlist_dst_size' indicates the number of bookmarks * _not_ copied as part of the process. So we point the start of our * array appropriate and decrement the total number of elements. */ zbookmark_phys_t *zb = buf + zc.zc_nvlist_dst_size; uint64_t zblen = buflen - zc.zc_nvlist_dst_size; qsort(zb, zblen, sizeof (zbookmark_phys_t), zbookmark_mem_compare); verify(nvlist_alloc(nverrlistp, 0, KM_SLEEP) == 0); /* * Fill in the nverrlistp with nvlist's of dataset and object numbers. */ for (uint64_t i = 0; i < zblen; i++) { nvlist_t *nv; /* ignoring zb_blkid and zb_level for now */ if (i > 0 && zb[i-1].zb_objset == zb[i].zb_objset && zb[i-1].zb_object == zb[i].zb_object) continue; if (nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) != 0) goto nomem; if (nvlist_add_uint64(nv, ZPOOL_ERR_DATASET, zb[i].zb_objset) != 0) { nvlist_free(nv); goto nomem; } if (nvlist_add_uint64(nv, ZPOOL_ERR_OBJECT, zb[i].zb_object) != 0) { nvlist_free(nv); goto nomem; } if (nvlist_add_nvlist(*nverrlistp, "ejk", nv) != 0) { nvlist_free(nv); goto nomem; } nvlist_free(nv); } free(buf); return (0); nomem: free(buf); return (no_memory(zhp->zpool_hdl)); } /* * Upgrade a ZFS pool to the latest on-disk version. */ int zpool_upgrade(zpool_handle_t *zhp, uint64_t new_version) { zfs_cmd_t zc = {"\0"}; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strcpy(zc.zc_name, zhp->zpool_name); zc.zc_cookie = new_version; if (zfs_ioctl(hdl, ZFS_IOC_POOL_UPGRADE, &zc) != 0) return (zpool_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot upgrade '%s'"), zhp->zpool_name)); return (0); } void zfs_save_arguments(int argc, char **argv, char *string, int len) { int i; (void) strlcpy(string, zfs_basename(argv[0]), len); for (i = 1; i < argc; i++) { (void) strlcat(string, " ", len); (void) strlcat(string, argv[i], len); } } int zpool_log_history(libzfs_handle_t *hdl, const char *message) { zfs_cmd_t zc = {"\0"}; nvlist_t *args; args = fnvlist_alloc(); fnvlist_add_string(args, "message", message); zcmd_write_src_nvlist(hdl, &zc, args); int err = zfs_ioctl(hdl, ZFS_IOC_LOG_HISTORY, &zc); nvlist_free(args); zcmd_free_nvlists(&zc); return (err); } /* * Perform ioctl to get some command history of a pool. * * 'buf' is the buffer to fill up to 'len' bytes. 'off' is the * logical offset of the history buffer to start reading from. * * Upon return, 'off' is the next logical offset to read from and * 'len' is the actual amount of bytes read into 'buf'. */ static int get_history(zpool_handle_t *zhp, char *buf, uint64_t *off, uint64_t *len) { zfs_cmd_t zc = {"\0"}; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_history = (uint64_t)(uintptr_t)buf; zc.zc_history_len = *len; zc.zc_history_offset = *off; if (zfs_ioctl(hdl, ZFS_IOC_POOL_GET_HISTORY, &zc) != 0) { switch (errno) { case EPERM: return (zfs_error_fmt(hdl, EZFS_PERM, dgettext(TEXT_DOMAIN, "cannot show history for pool '%s'"), zhp->zpool_name)); case ENOENT: return (zfs_error_fmt(hdl, EZFS_NOHISTORY, dgettext(TEXT_DOMAIN, "cannot get history for pool " "'%s'"), zhp->zpool_name)); case ENOTSUP: return (zfs_error_fmt(hdl, EZFS_BADVERSION, dgettext(TEXT_DOMAIN, "cannot get history for pool " "'%s', pool must be upgraded"), zhp->zpool_name)); default: return (zpool_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot get history for '%s'"), zhp->zpool_name)); } } *len = zc.zc_history_len; *off = zc.zc_history_offset; return (0); } /* * Retrieve the command history of a pool. */ int zpool_get_history(zpool_handle_t *zhp, nvlist_t **nvhisp, uint64_t *off, boolean_t *eof) { libzfs_handle_t *hdl = zhp->zpool_hdl; char *buf; int buflen = 128 * 1024; nvlist_t **records = NULL; uint_t numrecords = 0; int err = 0, i; uint64_t start = *off; buf = zfs_alloc(hdl, buflen); /* process about 1MiB a time */ while (*off - start < 1024 * 1024) { uint64_t bytes_read = buflen; uint64_t leftover; if ((err = get_history(zhp, buf, off, &bytes_read)) != 0) break; /* if nothing else was read in, we're at EOF, just return */ if (!bytes_read) { *eof = B_TRUE; break; } if ((err = zpool_history_unpack(buf, bytes_read, &leftover, &records, &numrecords)) != 0) { zpool_standard_error_fmt(hdl, err, dgettext(TEXT_DOMAIN, "cannot get history for '%s'"), zhp->zpool_name); break; } *off -= leftover; if (leftover == bytes_read) { /* * no progress made, because buffer is not big enough * to hold this record; resize and retry. */ buflen *= 2; free(buf); buf = zfs_alloc(hdl, buflen); } } free(buf); if (!err) { *nvhisp = fnvlist_alloc(); fnvlist_add_nvlist_array(*nvhisp, ZPOOL_HIST_RECORD, (const nvlist_t **)records, numrecords); } for (i = 0; i < numrecords; i++) nvlist_free(records[i]); free(records); return (err); } /* * Retrieve the next event given the passed 'zevent_fd' file descriptor. * If there is a new event available 'nvp' will contain a newly allocated * nvlist and 'dropped' will be set to the number of missed events since * the last call to this function. When 'nvp' is set to NULL it indicates * no new events are available. In either case the function returns 0 and * it is up to the caller to free 'nvp'. In the case of a fatal error the * function will return a non-zero value. When the function is called in * blocking mode (the default, unless the ZEVENT_NONBLOCK flag is passed), * it will not return until a new event is available. */ int zpool_events_next(libzfs_handle_t *hdl, nvlist_t **nvp, int *dropped, unsigned flags, int zevent_fd) { zfs_cmd_t zc = {"\0"}; int error = 0; *nvp = NULL; *dropped = 0; zc.zc_cleanup_fd = zevent_fd; if (flags & ZEVENT_NONBLOCK) zc.zc_guid = ZEVENT_NONBLOCK; zcmd_alloc_dst_nvlist(hdl, &zc, ZEVENT_SIZE); retry: if (zfs_ioctl(hdl, ZFS_IOC_EVENTS_NEXT, &zc) != 0) { switch (errno) { case ESHUTDOWN: error = zfs_error_fmt(hdl, EZFS_POOLUNAVAIL, dgettext(TEXT_DOMAIN, "zfs shutdown")); goto out; case ENOENT: /* Blocking error case should not occur */ if (!(flags & ZEVENT_NONBLOCK)) error = zpool_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot get event")); goto out; case ENOMEM: zcmd_expand_dst_nvlist(hdl, &zc); goto retry; default: error = zpool_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot get event")); goto out; } } error = zcmd_read_dst_nvlist(hdl, &zc, nvp); if (error != 0) goto out; *dropped = (int)zc.zc_cookie; out: zcmd_free_nvlists(&zc); return (error); } /* * Clear all events. */ int zpool_events_clear(libzfs_handle_t *hdl, int *count) { zfs_cmd_t zc = {"\0"}; if (zfs_ioctl(hdl, ZFS_IOC_EVENTS_CLEAR, &zc) != 0) return (zpool_standard_error(hdl, errno, dgettext(TEXT_DOMAIN, "cannot clear events"))); if (count != NULL) *count = (int)zc.zc_cookie; /* # of events cleared */ return (0); } /* * Seek to a specific EID, ZEVENT_SEEK_START, or ZEVENT_SEEK_END for * the passed zevent_fd file handle. On success zero is returned, * otherwise -1 is returned and hdl->libzfs_error is set to the errno. */ int zpool_events_seek(libzfs_handle_t *hdl, uint64_t eid, int zevent_fd) { zfs_cmd_t zc = {"\0"}; int error = 0; zc.zc_guid = eid; zc.zc_cleanup_fd = zevent_fd; if (zfs_ioctl(hdl, ZFS_IOC_EVENTS_SEEK, &zc) != 0) { switch (errno) { case ENOENT: error = zfs_error_fmt(hdl, EZFS_NOENT, dgettext(TEXT_DOMAIN, "cannot get event")); break; case ENOMEM: error = zfs_error_fmt(hdl, EZFS_NOMEM, dgettext(TEXT_DOMAIN, "cannot get event")); break; default: error = zpool_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot get event")); break; } } return (error); } static void zpool_obj_to_path_impl(zpool_handle_t *zhp, uint64_t dsobj, uint64_t obj, char *pathname, size_t len, boolean_t always_unmounted) { zfs_cmd_t zc = {"\0"}; boolean_t mounted = B_FALSE; char *mntpnt = NULL; char dsname[ZFS_MAX_DATASET_NAME_LEN]; if (dsobj == 0) { /* special case for the MOS */ (void) snprintf(pathname, len, ":<0x%llx>", (longlong_t)obj); return; } /* get the dataset's name */ (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_obj = dsobj; if (zfs_ioctl(zhp->zpool_hdl, ZFS_IOC_DSOBJ_TO_DSNAME, &zc) != 0) { /* just write out a path of two object numbers */ (void) snprintf(pathname, len, "<0x%llx>:<0x%llx>", (longlong_t)dsobj, (longlong_t)obj); return; } (void) strlcpy(dsname, zc.zc_value, sizeof (dsname)); /* find out if the dataset is mounted */ mounted = !always_unmounted && is_mounted(zhp->zpool_hdl, dsname, &mntpnt); /* get the corrupted object's path */ (void) strlcpy(zc.zc_name, dsname, sizeof (zc.zc_name)); zc.zc_obj = obj; if (zfs_ioctl(zhp->zpool_hdl, ZFS_IOC_OBJ_TO_PATH, &zc) == 0) { if (mounted) { (void) snprintf(pathname, len, "%s%s", mntpnt, zc.zc_value); } else { (void) snprintf(pathname, len, "%s:%s", dsname, zc.zc_value); } } else { (void) snprintf(pathname, len, "%s:<0x%llx>", dsname, (longlong_t)obj); } free(mntpnt); } void zpool_obj_to_path(zpool_handle_t *zhp, uint64_t dsobj, uint64_t obj, char *pathname, size_t len) { zpool_obj_to_path_impl(zhp, dsobj, obj, pathname, len, B_FALSE); } void zpool_obj_to_path_ds(zpool_handle_t *zhp, uint64_t dsobj, uint64_t obj, char *pathname, size_t len) { zpool_obj_to_path_impl(zhp, dsobj, obj, pathname, len, B_TRUE); } /* * Wait while the specified activity is in progress in the pool. */ int zpool_wait(zpool_handle_t *zhp, zpool_wait_activity_t activity) { boolean_t missing; int error = zpool_wait_status(zhp, activity, &missing, NULL); if (missing) { (void) zpool_standard_error_fmt(zhp->zpool_hdl, ENOENT, dgettext(TEXT_DOMAIN, "error waiting in pool '%s'"), zhp->zpool_name); return (ENOENT); } else { return (error); } } /* * Wait for the given activity and return the status of the wait (whether or not * any waiting was done) in the 'waited' parameter. Non-existent pools are * reported via the 'missing' parameter, rather than by printing an error * message. This is convenient when this function is called in a loop over a * long period of time (as it is, for example, by zpool's wait cmd). In that * scenario, a pool being exported or destroyed should be considered a normal * event, so we don't want to print an error when we find that the pool doesn't * exist. */ int zpool_wait_status(zpool_handle_t *zhp, zpool_wait_activity_t activity, boolean_t *missing, boolean_t *waited) { int error = lzc_wait(zhp->zpool_name, activity, waited); *missing = (error == ENOENT); if (*missing) return (0); if (error != 0) { (void) zpool_standard_error_fmt(zhp->zpool_hdl, error, dgettext(TEXT_DOMAIN, "error waiting in pool '%s'"), zhp->zpool_name); } return (error); } int zpool_set_bootenv(zpool_handle_t *zhp, const nvlist_t *envmap) { int error = lzc_set_bootenv(zhp->zpool_name, envmap); if (error != 0) { (void) zpool_standard_error_fmt(zhp->zpool_hdl, error, dgettext(TEXT_DOMAIN, "error setting bootenv in pool '%s'"), zhp->zpool_name); } return (error); } int zpool_get_bootenv(zpool_handle_t *zhp, nvlist_t **nvlp) { nvlist_t *nvl; int error; nvl = NULL; error = lzc_get_bootenv(zhp->zpool_name, &nvl); if (error != 0) { (void) zpool_standard_error_fmt(zhp->zpool_hdl, error, dgettext(TEXT_DOMAIN, "error getting bootenv in pool '%s'"), zhp->zpool_name); } else { *nvlp = nvl; } return (error); } /* * Attempt to read and parse feature file(s) (from "compatibility" property). * Files contain zpool feature names, comma or whitespace-separated. * Comments (# character to next newline) are discarded. * * Arguments: * compatibility : string containing feature filenames * features : either NULL or pointer to array of boolean * report : either NULL or pointer to string buffer * rlen : length of "report" buffer * * compatibility is NULL (unset), "", "off", "legacy", or list of * comma-separated filenames. filenames should either be absolute, * or relative to: * 1) ZPOOL_SYSCONF_COMPAT_D (eg: /etc/zfs/compatibility.d) or * 2) ZPOOL_DATA_COMPAT_D (eg: /usr/share/zfs/compatibility.d). * (Unset), "" or "off" => enable all features * "legacy" => disable all features * * Any feature names read from files which match unames in spa_feature_table * will have the corresponding boolean set in the features array (if non-NULL). * If more than one feature set specified, only features present in *all* of * them will be set. * * "report" if not NULL will be populated with a suitable status message. * * Return values: * ZPOOL_COMPATIBILITY_OK : files read and parsed ok * ZPOOL_COMPATIBILITY_BADFILE : file too big or not a text file * ZPOOL_COMPATIBILITY_BADTOKEN : SYSCONF file contains invalid feature name * ZPOOL_COMPATIBILITY_WARNTOKEN : DATA file contains invalid feature name * ZPOOL_COMPATIBILITY_NOFILES : no feature files found */ zpool_compat_status_t zpool_load_compat(const char *compat, boolean_t *features, char *report, size_t rlen) { int sdirfd, ddirfd, featfd; struct stat fs; char *fc; char *ps, *ls, *ws; char *file, *line, *word; char l_compat[ZFS_MAXPROPLEN]; boolean_t ret_nofiles = B_TRUE; boolean_t ret_badfile = B_FALSE; boolean_t ret_badtoken = B_FALSE; boolean_t ret_warntoken = B_FALSE; /* special cases (unset), "" and "off" => enable all features */ if (compat == NULL || compat[0] == '\0' || strcmp(compat, ZPOOL_COMPAT_OFF) == 0) { if (features != NULL) for (uint_t i = 0; i < SPA_FEATURES; i++) features[i] = B_TRUE; if (report != NULL) strlcpy(report, gettext("all features enabled"), rlen); return (ZPOOL_COMPATIBILITY_OK); } /* Final special case "legacy" => disable all features */ if (strcmp(compat, ZPOOL_COMPAT_LEGACY) == 0) { if (features != NULL) for (uint_t i = 0; i < SPA_FEATURES; i++) features[i] = B_FALSE; if (report != NULL) strlcpy(report, gettext("all features disabled"), rlen); return (ZPOOL_COMPATIBILITY_OK); } /* * Start with all true; will be ANDed with results from each file */ if (features != NULL) for (uint_t i = 0; i < SPA_FEATURES; i++) features[i] = B_TRUE; char err_badfile[ZFS_MAXPROPLEN] = ""; char err_badtoken[ZFS_MAXPROPLEN] = ""; /* * We ignore errors from the directory open() * as they're only needed if the filename is relative * which will be checked during the openat(). */ /* O_PATH safer than O_RDONLY if system allows it */ #if defined(O_PATH) #define ZC_DIR_FLAGS (O_DIRECTORY | O_CLOEXEC | O_PATH) #else #define ZC_DIR_FLAGS (O_DIRECTORY | O_CLOEXEC | O_RDONLY) #endif sdirfd = open(ZPOOL_SYSCONF_COMPAT_D, ZC_DIR_FLAGS); ddirfd = open(ZPOOL_DATA_COMPAT_D, ZC_DIR_FLAGS); (void) strlcpy(l_compat, compat, ZFS_MAXPROPLEN); for (file = strtok_r(l_compat, ",", &ps); file != NULL; file = strtok_r(NULL, ",", &ps)) { boolean_t l_features[SPA_FEATURES]; enum { Z_SYSCONF, Z_DATA } source; /* try sysconfdir first, then datadir */ source = Z_SYSCONF; if ((featfd = openat(sdirfd, file, O_RDONLY | O_CLOEXEC)) < 0) { featfd = openat(ddirfd, file, O_RDONLY | O_CLOEXEC); source = Z_DATA; } /* File readable and correct size? */ if (featfd < 0 || fstat(featfd, &fs) < 0 || fs.st_size < 1 || fs.st_size > ZPOOL_COMPAT_MAXSIZE) { (void) close(featfd); strlcat(err_badfile, file, ZFS_MAXPROPLEN); strlcat(err_badfile, " ", ZFS_MAXPROPLEN); ret_badfile = B_TRUE; continue; } /* Prefault the file if system allows */ #if defined(MAP_POPULATE) #define ZC_MMAP_FLAGS (MAP_PRIVATE | MAP_POPULATE) #elif defined(MAP_PREFAULT_READ) #define ZC_MMAP_FLAGS (MAP_PRIVATE | MAP_PREFAULT_READ) #else #define ZC_MMAP_FLAGS (MAP_PRIVATE) #endif /* private mmap() so we can strtok safely */ fc = (char *)mmap(NULL, fs.st_size, PROT_READ | PROT_WRITE, ZC_MMAP_FLAGS, featfd, 0); (void) close(featfd); /* map ok, and last character == newline? */ if (fc == MAP_FAILED || fc[fs.st_size - 1] != '\n') { (void) munmap((void *) fc, fs.st_size); strlcat(err_badfile, file, ZFS_MAXPROPLEN); strlcat(err_badfile, " ", ZFS_MAXPROPLEN); ret_badfile = B_TRUE; continue; } ret_nofiles = B_FALSE; for (uint_t i = 0; i < SPA_FEATURES; i++) l_features[i] = B_FALSE; /* replace final newline with NULL to ensure string ends */ fc[fs.st_size - 1] = '\0'; for (line = strtok_r(fc, "\n", &ls); line != NULL; line = strtok_r(NULL, "\n", &ls)) { /* discard comments */ char *r = strchr(line, '#'); if (r != NULL) *r = '\0'; for (word = strtok_r(line, ", \t", &ws); word != NULL; word = strtok_r(NULL, ", \t", &ws)) { /* Find matching feature name */ uint_t f; for (f = 0; f < SPA_FEATURES; f++) { zfeature_info_t *fi = &spa_feature_table[f]; if (strcmp(word, fi->fi_uname) == 0) { l_features[f] = B_TRUE; break; } } if (f < SPA_FEATURES) continue; /* found an unrecognized word */ /* lightly sanitize it */ if (strlen(word) > 32) word[32] = '\0'; for (char *c = word; *c != '\0'; c++) if (!isprint(*c)) *c = '?'; strlcat(err_badtoken, word, ZFS_MAXPROPLEN); strlcat(err_badtoken, " ", ZFS_MAXPROPLEN); if (source == Z_SYSCONF) ret_badtoken = B_TRUE; else ret_warntoken = B_TRUE; } } (void) munmap((void *) fc, fs.st_size); if (features != NULL) for (uint_t i = 0; i < SPA_FEATURES; i++) features[i] &= l_features[i]; } (void) close(sdirfd); (void) close(ddirfd); /* Return the most serious error */ if (ret_badfile) { if (report != NULL) snprintf(report, rlen, gettext("could not read/" "parse feature file(s): %s"), err_badfile); return (ZPOOL_COMPATIBILITY_BADFILE); } if (ret_nofiles) { if (report != NULL) strlcpy(report, gettext("no valid compatibility files specified"), rlen); return (ZPOOL_COMPATIBILITY_NOFILES); } if (ret_badtoken) { if (report != NULL) snprintf(report, rlen, gettext("invalid feature " "name(s) in local compatibility files: %s"), err_badtoken); return (ZPOOL_COMPATIBILITY_BADTOKEN); } if (ret_warntoken) { if (report != NULL) snprintf(report, rlen, gettext("unrecognized feature " "name(s) in distribution compatibility files: %s"), err_badtoken); return (ZPOOL_COMPATIBILITY_WARNTOKEN); } if (report != NULL) strlcpy(report, gettext("compatibility set ok"), rlen); return (ZPOOL_COMPATIBILITY_OK); } static int zpool_vdev_guid(zpool_handle_t *zhp, const char *vdevname, uint64_t *vdev_guid) { nvlist_t *tgt; boolean_t avail_spare, l2cache; verify(zhp != NULL); if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { char errbuf[ERRBUFLEN]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "pool is in an unavailable state")); return (zfs_error(zhp->zpool_hdl, EZFS_POOLUNAVAIL, errbuf)); } if ((tgt = zpool_find_vdev(zhp, vdevname, &avail_spare, &l2cache, NULL)) == NULL) { char errbuf[ERRBUFLEN]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "can not find %s in %s"), vdevname, zhp->zpool_name); return (zfs_error(zhp->zpool_hdl, EZFS_NODEVICE, errbuf)); } *vdev_guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID); return (0); } /* * Get a vdev property value for 'prop' and return the value in * a pre-allocated buffer. */ int zpool_get_vdev_prop_value(nvlist_t *nvprop, vdev_prop_t prop, char *prop_name, char *buf, size_t len, zprop_source_t *srctype, boolean_t literal) { nvlist_t *nv; const char *strval; uint64_t intval; zprop_source_t src = ZPROP_SRC_NONE; if (prop == VDEV_PROP_USERPROP) { /* user property, prop_name must contain the property name */ assert(prop_name != NULL); if (nvlist_lookup_nvlist(nvprop, prop_name, &nv) == 0) { src = fnvlist_lookup_uint64(nv, ZPROP_SOURCE); strval = fnvlist_lookup_string(nv, ZPROP_VALUE); } else { /* user prop not found */ return (-1); } (void) strlcpy(buf, strval, len); if (srctype) *srctype = src; return (0); } if (prop_name == NULL) prop_name = (char *)vdev_prop_to_name(prop); switch (vdev_prop_get_type(prop)) { case PROP_TYPE_STRING: if (nvlist_lookup_nvlist(nvprop, prop_name, &nv) == 0) { src = fnvlist_lookup_uint64(nv, ZPROP_SOURCE); strval = fnvlist_lookup_string(nv, ZPROP_VALUE); } else { src = ZPROP_SRC_DEFAULT; if ((strval = vdev_prop_default_string(prop)) == NULL) strval = "-"; } (void) strlcpy(buf, strval, len); break; case PROP_TYPE_NUMBER: if (nvlist_lookup_nvlist(nvprop, prop_name, &nv) == 0) { src = fnvlist_lookup_uint64(nv, ZPROP_SOURCE); intval = fnvlist_lookup_uint64(nv, ZPROP_VALUE); } else { src = ZPROP_SRC_DEFAULT; intval = vdev_prop_default_numeric(prop); } switch (prop) { case VDEV_PROP_ASIZE: case VDEV_PROP_PSIZE: case VDEV_PROP_SIZE: case VDEV_PROP_BOOTSIZE: case VDEV_PROP_ALLOCATED: case VDEV_PROP_FREE: case VDEV_PROP_READ_ERRORS: case VDEV_PROP_WRITE_ERRORS: case VDEV_PROP_CHECKSUM_ERRORS: case VDEV_PROP_INITIALIZE_ERRORS: case VDEV_PROP_OPS_NULL: case VDEV_PROP_OPS_READ: case VDEV_PROP_OPS_WRITE: case VDEV_PROP_OPS_FREE: case VDEV_PROP_OPS_CLAIM: case VDEV_PROP_OPS_TRIM: case VDEV_PROP_BYTES_NULL: case VDEV_PROP_BYTES_READ: case VDEV_PROP_BYTES_WRITE: case VDEV_PROP_BYTES_FREE: case VDEV_PROP_BYTES_CLAIM: case VDEV_PROP_BYTES_TRIM: if (literal) { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } else { (void) zfs_nicenum(intval, buf, len); } break; case VDEV_PROP_EXPANDSZ: if (intval == 0) { (void) strlcpy(buf, "-", len); } else if (literal) { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } else { (void) zfs_nicenum(intval, buf, len); } break; case VDEV_PROP_CAPACITY: if (literal) { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } else { (void) snprintf(buf, len, "%llu%%", (u_longlong_t)intval); } break; case VDEV_PROP_CHECKSUM_N: case VDEV_PROP_CHECKSUM_T: case VDEV_PROP_IO_N: case VDEV_PROP_IO_T: if (intval == UINT64_MAX) { (void) strlcpy(buf, "-", len); } else { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } break; case VDEV_PROP_FRAGMENTATION: if (intval == UINT64_MAX) { (void) strlcpy(buf, "-", len); } else { (void) snprintf(buf, len, "%llu%%", (u_longlong_t)intval); } break; case VDEV_PROP_STATE: if (literal) { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } else { (void) strlcpy(buf, zpool_state_to_name(intval, VDEV_AUX_NONE), len); } break; default: (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } break; case PROP_TYPE_INDEX: if (nvlist_lookup_nvlist(nvprop, prop_name, &nv) == 0) { src = fnvlist_lookup_uint64(nv, ZPROP_SOURCE); intval = fnvlist_lookup_uint64(nv, ZPROP_VALUE); } else { src = ZPROP_SRC_DEFAULT; intval = vdev_prop_default_numeric(prop); } if (vdev_prop_index_to_string(prop, intval, (const char **)&strval) != 0) return (-1); (void) strlcpy(buf, strval, len); break; default: abort(); } if (srctype) *srctype = src; return (0); } /* * Get a vdev property value for 'prop_name' and return the value in * a pre-allocated buffer. */ int zpool_get_vdev_prop(zpool_handle_t *zhp, const char *vdevname, vdev_prop_t prop, char *prop_name, char *buf, size_t len, zprop_source_t *srctype, boolean_t literal) { nvlist_t *reqnvl, *reqprops; nvlist_t *retprops = NULL; uint64_t vdev_guid = 0; int ret; if ((ret = zpool_vdev_guid(zhp, vdevname, &vdev_guid)) != 0) return (ret); if (nvlist_alloc(&reqnvl, NV_UNIQUE_NAME, 0) != 0) return (no_memory(zhp->zpool_hdl)); if (nvlist_alloc(&reqprops, NV_UNIQUE_NAME, 0) != 0) return (no_memory(zhp->zpool_hdl)); fnvlist_add_uint64(reqnvl, ZPOOL_VDEV_PROPS_GET_VDEV, vdev_guid); if (prop != VDEV_PROP_USERPROP) { /* prop_name overrides prop value */ if (prop_name != NULL) prop = vdev_name_to_prop(prop_name); else prop_name = (char *)vdev_prop_to_name(prop); assert(prop < VDEV_NUM_PROPS); } assert(prop_name != NULL); if (nvlist_add_uint64(reqprops, prop_name, prop) != 0) { nvlist_free(reqnvl); nvlist_free(reqprops); return (no_memory(zhp->zpool_hdl)); } fnvlist_add_nvlist(reqnvl, ZPOOL_VDEV_PROPS_GET_PROPS, reqprops); ret = lzc_get_vdev_prop(zhp->zpool_name, reqnvl, &retprops); if (ret == 0) { ret = zpool_get_vdev_prop_value(retprops, prop, prop_name, buf, len, srctype, literal); } else { char errbuf[ERRBUFLEN]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot get vdev property %s from" " %s in %s"), prop_name, vdevname, zhp->zpool_name); (void) zpool_standard_error(zhp->zpool_hdl, ret, errbuf); } nvlist_free(reqnvl); nvlist_free(reqprops); nvlist_free(retprops); return (ret); } /* * Get all vdev properties */ int zpool_get_all_vdev_props(zpool_handle_t *zhp, const char *vdevname, nvlist_t **outnvl) { nvlist_t *nvl = NULL; uint64_t vdev_guid = 0; int ret; if ((ret = zpool_vdev_guid(zhp, vdevname, &vdev_guid)) != 0) return (ret); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) return (no_memory(zhp->zpool_hdl)); fnvlist_add_uint64(nvl, ZPOOL_VDEV_PROPS_GET_VDEV, vdev_guid); ret = lzc_get_vdev_prop(zhp->zpool_name, nvl, outnvl); nvlist_free(nvl); if (ret) { char errbuf[ERRBUFLEN]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot get vdev properties for" " %s in %s"), vdevname, zhp->zpool_name); (void) zpool_standard_error(zhp->zpool_hdl, errno, errbuf); } return (ret); } /* * Set vdev property */ int zpool_set_vdev_prop(zpool_handle_t *zhp, const char *vdevname, const char *propname, const char *propval) { int ret; nvlist_t *nvl = NULL; nvlist_t *outnvl = NULL; nvlist_t *props; nvlist_t *realprops; prop_flags_t flags = { 0 }; uint64_t version; uint64_t vdev_guid; if ((ret = zpool_vdev_guid(zhp, vdevname, &vdev_guid)) != 0) return (ret); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) return (no_memory(zhp->zpool_hdl)); if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) return (no_memory(zhp->zpool_hdl)); fnvlist_add_uint64(nvl, ZPOOL_VDEV_PROPS_SET_VDEV, vdev_guid); if (nvlist_add_string(props, propname, propval) != 0) { nvlist_free(props); return (no_memory(zhp->zpool_hdl)); } char errbuf[ERRBUFLEN]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot set property %s for %s on %s"), propname, vdevname, zhp->zpool_name); flags.vdevprop = 1; version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if ((realprops = zpool_valid_proplist(zhp->zpool_hdl, zhp->zpool_name, props, version, flags, errbuf)) == NULL) { nvlist_free(props); nvlist_free(nvl); return (-1); } nvlist_free(props); props = realprops; fnvlist_add_nvlist(nvl, ZPOOL_VDEV_PROPS_SET_PROPS, props); ret = lzc_set_vdev_prop(zhp->zpool_name, nvl, &outnvl); nvlist_free(props); nvlist_free(nvl); nvlist_free(outnvl); if (ret) (void) zpool_standard_error(zhp->zpool_hdl, errno, errbuf); return (ret); } diff --git a/lib/libzpool/Makefile.am b/lib/libzpool/Makefile.am index 0748f1240db9..ceac2963e647 100644 --- a/lib/libzpool/Makefile.am +++ b/lib/libzpool/Makefile.am @@ -1,213 +1,214 @@ libzpool_la_CFLAGS = $(AM_CFLAGS) $(KERNEL_CFLAGS) $(LIBRARY_CFLAGS) libzpool_la_CFLAGS += $(ZLIB_CFLAGS) libzpool_la_CPPFLAGS = $(AM_CPPFLAGS) $(FORCEDEBUG_CPPFLAGS) libzpool_la_CPPFLAGS += -I$(srcdir)/include/os/@ac_system_l@/zfs libzpool_la_CPPFLAGS += -DLIB_ZPOOL_BUILD lib_LTLIBRARIES += libzpool.la CPPCHECKTARGETS += libzpool.la dist_libzpool_la_SOURCES = \ %D%/kernel.c \ %D%/taskq.c \ %D%/util.c nodist_libzpool_la_SOURCES = \ module/lua/lapi.c \ module/lua/lauxlib.c \ module/lua/lbaselib.c \ module/lua/lcode.c \ module/lua/lcompat.c \ module/lua/lcorolib.c \ module/lua/lctype.c \ module/lua/ldebug.c \ module/lua/ldo.c \ module/lua/lfunc.c \ module/lua/lgc.c \ module/lua/llex.c \ module/lua/lmem.c \ module/lua/lobject.c \ module/lua/lopcodes.c \ module/lua/lparser.c \ module/lua/lstate.c \ module/lua/lstring.c \ module/lua/lstrlib.c \ module/lua/ltable.c \ module/lua/ltablib.c \ module/lua/ltm.c \ module/lua/lvm.c \ module/lua/lzio.c \ \ module/os/linux/zfs/abd_os.c \ module/os/linux/zfs/arc_os.c \ module/os/linux/zfs/trace.c \ module/os/linux/zfs/vdev_file.c \ module/os/linux/zfs/zfs_debug.c \ module/os/linux/zfs/zfs_racct.c \ module/os/linux/zfs/zfs_znode.c \ module/os/linux/zfs/zio_crypt.c \ \ module/zcommon/cityhash.c \ module/zcommon/zfeature_common.c \ module/zcommon/zfs_comutil.c \ module/zcommon/zfs_deleg.c \ module/zcommon/zfs_fletcher.c \ module/zcommon/zfs_fletcher_aarch64_neon.c \ module/zcommon/zfs_fletcher_avx512.c \ module/zcommon/zfs_fletcher_intel.c \ module/zcommon/zfs_fletcher_sse.c \ module/zcommon/zfs_fletcher_superscalar.c \ module/zcommon/zfs_fletcher_superscalar4.c \ module/zcommon/zfs_namecheck.c \ module/zcommon/zfs_prop.c \ module/zcommon/zpool_prop.c \ module/zcommon/zprop_common.c \ \ module/zfs/abd.c \ module/zfs/aggsum.c \ module/zfs/arc.c \ module/zfs/blake3_zfs.c \ module/zfs/blkptr.c \ module/zfs/bplist.c \ module/zfs/bpobj.c \ module/zfs/bptree.c \ module/zfs/bqueue.c \ module/zfs/btree.c \ + module/zfs/brt.c \ module/zfs/dbuf.c \ module/zfs/dbuf_stats.c \ module/zfs/ddt.c \ module/zfs/ddt_zap.c \ module/zfs/dmu.c \ module/zfs/dmu_diff.c \ module/zfs/dmu_object.c \ module/zfs/dmu_objset.c \ module/zfs/dmu_recv.c \ module/zfs/dmu_redact.c \ module/zfs/dmu_send.c \ module/zfs/dmu_traverse.c \ module/zfs/dmu_tx.c \ module/zfs/dmu_zfetch.c \ module/zfs/dnode.c \ module/zfs/dnode_sync.c \ module/zfs/dsl_bookmark.c \ module/zfs/dsl_crypt.c \ module/zfs/dsl_dataset.c \ module/zfs/dsl_deadlist.c \ module/zfs/dsl_deleg.c \ module/zfs/dsl_destroy.c \ module/zfs/dsl_dir.c \ module/zfs/dsl_pool.c \ module/zfs/dsl_prop.c \ module/zfs/dsl_scan.c \ module/zfs/dsl_synctask.c \ module/zfs/dsl_userhold.c \ module/zfs/edonr_zfs.c \ module/zfs/fm.c \ module/zfs/gzip.c \ module/zfs/hkdf.c \ module/zfs/lz4.c \ module/zfs/lz4_zfs.c \ module/zfs/lzjb.c \ module/zfs/metaslab.c \ module/zfs/mmp.c \ module/zfs/multilist.c \ module/zfs/objlist.c \ module/zfs/pathname.c \ module/zfs/range_tree.c \ module/zfs/refcount.c \ module/zfs/rrwlock.c \ module/zfs/sa.c \ module/zfs/sha2_zfs.c \ module/zfs/skein_zfs.c \ module/zfs/spa.c \ module/zfs/spa_checkpoint.c \ module/zfs/spa_config.c \ module/zfs/spa_errlog.c \ module/zfs/spa_history.c \ module/zfs/spa_log_spacemap.c \ module/zfs/spa_misc.c \ module/zfs/spa_stats.c \ module/zfs/space_map.c \ module/zfs/space_reftree.c \ module/zfs/txg.c \ module/zfs/uberblock.c \ module/zfs/unique.c \ module/zfs/vdev.c \ module/zfs/vdev_cache.c \ module/zfs/vdev_draid.c \ module/zfs/vdev_draid_rand.c \ module/zfs/vdev_indirect.c \ module/zfs/vdev_indirect_births.c \ module/zfs/vdev_indirect_mapping.c \ module/zfs/vdev_initialize.c \ module/zfs/vdev_label.c \ module/zfs/vdev_mirror.c \ module/zfs/vdev_missing.c \ module/zfs/vdev_queue.c \ module/zfs/vdev_raidz.c \ module/zfs/vdev_raidz_math.c \ module/zfs/vdev_raidz_math_aarch64_neon.c \ module/zfs/vdev_raidz_math_aarch64_neonx2.c \ module/zfs/vdev_raidz_math_avx2.c \ module/zfs/vdev_raidz_math_avx512bw.c \ module/zfs/vdev_raidz_math_avx512f.c \ module/zfs/vdev_raidz_math_powerpc_altivec.c \ module/zfs/vdev_raidz_math_scalar.c \ module/zfs/vdev_raidz_math_sse2.c \ module/zfs/vdev_raidz_math_ssse3.c \ module/zfs/vdev_rebuild.c \ module/zfs/vdev_removal.c \ module/zfs/vdev_root.c \ module/zfs/vdev_trim.c \ module/zfs/zap.c \ module/zfs/zap_leaf.c \ module/zfs/zap_micro.c \ module/zfs/zcp.c \ module/zfs/zcp_get.c \ module/zfs/zcp_global.c \ module/zfs/zcp_iter.c \ module/zfs/zcp_set.c \ module/zfs/zcp_synctask.c \ module/zfs/zfeature.c \ module/zfs/zfs_byteswap.c \ module/zfs/zfs_chksum.c \ module/zfs/zfs_fm.c \ module/zfs/zfs_fuid.c \ module/zfs/zfs_ratelimit.c \ module/zfs/zfs_rlock.c \ module/zfs/zfs_sa.c \ module/zfs/zil.c \ module/zfs/zio.c \ module/zfs/zio_checksum.c \ module/zfs/zio_compress.c \ module/zfs/zio_inject.c \ module/zfs/zle.c \ module/zfs/zrlock.c \ module/zfs/zthr.c libzpool_la_LIBADD = \ libicp.la \ libunicode.la \ libnvpair.la \ libzstd.la \ libzutil.la libzpool_la_LIBADD += $(LIBCLOCK_GETTIME) $(ZLIB_LIBS) -ldl -lm libzpool_la_LDFLAGS = -pthread if !ASAN_ENABLED libzpool_la_LDFLAGS += -Wl,-z,defs endif if BUILD_FREEBSD libzpool_la_LIBADD += -lgeom endif libzpool_la_LDFLAGS += -version-info 5:0:0 if TARGET_CPU_POWERPC module/zfs/libzpool_la-vdev_raidz_math_powerpc_altivec.$(OBJEXT) : CFLAGS += -maltivec module/zfs/libzpool_la-vdev_raidz_math_powerpc_altivec.l$(OBJEXT): CFLAGS += -maltivec endif diff --git a/man/man7/zpool-features.7 b/man/man7/zpool-features.7 index 3ff3d97ba70c..a4d595cd3cd9 100644 --- a/man/man7/zpool-features.7 +++ b/man/man7/zpool-features.7 @@ -1,922 +1,936 @@ .\" .\" Copyright (c) 2012, 2018 by Delphix. All rights reserved. .\" Copyright (c) 2013 by Saso Kiselkov. All rights reserved. .\" Copyright (c) 2014, Joyent, Inc. All rights reserved. .\" The contents of this file are subject to the terms of the Common Development .\" and Distribution License (the "License"). You may not use this file except .\" in compliance with the License. You can obtain a copy of the license at .\" usr/src/OPENSOLARIS.LICENSE or https://opensource.org/licenses/CDDL-1.0. .\" .\" See the License for the specific language governing permissions and .\" limitations under the License. When distributing Covered Code, include this .\" CDDL HEADER in each file and include the License file at .\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this .\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your .\" own identifying information: .\" Portions Copyright [yyyy] [name of copyright owner] .\" Copyright (c) 2019, Klara Inc. .\" Copyright (c) 2019, Allan Jude .\" Copyright (c) 2021, Colm Buckley .\" .Dd June 23, 2022 .Dt ZPOOL-FEATURES 7 .Os . .Sh NAME .Nm zpool-features .Nd description of ZFS pool features . .Sh DESCRIPTION ZFS pool on-disk format versions are specified via .Dq features which replace the old on-disk format numbers .Pq the last supported on-disk format number is 28 . To enable a feature on a pool use the .Nm zpool Cm upgrade , or set the .Sy feature Ns @ Ns Ar feature-name property to .Sy enabled . Please also see the .Sx Compatibility feature sets section for information on how sets of features may be enabled together. .Pp The pool format does not affect file system version compatibility or the ability to send file systems between pools. .Pp Since most features can be enabled independently of each other, the on-disk format of the pool is specified by the set of all features marked as .Sy active on the pool. If the pool was created by another software version this set may include unsupported features. . .Ss Identifying features Every feature has a GUID of the form .Ar com.example : Ns Ar feature-name . The reversed DNS name ensures that the feature's GUID is unique across all ZFS implementations. When unsupported features are encountered on a pool they will be identified by their GUIDs. Refer to the documentation for the ZFS implementation that created the pool for information about those features. .Pp Each supported feature also has a short name. By convention a feature's short name is the portion of its GUID which follows the .Sq \&: .Po i.e. .Ar com.example : Ns Ar feature-name would have the short name .Ar feature-name .Pc , however a feature's short name may differ across ZFS implementations if following the convention would result in name conflicts. . .Ss Feature states Features can be in one of three states: .Bl -tag -width "disabled" .It Sy active This feature's on-disk format changes are in effect on the pool. Support for this feature is required to import the pool in read-write mode. If this feature is not read-only compatible, support is also required to import the pool in read-only mode .Pq see Sx Read-only compatibility . .It Sy enabled An administrator has marked this feature as enabled on the pool, but the feature's on-disk format changes have not been made yet. The pool can still be imported by software that does not support this feature, but changes may be made to the on-disk format at any time which will move the feature to the .Sy active state. Some features may support returning to the .Sy enabled state after becoming .Sy active . See feature-specific documentation for details. .It Sy disabled This feature's on-disk format changes have not been made and will not be made unless an administrator moves the feature to the .Sy enabled state. Features cannot be disabled once they have been enabled. .El .Pp The state of supported features is exposed through pool properties of the form .Sy feature Ns @ Ns Ar short-name . . .Ss Read-only compatibility Some features may make on-disk format changes that do not interfere with other software's ability to read from the pool. These features are referred to as .Dq read-only compatible . If all unsupported features on a pool are read-only compatible, the pool can be imported in read-only mode by setting the .Sy readonly property during import .Po see .Xr zpool-import 8 for details on importing pools .Pc . . .Ss Unsupported features For each unsupported feature enabled on an imported pool, a pool property named .Sy unsupported Ns @ Ns Ar feature-name will indicate why the import was allowed despite the unsupported feature. Possible values for this property are: .Bl -tag -width "readonly" .It Sy inactive The feature is in the .Sy enabled state and therefore the pool's on-disk format is still compatible with software that does not support this feature. .It Sy readonly The feature is read-only compatible and the pool has been imported in read-only mode. .El . .Ss Feature dependencies Some features depend on other features being enabled in order to function. Enabling a feature will automatically enable any features it depends on. . .Ss Compatibility feature sets It is sometimes necessary for a pool to maintain compatibility with a specific on-disk format, by enabling and disabling particular features. The .Sy compatibility feature facilitates this by allowing feature sets to be read from text files. When set to .Sy off .Pq the default , compatibility feature sets are disabled .Pq i.e. all features are enabled ; when set to .Sy legacy , no features are enabled. When set to a comma-separated list of filenames .Po each filename may either be an absolute path, or relative to .Pa /etc/zfs/compatibility.d or .Pa /usr/share/zfs/compatibility.d .Pc , the lists of requested features are read from those files, separated by whitespace and/or commas. Only features present in all files are enabled. .Pp Simple sanity checks are applied to the files: they must be between 1 B and 16 KiB in size, and must end with a newline character. .Pp The requested features are applied when a pool is created using .Nm zpool Cm create Fl o Sy compatibility Ns = Ns Ar … and controls which features are enabled when using .Nm zpool Cm upgrade . .Nm zpool Cm status will not show a warning about disabled features which are not part of the requested feature set. .Pp The special value .Sy legacy prevents any features from being enabled, either via .Nm zpool Cm upgrade or .Nm zpool Cm set Sy feature Ns @ Ns Ar feature-name Ns = Ns Sy enabled . This setting also prevents pools from being upgraded to newer on-disk versions. This is a safety measure to prevent new features from being accidentally enabled, breaking compatibility. .Pp By convention, compatibility files in .Pa /usr/share/zfs/compatibility.d are provided by the distribution, and include feature sets supported by important versions of popular distributions, and feature sets commonly supported at the start of each year. Compatibility files in .Pa /etc/zfs/compatibility.d , if present, will take precedence over files with the same name in .Pa /usr/share/zfs/compatibility.d . .Pp If an unrecognized feature is found in these files, an error message will be shown. If the unrecognized feature is in a file in .Pa /etc/zfs/compatibility.d , this is treated as an error and processing will stop. If the unrecognized feature is under .Pa /usr/share/zfs/compatibility.d , this is treated as a warning and processing will continue. This difference is to allow distributions to include features which might not be recognized by the currently-installed binaries. .Pp Compatibility files may include comments: any text from .Sq # to the end of the line is ignored. .Pp .Sy Example : .Bd -literal -compact -offset 4n .No example# Nm cat Pa /usr/share/zfs/compatibility.d/grub2 # Features which are supported by GRUB2 async_destroy bookmarks embedded_data empty_bpobj enabled_txg extensible_dataset filesystem_limits hole_birth large_blocks lz4_compress spacemap_histogram .No example# Nm zpool Cm create Fl o Sy compatibility Ns = Ns Ar grub2 Ar bootpool Ar vdev .Ed .Pp See .Xr zpool-create 8 and .Xr zpool-upgrade 8 for more information on how these commands are affected by feature sets. . .de feature .It Sy \\$2 .Bl -tag -compact -width "READ-ONLY COMPATIBLE" .It GUID .Sy \\$1:\\$2 .if !"\\$4"" \{\ .It DEPENDENCIES \fB\\$4\fP\c .if !"\\$5"" , \fB\\$5\fP\c .if !"\\$6"" , \fB\\$6\fP\c .if !"\\$7"" , \fB\\$7\fP\c .if !"\\$8"" , \fB\\$8\fP\c .if !"\\$9"" , \fB\\$9\fP\c .\} .It READ-ONLY COMPATIBLE \\$3 .El .Pp .. . .ds instant-never \ .No This feature becomes Sy active No as soon as it is enabled \ and will never return to being Sy enabled . . .ds remount-upgrade \ .No Each filesystem will be upgraded automatically when remounted, \ or when a new file is created under that filesystem. \ The upgrade can also be triggered on filesystems via \ Nm zfs Cm set Sy version Ns = Ns Sy current Ar fs . \ No The upgrade process runs in the background and may take a while to complete \ for filesystems containing large amounts of files . . .de checksum-spiel When the .Sy \\$1 feature is set to .Sy enabled , the administrator can turn on the .Sy \\$1 checksum on any dataset using .Nm zfs Cm set Sy checksum Ns = Ns Sy \\$1 Ar dset .Po see Xr zfs-set 8 Pc . This feature becomes .Sy active once a .Sy checksum property has been set to .Sy \\$1 , and will return to being .Sy enabled once all filesystems that have ever had their checksum set to .Sy \\$1 are destroyed. .. . .Sh FEATURES The following features are supported on this system: .Bl -tag -width Ds .feature org.zfsonlinux allocation_classes yes This feature enables support for separate allocation classes. .Pp This feature becomes .Sy active when a dedicated allocation class vdev .Pq dedup or special is created with the .Nm zpool Cm create No or Nm zpool Cm add No commands . With device removal, it can be returned to the .Sy enabled state if all the dedicated allocation class vdevs are removed. . .feature com.delphix async_destroy yes Destroying a file system requires traversing all of its data in order to return its used space to the pool. Without .Sy async_destroy , the file system is not fully removed until all space has been reclaimed. If the destroy operation is interrupted by a reboot or power outage, the next attempt to open the pool will need to complete the destroy operation synchronously. .Pp When .Sy async_destroy is enabled, the file system's data will be reclaimed by a background process, allowing the destroy operation to complete without traversing the entire file system. The background process is able to resume interrupted destroys after the pool has been opened, eliminating the need to finish interrupted destroys as part of the open operation. The amount of space remaining to be reclaimed by the background process is available through the .Sy freeing property. .Pp This feature is only .Sy active while .Sy freeing is non-zero. . .feature org.openzfs blake3 no extensible_dataset This feature enables the use of the BLAKE3 hash algorithm for checksum and dedup. BLAKE3 is a secure hash algorithm focused on high performance. .Pp .checksum-spiel blake3 . +.feature com.fudosecurity block_cloning yes +When this feature is enabled ZFS will use block cloning for operations like +.Fn copy_file_range 2 . +Block cloning allows to create multiple references to a single block. +It is much faster than copying the data (as the actual data is neither read nor +written) and takes no additional space. +Blocks can be cloned across datasets under some conditions (like disabled +encryption and equal +.Nm recordsize ) . +.Pp +This feature becomes +.Sy active +when first block is cloned. +When the last cloned block is freed, it goes back to the enabled state. .feature com.delphix bookmarks yes extensible_dataset This feature enables use of the .Nm zfs Cm bookmark command. .Pp This feature is .Sy active while any bookmarks exist in the pool. All bookmarks in the pool can be listed by running .Nm zfs Cm list Fl t Sy bookmark Fl r Ar poolname . . .feature com.datto bookmark_v2 no bookmark extensible_dataset This feature enables the creation and management of larger bookmarks which are needed for other features in ZFS. .Pp This feature becomes .Sy active when a v2 bookmark is created and will be returned to the .Sy enabled state when all v2 bookmarks are destroyed. . .feature com.delphix bookmark_written no bookmark extensible_dataset bookmark_v2 This feature enables additional bookmark accounting fields, enabling the .Sy written Ns # Ns Ar bookmark property .Pq space written since a bookmark and estimates of send stream sizes for incrementals from bookmarks. .Pp This feature becomes .Sy active when a bookmark is created and will be returned to the .Sy enabled state when all bookmarks with these fields are destroyed. . .feature org.openzfs device_rebuild yes This feature enables the ability for the .Nm zpool Cm attach and .Nm zpool Cm replace commands to perform sequential reconstruction .Pq instead of healing reconstruction when resilvering. .Pp Sequential reconstruction resilvers a device in LBA order without immediately verifying the checksums. Once complete, a scrub is started, which then verifies the checksums. This approach allows full redundancy to be restored to the pool in the minimum amount of time. This two-phase approach will take longer than a healing resilver when the time to verify the checksums is included. However, unless there is additional pool damage, no checksum errors should be reported by the scrub. This feature is incompatible with raidz configurations. . This feature becomes .Sy active while a sequential resilver is in progress, and returns to .Sy enabled when the resilver completes. . .feature com.delphix device_removal no This feature enables the .Nm zpool Cm remove command to remove top-level vdevs, evacuating them to reduce the total size of the pool. .Pp This feature becomes .Sy active when the .Nm zpool Cm remove command is used on a top-level vdev, and will never return to being .Sy enabled . . .feature org.openzfs draid no This feature enables use of the .Sy draid vdev type. dRAID is a variant of RAID-Z which provides integrated distributed hot spares that allow faster resilvering while retaining the benefits of RAID-Z. Data, parity, and spare space are organized in redundancy groups and distributed evenly over all of the devices. .Pp This feature becomes .Sy active when creating a pool which uses the .Sy draid vdev type, or when adding a new .Sy draid vdev to an existing pool. . .feature org.illumos edonr no extensible_dataset This feature enables the use of the Edon-R hash algorithm for checksum, including for nopwrite .Po if compression is also enabled, an overwrite of a block whose checksum matches the data being written will be ignored .Pc . In an abundance of caution, Edon-R requires verification when used with dedup: .Nm zfs Cm set Sy dedup Ns = Ns Sy edonr , Ns Sy verify .Po see Xr zfs-set 8 Pc . .Pp Edon-R is a very high-performance hash algorithm that was part of the NIST SHA-3 competition. It provides extremely high hash performance .Pq over 350% faster than SHA-256 , but was not selected because of its unsuitability as a general purpose secure hash algorithm. This implementation utilizes the new salted checksumming functionality in ZFS, which means that the checksum is pre-seeded with a secret 256-bit random key .Pq stored on the pool before being fed the data block to be checksummed. Thus the produced checksums are unique to a given pool, preventing hash collision attacks on systems with dedup. .Pp .checksum-spiel edonr . .feature com.delphix embedded_data no This feature improves the performance and compression ratio of highly-compressible blocks. Blocks whose contents can compress to 112 bytes or smaller can take advantage of this feature. .Pp When this feature is enabled, the contents of highly-compressible blocks are stored in the block .Dq pointer itself .Po a misnomer in this case, as it contains the compressed data, rather than a pointer to its location on disk .Pc . Thus the space of the block .Pq one sector, typically 512 B or 4 KiB is saved, and no additional I/O is needed to read and write the data block. . \*[instant-never] . .feature com.delphix empty_bpobj yes This feature increases the performance of creating and using a large number of snapshots of a single filesystem or volume, and also reduces the disk space required. .Pp When there are many snapshots, each snapshot uses many Block Pointer Objects .Pq bpobjs to track blocks associated with that snapshot. However, in common use cases, most of these bpobjs are empty. This feature allows us to create each bpobj on-demand, thus eliminating the empty bpobjs. .Pp This feature is .Sy active while there are any filesystems, volumes, or snapshots which were created after enabling this feature. . .feature com.delphix enabled_txg yes Once this feature is enabled, ZFS records the transaction group number in which new features are enabled. This has no user-visible impact, but other features may depend on this feature. .Pp This feature becomes .Sy active as soon as it is enabled and will never return to being .Sy enabled . . .feature com.datto encryption no bookmark_v2 extensible_dataset This feature enables the creation and management of natively encrypted datasets. .Pp This feature becomes .Sy active when an encrypted dataset is created and will be returned to the .Sy enabled state when all datasets that use this feature are destroyed. . .feature com.delphix extensible_dataset no This feature allows more flexible use of internal ZFS data structures, and exists for other features to depend on. .Pp This feature will be .Sy active when the first dependent feature uses it, and will be returned to the .Sy enabled state when all datasets that use this feature are destroyed. . .feature com.joyent filesystem_limits yes extensible_dataset This feature enables filesystem and snapshot limits. These limits can be used to control how many filesystems and/or snapshots can be created at the point in the tree on which the limits are set. .Pp This feature is .Sy active once either of the limit properties has been set on a dataset and will never return to being .Sy enabled . . .feature com.delphix head_errlog no This feature enables the upgraded version of errlog, which required an on-disk error log format change. Now the error log of each head dataset is stored separately in the zap object and keyed by the head id. In case of encrypted filesystems with unloaded keys or unmounted encrypted filesystems we are unable to check their snapshots or clones for errors and these will not be reported. With this feature enabled, every dataset affected by an error block is listed in the output of .Nm zpool Cm status . .Pp \*[instant-never] . .feature com.delphix hole_birth no enabled_txg This feature has/had bugs, the result of which is that, if you do a .Nm zfs Cm send Fl i .Pq or Fl R , No since it uses Fl i from an affected dataset, the receiving party will not see any checksum or other errors, but the resulting destination snapshot will not match the source. Its use by .Nm zfs Cm send Fl i has been disabled by default .Po see .Sy send_holes_without_birth_time in .Xr zfs 4 .Pc . .Pp This feature improves performance of incremental sends .Pq Nm zfs Cm send Fl i and receives for objects with many holes. The most common case of hole-filled objects is zvols. .Pp An incremental send stream from snapshot .Sy A No to snapshot Sy B contains information about every block that changed between .Sy A No and Sy B . Blocks which did not change between those snapshots can be identified and omitted from the stream using a piece of metadata called the .Dq block birth time , but birth times are not recorded for holes .Pq blocks filled only with zeroes . Since holes created after .Sy A No cannot be distinguished from holes created before Sy A , information about every hole in the entire filesystem or zvol is included in the send stream. .Pp For workloads where holes are rare this is not a problem. However, when incrementally replicating filesystems or zvols with many holes .Pq for example a zvol formatted with another filesystem a lot of time will be spent sending and receiving unnecessary information about holes that already exist on the receiving side. .Pp Once the .Sy hole_birth feature has been enabled the block birth times of all new holes will be recorded. Incremental sends between snapshots created after this feature is enabled will use this new metadata to avoid sending information about holes that already exist on the receiving side. .Pp \*[instant-never] . .feature org.open-zfs large_blocks no extensible_dataset This feature allows the record size on a dataset to be set larger than 128 KiB. .Pp This feature becomes .Sy active once a dataset contains a file with a block size larger than 128 KiB, and will return to being .Sy enabled once all filesystems that have ever had their recordsize larger than 128 KiB are destroyed. . .feature org.zfsonlinux large_dnode no extensible_dataset This feature allows the size of dnodes in a dataset to be set larger than 512 B. . This feature becomes .Sy active once a dataset contains an object with a dnode larger than 512 B, which occurs as a result of setting the .Sy dnodesize dataset property to a value other than .Sy legacy . The feature will return to being .Sy enabled once all filesystems that have ever contained a dnode larger than 512 B are destroyed. Large dnodes allow more data to be stored in the bonus buffer, thus potentially improving performance by avoiding the use of spill blocks. . .feature com.delphix livelist yes This feature allows clones to be deleted faster than the traditional method when a large number of random/sparse writes have been made to the clone. All blocks allocated and freed after a clone is created are tracked by the the clone's livelist which is referenced during the deletion of the clone. The feature is activated when a clone is created and remains .Sy active until all clones have been destroyed. . .feature com.delphix log_spacemap yes com.delphix:spacemap_v2 This feature improves performance for heavily-fragmented pools, especially when workloads are heavy in random-writes. It does so by logging all the metaslab changes on a single spacemap every TXG instead of scattering multiple writes to all the metaslab spacemaps. .Pp \*[instant-never] . .feature org.illumos lz4_compress no .Sy lz4 is a high-performance real-time compression algorithm that features significantly faster compression and decompression as well as a higher compression ratio than the older .Sy lzjb compression. Typically, .Sy lz4 compression is approximately 50% faster on compressible data and 200% faster on incompressible data than .Sy lzjb . It is also approximately 80% faster on decompression, while giving approximately a 10% better compression ratio. .Pp When the .Sy lz4_compress feature is set to .Sy enabled , the administrator can turn on .Sy lz4 compression on any dataset on the pool using the .Xr zfs-set 8 command. All newly written metadata will be compressed with the .Sy lz4 algorithm. .Pp \*[instant-never] . .feature com.joyent multi_vdev_crash_dump no This feature allows a dump device to be configured with a pool comprised of multiple vdevs. Those vdevs may be arranged in any mirrored or raidz configuration. .Pp When the .Sy multi_vdev_crash_dump feature is set to .Sy enabled , the administrator can use .Xr dumpadm 8 to configure a dump device on a pool comprised of multiple vdevs. .Pp Under .Fx and Linux this feature is unused, but registered for compatibility. New pools created on these systems will have the feature .Sy enabled but will never transition to .Sy active , as this functionality is not required for crash dump support. Existing pools where this feature is .Sy active can be imported. . .feature com.delphix obsolete_counts yes device_removal This feature is an enhancement of .Sy device_removal , which will over time reduce the memory used to track removed devices. When indirect blocks are freed or remapped, we note that their part of the indirect mapping is .Dq obsolete – no longer needed. .Pp This feature becomes .Sy active when the .Nm zpool Cm remove command is used on a top-level vdev, and will never return to being .Sy enabled . . .feature org.zfsonlinux project_quota yes extensible_dataset This feature allows administrators to account the spaces and objects usage information against the project identifier .Pq ID . .Pp The project ID is an object-based attribute. When upgrading an existing filesystem, objects without a project ID will be assigned a zero project ID. When this feature is enabled, newly created objects inherit their parent directories' project ID if the parent's inherit flag is set .Pq via Nm chattr Sy [+-]P No or Nm zfs Cm project Fl s Ns | Ns Fl C . Otherwise, the new object's project ID will be zero. An object's project ID can be changed at any time by the owner .Pq or privileged user via .Nm chattr Fl p Ar prjid or .Nm zfs Cm project Fl p Ar prjid . .Pp This feature will become .Sy active as soon as it is enabled and will never return to being .Sy disabled . \*[remount-upgrade] . .feature com.delphix redaction_bookmarks no bookmarks extensible_dataset This feature enables the use of redacted .Nm zfs Cm send Ns s , which create redaction bookmarks storing the list of blocks redacted by the send that created them. For more information about redacted sends, see .Xr zfs-send 8 . . .feature com.delphix redacted_datasets no extensible_dataset This feature enables the receiving of redacted .Nm zfs Cm send streams, which create redacted datasets when received. These datasets are missing some of their blocks, and so cannot be safely mounted, and their contents cannot be safely read. For more information about redacted receives, see .Xr zfs-send 8 . . .feature com.datto resilver_defer yes This feature allows ZFS to postpone new resilvers if an existing one is already in progress. Without this feature, any new resilvers will cause the currently running one to be immediately restarted from the beginning. .Pp This feature becomes .Sy active once a resilver has been deferred, and returns to being .Sy enabled when the deferred resilver begins. . .feature org.illumos sha512 no extensible_dataset This feature enables the use of the SHA-512/256 truncated hash algorithm .Pq FIPS 180-4 for checksum and dedup. The native 64-bit arithmetic of SHA-512 provides an approximate 50% performance boost over SHA-256 on 64-bit hardware and is thus a good minimum-change replacement candidate for systems where hash performance is important, but these systems cannot for whatever reason utilize the faster .Sy skein No and Sy edonr algorithms. .Pp .checksum-spiel sha512 . .feature org.illumos skein no extensible_dataset This feature enables the use of the Skein hash algorithm for checksum and dedup. Skein is a high-performance secure hash algorithm that was a finalist in the NIST SHA-3 competition. It provides a very high security margin and high performance on 64-bit hardware .Pq 80% faster than SHA-256 . This implementation also utilizes the new salted checksumming functionality in ZFS, which means that the checksum is pre-seeded with a secret 256-bit random key .Pq stored on the pool before being fed the data block to be checksummed. Thus the produced checksums are unique to a given pool, preventing hash collision attacks on systems with dedup. .Pp .checksum-spiel skein . .feature com.delphix spacemap_histogram yes This features allows ZFS to maintain more information about how free space is organized within the pool. If this feature is .Sy enabled , it will be activated when a new space map object is created, or an existing space map is upgraded to the new format, and never returns back to being .Sy enabled . . .feature com.delphix spacemap_v2 yes This feature enables the use of the new space map encoding which consists of two words .Pq instead of one whenever it is advantageous. The new encoding allows space maps to represent large regions of space more efficiently on-disk while also increasing their maximum addressable offset. .Pp This feature becomes .Sy active once it is .Sy enabled , and never returns back to being .Sy enabled . . .feature org.zfsonlinux userobj_accounting yes extensible_dataset This feature allows administrators to account the object usage information by user and group. .Pp \*[instant-never] \*[remount-upgrade] . .feature org.openzfs zilsaxattr yes extensible_dataset This feature enables .Sy xattr Ns = Ns Sy sa extended attribute logging in the ZIL. If enabled, extended attribute changes .Pq both Sy xattrdir Ns = Ns Sy dir No and Sy xattr Ns = Ns Sy sa are guaranteed to be durable if either the dataset had .Sy sync Ns = Ns Sy always set at the time the changes were made, or .Xr sync 2 is called on the dataset after the changes were made. .Pp This feature becomes .Sy active when a ZIL is created for at least one dataset and will be returned to the .Sy enabled state when it is destroyed for all datasets that use this feature. . .feature com.delphix zpool_checkpoint yes This feature enables the .Nm zpool Cm checkpoint command that can checkpoint the state of the pool at the time it was issued and later rewind back to it or discard it. .Pp This feature becomes .Sy active when the .Nm zpool Cm checkpoint command is used to checkpoint the pool. The feature will only return back to being .Sy enabled when the pool is rewound or the checkpoint has been discarded. . .feature org.freebsd zstd_compress no extensible_dataset .Sy zstd is a high-performance compression algorithm that features a combination of high compression ratios and high speed. Compared to .Sy gzip , .Sy zstd offers slightly better compression at much higher speeds. Compared to .Sy lz4 , .Sy zstd offers much better compression while being only modestly slower. Typically, .Sy zstd compression speed ranges from 250 to 500 MB/s per thread and decompression speed is over 1 GB/s per thread. .Pp When the .Sy zstd feature is set to .Sy enabled , the administrator can turn on .Sy zstd compression of any dataset using .Nm zfs Cm set Sy compress Ns = Ns Sy zstd Ar dset .Po see Xr zfs-set 8 Pc . This feature becomes .Sy active once a .Sy compress property has been set to .Sy zstd , and will return to being .Sy enabled once all filesystems that have ever had their .Sy compress property set to .Sy zstd are destroyed. .El . .Sh SEE ALSO .Xr zfs 8 , .Xr zpool 8 diff --git a/man/man7/zpoolprops.7 b/man/man7/zpoolprops.7 index 7be0a21d980a..12b9b11903df 100644 --- a/man/man7/zpoolprops.7 +++ b/man/man7/zpoolprops.7 @@ -1,420 +1,433 @@ .\" .\" CDDL HEADER START .\" .\" The contents of this file are subject to the terms of the .\" Common Development and Distribution License (the "License"). .\" You may not use this file except in compliance with the License. .\" .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE .\" or https://opensource.org/licenses/CDDL-1.0. .\" See the License for the specific language governing permissions .\" and limitations under the License. .\" .\" When distributing Covered Code, include this CDDL HEADER in each .\" file and include the License file at usr/src/OPENSOLARIS.LICENSE. .\" If applicable, add the following below this CDDL HEADER, with the .\" fields enclosed by brackets "[]" replaced with your own identifying .\" information: Portions Copyright [yyyy] [name of copyright owner] .\" .\" CDDL HEADER END .\" .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved. .\" Copyright (c) 2012, 2018 by Delphix. All rights reserved. .\" Copyright (c) 2012 Cyril Plisko. All Rights Reserved. .\" Copyright (c) 2017 Datto Inc. .\" Copyright (c) 2018 George Melikov. All Rights Reserved. .\" Copyright 2017 Nexenta Systems, Inc. .\" Copyright (c) 2017 Open-E, Inc. All Rights Reserved. .\" Copyright (c) 2021, Colm Buckley .\" .Dd May 27, 2021 .Dt ZPOOLPROPS 7 .Os . .Sh NAME .Nm zpoolprops .Nd properties of ZFS storage pools . .Sh DESCRIPTION Each pool has several properties associated with it. Some properties are read-only statistics while others are configurable and change the behavior of the pool. .Pp The following are read-only properties: .Bl -tag -width "unsupported@guid" -.It Cm allocated +.It Sy allocated Amount of storage used within the pool. See .Sy fragmentation and .Sy free for more information. +.It Sy bcloneratio +The ratio of the total amount of storage that would be required to store all +the cloned blocks without cloning to the actual storage used. +The +.Sy bcloneratio +property is calculated as: +.Pp +.Sy ( ( bclonesaved + bcloneused ) * 100 ) / bcloneused +.It Sy bclonesaved +The amount of additional storage that would be required if block cloning +was not used. +.It Sy bcloneused +The amount of storage used by cloned blocks. .It Sy capacity Percentage of pool space used. This property can also be referred to by its shortened column name, .Sy cap . .It Sy expandsize Amount of uninitialized space within the pool or device that can be used to increase the total capacity of the pool. On whole-disk vdevs, this is the space beyond the end of the GPT – typically occurring when a LUN is dynamically expanded or a disk replaced with a larger one. On partition vdevs, this is the space appended to the partition after it was added to the pool – most likely by resizing it in-place. The space can be claimed for the pool by bringing it online with .Sy autoexpand=on or using .Nm zpool Cm online Fl e . .It Sy fragmentation The amount of fragmentation in the pool. As the amount of space .Sy allocated increases, it becomes more difficult to locate .Sy free space. This may result in lower write performance compared to pools with more unfragmented free space. .It Sy free The amount of free space available in the pool. By contrast, the .Xr zfs 8 .Sy available property describes how much new data can be written to ZFS filesystems/volumes. The zpool .Sy free property is not generally useful for this purpose, and can be substantially more than the zfs .Sy available space. This discrepancy is due to several factors, including raidz parity; zfs reservation, quota, refreservation, and refquota properties; and space set aside by .Sy spa_slop_shift (see .Xr zfs 4 for more information). .It Sy freeing After a file system or snapshot is destroyed, the space it was using is returned to the pool asynchronously. .Sy freeing is the amount of space remaining to be reclaimed. Over time .Sy freeing will decrease while .Sy free increases. -.It Sy leaked -Space not released while -.Sy freeing -due to corruption, now permanently leaked into the pool. +.It Sy guid +A unique identifier for the pool. .It Sy health The current health of the pool. Health can be one of .Sy ONLINE , DEGRADED , FAULTED , OFFLINE, REMOVED , UNAVAIL . -.It Sy guid -A unique identifier for the pool. +.It Sy leaked +Space not released while +.Sy freeing +due to corruption, now permanently leaked into the pool. .It Sy load_guid A unique identifier for the pool. Unlike the .Sy guid property, this identifier is generated every time we load the pool (i.e. does not persist across imports/exports) and never changes while the pool is loaded (even if a .Sy reguid operation takes place). .It Sy size Total size of the storage pool. .It Sy unsupported@ Ns Em guid Information about unsupported features that are enabled on the pool. See .Xr zpool-features 7 for details. .El .Pp The space usage properties report actual physical space available to the storage pool. The physical space can be different from the total amount of space that any contained datasets can actually use. The amount of space used in a raidz configuration depends on the characteristics of the data being written. In addition, ZFS reserves some space for internal accounting that the .Xr zfs 8 command takes into account, but the .Nm command does not. For non-full pools of a reasonable size, these effects should be invisible. For small pools, or pools that are close to being completely full, these discrepancies may become more noticeable. .Pp The following property can be set at creation time and import time: .Bl -tag -width Ds .It Sy altroot Alternate root directory. If set, this directory is prepended to any mount points within the pool. This can be used when examining an unknown pool where the mount points cannot be trusted, or in an alternate boot environment, where the typical paths are not valid. .Sy altroot is not a persistent property. It is valid only while the system is up. Setting .Sy altroot defaults to using .Sy cachefile Ns = Ns Sy none , though this may be overridden using an explicit setting. .El .Pp The following property can be set only at import time: .Bl -tag -width Ds .It Sy readonly Ns = Ns Sy on Ns | Ns Sy off If set to .Sy on , the pool will be imported in read-only mode. This property can also be referred to by its shortened column name, .Sy rdonly . .El .Pp The following properties can be set at creation time and import time, and later changed with the .Nm zpool Cm set command: .Bl -tag -width Ds .It Sy ashift Ns = Ns Ar ashift Pool sector size exponent, to the power of .Sy 2 (internally referred to as .Sy ashift ) . Values from 9 to 16, inclusive, are valid; also, the value 0 (the default) means to auto-detect using the kernel's block layer and a ZFS internal exception list. I/O operations will be aligned to the specified size boundaries. Additionally, the minimum (disk) write size will be set to the specified size, so this represents a space/performance trade-off. For optimal performance, the pool sector size should be greater than or equal to the sector size of the underlying disks. The typical case for setting this property is when performance is important and the underlying disks use 4KiB sectors but report 512B sectors to the OS (for compatibility reasons); in that case, set .Sy ashift Ns = Ns Sy 12 (which is .Sy 1<<12 No = Sy 4096 ) . When set, this property is used as the default hint value in subsequent vdev operations (add, attach and replace). Changing this value will not modify any existing vdev, not even on disk replacement; however it can be used, for instance, to replace a dying 512B sectors disk with a newer 4KiB sectors device: this will probably result in bad performance but at the same time could prevent loss of data. .It Sy autoexpand Ns = Ns Sy on Ns | Ns Sy off Controls automatic pool expansion when the underlying LUN is grown. If set to .Sy on , the pool will be resized according to the size of the expanded device. If the device is part of a mirror or raidz then all devices within that mirror/raidz group must be expanded before the new space is made available to the pool. The default behavior is .Sy off . This property can also be referred to by its shortened column name, .Sy expand . .It Sy autoreplace Ns = Ns Sy on Ns | Ns Sy off Controls automatic device replacement. If set to .Sy off , device replacement must be initiated by the administrator by using the .Nm zpool Cm replace command. If set to .Sy on , any new device, found in the same physical location as a device that previously belonged to the pool, is automatically formatted and replaced. The default behavior is .Sy off . This property can also be referred to by its shortened column name, .Sy replace . Autoreplace can also be used with virtual disks (like device mapper) provided that you use the /dev/disk/by-vdev paths setup by vdev_id.conf. See the .Xr vdev_id 8 manual page for more details. Autoreplace and autoonline require the ZFS Event Daemon be configured and running. See the .Xr zed 8 manual page for more details. .It Sy autotrim Ns = Ns Sy on Ns | Ns Sy off When set to .Sy on space which has been recently freed, and is no longer allocated by the pool, will be periodically trimmed. This allows block device vdevs which support BLKDISCARD, such as SSDs, or file vdevs on which the underlying file system supports hole-punching, to reclaim unused blocks. The default value for this property is .Sy off . .Pp Automatic TRIM does not immediately reclaim blocks after a free. Instead, it will optimistically delay allowing smaller ranges to be aggregated into a few larger ones. These can then be issued more efficiently to the storage. TRIM on L2ARC devices is enabled by setting .Sy l2arc_trim_ahead > 0 . .Pp Be aware that automatic trimming of recently freed data blocks can put significant stress on the underlying storage devices. This will vary depending of how well the specific device handles these commands. For lower-end devices it is often possible to achieve most of the benefits of automatic trimming by running an on-demand (manual) TRIM periodically using the .Nm zpool Cm trim command. .It Sy bootfs Ns = Ns Sy (unset) Ns | Ns Ar pool Ns Op / Ns Ar dataset Identifies the default bootable dataset for the root pool. This property is expected to be set mainly by the installation and upgrade programs. Not all Linux distribution boot processes use the bootfs property. .It Sy cachefile Ns = Ns Ar path Ns | Ns Sy none Controls the location of where the pool configuration is cached. Discovering all pools on system startup requires a cached copy of the configuration data that is stored on the root file system. All pools in this cache are automatically imported when the system boots. Some environments, such as install and clustering, need to cache this information in a different location so that pools are not automatically imported. Setting this property caches the pool configuration in a different location that can later be imported with .Nm zpool Cm import Fl c . Setting it to the value .Sy none creates a temporary pool that is never cached, and the .Qq .Pq empty string uses the default location. .Pp Multiple pools can share the same cache file. Because the kernel destroys and recreates this file when pools are added and removed, care should be taken when attempting to access this file. When the last pool using a .Sy cachefile is exported or destroyed, the file will be empty. .It Sy comment Ns = Ns Ar text A text string consisting of printable ASCII characters that will be stored such that it is available even if the pool becomes faulted. An administrator can provide additional information about a pool using this property. .It Sy compatibility Ns = Ns Sy off Ns | Ns Sy legacy Ns | Ns Ar file Ns Oo , Ns Ar file Oc Ns … Specifies that the pool maintain compatibility with specific feature sets. When set to .Sy off (or unset) compatibility is disabled (all features may be enabled); when set to .Sy legacy Ns no features may be enabled. When set to a comma-separated list of filenames (each filename may either be an absolute path, or relative to .Pa /etc/zfs/compatibility.d or .Pa /usr/share/zfs/compatibility.d ) the lists of requested features are read from those files, separated by whitespace and/or commas. Only features present in all files may be enabled. .Pp See .Xr zpool-features 7 , .Xr zpool-create 8 and .Xr zpool-upgrade 8 for more information on the operation of compatibility feature sets. .It Sy dedupditto Ns = Ns Ar number This property is deprecated and no longer has any effect. .It Sy delegation Ns = Ns Sy on Ns | Ns Sy off Controls whether a non-privileged user is granted access based on the dataset permissions defined on the dataset. See .Xr zfs 8 for more information on ZFS delegated administration. .It Sy failmode Ns = Ns Sy wait Ns | Ns Sy continue Ns | Ns Sy panic Controls the system behavior in the event of catastrophic pool failure. This condition is typically a result of a loss of connectivity to the underlying storage device(s) or a failure of all devices within the pool. The behavior of such an event is determined as follows: .Bl -tag -width "continue" .It Sy wait Blocks all I/O access until the device connectivity is recovered and the errors are cleared with .Nm zpool Cm clear . This is the default behavior. .It Sy continue Returns .Er EIO to any new write I/O requests but allows reads to any of the remaining healthy devices. Any write requests that have yet to be committed to disk would be blocked. .It Sy panic Prints out a message to the console and generates a system crash dump. .El .It Sy feature@ Ns Ar feature_name Ns = Ns Sy enabled The value of this property is the current state of .Ar feature_name . The only valid value when setting this property is .Sy enabled which moves .Ar feature_name to the enabled state. See .Xr zpool-features 7 for details on feature states. .It Sy listsnapshots Ns = Ns Sy on Ns | Ns Sy off Controls whether information about snapshots associated with this pool is output when .Nm zfs Cm list is run without the .Fl t option. The default value is .Sy off . This property can also be referred to by its shortened name, .Sy listsnaps . .It Sy multihost Ns = Ns Sy on Ns | Ns Sy off Controls whether a pool activity check should be performed during .Nm zpool Cm import . When a pool is determined to be active it cannot be imported, even with the .Fl f option. This property is intended to be used in failover configurations where multiple hosts have access to a pool on shared storage. .Pp Multihost provides protection on import only. It does not protect against an individual device being used in multiple pools, regardless of the type of vdev. See the discussion under .Nm zpool Cm create . .Pp When this property is on, periodic writes to storage occur to show the pool is in use. See .Sy zfs_multihost_interval in the .Xr zfs 4 manual page. In order to enable this property each host must set a unique hostid. See .Xr genhostid 1 .Xr zgenhostid 8 .Xr spl 4 for additional details. The default value is .Sy off . .It Sy version Ns = Ns Ar version The current on-disk version of the pool. This can be increased, but never decreased. The preferred method of updating pools is with the .Nm zpool Cm upgrade command, though this property can be used when a specific version is needed for backwards compatibility. Once feature flags are enabled on a pool this property will no longer have a value. .El diff --git a/module/Kbuild.in b/module/Kbuild.in index 21606b8cae27..8d29f56c2fb8 100644 --- a/module/Kbuild.in +++ b/module/Kbuild.in @@ -1,483 +1,484 @@ # When integrated in to a monolithic kernel the spl module must appear # first. This ensures its module initialization function is run before # any of the other module initialization functions which depend on it. ZFS_MODULE_CFLAGS += -std=gnu99 -Wno-declaration-after-statement ZFS_MODULE_CFLAGS += -Wmissing-prototypes ZFS_MODULE_CFLAGS += @KERNEL_DEBUG_CFLAGS@ @NO_FORMAT_ZERO_LENGTH@ ifneq ($(KBUILD_EXTMOD),) zfs_include = @abs_top_srcdir@/include icp_include = @abs_srcdir@/icp/include zstd_include = @abs_srcdir@/zstd/include ZFS_MODULE_CFLAGS += -include @abs_top_builddir@/zfs_config.h ZFS_MODULE_CFLAGS += -I@abs_top_builddir@/include src = @abs_srcdir@ obj = @abs_builddir@ else zfs_include = $(srctree)/include/zfs icp_include = $(srctree)/$(src)/icp/include zstd_include = $(srctree)/$(src)/zstd/include ZFS_MODULE_CFLAGS += -include $(zfs_include)/zfs_config.h endif ZFS_MODULE_CFLAGS += -I$(zfs_include)/os/linux/kernel ZFS_MODULE_CFLAGS += -I$(zfs_include)/os/linux/spl ZFS_MODULE_CFLAGS += -I$(zfs_include)/os/linux/zfs ZFS_MODULE_CFLAGS += -I$(zfs_include) ZFS_MODULE_CPPFLAGS += -D_KERNEL ZFS_MODULE_CPPFLAGS += @KERNEL_DEBUG_CPPFLAGS@ # KASAN enables -Werror=frame-larger-than=1024, which # breaks oh so many parts of our build. ifeq ($(CONFIG_KASAN),y) ZFS_MODULE_CFLAGS += -Wno-error=frame-larger-than= endif ifneq ($(KBUILD_EXTMOD),) @CONFIG_QAT_TRUE@ZFS_MODULE_CFLAGS += -I@QAT_SRC@/include @CONFIG_QAT_TRUE@KBUILD_EXTRA_SYMBOLS += @QAT_SYMBOLS@ endif asflags-y := $(ZFS_MODULE_CFLAGS) $(ZFS_MODULE_CPPFLAGS) ccflags-y := $(ZFS_MODULE_CFLAGS) $(ZFS_MODULE_CPPFLAGS) ifeq ($(CONFIG_ARM64),y) CFLAGS_REMOVE_zcommon/zfs_fletcher_aarch64_neon.o += -mgeneral-regs-only CFLAGS_REMOVE_zfs/vdev_raidz_math_aarch64_neon.o += -mgeneral-regs-only CFLAGS_REMOVE_zfs/vdev_raidz_math_aarch64_neonx2.o += -mgeneral-regs-only endif # Suppress unused-value warnings in sparc64 architecture headers ccflags-$(CONFIG_SPARC64) += -Wno-unused-value obj-$(CONFIG_ZFS) := spl.o zfs.o SPL_OBJS := \ spl-atomic.o \ spl-condvar.o \ spl-cred.o \ spl-err.o \ spl-generic.o \ spl-kmem-cache.o \ spl-kmem.o \ spl-kstat.o \ spl-proc.o \ spl-procfs-list.o \ spl-taskq.o \ spl-thread.o \ spl-trace.o \ spl-tsd.o \ spl-vmem.o \ spl-xdr.o \ spl-zlib.o \ spl-zone.o spl-objs += $(addprefix os/linux/spl/,$(SPL_OBJS)) zfs-objs += avl/avl.o ICP_OBJS := \ algs/aes/aes_impl.o \ algs/aes/aes_impl_generic.o \ algs/aes/aes_modes.o \ algs/blake3/blake3.o \ algs/blake3/blake3_generic.o \ algs/blake3/blake3_impl.o \ algs/edonr/edonr.o \ algs/modes/cbc.o \ algs/modes/ccm.o \ algs/modes/ctr.o \ algs/modes/ecb.o \ algs/modes/gcm.o \ algs/modes/gcm_generic.o \ algs/modes/modes.o \ algs/sha2/sha2_generic.o \ algs/sha2/sha256_impl.o \ algs/sha2/sha512_impl.o \ algs/skein/skein.o \ algs/skein/skein_block.o \ algs/skein/skein_iv.o \ api/kcf_cipher.o \ api/kcf_ctxops.o \ api/kcf_mac.o \ core/kcf_callprov.o \ core/kcf_mech_tabs.o \ core/kcf_prov_lib.o \ core/kcf_prov_tabs.o \ core/kcf_sched.o \ illumos-crypto.o \ io/aes.o \ io/sha2_mod.o \ io/skein_mod.o \ spi/kcf_spi.o ICP_OBJS_X86_64 := \ asm-x86_64/aes/aes_aesni.o \ asm-x86_64/aes/aes_amd64.o \ asm-x86_64/aes/aeskey.o \ asm-x86_64/blake3/blake3_avx2.o \ asm-x86_64/blake3/blake3_avx512.o \ asm-x86_64/blake3/blake3_sse2.o \ asm-x86_64/blake3/blake3_sse41.o \ asm-x86_64/sha2/sha256-x86_64.o \ asm-x86_64/sha2/sha512-x86_64.o \ asm-x86_64/modes/aesni-gcm-x86_64.o \ asm-x86_64/modes/gcm_pclmulqdq.o \ asm-x86_64/modes/ghash-x86_64.o ICP_OBJS_X86 := \ algs/aes/aes_impl_aesni.o \ algs/aes/aes_impl_x86-64.o \ algs/modes/gcm_pclmulqdq.o ICP_OBJS_ARM := \ asm-arm/sha2/sha256-armv7.o \ asm-arm/sha2/sha512-armv7.o ICP_OBJS_ARM64 := \ asm-aarch64/blake3/b3_aarch64_sse2.o \ asm-aarch64/blake3/b3_aarch64_sse41.o \ asm-aarch64/sha2/sha256-armv8.o \ asm-aarch64/sha2/sha512-armv8.o ICP_OBJS_PPC_PPC64 := \ asm-ppc64/blake3/b3_ppc64le_sse2.o \ asm-ppc64/blake3/b3_ppc64le_sse41.o \ asm-ppc64/sha2/sha256-p8.o \ asm-ppc64/sha2/sha512-p8.o \ asm-ppc64/sha2/sha256-ppc.o \ asm-ppc64/sha2/sha512-ppc.o zfs-objs += $(addprefix icp/,$(ICP_OBJS)) zfs-$(CONFIG_X86) += $(addprefix icp/,$(ICP_OBJS_X86)) zfs-$(CONFIG_UML_X86)+= $(addprefix icp/,$(ICP_OBJS_X86)) zfs-$(CONFIG_X86_64) += $(addprefix icp/,$(ICP_OBJS_X86_64)) zfs-$(CONFIG_ARM) += $(addprefix icp/,$(ICP_OBJS_ARM)) zfs-$(CONFIG_ARM64) += $(addprefix icp/,$(ICP_OBJS_ARM64)) zfs-$(CONFIG_PPC) += $(addprefix icp/,$(ICP_OBJS_PPC_PPC64)) zfs-$(CONFIG_PPC64) += $(addprefix icp/,$(ICP_OBJS_PPC_PPC64)) $(addprefix $(obj)/icp/,$(ICP_OBJS) $(ICP_OBJS_X86) $(ICP_OBJS_X86_64) \ $(ICP_OBJS_ARM64) $(ICP_OBJS_PPC_PPC64)) : asflags-y += -I$(icp_include) -I$(zfs_include)/os/linux/spl -I$(zfs_include) $(addprefix $(obj)/icp/,$(ICP_OBJS) $(ICP_OBJS_X86) $(ICP_OBJS_X86_64) \ $(ICP_OBJS_ARM64) $(ICP_OBJS_PPC_PPC64)) : ccflags-y += -I$(icp_include) -I$(zfs_include)/os/linux/spl -I$(zfs_include) # Suppress objtool "return with modified stack frame" warnings. OBJECT_FILES_NON_STANDARD_aesni-gcm-x86_64.o := y # Suppress objtool "unsupported stack pointer realignment" warnings. # See #6950 for the reasoning. OBJECT_FILES_NON_STANDARD_sha256-x86_64.o := y OBJECT_FILES_NON_STANDARD_sha512-x86_64.o := y LUA_OBJS := \ lapi.o \ lauxlib.o \ lbaselib.o \ lcode.o \ lcompat.o \ lcorolib.o \ lctype.o \ ldebug.o \ ldo.o \ lfunc.o \ lgc.o \ llex.o \ lmem.o \ lobject.o \ lopcodes.o \ lparser.o \ lstate.o \ lstring.o \ lstrlib.o \ ltable.o \ ltablib.o \ ltm.o \ lvm.o \ lzio.o \ setjmp/setjmp.o zfs-objs += $(addprefix lua/,$(LUA_OBJS)) NVPAIR_OBJS := \ fnvpair.o \ nvpair.o \ nvpair_alloc_fixed.o \ nvpair_alloc_spl.o zfs-objs += $(addprefix nvpair/,$(NVPAIR_OBJS)) UNICODE_OBJS := \ u8_textprep.o \ uconv.o zfs-objs += $(addprefix unicode/,$(UNICODE_OBJS)) ZCOMMON_OBJS := \ cityhash.o \ zfeature_common.o \ zfs_comutil.o \ zfs_deleg.o \ zfs_fletcher.o \ zfs_fletcher_superscalar.o \ zfs_fletcher_superscalar4.o \ zfs_namecheck.o \ zfs_prop.o \ zpool_prop.o \ zprop_common.o ZCOMMON_OBJS_X86 := \ zfs_fletcher_avx512.o \ zfs_fletcher_intel.o \ zfs_fletcher_sse.o ZCOMMON_OBJS_ARM64 := \ zfs_fletcher_aarch64_neon.o zfs-objs += $(addprefix zcommon/,$(ZCOMMON_OBJS)) zfs-$(CONFIG_X86) += $(addprefix zcommon/,$(ZCOMMON_OBJS_X86)) zfs-$(CONFIG_UML_X86)+= $(addprefix zcommon/,$(ZCOMMON_OBJS_X86)) zfs-$(CONFIG_ARM64) += $(addprefix zcommon/,$(ZCOMMON_OBJS_ARM64)) # Zstd uses -O3 by default, so we should follow ZFS_ZSTD_FLAGS := -O3 # -fno-tree-vectorize gets set for gcc in zstd/common/compiler.h # Set it for other compilers, too. ZFS_ZSTD_FLAGS += -fno-tree-vectorize # SSE register return with SSE disabled if -march=znverX is passed ZFS_ZSTD_FLAGS += -U__BMI__ # Quiet warnings about frame size due to unused code in unmodified zstd lib ZFS_ZSTD_FLAGS += -Wframe-larger-than=20480 ZSTD_OBJS := \ zfs_zstd.o \ zstd_sparc.o ZSTD_UPSTREAM_OBJS := \ lib/common/entropy_common.o \ lib/common/error_private.o \ lib/common/fse_decompress.o \ lib/common/pool.o \ lib/common/zstd_common.o \ lib/compress/fse_compress.o \ lib/compress/hist.o \ lib/compress/huf_compress.o \ lib/compress/zstd_compress.o \ lib/compress/zstd_compress_literals.o \ lib/compress/zstd_compress_sequences.o \ lib/compress/zstd_compress_superblock.o \ lib/compress/zstd_double_fast.o \ lib/compress/zstd_fast.o \ lib/compress/zstd_lazy.o \ lib/compress/zstd_ldm.o \ lib/compress/zstd_opt.o \ lib/decompress/huf_decompress.o \ lib/decompress/zstd_ddict.o \ lib/decompress/zstd_decompress.o \ lib/decompress/zstd_decompress_block.o zfs-objs += $(addprefix zstd/,$(ZSTD_OBJS) $(ZSTD_UPSTREAM_OBJS)) # Disable aarch64 neon SIMD instructions for kernel mode $(addprefix $(obj)/zstd/,$(ZSTD_OBJS) $(ZSTD_UPSTREAM_OBJS)) : ccflags-y += -I$(zstd_include) $(ZFS_ZSTD_FLAGS) $(addprefix $(obj)/zstd/,$(ZSTD_OBJS) $(ZSTD_UPSTREAM_OBJS)) : asflags-y += -I$(zstd_include) $(addprefix $(obj)/zstd/,$(ZSTD_UPSTREAM_OBJS)) : ccflags-y += -include $(zstd_include)/aarch64_compat.h -include $(zstd_include)/zstd_compat_wrapper.h -Wp,-w $(obj)/zstd/zfs_zstd.o : ccflags-y += -include $(zstd_include)/zstd_compat_wrapper.h ZFS_OBJS := \ abd.o \ aggsum.o \ arc.o \ blake3_zfs.o \ blkptr.o \ bplist.o \ bpobj.o \ bptree.o \ bqueue.o \ + brt.o \ btree.o \ dataset_kstats.o \ dbuf.o \ dbuf_stats.o \ ddt.o \ ddt_zap.o \ dmu.o \ dmu_diff.o \ dmu_object.o \ dmu_objset.o \ dmu_recv.o \ dmu_redact.o \ dmu_send.o \ dmu_traverse.o \ dmu_tx.o \ dmu_zfetch.o \ dnode.o \ dnode_sync.o \ dsl_bookmark.o \ dsl_crypt.o \ dsl_dataset.o \ dsl_deadlist.o \ dsl_deleg.o \ dsl_destroy.o \ dsl_dir.o \ dsl_pool.o \ dsl_prop.o \ dsl_scan.o \ dsl_synctask.o \ dsl_userhold.o \ edonr_zfs.o \ fm.o \ gzip.o \ hkdf.o \ lz4.o \ lz4_zfs.o \ lzjb.o \ metaslab.o \ mmp.o \ multilist.o \ objlist.o \ pathname.o \ range_tree.o \ refcount.o \ rrwlock.o \ sa.o \ sha2_zfs.o \ skein_zfs.o \ spa.o \ spa_checkpoint.o \ spa_config.o \ spa_errlog.o \ spa_history.o \ spa_log_spacemap.o \ spa_misc.o \ spa_stats.o \ space_map.o \ space_reftree.o \ txg.o \ uberblock.o \ unique.o \ vdev.o \ vdev_cache.o \ vdev_draid.o \ vdev_draid_rand.o \ vdev_indirect.o \ vdev_indirect_births.o \ vdev_indirect_mapping.o \ vdev_initialize.o \ vdev_label.o \ vdev_mirror.o \ vdev_missing.o \ vdev_queue.o \ vdev_raidz.o \ vdev_raidz_math.o \ vdev_raidz_math_scalar.o \ vdev_rebuild.o \ vdev_removal.o \ vdev_root.o \ vdev_trim.o \ zap.o \ zap_leaf.o \ zap_micro.o \ zcp.o \ zcp_get.o \ zcp_global.o \ zcp_iter.o \ zcp_set.o \ zcp_synctask.o \ zfeature.o \ zfs_byteswap.o \ zfs_chksum.o \ zfs_fm.o \ zfs_fuid.o \ zfs_impl.o \ zfs_ioctl.o \ zfs_log.o \ zfs_onexit.o \ zfs_quota.o \ zfs_ratelimit.o \ zfs_replay.o \ zfs_rlock.o \ zfs_sa.o \ zfs_vnops.o \ zil.o \ zio.o \ zio_checksum.o \ zio_compress.o \ zio_inject.o \ zle.o \ zrlock.o \ zthr.o \ zvol.o ZFS_OBJS_OS := \ abd_os.o \ arc_os.o \ mmp_os.o \ policy.o \ qat.o \ qat_compress.o \ qat_crypt.o \ spa_misc_os.o \ trace.o \ vdev_disk.o \ vdev_file.o \ zfs_acl.o \ zfs_ctldir.o \ zfs_debug.o \ zfs_dir.o \ zfs_file_os.o \ zfs_ioctl_os.o \ zfs_racct.o \ zfs_sysfs.o \ zfs_uio.o \ zfs_vfsops.o \ zfs_vnops_os.o \ zfs_znode.o \ zio_crypt.o \ zpl_ctldir.o \ zpl_export.o \ zpl_file.o \ zpl_inode.o \ zpl_super.o \ zpl_xattr.o \ zvol_os.o ZFS_OBJS_X86 := \ vdev_raidz_math_avx2.o \ vdev_raidz_math_avx512bw.o \ vdev_raidz_math_avx512f.o \ vdev_raidz_math_sse2.o \ vdev_raidz_math_ssse3.o ZFS_OBJS_ARM64 := \ vdev_raidz_math_aarch64_neon.o \ vdev_raidz_math_aarch64_neonx2.o ZFS_OBJS_PPC_PPC64 := \ vdev_raidz_math_powerpc_altivec.o zfs-objs += $(addprefix zfs/,$(ZFS_OBJS)) $(addprefix os/linux/zfs/,$(ZFS_OBJS_OS)) zfs-$(CONFIG_X86) += $(addprefix zfs/,$(ZFS_OBJS_X86)) zfs-$(CONFIG_UML_X86)+= $(addprefix zfs/,$(ZFS_OBJS_X86)) zfs-$(CONFIG_ARM64) += $(addprefix zfs/,$(ZFS_OBJS_ARM64)) zfs-$(CONFIG_PPC) += $(addprefix zfs/,$(ZFS_OBJS_PPC_PPC64)) zfs-$(CONFIG_PPC64) += $(addprefix zfs/,$(ZFS_OBJS_PPC_PPC64)) # Suppress incorrect warnings from versions of objtool which are not # aware of x86 EVEX prefix instructions used for AVX512. OBJECT_FILES_NON_STANDARD_vdev_raidz_math_avx512bw.o := y OBJECT_FILES_NON_STANDARD_vdev_raidz_math_avx512f.o := y ifeq ($(CONFIG_ALTIVEC),y) $(obj)/zfs/vdev_raidz_math_powerpc_altivec.o : c_flags += -maltivec endif diff --git a/module/Makefile.bsd b/module/Makefile.bsd index 667678796779..8ec094d4ad1c 100644 --- a/module/Makefile.bsd +++ b/module/Makefile.bsd @@ -1,519 +1,520 @@ .if !defined(WITH_CTF) WITH_CTF=1 .endif .include SRCDIR=${.CURDIR} INCDIR=${.CURDIR:H}/include KMOD= openzfs .PATH: ${SRCDIR}/avl \ ${SRCDIR}/lua \ ${SRCDIR}/nvpair \ ${SRCDIR}/icp/algs/blake3 \ ${SRCDIR}/icp/algs/edonr \ ${SRCDIR}/icp/algs/sha2 \ ${SRCDIR}/icp/asm-aarch64/blake3 \ ${SRCDIR}/icp/asm-aarch64/sha2 \ ${SRCDIR}/icp/asm-arm/sha2 \ ${SRCDIR}/icp/asm-ppc64/sha2 \ ${SRCDIR}/icp/asm-ppc64/blake3 \ ${SRCDIR}/icp/asm-x86_64/blake3 \ ${SRCDIR}/icp/asm-x86_64/sha2 \ ${SRCDIR}/os/freebsd/spl \ ${SRCDIR}/os/freebsd/zfs \ ${SRCDIR}/unicode \ ${SRCDIR}/zcommon \ ${SRCDIR}/zfs \ ${SRCDIR}/zstd \ ${SRCDIR}/zstd/lib/common \ ${SRCDIR}/zstd/lib/compress \ ${SRCDIR}/zstd/lib/decompress CFLAGS+= -I${INCDIR} +CFLAGS+= -I${SRCDIR}/icp/include CFLAGS+= -I${INCDIR}/os/freebsd CFLAGS+= -I${INCDIR}/os/freebsd/spl CFLAGS+= -I${INCDIR}/os/freebsd/zfs CFLAGS+= -I${SRCDIR}/zstd/include -CFLAGS+= -I${SRCDIR}/icp/include CFLAGS+= -include ${INCDIR}/os/freebsd/spl/sys/ccompile.h CFLAGS+= -I${.CURDIR} CFLAGS+= -D__KERNEL__ -DFREEBSD_NAMECACHE -DBUILDING_ZFS -D__BSD_VISIBLE=1 \ -DHAVE_UIO_ZEROCOPY -DWITHOUT_NETDUMP -D__KERNEL -D_SYS_CONDVAR_H_ \ -D_SYS_VMEM_H_ -DKDTRACE_HOOKS -DCOMPAT_FREEBSD11 .if ${MACHINE_ARCH} == "amd64" CFLAGS+= -D__x86_64 -DHAVE_SSE2 -DHAVE_SSSE3 -DHAVE_SSE4_1 -DHAVE_SSE4_2 \ -DHAVE_AVX -DHAVE_AVX2 -DHAVE_AVX512F -DHAVE_AVX512VL -DHAVE_AVX512BW .endif .if defined(WITH_DEBUG) && ${WITH_DEBUG} == "true" CFLAGS+= -DZFS_DEBUG -g .if defined(WITH_INVARIANTS) && ${WITH_INVARIANTS} == "true" CFLAGS+= -DINVARIANTS -DWITNESS -DOPENSOLARIS_WITNESS .endif .if defined(WITH_O0) && ${WITH_O0} == "true" CFLAGS+= -O0 .endif .else CFLAGS += -DNDEBUG .endif .if defined(WITH_VFS_DEBUG) && ${WITH_VFS_DEBUG} == "true" # kernel must also be built with this option for this to work CFLAGS+= -DDEBUG_VFS_LOCKS .endif .if defined(WITH_GCOV) && ${WITH_GCOV} == "true" CFLAGS+= -fprofile-arcs -ftest-coverage .endif DEBUG_FLAGS=-g .if ${MACHINE_ARCH} == "i386" || ${MACHINE_ARCH} == "powerpc" || \ ${MACHINE_ARCH} == "powerpcspe" || ${MACHINE_ARCH} == "arm" CFLAGS+= -DBITS_PER_LONG=32 .else CFLAGS+= -DBITS_PER_LONG=64 .endif SRCS= vnode_if.h device_if.h bus_if.h # avl SRCS+= avl.c # icp SRCS+= edonr.c #icp/algs/blake3 SRCS+= blake3.c \ blake3_generic.c \ blake3_impl.c #icp/asm-aarch64/blake3 SRCS+= b3_aarch64_sse2.S \ b3_aarch64_sse41.S #icp/asm-ppc64/blake3 SRCS+= b3_ppc64le_sse2.S \ b3_ppc64le_sse41.S #icp/asm-x86_64/blake3 SRCS+= blake3_avx2.S \ blake3_avx512.S \ blake3_sse2.S \ blake3_sse41.S #icp/algs/sha2 SRCS+= sha2_generic.c \ sha256_impl.c \ sha512_impl.c #icp/asm-arm/sha2 SRCS+= sha256-armv7.S \ sha512-armv7.S #icp/asm-aarch64/sha2 SRCS+= sha256-armv8.S \ sha512-armv8.S #icp/asm-ppc64/sha2 SRCS+= sha256-p8.S \ sha512-p8.S \ sha256-ppc.S \ sha512-ppc.S #icp/asm-x86_64/sha2 SRCS+= sha256-x86_64.S \ sha512-x86_64.S #lua SRCS+= lapi.c \ lauxlib.c \ lbaselib.c \ lcode.c \ lcompat.c \ lcorolib.c \ lctype.c \ ldebug.c \ ldo.c \ lfunc.c \ lgc.c \ llex.c \ lmem.c \ lobject.c \ lopcodes.c \ lparser.c \ lstate.c \ lstring.c \ lstrlib.c \ ltable.c \ ltablib.c \ ltm.c \ lvm.c \ lzio.c #nvpair SRCS+= nvpair.c \ fnvpair.c \ nvpair_alloc_spl.c \ nvpair_alloc_fixed.c #os/freebsd/spl SRCS+= acl_common.c \ callb.c \ list.c \ spl_acl.c \ spl_cmn_err.c \ spl_dtrace.c \ spl_kmem.c \ spl_kstat.c \ spl_misc.c \ spl_policy.c \ spl_procfs_list.c \ spl_string.c \ spl_sunddi.c \ spl_sysevent.c \ spl_taskq.c \ spl_uio.c \ spl_vfs.c \ spl_vm.c \ spl_zlib.c \ spl_zone.c .if ${MACHINE_ARCH} == "i386" || ${MACHINE_ARCH} == "powerpc" || \ ${MACHINE_ARCH} == "powerpcspe" || ${MACHINE_ARCH} == "arm" SRCS+= spl_atomic.c .endif #os/freebsd/zfs SRCS+= abd_os.c \ arc_os.c \ crypto_os.c \ dmu_os.c \ event_os.c \ hkdf.c \ kmod_core.c \ spa_os.c \ sysctl_os.c \ vdev_file.c \ vdev_geom.c \ vdev_label_os.c \ zfs_acl.c \ zfs_ctldir.c \ zfs_debug.c \ zfs_dir.c \ zfs_ioctl_compat.c \ zfs_ioctl_os.c \ zfs_racct.c \ zfs_vfsops.c \ zfs_vnops_os.c \ zfs_znode.c \ zio_crypt.c \ zvol_os.c #unicode SRCS+= uconv.c \ u8_textprep.c #zcommon SRCS+= zfeature_common.c \ zfs_comutil.c \ zfs_deleg.c \ zfs_fletcher.c \ zfs_fletcher_avx512.c \ zfs_fletcher_intel.c \ zfs_fletcher_sse.c \ zfs_fletcher_superscalar.c \ zfs_fletcher_superscalar4.c \ zfs_namecheck.c \ zfs_prop.c \ zpool_prop.c \ zprop_common.c #zfs SRCS+= abd.c \ aggsum.c \ arc.c \ blake3_zfs.c \ blkptr.c \ bplist.c \ bpobj.c \ + brt.c \ btree.c \ cityhash.c \ dbuf.c \ dbuf_stats.c \ bptree.c \ bqueue.c \ dataset_kstats.c \ ddt.c \ ddt_zap.c \ dmu.c \ dmu_diff.c \ dmu_object.c \ dmu_objset.c \ dmu_recv.c \ dmu_redact.c \ dmu_send.c \ dmu_traverse.c \ dmu_tx.c \ dmu_zfetch.c \ dnode.c \ dnode_sync.c \ dsl_dataset.c \ dsl_deadlist.c \ dsl_deleg.c \ dsl_bookmark.c \ dsl_dir.c \ dsl_crypt.c \ dsl_destroy.c \ dsl_pool.c \ dsl_prop.c \ dsl_scan.c \ dsl_synctask.c \ dsl_userhold.c \ edonr_zfs.c \ fm.c \ gzip.c \ lzjb.c \ lz4.c \ lz4_zfs.c \ metaslab.c \ mmp.c \ multilist.c \ objlist.c \ pathname.c \ range_tree.c \ refcount.c \ rrwlock.c \ sa.c \ sha2_zfs.c \ skein_zfs.c \ spa.c \ spa_checkpoint.c \ spa_config.c \ spa_errlog.c \ spa_history.c \ spa_log_spacemap.c \ spa_misc.c \ spa_stats.c \ space_map.c \ space_reftree.c \ txg.c \ uberblock.c \ unique.c \ vdev.c \ vdev_cache.c \ vdev_draid.c \ vdev_draid_rand.c \ vdev_indirect.c \ vdev_indirect_births.c \ vdev_indirect_mapping.c \ vdev_initialize.c \ vdev_label.c \ vdev_mirror.c \ vdev_missing.c \ vdev_queue.c \ vdev_raidz.c \ vdev_raidz_math.c \ vdev_raidz_math_scalar.c \ vdev_raidz_math_avx2.c \ vdev_raidz_math_avx512bw.c \ vdev_raidz_math_avx512f.c \ vdev_raidz_math_sse2.c \ vdev_raidz_math_ssse3.c \ vdev_rebuild.c \ vdev_removal.c \ vdev_root.c \ vdev_trim.c \ zap.c \ zap_leaf.c \ zap_micro.c \ zcp.c \ zcp_get.c \ zcp_global.c \ zcp_iter.c \ zcp_set.c \ zcp_synctask.c \ zfeature.c \ zfs_byteswap.c \ zfs_chksum.c \ zfs_file_os.c \ zfs_fm.c \ zfs_fuid.c \ zfs_impl.c \ zfs_ioctl.c \ zfs_log.c \ zfs_onexit.c \ zfs_quota.c \ zfs_ratelimit.c \ zfs_replay.c \ zfs_rlock.c \ zfs_sa.c \ zfs_vnops.c \ zil.c \ zio.c \ zio_checksum.c \ zio_compress.c \ zio_inject.c \ zle.c \ zrlock.c \ zthr.c \ zvol.c #zstd SRCS+= zfs_zstd.c \ entropy_common.c \ error_private.c \ fse_compress.c \ fse_decompress.c \ hist.c \ huf_compress.c \ huf_decompress.c \ pool.c \ xxhash.c \ zstd_common.c \ zstd_compress.c \ zstd_compress_literals.c \ zstd_compress_sequences.c \ zstd_compress_superblock.c \ zstd_ddict.c \ zstd_decompress.c \ zstd_decompress_block.c \ zstd_double_fast.c \ zstd_fast.c \ zstd_lazy.c \ zstd_ldm.c \ zstd_opt.c beforeinstall: .if ${MK_DEBUG_FILES} != "no" mtree -eu \ -f /etc/mtree/BSD.debug.dist \ -p ${DESTDIR}/usr/lib .endif .include CFLAGS.sysctl_os.c= -include ../zfs_config.h CFLAGS.xxhash.c+= -include ${SYSDIR}/sys/_null.h CFLAGS.gcc+= -Wno-pointer-to-int-cast CFLAGS.abd.c= -Wno-cast-qual CFLAGS.ddt.c= -Wno-cast-qual CFLAGS.dmu.c= -Wno-cast-qual CFLAGS.dmu_traverse.c= -Wno-cast-qual CFLAGS.dnode.c= ${NO_WUNUSED_BUT_SET_VARIABLE} CFLAGS.dsl_deadlist.c= -Wno-cast-qual CFLAGS.dsl_dir.c= -Wno-cast-qual CFLAGS.dsl_prop.c= -Wno-cast-qual CFLAGS.edonr.c= -Wno-cast-qual CFLAGS.fm.c= -Wno-cast-qual CFLAGS.hist.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.lapi.c= -Wno-cast-qual CFLAGS.lcompat.c= -Wno-cast-qual CFLAGS.ldo.c= ${NO_WINFINITE_RECURSION} CFLAGS.lobject.c= -Wno-cast-qual CFLAGS.ltable.c= -Wno-cast-qual CFLAGS.lvm.c= -Wno-cast-qual CFLAGS.lz4.c= -Wno-cast-qual CFLAGS.lz4_zfs.c= -Wno-cast-qual CFLAGS.nvpair.c= -Wno-cast-qual -DHAVE_RPC_TYPES ${NO_WSTRINGOP_OVERREAD} CFLAGS.pool.c+= ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.pool.c= -U__BMI__ -fno-tree-vectorize CFLAGS.spa.c= -Wno-cast-qual CFLAGS.spa_misc.c= -Wno-cast-qual CFLAGS.spl_string.c= -Wno-cast-qual CFLAGS.spl_vm.c= -Wno-cast-qual CFLAGS.spl_zlib.c= -Wno-cast-qual CFLAGS.u8_textprep.c= -Wno-cast-qual CFLAGS.vdev_draid.c= -Wno-cast-qual CFLAGS.vdev_raidz.c= -Wno-cast-qual CFLAGS.vdev_raidz_math.c= -Wno-cast-qual CFLAGS.vdev_raidz_math_avx2.c= -Wno-cast-qual -Wno-duplicate-decl-specifier CFLAGS.vdev_raidz_math_avx512f.c= -Wno-cast-qual -Wno-duplicate-decl-specifier CFLAGS.vdev_raidz_math_scalar.c= -Wno-cast-qual CFLAGS.vdev_raidz_math_sse2.c= -Wno-cast-qual -Wno-duplicate-decl-specifier CFLAGS.zap_leaf.c= -Wno-cast-qual CFLAGS.zap_micro.c= -Wno-cast-qual CFLAGS.zcp.c= -Wno-cast-qual CFLAGS.zfs_fletcher.c= -Wno-cast-qual -Wno-pointer-arith CFLAGS.zfs_fletcher_avx512.c= -Wno-cast-qual -Wno-pointer-arith CFLAGS.zfs_fletcher_intel.c= -Wno-cast-qual -Wno-pointer-arith CFLAGS.zfs_fletcher_sse.c= -Wno-cast-qual -Wno-pointer-arith CFLAGS.zfs_fm.c= -Wno-cast-qual ${NO_WUNUSED_BUT_SET_VARIABLE} CFLAGS.zfs_ioctl.c= -Wno-cast-qual CFLAGS.zfs_log.c= -Wno-cast-qual CFLAGS.zfs_vnops_os.c= -Wno-pointer-arith CFLAGS.zfs_zstd.c= -Wno-cast-qual -Wno-pointer-arith CFLAGS.zil.c= -Wno-cast-qual CFLAGS.zio.c= -Wno-cast-qual CFLAGS.zprop_common.c= -Wno-cast-qual CFLAGS.zrlock.c= -Wno-cast-qual #zstd CFLAGS.entropy_common.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.error_private.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.fse_compress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} ${NO_WUNUSED_BUT_SET_VARIABLE} CFLAGS.fse_decompress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.huf_compress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.huf_decompress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.xxhash.c+= -U__BMI__ -fno-tree-vectorize CFLAGS.xxhash.c+= ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_common.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_compress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_compress_literals.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_compress_sequences.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_compress_superblock.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} ${NO_WUNUSED_BUT_SET_VARIABLE} CFLAGS.zstd_ddict.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_decompress.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_decompress_block.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_double_fast.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_fast.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_lazy.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_ldm.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} CFLAGS.zstd_opt.c= -U__BMI__ -fno-tree-vectorize ${NO_WBITWISE_INSTEAD_OF_LOGICAL} .if ${MACHINE_CPUARCH} == "aarch64" __ZFS_ZSTD_AARCH64_FLAGS= -include ${SRCDIR}/zstd/include/aarch64_compat.h CFLAGS.zstd.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.entropy_common.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.error_private.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.fse_compress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.fse_decompress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.hist.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.huf_compress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.huf_decompress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.pool.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.xxhash.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_common.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_compress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_compress_literals.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_compress_sequences.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_compress_superblock.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_ddict.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_decompress.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_decompress_block.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_double_fast.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_fast.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_lazy.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_ldm.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} CFLAGS.zstd_opt.c+= ${__ZFS_ZSTD_AARCH64_FLAGS} b3_aarch64_sse2.o: b3_aarch64_sse2.S ${CC} -c ${CFLAGS:N-mgeneral-regs-only} ${WERROR} ${.IMPSRC} \ -o ${.TARGET} ${CTFCONVERT_CMD} b3_aarch64_sse41.o: b3_aarch64_sse41.S ${CC} -c ${CFLAGS:N-mgeneral-regs-only} ${WERROR} ${.IMPSRC} \ -o ${.TARGET} ${CTFCONVERT_CMD} .endif diff --git a/module/os/freebsd/zfs/sysctl_os.c b/module/os/freebsd/zfs/sysctl_os.c index 35edea0a2427..eccb91deff4f 100644 --- a/module/os/freebsd/zfs/sysctl_os.c +++ b/module/os/freebsd/zfs/sysctl_os.c @@ -1,902 +1,904 @@ /* * Copyright (c) 2020 iXsystems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_vfs_zfs); SYSCTL_NODE(_vfs_zfs, OID_AUTO, arc, CTLFLAG_RW, 0, "ZFS adaptive replacement cache"); +SYSCTL_NODE(_vfs_zfs, OID_AUTO, brt, CTLFLAG_RW, 0, + "ZFS Block Reference Table"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, condense, CTLFLAG_RW, 0, "ZFS condense"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, dbuf, CTLFLAG_RW, 0, "ZFS disk buf cache"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, dbuf_cache, CTLFLAG_RW, 0, "ZFS disk buf cache"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, deadman, CTLFLAG_RW, 0, "ZFS deadman"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, dedup, CTLFLAG_RW, 0, "ZFS dedup"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, l2arc, CTLFLAG_RW, 0, "ZFS l2arc"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, livelist, CTLFLAG_RW, 0, "ZFS livelist"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, lua, CTLFLAG_RW, 0, "ZFS lua"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, metaslab, CTLFLAG_RW, 0, "ZFS metaslab"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, mg, CTLFLAG_RW, 0, "ZFS metaslab group"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, multihost, CTLFLAG_RW, 0, "ZFS multihost protection"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, prefetch, CTLFLAG_RW, 0, "ZFS prefetch"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, reconstruct, CTLFLAG_RW, 0, "ZFS reconstruct"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, recv, CTLFLAG_RW, 0, "ZFS receive"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, send, CTLFLAG_RW, 0, "ZFS send"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, spa, CTLFLAG_RW, 0, "ZFS space allocation"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, trim, CTLFLAG_RW, 0, "ZFS TRIM"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, txg, CTLFLAG_RW, 0, "ZFS transaction group"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, vnops, CTLFLAG_RW, 0, "ZFS VNOPS"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, zevent, CTLFLAG_RW, 0, "ZFS event"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, zil, CTLFLAG_RW, 0, "ZFS ZIL"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO"); SYSCTL_NODE(_vfs_zfs_livelist, OID_AUTO, condense, CTLFLAG_RW, 0, "ZFS livelist condense"); SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, cache, CTLFLAG_RW, 0, "ZFS VDEV Cache"); SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, file, CTLFLAG_RW, 0, "ZFS VDEV file"); SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, mirror, CTLFLAG_RD, 0, "ZFS VDEV mirror"); SYSCTL_DECL(_vfs_zfs_version); SYSCTL_CONST_STRING(_vfs_zfs_version, OID_AUTO, module, CTLFLAG_RD, (ZFS_META_VERSION "-" ZFS_META_RELEASE), "OpenZFS module version"); /* arc.c */ int param_set_arc_u64(SYSCTL_HANDLER_ARGS) { int err; err = sysctl_handle_64(oidp, arg1, 0, req); if (err != 0 || req->newptr == NULL) return (err); arc_tuning_update(B_TRUE); return (0); } int param_set_arc_int(SYSCTL_HANDLER_ARGS) { int err; err = sysctl_handle_int(oidp, arg1, 0, req); if (err != 0 || req->newptr == NULL) return (err); arc_tuning_update(B_TRUE); return (0); } int param_set_arc_max(SYSCTL_HANDLER_ARGS) { unsigned long val; int err; val = zfs_arc_max; err = sysctl_handle_64(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (SET_ERROR(err)); if (val != 0 && (val < MIN_ARC_MAX || val <= arc_c_min || val >= arc_all_memory())) return (SET_ERROR(EINVAL)); zfs_arc_max = val; arc_tuning_update(B_TRUE); /* Update the sysctl to the tuned value */ if (val != 0) zfs_arc_max = arc_c_max; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_ULONG | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0, param_set_arc_max, "LU", "Maximum ARC size in bytes (LEGACY)"); /* END CSTYLED */ int param_set_arc_min(SYSCTL_HANDLER_ARGS) { unsigned long val; int err; val = zfs_arc_min; err = sysctl_handle_64(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (SET_ERROR(err)); if (val != 0 && (val < 2ULL << SPA_MAXBLOCKSHIFT || val > arc_c_max)) return (SET_ERROR(EINVAL)); zfs_arc_min = val; arc_tuning_update(B_TRUE); /* Update the sysctl to the tuned value */ if (val != 0) zfs_arc_min = arc_c_min; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_ULONG | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0, param_set_arc_min, "LU", "Minimum ARC size in bytes (LEGACY)"); /* END CSTYLED */ extern uint_t zfs_arc_free_target; int param_set_arc_free_target(SYSCTL_HANDLER_ARGS) { uint_t val; int err; val = zfs_arc_free_target; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < minfree) return (EINVAL); if (val > vm_cnt.v_page_count) return (EINVAL); zfs_arc_free_target = val; return (0); } /* * NOTE: This sysctl is CTLFLAG_RW not CTLFLAG_RWTUN due to its dependency on * pagedaemon initialization. */ /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target, CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, param_set_arc_free_target, "IU", "Desired number of free pages below which ARC triggers reclaim" " (LEGACY)"); /* END CSTYLED */ int param_set_arc_no_grow_shift(SYSCTL_HANDLER_ARGS) { int err, val; val = arc_no_grow_shift; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < 0 || val >= arc_shrink_shift) return (EINVAL); arc_no_grow_shift = val; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_no_grow_shift, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0, param_set_arc_no_grow_shift, "I", "log2(fraction of ARC which must be free to allow growing) (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_write_max; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RWTUN, &l2arc_write_max, 0, "Max write bytes per interval (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_write_boost; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RWTUN, &l2arc_write_boost, 0, "Extra write bytes during device warmup (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_headroom; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RWTUN, &l2arc_headroom, 0, "Number of max device writes to precache (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_headroom_boost; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom_boost, CTLFLAG_RWTUN, &l2arc_headroom_boost, 0, "Compressed l2arc_headroom multiplier (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_feed_secs; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RWTUN, &l2arc_feed_secs, 0, "Seconds between L2ARC writing (LEGACY)"); /* END CSTYLED */ extern uint64_t l2arc_feed_min_ms; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RWTUN, &l2arc_feed_min_ms, 0, "Min feed interval in milliseconds (LEGACY)"); /* END CSTYLED */ extern int l2arc_noprefetch; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RWTUN, &l2arc_noprefetch, 0, "Skip caching prefetched buffers (LEGACY)"); /* END CSTYLED */ extern int l2arc_feed_again; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RWTUN, &l2arc_feed_again, 0, "Turbo L2ARC warmup (LEGACY)"); /* END CSTYLED */ extern int l2arc_norw; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RWTUN, &l2arc_norw, 0, "No reads during writes (LEGACY)"); /* END CSTYLED */ static int param_get_arc_state_size(SYSCTL_HANDLER_ARGS) { arc_state_t *state = (arc_state_t *)arg1; int64_t val; val = zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]) + zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]); return (sysctl_handle_64(oidp, &val, 0, req)); } extern arc_state_t ARC_anon; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, anon_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_anon, 0, param_get_arc_state_size, "Q", "size of anonymous state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD, &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in anonymous state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD, &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in anonymous state"); /* END CSTYLED */ extern arc_state_t ARC_mru; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, mru_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_mru, 0, param_get_arc_state_size, "Q", "size of mru state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD, &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in mru state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD, &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in mru state"); /* END CSTYLED */ extern arc_state_t ARC_mru_ghost; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_mru_ghost, 0, param_get_arc_state_size, "Q", "size of mru ghost state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD, &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in mru ghost state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD, &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in mru ghost state"); /* END CSTYLED */ extern arc_state_t ARC_mfu; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, mfu_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_mfu, 0, param_get_arc_state_size, "Q", "size of mfu state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD, &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in mfu state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD, &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in mfu state"); /* END CSTYLED */ extern arc_state_t ARC_mfu_ghost; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_mfu_ghost, 0, param_get_arc_state_size, "Q", "size of mfu ghost state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD, &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in mfu ghost state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD, &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in mfu ghost state"); /* END CSTYLED */ extern arc_state_t ARC_uncached; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, uncached_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_uncached, 0, param_get_arc_state_size, "Q", "size of uncached state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, uncached_metadata_esize, CTLFLAG_RD, &ARC_uncached.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, "size of evictable metadata in uncached state"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, uncached_data_esize, CTLFLAG_RD, &ARC_uncached.arcs_esize[ARC_BUFC_DATA].rc_count, 0, "size of evictable data in uncached state"); /* END CSTYLED */ extern arc_state_t ARC_l2c_only; /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, l2c_only_size, CTLTYPE_S64 | CTLFLAG_RD | CTLFLAG_MPSAFE, &ARC_l2c_only, 0, param_get_arc_state_size, "Q", "size of l2c_only state"); /* END CSTYLED */ /* dbuf.c */ /* dmu.c */ /* dmu_zfetch.c */ SYSCTL_NODE(_vfs_zfs, OID_AUTO, zfetch, CTLFLAG_RW, 0, "ZFS ZFETCH (LEGACY)"); extern uint32_t zfetch_max_distance; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_distance, CTLFLAG_RWTUN, &zfetch_max_distance, 0, "Max bytes to prefetch per stream (LEGACY)"); /* END CSTYLED */ extern uint32_t zfetch_max_idistance; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_idistance, CTLFLAG_RWTUN, &zfetch_max_idistance, 0, "Max bytes to prefetch indirects for per stream (LEGACY)"); /* END CSTYLED */ /* dsl_pool.c */ /* dnode.c */ /* dsl_scan.c */ /* metaslab.c */ /* * In pools where the log space map feature is not enabled we touch * multiple metaslabs (and their respective space maps) with each * transaction group. Thus, we benefit from having a small space map * block size since it allows us to issue more I/O operations scattered * around the disk. So a sane default for the space map block size * is 8~16K. */ extern int zfs_metaslab_sm_blksz_no_log; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, sm_blksz_no_log, CTLFLAG_RDTUN, &zfs_metaslab_sm_blksz_no_log, 0, "Block size for space map in pools with log space map disabled. " "Power of 2 greater than 4096."); /* END CSTYLED */ /* * When the log space map feature is enabled, we accumulate a lot of * changes per metaslab that are flushed once in a while so we benefit * from a bigger block size like 128K for the metaslab space maps. */ extern int zfs_metaslab_sm_blksz_with_log; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, sm_blksz_with_log, CTLFLAG_RDTUN, &zfs_metaslab_sm_blksz_with_log, 0, "Block size for space map in pools with log space map enabled. " "Power of 2 greater than 4096."); /* END CSTYLED */ /* * The in-core space map representation is more compact than its on-disk form. * The zfs_condense_pct determines how much more compact the in-core * space map representation must be before we compact it on-disk. * Values should be greater than or equal to 100. */ extern uint_t zfs_condense_pct; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs, OID_AUTO, condense_pct, CTLFLAG_RWTUN, &zfs_condense_pct, 0, "Condense on-disk spacemap when it is more than this many percents" " of in-memory counterpart"); /* END CSTYLED */ extern uint_t zfs_remove_max_segment; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs, OID_AUTO, remove_max_segment, CTLFLAG_RWTUN, &zfs_remove_max_segment, 0, "Largest contiguous segment ZFS will attempt to allocate when removing" " a device"); /* END CSTYLED */ extern int zfs_removal_suspend_progress; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, removal_suspend_progress, CTLFLAG_RWTUN, &zfs_removal_suspend_progress, 0, "Ensures certain actions can happen while in the middle of a removal"); /* END CSTYLED */ /* * Minimum size which forces the dynamic allocator to change * it's allocation strategy. Once the space map cannot satisfy * an allocation of this size then it switches to using more * aggressive strategy (i.e search by size rather than offset). */ extern uint64_t metaslab_df_alloc_threshold; /* BEGIN CSTYLED */ SYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, df_alloc_threshold, CTLFLAG_RWTUN, &metaslab_df_alloc_threshold, 0, "Minimum size which forces the dynamic allocator to change its" " allocation strategy"); /* END CSTYLED */ /* * The minimum free space, in percent, which must be available * in a space map to continue allocations in a first-fit fashion. * Once the space map's free space drops below this level we dynamically * switch to using best-fit allocations. */ extern uint_t metaslab_df_free_pct; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs_metaslab, OID_AUTO, df_free_pct, CTLFLAG_RWTUN, &metaslab_df_free_pct, 0, "The minimum free space, in percent, which must be available in a" " space map to continue allocations in a first-fit fashion"); /* END CSTYLED */ /* * Percentage of all cpus that can be used by the metaslab taskq. */ extern int metaslab_load_pct; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, load_pct, CTLFLAG_RWTUN, &metaslab_load_pct, 0, "Percentage of cpus that can be used by the metaslab taskq"); /* END CSTYLED */ /* * Max number of metaslabs per group to preload. */ extern uint_t metaslab_preload_limit; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs_metaslab, OID_AUTO, preload_limit, CTLFLAG_RWTUN, &metaslab_preload_limit, 0, "Max number of metaslabs per group to preload"); /* END CSTYLED */ /* mmp.c */ int param_set_multihost_interval(SYSCTL_HANDLER_ARGS) { int err; err = sysctl_handle_64(oidp, &zfs_multihost_interval, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (spa_mode_global != SPA_MODE_UNINIT) mmp_signal_all_threads(); return (0); } /* spa.c */ extern int zfs_ccw_retry_interval; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RWTUN, &zfs_ccw_retry_interval, 0, "Configuration cache file write, retry after failure, interval" " (seconds)"); /* END CSTYLED */ extern uint64_t zfs_max_missing_tvds_cachefile; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_cachefile, CTLFLAG_RWTUN, &zfs_max_missing_tvds_cachefile, 0, "Allow importing pools with missing top-level vdevs in cache file"); /* END CSTYLED */ extern uint64_t zfs_max_missing_tvds_scan; /* BEGIN CSTYLED */ SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_scan, CTLFLAG_RWTUN, &zfs_max_missing_tvds_scan, 0, "Allow importing pools with missing top-level vdevs during scan"); /* END CSTYLED */ /* spa_misc.c */ extern int zfs_flags; static int sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS) { int err, val; val = zfs_flags; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); /* * ZFS_DEBUG_MODIFY must be enabled prior to boot so all * arc buffers in the system have the necessary additional * checksum data. However, it is safe to disable at any * time. */ if (!(zfs_flags & ZFS_DEBUG_MODIFY)) val &= ~ZFS_DEBUG_MODIFY; zfs_flags = val; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, debugflags, CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, NULL, 0, sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing."); /* END CSTYLED */ int param_set_deadman_synctime(SYSCTL_HANDLER_ARGS) { unsigned long val; int err; val = zfs_deadman_synctime_ms; err = sysctl_handle_64(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); zfs_deadman_synctime_ms = val; spa_set_deadman_synctime(MSEC2NSEC(zfs_deadman_synctime_ms)); return (0); } int param_set_deadman_ziotime(SYSCTL_HANDLER_ARGS) { unsigned long val; int err; val = zfs_deadman_ziotime_ms; err = sysctl_handle_64(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); zfs_deadman_ziotime_ms = val; spa_set_deadman_ziotime(MSEC2NSEC(zfs_deadman_synctime_ms)); return (0); } int param_set_deadman_failmode(SYSCTL_HANDLER_ARGS) { char buf[16]; int rc; if (req->newptr == NULL) strlcpy(buf, zfs_deadman_failmode, sizeof (buf)); rc = sysctl_handle_string(oidp, buf, sizeof (buf), req); if (rc || req->newptr == NULL) return (rc); if (strcmp(buf, zfs_deadman_failmode) == 0) return (0); if (strcmp(buf, "wait") == 0) zfs_deadman_failmode = "wait"; if (strcmp(buf, "continue") == 0) zfs_deadman_failmode = "continue"; if (strcmp(buf, "panic") == 0) zfs_deadman_failmode = "panic"; return (-param_set_deadman_failmode_common(buf)); } int param_set_slop_shift(SYSCTL_HANDLER_ARGS) { int val; int err; val = spa_slop_shift; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < 1 || val > 31) return (EINVAL); spa_slop_shift = val; return (0); } /* spacemap.c */ extern int space_map_ibs; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, space_map_ibs, CTLFLAG_RWTUN, &space_map_ibs, 0, "Space map indirect block shift"); /* END CSTYLED */ /* vdev.c */ int param_set_min_auto_ashift(SYSCTL_HANDLER_ARGS) { int val; int err; val = zfs_vdev_min_auto_ashift; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (SET_ERROR(err)); if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift) return (SET_ERROR(EINVAL)); zfs_vdev_min_auto_ashift = val; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift, CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, &zfs_vdev_min_auto_ashift, sizeof (zfs_vdev_min_auto_ashift), param_set_min_auto_ashift, "IU", "Min ashift used when creating new top-level vdev. (LEGACY)"); /* END CSTYLED */ int param_set_max_auto_ashift(SYSCTL_HANDLER_ARGS) { int val; int err; val = zfs_vdev_max_auto_ashift; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (SET_ERROR(err)); if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift) return (SET_ERROR(EINVAL)); zfs_vdev_max_auto_ashift = val; return (0); } /* BEGIN CSTYLED */ SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift, CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, &zfs_vdev_max_auto_ashift, sizeof (zfs_vdev_max_auto_ashift), param_set_max_auto_ashift, "IU", "Max ashift used when optimizing for logical -> physical sector size on" " new top-level vdevs. (LEGACY)"); /* END CSTYLED */ /* * Since the DTL space map of a vdev is not expected to have a lot of * entries, we default its block size to 4K. */ extern int zfs_vdev_dtl_sm_blksz; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, dtl_sm_blksz, CTLFLAG_RDTUN, &zfs_vdev_dtl_sm_blksz, 0, "Block size for DTL space map. Power of 2 greater than 4096."); /* END CSTYLED */ /* * vdev-wide space maps that have lots of entries written to them at * the end of each transaction can benefit from a higher I/O bandwidth * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. */ extern int zfs_vdev_standard_sm_blksz; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, standard_sm_blksz, CTLFLAG_RDTUN, &zfs_vdev_standard_sm_blksz, 0, "Block size for standard space map. Power of 2 greater than 4096."); /* END CSTYLED */ extern int vdev_validate_skip; /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs, OID_AUTO, validate_skip, CTLFLAG_RDTUN, &vdev_validate_skip, 0, "Enable to bypass vdev_validate()."); /* END CSTYLED */ /* vdev_cache.c */ /* vdev_mirror.c */ /* vdev_queue.c */ extern uint_t zfs_vdev_max_active; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs, OID_AUTO, top_maxinflight, CTLFLAG_RWTUN, &zfs_vdev_max_active, 0, "The maximum number of I/Os of all types active for each device." " (LEGACY)"); /* END CSTYLED */ extern uint_t zfs_vdev_def_queue_depth; /* BEGIN CSTYLED */ SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, def_queue_depth, CTLFLAG_RWTUN, &zfs_vdev_def_queue_depth, 0, "Default queue depth for each allocator"); /* END CSTYLED */ /* zio.c */ /* BEGIN CSTYLED */ SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0, "Exclude metadata buffers from dumps as well"); /* END CSTYLED */ diff --git a/module/os/freebsd/zfs/zfs_vfsops.c b/module/os/freebsd/zfs/zfs_vfsops.c index 9fb2873132bf..30851f5273a2 100644 --- a/module/os/freebsd/zfs/zfs_vfsops.c +++ b/module/os/freebsd/zfs/zfs_vfsops.c @@ -1,2598 +1,2603 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011 Pawel Jakub Dawidek . * All rights reserved. * Copyright (c) 2012, 2015 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_comutil.h" #ifndef MNTK_VMSETSIZE_BUG #define MNTK_VMSETSIZE_BUG 0 #endif #ifndef MNTK_NOMSYNC #define MNTK_NOMSYNC 8 #endif struct mtx zfs_debug_mtx; MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF); SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system"); int zfs_super_owner; SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0, "File system owners can perform privileged operation on file systems"); int zfs_debug_level; SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RWTUN, &zfs_debug_level, 0, "Debug level"); struct zfs_jailparam { int mount_snapshot; }; static struct zfs_jailparam zfs_jailparam0 = { .mount_snapshot = 0, }; static int zfs_jailparam_slot; SYSCTL_JAIL_PARAM_SYS_NODE(zfs, CTLFLAG_RW, "Jail ZFS parameters"); SYSCTL_JAIL_PARAM(_zfs, mount_snapshot, CTLTYPE_INT | CTLFLAG_RW, "I", "Allow mounting snapshots in the .zfs directory for unjailed datasets"); SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions"); static int zfs_version_acl = ZFS_ACL_VERSION; SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0, "ZFS_ACL_VERSION"); static int zfs_version_spa = SPA_VERSION; SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0, "SPA_VERSION"); static int zfs_version_zpl = ZPL_VERSION; SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0, "ZPL_VERSION"); #if __FreeBSD_version >= 1400018 static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg, bool *mp_busy); #else static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg); #endif static int zfs_mount(vfs_t *vfsp); static int zfs_umount(vfs_t *vfsp, int fflag); static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp); static int zfs_statfs(vfs_t *vfsp, struct statfs *statp); static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp); static int zfs_sync(vfs_t *vfsp, int waitfor); #if __FreeBSD_version >= 1300098 static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp, struct ucred **credanonp, int *numsecflavors, int *secflavors); #else static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp, struct ucred **credanonp, int *numsecflavors, int **secflavors); #endif static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp); static void zfs_freevfs(vfs_t *vfsp); struct vfsops zfs_vfsops = { .vfs_mount = zfs_mount, .vfs_unmount = zfs_umount, #if __FreeBSD_version >= 1300049 .vfs_root = vfs_cache_root, .vfs_cachedroot = zfs_root, #else .vfs_root = zfs_root, #endif .vfs_statfs = zfs_statfs, .vfs_vget = zfs_vget, .vfs_sync = zfs_sync, .vfs_checkexp = zfs_checkexp, .vfs_fhtovp = zfs_fhtovp, .vfs_quotactl = zfs_quotactl, }; -VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN); +#ifdef VFCF_CROSS_COPY_FILE_RANGE +VFS_SET(zfs_vfsops, zfs, + VFCF_DELEGADMIN | VFCF_JAIL | VFCF_CROSS_COPY_FILE_RANGE); +#else +VFS_SET(zfs_vfsops, zfs, VFCF_DELEGADMIN | VFCF_JAIL); +#endif /* * We need to keep a count of active fs's. * This is necessary to prevent our module * from being unloaded after a umount -f */ static uint32_t zfs_active_fs_count = 0; int zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val, char *setpoint) { int error; zfsvfs_t *zfvp; vfs_t *vfsp; objset_t *os; uint64_t tmp = *val; error = dmu_objset_from_ds(ds, &os); if (error != 0) return (error); error = getzfsvfs_impl(os, &zfvp); if (error != 0) return (error); if (zfvp == NULL) return (ENOENT); vfsp = zfvp->z_vfs; switch (zfs_prop) { case ZFS_PROP_ATIME: if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) tmp = 1; break; case ZFS_PROP_DEVICES: if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) tmp = 1; break; case ZFS_PROP_EXEC: if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) tmp = 1; break; case ZFS_PROP_SETUID: if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) tmp = 1; break; case ZFS_PROP_READONLY: if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) tmp = 1; break; case ZFS_PROP_XATTR: if (zfvp->z_flags & ZSB_XATTR) tmp = zfvp->z_xattr; break; case ZFS_PROP_NBMAND: if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) tmp = 0; if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) tmp = 1; break; default: vfs_unbusy(vfsp); return (ENOENT); } vfs_unbusy(vfsp); if (tmp != *val) { if (setpoint) (void) strcpy(setpoint, "temporary"); *val = tmp; } return (0); } static int zfs_getquota(zfsvfs_t *zfsvfs, uid_t id, int isgroup, struct dqblk64 *dqp) { int error = 0; char buf[32]; uint64_t usedobj, quotaobj; uint64_t quota, used = 0; timespec_t now; usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; if (quotaobj == 0 || zfsvfs->z_replay) { error = ENOENT; goto done; } (void) sprintf(buf, "%llx", (longlong_t)id); if ((error = zap_lookup(zfsvfs->z_os, quotaobj, buf, sizeof (quota), 1, "a)) != 0) { dprintf("%s(%d): quotaobj lookup failed\n", __FUNCTION__, __LINE__); goto done; } /* * quota(8) uses bsoftlimit as "quoota", and hardlimit as "limit". * So we set them to be the same. */ dqp->dqb_bsoftlimit = dqp->dqb_bhardlimit = btodb(quota); error = zap_lookup(zfsvfs->z_os, usedobj, buf, sizeof (used), 1, &used); if (error && error != ENOENT) { dprintf("%s(%d): usedobj failed; %d\n", __FUNCTION__, __LINE__, error); goto done; } dqp->dqb_curblocks = btodb(used); dqp->dqb_ihardlimit = dqp->dqb_isoftlimit = 0; vfs_timestamp(&now); /* * Setting this to 0 causes FreeBSD quota(8) to print * the number of days since the epoch, which isn't * particularly useful. */ dqp->dqb_btime = dqp->dqb_itime = now.tv_sec; done: return (error); } static int #if __FreeBSD_version >= 1400018 zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg, bool *mp_busy) #else zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg) #endif { zfsvfs_t *zfsvfs = vfsp->vfs_data; struct thread *td; int cmd, type, error = 0; int bitsize; zfs_userquota_prop_t quota_type; struct dqblk64 dqblk = { 0 }; td = curthread; cmd = cmds >> SUBCMDSHIFT; type = cmds & SUBCMDMASK; if ((error = zfs_enter(zfsvfs, FTAG)) != 0) return (error); if (id == -1) { switch (type) { case USRQUOTA: id = td->td_ucred->cr_ruid; break; case GRPQUOTA: id = td->td_ucred->cr_rgid; break; default: error = EINVAL; #if __FreeBSD_version < 1400018 if (cmd == Q_QUOTAON || cmd == Q_QUOTAOFF) vfs_unbusy(vfsp); #endif goto done; } } /* * Map BSD type to: * ZFS_PROP_USERUSED, * ZFS_PROP_USERQUOTA, * ZFS_PROP_GROUPUSED, * ZFS_PROP_GROUPQUOTA */ switch (cmd) { case Q_SETQUOTA: case Q_SETQUOTA32: if (type == USRQUOTA) quota_type = ZFS_PROP_USERQUOTA; else if (type == GRPQUOTA) quota_type = ZFS_PROP_GROUPQUOTA; else error = EINVAL; break; case Q_GETQUOTA: case Q_GETQUOTA32: if (type == USRQUOTA) quota_type = ZFS_PROP_USERUSED; else if (type == GRPQUOTA) quota_type = ZFS_PROP_GROUPUSED; else error = EINVAL; break; } /* * Depending on the cmd, we may need to get * the ruid and domain (see fuidstr_to_sid?), * the fuid (how?), or other information. * Create fuid using zfs_fuid_create(zfsvfs, id, * ZFS_OWNER or ZFS_GROUP, cr, &fuidp)? * I think I can use just the id? * * Look at zfs_id_overquota() to look up a quota. * zap_lookup(something, quotaobj, fuidstring, * sizeof (long long), 1, "a) * * See zfs_set_userquota() to set a quota. */ if ((uint32_t)type >= MAXQUOTAS) { error = EINVAL; goto done; } switch (cmd) { case Q_GETQUOTASIZE: bitsize = 64; error = copyout(&bitsize, arg, sizeof (int)); break; case Q_QUOTAON: // As far as I can tell, you can't turn quotas on or off on zfs error = 0; #if __FreeBSD_version < 1400018 vfs_unbusy(vfsp); #endif break; case Q_QUOTAOFF: error = ENOTSUP; #if __FreeBSD_version < 1400018 vfs_unbusy(vfsp); #endif break; case Q_SETQUOTA: error = copyin(arg, &dqblk, sizeof (dqblk)); if (error == 0) error = zfs_set_userquota(zfsvfs, quota_type, "", id, dbtob(dqblk.dqb_bhardlimit)); break; case Q_GETQUOTA: error = zfs_getquota(zfsvfs, id, type == GRPQUOTA, &dqblk); if (error == 0) error = copyout(&dqblk, arg, sizeof (dqblk)); break; default: error = EINVAL; break; } done: zfs_exit(zfsvfs, FTAG); return (error); } boolean_t zfs_is_readonly(zfsvfs_t *zfsvfs) { return (!!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)); } static int zfs_sync(vfs_t *vfsp, int waitfor) { /* * Data integrity is job one. We don't want a compromised kernel * writing to the storage pool, so we never sync during panic. */ if (panicstr) return (0); /* * Ignore the system syncher. ZFS already commits async data * at zfs_txg_timeout intervals. */ if (waitfor == MNT_LAZY) return (0); if (vfsp != NULL) { /* * Sync a specific filesystem. */ zfsvfs_t *zfsvfs = vfsp->vfs_data; dsl_pool_t *dp; int error; if ((error = zfs_enter(zfsvfs, FTAG)) != 0) return (error); dp = dmu_objset_pool(zfsvfs->z_os); /* * If the system is shutting down, then skip any * filesystems which may exist on a suspended pool. */ if (rebooting && spa_suspended(dp->dp_spa)) { zfs_exit(zfsvfs, FTAG); return (0); } if (zfsvfs->z_log != NULL) zil_commit(zfsvfs->z_log, 0); zfs_exit(zfsvfs, FTAG); } else { /* * Sync all ZFS filesystems. This is what happens when you * run sync(8). Unlike other filesystems, ZFS honors the * request by waiting for all pools to commit all dirty data. */ spa_sync_allpools(); } return (0); } static void atime_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == TRUE) { zfsvfs->z_atime = TRUE; zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); } else { zfsvfs->z_atime = FALSE; zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); } } static void xattr_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == ZFS_XATTR_OFF) { zfsvfs->z_flags &= ~ZSB_XATTR; } else { zfsvfs->z_flags |= ZSB_XATTR; if (newval == ZFS_XATTR_SA) zfsvfs->z_xattr_sa = B_TRUE; else zfsvfs->z_xattr_sa = B_FALSE; } } static void blksz_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); ASSERT(ISP2(newval)); zfsvfs->z_max_blksz = newval; zfsvfs->z_vfs->mnt_stat.f_iosize = newval; } static void readonly_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval) { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); } else { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); } } static void setuid_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); } } static void exec_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); } } /* * The nbmand mount option can be changed at mount time. * We can't allow it to be toggled on live file systems or incorrect * behavior may be seen from cifs clients * * This property isn't registered via dsl_prop_register(), but this callback * will be called when a file system is first mounted */ static void nbmand_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); } else { vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); } } static void snapdir_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_show_ctldir = newval; } static void acl_mode_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_mode = newval; } static void acl_inherit_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_inherit = newval; } static void acl_type_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_type = newval; } static int zfs_register_callbacks(vfs_t *vfsp) { struct dsl_dataset *ds = NULL; objset_t *os = NULL; zfsvfs_t *zfsvfs = NULL; uint64_t nbmand; boolean_t readonly = B_FALSE; boolean_t do_readonly = B_FALSE; boolean_t setuid = B_FALSE; boolean_t do_setuid = B_FALSE; boolean_t exec = B_FALSE; boolean_t do_exec = B_FALSE; boolean_t xattr = B_FALSE; boolean_t atime = B_FALSE; boolean_t do_atime = B_FALSE; boolean_t do_xattr = B_FALSE; int error = 0; ASSERT3P(vfsp, !=, NULL); zfsvfs = vfsp->vfs_data; ASSERT3P(zfsvfs, !=, NULL); os = zfsvfs->z_os; /* * This function can be called for a snapshot when we update snapshot's * mount point, which isn't really supported. */ if (dmu_objset_is_snapshot(os)) return (EOPNOTSUPP); /* * The act of registering our callbacks will destroy any mount * options we may have. In order to enable temporary overrides * of mount options, we stash away the current values and * restore them after we register the callbacks. */ if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || !spa_writeable(dmu_objset_spa(os))) { readonly = B_TRUE; do_readonly = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { readonly = B_FALSE; do_readonly = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { setuid = B_FALSE; do_setuid = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { setuid = B_TRUE; do_setuid = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { exec = B_FALSE; do_exec = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { exec = B_TRUE; do_exec = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { zfsvfs->z_xattr = xattr = ZFS_XATTR_OFF; do_xattr = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR; do_xattr = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_DIRXATTR, NULL)) { zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR; do_xattr = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_SAXATTR, NULL)) { zfsvfs->z_xattr = xattr = ZFS_XATTR_SA; do_xattr = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { atime = B_FALSE; do_atime = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { atime = B_TRUE; do_atime = B_TRUE; } /* * We need to enter pool configuration here, so that we can use * dsl_prop_get_int_ds() to handle the special nbmand property below. * dsl_prop_get_integer() can not be used, because it has to acquire * spa_namespace_lock and we can not do that because we already hold * z_teardown_lock. The problem is that spa_write_cachefile() is called * with spa_namespace_lock held and the function calls ZFS vnode * operations to write the cache file and thus z_teardown_lock is * acquired after spa_namespace_lock. */ ds = dmu_objset_ds(os); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); /* * nbmand is a special property. It can only be changed at * mount time. * * This is weird, but it is documented to only be changeable * at mount time. */ if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { nbmand = B_FALSE; } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { nbmand = B_TRUE; } else if ((error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand)) != 0) { dsl_pool_config_exit(dmu_objset_pool(os), FTAG); return (error); } /* * Register property callbacks. * * It would probably be fine to just check for i/o error from * the first prop_register(), but I guess I like to go * overboard... */ error = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLTYPE), acl_type_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zfsvfs); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (error) goto unregister; /* * Invoke our callbacks to restore temporary mount options. */ if (do_readonly) readonly_changed_cb(zfsvfs, readonly); if (do_setuid) setuid_changed_cb(zfsvfs, setuid); if (do_exec) exec_changed_cb(zfsvfs, exec); if (do_xattr) xattr_changed_cb(zfsvfs, xattr); if (do_atime) atime_changed_cb(zfsvfs, atime); nbmand_changed_cb(zfsvfs, nbmand); return (0); unregister: dsl_prop_unregister_all(ds, zfsvfs); return (error); } /* * Associate this zfsvfs with the given objset, which must be owned. * This will cache a bunch of on-disk state from the objset in the * zfsvfs. */ static int zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) { int error; uint64_t val; zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; zfsvfs->z_os = os; error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); if (error != 0) return (error); if (zfsvfs->z_version > zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { (void) printf("Can't mount a version %lld file system " "on a version %lld pool\n. Pool must be upgraded to mount " "this file system.", (u_longlong_t)zfsvfs->z_version, (u_longlong_t)spa_version(dmu_objset_spa(os))); return (SET_ERROR(ENOTSUP)); } error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); if (error != 0) return (error); zfsvfs->z_norm = (int)val; error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); if (error != 0) return (error); zfsvfs->z_utf8 = (val != 0); error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); if (error != 0) return (error); zfsvfs->z_case = (uint_t)val; error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val); if (error != 0) return (error); zfsvfs->z_acl_type = (uint_t)val; /* * Fold case on file systems that are always or sometimes case * insensitive. */ if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || zfsvfs->z_case == ZFS_CASE_MIXED) zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); uint64_t sa_obj = 0; if (zfsvfs->z_use_sa) { /* should either have both of these objects or none */ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (error != 0) return (error); error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val); if (error == 0 && val == ZFS_XATTR_SA) zfsvfs->z_xattr_sa = B_TRUE; } error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table); if (error != 0) return (error); if (zfsvfs->z_version >= ZPL_VERSION_SA) sa_register_update_callback(os, zfs_sa_upgrade); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zfsvfs->z_root); if (error != 0) return (error); ASSERT3U(zfsvfs->z_root, !=, 0); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, &zfsvfs->z_unlinkedobj); if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 8, 1, &zfsvfs->z_userquota_obj); if (error == ENOENT) zfsvfs->z_userquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 8, 1, &zfsvfs->z_groupquota_obj); if (error == ENOENT) zfsvfs->z_groupquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 8, 1, &zfsvfs->z_projectquota_obj); if (error == ENOENT) zfsvfs->z_projectquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 8, 1, &zfsvfs->z_userobjquota_obj); if (error == ENOENT) zfsvfs->z_userobjquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 8, 1, &zfsvfs->z_groupobjquota_obj); if (error == ENOENT) zfsvfs->z_groupobjquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 8, 1, &zfsvfs->z_projectobjquota_obj); if (error == ENOENT) zfsvfs->z_projectobjquota_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); if (error == ENOENT) zfsvfs->z_fuid_obj = 0; else if (error != 0) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, &zfsvfs->z_shares_dir); if (error == ENOENT) zfsvfs->z_shares_dir = 0; else if (error != 0) return (error); /* * Only use the name cache if we are looking for a * name on a file system that does not require normalization * or case folding. We can also look there if we happen to be * on a non-normalizing, mixed sensitivity file system IF we * are looking for the exact name (which is always the case on * FreeBSD). */ zfsvfs->z_use_namecache = !zfsvfs->z_norm || ((zfsvfs->z_case == ZFS_CASE_MIXED) && !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER)); return (0); } taskq_t *zfsvfs_taskq; static void zfsvfs_task_unlinked_drain(void *context, int pending __unused) { zfs_unlinked_drain((zfsvfs_t *)context); } int zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) { objset_t *os; zfsvfs_t *zfsvfs; int error; boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); /* * XXX: Fix struct statfs so this isn't necessary! * * The 'osname' is used as the filesystem's special node, which means * it must fit in statfs.f_mntfromname, or else it can't be * enumerated, so libzfs_mnttab_find() returns NULL, which causes * 'zfs unmount' to think it's not mounted when it is. */ if (strlen(osname) >= MNAMELEN) return (SET_ERROR(ENAMETOOLONG)); zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); if (error != 0) { kmem_free(zfsvfs, sizeof (zfsvfs_t)); return (error); } error = zfsvfs_create_impl(zfvp, zfsvfs, os); return (error); } int zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) { int error; zfsvfs->z_vfs = NULL; zfsvfs->z_parent = zfsvfs; mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), offsetof(znode_t, z_link_node)); TASK_INIT(&zfsvfs->z_unlinked_drain_task, 0, zfsvfs_task_unlinked_drain, zfsvfs); ZFS_TEARDOWN_INIT(zfsvfs); ZFS_TEARDOWN_INACTIVE_INIT(zfsvfs); rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); error = zfsvfs_init(zfsvfs, os); if (error != 0) { dmu_objset_disown(os, B_TRUE, zfsvfs); *zfvp = NULL; kmem_free(zfsvfs, sizeof (zfsvfs_t)); return (error); } *zfvp = zfsvfs; return (0); } static int zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) { int error; /* * Check for a bad on-disk format version now since we * lied about owning the dataset readonly before. */ if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) && dmu_objset_incompatible_encryption_version(zfsvfs->z_os)) return (SET_ERROR(EROFS)); error = zfs_register_callbacks(zfsvfs->z_vfs); if (error) return (error); /* * If we are not mounting (ie: online recv), then we don't * have to worry about replaying the log as we blocked all * operations out since we closed the ZIL. */ if (mounting) { boolean_t readonly; ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL); error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os); if (error) return (error); zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data, &zfsvfs->z_kstat.dk_zil_sums); /* * During replay we remove the read only flag to * allow replays to succeed. */ readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; if (readonly != 0) { zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; } else { dsl_dir_t *dd; zap_stats_t zs; if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj, &zs) == 0) { dataset_kstats_update_nunlinks_kstat( &zfsvfs->z_kstat, zs.zs_num_entries); dprintf_ds(zfsvfs->z_os->os_dsl_dataset, "num_entries in unlinked set: %llu", (u_longlong_t)zs.zs_num_entries); } zfs_unlinked_drain(zfsvfs); dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; dd->dd_activity_cancelled = B_FALSE; } /* * Parse and replay the intent log. * * Because of ziltest, this must be done after * zfs_unlinked_drain(). (Further note: ziltest * doesn't use readonly mounts, where * zfs_unlinked_drain() isn't called.) This is because * ziltest causes spa_sync() to think it's committed, * but actually it is not, so the intent log contains * many txg's worth of changes. * * In particular, if object N is in the unlinked set in * the last txg to actually sync, then it could be * actually freed in a later txg and then reallocated * in a yet later txg. This would write a "create * object N" record to the intent log. Normally, this * would be fine because the spa_sync() would have * written out the fact that object N is free, before * we could write the "create object N" intent log * record. * * But when we are in ziltest mode, we advance the "open * txg" without actually spa_sync()-ing the changes to * disk. So we would see that object N is still * allocated and in the unlinked set, and there is an * intent log record saying to allocate it. */ if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { if (zil_replay_disable) { zil_destroy(zfsvfs->z_log, B_FALSE); } else { boolean_t use_nc = zfsvfs->z_use_namecache; zfsvfs->z_use_namecache = B_FALSE; zfsvfs->z_replay = B_TRUE; zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); zfsvfs->z_replay = B_FALSE; zfsvfs->z_use_namecache = use_nc; } } /* restore readonly bit */ if (readonly != 0) zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; } else { ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL); zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data, &zfsvfs->z_kstat.dk_zil_sums); } /* * Set the objset user_ptr to track its zfsvfs. */ mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); return (0); } void zfsvfs_free(zfsvfs_t *zfsvfs) { int i; zfs_fuid_destroy(zfsvfs); mutex_destroy(&zfsvfs->z_znodes_lock); mutex_destroy(&zfsvfs->z_lock); ASSERT3U(zfsvfs->z_nr_znodes, ==, 0); list_destroy(&zfsvfs->z_all_znodes); ZFS_TEARDOWN_DESTROY(zfsvfs); ZFS_TEARDOWN_INACTIVE_DESTROY(zfsvfs); rw_destroy(&zfsvfs->z_fuid_lock); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_destroy(&zfsvfs->z_hold_mtx[i]); dataset_kstats_destroy(&zfsvfs->z_kstat); kmem_free(zfsvfs, sizeof (zfsvfs_t)); } static void zfs_set_fuid_feature(zfsvfs_t *zfsvfs) { zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); } static int zfs_domount(vfs_t *vfsp, char *osname) { uint64_t recordsize, fsid_guid; int error = 0; zfsvfs_t *zfsvfs; ASSERT3P(vfsp, !=, NULL); ASSERT3P(osname, !=, NULL); error = zfsvfs_create(osname, vfsp->mnt_flag & MNT_RDONLY, &zfsvfs); if (error) return (error); zfsvfs->z_vfs = vfsp; if ((error = dsl_prop_get_integer(osname, "recordsize", &recordsize, NULL))) goto out; zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE; zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize; vfsp->vfs_data = zfsvfs; vfsp->mnt_flag |= MNT_LOCAL; vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED; vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES; vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED; /* * This can cause a loss of coherence between ARC and page cache * on ZoF - unclear if the problem is in FreeBSD or ZoF */ vfsp->mnt_kern_flag |= MNTK_NO_IOPF; /* vn_io_fault can be used */ vfsp->mnt_kern_flag |= MNTK_NOMSYNC; vfsp->mnt_kern_flag |= MNTK_VMSETSIZE_BUG; #if defined(_KERNEL) && !defined(KMEM_DEBUG) vfsp->mnt_kern_flag |= MNTK_FPLOOKUP; #endif /* * The fsid is 64 bits, composed of an 8-bit fs type, which * separates our fsid from any other filesystem types, and a * 56-bit objset unique ID. The objset unique ID is unique to * all objsets open on this system, provided by unique_create(). * The 8-bit fs type must be put in the low bits of fsid[1] * because that's where other Solaris filesystems put it. */ fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); ASSERT3U((fsid_guid & ~((1ULL << 56) - 1)), ==, 0); vfsp->vfs_fsid.val[0] = fsid_guid; vfsp->vfs_fsid.val[1] = ((fsid_guid >> 32) << 8) | (vfsp->mnt_vfc->vfc_typenum & 0xFF); /* * Set features for file system. */ zfs_set_fuid_feature(zfsvfs); if (dmu_objset_is_snapshot(zfsvfs->z_os)) { uint64_t pval; atime_changed_cb(zfsvfs, B_FALSE); readonly_changed_cb(zfsvfs, B_TRUE); if ((error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))) goto out; xattr_changed_cb(zfsvfs, pval); if ((error = dsl_prop_get_integer(osname, "acltype", &pval, NULL))) goto out; acl_type_changed_cb(zfsvfs, pval); zfsvfs->z_issnap = B_TRUE; zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); } else { if ((error = zfsvfs_setup(zfsvfs, B_TRUE))) goto out; } vfs_mountedfrom(vfsp, osname); if (!zfsvfs->z_issnap) zfsctl_create(zfsvfs); out: if (error) { dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); zfsvfs_free(zfsvfs); } else { atomic_inc_32(&zfs_active_fs_count); } return (error); } static void zfs_unregister_callbacks(zfsvfs_t *zfsvfs) { objset_t *os = zfsvfs->z_os; if (!dmu_objset_is_snapshot(os)) dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); } static int getpoolname(const char *osname, char *poolname) { char *p; p = strchr(osname, '/'); if (p == NULL) { if (strlen(osname) >= MAXNAMELEN) return (ENAMETOOLONG); (void) strcpy(poolname, osname); } else { if (p - osname >= MAXNAMELEN) return (ENAMETOOLONG); (void) strlcpy(poolname, osname, p - osname + 1); } return (0); } static void fetch_osname_options(char *name, bool *checkpointrewind) { if (name[0] == '!') { *checkpointrewind = true; memmove(name, name + 1, strlen(name)); } else { *checkpointrewind = false; } } static int zfs_mount(vfs_t *vfsp) { kthread_t *td = curthread; vnode_t *mvp = vfsp->mnt_vnodecovered; cred_t *cr = td->td_ucred; char *osname; int error = 0; int canwrite; bool checkpointrewind, isctlsnap = false; if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL)) return (SET_ERROR(EINVAL)); /* * If full-owner-access is enabled and delegated administration is * turned on, we must set nosuid. */ if (zfs_super_owner && dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) { secpolicy_fs_mount_clearopts(cr, vfsp); } fetch_osname_options(osname, &checkpointrewind); isctlsnap = (mvp != NULL && zfsctl_is_node(mvp) && strchr(osname, '@') != NULL); /* * Check for mount privilege? * * If we don't have privilege then see if * we have local permission to allow it */ error = secpolicy_fs_mount(cr, mvp, vfsp); if (error && isctlsnap) { secpolicy_fs_mount_clearopts(cr, vfsp); } else if (error) { if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0) goto out; if (!(vfsp->vfs_flag & MS_REMOUNT)) { vattr_t vattr; /* * Make sure user is the owner of the mount point * or has sufficient privileges. */ vattr.va_mask = AT_UID; vn_lock(mvp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(mvp, &vattr, cr)) { VOP_UNLOCK1(mvp); goto out; } if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 && VOP_ACCESS(mvp, VWRITE, cr, td) != 0) { VOP_UNLOCK1(mvp); goto out; } VOP_UNLOCK1(mvp); } secpolicy_fs_mount_clearopts(cr, vfsp); } /* * Refuse to mount a filesystem if we are in a local zone and the * dataset is not visible. */ if (!INGLOBALZONE(curproc) && (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { boolean_t mount_snapshot = B_FALSE; /* * Snapshots may be mounted in .zfs for unjailed datasets * if allowed by the jail param zfs.mount_snapshot. */ if (isctlsnap) { struct prison *pr; struct zfs_jailparam *zjp; pr = curthread->td_ucred->cr_prison; mtx_lock(&pr->pr_mtx); zjp = osd_jail_get(pr, zfs_jailparam_slot); mtx_unlock(&pr->pr_mtx); if (zjp && zjp->mount_snapshot) mount_snapshot = B_TRUE; } if (!mount_snapshot) { error = SET_ERROR(EPERM); goto out; } } vfsp->vfs_flag |= MNT_NFS4ACLS; /* * When doing a remount, we simply refresh our temporary properties * according to those options set in the current VFS options. */ if (vfsp->vfs_flag & MS_REMOUNT) { zfsvfs_t *zfsvfs = vfsp->vfs_data; /* * Refresh mount options with z_teardown_lock blocking I/O while * the filesystem is in an inconsistent state. * The lock also serializes this code with filesystem * manipulations between entry to zfs_suspend_fs() and return * from zfs_resume_fs(). */ ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); zfs_unregister_callbacks(zfsvfs); error = zfs_register_callbacks(vfsp); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); goto out; } /* Initial root mount: try hard to import the requested root pool. */ if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 && (vfsp->vfs_flag & MNT_UPDATE) == 0) { char pname[MAXNAMELEN]; error = getpoolname(osname, pname); if (error == 0) error = spa_import_rootpool(pname, checkpointrewind); if (error) goto out; } DROP_GIANT(); error = zfs_domount(vfsp, osname); PICKUP_GIANT(); out: return (error); } static int zfs_statfs(vfs_t *vfsp, struct statfs *statp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; uint64_t refdbytes, availbytes, usedobjs, availobjs; int error; statp->f_version = STATFS_VERSION; if ((error = zfs_enter(zfsvfs, FTAG)) != 0) return (error); dmu_objset_space(zfsvfs->z_os, &refdbytes, &availbytes, &usedobjs, &availobjs); /* * The underlying storage pool actually uses multiple block sizes. * We report the fragsize as the smallest block size we support, * and we report our blocksize as the filesystem's maximum blocksize. */ statp->f_bsize = SPA_MINBLOCKSIZE; statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize; /* * The following report "total" blocks of various kinds in the * file system, but reported in terms of f_frsize - the * "fragment" size. */ statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; statp->f_bfree = availbytes / statp->f_bsize; statp->f_bavail = statp->f_bfree; /* no root reservation */ /* * statvfs() should really be called statufs(), because it assumes * static metadata. ZFS doesn't preallocate files, so the best * we can do is report the max that could possibly fit in f_files, * and that minus the number actually used in f_ffree. * For f_ffree, report the smaller of the number of object available * and the number of blocks (each object will take at least a block). */ statp->f_ffree = MIN(availobjs, statp->f_bfree); statp->f_files = statp->f_ffree + usedobjs; /* * We're a zfs filesystem. */ strlcpy(statp->f_fstypename, "zfs", sizeof (statp->f_fstypename)); strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname, sizeof (statp->f_mntfromname)); strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname, sizeof (statp->f_mntonname)); statp->f_namemax = MAXNAMELEN - 1; zfs_exit(zfsvfs, FTAG); return (0); } static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *rootzp; int error; if ((error = zfs_enter(zfsvfs, FTAG)) != 0) return (error); error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); if (error == 0) *vpp = ZTOV(rootzp); zfs_exit(zfsvfs, FTAG); if (error == 0) { error = vn_lock(*vpp, flags); if (error != 0) { VN_RELE(*vpp); *vpp = NULL; } } return (error); } /* * Teardown the zfsvfs::z_os. * * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' * and 'z_teardown_inactive_lock' held. */ static int zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) { znode_t *zp; dsl_dir_t *dd; /* * If someone has not already unmounted this file system, * drain the zrele_taskq to ensure all active references to the * zfsvfs_t have been handled only then can it be safely destroyed. */ if (zfsvfs->z_os) { /* * If we're unmounting we have to wait for the list to * drain completely. * * If we're not unmounting there's no guarantee the list * will drain completely, but zreles run from the taskq * may add the parents of dir-based xattrs to the taskq * so we want to wait for these. * * We can safely read z_nr_znodes without locking because the * VFS has already blocked operations which add to the * z_all_znodes list and thus increment z_nr_znodes. */ int round = 0; while (zfsvfs->z_nr_znodes > 0) { taskq_wait_outstanding(dsl_pool_zrele_taskq( dmu_objset_pool(zfsvfs->z_os)), 0); if (++round > 1 && !unmounting) break; } } ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); if (!unmounting) { /* * We purge the parent filesystem's vfsp as the parent * filesystem and all of its snapshots have their vnode's * v_vfsp set to the parent's filesystem's vfsp. Note, * 'z_parent' is self referential for non-snapshots. */ #ifdef FREEBSD_NAMECACHE #if __FreeBSD_version >= 1300117 cache_purgevfs(zfsvfs->z_parent->z_vfs); #else cache_purgevfs(zfsvfs->z_parent->z_vfs, true); #endif #endif } /* * Close the zil. NB: Can't close the zil while zfs_inactive * threads are blocked as zil_close can call zfs_inactive. */ if (zfsvfs->z_log) { zil_close(zfsvfs->z_log); zfsvfs->z_log = NULL; } ZFS_TEARDOWN_INACTIVE_ENTER_WRITE(zfsvfs); /* * If we are not unmounting (ie: online recv) and someone already * unmounted this file system while we were doing the switcheroo, * or a reopen of z_os failed then just bail out now. */ if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); return (SET_ERROR(EIO)); } /* * At this point there are no vops active, and any new vops will * fail with EIO since we have z_teardown_lock for writer (only * relevant for forced unmount). * * Release all holds on dbufs. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; zp = list_next(&zfsvfs->z_all_znodes, zp)) { if (zp->z_sa_hdl != NULL) { zfs_znode_dmu_fini(zp); } } mutex_exit(&zfsvfs->z_znodes_lock); /* * If we are unmounting, set the unmounted flag and let new vops * unblock. zfs_inactive will have the unmounted behavior, and all * other vops will fail with EIO. */ if (unmounting) { zfsvfs->z_unmounted = B_TRUE; ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); } /* * z_os will be NULL if there was an error in attempting to reopen * zfsvfs, so just return as the properties had already been * unregistered and cached data had been evicted before. */ if (zfsvfs->z_os == NULL) return (0); /* * Unregister properties. */ zfs_unregister_callbacks(zfsvfs); /* * Evict cached data */ if (!zfs_is_readonly(zfsvfs)) txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); dmu_objset_evict_dbufs(zfsvfs->z_os); dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; dsl_dir_cancel_waiters(dd); return (0); } static int zfs_umount(vfs_t *vfsp, int fflag) { kthread_t *td = curthread; zfsvfs_t *zfsvfs = vfsp->vfs_data; objset_t *os; cred_t *cr = td->td_ucred; int ret; ret = secpolicy_fs_unmount(cr, vfsp); if (ret) { if (dsl_deleg_access((char *)vfsp->vfs_resource, ZFS_DELEG_PERM_MOUNT, cr)) return (ret); } /* * Unmount any snapshots mounted under .zfs before unmounting the * dataset itself. */ if (zfsvfs->z_ctldir != NULL) { if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) return (ret); } if (fflag & MS_FORCE) { /* * Mark file system as unmounted before calling * vflush(FORCECLOSE). This way we ensure no future vnops * will be called and risk operating on DOOMED vnodes. */ ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); zfsvfs->z_unmounted = B_TRUE; ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); } /* * Flush all the files. */ ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td); if (ret != 0) return (ret); while (taskqueue_cancel(zfsvfs_taskq->tq_queue, &zfsvfs->z_unlinked_drain_task, NULL) != 0) taskqueue_drain(zfsvfs_taskq->tq_queue, &zfsvfs->z_unlinked_drain_task); VERIFY0(zfsvfs_teardown(zfsvfs, B_TRUE)); os = zfsvfs->z_os; /* * z_os will be NULL if there was an error in * attempting to reopen zfsvfs. */ if (os != NULL) { /* * Unset the objset user_ptr. */ mutex_enter(&os->os_user_ptr_lock); dmu_objset_set_user(os, NULL); mutex_exit(&os->os_user_ptr_lock); /* * Finally release the objset */ dmu_objset_disown(os, B_TRUE, zfsvfs); } /* * We can now safely destroy the '.zfs' directory node. */ if (zfsvfs->z_ctldir != NULL) zfsctl_destroy(zfsvfs); zfs_freevfs(vfsp); return (0); } static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *zp; int err; /* * zfs_zget() can't operate on virtual entries like .zfs/ or * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP. * This will make NFS to switch to LOOKUP instead of using VGET. */ if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR || (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir)) return (EOPNOTSUPP); if ((err = zfs_enter(zfsvfs, FTAG)) != 0) return (err); err = zfs_zget(zfsvfs, ino, &zp); if (err == 0 && zp->z_unlinked) { vrele(ZTOV(zp)); err = EINVAL; } if (err == 0) *vpp = ZTOV(zp); zfs_exit(zfsvfs, FTAG); if (err == 0) { err = vn_lock(*vpp, flags); if (err != 0) vrele(*vpp); } if (err != 0) *vpp = NULL; return (err); } static int #if __FreeBSD_version >= 1300098 zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp, struct ucred **credanonp, int *numsecflavors, int *secflavors) #else zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp, struct ucred **credanonp, int *numsecflavors, int **secflavors) #endif { zfsvfs_t *zfsvfs = vfsp->vfs_data; /* * If this is regular file system vfsp is the same as * zfsvfs->z_parent->z_vfs, but if it is snapshot, * zfsvfs->z_parent->z_vfs represents parent file system * which we have to use here, because only this file system * has mnt_export configured. */ return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp, credanonp, numsecflavors, secflavors)); } _Static_assert(sizeof (struct fid) >= SHORT_FID_LEN, "struct fid bigger than SHORT_FID_LEN"); _Static_assert(sizeof (struct fid) >= LONG_FID_LEN, "struct fid bigger than LONG_FID_LEN"); static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp) { struct componentname cn; zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *zp; vnode_t *dvp; uint64_t object = 0; uint64_t fid_gen = 0; uint64_t setgen = 0; uint64_t gen_mask; uint64_t zp_gen; int i, err; *vpp = NULL; if ((err = zfs_enter(zfsvfs, FTAG)) != 0) return (err); /* * On FreeBSD we can get snapshot's mount point or its parent file * system mount point depending if snapshot is already mounted or not. */ if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) { zfid_long_t *zlfid = (zfid_long_t *)fidp; uint64_t objsetid = 0; for (i = 0; i < sizeof (zlfid->zf_setid); i++) objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); for (i = 0; i < sizeof (zlfid->zf_setgen); i++) setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); zfs_exit(zfsvfs, FTAG); err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); if (err) return (SET_ERROR(EINVAL)); if ((err = zfs_enter(zfsvfs, FTAG)) != 0) return (err); } if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { zfid_short_t *zfid = (zfid_short_t *)fidp; for (i = 0; i < sizeof (zfid->zf_object); i++) object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); for (i = 0; i < sizeof (zfid->zf_gen); i++) fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); } else { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } if (fidp->fid_len == LONG_FID_LEN && setgen != 0) { zfs_exit(zfsvfs, FTAG); dprintf("snapdir fid: fid_gen (%llu) and setgen (%llu)\n", (u_longlong_t)fid_gen, (u_longlong_t)setgen); return (SET_ERROR(EINVAL)); } /* * A zero fid_gen means we are in .zfs or the .zfs/snapshot * directory tree. If the object == zfsvfs->z_shares_dir, then * we are in the .zfs/shares directory tree. */ if ((fid_gen == 0 && (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) || (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) { zfs_exit(zfsvfs, FTAG); VERIFY0(zfsctl_root(zfsvfs, LK_SHARED, &dvp)); if (object == ZFSCTL_INO_SNAPDIR) { cn.cn_nameptr = "snapshot"; cn.cn_namelen = strlen(cn.cn_nameptr); cn.cn_nameiop = LOOKUP; cn.cn_flags = ISLASTCN | LOCKLEAF; cn.cn_lkflags = flags; VERIFY0(VOP_LOOKUP(dvp, vpp, &cn)); vput(dvp); } else if (object == zfsvfs->z_shares_dir) { /* * XXX This branch must not be taken, * if it is, then the lookup below will * explode. */ cn.cn_nameptr = "shares"; cn.cn_namelen = strlen(cn.cn_nameptr); cn.cn_nameiop = LOOKUP; cn.cn_flags = ISLASTCN; cn.cn_lkflags = flags; VERIFY0(VOP_LOOKUP(dvp, vpp, &cn)); vput(dvp); } else { *vpp = dvp; } return (err); } gen_mask = -1ULL >> (64 - 8 * i); dprintf("getting %llu [%llu mask %llx]\n", (u_longlong_t)object, (u_longlong_t)fid_gen, (u_longlong_t)gen_mask); if ((err = zfs_zget(zfsvfs, object, &zp))) { zfs_exit(zfsvfs, FTAG); return (err); } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, sizeof (uint64_t)); zp_gen = zp_gen & gen_mask; if (zp_gen == 0) zp_gen = 1; if (zp->z_unlinked || zp_gen != fid_gen) { dprintf("znode gen (%llu) != fid gen (%llu)\n", (u_longlong_t)zp_gen, (u_longlong_t)fid_gen); vrele(ZTOV(zp)); zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } *vpp = ZTOV(zp); zfs_exit(zfsvfs, FTAG); err = vn_lock(*vpp, flags); if (err == 0) vnode_create_vobject(*vpp, zp->z_size, curthread); else *vpp = NULL; return (err); } /* * Block out VOPs and close zfsvfs_t::z_os * * Note, if successful, then we return with the 'z_teardown_lock' and * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying * dataset and objset intact so that they can be atomically handed off during * a subsequent rollback or recv operation and the resume thereafter. */ int zfs_suspend_fs(zfsvfs_t *zfsvfs) { int error; if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) return (error); return (0); } /* * Rebuild SA and release VOPs. Note that ownership of the underlying dataset * is an invariant across any of the operations that can be performed while the * filesystem was suspended. Whether it succeeded or failed, the preconditions * are the same: the relevant objset and associated dataset are owned by * zfsvfs, held, and long held on entry. */ int zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) { int err; znode_t *zp; ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs)); /* * We already own this, so just update the objset_t, as the one we * had before may have been evicted. */ objset_t *os; VERIFY3P(ds->ds_owner, ==, zfsvfs); VERIFY(dsl_dataset_long_held(ds)); dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); dsl_pool_config_enter(dp, FTAG); VERIFY0(dmu_objset_from_ds(ds, &os)); dsl_pool_config_exit(dp, FTAG); err = zfsvfs_init(zfsvfs, os); if (err != 0) goto bail; ds->ds_dir->dd_activity_cancelled = B_FALSE; VERIFY0(zfsvfs_setup(zfsvfs, B_FALSE)); zfs_set_fuid_feature(zfsvfs); /* * Attempt to re-establish all the active znodes with * their dbufs. If a zfs_rezget() fails, then we'll let * any potential callers discover that via zfs_enter_verify_zp * when they try to use their znode. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = list_next(&zfsvfs->z_all_znodes, zp)) { (void) zfs_rezget(zp); } mutex_exit(&zfsvfs->z_znodes_lock); bail: /* release the VOPs */ ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); if (err) { /* * Since we couldn't setup the sa framework, try to force * unmount this file system. */ if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) { vfs_ref(zfsvfs->z_vfs); (void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread); } } return (err); } static void zfs_freevfs(vfs_t *vfsp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; zfsvfs_free(zfsvfs); atomic_dec_32(&zfs_active_fs_count); } #ifdef __i386__ static int desiredvnodes_backup; #include #include #include #include #include #endif static void zfs_vnodes_adjust(void) { #ifdef __i386__ int newdesiredvnodes; desiredvnodes_backup = desiredvnodes; /* * We calculate newdesiredvnodes the same way it is done in * vntblinit(). If it is equal to desiredvnodes, it means that * it wasn't tuned by the administrator and we can tune it down. */ newdesiredvnodes = min(maxproc + vm_cnt.v_page_count / 4, 2 * vm_kmem_size / (5 * (sizeof (struct vm_object) + sizeof (struct vnode)))); if (newdesiredvnodes == desiredvnodes) desiredvnodes = (3 * newdesiredvnodes) / 4; #endif } static void zfs_vnodes_adjust_back(void) { #ifdef __i386__ desiredvnodes = desiredvnodes_backup; #endif } void zfs_init(void) { printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n"); /* * Initialize .zfs directory structures */ zfsctl_init(); /* * Initialize znode cache, vnode ops, etc... */ zfs_znode_init(); /* * Reduce number of vnodes. Originally number of vnodes is calculated * with UFS inode in mind. We reduce it here, because it's too big for * ZFS/i386. */ zfs_vnodes_adjust(); dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info); zfsvfs_taskq = taskq_create("zfsvfs", 1, minclsyspri, 0, 0, 0); } void zfs_fini(void) { taskq_destroy(zfsvfs_taskq); zfsctl_fini(); zfs_znode_fini(); zfs_vnodes_adjust_back(); } int zfs_busy(void) { return (zfs_active_fs_count != 0); } /* * Release VOPs and unmount a suspended filesystem. */ int zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) { ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs)); /* * We already own this, so just hold and rele it to update the * objset_t, as the one we had before may have been evicted. */ objset_t *os; VERIFY3P(ds->ds_owner, ==, zfsvfs); VERIFY(dsl_dataset_long_held(ds)); dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); dsl_pool_config_enter(dp, FTAG); VERIFY0(dmu_objset_from_ds(ds, &os)); dsl_pool_config_exit(dp, FTAG); zfsvfs->z_os = os; /* release the VOPs */ ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs); ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); /* * Try to force unmount this file system. */ (void) zfs_umount(zfsvfs->z_vfs, 0); zfsvfs->z_unmounted = B_TRUE; return (0); } int zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) { int error; objset_t *os = zfsvfs->z_os; dmu_tx_t *tx; if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) return (SET_ERROR(EINVAL)); if (newvers < zfsvfs->z_version) return (SET_ERROR(EINVAL)); if (zfs_spa_version_map(newvers) > spa_version(dmu_objset_spa(zfsvfs->z_os))) return (SET_ERROR(ENOTSUP)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, ZFS_SA_ATTRS); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &newvers, tx); if (error) { dmu_tx_commit(tx); return (error); } if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { uint64_t sa_obj; ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, SPA_VERSION_SA); sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, DMU_OT_NONE, 0, tx); error = zap_add(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); ASSERT0(error); VERIFY0(sa_set_sa_object(os, sa_obj)); sa_register_update_callback(os, zfs_sa_upgrade); } spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, "from %ju to %ju", (uintmax_t)zfsvfs->z_version, (uintmax_t)newvers); dmu_tx_commit(tx); zfsvfs->z_version = newvers; os->os_version = newvers; zfs_set_fuid_feature(zfsvfs); return (0); } /* * Read a property stored within the master node. */ int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) { uint64_t *cached_copy = NULL; /* * Figure out where in the objset_t the cached copy would live, if it * is available for the requested property. */ if (os != NULL) { switch (prop) { case ZFS_PROP_VERSION: cached_copy = &os->os_version; break; case ZFS_PROP_NORMALIZE: cached_copy = &os->os_normalization; break; case ZFS_PROP_UTF8ONLY: cached_copy = &os->os_utf8only; break; case ZFS_PROP_CASE: cached_copy = &os->os_casesensitivity; break; default: break; } } if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) { *value = *cached_copy; return (0); } /* * If the property wasn't cached, look up the file system's value for * the property. For the version property, we look up a slightly * different string. */ const char *pname; int error = ENOENT; if (prop == ZFS_PROP_VERSION) { pname = ZPL_VERSION_STR; } else { pname = zfs_prop_to_name(prop); } if (os != NULL) { ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); } if (error == ENOENT) { /* No value set, use the default value */ switch (prop) { case ZFS_PROP_VERSION: *value = ZPL_VERSION; break; case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: *value = 0; break; case ZFS_PROP_CASE: *value = ZFS_CASE_SENSITIVE; break; case ZFS_PROP_ACLTYPE: *value = ZFS_ACLTYPE_NFSV4; break; default: return (error); } error = 0; } /* * If one of the methods for getting the property value above worked, * copy it into the objset_t's cache. */ if (error == 0 && cached_copy != NULL) { *cached_copy = *value; } return (error); } /* * Return true if the corresponding vfs's unmounted flag is set. * Otherwise return false. * If this function returns true we know VFS unmount has been initiated. */ boolean_t zfs_get_vfs_flag_unmounted(objset_t *os) { zfsvfs_t *zfvp; boolean_t unmounted = B_FALSE; ASSERT3U(dmu_objset_type(os), ==, DMU_OST_ZFS); mutex_enter(&os->os_user_ptr_lock); zfvp = dmu_objset_get_user(os); if (zfvp != NULL && zfvp->z_vfs != NULL && (zfvp->z_vfs->mnt_kern_flag & MNTK_UNMOUNT)) unmounted = B_TRUE; mutex_exit(&os->os_user_ptr_lock); return (unmounted); } #ifdef _KERNEL void zfsvfs_update_fromname(const char *oldname, const char *newname) { char tmpbuf[MAXPATHLEN]; struct mount *mp; char *fromname; size_t oldlen; oldlen = strlen(oldname); mtx_lock(&mountlist_mtx); TAILQ_FOREACH(mp, &mountlist, mnt_list) { fromname = mp->mnt_stat.f_mntfromname; if (strcmp(fromname, oldname) == 0) { (void) strlcpy(fromname, newname, sizeof (mp->mnt_stat.f_mntfromname)); continue; } if (strncmp(fromname, oldname, oldlen) == 0 && (fromname[oldlen] == '/' || fromname[oldlen] == '@')) { (void) snprintf(tmpbuf, sizeof (tmpbuf), "%s%s", newname, fromname + oldlen); (void) strlcpy(fromname, tmpbuf, sizeof (mp->mnt_stat.f_mntfromname)); continue; } } mtx_unlock(&mountlist_mtx); } #endif /* * Find a prison with ZFS info. * Return the ZFS info and the (locked) prison. */ static struct zfs_jailparam * zfs_jailparam_find(struct prison *spr, struct prison **prp) { struct prison *pr; struct zfs_jailparam *zjp; for (pr = spr; ; pr = pr->pr_parent) { mtx_lock(&pr->pr_mtx); if (pr == &prison0) { zjp = &zfs_jailparam0; break; } zjp = osd_jail_get(pr, zfs_jailparam_slot); if (zjp != NULL) break; mtx_unlock(&pr->pr_mtx); } *prp = pr; return (zjp); } /* * Ensure a prison has its own ZFS info. If zjpp is non-null, point it to the * ZFS info and lock the prison. */ static void zfs_jailparam_alloc(struct prison *pr, struct zfs_jailparam **zjpp) { struct prison *ppr; struct zfs_jailparam *zjp, *nzjp; void **rsv; /* If this prison already has ZFS info, return that. */ zjp = zfs_jailparam_find(pr, &ppr); if (ppr == pr) goto done; /* * Allocate a new info record. Then check again, in case something * changed during the allocation. */ mtx_unlock(&ppr->pr_mtx); nzjp = malloc(sizeof (struct zfs_jailparam), M_PRISON, M_WAITOK); rsv = osd_reserve(zfs_jailparam_slot); zjp = zfs_jailparam_find(pr, &ppr); if (ppr == pr) { free(nzjp, M_PRISON); osd_free_reserved(rsv); goto done; } /* Inherit the initial values from the ancestor. */ mtx_lock(&pr->pr_mtx); (void) osd_jail_set_reserved(pr, zfs_jailparam_slot, rsv, nzjp); (void) memcpy(nzjp, zjp, sizeof (*zjp)); zjp = nzjp; mtx_unlock(&ppr->pr_mtx); done: if (zjpp != NULL) *zjpp = zjp; else mtx_unlock(&pr->pr_mtx); } /* * Jail OSD methods for ZFS VFS info. */ static int zfs_jailparam_create(void *obj, void *data) { struct prison *pr = obj; struct vfsoptlist *opts = data; int jsys; if (vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys)) == 0 && jsys == JAIL_SYS_INHERIT) return (0); /* * Inherit a prison's initial values from its parent * (different from JAIL_SYS_INHERIT which also inherits changes). */ zfs_jailparam_alloc(pr, NULL); return (0); } static int zfs_jailparam_get(void *obj, void *data) { struct prison *ppr, *pr = obj; struct vfsoptlist *opts = data; struct zfs_jailparam *zjp; int jsys, error; zjp = zfs_jailparam_find(pr, &ppr); jsys = (ppr == pr) ? JAIL_SYS_NEW : JAIL_SYS_INHERIT; error = vfs_setopt(opts, "zfs", &jsys, sizeof (jsys)); if (error != 0 && error != ENOENT) goto done; if (jsys == JAIL_SYS_NEW) { error = vfs_setopt(opts, "zfs.mount_snapshot", &zjp->mount_snapshot, sizeof (zjp->mount_snapshot)); if (error != 0 && error != ENOENT) goto done; } else { /* * If this prison is inheriting its ZFS info, report * empty/zero parameters. */ static int mount_snapshot = 0; error = vfs_setopt(opts, "zfs.mount_snapshot", &mount_snapshot, sizeof (mount_snapshot)); if (error != 0 && error != ENOENT) goto done; } error = 0; done: mtx_unlock(&ppr->pr_mtx); return (error); } static int zfs_jailparam_set(void *obj, void *data) { struct prison *pr = obj; struct prison *ppr; struct vfsoptlist *opts = data; int error, jsys, mount_snapshot; /* Set the parameters, which should be correct. */ error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys)); if (error == ENOENT) jsys = -1; error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot, sizeof (mount_snapshot)); if (error == ENOENT) mount_snapshot = -1; else jsys = JAIL_SYS_NEW; switch (jsys) { case JAIL_SYS_NEW: { /* "zfs=new" or "zfs.*": the prison gets its own ZFS info. */ struct zfs_jailparam *zjp; /* * A child jail cannot have more permissions than its parent */ if (pr->pr_parent != &prison0) { zjp = zfs_jailparam_find(pr->pr_parent, &ppr); mtx_unlock(&ppr->pr_mtx); if (zjp->mount_snapshot < mount_snapshot) { return (EPERM); } } zfs_jailparam_alloc(pr, &zjp); if (mount_snapshot != -1) zjp->mount_snapshot = mount_snapshot; mtx_unlock(&pr->pr_mtx); break; } case JAIL_SYS_INHERIT: /* "zfs=inherit": inherit the parent's ZFS info. */ mtx_lock(&pr->pr_mtx); osd_jail_del(pr, zfs_jailparam_slot); mtx_unlock(&pr->pr_mtx); break; case -1: /* * If the setting being changed is not ZFS related * then do nothing. */ break; } return (0); } static int zfs_jailparam_check(void *obj __unused, void *data) { struct vfsoptlist *opts = data; int error, jsys, mount_snapshot; /* Check that the parameters are correct. */ error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys)); if (error != ENOENT) { if (error != 0) return (error); if (jsys != JAIL_SYS_NEW && jsys != JAIL_SYS_INHERIT) return (EINVAL); } error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot, sizeof (mount_snapshot)); if (error != ENOENT) { if (error != 0) return (error); if (mount_snapshot != 0 && mount_snapshot != 1) return (EINVAL); } return (0); } static void zfs_jailparam_destroy(void *data) { free(data, M_PRISON); } static void zfs_jailparam_sysinit(void *arg __unused) { struct prison *pr; osd_method_t methods[PR_MAXMETHOD] = { [PR_METHOD_CREATE] = zfs_jailparam_create, [PR_METHOD_GET] = zfs_jailparam_get, [PR_METHOD_SET] = zfs_jailparam_set, [PR_METHOD_CHECK] = zfs_jailparam_check, }; zfs_jailparam_slot = osd_jail_register(zfs_jailparam_destroy, methods); /* Copy the defaults to any existing prisons. */ sx_slock(&allprison_lock); TAILQ_FOREACH(pr, &allprison, pr_list) zfs_jailparam_alloc(pr, NULL); sx_sunlock(&allprison_lock); } static void zfs_jailparam_sysuninit(void *arg __unused) { osd_jail_deregister(zfs_jailparam_slot); } SYSINIT(zfs_jailparam_sysinit, SI_SUB_DRIVERS, SI_ORDER_ANY, zfs_jailparam_sysinit, NULL); SYSUNINIT(zfs_jailparam_sysuninit, SI_SUB_DRIVERS, SI_ORDER_ANY, zfs_jailparam_sysuninit, NULL); diff --git a/module/os/freebsd/zfs/zfs_vnops_os.c b/module/os/freebsd/zfs/zfs_vnops_os.c index 148def20ce57..9169244b1a13 100644 --- a/module/os/freebsd/zfs/zfs_vnops_os.c +++ b/module/os/freebsd/zfs/zfs_vnops_os.c @@ -1,6328 +1,6421 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2015 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Nexenta Systems, Inc. */ /* Portions Copyright 2007 Jeremy Teo */ /* Portions Copyright 2010 Robert Milkowski */ -#include #include #include #include #include #include #include #include #include #include #if __FreeBSD_version >= 1300102 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include +#include +#include +#include +#include +#include #include #include #include #ifndef VN_OPEN_INVFS #define VN_OPEN_INVFS 0x0 #endif VFS_SMR_DECLARE; #if __FreeBSD_version < 1300103 #define NDFREE_PNBUF(ndp) NDFREE((ndp), NDF_ONLY_PNBUF) #endif #if __FreeBSD_version >= 1300047 #define vm_page_wire_lock(pp) #define vm_page_wire_unlock(pp) #else #define vm_page_wire_lock(pp) vm_page_lock(pp) #define vm_page_wire_unlock(pp) vm_page_unlock(pp) #endif #ifdef DEBUG_VFS_LOCKS #define VNCHECKREF(vp) \ VNASSERT((vp)->v_holdcnt > 0 && (vp)->v_usecount > 0, vp, \ ("%s: wrong ref counts", __func__)); #else #define VNCHECKREF(vp) #endif #if __FreeBSD_version >= 1400045 typedef uint64_t cookie_t; #else typedef ulong_t cookie_t; #endif /* * Programming rules. * * Each vnode op performs some logical unit of work. To do this, the ZPL must * properly lock its in-core state, create a DMU transaction, do the work, * record this work in the intent log (ZIL), commit the DMU transaction, * and wait for the intent log to commit if it is a synchronous operation. * Moreover, the vnode ops must work in both normal and log replay context. * The ordering of events is important to avoid deadlocks and references * to freed memory. The example below illustrates the following Big Rules: * * (1) A check must be made in each zfs thread for a mounted file system. * This is done avoiding races using zfs_enter(zfsvfs). * A zfs_exit(zfsvfs) is needed before all returns. Any znodes * must be checked with zfs_verify_zp(zp). Both of these macros * can return EIO from the calling function. * * (2) VN_RELE() should always be the last thing except for zil_commit() * (if necessary) and zfs_exit(). This is for 3 reasons: * First, if it's the last reference, the vnode/znode * can be freed, so the zp may point to freed memory. Second, the last * reference will call zfs_zinactive(), which may induce a lot of work -- * pushing cached pages (which acquires range locks) and syncing out * cached atime changes. Third, zfs_zinactive() may require a new tx, * which could deadlock the system if you were already holding one. * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). * * (3) All range locks must be grabbed before calling dmu_tx_assign(), * as they can span dmu_tx_assign() calls. * * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to * dmu_tx_assign(). This is critical because we don't want to block * while holding locks. * * If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT. This * reduces lock contention and CPU usage when we must wait (note that if * throughput is constrained by the storage, nearly every transaction * must wait). * * Note, in particular, that if a lock is sometimes acquired before * the tx assigns, and sometimes after (e.g. z_lock), then failing * to use a non-blocking assign can deadlock the system. The scenario: * * Thread A has grabbed a lock before calling dmu_tx_assign(). * Thread B is in an already-assigned tx, and blocks for this lock. * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() * forever, because the previous txg can't quiesce until B's tx commits. * * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, * then drop all locks, call dmu_tx_wait(), and try again. On subsequent * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, * to indicate that this operation has already called dmu_tx_wait(). * This will ensure that we don't retry forever, waiting a short bit * each time. * * (5) If the operation succeeded, generate the intent log entry for it * before dropping locks. This ensures that the ordering of events * in the intent log matches the order in which they actually occurred. * During ZIL replay the zfs_log_* functions will update the sequence * number to indicate the zil transaction has replayed. * * (6) At the end of each vnode op, the DMU tx must always commit, * regardless of whether there were any errors. * * (7) After dropping all locks, invoke zil_commit(zilog, foid) * to ensure that synchronous semantics are provided when necessary. * * In general, this is how things should be ordered in each vnode op: * * zfs_enter(zfsvfs); // exit if unmounted * top: * zfs_dirent_lookup(&dl, ...) // lock directory entry (may VN_HOLD()) * rw_enter(...); // grab any other locks you need * tx = dmu_tx_create(...); // get DMU tx * dmu_tx_hold_*(); // hold each object you might modify * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); * if (error) { * rw_exit(...); // drop locks * zfs_dirent_unlock(dl); // unlock directory entry * VN_RELE(...); // release held vnodes * if (error == ERESTART) { * waited = B_TRUE; * dmu_tx_wait(tx); * dmu_tx_abort(tx); * goto top; * } * dmu_tx_abort(tx); // abort DMU tx * zfs_exit(zfsvfs); // finished in zfs * return (error); // really out of space * } * error = do_real_work(); // do whatever this VOP does * if (error == 0) * zfs_log_*(...); // on success, make ZIL entry * dmu_tx_commit(tx); // commit DMU tx -- error or not * rw_exit(...); // drop locks * zfs_dirent_unlock(dl); // unlock directory entry * VN_RELE(...); // release held vnodes * zil_commit(zilog, foid); // synchronous when necessary * zfs_exit(zfsvfs); // finished in zfs * return (error); // done, report error */ static int zfs_open(vnode_t **vpp, int flag, cred_t *cr) { (void) cr; znode_t *zp = VTOZ(*vpp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && ((flag & FAPPEND) == 0)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } /* Keep a count of the synchronous opens in the znode */ if (flag & O_SYNC) atomic_inc_32(&zp->z_sync_cnt); zfs_exit(zfsvfs, FTAG); return (0); } static int zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) { (void) offset, (void) cr; znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); /* Decrement the synchronous opens in the znode */ if ((flag & O_SYNC) && (count == 1)) atomic_dec_32(&zp->z_sync_cnt); zfs_exit(zfsvfs, FTAG); return (0); } static int zfs_ioctl(vnode_t *vp, ulong_t com, intptr_t data, int flag, cred_t *cred, int *rvalp) { (void) flag, (void) cred, (void) rvalp; loff_t off; int error; switch (com) { case _FIOFFS: { return (0); /* * The following two ioctls are used by bfu. Faking out, * necessary to avoid bfu errors. */ } case _FIOGDIO: case _FIOSDIO: { return (0); } case F_SEEK_DATA: case F_SEEK_HOLE: { off = *(offset_t *)data; /* offset parameter is in/out */ error = zfs_holey(VTOZ(vp), com, &off); if (error) return (error); *(offset_t *)data = off; return (0); } } return (SET_ERROR(ENOTTY)); } static vm_page_t page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes) { vm_object_t obj; vm_page_t pp; int64_t end; /* * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE * aligned boundaries, if the range is not aligned. As a result a * DEV_BSIZE subrange with partially dirty data may get marked as clean. * It may happen that all DEV_BSIZE subranges are marked clean and thus * the whole page would be considered clean despite have some * dirty data. * For this reason we should shrink the range to DEV_BSIZE aligned * boundaries before calling vm_page_clear_dirty. */ end = rounddown2(off + nbytes, DEV_BSIZE); off = roundup2(off, DEV_BSIZE); nbytes = end - off; obj = vp->v_object; zfs_vmobject_assert_wlocked_12(obj); #if __FreeBSD_version < 1300050 for (;;) { if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL && pp->valid) { if (vm_page_xbusied(pp)) { /* * Reference the page before unlocking and * sleeping so that the page daemon is less * likely to reclaim it. */ vm_page_reference(pp); vm_page_lock(pp); zfs_vmobject_wunlock(obj); vm_page_busy_sleep(pp, "zfsmwb", true); zfs_vmobject_wlock(obj); continue; } vm_page_sbusy(pp); } else if (pp != NULL) { ASSERT(!pp->valid); pp = NULL; } if (pp != NULL) { ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL); vm_object_pip_add(obj, 1); pmap_remove_write(pp); if (nbytes != 0) vm_page_clear_dirty(pp, off, nbytes); } break; } #else vm_page_grab_valid_unlocked(&pp, obj, OFF_TO_IDX(start), VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY); if (pp != NULL) { ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL); vm_object_pip_add(obj, 1); pmap_remove_write(pp); if (nbytes != 0) vm_page_clear_dirty(pp, off, nbytes); } #endif return (pp); } static void page_unbusy(vm_page_t pp) { vm_page_sunbusy(pp); #if __FreeBSD_version >= 1300041 vm_object_pip_wakeup(pp->object); #else vm_object_pip_subtract(pp->object, 1); #endif } #if __FreeBSD_version > 1300051 static vm_page_t page_hold(vnode_t *vp, int64_t start) { vm_object_t obj; vm_page_t m; obj = vp->v_object; vm_page_grab_valid_unlocked(&m, obj, OFF_TO_IDX(start), VM_ALLOC_NOCREAT | VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY | VM_ALLOC_NOBUSY); return (m); } #else static vm_page_t page_hold(vnode_t *vp, int64_t start) { vm_object_t obj; vm_page_t pp; obj = vp->v_object; zfs_vmobject_assert_wlocked(obj); for (;;) { if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL && pp->valid) { if (vm_page_xbusied(pp)) { /* * Reference the page before unlocking and * sleeping so that the page daemon is less * likely to reclaim it. */ vm_page_reference(pp); vm_page_lock(pp); zfs_vmobject_wunlock(obj); vm_page_busy_sleep(pp, "zfsmwb", true); zfs_vmobject_wlock(obj); continue; } ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL); vm_page_wire_lock(pp); vm_page_hold(pp); vm_page_wire_unlock(pp); } else pp = NULL; break; } return (pp); } #endif static void page_unhold(vm_page_t pp) { vm_page_wire_lock(pp); #if __FreeBSD_version >= 1300035 vm_page_unwire(pp, PQ_ACTIVE); #else vm_page_unhold(pp); #endif vm_page_wire_unlock(pp); } /* * When a file is memory mapped, we must keep the IO data synchronized * between the DMU cache and the memory mapped pages. What this means: * * On Write: If we find a memory mapped page, we write to *both* * the page and the dmu buffer. */ void update_pages(znode_t *zp, int64_t start, int len, objset_t *os) { vm_object_t obj; struct sf_buf *sf; vnode_t *vp = ZTOV(zp); caddr_t va; int off; ASSERT3P(vp->v_mount, !=, NULL); obj = vp->v_object; ASSERT3P(obj, !=, NULL); off = start & PAGEOFFSET; zfs_vmobject_wlock_12(obj); #if __FreeBSD_version >= 1300041 vm_object_pip_add(obj, 1); #endif for (start &= PAGEMASK; len > 0; start += PAGESIZE) { vm_page_t pp; int nbytes = imin(PAGESIZE - off, len); if ((pp = page_busy(vp, start, off, nbytes)) != NULL) { zfs_vmobject_wunlock_12(obj); va = zfs_map_page(pp, &sf); (void) dmu_read(os, zp->z_id, start + off, nbytes, va + off, DMU_READ_PREFETCH); zfs_unmap_page(sf); zfs_vmobject_wlock_12(obj); page_unbusy(pp); } len -= nbytes; off = 0; } #if __FreeBSD_version >= 1300041 vm_object_pip_wakeup(obj); #else vm_object_pip_wakeupn(obj, 0); #endif zfs_vmobject_wunlock_12(obj); } /* * Read with UIO_NOCOPY flag means that sendfile(2) requests * ZFS to populate a range of page cache pages with data. * * NOTE: this function could be optimized to pre-allocate * all pages in advance, drain exclusive busy on all of them, * map them into contiguous KVA region and populate them * in one single dmu_read() call. */ int mappedread_sf(znode_t *zp, int nbytes, zfs_uio_t *uio) { vnode_t *vp = ZTOV(zp); objset_t *os = zp->z_zfsvfs->z_os; struct sf_buf *sf; vm_object_t obj; vm_page_t pp; int64_t start; caddr_t va; int len = nbytes; int error = 0; ASSERT3U(zfs_uio_segflg(uio), ==, UIO_NOCOPY); ASSERT3P(vp->v_mount, !=, NULL); obj = vp->v_object; ASSERT3P(obj, !=, NULL); ASSERT0(zfs_uio_offset(uio) & PAGEOFFSET); zfs_vmobject_wlock_12(obj); for (start = zfs_uio_offset(uio); len > 0; start += PAGESIZE) { int bytes = MIN(PAGESIZE, len); pp = vm_page_grab_unlocked(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY | VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY); if (vm_page_none_valid(pp)) { zfs_vmobject_wunlock_12(obj); va = zfs_map_page(pp, &sf); error = dmu_read(os, zp->z_id, start, bytes, va, DMU_READ_PREFETCH); if (bytes != PAGESIZE && error == 0) memset(va + bytes, 0, PAGESIZE - bytes); zfs_unmap_page(sf); zfs_vmobject_wlock_12(obj); #if __FreeBSD_version >= 1300081 if (error == 0) { vm_page_valid(pp); vm_page_activate(pp); vm_page_do_sunbusy(pp); } else { zfs_vmobject_wlock(obj); if (!vm_page_wired(pp) && pp->valid == 0 && vm_page_busy_tryupgrade(pp)) vm_page_free(pp); else vm_page_sunbusy(pp); zfs_vmobject_wunlock(obj); } #else vm_page_do_sunbusy(pp); vm_page_lock(pp); if (error) { if (pp->wire_count == 0 && pp->valid == 0 && !vm_page_busied(pp)) vm_page_free(pp); } else { pp->valid = VM_PAGE_BITS_ALL; vm_page_activate(pp); } vm_page_unlock(pp); #endif } else { ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL); vm_page_do_sunbusy(pp); } if (error) break; zfs_uio_advance(uio, bytes); len -= bytes; } zfs_vmobject_wunlock_12(obj); return (error); } /* * When a file is memory mapped, we must keep the IO data synchronized * between the DMU cache and the memory mapped pages. What this means: * * On Read: We "read" preferentially from memory mapped pages, * else we default from the dmu buffer. * * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when * the file is memory mapped. */ int mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio) { vnode_t *vp = ZTOV(zp); vm_object_t obj; int64_t start; int len = nbytes; int off; int error = 0; ASSERT3P(vp->v_mount, !=, NULL); obj = vp->v_object; ASSERT3P(obj, !=, NULL); start = zfs_uio_offset(uio); off = start & PAGEOFFSET; zfs_vmobject_wlock_12(obj); for (start &= PAGEMASK; len > 0; start += PAGESIZE) { vm_page_t pp; uint64_t bytes = MIN(PAGESIZE - off, len); if ((pp = page_hold(vp, start))) { struct sf_buf *sf; caddr_t va; zfs_vmobject_wunlock_12(obj); va = zfs_map_page(pp, &sf); error = vn_io_fault_uiomove(va + off, bytes, GET_UIO_STRUCT(uio)); zfs_unmap_page(sf); zfs_vmobject_wlock_12(obj); page_unhold(pp); } else { zfs_vmobject_wunlock_12(obj); error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, bytes); zfs_vmobject_wlock_12(obj); } len -= bytes; off = 0; if (error) break; } zfs_vmobject_wunlock_12(obj); return (error); } int zfs_write_simple(znode_t *zp, const void *data, size_t len, loff_t pos, size_t *presid) { int error = 0; ssize_t resid; error = vn_rdwr(UIO_WRITE, ZTOV(zp), __DECONST(void *, data), len, pos, UIO_SYSSPACE, IO_SYNC, kcred, NOCRED, &resid, curthread); if (error) { return (SET_ERROR(error)); } else if (presid == NULL) { if (resid != 0) { error = SET_ERROR(EIO); } } else { *presid = resid; } return (error); } void zfs_zrele_async(znode_t *zp) { vnode_t *vp = ZTOV(zp); objset_t *os = ITOZSB(vp)->z_os; VN_RELE_ASYNC(vp, dsl_pool_zrele_taskq(dmu_objset_pool(os))); } static int zfs_dd_callback(struct mount *mp, void *arg, int lkflags, struct vnode **vpp) { int error; *vpp = arg; error = vn_lock(*vpp, lkflags); if (error != 0) vrele(*vpp); return (error); } static int zfs_lookup_lock(vnode_t *dvp, vnode_t *vp, const char *name, int lkflags) { znode_t *zdp = VTOZ(dvp); zfsvfs_t *zfsvfs __unused = zdp->z_zfsvfs; int error; int ltype; if (zfsvfs->z_replay == B_FALSE) ASSERT_VOP_LOCKED(dvp, __func__); if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) { ASSERT3P(dvp, ==, vp); vref(dvp); ltype = lkflags & LK_TYPE_MASK; if (ltype != VOP_ISLOCKED(dvp)) { if (ltype == LK_EXCLUSIVE) vn_lock(dvp, LK_UPGRADE | LK_RETRY); else /* if (ltype == LK_SHARED) */ vn_lock(dvp, LK_DOWNGRADE | LK_RETRY); /* * Relock for the "." case could leave us with * reclaimed vnode. */ if (VN_IS_DOOMED(dvp)) { vrele(dvp); return (SET_ERROR(ENOENT)); } } return (0); } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) { /* * Note that in this case, dvp is the child vnode, and we * are looking up the parent vnode - exactly reverse from * normal operation. Unlocking dvp requires some rather * tricky unlock/relock dance to prevent mp from being freed; * use vn_vget_ino_gen() which takes care of all that. * * XXX Note that there is a time window when both vnodes are * unlocked. It is possible, although highly unlikely, that * during that window the parent-child relationship between * the vnodes may change, for example, get reversed. * In that case we would have a wrong lock order for the vnodes. * All other filesystems seem to ignore this problem, so we * do the same here. * A potential solution could be implemented as follows: * - using LK_NOWAIT when locking the second vnode and retrying * if necessary * - checking that the parent-child relationship still holds * after locking both vnodes and retrying if it doesn't */ error = vn_vget_ino_gen(dvp, zfs_dd_callback, vp, lkflags, &vp); return (error); } else { error = vn_lock(vp, lkflags); if (error != 0) vrele(vp); return (error); } } /* * Lookup an entry in a directory, or an extended attribute directory. * If it exists, return a held vnode reference for it. * * IN: dvp - vnode of directory to search. * nm - name of entry to lookup. * pnp - full pathname to lookup [UNUSED]. * flags - LOOKUP_XATTR set if looking for an attribute. * rdir - root directory vnode [UNUSED]. * cr - credentials of caller. * ct - caller context * * OUT: vpp - vnode of located entry, NULL if not found. * * RETURN: 0 on success, error code on failure. * * Timestamps: * NA */ static int zfs_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp, struct componentname *cnp, int nameiop, cred_t *cr, int flags, boolean_t cached) { znode_t *zdp = VTOZ(dvp); znode_t *zp; zfsvfs_t *zfsvfs = zdp->z_zfsvfs; #if __FreeBSD_version > 1300124 seqc_t dvp_seqc; #endif int error = 0; /* * Fast path lookup, however we must skip DNLC lookup * for case folding or normalizing lookups because the * DNLC code only stores the passed in name. This means * creating 'a' and removing 'A' on a case insensitive * file system would work, but DNLC still thinks 'a' * exists and won't let you create it again on the next * pass through fast path. */ if (!(flags & LOOKUP_XATTR)) { if (dvp->v_type != VDIR) { return (SET_ERROR(ENOTDIR)); } else if (zdp->z_sa_hdl == NULL) { return (SET_ERROR(EIO)); } } DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, const char *, nm); if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0) return (error); #if __FreeBSD_version > 1300124 dvp_seqc = vn_seqc_read_notmodify(dvp); #endif *vpp = NULL; if (flags & LOOKUP_XATTR) { /* * If the xattr property is off, refuse the lookup request. */ if (!(zfsvfs->z_flags & ZSB_XATTR)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EOPNOTSUPP)); } /* * We don't allow recursive attributes.. * Maybe someday we will. */ if (zdp->z_pflags & ZFS_XATTR) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } if ((error = zfs_get_xattrdir(VTOZ(dvp), &zp, cr, flags))) { zfs_exit(zfsvfs, FTAG); return (error); } *vpp = ZTOV(zp); /* * Do we have permission to get into attribute directory? */ error = zfs_zaccess(zp, ACE_EXECUTE, 0, B_FALSE, cr, NULL); if (error) { vrele(ZTOV(zp)); } zfs_exit(zfsvfs, FTAG); return (error); } /* * Check accessibility of directory if we're not coming in via * VOP_CACHEDLOOKUP. */ if (!cached) { #ifdef NOEXECCHECK if ((cnp->cn_flags & NOEXECCHECK) != 0) { cnp->cn_flags &= ~NOEXECCHECK; } else #endif if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr, NULL))) { zfs_exit(zfsvfs, FTAG); return (error); } } if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } /* * First handle the special cases. */ if ((cnp->cn_flags & ISDOTDOT) != 0) { /* * If we are a snapshot mounted under .zfs, return * the vp for the snapshot directory. */ if (zdp->z_id == zfsvfs->z_root && zfsvfs->z_parent != zfsvfs) { struct componentname cn; vnode_t *zfsctl_vp; int ltype; zfs_exit(zfsvfs, FTAG); ltype = VOP_ISLOCKED(dvp); VOP_UNLOCK1(dvp); error = zfsctl_root(zfsvfs->z_parent, LK_SHARED, &zfsctl_vp); if (error == 0) { cn.cn_nameptr = "snapshot"; cn.cn_namelen = strlen(cn.cn_nameptr); cn.cn_nameiop = cnp->cn_nameiop; cn.cn_flags = cnp->cn_flags & ~ISDOTDOT; cn.cn_lkflags = cnp->cn_lkflags; error = VOP_LOOKUP(zfsctl_vp, vpp, &cn); vput(zfsctl_vp); } vn_lock(dvp, ltype | LK_RETRY); return (error); } } if (zfs_has_ctldir(zdp) && strcmp(nm, ZFS_CTLDIR_NAME) == 0) { zfs_exit(zfsvfs, FTAG); if ((cnp->cn_flags & ISLASTCN) != 0 && nameiop != LOOKUP) return (SET_ERROR(ENOTSUP)); error = zfsctl_root(zfsvfs, cnp->cn_lkflags, vpp); return (error); } /* * The loop is retry the lookup if the parent-child relationship * changes during the dot-dot locking complexities. */ for (;;) { uint64_t parent; error = zfs_dirlook(zdp, nm, &zp); if (error == 0) *vpp = ZTOV(zp); zfs_exit(zfsvfs, FTAG); if (error != 0) break; error = zfs_lookup_lock(dvp, *vpp, nm, cnp->cn_lkflags); if (error != 0) { /* * If we've got a locking error, then the vnode * got reclaimed because of a force unmount. * We never enter doomed vnodes into the name cache. */ *vpp = NULL; return (error); } if ((cnp->cn_flags & ISDOTDOT) == 0) break; if ((error = zfs_enter(zfsvfs, FTAG)) != 0) { vput(ZTOV(zp)); *vpp = NULL; return (error); } if (zdp->z_sa_hdl == NULL) { error = SET_ERROR(EIO); } else { error = sa_lookup(zdp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent)); } if (error != 0) { zfs_exit(zfsvfs, FTAG); vput(ZTOV(zp)); break; } if (zp->z_id == parent) { zfs_exit(zfsvfs, FTAG); break; } vput(ZTOV(zp)); } if (error != 0) *vpp = NULL; /* Translate errors and add SAVENAME when needed. */ if (cnp->cn_flags & ISLASTCN) { switch (nameiop) { case CREATE: case RENAME: if (error == ENOENT) { error = EJUSTRETURN; #if __FreeBSD_version < 1400068 cnp->cn_flags |= SAVENAME; #endif break; } zfs_fallthrough; case DELETE: #if __FreeBSD_version < 1400068 if (error == 0) cnp->cn_flags |= SAVENAME; #endif break; } } #if __FreeBSD_version > 1300124 if ((cnp->cn_flags & ISDOTDOT) != 0) { /* * FIXME: zfs_lookup_lock relocks vnodes and does nothing to * handle races. In particular different callers may end up * with different vnodes and will try to add conflicting * entries to the namecache. * * While finding different result may be acceptable in face * of concurrent modification, adding conflicting entries * trips over an assert in the namecache. * * Ultimately let an entry through once everything settles. */ if (!vn_seqc_consistent(dvp, dvp_seqc)) { cnp->cn_flags &= ~MAKEENTRY; } } #endif /* Insert name into cache (as non-existent) if appropriate. */ if (zfsvfs->z_use_namecache && !zfsvfs->z_replay && error == ENOENT && (cnp->cn_flags & MAKEENTRY) != 0) cache_enter(dvp, NULL, cnp); /* Insert name into cache if appropriate. */ if (zfsvfs->z_use_namecache && !zfsvfs->z_replay && error == 0 && (cnp->cn_flags & MAKEENTRY)) { if (!(cnp->cn_flags & ISLASTCN) || (nameiop != DELETE && nameiop != RENAME)) { cache_enter(dvp, *vpp, cnp); } } return (error); } /* * Attempt to create a new entry in a directory. If the entry * already exists, truncate the file if permissible, else return * an error. Return the vp of the created or trunc'd file. * * IN: dvp - vnode of directory to put new file entry in. * name - name of new file entry. * vap - attributes of new file. * excl - flag indicating exclusive or non-exclusive mode. * mode - mode to open file with. * cr - credentials of caller. * flag - large file flag [UNUSED]. * ct - caller context * vsecp - ACL to be set * mnt_ns - Unused on FreeBSD * * OUT: vpp - vnode of created or trunc'd entry. * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated if new entry created * vp - ctime|mtime always, atime if new */ int zfs_create(znode_t *dzp, const char *name, vattr_t *vap, int excl, int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp, zuserns_t *mnt_ns) { (void) excl, (void) mode, (void) flag; znode_t *zp; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; objset_t *os; dmu_tx_t *tx; int error; uid_t uid = crgetuid(cr); gid_t gid = crgetgid(cr); uint64_t projid = ZFS_DEFAULT_PROJID; zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; uint64_t txtype; #ifdef DEBUG_VFS_LOCKS vnode_t *dvp = ZTOV(dzp); #endif /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ if (zfsvfs->z_use_fuids == B_FALSE && (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); os = zfsvfs->z_os; zilog = zfsvfs->z_log; if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } if (vap->va_mask & AT_XVATTR) { if ((error = secpolicy_xvattr(ZTOV(dzp), (xvattr_t *)vap, crgetuid(cr), cr, vap->va_type)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } } *zpp = NULL; if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr)) vap->va_mode &= ~S_ISVTX; error = zfs_dirent_lookup(dzp, name, &zp, ZNEW); if (error) { zfs_exit(zfsvfs, FTAG); return (error); } ASSERT3P(zp, ==, NULL); /* * Create a new file object and update the directory * to reference it. */ if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) { goto out; } /* * We only support the creation of regular files in * extended attribute directories. */ if ((dzp->z_pflags & ZFS_XATTR) && (vap->va_type != VREG)) { error = SET_ERROR(EINVAL); goto out; } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, &acl_ids, NULL)) != 0) goto out; if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) projid = zfs_inherit_projid(dzp); if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { zfs_acl_ids_free(&acl_ids); error = SET_ERROR(EDQUOT); goto out; } getnewvnode_reserve_(); tx = dmu_tx_create(os); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); getnewvnode_drop_reserve(); zfs_exit(zfsvfs, FTAG); return (error); } zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); (void) zfs_link_create(dzp, name, zp, tx, ZNEW); txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); zfs_log_create(zilog, tx, txtype, dzp, zp, name, vsecp, acl_ids.z_fuidp, vap); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); getnewvnode_drop_reserve(); out: VNCHECKREF(dvp); if (error == 0) { *zpp = zp; } if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } /* * Remove an entry from a directory. * * IN: dvp - vnode of directory to remove entry from. * name - name of entry to remove. * cr - credentials of caller. * ct - caller context * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime * vp - ctime (if nlink > 0) */ static int zfs_remove_(vnode_t *dvp, vnode_t *vp, const char *name, cred_t *cr) { znode_t *dzp = VTOZ(dvp); znode_t *zp; znode_t *xzp; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; uint64_t xattr_obj; uint64_t obj = 0; dmu_tx_t *tx; boolean_t unlinked; uint64_t txtype; int error; if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); zp = VTOZ(vp); if ((error = zfs_verify_zp(zp)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } zilog = zfsvfs->z_log; xattr_obj = 0; xzp = NULL; if ((error = zfs_zaccess_delete(dzp, zp, cr, NULL))) { goto out; } /* * Need to use rmdir for removing directories. */ if (vp->v_type == VDIR) { error = SET_ERROR(EPERM); goto out; } vnevent_remove(vp, dvp, name, ct); obj = zp->z_id; /* are there any extended attributes? */ error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, sizeof (xattr_obj)); if (error == 0 && xattr_obj) { error = zfs_zget(zfsvfs, xattr_obj, &xzp); ASSERT0(error); } /* * We may delete the znode now, or we may put it in the unlinked set; * it depends on whether we're the last link, and on whether there are * other holds on the vnode. So we dmu_tx_hold() the right things to * allow for either case. */ tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); zfs_sa_upgrade_txholds(tx, dzp); if (xzp) { dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); } /* charge as an update -- would be nice not to charge at all */ dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); /* * Mark this transaction as typically resulting in a net free of space */ dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); zfs_exit(zfsvfs, FTAG); return (error); } /* * Remove the directory entry. */ error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, &unlinked); if (error) { dmu_tx_commit(tx); goto out; } if (unlinked) { zfs_unlinked_add(zp, tx); vp->v_vflag |= VV_NOSYNC; } /* XXX check changes to linux vnops */ txtype = TX_REMOVE; zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked); dmu_tx_commit(tx); out: if (xzp) vrele(ZTOV(xzp)); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } static int zfs_lookup_internal(znode_t *dzp, const char *name, vnode_t **vpp, struct componentname *cnp, int nameiop) { zfsvfs_t *zfsvfs = dzp->z_zfsvfs; int error; cnp->cn_nameptr = __DECONST(char *, name); cnp->cn_namelen = strlen(name); cnp->cn_nameiop = nameiop; cnp->cn_flags = ISLASTCN; #if __FreeBSD_version < 1400068 cnp->cn_flags |= SAVENAME; #endif cnp->cn_lkflags = LK_EXCLUSIVE | LK_RETRY; cnp->cn_cred = kcred; #if __FreeBSD_version < 1400037 cnp->cn_thread = curthread; #endif if (zfsvfs->z_use_namecache && !zfsvfs->z_replay) { struct vop_lookup_args a; a.a_gen.a_desc = &vop_lookup_desc; a.a_dvp = ZTOV(dzp); a.a_vpp = vpp; a.a_cnp = cnp; error = vfs_cache_lookup(&a); } else { error = zfs_lookup(ZTOV(dzp), name, vpp, cnp, nameiop, kcred, 0, B_FALSE); } #ifdef ZFS_DEBUG if (error) { printf("got error %d on name %s on op %d\n", error, name, nameiop); kdb_backtrace(); } #endif return (error); } int zfs_remove(znode_t *dzp, const char *name, cred_t *cr, int flags) { vnode_t *vp; int error; struct componentname cn; if ((error = zfs_lookup_internal(dzp, name, &vp, &cn, DELETE))) return (error); error = zfs_remove_(ZTOV(dzp), vp, name, cr); vput(vp); return (error); } /* * Create a new directory and insert it into dvp using the name * provided. Return a pointer to the inserted directory. * * IN: dvp - vnode of directory to add subdir to. * dirname - name of new directory. * vap - attributes of new directory. * cr - credentials of caller. * ct - caller context * flags - case flags * vsecp - ACL to be set * mnt_ns - Unused on FreeBSD * * OUT: vpp - vnode of created directory. * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated * vp - ctime|mtime|atime updated */ int zfs_mkdir(znode_t *dzp, const char *dirname, vattr_t *vap, znode_t **zpp, cred_t *cr, int flags, vsecattr_t *vsecp, zuserns_t *mnt_ns) { (void) flags, (void) vsecp; znode_t *zp; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; uint64_t txtype; dmu_tx_t *tx; int error; uid_t uid = crgetuid(cr); gid_t gid = crgetgid(cr); zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; ASSERT3U(vap->va_type, ==, VDIR); /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ if (zfsvfs->z_use_fuids == B_FALSE && ((vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); zilog = zfsvfs->z_log; if (dzp->z_pflags & ZFS_XATTR) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } if (zfsvfs->z_utf8 && u8_validate(dirname, strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } if (vap->va_mask & AT_XVATTR) { if ((error = secpolicy_xvattr(ZTOV(dzp), (xvattr_t *)vap, crgetuid(cr), cr, vap->va_type)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids, NULL)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } /* * First make sure the new directory doesn't exist. * * Existence is checked first to make sure we don't return * EACCES instead of EEXIST which can cause some applications * to fail. */ *zpp = NULL; if ((error = zfs_dirent_lookup(dzp, dirname, &zp, ZNEW))) { zfs_acl_ids_free(&acl_ids); zfs_exit(zfsvfs, FTAG); return (error); } ASSERT3P(zp, ==, NULL); if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr, mnt_ns))) { zfs_acl_ids_free(&acl_ids); zfs_exit(zfsvfs, FTAG); return (error); } if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) { zfs_acl_ids_free(&acl_ids); zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EDQUOT)); } /* * Add a new entry to the directory. */ getnewvnode_reserve_(); tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); getnewvnode_drop_reserve(); zfs_exit(zfsvfs, FTAG); return (error); } /* * Create new node. */ zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); /* * Now put new name in parent dir. */ (void) zfs_link_create(dzp, dirname, zp, tx, ZNEW); *zpp = zp; txtype = zfs_log_create_txtype(Z_DIR, NULL, vap); zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, NULL, acl_ids.z_fuidp, vap); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); getnewvnode_drop_reserve(); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (0); } #if __FreeBSD_version < 1300124 static void cache_vop_rmdir(struct vnode *dvp, struct vnode *vp) { cache_purge(dvp); cache_purge(vp); } #endif /* * Remove a directory subdir entry. If the current working * directory is the same as the subdir to be removed, the * remove will fail. * * IN: dvp - vnode of directory to remove from. * name - name of directory to be removed. * cwd - vnode of current working directory. * cr - credentials of caller. * ct - caller context * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated */ static int zfs_rmdir_(vnode_t *dvp, vnode_t *vp, const char *name, cred_t *cr) { znode_t *dzp = VTOZ(dvp); znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; dmu_tx_t *tx; int error; if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); if ((error = zfs_verify_zp(zp)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } zilog = zfsvfs->z_log; if ((error = zfs_zaccess_delete(dzp, zp, cr, NULL))) { goto out; } if (vp->v_type != VDIR) { error = SET_ERROR(ENOTDIR); goto out; } vnevent_rmdir(vp, dvp, name, ct); tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); zfs_sa_upgrade_txholds(tx, zp); zfs_sa_upgrade_txholds(tx, dzp); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); zfs_exit(zfsvfs, FTAG); return (error); } error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, NULL); if (error == 0) { uint64_t txtype = TX_RMDIR; zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT, B_FALSE); } dmu_tx_commit(tx); if (zfsvfs->z_use_namecache) cache_vop_rmdir(dvp, vp); out: if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } int zfs_rmdir(znode_t *dzp, const char *name, znode_t *cwd, cred_t *cr, int flags) { struct componentname cn; vnode_t *vp; int error; if ((error = zfs_lookup_internal(dzp, name, &vp, &cn, DELETE))) return (error); error = zfs_rmdir_(ZTOV(dzp), vp, name, cr); vput(vp); return (error); } /* * Read as many directory entries as will fit into the provided * buffer from the given directory cursor position (specified in * the uio structure). * * IN: vp - vnode of directory to read. * uio - structure supplying read location, range info, * and return buffer. * cr - credentials of caller. * ct - caller context * * OUT: uio - updated offset and range, buffer filled. * eofp - set to true if end-of-file detected. * ncookies- number of entries in cookies * cookies - offsets to directory entries * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - atime updated * * Note that the low 4 bits of the cookie returned by zap is always zero. * This allows us to use the low range for "special" directory entries: * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, * we use the offset 2 for the '.zfs' directory. */ static int zfs_readdir(vnode_t *vp, zfs_uio_t *uio, cred_t *cr, int *eofp, int *ncookies, cookie_t **cookies) { znode_t *zp = VTOZ(vp); iovec_t *iovp; dirent64_t *odp; zfsvfs_t *zfsvfs = zp->z_zfsvfs; objset_t *os; caddr_t outbuf; size_t bufsize; zap_cursor_t zc; zap_attribute_t zap; uint_t bytes_wanted; uint64_t offset; /* must be unsigned; checks for < 1 */ uint64_t parent; int local_eof; int outcount; int error; uint8_t prefetch; uint8_t type; int ncooks; cookie_t *cooks = NULL; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } /* * If we are not given an eof variable, * use a local one. */ if (eofp == NULL) eofp = &local_eof; /* * Check for valid iov_len. */ if (GET_UIO_STRUCT(uio)->uio_iov->iov_len <= 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } /* * Quit if directory has been removed (posix) */ if ((*eofp = zp->z_unlinked) != 0) { zfs_exit(zfsvfs, FTAG); return (0); } error = 0; os = zfsvfs->z_os; offset = zfs_uio_offset(uio); prefetch = zp->z_zn_prefetch; /* * Initialize the iterator cursor. */ if (offset <= 3) { /* * Start iteration from the beginning of the directory. */ zap_cursor_init(&zc, os, zp->z_id); } else { /* * The offset is a serialized cursor. */ zap_cursor_init_serialized(&zc, os, zp->z_id, offset); } /* * Get space to change directory entries into fs independent format. */ iovp = GET_UIO_STRUCT(uio)->uio_iov; bytes_wanted = iovp->iov_len; if (zfs_uio_segflg(uio) != UIO_SYSSPACE || zfs_uio_iovcnt(uio) != 1) { bufsize = bytes_wanted; outbuf = kmem_alloc(bufsize, KM_SLEEP); odp = (struct dirent64 *)outbuf; } else { bufsize = bytes_wanted; outbuf = NULL; odp = (struct dirent64 *)iovp->iov_base; } if (ncookies != NULL) { /* * Minimum entry size is dirent size and 1 byte for a file name. */ ncooks = zfs_uio_resid(uio) / (sizeof (struct dirent) - sizeof (((struct dirent *)NULL)->d_name) + 1); cooks = malloc(ncooks * sizeof (*cooks), M_TEMP, M_WAITOK); *cookies = cooks; *ncookies = ncooks; } /* * Transform to file-system independent format */ outcount = 0; while (outcount < bytes_wanted) { ino64_t objnum; ushort_t reclen; off64_t *next = NULL; /* * Special case `.', `..', and `.zfs'. */ if (offset == 0) { (void) strcpy(zap.za_name, "."); zap.za_normalization_conflict = 0; objnum = zp->z_id; type = DT_DIR; } else if (offset == 1) { (void) strcpy(zap.za_name, ".."); zap.za_normalization_conflict = 0; objnum = parent; type = DT_DIR; } else if (offset == 2 && zfs_show_ctldir(zp)) { (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); zap.za_normalization_conflict = 0; objnum = ZFSCTL_INO_ROOT; type = DT_DIR; } else { /* * Grab next entry. */ if ((error = zap_cursor_retrieve(&zc, &zap))) { if ((*eofp = (error == ENOENT)) != 0) break; else goto update; } if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { cmn_err(CE_WARN, "zap_readdir: bad directory " "entry, obj = %lld, offset = %lld\n", (u_longlong_t)zp->z_id, (u_longlong_t)offset); error = SET_ERROR(ENXIO); goto update; } objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); /* * MacOS X can extract the object type here such as: * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); */ type = ZFS_DIRENT_TYPE(zap.za_first_integer); } reclen = DIRENT64_RECLEN(strlen(zap.za_name)); /* * Will this entry fit in the buffer? */ if (outcount + reclen > bufsize) { /* * Did we manage to fit anything in the buffer? */ if (!outcount) { error = SET_ERROR(EINVAL); goto update; } break; } /* * Add normal entry: */ odp->d_ino = objnum; odp->d_reclen = reclen; odp->d_namlen = strlen(zap.za_name); /* NOTE: d_off is the offset for the *next* entry. */ next = &odp->d_off; strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1); odp->d_type = type; dirent_terminate(odp); odp = (dirent64_t *)((intptr_t)odp + reclen); outcount += reclen; ASSERT3S(outcount, <=, bufsize); /* Prefetch znode */ if (prefetch) dmu_prefetch(os, objnum, 0, 0, 0, ZIO_PRIORITY_SYNC_READ); /* * Move to the next entry, fill in the previous offset. */ if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { zap_cursor_advance(&zc); offset = zap_cursor_serialize(&zc); } else { offset += 1; } /* Fill the offset right after advancing the cursor. */ if (next != NULL) *next = offset; if (cooks != NULL) { *cooks++ = offset; ncooks--; KASSERT(ncooks >= 0, ("ncookies=%d", ncooks)); } } zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ /* Subtract unused cookies */ if (ncookies != NULL) *ncookies -= ncooks; if (zfs_uio_segflg(uio) == UIO_SYSSPACE && zfs_uio_iovcnt(uio) == 1) { iovp->iov_base += outcount; iovp->iov_len -= outcount; zfs_uio_resid(uio) -= outcount; } else if ((error = zfs_uiomove(outbuf, (long)outcount, UIO_READ, uio))) { /* * Reset the pointer. */ offset = zfs_uio_offset(uio); } update: zap_cursor_fini(&zc); if (zfs_uio_segflg(uio) != UIO_SYSSPACE || zfs_uio_iovcnt(uio) != 1) kmem_free(outbuf, bufsize); if (error == ENOENT) error = 0; ZFS_ACCESSTIME_STAMP(zfsvfs, zp); zfs_uio_setoffset(uio, offset); zfs_exit(zfsvfs, FTAG); if (error != 0 && cookies != NULL) { free(*cookies, M_TEMP); *cookies = NULL; *ncookies = 0; } return (error); } /* * Get the requested file attributes and place them in the provided * vattr structure. * * IN: vp - vnode of file. * vap - va_mask identifies requested attributes. * If AT_XVATTR set, then optional attrs are requested * flags - ATTR_NOACLCHECK (CIFS server context) * cr - credentials of caller. * * OUT: vap - attribute values. * * RETURN: 0 (always succeeds). */ static int zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error = 0; uint32_t blksize; u_longlong_t nblocks; uint64_t mtime[2], ctime[2], crtime[2], rdev; xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ xoptattr_t *xoap = NULL; boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; sa_bulk_attr_t bulk[4]; int count = 0; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); if (vp->v_type == VBLK || vp->v_type == VCHR) SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL, &rdev, 8); if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } /* * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. * Also, if we are the owner don't bother, since owner should * always be allowed to read basic attributes of file. */ if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (vap->va_uid != crgetuid(cr))) { if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, skipaclchk, cr, NULL))) { zfs_exit(zfsvfs, FTAG); return (error); } } /* * Return all attributes. It's cheaper to provide the answer * than to determine whether we were asked the question. */ vap->va_type = IFTOVT(zp->z_mode); vap->va_mode = zp->z_mode & ~S_IFMT; vn_fsid(vp, vap); vap->va_nodeid = zp->z_id; vap->va_nlink = zp->z_links; if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp) && zp->z_links < ZFS_LINK_MAX) vap->va_nlink++; vap->va_size = zp->z_size; if (vp->v_type == VBLK || vp->v_type == VCHR) vap->va_rdev = zfs_cmpldev(rdev); vap->va_gen = zp->z_gen; vap->va_flags = 0; /* FreeBSD: Reset chflags(2) flags. */ vap->va_filerev = zp->z_seq; /* * Add in any requested optional attributes and the create time. * Also set the corresponding bits in the returned attribute bitmap. */ if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { xoap->xoa_archive = ((zp->z_pflags & ZFS_ARCHIVE) != 0); XVA_SET_RTN(xvap, XAT_ARCHIVE); } if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { xoap->xoa_readonly = ((zp->z_pflags & ZFS_READONLY) != 0); XVA_SET_RTN(xvap, XAT_READONLY); } if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { xoap->xoa_system = ((zp->z_pflags & ZFS_SYSTEM) != 0); XVA_SET_RTN(xvap, XAT_SYSTEM); } if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { xoap->xoa_hidden = ((zp->z_pflags & ZFS_HIDDEN) != 0); XVA_SET_RTN(xvap, XAT_HIDDEN); } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { xoap->xoa_nounlink = ((zp->z_pflags & ZFS_NOUNLINK) != 0); XVA_SET_RTN(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { xoap->xoa_immutable = ((zp->z_pflags & ZFS_IMMUTABLE) != 0); XVA_SET_RTN(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { xoap->xoa_appendonly = ((zp->z_pflags & ZFS_APPENDONLY) != 0); XVA_SET_RTN(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { xoap->xoa_nodump = ((zp->z_pflags & ZFS_NODUMP) != 0); XVA_SET_RTN(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { xoap->xoa_opaque = ((zp->z_pflags & ZFS_OPAQUE) != 0); XVA_SET_RTN(xvap, XAT_OPAQUE); } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { xoap->xoa_av_quarantined = ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { xoap->xoa_av_modified = ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); XVA_SET_RTN(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && vp->v_type == VREG) { zfs_sa_get_scanstamp(zp, xvap); } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); XVA_SET_RTN(xvap, XAT_REPARSE); } if (XVA_ISSET_REQ(xvap, XAT_GEN)) { xoap->xoa_generation = zp->z_gen; XVA_SET_RTN(xvap, XAT_GEN); } if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { xoap->xoa_offline = ((zp->z_pflags & ZFS_OFFLINE) != 0); XVA_SET_RTN(xvap, XAT_OFFLINE); } if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { xoap->xoa_sparse = ((zp->z_pflags & ZFS_SPARSE) != 0); XVA_SET_RTN(xvap, XAT_SPARSE); } if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { xoap->xoa_projinherit = ((zp->z_pflags & ZFS_PROJINHERIT) != 0); XVA_SET_RTN(xvap, XAT_PROJINHERIT); } if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { xoap->xoa_projid = zp->z_projid; XVA_SET_RTN(xvap, XAT_PROJID); } } ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); ZFS_TIME_DECODE(&vap->va_mtime, mtime); ZFS_TIME_DECODE(&vap->va_ctime, ctime); ZFS_TIME_DECODE(&vap->va_birthtime, crtime); sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); vap->va_blksize = blksize; vap->va_bytes = nblocks << 9; /* nblocks * 512 */ if (zp->z_blksz == 0) { /* * Block size hasn't been set; suggest maximal I/O transfers. */ vap->va_blksize = zfsvfs->z_max_blksz; } zfs_exit(zfsvfs, FTAG); return (0); } /* * Set the file attributes to the values contained in the * vattr structure. * * IN: zp - znode of file to be modified. * vap - new attribute values. * If AT_XVATTR set, then optional attrs are being set * flags - ATTR_UTIME set if non-default time values provided. * - ATTR_NOACLCHECK (CIFS context only). * cr - credentials of caller. * mnt_ns - Unused on FreeBSD * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - ctime updated, mtime updated if size changed. */ int zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zuserns_t *mnt_ns) { vnode_t *vp = ZTOV(zp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; objset_t *os; zilog_t *zilog; dmu_tx_t *tx; vattr_t oldva; xvattr_t tmpxvattr; uint_t mask = vap->va_mask; uint_t saved_mask = 0; uint64_t saved_mode; int trim_mask = 0; uint64_t new_mode; uint64_t new_uid, new_gid; uint64_t xattr_obj; uint64_t mtime[2], ctime[2]; uint64_t projid = ZFS_INVALID_PROJID; znode_t *attrzp; int need_policy = FALSE; int err, err2; zfs_fuid_info_t *fuidp = NULL; xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ xoptattr_t *xoap; zfs_acl_t *aclp; boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; boolean_t fuid_dirtied = B_FALSE; sa_bulk_attr_t bulk[7], xattr_bulk[7]; int count = 0, xattr_count = 0; if (mask == 0) return (0); if (mask & AT_NOSET) return (SET_ERROR(EINVAL)); if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (err); os = zfsvfs->z_os; zilog = zfsvfs->z_log; /* * Make sure that if we have ephemeral uid/gid or xvattr specified * that file system is at proper version level */ if (zfsvfs->z_use_fuids == B_FALSE && (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || (mask & AT_XVATTR))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } if (mask & AT_SIZE && vp->v_type == VDIR) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EISDIR)); } if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } /* * If this is an xvattr_t, then get a pointer to the structure of * optional attributes. If this is NULL, then we have a vattr_t. */ xoap = xva_getxoptattr(xvap); xva_init(&tmpxvattr); /* * Immutable files can only alter immutable bit and atime */ if ((zp->z_pflags & ZFS_IMMUTABLE) && ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } /* * Note: ZFS_READONLY is handled in zfs_zaccess_common. */ /* * Verify timestamps doesn't overflow 32 bits. * ZFS can handle large timestamps, but 32bit syscalls can't * handle times greater than 2039. This check should be removed * once large timestamps are fully supported. */ if (mask & (AT_ATIME | AT_MTIME)) { if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EOVERFLOW)); } } if (xoap != NULL && (mask & AT_XVATTR)) { if (XVA_ISSET_REQ(xvap, XAT_CREATETIME) && TIMESPEC_OVERFLOW(&vap->va_birthtime)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EOVERFLOW)); } if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { if (!dmu_objset_projectquota_enabled(os) || (!S_ISREG(zp->z_mode) && !S_ISDIR(zp->z_mode))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EOPNOTSUPP)); } projid = xoap->xoa_projid; if (unlikely(projid == ZFS_INVALID_PROJID)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID) projid = ZFS_INVALID_PROJID; else need_policy = TRUE; } if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) && (xoap->xoa_projinherit != ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) && (!dmu_objset_projectquota_enabled(os) || (!S_ISREG(zp->z_mode) && !S_ISDIR(zp->z_mode)))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EOPNOTSUPP)); } } attrzp = NULL; aclp = NULL; if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EROFS)); } /* * First validate permissions */ if (mask & AT_SIZE) { /* * XXX - Note, we are not providing any open * mode flags here (like FNDELAY), so we may * block if there are locks present... this * should be addressed in openat(). */ /* XXX - would it be OK to generate a log record here? */ err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); if (err) { zfs_exit(zfsvfs, FTAG); return (err); } } if (mask & (AT_ATIME|AT_MTIME) || ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || XVA_ISSET_REQ(xvap, XAT_READONLY) || XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || XVA_ISSET_REQ(xvap, XAT_OFFLINE) || XVA_ISSET_REQ(xvap, XAT_SPARSE) || XVA_ISSET_REQ(xvap, XAT_CREATETIME) || XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, skipaclchk, cr, mnt_ns); } if (mask & (AT_UID|AT_GID)) { int idmask = (mask & (AT_UID|AT_GID)); int take_owner; int take_group; /* * NOTE: even if a new mode is being set, * we may clear S_ISUID/S_ISGID bits. */ if (!(mask & AT_MODE)) vap->va_mode = zp->z_mode; /* * Take ownership or chgrp to group we are a member of */ take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); take_group = (mask & AT_GID) && zfs_groupmember(zfsvfs, vap->va_gid, cr); /* * If both AT_UID and AT_GID are set then take_owner and * take_group must both be set in order to allow taking * ownership. * * Otherwise, send the check through secpolicy_vnode_setattr() * */ if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || ((idmask == AT_UID) && take_owner) || ((idmask == AT_GID) && take_group)) { if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, skipaclchk, cr, mnt_ns) == 0) { /* * Remove setuid/setgid for non-privileged users */ secpolicy_setid_clear(vap, vp, cr); trim_mask = (mask & (AT_UID|AT_GID)); } else { need_policy = TRUE; } } else { need_policy = TRUE; } } oldva.va_mode = zp->z_mode; zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); if (mask & AT_XVATTR) { /* * Update xvattr mask to include only those attributes * that are actually changing. * * the bits will be restored prior to actually setting * the attributes so the caller thinks they were set. */ if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { if (xoap->xoa_appendonly != ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_APPENDONLY); XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); } } if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { if (xoap->xoa_projinherit != ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_PROJINHERIT); XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT); } } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { if (xoap->xoa_nounlink != ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_NOUNLINK); XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); } } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { if (xoap->xoa_immutable != ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_IMMUTABLE); XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); } } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { if (xoap->xoa_nodump != ((zp->z_pflags & ZFS_NODUMP) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_NODUMP); XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); } } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { if (xoap->xoa_av_modified != ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); } } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { if ((vp->v_type != VREG && xoap->xoa_av_quarantined) || xoap->xoa_av_quarantined != ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); } } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } if (need_policy == FALSE && (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { need_policy = TRUE; } } if (mask & AT_MODE) { if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr, mnt_ns) == 0) { err = secpolicy_setid_setsticky_clear(vp, vap, &oldva, cr); if (err) { zfs_exit(zfsvfs, FTAG); return (err); } trim_mask |= AT_MODE; } else { need_policy = TRUE; } } if (need_policy) { /* * If trim_mask is set then take ownership * has been granted or write_acl is present and user * has the ability to modify mode. In that case remove * UID|GID and or MODE from mask so that * secpolicy_vnode_setattr() doesn't revoke it. */ if (trim_mask) { saved_mask = vap->va_mask; vap->va_mask &= ~trim_mask; if (trim_mask & AT_MODE) { /* * Save the mode, as secpolicy_vnode_setattr() * will overwrite it with ova.va_mode. */ saved_mode = vap->va_mode; } } err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); if (err) { zfs_exit(zfsvfs, FTAG); return (err); } if (trim_mask) { vap->va_mask |= saved_mask; if (trim_mask & AT_MODE) { /* * Recover the mode after * secpolicy_vnode_setattr(). */ vap->va_mode = saved_mode; } } } /* * secpolicy_vnode_setattr, or take ownership may have * changed va_mask */ mask = vap->va_mask; if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) { err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, sizeof (xattr_obj)); if (err == 0 && xattr_obj) { err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); if (err == 0) { err = vn_lock(ZTOV(attrzp), LK_EXCLUSIVE); if (err != 0) vrele(ZTOV(attrzp)); } if (err) goto out2; } if (mask & AT_UID) { new_uid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); if (new_uid != zp->z_uid && zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT, new_uid)) { if (attrzp) vput(ZTOV(attrzp)); err = SET_ERROR(EDQUOT); goto out2; } } if (mask & AT_GID) { new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp); if (new_gid != zp->z_gid && zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT, new_gid)) { if (attrzp) vput(ZTOV(attrzp)); err = SET_ERROR(EDQUOT); goto out2; } } if (projid != ZFS_INVALID_PROJID && zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) { if (attrzp) vput(ZTOV(attrzp)); err = SET_ERROR(EDQUOT); goto out2; } } tx = dmu_tx_create(os); if (mask & AT_MODE) { uint64_t pmode = zp->z_mode; uint64_t acl_obj; new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { err = SET_ERROR(EPERM); goto out; } if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))) goto out; if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { /* * Are we upgrading ACL from old V0 format * to V1 format? */ if (zfsvfs->z_version >= ZPL_VERSION_FUID && zfs_znode_acl_version(zp) == ZFS_ACL_VERSION_INITIAL) { dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } else { dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes); } } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); } else { if (((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID))) dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); else dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); } if (attrzp) { dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); } fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); zfs_sa_upgrade_txholds(tx, zp); err = dmu_tx_assign(tx, TXG_WAIT); if (err) goto out; count = 0; /* * Set each attribute requested. * We group settings according to the locks they need to acquire. * * Note: you cannot set ctime directly, although it will be * updated as a side-effect of calling this function. */ if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) { /* * For the existed object that is upgraded from old system, * its on-disk layout has no slot for the project ID attribute. * But quota accounting logic needs to access related slots by * offset directly. So we need to adjust old objects' layout * to make the project ID to some unified and fixed offset. */ if (attrzp) err = sa_add_projid(attrzp->z_sa_hdl, tx, projid); if (err == 0) err = sa_add_projid(zp->z_sa_hdl, tx, projid); if (unlikely(err == EEXIST)) err = 0; else if (err != 0) goto out; else projid = ZFS_INVALID_PROJID; } if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_enter(&zp->z_acl_lock); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); if (attrzp) { if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_enter(&attrzp->z_acl_lock); SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, sizeof (attrzp->z_pflags)); if (projid != ZFS_INVALID_PROJID) { attrzp->z_projid = projid; SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid, sizeof (attrzp->z_projid)); } } if (mask & (AT_UID|AT_GID)) { if (mask & AT_UID) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &new_uid, sizeof (new_uid)); zp->z_uid = new_uid; if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_UID(zfsvfs), NULL, &new_uid, sizeof (new_uid)); attrzp->z_uid = new_uid; } } if (mask & AT_GID) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &new_gid, sizeof (new_gid)); zp->z_gid = new_gid; if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_GID(zfsvfs), NULL, &new_gid, sizeof (new_gid)); attrzp->z_gid = new_gid; } } if (!(mask & AT_MODE)) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &new_mode, sizeof (new_mode)); new_mode = zp->z_mode; } err = zfs_acl_chown_setattr(zp); ASSERT0(err); if (attrzp) { vn_seqc_write_begin(ZTOV(attrzp)); err = zfs_acl_chown_setattr(attrzp); vn_seqc_write_end(ZTOV(attrzp)); ASSERT0(err); } } if (mask & AT_MODE) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &new_mode, sizeof (new_mode)); zp->z_mode = new_mode; ASSERT3P(aclp, !=, NULL); err = zfs_aclset_common(zp, aclp, cr, tx); ASSERT0(err); if (zp->z_acl_cached) zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = aclp; aclp = NULL; } if (mask & AT_ATIME) { ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &zp->z_atime, sizeof (zp->z_atime)); } if (mask & AT_MTIME) { ZFS_TIME_ENCODE(&vap->va_mtime, mtime); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, sizeof (mtime)); } if (projid != ZFS_INVALID_PROJID) { zp->z_projid = projid; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid, sizeof (zp->z_projid)); } /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ if (mask & AT_SIZE && !(mask & AT_MTIME)) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, sizeof (mtime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); } else if (mask != 0) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime); if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(attrzp, STATE_CHANGED, mtime, ctime); } } /* * Do this after setting timestamps to prevent timestamp * update from toggling bit */ if (xoap && (mask & AT_XVATTR)) { if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) xoap->xoa_createtime = vap->va_birthtime; /* * restore trimmed off masks * so that return masks can be set for caller. */ if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { XVA_SET_REQ(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { XVA_SET_REQ(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { XVA_SET_REQ(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { XVA_SET_REQ(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { XVA_SET_REQ(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) { XVA_SET_REQ(xvap, XAT_PROJINHERIT); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ASSERT3S(vp->v_type, ==, VREG); zfs_xvattr_set(zp, xvap, tx); } if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); if (mask != 0) zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_exit(&zp->z_acl_lock); if (attrzp) { if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_exit(&attrzp->z_acl_lock); } out: if (err == 0 && attrzp) { err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, xattr_count, tx); ASSERT0(err2); } if (attrzp) vput(ZTOV(attrzp)); if (aclp) zfs_acl_free(aclp); if (fuidp) { zfs_fuid_info_free(fuidp); fuidp = NULL; } if (err) { dmu_tx_abort(tx); } else { err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); dmu_tx_commit(tx); } out2: if (os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (err); } /* * Look up the directory entries corresponding to the source and target * directory/name pairs. */ static int zfs_rename_relock_lookup(znode_t *sdzp, const struct componentname *scnp, znode_t **szpp, znode_t *tdzp, const struct componentname *tcnp, znode_t **tzpp) { zfsvfs_t *zfsvfs; znode_t *szp, *tzp; int error; /* * Before using sdzp and tdzp we must ensure that they are live. * As a porting legacy from illumos we have two things to worry * about. One is typical for FreeBSD and it is that the vnode is * not reclaimed (doomed). The other is that the znode is live. * The current code can invalidate the znode without acquiring the * corresponding vnode lock if the object represented by the znode * and vnode is no longer valid after a rollback or receive operation. * z_teardown_lock hidden behind zfs_enter and zfs_exit is the lock * that protects the znodes from the invalidation. */ zfsvfs = sdzp->z_zfsvfs; ASSERT3P(zfsvfs, ==, tdzp->z_zfsvfs); if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0) return (error); if ((error = zfs_verify_zp(tdzp)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } /* * Re-resolve svp to be certain it still exists and fetch the * correct vnode. */ error = zfs_dirent_lookup(sdzp, scnp->cn_nameptr, &szp, ZEXISTS); if (error != 0) { /* Source entry invalid or not there. */ if ((scnp->cn_flags & ISDOTDOT) != 0 || (scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.')) error = SET_ERROR(EINVAL); goto out; } *szpp = szp; /* * Re-resolve tvp, if it disappeared we just carry on. */ error = zfs_dirent_lookup(tdzp, tcnp->cn_nameptr, &tzp, 0); if (error != 0) { vrele(ZTOV(szp)); if ((tcnp->cn_flags & ISDOTDOT) != 0) error = SET_ERROR(EINVAL); goto out; } *tzpp = tzp; out: zfs_exit(zfsvfs, FTAG); return (error); } /* * We acquire all but fdvp locks using non-blocking acquisitions. If we * fail to acquire any lock in the path we will drop all held locks, * acquire the new lock in a blocking fashion, and then release it and * restart the rename. This acquire/release step ensures that we do not * spin on a lock waiting for release. On error release all vnode locks * and decrement references the way tmpfs_rename() would do. */ static int zfs_rename_relock(struct vnode *sdvp, struct vnode **svpp, struct vnode *tdvp, struct vnode **tvpp, const struct componentname *scnp, const struct componentname *tcnp) { struct vnode *nvp, *svp, *tvp; znode_t *sdzp, *tdzp, *szp, *tzp; int error; VOP_UNLOCK1(tdvp); if (*tvpp != NULL && *tvpp != tdvp) VOP_UNLOCK1(*tvpp); relock: error = vn_lock(sdvp, LK_EXCLUSIVE); if (error) goto out; error = vn_lock(tdvp, LK_EXCLUSIVE | LK_NOWAIT); if (error != 0) { VOP_UNLOCK1(sdvp); if (error != EBUSY) goto out; error = vn_lock(tdvp, LK_EXCLUSIVE); if (error) goto out; VOP_UNLOCK1(tdvp); goto relock; } tdzp = VTOZ(tdvp); sdzp = VTOZ(sdvp); error = zfs_rename_relock_lookup(sdzp, scnp, &szp, tdzp, tcnp, &tzp); if (error != 0) { VOP_UNLOCK1(sdvp); VOP_UNLOCK1(tdvp); goto out; } svp = ZTOV(szp); tvp = tzp != NULL ? ZTOV(tzp) : NULL; /* * Now try acquire locks on svp and tvp. */ nvp = svp; error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT); if (error != 0) { VOP_UNLOCK1(sdvp); VOP_UNLOCK1(tdvp); if (tvp != NULL) vrele(tvp); if (error != EBUSY) { vrele(nvp); goto out; } error = vn_lock(nvp, LK_EXCLUSIVE); if (error != 0) { vrele(nvp); goto out; } VOP_UNLOCK1(nvp); /* * Concurrent rename race. * XXX ? */ if (nvp == tdvp) { vrele(nvp); error = SET_ERROR(EINVAL); goto out; } vrele(*svpp); *svpp = nvp; goto relock; } vrele(*svpp); *svpp = nvp; if (*tvpp != NULL) vrele(*tvpp); *tvpp = NULL; if (tvp != NULL) { nvp = tvp; error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT); if (error != 0) { VOP_UNLOCK1(sdvp); VOP_UNLOCK1(tdvp); VOP_UNLOCK1(*svpp); if (error != EBUSY) { vrele(nvp); goto out; } error = vn_lock(nvp, LK_EXCLUSIVE); if (error != 0) { vrele(nvp); goto out; } vput(nvp); goto relock; } *tvpp = nvp; } return (0); out: return (error); } /* * Note that we must use VRELE_ASYNC in this function as it walks * up the directory tree and vrele may need to acquire an exclusive * lock if a last reference to a vnode is dropped. */ static int zfs_rename_check(znode_t *szp, znode_t *sdzp, znode_t *tdzp) { zfsvfs_t *zfsvfs; znode_t *zp, *zp1; uint64_t parent; int error; zfsvfs = tdzp->z_zfsvfs; if (tdzp == szp) return (SET_ERROR(EINVAL)); if (tdzp == sdzp) return (0); if (tdzp->z_id == zfsvfs->z_root) return (0); zp = tdzp; for (;;) { ASSERT(!zp->z_unlinked); if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0) break; if (parent == szp->z_id) { error = SET_ERROR(EINVAL); break; } if (parent == zfsvfs->z_root) break; if (parent == sdzp->z_id) break; error = zfs_zget(zfsvfs, parent, &zp1); if (error != 0) break; if (zp != tdzp) VN_RELE_ASYNC(ZTOV(zp), dsl_pool_zrele_taskq( dmu_objset_pool(zfsvfs->z_os))); zp = zp1; } if (error == ENOTDIR) panic("checkpath: .. not a directory\n"); if (zp != tdzp) VN_RELE_ASYNC(ZTOV(zp), dsl_pool_zrele_taskq(dmu_objset_pool(zfsvfs->z_os))); return (error); } #if __FreeBSD_version < 1300124 static void cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp, struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp) { cache_purge(fvp); if (tvp != NULL) cache_purge(tvp); cache_purge_negative(tdvp); } #endif static int zfs_do_rename_impl(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp, vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp, cred_t *cr); /* * Move an entry from the provided source directory to the target * directory. Change the entry name as indicated. * * IN: sdvp - Source directory containing the "old entry". * scnp - Old entry name. * tdvp - Target directory to contain the "new entry". * tcnp - New entry name. * cr - credentials of caller. * INOUT: svpp - Source file * tvpp - Target file, may point to NULL initially * * RETURN: 0 on success, error code on failure. * * Timestamps: * sdvp,tdvp - ctime|mtime updated */ static int zfs_do_rename(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp, vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp, cred_t *cr) { int error; ASSERT_VOP_ELOCKED(tdvp, __func__); if (*tvpp != NULL) ASSERT_VOP_ELOCKED(*tvpp, __func__); /* Reject renames across filesystems. */ if ((*svpp)->v_mount != tdvp->v_mount || ((*tvpp) != NULL && (*svpp)->v_mount != (*tvpp)->v_mount)) { error = SET_ERROR(EXDEV); goto out; } if (zfsctl_is_node(tdvp)) { error = SET_ERROR(EXDEV); goto out; } /* * Lock all four vnodes to ensure safety and semantics of renaming. */ error = zfs_rename_relock(sdvp, svpp, tdvp, tvpp, scnp, tcnp); if (error != 0) { /* no vnodes are locked in the case of error here */ return (error); } error = zfs_do_rename_impl(sdvp, svpp, scnp, tdvp, tvpp, tcnp, cr); VOP_UNLOCK1(sdvp); VOP_UNLOCK1(*svpp); out: if (*tvpp != NULL) VOP_UNLOCK1(*tvpp); if (tdvp != *tvpp) VOP_UNLOCK1(tdvp); return (error); } static int zfs_do_rename_impl(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp, vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp, cred_t *cr) { dmu_tx_t *tx; zfsvfs_t *zfsvfs; zilog_t *zilog; znode_t *tdzp, *sdzp, *tzp, *szp; const char *snm = scnp->cn_nameptr; const char *tnm = tcnp->cn_nameptr; int error; tdzp = VTOZ(tdvp); sdzp = VTOZ(sdvp); zfsvfs = tdzp->z_zfsvfs; if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0) return (error); if ((error = zfs_verify_zp(sdzp)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } zilog = zfsvfs->z_log; if (zfsvfs->z_utf8 && u8_validate(tnm, strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { error = SET_ERROR(EILSEQ); goto out; } /* If source and target are the same file, there is nothing to do. */ if ((*svpp) == (*tvpp)) { error = 0; goto out; } if (((*svpp)->v_type == VDIR && (*svpp)->v_mountedhere != NULL) || ((*tvpp) != NULL && (*tvpp)->v_type == VDIR && (*tvpp)->v_mountedhere != NULL)) { error = SET_ERROR(EXDEV); goto out; } szp = VTOZ(*svpp); if ((error = zfs_verify_zp(szp)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } tzp = *tvpp == NULL ? NULL : VTOZ(*tvpp); if (tzp != NULL) { if ((error = zfs_verify_zp(tzp)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } } /* * This is to prevent the creation of links into attribute space * by renaming a linked file into/outof an attribute directory. * See the comment in zfs_link() for why this is considered bad. */ if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { error = SET_ERROR(EINVAL); goto out; } /* * If we are using project inheritance, means if the directory has * ZFS_PROJINHERIT set, then its descendant directories will inherit * not only the project ID, but also the ZFS_PROJINHERIT flag. Under * such case, we only allow renames into our tree when the project * IDs are the same. */ if (tdzp->z_pflags & ZFS_PROJINHERIT && tdzp->z_projid != szp->z_projid) { error = SET_ERROR(EXDEV); goto out; } /* * Must have write access at the source to remove the old entry * and write access at the target to create the new entry. * Note that if target and source are the same, this can be * done in a single check. */ if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, NULL))) goto out; if ((*svpp)->v_type == VDIR) { /* * Avoid ".", "..", and aliases of "." for obvious reasons. */ if ((scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.') || sdzp == szp || (scnp->cn_flags | tcnp->cn_flags) & ISDOTDOT) { error = EINVAL; goto out; } /* * Check to make sure rename is valid. * Can't do a move like this: /usr/a/b to /usr/a/b/c/d */ if ((error = zfs_rename_check(szp, sdzp, tdzp))) goto out; } /* * Does target exist? */ if (tzp) { /* * Source and target must be the same type. */ if ((*svpp)->v_type == VDIR) { if ((*tvpp)->v_type != VDIR) { error = SET_ERROR(ENOTDIR); goto out; } else { cache_purge(tdvp); if (sdvp != tdvp) cache_purge(sdvp); } } else { if ((*tvpp)->v_type == VDIR) { error = SET_ERROR(EISDIR); goto out; } } } vn_seqc_write_begin(*svpp); vn_seqc_write_begin(sdvp); if (*tvpp != NULL) vn_seqc_write_begin(*tvpp); if (tdvp != *tvpp) vn_seqc_write_begin(tdvp); vnevent_rename_src(*svpp, sdvp, scnp->cn_nameptr, ct); if (tzp) vnevent_rename_dest(*tvpp, tdvp, tnm, ct); /* * notify the target directory if it is not the same * as source directory. */ if (tdvp != sdvp) { vnevent_rename_dest_dir(tdvp, ct); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); if (sdzp != tdzp) { dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, tdzp); } if (tzp) { dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, tzp); } zfs_sa_upgrade_txholds(tx, szp); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); goto out_seq; } if (tzp) /* Attempt to remove the existing target */ error = zfs_link_destroy(tdzp, tnm, tzp, tx, 0, NULL); if (error == 0) { error = zfs_link_create(tdzp, tnm, szp, tx, ZRENAMING); if (error == 0) { szp->z_pflags |= ZFS_AV_MODIFIED; error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), (void *)&szp->z_pflags, sizeof (uint64_t), tx); ASSERT0(error); error = zfs_link_destroy(sdzp, snm, szp, tx, ZRENAMING, NULL); if (error == 0) { zfs_log_rename(zilog, tx, TX_RENAME, sdzp, snm, tdzp, tnm, szp); } else { /* * At this point, we have successfully created * the target name, but have failed to remove * the source name. Since the create was done * with the ZRENAMING flag, there are * complications; for one, the link count is * wrong. The easiest way to deal with this * is to remove the newly created target, and * return the original error. This must * succeed; fortunately, it is very unlikely to * fail, since we just created it. */ VERIFY0(zfs_link_destroy(tdzp, tnm, szp, tx, ZRENAMING, NULL)); } } if (error == 0) { cache_vop_rename(sdvp, *svpp, tdvp, *tvpp, scnp, tcnp); } } dmu_tx_commit(tx); out_seq: vn_seqc_write_end(*svpp); vn_seqc_write_end(sdvp); if (*tvpp != NULL) vn_seqc_write_end(*tvpp); if (tdvp != *tvpp) vn_seqc_write_end(tdvp); out: if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } int zfs_rename(znode_t *sdzp, const char *sname, znode_t *tdzp, const char *tname, cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zuserns_t *mnt_ns) { struct componentname scn, tcn; vnode_t *sdvp, *tdvp; vnode_t *svp, *tvp; int error; svp = tvp = NULL; if (rflags != 0 || wo_vap != NULL) return (SET_ERROR(EINVAL)); sdvp = ZTOV(sdzp); tdvp = ZTOV(tdzp); error = zfs_lookup_internal(sdzp, sname, &svp, &scn, DELETE); if (sdzp->z_zfsvfs->z_replay == B_FALSE) VOP_UNLOCK1(sdvp); if (error != 0) goto fail; VOP_UNLOCK1(svp); vn_lock(tdvp, LK_EXCLUSIVE | LK_RETRY); error = zfs_lookup_internal(tdzp, tname, &tvp, &tcn, RENAME); if (error == EJUSTRETURN) tvp = NULL; else if (error != 0) { VOP_UNLOCK1(tdvp); goto fail; } error = zfs_do_rename(sdvp, &svp, &scn, tdvp, &tvp, &tcn, cr); fail: if (svp != NULL) vrele(svp); if (tvp != NULL) vrele(tvp); return (error); } /* * Insert the indicated symbolic reference entry into the directory. * * IN: dvp - Directory to contain new symbolic link. * link - Name for new symlink entry. * vap - Attributes of new entry. * cr - credentials of caller. * ct - caller context * flags - case flags * mnt_ns - Unused on FreeBSD * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated */ int zfs_symlink(znode_t *dzp, const char *name, vattr_t *vap, const char *link, znode_t **zpp, cred_t *cr, int flags, zuserns_t *mnt_ns) { (void) flags; znode_t *zp; dmu_tx_t *tx; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; uint64_t len = strlen(link); int error; zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; uint64_t txtype = TX_SYMLINK; ASSERT3S(vap->va_type, ==, VLNK); if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); zilog = zfsvfs->z_log; if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } if (len > MAXPATHLEN) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(ENAMETOOLONG)); } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids, NULL)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } /* * Attempt to lock directory; fail if entry already exists. */ error = zfs_dirent_lookup(dzp, name, &zp, ZNEW); if (error) { zfs_acl_ids_free(&acl_ids); zfs_exit(zfsvfs, FTAG); return (error); } if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) { zfs_acl_ids_free(&acl_ids); zfs_exit(zfsvfs, FTAG); return (error); } if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, 0 /* projid */)) { zfs_acl_ids_free(&acl_ids); zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EDQUOT)); } getnewvnode_reserve_(); tx = dmu_tx_create(zfsvfs->z_os); fuid_dirtied = zfsvfs->z_fuid_dirty; dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE + len); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); getnewvnode_drop_reserve(); zfs_exit(zfsvfs, FTAG); return (error); } /* * Create a new object for the symlink. * for version 4 ZPL datasets the symlink will be an SA attribute */ zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); if (zp->z_is_sa) error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), __DECONST(void *, link), len, tx); else zfs_sa_symlink(zp, __DECONST(char *, link), len, tx); zp->z_size = len; (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), &zp->z_size, sizeof (zp->z_size), tx); /* * Insert the new object into the directory. */ (void) zfs_link_create(dzp, name, zp, tx, ZNEW); zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); *zpp = zp; zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); getnewvnode_drop_reserve(); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } /* * Return, in the buffer contained in the provided uio structure, * the symbolic path referred to by vp. * * IN: vp - vnode of symbolic link. * uio - structure to contain the link path. * cr - credentials of caller. * ct - caller context * * OUT: uio - structure containing the link path. * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - atime updated */ static int zfs_readlink(vnode_t *vp, zfs_uio_t *uio, cred_t *cr, caller_context_t *ct) { (void) cr, (void) ct; znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if (zp->z_is_sa) error = sa_lookup_uio(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), uio); else error = zfs_sa_readlink(zp, uio); ZFS_ACCESSTIME_STAMP(zfsvfs, zp); zfs_exit(zfsvfs, FTAG); return (error); } /* * Insert a new entry into directory tdvp referencing svp. * * IN: tdvp - Directory to contain new entry. * svp - vnode of new entry. * name - name of new entry. * cr - credentials of caller. * * RETURN: 0 on success, error code on failure. * * Timestamps: * tdvp - ctime|mtime updated * svp - ctime updated */ int zfs_link(znode_t *tdzp, znode_t *szp, const char *name, cred_t *cr, int flags) { (void) flags; znode_t *tzp; zfsvfs_t *zfsvfs = tdzp->z_zfsvfs; zilog_t *zilog; dmu_tx_t *tx; int error; uint64_t parent; uid_t owner; ASSERT3S(ZTOV(tdzp)->v_type, ==, VDIR); if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0) return (error); zilog = zfsvfs->z_log; /* * POSIX dictates that we return EPERM here. * Better choices include ENOTSUP or EISDIR. */ if (ZTOV(szp)->v_type == VDIR) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } if ((error = zfs_verify_zp(szp)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } /* * If we are using project inheritance, means if the directory has * ZFS_PROJINHERIT set, then its descendant directories will inherit * not only the project ID, but also the ZFS_PROJINHERIT flag. Under * such case, we only allow hard link creation in our tree when the * project IDs are the same. */ if (tdzp->z_pflags & ZFS_PROJINHERIT && tdzp->z_projid != szp->z_projid) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EXDEV)); } if (szp->z_pflags & (ZFS_APPENDONLY | ZFS_IMMUTABLE | ZFS_READONLY)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } /* Prevent links to .zfs/shares files */ if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (uint64_t))) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } if (parent == zfsvfs->z_shares_dir) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } /* * We do not support links between attributes and non-attributes * because of the potential security risk of creating links * into "normal" file space in order to circumvent restrictions * imposed in attribute space. */ if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); if (owner != crgetuid(cr) && secpolicy_basic_link(ZTOV(szp), cr) != 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr, NULL))) { zfs_exit(zfsvfs, FTAG); return (error); } /* * Attempt to lock directory; fail if entry already exists. */ error = zfs_dirent_lookup(tdzp, name, &tzp, ZNEW); if (error) { zfs_exit(zfsvfs, FTAG); return (error); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name); zfs_sa_upgrade_txholds(tx, szp); zfs_sa_upgrade_txholds(tx, tdzp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); zfs_exit(zfsvfs, FTAG); return (error); } error = zfs_link_create(tdzp, name, szp, tx, 0); if (error == 0) { uint64_t txtype = TX_LINK; zfs_log_link(zilog, tx, txtype, tdzp, szp, name); } dmu_tx_commit(tx); if (error == 0) { vnevent_link(ZTOV(szp), ct); } if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } /* * Free or allocate space in a file. Currently, this function only * supports the `F_FREESP' command. However, this command is somewhat * misnamed, as its functionality includes the ability to allocate as * well as free space. * * IN: ip - inode of file to free data in. * cmd - action to take (only F_FREESP supported). * bfp - section of file to free/alloc. * flag - current file open mode flags. * offset - current file offset. * cr - credentials of caller. * * RETURN: 0 on success, error code on failure. * * Timestamps: * ip - ctime|mtime updated */ int zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag, offset_t offset, cred_t *cr) { (void) offset; zfsvfs_t *zfsvfs = ZTOZSB(zp); uint64_t off, len; int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if (cmd != F_FREESP) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } /* * Callers might not be able to detect properly that we are read-only, * so check it explicitly here. */ if (zfs_is_readonly(zfsvfs)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EROFS)); } if (bfp->l_len < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } /* * Permissions aren't checked on Solaris because on this OS * zfs_space() can only be called with an opened file handle. * On Linux we can get here through truncate_range() which * operates directly on inodes, so we need to check access rights. */ if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr, NULL))) { zfs_exit(zfsvfs, FTAG); return (error); } off = bfp->l_start; len = bfp->l_len; /* 0 means from off to end of file */ error = zfs_freesp(zp, off, len, flag, TRUE); zfs_exit(zfsvfs, FTAG); return (error); } static void zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) { (void) cr, (void) ct; znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; ZFS_TEARDOWN_INACTIVE_ENTER_READ(zfsvfs); if (zp->z_sa_hdl == NULL) { /* * The fs has been unmounted, or we did a * suspend/resume and this file no longer exists. */ ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs); vrecycle(vp); return; } if (zp->z_unlinked) { /* * Fast path to recycle a vnode of a removed file. */ ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs); vrecycle(vp); return; } if (zp->z_atime_dirty && zp->z_unlinked == 0) { dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), (void *)&zp->z_atime, sizeof (zp->z_atime), tx); zp->z_atime_dirty = 0; dmu_tx_commit(tx); } } ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs); } _Static_assert(sizeof (struct zfid_short) <= sizeof (struct fid), "struct zfid_short bigger than struct fid"); _Static_assert(sizeof (struct zfid_long) <= sizeof (struct fid), "struct zfid_long bigger than struct fid"); static int zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) { (void) ct; znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; uint32_t gen; uint64_t gen64; uint64_t object = zp->z_id; zfid_short_t *zfid; int size, i, error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &gen64, sizeof (uint64_t))) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } gen = (uint32_t)gen64; size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; fidp->fid_len = size; zfid = (zfid_short_t *)fidp; zfid->zf_len = size; for (i = 0; i < sizeof (zfid->zf_object); i++) zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); /* Must have a non-zero generation number to distinguish from .zfs */ if (gen == 0) gen = 1; for (i = 0; i < sizeof (zfid->zf_gen); i++) zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); if (size == LONG_FID_LEN) { uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); zfid_long_t *zlfid; zlfid = (zfid_long_t *)fidp; for (i = 0; i < sizeof (zlfid->zf_setid); i++) zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); /* XXX - this should be the generation number for the objset */ for (i = 0; i < sizeof (zlfid->zf_setgen); i++) zlfid->zf_setgen[i] = 0; } zfs_exit(zfsvfs, FTAG); return (0); } static int zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, caller_context_t *ct) { znode_t *zp; zfsvfs_t *zfsvfs; int error; switch (cmd) { case _PC_LINK_MAX: *valp = MIN(LONG_MAX, ZFS_LINK_MAX); return (0); case _PC_FILESIZEBITS: *valp = 64; return (0); case _PC_MIN_HOLE_SIZE: *valp = (int)SPA_MINBLOCKSIZE; return (0); case _PC_ACL_EXTENDED: #if 0 /* POSIX ACLs are not implemented for ZFS on FreeBSD yet. */ zp = VTOZ(vp); zfsvfs = zp->z_zfsvfs; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); *valp = zfsvfs->z_acl_type == ZFSACLTYPE_POSIX ? 1 : 0; zfs_exit(zfsvfs, FTAG); #else *valp = 0; #endif return (0); case _PC_ACL_NFS4: zp = VTOZ(vp); zfsvfs = zp->z_zfsvfs; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); *valp = zfsvfs->z_acl_type == ZFS_ACLTYPE_NFSV4 ? 1 : 0; zfs_exit(zfsvfs, FTAG); return (0); case _PC_ACL_PATH_MAX: *valp = ACL_MAX_ENTRIES; return (0); default: return (EOPNOTSUPP); } } static int zfs_getpages(struct vnode *vp, vm_page_t *ma, int count, int *rbehind, int *rahead) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; zfs_locked_range_t *lr; vm_object_t object; off_t start, end, obj_size; uint_t blksz; int pgsin_b, pgsin_a; int error; if (zfs_enter_verify_zp(zfsvfs, zp, FTAG) != 0) return (zfs_vm_pagerret_error); start = IDX_TO_OFF(ma[0]->pindex); end = IDX_TO_OFF(ma[count - 1]->pindex + 1); /* * Lock a range covering all required and optional pages. * Note that we need to handle the case of the block size growing. */ for (;;) { blksz = zp->z_blksz; lr = zfs_rangelock_tryenter(&zp->z_rangelock, rounddown(start, blksz), roundup(end, blksz) - rounddown(start, blksz), RL_READER); if (lr == NULL) { if (rahead != NULL) { *rahead = 0; rahead = NULL; } if (rbehind != NULL) { *rbehind = 0; rbehind = NULL; } break; } if (blksz == zp->z_blksz) break; zfs_rangelock_exit(lr); } object = ma[0]->object; zfs_vmobject_wlock(object); obj_size = object->un_pager.vnp.vnp_size; zfs_vmobject_wunlock(object); if (IDX_TO_OFF(ma[count - 1]->pindex) >= obj_size) { if (lr != NULL) zfs_rangelock_exit(lr); zfs_exit(zfsvfs, FTAG); return (zfs_vm_pagerret_bad); } pgsin_b = 0; if (rbehind != NULL) { pgsin_b = OFF_TO_IDX(start - rounddown(start, blksz)); pgsin_b = MIN(*rbehind, pgsin_b); } pgsin_a = 0; if (rahead != NULL) { pgsin_a = OFF_TO_IDX(roundup(end, blksz) - end); if (end + IDX_TO_OFF(pgsin_a) >= obj_size) pgsin_a = OFF_TO_IDX(round_page(obj_size) - end); pgsin_a = MIN(*rahead, pgsin_a); } /* * NB: we need to pass the exact byte size of the data that we expect * to read after accounting for the file size. This is required because * ZFS will panic if we request DMU to read beyond the end of the last * allocated block. */ error = dmu_read_pages(zfsvfs->z_os, zp->z_id, ma, count, &pgsin_b, &pgsin_a, MIN(end, obj_size) - (end - PAGE_SIZE)); if (lr != NULL) zfs_rangelock_exit(lr); ZFS_ACCESSTIME_STAMP(zfsvfs, zp); dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, count*PAGE_SIZE); zfs_exit(zfsvfs, FTAG); if (error != 0) return (zfs_vm_pagerret_error); VM_CNT_INC(v_vnodein); VM_CNT_ADD(v_vnodepgsin, count + pgsin_b + pgsin_a); if (rbehind != NULL) *rbehind = pgsin_b; if (rahead != NULL) *rahead = pgsin_a; return (zfs_vm_pagerret_ok); } #ifndef _SYS_SYSPROTO_H_ struct vop_getpages_args { struct vnode *a_vp; vm_page_t *a_m; int a_count; int *a_rbehind; int *a_rahead; }; #endif static int zfs_freebsd_getpages(struct vop_getpages_args *ap) { return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead)); } static int zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags, int *rtvals) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; zfs_locked_range_t *lr; dmu_tx_t *tx; struct sf_buf *sf; vm_object_t object; vm_page_t m; caddr_t va; size_t tocopy; size_t lo_len; vm_ooffset_t lo_off; vm_ooffset_t off; uint_t blksz; int ncount; int pcount; int err; int i; object = vp->v_object; KASSERT(ma[0]->object == object, ("mismatching object")); KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length")); pcount = btoc(len); ncount = pcount; for (i = 0; i < pcount; i++) rtvals[i] = zfs_vm_pagerret_error; if (zfs_enter_verify_zp(zfsvfs, zp, FTAG) != 0) return (zfs_vm_pagerret_error); off = IDX_TO_OFF(ma[0]->pindex); blksz = zp->z_blksz; lo_off = rounddown(off, blksz); lo_len = roundup(len + (off - lo_off), blksz); lr = zfs_rangelock_enter(&zp->z_rangelock, lo_off, lo_len, RL_WRITER); zfs_vmobject_wlock(object); if (len + off > object->un_pager.vnp.vnp_size) { if (object->un_pager.vnp.vnp_size > off) { int pgoff; len = object->un_pager.vnp.vnp_size - off; ncount = btoc(len); if ((pgoff = (int)len & PAGE_MASK) != 0) { /* * If the object is locked and the following * conditions hold, then the page's dirty * field cannot be concurrently changed by a * pmap operation. */ m = ma[ncount - 1]; vm_page_assert_sbusied(m); KASSERT(!pmap_page_is_write_mapped(m), ("zfs_putpages: page %p is not read-only", m)); vm_page_clear_dirty(m, pgoff, PAGE_SIZE - pgoff); } } else { len = 0; ncount = 0; } if (ncount < pcount) { for (i = ncount; i < pcount; i++) { rtvals[i] = zfs_vm_pagerret_bad; } } } zfs_vmobject_wunlock(object); if (ncount == 0) goto out; if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) || zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid) || (zp->z_projid != ZFS_DEFAULT_PROJID && zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, zp->z_projid))) { goto out; } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_write(tx, zp->z_id, off, len); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); goto out; } if (zp->z_blksz < PAGE_SIZE) { for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) { tocopy = len > PAGE_SIZE ? PAGE_SIZE : len; va = zfs_map_page(ma[i], &sf); dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx); zfs_unmap_page(sf); } } else { err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx); } if (err == 0) { uint64_t mtime[2], ctime[2]; sa_bulk_attr_t bulk[3]; int count = 0; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); ASSERT0(err); /* * XXX we should be passing a callback to undirty * but that would make the locking messier */ zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0, NULL, NULL); zfs_vmobject_wlock(object); for (i = 0; i < ncount; i++) { rtvals[i] = zfs_vm_pagerret_ok; vm_page_undirty(ma[i]); } zfs_vmobject_wunlock(object); VM_CNT_INC(v_vnodeout); VM_CNT_ADD(v_vnodepgsout, ncount); } dmu_tx_commit(tx); out: zfs_rangelock_exit(lr); if ((flags & (zfs_vm_pagerput_sync | zfs_vm_pagerput_inval)) != 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zfsvfs->z_log, zp->z_id); dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, len); zfs_exit(zfsvfs, FTAG); return (rtvals[0]); } #ifndef _SYS_SYSPROTO_H_ struct vop_putpages_args { struct vnode *a_vp; vm_page_t *a_m; int a_count; int a_sync; int *a_rtvals; }; #endif static int zfs_freebsd_putpages(struct vop_putpages_args *ap) { return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync, ap->a_rtvals)); } #ifndef _SYS_SYSPROTO_H_ struct vop_bmap_args { struct vnode *a_vp; daddr_t a_bn; struct bufobj **a_bop; daddr_t *a_bnp; int *a_runp; int *a_runb; }; #endif static int zfs_freebsd_bmap(struct vop_bmap_args *ap) { if (ap->a_bop != NULL) *ap->a_bop = &ap->a_vp->v_bufobj; if (ap->a_bnp != NULL) *ap->a_bnp = ap->a_bn; if (ap->a_runp != NULL) *ap->a_runp = 0; if (ap->a_runb != NULL) *ap->a_runb = 0; return (0); } #ifndef _SYS_SYSPROTO_H_ struct vop_open_args { struct vnode *a_vp; int a_mode; struct ucred *a_cred; struct thread *a_td; }; #endif static int zfs_freebsd_open(struct vop_open_args *ap) { vnode_t *vp = ap->a_vp; znode_t *zp = VTOZ(vp); int error; error = zfs_open(&vp, ap->a_mode, ap->a_cred); if (error == 0) vnode_create_vobject(vp, zp->z_size, ap->a_td); return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_close_args { struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct thread *a_td; }; #endif static int zfs_freebsd_close(struct vop_close_args *ap) { return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred)); } #ifndef _SYS_SYSPROTO_H_ struct vop_ioctl_args { struct vnode *a_vp; ulong_t a_command; caddr_t a_data; int a_fflag; struct ucred *cred; struct thread *td; }; #endif static int zfs_freebsd_ioctl(struct vop_ioctl_args *ap) { return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data, ap->a_fflag, ap->a_cred, NULL)); } static int ioflags(int ioflags) { int flags = 0; if (ioflags & IO_APPEND) flags |= O_APPEND; if (ioflags & IO_NDELAY) flags |= O_NONBLOCK; if (ioflags & IO_SYNC) flags |= O_SYNC; return (flags); } #ifndef _SYS_SYSPROTO_H_ struct vop_read_args { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; }; #endif static int zfs_freebsd_read(struct vop_read_args *ap) { zfs_uio_t uio; zfs_uio_init(&uio, ap->a_uio); return (zfs_read(VTOZ(ap->a_vp), &uio, ioflags(ap->a_ioflag), ap->a_cred)); } #ifndef _SYS_SYSPROTO_H_ struct vop_write_args { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; }; #endif static int zfs_freebsd_write(struct vop_write_args *ap) { zfs_uio_t uio; zfs_uio_init(&uio, ap->a_uio); return (zfs_write(VTOZ(ap->a_vp), &uio, ioflags(ap->a_ioflag), ap->a_cred)); } #if __FreeBSD_version >= 1300102 /* * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see * the comment above cache_fplookup for details. */ static int zfs_freebsd_fplookup_vexec(struct vop_fplookup_vexec_args *v) { vnode_t *vp; znode_t *zp; uint64_t pflags; vp = v->a_vp; zp = VTOZ_SMR(vp); if (__predict_false(zp == NULL)) return (EAGAIN); pflags = atomic_load_64(&zp->z_pflags); if (pflags & ZFS_AV_QUARANTINED) return (EAGAIN); if (pflags & ZFS_XATTR) return (EAGAIN); if ((pflags & ZFS_NO_EXECS_DENIED) == 0) return (EAGAIN); return (0); } #endif #if __FreeBSD_version >= 1300139 static int zfs_freebsd_fplookup_symlink(struct vop_fplookup_symlink_args *v) { vnode_t *vp; znode_t *zp; char *target; vp = v->a_vp; zp = VTOZ_SMR(vp); if (__predict_false(zp == NULL)) { return (EAGAIN); } target = atomic_load_consume_ptr(&zp->z_cached_symlink); if (target == NULL) { return (EAGAIN); } return (cache_symlink_resolve(v->a_fpl, target, strlen(target))); } #endif #ifndef _SYS_SYSPROTO_H_ struct vop_access_args { struct vnode *a_vp; accmode_t a_accmode; struct ucred *a_cred; struct thread *a_td; }; #endif static int zfs_freebsd_access(struct vop_access_args *ap) { vnode_t *vp = ap->a_vp; znode_t *zp = VTOZ(vp); accmode_t accmode; int error = 0; if (ap->a_accmode == VEXEC) { if (zfs_fastaccesschk_execute(zp, ap->a_cred) == 0) return (0); } /* * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND, */ accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND); if (accmode != 0) error = zfs_access(zp, accmode, 0, ap->a_cred); /* * VADMIN has to be handled by vaccess(). */ if (error == 0) { accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND); if (accmode != 0) { #if __FreeBSD_version >= 1300105 error = vaccess(vp->v_type, zp->z_mode, zp->z_uid, zp->z_gid, accmode, ap->a_cred); #else error = vaccess(vp->v_type, zp->z_mode, zp->z_uid, zp->z_gid, accmode, ap->a_cred, NULL); #endif } } /* * For VEXEC, ensure that at least one execute bit is set for * non-directories. */ if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR && (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) { error = EACCES; } return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_lookup_args { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; }; #endif static int zfs_freebsd_lookup(struct vop_lookup_args *ap, boolean_t cached) { struct componentname *cnp = ap->a_cnp; char nm[NAME_MAX + 1]; ASSERT3U(cnp->cn_namelen, <, sizeof (nm)); strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof (nm))); return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop, cnp->cn_cred, 0, cached)); } static int zfs_freebsd_cachedlookup(struct vop_cachedlookup_args *ap) { return (zfs_freebsd_lookup((struct vop_lookup_args *)ap, B_TRUE)); } #ifndef _SYS_SYSPROTO_H_ struct vop_lookup_args { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; }; #endif static int zfs_cache_lookup(struct vop_lookup_args *ap) { zfsvfs_t *zfsvfs; zfsvfs = ap->a_dvp->v_mount->mnt_data; if (zfsvfs->z_use_namecache) return (vfs_cache_lookup(ap)); else return (zfs_freebsd_lookup(ap, B_FALSE)); } #ifndef _SYS_SYSPROTO_H_ struct vop_create_args { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; }; #endif static int zfs_freebsd_create(struct vop_create_args *ap) { zfsvfs_t *zfsvfs; struct componentname *cnp = ap->a_cnp; vattr_t *vap = ap->a_vap; znode_t *zp = NULL; int rc, mode; #if __FreeBSD_version < 1400068 ASSERT(cnp->cn_flags & SAVENAME); #endif vattr_init_mask(vap); mode = vap->va_mode & ALLPERMS; zfsvfs = ap->a_dvp->v_mount->mnt_data; *ap->a_vpp = NULL; rc = zfs_create(VTOZ(ap->a_dvp), cnp->cn_nameptr, vap, 0, mode, &zp, cnp->cn_cred, 0 /* flag */, NULL /* vsecattr */, NULL); if (rc == 0) *ap->a_vpp = ZTOV(zp); if (zfsvfs->z_use_namecache && rc == 0 && (cnp->cn_flags & MAKEENTRY) != 0) cache_enter(ap->a_dvp, *ap->a_vpp, cnp); return (rc); } #ifndef _SYS_SYSPROTO_H_ struct vop_remove_args { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; }; #endif static int zfs_freebsd_remove(struct vop_remove_args *ap) { #if __FreeBSD_version < 1400068 ASSERT(ap->a_cnp->cn_flags & SAVENAME); #endif return (zfs_remove_(ap->a_dvp, ap->a_vp, ap->a_cnp->cn_nameptr, ap->a_cnp->cn_cred)); } #ifndef _SYS_SYSPROTO_H_ struct vop_mkdir_args { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; }; #endif static int zfs_freebsd_mkdir(struct vop_mkdir_args *ap) { vattr_t *vap = ap->a_vap; znode_t *zp = NULL; int rc; #if __FreeBSD_version < 1400068 ASSERT(ap->a_cnp->cn_flags & SAVENAME); #endif vattr_init_mask(vap); *ap->a_vpp = NULL; rc = zfs_mkdir(VTOZ(ap->a_dvp), ap->a_cnp->cn_nameptr, vap, &zp, ap->a_cnp->cn_cred, 0, NULL, NULL); if (rc == 0) *ap->a_vpp = ZTOV(zp); return (rc); } #ifndef _SYS_SYSPROTO_H_ struct vop_rmdir_args { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; }; #endif static int zfs_freebsd_rmdir(struct vop_rmdir_args *ap) { struct componentname *cnp = ap->a_cnp; #if __FreeBSD_version < 1400068 ASSERT(cnp->cn_flags & SAVENAME); #endif return (zfs_rmdir_(ap->a_dvp, ap->a_vp, cnp->cn_nameptr, cnp->cn_cred)); } #ifndef _SYS_SYSPROTO_H_ struct vop_readdir_args { struct vnode *a_vp; struct uio *a_uio; struct ucred *a_cred; int *a_eofflag; int *a_ncookies; cookie_t **a_cookies; }; #endif static int zfs_freebsd_readdir(struct vop_readdir_args *ap) { zfs_uio_t uio; zfs_uio_init(&uio, ap->a_uio); return (zfs_readdir(ap->a_vp, &uio, ap->a_cred, ap->a_eofflag, ap->a_ncookies, ap->a_cookies)); } #ifndef _SYS_SYSPROTO_H_ struct vop_fsync_args { struct vnode *a_vp; int a_waitfor; struct thread *a_td; }; #endif static int zfs_freebsd_fsync(struct vop_fsync_args *ap) { return (zfs_fsync(VTOZ(ap->a_vp), 0, ap->a_td->td_ucred)); } #ifndef _SYS_SYSPROTO_H_ struct vop_getattr_args { struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; }; #endif static int zfs_freebsd_getattr(struct vop_getattr_args *ap) { vattr_t *vap = ap->a_vap; xvattr_t xvap; ulong_t fflags = 0; int error; xva_init(&xvap); xvap.xva_vattr = *vap; xvap.xva_vattr.va_mask |= AT_XVATTR; /* Convert chflags into ZFS-type flags. */ /* XXX: what about SF_SETTABLE?. */ XVA_SET_REQ(&xvap, XAT_IMMUTABLE); XVA_SET_REQ(&xvap, XAT_APPENDONLY); XVA_SET_REQ(&xvap, XAT_NOUNLINK); XVA_SET_REQ(&xvap, XAT_NODUMP); XVA_SET_REQ(&xvap, XAT_READONLY); XVA_SET_REQ(&xvap, XAT_ARCHIVE); XVA_SET_REQ(&xvap, XAT_SYSTEM); XVA_SET_REQ(&xvap, XAT_HIDDEN); XVA_SET_REQ(&xvap, XAT_REPARSE); XVA_SET_REQ(&xvap, XAT_OFFLINE); XVA_SET_REQ(&xvap, XAT_SPARSE); error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred); if (error != 0) return (error); /* Convert ZFS xattr into chflags. */ #define FLAG_CHECK(fflag, xflag, xfield) do { \ if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0) \ fflags |= (fflag); \ } while (0) FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE, xvap.xva_xoptattrs.xoa_immutable); FLAG_CHECK(SF_APPEND, XAT_APPENDONLY, xvap.xva_xoptattrs.xoa_appendonly); FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK, xvap.xva_xoptattrs.xoa_nounlink); FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE, xvap.xva_xoptattrs.xoa_archive); FLAG_CHECK(UF_NODUMP, XAT_NODUMP, xvap.xva_xoptattrs.xoa_nodump); FLAG_CHECK(UF_READONLY, XAT_READONLY, xvap.xva_xoptattrs.xoa_readonly); FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM, xvap.xva_xoptattrs.xoa_system); FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN, xvap.xva_xoptattrs.xoa_hidden); FLAG_CHECK(UF_REPARSE, XAT_REPARSE, xvap.xva_xoptattrs.xoa_reparse); FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE, xvap.xva_xoptattrs.xoa_offline); FLAG_CHECK(UF_SPARSE, XAT_SPARSE, xvap.xva_xoptattrs.xoa_sparse); #undef FLAG_CHECK *vap = xvap.xva_vattr; vap->va_flags = fflags; return (0); } #ifndef _SYS_SYSPROTO_H_ struct vop_setattr_args { struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; }; #endif static int zfs_freebsd_setattr(struct vop_setattr_args *ap) { vnode_t *vp = ap->a_vp; vattr_t *vap = ap->a_vap; cred_t *cred = ap->a_cred; xvattr_t xvap; ulong_t fflags; uint64_t zflags; vattr_init_mask(vap); vap->va_mask &= ~AT_NOSET; xva_init(&xvap); xvap.xva_vattr = *vap; zflags = VTOZ(vp)->z_pflags; if (vap->va_flags != VNOVAL) { zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs; int error; if (zfsvfs->z_use_fuids == B_FALSE) return (EOPNOTSUPP); fflags = vap->va_flags; /* * XXX KDM * We need to figure out whether it makes sense to allow * UF_REPARSE through, since we don't really have other * facilities to handle reparse points and zfs_setattr() * doesn't currently allow setting that attribute anyway. */ if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE| UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE| UF_OFFLINE|UF_SPARSE)) != 0) return (EOPNOTSUPP); /* * Unprivileged processes are not permitted to unset system * flags, or modify flags if any system flags are set. * Privileged non-jail processes may not modify system flags * if securelevel > 0 and any existing system flags are set. * Privileged jail processes behave like privileged non-jail * processes if the PR_ALLOW_CHFLAGS permission bit is set; * otherwise, they behave like unprivileged processes. */ if (secpolicy_fs_owner(vp->v_mount, cred) == 0 || spl_priv_check_cred(cred, PRIV_VFS_SYSFLAGS) == 0) { if (zflags & (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) { error = securelevel_gt(cred, 0); if (error != 0) return (error); } } else { /* * Callers may only modify the file flags on * objects they have VADMIN rights for. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0) return (error); if (zflags & (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) { return (EPERM); } if (fflags & (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) { return (EPERM); } } #define FLAG_CHANGE(fflag, zflag, xflag, xfield) do { \ if (((fflags & (fflag)) && !(zflags & (zflag))) || \ ((zflags & (zflag)) && !(fflags & (fflag)))) { \ XVA_SET_REQ(&xvap, (xflag)); \ (xfield) = ((fflags & (fflag)) != 0); \ } \ } while (0) /* Convert chflags into ZFS-type flags. */ /* XXX: what about SF_SETTABLE?. */ FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE, xvap.xva_xoptattrs.xoa_immutable); FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY, xvap.xva_xoptattrs.xoa_appendonly); FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK, xvap.xva_xoptattrs.xoa_nounlink); FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE, xvap.xva_xoptattrs.xoa_archive); FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP, xvap.xva_xoptattrs.xoa_nodump); FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY, xvap.xva_xoptattrs.xoa_readonly); FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM, xvap.xva_xoptattrs.xoa_system); FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN, xvap.xva_xoptattrs.xoa_hidden); FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE, xvap.xva_xoptattrs.xoa_reparse); FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE, xvap.xva_xoptattrs.xoa_offline); FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE, xvap.xva_xoptattrs.xoa_sparse); #undef FLAG_CHANGE } if (vap->va_birthtime.tv_sec != VNOVAL) { xvap.xva_vattr.va_mask |= AT_XVATTR; XVA_SET_REQ(&xvap, XAT_CREATETIME); } return (zfs_setattr(VTOZ(vp), (vattr_t *)&xvap, 0, cred, NULL)); } #ifndef _SYS_SYSPROTO_H_ struct vop_rename_args { struct vnode *a_fdvp; struct vnode *a_fvp; struct componentname *a_fcnp; struct vnode *a_tdvp; struct vnode *a_tvp; struct componentname *a_tcnp; }; #endif static int zfs_freebsd_rename(struct vop_rename_args *ap) { vnode_t *fdvp = ap->a_fdvp; vnode_t *fvp = ap->a_fvp; vnode_t *tdvp = ap->a_tdvp; vnode_t *tvp = ap->a_tvp; int error; #if __FreeBSD_version < 1400068 ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART)); ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART)); #endif error = zfs_do_rename(fdvp, &fvp, ap->a_fcnp, tdvp, &tvp, ap->a_tcnp, ap->a_fcnp->cn_cred); vrele(fdvp); vrele(fvp); vrele(tdvp); if (tvp != NULL) vrele(tvp); return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_symlink_args { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; char *a_target; }; #endif static int zfs_freebsd_symlink(struct vop_symlink_args *ap) { struct componentname *cnp = ap->a_cnp; vattr_t *vap = ap->a_vap; znode_t *zp = NULL; #if __FreeBSD_version >= 1300139 char *symlink; size_t symlink_len; #endif int rc; #if __FreeBSD_version < 1400068 ASSERT(cnp->cn_flags & SAVENAME); #endif vap->va_type = VLNK; /* FreeBSD: Syscall only sets va_mode. */ vattr_init_mask(vap); *ap->a_vpp = NULL; rc = zfs_symlink(VTOZ(ap->a_dvp), cnp->cn_nameptr, vap, ap->a_target, &zp, cnp->cn_cred, 0 /* flags */, NULL); if (rc == 0) { *ap->a_vpp = ZTOV(zp); ASSERT_VOP_ELOCKED(ZTOV(zp), __func__); #if __FreeBSD_version >= 1300139 MPASS(zp->z_cached_symlink == NULL); symlink_len = strlen(ap->a_target); symlink = cache_symlink_alloc(symlink_len + 1, M_WAITOK); if (symlink != NULL) { memcpy(symlink, ap->a_target, symlink_len); symlink[symlink_len] = '\0'; atomic_store_rel_ptr((uintptr_t *)&zp->z_cached_symlink, (uintptr_t)symlink); } #endif } return (rc); } #ifndef _SYS_SYSPROTO_H_ struct vop_readlink_args { struct vnode *a_vp; struct uio *a_uio; struct ucred *a_cred; }; #endif static int zfs_freebsd_readlink(struct vop_readlink_args *ap) { zfs_uio_t uio; int error; #if __FreeBSD_version >= 1300139 znode_t *zp = VTOZ(ap->a_vp); char *symlink, *base; size_t symlink_len; bool trycache; #endif zfs_uio_init(&uio, ap->a_uio); #if __FreeBSD_version >= 1300139 trycache = false; if (zfs_uio_segflg(&uio) == UIO_SYSSPACE && zfs_uio_iovcnt(&uio) == 1) { base = zfs_uio_iovbase(&uio, 0); symlink_len = zfs_uio_iovlen(&uio, 0); trycache = true; } #endif error = zfs_readlink(ap->a_vp, &uio, ap->a_cred, NULL); #if __FreeBSD_version >= 1300139 if (atomic_load_ptr(&zp->z_cached_symlink) != NULL || error != 0 || !trycache) { return (error); } symlink_len -= zfs_uio_resid(&uio); symlink = cache_symlink_alloc(symlink_len + 1, M_WAITOK); if (symlink != NULL) { memcpy(symlink, base, symlink_len); symlink[symlink_len] = '\0'; if (!atomic_cmpset_rel_ptr((uintptr_t *)&zp->z_cached_symlink, (uintptr_t)NULL, (uintptr_t)symlink)) { cache_symlink_free(symlink, symlink_len + 1); } } #endif return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_link_args { struct vnode *a_tdvp; struct vnode *a_vp; struct componentname *a_cnp; }; #endif static int zfs_freebsd_link(struct vop_link_args *ap) { struct componentname *cnp = ap->a_cnp; vnode_t *vp = ap->a_vp; vnode_t *tdvp = ap->a_tdvp; if (tdvp->v_mount != vp->v_mount) return (EXDEV); #if __FreeBSD_version < 1400068 ASSERT(cnp->cn_flags & SAVENAME); #endif return (zfs_link(VTOZ(tdvp), VTOZ(vp), cnp->cn_nameptr, cnp->cn_cred, 0)); } #ifndef _SYS_SYSPROTO_H_ struct vop_inactive_args { struct vnode *a_vp; struct thread *a_td; }; #endif static int zfs_freebsd_inactive(struct vop_inactive_args *ap) { vnode_t *vp = ap->a_vp; #if __FreeBSD_version >= 1300123 zfs_inactive(vp, curthread->td_ucred, NULL); #else zfs_inactive(vp, ap->a_td->td_ucred, NULL); #endif return (0); } #if __FreeBSD_version >= 1300042 #ifndef _SYS_SYSPROTO_H_ struct vop_need_inactive_args { struct vnode *a_vp; struct thread *a_td; }; #endif static int zfs_freebsd_need_inactive(struct vop_need_inactive_args *ap) { vnode_t *vp = ap->a_vp; znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int need; if (vn_need_pageq_flush(vp)) return (1); if (!ZFS_TEARDOWN_INACTIVE_TRY_ENTER_READ(zfsvfs)) return (1); need = (zp->z_sa_hdl == NULL || zp->z_unlinked || zp->z_atime_dirty); ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs); return (need); } #endif #ifndef _SYS_SYSPROTO_H_ struct vop_reclaim_args { struct vnode *a_vp; struct thread *a_td; }; #endif static int zfs_freebsd_reclaim(struct vop_reclaim_args *ap) { vnode_t *vp = ap->a_vp; znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; ASSERT3P(zp, !=, NULL); #if __FreeBSD_version < 1300042 /* Destroy the vm object and flush associated pages. */ vnode_destroy_vobject(vp); #endif /* * z_teardown_inactive_lock protects from a race with * zfs_znode_dmu_fini in zfsvfs_teardown during * force unmount. */ ZFS_TEARDOWN_INACTIVE_ENTER_READ(zfsvfs); if (zp->z_sa_hdl == NULL) zfs_znode_free(zp); else zfs_zinactive(zp); ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs); vp->v_data = NULL; return (0); } #ifndef _SYS_SYSPROTO_H_ struct vop_fid_args { struct vnode *a_vp; struct fid *a_fid; }; #endif static int zfs_freebsd_fid(struct vop_fid_args *ap) { return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL)); } #ifndef _SYS_SYSPROTO_H_ struct vop_pathconf_args { struct vnode *a_vp; int a_name; register_t *a_retval; } *ap; #endif static int zfs_freebsd_pathconf(struct vop_pathconf_args *ap) { ulong_t val; int error; error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL); if (error == 0) { *ap->a_retval = val; return (error); } if (error != EOPNOTSUPP) return (error); switch (ap->a_name) { case _PC_NAME_MAX: *ap->a_retval = NAME_MAX; return (0); #if __FreeBSD_version >= 1400032 case _PC_DEALLOC_PRESENT: *ap->a_retval = 1; return (0); #endif case _PC_PIPE_BUF: if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) { *ap->a_retval = PIPE_BUF; return (0); } return (EINVAL); default: return (vop_stdpathconf(ap)); } } static int zfs_xattr_compat = 1; static int zfs_check_attrname(const char *name) { /* We don't allow '/' character in attribute name. */ if (strchr(name, '/') != NULL) return (SET_ERROR(EINVAL)); /* We don't allow attribute names that start with a namespace prefix. */ if (ZFS_XA_NS_PREFIX_FORBIDDEN(name)) return (SET_ERROR(EINVAL)); return (0); } /* * FreeBSD's extended attributes namespace defines file name prefix for ZFS' * extended attribute name: * * NAMESPACE XATTR_COMPAT PREFIX * system * freebsd:system: * user 1 (none, can be used to access ZFS * fsattr(5) attributes created on Solaris) * user 0 user. */ static int zfs_create_attrname(int attrnamespace, const char *name, char *attrname, size_t size, boolean_t compat) { const char *namespace, *prefix, *suffix; memset(attrname, 0, size); switch (attrnamespace) { case EXTATTR_NAMESPACE_USER: if (compat) { /* * This is the default namespace by which we can access * all attributes created on Solaris. */ prefix = namespace = suffix = ""; } else { /* * This is compatible with the user namespace encoding * on Linux prior to xattr_compat, but nothing * else. */ prefix = ""; namespace = "user"; suffix = "."; } break; case EXTATTR_NAMESPACE_SYSTEM: prefix = "freebsd:"; namespace = EXTATTR_NAMESPACE_SYSTEM_STRING; suffix = ":"; break; case EXTATTR_NAMESPACE_EMPTY: default: return (SET_ERROR(EINVAL)); } if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix, name) >= size) { return (SET_ERROR(ENAMETOOLONG)); } return (0); } static int zfs_ensure_xattr_cached(znode_t *zp) { int error = 0; ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); if (zp->z_xattr_cached != NULL) return (0); if (rw_write_held(&zp->z_xattr_lock)) return (zfs_sa_get_xattr(zp)); if (!rw_tryupgrade(&zp->z_xattr_lock)) { rw_exit(&zp->z_xattr_lock); rw_enter(&zp->z_xattr_lock, RW_WRITER); } if (zp->z_xattr_cached == NULL) error = zfs_sa_get_xattr(zp); rw_downgrade(&zp->z_xattr_lock); return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_getextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; INOUT struct uio *a_uio; OUT size_t *a_size; IN struct ucred *a_cred; IN struct thread *a_td; }; #endif static int zfs_getextattr_dir(struct vop_getextattr_args *ap, const char *attrname) { struct thread *td = ap->a_td; struct nameidata nd; struct vattr va; vnode_t *xvp = NULL, *vp; int error, flags; error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, LOOKUP_XATTR, B_FALSE); if (error != 0) return (error); flags = FREAD; #if __FreeBSD_version < 1400043 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp, td); #else NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp); #endif error = vn_open_cred(&nd, &flags, 0, VN_OPEN_INVFS, ap->a_cred, NULL); if (error != 0) return (SET_ERROR(error)); vp = nd.ni_vp; NDFREE_PNBUF(&nd); if (ap->a_size != NULL) { error = VOP_GETATTR(vp, &va, ap->a_cred); if (error == 0) *ap->a_size = (size_t)va.va_size; } else if (ap->a_uio != NULL) error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred); VOP_UNLOCK1(vp); vn_close(vp, flags, ap->a_cred, td); return (error); } static int zfs_getextattr_sa(struct vop_getextattr_args *ap, const char *attrname) { znode_t *zp = VTOZ(ap->a_vp); uchar_t *nv_value; uint_t nv_size; int error; error = zfs_ensure_xattr_cached(zp); if (error != 0) return (error); ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); ASSERT3P(zp->z_xattr_cached, !=, NULL); error = nvlist_lookup_byte_array(zp->z_xattr_cached, attrname, &nv_value, &nv_size); if (error != 0) return (SET_ERROR(error)); if (ap->a_size != NULL) *ap->a_size = nv_size; else if (ap->a_uio != NULL) error = uiomove(nv_value, nv_size, ap->a_uio); if (error != 0) return (SET_ERROR(error)); return (0); } static int zfs_getextattr_impl(struct vop_getextattr_args *ap, boolean_t compat) { znode_t *zp = VTOZ(ap->a_vp); zfsvfs_t *zfsvfs = ZTOZSB(zp); char attrname[EXTATTR_MAXNAMELEN+1]; int error; error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname, sizeof (attrname), compat); if (error != 0) return (error); error = ENOENT; if (zfsvfs->z_use_sa && zp->z_is_sa) error = zfs_getextattr_sa(ap, attrname); if (error == ENOENT) error = zfs_getextattr_dir(ap, attrname); return (error); } /* * Vnode operation to retrieve a named extended attribute. */ static int zfs_getextattr(struct vop_getextattr_args *ap) { znode_t *zp = VTOZ(ap->a_vp); zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; /* * If the xattr property is off, refuse the request. */ if (!(zfsvfs->z_flags & ZSB_XATTR)) return (SET_ERROR(EOPNOTSUPP)); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error != 0) return (SET_ERROR(error)); error = zfs_check_attrname(ap->a_name); if (error != 0) return (error); if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); error = ENOENT; rw_enter(&zp->z_xattr_lock, RW_READER); error = zfs_getextattr_impl(ap, zfs_xattr_compat); if ((error == ENOENT || error == ENOATTR) && ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) { /* * Fall back to the alternate namespace format if we failed to * find a user xattr. */ error = zfs_getextattr_impl(ap, !zfs_xattr_compat); } rw_exit(&zp->z_xattr_lock); zfs_exit(zfsvfs, FTAG); if (error == ENOENT) error = SET_ERROR(ENOATTR); return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_deleteextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; IN struct ucred *a_cred; IN struct thread *a_td; }; #endif static int zfs_deleteextattr_dir(struct vop_deleteextattr_args *ap, const char *attrname) { struct nameidata nd; vnode_t *xvp = NULL, *vp; int error; error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, LOOKUP_XATTR, B_FALSE); if (error != 0) return (error); #if __FreeBSD_version < 1400043 NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF, UIO_SYSSPACE, attrname, xvp, ap->a_td); #else NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF, UIO_SYSSPACE, attrname, xvp); #endif error = namei(&nd); if (error != 0) return (SET_ERROR(error)); vp = nd.ni_vp; error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd); NDFREE_PNBUF(&nd); vput(nd.ni_dvp); if (vp == nd.ni_dvp) vrele(vp); else vput(vp); return (error); } static int zfs_deleteextattr_sa(struct vop_deleteextattr_args *ap, const char *attrname) { znode_t *zp = VTOZ(ap->a_vp); nvlist_t *nvl; int error; error = zfs_ensure_xattr_cached(zp); if (error != 0) return (error); ASSERT(RW_WRITE_HELD(&zp->z_xattr_lock)); ASSERT3P(zp->z_xattr_cached, !=, NULL); nvl = zp->z_xattr_cached; error = nvlist_remove(nvl, attrname, DATA_TYPE_BYTE_ARRAY); if (error != 0) error = SET_ERROR(error); else error = zfs_sa_set_xattr(zp, attrname, NULL, 0); if (error != 0) { zp->z_xattr_cached = NULL; nvlist_free(nvl); } return (error); } static int zfs_deleteextattr_impl(struct vop_deleteextattr_args *ap, boolean_t compat) { znode_t *zp = VTOZ(ap->a_vp); zfsvfs_t *zfsvfs = ZTOZSB(zp); char attrname[EXTATTR_MAXNAMELEN+1]; int error; error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname, sizeof (attrname), compat); if (error != 0) return (error); error = ENOENT; if (zfsvfs->z_use_sa && zp->z_is_sa) error = zfs_deleteextattr_sa(ap, attrname); if (error == ENOENT) error = zfs_deleteextattr_dir(ap, attrname); return (error); } /* * Vnode operation to remove a named attribute. */ static int zfs_deleteextattr(struct vop_deleteextattr_args *ap) { znode_t *zp = VTOZ(ap->a_vp); zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; /* * If the xattr property is off, refuse the request. */ if (!(zfsvfs->z_flags & ZSB_XATTR)) return (SET_ERROR(EOPNOTSUPP)); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error != 0) return (SET_ERROR(error)); error = zfs_check_attrname(ap->a_name); if (error != 0) return (error); if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); rw_enter(&zp->z_xattr_lock, RW_WRITER); error = zfs_deleteextattr_impl(ap, zfs_xattr_compat); if ((error == ENOENT || error == ENOATTR) && ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) { /* * Fall back to the alternate namespace format if we failed to * find a user xattr. */ error = zfs_deleteextattr_impl(ap, !zfs_xattr_compat); } rw_exit(&zp->z_xattr_lock); zfs_exit(zfsvfs, FTAG); if (error == ENOENT) error = SET_ERROR(ENOATTR); return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_setextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; INOUT struct uio *a_uio; IN struct ucred *a_cred; IN struct thread *a_td; }; #endif static int zfs_setextattr_dir(struct vop_setextattr_args *ap, const char *attrname) { struct thread *td = ap->a_td; struct nameidata nd; struct vattr va; vnode_t *xvp = NULL, *vp; int error, flags; error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, LOOKUP_XATTR | CREATE_XATTR_DIR, B_FALSE); if (error != 0) return (error); flags = FFLAGS(O_WRONLY | O_CREAT); #if __FreeBSD_version < 1400043 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp, td); #else NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp); #endif error = vn_open_cred(&nd, &flags, 0600, VN_OPEN_INVFS, ap->a_cred, NULL); if (error != 0) return (SET_ERROR(error)); vp = nd.ni_vp; NDFREE_PNBUF(&nd); VATTR_NULL(&va); va.va_size = 0; error = VOP_SETATTR(vp, &va, ap->a_cred); if (error == 0) VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred); VOP_UNLOCK1(vp); vn_close(vp, flags, ap->a_cred, td); return (error); } static int zfs_setextattr_sa(struct vop_setextattr_args *ap, const char *attrname) { znode_t *zp = VTOZ(ap->a_vp); nvlist_t *nvl; size_t sa_size; int error; error = zfs_ensure_xattr_cached(zp); if (error != 0) return (error); ASSERT(RW_WRITE_HELD(&zp->z_xattr_lock)); ASSERT3P(zp->z_xattr_cached, !=, NULL); nvl = zp->z_xattr_cached; size_t entry_size = ap->a_uio->uio_resid; if (entry_size > DXATTR_MAX_ENTRY_SIZE) return (SET_ERROR(EFBIG)); error = nvlist_size(nvl, &sa_size, NV_ENCODE_XDR); if (error != 0) return (SET_ERROR(error)); if (sa_size > DXATTR_MAX_SA_SIZE) return (SET_ERROR(EFBIG)); uchar_t *buf = kmem_alloc(entry_size, KM_SLEEP); error = uiomove(buf, entry_size, ap->a_uio); if (error != 0) { error = SET_ERROR(error); } else { error = nvlist_add_byte_array(nvl, attrname, buf, entry_size); if (error != 0) error = SET_ERROR(error); } if (error == 0) error = zfs_sa_set_xattr(zp, attrname, buf, entry_size); kmem_free(buf, entry_size); if (error != 0) { zp->z_xattr_cached = NULL; nvlist_free(nvl); } return (error); } static int zfs_setextattr_impl(struct vop_setextattr_args *ap, boolean_t compat) { znode_t *zp = VTOZ(ap->a_vp); zfsvfs_t *zfsvfs = ZTOZSB(zp); char attrname[EXTATTR_MAXNAMELEN+1]; int error; error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname, sizeof (attrname), compat); if (error != 0) return (error); struct vop_deleteextattr_args vda = { .a_vp = ap->a_vp, .a_attrnamespace = ap->a_attrnamespace, .a_name = ap->a_name, .a_cred = ap->a_cred, .a_td = ap->a_td, }; error = ENOENT; if (zfsvfs->z_use_sa && zp->z_is_sa && zfsvfs->z_xattr_sa) { error = zfs_setextattr_sa(ap, attrname); if (error == 0) { /* * Successfully put into SA, we need to clear the one * in dir if present. */ zfs_deleteextattr_dir(&vda, attrname); } } if (error != 0) { error = zfs_setextattr_dir(ap, attrname); if (error == 0 && zp->z_is_sa) { /* * Successfully put into dir, we need to clear the one * in SA if present. */ zfs_deleteextattr_sa(&vda, attrname); } } if (error == 0 && ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) { /* * Also clear all versions of the alternate compat name. */ zfs_deleteextattr_impl(&vda, !compat); } return (error); } /* * Vnode operation to set a named attribute. */ static int zfs_setextattr(struct vop_setextattr_args *ap) { znode_t *zp = VTOZ(ap->a_vp); zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; /* * If the xattr property is off, refuse the request. */ if (!(zfsvfs->z_flags & ZSB_XATTR)) return (SET_ERROR(EOPNOTSUPP)); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error != 0) return (SET_ERROR(error)); error = zfs_check_attrname(ap->a_name); if (error != 0) return (error); if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); rw_enter(&zp->z_xattr_lock, RW_WRITER); error = zfs_setextattr_impl(ap, zfs_xattr_compat); rw_exit(&zp->z_xattr_lock); zfs_exit(zfsvfs, FTAG); return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_listextattr { IN struct vnode *a_vp; IN int a_attrnamespace; INOUT struct uio *a_uio; OUT size_t *a_size; IN struct ucred *a_cred; IN struct thread *a_td; }; #endif static int zfs_listextattr_dir(struct vop_listextattr_args *ap, const char *attrprefix) { struct thread *td = ap->a_td; struct nameidata nd; uint8_t dirbuf[sizeof (struct dirent)]; struct iovec aiov; struct uio auio; vnode_t *xvp = NULL, *vp; int error, eof; error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, LOOKUP_XATTR, B_FALSE); if (error != 0) { /* * ENOATTR means that the EA directory does not yet exist, * i.e. there are no extended attributes there. */ if (error == ENOATTR) error = 0; return (error); } #if __FreeBSD_version < 1400043 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED, UIO_SYSSPACE, ".", xvp, td); #else NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED, UIO_SYSSPACE, ".", xvp); #endif error = namei(&nd); if (error != 0) return (SET_ERROR(error)); vp = nd.ni_vp; NDFREE_PNBUF(&nd); auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_rw = UIO_READ; auio.uio_offset = 0; size_t plen = strlen(attrprefix); do { aiov.iov_base = (void *)dirbuf; aiov.iov_len = sizeof (dirbuf); auio.uio_resid = sizeof (dirbuf); error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL); if (error != 0) break; int done = sizeof (dirbuf) - auio.uio_resid; for (int pos = 0; pos < done; ) { struct dirent *dp = (struct dirent *)(dirbuf + pos); pos += dp->d_reclen; /* * XXX: Temporarily we also accept DT_UNKNOWN, as this * is what we get when attribute was created on Solaris. */ if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN) continue; else if (plen == 0 && ZFS_XA_NS_PREFIX_FORBIDDEN(dp->d_name)) continue; else if (strncmp(dp->d_name, attrprefix, plen) != 0) continue; uint8_t nlen = dp->d_namlen - plen; if (ap->a_size != NULL) { *ap->a_size += 1 + nlen; } else if (ap->a_uio != NULL) { /* * Format of extattr name entry is one byte for * length and the rest for name. */ error = uiomove(&nlen, 1, ap->a_uio); if (error == 0) { char *namep = dp->d_name + plen; error = uiomove(namep, nlen, ap->a_uio); } if (error != 0) { error = SET_ERROR(error); break; } } } } while (!eof && error == 0); vput(vp); return (error); } static int zfs_listextattr_sa(struct vop_listextattr_args *ap, const char *attrprefix) { znode_t *zp = VTOZ(ap->a_vp); int error; error = zfs_ensure_xattr_cached(zp); if (error != 0) return (error); ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); ASSERT3P(zp->z_xattr_cached, !=, NULL); size_t plen = strlen(attrprefix); nvpair_t *nvp = NULL; while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) { ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY); const char *name = nvpair_name(nvp); if (plen == 0 && ZFS_XA_NS_PREFIX_FORBIDDEN(name)) continue; else if (strncmp(name, attrprefix, plen) != 0) continue; uint8_t nlen = strlen(name) - plen; if (ap->a_size != NULL) { *ap->a_size += 1 + nlen; } else if (ap->a_uio != NULL) { /* * Format of extattr name entry is one byte for * length and the rest for name. */ error = uiomove(&nlen, 1, ap->a_uio); if (error == 0) { char *namep = __DECONST(char *, name) + plen; error = uiomove(namep, nlen, ap->a_uio); } if (error != 0) { error = SET_ERROR(error); break; } } } return (error); } static int zfs_listextattr_impl(struct vop_listextattr_args *ap, boolean_t compat) { znode_t *zp = VTOZ(ap->a_vp); zfsvfs_t *zfsvfs = ZTOZSB(zp); char attrprefix[16]; int error; error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix, sizeof (attrprefix), compat); if (error != 0) return (error); if (zfsvfs->z_use_sa && zp->z_is_sa) error = zfs_listextattr_sa(ap, attrprefix); if (error == 0) error = zfs_listextattr_dir(ap, attrprefix); return (error); } /* * Vnode operation to retrieve extended attributes on a vnode. */ static int zfs_listextattr(struct vop_listextattr_args *ap) { znode_t *zp = VTOZ(ap->a_vp); zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; if (ap->a_size != NULL) *ap->a_size = 0; /* * If the xattr property is off, refuse the request. */ if (!(zfsvfs->z_flags & ZSB_XATTR)) return (SET_ERROR(EOPNOTSUPP)); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error != 0) return (SET_ERROR(error)); if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); rw_enter(&zp->z_xattr_lock, RW_READER); error = zfs_listextattr_impl(ap, zfs_xattr_compat); if (error == 0 && ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) { /* Also list user xattrs with the alternate format. */ error = zfs_listextattr_impl(ap, !zfs_xattr_compat); } rw_exit(&zp->z_xattr_lock); zfs_exit(zfsvfs, FTAG); return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_getacl_args { struct vnode *vp; acl_type_t type; struct acl *aclp; struct ucred *cred; struct thread *td; }; #endif static int zfs_freebsd_getacl(struct vop_getacl_args *ap) { int error; vsecattr_t vsecattr; if (ap->a_type != ACL_TYPE_NFS4) return (EINVAL); vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT; if ((error = zfs_getsecattr(VTOZ(ap->a_vp), &vsecattr, 0, ap->a_cred))) return (error); error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt); if (vsecattr.vsa_aclentp != NULL) kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz); return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_setacl_args { struct vnode *vp; acl_type_t type; struct acl *aclp; struct ucred *cred; struct thread *td; }; #endif static int zfs_freebsd_setacl(struct vop_setacl_args *ap) { int error; vsecattr_t vsecattr; int aclbsize; /* size of acl list in bytes */ aclent_t *aaclp; if (ap->a_type != ACL_TYPE_NFS4) return (EINVAL); if (ap->a_aclp == NULL) return (EINVAL); if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES) return (EINVAL); /* * With NFSv4 ACLs, chmod(2) may need to add additional entries, * splitting every entry into two and appending "canonical six" * entries at the end. Don't allow for setting an ACL that would * cause chmod(2) to run out of ACL entries. */ if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES) return (ENOSPC); error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR); if (error != 0) return (error); vsecattr.vsa_mask = VSA_ACE; aclbsize = ap->a_aclp->acl_cnt * sizeof (ace_t); vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP); aaclp = vsecattr.vsa_aclentp; vsecattr.vsa_aclentsz = aclbsize; aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp); error = zfs_setsecattr(VTOZ(ap->a_vp), &vsecattr, 0, ap->a_cred); kmem_free(aaclp, aclbsize); return (error); } #ifndef _SYS_SYSPROTO_H_ struct vop_aclcheck_args { struct vnode *vp; acl_type_t type; struct acl *aclp; struct ucred *cred; struct thread *td; }; #endif static int zfs_freebsd_aclcheck(struct vop_aclcheck_args *ap) { return (EOPNOTSUPP); } static int zfs_vptocnp(struct vop_vptocnp_args *ap) { vnode_t *covered_vp; vnode_t *vp = ap->a_vp; zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; znode_t *zp = VTOZ(vp); int ltype; int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); /* * If we are a snapshot mounted under .zfs, run the operation * on the covered vnode. */ if (zp->z_id != zfsvfs->z_root || zfsvfs->z_parent == zfsvfs) { char name[MAXNAMLEN + 1]; znode_t *dzp; size_t len; error = zfs_znode_parent_and_name(zp, &dzp, name); if (error == 0) { len = strlen(name); if (*ap->a_buflen < len) error = SET_ERROR(ENOMEM); } if (error == 0) { *ap->a_buflen -= len; memcpy(ap->a_buf + *ap->a_buflen, name, len); *ap->a_vpp = ZTOV(dzp); } zfs_exit(zfsvfs, FTAG); return (error); } zfs_exit(zfsvfs, FTAG); covered_vp = vp->v_mount->mnt_vnodecovered; #if __FreeBSD_version >= 1300045 enum vgetstate vs = vget_prep(covered_vp); #else vhold(covered_vp); #endif ltype = VOP_ISLOCKED(vp); VOP_UNLOCK1(vp); #if __FreeBSD_version >= 1300045 error = vget_finish(covered_vp, LK_SHARED, vs); #else error = vget(covered_vp, LK_SHARED | LK_VNHELD, curthread); #endif if (error == 0) { #if __FreeBSD_version >= 1300123 error = VOP_VPTOCNP(covered_vp, ap->a_vpp, ap->a_buf, ap->a_buflen); #else error = VOP_VPTOCNP(covered_vp, ap->a_vpp, ap->a_cred, ap->a_buf, ap->a_buflen); #endif vput(covered_vp); } vn_lock(vp, ltype | LK_RETRY); if (VN_IS_DOOMED(vp)) error = SET_ERROR(ENOENT); return (error); } #if __FreeBSD_version >= 1400032 static int zfs_deallocate(struct vop_deallocate_args *ap) { znode_t *zp = VTOZ(ap->a_vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; zilog_t *zilog; off_t off, len, file_sz; int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); /* * Callers might not be able to detect properly that we are read-only, * so check it explicitly here. */ if (zfs_is_readonly(zfsvfs)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EROFS)); } zilog = zfsvfs->z_log; off = *ap->a_offset; len = *ap->a_len; file_sz = zp->z_size; if (off + len > file_sz) len = file_sz - off; /* Fast path for out-of-range request. */ if (len <= 0) { *ap->a_len = 0; zfs_exit(zfsvfs, FTAG); return (0); } error = zfs_freesp(zp, off, len, O_RDWR, TRUE); if (error == 0) { if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS || (ap->a_ioflag & IO_SYNC) != 0) zil_commit(zilog, zp->z_id); *ap->a_offset = off + len; *ap->a_len = 0; } zfs_exit(zfsvfs, FTAG); return (error); } #endif +#ifndef _SYS_SYSPROTO_H_ +struct vop_copy_file_range_args { + struct vnode *a_invp; + off_t *a_inoffp; + struct vnode *a_outvp; + off_t *a_outoffp; + size_t *a_lenp; + unsigned int a_flags; + struct ucred *a_incred; + struct ucred *a_outcred; + struct thread *a_fsizetd; +} +#endif +/* + * TODO: FreeBSD will only call file system-specific copy_file_range() if both + * files resides under the same mountpoint. In case of ZFS we want to be called + * even is files are in different datasets (but on the same pools, but we need + * to check that ourselves). + */ +static int +zfs_freebsd_copy_file_range(struct vop_copy_file_range_args *ap) +{ + struct vnode *invp = ap->a_invp; + struct vnode *outvp = ap->a_outvp; + struct mount *mp; + struct uio io; + int error; + + /* + * TODO: If offset/length is not aligned to recordsize, use + * vn_generic_copy_file_range() on this fragment. + * It would be better to do this after we lock the vnodes, but then we + * need something else than vn_generic_copy_file_range(). + */ + + /* Lock both vnodes, avoiding risk of deadlock. */ + do { + mp = NULL; + error = vn_start_write(outvp, &mp, V_WAIT); + if (error == 0) { + error = vn_lock(outvp, LK_EXCLUSIVE); + if (error == 0) { + if (invp == outvp) + break; + error = vn_lock(invp, LK_SHARED | LK_NOWAIT); + if (error == 0) + break; + VOP_UNLOCK(outvp); + if (mp != NULL) + vn_finished_write(mp); + mp = NULL; + error = vn_lock(invp, LK_SHARED); + if (error == 0) + VOP_UNLOCK(invp); + } + } + if (mp != NULL) + vn_finished_write(mp); + } while (error == 0); + if (error != 0) + return (error); +#ifdef MAC + error = mac_vnode_check_write(curthread->td_ucred, ap->a_outcred, + outvp); + if (error != 0) + goto unlock; +#endif + + io.uio_offset = *ap->a_outoffp; + io.uio_resid = *ap->a_lenp; + error = vn_rlimit_fsize(outvp, &io, ap->a_fsizetd); + if (error != 0) + goto unlock; + + error = zfs_clone_range(VTOZ(invp), ap->a_inoffp, VTOZ(outvp), + ap->a_outoffp, ap->a_lenp, ap->a_fsizetd->td_ucred); + +unlock: + if (invp != outvp) + VOP_UNLOCK(invp); + VOP_UNLOCK(outvp); + if (mp != NULL) + vn_finished_write(mp); + + return (error); +} + struct vop_vector zfs_vnodeops; struct vop_vector zfs_fifoops; struct vop_vector zfs_shareops; struct vop_vector zfs_vnodeops = { .vop_default = &default_vnodeops, .vop_inactive = zfs_freebsd_inactive, #if __FreeBSD_version >= 1300042 .vop_need_inactive = zfs_freebsd_need_inactive, #endif .vop_reclaim = zfs_freebsd_reclaim, #if __FreeBSD_version >= 1300102 .vop_fplookup_vexec = zfs_freebsd_fplookup_vexec, #endif #if __FreeBSD_version >= 1300139 .vop_fplookup_symlink = zfs_freebsd_fplookup_symlink, #endif .vop_access = zfs_freebsd_access, .vop_allocate = VOP_EINVAL, #if __FreeBSD_version >= 1400032 .vop_deallocate = zfs_deallocate, #endif .vop_lookup = zfs_cache_lookup, .vop_cachedlookup = zfs_freebsd_cachedlookup, .vop_getattr = zfs_freebsd_getattr, .vop_setattr = zfs_freebsd_setattr, .vop_create = zfs_freebsd_create, .vop_mknod = (vop_mknod_t *)zfs_freebsd_create, .vop_mkdir = zfs_freebsd_mkdir, .vop_readdir = zfs_freebsd_readdir, .vop_fsync = zfs_freebsd_fsync, .vop_open = zfs_freebsd_open, .vop_close = zfs_freebsd_close, .vop_rmdir = zfs_freebsd_rmdir, .vop_ioctl = zfs_freebsd_ioctl, .vop_link = zfs_freebsd_link, .vop_symlink = zfs_freebsd_symlink, .vop_readlink = zfs_freebsd_readlink, .vop_read = zfs_freebsd_read, .vop_write = zfs_freebsd_write, .vop_remove = zfs_freebsd_remove, .vop_rename = zfs_freebsd_rename, .vop_pathconf = zfs_freebsd_pathconf, .vop_bmap = zfs_freebsd_bmap, .vop_fid = zfs_freebsd_fid, .vop_getextattr = zfs_getextattr, .vop_deleteextattr = zfs_deleteextattr, .vop_setextattr = zfs_setextattr, .vop_listextattr = zfs_listextattr, .vop_getacl = zfs_freebsd_getacl, .vop_setacl = zfs_freebsd_setacl, .vop_aclcheck = zfs_freebsd_aclcheck, .vop_getpages = zfs_freebsd_getpages, .vop_putpages = zfs_freebsd_putpages, .vop_vptocnp = zfs_vptocnp, #if __FreeBSD_version >= 1300064 .vop_lock1 = vop_lock, .vop_unlock = vop_unlock, .vop_islocked = vop_islocked, #endif #if __FreeBSD_version >= 1400043 .vop_add_writecount = vop_stdadd_writecount_nomsync, #endif + .vop_copy_file_range = zfs_freebsd_copy_file_range, }; VFS_VOP_VECTOR_REGISTER(zfs_vnodeops); struct vop_vector zfs_fifoops = { .vop_default = &fifo_specops, .vop_fsync = zfs_freebsd_fsync, #if __FreeBSD_version >= 1300102 .vop_fplookup_vexec = zfs_freebsd_fplookup_vexec, #endif #if __FreeBSD_version >= 1300139 .vop_fplookup_symlink = zfs_freebsd_fplookup_symlink, #endif .vop_access = zfs_freebsd_access, .vop_getattr = zfs_freebsd_getattr, .vop_inactive = zfs_freebsd_inactive, .vop_read = VOP_PANIC, .vop_reclaim = zfs_freebsd_reclaim, .vop_setattr = zfs_freebsd_setattr, .vop_write = VOP_PANIC, .vop_pathconf = zfs_freebsd_pathconf, .vop_fid = zfs_freebsd_fid, .vop_getacl = zfs_freebsd_getacl, .vop_setacl = zfs_freebsd_setacl, .vop_aclcheck = zfs_freebsd_aclcheck, #if __FreeBSD_version >= 1400043 .vop_add_writecount = vop_stdadd_writecount_nomsync, #endif }; VFS_VOP_VECTOR_REGISTER(zfs_fifoops); /* * special share hidden files vnode operations template */ struct vop_vector zfs_shareops = { .vop_default = &default_vnodeops, #if __FreeBSD_version >= 1300121 .vop_fplookup_vexec = VOP_EAGAIN, #endif #if __FreeBSD_version >= 1300139 .vop_fplookup_symlink = VOP_EAGAIN, #endif .vop_access = zfs_freebsd_access, .vop_inactive = zfs_freebsd_inactive, .vop_reclaim = zfs_freebsd_reclaim, .vop_fid = zfs_freebsd_fid, .vop_pathconf = zfs_freebsd_pathconf, #if __FreeBSD_version >= 1400043 .vop_add_writecount = vop_stdadd_writecount_nomsync, #endif }; VFS_VOP_VECTOR_REGISTER(zfs_shareops); ZFS_MODULE_PARAM(zfs, zfs_, xattr_compat, INT, ZMOD_RW, "Use legacy ZFS xattr naming for writing new user namespace xattrs"); diff --git a/module/os/freebsd/zfs/zfs_znode.c b/module/os/freebsd/zfs/zfs_znode.c index 304bc71f90db..dc1d31e1bd11 100644 --- a/module/os/freebsd/zfs/zfs_znode.c +++ b/module/os/freebsd/zfs/zfs_znode.c @@ -1,2115 +1,2141 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2007 Jeremy Teo */ /* Portions Copyright 2011 Martin Matuska */ #ifdef _KERNEL #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* _KERNEL */ #include #include #include #include #include #include #include #include #include #include #include "zfs_prop.h" #include "zfs_comutil.h" /* Used by fstat(1). */ SYSCTL_INT(_debug_sizeof, OID_AUTO, znode, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, sizeof (znode_t), "sizeof(znode_t)"); /* * Define ZNODE_STATS to turn on statistic gathering. By default, it is only * turned on when DEBUG is also defined. */ #ifdef ZFS_DEBUG #define ZNODE_STATS #endif /* DEBUG */ #ifdef ZNODE_STATS #define ZNODE_STAT_ADD(stat) ((stat)++) #else #define ZNODE_STAT_ADD(stat) /* nothing */ #endif /* ZNODE_STATS */ /* * Functions needed for userland (ie: libzpool) are not put under * #ifdef_KERNEL; the rest of the functions have dependencies * (such as VFS logic) that will not compile easily in userland. */ #ifdef _KERNEL #if !defined(KMEM_DEBUG) && __FreeBSD_version >= 1300102 #define _ZFS_USE_SMR static uma_zone_t znode_uma_zone; #else static kmem_cache_t *znode_cache = NULL; #endif extern struct vop_vector zfs_vnodeops; extern struct vop_vector zfs_fifoops; extern struct vop_vector zfs_shareops; /* * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on * z_rangelock. It will modify the offset and length of the lock to reflect * znode-specific information, and convert RL_APPEND to RL_WRITER. This is * called with the rangelock_t's rl_lock held, which avoids races. */ static void zfs_rangelock_cb(zfs_locked_range_t *new, void *arg) { znode_t *zp = arg; /* * If in append mode, convert to writer and lock starting at the * current end of file. */ if (new->lr_type == RL_APPEND) { new->lr_offset = zp->z_size; new->lr_type = RL_WRITER; } /* * If we need to grow the block size then lock the whole file range. */ uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length); if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) || zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) { new->lr_offset = 0; new->lr_length = UINT64_MAX; } } static int zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) { znode_t *zp = buf; POINTER_INVALIDATE(&zp->z_zfsvfs); list_link_init(&zp->z_link_node); mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL); zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp); zp->z_acl_cached = NULL; zp->z_xattr_cached = NULL; zp->z_xattr_parent = 0; zp->z_vnode = NULL; zp->z_sync_writes_cnt = 0; zp->z_async_writes_cnt = 0; return (0); } static void zfs_znode_cache_destructor(void *buf, void *arg) { (void) arg; znode_t *zp = buf; ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); ASSERT3P(zp->z_vnode, ==, NULL); ASSERT(!list_link_active(&zp->z_link_node)); mutex_destroy(&zp->z_lock); mutex_destroy(&zp->z_acl_lock); rw_destroy(&zp->z_xattr_lock); zfs_rangelock_fini(&zp->z_rangelock); ASSERT3P(zp->z_acl_cached, ==, NULL); ASSERT3P(zp->z_xattr_cached, ==, NULL); ASSERT0(atomic_load_32(&zp->z_sync_writes_cnt)); ASSERT0(atomic_load_32(&zp->z_async_writes_cnt)); } #ifdef _ZFS_USE_SMR VFS_SMR_DECLARE; static int zfs_znode_cache_constructor_smr(void *mem, int size __unused, void *private, int flags) { return (zfs_znode_cache_constructor(mem, private, flags)); } static void zfs_znode_cache_destructor_smr(void *mem, int size __unused, void *private) { zfs_znode_cache_destructor(mem, private); } void zfs_znode_init(void) { /* * Initialize zcache */ ASSERT3P(znode_uma_zone, ==, NULL); znode_uma_zone = uma_zcreate("zfs_znode_cache", sizeof (znode_t), zfs_znode_cache_constructor_smr, zfs_znode_cache_destructor_smr, NULL, NULL, 0, 0); VFS_SMR_ZONE_SET(znode_uma_zone); } static znode_t * zfs_znode_alloc_kmem(int flags) { return (uma_zalloc_smr(znode_uma_zone, flags)); } static void zfs_znode_free_kmem(znode_t *zp) { if (zp->z_xattr_cached) { nvlist_free(zp->z_xattr_cached); zp->z_xattr_cached = NULL; } uma_zfree_smr(znode_uma_zone, zp); } #else void zfs_znode_init(void) { /* * Initialize zcache */ ASSERT3P(znode_cache, ==, NULL); znode_cache = kmem_cache_create("zfs_znode_cache", sizeof (znode_t), 0, zfs_znode_cache_constructor, zfs_znode_cache_destructor, NULL, NULL, NULL, 0); } static znode_t * zfs_znode_alloc_kmem(int flags) { return (kmem_cache_alloc(znode_cache, flags)); } static void zfs_znode_free_kmem(znode_t *zp) { if (zp->z_xattr_cached) { nvlist_free(zp->z_xattr_cached); zp->z_xattr_cached = NULL; } kmem_cache_free(znode_cache, zp); } #endif void zfs_znode_fini(void) { /* * Cleanup zcache */ #ifdef _ZFS_USE_SMR if (znode_uma_zone) { uma_zdestroy(znode_uma_zone); znode_uma_zone = NULL; } #else if (znode_cache) { kmem_cache_destroy(znode_cache); znode_cache = NULL; } #endif } static int zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) { zfs_acl_ids_t acl_ids; vattr_t vattr; znode_t *sharezp; znode_t *zp; int error; vattr.va_mask = AT_MODE|AT_UID|AT_GID; vattr.va_type = VDIR; vattr.va_mode = S_IFDIR|0555; vattr.va_uid = crgetuid(kcred); vattr.va_gid = crgetgid(kcred); sharezp = zfs_znode_alloc_kmem(KM_SLEEP); ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); sharezp->z_unlinked = 0; sharezp->z_atime_dirty = 0; sharezp->z_zfsvfs = zfsvfs; sharezp->z_is_sa = zfsvfs->z_use_sa; VERIFY0(zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, kcred, NULL, &acl_ids, NULL)); zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); ASSERT3P(zp, ==, sharezp); POINTER_INVALIDATE(&sharezp->z_zfsvfs); error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); zfsvfs->z_shares_dir = sharezp->z_id; zfs_acl_ids_free(&acl_ids); sa_handle_destroy(sharezp->z_sa_hdl); zfs_znode_free_kmem(sharezp); return (error); } /* * define a couple of values we need available * for both 64 and 32 bit environments. */ #ifndef NBITSMINOR64 #define NBITSMINOR64 32 #endif #ifndef MAXMAJ64 #define MAXMAJ64 0xffffffffUL #endif #ifndef MAXMIN64 #define MAXMIN64 0xffffffffUL #endif /* * Create special expldev for ZFS private use. * Can't use standard expldev since it doesn't do * what we want. The standard expldev() takes a * dev32_t in LP64 and expands it to a long dev_t. * We need an interface that takes a dev32_t in ILP32 * and expands it to a long dev_t. */ static uint64_t zfs_expldev(dev_t dev) { return (((uint64_t)major(dev) << NBITSMINOR64) | minor(dev)); } /* * Special cmpldev for ZFS private use. * Can't use standard cmpldev since it takes * a long dev_t and compresses it to dev32_t in * LP64. We need to do a compaction of a long dev_t * to a dev32_t in ILP32. */ dev_t zfs_cmpldev(uint64_t dev) { return (makedev((dev >> NBITSMINOR64), (dev & MAXMIN64))); } static void zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) { ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); ASSERT3P(zp->z_sa_hdl, ==, NULL); ASSERT3P(zp->z_acl_cached, ==, NULL); if (sa_hdl == NULL) { VERIFY0(sa_handle_get_from_db(zfsvfs->z_os, db, zp, SA_HDL_SHARED, &zp->z_sa_hdl)); } else { zp->z_sa_hdl = sa_hdl; sa_set_userp(sa_hdl, zp); } zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; /* * Slap on VROOT if we are the root znode unless we are the root * node of a snapshot mounted under .zfs. */ if (zp->z_id == zfsvfs->z_root && zfsvfs->z_parent == zfsvfs) ZTOV(zp)->v_flag |= VROOT; vn_exists(ZTOV(zp)); } void zfs_znode_dmu_fini(znode_t *zp) { ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zp->z_zfsvfs)); sa_handle_destroy(zp->z_sa_hdl); zp->z_sa_hdl = NULL; } static void zfs_vnode_forget(vnode_t *vp) { /* copied from insmntque_stddtr */ vp->v_data = NULL; vp->v_op = &dead_vnodeops; vgone(vp); vput(vp); } /* * Construct a new znode/vnode and initialize. * * This does not do a call to dmu_set_user() that is * up to the caller to do, in case you don't want to * return the znode */ static znode_t * zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, dmu_object_type_t obj_type, sa_handle_t *hdl) { znode_t *zp; vnode_t *vp; uint64_t mode; uint64_t parent; #ifdef notyet uint64_t mtime[2], ctime[2]; #endif uint64_t projid = ZFS_DEFAULT_PROJID; sa_bulk_attr_t bulk[9]; int count = 0; int error; zp = zfs_znode_alloc_kmem(KM_SLEEP); #ifndef _ZFS_USE_SMR KASSERT((zfsvfs->z_parent->z_vfs->mnt_kern_flag & MNTK_FPLOOKUP) == 0, ("%s: fast path lookup enabled without smr", __func__)); #endif #if __FreeBSD_version >= 1300076 KASSERT(curthread->td_vp_reserved != NULL, ("zfs_znode_alloc: getnewvnode without any vnodes reserved")); #else KASSERT(curthread->td_vp_reserv > 0, ("zfs_znode_alloc: getnewvnode without any vnodes reserved")); #endif error = getnewvnode("zfs", zfsvfs->z_parent->z_vfs, &zfs_vnodeops, &vp); if (error != 0) { zfs_znode_free_kmem(zp); return (NULL); } zp->z_vnode = vp; vp->v_data = zp; /* * Acquire the vnode lock before any possible interaction with the * outside world. Specifically, there is an error path that calls * zfs_vnode_forget() and the vnode should be exclusively locked. */ vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); zp->z_sa_hdl = NULL; zp->z_unlinked = 0; zp->z_atime_dirty = 0; zp->z_mapcnt = 0; zp->z_id = db->db_object; zp->z_blksz = blksz; zp->z_seq = 0x7A4653; zp->z_sync_cnt = 0; zp->z_sync_writes_cnt = 0; zp->z_async_writes_cnt = 0; #if __FreeBSD_version >= 1300139 atomic_store_ptr(&zp->z_cached_symlink, NULL); #endif zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &zp->z_links, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &zp->z_atime, 16); #ifdef notyet SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); #endif SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &zp->z_uid, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &zp->z_gid, 8); if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0 || (dmu_objset_projectquota_enabled(zfsvfs->z_os) && (zp->z_pflags & ZFS_PROJID) && sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) { if (hdl == NULL) sa_handle_destroy(zp->z_sa_hdl); zfs_vnode_forget(vp); zp->z_vnode = NULL; zfs_znode_free_kmem(zp); return (NULL); } zp->z_projid = projid; zp->z_mode = mode; /* Cache the xattr parent id */ if (zp->z_pflags & ZFS_XATTR) zp->z_xattr_parent = parent; vp->v_type = IFTOVT((mode_t)mode); switch (vp->v_type) { case VDIR: zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ break; case VFIFO: vp->v_op = &zfs_fifoops; break; case VREG: if (parent == zfsvfs->z_shares_dir) { ASSERT0(zp->z_uid); ASSERT0(zp->z_gid); vp->v_op = &zfs_shareops; } break; default: break; } mutex_enter(&zfsvfs->z_znodes_lock); list_insert_tail(&zfsvfs->z_all_znodes, zp); zfsvfs->z_nr_znodes++; zp->z_zfsvfs = zfsvfs; mutex_exit(&zfsvfs->z_znodes_lock); #if __FreeBSD_version >= 1400077 vn_set_state(vp, VSTATE_CONSTRUCTED); #endif VN_LOCK_AREC(vp); if (vp->v_type != VFIFO) VN_LOCK_ASHARE(vp); return (zp); } static uint64_t empty_xattr; static uint64_t pad[4]; static zfs_acl_phys_t acl_phys; /* * Create a new DMU object to hold a zfs znode. * * IN: dzp - parent directory for new znode * vap - file attributes for new znode * tx - dmu transaction id for zap operations * cr - credentials of caller * flag - flags: * IS_ROOT_NODE - new object will be root * IS_XATTR - new object is an attribute * bonuslen - length of bonus buffer * setaclp - File/Dir initial ACL * fuidp - Tracks fuid allocation. * * OUT: zpp - allocated znode * */ void zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) { uint64_t crtime[2], atime[2], mtime[2], ctime[2]; uint64_t mode, size, links, parent, pflags; uint64_t dzp_pflags = 0; uint64_t rdev = 0; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; dmu_buf_t *db; timestruc_t now; uint64_t gen, obj; int bonuslen; int dnodesize; sa_handle_t *sa_hdl; dmu_object_type_t obj_type; sa_bulk_attr_t *sa_attrs; int cnt = 0; zfs_acl_locator_cb_t locate = { 0 }; ASSERT3P(vap, !=, NULL); ASSERT3U((vap->va_mask & AT_MODE), ==, AT_MODE); if (zfsvfs->z_replay) { obj = vap->va_nodeid; now = vap->va_ctime; /* see zfs_replay_create() */ gen = vap->va_nblocks; /* ditto */ dnodesize = vap->va_fsid; /* ditto */ } else { obj = 0; vfs_timestamp(&now); gen = dmu_tx_get_txg(tx); dnodesize = dmu_objset_dnodesize(zfsvfs->z_os); } if (dnodesize == 0) dnodesize = DNODE_MIN_SIZE; obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; bonuslen = (obj_type == DMU_OT_SA) ? DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE; /* * Create a new DMU object. */ /* * There's currently no mechanism for pre-reading the blocks that will * be needed to allocate a new object, so we accept the small chance * that there will be an i/o error and we will fail one of the * assertions below. */ if (vap->va_type == VDIR) { if (zfsvfs->z_replay) { VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj, zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, obj_type, bonuslen, dnodesize, tx)); } else { obj = zap_create_norm_dnsize(zfsvfs->z_os, zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, obj_type, bonuslen, dnodesize, tx); } } else { if (zfsvfs->z_replay) { VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj, DMU_OT_PLAIN_FILE_CONTENTS, 0, obj_type, bonuslen, dnodesize, tx)); } else { obj = dmu_object_alloc_dnsize(zfsvfs->z_os, DMU_OT_PLAIN_FILE_CONTENTS, 0, obj_type, bonuslen, dnodesize, tx); } } ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); /* * If this is the root, fix up the half-initialized parent pointer * to reference the just-allocated physical data area. */ if (flag & IS_ROOT_NODE) { dzp->z_id = obj; } else { dzp_pflags = dzp->z_pflags; } /* * If parent is an xattr, so am I. */ if (dzp_pflags & ZFS_XATTR) { flag |= IS_XATTR; } if (zfsvfs->z_use_fuids) pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; else pflags = 0; if (vap->va_type == VDIR) { size = 2; /* contents ("." and "..") */ links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; } else { size = links = 0; } if (vap->va_type == VBLK || vap->va_type == VCHR) { rdev = zfs_expldev(vap->va_rdev); } parent = dzp->z_id; mode = acl_ids->z_mode; if (flag & IS_XATTR) pflags |= ZFS_XATTR; /* * No execs denied will be determined when zfs_mode_compute() is called. */ pflags |= acl_ids->z_aclp->z_hints & (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); ZFS_TIME_ENCODE(&now, crtime); ZFS_TIME_ENCODE(&now, ctime); if (vap->va_mask & AT_ATIME) { ZFS_TIME_ENCODE(&vap->va_atime, atime); } else { ZFS_TIME_ENCODE(&now, atime); } if (vap->va_mask & AT_MTIME) { ZFS_TIME_ENCODE(&vap->va_mtime, mtime); } else { ZFS_TIME_ENCODE(&now, mtime); } /* Now add in all of the "SA" attributes */ VERIFY0(sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, &sa_hdl)); /* * Setup the array of attributes to be replaced/set on the new file * * order for DMU_OT_ZNODE is critical since it needs to be constructed * in the old znode_phys_t format. Don't change this ordering */ sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP); if (obj_type == DMU_OT_ZNODE) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), NULL, &gen, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), NULL, &size, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); } else { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), NULL, &size, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), NULL, &gen, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, &acl_ids->z_fuid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, &acl_ids->z_fgid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), NULL, &pflags, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); } SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); if (obj_type == DMU_OT_ZNODE) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, &empty_xattr, 8); } if (obj_type == DMU_OT_ZNODE || (vap->va_type == VBLK || vap->va_type == VCHR)) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), NULL, &rdev, 8); } if (obj_type == DMU_OT_ZNODE) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), NULL, &pflags, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, &acl_ids->z_fuid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, &acl_ids->z_fgid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, sizeof (uint64_t) * 4); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, &acl_phys, sizeof (zfs_acl_phys_t)); } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, &acl_ids->z_aclp->z_acl_count, 8); locate.cb_aclp = acl_ids->z_aclp; SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), zfs_acl_data_locator, &locate, acl_ids->z_aclp->z_acl_bytes); mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, acl_ids->z_fuid, acl_ids->z_fgid); } VERIFY0(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx)); if (!(flag & IS_ROOT_NODE)) { *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); ASSERT3P(*zpp, !=, NULL); } else { /* * If we are creating the root node, the "parent" we * passed in is the znode for the root. */ *zpp = dzp; (*zpp)->z_sa_hdl = sa_hdl; } (*zpp)->z_pflags = pflags; (*zpp)->z_mode = mode; (*zpp)->z_dnodesize = dnodesize; if (vap->va_mask & AT_XVATTR) zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); if (obj_type == DMU_OT_ZNODE || acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); } if (!(flag & IS_ROOT_NODE)) { vnode_t *vp = ZTOV(*zpp); vp->v_vflag |= VV_FORCEINSMQ; int err = insmntque(vp, zfsvfs->z_vfs); vp->v_vflag &= ~VV_FORCEINSMQ; (void) err; KASSERT(err == 0, ("insmntque() failed: error %d", err)); } kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); } /* * Update in-core attributes. It is assumed the caller will be doing an * sa_bulk_update to push the changes out. */ void zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) { xoptattr_t *xoap; xoap = xva_getxoptattr(xvap); ASSERT3P(xoap, !=, NULL); if (zp->z_zfsvfs->z_replay == B_FALSE) { ASSERT_VOP_IN_SEQC(ZTOV(zp)); } if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { uint64_t times[2]; ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), ×, sizeof (times), tx); XVA_SET_RTN(xvap, XAT_CREATETIME); } if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_READONLY); } if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_HIDDEN); } if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_SYSTEM); } if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_ARCHIVE); } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_OPAQUE); } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, xoap->xoa_av_quarantined, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { zfs_sa_set_scanstamp(zp, xvap, tx); XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_REPARSE); } if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_OFFLINE); } if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_SPARSE); } } int zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) { dmu_object_info_t doi; dmu_buf_t *db; znode_t *zp; vnode_t *vp; sa_handle_t *hdl; int locked; int err; getnewvnode_reserve_(); again: *zpp = NULL; ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); if (err) { ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); getnewvnode_drop_reserve(); return (err); } dmu_object_info_from_db(db, &doi); if (doi.doi_bonus_type != DMU_OT_SA && (doi.doi_bonus_type != DMU_OT_ZNODE || (doi.doi_bonus_type == DMU_OT_ZNODE && doi.doi_bonus_size < sizeof (znode_phys_t)))) { sa_buf_rele(db, NULL); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); getnewvnode_drop_reserve(); return (SET_ERROR(EINVAL)); } hdl = dmu_buf_get_user(db); if (hdl != NULL) { zp = sa_get_userdata(hdl); /* * Since "SA" does immediate eviction we * should never find a sa handle that doesn't * know about the znode. */ ASSERT3P(zp, !=, NULL); ASSERT3U(zp->z_id, ==, obj_num); if (zp->z_unlinked) { err = SET_ERROR(ENOENT); } else { vp = ZTOV(zp); /* * Don't let the vnode disappear after * ZFS_OBJ_HOLD_EXIT. */ VN_HOLD(vp); *zpp = zp; err = 0; } sa_buf_rele(db, NULL); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); if (err) { getnewvnode_drop_reserve(); return (err); } locked = VOP_ISLOCKED(vp); VI_LOCK(vp); if (VN_IS_DOOMED(vp) && locked != LK_EXCLUSIVE) { /* * The vnode is doomed and this thread doesn't * hold the exclusive lock on it, so the vnode * must be being reclaimed by another thread. * Otherwise the doomed vnode is being reclaimed * by this thread and zfs_zget is called from * ZIL internals. */ VI_UNLOCK(vp); /* * XXX vrele() locks the vnode when the last reference * is dropped. Although in this case the vnode is * doomed / dead and so no inactivation is required, * the vnode lock is still acquired. That could result * in a LOR with z_teardown_lock if another thread holds * the vnode's lock and tries to take z_teardown_lock. * But that is only possible if the other thread peforms * a ZFS vnode operation on the vnode. That either * should not happen if the vnode is dead or the thread * should also have a reference to the vnode and thus * our reference is not last. */ VN_RELE(vp); goto again; } VI_UNLOCK(vp); getnewvnode_drop_reserve(); return (err); } /* * Not found create new znode/vnode * but only if file exists. * * There is a small window where zfs_vget() could * find this object while a file create is still in * progress. This is checked for in zfs_znode_alloc() * * if zfs_znode_alloc() fails it will drop the hold on the * bonus buffer. */ zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, doi.doi_bonus_type, NULL); if (zp == NULL) { err = SET_ERROR(ENOENT); } else { *zpp = zp; } if (err == 0) { vnode_t *vp = ZTOV(zp); err = insmntque(vp, zfsvfs->z_vfs); if (err == 0) { vp->v_hash = obj_num; VOP_UNLOCK1(vp); } else { zp->z_vnode = NULL; zfs_znode_dmu_fini(zp); zfs_znode_free(zp); *zpp = NULL; } } ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); getnewvnode_drop_reserve(); return (err); } int zfs_rezget(znode_t *zp) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; dmu_object_info_t doi; dmu_buf_t *db; vnode_t *vp; uint64_t obj_num = zp->z_id; uint64_t mode, size; sa_bulk_attr_t bulk[8]; int err; int count = 0; uint64_t gen; /* * Remove cached pages before reloading the znode, so that they are not * lingering after we run into any error. Ideally, we should vgone() * the vnode in case of error, but currently we cannot do that * because of the LOR between the vnode lock and z_teardown_lock. * So, instead, we have to "doom" the znode in the illumos style. * * Ignore invalid pages during the scan. This is to avoid deadlocks * between page busying and the teardown lock, as pages are busied prior * to a VOP_GETPAGES operation, which acquires the teardown read lock. * Such pages will be invalid and can safely be skipped here. */ vp = ZTOV(zp); #if __FreeBSD_version >= 1400042 vn_pages_remove_valid(vp, 0, 0); #else vn_pages_remove(vp, 0, 0); #endif ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); mutex_enter(&zp->z_acl_lock); if (zp->z_acl_cached) { zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = NULL; } mutex_exit(&zp->z_acl_lock); rw_enter(&zp->z_xattr_lock, RW_WRITER); if (zp->z_xattr_cached) { nvlist_free(zp->z_xattr_cached); zp->z_xattr_cached = NULL; } rw_exit(&zp->z_xattr_lock); ASSERT3P(zp->z_sa_hdl, ==, NULL); err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); if (err) { ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (err); } dmu_object_info_from_db(db, &doi); if (doi.doi_bonus_type != DMU_OT_SA && (doi.doi_bonus_type != DMU_OT_ZNODE || (doi.doi_bonus_type == DMU_OT_ZNODE && doi.doi_bonus_size < sizeof (znode_phys_t)))) { sa_buf_rele(db, NULL); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (SET_ERROR(EINVAL)); } zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); size = zp->z_size; /* reload cached values */ SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &gen, sizeof (gen)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, sizeof (zp->z_size)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &zp->z_links, sizeof (zp->z_links)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &zp->z_atime, sizeof (zp->z_atime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &zp->z_uid, sizeof (zp->z_uid)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &zp->z_gid, sizeof (zp->z_gid)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, sizeof (mode)); if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (SET_ERROR(EIO)); } zp->z_mode = mode; if (gen != zp->z_gen) { zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (SET_ERROR(EIO)); } /* * It is highly improbable but still quite possible that two * objects in different datasets are created with the same * object numbers and in transaction groups with the same * numbers. znodes corresponding to those objects would * have the same z_id and z_gen, but their other attributes * may be different. * zfs recv -F may replace one of such objects with the other. * As a result file properties recorded in the replaced * object's vnode may no longer match the received object's * properties. At present the only cached property is the * files type recorded in v_type. * So, handle this case by leaving the old vnode and znode * disassociated from the actual object. A new vnode and a * znode will be created if the object is accessed * (e.g. via a look-up). The old vnode and znode will be * recycled when the last vnode reference is dropped. */ if (vp->v_type != IFTOVT((mode_t)zp->z_mode)) { zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (SET_ERROR(EIO)); } /* * If the file has zero links, then it has been unlinked on the send * side and it must be in the received unlinked set. * We call zfs_znode_dmu_fini() now to prevent any accesses to the * stale data and to prevent automatically removal of the file in * zfs_zinactive(). The file will be removed either when it is removed * on the send side and the next incremental stream is received or * when the unlinked set gets processed. */ zp->z_unlinked = (zp->z_links == 0); if (zp->z_unlinked) { zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (0); } zp->z_blksz = doi.doi_data_block_size; if (zp->z_size != size) vnode_pager_setsize(vp, zp->z_size); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (0); } void zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; objset_t *os = zfsvfs->z_os; uint64_t obj = zp->z_id; uint64_t acl_obj = zfs_external_acl(zp); ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); if (acl_obj) { VERIFY(!zp->z_is_sa); VERIFY0(dmu_object_free(os, acl_obj, tx)); } VERIFY0(dmu_object_free(os, obj, tx)); zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); zfs_znode_free(zp); } void zfs_zinactive(znode_t *zp) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; uint64_t z_id = zp->z_id; ASSERT3P(zp->z_sa_hdl, !=, NULL); /* * Don't allow a zfs_zget() while were trying to release this znode */ ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); /* * If this was the last reference to a file with no links, remove * the file from the file system unless the file system is mounted * read-only. That can happen, for example, if the file system was * originally read-write, the file was opened, then unlinked and * the file system was made read-only before the file was finally * closed. The file will remain in the unlinked set. */ if (zp->z_unlinked) { ASSERT(!zfsvfs->z_issnap); if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) { ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); zfs_rmnode(zp); return; } } zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); zfs_znode_free(zp); } void zfs_znode_free(znode_t *zp) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; #if __FreeBSD_version >= 1300139 char *symlink; #endif ASSERT3P(zp->z_sa_hdl, ==, NULL); zp->z_vnode = NULL; mutex_enter(&zfsvfs->z_znodes_lock); POINTER_INVALIDATE(&zp->z_zfsvfs); list_remove(&zfsvfs->z_all_znodes, zp); zfsvfs->z_nr_znodes--; mutex_exit(&zfsvfs->z_znodes_lock); #if __FreeBSD_version >= 1300139 symlink = atomic_load_ptr(&zp->z_cached_symlink); if (symlink != NULL) { atomic_store_rel_ptr((uintptr_t *)&zp->z_cached_symlink, (uintptr_t)NULL); cache_symlink_free(symlink, strlen(symlink) + 1); } #endif if (zp->z_acl_cached) { zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = NULL; } zfs_znode_free_kmem(zp); } void zfs_tstamp_update_setup_ext(znode_t *zp, uint_t flag, uint64_t mtime[2], uint64_t ctime[2], boolean_t have_tx) { timestruc_t now; vfs_timestamp(&now); if (have_tx) { /* will sa_bulk_update happen really soon? */ zp->z_atime_dirty = 0; zp->z_seq++; } else { zp->z_atime_dirty = 1; } if (flag & AT_ATIME) { ZFS_TIME_ENCODE(&now, zp->z_atime); } if (flag & AT_MTIME) { ZFS_TIME_ENCODE(&now, mtime); if (zp->z_zfsvfs->z_use_fuids) { zp->z_pflags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); } } if (flag & AT_CTIME) { ZFS_TIME_ENCODE(&now, ctime); if (zp->z_zfsvfs->z_use_fuids) zp->z_pflags |= ZFS_ARCHIVE; } } void zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], uint64_t ctime[2]) { zfs_tstamp_update_setup_ext(zp, flag, mtime, ctime, B_TRUE); } /* * Grow the block size for a file. * * IN: zp - znode of file to free data in. * size - requested block size * tx - open transaction. * * NOTE: this function assumes that the znode is write locked. */ void zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) { int error; u_longlong_t dummy; if (size <= zp->z_blksz) return; /* * If the file size is already greater than the current blocksize, * we will not grow. If there is more than one block in a file, * the blocksize cannot change. */ if (zp->z_blksz && zp->z_size > zp->z_blksz) return; error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, size, 0, tx); if (error == ENOTSUP) return; ASSERT0(error); /* What blocksize did we actually get? */ dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); } /* * Increase the file length * * IN: zp - znode of file to free data in. * end - new end-of-file * * RETURN: 0 on success, error code on failure */ static int zfs_extend(znode_t *zp, uint64_t end) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; dmu_tx_t *tx; zfs_locked_range_t *lr; uint64_t newblksz; int error; /* * We will change zp_size, lock the whole file. */ lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER); /* * Nothing to do if file already at desired length. */ if (end <= zp->z_size) { zfs_rangelock_exit(lr); return (0); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); if (end > zp->z_blksz && (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { /* * We are growing the file past the current block size. */ if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { /* * File's blocksize is already larger than the * "recordsize" property. Only let it grow to * the next power of 2. */ ASSERT(!ISP2(zp->z_blksz)); newblksz = MIN(end, 1 << highbit64(zp->z_blksz)); } else { newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); } dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); } else { newblksz = 0; } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); zfs_rangelock_exit(lr); return (error); } if (newblksz) zfs_grow_blocksize(zp, newblksz, tx); zp->z_size = end; VERIFY0(sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), &zp->z_size, sizeof (zp->z_size), tx)); vnode_pager_setsize(ZTOV(zp), end); zfs_rangelock_exit(lr); dmu_tx_commit(tx); return (0); } /* * Free space in a file. * * IN: zp - znode of file to free data in. * off - start of section to free. * len - length of section to free. * * RETURN: 0 on success, error code on failure */ static int zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; zfs_locked_range_t *lr; int error; /* * Lock the range being freed. */ lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER); /* * Nothing to do if file already at desired length. */ if (off >= zp->z_size) { zfs_rangelock_exit(lr); return (0); } if (off + len > zp->z_size) len = zp->z_size - off; error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); if (error == 0) { #if __FreeBSD_version >= 1400032 vnode_pager_purge_range(ZTOV(zp), off, off + len); #else /* * Before __FreeBSD_version 1400032 we cannot free block in the * middle of a file, but only at the end of a file, so this code * path should never happen. */ vnode_pager_setsize(ZTOV(zp), off); #endif } zfs_rangelock_exit(lr); return (error); } /* * Truncate a file * * IN: zp - znode of file to free data in. * end - new end-of-file. * * RETURN: 0 on success, error code on failure */ static int zfs_trunc(znode_t *zp, uint64_t end) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; vnode_t *vp = ZTOV(zp); dmu_tx_t *tx; zfs_locked_range_t *lr; int error; sa_bulk_attr_t bulk[2]; int count = 0; /* * We will change zp_size, lock the whole file. */ lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER); /* * Nothing to do if file already at desired length. */ if (end >= zp->z_size) { zfs_rangelock_exit(lr); return (0); } error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, DMU_OBJECT_END); if (error) { zfs_rangelock_exit(lr); return (error); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); zfs_rangelock_exit(lr); return (error); } zp->z_size = end; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, sizeof (zp->z_size)); if (end == 0) { zp->z_pflags &= ~ZFS_SPARSE; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); } VERIFY0(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx)); dmu_tx_commit(tx); /* * Clear any mapped pages in the truncated region. This has to * happen outside of the transaction to avoid the possibility of * a deadlock with someone trying to push a page that we are * about to invalidate. */ vnode_pager_setsize(vp, end); zfs_rangelock_exit(lr); return (0); } /* * Free space in a file * * IN: zp - znode of file to free data in. * off - start of range * len - end of range (0 => EOF) * flag - current file open mode flags. * log - TRUE if this action should be logged * * RETURN: 0 on success, error code on failure */ int zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) { dmu_tx_t *tx; zfsvfs_t *zfsvfs = zp->z_zfsvfs; zilog_t *zilog = zfsvfs->z_log; uint64_t mode; uint64_t mtime[2], ctime[2]; sa_bulk_attr_t bulk[3]; int count = 0; int error; if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, sizeof (mode))) != 0) return (error); if (off > zp->z_size) { error = zfs_extend(zp, off+len); if (error == 0 && log) goto log; else return (error); } if (len == 0) { error = zfs_trunc(zp, off); } else { if ((error = zfs_free_range(zp, off, len)) == 0 && off + len > zp->z_size) error = zfs_extend(zp, off+len); } if (error || !log) return (error); log: tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); ASSERT0(error); zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); dmu_tx_commit(tx); return (0); } void zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) { uint64_t moid, obj, sa_obj, version; uint64_t sense = ZFS_CASE_SENSITIVE; uint64_t norm = 0; nvpair_t *elem; int error; int i; znode_t *rootzp = NULL; zfsvfs_t *zfsvfs; vattr_t vattr; znode_t *zp; zfs_acl_ids_t acl_ids; /* * First attempt to create master node. */ /* * In an empty objset, there are no blocks to read and thus * there can be no i/o errors (which we assert below). */ moid = MASTER_NODE_OBJ; error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, DMU_OT_NONE, 0, tx); ASSERT0(error); /* * Set starting attributes. */ version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); elem = NULL; while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { /* For the moment we expect all zpl props to be uint64_ts */ uint64_t val; char *name; ASSERT3S(nvpair_type(elem), ==, DATA_TYPE_UINT64); val = fnvpair_value_uint64(elem); name = nvpair_name(elem); if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { if (val < version) version = val; } else { error = zap_update(os, moid, name, 8, 1, &val, tx); } ASSERT0(error); if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) norm = val; else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) sense = val; } ASSERT3U(version, !=, 0); error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); ASSERT0(error); /* * Create zap object used for SA attribute registration */ if (version >= ZPL_VERSION_SA) { sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, DMU_OT_NONE, 0, tx); error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); ASSERT0(error); } else { sa_obj = 0; } /* * Create a delete queue. */ obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); ASSERT0(error); /* * Create root znode. Create minimal znode/vnode/zfsvfs * to allow zfs_mknode to work. */ VATTR_NULL(&vattr); vattr.va_mask = AT_MODE|AT_UID|AT_GID; vattr.va_type = VDIR; vattr.va_mode = S_IFDIR|0755; vattr.va_uid = crgetuid(cr); vattr.va_gid = crgetgid(cr); zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); rootzp = zfs_znode_alloc_kmem(KM_SLEEP); ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); rootzp->z_unlinked = 0; rootzp->z_atime_dirty = 0; rootzp->z_is_sa = USE_SA(version, os); zfsvfs->z_os = os; zfsvfs->z_parent = zfsvfs; zfsvfs->z_version = version; zfsvfs->z_use_fuids = USE_FUIDS(version, os); zfsvfs->z_use_sa = USE_SA(version, os); zfsvfs->z_norm = norm; error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table); ASSERT0(error); /* * Fold case on file systems that are always or sometimes case * insensitive. */ if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), offsetof(znode_t, z_link_node)); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); rootzp->z_zfsvfs = zfsvfs; VERIFY0(zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, cr, NULL, &acl_ids, NULL)); zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); ASSERT3P(zp, ==, rootzp); error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); ASSERT0(error); zfs_acl_ids_free(&acl_ids); POINTER_INVALIDATE(&rootzp->z_zfsvfs); sa_handle_destroy(rootzp->z_sa_hdl); zfs_znode_free_kmem(rootzp); /* * Create shares directory */ error = zfs_create_share_dir(zfsvfs, tx); ASSERT0(error); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_destroy(&zfsvfs->z_hold_mtx[i]); kmem_free(zfsvfs, sizeof (zfsvfs_t)); } #endif /* _KERNEL */ static int zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) { uint64_t sa_obj = 0; int error; error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (error != 0 && error != ENOENT) return (error); error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); return (error); } static int zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, dmu_buf_t **db, const void *tag) { dmu_object_info_t doi; int error; if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) return (error); dmu_object_info_from_db(*db, &doi); if ((doi.doi_bonus_type != DMU_OT_SA && doi.doi_bonus_type != DMU_OT_ZNODE) || (doi.doi_bonus_type == DMU_OT_ZNODE && doi.doi_bonus_size < sizeof (znode_phys_t))) { sa_buf_rele(*db, tag); return (SET_ERROR(ENOTSUP)); } error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); if (error != 0) { sa_buf_rele(*db, tag); return (error); } return (0); } static void zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, const void *tag) { sa_handle_destroy(hdl); sa_buf_rele(db, tag); } /* * Given an object number, return its parent object number and whether * or not the object is an extended attribute directory. */ static int zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp, int *is_xattrdir) { uint64_t parent; uint64_t pflags; uint64_t mode; uint64_t parent_mode; sa_bulk_attr_t bulk[3]; sa_handle_t *sa_hdl; dmu_buf_t *sa_db; int count = 0; int error; SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, &parent, sizeof (parent)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, &pflags, sizeof (pflags)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, &mode, sizeof (mode)); if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) return (error); /* * When a link is removed its parent pointer is not changed and will * be invalid. There are two cases where a link is removed but the * file stays around, when it goes to the delete queue and when there * are additional links. */ error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); if (error != 0) return (error); error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); zfs_release_sa_handle(sa_hdl, sa_db, FTAG); if (error != 0) return (error); *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); /* * Extended attributes can be applied to files, directories, etc. * Otherwise the parent must be a directory. */ if (!*is_xattrdir && !S_ISDIR(parent_mode)) return (SET_ERROR(EINVAL)); *pobjp = parent; return (0); } /* * Given an object number, return some zpl level statistics */ static int zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, zfs_stat_t *sb) { sa_bulk_attr_t bulk[4]; int count = 0; SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, &sb->zs_mode, sizeof (sb->zs_mode)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, &sb->zs_gen, sizeof (sb->zs_gen)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, &sb->zs_links, sizeof (sb->zs_links)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, &sb->zs_ctime, sizeof (sb->zs_ctime)); return (sa_bulk_lookup(hdl, bulk, count)); } static int zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, sa_attr_type_t *sa_table, char *buf, int len) { sa_handle_t *sa_hdl; sa_handle_t *prevhdl = NULL; dmu_buf_t *prevdb = NULL; dmu_buf_t *sa_db = NULL; char *path = buf + len - 1; int error; *path = '\0'; sa_hdl = hdl; uint64_t deleteq_obj; VERIFY0(zap_lookup(osp, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj)); error = zap_lookup_int(osp, deleteq_obj, obj); if (error == 0) { return (ESTALE); } else if (error != ENOENT) { return (error); } for (;;) { uint64_t pobj; char component[MAXNAMELEN + 2]; size_t complen; int is_xattrdir; if (prevdb) { ASSERT3P(prevhdl, !=, NULL); zfs_release_sa_handle(prevhdl, prevdb, FTAG); } if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, &is_xattrdir)) != 0) break; if (pobj == obj) { if (path[0] != '/') *--path = '/'; break; } component[0] = '/'; if (is_xattrdir) { (void) sprintf(component + 1, ""); } else { error = zap_value_search(osp, pobj, obj, ZFS_DIRENT_OBJ(-1ULL), component + 1); if (error != 0) break; } complen = strlen(component); path -= complen; ASSERT3P(path, >=, buf); memcpy(path, component, complen); obj = pobj; if (sa_hdl != hdl) { prevhdl = sa_hdl; prevdb = sa_db; } error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); if (error != 0) { sa_hdl = prevhdl; sa_db = prevdb; break; } } if (sa_hdl != NULL && sa_hdl != hdl) { ASSERT3P(sa_db, !=, NULL); zfs_release_sa_handle(sa_hdl, sa_db, FTAG); } if (error == 0) (void) memmove(buf, path, buf + len - path); return (error); } int zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) { sa_attr_type_t *sa_table; sa_handle_t *hdl; dmu_buf_t *db; int error; error = zfs_sa_setup(osp, &sa_table); if (error != 0) return (error); error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); if (error != 0) return (error); error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); zfs_release_sa_handle(hdl, db, FTAG); return (error); } int zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, char *buf, int len) { char *path = buf + len - 1; sa_attr_type_t *sa_table; sa_handle_t *hdl; dmu_buf_t *db; int error; *path = '\0'; error = zfs_sa_setup(osp, &sa_table); if (error != 0) return (error); error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); if (error != 0) return (error); error = zfs_obj_to_stats_impl(hdl, sa_table, sb); if (error != 0) { zfs_release_sa_handle(hdl, db, FTAG); return (error); } error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); zfs_release_sa_handle(hdl, db, FTAG); return (error); } void zfs_znode_update_vfs(znode_t *zp) { vm_object_t object; if ((object = ZTOV(zp)->v_object) == NULL || zp->z_size == object->un_pager.vnp.vnp_size) return; vnode_pager_setsize(ZTOV(zp), zp->z_size); } #ifdef _KERNEL int zfs_znode_parent_and_name(znode_t *zp, znode_t **dzpp, char *buf) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; uint64_t parent; int is_xattrdir; int err; /* Extended attributes should not be visible as regular files. */ if ((zp->z_pflags & ZFS_XATTR) != 0) return (SET_ERROR(EINVAL)); err = zfs_obj_to_pobj(zfsvfs->z_os, zp->z_sa_hdl, zfsvfs->z_attr_table, &parent, &is_xattrdir); if (err != 0) return (err); ASSERT0(is_xattrdir); /* No name as this is a root object. */ if (parent == zp->z_id) return (SET_ERROR(EINVAL)); err = zap_value_search(zfsvfs->z_os, parent, zp->z_id, ZFS_DIRENT_OBJ(-1ULL), buf); if (err != 0) return (err); err = zfs_zget(zfsvfs, parent, dzpp); return (err); } #endif /* _KERNEL */ + +#ifdef _KERNEL +int +zfs_rlimit_fsize(off_t fsize) +{ + struct thread *td = curthread; + off_t lim; + + if (td == NULL) + return (0); + + lim = lim_cur(td, RLIMIT_FSIZE); + if (__predict_true((uoff_t)fsize <= lim)) + return (0); + + /* + * The limit is reached. + */ + PROC_LOCK(td->td_proc); + kern_psignal(td->td_proc, SIGXFSZ); + PROC_UNLOCK(td->td_proc); + + return (EFBIG); +} +#endif /* _KERNEL */ diff --git a/module/zcommon/zfeature_common.c b/module/zcommon/zfeature_common.c index ea45c9f8afa9..6fe1da8ed46f 100644 --- a/module/zcommon/zfeature_common.c +++ b/module/zcommon/zfeature_common.c @@ -1,739 +1,745 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019, Allan Jude */ #ifndef _KERNEL #include #include #include #include #include #endif #include #include #include #include #include #include #include "zfeature_common.h" /* * Set to disable all feature checks while opening pools, allowing pools with * unsupported features to be opened. Set for testing only. */ boolean_t zfeature_checks_disable = B_FALSE; zfeature_info_t spa_feature_table[SPA_FEATURES]; /* * Valid characters for feature guids. This list is mainly for aesthetic * purposes and could be expanded in the future. There are different allowed * characters in the guids reverse dns portion (before the colon) and its * short name (after the colon). */ static int valid_char(char c, boolean_t after_colon) { return ((c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || (after_colon && c == '_') || (!after_colon && (c == '.' || c == '-'))); } /* * Every feature guid must contain exactly one colon which separates a reverse * dns organization name from the feature's "short" name (e.g. * "com.company:feature_name"). */ boolean_t zfeature_is_valid_guid(const char *name) { int i; boolean_t has_colon = B_FALSE; i = 0; while (name[i] != '\0') { char c = name[i++]; if (c == ':') { if (has_colon) return (B_FALSE); has_colon = B_TRUE; continue; } if (!valid_char(c, has_colon)) return (B_FALSE); } return (has_colon); } boolean_t zfeature_is_supported(const char *guid) { if (zfeature_checks_disable) return (B_TRUE); for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { zfeature_info_t *feature = &spa_feature_table[i]; if (!feature->fi_zfs_mod_supported) continue; if (strcmp(guid, feature->fi_guid) == 0) return (B_TRUE); } return (B_FALSE); } int zfeature_lookup_guid(const char *guid, spa_feature_t *res) { for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { zfeature_info_t *feature = &spa_feature_table[i]; if (!feature->fi_zfs_mod_supported) continue; if (strcmp(guid, feature->fi_guid) == 0) { if (res != NULL) *res = i; return (0); } } return (ENOENT); } int zfeature_lookup_name(const char *name, spa_feature_t *res) { for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { zfeature_info_t *feature = &spa_feature_table[i]; if (!feature->fi_zfs_mod_supported) continue; if (strcmp(name, feature->fi_uname) == 0) { if (res != NULL) *res = i; return (0); } } return (ENOENT); } boolean_t zfeature_depends_on(spa_feature_t fid, spa_feature_t check) { zfeature_info_t *feature = &spa_feature_table[fid]; for (int i = 0; feature->fi_depends[i] != SPA_FEATURE_NONE; i++) { if (feature->fi_depends[i] == check) return (B_TRUE); } return (B_FALSE); } static boolean_t deps_contains_feature(const spa_feature_t *deps, const spa_feature_t feature) { for (int i = 0; deps[i] != SPA_FEATURE_NONE; i++) if (deps[i] == feature) return (B_TRUE); return (B_FALSE); } #define STRCMP ((int(*)(const void *, const void *))&strcmp) struct zfs_mod_supported_features { void *tree; boolean_t all_features; }; struct zfs_mod_supported_features * zfs_mod_list_supported(const char *scope) { #if defined(__FreeBSD__) || defined(_KERNEL) || defined(LIB_ZPOOL_BUILD) (void) scope; return (NULL); #else struct zfs_mod_supported_features *ret = calloc(1, sizeof (*ret)); if (ret == NULL) return (NULL); DIR *sysfs_dir = NULL; char path[128]; if (snprintf(path, sizeof (path), "%s/%s", ZFS_SYSFS_DIR, scope) < sizeof (path)) sysfs_dir = opendir(path); if (sysfs_dir == NULL && errno == ENOENT) { if (snprintf(path, sizeof (path), "%s/%s", ZFS_SYSFS_ALT_DIR, scope) < sizeof (path)) sysfs_dir = opendir(path); } if (sysfs_dir == NULL) { ret->all_features = errno == ENOENT && (access(ZFS_SYSFS_DIR, F_OK) == 0 || access(ZFS_SYSFS_ALT_DIR, F_OK) == 0); return (ret); } struct dirent *node; while ((node = readdir(sysfs_dir)) != NULL) { if (strcmp(node->d_name, ".") == 0 || strcmp(node->d_name, "..") == 0) continue; char *name = strdup(node->d_name); if (name == NULL) { goto nomem; } if (tsearch(name, &ret->tree, STRCMP) == NULL) { /* * Don't bother checking for duplicate entries: * we're iterating a single directory. */ free(name); goto nomem; } } end: closedir(sysfs_dir); return (ret); nomem: zfs_mod_list_supported_free(ret); ret = NULL; goto end; #endif } void zfs_mod_list_supported_free(struct zfs_mod_supported_features *list) { #if !defined(__FreeBSD__) && !defined(_KERNEL) && !defined(LIB_ZPOOL_BUILD) if (list) { tdestroy(list->tree, free); free(list); } #else (void) list; #endif } #if !defined(_KERNEL) && !defined(LIB_ZPOOL_BUILD) static boolean_t zfs_mod_supported_impl(const char *scope, const char *name, const char *sysfs) { char path[128]; if (snprintf(path, sizeof (path), "%s%s%s%s%s", sysfs, scope == NULL ? "" : "/", scope ?: "", name == NULL ? "" : "/", name ?: "") < sizeof (path)) return (access(path, F_OK) == 0); else return (B_FALSE); } boolean_t zfs_mod_supported(const char *scope, const char *name, const struct zfs_mod_supported_features *sfeatures) { boolean_t supported; if (sfeatures != NULL) return (sfeatures->all_features || tfind(name, &sfeatures->tree, STRCMP)); /* * Check both the primary and alternate sysfs locations to determine * if the required functionality is supported. */ supported = (zfs_mod_supported_impl(scope, name, ZFS_SYSFS_DIR) || zfs_mod_supported_impl(scope, name, ZFS_SYSFS_ALT_DIR)); /* * For backwards compatibility with kernel modules that predate * supported feature/property checking. Report the feature/property * as supported if the kernel module is loaded but the requested * scope directory does not exist. */ if (supported == B_FALSE) { if ((access(ZFS_SYSFS_DIR, F_OK) == 0 && !zfs_mod_supported_impl(scope, NULL, ZFS_SYSFS_DIR)) || (access(ZFS_SYSFS_ALT_DIR, F_OK) == 0 && !zfs_mod_supported_impl(scope, NULL, ZFS_SYSFS_ALT_DIR))) { supported = B_TRUE; } } return (supported); } #endif static boolean_t zfs_mod_supported_feature(const char *name, const struct zfs_mod_supported_features *sfeatures) { /* * The zfs module spa_feature_table[], whether in-kernel or in * libzpool, always supports all the features. libzfs needs to * query the running module, via sysfs, to determine which * features are supported. * * The equivalent _can_ be done on FreeBSD by way of the sysctl * tree, but this has not been done yet. Therefore, we return * that all features are supported. */ #if defined(_KERNEL) || defined(LIB_ZPOOL_BUILD) || defined(__FreeBSD__) (void) name, (void) sfeatures; return (B_TRUE); #else return (zfs_mod_supported(ZFS_SYSFS_POOL_FEATURES, name, sfeatures)); #endif } static void zfeature_register(spa_feature_t fid, const char *guid, const char *name, const char *desc, zfeature_flags_t flags, zfeature_type_t type, const spa_feature_t *deps, const struct zfs_mod_supported_features *sfeatures) { zfeature_info_t *feature = &spa_feature_table[fid]; static const spa_feature_t nodeps[] = { SPA_FEATURE_NONE }; ASSERT(name != NULL); ASSERT(desc != NULL); ASSERT((flags & ZFEATURE_FLAG_READONLY_COMPAT) == 0 || (flags & ZFEATURE_FLAG_MOS) == 0); ASSERT3U(fid, <, SPA_FEATURES); ASSERT(zfeature_is_valid_guid(guid)); if (deps == NULL) deps = nodeps; VERIFY(((flags & ZFEATURE_FLAG_PER_DATASET) == 0) || (deps_contains_feature(deps, SPA_FEATURE_EXTENSIBLE_DATASET))); feature->fi_feature = fid; feature->fi_guid = guid; feature->fi_uname = name; feature->fi_desc = desc; feature->fi_flags = flags; feature->fi_type = type; feature->fi_depends = deps; feature->fi_zfs_mod_supported = zfs_mod_supported_feature(guid, sfeatures); } /* * Every feature has a GUID of the form com.example:feature_name. The * reversed DNS name ensures that the feature's GUID is unique across all ZFS * implementations. This allows companies to independently develop and * release features. Examples include org.delphix and org.datto. Previously, * features developed on one implementation have used that implementation's * domain name (e.g. org.illumos and org.zfsonlinux). Use of the org.openzfs * domain name is recommended for new features which are developed by the * OpenZFS community and its platforms. This domain may optionally be used by * companies developing features for initial release through an OpenZFS * implementation. Use of the org.openzfs domain requires reserving the * feature name in advance with the OpenZFS project. */ void zpool_feature_init(void) { struct zfs_mod_supported_features *sfeatures = zfs_mod_list_supported(ZFS_SYSFS_POOL_FEATURES); zfeature_register(SPA_FEATURE_ASYNC_DESTROY, "com.delphix:async_destroy", "async_destroy", "Destroy filesystems asynchronously.", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); zfeature_register(SPA_FEATURE_EMPTY_BPOBJ, "com.delphix:empty_bpobj", "empty_bpobj", "Snapshots use less space.", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); zfeature_register(SPA_FEATURE_LZ4_COMPRESS, "org.illumos:lz4_compress", "lz4_compress", "LZ4 compression algorithm support.", ZFEATURE_FLAG_ACTIVATE_ON_ENABLE, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); zfeature_register(SPA_FEATURE_MULTI_VDEV_CRASH_DUMP, "com.joyent:multi_vdev_crash_dump", "multi_vdev_crash_dump", "Crash dumps to multiple vdev pools.", 0, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); zfeature_register(SPA_FEATURE_SPACEMAP_HISTOGRAM, "com.delphix:spacemap_histogram", "spacemap_histogram", "Spacemaps maintain space histograms.", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); zfeature_register(SPA_FEATURE_ENABLED_TXG, "com.delphix:enabled_txg", "enabled_txg", "Record txg at which a feature is enabled", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); { static const spa_feature_t hole_birth_deps[] = { SPA_FEATURE_ENABLED_TXG, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_HOLE_BIRTH, "com.delphix:hole_birth", "hole_birth", "Retain hole birth txg for more precise zfs send", ZFEATURE_FLAG_MOS | ZFEATURE_FLAG_ACTIVATE_ON_ENABLE, ZFEATURE_TYPE_BOOLEAN, hole_birth_deps, sfeatures); } zfeature_register(SPA_FEATURE_POOL_CHECKPOINT, "com.delphix:zpool_checkpoint", "zpool_checkpoint", "Pool state can be checkpointed, allowing rewind later.", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); zfeature_register(SPA_FEATURE_SPACEMAP_V2, "com.delphix:spacemap_v2", "spacemap_v2", "Space maps representing large segments are more efficient.", ZFEATURE_FLAG_READONLY_COMPAT | ZFEATURE_FLAG_ACTIVATE_ON_ENABLE, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); zfeature_register(SPA_FEATURE_EXTENSIBLE_DATASET, "com.delphix:extensible_dataset", "extensible_dataset", "Enhanced dataset functionality, used by other features.", 0, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); { static const spa_feature_t bookmarks_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_BOOKMARKS, "com.delphix:bookmarks", "bookmarks", "\"zfs bookmark\" command", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, bookmarks_deps, sfeatures); } { static const spa_feature_t filesystem_limits_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_FS_SS_LIMIT, "com.joyent:filesystem_limits", "filesystem_limits", "Filesystem and snapshot limits.", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, filesystem_limits_deps, sfeatures); } zfeature_register(SPA_FEATURE_EMBEDDED_DATA, "com.delphix:embedded_data", "embedded_data", "Blocks which compress very well use even less space.", ZFEATURE_FLAG_MOS | ZFEATURE_FLAG_ACTIVATE_ON_ENABLE, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); { static const spa_feature_t livelist_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_LIVELIST, "com.delphix:livelist", "livelist", "Improved clone deletion performance.", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, livelist_deps, sfeatures); } { static const spa_feature_t log_spacemap_deps[] = { SPA_FEATURE_SPACEMAP_V2, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_LOG_SPACEMAP, "com.delphix:log_spacemap", "log_spacemap", "Log metaslab changes on a single spacemap and " "flush them periodically.", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, log_spacemap_deps, sfeatures); } { static const spa_feature_t large_blocks_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_LARGE_BLOCKS, "org.open-zfs:large_blocks", "large_blocks", "Support for blocks larger than 128KB.", ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, large_blocks_deps, sfeatures); } { static const spa_feature_t large_dnode_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_LARGE_DNODE, "org.zfsonlinux:large_dnode", "large_dnode", "Variable on-disk size of dnodes.", ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, large_dnode_deps, sfeatures); } { static const spa_feature_t sha512_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_SHA512, "org.illumos:sha512", "sha512", "SHA-512/256 hash algorithm.", ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, sha512_deps, sfeatures); } { static const spa_feature_t skein_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_SKEIN, "org.illumos:skein", "skein", "Skein hash algorithm.", ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, skein_deps, sfeatures); } { static const spa_feature_t edonr_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_EDONR, "org.illumos:edonr", "edonr", "Edon-R hash algorithm.", ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, edonr_deps, sfeatures); } { static const spa_feature_t redact_books_deps[] = { SPA_FEATURE_BOOKMARK_V2, SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_BOOKMARKS, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_REDACTION_BOOKMARKS, "com.delphix:redaction_bookmarks", "redaction_bookmarks", "Support for bookmarks which store redaction lists for zfs " "redacted send/recv.", 0, ZFEATURE_TYPE_BOOLEAN, redact_books_deps, sfeatures); } { static const spa_feature_t redact_datasets_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_REDACTED_DATASETS, "com.delphix:redacted_datasets", "redacted_datasets", "Support for redacted datasets, produced by receiving " "a redacted zfs send stream.", ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_UINT64_ARRAY, redact_datasets_deps, sfeatures); } { static const spa_feature_t bookmark_written_deps[] = { SPA_FEATURE_BOOKMARK_V2, SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_BOOKMARKS, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_BOOKMARK_WRITTEN, "com.delphix:bookmark_written", "bookmark_written", "Additional accounting, enabling the written# " "property (space written since a bookmark), " "and estimates of send stream sizes for incrementals from " "bookmarks.", 0, ZFEATURE_TYPE_BOOLEAN, bookmark_written_deps, sfeatures); } zfeature_register(SPA_FEATURE_DEVICE_REMOVAL, "com.delphix:device_removal", "device_removal", "Top-level vdevs can be removed, reducing logical pool size.", ZFEATURE_FLAG_MOS, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); { static const spa_feature_t obsolete_counts_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_DEVICE_REMOVAL, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_OBSOLETE_COUNTS, "com.delphix:obsolete_counts", "obsolete_counts", "Reduce memory used by removed devices when their blocks " "are freed or remapped.", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, obsolete_counts_deps, sfeatures); } { static const spa_feature_t userobj_accounting_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_USEROBJ_ACCOUNTING, "org.zfsonlinux:userobj_accounting", "userobj_accounting", "User/Group object accounting.", ZFEATURE_FLAG_READONLY_COMPAT | ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, userobj_accounting_deps, sfeatures); } { static const spa_feature_t bookmark_v2_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_BOOKMARKS, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_BOOKMARK_V2, "com.datto:bookmark_v2", "bookmark_v2", "Support for larger bookmarks", 0, ZFEATURE_TYPE_BOOLEAN, bookmark_v2_deps, sfeatures); } { static const spa_feature_t encryption_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_BOOKMARK_V2, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_ENCRYPTION, "com.datto:encryption", "encryption", "Support for dataset level encryption", ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, encryption_deps, sfeatures); } { static const spa_feature_t project_quota_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_PROJECT_QUOTA, "org.zfsonlinux:project_quota", "project_quota", "space/object accounting based on project ID.", ZFEATURE_FLAG_READONLY_COMPAT | ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, project_quota_deps, sfeatures); } zfeature_register(SPA_FEATURE_ALLOCATION_CLASSES, "org.zfsonlinux:allocation_classes", "allocation_classes", "Support for separate allocation classes.", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); zfeature_register(SPA_FEATURE_RESILVER_DEFER, "com.datto:resilver_defer", "resilver_defer", "Support for deferring new resilvers when one is already running.", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); zfeature_register(SPA_FEATURE_DEVICE_REBUILD, "org.openzfs:device_rebuild", "device_rebuild", "Support for sequential mirror/dRAID device rebuilds", ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); { static const spa_feature_t zstd_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_ZSTD_COMPRESS, "org.freebsd:zstd_compress", "zstd_compress", "zstd compression algorithm support.", ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, zstd_deps, sfeatures); } zfeature_register(SPA_FEATURE_DRAID, "org.openzfs:draid", "draid", "Support for distributed spare RAID", ZFEATURE_FLAG_MOS, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); { static const spa_feature_t zilsaxattr_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_ZILSAXATTR, "org.openzfs:zilsaxattr", "zilsaxattr", "Support for xattr=sa extended attribute logging in ZIL.", ZFEATURE_FLAG_PER_DATASET | ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, zilsaxattr_deps, sfeatures); } zfeature_register(SPA_FEATURE_HEAD_ERRLOG, "com.delphix:head_errlog", "head_errlog", "Support for per-dataset on-disk error logs.", ZFEATURE_FLAG_ACTIVATE_ON_ENABLE, ZFEATURE_TYPE_BOOLEAN, NULL, sfeatures); { static const spa_feature_t blake3_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_BLAKE3, "org.openzfs:blake3", "blake3", "BLAKE3 hash algorithm.", ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, blake3_deps, sfeatures); } + zfeature_register(SPA_FEATURE_BLOCK_CLONING, + "com.fudosecurity:block_cloning", "block_cloning", + "Support for block cloning via Block Reference Table.", + ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL, + sfeatures); + zfs_mod_list_supported_free(sfeatures); } #if defined(_KERNEL) EXPORT_SYMBOL(zfeature_lookup_guid); EXPORT_SYMBOL(zfeature_lookup_name); EXPORT_SYMBOL(zfeature_is_supported); EXPORT_SYMBOL(zfeature_is_valid_guid); EXPORT_SYMBOL(zfeature_depends_on); EXPORT_SYMBOL(zpool_feature_init); EXPORT_SYMBOL(spa_feature_table); #endif diff --git a/module/zcommon/zpool_prop.c b/module/zcommon/zpool_prop.c index e99acef5a8fb..459ff62fc996 100644 --- a/module/zcommon/zpool_prop.c +++ b/module/zcommon/zpool_prop.c @@ -1,591 +1,600 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2021, Colm Buckley * Copyright (c) 2021, Klara Inc. */ #include #include #include #include #include #include "zfs_prop.h" #if !defined(_KERNEL) #include #include #include #endif static zprop_desc_t zpool_prop_table[ZPOOL_NUM_PROPS]; static zprop_desc_t vdev_prop_table[VDEV_NUM_PROPS]; zprop_desc_t * zpool_prop_get_table(void) { return (zpool_prop_table); } void zpool_prop_init(void) { static const zprop_index_t boolean_table[] = { { "off", 0}, { "on", 1}, { NULL } }; static const zprop_index_t failuremode_table[] = { { "wait", ZIO_FAILURE_MODE_WAIT }, { "continue", ZIO_FAILURE_MODE_CONTINUE }, { "panic", ZIO_FAILURE_MODE_PANIC }, { NULL } }; struct zfs_mod_supported_features *sfeatures = zfs_mod_list_supported(ZFS_SYSFS_POOL_PROPERTIES); /* string properties */ zprop_register_string(ZPOOL_PROP_ALTROOT, "altroot", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, "", "ALTROOT", sfeatures); zprop_register_string(ZPOOL_PROP_BOOTFS, "bootfs", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, "", "BOOTFS", sfeatures); zprop_register_string(ZPOOL_PROP_CACHEFILE, "cachefile", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, " | none", "CACHEFILE", sfeatures); zprop_register_string(ZPOOL_PROP_COMMENT, "comment", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, "", "COMMENT", sfeatures); zprop_register_string(ZPOOL_PROP_COMPATIBILITY, "compatibility", "off", PROP_DEFAULT, ZFS_TYPE_POOL, " | off | legacy", "COMPATIBILITY", sfeatures); /* readonly number properties */ zprop_register_number(ZPOOL_PROP_SIZE, "size", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "SIZE", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_FREE, "free", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "FREE", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_FREEING, "freeing", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "FREEING", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_CHECKPOINT, "checkpoint", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "CKPOINT", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_LEAKED, "leaked", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "LEAKED", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_ALLOCATED, "allocated", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "ALLOC", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_EXPANDSZ, "expandsize", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "EXPANDSZ", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_FRAGMENTATION, "fragmentation", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "FRAG", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_CAPACITY, "capacity", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "CAP", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_GUID, "guid", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "GUID", B_TRUE, sfeatures); zprop_register_number(ZPOOL_PROP_LOAD_GUID, "load_guid", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "LOAD_GUID", B_TRUE, sfeatures); zprop_register_number(ZPOOL_PROP_HEALTH, "health", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "HEALTH", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_DEDUPRATIO, "dedupratio", 0, PROP_READONLY, ZFS_TYPE_POOL, "<1.00x or higher if deduped>", "DEDUP", B_FALSE, sfeatures); + zprop_register_number(ZPOOL_PROP_BCLONEUSED, "bcloneused", 0, + PROP_READONLY, ZFS_TYPE_POOL, "", + "BCLONE_USED", B_FALSE, sfeatures); + zprop_register_number(ZPOOL_PROP_BCLONESAVED, "bclonesaved", 0, + PROP_READONLY, ZFS_TYPE_POOL, "", + "BCLONE_SAVED", B_FALSE, sfeatures); + zprop_register_number(ZPOOL_PROP_BCLONERATIO, "bcloneratio", 0, + PROP_READONLY, ZFS_TYPE_POOL, "<1.00x or higher if cloned>", + "BCLONE_RATIO", B_FALSE, sfeatures); /* default number properties */ zprop_register_number(ZPOOL_PROP_VERSION, "version", SPA_VERSION, PROP_DEFAULT, ZFS_TYPE_POOL, "", "VERSION", B_FALSE, sfeatures); zprop_register_number(ZPOOL_PROP_ASHIFT, "ashift", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "", "ASHIFT", B_FALSE, sfeatures); /* default index (boolean) properties */ zprop_register_index(ZPOOL_PROP_DELEGATION, "delegation", 1, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "DELEGATION", boolean_table, sfeatures); zprop_register_index(ZPOOL_PROP_AUTOREPLACE, "autoreplace", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "REPLACE", boolean_table, sfeatures); zprop_register_index(ZPOOL_PROP_LISTSNAPS, "listsnapshots", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "LISTSNAPS", boolean_table, sfeatures); zprop_register_index(ZPOOL_PROP_AUTOEXPAND, "autoexpand", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "EXPAND", boolean_table, sfeatures); zprop_register_index(ZPOOL_PROP_READONLY, "readonly", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "RDONLY", boolean_table, sfeatures); zprop_register_index(ZPOOL_PROP_MULTIHOST, "multihost", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "MULTIHOST", boolean_table, sfeatures); /* default index properties */ zprop_register_index(ZPOOL_PROP_FAILUREMODE, "failmode", ZIO_FAILURE_MODE_WAIT, PROP_DEFAULT, ZFS_TYPE_POOL, "wait | continue | panic", "FAILMODE", failuremode_table, sfeatures); zprop_register_index(ZPOOL_PROP_AUTOTRIM, "autotrim", SPA_AUTOTRIM_DEFAULT, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "AUTOTRIM", boolean_table, sfeatures); /* hidden properties */ zprop_register_hidden(ZPOOL_PROP_NAME, "name", PROP_TYPE_STRING, PROP_READONLY, ZFS_TYPE_POOL, "NAME", B_TRUE, sfeatures); zprop_register_hidden(ZPOOL_PROP_MAXBLOCKSIZE, "maxblocksize", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_POOL, "MAXBLOCKSIZE", B_FALSE, sfeatures); zprop_register_hidden(ZPOOL_PROP_TNAME, "tname", PROP_TYPE_STRING, PROP_ONETIME, ZFS_TYPE_POOL, "TNAME", B_TRUE, sfeatures); zprop_register_hidden(ZPOOL_PROP_MAXDNODESIZE, "maxdnodesize", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_POOL, "MAXDNODESIZE", B_FALSE, sfeatures); zprop_register_hidden(ZPOOL_PROP_DEDUPDITTO, "dedupditto", PROP_TYPE_NUMBER, PROP_DEFAULT, ZFS_TYPE_POOL, "DEDUPDITTO", B_FALSE, sfeatures); zfs_mod_list_supported_free(sfeatures); } /* * Given a property name and its type, returns the corresponding property ID. */ zpool_prop_t zpool_name_to_prop(const char *propname) { return (zprop_name_to_prop(propname, ZFS_TYPE_POOL)); } /* * Given a pool property ID, returns the corresponding name. * Assuming the pool property ID is valid. */ const char * zpool_prop_to_name(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_name); } zprop_type_t zpool_prop_get_type(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_proptype); } boolean_t zpool_prop_readonly(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_attr == PROP_READONLY); } boolean_t zpool_prop_setonce(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_attr == PROP_ONETIME); } const char * zpool_prop_default_string(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_strdefault); } uint64_t zpool_prop_default_numeric(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_numdefault); } /* * Returns true if this is a valid feature@ property. */ boolean_t zpool_prop_feature(const char *name) { static const char *prefix = "feature@"; return (strncmp(name, prefix, strlen(prefix)) == 0); } /* * Returns true if this is a valid unsupported@ property. */ boolean_t zpool_prop_unsupported(const char *name) { static const char *prefix = "unsupported@"; return (strncmp(name, prefix, strlen(prefix)) == 0); } int zpool_prop_string_to_index(zpool_prop_t prop, const char *string, uint64_t *index) { return (zprop_string_to_index(prop, string, index, ZFS_TYPE_POOL)); } int zpool_prop_index_to_string(zpool_prop_t prop, uint64_t index, const char **string) { return (zprop_index_to_string(prop, index, string, ZFS_TYPE_POOL)); } uint64_t zpool_prop_random_value(zpool_prop_t prop, uint64_t seed) { return (zprop_random_value(prop, seed, ZFS_TYPE_POOL)); } #ifndef _KERNEL #include const char * zpool_prop_values(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_values); } const char * zpool_prop_column_name(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_colname); } boolean_t zpool_prop_align_right(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_rightalign); } #endif zprop_desc_t * vdev_prop_get_table(void) { return (vdev_prop_table); } void vdev_prop_init(void) { static const zprop_index_t boolean_table[] = { { "off", 0}, { "on", 1}, { NULL } }; static const zprop_index_t boolean_na_table[] = { { "off", 0}, { "on", 1}, { "-", 2}, /* ZPROP_BOOLEAN_NA */ { NULL } }; struct zfs_mod_supported_features *sfeatures = zfs_mod_list_supported(ZFS_SYSFS_VDEV_PROPERTIES); /* string properties */ zprop_register_string(VDEV_PROP_COMMENT, "comment", NULL, PROP_DEFAULT, ZFS_TYPE_VDEV, "", "COMMENT", sfeatures); zprop_register_string(VDEV_PROP_PATH, "path", NULL, PROP_DEFAULT, ZFS_TYPE_VDEV, "", "PATH", sfeatures); zprop_register_string(VDEV_PROP_DEVID, "devid", NULL, PROP_READONLY, ZFS_TYPE_VDEV, "", "DEVID", sfeatures); zprop_register_string(VDEV_PROP_PHYS_PATH, "physpath", NULL, PROP_READONLY, ZFS_TYPE_VDEV, "", "PHYSPATH", sfeatures); zprop_register_string(VDEV_PROP_ENC_PATH, "encpath", NULL, PROP_READONLY, ZFS_TYPE_VDEV, "", "ENCPATH", sfeatures); zprop_register_string(VDEV_PROP_FRU, "fru", NULL, PROP_READONLY, ZFS_TYPE_VDEV, "", "FRU", sfeatures); zprop_register_string(VDEV_PROP_PARENT, "parent", NULL, PROP_READONLY, ZFS_TYPE_VDEV, "", "PARENT", sfeatures); zprop_register_string(VDEV_PROP_CHILDREN, "children", NULL, PROP_READONLY, ZFS_TYPE_VDEV, "", "CHILDREN", sfeatures); /* readonly number properties */ zprop_register_number(VDEV_PROP_SIZE, "size", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "SIZE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_FREE, "free", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "FREE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_ALLOCATED, "allocated", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "ALLOC", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_EXPANDSZ, "expandsize", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "EXPANDSZ", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_FRAGMENTATION, "fragmentation", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "FRAG", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_CAPACITY, "capacity", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "CAP", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_GUID, "guid", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "GUID", B_TRUE, sfeatures); zprop_register_number(VDEV_PROP_STATE, "state", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "STATE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_BOOTSIZE, "bootsize", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "BOOTSIZE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_ASIZE, "asize", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "ASIZE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_PSIZE, "psize", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "PSIZE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_ASHIFT, "ashift", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "ASHIFT", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_PARITY, "parity", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "PARITY", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_NUMCHILDREN, "numchildren", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "NUMCHILD", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_READ_ERRORS, "read_errors", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "RDERR", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_WRITE_ERRORS, "write_errors", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "WRERR", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_CHECKSUM_ERRORS, "checksum_errors", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "CKERR", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_INITIALIZE_ERRORS, "initialize_errors", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "INITERR", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_OPS_NULL, "null_ops", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "NULLOP", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_OPS_READ, "read_ops", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "READOP", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_OPS_WRITE, "write_ops", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "WRITEOP", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_OPS_FREE, "free_ops", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "FREEOP", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_OPS_CLAIM, "claim_ops", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "CLAIMOP", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_OPS_TRIM, "trim_ops", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "TRIMOP", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_BYTES_NULL, "null_bytes", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "NULLBYTE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_BYTES_READ, "read_bytes", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "READBYTE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_BYTES_WRITE, "write_bytes", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "WRITEBYTE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_BYTES_FREE, "free_bytes", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "FREEBYTE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_BYTES_CLAIM, "claim_bytes", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "CLAIMBYTE", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_BYTES_TRIM, "trim_bytes", 0, PROP_READONLY, ZFS_TYPE_VDEV, "", "TRIMBYTE", B_FALSE, sfeatures); /* default numeric properties */ zprop_register_number(VDEV_PROP_CHECKSUM_N, "checksum_n", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_VDEV, "", "CKSUM_N", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_CHECKSUM_T, "checksum_t", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_VDEV, "", "CKSUM_T", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_IO_N, "io_n", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_VDEV, "", "IO_N", B_FALSE, sfeatures); zprop_register_number(VDEV_PROP_IO_T, "io_t", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_VDEV, "", "IO_T", B_FALSE, sfeatures); /* default index (boolean) properties */ zprop_register_index(VDEV_PROP_REMOVING, "removing", 0, PROP_READONLY, ZFS_TYPE_VDEV, "on | off", "REMOVING", boolean_table, sfeatures); zprop_register_index(VDEV_PROP_ALLOCATING, "allocating", 1, PROP_DEFAULT, ZFS_TYPE_VDEV, "on | off", "ALLOCATING", boolean_na_table, sfeatures); /* default index properties */ zprop_register_index(VDEV_PROP_FAILFAST, "failfast", B_TRUE, PROP_DEFAULT, ZFS_TYPE_VDEV, "on | off", "FAILFAST", boolean_table, sfeatures); /* hidden properties */ zprop_register_hidden(VDEV_PROP_NAME, "name", PROP_TYPE_STRING, PROP_READONLY, ZFS_TYPE_VDEV, "NAME", B_TRUE, sfeatures); zfs_mod_list_supported_free(sfeatures); } /* * Given a property name and its type, returns the corresponding property ID. */ vdev_prop_t vdev_name_to_prop(const char *propname) { return (zprop_name_to_prop(propname, ZFS_TYPE_VDEV)); } /* * Returns true if this is a valid user-defined property (one with a ':'). */ boolean_t vdev_prop_user(const char *name) { int i; char c; boolean_t foundsep = B_FALSE; for (i = 0; i < strlen(name); i++) { c = name[i]; if (!zprop_valid_char(c)) return (B_FALSE); if (c == ':') foundsep = B_TRUE; } return (foundsep); } /* * Given a pool property ID, returns the corresponding name. * Assuming the pool property ID is valid. */ const char * vdev_prop_to_name(vdev_prop_t prop) { return (vdev_prop_table[prop].pd_name); } zprop_type_t vdev_prop_get_type(vdev_prop_t prop) { return (vdev_prop_table[prop].pd_proptype); } boolean_t vdev_prop_readonly(vdev_prop_t prop) { return (vdev_prop_table[prop].pd_attr == PROP_READONLY); } const char * vdev_prop_default_string(vdev_prop_t prop) { return (vdev_prop_table[prop].pd_strdefault); } uint64_t vdev_prop_default_numeric(vdev_prop_t prop) { return (vdev_prop_table[prop].pd_numdefault); } int vdev_prop_string_to_index(vdev_prop_t prop, const char *string, uint64_t *index) { return (zprop_string_to_index(prop, string, index, ZFS_TYPE_VDEV)); } int vdev_prop_index_to_string(vdev_prop_t prop, uint64_t index, const char **string) { return (zprop_index_to_string(prop, index, string, ZFS_TYPE_VDEV)); } /* * Returns true if this is a valid vdev property. */ boolean_t zpool_prop_vdev(const char *name) { return (vdev_name_to_prop(name) != VDEV_PROP_INVAL); } uint64_t vdev_prop_random_value(vdev_prop_t prop, uint64_t seed) { return (zprop_random_value(prop, seed, ZFS_TYPE_VDEV)); } #ifndef _KERNEL const char * vdev_prop_values(vdev_prop_t prop) { return (vdev_prop_table[prop].pd_values); } const char * vdev_prop_column_name(vdev_prop_t prop) { return (vdev_prop_table[prop].pd_colname); } boolean_t vdev_prop_align_right(vdev_prop_t prop) { return (vdev_prop_table[prop].pd_rightalign); } #endif #if defined(_KERNEL) /* zpool property functions */ EXPORT_SYMBOL(zpool_prop_init); EXPORT_SYMBOL(zpool_prop_get_type); EXPORT_SYMBOL(zpool_prop_get_table); /* vdev property functions */ EXPORT_SYMBOL(vdev_prop_init); EXPORT_SYMBOL(vdev_prop_get_type); EXPORT_SYMBOL(vdev_prop_get_table); /* Pool property functions shared between libzfs and kernel. */ EXPORT_SYMBOL(zpool_name_to_prop); EXPORT_SYMBOL(zpool_prop_to_name); EXPORT_SYMBOL(zpool_prop_default_string); EXPORT_SYMBOL(zpool_prop_default_numeric); EXPORT_SYMBOL(zpool_prop_readonly); EXPORT_SYMBOL(zpool_prop_feature); EXPORT_SYMBOL(zpool_prop_unsupported); EXPORT_SYMBOL(zpool_prop_index_to_string); EXPORT_SYMBOL(zpool_prop_string_to_index); EXPORT_SYMBOL(zpool_prop_vdev); /* vdev property functions shared between libzfs and kernel. */ EXPORT_SYMBOL(vdev_name_to_prop); EXPORT_SYMBOL(vdev_prop_user); EXPORT_SYMBOL(vdev_prop_to_name); EXPORT_SYMBOL(vdev_prop_default_string); EXPORT_SYMBOL(vdev_prop_default_numeric); EXPORT_SYMBOL(vdev_prop_readonly); EXPORT_SYMBOL(vdev_prop_index_to_string); EXPORT_SYMBOL(vdev_prop_string_to_index); #endif diff --git a/module/zfs/brt.c b/module/zfs/brt.c new file mode 100644 index 000000000000..ca9c4e678009 --- /dev/null +++ b/module/zfs/brt.c @@ -0,0 +1,1884 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* + * Block Cloning design. + * + * Block Cloning allows to manually clone a file (or a subset of its blocks) + * into another (or the same) file by just creating additional references to + * the data blocks without copying the data itself. Those references are kept + * in the Block Reference Tables (BRTs). + * + * In many ways this is similar to the existing deduplication, but there are + * some important differences: + * + * - Deduplication is automatic and Block Cloning is not - one has to use a + * dedicated system call(s) to clone the given file/blocks. + * - Deduplication keeps all data blocks in its table, even those referenced + * just once. Block Cloning creates an entry in its tables only when there + * are at least two references to the given data block. If the block was + * never explicitly cloned or the second to last reference was dropped, + * there will be neither space nor performance overhead. + * - Deduplication needs data to work - one needs to pass real data to the + * write(2) syscall, so hash can be calculated. Block Cloning doesn't require + * data, just block pointers to the data, so it is extremely fast, as we pay + * neither the cost of reading the data, nor the cost of writing the data - + * we operate exclusively on metadata. + * - If the D (dedup) bit is not set in the block pointer, it means that + * the block is not in the dedup table (DDT) and we won't consult the DDT + * when we need to free the block. Block Cloning must be consulted on every + * free, because we cannot modify the source BP (eg. by setting something + * similar to the D bit), thus we have no hint if the block is in the + * Block Reference Table (BRT), so we need to look into the BRT. There is + * an optimization in place that allows us to eliminate the majority of BRT + * lookups which is described below in the "Minimizing free penalty" section. + * - The BRT entry is much smaller than the DDT entry - for BRT we only store + * 64bit offset and 64bit reference counter. + * - Dedup keys are cryptographic hashes, so two blocks that are close to each + * other on disk are most likely in totally different parts of the DDT. + * The BRT entry keys are offsets into a single top-level VDEV, so data blocks + * from one file should have BRT entries close to each other. + * - Scrub will only do a single pass over a block that is referenced multiple + * times in the DDT. Unfortunately it is not currently (if at all) possible + * with Block Cloning and block referenced multiple times will be scrubbed + * multiple times. The new, sorted scrub should be able to eliminate + * duplicated reads given enough memory. + * - Deduplication requires cryptographically strong hash as a checksum or + * additional data verification. Block Cloning works with any checksum + * algorithm or even with checksumming disabled. + * + * As mentioned above, the BRT entries are much smaller than the DDT entries. + * To uniquely identify a block we just need its vdev id and offset. We also + * need to maintain a reference counter. The vdev id will often repeat, as there + * is a small number of top-level VDEVs and a large number of blocks stored in + * each VDEV. We take advantage of that to reduce the BRT entry size further by + * maintaining one BRT for each top-level VDEV, so we can then have only offset + * and counter as the BRT entry. + * + * Minimizing free penalty. + * + * Block Cloning allows creating additional references to any existing block. + * When we free a block there is no hint in the block pointer whether the block + * was cloned or not, so on each free we have to check if there is a + * corresponding entry in the BRT or not. If there is, we need to decrease + * the reference counter. Doing BRT lookup on every free can potentially be + * expensive by requiring additional I/Os if the BRT doesn't fit into memory. + * This is the main problem with deduplication, so we've learned our lesson and + * try not to repeat the same mistake here. How do we do that? We divide each + * top-level VDEV into 16MB regions. For each region we maintain a counter that + * is a sum of all the BRT entries that have offsets within the region. This + * creates the entries count array of 16bit numbers for each top-level VDEV. + * The entries count array is always kept in memory and updated on disk in the + * same transaction group as the BRT updates to keep everything in-sync. We can + * keep the array in memory, because it is very small. With 16MB regions and + * 1TB VDEV the array requires only 128kB of memory (we may decide to decrease + * the region size even further in the future). Now, when we want to free + * a block, we first consult the array. If the counter for the whole region is + * zero, there is no need to look for the BRT entry, as there isn't one for + * sure. If the counter for the region is greater than zero, only then we will + * do a BRT lookup and if an entry is found we will decrease the reference + * counter in the BRT entry and in the entry counters array. + * + * The entry counters array is small, but can potentially be larger for very + * large VDEVs or smaller regions. In this case we don't want to rewrite entire + * array on every change. We then divide the array into 32kB block and keep + * a bitmap of dirty blocks within a transaction group. When we sync the + * transaction group we can only update the parts of the entry counters array + * that were modified. Note: Keeping track of the dirty parts of the entry + * counters array is implemented, but updating only parts of the array on disk + * is not yet implemented - for now we will update entire array if there was + * any change. + * + * The implementation tries to be economic: if BRT is not used, or no longer + * used, there will be no entries in the MOS and no additional memory used (eg. + * the entry counters array is only allocated if needed). + * + * Interaction between Deduplication and Block Cloning. + * + * If both functionalities are in use, we could end up with a block that is + * referenced multiple times in both DDT and BRT. When we free one of the + * references we couldn't tell where it belongs, so we would have to decide + * what table takes the precedence: do we first clear DDT references or BRT + * references? To avoid this dilemma BRT cooperates with DDT - if a given block + * is being cloned using BRT and the BP has the D (dedup) bit set, BRT will + * lookup DDT entry instead and increase the counter there. No BRT entry + * will be created for a block which has the D (dedup) bit set. + * BRT may be more efficient for manual deduplication, but if the block is + * already in the DDT, then creating additional BRT entry would be less + * efficient. This clever idea was proposed by Allan Jude. + * + * Block Cloning across datasets. + * + * Block Cloning is not limited to cloning blocks within the same dataset. + * It is possible (and very useful) to clone blocks between different datasets. + * One use case is recovering files from snapshots. By cloning the files into + * dataset we need no additional storage. Without Block Cloning we would need + * additional space for those files. + * Another interesting use case is moving the files between datasets + * (copying the file content to the new dataset and removing the source file). + * In that case Block Cloning will only be used briefly, because the BRT entries + * will be removed when the source is removed. + * Note: currently it is not possible to clone blocks between encrypted + * datasets, even if those datasets use the same encryption key (this includes + * snapshots of encrypted datasets). Cloning blocks between datasets that use + * the same keys should be possible and should be implemented in the future. + * + * Block Cloning flow through ZFS layers. + * + * Note: Block Cloning can be used both for cloning file system blocks and ZVOL + * blocks. As of this writing no interface is implemented that allows for block + * cloning within a ZVOL. + * FreeBSD and Linux provides copy_file_range(2) system call and we will use it + * for blocking cloning. + * + * ssize_t + * copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp, + * size_t len, unsigned int flags); + * + * Even though offsets and length represent bytes, they have to be + * block-aligned or we will return the EXDEV error so the upper layer can + * fallback to the generic mechanism that will just copy the data. + * Using copy_file_range(2) will call OS-independent zfs_clone_range() function. + * This function was implemented based on zfs_write(), but instead of writing + * the given data we first read block pointers using the new dmu_read_l0_bps() + * function from the source file. Once we have BPs from the source file we call + * the dmu_brt_clone() function on the destination file. This function + * allocates BPs for us. We iterate over all source BPs. If the given BP is + * a hole or an embedded block, we just copy BP as-is. If it points to a real + * data we place this BP on a BRT pending list using the brt_pending_add() + * function. + * + * We use this pending list to keep track of all BPs that got new references + * within this transaction group. + * + * Some special cases to consider and how we address them: + * - The block we want to clone may have been created within the same + * transaction group that we are trying to clone. Such block has no BP + * allocated yet, so cannot be immediately cloned. We return EXDEV. + * - The block we want to clone may have been modified within the same + * transaction group. We return EXDEV. + * - A block may be cloned multiple times during one transaction group (that's + * why pending list is actually a tree and not an append-only list - this + * way we can figure out faster if this block is cloned for the first time + * in this txg or consecutive time). + * - A block may be cloned and freed within the same transaction group + * (see dbuf_undirty()). + * - A block may be cloned and within the same transaction group the clone + * can be cloned again (see dmu_read_l0_bps()). + * - A file might have been deleted, but the caller still has a file descriptor + * open to this file and clones it. + * + * When we free a block we have an additional step in the ZIO pipeline where we + * call the zio_brt_free() function. We then call the brt_entry_decref() + * that loads the corresponding BRT entry (if one exists) and decreases + * reference counter. If this is not the last reference we will stop ZIO + * pipeline here. If this is the last reference or the block is not in the + * BRT, we continue the pipeline and free the block as usual. + * + * At the beginning of spa_sync() where there can be no more block cloning, + * but before issuing frees we call brt_pending_apply(). This function applies + * all the new clones to the BRT table - we load BRT entries and update + * reference counters. To sync new BRT entries to disk, we use brt_sync() + * function. This function will sync all dirty per-top-level-vdev BRTs, + * the entry counters arrays, etc. + * + * Block Cloning and ZIL. + * + * Every clone operation is divided into chunks (similar to write) and each + * chunk is cloned in a separate transaction. The chunk size is determined by + * how many BPs we can fit into a single ZIL entry. + * Replaying clone operation is different from the regular clone operation, + * as when we log clone operations we cannot use the source object - it may + * reside on a different dataset, so we log BPs we want to clone. + * The ZIL is replayed when we mount the given dataset, not when the pool is + * imported. Taking this into account it is possible that the pool is imported + * without mounting datasets and the source dataset is destroyed before the + * destination dataset is mounted and its ZIL replayed. + * To address this situation we leverage zil_claim() mechanism where ZFS will + * parse all the ZILs on pool import. When we come across TX_CLONE_RANGE + * entries, we will bump reference counters for their BPs in the BRT and then + * on mount and ZIL replay we will just attach BPs to the file without + * bumping reference counters. + * Note it is still possible that after zil_claim() we never mount the + * destination, so we never replay its ZIL and we destroy it. This way we would + * end up with leaked references in BRT. We address that too as ZFS gives us + * a chance to clean this up on dataset destroy (see zil_free_clone_range()). + */ + +/* + * BRT - Block Reference Table. + */ +#define BRT_OBJECT_VDEV_PREFIX "com.fudosecurity:brt:vdev:" + +/* + * We divide each VDEV into 16MB chunks. Each chunk is represented in memory + * by a 16bit counter, thus 1TB VDEV requires 128kB of memory: (1TB / 16MB) * 2B + * Each element in this array represents how many BRT entries do we have in this + * chunk of storage. We always load this entire array into memory and update as + * needed. By having it in memory we can quickly tell (during zio_free()) if + * there are any BRT entries that we might need to update. + * + * This value cannot be larger than 16MB, at least as long as we support + * 512 byte block sizes. With 512 byte block size we can have exactly + * 32768 blocks in 16MB. In 32MB we could have 65536 blocks, which is one too + * many for a 16bit counter. + */ +#define BRT_RANGESIZE (16 * 1024 * 1024) +_Static_assert(BRT_RANGESIZE / SPA_MINBLOCKSIZE <= UINT16_MAX, + "BRT_RANGESIZE is too large."); +/* + * We don't want to update the whole structure every time. Maintain bitmap + * of dirty blocks within the regions, so that a single bit represents a + * block size of entcounts. For example if we have a 1PB vdev then all + * entcounts take 128MB of memory ((64TB / 16MB) * 2B). We can divide this + * 128MB array of entcounts into 32kB disk blocks, as we don't want to update + * the whole 128MB on disk when we have updated only a single entcount. + * We maintain a bitmap where each 32kB disk block within 128MB entcounts array + * is represented by a single bit. This gives us 4096 bits. A set bit in the + * bitmap means that we had a change in at least one of the 16384 entcounts + * that reside on a 32kB disk block (32kB / sizeof (uint16_t)). + */ +#define BRT_BLOCKSIZE (32 * 1024) +#define BRT_RANGESIZE_TO_NBLOCKS(size) \ + (((size) - 1) / BRT_BLOCKSIZE / sizeof (uint16_t) + 1) + +#define BRT_LITTLE_ENDIAN 0 +#define BRT_BIG_ENDIAN 1 +#ifdef _ZFS_LITTLE_ENDIAN +#define BRT_NATIVE_BYTEORDER BRT_LITTLE_ENDIAN +#define BRT_NON_NATIVE_BYTEORDER BRT_BIG_ENDIAN +#else +#define BRT_NATIVE_BYTEORDER BRT_BIG_ENDIAN +#define BRT_NON_NATIVE_BYTEORDER BRT_LITTLE_ENDIAN +#endif + +typedef struct brt_vdev_phys { + uint64_t bvp_mos_entries; + uint64_t bvp_size; + uint64_t bvp_byteorder; + uint64_t bvp_totalcount; + uint64_t bvp_rangesize; + uint64_t bvp_usedspace; + uint64_t bvp_savedspace; +} brt_vdev_phys_t; + +typedef struct brt_vdev { + /* + * VDEV id. + */ + uint64_t bv_vdevid; + /* + * Is the structure initiated? + * (bv_entcount and bv_bitmap are allocated?) + */ + boolean_t bv_initiated; + /* + * Object number in the MOS for the entcount array and brt_vdev_phys. + */ + uint64_t bv_mos_brtvdev; + /* + * Object number in the MOS for the entries table. + */ + uint64_t bv_mos_entries; + /* + * Entries to sync. + */ + avl_tree_t bv_tree; + /* + * Does the bv_entcount[] array needs byte swapping? + */ + boolean_t bv_need_byteswap; + /* + * Number of entries in the bv_entcount[] array. + */ + uint64_t bv_size; + /* + * This is the array with BRT entry count per BRT_RANGESIZE. + */ + uint16_t *bv_entcount; + /* + * Sum of all bv_entcount[]s. + */ + uint64_t bv_totalcount; + /* + * Space on disk occupied by cloned blocks (without compression). + */ + uint64_t bv_usedspace; + /* + * How much additional space would be occupied without block cloning. + */ + uint64_t bv_savedspace; + /* + * brt_vdev_phys needs updating on disk. + */ + boolean_t bv_meta_dirty; + /* + * bv_entcount[] needs updating on disk. + */ + boolean_t bv_entcount_dirty; + /* + * bv_entcount[] potentially can be a bit too big to sychronize it all + * when we just changed few entcounts. The fields below allow us to + * track updates to bv_entcount[] array since the last sync. + * A single bit in the bv_bitmap represents as many entcounts as can + * fit into a single BRT_BLOCKSIZE. + * For example we have 65536 entcounts in the bv_entcount array + * (so the whole array is 128kB). We updated bv_entcount[2] and + * bv_entcount[5]. In that case only first bit in the bv_bitmap will + * be set and we will write only first BRT_BLOCKSIZE out of 128kB. + */ + ulong_t *bv_bitmap; + uint64_t bv_nblocks; +} brt_vdev_t; + +/* + * In-core brt + */ +typedef struct brt { + krwlock_t brt_lock; + spa_t *brt_spa; +#define brt_mos brt_spa->spa_meta_objset + uint64_t brt_rangesize; + uint64_t brt_usedspace; + uint64_t brt_savedspace; + avl_tree_t brt_pending_tree[TXG_SIZE]; + kmutex_t brt_pending_lock[TXG_SIZE]; + /* Sum of all entries across all bv_trees. */ + uint64_t brt_nentries; + brt_vdev_t *brt_vdevs; + uint64_t brt_nvdevs; +} brt_t; + +/* Size of bre_offset / sizeof (uint64_t). */ +#define BRT_KEY_WORDS (1) + +/* + * In-core brt entry. + * On-disk we use bre_offset as the key and bre_refcount as the value. + */ +typedef struct brt_entry { + uint64_t bre_offset; + uint64_t bre_refcount; + avl_node_t bre_node; +} brt_entry_t; + +typedef struct brt_pending_entry { + blkptr_t bpe_bp; + int bpe_count; + avl_node_t bpe_node; +} brt_pending_entry_t; + +static kmem_cache_t *brt_entry_cache; +static kmem_cache_t *brt_pending_entry_cache; + +/* + * Enable/disable prefetching of BRT entries that we are going to modify. + */ +int zfs_brt_prefetch = 1; + +#ifdef ZFS_DEBUG +#define BRT_DEBUG(...) do { \ + if ((zfs_flags & ZFS_DEBUG_BRT) != 0) { \ + __dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__); \ + } \ +} while (0) +#else +#define BRT_DEBUG(...) do { } while (0) +#endif + +int brt_zap_leaf_blockshift = 12; +int brt_zap_indirect_blockshift = 12; + +static kstat_t *brt_ksp; + +typedef struct brt_stats { + kstat_named_t brt_addref_entry_in_memory; + kstat_named_t brt_addref_entry_not_on_disk; + kstat_named_t brt_addref_entry_on_disk; + kstat_named_t brt_addref_entry_read_lost_race; + kstat_named_t brt_decref_entry_in_memory; + kstat_named_t brt_decref_entry_loaded_from_disk; + kstat_named_t brt_decref_entry_not_in_memory; + kstat_named_t brt_decref_entry_not_on_disk; + kstat_named_t brt_decref_entry_read_lost_race; + kstat_named_t brt_decref_entry_still_referenced; + kstat_named_t brt_decref_free_data_later; + kstat_named_t brt_decref_free_data_now; + kstat_named_t brt_decref_no_entry; +} brt_stats_t; + +static brt_stats_t brt_stats = { + { "addref_entry_in_memory", KSTAT_DATA_UINT64 }, + { "addref_entry_not_on_disk", KSTAT_DATA_UINT64 }, + { "addref_entry_on_disk", KSTAT_DATA_UINT64 }, + { "addref_entry_read_lost_race", KSTAT_DATA_UINT64 }, + { "decref_entry_in_memory", KSTAT_DATA_UINT64 }, + { "decref_entry_loaded_from_disk", KSTAT_DATA_UINT64 }, + { "decref_entry_not_in_memory", KSTAT_DATA_UINT64 }, + { "decref_entry_not_on_disk", KSTAT_DATA_UINT64 }, + { "decref_entry_read_lost_race", KSTAT_DATA_UINT64 }, + { "decref_entry_still_referenced", KSTAT_DATA_UINT64 }, + { "decref_free_data_later", KSTAT_DATA_UINT64 }, + { "decref_free_data_now", KSTAT_DATA_UINT64 }, + { "decref_no_entry", KSTAT_DATA_UINT64 } +}; + +struct { + wmsum_t brt_addref_entry_in_memory; + wmsum_t brt_addref_entry_not_on_disk; + wmsum_t brt_addref_entry_on_disk; + wmsum_t brt_addref_entry_read_lost_race; + wmsum_t brt_decref_entry_in_memory; + wmsum_t brt_decref_entry_loaded_from_disk; + wmsum_t brt_decref_entry_not_in_memory; + wmsum_t brt_decref_entry_not_on_disk; + wmsum_t brt_decref_entry_read_lost_race; + wmsum_t brt_decref_entry_still_referenced; + wmsum_t brt_decref_free_data_later; + wmsum_t brt_decref_free_data_now; + wmsum_t brt_decref_no_entry; +} brt_sums; + +#define BRTSTAT_BUMP(stat) wmsum_add(&brt_sums.stat, 1) + +static int brt_entry_compare(const void *x1, const void *x2); +static int brt_pending_entry_compare(const void *x1, const void *x2); + +static void +brt_rlock(brt_t *brt) +{ + rw_enter(&brt->brt_lock, RW_READER); +} + +static void +brt_wlock(brt_t *brt) +{ + rw_enter(&brt->brt_lock, RW_WRITER); +} + +static void +brt_unlock(brt_t *brt) +{ + rw_exit(&brt->brt_lock); +} + +static uint16_t +brt_vdev_entcount_get(const brt_vdev_t *brtvd, uint64_t idx) +{ + + ASSERT3U(idx, <, brtvd->bv_size); + + if (brtvd->bv_need_byteswap) { + return (BSWAP_16(brtvd->bv_entcount[idx])); + } else { + return (brtvd->bv_entcount[idx]); + } +} + +static void +brt_vdev_entcount_set(brt_vdev_t *brtvd, uint64_t idx, uint16_t entcnt) +{ + + ASSERT3U(idx, <, brtvd->bv_size); + + if (brtvd->bv_need_byteswap) { + brtvd->bv_entcount[idx] = BSWAP_16(entcnt); + } else { + brtvd->bv_entcount[idx] = entcnt; + } +} + +static void +brt_vdev_entcount_inc(brt_vdev_t *brtvd, uint64_t idx) +{ + uint16_t entcnt; + + ASSERT3U(idx, <, brtvd->bv_size); + + entcnt = brt_vdev_entcount_get(brtvd, idx); + ASSERT(entcnt < UINT16_MAX); + + brt_vdev_entcount_set(brtvd, idx, entcnt + 1); +} + +static void +brt_vdev_entcount_dec(brt_vdev_t *brtvd, uint64_t idx) +{ + uint16_t entcnt; + + ASSERT3U(idx, <, brtvd->bv_size); + + entcnt = brt_vdev_entcount_get(brtvd, idx); + ASSERT(entcnt > 0); + + brt_vdev_entcount_set(brtvd, idx, entcnt - 1); +} + +#ifdef ZFS_DEBUG +static void +brt_vdev_dump(brt_t *brt) +{ + brt_vdev_t *brtvd; + uint64_t vdevid; + + if ((zfs_flags & ZFS_DEBUG_BRT) == 0) { + return; + } + + if (brt->brt_nvdevs == 0) { + zfs_dbgmsg("BRT empty"); + return; + } + + zfs_dbgmsg("BRT vdev dump:"); + for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { + uint64_t idx; + + brtvd = &brt->brt_vdevs[vdevid]; + zfs_dbgmsg(" vdevid=%llu/%llu meta_dirty=%d entcount_dirty=%d " + "size=%llu totalcount=%llu nblocks=%llu bitmapsize=%zu\n", + (u_longlong_t)vdevid, (u_longlong_t)brtvd->bv_vdevid, + brtvd->bv_meta_dirty, brtvd->bv_entcount_dirty, + (u_longlong_t)brtvd->bv_size, + (u_longlong_t)brtvd->bv_totalcount, + (u_longlong_t)brtvd->bv_nblocks, + (size_t)BT_SIZEOFMAP(brtvd->bv_nblocks)); + if (brtvd->bv_totalcount > 0) { + zfs_dbgmsg(" entcounts:"); + for (idx = 0; idx < brtvd->bv_size; idx++) { + if (brt_vdev_entcount_get(brtvd, idx) > 0) { + zfs_dbgmsg(" [%04llu] %hu", + (u_longlong_t)idx, + brt_vdev_entcount_get(brtvd, idx)); + } + } + } + if (brtvd->bv_entcount_dirty) { + char *bitmap; + + bitmap = kmem_alloc(brtvd->bv_nblocks + 1, KM_SLEEP); + for (idx = 0; idx < brtvd->bv_nblocks; idx++) { + bitmap[idx] = + BT_TEST(brtvd->bv_bitmap, idx) ? 'x' : '.'; + } + bitmap[idx] = '\0'; + zfs_dbgmsg(" bitmap: %s", bitmap); + kmem_free(bitmap, brtvd->bv_nblocks + 1); + } + } +} +#endif + +static brt_vdev_t * +brt_vdev(brt_t *brt, uint64_t vdevid) +{ + brt_vdev_t *brtvd; + + ASSERT(RW_LOCK_HELD(&brt->brt_lock)); + + if (vdevid < brt->brt_nvdevs) { + brtvd = &brt->brt_vdevs[vdevid]; + } else { + brtvd = NULL; + } + + return (brtvd); +} + +static void +brt_vdev_create(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx) +{ + char name[64]; + + ASSERT(RW_WRITE_HELD(&brt->brt_lock)); + ASSERT0(brtvd->bv_mos_brtvdev); + ASSERT0(brtvd->bv_mos_entries); + ASSERT(brtvd->bv_entcount != NULL); + ASSERT(brtvd->bv_size > 0); + ASSERT(brtvd->bv_bitmap != NULL); + ASSERT(brtvd->bv_nblocks > 0); + + brtvd->bv_mos_entries = zap_create_flags(brt->brt_mos, 0, + ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY, DMU_OTN_ZAP_METADATA, + brt_zap_leaf_blockshift, brt_zap_indirect_blockshift, DMU_OT_NONE, + 0, tx); + VERIFY(brtvd->bv_mos_entries != 0); + BRT_DEBUG("MOS entries created, object=%llu", + (u_longlong_t)brtvd->bv_mos_entries); + + /* + * We allocate DMU buffer to store the bv_entcount[] array. + * We will keep array size (bv_size) and cummulative count for all + * bv_entcount[]s (bv_totalcount) in the bonus buffer. + */ + brtvd->bv_mos_brtvdev = dmu_object_alloc(brt->brt_mos, + DMU_OTN_UINT64_METADATA, BRT_BLOCKSIZE, + DMU_OTN_UINT64_METADATA, sizeof (brt_vdev_phys_t), tx); + VERIFY(brtvd->bv_mos_brtvdev != 0); + BRT_DEBUG("MOS BRT VDEV created, object=%llu", + (u_longlong_t)brtvd->bv_mos_brtvdev); + + snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX, + (u_longlong_t)brtvd->bv_vdevid); + VERIFY0(zap_add(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name, + sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev, tx)); + BRT_DEBUG("Pool directory object created, object=%s", name); + + spa_feature_incr(brt->brt_spa, SPA_FEATURE_BLOCK_CLONING, tx); +} + +static void +brt_vdev_realloc(brt_t *brt, brt_vdev_t *brtvd) +{ + vdev_t *vd; + uint16_t *entcount; + ulong_t *bitmap; + uint64_t nblocks, size; + + ASSERT(RW_WRITE_HELD(&brt->brt_lock)); + + spa_config_enter(brt->brt_spa, SCL_VDEV, FTAG, RW_READER); + vd = vdev_lookup_top(brt->brt_spa, brtvd->bv_vdevid); + size = (vdev_get_min_asize(vd) - 1) / brt->brt_rangesize + 1; + spa_config_exit(brt->brt_spa, SCL_VDEV, FTAG); + + entcount = kmem_zalloc(sizeof (entcount[0]) * size, KM_SLEEP); + nblocks = BRT_RANGESIZE_TO_NBLOCKS(size); + bitmap = kmem_zalloc(BT_SIZEOFMAP(nblocks), KM_SLEEP); + + if (!brtvd->bv_initiated) { + ASSERT0(brtvd->bv_size); + ASSERT(brtvd->bv_entcount == NULL); + ASSERT(brtvd->bv_bitmap == NULL); + ASSERT0(brtvd->bv_nblocks); + + avl_create(&brtvd->bv_tree, brt_entry_compare, + sizeof (brt_entry_t), offsetof(brt_entry_t, bre_node)); + } else { + ASSERT(brtvd->bv_size > 0); + ASSERT(brtvd->bv_entcount != NULL); + ASSERT(brtvd->bv_bitmap != NULL); + ASSERT(brtvd->bv_nblocks > 0); + /* + * TODO: Allow vdev shrinking. We only need to implement + * shrinking the on-disk BRT VDEV object. + * dmu_free_range(brt->brt_mos, brtvd->bv_mos_brtvdev, offset, + * size, tx); + */ + ASSERT3U(brtvd->bv_size, <=, size); + + memcpy(entcount, brtvd->bv_entcount, + sizeof (entcount[0]) * MIN(size, brtvd->bv_size)); + memcpy(bitmap, brtvd->bv_bitmap, MIN(BT_SIZEOFMAP(nblocks), + BT_SIZEOFMAP(brtvd->bv_nblocks))); + kmem_free(brtvd->bv_entcount, + sizeof (entcount[0]) * brtvd->bv_size); + kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(brtvd->bv_nblocks)); + } + + brtvd->bv_size = size; + brtvd->bv_entcount = entcount; + brtvd->bv_bitmap = bitmap; + brtvd->bv_nblocks = nblocks; + if (!brtvd->bv_initiated) { + brtvd->bv_need_byteswap = FALSE; + brtvd->bv_initiated = TRUE; + BRT_DEBUG("BRT VDEV %llu initiated.", + (u_longlong_t)brtvd->bv_vdevid); + } +} + +static void +brt_vdev_load(brt_t *brt, brt_vdev_t *brtvd) +{ + char name[64]; + dmu_buf_t *db; + brt_vdev_phys_t *bvphys; + int error; + + snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX, + (u_longlong_t)brtvd->bv_vdevid); + error = zap_lookup(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name, + sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev); + if (error != 0) + return; + ASSERT(brtvd->bv_mos_brtvdev != 0); + + error = dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db); + ASSERT0(error); + if (error != 0) + return; + + bvphys = db->db_data; + if (brt->brt_rangesize == 0) { + brt->brt_rangesize = bvphys->bvp_rangesize; + } else { + ASSERT3U(brt->brt_rangesize, ==, bvphys->bvp_rangesize); + } + + ASSERT(!brtvd->bv_initiated); + brt_vdev_realloc(brt, brtvd); + + /* TODO: We don't support VDEV shrinking. */ + ASSERT3U(bvphys->bvp_size, <=, brtvd->bv_size); + + /* + * If VDEV grew, we will leave new bv_entcount[] entries zeroed out. + */ + error = dmu_read(brt->brt_mos, brtvd->bv_mos_brtvdev, 0, + MIN(brtvd->bv_size, bvphys->bvp_size) * sizeof (uint16_t), + brtvd->bv_entcount, DMU_READ_NO_PREFETCH); + ASSERT0(error); + + brtvd->bv_mos_entries = bvphys->bvp_mos_entries; + ASSERT(brtvd->bv_mos_entries != 0); + brtvd->bv_need_byteswap = + (bvphys->bvp_byteorder != BRT_NATIVE_BYTEORDER); + brtvd->bv_totalcount = bvphys->bvp_totalcount; + brtvd->bv_usedspace = bvphys->bvp_usedspace; + brtvd->bv_savedspace = bvphys->bvp_savedspace; + brt->brt_usedspace += brtvd->bv_usedspace; + brt->brt_savedspace += brtvd->bv_savedspace; + + dmu_buf_rele(db, FTAG); + + BRT_DEBUG("MOS BRT VDEV %s loaded: mos_brtvdev=%llu, mos_entries=%llu", + name, (u_longlong_t)brtvd->bv_mos_brtvdev, + (u_longlong_t)brtvd->bv_mos_entries); +} + +static void +brt_vdev_dealloc(brt_t *brt, brt_vdev_t *brtvd) +{ + + ASSERT(RW_WRITE_HELD(&brt->brt_lock)); + ASSERT(brtvd->bv_initiated); + + kmem_free(brtvd->bv_entcount, sizeof (uint16_t) * brtvd->bv_size); + brtvd->bv_entcount = NULL; + kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(brtvd->bv_nblocks)); + brtvd->bv_bitmap = NULL; + ASSERT0(avl_numnodes(&brtvd->bv_tree)); + avl_destroy(&brtvd->bv_tree); + + brtvd->bv_size = 0; + brtvd->bv_nblocks = 0; + + brtvd->bv_initiated = FALSE; + BRT_DEBUG("BRT VDEV %llu deallocated.", (u_longlong_t)brtvd->bv_vdevid); +} + +static void +brt_vdev_destroy(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx) +{ + char name[64]; + uint64_t count; + dmu_buf_t *db; + brt_vdev_phys_t *bvphys; + + ASSERT(RW_WRITE_HELD(&brt->brt_lock)); + ASSERT(brtvd->bv_mos_brtvdev != 0); + ASSERT(brtvd->bv_mos_entries != 0); + + VERIFY0(zap_count(brt->brt_mos, brtvd->bv_mos_entries, &count)); + VERIFY0(count); + VERIFY0(zap_destroy(brt->brt_mos, brtvd->bv_mos_entries, tx)); + BRT_DEBUG("MOS entries destroyed, object=%llu", + (u_longlong_t)brtvd->bv_mos_entries); + brtvd->bv_mos_entries = 0; + + VERIFY0(dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db)); + bvphys = db->db_data; + ASSERT0(bvphys->bvp_totalcount); + ASSERT0(bvphys->bvp_usedspace); + ASSERT0(bvphys->bvp_savedspace); + dmu_buf_rele(db, FTAG); + + VERIFY0(dmu_object_free(brt->brt_mos, brtvd->bv_mos_brtvdev, tx)); + BRT_DEBUG("MOS BRT VDEV destroyed, object=%llu", + (u_longlong_t)brtvd->bv_mos_brtvdev); + brtvd->bv_mos_brtvdev = 0; + + snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX, + (u_longlong_t)brtvd->bv_vdevid); + VERIFY0(zap_remove(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name, tx)); + BRT_DEBUG("Pool directory object removed, object=%s", name); + + brt_vdev_dealloc(brt, brtvd); + + spa_feature_decr(brt->brt_spa, SPA_FEATURE_BLOCK_CLONING, tx); +} + +static void +brt_vdevs_expand(brt_t *brt, uint64_t nvdevs) +{ + brt_vdev_t *brtvd, *vdevs; + uint64_t vdevid; + + ASSERT(RW_WRITE_HELD(&brt->brt_lock)); + ASSERT3U(nvdevs, >, brt->brt_nvdevs); + + vdevs = kmem_zalloc(sizeof (vdevs[0]) * nvdevs, KM_SLEEP); + if (brt->brt_nvdevs > 0) { + ASSERT(brt->brt_vdevs != NULL); + + memcpy(vdevs, brt->brt_vdevs, + sizeof (brt_vdev_t) * brt->brt_nvdevs); + kmem_free(brt->brt_vdevs, + sizeof (brt_vdev_t) * brt->brt_nvdevs); + } + for (vdevid = brt->brt_nvdevs; vdevid < nvdevs; vdevid++) { + brtvd = &vdevs[vdevid]; + + brtvd->bv_vdevid = vdevid; + brtvd->bv_initiated = FALSE; + } + + BRT_DEBUG("BRT VDEVs expanded from %llu to %llu.", + (u_longlong_t)brt->brt_nvdevs, (u_longlong_t)nvdevs); + + brt->brt_vdevs = vdevs; + brt->brt_nvdevs = nvdevs; +} + +static boolean_t +brt_vdev_lookup(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre) +{ + uint64_t idx; + + ASSERT(RW_LOCK_HELD(&brt->brt_lock)); + + idx = bre->bre_offset / brt->brt_rangesize; + if (brtvd->bv_entcount != NULL && idx < brtvd->bv_size) { + /* VDEV wasn't expanded. */ + return (brt_vdev_entcount_get(brtvd, idx) > 0); + } + + return (FALSE); +} + +static void +brt_vdev_addref(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre, + uint64_t dsize) +{ + uint64_t idx; + + ASSERT(RW_LOCK_HELD(&brt->brt_lock)); + ASSERT(brtvd != NULL); + ASSERT(brtvd->bv_entcount != NULL); + + brt->brt_savedspace += dsize; + brtvd->bv_savedspace += dsize; + brtvd->bv_meta_dirty = TRUE; + + if (bre->bre_refcount > 1) { + return; + } + + brt->brt_usedspace += dsize; + brtvd->bv_usedspace += dsize; + + idx = bre->bre_offset / brt->brt_rangesize; + if (idx >= brtvd->bv_size) { + /* VDEV has been expanded. */ + brt_vdev_realloc(brt, brtvd); + } + + ASSERT3U(idx, <, brtvd->bv_size); + + brtvd->bv_totalcount++; + brt_vdev_entcount_inc(brtvd, idx); + brtvd->bv_entcount_dirty = TRUE; + idx = idx / BRT_BLOCKSIZE / 8; + BT_SET(brtvd->bv_bitmap, idx); + +#ifdef ZFS_DEBUG + brt_vdev_dump(brt); +#endif +} + +static void +brt_vdev_decref(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre, + uint64_t dsize) +{ + uint64_t idx; + + ASSERT(RW_WRITE_HELD(&brt->brt_lock)); + ASSERT(brtvd != NULL); + ASSERT(brtvd->bv_entcount != NULL); + + brt->brt_savedspace -= dsize; + brtvd->bv_savedspace -= dsize; + brtvd->bv_meta_dirty = TRUE; + + if (bre->bre_refcount > 0) { + return; + } + + brt->brt_usedspace -= dsize; + brtvd->bv_usedspace -= dsize; + + idx = bre->bre_offset / brt->brt_rangesize; + ASSERT3U(idx, <, brtvd->bv_size); + + ASSERT(brtvd->bv_totalcount > 0); + brtvd->bv_totalcount--; + brt_vdev_entcount_dec(brtvd, idx); + brtvd->bv_entcount_dirty = TRUE; + idx = idx / BRT_BLOCKSIZE / 8; + BT_SET(brtvd->bv_bitmap, idx); + +#ifdef ZFS_DEBUG + brt_vdev_dump(brt); +#endif +} + +static void +brt_vdev_sync(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx) +{ + dmu_buf_t *db; + brt_vdev_phys_t *bvphys; + + ASSERT(brtvd->bv_meta_dirty); + ASSERT(brtvd->bv_mos_brtvdev != 0); + ASSERT(dmu_tx_is_syncing(tx)); + + VERIFY0(dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db)); + + if (brtvd->bv_entcount_dirty) { + /* + * TODO: Walk brtvd->bv_bitmap and write only the dirty blocks. + */ + dmu_write(brt->brt_mos, brtvd->bv_mos_brtvdev, 0, + brtvd->bv_size * sizeof (brtvd->bv_entcount[0]), + brtvd->bv_entcount, tx); + memset(brtvd->bv_bitmap, 0, BT_SIZEOFMAP(brtvd->bv_nblocks)); + brtvd->bv_entcount_dirty = FALSE; + } + + dmu_buf_will_dirty(db, tx); + bvphys = db->db_data; + bvphys->bvp_mos_entries = brtvd->bv_mos_entries; + bvphys->bvp_size = brtvd->bv_size; + if (brtvd->bv_need_byteswap) { + bvphys->bvp_byteorder = BRT_NON_NATIVE_BYTEORDER; + } else { + bvphys->bvp_byteorder = BRT_NATIVE_BYTEORDER; + } + bvphys->bvp_totalcount = brtvd->bv_totalcount; + bvphys->bvp_rangesize = brt->brt_rangesize; + bvphys->bvp_usedspace = brtvd->bv_usedspace; + bvphys->bvp_savedspace = brtvd->bv_savedspace; + dmu_buf_rele(db, FTAG); + + brtvd->bv_meta_dirty = FALSE; +} + +static void +brt_vdevs_alloc(brt_t *brt, boolean_t load) +{ + brt_vdev_t *brtvd; + uint64_t vdevid; + + brt_wlock(brt); + + brt_vdevs_expand(brt, brt->brt_spa->spa_root_vdev->vdev_children); + + if (load) { + for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { + brtvd = &brt->brt_vdevs[vdevid]; + ASSERT(brtvd->bv_entcount == NULL); + + brt_vdev_load(brt, brtvd); + } + } + + if (brt->brt_rangesize == 0) { + brt->brt_rangesize = BRT_RANGESIZE; + } + + brt_unlock(brt); +} + +static void +brt_vdevs_free(brt_t *brt) +{ + brt_vdev_t *brtvd; + uint64_t vdevid; + + brt_wlock(brt); + + for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { + brtvd = &brt->brt_vdevs[vdevid]; + if (brtvd->bv_initiated) + brt_vdev_dealloc(brt, brtvd); + } + kmem_free(brt->brt_vdevs, sizeof (brt_vdev_t) * brt->brt_nvdevs); + + brt_unlock(brt); +} + +static void +brt_entry_fill(const blkptr_t *bp, brt_entry_t *bre, uint64_t *vdevidp) +{ + + bre->bre_offset = DVA_GET_OFFSET(&bp->blk_dva[0]); + bre->bre_refcount = 0; + + *vdevidp = DVA_GET_VDEV(&bp->blk_dva[0]); +} + +static int +brt_entry_compare(const void *x1, const void *x2) +{ + const brt_entry_t *bre1 = x1; + const brt_entry_t *bre2 = x2; + + return (TREE_CMP(bre1->bre_offset, bre2->bre_offset)); +} + +static int +brt_entry_lookup(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre) +{ + uint64_t mos_entries; + uint64_t one, physsize; + int error; + + ASSERT(RW_LOCK_HELD(&brt->brt_lock)); + + if (!brt_vdev_lookup(brt, brtvd, bre)) + return (SET_ERROR(ENOENT)); + + /* + * Remember mos_entries object number. After we reacquire the BRT lock, + * the brtvd pointer may be invalid. + */ + mos_entries = brtvd->bv_mos_entries; + if (mos_entries == 0) + return (SET_ERROR(ENOENT)); + + brt_unlock(brt); + + error = zap_length_uint64(brt->brt_mos, mos_entries, &bre->bre_offset, + BRT_KEY_WORDS, &one, &physsize); + if (error == 0) { + ASSERT3U(one, ==, 1); + ASSERT3U(physsize, ==, sizeof (bre->bre_refcount)); + + error = zap_lookup_uint64(brt->brt_mos, mos_entries, + &bre->bre_offset, BRT_KEY_WORDS, 1, + sizeof (bre->bre_refcount), &bre->bre_refcount); + BRT_DEBUG("ZAP lookup: object=%llu vdev=%llu offset=%llu " + "count=%llu error=%d", (u_longlong_t)mos_entries, + (u_longlong_t)brtvd->bv_vdevid, + (u_longlong_t)bre->bre_offset, + error == 0 ? (u_longlong_t)bre->bre_refcount : 0, error); + } + + brt_wlock(brt); + + return (error); +} + +static void +brt_entry_prefetch(brt_t *brt, uint64_t vdevid, brt_entry_t *bre) +{ + brt_vdev_t *brtvd; + uint64_t mos_entries = 0; + + brt_rlock(brt); + brtvd = brt_vdev(brt, vdevid); + if (brtvd != NULL) + mos_entries = brtvd->bv_mos_entries; + brt_unlock(brt); + + if (mos_entries == 0) + return; + + BRT_DEBUG("ZAP prefetch: object=%llu vdev=%llu offset=%llu", + (u_longlong_t)mos_entries, (u_longlong_t)vdevid, + (u_longlong_t)bre->bre_offset); + (void) zap_prefetch_uint64(brt->brt_mos, mos_entries, + (uint64_t *)&bre->bre_offset, BRT_KEY_WORDS); +} + +static int +brt_entry_update(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre, dmu_tx_t *tx) +{ + int error; + + ASSERT(RW_LOCK_HELD(&brt->brt_lock)); + ASSERT(brtvd->bv_mos_entries != 0); + ASSERT(bre->bre_refcount > 0); + + error = zap_update_uint64(brt->brt_mos, brtvd->bv_mos_entries, + (uint64_t *)&bre->bre_offset, BRT_KEY_WORDS, 1, + sizeof (bre->bre_refcount), &bre->bre_refcount, tx); + BRT_DEBUG("ZAP update: object=%llu vdev=%llu offset=%llu count=%llu " + "error=%d", (u_longlong_t)brtvd->bv_mos_entries, + (u_longlong_t)brtvd->bv_vdevid, (u_longlong_t)bre->bre_offset, + (u_longlong_t)bre->bre_refcount, error); + + return (error); +} + +static int +brt_entry_remove(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre, dmu_tx_t *tx) +{ + int error; + + ASSERT(RW_LOCK_HELD(&brt->brt_lock)); + ASSERT(brtvd->bv_mos_entries != 0); + ASSERT0(bre->bre_refcount); + + error = zap_remove_uint64(brt->brt_mos, brtvd->bv_mos_entries, + (uint64_t *)&bre->bre_offset, BRT_KEY_WORDS, tx); + BRT_DEBUG("ZAP remove: object=%llu vdev=%llu offset=%llu count=%llu " + "error=%d", (u_longlong_t)brtvd->bv_mos_entries, + (u_longlong_t)brtvd->bv_vdevid, (u_longlong_t)bre->bre_offset, + (u_longlong_t)bre->bre_refcount, error); + + return (error); +} + +/* + * Return TRUE if we _can_ have BRT entry for this bp. It might be false + * positive, but gives us quick answer if we should look into BRT, which + * may require reads and thus will be more expensive. + */ +boolean_t +brt_maybe_exists(spa_t *spa, const blkptr_t *bp) +{ + brt_t *brt = spa->spa_brt; + brt_vdev_t *brtvd; + brt_entry_t bre_search; + boolean_t mayexists = FALSE; + uint64_t vdevid; + + brt_entry_fill(bp, &bre_search, &vdevid); + + brt_rlock(brt); + + brtvd = brt_vdev(brt, vdevid); + if (brtvd != NULL && brtvd->bv_initiated) { + if (!avl_is_empty(&brtvd->bv_tree) || + brt_vdev_lookup(brt, brtvd, &bre_search)) { + mayexists = TRUE; + } + } + + brt_unlock(brt); + + return (mayexists); +} + +uint64_t +brt_get_dspace(spa_t *spa) +{ + brt_t *brt = spa->spa_brt; + + if (brt == NULL) + return (0); + + return (brt->brt_savedspace); +} + +uint64_t +brt_get_used(spa_t *spa) +{ + brt_t *brt = spa->spa_brt; + + if (brt == NULL) + return (0); + + return (brt->brt_usedspace); +} + +uint64_t +brt_get_saved(spa_t *spa) +{ + brt_t *brt = spa->spa_brt; + + if (brt == NULL) + return (0); + + return (brt->brt_savedspace); +} + +uint64_t +brt_get_ratio(spa_t *spa) +{ + brt_t *brt = spa->spa_brt; + + if (brt->brt_usedspace == 0) + return (100); + + return ((brt->brt_usedspace + brt->brt_savedspace) * 100 / + brt->brt_usedspace); +} + +static int +brt_kstats_update(kstat_t *ksp, int rw) +{ + brt_stats_t *bs = ksp->ks_data; + + if (rw == KSTAT_WRITE) + return (EACCES); + + bs->brt_addref_entry_in_memory.value.ui64 = + wmsum_value(&brt_sums.brt_addref_entry_in_memory); + bs->brt_addref_entry_not_on_disk.value.ui64 = + wmsum_value(&brt_sums.brt_addref_entry_not_on_disk); + bs->brt_addref_entry_on_disk.value.ui64 = + wmsum_value(&brt_sums.brt_addref_entry_on_disk); + bs->brt_addref_entry_read_lost_race.value.ui64 = + wmsum_value(&brt_sums.brt_addref_entry_read_lost_race); + bs->brt_decref_entry_in_memory.value.ui64 = + wmsum_value(&brt_sums.brt_decref_entry_in_memory); + bs->brt_decref_entry_loaded_from_disk.value.ui64 = + wmsum_value(&brt_sums.brt_decref_entry_loaded_from_disk); + bs->brt_decref_entry_not_in_memory.value.ui64 = + wmsum_value(&brt_sums.brt_decref_entry_not_in_memory); + bs->brt_decref_entry_not_on_disk.value.ui64 = + wmsum_value(&brt_sums.brt_decref_entry_not_on_disk); + bs->brt_decref_entry_read_lost_race.value.ui64 = + wmsum_value(&brt_sums.brt_decref_entry_read_lost_race); + bs->brt_decref_entry_still_referenced.value.ui64 = + wmsum_value(&brt_sums.brt_decref_entry_still_referenced); + bs->brt_decref_free_data_later.value.ui64 = + wmsum_value(&brt_sums.brt_decref_free_data_later); + bs->brt_decref_free_data_now.value.ui64 = + wmsum_value(&brt_sums.brt_decref_free_data_now); + bs->brt_decref_no_entry.value.ui64 = + wmsum_value(&brt_sums.brt_decref_no_entry); + + return (0); +} + +static void +brt_stat_init(void) +{ + + wmsum_init(&brt_sums.brt_addref_entry_in_memory, 0); + wmsum_init(&brt_sums.brt_addref_entry_not_on_disk, 0); + wmsum_init(&brt_sums.brt_addref_entry_on_disk, 0); + wmsum_init(&brt_sums.brt_addref_entry_read_lost_race, 0); + wmsum_init(&brt_sums.brt_decref_entry_in_memory, 0); + wmsum_init(&brt_sums.brt_decref_entry_loaded_from_disk, 0); + wmsum_init(&brt_sums.brt_decref_entry_not_in_memory, 0); + wmsum_init(&brt_sums.brt_decref_entry_not_on_disk, 0); + wmsum_init(&brt_sums.brt_decref_entry_read_lost_race, 0); + wmsum_init(&brt_sums.brt_decref_entry_still_referenced, 0); + wmsum_init(&brt_sums.brt_decref_free_data_later, 0); + wmsum_init(&brt_sums.brt_decref_free_data_now, 0); + wmsum_init(&brt_sums.brt_decref_no_entry, 0); + + brt_ksp = kstat_create("zfs", 0, "brtstats", "misc", KSTAT_TYPE_NAMED, + sizeof (brt_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); + if (brt_ksp != NULL) { + brt_ksp->ks_data = &brt_stats; + brt_ksp->ks_update = brt_kstats_update; + kstat_install(brt_ksp); + } +} + +static void +brt_stat_fini(void) +{ + if (brt_ksp != NULL) { + kstat_delete(brt_ksp); + brt_ksp = NULL; + } + + wmsum_fini(&brt_sums.brt_addref_entry_in_memory); + wmsum_fini(&brt_sums.brt_addref_entry_not_on_disk); + wmsum_fini(&brt_sums.brt_addref_entry_on_disk); + wmsum_fini(&brt_sums.brt_addref_entry_read_lost_race); + wmsum_fini(&brt_sums.brt_decref_entry_in_memory); + wmsum_fini(&brt_sums.brt_decref_entry_loaded_from_disk); + wmsum_fini(&brt_sums.brt_decref_entry_not_in_memory); + wmsum_fini(&brt_sums.brt_decref_entry_not_on_disk); + wmsum_fini(&brt_sums.brt_decref_entry_read_lost_race); + wmsum_fini(&brt_sums.brt_decref_entry_still_referenced); + wmsum_fini(&brt_sums.brt_decref_free_data_later); + wmsum_fini(&brt_sums.brt_decref_free_data_now); + wmsum_fini(&brt_sums.brt_decref_no_entry); +} + +void +brt_init(void) +{ + brt_entry_cache = kmem_cache_create("brt_entry_cache", + sizeof (brt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0); + brt_pending_entry_cache = kmem_cache_create("brt_pending_entry_cache", + sizeof (brt_pending_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0); + + brt_stat_init(); +} + +void +brt_fini(void) +{ + brt_stat_fini(); + + kmem_cache_destroy(brt_entry_cache); + kmem_cache_destroy(brt_pending_entry_cache); +} + +static brt_entry_t * +brt_entry_alloc(const brt_entry_t *bre_init) +{ + brt_entry_t *bre; + + bre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP); + bre->bre_offset = bre_init->bre_offset; + bre->bre_refcount = bre_init->bre_refcount; + + return (bre); +} + +static void +brt_entry_free(brt_entry_t *bre) +{ + + kmem_cache_free(brt_entry_cache, bre); +} + +static void +brt_entry_addref(brt_t *brt, const blkptr_t *bp) +{ + brt_vdev_t *brtvd; + brt_entry_t *bre, *racebre; + brt_entry_t bre_search; + avl_index_t where; + uint64_t vdevid; + int error; + + ASSERT(!RW_WRITE_HELD(&brt->brt_lock)); + + brt_entry_fill(bp, &bre_search, &vdevid); + + brt_wlock(brt); + + brtvd = brt_vdev(brt, vdevid); + if (brtvd == NULL) { + ASSERT3U(vdevid, >=, brt->brt_nvdevs); + + /* New VDEV was added. */ + brt_vdevs_expand(brt, vdevid + 1); + brtvd = brt_vdev(brt, vdevid); + } + ASSERT(brtvd != NULL); + if (!brtvd->bv_initiated) + brt_vdev_realloc(brt, brtvd); + + bre = avl_find(&brtvd->bv_tree, &bre_search, NULL); + if (bre != NULL) { + BRTSTAT_BUMP(brt_addref_entry_in_memory); + } else { + /* + * brt_entry_lookup() may drop the BRT (read) lock and + * reacquire it (write). + */ + error = brt_entry_lookup(brt, brtvd, &bre_search); + /* bre_search now contains correct bre_refcount */ + ASSERT(error == 0 || error == ENOENT); + if (error == 0) + BRTSTAT_BUMP(brt_addref_entry_on_disk); + else + BRTSTAT_BUMP(brt_addref_entry_not_on_disk); + /* + * When the BRT lock was dropped, brt_vdevs[] may have been + * expanded and reallocated, we need to update brtvd's pointer. + */ + brtvd = brt_vdev(brt, vdevid); + ASSERT(brtvd != NULL); + + racebre = avl_find(&brtvd->bv_tree, &bre_search, &where); + if (racebre == NULL) { + bre = brt_entry_alloc(&bre_search); + ASSERT(RW_WRITE_HELD(&brt->brt_lock)); + avl_insert(&brtvd->bv_tree, bre, where); + brt->brt_nentries++; + } else { + /* + * The entry was added when the BRT lock was dropped in + * brt_entry_lookup(). + */ + BRTSTAT_BUMP(brt_addref_entry_read_lost_race); + bre = racebre; + } + } + bre->bre_refcount++; + brt_vdev_addref(brt, brtvd, bre, bp_get_dsize(brt->brt_spa, bp)); + + brt_unlock(brt); +} + +/* Return TRUE if block should be freed immediately. */ +boolean_t +brt_entry_decref(spa_t *spa, const blkptr_t *bp) +{ + brt_t *brt = spa->spa_brt; + brt_vdev_t *brtvd; + brt_entry_t *bre, *racebre; + brt_entry_t bre_search; + avl_index_t where; + uint64_t vdevid; + int error; + + brt_entry_fill(bp, &bre_search, &vdevid); + + brt_wlock(brt); + + brtvd = brt_vdev(brt, vdevid); + ASSERT(brtvd != NULL); + + bre = avl_find(&brtvd->bv_tree, &bre_search, NULL); + if (bre != NULL) { + BRTSTAT_BUMP(brt_decref_entry_in_memory); + goto out; + } else { + BRTSTAT_BUMP(brt_decref_entry_not_in_memory); + } + + /* + * brt_entry_lookup() may drop the BRT lock and reacquire it. + */ + error = brt_entry_lookup(brt, brtvd, &bre_search); + /* bre_search now contains correct bre_refcount */ + ASSERT(error == 0 || error == ENOENT); + /* + * When the BRT lock was dropped, brt_vdevs[] may have been expanded + * and reallocated, we need to update brtvd's pointer. + */ + brtvd = brt_vdev(brt, vdevid); + ASSERT(brtvd != NULL); + + if (error == ENOENT) { + BRTSTAT_BUMP(brt_decref_entry_not_on_disk); + bre = NULL; + goto out; + } + + racebre = avl_find(&brtvd->bv_tree, &bre_search, &where); + if (racebre != NULL) { + /* + * The entry was added when the BRT lock was dropped in + * brt_entry_lookup(). + */ + BRTSTAT_BUMP(brt_decref_entry_read_lost_race); + bre = racebre; + goto out; + } + + BRTSTAT_BUMP(brt_decref_entry_loaded_from_disk); + bre = brt_entry_alloc(&bre_search); + ASSERT(RW_WRITE_HELD(&brt->brt_lock)); + avl_insert(&brtvd->bv_tree, bre, where); + brt->brt_nentries++; + +out: + if (bre == NULL) { + /* + * This is a free of a regular (not cloned) block. + */ + brt_unlock(brt); + BRTSTAT_BUMP(brt_decref_no_entry); + return (B_TRUE); + } + if (bre->bre_refcount == 0) { + brt_unlock(brt); + BRTSTAT_BUMP(brt_decref_free_data_now); + return (B_TRUE); + } + + ASSERT(bre->bre_refcount > 0); + bre->bre_refcount--; + if (bre->bre_refcount == 0) + BRTSTAT_BUMP(brt_decref_free_data_later); + else + BRTSTAT_BUMP(brt_decref_entry_still_referenced); + brt_vdev_decref(brt, brtvd, bre, bp_get_dsize(brt->brt_spa, bp)); + + brt_unlock(brt); + + return (B_FALSE); +} + +static void +brt_prefetch(brt_t *brt, const blkptr_t *bp) +{ + brt_entry_t bre; + uint64_t vdevid; + + ASSERT(bp != NULL); + + if (!zfs_brt_prefetch) + return; + + brt_entry_fill(bp, &bre, &vdevid); + + brt_entry_prefetch(brt, vdevid, &bre); +} + +static int +brt_pending_entry_compare(const void *x1, const void *x2) +{ + const brt_pending_entry_t *bpe1 = x1, *bpe2 = x2; + const blkptr_t *bp1 = &bpe1->bpe_bp, *bp2 = &bpe2->bpe_bp; + int cmp; + + cmp = TREE_CMP(BP_PHYSICAL_BIRTH(bp1), BP_PHYSICAL_BIRTH(bp2)); + if (cmp == 0) { + cmp = TREE_CMP(DVA_GET_VDEV(&bp1->blk_dva[0]), + DVA_GET_VDEV(&bp2->blk_dva[0])); + if (cmp == 0) { + cmp = TREE_CMP(DVA_GET_OFFSET(&bp1->blk_dva[0]), + DVA_GET_OFFSET(&bp2->blk_dva[0])); + } + } + + return (cmp); +} + +void +brt_pending_add(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx) +{ + brt_t *brt; + avl_tree_t *pending_tree; + kmutex_t *pending_lock; + brt_pending_entry_t *bpe, *newbpe; + avl_index_t where; + uint64_t txg; + + brt = spa->spa_brt; + txg = dmu_tx_get_txg(tx); + ASSERT3U(txg, !=, 0); + pending_tree = &brt->brt_pending_tree[txg & TXG_MASK]; + pending_lock = &brt->brt_pending_lock[txg & TXG_MASK]; + + newbpe = kmem_cache_alloc(brt_pending_entry_cache, KM_SLEEP); + newbpe->bpe_bp = *bp; + newbpe->bpe_count = 1; + + mutex_enter(pending_lock); + + bpe = avl_find(pending_tree, newbpe, &where); + if (bpe == NULL) { + avl_insert(pending_tree, newbpe, where); + newbpe = NULL; + } else { + bpe->bpe_count++; + } + + mutex_exit(pending_lock); + + if (newbpe != NULL) { + ASSERT(bpe != NULL); + ASSERT(bpe != newbpe); + kmem_cache_free(brt_pending_entry_cache, newbpe); + } else { + ASSERT(bpe == NULL); + } + + /* Prefetch BRT entry, as we will need it in the syncing context. */ + brt_prefetch(brt, bp); +} + +void +brt_pending_remove(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx) +{ + brt_t *brt; + avl_tree_t *pending_tree; + kmutex_t *pending_lock; + brt_pending_entry_t *bpe, bpe_search; + uint64_t txg; + + brt = spa->spa_brt; + txg = dmu_tx_get_txg(tx); + ASSERT3U(txg, !=, 0); + pending_tree = &brt->brt_pending_tree[txg & TXG_MASK]; + pending_lock = &brt->brt_pending_lock[txg & TXG_MASK]; + + bpe_search.bpe_bp = *bp; + + mutex_enter(pending_lock); + + bpe = avl_find(pending_tree, &bpe_search, NULL); + /* I believe we should always find bpe when this function is called. */ + if (bpe != NULL) { + ASSERT(bpe->bpe_count > 0); + + bpe->bpe_count--; + if (bpe->bpe_count == 0) { + avl_remove(pending_tree, bpe); + kmem_cache_free(brt_pending_entry_cache, bpe); + } + } + + mutex_exit(pending_lock); +} + +void +brt_pending_apply(spa_t *spa, uint64_t txg) +{ + brt_t *brt; + brt_pending_entry_t *bpe; + avl_tree_t *pending_tree; + kmutex_t *pending_lock; + void *c; + + ASSERT3U(txg, !=, 0); + + brt = spa->spa_brt; + pending_tree = &brt->brt_pending_tree[txg & TXG_MASK]; + pending_lock = &brt->brt_pending_lock[txg & TXG_MASK]; + + mutex_enter(pending_lock); + + c = NULL; + while ((bpe = avl_destroy_nodes(pending_tree, &c)) != NULL) { + boolean_t added_to_ddt; + + mutex_exit(pending_lock); + + for (int i = 0; i < bpe->bpe_count; i++) { + /* + * If the block has DEDUP bit set, it means that it + * already exists in the DEDUP table, so we can just + * use that instead of creating new entry in + * the BRT table. + */ + if (BP_GET_DEDUP(&bpe->bpe_bp)) { + added_to_ddt = ddt_addref(spa, &bpe->bpe_bp); + } else { + added_to_ddt = B_FALSE; + } + if (!added_to_ddt) + brt_entry_addref(brt, &bpe->bpe_bp); + } + + kmem_cache_free(brt_pending_entry_cache, bpe); + mutex_enter(pending_lock); + } + + mutex_exit(pending_lock); +} + +static void +brt_sync_entry(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre, dmu_tx_t *tx) +{ + + ASSERT(RW_WRITE_HELD(&brt->brt_lock)); + ASSERT(brtvd->bv_mos_entries != 0); + + if (bre->bre_refcount == 0) { + int error; + + error = brt_entry_remove(brt, brtvd, bre, tx); + ASSERT(error == 0 || error == ENOENT); + /* + * If error == ENOENT then zfs_clone_range() was done from a + * removed (but opened) file (open(), unlink()). + */ + ASSERT(brt_entry_lookup(brt, brtvd, bre) == ENOENT); + } else { + VERIFY0(brt_entry_update(brt, brtvd, bre, tx)); + } +} + +static void +brt_sync_table(brt_t *brt, dmu_tx_t *tx) +{ + brt_vdev_t *brtvd; + brt_entry_t *bre; + uint64_t vdevid; + void *c; + + brt_wlock(brt); + + for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { + brtvd = &brt->brt_vdevs[vdevid]; + + if (!brtvd->bv_initiated) + continue; + + if (!brtvd->bv_meta_dirty) { + ASSERT(!brtvd->bv_entcount_dirty); + ASSERT0(avl_numnodes(&brtvd->bv_tree)); + continue; + } + + ASSERT(!brtvd->bv_entcount_dirty || + avl_numnodes(&brtvd->bv_tree) != 0); + + if (brtvd->bv_mos_brtvdev == 0) + brt_vdev_create(brt, brtvd, tx); + + c = NULL; + while ((bre = avl_destroy_nodes(&brtvd->bv_tree, &c)) != NULL) { + brt_sync_entry(brt, brtvd, bre, tx); + brt_entry_free(bre); + ASSERT(brt->brt_nentries > 0); + brt->brt_nentries--; + } + + brt_vdev_sync(brt, brtvd, tx); + + if (brtvd->bv_totalcount == 0) + brt_vdev_destroy(brt, brtvd, tx); + } + + ASSERT0(brt->brt_nentries); + + brt_unlock(brt); +} + +void +brt_sync(spa_t *spa, uint64_t txg) +{ + dmu_tx_t *tx; + brt_t *brt; + + ASSERT(spa_syncing_txg(spa) == txg); + + brt = spa->spa_brt; + brt_rlock(brt); + if (brt->brt_nentries == 0) { + /* No changes. */ + brt_unlock(brt); + return; + } + brt_unlock(brt); + + tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); + + brt_sync_table(brt, tx); + + dmu_tx_commit(tx); +} + +static void +brt_table_alloc(brt_t *brt) +{ + + for (int i = 0; i < TXG_SIZE; i++) { + avl_create(&brt->brt_pending_tree[i], + brt_pending_entry_compare, + sizeof (brt_pending_entry_t), + offsetof(brt_pending_entry_t, bpe_node)); + mutex_init(&brt->brt_pending_lock[i], NULL, MUTEX_DEFAULT, + NULL); + } +} + +static void +brt_table_free(brt_t *brt) +{ + + for (int i = 0; i < TXG_SIZE; i++) { + ASSERT(avl_is_empty(&brt->brt_pending_tree[i])); + + avl_destroy(&brt->brt_pending_tree[i]); + mutex_destroy(&brt->brt_pending_lock[i]); + } +} + +static void +brt_alloc(spa_t *spa) +{ + brt_t *brt; + + ASSERT(spa->spa_brt == NULL); + + brt = kmem_zalloc(sizeof (*brt), KM_SLEEP); + rw_init(&brt->brt_lock, NULL, RW_DEFAULT, NULL); + brt->brt_spa = spa; + brt->brt_rangesize = 0; + brt->brt_nentries = 0; + brt->brt_vdevs = NULL; + brt->brt_nvdevs = 0; + brt_table_alloc(brt); + + spa->spa_brt = brt; +} + +void +brt_create(spa_t *spa) +{ + + brt_alloc(spa); + brt_vdevs_alloc(spa->spa_brt, B_FALSE); +} + +int +brt_load(spa_t *spa) +{ + + brt_alloc(spa); + brt_vdevs_alloc(spa->spa_brt, B_TRUE); + + return (0); +} + +void +brt_unload(spa_t *spa) +{ + brt_t *brt = spa->spa_brt; + + if (brt == NULL) + return; + + brt_vdevs_free(brt); + brt_table_free(brt); + rw_destroy(&brt->brt_lock); + kmem_free(brt, sizeof (*brt)); + spa->spa_brt = NULL; +} + +/* BEGIN CSTYLED */ +ZFS_MODULE_PARAM(zfs_brt, zfs_brt_, prefetch, INT, ZMOD_RW, + "Enable prefetching of BRT entries"); +#ifdef ZFS_BRT_DEBUG +ZFS_MODULE_PARAM(zfs_brt, zfs_brt_, debug, INT, ZMOD_RW, "BRT debug"); +#endif +/* END CSTYLED */ diff --git a/module/zfs/dbuf.c b/module/zfs/dbuf.c index 191e5e043942..94c2ae9d736d 100644 --- a/module/zfs/dbuf.c +++ b/module/zfs/dbuf.c @@ -1,5136 +1,5184 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2020 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019, Allan Jude + * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include static kstat_t *dbuf_ksp; typedef struct dbuf_stats { /* * Various statistics about the size of the dbuf cache. */ kstat_named_t cache_count; kstat_named_t cache_size_bytes; kstat_named_t cache_size_bytes_max; /* * Statistics regarding the bounds on the dbuf cache size. */ kstat_named_t cache_target_bytes; kstat_named_t cache_lowater_bytes; kstat_named_t cache_hiwater_bytes; /* * Total number of dbuf cache evictions that have occurred. */ kstat_named_t cache_total_evicts; /* * The distribution of dbuf levels in the dbuf cache and * the total size of all dbufs at each level. */ kstat_named_t cache_levels[DN_MAX_LEVELS]; kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; /* * Statistics about the dbuf hash table. */ kstat_named_t hash_hits; kstat_named_t hash_misses; kstat_named_t hash_collisions; kstat_named_t hash_elements; kstat_named_t hash_elements_max; /* * Number of sublists containing more than one dbuf in the dbuf * hash table. Keep track of the longest hash chain. */ kstat_named_t hash_chains; kstat_named_t hash_chain_max; /* * Number of times a dbuf_create() discovers that a dbuf was * already created and in the dbuf hash table. */ kstat_named_t hash_insert_race; /* * Number of entries in the hash table dbuf and mutex arrays. */ kstat_named_t hash_table_count; kstat_named_t hash_mutex_count; /* * Statistics about the size of the metadata dbuf cache. */ kstat_named_t metadata_cache_count; kstat_named_t metadata_cache_size_bytes; kstat_named_t metadata_cache_size_bytes_max; /* * For diagnostic purposes, this is incremented whenever we can't add * something to the metadata cache because it's full, and instead put * the data in the regular dbuf cache. */ kstat_named_t metadata_cache_overflow; } dbuf_stats_t; dbuf_stats_t dbuf_stats = { { "cache_count", KSTAT_DATA_UINT64 }, { "cache_size_bytes", KSTAT_DATA_UINT64 }, { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, { "cache_target_bytes", KSTAT_DATA_UINT64 }, { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, { "cache_total_evicts", KSTAT_DATA_UINT64 }, { { "cache_levels_N", KSTAT_DATA_UINT64 } }, { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, { "hash_hits", KSTAT_DATA_UINT64 }, { "hash_misses", KSTAT_DATA_UINT64 }, { "hash_collisions", KSTAT_DATA_UINT64 }, { "hash_elements", KSTAT_DATA_UINT64 }, { "hash_elements_max", KSTAT_DATA_UINT64 }, { "hash_chains", KSTAT_DATA_UINT64 }, { "hash_chain_max", KSTAT_DATA_UINT64 }, { "hash_insert_race", KSTAT_DATA_UINT64 }, { "hash_table_count", KSTAT_DATA_UINT64 }, { "hash_mutex_count", KSTAT_DATA_UINT64 }, { "metadata_cache_count", KSTAT_DATA_UINT64 }, { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, { "metadata_cache_overflow", KSTAT_DATA_UINT64 } }; struct { wmsum_t cache_count; wmsum_t cache_total_evicts; wmsum_t cache_levels[DN_MAX_LEVELS]; wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; wmsum_t hash_hits; wmsum_t hash_misses; wmsum_t hash_collisions; wmsum_t hash_chains; wmsum_t hash_insert_race; wmsum_t metadata_cache_count; wmsum_t metadata_cache_overflow; } dbuf_sums; #define DBUF_STAT_INCR(stat, val) \ wmsum_add(&dbuf_sums.stat, val); #define DBUF_STAT_DECR(stat, val) \ DBUF_STAT_INCR(stat, -(val)); #define DBUF_STAT_BUMP(stat) \ DBUF_STAT_INCR(stat, 1); #define DBUF_STAT_BUMPDOWN(stat) \ DBUF_STAT_INCR(stat, -1); #define DBUF_STAT_MAX(stat, v) { \ uint64_t _m; \ while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ continue; \ } static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); /* * Global data structures and functions for the dbuf cache. */ static kmem_cache_t *dbuf_kmem_cache; static taskq_t *dbu_evict_taskq; static kthread_t *dbuf_cache_evict_thread; static kmutex_t dbuf_evict_lock; static kcondvar_t dbuf_evict_cv; static boolean_t dbuf_evict_thread_exit; /* * There are two dbuf caches; each dbuf can only be in one of them at a time. * * 1. Cache of metadata dbufs, to help make read-heavy administrative commands * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs * that represent the metadata that describes filesystems/snapshots/ * bookmarks/properties/etc. We only evict from this cache when we export a * pool, to short-circuit as much I/O as possible for all administrative * commands that need the metadata. There is no eviction policy for this * cache, because we try to only include types in it which would occupy a * very small amount of space per object but create a large impact on the * performance of these commands. Instead, after it reaches a maximum size * (which should only happen on very small memory systems with a very large * number of filesystem objects), we stop taking new dbufs into the * metadata cache, instead putting them in the normal dbuf cache. * * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that * are not currently held but have been recently released. These dbufs * are not eligible for arc eviction until they are aged out of the cache. * Dbufs that are aged out of the cache will be immediately destroyed and * become eligible for arc eviction. * * Dbufs are added to these caches once the last hold is released. If a dbuf is * later accessed and still exists in the dbuf cache, then it will be removed * from the cache and later re-added to the head of the cache. * * If a given dbuf meets the requirements for the metadata cache, it will go * there, otherwise it will be considered for the generic LRU dbuf cache. The * caches and the refcounts tracking their sizes are stored in an array indexed * by those caches' matching enum values (from dbuf_cached_state_t). */ typedef struct dbuf_cache { multilist_t cache; zfs_refcount_t size ____cacheline_aligned; } dbuf_cache_t; dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; /* Size limits for the caches */ static uint64_t dbuf_cache_max_bytes = UINT64_MAX; static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; /* Set the default sizes of the caches to log2 fraction of arc size */ static uint_t dbuf_cache_shift = 5; static uint_t dbuf_metadata_cache_shift = 6; /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ static uint_t dbuf_mutex_cache_shift = 0; static unsigned long dbuf_cache_target_bytes(void); static unsigned long dbuf_metadata_cache_target_bytes(void); /* * The LRU dbuf cache uses a three-stage eviction policy: * - A low water marker designates when the dbuf eviction thread * should stop evicting from the dbuf cache. * - When we reach the maximum size (aka mid water mark), we * signal the eviction thread to run. * - The high water mark indicates when the eviction thread * is unable to keep up with the incoming load and eviction must * happen in the context of the calling thread. * * The dbuf cache: * (max size) * low water mid water hi water * +----------------------------------------+----------+----------+ * | | | | * | | | | * | | | | * | | | | * +----------------------------------------+----------+----------+ * stop signal evict * evicting eviction directly * thread * * The high and low water marks indicate the operating range for the eviction * thread. The low water mark is, by default, 90% of the total size of the * cache and the high water mark is at 110% (both of these percentages can be * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, * respectively). The eviction thread will try to ensure that the cache remains * within this range by waking up every second and checking if the cache is * above the low water mark. The thread can also be woken up by callers adding * elements into the cache if the cache is larger than the mid water (i.e max * cache size). Once the eviction thread is woken up and eviction is required, * it will continue evicting buffers until it's able to reduce the cache size * to the low water mark. If the cache size continues to grow and hits the high * water mark, then callers adding elements to the cache will begin to evict * directly from the cache until the cache is no longer above the high water * mark. */ /* * The percentage above and below the maximum cache size. */ static uint_t dbuf_cache_hiwater_pct = 10; static uint_t dbuf_cache_lowater_pct = 10; static int dbuf_cons(void *vdb, void *unused, int kmflag) { (void) unused, (void) kmflag; dmu_buf_impl_t *db = vdb; memset(db, 0, sizeof (dmu_buf_impl_t)); mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); multilist_link_init(&db->db_cache_link); zfs_refcount_create(&db->db_holds); return (0); } static void dbuf_dest(void *vdb, void *unused) { (void) unused; dmu_buf_impl_t *db = vdb; mutex_destroy(&db->db_mtx); rw_destroy(&db->db_rwlock); cv_destroy(&db->db_changed); ASSERT(!multilist_link_active(&db->db_cache_link)); zfs_refcount_destroy(&db->db_holds); } /* * dbuf hash table routines */ static dbuf_hash_table_t dbuf_hash_table; /* * We use Cityhash for this. It's fast, and has good hash properties without * requiring any large static buffers. */ static uint64_t dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) { return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); } #define DTRACE_SET_STATE(db, why) \ DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ const char *, why) #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ ((dbuf)->db.db_object == (obj) && \ (dbuf)->db_objset == (os) && \ (dbuf)->db_level == (level) && \ (dbuf)->db_blkid == (blkid)) dmu_buf_impl_t * dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, uint64_t *hash_out) { dbuf_hash_table_t *h = &dbuf_hash_table; uint64_t hv; uint64_t idx; dmu_buf_impl_t *db; hv = dbuf_hash(os, obj, level, blkid); idx = hv & h->hash_table_mask; mutex_enter(DBUF_HASH_MUTEX(h, idx)); for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { if (DBUF_EQUAL(db, os, obj, level, blkid)) { mutex_enter(&db->db_mtx); if (db->db_state != DB_EVICTING) { mutex_exit(DBUF_HASH_MUTEX(h, idx)); return (db); } mutex_exit(&db->db_mtx); } } mutex_exit(DBUF_HASH_MUTEX(h, idx)); if (hash_out != NULL) *hash_out = hv; return (NULL); } static dmu_buf_impl_t * dbuf_find_bonus(objset_t *os, uint64_t object) { dnode_t *dn; dmu_buf_impl_t *db = NULL; if (dnode_hold(os, object, FTAG, &dn) == 0) { rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_bonus != NULL) { db = dn->dn_bonus; mutex_enter(&db->db_mtx); } rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); } return (db); } /* * Insert an entry into the hash table. If there is already an element * equal to elem in the hash table, then the already existing element * will be returned and the new element will not be inserted. * Otherwise returns NULL. */ static dmu_buf_impl_t * dbuf_hash_insert(dmu_buf_impl_t *db) { dbuf_hash_table_t *h = &dbuf_hash_table; objset_t *os = db->db_objset; uint64_t obj = db->db.db_object; int level = db->db_level; uint64_t blkid, idx; dmu_buf_impl_t *dbf; uint32_t i; blkid = db->db_blkid; ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); idx = db->db_hash & h->hash_table_mask; mutex_enter(DBUF_HASH_MUTEX(h, idx)); for (dbf = h->hash_table[idx], i = 0; dbf != NULL; dbf = dbf->db_hash_next, i++) { if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { mutex_enter(&dbf->db_mtx); if (dbf->db_state != DB_EVICTING) { mutex_exit(DBUF_HASH_MUTEX(h, idx)); return (dbf); } mutex_exit(&dbf->db_mtx); } } if (i > 0) { DBUF_STAT_BUMP(hash_collisions); if (i == 1) DBUF_STAT_BUMP(hash_chains); DBUF_STAT_MAX(hash_chain_max, i); } mutex_enter(&db->db_mtx); db->db_hash_next = h->hash_table[idx]; h->hash_table[idx] = db; mutex_exit(DBUF_HASH_MUTEX(h, idx)); uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); DBUF_STAT_MAX(hash_elements_max, he); return (NULL); } /* * This returns whether this dbuf should be stored in the metadata cache, which * is based on whether it's from one of the dnode types that store data related * to traversing dataset hierarchies. */ static boolean_t dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) { DB_DNODE_ENTER(db); dmu_object_type_t type = DB_DNODE(db)->dn_type; DB_DNODE_EXIT(db); /* Check if this dbuf is one of the types we care about */ if (DMU_OT_IS_METADATA_CACHED(type)) { /* If we hit this, then we set something up wrong in dmu_ot */ ASSERT(DMU_OT_IS_METADATA(type)); /* * Sanity check for small-memory systems: don't allocate too * much memory for this purpose. */ if (zfs_refcount_count( &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > dbuf_metadata_cache_target_bytes()) { DBUF_STAT_BUMP(metadata_cache_overflow); return (B_FALSE); } return (B_TRUE); } return (B_FALSE); } /* * Remove an entry from the hash table. It must be in the EVICTING state. */ static void dbuf_hash_remove(dmu_buf_impl_t *db) { dbuf_hash_table_t *h = &dbuf_hash_table; uint64_t idx; dmu_buf_impl_t *dbf, **dbp; ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, db->db_blkid), ==, db->db_hash); idx = db->db_hash & h->hash_table_mask; /* * We mustn't hold db_mtx to maintain lock ordering: * DBUF_HASH_MUTEX > db_mtx. */ ASSERT(zfs_refcount_is_zero(&db->db_holds)); ASSERT(db->db_state == DB_EVICTING); ASSERT(!MUTEX_HELD(&db->db_mtx)); mutex_enter(DBUF_HASH_MUTEX(h, idx)); dbp = &h->hash_table[idx]; while ((dbf = *dbp) != db) { dbp = &dbf->db_hash_next; ASSERT(dbf != NULL); } *dbp = db->db_hash_next; db->db_hash_next = NULL; if (h->hash_table[idx] && h->hash_table[idx]->db_hash_next == NULL) DBUF_STAT_BUMPDOWN(hash_chains); mutex_exit(DBUF_HASH_MUTEX(h, idx)); atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); } typedef enum { DBVU_EVICTING, DBVU_NOT_EVICTING } dbvu_verify_type_t; static void dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) { #ifdef ZFS_DEBUG int64_t holds; if (db->db_user == NULL) return; /* Only data blocks support the attachment of user data. */ ASSERT(db->db_level == 0); /* Clients must resolve a dbuf before attaching user data. */ ASSERT(db->db.db_data != NULL); ASSERT3U(db->db_state, ==, DB_CACHED); holds = zfs_refcount_count(&db->db_holds); if (verify_type == DBVU_EVICTING) { /* * Immediate eviction occurs when holds == dirtycnt. * For normal eviction buffers, holds is zero on * eviction, except when dbuf_fix_old_data() calls * dbuf_clear_data(). However, the hold count can grow * during eviction even though db_mtx is held (see * dmu_bonus_hold() for an example), so we can only * test the generic invariant that holds >= dirtycnt. */ ASSERT3U(holds, >=, db->db_dirtycnt); } else { if (db->db_user_immediate_evict == TRUE) ASSERT3U(holds, >=, db->db_dirtycnt); else ASSERT3U(holds, >, 0); } #endif } static void dbuf_evict_user(dmu_buf_impl_t *db) { dmu_buf_user_t *dbu = db->db_user; ASSERT(MUTEX_HELD(&db->db_mtx)); if (dbu == NULL) return; dbuf_verify_user(db, DBVU_EVICTING); db->db_user = NULL; #ifdef ZFS_DEBUG if (dbu->dbu_clear_on_evict_dbufp != NULL) *dbu->dbu_clear_on_evict_dbufp = NULL; #endif /* * There are two eviction callbacks - one that we call synchronously * and one that we invoke via a taskq. The async one is useful for * avoiding lock order reversals and limiting stack depth. * * Note that if we have a sync callback but no async callback, * it's likely that the sync callback will free the structure * containing the dbu. In that case we need to take care to not * dereference dbu after calling the sync evict func. */ boolean_t has_async = (dbu->dbu_evict_func_async != NULL); if (dbu->dbu_evict_func_sync != NULL) dbu->dbu_evict_func_sync(dbu); if (has_async) { taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, dbu, 0, &dbu->dbu_tqent); } } boolean_t dbuf_is_metadata(dmu_buf_impl_t *db) { /* * Consider indirect blocks and spill blocks to be meta data. */ if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { return (B_TRUE); } else { boolean_t is_metadata; DB_DNODE_ENTER(db); is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); DB_DNODE_EXIT(db); return (is_metadata); } } /* * We want to exclude buffers that are on a special allocation class from * L2ARC. */ boolean_t dbuf_is_l2cacheable(dmu_buf_impl_t *db) { if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || (db->db_objset->os_secondary_cache == ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { if (l2arc_exclude_special == 0) return (B_TRUE); blkptr_t *bp = db->db_blkptr; if (bp == NULL || BP_IS_HOLE(bp)) return (B_FALSE); uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; vdev_t *vd = NULL; if (vdev < rvd->vdev_children) vd = rvd->vdev_child[vdev]; if (vd == NULL) return (B_TRUE); if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) return (B_TRUE); } return (B_FALSE); } static inline boolean_t dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) { if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && (level > 0 || DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { if (l2arc_exclude_special == 0) return (B_TRUE); if (bp == NULL || BP_IS_HOLE(bp)) return (B_FALSE); uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; vdev_t *vd = NULL; if (vdev < rvd->vdev_children) vd = rvd->vdev_child[vdev]; if (vd == NULL) return (B_TRUE); if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) return (B_TRUE); } return (B_FALSE); } /* * This function *must* return indices evenly distributed between all * sublists of the multilist. This is needed due to how the dbuf eviction * code is laid out; dbuf_evict_thread() assumes dbufs are evenly * distributed between all sublists and uses this assumption when * deciding which sublist to evict from and how much to evict from it. */ static unsigned int dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) { dmu_buf_impl_t *db = obj; /* * The assumption here, is the hash value for a given * dmu_buf_impl_t will remain constant throughout it's lifetime * (i.e. it's objset, object, level and blkid fields don't change). * Thus, we don't need to store the dbuf's sublist index * on insertion, as this index can be recalculated on removal. * * Also, the low order bits of the hash value are thought to be * distributed evenly. Otherwise, in the case that the multilist * has a power of two number of sublists, each sublists' usage * would not be evenly distributed. In this context full 64bit * division would be a waste of time, so limit it to 32 bits. */ return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, db->db_level, db->db_blkid) % multilist_get_num_sublists(ml)); } /* * The target size of the dbuf cache can grow with the ARC target, * unless limited by the tunable dbuf_cache_max_bytes. */ static inline unsigned long dbuf_cache_target_bytes(void) { return (MIN(dbuf_cache_max_bytes, arc_target_bytes() >> dbuf_cache_shift)); } /* * The target size of the dbuf metadata cache can grow with the ARC target, * unless limited by the tunable dbuf_metadata_cache_max_bytes. */ static inline unsigned long dbuf_metadata_cache_target_bytes(void) { return (MIN(dbuf_metadata_cache_max_bytes, arc_target_bytes() >> dbuf_metadata_cache_shift)); } static inline uint64_t dbuf_cache_hiwater_bytes(void) { uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); return (dbuf_cache_target + (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); } static inline uint64_t dbuf_cache_lowater_bytes(void) { uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); return (dbuf_cache_target - (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); } static inline boolean_t dbuf_cache_above_lowater(void) { return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > dbuf_cache_lowater_bytes()); } /* * Evict the oldest eligible dbuf from the dbuf cache. */ static void dbuf_evict_one(void) { int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); multilist_sublist_t *mls = multilist_sublist_lock( &dbuf_caches[DB_DBUF_CACHE].cache, idx); ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); dmu_buf_impl_t *db = multilist_sublist_tail(mls); while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { db = multilist_sublist_prev(mls, db); } DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, multilist_sublist_t *, mls); if (db != NULL) { multilist_sublist_remove(mls, db); multilist_sublist_unlock(mls); (void) zfs_refcount_remove_many( &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); DBUF_STAT_BUMPDOWN(cache_count); DBUF_STAT_DECR(cache_levels_bytes[db->db_level], db->db.db_size); ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); db->db_caching_status = DB_NO_CACHE; dbuf_destroy(db); DBUF_STAT_BUMP(cache_total_evicts); } else { multilist_sublist_unlock(mls); } } /* * The dbuf evict thread is responsible for aging out dbufs from the * cache. Once the cache has reached it's maximum size, dbufs are removed * and destroyed. The eviction thread will continue running until the size * of the dbuf cache is at or below the maximum size. Once the dbuf is aged * out of the cache it is destroyed and becomes eligible for arc eviction. */ static __attribute__((noreturn)) void dbuf_evict_thread(void *unused) { (void) unused; callb_cpr_t cpr; CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); mutex_enter(&dbuf_evict_lock); while (!dbuf_evict_thread_exit) { while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait_idle_hires(&dbuf_evict_cv, &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); } mutex_exit(&dbuf_evict_lock); /* * Keep evicting as long as we're above the low water mark * for the cache. We do this without holding the locks to * minimize lock contention. */ while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { dbuf_evict_one(); } mutex_enter(&dbuf_evict_lock); } dbuf_evict_thread_exit = B_FALSE; cv_broadcast(&dbuf_evict_cv); CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ thread_exit(); } /* * Wake up the dbuf eviction thread if the dbuf cache is at its max size. * If the dbuf cache is at its high water mark, then evict a dbuf from the * dbuf cache using the caller's context. */ static void dbuf_evict_notify(uint64_t size) { /* * We check if we should evict without holding the dbuf_evict_lock, * because it's OK to occasionally make the wrong decision here, * and grabbing the lock results in massive lock contention. */ if (size > dbuf_cache_target_bytes()) { if (size > dbuf_cache_hiwater_bytes()) dbuf_evict_one(); cv_signal(&dbuf_evict_cv); } } static int dbuf_kstat_update(kstat_t *ksp, int rw) { dbuf_stats_t *ds = ksp->ks_data; dbuf_hash_table_t *h = &dbuf_hash_table; if (rw == KSTAT_WRITE) return (SET_ERROR(EACCES)); ds->cache_count.value.ui64 = wmsum_value(&dbuf_sums.cache_count); ds->cache_size_bytes.value.ui64 = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); ds->cache_total_evicts.value.ui64 = wmsum_value(&dbuf_sums.cache_total_evicts); for (int i = 0; i < DN_MAX_LEVELS; i++) { ds->cache_levels[i].value.ui64 = wmsum_value(&dbuf_sums.cache_levels[i]); ds->cache_levels_bytes[i].value.ui64 = wmsum_value(&dbuf_sums.cache_levels_bytes[i]); } ds->hash_hits.value.ui64 = wmsum_value(&dbuf_sums.hash_hits); ds->hash_misses.value.ui64 = wmsum_value(&dbuf_sums.hash_misses); ds->hash_collisions.value.ui64 = wmsum_value(&dbuf_sums.hash_collisions); ds->hash_chains.value.ui64 = wmsum_value(&dbuf_sums.hash_chains); ds->hash_insert_race.value.ui64 = wmsum_value(&dbuf_sums.hash_insert_race); ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; ds->metadata_cache_count.value.ui64 = wmsum_value(&dbuf_sums.metadata_cache_count); ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( &dbuf_caches[DB_DBUF_METADATA_CACHE].size); ds->metadata_cache_overflow.value.ui64 = wmsum_value(&dbuf_sums.metadata_cache_overflow); return (0); } void dbuf_init(void) { uint64_t hmsize, hsize = 1ULL << 16; dbuf_hash_table_t *h = &dbuf_hash_table; /* * The hash table is big enough to fill one eighth of physical memory * with an average block size of zfs_arc_average_blocksize (default 8K). * By default, the table will take up * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). */ while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) hsize <<= 1; h->hash_table = NULL; while (h->hash_table == NULL) { h->hash_table_mask = hsize - 1; h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); if (h->hash_table == NULL) hsize >>= 1; ASSERT3U(hsize, >=, 1ULL << 10); } /* * The hash table buckets are protected by an array of mutexes where * each mutex is reponsible for protecting 128 buckets. A minimum * array size of 8192 is targeted to avoid contention. */ if (dbuf_mutex_cache_shift == 0) hmsize = MAX(hsize >> 7, 1ULL << 13); else hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); h->hash_mutexes = NULL; while (h->hash_mutexes == NULL) { h->hash_mutex_mask = hmsize - 1; h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), KM_SLEEP); if (h->hash_mutexes == NULL) hmsize >>= 1; } dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", sizeof (dmu_buf_impl_t), 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); for (int i = 0; i < hmsize; i++) mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); dbuf_stats_init(h); /* * All entries are queued via taskq_dispatch_ent(), so min/maxalloc * configuration is not required. */ dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { multilist_create(&dbuf_caches[dcs].cache, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_cache_link), dbuf_cache_multilist_index_func); zfs_refcount_create(&dbuf_caches[dcs].size); } dbuf_evict_thread_exit = B_FALSE; mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, NULL, 0, &p0, TS_RUN, minclsyspri); wmsum_init(&dbuf_sums.cache_count, 0); wmsum_init(&dbuf_sums.cache_total_evicts, 0); for (int i = 0; i < DN_MAX_LEVELS; i++) { wmsum_init(&dbuf_sums.cache_levels[i], 0); wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); } wmsum_init(&dbuf_sums.hash_hits, 0); wmsum_init(&dbuf_sums.hash_misses, 0); wmsum_init(&dbuf_sums.hash_collisions, 0); wmsum_init(&dbuf_sums.hash_chains, 0); wmsum_init(&dbuf_sums.hash_insert_race, 0); wmsum_init(&dbuf_sums.metadata_cache_count, 0); wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (dbuf_ksp != NULL) { for (int i = 0; i < DN_MAX_LEVELS; i++) { snprintf(dbuf_stats.cache_levels[i].name, KSTAT_STRLEN, "cache_level_%d", i); dbuf_stats.cache_levels[i].data_type = KSTAT_DATA_UINT64; snprintf(dbuf_stats.cache_levels_bytes[i].name, KSTAT_STRLEN, "cache_level_%d_bytes", i); dbuf_stats.cache_levels_bytes[i].data_type = KSTAT_DATA_UINT64; } dbuf_ksp->ks_data = &dbuf_stats; dbuf_ksp->ks_update = dbuf_kstat_update; kstat_install(dbuf_ksp); } } void dbuf_fini(void) { dbuf_hash_table_t *h = &dbuf_hash_table; dbuf_stats_destroy(); for (int i = 0; i < (h->hash_mutex_mask + 1); i++) mutex_destroy(&h->hash_mutexes[i]); vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * sizeof (kmutex_t)); kmem_cache_destroy(dbuf_kmem_cache); taskq_destroy(dbu_evict_taskq); mutex_enter(&dbuf_evict_lock); dbuf_evict_thread_exit = B_TRUE; while (dbuf_evict_thread_exit) { cv_signal(&dbuf_evict_cv); cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); } mutex_exit(&dbuf_evict_lock); mutex_destroy(&dbuf_evict_lock); cv_destroy(&dbuf_evict_cv); for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { zfs_refcount_destroy(&dbuf_caches[dcs].size); multilist_destroy(&dbuf_caches[dcs].cache); } if (dbuf_ksp != NULL) { kstat_delete(dbuf_ksp); dbuf_ksp = NULL; } wmsum_fini(&dbuf_sums.cache_count); wmsum_fini(&dbuf_sums.cache_total_evicts); for (int i = 0; i < DN_MAX_LEVELS; i++) { wmsum_fini(&dbuf_sums.cache_levels[i]); wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); } wmsum_fini(&dbuf_sums.hash_hits); wmsum_fini(&dbuf_sums.hash_misses); wmsum_fini(&dbuf_sums.hash_collisions); wmsum_fini(&dbuf_sums.hash_chains); wmsum_fini(&dbuf_sums.hash_insert_race); wmsum_fini(&dbuf_sums.metadata_cache_count); wmsum_fini(&dbuf_sums.metadata_cache_overflow); } /* * Other stuff. */ #ifdef ZFS_DEBUG static void dbuf_verify(dmu_buf_impl_t *db) { dnode_t *dn; dbuf_dirty_record_t *dr; uint32_t txg_prev; ASSERT(MUTEX_HELD(&db->db_mtx)); if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) return; ASSERT(db->db_objset != NULL); DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn == NULL) { ASSERT(db->db_parent == NULL); ASSERT(db->db_blkptr == NULL); } else { ASSERT3U(db->db.db_object, ==, dn->dn_object); ASSERT3P(db->db_objset, ==, dn->dn_objset); ASSERT3U(db->db_level, <, dn->dn_nlevels); ASSERT(db->db_blkid == DMU_BONUS_BLKID || db->db_blkid == DMU_SPILL_BLKID || !avl_is_empty(&dn->dn_dbufs)); } if (db->db_blkid == DMU_BONUS_BLKID) { ASSERT(dn != NULL); ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); } else if (db->db_blkid == DMU_SPILL_BLKID) { ASSERT(dn != NULL); ASSERT0(db->db.db_offset); } else { ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); } if ((dr = list_head(&db->db_dirty_records)) != NULL) { ASSERT(dr->dr_dbuf == db); txg_prev = dr->dr_txg; for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; dr = list_next(&db->db_dirty_records, dr)) { ASSERT(dr->dr_dbuf == db); ASSERT(txg_prev > dr->dr_txg); txg_prev = dr->dr_txg; } } /* * We can't assert that db_size matches dn_datablksz because it * can be momentarily different when another thread is doing * dnode_set_blksz(). */ if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { dr = db->db_data_pending; /* * It should only be modified in syncing context, so * make sure we only have one copy of the data. */ ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); } /* verify db->db_blkptr */ if (db->db_blkptr) { if (db->db_parent == dn->dn_dbuf) { /* db is pointed to by the dnode */ /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) ASSERT(db->db_parent == NULL); else ASSERT(db->db_parent != NULL); if (db->db_blkid != DMU_SPILL_BLKID) ASSERT3P(db->db_blkptr, ==, &dn->dn_phys->dn_blkptr[db->db_blkid]); } else { /* db is pointed to by an indirect block */ int epb __maybe_unused = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); ASSERT3U(db->db_parent->db.db_object, ==, db->db.db_object); /* * dnode_grow_indblksz() can make this fail if we don't * have the parent's rwlock. XXX indblksz no longer * grows. safe to do this now? */ if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { ASSERT3P(db->db_blkptr, ==, ((blkptr_t *)db->db_parent->db.db_data + db->db_blkid % epb)); } } } if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && (db->db_buf == NULL || db->db_buf->b_data) && db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_FILL && !dn->dn_free_txg) { /* * If the blkptr isn't set but they have nonzero data, * it had better be dirty, otherwise we'll lose that * data when we evict this buffer. * * There is an exception to this rule for indirect blocks; in * this case, if the indirect block is a hole, we fill in a few * fields on each of the child blocks (importantly, birth time) * to prevent hole birth times from being lost when you * partially fill in a hole. */ if (db->db_dirtycnt == 0) { if (db->db_level == 0) { uint64_t *buf = db->db.db_data; int i; for (i = 0; i < db->db.db_size >> 3; i++) { ASSERT(buf[i] == 0); } } else { blkptr_t *bps = db->db.db_data; ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, db->db.db_size); /* * We want to verify that all the blkptrs in the * indirect block are holes, but we may have * automatically set up a few fields for them. * We iterate through each blkptr and verify * they only have those fields set. */ for (int i = 0; i < db->db.db_size / sizeof (blkptr_t); i++) { blkptr_t *bp = &bps[i]; ASSERT(ZIO_CHECKSUM_IS_ZERO( &bp->blk_cksum)); ASSERT( DVA_IS_EMPTY(&bp->blk_dva[0]) && DVA_IS_EMPTY(&bp->blk_dva[1]) && DVA_IS_EMPTY(&bp->blk_dva[2])); ASSERT0(bp->blk_fill); ASSERT0(bp->blk_pad[0]); ASSERT0(bp->blk_pad[1]); ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(BP_IS_HOLE(bp)); ASSERT0(bp->blk_phys_birth); } } } } DB_DNODE_EXIT(db); } #endif static void dbuf_clear_data(dmu_buf_impl_t *db) { ASSERT(MUTEX_HELD(&db->db_mtx)); dbuf_evict_user(db); ASSERT3P(db->db_buf, ==, NULL); db->db.db_data = NULL; if (db->db_state != DB_NOFILL) { db->db_state = DB_UNCACHED; DTRACE_SET_STATE(db, "clear data"); } } static void dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) { ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(buf != NULL); db->db_buf = buf; ASSERT(buf->b_data != NULL); db->db.db_data = buf->b_data; } static arc_buf_t * dbuf_alloc_arcbuf(dmu_buf_impl_t *db) { spa_t *spa = db->db_objset->os_spa; return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); } /* * Loan out an arc_buf for read. Return the loaned arc_buf. */ arc_buf_t * dbuf_loan_arcbuf(dmu_buf_impl_t *db) { arc_buf_t *abuf; ASSERT(db->db_blkid != DMU_BONUS_BLKID); mutex_enter(&db->db_mtx); if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { int blksz = db->db.db_size; spa_t *spa = db->db_objset->os_spa; mutex_exit(&db->db_mtx); abuf = arc_loan_buf(spa, B_FALSE, blksz); memcpy(abuf->b_data, db->db.db_data, blksz); } else { abuf = db->db_buf; arc_loan_inuse_buf(abuf, db); db->db_buf = NULL; dbuf_clear_data(db); mutex_exit(&db->db_mtx); } return (abuf); } /* * Calculate which level n block references the data at the level 0 offset * provided. */ uint64_t dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) { if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { /* * The level n blkid is equal to the level 0 blkid divided by * the number of level 0s in a level n block. * * The level 0 blkid is offset >> datablkshift = * offset / 2^datablkshift. * * The number of level 0s in a level n is the number of block * pointers in an indirect block, raised to the power of level. * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). * * Thus, the level n blkid is: offset / * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) * = offset / 2^(datablkshift + level * * (indblkshift - SPA_BLKPTRSHIFT)) * = offset >> (datablkshift + level * * (indblkshift - SPA_BLKPTRSHIFT)) */ const unsigned exp = dn->dn_datablkshift + level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); if (exp >= 8 * sizeof (offset)) { /* This only happens on the highest indirection level */ ASSERT3U(level, ==, dn->dn_nlevels - 1); return (0); } ASSERT3U(exp, <, 8 * sizeof (offset)); return (offset >> exp); } else { ASSERT3U(offset, <, dn->dn_datablksz); return (0); } } /* * This function is used to lock the parent of the provided dbuf. This should be * used when modifying or reading db_blkptr. */ db_lock_type_t dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) { enum db_lock_type ret = DLT_NONE; if (db->db_parent != NULL) { rw_enter(&db->db_parent->db_rwlock, rw); ret = DLT_PARENT; } else if (dmu_objset_ds(db->db_objset) != NULL) { rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, tag); ret = DLT_OBJSET; } /* * We only return a DLT_NONE lock when it's the top-most indirect block * of the meta-dnode of the MOS. */ return (ret); } /* * We need to pass the lock type in because it's possible that the block will * move from being the topmost indirect block in a dnode (and thus, have no * parent) to not the top-most via an indirection increase. This would cause a * panic if we didn't pass the lock type in. */ void dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) { if (type == DLT_PARENT) rw_exit(&db->db_parent->db_rwlock); else if (type == DLT_OBJSET) rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); } static void dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, arc_buf_t *buf, void *vdb) { (void) zb, (void) bp; dmu_buf_impl_t *db = vdb; mutex_enter(&db->db_mtx); ASSERT3U(db->db_state, ==, DB_READ); /* * All reads are synchronous, so we must have a hold on the dbuf */ ASSERT(zfs_refcount_count(&db->db_holds) > 0); ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); if (buf == NULL) { /* i/o error */ ASSERT(zio == NULL || zio->io_error != 0); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT3P(db->db_buf, ==, NULL); db->db_state = DB_UNCACHED; DTRACE_SET_STATE(db, "i/o error"); } else if (db->db_level == 0 && db->db_freed_in_flight) { /* freed in flight */ ASSERT(zio == NULL || zio->io_error == 0); arc_release(buf, db); memset(buf->b_data, 0, db->db.db_size); arc_buf_freeze(buf); db->db_freed_in_flight = FALSE; dbuf_set_data(db, buf); db->db_state = DB_CACHED; DTRACE_SET_STATE(db, "freed in flight"); } else { /* success */ ASSERT(zio == NULL || zio->io_error == 0); dbuf_set_data(db, buf); db->db_state = DB_CACHED; DTRACE_SET_STATE(db, "successful read"); } cv_broadcast(&db->db_changed); dbuf_rele_and_unlock(db, NULL, B_FALSE); } /* * Shortcut for performing reads on bonus dbufs. Returns * an error if we fail to verify the dnode associated with * a decrypted block. Otherwise success. */ static int dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) { int bonuslen, max_bonuslen, err; err = dbuf_read_verify_dnode_crypt(db, flags); if (err) return (err); bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(DB_DNODE_HELD(db)); ASSERT3U(bonuslen, <=, db->db.db_size); db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); if (bonuslen < max_bonuslen) memset(db->db.db_data, 0, max_bonuslen); if (bonuslen) memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); db->db_state = DB_CACHED; DTRACE_SET_STATE(db, "bonus buffer filled"); return (0); } static void -dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn) +dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) { blkptr_t *bps = db->db.db_data; uint32_t indbs = 1ULL << dn->dn_indblkshift; int n_bps = indbs >> SPA_BLKPTRSHIFT; for (int i = 0; i < n_bps; i++) { blkptr_t *bp = &bps[i]; - ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs); - BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ? - dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr)); - BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); - BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1); - BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); + ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); + BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? + dn->dn_datablksz : BP_GET_LSIZE(dbbp)); + BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); + BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); + BP_SET_BIRTH(bp, dbbp->blk_birth, 0); } } /* * Handle reads on dbufs that are holes, if necessary. This function * requires that the dbuf's mutex is held. Returns success (0) if action * was taken, ENOENT if no action was taken. */ static int -dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn) +dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) { ASSERT(MUTEX_HELD(&db->db_mtx)); - int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr); + int is_hole = bp == NULL || BP_IS_HOLE(bp); /* * For level 0 blocks only, if the above check fails: * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() * processes the delete record and clears the bp while we are waiting * for the dn_mtx (resulting in a "no" from block_freed). */ - if (!is_hole && db->db_level == 0) { - is_hole = dnode_block_freed(dn, db->db_blkid) || - BP_IS_HOLE(db->db_blkptr); - } + if (!is_hole && db->db_level == 0) + is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); if (is_hole) { dbuf_set_data(db, dbuf_alloc_arcbuf(db)); memset(db->db.db_data, 0, db->db.db_size); - if (db->db_blkptr != NULL && db->db_level > 0 && - BP_IS_HOLE(db->db_blkptr) && - db->db_blkptr->blk_birth != 0) { - dbuf_handle_indirect_hole(db, dn); + if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && + bp->blk_birth != 0) { + dbuf_handle_indirect_hole(db, dn, bp); } db->db_state = DB_CACHED; DTRACE_SET_STATE(db, "hole read satisfied"); return (0); } return (ENOENT); } /* * This function ensures that, when doing a decrypting read of a block, * we make sure we have decrypted the dnode associated with it. We must do * this so that we ensure we are fully authenticating the checksum-of-MACs * tree from the root of the objset down to this block. Indirect blocks are * always verified against their secure checksum-of-MACs assuming that the * dnode containing them is correct. Now that we are doing a decrypting read, * we can be sure that the key is loaded and verify that assumption. This is * especially important considering that we always read encrypted dnode * blocks as raw data (without verifying their MACs) to start, and * decrypt / authenticate them when we need to read an encrypted bonus buffer. */ static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) { int err = 0; objset_t *os = db->db_objset; arc_buf_t *dnode_abuf; dnode_t *dn; zbookmark_phys_t zb; ASSERT(MUTEX_HELD(&db->db_mtx)); if ((flags & DB_RF_NO_DECRYPT) != 0 || !os->os_encrypted || os->os_raw_receive) return (0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { DB_DNODE_EXIT(db); return (0); } SET_BOOKMARK(&zb, dmu_objset_id(os), DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); /* * An error code of EACCES tells us that the key is still not * available. This is ok if we are only reading authenticated * (and therefore non-encrypted) blocks. */ if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || (db->db_blkid == DMU_BONUS_BLKID && !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) err = 0; DB_DNODE_EXIT(db); return (err); } /* * Drops db_mtx and the parent lock specified by dblt and tag before * returning. */ static int dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, db_lock_type_t dblt, const void *tag) { dnode_t *dn; zbookmark_phys_t zb; uint32_t aflags = ARC_FLAG_NOWAIT; int err, zio_flags; + blkptr_t bp, *bpp; DB_DNODE_ENTER(db); dn = DB_DNODE(db); ASSERT(!zfs_refcount_is_zero(&db->db_holds)); ASSERT(MUTEX_HELD(&db->db_mtx)); - ASSERT(db->db_state == DB_UNCACHED); + ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); ASSERT(db->db_buf == NULL); ASSERT(db->db_parent == NULL || RW_LOCK_HELD(&db->db_parent->db_rwlock)); if (db->db_blkid == DMU_BONUS_BLKID) { err = dbuf_read_bonus(db, dn, flags); goto early_unlock; } - err = dbuf_read_hole(db, dn); + if (db->db_state == DB_UNCACHED) { + if (db->db_blkptr == NULL) { + bpp = NULL; + } else { + bp = *db->db_blkptr; + bpp = &bp; + } + } else { + struct dirty_leaf *dl; + dbuf_dirty_record_t *dr; + + ASSERT3S(db->db_state, ==, DB_NOFILL); + + dr = list_head(&db->db_dirty_records); + if (dr == NULL) { + err = EIO; + goto early_unlock; + } else { + dl = &dr->dt.dl; + if (!dl->dr_brtwrite) { + err = EIO; + goto early_unlock; + } + bp = dl->dr_overridden_by; + bpp = &bp; + } + } + + err = dbuf_read_hole(db, dn, bpp); if (err == 0) goto early_unlock; + ASSERT(bpp != NULL); + /* * Any attempt to read a redacted block should result in an error. This * will never happen under normal conditions, but can be useful for * debugging purposes. */ - if (BP_IS_REDACTED(db->db_blkptr)) { + if (BP_IS_REDACTED(bpp)) { ASSERT(dsl_dataset_feature_is_active( db->db_objset->os_dsl_dataset, SPA_FEATURE_REDACTED_DATASETS)); err = SET_ERROR(EIO); goto early_unlock; } SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), db->db.db_object, db->db_level, db->db_blkid); /* * All bps of an encrypted os should have the encryption bit set. * If this is not true it indicates tampering and we report an error. */ - if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { + if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) { spa_log_error(db->db_objset->os_spa, &zb); zfs_panic_recover("unencrypted block in encrypted " "object set %llu", dmu_objset_id(db->db_objset)); err = SET_ERROR(EIO); goto early_unlock; } err = dbuf_read_verify_dnode_crypt(db, flags); if (err != 0) goto early_unlock; DB_DNODE_EXIT(db); db->db_state = DB_READ; DTRACE_SET_STATE(db, "read issued"); mutex_exit(&db->db_mtx); if (!DBUF_IS_CACHEABLE(db)) aflags |= ARC_FLAG_UNCACHED; else if (dbuf_is_l2cacheable(db)) aflags |= ARC_FLAG_L2CACHE; dbuf_add_ref(db, NULL); zio_flags = (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) zio_flags |= ZIO_FLAG_RAW; /* - * The zio layer will copy the provided blkptr later, but we need to - * do this now so that we can release the parent's rwlock. We have to - * do that now so that if dbuf_read_done is called synchronously (on + * The zio layer will copy the provided blkptr later, but we have our + * own copy so that we can release the parent's rwlock. We have to + * do that so that if dbuf_read_done is called synchronously (on * an l1 cache hit) we don't acquire the db_mtx while holding the * parent's rwlock, which would be a lock ordering violation. */ - blkptr_t bp = *db->db_blkptr; dmu_buf_unlock_parent(db, dblt, tag); - (void) arc_read(zio, db->db_objset->os_spa, &bp, + (void) arc_read(zio, db->db_objset->os_spa, bpp, dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); return (err); early_unlock: DB_DNODE_EXIT(db); mutex_exit(&db->db_mtx); dmu_buf_unlock_parent(db, dblt, tag); return (err); } /* * This is our just-in-time copy function. It makes a copy of buffers that * have been modified in a previous transaction group before we access them in * the current active group. * * This function is used in three places: when we are dirtying a buffer for the * first time in a txg, when we are freeing a range in a dnode that includes * this buffer, and when we are accessing a buffer which was received compressed * and later referenced in a WRITE_BYREF record. * * Note that when we are called from dbuf_free_range() we do not put a hold on * the buffer, we just traverse the active dbuf list for the dnode. */ static void dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) { dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(db->db.db_data != NULL); ASSERT(db->db_level == 0); ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); if (dr == NULL || (dr->dt.dl.dr_data != ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) return; /* * If the last dirty record for this dbuf has not yet synced * and its referencing the dbuf data, either: * reset the reference to point to a new copy, * or (if there a no active holders) * just null out the current db_data pointer. */ ASSERT3U(dr->dr_txg, >=, txg - 2); if (db->db_blkid == DMU_BONUS_BLKID) { dnode_t *dn = DB_DNODE(db); int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); arc_space_consume(bonuslen, ARC_SPACE_BONUS); memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { dnode_t *dn = DB_DNODE(db); int size = arc_buf_size(db->db_buf); arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); spa_t *spa = db->db_objset->os_spa; enum zio_compress compress_type = arc_get_compression(db->db_buf); uint8_t complevel = arc_get_complevel(db->db_buf); if (arc_is_encrypted(db->db_buf)) { boolean_t byteorder; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; arc_get_raw_params(db->db_buf, &byteorder, salt, iv, mac); dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), compress_type, complevel); } else if (compress_type != ZIO_COMPRESS_OFF) { ASSERT3U(type, ==, ARC_BUFC_DATA); dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, size, arc_buf_lsize(db->db_buf), compress_type, complevel); } else { dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); } memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); } else { db->db_buf = NULL; dbuf_clear_data(db); } } int dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) { int err = 0; boolean_t prefetch; dnode_t *dn; /* * We don't have to hold the mutex to check db_state because it * can't be freed while we have a hold on the buffer. */ ASSERT(!zfs_refcount_is_zero(&db->db_holds)); - if (db->db_state == DB_NOFILL) - return (SET_ERROR(EIO)); - DB_DNODE_ENTER(db); dn = DB_DNODE(db); prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL; mutex_enter(&db->db_mtx); if (flags & DB_RF_PARTIAL_FIRST) db->db_partial_read = B_TRUE; else if (!(flags & DB_RF_PARTIAL_MORE)) db->db_partial_read = B_FALSE; if (db->db_state == DB_CACHED) { /* * Ensure that this block's dnode has been decrypted if * the caller has requested decrypted data. */ err = dbuf_read_verify_dnode_crypt(db, flags); /* * If the arc buf is compressed or encrypted and the caller * requested uncompressed data, we need to untransform it * before returning. We also call arc_untransform() on any * unauthenticated blocks, which will verify their MAC if * the key is now available. */ if (err == 0 && db->db_buf != NULL && (flags & DB_RF_NO_DECRYPT) == 0 && (arc_is_encrypted(db->db_buf) || arc_is_unauthenticated(db->db_buf) || arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { spa_t *spa = dn->dn_objset->os_spa; zbookmark_phys_t zb; SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), db->db.db_object, db->db_level, db->db_blkid); dbuf_fix_old_data(db, spa_syncing_txg(spa)); err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); dbuf_set_data(db, db->db_buf); } mutex_exit(&db->db_mtx); if (err == 0 && prefetch) { dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, B_FALSE, flags & DB_RF_HAVESTRUCT); } DB_DNODE_EXIT(db); DBUF_STAT_BUMP(hash_hits); - } else if (db->db_state == DB_UNCACHED) { + } else if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL) { boolean_t need_wait = B_FALSE; db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); - if (zio == NULL && - db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { + if (zio == NULL && (db->db_state == DB_NOFILL || + (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) { spa_t *spa = dn->dn_objset->os_spa; zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); need_wait = B_TRUE; } err = dbuf_read_impl(db, zio, flags, dblt, FTAG); /* * dbuf_read_impl has dropped db_mtx and our parent's rwlock * for us */ if (!err && prefetch) { dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, db->db_state != DB_CACHED, flags & DB_RF_HAVESTRUCT); } DB_DNODE_EXIT(db); DBUF_STAT_BUMP(hash_misses); /* * If we created a zio_root we must execute it to avoid * leaking it, even if it isn't attached to any work due * to an error in dbuf_read_impl(). */ if (need_wait) { if (err == 0) err = zio_wait(zio); else VERIFY0(zio_wait(zio)); } } else { /* * Another reader came in while the dbuf was in flight * between UNCACHED and CACHED. Either a writer will finish * writing the buffer (sending the dbuf to CACHED) or the * first reader's request will reach the read_done callback * and send the dbuf to CACHED. Otherwise, a failure * occurred and the dbuf went to UNCACHED. */ mutex_exit(&db->db_mtx); if (prefetch) { dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, B_TRUE, flags & DB_RF_HAVESTRUCT); } DB_DNODE_EXIT(db); DBUF_STAT_BUMP(hash_misses); /* Skip the wait per the caller's request. */ if ((flags & DB_RF_NEVERWAIT) == 0) { mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) { ASSERT(db->db_state == DB_READ || (flags & DB_RF_HAVESTRUCT) == 0); DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, zio_t *, zio); cv_wait(&db->db_changed, &db->db_mtx); } if (db->db_state == DB_UNCACHED) err = SET_ERROR(EIO); mutex_exit(&db->db_mtx); } } return (err); } static void dbuf_noread(dmu_buf_impl_t *db) { ASSERT(!zfs_refcount_is_zero(&db->db_holds)); ASSERT(db->db_blkid != DMU_BONUS_BLKID); mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); if (db->db_state == DB_UNCACHED) { ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); dbuf_set_data(db, dbuf_alloc_arcbuf(db)); db->db_state = DB_FILL; DTRACE_SET_STATE(db, "assigning filled buffer"); } else if (db->db_state == DB_NOFILL) { dbuf_clear_data(db); } else { ASSERT3U(db->db_state, ==, DB_CACHED); } mutex_exit(&db->db_mtx); } void dbuf_unoverride(dbuf_dirty_record_t *dr) { dmu_buf_impl_t *db = dr->dr_dbuf; blkptr_t *bp = &dr->dt.dl.dr_overridden_by; uint64_t txg = dr->dr_txg; ASSERT(MUTEX_HELD(&db->db_mtx)); /* * This assert is valid because dmu_sync() expects to be called by * a zilog's get_data while holding a range lock. This call only * comes from dbuf_dirty() callers who must also hold a range lock. */ ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); ASSERT(db->db_level == 0); if (db->db_blkid == DMU_BONUS_BLKID || dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) return; ASSERT(db->db_data_pending != dr); /* free this block */ if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) zio_free(db->db_objset->os_spa, txg, bp); dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; dr->dt.dl.dr_nopwrite = B_FALSE; dr->dt.dl.dr_has_raw_params = B_FALSE; /* * Release the already-written buffer, so we leave it in * a consistent dirty state. Note that all callers are * modifying the buffer, so they will immediately do * another (redundant) arc_release(). Therefore, leave * the buf thawed to save the effort of freezing & * immediately re-thawing it. */ - arc_release(dr->dt.dl.dr_data, db); + if (!dr->dt.dl.dr_brtwrite) + arc_release(dr->dt.dl.dr_data, db); } /* * Evict (if its unreferenced) or clear (if its referenced) any level-0 * data blocks in the free range, so that any future readers will find * empty blocks. */ void dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, dmu_tx_t *tx) { dmu_buf_impl_t *db_search; dmu_buf_impl_t *db, *db_next; uint64_t txg = tx->tx_txg; avl_index_t where; dbuf_dirty_record_t *dr; if (end_blkid > dn->dn_maxblkid && !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) end_blkid = dn->dn_maxblkid; dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, (u_longlong_t)end_blkid); db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); db_search->db_level = 0; db_search->db_blkid = start_blkid; db_search->db_state = DB_SEARCH; mutex_enter(&dn->dn_dbufs_mtx); db = avl_find(&dn->dn_dbufs, db_search, &where); ASSERT3P(db, ==, NULL); db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); for (; db != NULL; db = db_next) { db_next = AVL_NEXT(&dn->dn_dbufs, db); ASSERT(db->db_blkid != DMU_BONUS_BLKID); if (db->db_level != 0 || db->db_blkid > end_blkid) { break; } ASSERT3U(db->db_blkid, >=, start_blkid); /* found a level 0 buffer in the range */ mutex_enter(&db->db_mtx); if (dbuf_undirty(db, tx)) { /* mutex has been dropped and dbuf destroyed */ continue; } if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL || db->db_state == DB_EVICTING) { ASSERT(db->db.db_data == NULL); mutex_exit(&db->db_mtx); continue; } if (db->db_state == DB_READ || db->db_state == DB_FILL) { /* will be handled in dbuf_read_done or dbuf_rele */ db->db_freed_in_flight = TRUE; mutex_exit(&db->db_mtx); continue; } if (zfs_refcount_count(&db->db_holds) == 0) { ASSERT(db->db_buf); dbuf_destroy(db); continue; } /* The dbuf is referenced */ dr = list_head(&db->db_dirty_records); if (dr != NULL) { if (dr->dr_txg == txg) { /* * This buffer is "in-use", re-adjust the file * size to reflect that this buffer may * contain new data when we sync. */ if (db->db_blkid != DMU_SPILL_BLKID && db->db_blkid > dn->dn_maxblkid) dn->dn_maxblkid = db->db_blkid; dbuf_unoverride(dr); + if (dr->dt.dl.dr_brtwrite) { + ASSERT(db->db.db_data == NULL); + mutex_exit(&db->db_mtx); + continue; + } } else { /* * This dbuf is not dirty in the open context. * Either uncache it (if its not referenced in * the open context) or reset its contents to * empty. */ dbuf_fix_old_data(db, txg); } } /* clear the contents if its cached */ if (db->db_state == DB_CACHED) { ASSERT(db->db.db_data != NULL); arc_release(db->db_buf, db); rw_enter(&db->db_rwlock, RW_WRITER); memset(db->db.db_data, 0, db->db.db_size); rw_exit(&db->db_rwlock); arc_buf_freeze(db->db_buf); } mutex_exit(&db->db_mtx); } mutex_exit(&dn->dn_dbufs_mtx); kmem_free(db_search, sizeof (dmu_buf_impl_t)); } void dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) { arc_buf_t *buf, *old_buf; dbuf_dirty_record_t *dr; int osize = db->db.db_size; arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); dnode_t *dn; ASSERT(db->db_blkid != DMU_BONUS_BLKID); DB_DNODE_ENTER(db); dn = DB_DNODE(db); /* * XXX we should be doing a dbuf_read, checking the return * value and returning that up to our callers */ dmu_buf_will_dirty(&db->db, tx); /* create the data buffer for the new block */ buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); /* copy old block data to the new block */ old_buf = db->db_buf; memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); /* zero the remainder */ if (size > osize) memset((uint8_t *)buf->b_data + osize, 0, size - osize); mutex_enter(&db->db_mtx); dbuf_set_data(db, buf); arc_buf_destroy(old_buf, db); db->db.db_size = size; dr = list_head(&db->db_dirty_records); /* dirty record added by dmu_buf_will_dirty() */ VERIFY(dr != NULL); if (db->db_level == 0) dr->dt.dl.dr_data = buf; ASSERT3U(dr->dr_txg, ==, tx->tx_txg); ASSERT3U(dr->dr_accounted, ==, osize); dr->dr_accounted = size; mutex_exit(&db->db_mtx); dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); DB_DNODE_EXIT(db); } void dbuf_release_bp(dmu_buf_impl_t *db) { objset_t *os __maybe_unused = db->db_objset; ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); ASSERT(arc_released(os->os_phys_buf) || list_link_active(&os->os_dsl_dataset->ds_synced_link)); ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); (void) arc_release(db->db_buf, db); } /* * We already have a dirty record for this TXG, and we are being * dirtied again. */ static void dbuf_redirty(dbuf_dirty_record_t *dr) { dmu_buf_impl_t *db = dr->dr_dbuf; ASSERT(MUTEX_HELD(&db->db_mtx)); if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { /* * If this buffer has already been written out, * we now need to reset its state. */ dbuf_unoverride(dr); if (db->db.db_object != DMU_META_DNODE_OBJECT && db->db_state != DB_NOFILL) { /* Already released on initial dirty, so just thaw. */ ASSERT(arc_released(db->db_buf)); arc_buf_thaw(db->db_buf); } } } dbuf_dirty_record_t * dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) { rw_enter(&dn->dn_struct_rwlock, RW_READER); IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); ASSERT(dn->dn_maxblkid >= blkid); dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); list_link_init(&dr->dr_dirty_node); list_link_init(&dr->dr_dbuf_node); dr->dr_dnode = dn; dr->dr_txg = tx->tx_txg; dr->dt.dll.dr_blkid = blkid; dr->dr_accounted = dn->dn_datablksz; /* * There should not be any dbuf for the block that we're dirtying. * Otherwise the buffer contents could be inconsistent between the * dbuf and the lightweight dirty record. */ ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, NULL)); mutex_enter(&dn->dn_mtx); int txgoff = tx->tx_txg & TXG_MASK; if (dn->dn_free_ranges[txgoff] != NULL) { range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); } if (dn->dn_nlevels == 1) { ASSERT3U(blkid, <, dn->dn_nblkptr); list_insert_tail(&dn->dn_dirty_records[txgoff], dr); mutex_exit(&dn->dn_mtx); rw_exit(&dn->dn_struct_rwlock); dnode_setdirty(dn, tx); } else { mutex_exit(&dn->dn_mtx); int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 1, blkid >> epbs, FTAG); rw_exit(&dn->dn_struct_rwlock); if (parent_db == NULL) { kmem_free(dr, sizeof (*dr)); return (NULL); } int err = dbuf_read(parent_db, NULL, (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); if (err != 0) { dbuf_rele(parent_db, FTAG); kmem_free(dr, sizeof (*dr)); return (NULL); } dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); dbuf_rele(parent_db, FTAG); mutex_enter(&parent_dr->dt.di.dr_mtx); ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); list_insert_tail(&parent_dr->dt.di.dr_children, dr); mutex_exit(&parent_dr->dt.di.dr_mtx); dr->dr_parent = parent_dr; } dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); return (dr); } dbuf_dirty_record_t * dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) { dnode_t *dn; objset_t *os; dbuf_dirty_record_t *dr, *dr_next, *dr_head; int txgoff = tx->tx_txg & TXG_MASK; boolean_t drop_struct_rwlock = B_FALSE; ASSERT(tx->tx_txg != 0); ASSERT(!zfs_refcount_is_zero(&db->db_holds)); DMU_TX_DIRTY_BUF(tx, db); DB_DNODE_ENTER(db); dn = DB_DNODE(db); /* * Shouldn't dirty a regular buffer in syncing context. Private * objects may be dirtied in syncing context, but only if they * were already pre-dirtied in open context. */ #ifdef ZFS_DEBUG if (dn->dn_objset->os_dsl_dataset != NULL) { rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); } ASSERT(!dmu_tx_is_syncing(tx) || BP_IS_HOLE(dn->dn_objset->os_rootbp) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_objset->os_dsl_dataset == NULL); if (dn->dn_objset->os_dsl_dataset != NULL) rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); #endif /* * We make this assert for private objects as well, but after we * check if we're already dirty. They are allowed to re-dirty * in syncing context. */ ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); mutex_enter(&db->db_mtx); /* * XXX make this true for indirects too? The problem is that * transactions created with dmu_tx_create_assigned() from * syncing context don't bother holding ahead. */ ASSERT(db->db_level != 0 || db->db_state == DB_CACHED || db->db_state == DB_FILL || db->db_state == DB_NOFILL); mutex_enter(&dn->dn_mtx); dnode_set_dirtyctx(dn, tx, db); if (tx->tx_txg > dn->dn_dirty_txg) dn->dn_dirty_txg = tx->tx_txg; mutex_exit(&dn->dn_mtx); if (db->db_blkid == DMU_SPILL_BLKID) dn->dn_have_spill = B_TRUE; /* * If this buffer is already dirty, we're done. */ dr_head = list_head(&db->db_dirty_records); ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || db->db.db_object == DMU_META_DNODE_OBJECT); dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); if (dr_next && dr_next->dr_txg == tx->tx_txg) { DB_DNODE_EXIT(db); dbuf_redirty(dr_next); mutex_exit(&db->db_mtx); return (dr_next); } /* * Only valid if not already dirty. */ ASSERT(dn->dn_object == 0 || dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); ASSERT3U(dn->dn_nlevels, >, db->db_level); /* * We should only be dirtying in syncing context if it's the * mos or we're initializing the os or it's a special object. * However, we are allowed to dirty in syncing context provided * we already dirtied it in open context. Hence we must make * this assertion only if we're not already dirty. */ os = dn->dn_objset; VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); #ifdef ZFS_DEBUG if (dn->dn_objset->os_dsl_dataset != NULL) rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); if (dn->dn_objset->os_dsl_dataset != NULL) rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); #endif ASSERT(db->db.db_size != 0); dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); - if (db->db_blkid != DMU_BONUS_BLKID) { + if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { dmu_objset_willuse_space(os, db->db.db_size, tx); } /* * If this buffer is dirty in an old transaction group we need * to make a copy of it so that the changes we make in this * transaction group won't leak out when we sync the older txg. */ dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); list_link_init(&dr->dr_dirty_node); list_link_init(&dr->dr_dbuf_node); dr->dr_dnode = dn; if (db->db_level == 0) { void *data_old = db->db_buf; if (db->db_state != DB_NOFILL) { if (db->db_blkid == DMU_BONUS_BLKID) { dbuf_fix_old_data(db, tx->tx_txg); data_old = db->db.db_data; } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { /* * Release the data buffer from the cache so * that we can modify it without impacting * possible other users of this cached data * block. Note that indirect blocks and * private objects are not released until the * syncing state (since they are only modified * then). */ arc_release(db->db_buf, db); dbuf_fix_old_data(db, tx->tx_txg); data_old = db->db_buf; } ASSERT(data_old != NULL); } dr->dt.dl.dr_data = data_old; } else { mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); list_create(&dr->dt.di.dr_children, sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dirty_node)); } - if (db->db_blkid != DMU_BONUS_BLKID) + if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { dr->dr_accounted = db->db.db_size; + } dr->dr_dbuf = db; dr->dr_txg = tx->tx_txg; list_insert_before(&db->db_dirty_records, dr_next, dr); /* * We could have been freed_in_flight between the dbuf_noread * and dbuf_dirty. We win, as though the dbuf_noread() had * happened after the free. */ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && db->db_blkid != DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); if (dn->dn_free_ranges[txgoff] != NULL) { range_tree_clear(dn->dn_free_ranges[txgoff], db->db_blkid, 1); } mutex_exit(&dn->dn_mtx); db->db_freed_in_flight = FALSE; } /* * This buffer is now part of this txg */ dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); db->db_dirtycnt += 1; ASSERT3U(db->db_dirtycnt, <=, 3); mutex_exit(&db->db_mtx); if (db->db_blkid == DMU_BONUS_BLKID || db->db_blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&dn->dn_dirty_records[txgoff], dr); mutex_exit(&dn->dn_mtx); dnode_setdirty(dn, tx); DB_DNODE_EXIT(db); return (dr); } if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { rw_enter(&dn->dn_struct_rwlock, RW_READER); drop_struct_rwlock = B_TRUE; } /* * If we are overwriting a dedup BP, then unless it is snapshotted, * when we get to syncing context we will need to decrement its * refcount in the DDT. Prefetch the relevant DDT block so that * syncing context won't have to wait for the i/o. */ if (db->db_blkptr != NULL) { db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); ddt_prefetch(os->os_spa, db->db_blkptr); dmu_buf_unlock_parent(db, dblt, FTAG); } /* * We need to hold the dn_struct_rwlock to make this assertion, * because it protects dn_phys / dn_next_nlevels from changing. */ ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || dn->dn_phys->dn_nlevels > db->db_level || dn->dn_next_nlevels[txgoff] > db->db_level || dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); if (db->db_level == 0) { ASSERT(!db->db_objset->os_raw_receive || dn->dn_maxblkid >= db->db_blkid); dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_rwlock, B_FALSE); ASSERT(dn->dn_maxblkid >= db->db_blkid); } if (db->db_level+1 < dn->dn_nlevels) { dmu_buf_impl_t *parent = db->db_parent; dbuf_dirty_record_t *di; int parent_held = FALSE; if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; parent = dbuf_hold_level(dn, db->db_level + 1, db->db_blkid >> epbs, FTAG); ASSERT(parent != NULL); parent_held = TRUE; } if (drop_struct_rwlock) rw_exit(&dn->dn_struct_rwlock); ASSERT3U(db->db_level + 1, ==, parent->db_level); di = dbuf_dirty(parent, tx); if (parent_held) dbuf_rele(parent, FTAG); mutex_enter(&db->db_mtx); /* * Since we've dropped the mutex, it's possible that * dbuf_undirty() might have changed this out from under us. */ if (list_head(&db->db_dirty_records) == dr || dn->dn_object == DMU_META_DNODE_OBJECT) { mutex_enter(&di->dt.di.dr_mtx); ASSERT3U(di->dr_txg, ==, tx->tx_txg); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&di->dt.di.dr_children, dr); mutex_exit(&di->dt.di.dr_mtx); dr->dr_parent = di; } mutex_exit(&db->db_mtx); } else { ASSERT(db->db_level + 1 == dn->dn_nlevels); ASSERT(db->db_blkid < dn->dn_nblkptr); ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); mutex_enter(&dn->dn_mtx); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&dn->dn_dirty_records[txgoff], dr); mutex_exit(&dn->dn_mtx); if (drop_struct_rwlock) rw_exit(&dn->dn_struct_rwlock); } dnode_setdirty(dn, tx); DB_DNODE_EXIT(db); return (dr); } static void dbuf_undirty_bonus(dbuf_dirty_record_t *dr) { dmu_buf_impl_t *db = dr->dr_dbuf; if (dr->dt.dl.dr_data != db->db.db_data) { struct dnode *dn = dr->dr_dnode; int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); kmem_free(dr->dt.dl.dr_data, max_bonuslen); arc_space_return(max_bonuslen, ARC_SPACE_BONUS); } db->db_data_pending = NULL; ASSERT(list_next(&db->db_dirty_records, dr) == NULL); list_remove(&db->db_dirty_records, dr); if (dr->dr_dbuf->db_level != 0) { mutex_destroy(&dr->dt.di.dr_mtx); list_destroy(&dr->dt.di.dr_children); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); ASSERT3U(db->db_dirtycnt, >, 0); db->db_dirtycnt -= 1; } /* * Undirty a buffer in the transaction group referenced by the given * transaction. Return whether this evicted the dbuf. */ static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) { uint64_t txg = tx->tx_txg; + boolean_t brtwrite; ASSERT(txg != 0); /* * Due to our use of dn_nlevels below, this can only be called * in open context, unless we are operating on the MOS. * From syncing context, dn_nlevels may be different from the * dn_nlevels used when dbuf was dirtied. */ ASSERT(db->db_objset == dmu_objset_pool(db->db_objset)->dp_meta_objset || txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT0(db->db_level); ASSERT(MUTEX_HELD(&db->db_mtx)); /* * If this buffer is not dirty, we're done. */ dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); if (dr == NULL) return (B_FALSE); ASSERT(dr->dr_dbuf == db); + brtwrite = dr->dt.dl.dr_brtwrite; + if (brtwrite) { + /* + * We are freeing a block that we cloned in the same + * transaction group. + */ + brt_pending_remove(dmu_objset_spa(db->db_objset), + &dr->dt.dl.dr_overridden_by, tx); + } + dnode_t *dn = dr->dr_dnode; dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); ASSERT(db->db.db_size != 0); dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), dr->dr_accounted, txg); list_remove(&db->db_dirty_records, dr); /* * Note that there are three places in dbuf_dirty() * where this dirty record may be put on a list. * Make sure to do a list_remove corresponding to * every one of those list_insert calls. */ if (dr->dr_parent) { mutex_enter(&dr->dr_parent->dt.di.dr_mtx); list_remove(&dr->dr_parent->dt.di.dr_children, dr); mutex_exit(&dr->dr_parent->dt.di.dr_mtx); } else if (db->db_blkid == DMU_SPILL_BLKID || db->db_level + 1 == dn->dn_nlevels) { ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); mutex_enter(&dn->dn_mtx); list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); mutex_exit(&dn->dn_mtx); } - if (db->db_state != DB_NOFILL) { + if (db->db_state != DB_NOFILL && !brtwrite) { dbuf_unoverride(dr); ASSERT(db->db_buf != NULL); ASSERT(dr->dt.dl.dr_data != NULL); if (dr->dt.dl.dr_data != db->db_buf) arc_buf_destroy(dr->dt.dl.dr_data, db); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); ASSERT(db->db_dirtycnt > 0); db->db_dirtycnt -= 1; if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { - ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); + ASSERT(db->db_state == DB_NOFILL || brtwrite || + arc_released(db->db_buf)); dbuf_destroy(db); return (B_TRUE); } return (B_FALSE); } static void dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; ASSERT(tx->tx_txg != 0); ASSERT(!zfs_refcount_is_zero(&db->db_holds)); /* * Quick check for dirtiness. For already dirty blocks, this * reduces runtime of this function by >90%, and overall performance * by 50% for some workloads (e.g. file deletion with indirect blocks * cached). */ mutex_enter(&db->db_mtx); if (db->db_state == DB_CACHED) { dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); /* * It's possible that it is already dirty but not cached, * because there are some calls to dbuf_dirty() that don't * go through dmu_buf_will_dirty(). */ if (dr != NULL) { /* This dbuf is already dirty and cached. */ dbuf_redirty(dr); mutex_exit(&db->db_mtx); return; } } mutex_exit(&db->db_mtx); DB_DNODE_ENTER(db); if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) flags |= DB_RF_HAVESTRUCT; DB_DNODE_EXIT(db); (void) dbuf_read(db, NULL, flags); (void) dbuf_dirty(db, tx); } void dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_will_dirty_impl(db_fake, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); } boolean_t dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dbuf_dirty_record_t *dr; mutex_enter(&db->db_mtx); dr = dbuf_find_dirty_eq(db, tx->tx_txg); mutex_exit(&db->db_mtx); return (dr != NULL); } void dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; db->db_state = DB_NOFILL; DTRACE_SET_STATE(db, "allocating NOFILL buffer"); dmu_buf_will_fill(db_fake, tx); } void dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(tx->tx_txg != 0); ASSERT(db->db_level == 0); ASSERT(!zfs_refcount_is_zero(&db->db_holds)); ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); dbuf_noread(db); (void) dbuf_dirty(db, tx); } /* * This function is effectively the same as dmu_buf_will_dirty(), but * indicates the caller expects raw encrypted data in the db, and provides * the crypt params (byteorder, salt, iv, mac) which should be stored in the * blkptr_t when this dbuf is written. This is only used for blocks of * dnodes, during raw receive. */ void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dbuf_dirty_record_t *dr; /* * dr_has_raw_params is only processed for blocks of dnodes * (see dbuf_sync_dnode_leaf_crypt()). */ ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); ASSERT3U(db->db_level, ==, 0); ASSERT(db->db_objset->os_raw_receive); dmu_buf_will_dirty_impl(db_fake, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); dr = dbuf_find_dirty_eq(db, tx->tx_txg); ASSERT3P(dr, !=, NULL); dr->dt.dl.dr_has_raw_params = B_TRUE; dr->dt.dl.dr_byteorder = byteorder; memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); } static void dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) { struct dirty_leaf *dl; dbuf_dirty_record_t *dr; dr = list_head(&db->db_dirty_records); ASSERT3P(dr, !=, NULL); ASSERT3U(dr->dr_txg, ==, tx->tx_txg); dl = &dr->dt.dl; dl->dr_overridden_by = *bp; dl->dr_override_state = DR_OVERRIDDEN; dl->dr_overridden_by.blk_birth = dr->dr_txg; } void dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) { (void) tx; dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; dbuf_states_t old_state; mutex_enter(&db->db_mtx); DBUF_VERIFY(db); old_state = db->db_state; db->db_state = DB_CACHED; if (old_state == DB_FILL) { if (db->db_level == 0 && db->db_freed_in_flight) { ASSERT(db->db_blkid != DMU_BONUS_BLKID); /* we were freed while filling */ /* XXX dbuf_undirty? */ memset(db->db.db_data, 0, db->db.db_size); db->db_freed_in_flight = FALSE; DTRACE_SET_STATE(db, "fill done handling freed in flight"); } else { DTRACE_SET_STATE(db, "fill done"); } cv_broadcast(&db->db_changed); } mutex_exit(&db->db_mtx); } void dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, bp_embedded_type_t etype, enum zio_compress comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; struct dirty_leaf *dl; dmu_object_type_t type; dbuf_dirty_record_t *dr; if (etype == BP_EMBEDDED_TYPE_DATA) { ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), SPA_FEATURE_EMBEDDED_DATA)); } DB_DNODE_ENTER(db); type = DB_DNODE(db)->dn_type; DB_DNODE_EXIT(db); ASSERT0(db->db_level); ASSERT(db->db_blkid != DMU_BONUS_BLKID); dmu_buf_will_not_fill(dbuf, tx); dr = list_head(&db->db_dirty_records); ASSERT3P(dr, !=, NULL); ASSERT3U(dr->dr_txg, ==, tx->tx_txg); dl = &dr->dt.dl; encode_embedded_bp_compressed(&dl->dr_overridden_by, data, comp, uncompressed_size, compressed_size); BPE_SET_ETYPE(&dl->dr_overridden_by, etype); BP_SET_TYPE(&dl->dr_overridden_by, type); BP_SET_LEVEL(&dl->dr_overridden_by, 0); BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); dl->dr_override_state = DR_OVERRIDDEN; dl->dr_overridden_by.blk_birth = dr->dr_txg; } void dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; dmu_object_type_t type; ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, SPA_FEATURE_REDACTED_DATASETS)); DB_DNODE_ENTER(db); type = DB_DNODE(db)->dn_type; DB_DNODE_EXIT(db); ASSERT0(db->db_level); dmu_buf_will_not_fill(dbuf, tx); blkptr_t bp = { { { {0} } } }; BP_SET_TYPE(&bp, type); BP_SET_LEVEL(&bp, 0); BP_SET_BIRTH(&bp, tx->tx_txg, 0); BP_SET_REDACTED(&bp); BPE_SET_LSIZE(&bp, dbuf->db_size); dbuf_override_impl(db, &bp, tx); } /* * Directly assign a provided arc buf to a given dbuf if it's not referenced * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. */ void dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) { ASSERT(!zfs_refcount_is_zero(&db->db_holds)); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(db->db_level == 0); ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); ASSERT(buf != NULL); ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); ASSERT(tx->tx_txg != 0); arc_return_buf(buf, db); ASSERT(arc_released(buf)); mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); if (db->db_state == DB_CACHED && zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { /* * In practice, we will never have a case where we have an * encrypted arc buffer while additional holds exist on the * dbuf. We don't handle this here so we simply assert that * fact instead. */ ASSERT(!arc_is_encrypted(buf)); mutex_exit(&db->db_mtx); (void) dbuf_dirty(db, tx); memcpy(db->db.db_data, buf->b_data, db->db.db_size); arc_buf_destroy(buf, db); return; } if (db->db_state == DB_CACHED) { dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); ASSERT(db->db_buf != NULL); if (dr != NULL && dr->dr_txg == tx->tx_txg) { ASSERT(dr->dt.dl.dr_data == db->db_buf); if (!arc_released(db->db_buf)) { ASSERT(dr->dt.dl.dr_override_state == DR_OVERRIDDEN); arc_release(db->db_buf, db); } dr->dt.dl.dr_data = buf; arc_buf_destroy(db->db_buf, db); } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { arc_release(db->db_buf, db); arc_buf_destroy(db->db_buf, db); } db->db_buf = NULL; } ASSERT(db->db_buf == NULL); dbuf_set_data(db, buf); db->db_state = DB_FILL; DTRACE_SET_STATE(db, "filling assigned arcbuf"); mutex_exit(&db->db_mtx); (void) dbuf_dirty(db, tx); dmu_buf_fill_done(&db->db, tx); } void dbuf_destroy(dmu_buf_impl_t *db) { dnode_t *dn; dmu_buf_impl_t *parent = db->db_parent; dmu_buf_impl_t *dndb; ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(zfs_refcount_is_zero(&db->db_holds)); if (db->db_buf != NULL) { arc_buf_destroy(db->db_buf, db); db->db_buf = NULL; } if (db->db_blkid == DMU_BONUS_BLKID) { int slots = DB_DNODE(db)->dn_num_slots; int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); if (db->db.db_data != NULL) { kmem_free(db->db.db_data, bonuslen); arc_space_return(bonuslen, ARC_SPACE_BONUS); db->db_state = DB_UNCACHED; DTRACE_SET_STATE(db, "buffer cleared"); } } dbuf_clear_data(db); if (multilist_link_active(&db->db_cache_link)) { ASSERT(db->db_caching_status == DB_DBUF_CACHE || db->db_caching_status == DB_DBUF_METADATA_CACHE); multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); (void) zfs_refcount_remove_many( &dbuf_caches[db->db_caching_status].size, db->db.db_size, db); if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { DBUF_STAT_BUMPDOWN(metadata_cache_count); } else { DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); DBUF_STAT_BUMPDOWN(cache_count); DBUF_STAT_DECR(cache_levels_bytes[db->db_level], db->db.db_size); } db->db_caching_status = DB_NO_CACHE; } ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); ASSERT(db->db_data_pending == NULL); ASSERT(list_is_empty(&db->db_dirty_records)); db->db_state = DB_EVICTING; DTRACE_SET_STATE(db, "buffer eviction started"); db->db_blkptr = NULL; /* * Now that db_state is DB_EVICTING, nobody else can find this via * the hash table. We can now drop db_mtx, which allows us to * acquire the dn_dbufs_mtx. */ mutex_exit(&db->db_mtx); DB_DNODE_ENTER(db); dn = DB_DNODE(db); dndb = dn->dn_dbuf; if (db->db_blkid != DMU_BONUS_BLKID) { boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); if (needlock) mutex_enter_nested(&dn->dn_dbufs_mtx, NESTED_SINGLE); avl_remove(&dn->dn_dbufs, db); membar_producer(); DB_DNODE_EXIT(db); if (needlock) mutex_exit(&dn->dn_dbufs_mtx); /* * Decrementing the dbuf count means that the hold corresponding * to the removed dbuf is no longer discounted in dnode_move(), * so the dnode cannot be moved until after we release the hold. * The membar_producer() ensures visibility of the decremented * value in dnode_move(), since DB_DNODE_EXIT doesn't actually * release any lock. */ mutex_enter(&dn->dn_mtx); dnode_rele_and_unlock(dn, db, B_TRUE); db->db_dnode_handle = NULL; dbuf_hash_remove(db); } else { DB_DNODE_EXIT(db); } ASSERT(zfs_refcount_is_zero(&db->db_holds)); db->db_parent = NULL; ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); ASSERT(db->db_hash_next == NULL); ASSERT(db->db_blkptr == NULL); ASSERT(db->db_data_pending == NULL); ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); ASSERT(!multilist_link_active(&db->db_cache_link)); /* * If this dbuf is referenced from an indirect dbuf, * decrement the ref count on the indirect dbuf. */ if (parent && parent != dndb) { mutex_enter(&parent->db_mtx); dbuf_rele_and_unlock(parent, db, B_TRUE); } kmem_cache_free(dbuf_kmem_cache, db); arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); } /* * Note: While bpp will always be updated if the function returns success, * parentp will not be updated if the dnode does not have dn_dbuf filled in; * this happens when the dnode is the meta-dnode, or {user|group|project}used * object. */ __attribute__((always_inline)) static inline int dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, dmu_buf_impl_t **parentp, blkptr_t **bpp) { *parentp = NULL; *bpp = NULL; ASSERT(blkid != DMU_BONUS_BLKID); if (blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); if (dn->dn_have_spill && (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) *bpp = DN_SPILL_BLKPTR(dn->dn_phys); else *bpp = NULL; dbuf_add_ref(dn->dn_dbuf, NULL); *parentp = dn->dn_dbuf; mutex_exit(&dn->dn_mtx); return (0); } int nlevels = (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(level * epbs, <, 64); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); /* * This assertion shouldn't trip as long as the max indirect block size * is less than 1M. The reason for this is that up to that point, * the number of levels required to address an entire object with blocks * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 * (i.e. we can address the entire object), objects will all use at most * N-1 levels and the assertion won't overflow. However, once epbs is * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be * enough to address an entire object, so objects will have 5 levels, * but then this assertion will overflow. * * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we * need to redo this logic to handle overflows. */ ASSERT(level >= nlevels || ((nlevels - level - 1) * epbs) + highbit64(dn->dn_phys->dn_nblkptr) <= 64); if (level >= nlevels || blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << ((nlevels - level - 1) * epbs)) || (fail_sparse && blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { /* the buffer has no parent yet */ return (SET_ERROR(ENOENT)); } else if (level < nlevels-1) { /* this block is referenced from an indirect block */ int err; err = dbuf_hold_impl(dn, level + 1, blkid >> epbs, fail_sparse, FALSE, NULL, parentp); if (err) return (err); err = dbuf_read(*parentp, NULL, (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); if (err) { dbuf_rele(*parentp, NULL); *parentp = NULL; return (err); } rw_enter(&(*parentp)->db_rwlock, RW_READER); *bpp = ((blkptr_t *)(*parentp)->db.db_data) + (blkid & ((1ULL << epbs) - 1)); if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) ASSERT(BP_IS_HOLE(*bpp)); rw_exit(&(*parentp)->db_rwlock); return (0); } else { /* the block is referenced from the dnode */ ASSERT3U(level, ==, nlevels-1); ASSERT(dn->dn_phys->dn_nblkptr == 0 || blkid < dn->dn_phys->dn_nblkptr); if (dn->dn_dbuf) { dbuf_add_ref(dn->dn_dbuf, NULL); *parentp = dn->dn_dbuf; } *bpp = &dn->dn_phys->dn_blkptr[blkid]; return (0); } } static dmu_buf_impl_t * dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) { objset_t *os = dn->dn_objset; dmu_buf_impl_t *db, *odb; ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); ASSERT(dn->dn_type != DMU_OT_NONE); db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dbuf_node)); db->db_objset = os; db->db.db_object = dn->dn_object; db->db_level = level; db->db_blkid = blkid; db->db_dirtycnt = 0; db->db_dnode_handle = dn->dn_handle; db->db_parent = parent; db->db_blkptr = blkptr; db->db_hash = hash; db->db_user = NULL; db->db_user_immediate_evict = FALSE; db->db_freed_in_flight = FALSE; db->db_pending_evict = FALSE; if (blkid == DMU_BONUS_BLKID) { ASSERT3P(parent, ==, dn->dn_dbuf); db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - (dn->dn_nblkptr-1) * sizeof (blkptr_t); ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); db->db.db_offset = DMU_BONUS_BLKID; db->db_state = DB_UNCACHED; DTRACE_SET_STATE(db, "bonus buffer created"); db->db_caching_status = DB_NO_CACHE; /* the bonus dbuf is not placed in the hash table */ arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); return (db); } else if (blkid == DMU_SPILL_BLKID) { db->db.db_size = (blkptr != NULL) ? BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; db->db.db_offset = 0; } else { int blocksize = db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; db->db.db_size = blocksize; db->db.db_offset = db->db_blkid * blocksize; } /* * Hold the dn_dbufs_mtx while we get the new dbuf * in the hash table *and* added to the dbufs list. * This prevents a possible deadlock with someone * trying to look up this dbuf before it's added to the * dn_dbufs list. */ mutex_enter(&dn->dn_dbufs_mtx); db->db_state = DB_EVICTING; /* not worth logging this state change */ if ((odb = dbuf_hash_insert(db)) != NULL) { /* someone else inserted it first */ mutex_exit(&dn->dn_dbufs_mtx); kmem_cache_free(dbuf_kmem_cache, db); DBUF_STAT_BUMP(hash_insert_race); return (odb); } avl_add(&dn->dn_dbufs, db); db->db_state = DB_UNCACHED; DTRACE_SET_STATE(db, "regular buffer created"); db->db_caching_status = DB_NO_CACHE; mutex_exit(&dn->dn_dbufs_mtx); arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); if (parent && parent != dn->dn_dbuf) dbuf_add_ref(parent, db); ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || zfs_refcount_count(&dn->dn_holds) > 0); (void) zfs_refcount_add(&dn->dn_holds, db); dprintf_dbuf(db, "db=%p\n", db); return (db); } /* * This function returns a block pointer and information about the object, * given a dnode and a block. This is a publicly accessible version of * dbuf_findbp that only returns some information, rather than the * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock * should be locked as (at least) a reader. */ int dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) { dmu_buf_impl_t *dbp = NULL; blkptr_t *bp2; int err = 0; ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); if (err == 0) { ASSERT3P(bp2, !=, NULL); *bp = *bp2; if (dbp != NULL) dbuf_rele(dbp, NULL); if (datablkszsec != NULL) *datablkszsec = dn->dn_phys->dn_datablkszsec; if (indblkshift != NULL) *indblkshift = dn->dn_phys->dn_indblkshift; } return (err); } typedef struct dbuf_prefetch_arg { spa_t *dpa_spa; /* The spa to issue the prefetch in. */ zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ int dpa_curlevel; /* The current level that we're reading */ dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ void *dpa_arg; /* prefetch completion arg */ } dbuf_prefetch_arg_t; static void dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) { if (dpa->dpa_cb != NULL) { dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, dpa->dpa_zb.zb_blkid, io_done); } kmem_free(dpa, sizeof (*dpa)); } static void dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *iobp, arc_buf_t *abuf, void *private) { (void) zio, (void) zb, (void) iobp; dbuf_prefetch_arg_t *dpa = private; if (abuf != NULL) arc_buf_destroy(abuf, private); dbuf_prefetch_fini(dpa, B_TRUE); } /* * Actually issue the prefetch read for the block given. */ static void dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) { ASSERT(!BP_IS_REDACTED(bp) || dsl_dataset_feature_is_active( dpa->dpa_dnode->dn_objset->os_dsl_dataset, SPA_FEATURE_REDACTED_DATASETS)); if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) return (dbuf_prefetch_fini(dpa, B_FALSE)); int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; arc_flags_t aflags = dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | ARC_FLAG_NO_BUF; /* dnodes are always read as raw and then converted later */ if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && dpa->dpa_curlevel == 0) zio_flags |= ZIO_FLAG_RAW; ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); ASSERT(dpa->dpa_zio != NULL); (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, dbuf_issue_final_prefetch_done, dpa, dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); } /* * Called when an indirect block above our prefetch target is read in. This * will either read in the next indirect block down the tree or issue the actual * prefetch if the next block down is our target. */ static void dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *iobp, arc_buf_t *abuf, void *private) { (void) zb, (void) iobp; dbuf_prefetch_arg_t *dpa = private; ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); ASSERT3S(dpa->dpa_curlevel, >, 0); if (abuf == NULL) { ASSERT(zio == NULL || zio->io_error != 0); dbuf_prefetch_fini(dpa, B_TRUE); return; } ASSERT(zio == NULL || zio->io_error == 0); /* * The dpa_dnode is only valid if we are called with a NULL * zio. This indicates that the arc_read() returned without * first calling zio_read() to issue a physical read. Once * a physical read is made the dpa_dnode must be invalidated * as the locks guarding it may have been dropped. If the * dpa_dnode is still valid, then we want to add it to the dbuf * cache. To do so, we must hold the dbuf associated with the block * we just prefetched, read its contents so that we associate it * with an arc_buf_t, and then release it. */ if (zio != NULL) { ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); } else { ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); } ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); dpa->dpa_dnode = NULL; } else if (dpa->dpa_dnode != NULL) { uint64_t curblkid = dpa->dpa_zb.zb_blkid >> (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, dpa->dpa_curlevel, curblkid, FTAG); if (db == NULL) { arc_buf_destroy(abuf, private); dbuf_prefetch_fini(dpa, B_TRUE); return; } (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); dbuf_rele(db, FTAG); } dpa->dpa_curlevel--; uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); blkptr_t *bp = ((blkptr_t *)abuf->b_data) + P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && dsl_dataset_feature_is_active( dpa->dpa_dnode->dn_objset->os_dsl_dataset, SPA_FEATURE_REDACTED_DATASETS))); if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { arc_buf_destroy(abuf, private); dbuf_prefetch_fini(dpa, B_TRUE); return; } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); dbuf_issue_final_prefetch(dpa, bp); } else { arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; zbookmark_phys_t zb; /* flag if L2ARC eligible, l2arc_noprefetch then decides */ if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) iter_aflags |= ARC_FLAG_L2CACHE; ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, dbuf_prefetch_indirect_done, dpa, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &iter_aflags, &zb); } arc_buf_destroy(abuf, private); } /* * Issue prefetch reads for the given block on the given level. If the indirect * blocks above that block are not in memory, we will read them in * asynchronously. As a result, this call never blocks waiting for a read to * complete. Note that the prefetch might fail if the dataset is encrypted and * the encryption key is unmapped before the IO completes. */ int dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, void *arg) { blkptr_t bp; int epbs, nlevels, curlevel; uint64_t curblkid; ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); if (blkid > dn->dn_maxblkid) goto no_issue; if (level == 0 && dnode_block_freed(dn, blkid)) goto no_issue; /* * This dnode hasn't been written to disk yet, so there's nothing to * prefetch. */ nlevels = dn->dn_phys->dn_nlevels; if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) goto no_issue; epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) goto no_issue; dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, NULL); if (db != NULL) { mutex_exit(&db->db_mtx); /* * This dbuf already exists. It is either CACHED, or * (we assume) about to be read or filled. */ goto no_issue; } /* * Find the closest ancestor (indirect block) of the target block * that is present in the cache. In this indirect block, we will * find the bp that is at curlevel, curblkid. */ curlevel = level; curblkid = blkid; while (curlevel < nlevels - 1) { int parent_level = curlevel + 1; uint64_t parent_blkid = curblkid >> epbs; dmu_buf_impl_t *db; if (dbuf_hold_impl(dn, parent_level, parent_blkid, FALSE, TRUE, FTAG, &db) == 0) { blkptr_t *bpp = db->db_buf->b_data; bp = bpp[P2PHASE(curblkid, 1 << epbs)]; dbuf_rele(db, FTAG); break; } curlevel = parent_level; curblkid = parent_blkid; } if (curlevel == nlevels - 1) { /* No cached indirect blocks found. */ ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); bp = dn->dn_phys->dn_blkptr[curblkid]; } ASSERT(!BP_IS_REDACTED(&bp) || dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, SPA_FEATURE_REDACTED_DATASETS)); if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) goto no_issue; ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, ZIO_FLAG_CANFAIL); dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, dn->dn_object, level, blkid); dpa->dpa_curlevel = curlevel; dpa->dpa_prio = prio; dpa->dpa_aflags = aflags; dpa->dpa_spa = dn->dn_objset->os_spa; dpa->dpa_dnode = dn; dpa->dpa_epbs = epbs; dpa->dpa_zio = pio; dpa->dpa_cb = cb; dpa->dpa_arg = arg; if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) dpa->dpa_aflags |= ARC_FLAG_UNCACHED; else if (dnode_level_is_l2cacheable(&bp, dn, level)) dpa->dpa_aflags |= ARC_FLAG_L2CACHE; /* * If we have the indirect just above us, no need to do the asynchronous * prefetch chain; we'll just run the last step ourselves. If we're at * a higher level, though, we want to issue the prefetches for all the * indirect blocks asynchronously, so we can go on with whatever we were * doing. */ if (curlevel == level) { ASSERT3U(curblkid, ==, blkid); dbuf_issue_final_prefetch(dpa, &bp); } else { arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; zbookmark_phys_t zb; /* flag if L2ARC eligible, l2arc_noprefetch then decides */ if (dnode_level_is_l2cacheable(&bp, dn, level)) iter_aflags |= ARC_FLAG_L2CACHE; SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, dn->dn_object, curlevel, curblkid); (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, &bp, dbuf_prefetch_indirect_done, dpa, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &iter_aflags, &zb); } /* * We use pio here instead of dpa_zio since it's possible that * dpa may have already been freed. */ zio_nowait(pio); return (1); no_issue: if (cb != NULL) cb(arg, level, blkid, B_FALSE); return (0); } int dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, arc_flags_t aflags) { return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); } /* * Helper function for dbuf_hold_impl() to copy a buffer. Handles * the case of encrypted, compressed and uncompressed buffers by * allocating the new buffer, respectively, with arc_alloc_raw_buf(), * arc_alloc_compressed_buf() or arc_alloc_buf().* * * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). */ noinline static void dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) { dbuf_dirty_record_t *dr = db->db_data_pending; arc_buf_t *data = dr->dt.dl.dr_data; enum zio_compress compress_type = arc_get_compression(data); uint8_t complevel = arc_get_complevel(data); if (arc_is_encrypted(data)) { boolean_t byteorder; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; arc_get_raw_params(data, &byteorder, salt, iv, mac); dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), compress_type, complevel)); } else if (compress_type != ZIO_COMPRESS_OFF) { dbuf_set_data(db, arc_alloc_compressed_buf( dn->dn_objset->os_spa, db, arc_buf_size(data), arc_buf_lsize(data), compress_type, complevel)); } else { dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); } rw_enter(&db->db_rwlock, RW_WRITER); memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); rw_exit(&db->db_rwlock); } /* * Returns with db_holds incremented, and db_mtx not held. * Note: dn_struct_rwlock must be held. */ int dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse, boolean_t fail_uncached, const void *tag, dmu_buf_impl_t **dbp) { dmu_buf_impl_t *db, *parent = NULL; uint64_t hv; /* If the pool has been created, verify the tx_sync_lock is not held */ spa_t *spa = dn->dn_objset->os_spa; dsl_pool_t *dp = spa->spa_dsl_pool; if (dp != NULL) { ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); } ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); ASSERT3U(dn->dn_nlevels, >, level); *dbp = NULL; /* dbuf_find() returns with db_mtx held */ db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); if (db == NULL) { blkptr_t *bp = NULL; int err; if (fail_uncached) return (SET_ERROR(ENOENT)); ASSERT3P(parent, ==, NULL); err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); if (fail_sparse) { if (err == 0 && bp && BP_IS_HOLE(bp)) err = SET_ERROR(ENOENT); if (err) { if (parent) dbuf_rele(parent, NULL); return (err); } } if (err && err != ENOENT) return (err); db = dbuf_create(dn, level, blkid, parent, bp, hv); } if (fail_uncached && db->db_state != DB_CACHED) { mutex_exit(&db->db_mtx); return (SET_ERROR(ENOENT)); } if (db->db_buf != NULL) { arc_buf_access(db->db_buf); ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); } ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); /* * If this buffer is currently syncing out, and we are * still referencing it from db_data, we need to make a copy * of it in case we decide we want to dirty it again in this txg. */ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && dn->dn_object != DMU_META_DNODE_OBJECT && db->db_state == DB_CACHED && db->db_data_pending) { dbuf_dirty_record_t *dr = db->db_data_pending; if (dr->dt.dl.dr_data == db->db_buf) { ASSERT3P(db->db_buf, !=, NULL); dbuf_hold_copy(dn, db); } } if (multilist_link_active(&db->db_cache_link)) { ASSERT(zfs_refcount_is_zero(&db->db_holds)); ASSERT(db->db_caching_status == DB_DBUF_CACHE || db->db_caching_status == DB_DBUF_METADATA_CACHE); multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); (void) zfs_refcount_remove_many( &dbuf_caches[db->db_caching_status].size, db->db.db_size, db); if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { DBUF_STAT_BUMPDOWN(metadata_cache_count); } else { DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); DBUF_STAT_BUMPDOWN(cache_count); DBUF_STAT_DECR(cache_levels_bytes[db->db_level], db->db.db_size); } db->db_caching_status = DB_NO_CACHE; } (void) zfs_refcount_add(&db->db_holds, tag); DBUF_VERIFY(db); mutex_exit(&db->db_mtx); /* NOTE: we can't rele the parent until after we drop the db_mtx */ if (parent) dbuf_rele(parent, NULL); ASSERT3P(DB_DNODE(db), ==, dn); ASSERT3U(db->db_blkid, ==, blkid); ASSERT3U(db->db_level, ==, level); *dbp = db; return (0); } dmu_buf_impl_t * dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) { return (dbuf_hold_level(dn, 0, blkid, tag)); } dmu_buf_impl_t * dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) { dmu_buf_impl_t *db; int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); return (err ? NULL : db); } void dbuf_create_bonus(dnode_t *dn) { ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); ASSERT(dn->dn_bonus == NULL); dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); } int dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; if (db->db_blkid != DMU_SPILL_BLKID) return (SET_ERROR(ENOTSUP)); if (blksz == 0) blksz = SPA_MINBLOCKSIZE; ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); dbuf_new_size(db, blksz, tx); return (0); } void dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) { dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); } #pragma weak dmu_buf_add_ref = dbuf_add_ref void dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) { int64_t holds = zfs_refcount_add(&db->db_holds, tag); VERIFY3S(holds, >, 1); } #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref boolean_t dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, const void *tag) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dmu_buf_impl_t *found_db; boolean_t result = B_FALSE; if (blkid == DMU_BONUS_BLKID) found_db = dbuf_find_bonus(os, obj); else found_db = dbuf_find(os, obj, 0, blkid, NULL); if (found_db != NULL) { if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { (void) zfs_refcount_add(&db->db_holds, tag); result = B_TRUE; } mutex_exit(&found_db->db_mtx); } return (result); } /* * If you call dbuf_rele() you had better not be referencing the dnode handle * unless you have some other direct or indirect hold on the dnode. (An indirect * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the * dnode's parent dbuf evicting its dnode handles. */ void dbuf_rele(dmu_buf_impl_t *db, const void *tag) { mutex_enter(&db->db_mtx); dbuf_rele_and_unlock(db, tag, B_FALSE); } void dmu_buf_rele(dmu_buf_t *db, const void *tag) { dbuf_rele((dmu_buf_impl_t *)db, tag); } /* * dbuf_rele() for an already-locked dbuf. This is necessary to allow * db_dirtycnt and db_holds to be updated atomically. The 'evicting' * argument should be set if we are already in the dbuf-evicting code * path, in which case we don't want to recursively evict. This allows us to * avoid deeply nested stacks that would have a call flow similar to this: * * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() * ^ | * | | * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ * */ void dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) { int64_t holds; uint64_t size; ASSERT(MUTEX_HELD(&db->db_mtx)); DBUF_VERIFY(db); /* * Remove the reference to the dbuf before removing its hold on the * dnode so we can guarantee in dnode_move() that a referenced bonus * buffer has a corresponding dnode hold. */ holds = zfs_refcount_remove(&db->db_holds, tag); ASSERT(holds >= 0); /* * We can't freeze indirects if there is a possibility that they * may be modified in the current syncing context. */ if (db->db_buf != NULL && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { arc_buf_freeze(db->db_buf); } if (holds == db->db_dirtycnt && db->db_level == 0 && db->db_user_immediate_evict) dbuf_evict_user(db); if (holds == 0) { if (db->db_blkid == DMU_BONUS_BLKID) { dnode_t *dn; boolean_t evict_dbuf = db->db_pending_evict; /* * If the dnode moves here, we cannot cross this * barrier until the move completes. */ DB_DNODE_ENTER(db); dn = DB_DNODE(db); atomic_dec_32(&dn->dn_dbufs_count); /* * Decrementing the dbuf count means that the bonus * buffer's dnode hold is no longer discounted in * dnode_move(). The dnode cannot move until after * the dnode_rele() below. */ DB_DNODE_EXIT(db); /* * Do not reference db after its lock is dropped. * Another thread may evict it. */ mutex_exit(&db->db_mtx); if (evict_dbuf) dnode_evict_bonus(dn); dnode_rele(dn, db); } else if (db->db_buf == NULL) { /* * This is a special case: we never associated this * dbuf with any data allocated from the ARC. */ ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); dbuf_destroy(db); } else if (arc_released(db->db_buf)) { /* * This dbuf has anonymous data associated with it. */ dbuf_destroy(db); } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || db->db_pending_evict) { dbuf_destroy(db); } else if (!multilist_link_active(&db->db_cache_link)) { ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); dbuf_cached_state_t dcs = dbuf_include_in_metadata_cache(db) ? DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; db->db_caching_status = dcs; multilist_insert(&dbuf_caches[dcs].cache, db); uint64_t db_size = db->db.db_size; size = zfs_refcount_add_many( &dbuf_caches[dcs].size, db_size, db); uint8_t db_level = db->db_level; mutex_exit(&db->db_mtx); if (dcs == DB_DBUF_METADATA_CACHE) { DBUF_STAT_BUMP(metadata_cache_count); DBUF_STAT_MAX(metadata_cache_size_bytes_max, size); } else { DBUF_STAT_BUMP(cache_count); DBUF_STAT_MAX(cache_size_bytes_max, size); DBUF_STAT_BUMP(cache_levels[db_level]); DBUF_STAT_INCR(cache_levels_bytes[db_level], db_size); } if (dcs == DB_DBUF_CACHE && !evicting) dbuf_evict_notify(size); } } else { mutex_exit(&db->db_mtx); } } #pragma weak dmu_buf_refcount = dbuf_refcount uint64_t dbuf_refcount(dmu_buf_impl_t *db) { return (zfs_refcount_count(&db->db_holds)); } uint64_t dmu_buf_user_refcount(dmu_buf_t *db_fake) { uint64_t holds; dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; mutex_enter(&db->db_mtx); ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; mutex_exit(&db->db_mtx); return (holds); } void * dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, dmu_buf_user_t *new_user) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; mutex_enter(&db->db_mtx); dbuf_verify_user(db, DBVU_NOT_EVICTING); if (db->db_user == old_user) db->db_user = new_user; else old_user = db->db_user; dbuf_verify_user(db, DBVU_NOT_EVICTING); mutex_exit(&db->db_mtx); return (old_user); } void * dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) { return (dmu_buf_replace_user(db_fake, NULL, user)); } void * dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; db->db_user_immediate_evict = TRUE; return (dmu_buf_set_user(db_fake, user)); } void * dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) { return (dmu_buf_replace_user(db_fake, user, NULL)); } void * dmu_buf_get_user(dmu_buf_t *db_fake) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dbuf_verify_user(db, DBVU_NOT_EVICTING); return (db->db_user); } void dmu_buf_user_evict_wait(void) { taskq_wait(dbu_evict_taskq); } blkptr_t * dmu_buf_get_blkptr(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; return (dbi->db_blkptr); } objset_t * dmu_buf_get_objset(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; return (dbi->db_objset); } dnode_t * dmu_buf_dnode_enter(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; DB_DNODE_ENTER(dbi); return (DB_DNODE(dbi)); } void dmu_buf_dnode_exit(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; DB_DNODE_EXIT(dbi); } static void dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) { /* ASSERT(dmu_tx_is_syncing(tx) */ ASSERT(MUTEX_HELD(&db->db_mtx)); if (db->db_blkptr != NULL) return; if (db->db_blkid == DMU_SPILL_BLKID) { db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); BP_ZERO(db->db_blkptr); return; } if (db->db_level == dn->dn_phys->dn_nlevels-1) { /* * This buffer was allocated at a time when there was * no available blkptrs from the dnode, or it was * inappropriate to hook it in (i.e., nlevels mismatch). */ ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); ASSERT(db->db_parent == NULL); db->db_parent = dn->dn_dbuf; db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; DBUF_VERIFY(db); } else { dmu_buf_impl_t *parent = db->db_parent; int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT(dn->dn_phys->dn_nlevels > 1); if (parent == NULL) { mutex_exit(&db->db_mtx); rw_enter(&dn->dn_struct_rwlock, RW_READER); parent = dbuf_hold_level(dn, db->db_level + 1, db->db_blkid >> epbs, db); rw_exit(&dn->dn_struct_rwlock); mutex_enter(&db->db_mtx); db->db_parent = parent; } db->db_blkptr = (blkptr_t *)parent->db.db_data + (db->db_blkid & ((1ULL << epbs) - 1)); DBUF_VERIFY(db); } } static void dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { dmu_buf_impl_t *db = dr->dr_dbuf; void *data = dr->dt.dl.dr_data; ASSERT0(db->db_level); ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(db->db_blkid == DMU_BONUS_BLKID); ASSERT(data != NULL); dnode_t *dn = dr->dr_dnode; ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); dbuf_sync_leaf_verify_bonus_dnode(dr); dbuf_undirty_bonus(dr); dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); } /* * When syncing out a blocks of dnodes, adjust the block to deal with * encryption. Normally, we make sure the block is decrypted before writing * it. If we have crypt params, then we are writing a raw (encrypted) block, * from a raw receive. In this case, set the ARC buf's crypt params so * that the BP will be filled with the correct byteorder, salt, iv, and mac. */ static void dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) { int err; dmu_buf_impl_t *db = dr->dr_dbuf; ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); ASSERT3U(db->db_level, ==, 0); if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { zbookmark_phys_t zb; /* * Unfortunately, there is currently no mechanism for * syncing context to handle decryption errors. An error * here is only possible if an attacker maliciously * changed a dnode block and updated the associated * checksums going up the block tree. */ SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), db->db.db_object, db->db_level, db->db_blkid); err = arc_untransform(db->db_buf, db->db_objset->os_spa, &zb, B_TRUE); if (err) panic("Invalid dnode block MAC"); } else if (dr->dt.dl.dr_has_raw_params) { (void) arc_release(dr->dt.dl.dr_data, db); arc_convert_to_raw(dr->dt.dl.dr_data, dmu_objset_id(db->db_objset), dr->dt.dl.dr_byteorder, DMU_OT_DNODE, dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); } } /* * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it * is critical the we not allow the compiler to inline this function in to * dbuf_sync_list() thereby drastically bloating the stack usage. */ noinline static void dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn = dr->dr_dnode; ASSERT(dmu_tx_is_syncing(tx)); dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); mutex_enter(&db->db_mtx); ASSERT(db->db_level > 0); DBUF_VERIFY(db); /* Read the block if it hasn't been read yet. */ if (db->db_buf == NULL) { mutex_exit(&db->db_mtx); (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); mutex_enter(&db->db_mtx); } ASSERT3U(db->db_state, ==, DB_CACHED); ASSERT(db->db_buf != NULL); /* Indirect block size must match what the dnode thinks it is. */ ASSERT3U(db->db.db_size, ==, 1<dn_phys->dn_indblkshift); dbuf_check_blkptr(dn, db); /* Provide the pending dirty record to child dbufs */ db->db_data_pending = dr; mutex_exit(&db->db_mtx); dbuf_write(dr, db->db_buf, tx); zio_t *zio = dr->dr_zio; mutex_enter(&dr->dt.di.dr_mtx); dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); ASSERT(list_head(&dr->dt.di.dr_children) == NULL); mutex_exit(&dr->dt.di.dr_mtx); zio_nowait(zio); } /* * Verify that the size of the data in our bonus buffer does not exceed * its recorded size. * * The purpose of this verification is to catch any cases in development * where the size of a phys structure (i.e space_map_phys_t) grows and, * due to incorrect feature management, older pools expect to read more * data even though they didn't actually write it to begin with. * * For a example, this would catch an error in the feature logic where we * open an older pool and we expect to write the space map histogram of * a space map with size SPACE_MAP_SIZE_V0. */ static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) { #ifdef ZFS_DEBUG dnode_t *dn = dr->dr_dnode; /* * Encrypted bonus buffers can have data past their bonuslen. * Skip the verification of these blocks. */ if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) return; uint16_t bonuslen = dn->dn_phys->dn_bonuslen; uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); ASSERT3U(bonuslen, <=, maxbonuslen); arc_buf_t *datap = dr->dt.dl.dr_data; char *datap_end = ((char *)datap) + bonuslen; char *datap_max = ((char *)datap) + maxbonuslen; /* ensure that everything is zero after our data */ for (; datap_end < datap_max; datap_end++) ASSERT(*datap_end == 0); #endif } static blkptr_t * dbuf_lightweight_bp(dbuf_dirty_record_t *dr) { /* This must be a lightweight dirty record. */ ASSERT3P(dr->dr_dbuf, ==, NULL); dnode_t *dn = dr->dr_dnode; if (dn->dn_phys->dn_nlevels == 1) { VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); } else { dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; VERIFY3U(parent_db->db_level, ==, 1); VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); blkptr_t *bp = parent_db->db.db_data; return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); } } static void dbuf_lightweight_ready(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; blkptr_t *bp = zio->io_bp; if (zio->io_error != 0) return; dnode_t *dn = dr->dr_dnode; blkptr_t *bp_orig = dbuf_lightweight_bp(dr); spa_t *spa = dmu_objset_spa(dn->dn_objset); int64_t delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); dnode_diduse_space(dn, delta); uint64_t blkid = dr->dt.dll.dr_blkid; mutex_enter(&dn->dn_mtx); if (blkid > dn->dn_phys->dn_maxblkid) { ASSERT0(dn->dn_objset->os_raw_receive); dn->dn_phys->dn_maxblkid = blkid; } mutex_exit(&dn->dn_mtx); if (!BP_IS_EMBEDDED(bp)) { uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; BP_SET_FILL(bp, fill); } dmu_buf_impl_t *parent_db; EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); if (dr->dr_parent == NULL) { parent_db = dn->dn_dbuf; } else { parent_db = dr->dr_parent->dr_dbuf; } rw_enter(&parent_db->db_rwlock, RW_WRITER); *bp_orig = *bp; rw_exit(&parent_db->db_rwlock); } static void dbuf_lightweight_physdone(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; dsl_pool_t *dp = spa_get_dsl(zio->io_spa); ASSERT3U(dr->dr_txg, ==, zio->io_txg); /* * The callback will be called io_phys_children times. Retire one * portion of our dirty space each time we are called. Any rounding * error will be cleaned up by dbuf_lightweight_done(). */ int delta = dr->dr_accounted / zio->io_phys_children; dsl_pool_undirty_space(dp, delta, zio->io_txg); } static void dbuf_lightweight_done(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; VERIFY0(zio->io_error); objset_t *os = dr->dr_dnode->dn_objset; dmu_tx_t *tx = os->os_synctx; if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); } else { dsl_dataset_t *ds = os->os_dsl_dataset; (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); dsl_dataset_block_born(ds, zio->io_bp, tx); } /* * See comment in dbuf_write_done(). */ if (zio->io_phys_children == 0) { dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, zio->io_txg); } else { dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted % zio->io_phys_children, zio->io_txg); } abd_free(dr->dt.dll.dr_abd); kmem_free(dr, sizeof (*dr)); } noinline static void dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { dnode_t *dn = dr->dr_dnode; zio_t *pio; if (dn->dn_phys->dn_nlevels == 1) { pio = dn->dn_zio; } else { pio = dr->dr_parent->dr_zio; } zbookmark_phys_t zb = { .zb_objset = dmu_objset_id(dn->dn_objset), .zb_object = dn->dn_object, .zb_level = 0, .zb_blkid = dr->dt.dll.dr_blkid, }; /* * See comment in dbuf_write(). This is so that zio->io_bp_orig * will have the old BP in dbuf_lightweight_done(). */ dr->dr_bp_copy = *dbuf_lightweight_bp(dr); dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, dbuf_lightweight_physdone, dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); zio_nowait(dr->dr_zio); } /* * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is * critical the we not allow the compiler to inline this function in to * dbuf_sync_list() thereby drastically bloating the stack usage. */ noinline static void dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { arc_buf_t **datap = &dr->dt.dl.dr_data; dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn = dr->dr_dnode; objset_t *os; uint64_t txg = tx->tx_txg; ASSERT(dmu_tx_is_syncing(tx)); dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); mutex_enter(&db->db_mtx); /* * To be synced, we must be dirtied. But we * might have been freed after the dirty. */ if (db->db_state == DB_UNCACHED) { /* This buffer has been freed since it was dirtied */ ASSERT(db->db.db_data == NULL); } else if (db->db_state == DB_FILL) { /* This buffer was freed and is now being re-filled */ ASSERT(db->db.db_data != dr->dt.dl.dr_data); } else { ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); } DBUF_VERIFY(db); if (db->db_blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { /* * In the previous transaction group, the bonus buffer * was entirely used to store the attributes for the * dnode which overrode the dn_spill field. However, * when adding more attributes to the file a spill * block was required to hold the extra attributes. * * Make sure to clear the garbage left in the dn_spill * field from the previous attributes in the bonus * buffer. Otherwise, after writing out the spill * block to the new allocated dva, it will free * the old block pointed to by the invalid dn_spill. */ db->db_blkptr = NULL; } dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; mutex_exit(&dn->dn_mtx); } /* * If this is a bonus buffer, simply copy the bonus data into the * dnode. It will be written out when the dnode is synced (and it * will be synced, since it must have been dirty for dbuf_sync to * be called). */ if (db->db_blkid == DMU_BONUS_BLKID) { ASSERT(dr->dr_dbuf == db); dbuf_sync_bonus(dr, tx); return; } os = dn->dn_objset; /* * This function may have dropped the db_mtx lock allowing a dmu_sync * operation to sneak in. As a result, we need to ensure that we * don't check the dr_override_state until we have returned from * dbuf_check_blkptr. */ dbuf_check_blkptr(dn, db); /* * If this buffer is in the middle of an immediate write, * wait for the synchronous IO to complete. */ while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); cv_wait(&db->db_changed, &db->db_mtx); } /* * If this is a dnode block, ensure it is appropriately encrypted * or decrypted, depending on what we are writing to it this txg. */ if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) dbuf_prepare_encrypted_dnode_leaf(dr); if (db->db_state != DB_NOFILL && dn->dn_object != DMU_META_DNODE_OBJECT && zfs_refcount_count(&db->db_holds) > 1 && dr->dt.dl.dr_override_state != DR_OVERRIDDEN && *datap == db->db_buf) { /* * If this buffer is currently "in use" (i.e., there * are active holds and db_data still references it), * then make a copy before we start the write so that * any modifications from the open txg will not leak * into this write. * * NOTE: this copy does not need to be made for * objects only modified in the syncing context (e.g. * DNONE_DNODE blocks). */ int psize = arc_buf_size(*datap); int lsize = arc_buf_lsize(*datap); arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); enum zio_compress compress_type = arc_get_compression(*datap); uint8_t complevel = arc_get_complevel(*datap); if (arc_is_encrypted(*datap)) { boolean_t byteorder; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; arc_get_raw_params(*datap, &byteorder, salt, iv, mac); *datap = arc_alloc_raw_buf(os->os_spa, db, dmu_objset_id(os), byteorder, salt, iv, mac, dn->dn_type, psize, lsize, compress_type, complevel); } else if (compress_type != ZIO_COMPRESS_OFF) { ASSERT3U(type, ==, ARC_BUFC_DATA); *datap = arc_alloc_compressed_buf(os->os_spa, db, psize, lsize, compress_type, complevel); } else { *datap = arc_alloc_buf(os->os_spa, db, type, psize); } memcpy((*datap)->b_data, db->db.db_data, psize); } db->db_data_pending = dr; mutex_exit(&db->db_mtx); dbuf_write(dr, *datap, tx); ASSERT(!list_link_active(&dr->dr_dirty_node)); if (dn->dn_object == DMU_META_DNODE_OBJECT) { list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); } else { zio_nowait(dr->dr_zio); } } void dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) { dbuf_dirty_record_t *dr; while ((dr = list_head(list))) { if (dr->dr_zio != NULL) { /* * If we find an already initialized zio then we * are processing the meta-dnode, and we have finished. * The dbufs for all dnodes are put back on the list * during processing, so that we can zio_wait() * these IOs after initiating all child IOs. */ ASSERT3U(dr->dr_dbuf->db.db_object, ==, DMU_META_DNODE_OBJECT); break; } list_remove(list, dr); if (dr->dr_dbuf == NULL) { dbuf_sync_lightweight(dr, tx); } else { if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { VERIFY3U(dr->dr_dbuf->db_level, ==, level); } if (dr->dr_dbuf->db_level > 0) dbuf_sync_indirect(dr, tx); else dbuf_sync_leaf(dr, tx); } } } static void dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) { (void) buf; dmu_buf_impl_t *db = vdb; dnode_t *dn; blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; spa_t *spa = zio->io_spa; int64_t delta; uint64_t fill = 0; int i; ASSERT3P(db->db_blkptr, !=, NULL); ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); DB_DNODE_ENTER(db); dn = DB_DNODE(db); delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); dnode_diduse_space(dn, delta - zio->io_prev_space_delta); zio->io_prev_space_delta = delta; if (bp->blk_birth != 0) { ASSERT((db->db_blkid != DMU_SPILL_BLKID && BP_GET_TYPE(bp) == dn->dn_type) || (db->db_blkid == DMU_SPILL_BLKID && BP_GET_TYPE(bp) == dn->dn_bonustype) || BP_IS_EMBEDDED(bp)); ASSERT(BP_GET_LEVEL(bp) == db->db_level); } mutex_enter(&db->db_mtx); #ifdef ZFS_DEBUG if (db->db_blkid == DMU_SPILL_BLKID) { ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); ASSERT(!(BP_IS_HOLE(bp)) && db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); } #endif if (db->db_level == 0) { mutex_enter(&dn->dn_mtx); if (db->db_blkid > dn->dn_phys->dn_maxblkid && db->db_blkid != DMU_SPILL_BLKID) { ASSERT0(db->db_objset->os_raw_receive); dn->dn_phys->dn_maxblkid = db->db_blkid; } mutex_exit(&dn->dn_mtx); if (dn->dn_type == DMU_OT_DNODE) { i = 0; while (i < db->db.db_size) { dnode_phys_t *dnp = (void *)(((char *)db->db.db_data) + i); i += DNODE_MIN_SIZE; if (dnp->dn_type != DMU_OT_NONE) { fill++; i += dnp->dn_extra_slots * DNODE_MIN_SIZE; } } } else { if (BP_IS_HOLE(bp)) { fill = 0; } else { fill = 1; } } } else { blkptr_t *ibp = db->db.db_data; ASSERT3U(db->db.db_size, ==, 1<dn_phys->dn_indblkshift); for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { if (BP_IS_HOLE(ibp)) continue; fill += BP_GET_FILL(ibp); } } DB_DNODE_EXIT(db); if (!BP_IS_EMBEDDED(bp)) BP_SET_FILL(bp, fill); mutex_exit(&db->db_mtx); db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); *db->db_blkptr = *bp; dmu_buf_unlock_parent(db, dblt, FTAG); } /* * This function gets called just prior to running through the compression * stage of the zio pipeline. If we're an indirect block comprised of only * holes, then we want this indirect to be compressed away to a hole. In * order to do that we must zero out any information about the holes that * this indirect points to prior to before we try to compress it. */ static void dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) { (void) zio, (void) buf; dmu_buf_impl_t *db = vdb; dnode_t *dn; blkptr_t *bp; unsigned int epbs, i; ASSERT3U(db->db_level, >, 0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(epbs, <, 31); /* Determine if all our children are holes */ for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { if (!BP_IS_HOLE(bp)) break; } /* * If all the children are holes, then zero them all out so that * we may get compressed away. */ if (i == 1ULL << epbs) { /* * We only found holes. Grab the rwlock to prevent * anybody from reading the blocks we're about to * zero out. */ rw_enter(&db->db_rwlock, RW_WRITER); memset(db->db.db_data, 0, db->db.db_size); rw_exit(&db->db_rwlock); } DB_DNODE_EXIT(db); } /* * The SPA will call this callback several times for each zio - once * for every physical child i/o (zio->io_phys_children times). This * allows the DMU to monitor the progress of each logical i/o. For example, * there may be 2 copies of an indirect block, or many fragments of a RAID-Z * block. There may be a long delay before all copies/fragments are completed, * so this callback allows us to retire dirty space gradually, as the physical * i/os complete. */ static void dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) { (void) buf; dmu_buf_impl_t *db = arg; objset_t *os = db->db_objset; dsl_pool_t *dp = dmu_objset_pool(os); dbuf_dirty_record_t *dr; int delta = 0; dr = db->db_data_pending; ASSERT3U(dr->dr_txg, ==, zio->io_txg); /* * The callback will be called io_phys_children times. Retire one * portion of our dirty space each time we are called. Any rounding * error will be cleaned up by dbuf_write_done(). */ delta = dr->dr_accounted / zio->io_phys_children; dsl_pool_undirty_space(dp, delta, zio->io_txg); } static void dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) { (void) buf; dmu_buf_impl_t *db = vdb; blkptr_t *bp_orig = &zio->io_bp_orig; blkptr_t *bp = db->db_blkptr; objset_t *os = db->db_objset; dmu_tx_t *tx = os->os_synctx; ASSERT0(zio->io_error); ASSERT(db->db_blkptr == bp); /* * For nopwrites and rewrites we ensure that the bp matches our * original and bypass all the accounting. */ if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { ASSERT(BP_EQUAL(bp, bp_orig)); } else { dsl_dataset_t *ds = os->os_dsl_dataset; (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); dsl_dataset_block_born(ds, bp, tx); } mutex_enter(&db->db_mtx); DBUF_VERIFY(db); dbuf_dirty_record_t *dr = db->db_data_pending; dnode_t *dn = dr->dr_dnode; ASSERT(!list_link_active(&dr->dr_dirty_node)); ASSERT(dr->dr_dbuf == db); ASSERT(list_next(&db->db_dirty_records, dr) == NULL); list_remove(&db->db_dirty_records, dr); #ifdef ZFS_DEBUG if (db->db_blkid == DMU_SPILL_BLKID) { ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); } #endif if (db->db_level == 0) { ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); if (db->db_state != DB_NOFILL) { - if (dr->dt.dl.dr_data != db->db_buf) + if (dr->dt.dl.dr_data != NULL && + dr->dt.dl.dr_data != db->db_buf) { arc_buf_destroy(dr->dt.dl.dr_data, db); + } } } else { ASSERT(list_head(&dr->dt.di.dr_children) == NULL); ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); if (!BP_IS_HOLE(db->db_blkptr)) { int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(db->db_blkid, <=, dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, db->db.db_size); } mutex_destroy(&dr->dt.di.dr_mtx); list_destroy(&dr->dt.di.dr_children); } cv_broadcast(&db->db_changed); ASSERT(db->db_dirtycnt > 0); db->db_dirtycnt -= 1; db->db_data_pending = NULL; dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); /* * If we didn't do a physical write in this ZIO and we * still ended up here, it means that the space of the * dbuf that we just released (and undirtied) above hasn't * been marked as undirtied in the pool's accounting. * * Thus, we undirty that space in the pool's view of the * world here. For physical writes this type of update * happens in dbuf_write_physdone(). * * If we did a physical write, cleanup any rounding errors * that came up due to writing multiple copies of a block * on disk [see dbuf_write_physdone()]. */ if (zio->io_phys_children == 0) { dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, zio->io_txg); } else { dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted % zio->io_phys_children, zio->io_txg); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); } static void dbuf_write_nofill_ready(zio_t *zio) { dbuf_write_ready(zio, NULL, zio->io_private); } static void dbuf_write_nofill_done(zio_t *zio) { dbuf_write_done(zio, NULL, zio->io_private); } static void dbuf_write_override_ready(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; dmu_buf_impl_t *db = dr->dr_dbuf; dbuf_write_ready(zio, NULL, db); } static void dbuf_write_override_done(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; dmu_buf_impl_t *db = dr->dr_dbuf; blkptr_t *obp = &dr->dt.dl.dr_overridden_by; mutex_enter(&db->db_mtx); if (!BP_EQUAL(zio->io_bp, obp)) { if (!BP_IS_HOLE(obp)) dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); arc_release(dr->dt.dl.dr_data, db); } mutex_exit(&db->db_mtx); dbuf_write_done(zio, NULL, db); if (zio->io_abd != NULL) abd_free(zio->io_abd); } typedef struct dbuf_remap_impl_callback_arg { objset_t *drica_os; uint64_t drica_blk_birth; dmu_tx_t *drica_tx; } dbuf_remap_impl_callback_arg_t; static void dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, void *arg) { dbuf_remap_impl_callback_arg_t *drica = arg; objset_t *os = drica->drica_os; spa_t *spa = dmu_objset_spa(os); dmu_tx_t *tx = drica->drica_tx; ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); if (os == spa_meta_objset(spa)) { spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); } else { dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, size, drica->drica_blk_birth, tx); } } static void dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) { blkptr_t bp_copy = *bp; spa_t *spa = dmu_objset_spa(dn->dn_objset); dbuf_remap_impl_callback_arg_t drica; ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); drica.drica_os = dn->dn_objset; drica.drica_blk_birth = bp->blk_birth; drica.drica_tx = tx; if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, &drica)) { /* * If the blkptr being remapped is tracked by a livelist, * then we need to make sure the livelist reflects the update. * First, cancel out the old blkptr by appending a 'FREE' * entry. Next, add an 'ALLOC' to track the new version. This * way we avoid trying to free an inaccurate blkptr at delete. * Note that embedded blkptrs are not tracked in livelists. */ if (dn->dn_objset != spa_meta_objset(spa)) { dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && bp->blk_birth > ds->ds_dir->dd_origin_txg) { ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(dsl_dir_is_clone(ds->ds_dir)); ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LIVELIST)); bplist_append(&ds->ds_dir->dd_pending_frees, bp); bplist_append(&ds->ds_dir->dd_pending_allocs, &bp_copy); } } /* * The db_rwlock prevents dbuf_read_impl() from * dereferencing the BP while we are changing it. To * avoid lock contention, only grab it when we are actually * changing the BP. */ if (rw != NULL) rw_enter(rw, RW_WRITER); *bp = bp_copy; if (rw != NULL) rw_exit(rw); } } /* * Remap any existing BP's to concrete vdevs, if possible. */ static void dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) { spa_t *spa = dmu_objset_spa(db->db_objset); ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) return; if (db->db_level > 0) { blkptr_t *bp = db->db.db_data; for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); } } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { dnode_phys_t *dnp = db->db.db_data; ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, DMU_OT_DNODE); for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i += dnp[i].dn_extra_slots + 1) { for (int j = 0; j < dnp[i].dn_nblkptr; j++) { krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : &dn->dn_dbuf->db_rwlock); dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, tx); } } } } /* Issue I/O to commit a dirty buffer to disk. */ static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) { dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn = dr->dr_dnode; objset_t *os; dmu_buf_impl_t *parent = db->db_parent; uint64_t txg = tx->tx_txg; zbookmark_phys_t zb; zio_prop_t zp; zio_t *pio; /* parent I/O */ int wp_flag = 0; ASSERT(dmu_tx_is_syncing(tx)); os = dn->dn_objset; if (db->db_state != DB_NOFILL) { if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { /* * Private object buffers are released here rather * than in dbuf_dirty() since they are only modified * in the syncing context and we don't want the * overhead of making multiple copies of the data. */ if (BP_IS_HOLE(db->db_blkptr)) { arc_buf_thaw(data); } else { dbuf_release_bp(db); } dbuf_remap(dn, db, tx); } } if (parent != dn->dn_dbuf) { /* Our parent is an indirect block. */ /* We have a dirty parent that has been scheduled for write. */ ASSERT(parent && parent->db_data_pending); /* Our parent's buffer is one level closer to the dnode. */ ASSERT(db->db_level == parent->db_level-1); /* * We're about to modify our parent's db_data by modifying * our block pointer, so the parent must be released. */ ASSERT(arc_released(parent->db_buf)); pio = parent->db_data_pending->dr_zio; } else { /* Our parent is the dnode itself. */ ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && db->db_blkid != DMU_SPILL_BLKID) || (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); if (db->db_blkid != DMU_SPILL_BLKID) ASSERT3P(db->db_blkptr, ==, &dn->dn_phys->dn_blkptr[db->db_blkid]); pio = dn->dn_zio; } ASSERT(db->db_level == 0 || data == db->db_buf); ASSERT3U(db->db_blkptr->blk_birth, <=, txg); ASSERT(pio); SET_BOOKMARK(&zb, os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : DMU_META_OBJSET, db->db.db_object, db->db_level, db->db_blkid); if (db->db_blkid == DMU_SPILL_BLKID) wp_flag = WP_SPILL; wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); /* * We copy the blkptr now (rather than when we instantiate the dirty * record), because its value can change between open context and * syncing context. We do not need to hold dn_struct_rwlock to read * db_blkptr because we are in syncing context. */ dr->dr_bp_copy = *db->db_blkptr; if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { /* * The BP for this block has been provided by open context * (by dmu_sync() or dmu_buf_write_embedded()). */ abd_t *contents = (data != NULL) ? abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size, &zp, dbuf_write_override_ready, NULL, NULL, dbuf_write_override_done, dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); mutex_enter(&db->db_mtx); dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, - dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); + dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, + dr->dt.dl.dr_brtwrite); mutex_exit(&db->db_mtx); } else if (db->db_state == DB_NOFILL) { ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, dbuf_write_nofill_ready, NULL, NULL, dbuf_write_nofill_done, db, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); } else { ASSERT(arc_released(data)); /* * For indirect blocks, we want to setup the children * ready callback so that we can properly handle an indirect * block that only contains holes. */ arc_write_done_func_t *children_ready_cb = NULL; if (db->db_level != 0) children_ready_cb = dbuf_write_children_ready; dr->dr_zio = arc_write(pio, os->os_spa, txg, &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db), &zp, dbuf_write_ready, children_ready_cb, dbuf_write_physdone, dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); } } EXPORT_SYMBOL(dbuf_find); EXPORT_SYMBOL(dbuf_is_metadata); EXPORT_SYMBOL(dbuf_destroy); EXPORT_SYMBOL(dbuf_loan_arcbuf); EXPORT_SYMBOL(dbuf_whichblock); EXPORT_SYMBOL(dbuf_read); EXPORT_SYMBOL(dbuf_unoverride); EXPORT_SYMBOL(dbuf_free_range); EXPORT_SYMBOL(dbuf_new_size); EXPORT_SYMBOL(dbuf_release_bp); EXPORT_SYMBOL(dbuf_dirty); EXPORT_SYMBOL(dmu_buf_set_crypt_params); EXPORT_SYMBOL(dmu_buf_will_dirty); EXPORT_SYMBOL(dmu_buf_is_dirty); EXPORT_SYMBOL(dmu_buf_will_not_fill); EXPORT_SYMBOL(dmu_buf_will_fill); EXPORT_SYMBOL(dmu_buf_fill_done); EXPORT_SYMBOL(dmu_buf_rele); EXPORT_SYMBOL(dbuf_assign_arcbuf); EXPORT_SYMBOL(dbuf_prefetch); EXPORT_SYMBOL(dbuf_hold_impl); EXPORT_SYMBOL(dbuf_hold); EXPORT_SYMBOL(dbuf_hold_level); EXPORT_SYMBOL(dbuf_create_bonus); EXPORT_SYMBOL(dbuf_spill_set_blksz); EXPORT_SYMBOL(dbuf_rm_spill); EXPORT_SYMBOL(dbuf_add_ref); EXPORT_SYMBOL(dbuf_rele); EXPORT_SYMBOL(dbuf_rele_and_unlock); EXPORT_SYMBOL(dbuf_refcount); EXPORT_SYMBOL(dbuf_sync_list); EXPORT_SYMBOL(dmu_buf_set_user); EXPORT_SYMBOL(dmu_buf_set_user_ie); EXPORT_SYMBOL(dmu_buf_get_user); EXPORT_SYMBOL(dmu_buf_get_blkptr); ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, "Maximum size in bytes of the dbuf cache."); ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, "Maximum size in bytes of dbuf metadata cache."); ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, "Set size of dbuf cache to log2 fraction of arc size."); ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, "Set size of dbuf metadata cache to log2 fraction of arc size."); ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, "Set size of dbuf cache mutex array as log2 shift."); diff --git a/module/zfs/ddt.c b/module/zfs/ddt.c index 7880a899aeb1..33fea0ba3d3c 100644 --- a/module/zfs/ddt.c +++ b/module/zfs/ddt.c @@ -1,1184 +1,1239 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. + * Copyright (c) 2022 by Pawel Jakub Dawidek */ #include #include #include #include #include #include #include #include #include #include #include #include #include static kmem_cache_t *ddt_cache; static kmem_cache_t *ddt_entry_cache; /* * Enable/disable prefetching of dedup-ed blocks which are going to be freed. */ int zfs_dedup_prefetch = 0; static const ddt_ops_t *const ddt_ops[DDT_TYPES] = { &ddt_zap_ops, }; static const char *const ddt_class_name[DDT_CLASSES] = { "ditto", "duplicate", "unique", }; static void ddt_object_create(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_tx_t *tx) { spa_t *spa = ddt->ddt_spa; objset_t *os = ddt->ddt_os; uint64_t *objectp = &ddt->ddt_object[type][class]; boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP; char name[DDT_NAMELEN]; ddt_object_name(ddt, type, class, name); ASSERT(*objectp == 0); VERIFY(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash) == 0); ASSERT(*objectp != 0); VERIFY(zap_add(os, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, objectp, tx) == 0); VERIFY(zap_add(os, spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), &ddt->ddt_histogram[type][class], tx) == 0); } static void ddt_object_destroy(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_tx_t *tx) { spa_t *spa = ddt->ddt_spa; objset_t *os = ddt->ddt_os; uint64_t *objectp = &ddt->ddt_object[type][class]; uint64_t count; char name[DDT_NAMELEN]; ddt_object_name(ddt, type, class, name); ASSERT(*objectp != 0); ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class])); VERIFY(ddt_object_count(ddt, type, class, &count) == 0 && count == 0); VERIFY(zap_remove(os, DMU_POOL_DIRECTORY_OBJECT, name, tx) == 0); VERIFY(zap_remove(os, spa->spa_ddt_stat_object, name, tx) == 0); VERIFY(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx) == 0); memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t)); *objectp = 0; } static int ddt_object_load(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; dmu_object_info_t doi; uint64_t count; char name[DDT_NAMELEN]; int error; ddt_object_name(ddt, type, class, name); error = zap_lookup(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, &ddt->ddt_object[type][class]); if (error != 0) return (error); error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), &ddt->ddt_histogram[type][class]); if (error != 0) return (error); /* * Seed the cached statistics. */ error = ddt_object_info(ddt, type, class, &doi); if (error) return (error); error = ddt_object_count(ddt, type, class, &count); if (error) return (error); ddo->ddo_count = count; ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; return (0); } static void ddt_object_sync(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_tx_t *tx) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; dmu_object_info_t doi; uint64_t count; char name[DDT_NAMELEN]; ddt_object_name(ddt, type, class, name); VERIFY(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), &ddt->ddt_histogram[type][class], tx) == 0); /* * Cache DDT statistics; this is the only time they'll change. */ VERIFY(ddt_object_info(ddt, type, class, &doi) == 0); VERIFY(ddt_object_count(ddt, type, class, &count) == 0); ddo->ddo_count = count; ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; } static int ddt_object_lookup(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde) { if (!ddt_object_exists(ddt, type, class)) return (SET_ERROR(ENOENT)); return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os, ddt->ddt_object[type][class], dde)); } static void ddt_object_prefetch(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde) { if (!ddt_object_exists(ddt, type, class)) return; ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os, ddt->ddt_object[type][class], dde); } int ddt_object_update(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde, dmu_tx_t *tx) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_update(ddt->ddt_os, ddt->ddt_object[type][class], dde, tx)); } static int ddt_object_remove(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde, dmu_tx_t *tx) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os, ddt->ddt_object[type][class], dde, tx)); } int ddt_object_walk(ddt_t *ddt, enum ddt_type type, enum ddt_class class, uint64_t *walk, ddt_entry_t *dde) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_walk(ddt->ddt_os, ddt->ddt_object[type][class], dde, walk)); } int ddt_object_count(ddt_t *ddt, enum ddt_type type, enum ddt_class class, uint64_t *count) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_count(ddt->ddt_os, ddt->ddt_object[type][class], count)); } int ddt_object_info(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_object_info_t *doi) { if (!ddt_object_exists(ddt, type, class)) return (SET_ERROR(ENOENT)); return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class], doi)); } boolean_t ddt_object_exists(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { return (!!ddt->ddt_object[type][class]); } void ddt_object_name(ddt_t *ddt, enum ddt_type type, enum ddt_class class, char *name) { (void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT, zio_checksum_table[ddt->ddt_checksum].ci_name, ddt_ops[type]->ddt_op_name, ddt_class_name[class]); } void ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp, uint64_t txg) { ASSERT(txg != 0); for (int d = 0; d < SPA_DVAS_PER_BP; d++) bp->blk_dva[d] = ddp->ddp_dva[d]; BP_SET_BIRTH(bp, txg, ddp->ddp_phys_birth); } /* * The bp created via this function may be used for repairs and scrub, but it * will be missing the salt / IV required to do a full decrypting read. */ void ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk, const ddt_phys_t *ddp, blkptr_t *bp) { BP_ZERO(bp); if (ddp != NULL) ddt_bp_fill(ddp, bp, ddp->ddp_phys_birth); bp->blk_cksum = ddk->ddk_cksum; BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk)); BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk)); BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk)); BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk)); BP_SET_FILL(bp, 1); BP_SET_CHECKSUM(bp, checksum); BP_SET_TYPE(bp, DMU_OT_DEDUP); BP_SET_LEVEL(bp, 0); BP_SET_DEDUP(bp, 1); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); } void ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp) { ddk->ddk_cksum = bp->blk_cksum; ddk->ddk_prop = 0; ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp)); DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp)); DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp)); DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp)); DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp)); } void ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp) { ASSERT(ddp->ddp_phys_birth == 0); for (int d = 0; d < SPA_DVAS_PER_BP; d++) ddp->ddp_dva[d] = bp->blk_dva[d]; ddp->ddp_phys_birth = BP_PHYSICAL_BIRTH(bp); } void ddt_phys_clear(ddt_phys_t *ddp) { memset(ddp, 0, sizeof (*ddp)); } void ddt_phys_addref(ddt_phys_t *ddp) { ddp->ddp_refcnt++; } void ddt_phys_decref(ddt_phys_t *ddp) { if (ddp) { ASSERT(ddp->ddp_refcnt > 0); ddp->ddp_refcnt--; } } void ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp, uint64_t txg) { blkptr_t blk; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); /* * We clear the dedup bit so that zio_free() will actually free the * space, rather than just decrementing the refcount in the DDT. */ BP_SET_DEDUP(&blk, 0); ddt_phys_clear(ddp); zio_free(ddt->ddt_spa, txg, &blk); } ddt_phys_t * ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp) { ddt_phys_t *ddp = (ddt_phys_t *)dde->dde_phys; for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_dva[0]) && BP_PHYSICAL_BIRTH(bp) == ddp->ddp_phys_birth) return (ddp); } return (NULL); } uint64_t ddt_phys_total_refcnt(const ddt_entry_t *dde) { uint64_t refcnt = 0; for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) refcnt += dde->dde_phys[p].ddp_refcnt; return (refcnt); } static void ddt_stat_generate(ddt_t *ddt, ddt_entry_t *dde, ddt_stat_t *dds) { spa_t *spa = ddt->ddt_spa; ddt_phys_t *ddp = dde->dde_phys; ddt_key_t *ddk = &dde->dde_key; uint64_t lsize = DDK_GET_LSIZE(ddk); uint64_t psize = DDK_GET_PSIZE(ddk); memset(dds, 0, sizeof (*dds)); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { uint64_t dsize = 0; uint64_t refcnt = ddp->ddp_refcnt; if (ddp->ddp_phys_birth == 0) continue; for (int d = 0; d < DDE_GET_NDVAS(dde); d++) dsize += dva_get_dsize_sync(spa, &ddp->ddp_dva[d]); dds->dds_blocks += 1; dds->dds_lsize += lsize; dds->dds_psize += psize; dds->dds_dsize += dsize; dds->dds_ref_blocks += refcnt; dds->dds_ref_lsize += lsize * refcnt; dds->dds_ref_psize += psize * refcnt; dds->dds_ref_dsize += dsize * refcnt; } } void ddt_stat_add(ddt_stat_t *dst, const ddt_stat_t *src, uint64_t neg) { const uint64_t *s = (const uint64_t *)src; uint64_t *d = (uint64_t *)dst; uint64_t *d_end = (uint64_t *)(dst + 1); ASSERT(neg == 0 || neg == -1ULL); /* add or subtract */ for (int i = 0; i < d_end - d; i++) d[i] += (s[i] ^ neg) - neg; } static void ddt_stat_update(ddt_t *ddt, ddt_entry_t *dde, uint64_t neg) { ddt_stat_t dds; ddt_histogram_t *ddh; int bucket; ddt_stat_generate(ddt, dde, &dds); bucket = highbit64(dds.dds_ref_blocks) - 1; ASSERT(bucket >= 0); ddh = &ddt->ddt_histogram[dde->dde_type][dde->dde_class]; ddt_stat_add(&ddh->ddh_stat[bucket], &dds, neg); } void ddt_histogram_add(ddt_histogram_t *dst, const ddt_histogram_t *src) { for (int h = 0; h < 64; h++) ddt_stat_add(&dst->ddh_stat[h], &src->ddh_stat[h], 0); } void ddt_histogram_stat(ddt_stat_t *dds, const ddt_histogram_t *ddh) { memset(dds, 0, sizeof (*dds)); for (int h = 0; h < 64; h++) ddt_stat_add(dds, &ddh->ddh_stat[h], 0); } boolean_t ddt_histogram_empty(const ddt_histogram_t *ddh) { const uint64_t *s = (const uint64_t *)ddh; const uint64_t *s_end = (const uint64_t *)(ddh + 1); while (s < s_end) if (*s++ != 0) return (B_FALSE); return (B_TRUE); } void ddt_get_dedup_object_stats(spa_t *spa, ddt_object_t *ddo_total) { /* Sum the statistics we cached in ddt_object_sync(). */ for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; ddo_total->ddo_count += ddo->ddo_count; ddo_total->ddo_dspace += ddo->ddo_dspace; ddo_total->ddo_mspace += ddo->ddo_mspace; } } } /* ... and compute the averages. */ if (ddo_total->ddo_count != 0) { ddo_total->ddo_dspace /= ddo_total->ddo_count; ddo_total->ddo_mspace /= ddo_total->ddo_count; } } void ddt_get_dedup_histogram(spa_t *spa, ddt_histogram_t *ddh) { for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES && ddt; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { ddt_histogram_add(ddh, &ddt->ddt_histogram_cache[type][class]); } } } } void ddt_get_dedup_stats(spa_t *spa, ddt_stat_t *dds_total) { ddt_histogram_t *ddh_total; ddh_total = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); ddt_get_dedup_histogram(spa, ddh_total); ddt_histogram_stat(dds_total, ddh_total); kmem_free(ddh_total, sizeof (ddt_histogram_t)); } uint64_t ddt_get_dedup_dspace(spa_t *spa) { ddt_stat_t dds_total; if (spa->spa_dedup_dspace != ~0ULL) return (spa->spa_dedup_dspace); memset(&dds_total, 0, sizeof (ddt_stat_t)); /* Calculate and cache the stats */ ddt_get_dedup_stats(spa, &dds_total); spa->spa_dedup_dspace = dds_total.dds_ref_dsize - dds_total.dds_dsize; return (spa->spa_dedup_dspace); } uint64_t ddt_get_pool_dedup_ratio(spa_t *spa) { ddt_stat_t dds_total = { 0 }; ddt_get_dedup_stats(spa, &dds_total); if (dds_total.dds_dsize == 0) return (100); return (dds_total.dds_ref_dsize * 100 / dds_total.dds_dsize); } size_t ddt_compress(void *src, uchar_t *dst, size_t s_len, size_t d_len) { uchar_t *version = dst++; int cpfunc = ZIO_COMPRESS_ZLE; zio_compress_info_t *ci = &zio_compress_table[cpfunc]; size_t c_len; ASSERT(d_len >= s_len + 1); /* no compression plus version byte */ c_len = ci->ci_compress(src, dst, s_len, d_len - 1, ci->ci_level); if (c_len == s_len) { cpfunc = ZIO_COMPRESS_OFF; memcpy(dst, src, s_len); } *version = cpfunc; if (ZFS_HOST_BYTEORDER) *version |= DDT_COMPRESS_BYTEORDER_MASK; return (c_len + 1); } void ddt_decompress(uchar_t *src, void *dst, size_t s_len, size_t d_len) { uchar_t version = *src++; int cpfunc = version & DDT_COMPRESS_FUNCTION_MASK; zio_compress_info_t *ci = &zio_compress_table[cpfunc]; if (ci->ci_decompress != NULL) (void) ci->ci_decompress(src, dst, s_len, d_len, ci->ci_level); else memcpy(dst, src, d_len); if (((version & DDT_COMPRESS_BYTEORDER_MASK) != 0) != (ZFS_HOST_BYTEORDER != 0)) byteswap_uint64_array(dst, d_len); } ddt_t * ddt_select(spa_t *spa, const blkptr_t *bp) { return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]); } void ddt_enter(ddt_t *ddt) { mutex_enter(&ddt->ddt_lock); } void ddt_exit(ddt_t *ddt) { mutex_exit(&ddt->ddt_lock); } void ddt_init(void) { ddt_cache = kmem_cache_create("ddt_cache", sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0); ddt_entry_cache = kmem_cache_create("ddt_entry_cache", sizeof (ddt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0); } void ddt_fini(void) { kmem_cache_destroy(ddt_entry_cache); kmem_cache_destroy(ddt_cache); } static ddt_entry_t * ddt_alloc(const ddt_key_t *ddk) { ddt_entry_t *dde; dde = kmem_cache_alloc(ddt_entry_cache, KM_SLEEP); memset(dde, 0, sizeof (ddt_entry_t)); cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL); dde->dde_key = *ddk; return (dde); } static void ddt_free(ddt_entry_t *dde) { ASSERT(!dde->dde_loading); for (int p = 0; p < DDT_PHYS_TYPES; p++) ASSERT(dde->dde_lead_zio[p] == NULL); if (dde->dde_repair_abd != NULL) abd_free(dde->dde_repair_abd); cv_destroy(&dde->dde_cv); kmem_cache_free(ddt_entry_cache, dde); } void ddt_remove(ddt_t *ddt, ddt_entry_t *dde) { ASSERT(MUTEX_HELD(&ddt->ddt_lock)); avl_remove(&ddt->ddt_tree, dde); ddt_free(dde); } ddt_entry_t * ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add) { ddt_entry_t *dde, dde_search; enum ddt_type type; enum ddt_class class; avl_index_t where; int error; ASSERT(MUTEX_HELD(&ddt->ddt_lock)); ddt_key_fill(&dde_search.dde_key, bp); dde = avl_find(&ddt->ddt_tree, &dde_search, &where); if (dde == NULL) { if (!add) return (NULL); dde = ddt_alloc(&dde_search.dde_key); avl_insert(&ddt->ddt_tree, dde, where); } while (dde->dde_loading) cv_wait(&dde->dde_cv, &ddt->ddt_lock); if (dde->dde_loaded) return (dde); dde->dde_loading = B_TRUE; ddt_exit(ddt); error = ENOENT; for (type = 0; type < DDT_TYPES; type++) { for (class = 0; class < DDT_CLASSES; class++) { error = ddt_object_lookup(ddt, type, class, dde); if (error != ENOENT) { ASSERT0(error); break; } } if (error != ENOENT) break; } ddt_enter(ddt); ASSERT(dde->dde_loaded == B_FALSE); ASSERT(dde->dde_loading == B_TRUE); dde->dde_type = type; /* will be DDT_TYPES if no entry found */ dde->dde_class = class; /* will be DDT_CLASSES if no entry found */ dde->dde_loaded = B_TRUE; dde->dde_loading = B_FALSE; if (error == 0) ddt_stat_update(ddt, dde, -1ULL); cv_broadcast(&dde->dde_cv); return (dde); } void ddt_prefetch(spa_t *spa, const blkptr_t *bp) { ddt_t *ddt; ddt_entry_t dde; if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp)) return; /* * We only remove the DDT once all tables are empty and only * prefetch dedup blocks when there are entries in the DDT. * Thus no locking is required as the DDT can't disappear on us. */ ddt = ddt_select(spa, bp); ddt_key_fill(&dde.dde_key, bp); for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { ddt_object_prefetch(ddt, type, class, &dde); } } } /* * Opaque struct used for ddt_key comparison */ #define DDT_KEY_CMP_LEN (sizeof (ddt_key_t) / sizeof (uint16_t)) typedef struct ddt_key_cmp { uint16_t u16[DDT_KEY_CMP_LEN]; } ddt_key_cmp_t; int ddt_entry_compare(const void *x1, const void *x2) { const ddt_entry_t *dde1 = x1; const ddt_entry_t *dde2 = x2; const ddt_key_cmp_t *k1 = (const ddt_key_cmp_t *)&dde1->dde_key; const ddt_key_cmp_t *k2 = (const ddt_key_cmp_t *)&dde2->dde_key; int32_t cmp = 0; for (int i = 0; i < DDT_KEY_CMP_LEN; i++) { cmp = (int32_t)k1->u16[i] - (int32_t)k2->u16[i]; if (likely(cmp)) break; } return (TREE_ISIGN(cmp)); } static ddt_t * ddt_table_alloc(spa_t *spa, enum zio_checksum c) { ddt_t *ddt; ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP); memset(ddt, 0, sizeof (ddt_t)); mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&ddt->ddt_tree, ddt_entry_compare, sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); avl_create(&ddt->ddt_repair_tree, ddt_entry_compare, sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); ddt->ddt_checksum = c; ddt->ddt_spa = spa; ddt->ddt_os = spa->spa_meta_objset; return (ddt); } static void ddt_table_free(ddt_t *ddt) { ASSERT(avl_numnodes(&ddt->ddt_tree) == 0); ASSERT(avl_numnodes(&ddt->ddt_repair_tree) == 0); avl_destroy(&ddt->ddt_tree); avl_destroy(&ddt->ddt_repair_tree); mutex_destroy(&ddt->ddt_lock); kmem_cache_free(ddt_cache, ddt); } void ddt_create(spa_t *spa) { spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM; for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) spa->spa_ddt[c] = ddt_table_alloc(spa, c); } int ddt_load(spa_t *spa) { int error; ddt_create(spa); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, &spa->spa_ddt_stat_object); if (error) return (error == ENOENT ? 0 : error); for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { error = ddt_object_load(ddt, type, class); if (error != 0 && error != ENOENT) return (error); } } /* * Seed the cached histograms. */ memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, sizeof (ddt->ddt_histogram)); spa->spa_dedup_dspace = ~0ULL; } return (0); } void ddt_unload(spa_t *spa) { for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { if (spa->spa_ddt[c]) { ddt_table_free(spa->spa_ddt[c]); spa->spa_ddt[c] = NULL; } } } boolean_t ddt_class_contains(spa_t *spa, enum ddt_class max_class, const blkptr_t *bp) { ddt_t *ddt; ddt_entry_t *dde; if (!BP_GET_DEDUP(bp)) return (B_FALSE); if (max_class == DDT_CLASS_UNIQUE) return (B_TRUE); ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)]; dde = kmem_cache_alloc(ddt_entry_cache, KM_SLEEP); ddt_key_fill(&(dde->dde_key), bp); for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class <= max_class; class++) { if (ddt_object_lookup(ddt, type, class, dde) == 0) { kmem_cache_free(ddt_entry_cache, dde); return (B_TRUE); } } } kmem_cache_free(ddt_entry_cache, dde); return (B_FALSE); } ddt_entry_t * ddt_repair_start(ddt_t *ddt, const blkptr_t *bp) { ddt_key_t ddk; ddt_entry_t *dde; ddt_key_fill(&ddk, bp); dde = ddt_alloc(&ddk); for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { /* * We can only do repair if there are multiple copies * of the block. For anything in the UNIQUE class, * there's definitely only one copy, so don't even try. */ if (class != DDT_CLASS_UNIQUE && ddt_object_lookup(ddt, type, class, dde) == 0) return (dde); } } memset(dde->dde_phys, 0, sizeof (dde->dde_phys)); return (dde); } void ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde) { avl_index_t where; ddt_enter(ddt); if (dde->dde_repair_abd != NULL && spa_writeable(ddt->ddt_spa) && avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL) avl_insert(&ddt->ddt_repair_tree, dde, where); else ddt_free(dde); ddt_exit(ddt); } static void ddt_repair_entry_done(zio_t *zio) { ddt_entry_t *rdde = zio->io_private; ddt_free(rdde); } static void ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio) { ddt_phys_t *ddp = dde->dde_phys; ddt_phys_t *rddp = rdde->dde_phys; ddt_key_t *ddk = &dde->dde_key; ddt_key_t *rddk = &rdde->dde_key; zio_t *zio; blkptr_t blk; zio = zio_null(rio, rio->io_spa, NULL, ddt_repair_entry_done, rdde, rio->io_flags); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++, rddp++) { if (ddp->ddp_phys_birth == 0 || ddp->ddp_phys_birth != rddp->ddp_phys_birth || memcmp(ddp->ddp_dva, rddp->ddp_dva, sizeof (ddp->ddp_dva))) continue; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk, rdde->dde_repair_abd, DDK_GET_PSIZE(rddk), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, ZIO_DDT_CHILD_FLAGS(zio), NULL)); } zio_nowait(zio); } static void ddt_repair_table(ddt_t *ddt, zio_t *rio) { spa_t *spa = ddt->ddt_spa; ddt_entry_t *dde, *rdde_next, *rdde; avl_tree_t *t = &ddt->ddt_repair_tree; blkptr_t blk; if (spa_sync_pass(spa) > 1) return; ddt_enter(ddt); for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) { rdde_next = AVL_NEXT(t, rdde); avl_remove(&ddt->ddt_repair_tree, rdde); ddt_exit(ddt); ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, &blk); dde = ddt_repair_start(ddt, &blk); ddt_repair_entry(ddt, dde, rdde, rio); ddt_repair_done(ddt, dde); ddt_enter(ddt); } ddt_exit(ddt); } static void ddt_sync_entry(ddt_t *ddt, ddt_entry_t *dde, dmu_tx_t *tx, uint64_t txg) { dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool; ddt_phys_t *ddp = dde->dde_phys; ddt_key_t *ddk = &dde->dde_key; enum ddt_type otype = dde->dde_type; enum ddt_type ntype = DDT_TYPE_CURRENT; enum ddt_class oclass = dde->dde_class; enum ddt_class nclass; uint64_t total_refcnt = 0; ASSERT(dde->dde_loaded); ASSERT(!dde->dde_loading); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { ASSERT(dde->dde_lead_zio[p] == NULL); if (ddp->ddp_phys_birth == 0) { ASSERT(ddp->ddp_refcnt == 0); continue; } if (p == DDT_PHYS_DITTO) { /* * Note, we no longer create DDT-DITTO blocks, but we * don't want to leak any written by older software. */ ddt_phys_free(ddt, ddk, ddp, txg); continue; } if (ddp->ddp_refcnt == 0) ddt_phys_free(ddt, ddk, ddp, txg); total_refcnt += ddp->ddp_refcnt; } /* We do not create new DDT-DITTO blocks. */ ASSERT0(dde->dde_phys[DDT_PHYS_DITTO].ddp_phys_birth); if (total_refcnt > 1) nclass = DDT_CLASS_DUPLICATE; else nclass = DDT_CLASS_UNIQUE; if (otype != DDT_TYPES && (otype != ntype || oclass != nclass || total_refcnt == 0)) { VERIFY(ddt_object_remove(ddt, otype, oclass, dde, tx) == 0); ASSERT(ddt_object_lookup(ddt, otype, oclass, dde) == ENOENT); } if (total_refcnt != 0) { dde->dde_type = ntype; dde->dde_class = nclass; ddt_stat_update(ddt, dde, 0); if (!ddt_object_exists(ddt, ntype, nclass)) ddt_object_create(ddt, ntype, nclass, tx); VERIFY(ddt_object_update(ddt, ntype, nclass, dde, tx) == 0); /* * If the class changes, the order that we scan this bp * changes. If it decreases, we could miss it, so * scan it right now. (This covers both class changing * while we are doing ddt_walk(), and when we are * traversing.) */ if (nclass < oclass) { dsl_scan_ddt_entry(dp->dp_scan, ddt->ddt_checksum, dde, tx); } } } static void ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx, uint64_t txg) { spa_t *spa = ddt->ddt_spa; ddt_entry_t *dde; void *cookie = NULL; if (avl_numnodes(&ddt->ddt_tree) == 0) return; ASSERT(spa->spa_uberblock.ub_version >= SPA_VERSION_DEDUP); if (spa->spa_ddt_stat_object == 0) { spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os, DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DDT_STATS, tx); } while ((dde = avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) { ddt_sync_entry(ddt, dde, tx, txg); ddt_free(dde); } for (enum ddt_type type = 0; type < DDT_TYPES; type++) { uint64_t add, count = 0; for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { if (ddt_object_exists(ddt, type, class)) { ddt_object_sync(ddt, type, class, tx); VERIFY(ddt_object_count(ddt, type, class, &add) == 0); count += add; } } for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { if (count == 0 && ddt_object_exists(ddt, type, class)) ddt_object_destroy(ddt, type, class, tx); } } memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, sizeof (ddt->ddt_histogram)); spa->spa_dedup_dspace = ~0ULL; } void ddt_sync(spa_t *spa, uint64_t txg) { dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; dmu_tx_t *tx; zio_t *rio; ASSERT(spa_syncing_txg(spa) == txg); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); rio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL); /* * This function may cause an immediate scan of ddt blocks (see * the comment above dsl_scan_ddt() for details). We set the * scan's root zio here so that we can wait for any scan IOs in * addition to the regular ddt IOs. */ ASSERT3P(scn->scn_zio_root, ==, NULL); scn->scn_zio_root = rio; for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; if (ddt == NULL) continue; ddt_sync_table(ddt, tx, txg); ddt_repair_table(ddt, rio); } (void) zio_wait(rio); scn->scn_zio_root = NULL; dmu_tx_commit(tx); } int ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde) { do { do { do { ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum]; int error = ENOENT; if (ddt_object_exists(ddt, ddb->ddb_type, ddb->ddb_class)) { error = ddt_object_walk(ddt, ddb->ddb_type, ddb->ddb_class, &ddb->ddb_cursor, dde); } dde->dde_type = ddb->ddb_type; dde->dde_class = ddb->ddb_class; if (error == 0) return (0); if (error != ENOENT) return (error); ddb->ddb_cursor = 0; } while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS); ddb->ddb_checksum = 0; } while (++ddb->ddb_type < DDT_TYPES); ddb->ddb_type = 0; } while (++ddb->ddb_class < DDT_CLASSES); return (SET_ERROR(ENOENT)); } +/* + * This function is used by Block Cloning (brt.c) to increase reference + * counter for the DDT entry if the block is already in DDT. + * + * Return false if the block, despite having the D bit set, is not present + * in the DDT. Currently this is not possible but might be in the future. + * See the comment below. + */ +boolean_t +ddt_addref(spa_t *spa, const blkptr_t *bp) +{ + ddt_t *ddt; + ddt_entry_t *dde; + boolean_t result; + + spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); + ddt = ddt_select(spa, bp); + ddt_enter(ddt); + + dde = ddt_lookup(ddt, bp, B_TRUE); + ASSERT(dde != NULL); + + if (dde->dde_type < DDT_TYPES) { + ddt_phys_t *ddp; + + ASSERT3S(dde->dde_class, <, DDT_CLASSES); + + ddp = &dde->dde_phys[BP_GET_NDVAS(bp)]; + if (ddp->ddp_refcnt == 0) { + /* This should never happen? */ + ddt_phys_fill(ddp, bp); + } + ddt_phys_addref(ddp); + result = B_TRUE; + } else { + /* + * At the time of implementating this if the block has the + * DEDUP flag set it must exist in the DEDUP table, but + * there are many advocates that want ability to remove + * entries from DDT with refcnt=1. If this will happen, + * we may have a block with the DEDUP set, but which doesn't + * have a corresponding entry in the DDT. Be ready. + */ + ASSERT3S(dde->dde_class, ==, DDT_CLASSES); + ddt_remove(ddt, dde); + result = B_FALSE; + } + + ddt_exit(ddt); + spa_config_exit(spa, SCL_ZIO, FTAG); + + return (result); +} + ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW, "Enable prefetching dedup-ed blks"); diff --git a/module/zfs/dmu.c b/module/zfs/dmu.c index 9b8fc7e49b2d..e6bade11c859 100644 --- a/module/zfs/dmu.c +++ b/module/zfs/dmu.c @@ -1,2387 +1,2538 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2015 by Chunwei Chen. All rights reserved. * Copyright (c) 2019 Datto Inc. * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019, Allan Jude * Copyright (c) 2022 Hewlett Packard Enterprise Development LP. + * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #ifdef _KERNEL #include #include #endif /* * Enable/disable nopwrite feature. */ static int zfs_nopwrite_enabled = 1; /* * Tunable to control percentage of dirtied L1 blocks from frees allowed into * one TXG. After this threshold is crossed, additional dirty blocks from frees * will wait until the next TXG. * A value of zero will disable this throttle. */ static uint_t zfs_per_txg_dirty_frees_percent = 30; /* * Enable/disable forcing txg sync when dirty checking for holes with lseek(). * By default this is enabled to ensure accurate hole reporting, it can result * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads. * Disabling this option will result in holes never being reported in dirty * files which is always safe. */ static int zfs_dmu_offset_next_sync = 1; /* * Limit the amount we can prefetch with one call to this amount. This * helps to limit the amount of memory that can be used by prefetching. * Larger objects should be prefetched a bit at a time. */ uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"}, {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"}, {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" }, {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"}, {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"}, {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } }; dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { { byteswap_uint8_array, "uint8" }, { byteswap_uint16_array, "uint16" }, { byteswap_uint32_array, "uint32" }, { byteswap_uint64_array, "uint64" }, { zap_byteswap, "zap" }, { dnode_buf_byteswap, "dnode" }, { dmu_objset_byteswap, "objset" }, { zfs_znode_byteswap, "znode" }, { zfs_oldacl_byteswap, "oldacl" }, { zfs_acl_byteswap, "acl" } }; static int dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, const void *tag, dmu_buf_t **dbp) { uint64_t blkid; dmu_buf_impl_t *db; rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, 0, offset); db = dbuf_hold(dn, blkid, tag); rw_exit(&dn->dn_struct_rwlock); if (db == NULL) { *dbp = NULL; return (SET_ERROR(EIO)); } *dbp = &db->db; return (0); } int dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, const void *tag, dmu_buf_t **dbp) { dnode_t *dn; uint64_t blkid; dmu_buf_impl_t *db; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, 0, offset); db = dbuf_hold(dn, blkid, tag); rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); if (db == NULL) { *dbp = NULL; return (SET_ERROR(EIO)); } *dbp = &db->db; return (err); } int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, const void *tag, dmu_buf_t **dbp, int flags) { int err; int db_flags = DB_RF_CANFAIL; if (flags & DMU_READ_NO_PREFETCH) db_flags |= DB_RF_NOPREFETCH; if (flags & DMU_READ_NO_DECRYPT) db_flags |= DB_RF_NO_DECRYPT; err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); if (err == 0) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); err = dbuf_read(db, NULL, db_flags); if (err != 0) { dbuf_rele(db, tag); *dbp = NULL; } } return (err); } int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, const void *tag, dmu_buf_t **dbp, int flags) { int err; int db_flags = DB_RF_CANFAIL; if (flags & DMU_READ_NO_PREFETCH) db_flags |= DB_RF_NOPREFETCH; if (flags & DMU_READ_NO_DECRYPT) db_flags |= DB_RF_NO_DECRYPT; err = dmu_buf_hold_noread(os, object, offset, tag, dbp); if (err == 0) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); err = dbuf_read(db, NULL, db_flags); if (err != 0) { dbuf_rele(db, tag); *dbp = NULL; } } return (err); } int dmu_bonus_max(void) { return (DN_OLD_MAX_BONUSLEN); } int dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; int error; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn->dn_bonus != db) { error = SET_ERROR(EINVAL); } else if (newsize < 0 || newsize > db_fake->db_size) { error = SET_ERROR(EINVAL); } else { dnode_setbonuslen(dn, newsize, tx); error = 0; } DB_DNODE_EXIT(db); return (error); } int dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; int error; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (!DMU_OT_IS_VALID(type)) { error = SET_ERROR(EINVAL); } else if (dn->dn_bonus != db) { error = SET_ERROR(EINVAL); } else { dnode_setbonus_type(dn, type, tx); error = 0; } DB_DNODE_EXIT(db); return (error); } dmu_object_type_t dmu_get_bonustype(dmu_buf_t *db_fake) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; dmu_object_type_t type; DB_DNODE_ENTER(db); dn = DB_DNODE(db); type = dn->dn_bonustype; DB_DNODE_EXIT(db); return (type); } int dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) { dnode_t *dn; int error; error = dnode_hold(os, object, FTAG, &dn); dbuf_rm_spill(dn, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dnode_rm_spill(dn, tx); rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); return (error); } /* * Lookup and hold the bonus buffer for the provided dnode. If the dnode * has not yet been allocated a new bonus dbuf a will be allocated. * Returns ENOENT, EIO, or 0. */ int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp, uint32_t flags) { dmu_buf_impl_t *db; int error; uint32_t db_flags = DB_RF_MUST_SUCCEED; if (flags & DMU_READ_NO_PREFETCH) db_flags |= DB_RF_NOPREFETCH; if (flags & DMU_READ_NO_DECRYPT) db_flags |= DB_RF_NO_DECRYPT; rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_bonus == NULL) { if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { rw_exit(&dn->dn_struct_rwlock); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); } if (dn->dn_bonus == NULL) dbuf_create_bonus(dn); } db = dn->dn_bonus; /* as long as the bonus buf is held, the dnode will be held */ if (zfs_refcount_add(&db->db_holds, tag) == 1) { VERIFY(dnode_add_ref(dn, db)); atomic_inc_32(&dn->dn_dbufs_count); } /* * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's * hold and incrementing the dbuf count to ensure that dnode_move() sees * a dnode hold for every dbuf. */ rw_exit(&dn->dn_struct_rwlock); error = dbuf_read(db, NULL, db_flags); if (error) { dnode_evict_bonus(dn); dbuf_rele(db, tag); *dbp = NULL; return (error); } *dbp = &db->db; return (0); } int dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp) { dnode_t *dn; int error; error = dnode_hold(os, object, FTAG, &dn); if (error) return (error); error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH); dnode_rele(dn, FTAG); return (error); } /* * returns ENOENT, EIO, or 0. * * This interface will allocate a blank spill dbuf when a spill blk * doesn't already exist on the dnode. * * if you only want to find an already existing spill db, then * dmu_spill_hold_existing() should be used. */ int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag, dmu_buf_t **dbp) { dmu_buf_impl_t *db = NULL; int err; if ((flags & DB_RF_HAVESTRUCT) == 0) rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_exit(&dn->dn_struct_rwlock); if (db == NULL) { *dbp = NULL; return (SET_ERROR(EIO)); } err = dbuf_read(db, NULL, flags); if (err == 0) *dbp = &db->db; else { dbuf_rele(db, tag); *dbp = NULL; } return (err); } int dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; dnode_t *dn; int err; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { err = SET_ERROR(EINVAL); } else { rw_enter(&dn->dn_struct_rwlock, RW_READER); if (!dn->dn_have_spill) { err = SET_ERROR(ENOENT); } else { err = dmu_spill_hold_by_dnode(dn, DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); } rw_exit(&dn->dn_struct_rwlock); } DB_DNODE_EXIT(db); return (err); } int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag, dmu_buf_t **dbp) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; dnode_t *dn; int err; uint32_t db_flags = DB_RF_CANFAIL; if (flags & DMU_READ_NO_DECRYPT) db_flags |= DB_RF_NO_DECRYPT; DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); DB_DNODE_EXIT(db); return (err); } /* * Note: longer-term, we should modify all of the dmu_buf_*() interfaces * to take a held dnode rather than -- the lookup is wasteful, * and can induce severe lock contention when writing to several files * whose dnodes are in the same block. */ int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) { dmu_buf_t **dbp; zstream_t *zs = NULL; uint64_t blkid, nblks, i; uint32_t dbuf_flags; int err; zio_t *zio = NULL; boolean_t missed = B_FALSE; - ASSERT(length <= DMU_MAX_ACCESS); + ASSERT(!read || length <= DMU_MAX_ACCESS); /* * Note: We directly notify the prefetch code of this read, so that * we can tell it about the multi-block read. dbuf_read() only knows * about the one block it is accessing. */ dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH; if ((flags & DMU_READ_NO_DECRYPT) != 0) dbuf_flags |= DB_RF_NO_DECRYPT; rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_datablkshift) { int blkshift = dn->dn_datablkshift; nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; } else { if (offset + length > dn->dn_datablksz) { zfs_panic_recover("zfs: accessing past end of object " "%llx/%llx (size=%u access=%llu+%llu)", (longlong_t)dn->dn_objset-> os_dsl_dataset->ds_object, (longlong_t)dn->dn_object, dn->dn_datablksz, (longlong_t)offset, (longlong_t)length); rw_exit(&dn->dn_struct_rwlock); return (SET_ERROR(EIO)); } nblks = 1; } dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); if (read) zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); blkid = dbuf_whichblock(dn, 0, offset); if ((flags & DMU_READ_NO_PREFETCH) == 0 && length <= zfetch_array_rd_sz) { /* * Prepare the zfetch before initiating the demand reads, so * that if multiple threads block on same indirect block, we * base predictions on the original less racy request order. */ zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read, B_TRUE); } for (i = 0; i < nblks; i++) { dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); if (db == NULL) { if (zs) dmu_zfetch_run(zs, missed, B_TRUE); rw_exit(&dn->dn_struct_rwlock); dmu_buf_rele_array(dbp, nblks, tag); if (read) zio_nowait(zio); return (SET_ERROR(EIO)); } /* * Initiate async demand data read. * We check the db_state after calling dbuf_read() because * (1) dbuf_read() may change the state to CACHED due to a * hit in the ARC, and (2) on a cache miss, a child will * have been added to "zio" but not yet completed, so the * state will not yet be CACHED. */ if (read) { if (i == nblks - 1 && blkid + i < dn->dn_maxblkid && offset + length < db->db.db_offset + db->db.db_size) { if (offset <= db->db.db_offset) dbuf_flags |= DB_RF_PARTIAL_FIRST; else dbuf_flags |= DB_RF_PARTIAL_MORE; } (void) dbuf_read(db, zio, dbuf_flags); if (db->db_state != DB_CACHED) missed = B_TRUE; } dbp[i] = &db->db; } if (!read) zfs_racct_write(length, nblks); if (zs) dmu_zfetch_run(zs, missed, B_TRUE); rw_exit(&dn->dn_struct_rwlock); if (read) { /* wait for async read i/o */ err = zio_wait(zio); if (err) { dmu_buf_rele_array(dbp, nblks, tag); return (err); } /* wait for other io to complete */ for (i = 0; i < nblks; i++) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); if (db->db_state == DB_UNCACHED) err = SET_ERROR(EIO); mutex_exit(&db->db_mtx); if (err) { dmu_buf_rele_array(dbp, nblks, tag); return (err); } } } *numbufsp = nblks; *dbpp = dbp; return (0); } int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, int read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, numbufsp, dbpp, DMU_READ_PREFETCH); dnode_rele(dn, FTAG); return (err); } int dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, uint64_t length, boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; int err; DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, numbufsp, dbpp, DMU_READ_PREFETCH); DB_DNODE_EXIT(db); return (err); } void dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag) { int i; dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; if (numbufs == 0) return; for (i = 0; i < numbufs; i++) { if (dbp[i]) dbuf_rele(dbp[i], tag); } kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); } /* * Issue prefetch i/os for the given blocks. If level is greater than 0, the * indirect blocks prefetched will be those that point to the blocks containing * the data starting at offset, and continuing to offset + len. * * Note that if the indirect blocks above the blocks being prefetched are not * in cache, they will be asynchronously read in. */ void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, uint64_t len, zio_priority_t pri) { dnode_t *dn; uint64_t blkid; int nblks, err; if (len == 0) { /* they're interested in the bonus buffer */ dn = DMU_META_DNODE(os); if (object == 0 || object >= DN_MAX_OBJECT) return; rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, level, object * sizeof (dnode_phys_t)); dbuf_prefetch(dn, level, blkid, pri, 0); rw_exit(&dn->dn_struct_rwlock); return; } /* * See comment before the definition of dmu_prefetch_max. */ len = MIN(len, dmu_prefetch_max); /* * XXX - Note, if the dnode for the requested object is not * already cached, we will do a *synchronous* read in the * dnode_hold() call. The same is true for any indirects. */ err = dnode_hold(os, object, FTAG, &dn); if (err != 0) return; /* * offset + len - 1 is the last byte we want to prefetch for, and offset * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the * last block we want to prefetch, and dbuf_whichblock(dn, level, * offset) is the first. Then the number we need to prefetch is the * last - first + 1. */ rw_enter(&dn->dn_struct_rwlock, RW_READER); if (level > 0 || dn->dn_datablkshift != 0) { nblks = dbuf_whichblock(dn, level, offset + len - 1) - dbuf_whichblock(dn, level, offset) + 1; } else { nblks = (offset < dn->dn_datablksz); } if (nblks != 0) { blkid = dbuf_whichblock(dn, level, offset); for (int i = 0; i < nblks; i++) dbuf_prefetch(dn, level, blkid + i, pri, 0); } rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); } /* * Get the next "chunk" of file data to free. We traverse the file from * the end so that the file gets shorter over time (if we crashes in the * middle, this will leave us in a better state). We find allocated file * data by simply searching the allocated level 1 indirects. * * On input, *start should be the first offset that does not need to be * freed (e.g. "offset + length"). On return, *start will be the first * offset that should be freed and l1blks is set to the number of level 1 * indirect blocks found within the chunk. */ static int get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks) { uint64_t blks; uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); /* bytes of data covered by a level-1 indirect block */ uint64_t iblkrange = (uint64_t)dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); ASSERT3U(minimum, <=, *start); /* * Check if we can free the entire range assuming that all of the * L1 blocks in this range have data. If we can, we use this * worst case value as an estimate so we can avoid having to look * at the object's actual data. */ uint64_t total_l1blks = (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) / iblkrange; if (total_l1blks <= maxblks) { *l1blks = total_l1blks; *start = minimum; return (0); } ASSERT(ISP2(iblkrange)); for (blks = 0; *start > minimum && blks < maxblks; blks++) { int err; /* * dnode_next_offset(BACKWARDS) will find an allocated L1 * indirect block at or before the input offset. We must * decrement *start so that it is at the end of the region * to search. */ (*start)--; err = dnode_next_offset(dn, DNODE_FIND_BACKWARDS, start, 2, 1, 0); /* if there are no indirect blocks before start, we are done */ if (err == ESRCH) { *start = minimum; break; } else if (err != 0) { *l1blks = blks; return (err); } /* set start to the beginning of this L1 indirect */ *start = P2ALIGN(*start, iblkrange); } if (*start < minimum) *start = minimum; *l1blks = blks; return (0); } /* * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, * otherwise return false. * Used below in dmu_free_long_range_impl() to enable abort when unmounting */ static boolean_t dmu_objset_zfs_unmounting(objset_t *os) { #ifdef _KERNEL if (dmu_objset_type(os) == DMU_OST_ZFS) return (zfs_get_vfs_flag_unmounted(os)); #else (void) os; #endif return (B_FALSE); } static int dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, uint64_t length) { uint64_t object_size; int err; uint64_t dirty_frees_threshold; dsl_pool_t *dp = dmu_objset_pool(os); if (dn == NULL) return (SET_ERROR(EINVAL)); object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; if (offset >= object_size) return (0); if (zfs_per_txg_dirty_frees_percent <= 100) dirty_frees_threshold = zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; else dirty_frees_threshold = zfs_dirty_data_max / 20; if (length == DMU_OBJECT_END || offset + length > object_size) length = object_size - offset; while (length != 0) { uint64_t chunk_end, chunk_begin, chunk_len; uint64_t l1blks; dmu_tx_t *tx; if (dmu_objset_zfs_unmounting(dn->dn_objset)) return (SET_ERROR(EINTR)); chunk_end = chunk_begin = offset + length; /* move chunk_begin backwards to the beginning of this chunk */ err = get_next_chunk(dn, &chunk_begin, offset, &l1blks); if (err) return (err); ASSERT3U(chunk_begin, >=, offset); ASSERT3U(chunk_begin, <=, chunk_end); chunk_len = chunk_end - chunk_begin; tx = dmu_tx_create(os); dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); /* * Mark this transaction as typically resulting in a net * reduction in space used. */ dmu_tx_mark_netfree(tx); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } uint64_t txg = dmu_tx_get_txg(tx); mutex_enter(&dp->dp_lock); uint64_t long_free_dirty = dp->dp_long_free_dirty_pertxg[txg & TXG_MASK]; mutex_exit(&dp->dp_lock); /* * To avoid filling up a TXG with just frees, wait for * the next TXG to open before freeing more chunks if * we have reached the threshold of frees. */ if (dirty_frees_threshold != 0 && long_free_dirty >= dirty_frees_threshold) { DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay); dmu_tx_commit(tx); txg_wait_open(dp, 0, B_TRUE); continue; } /* * In order to prevent unnecessary write throttling, for each * TXG, we track the cumulative size of L1 blocks being dirtied * in dnode_free_range() below. We compare this number to a * tunable threshold, past which we prevent new L1 dirty freeing * blocks from being added into the open TXG. See * dmu_free_long_range_impl() for details. The threshold * prevents write throttle activation due to dirty freeing L1 * blocks taking up a large percentage of zfs_dirty_data_max. */ mutex_enter(&dp->dp_lock); dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] += l1blks << dn->dn_indblkshift; mutex_exit(&dp->dp_lock); DTRACE_PROBE3(free__long__range, uint64_t, long_free_dirty, uint64_t, chunk_len, uint64_t, txg); dnode_free_range(dn, chunk_begin, chunk_len, tx); dmu_tx_commit(tx); length -= chunk_len; } return (0); } int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t length) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err != 0) return (err); err = dmu_free_long_range_impl(os, dn, offset, length); /* * It is important to zero out the maxblkid when freeing the entire * file, so that (a) subsequent calls to dmu_free_long_range_impl() * will take the fast path, and (b) dnode_reallocate() can verify * that the entire file has been freed. */ if (err == 0 && offset == 0 && length == DMU_OBJECT_END) dn->dn_maxblkid = 0; dnode_rele(dn, FTAG); return (err); } int dmu_free_long_object(objset_t *os, uint64_t object) { dmu_tx_t *tx; int err; err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); if (err != 0) return (err); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, object); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); dmu_tx_mark_netfree(tx); err = dmu_tx_assign(tx, TXG_WAIT); if (err == 0) { err = dmu_object_free(os, object, tx); dmu_tx_commit(tx); } else { dmu_tx_abort(tx); } return (err); } int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) { dnode_t *dn; int err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); ASSERT(offset < UINT64_MAX); ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); dnode_free_range(dn, offset, size, tx); dnode_rele(dn, FTAG); return (0); } static int dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, uint32_t flags) { dmu_buf_t **dbp; int numbufs, err = 0; /* * Deal with odd block sizes, where there can't be data past the first * block. If we ever do the tail block optimization, we will need to * handle that here as well. */ if (dn->dn_maxblkid == 0) { uint64_t newsz = offset > dn->dn_datablksz ? 0 : MIN(size, dn->dn_datablksz - offset); memset((char *)buf + newsz, 0, size - newsz); size = newsz; } while (size > 0) { uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); int i; /* * NB: we could do this block-at-a-time, but it's nice * to be reading in parallel. */ err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, TRUE, FTAG, &numbufs, &dbp, flags); if (err) break; for (i = 0; i < numbufs; i++) { uint64_t tocpy; int64_t bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = MIN(db->db_size - bufoff, size); (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy); offset += tocpy; size -= tocpy; buf = (char *)buf + tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); } return (err); } int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, void *buf, uint32_t flags) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err != 0) return (err); err = dmu_read_impl(dn, offset, size, buf, flags); dnode_rele(dn, FTAG); return (err); } int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, uint32_t flags) { return (dmu_read_impl(dn, offset, size, buf, flags)); } static void dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx) { int i; for (i = 0; i < numbufs; i++) { uint64_t tocpy; int64_t bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); (void) memcpy((char *)db->db_data + bufoff, buf, tocpy); if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); offset += tocpy; size -= tocpy; buf = (char *)buf + tocpy; } } void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs; if (size == 0) return; VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp)); dmu_write_impl(dbp, numbufs, offset, size, buf, tx); dmu_buf_rele_array(dbp, numbufs, FTAG); } /* * Note: Lustre is an external consumer of this interface. */ void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs; if (size == 0) return; VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); dmu_write_impl(dbp, numbufs, offset, size, buf, tx); dmu_buf_rele_array(dbp, numbufs, FTAG); } void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; if (size == 0) return; VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp)); for (i = 0; i < numbufs; i++) { dmu_buf_t *db = dbp[i]; dmu_buf_will_not_fill(db, tx); } dmu_buf_rele_array(dbp, numbufs, FTAG); } void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, void *data, uint8_t etype, uint8_t comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx) { dmu_buf_t *db; ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); VERIFY0(dmu_buf_hold_noread(os, object, offset, FTAG, &db)); dmu_buf_write_embedded(db, data, (bp_embedded_type_t)etype, (enum zio_compress)comp, uncompressed_size, compressed_size, byteorder, tx); dmu_buf_rele(db, FTAG); } void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) { int numbufs, i; dmu_buf_t **dbp; VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp)); for (i = 0; i < numbufs; i++) dmu_buf_redact(dbp[i], tx); dmu_buf_rele_array(dbp, numbufs, FTAG); } #ifdef _KERNEL int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size) { dmu_buf_t **dbp; int numbufs, i, err; /* * NB: we could do this block-at-a-time, but it's nice * to be reading in parallel. */ err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, TRUE, FTAG, &numbufs, &dbp, 0); if (err) return (err); for (i = 0; i < numbufs; i++) { uint64_t tocpy; int64_t bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = zfs_uio_offset(uio) - db->db_offset; tocpy = MIN(db->db_size - bufoff, size); err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy, UIO_READ, uio); if (err) break; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } /* * Read 'size' bytes into the uio buffer. * From object zdb->db_object. * Starting at zfs_uio_offset(uio). * * If the caller already has a dbuf in the target object * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), * because we don't have to find the dnode_t for the object. */ int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; dnode_t *dn; int err; if (size == 0) return (0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_read_uio_dnode(dn, uio, size); DB_DNODE_EXIT(db); return (err); } /* * Read 'size' bytes into the uio buffer. * From the specified object * Starting at offset zfs_uio_offset(uio). */ int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size) { dnode_t *dn; int err; if (size == 0) return (0); err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dmu_read_uio_dnode(dn, uio, size); dnode_rele(dn, FTAG); return (err); } int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs; int err = 0; int i; err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); if (err) return (err); for (i = 0; i < numbufs; i++) { uint64_t tocpy; int64_t bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = zfs_uio_offset(uio) - db->db_offset; tocpy = MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); /* * XXX zfs_uiomove could block forever (eg.nfs-backed * pages). There needs to be a uiolockdown() function * to lock the pages in memory, so that zfs_uiomove won't * block. */ err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy, UIO_WRITE, uio); if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); if (err) break; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } /* * Write 'size' bytes from the uio buffer. * To object zdb->db_object. * Starting at offset zfs_uio_offset(uio). * * If the caller already has a dbuf in the target object * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), * because we don't have to find the dnode_t for the object. */ int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; dnode_t *dn; int err; if (size == 0) return (0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_write_uio_dnode(dn, uio, size, tx); DB_DNODE_EXIT(db); return (err); } /* * Write 'size' bytes from the uio buffer. * To the specified object. * Starting at offset zfs_uio_offset(uio). */ int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx) { dnode_t *dn; int err; if (size == 0) return (0); err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dmu_write_uio_dnode(dn, uio, size, tx); dnode_rele(dn, FTAG); return (err); } #endif /* _KERNEL */ /* * Allocate a loaned anonymous arc buffer. */ arc_buf_t * dmu_request_arcbuf(dmu_buf_t *handle, int size) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); } /* * Free a loaned arc buffer. */ void dmu_return_arcbuf(arc_buf_t *buf) { arc_return_buf(buf, FTAG); arc_buf_destroy(buf, FTAG); } /* * A "lightweight" write is faster than a regular write (e.g. * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the * data can not be read or overwritten until the transaction's txg has been * synced. This makes it appropriate for workloads that are known to be * (temporarily) write-only, like "zfs receive". * * A single block is written, starting at the specified offset in bytes. If * the call is successful, it returns 0 and the provided abd has been * consumed (the caller should not free it). */ int dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd, const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx) { dbuf_dirty_record_t *dr = dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx); if (dr == NULL) return (SET_ERROR(EIO)); dr->dt.dll.dr_abd = abd; dr->dt.dll.dr_props = *zp; dr->dt.dll.dr_flags = flags; return (0); } /* * When possible directly assign passed loaned arc buffer to a dbuf. * If this is not possible copy the contents of passed arc buf via * dmu_write(). */ int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, dmu_tx_t *tx) { dmu_buf_impl_t *db; objset_t *os = dn->dn_objset; uint64_t object = dn->dn_object; uint32_t blksz = (uint32_t)arc_buf_lsize(buf); uint64_t blkid; rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, 0, offset); db = dbuf_hold(dn, blkid, FTAG); if (db == NULL) return (SET_ERROR(EIO)); rw_exit(&dn->dn_struct_rwlock); /* * We can only assign if the offset is aligned and the arc buf is the * same size as the dbuf. */ if (offset == db->db.db_offset && blksz == db->db.db_size) { zfs_racct_write(blksz, 1); dbuf_assign_arcbuf(db, buf, tx); dbuf_rele(db, FTAG); } else { /* compressed bufs must always be assignable to their dbuf */ ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); dbuf_rele(db, FTAG); dmu_write(os, object, offset, blksz, buf->b_data, tx); dmu_return_arcbuf(buf); } return (0); } int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, dmu_tx_t *tx) { int err; dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; DB_DNODE_ENTER(dbuf); err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); DB_DNODE_EXIT(dbuf); return (err); } typedef struct { dbuf_dirty_record_t *dsa_dr; dmu_sync_cb_t *dsa_done; zgd_t *dsa_zgd; dmu_tx_t *dsa_tx; } dmu_sync_arg_t; static void dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) { (void) buf; dmu_sync_arg_t *dsa = varg; dmu_buf_t *db = dsa->dsa_zgd->zgd_db; blkptr_t *bp = zio->io_bp; if (zio->io_error == 0) { if (BP_IS_HOLE(bp)) { /* * A block of zeros may compress to a hole, but the * block size still needs to be known for replay. */ BP_SET_LSIZE(bp, db->db_size); } else if (!BP_IS_EMBEDDED(bp)) { ASSERT(BP_GET_LEVEL(bp) == 0); BP_SET_FILL(bp, 1); } } } static void dmu_sync_late_arrival_ready(zio_t *zio) { dmu_sync_ready(zio, NULL, zio->io_private); } static void dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) { (void) buf; dmu_sync_arg_t *dsa = varg; dbuf_dirty_record_t *dr = dsa->dsa_dr; dmu_buf_impl_t *db = dr->dr_dbuf; zgd_t *zgd = dsa->dsa_zgd; /* * Record the vdev(s) backing this blkptr so they can be flushed after * the writes for the lwb have completed. */ if (zio->io_error == 0) { zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); } mutex_enter(&db->db_mtx); ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); if (zio->io_error == 0) { dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); if (dr->dt.dl.dr_nopwrite) { blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; uint8_t chksum = BP_GET_CHECKSUM(bp_orig); ASSERT(BP_EQUAL(bp, bp_orig)); VERIFY(BP_EQUAL(bp, db->db_blkptr)); ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); VERIFY(zio_checksum_table[chksum].ci_flags & ZCHECKSUM_FLAG_NOPWRITE); } dr->dt.dl.dr_overridden_by = *zio->io_bp; dr->dt.dl.dr_override_state = DR_OVERRIDDEN; dr->dt.dl.dr_copies = zio->io_prop.zp_copies; /* * Old style holes are filled with all zeros, whereas * new-style holes maintain their lsize, type, level, * and birth time (see zio_write_compress). While we * need to reset the BP_SET_LSIZE() call that happened * in dmu_sync_ready for old style holes, we do *not* * want to wipe out the information contained in new * style holes. Thus, only zero out the block pointer if * it's an old style hole. */ if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && dr->dt.dl.dr_overridden_by.blk_birth == 0) BP_ZERO(&dr->dt.dl.dr_overridden_by); } else { dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; } cv_broadcast(&db->db_changed); mutex_exit(&db->db_mtx); dsa->dsa_done(dsa->dsa_zgd, zio->io_error); kmem_free(dsa, sizeof (*dsa)); } static void dmu_sync_late_arrival_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; dmu_sync_arg_t *dsa = zio->io_private; zgd_t *zgd = dsa->dsa_zgd; if (zio->io_error == 0) { /* * Record the vdev(s) backing this blkptr so they can be * flushed after the writes for the lwb have completed. */ zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); if (!BP_IS_HOLE(bp)) { blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig; ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); ASSERT(zio->io_bp->blk_birth == zio->io_txg); ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); zio_free(zio->io_spa, zio->io_txg, zio->io_bp); } } dmu_tx_commit(dsa->dsa_tx); dsa->dsa_done(dsa->dsa_zgd, zio->io_error); abd_free(zio->io_abd); kmem_free(dsa, sizeof (*dsa)); } static int dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, zio_prop_t *zp, zbookmark_phys_t *zb) { dmu_sync_arg_t *dsa; dmu_tx_t *tx; tx = dmu_tx_create(os); dmu_tx_hold_space(tx, zgd->zgd_db->db_size); if (dmu_tx_assign(tx, TXG_WAIT) != 0) { dmu_tx_abort(tx); /* Make zl_get_data do txg_waited_synced() */ return (SET_ERROR(EIO)); } /* * In order to prevent the zgd's lwb from being free'd prior to * dmu_sync_late_arrival_done() being called, we have to ensure * the lwb's "max txg" takes this tx's txg into account. */ zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); dsa->dsa_dr = NULL; dsa->dsa_done = done; dsa->dsa_zgd = zgd; dsa->dsa_tx = tx; /* * Since we are currently syncing this txg, it's nontrivial to * determine what BP to nopwrite against, so we disable nopwrite. * * When syncing, the db_blkptr is initially the BP of the previous * txg. We can not nopwrite against it because it will be changed * (this is similar to the non-late-arrival case where the dbuf is * dirty in a future txg). * * Then dbuf_write_ready() sets bp_blkptr to the location we will write. * We can not nopwrite against it because although the BP will not * (typically) be changed, the data has not yet been persisted to this * location. * * Finally, when dbuf_write_done() is called, it is theoretically * possible to always nopwrite, because the data that was written in * this txg is the same data that we are trying to write. However we * would need to check that this dbuf is not dirty in any future * txg's (as we do in the normal dmu_sync() path). For simplicity, we * don't nopwrite in this case. */ zp->zp_nopwrite = B_FALSE; zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); return (0); } /* * Intent log support: sync the block associated with db to disk. * N.B. and XXX: the caller is responsible for making sure that the * data isn't changing while dmu_sync() is writing it. * * Return values: * * EEXIST: this txg has already been synced, so there's nothing to do. * The caller should not log the write. * * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. * The caller should not log the write. * * EALREADY: this block is already in the process of being synced. * The caller should track its progress (somehow). * * EIO: could not do the I/O. * The caller should do a txg_wait_synced(). * * 0: the I/O has been initiated. * The caller should log this blkptr in the done callback. * It is possible that the I/O will fail, in which case * the error will be reported to the done callback and * propagated to pio from zio_done(). */ int dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; objset_t *os = db->db_objset; dsl_dataset_t *ds = os->os_dsl_dataset; dbuf_dirty_record_t *dr, *dr_next; dmu_sync_arg_t *dsa; zbookmark_phys_t zb; zio_prop_t zp; dnode_t *dn; ASSERT(pio != NULL); ASSERT(txg != 0); SET_BOOKMARK(&zb, ds->ds_object, db->db.db_object, db->db_level, db->db_blkid); DB_DNODE_ENTER(db); dn = DB_DNODE(db); dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); DB_DNODE_EXIT(db); /* * If we're frozen (running ziltest), we always need to generate a bp. */ if (txg > spa_freeze_txg(os->os_spa)) return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); /* * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() * and us. If we determine that this txg is not yet syncing, * but it begins to sync a moment later, that's OK because the * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. */ mutex_enter(&db->db_mtx); if (txg <= spa_last_synced_txg(os->os_spa)) { /* * This txg has already synced. There's nothing to do. */ mutex_exit(&db->db_mtx); return (SET_ERROR(EEXIST)); } if (txg <= spa_syncing_txg(os->os_spa)) { /* * This txg is currently syncing, so we can't mess with * the dirty record anymore; just write a new log block. */ mutex_exit(&db->db_mtx); return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); } dr = dbuf_find_dirty_eq(db, txg); if (dr == NULL) { /* * There's no dr for this dbuf, so it must have been freed. * There's no need to log writes to freed blocks, so we're done. */ mutex_exit(&db->db_mtx); return (SET_ERROR(ENOENT)); } dr_next = list_next(&db->db_dirty_records, dr); ASSERT(dr_next == NULL || dr_next->dr_txg < txg); if (db->db_blkptr != NULL) { /* * We need to fill in zgd_bp with the current blkptr so that * the nopwrite code can check if we're writing the same * data that's already on disk. We can only nopwrite if we * are sure that after making the copy, db_blkptr will not * change until our i/o completes. We ensure this by * holding the db_mtx, and only allowing nopwrite if the * block is not already dirty (see below). This is verified * by dmu_sync_done(), which VERIFYs that the db_blkptr has * not changed. */ *zgd->zgd_bp = *db->db_blkptr; } /* * Assume the on-disk data is X, the current syncing data (in * txg - 1) is Y, and the current in-memory data is Z (currently * in dmu_sync). * * We usually want to perform a nopwrite if X and Z are the * same. However, if Y is different (i.e. the BP is going to * change before this write takes effect), then a nopwrite will * be incorrect - we would override with X, which could have * been freed when Y was written. * * (Note that this is not a concern when we are nop-writing from * syncing context, because X and Y must be identical, because * all previous txgs have been synced.) * * Therefore, we disable nopwrite if the current BP could change * before this TXG. There are two ways it could change: by * being dirty (dr_next is non-NULL), or by being freed * (dnode_block_freed()). This behavior is verified by * zio_done(), which VERIFYs that the override BP is identical * to the on-disk BP. */ DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) zp.zp_nopwrite = B_FALSE; DB_DNODE_EXIT(db); ASSERT(dr->dr_txg == txg); if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { /* * We have already issued a sync write for this buffer, * or this buffer has already been synced. It could not * have been dirtied since, or we would have cleared the state. */ mutex_exit(&db->db_mtx); return (SET_ERROR(EALREADY)); } ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; mutex_exit(&db->db_mtx); dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); dsa->dsa_dr = dr; dsa->dsa_done = done; dsa->dsa_zgd = zgd; dsa->dsa_tx = NULL; zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp, dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db), &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); return (0); } int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dnode_set_nlevels(dn, nlevels, tx); dnode_rele(dn, FTAG); return (err); } int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, dmu_tx_t *tx) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dnode_set_blksz(dn, size, ibs, tx); dnode_rele(dn, FTAG); return (err); } int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, dmu_tx_t *tx) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); return (0); } void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, dmu_tx_t *tx) { dnode_t *dn; /* * Send streams include each object's checksum function. This * check ensures that the receiving system can understand the * checksum function transmitted. */ ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); VERIFY0(dnode_hold(os, object, FTAG, &dn)); ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); dn->dn_checksum = checksum; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); } void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, dmu_tx_t *tx) { dnode_t *dn; /* * Send streams include each object's compression function. This * check ensures that the receiving system can understand the * compression function transmitted. */ ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); VERIFY0(dnode_hold(os, object, FTAG, &dn)); dn->dn_compress = compress; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); } /* * When the "redundant_metadata" property is set to "most", only indirect * blocks of this level and higher will have an additional ditto block. */ static const int zfs_redundant_metadata_most_ditto_level = 2; void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) { dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)); enum zio_checksum checksum = os->os_checksum; enum zio_compress compress = os->os_compress; uint8_t complevel = os->os_complevel; enum zio_checksum dedup_checksum = os->os_dedup_checksum; boolean_t dedup = B_FALSE; boolean_t nopwrite = B_FALSE; boolean_t dedup_verify = os->os_dedup_verify; boolean_t encrypt = B_FALSE; int copies = os->os_copies; /* * We maintain different write policies for each of the following * types of data: * 1. metadata * 2. preallocated blocks (i.e. level-0 blocks of a dump device) * 3. all other level 0 blocks */ if (ismd) { /* * XXX -- we should design a compression algorithm * that specializes in arrays of bps. */ compress = zio_compress_select(os->os_spa, ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); /* * Metadata always gets checksummed. If the data * checksum is multi-bit correctable, and it's not a * ZBT-style checksum, then it's suitable for metadata * as well. Otherwise, the metadata checksum defaults * to fletcher4. */ if (!(zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_METADATA) || (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED)) checksum = ZIO_CHECKSUM_FLETCHER_4; switch (os->os_redundant_metadata) { case ZFS_REDUNDANT_METADATA_ALL: copies++; break; case ZFS_REDUNDANT_METADATA_MOST: if (level >= zfs_redundant_metadata_most_ditto_level || DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)) copies++; break; case ZFS_REDUNDANT_METADATA_SOME: if (DMU_OT_IS_CRITICAL(type)) copies++; break; case ZFS_REDUNDANT_METADATA_NONE: break; } } else if (wp & WP_NOFILL) { ASSERT(level == 0); /* * If we're writing preallocated blocks, we aren't actually * writing them so don't set any policy properties. These * blocks are currently only used by an external subsystem * outside of zfs (i.e. dump) and not written by the zio * pipeline. */ compress = ZIO_COMPRESS_OFF; checksum = ZIO_CHECKSUM_OFF; } else { compress = zio_compress_select(os->os_spa, dn->dn_compress, compress); complevel = zio_complevel_select(os->os_spa, compress, complevel, complevel); checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? zio_checksum_select(dn->dn_checksum, checksum) : dedup_checksum; /* * Determine dedup setting. If we are in dmu_sync(), * we won't actually dedup now because that's all * done in syncing context; but we do want to use the * dedup checksum. If the checksum is not strong * enough to ensure unique signatures, force * dedup_verify. */ if (dedup_checksum != ZIO_CHECKSUM_OFF) { dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; if (!(zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP)) dedup_verify = B_TRUE; } /* * Enable nopwrite if we have secure enough checksum * algorithm (see comment in zio_nop_write) and * compression is enabled. We don't enable nopwrite if * dedup is enabled as the two features are mutually * exclusive. */ nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_NOPWRITE) && compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); } /* * All objects in an encrypted objset are protected from modification * via a MAC. Encrypted objects store their IV and salt in the last DVA * in the bp, so we cannot use all copies. Encrypted objects are also * not subject to nopwrite since writing the same data will still * result in a new ciphertext. Only encrypted blocks can be dedup'd * to avoid ambiguity in the dedup code since the DDT does not store * object types. */ if (os->os_encrypted && (wp & WP_NOFILL) == 0) { encrypt = B_TRUE; if (DMU_OT_IS_ENCRYPTED(type)) { copies = MIN(copies, SPA_DVAS_PER_BP - 1); nopwrite = B_FALSE; } else { dedup = B_FALSE; } if (level <= 0 && (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { compress = ZIO_COMPRESS_EMPTY; } } zp->zp_compress = compress; zp->zp_complevel = complevel; zp->zp_checksum = checksum; zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; zp->zp_level = level; zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); zp->zp_dedup = dedup; zp->zp_dedup_verify = dedup && dedup_verify; zp->zp_nopwrite = nopwrite; zp->zp_encrypt = encrypt; zp->zp_byteorder = ZFS_HOST_BYTEORDER; memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN); memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN); memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN); zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? os->os_zpl_special_smallblock : 0; ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); } /* * This function is only called from zfs_holey_common() for zpl_llseek() * in order to determine the location of holes. In order to accurately * report holes all dirty data must be synced to disk. This causes extremely * poor performance when seeking for holes in a dirty file. As a compromise, * only provide hole data when the dnode is clean. When a dnode is dirty * report the dnode as having no holes which is always a safe thing to do. */ int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) { dnode_t *dn; int err; restart: err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dnode_is_dirty(dn)) { /* * If the zfs_dmu_offset_next_sync module option is enabled * then strict hole reporting has been requested. Dirty * dnodes must be synced to disk to accurately report all * holes. When disabled dirty dnodes are reported to not * have any holes which is always safe. * * When called by zfs_holey_common() the zp->z_rangelock * is held to prevent zfs_write() and mmap writeback from * re-dirtying the dnode after txg_wait_synced(). */ if (zfs_dmu_offset_next_sync) { rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); txg_wait_synced(dmu_objset_pool(os), 0); goto restart; } err = SET_ERROR(EBUSY); } else { err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK | (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); } rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); return (err); } +int +dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, + dmu_tx_t *tx, blkptr_t *bps, size_t *nbpsp) +{ + dmu_buf_t **dbp, *dbuf; + dmu_buf_impl_t *db; + blkptr_t *bp; + int error, numbufs; + + error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG, + &numbufs, &dbp); + if (error != 0) { + if (error == ESRCH) { + error = SET_ERROR(ENXIO); + } + return (error); + } + + ASSERT3U(numbufs, <=, *nbpsp); + + for (int i = 0; i < numbufs; i++) { + dbuf = dbp[i]; + db = (dmu_buf_impl_t *)dbuf; + bp = db->db_blkptr; + + /* + * If the block is not on the disk yet, it has no BP assigned. + * There is not much we can do... + */ + if (!list_is_empty(&db->db_dirty_records)) { + dbuf_dirty_record_t *dr; + + dr = list_head(&db->db_dirty_records); + if (dr->dt.dl.dr_brtwrite) { + /* + * This is very special case where we clone a + * block and in the same transaction group we + * read its BP (most likely to clone the clone). + */ + bp = &dr->dt.dl.dr_overridden_by; + } else { + /* + * The block was modified in the same + * transaction group. + */ + error = SET_ERROR(EAGAIN); + goto out; + } + } + if (bp == NULL) { + /* + * The block was created in this transaction group, + * so it has no BP yet. + */ + error = SET_ERROR(EAGAIN); + goto out; + } + if (dmu_buf_is_dirty(dbuf, tx)) { + error = SET_ERROR(EAGAIN); + goto out; + } + /* + * Make sure we clone only data blocks. + */ + if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) { + error = SET_ERROR(EINVAL); + goto out; + } + + bps[i] = *bp; + } + + *nbpsp = numbufs; +out: + dmu_buf_rele_array(dbp, numbufs, FTAG); + + return (error); +} + +void +dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, + dmu_tx_t *tx, const blkptr_t *bps, size_t nbps, boolean_t replay) +{ + spa_t *spa; + dmu_buf_t **dbp, *dbuf; + dmu_buf_impl_t *db; + struct dirty_leaf *dl; + dbuf_dirty_record_t *dr; + const blkptr_t *bp; + int numbufs; + + spa = os->os_spa; + + VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG, + &numbufs, &dbp)); + ASSERT3U(nbps, ==, numbufs); + + for (int i = 0; i < numbufs; i++) { + dbuf = dbp[i]; + db = (dmu_buf_impl_t *)dbuf; + bp = &bps[i]; + + ASSERT0(db->db_level); + ASSERT(db->db_blkid != DMU_BONUS_BLKID); + ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp)); + + if (db->db_state == DB_UNCACHED) { + /* + * XXX-PJD: If the dbuf is already cached, calling + * dmu_buf_will_not_fill() will panic on assertion + * (db->db_buf == NULL) in dbuf_clear_data(), + * which is called from dbuf_noread() in DB_NOFILL + * case. I'm not 100% sure this is the right thing + * to do, but it seems to work. + */ + dmu_buf_will_not_fill(dbuf, tx); + } + + dr = list_head(&db->db_dirty_records); + ASSERT3U(dr->dr_txg, ==, tx->tx_txg); + dl = &dr->dt.dl; + dl->dr_overridden_by = *bp; + dl->dr_brtwrite = B_TRUE; + + dl->dr_override_state = DR_OVERRIDDEN; + if (BP_IS_HOLE(bp)) { + dl->dr_overridden_by.blk_birth = 0; + dl->dr_overridden_by.blk_phys_birth = 0; + } else { + dl->dr_overridden_by.blk_birth = dr->dr_txg; + dl->dr_overridden_by.blk_phys_birth = + BP_PHYSICAL_BIRTH(bp); + } + + /* + * When data in embedded into BP there is no need to create + * BRT entry as there is no data block. Just copy the BP as + * it contains the data. + * Also, when replaying ZIL we don't want to bump references + * in the BRT as it was already done during ZIL claim. + */ + if (!replay && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { + brt_pending_add(spa, bp, tx); + } + } + + dmu_buf_rele_array(dbp, numbufs, FTAG); +} + void __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) { dnode_phys_t *dnp = dn->dn_phys; doi->doi_data_block_size = dn->dn_datablksz; doi->doi_metadata_block_size = dn->dn_indblkshift ? 1ULL << dn->dn_indblkshift : 0; doi->doi_type = dn->dn_type; doi->doi_bonus_type = dn->dn_bonustype; doi->doi_bonus_size = dn->dn_bonuslen; doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; doi->doi_indirection = dn->dn_nlevels; doi->doi_checksum = dn->dn_checksum; doi->doi_compress = dn->dn_compress; doi->doi_nblkptr = dn->dn_nblkptr; doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; doi->doi_fill_count = 0; for (int i = 0; i < dnp->dn_nblkptr; i++) doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); } void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) { rw_enter(&dn->dn_struct_rwlock, RW_READER); mutex_enter(&dn->dn_mtx); __dmu_object_info_from_dnode(dn, doi); mutex_exit(&dn->dn_mtx); rw_exit(&dn->dn_struct_rwlock); } /* * Get information on a DMU object. * If doi is NULL, just indicates whether the object exists. */ int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) { dnode_t *dn; int err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); if (doi != NULL) dmu_object_info_from_dnode(dn, doi); dnode_rele(dn, FTAG); return (0); } /* * As above, but faster; can be used when you have a held dbuf in hand. */ void dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; DB_DNODE_ENTER(db); dmu_object_info_from_dnode(DB_DNODE(db), doi); DB_DNODE_EXIT(db); } /* * Faster still when you only care about the size. */ void dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, u_longlong_t *nblk512) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); *blksize = dn->dn_datablksz; /* add in number of slots used for the dnode itself */ *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> SPA_MINBLOCKSHIFT) + dn->dn_num_slots; DB_DNODE_EXIT(db); } void dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); *dnsize = dn->dn_num_slots << DNODE_SHIFT; DB_DNODE_EXIT(db); } void byteswap_uint64_array(void *vbuf, size_t size) { uint64_t *buf = vbuf; size_t count = size >> 3; int i; ASSERT((size & 7) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_64(buf[i]); } void byteswap_uint32_array(void *vbuf, size_t size) { uint32_t *buf = vbuf; size_t count = size >> 2; int i; ASSERT((size & 3) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_32(buf[i]); } void byteswap_uint16_array(void *vbuf, size_t size) { uint16_t *buf = vbuf; size_t count = size >> 1; int i; ASSERT((size & 1) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_16(buf[i]); } void byteswap_uint8_array(void *vbuf, size_t size) { (void) vbuf, (void) size; } void dmu_init(void) { abd_init(); zfs_dbgmsg_init(); sa_cache_init(); dmu_objset_init(); dnode_init(); zfetch_init(); dmu_tx_init(); l2arc_init(); arc_init(); dbuf_init(); } void dmu_fini(void) { arc_fini(); /* arc depends on l2arc, so arc must go first */ l2arc_fini(); dmu_tx_fini(); zfetch_fini(); dbuf_fini(); dnode_fini(); dmu_objset_fini(); sa_cache_fini(); zfs_dbgmsg_fini(); abd_fini(); } EXPORT_SYMBOL(dmu_bonus_hold); EXPORT_SYMBOL(dmu_bonus_hold_by_dnode); EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus); EXPORT_SYMBOL(dmu_buf_rele_array); EXPORT_SYMBOL(dmu_prefetch); EXPORT_SYMBOL(dmu_free_range); EXPORT_SYMBOL(dmu_free_long_range); EXPORT_SYMBOL(dmu_free_long_object); EXPORT_SYMBOL(dmu_read); EXPORT_SYMBOL(dmu_read_by_dnode); EXPORT_SYMBOL(dmu_write); EXPORT_SYMBOL(dmu_write_by_dnode); EXPORT_SYMBOL(dmu_prealloc); EXPORT_SYMBOL(dmu_object_info); EXPORT_SYMBOL(dmu_object_info_from_dnode); EXPORT_SYMBOL(dmu_object_info_from_db); EXPORT_SYMBOL(dmu_object_size_from_db); EXPORT_SYMBOL(dmu_object_dnsize_from_db); EXPORT_SYMBOL(dmu_object_set_nlevels); EXPORT_SYMBOL(dmu_object_set_blocksize); EXPORT_SYMBOL(dmu_object_set_maxblkid); EXPORT_SYMBOL(dmu_object_set_checksum); EXPORT_SYMBOL(dmu_object_set_compress); EXPORT_SYMBOL(dmu_offset_next); EXPORT_SYMBOL(dmu_write_policy); EXPORT_SYMBOL(dmu_sync); EXPORT_SYMBOL(dmu_request_arcbuf); EXPORT_SYMBOL(dmu_return_arcbuf); EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode); EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf); EXPORT_SYMBOL(dmu_buf_hold); EXPORT_SYMBOL(dmu_ot); ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW, "Enable NOP writes"); ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW, "Percentage of dirtied blocks from frees in one TXG"); ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW, "Enable forcing txg sync to find holes"); /* CSTYLED */ ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW, "Limit one prefetch call to this size"); diff --git a/module/zfs/dmu_tx.c b/module/zfs/dmu_tx.c index 815e27a6c7f7..1c5608c4541b 100644 --- a/module/zfs/dmu_tx.c +++ b/module/zfs/dmu_tx.c @@ -1,1445 +1,1474 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, uint64_t arg1, uint64_t arg2); dmu_tx_stats_t dmu_tx_stats = { { "dmu_tx_assigned", KSTAT_DATA_UINT64 }, { "dmu_tx_delay", KSTAT_DATA_UINT64 }, { "dmu_tx_error", KSTAT_DATA_UINT64 }, { "dmu_tx_suspended", KSTAT_DATA_UINT64 }, { "dmu_tx_group", KSTAT_DATA_UINT64 }, { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 }, { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 }, { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 }, { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 }, { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 }, { "dmu_tx_dirty_frees_delay", KSTAT_DATA_UINT64 }, { "dmu_tx_wrlog_delay", KSTAT_DATA_UINT64 }, { "dmu_tx_quota", KSTAT_DATA_UINT64 }, }; static kstat_t *dmu_tx_ksp; dmu_tx_t * dmu_tx_create_dd(dsl_dir_t *dd) { dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); tx->tx_dir = dd; if (dd != NULL) tx->tx_pool = dd->dd_pool; list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), offsetof(dmu_tx_hold_t, txh_node)); list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t), offsetof(dmu_tx_callback_t, dcb_node)); tx->tx_start = gethrtime(); return (tx); } dmu_tx_t * dmu_tx_create(objset_t *os) { dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir); tx->tx_objset = os; return (tx); } dmu_tx_t * dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) { dmu_tx_t *tx = dmu_tx_create_dd(NULL); TXG_VERIFY(dp->dp_spa, txg); tx->tx_pool = dp; tx->tx_txg = txg; tx->tx_anyobj = TRUE; return (tx); } int dmu_tx_is_syncing(dmu_tx_t *tx) { return (tx->tx_anyobj); } int dmu_tx_private_ok(dmu_tx_t *tx) { return (tx->tx_anyobj); } static dmu_tx_hold_t * dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) { dmu_tx_hold_t *txh; if (dn != NULL) { (void) zfs_refcount_add(&dn->dn_holds, tx); if (tx->tx_txg != 0) { mutex_enter(&dn->dn_mtx); /* * dn->dn_assigned_txg == tx->tx_txg doesn't pose a * problem, but there's no way for it to happen (for * now, at least). */ ASSERT(dn->dn_assigned_txg == 0); dn->dn_assigned_txg = tx->tx_txg; (void) zfs_refcount_add(&dn->dn_tx_holds, tx); mutex_exit(&dn->dn_mtx); } } txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); txh->txh_tx = tx; txh->txh_dnode = dn; zfs_refcount_create(&txh->txh_space_towrite); zfs_refcount_create(&txh->txh_memory_tohold); txh->txh_type = type; txh->txh_arg1 = arg1; txh->txh_arg2 = arg2; list_insert_tail(&tx->tx_holds, txh); return (txh); } static dmu_tx_hold_t * dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) { dnode_t *dn = NULL; dmu_tx_hold_t *txh; int err; if (object != DMU_NEW_OBJECT) { err = dnode_hold(os, object, FTAG, &dn); if (err != 0) { tx->tx_err = err; return (NULL); } } txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2); if (dn != NULL) dnode_rele(dn, FTAG); return (txh); } void dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn) { /* * If we're syncing, they can manipulate any object anyhow, and * the hold on the dnode_t can cause problems. */ if (!dmu_tx_is_syncing(tx)) (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0); } /* * This function reads specified data from disk. The specified data will * be needed to perform the transaction -- i.e, it will be read after * we do dmu_tx_assign(). There are two reasons that we read the data now * (before dmu_tx_assign()): * * 1. Reading it now has potentially better performance. The transaction * has not yet been assigned, so the TXG is not held open, and also the * caller typically has less locks held when calling dmu_tx_hold_*() than * after the transaction has been assigned. This reduces the lock (and txg) * hold times, thus reducing lock contention. * * 2. It is easier for callers (primarily the ZPL) to handle i/o errors * that are detected before they start making changes to the DMU state * (i.e. now). Once the transaction has been assigned, and some DMU * state has been changed, it can be difficult to recover from an i/o * error (e.g. to undo the changes already made in memory at the DMU * layer). Typically code to do so does not exist in the caller -- it * assumes that the data has already been cached and thus i/o errors are * not possible. * * It has been observed that the i/o initiated here can be a performance * problem, and it appears to be optional, because we don't look at the * data which is read. However, removing this read would only serve to * move the work elsewhere (after the dmu_tx_assign()), where it may * have a greater impact on performance (in addition to the impact on * fault tolerance noted above). */ static int dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) { int err; dmu_buf_impl_t *db; rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold_level(dn, level, blkid, FTAG); rw_exit(&dn->dn_struct_rwlock); if (db == NULL) return (SET_ERROR(EIO)); /* * PARTIAL_FIRST allows caching for uncacheable blocks. It will * be cleared after dmu_buf_will_dirty() call dbuf_read() again. */ err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH | (level == 0 ? DB_RF_PARTIAL_FIRST : 0)); dbuf_rele(db, FTAG); return (err); } static void dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) { dnode_t *dn = txh->txh_dnode; int err = 0; if (len == 0) return; (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG); if (dn == NULL) return; /* * For i/o error checking, read the blocks that will be needed * to perform the write: the first and last level-0 blocks (if * they are not aligned, i.e. if they are partial-block writes), * and all the level-1 blocks. */ if (dn->dn_maxblkid == 0) { if (off < dn->dn_datablksz && (off > 0 || len < dn->dn_datablksz)) { err = dmu_tx_check_ioerr(NULL, dn, 0, 0); if (err != 0) { txh->txh_tx->tx_err = err; } } } else { zio_t *zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); /* first level-0 block */ uint64_t start = off >> dn->dn_datablkshift; if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) { err = dmu_tx_check_ioerr(zio, dn, 0, start); if (err != 0) { txh->txh_tx->tx_err = err; } } /* last level-0 block */ uint64_t end = (off + len - 1) >> dn->dn_datablkshift; if (end != start && end <= dn->dn_maxblkid && P2PHASE(off + len, dn->dn_datablksz)) { err = dmu_tx_check_ioerr(zio, dn, 0, end); if (err != 0) { txh->txh_tx->tx_err = err; } } /* level-1 blocks */ if (dn->dn_nlevels > 1) { int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (uint64_t i = (start >> shft) + 1; i < end >> shft; i++) { err = dmu_tx_check_ioerr(zio, dn, 1, i); if (err != 0) { txh->txh_tx->tx_err = err; } } } err = zio_wait(zio); if (err != 0) { txh->txh_tx->tx_err = err; } } } static void dmu_tx_count_dnode(dmu_tx_hold_t *txh) { (void) zfs_refcount_add_many(&txh->txh_space_towrite, DNODE_MIN_SIZE, FTAG); } void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) { dmu_tx_hold_t *txh; ASSERT0(tx->tx_txg); ASSERT3U(len, <=, DMU_MAX_ACCESS); ASSERT(len == 0 || UINT64_MAX - off >= len - 1); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_WRITE, off, len); if (txh != NULL) { dmu_tx_count_write(txh, off, len); dmu_tx_count_dnode(txh); } } void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len) { dmu_tx_hold_t *txh; ASSERT0(tx->tx_txg); ASSERT3U(len, <=, DMU_MAX_ACCESS); ASSERT(len == 0 || UINT64_MAX - off >= len - 1); txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len); if (txh != NULL) { dmu_tx_count_write(txh, off, len); dmu_tx_count_dnode(txh); } } /* * This function marks the transaction as being a "net free". The end * result is that refquotas will be disabled for this transaction, and * this transaction will be able to use half of the pool space overhead * (see dsl_pool_adjustedsize()). Therefore this function should only * be called for transactions that we expect will not cause a net increase * in the amount of space used (but it's OK if that is occasionally not true). */ void dmu_tx_mark_netfree(dmu_tx_t *tx) { tx->tx_netfree = B_TRUE; } static void -dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) +dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) { dmu_tx_t *tx = txh->txh_tx; dnode_t *dn = txh->txh_dnode; int err; ASSERT(tx->tx_txg == 0); - dmu_tx_count_dnode(txh); - if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz) return; if (len == DMU_OBJECT_END) len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off; - dmu_tx_count_dnode(txh); - /* * For i/o error checking, we read the first and last level-0 * blocks if they are not aligned, and all the level-1 blocks. * * Note: dbuf_free_range() assumes that we have not instantiated * any level-0 dbufs that will be completely freed. Therefore we must * exercise care to not read or count the first and last blocks * if they are blocksize-aligned. */ if (dn->dn_datablkshift == 0) { if (off != 0 || len < dn->dn_datablksz) dmu_tx_count_write(txh, 0, dn->dn_datablksz); } else { /* first block will be modified if it is not aligned */ if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift)) dmu_tx_count_write(txh, off, 1); /* last block will be modified if it is not aligned */ if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift)) dmu_tx_count_write(txh, off + len, 1); } /* * Check level-1 blocks. */ if (dn->dn_nlevels > 1) { int shift = dn->dn_datablkshift + dn->dn_indblkshift - SPA_BLKPTRSHIFT; uint64_t start = off >> shift; uint64_t end = (off + len) >> shift; ASSERT(dn->dn_indblkshift != 0); /* * dnode_reallocate() can result in an object with indirect * blocks having an odd data block size. In this case, * just check the single block. */ if (dn->dn_datablkshift == 0) start = end = 0; zio_t *zio = zio_root(tx->tx_pool->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); for (uint64_t i = start; i <= end; i++) { uint64_t ibyte = i << shift; err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); i = ibyte >> shift; if (err == ESRCH || i > end) break; if (err != 0) { tx->tx_err = err; (void) zio_wait(zio); return; } (void) zfs_refcount_add_many(&txh->txh_memory_tohold, 1 << dn->dn_indblkshift, FTAG); err = dmu_tx_check_ioerr(zio, dn, 1, i); if (err != 0) { tx->tx_err = err; (void) zio_wait(zio); return; } } err = zio_wait(zio); if (err != 0) { tx->tx_err = err; return; } } } void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) { dmu_tx_hold_t *txh; txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_FREE, off, len); - if (txh != NULL) - (void) dmu_tx_hold_free_impl(txh, off, len); + if (txh != NULL) { + dmu_tx_count_dnode(txh); + dmu_tx_count_free(txh, off, len); + } } void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len) { dmu_tx_hold_t *txh; txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len); - if (txh != NULL) - (void) dmu_tx_hold_free_impl(txh, off, len); + if (txh != NULL) { + dmu_tx_count_dnode(txh); + dmu_tx_count_free(txh, off, len); + } +} + +static void +dmu_tx_count_clone(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) +{ + + /* + * Reuse dmu_tx_count_free(), it does exactly what we need for clone. + */ + dmu_tx_count_free(txh, off, len); +} + +void +dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len) +{ + dmu_tx_hold_t *txh; + + ASSERT0(tx->tx_txg); + ASSERT(len == 0 || UINT64_MAX - off >= len - 1); + + txh = dmu_tx_hold_dnode_impl(tx, dn, THT_CLONE, off, len); + if (txh != NULL) { + dmu_tx_count_dnode(txh); + dmu_tx_count_clone(txh, off, len); + } } static void dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name) { dmu_tx_t *tx = txh->txh_tx; dnode_t *dn = txh->txh_dnode; int err; extern int zap_micro_max_size; ASSERT(tx->tx_txg == 0); dmu_tx_count_dnode(txh); /* * Modifying a almost-full microzap is around the worst case (128KB) * * If it is a fat zap, the worst case would be 7*16KB=112KB: * - 3 blocks overwritten: target leaf, ptrtbl block, header block * - 4 new blocks written if adding: * - 2 blocks for possibly split leaves, * - 2 grown ptrtbl blocks */ (void) zfs_refcount_add_many(&txh->txh_space_towrite, zap_micro_max_size, FTAG); if (dn == NULL) return; ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP); if (dn->dn_maxblkid == 0 || name == NULL) { /* * This is a microzap (only one block), or we don't know * the name. Check the first block for i/o errors. */ err = dmu_tx_check_ioerr(NULL, dn, 0, 0); if (err != 0) { tx->tx_err = err; } } else { /* * Access the name so that we'll check for i/o errors to * the leaf blocks, etc. We ignore ENOENT, as this name * may not yet exist. */ err = zap_lookup_by_dnode(dn, name, 8, 0, NULL); if (err == EIO || err == ECKSUM || err == ENXIO) { tx->tx_err = err; } } } void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name) { dmu_tx_hold_t *txh; ASSERT0(tx->tx_txg); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_ZAP, add, (uintptr_t)name); if (txh != NULL) dmu_tx_hold_zap_impl(txh, name); } void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name) { dmu_tx_hold_t *txh; ASSERT0(tx->tx_txg); ASSERT(dn != NULL); txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name); if (txh != NULL) dmu_tx_hold_zap_impl(txh, name); } void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_BONUS, 0, 0); if (txh) dmu_tx_count_dnode(txh); } void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn) { dmu_tx_hold_t *txh; ASSERT0(tx->tx_txg); txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0); if (txh) dmu_tx_count_dnode(txh); } void dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, THT_SPACE, space, 0); if (txh) { (void) zfs_refcount_add_many( &txh->txh_space_towrite, space, FTAG); } } #ifdef ZFS_DEBUG void dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) { boolean_t match_object = B_FALSE; boolean_t match_offset = B_FALSE; DB_DNODE_ENTER(db); dnode_t *dn = DB_DNODE(db); ASSERT(tx->tx_txg != 0); ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset); ASSERT3U(dn->dn_object, ==, db->db.db_object); if (tx->tx_anyobj) { DB_DNODE_EXIT(db); return; } /* XXX No checking on the meta dnode for now */ if (db->db.db_object == DMU_META_DNODE_OBJECT) { DB_DNODE_EXIT(db); return; } for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; txh = list_next(&tx->tx_holds, txh)) { ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) match_object = TRUE; if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { int datablkshift = dn->dn_datablkshift ? dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; int shift = datablkshift + epbs * db->db_level; uint64_t beginblk = shift >= 64 ? 0 : (txh->txh_arg1 >> shift); uint64_t endblk = shift >= 64 ? 0 : ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); uint64_t blkid = db->db_blkid; /* XXX txh_arg2 better not be zero... */ dprintf("found txh type %x beginblk=%llx endblk=%llx\n", txh->txh_type, (u_longlong_t)beginblk, (u_longlong_t)endblk); switch (txh->txh_type) { case THT_WRITE: if (blkid >= beginblk && blkid <= endblk) match_offset = TRUE; /* * We will let this hold work for the bonus * or spill buffer so that we don't need to * hold it when creating a new object. */ if (blkid == DMU_BONUS_BLKID || blkid == DMU_SPILL_BLKID) match_offset = TRUE; /* * They might have to increase nlevels, * thus dirtying the new TLIBs. Or the * might have to change the block size, * thus dirying the new lvl=0 blk=0. */ if (blkid == 0) match_offset = TRUE; break; case THT_FREE: /* * We will dirty all the level 1 blocks in * the free range and perhaps the first and * last level 0 block. */ if (blkid >= beginblk && (blkid <= endblk || txh->txh_arg2 == DMU_OBJECT_END)) match_offset = TRUE; break; case THT_SPILL: if (blkid == DMU_SPILL_BLKID) match_offset = TRUE; break; case THT_BONUS: if (blkid == DMU_BONUS_BLKID) match_offset = TRUE; break; case THT_ZAP: match_offset = TRUE; break; case THT_NEWOBJECT: match_object = TRUE; break; + case THT_CLONE: + if (blkid >= beginblk && blkid <= endblk) + match_offset = TRUE; + break; default: cmn_err(CE_PANIC, "bad txh_type %d", txh->txh_type); } } if (match_object && match_offset) { DB_DNODE_EXIT(db); return; } } DB_DNODE_EXIT(db); panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", (u_longlong_t)db->db.db_object, db->db_level, (u_longlong_t)db->db_blkid); } #endif /* * If we can't do 10 iops, something is wrong. Let us go ahead * and hit zfs_dirty_data_max. */ static const hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */ /* * We delay transactions when we've determined that the backend storage * isn't able to accommodate the rate of incoming writes. * * If there is already a transaction waiting, we delay relative to when * that transaction finishes waiting. This way the calculated min_time * is independent of the number of threads concurrently executing * transactions. * * If we are the only waiter, wait relative to when the transaction * started, rather than the current time. This credits the transaction for * "time already served", e.g. reading indirect blocks. * * The minimum time for a transaction to take is calculated as: * min_time = scale * (dirty - min) / (max - dirty) * min_time is then capped at zfs_delay_max_ns. * * The delay has two degrees of freedom that can be adjusted via tunables. * The percentage of dirty data at which we start to delay is defined by * zfs_delay_min_dirty_percent. This should typically be at or above * zfs_vdev_async_write_active_max_dirty_percent so that we only start to * delay after writing at full speed has failed to keep up with the incoming * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly * speaking, this variable determines the amount of delay at the midpoint of * the curve. * * delay * 10ms +-------------------------------------------------------------*+ * | *| * 9ms + *+ * | *| * 8ms + *+ * | * | * 7ms + * + * | * | * 6ms + * + * | * | * 5ms + * + * | * | * 4ms + * + * | * | * 3ms + * + * | * | * 2ms + (midpoint) * + * | | ** | * 1ms + v *** + * | zfs_delay_scale ----------> ******** | * 0 +-------------------------------------*********----------------+ * 0% <- zfs_dirty_data_max -> 100% * * Note that since the delay is added to the outstanding time remaining on the * most recent transaction, the delay is effectively the inverse of IOPS. * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve * was chosen such that small changes in the amount of accumulated dirty data * in the first 3/4 of the curve yield relatively small differences in the * amount of delay. * * The effects can be easier to understand when the amount of delay is * represented on a log scale: * * delay * 100ms +-------------------------------------------------------------++ * + + * | | * + *+ * 10ms + *+ * + ** + * | (midpoint) ** | * + | ** + * 1ms + v **** + * + zfs_delay_scale ----------> ***** + * | **** | * + **** + * 100us + ** + * + * + * | * | * + * + * 10us + * + * + + * | | * + + * +--------------------------------------------------------------+ * 0% <- zfs_dirty_data_max -> 100% * * Note here that only as the amount of dirty data approaches its limit does * the delay start to increase rapidly. The goal of a properly tuned system * should be to keep the amount of dirty data out of that range by first * ensuring that the appropriate limits are set for the I/O scheduler to reach * optimal throughput on the backend storage, and then by changing the value * of zfs_delay_scale to increase the steepness of the curve. */ static void dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty) { dsl_pool_t *dp = tx->tx_pool; uint64_t delay_min_bytes, wrlog; hrtime_t wakeup, tx_time = 0, now; /* Calculate minimum transaction time for the dirty data amount. */ delay_min_bytes = zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; if (dirty > delay_min_bytes) { /* * The caller has already waited until we are under the max. * We make them pass us the amount of dirty data so we don't * have to handle the case of it being >= the max, which * could cause a divide-by-zero if it's == the max. */ ASSERT3U(dirty, <, zfs_dirty_data_max); tx_time = zfs_delay_scale * (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty); } /* Calculate minimum transaction time for the TX_WRITE log size. */ wrlog = aggsum_upper_bound(&dp->dp_wrlog_total); delay_min_bytes = zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100; if (wrlog >= zfs_wrlog_data_max) { tx_time = zfs_delay_max_ns; } else if (wrlog > delay_min_bytes) { tx_time = MAX(zfs_delay_scale * (wrlog - delay_min_bytes) / (zfs_wrlog_data_max - wrlog), tx_time); } if (tx_time == 0) return; tx_time = MIN(tx_time, zfs_delay_max_ns); now = gethrtime(); if (now > tx->tx_start + tx_time) return; DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty, uint64_t, tx_time); mutex_enter(&dp->dp_lock); wakeup = MAX(tx->tx_start + tx_time, dp->dp_last_wakeup + tx_time); dp->dp_last_wakeup = wakeup; mutex_exit(&dp->dp_lock); zfs_sleep_until(wakeup); } /* * This routine attempts to assign the transaction to a transaction group. * To do so, we must determine if there is sufficient free space on disk. * * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree() * on it), then it is assumed that there is sufficient free space, * unless there's insufficient slop space in the pool (see the comment * above spa_slop_shift in spa_misc.c). * * If it is not a "netfree" transaction, then if the data already on disk * is over the allowed usage (e.g. quota), this will fail with EDQUOT or * ENOSPC. Otherwise, if the current rough estimate of pending changes, * plus the rough estimate of this transaction's changes, may exceed the * allowed usage, then this will fail with ERESTART, which will cause the * caller to wait for the pending changes to be written to disk (by waiting * for the next TXG to open), and then check the space usage again. * * The rough estimate of pending changes is comprised of the sum of: * * - this transaction's holds' txh_space_towrite * * - dd_tempreserved[], which is the sum of in-flight transactions' * holds' txh_space_towrite (i.e. those transactions that have called * dmu_tx_assign() but not yet called dmu_tx_commit()). * * - dd_space_towrite[], which is the amount of dirtied dbufs. * * Note that all of these values are inflated by spa_get_worst_case_asize(), * which means that we may get ERESTART well before we are actually in danger * of running out of space, but this also mitigates any small inaccuracies * in the rough estimate (e.g. txh_space_towrite doesn't take into account * indirect blocks, and dd_space_towrite[] doesn't take into account changes * to the MOS). * * Note that due to this algorithm, it is possible to exceed the allowed * usage by one transaction. Also, as we approach the allowed usage, * we will allow a very limited amount of changes into each TXG, thus * decreasing performance. */ static int dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how) { spa_t *spa = tx->tx_pool->dp_spa; ASSERT0(tx->tx_txg); if (tx->tx_err) { DMU_TX_STAT_BUMP(dmu_tx_error); return (tx->tx_err); } if (spa_suspended(spa)) { DMU_TX_STAT_BUMP(dmu_tx_suspended); /* * If the user has indicated a blocking failure mode * then return ERESTART which will block in dmu_tx_wait(). * Otherwise, return EIO so that an error can get * propagated back to the VOP calls. * * Note that we always honor the txg_how flag regardless * of the failuremode setting. */ if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && !(txg_how & TXG_WAIT)) return (SET_ERROR(EIO)); return (SET_ERROR(ERESTART)); } if (!tx->tx_dirty_delayed && dsl_pool_need_wrlog_delay(tx->tx_pool)) { tx->tx_wait_dirty = B_TRUE; DMU_TX_STAT_BUMP(dmu_tx_wrlog_delay); return (SET_ERROR(ERESTART)); } if (!tx->tx_dirty_delayed && dsl_pool_need_dirty_delay(tx->tx_pool)) { tx->tx_wait_dirty = B_TRUE; DMU_TX_STAT_BUMP(dmu_tx_dirty_delay); return (SET_ERROR(ERESTART)); } tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); tx->tx_needassign_txh = NULL; /* * NB: No error returns are allowed after txg_hold_open, but * before processing the dnode holds, due to the * dmu_tx_unassign() logic. */ uint64_t towrite = 0; uint64_t tohold = 0; for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; txh = list_next(&tx->tx_holds, txh)) { dnode_t *dn = txh->txh_dnode; if (dn != NULL) { /* * This thread can't hold the dn_struct_rwlock * while assigning the tx, because this can lead to * deadlock. Specifically, if this dnode is already * assigned to an earlier txg, this thread may need * to wait for that txg to sync (the ERESTART case * below). The other thread that has assigned this * dnode to an earlier txg prevents this txg from * syncing until its tx can complete (calling * dmu_tx_commit()), but it may need to acquire the * dn_struct_rwlock to do so (e.g. via * dmu_buf_hold*()). * * Note that this thread can't hold the lock for * read either, but the rwlock doesn't record * enough information to make that assertion. */ ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock)); mutex_enter(&dn->dn_mtx); if (dn->dn_assigned_txg == tx->tx_txg - 1) { mutex_exit(&dn->dn_mtx); tx->tx_needassign_txh = txh; DMU_TX_STAT_BUMP(dmu_tx_group); return (SET_ERROR(ERESTART)); } if (dn->dn_assigned_txg == 0) dn->dn_assigned_txg = tx->tx_txg; ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); (void) zfs_refcount_add(&dn->dn_tx_holds, tx); mutex_exit(&dn->dn_mtx); } towrite += zfs_refcount_count(&txh->txh_space_towrite); tohold += zfs_refcount_count(&txh->txh_memory_tohold); } /* needed allocation: worst-case estimate of write space */ uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite); /* calculate memory footprint estimate */ uint64_t memory = towrite + tohold; if (tx->tx_dir != NULL && asize != 0) { int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx); if (err != 0) return (err); } DMU_TX_STAT_BUMP(dmu_tx_assigned); return (0); } static void dmu_tx_unassign(dmu_tx_t *tx) { if (tx->tx_txg == 0) return; txg_rele_to_quiesce(&tx->tx_txgh); /* * Walk the transaction's hold list, removing the hold on the * associated dnode, and notifying waiters if the refcount drops to 0. */ for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh && txh != tx->tx_needassign_txh; txh = list_next(&tx->tx_holds, txh)) { dnode_t *dn = txh->txh_dnode; if (dn == NULL) continue; mutex_enter(&dn->dn_mtx); ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) { dn->dn_assigned_txg = 0; cv_broadcast(&dn->dn_notxholds); } mutex_exit(&dn->dn_mtx); } txg_rele_to_sync(&tx->tx_txgh); tx->tx_lasttried_txg = tx->tx_txg; tx->tx_txg = 0; } /* * Assign tx to a transaction group; txg_how is a bitmask: * * If TXG_WAIT is set and the currently open txg is full, this function * will wait until there's a new txg. This should be used when no locks * are being held. With this bit set, this function will only fail if * we're truly out of space (or over quota). * * If TXG_WAIT is *not* set and we can't assign into the currently open * txg without blocking, this function will return immediately with * ERESTART. This should be used whenever locks are being held. On an * ERESTART error, the caller should drop all locks, call dmu_tx_wait(), * and try again. * * If TXG_NOTHROTTLE is set, this indicates that this tx should not be * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for * details on the throttle). This is used by the VFS operations, after * they have already called dmu_tx_wait() (though most likely on a * different tx). * * It is guaranteed that subsequent successful calls to dmu_tx_assign() * will assign the tx to monotonically increasing txgs. Of course this is * not strong monotonicity, because the same txg can be returned multiple * times in a row. This guarantee holds both for subsequent calls from * one thread and for multiple threads. For example, it is impossible to * observe the following sequence of events: * * Thread 1 Thread 2 * * dmu_tx_assign(T1, ...) * 1 <- dmu_tx_get_txg(T1) * dmu_tx_assign(T2, ...) * 2 <- dmu_tx_get_txg(T2) * dmu_tx_assign(T3, ...) * 1 <- dmu_tx_get_txg(T3) */ int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how) { int err; ASSERT(tx->tx_txg == 0); ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE)); ASSERT(!dsl_pool_sync_context(tx->tx_pool)); /* If we might wait, we must not hold the config lock. */ IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool)); if ((txg_how & TXG_NOTHROTTLE)) tx->tx_dirty_delayed = B_TRUE; while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { dmu_tx_unassign(tx); if (err != ERESTART || !(txg_how & TXG_WAIT)) return (err); dmu_tx_wait(tx); } txg_rele_to_quiesce(&tx->tx_txgh); return (0); } void dmu_tx_wait(dmu_tx_t *tx) { spa_t *spa = tx->tx_pool->dp_spa; dsl_pool_t *dp = tx->tx_pool; hrtime_t before; ASSERT(tx->tx_txg == 0); ASSERT(!dsl_pool_config_held(tx->tx_pool)); before = gethrtime(); if (tx->tx_wait_dirty) { uint64_t dirty; /* * dmu_tx_try_assign() has determined that we need to wait * because we've consumed much or all of the dirty buffer * space. */ mutex_enter(&dp->dp_lock); if (dp->dp_dirty_total >= zfs_dirty_data_max) DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max); while (dp->dp_dirty_total >= zfs_dirty_data_max) cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock); dirty = dp->dp_dirty_total; mutex_exit(&dp->dp_lock); dmu_tx_delay(tx, dirty); tx->tx_wait_dirty = B_FALSE; /* * Note: setting tx_dirty_delayed only has effect if the * caller used TX_WAIT. Otherwise they are going to * destroy this tx and try again. The common case, * zfs_write(), uses TX_WAIT. */ tx->tx_dirty_delayed = B_TRUE; } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) { /* * If the pool is suspended we need to wait until it * is resumed. Note that it's possible that the pool * has become active after this thread has tried to * obtain a tx. If that's the case then tx_lasttried_txg * would not have been set. */ txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); } else if (tx->tx_needassign_txh) { dnode_t *dn = tx->tx_needassign_txh->txh_dnode; mutex_enter(&dn->dn_mtx); while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) cv_wait(&dn->dn_notxholds, &dn->dn_mtx); mutex_exit(&dn->dn_mtx); tx->tx_needassign_txh = NULL; } else { /* * If we have a lot of dirty data just wait until we sync * out a TXG at which point we'll hopefully have synced * a portion of the changes. */ txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); } spa_tx_assign_add_nsecs(spa, gethrtime() - before); } static void dmu_tx_destroy(dmu_tx_t *tx) { dmu_tx_hold_t *txh; while ((txh = list_head(&tx->tx_holds)) != NULL) { dnode_t *dn = txh->txh_dnode; list_remove(&tx->tx_holds, txh); zfs_refcount_destroy_many(&txh->txh_space_towrite, zfs_refcount_count(&txh->txh_space_towrite)); zfs_refcount_destroy_many(&txh->txh_memory_tohold, zfs_refcount_count(&txh->txh_memory_tohold)); kmem_free(txh, sizeof (dmu_tx_hold_t)); if (dn != NULL) dnode_rele(dn, tx); } list_destroy(&tx->tx_callbacks); list_destroy(&tx->tx_holds); kmem_free(tx, sizeof (dmu_tx_t)); } void dmu_tx_commit(dmu_tx_t *tx) { ASSERT(tx->tx_txg != 0); /* * Go through the transaction's hold list and remove holds on * associated dnodes, notifying waiters if no holds remain. */ for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; txh = list_next(&tx->tx_holds, txh)) { dnode_t *dn = txh->txh_dnode; if (dn == NULL) continue; mutex_enter(&dn->dn_mtx); ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) { dn->dn_assigned_txg = 0; cv_broadcast(&dn->dn_notxholds); } mutex_exit(&dn->dn_mtx); } if (tx->tx_tempreserve_cookie) dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); if (!list_is_empty(&tx->tx_callbacks)) txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks); if (tx->tx_anyobj == FALSE) txg_rele_to_sync(&tx->tx_txgh); dmu_tx_destroy(tx); } void dmu_tx_abort(dmu_tx_t *tx) { ASSERT(tx->tx_txg == 0); /* * Call any registered callbacks with an error code. */ if (!list_is_empty(&tx->tx_callbacks)) dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED)); dmu_tx_destroy(tx); } uint64_t dmu_tx_get_txg(dmu_tx_t *tx) { ASSERT(tx->tx_txg != 0); return (tx->tx_txg); } dsl_pool_t * dmu_tx_pool(dmu_tx_t *tx) { ASSERT(tx->tx_pool != NULL); return (tx->tx_pool); } void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data) { dmu_tx_callback_t *dcb; dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP); dcb->dcb_func = func; dcb->dcb_data = data; list_insert_tail(&tx->tx_callbacks, dcb); } /* * Call all the commit callbacks on a list, with a given error code. */ void dmu_tx_do_callbacks(list_t *cb_list, int error) { dmu_tx_callback_t *dcb; while ((dcb = list_tail(cb_list)) != NULL) { list_remove(cb_list, dcb); dcb->dcb_func(dcb->dcb_data, error); kmem_free(dcb, sizeof (dmu_tx_callback_t)); } } /* * Interface to hold a bunch of attributes. * used for creating new files. * attrsize is the total size of all attributes * to be added during object creation * * For updating/adding a single attribute dmu_tx_hold_sa() should be used. */ /* * hold necessary attribute name for attribute registration. * should be a very rare case where this is needed. If it does * happen it would only happen on the first write to the file system. */ static void dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx) { if (!sa->sa_need_attr_registration) return; for (int i = 0; i != sa->sa_num_attrs; i++) { if (!sa->sa_attr_table[i].sa_registered) { if (sa->sa_reg_attr_obj) dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj, B_TRUE, sa->sa_attr_table[i].sa_name); else dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, sa->sa_attr_table[i].sa_name); } } } void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object) { dmu_tx_hold_t *txh; txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_SPILL, 0, 0); if (txh != NULL) (void) zfs_refcount_add_many(&txh->txh_space_towrite, SPA_OLD_MAXBLOCKSIZE, FTAG); } void dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize) { sa_os_t *sa = tx->tx_objset->os_sa; dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); if (tx->tx_objset->os_sa->sa_master_obj == 0) return; if (tx->tx_objset->os_sa->sa_layout_attr_obj) { dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); } else { dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } dmu_tx_sa_registration_hold(sa, tx); if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill) return; (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, THT_SPILL, 0, 0); } /* * Hold SA attribute * * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size) * * variable_size is the total size of all variable sized attributes * passed to this function. It is not the total size of all * variable size attributes that *may* exist on this object. */ void dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow) { uint64_t object; sa_os_t *sa = tx->tx_objset->os_sa; ASSERT(hdl != NULL); object = sa_handle_object(hdl); dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; DB_DNODE_ENTER(db); dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db)); DB_DNODE_EXIT(db); if (tx->tx_objset->os_sa->sa_master_obj == 0) return; if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 || tx->tx_objset->os_sa->sa_layout_attr_obj == 0) { dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } dmu_tx_sa_registration_hold(sa, tx); if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj) dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); if (sa->sa_force_spill || may_grow || hdl->sa_spill) { ASSERT(tx->tx_txg == 0); dmu_tx_hold_spill(tx, object); } else { dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn->dn_have_spill) { ASSERT(tx->tx_txg == 0); dmu_tx_hold_spill(tx, object); } DB_DNODE_EXIT(db); } } void dmu_tx_init(void) { dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc", KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (dmu_tx_ksp != NULL) { dmu_tx_ksp->ks_data = &dmu_tx_stats; kstat_install(dmu_tx_ksp); } } void dmu_tx_fini(void) { if (dmu_tx_ksp != NULL) { kstat_delete(dmu_tx_ksp); dmu_tx_ksp = NULL; } } #if defined(_KERNEL) EXPORT_SYMBOL(dmu_tx_create); EXPORT_SYMBOL(dmu_tx_hold_write); EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode); EXPORT_SYMBOL(dmu_tx_hold_free); EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode); EXPORT_SYMBOL(dmu_tx_hold_zap); EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode); EXPORT_SYMBOL(dmu_tx_hold_bonus); EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode); EXPORT_SYMBOL(dmu_tx_abort); EXPORT_SYMBOL(dmu_tx_assign); EXPORT_SYMBOL(dmu_tx_wait); EXPORT_SYMBOL(dmu_tx_commit); EXPORT_SYMBOL(dmu_tx_mark_netfree); EXPORT_SYMBOL(dmu_tx_get_txg); EXPORT_SYMBOL(dmu_tx_callback_register); EXPORT_SYMBOL(dmu_tx_do_callbacks); EXPORT_SYMBOL(dmu_tx_hold_spill); EXPORT_SYMBOL(dmu_tx_hold_sa_create); EXPORT_SYMBOL(dmu_tx_hold_sa); #endif diff --git a/module/zfs/dsl_scan.c b/module/zfs/dsl_scan.c index 021cba68cd21..8e3fd126caa5 100644 --- a/module/zfs/dsl_scan.c +++ b/module/zfs/dsl_scan.c @@ -1,4558 +1,4560 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2021 by Delphix. All rights reserved. * Copyright 2016 Gary Mills * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. * Copyright 2019 Joyent, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #ifdef _KERNEL #include #endif /* * Grand theory statement on scan queue sorting * * Scanning is implemented by recursively traversing all indirection levels * in an object and reading all blocks referenced from said objects. This * results in us approximately traversing the object from lowest logical * offset to the highest. For best performance, we would want the logical * blocks to be physically contiguous. However, this is frequently not the * case with pools given the allocation patterns of copy-on-write filesystems. * So instead, we put the I/Os into a reordering queue and issue them in a * way that will most benefit physical disks (LBA-order). * * Queue management: * * Ideally, we would want to scan all metadata and queue up all block I/O * prior to starting to issue it, because that allows us to do an optimal * sorting job. This can however consume large amounts of memory. Therefore * we continuously monitor the size of the queues and constrain them to 5% * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this * limit, we clear out a few of the largest extents at the head of the queues * to make room for more scanning. Hopefully, these extents will be fairly * large and contiguous, allowing us to approach sequential I/O throughput * even without a fully sorted tree. * * Metadata scanning takes place in dsl_scan_visit(), which is called from * dsl_scan_sync() every spa_sync(). If we have either fully scanned all * metadata on the pool, or we need to make room in memory because our * queues are too large, dsl_scan_visit() is postponed and * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies * that metadata scanning and queued I/O issuing are mutually exclusive. This * allows us to provide maximum sequential I/O throughput for the majority of * I/O's issued since sequential I/O performance is significantly negatively * impacted if it is interleaved with random I/O. * * Implementation Notes * * One side effect of the queued scanning algorithm is that the scanning code * needs to be notified whenever a block is freed. This is needed to allow * the scanning code to remove these I/Os from the issuing queue. Additionally, * we do not attempt to queue gang blocks to be issued sequentially since this * is very hard to do and would have an extremely limited performance benefit. * Instead, we simply issue gang I/Os as soon as we find them using the legacy * algorithm. * * Backwards compatibility * * This new algorithm is backwards compatible with the legacy on-disk data * structures (and therefore does not require a new feature flag). * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan * will stop scanning metadata (in logical order) and wait for all outstanding * sorted I/O to complete. Once this is done, we write out a checkpoint * bookmark, indicating that we have scanned everything logically before it. * If the pool is imported on a machine without the new sorting algorithm, * the scan simply resumes from the last checkpoint using the legacy algorithm. */ typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, const zbookmark_phys_t *); static scan_cb_t dsl_scan_scrub_cb; static int scan_ds_queue_compare(const void *a, const void *b); static int scan_prefetch_queue_compare(const void *a, const void *b); static void scan_ds_queue_clear(dsl_scan_t *scn); static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg); static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); static uint64_t dsl_scan_count_data_disks(spa_t *spa); extern uint_t zfs_vdev_async_write_active_min_dirty_percent; static int zfs_scan_blkstats = 0; /* * 'zpool status' uses bytes processed per pass to report throughput and * estimate time remaining. We define a pass to start when the scanning * phase completes for a sequential resilver. Optionally, this value * may be used to reset the pass statistics every N txgs to provide an * estimated completion time based on currently observed performance. */ static uint_t zfs_scan_report_txgs = 0; /* * By default zfs will check to ensure it is not over the hard memory * limit before each txg. If finer-grained control of this is needed * this value can be set to 1 to enable checking before scanning each * block. */ static int zfs_scan_strict_mem_lim = B_FALSE; /* * Maximum number of parallelly executed bytes per leaf vdev. We attempt * to strike a balance here between keeping the vdev queues full of I/Os * at all times and not overflowing the queues to cause long latency, * which would cause long txg sync times. No matter what, we will not * overload the drives with I/O, since that is protected by * zfs_vdev_scrub_max_active. */ static uint64_t zfs_scan_vdev_limit = 16 << 20; static uint_t zfs_scan_issue_strategy = 0; /* don't queue & sort zios, go direct */ static int zfs_scan_legacy = B_FALSE; static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ /* * fill_weight is non-tunable at runtime, so we copy it at module init from * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would * break queue sorting. */ static uint_t zfs_scan_fill_weight = 3; static uint64_t fill_weight; /* See dsl_scan_should_clear() for details on the memory limit tunables */ static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ /* fraction of physmem */ static uint_t zfs_scan_mem_lim_fact = 20; /* fraction of mem lim above */ static uint_t zfs_scan_mem_lim_soft_fact = 20; /* minimum milliseconds to scrub per txg */ static uint_t zfs_scrub_min_time_ms = 1000; /* minimum milliseconds to obsolete per txg */ static uint_t zfs_obsolete_min_time_ms = 500; /* minimum milliseconds to free per txg */ static uint_t zfs_free_min_time_ms = 1000; /* minimum milliseconds to resilver per txg */ static uint_t zfs_resilver_min_time_ms = 3000; static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */ int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; /* max number of blocks to free in a single TXG */ static uint64_t zfs_async_block_max_blocks = UINT64_MAX; /* max number of dedup blocks to free in a single TXG */ static uint64_t zfs_max_async_dedup_frees = 100000; /* set to disable resilver deferring */ static int zfs_resilver_disable_defer = B_FALSE; /* * We wait a few txgs after importing a pool to begin scanning so that * the import / mounting code isn't held up by scrub / resilver IO. * Unfortunately, it is a bit difficult to determine exactly how long * this will take since userspace will trigger fs mounts asynchronously * and the kernel will create zvol minors asynchronously. As a result, * the value provided here is a bit arbitrary, but represents a * reasonable estimate of how many txgs it will take to finish fully * importing a pool */ #define SCAN_IMPORT_WAIT_TXGS 5 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) /* * Enable/disable the processing of the free_bpobj object. */ static int zfs_free_bpobj_enabled = 1; /* the order has to match pool_scan_type */ static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { NULL, dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ }; /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ typedef struct { uint64_t sds_dsobj; uint64_t sds_txg; avl_node_t sds_node; } scan_ds_t; /* * This controls what conditions are placed on dsl_scan_sync_state(): * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0. * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise * write out the scn_phys_cached version. * See dsl_scan_sync_state for details. */ typedef enum { SYNC_OPTIONAL, SYNC_MANDATORY, SYNC_CACHED } state_sync_type_t; /* * This struct represents the minimum information needed to reconstruct a * zio for sequential scanning. This is useful because many of these will * accumulate in the sequential IO queues before being issued, so saving * memory matters here. */ typedef struct scan_io { /* fields from blkptr_t */ uint64_t sio_blk_prop; uint64_t sio_phys_birth; uint64_t sio_birth; zio_cksum_t sio_cksum; uint32_t sio_nr_dvas; /* fields from zio_t */ uint32_t sio_flags; zbookmark_phys_t sio_zb; /* members for queue sorting */ union { avl_node_t sio_addr_node; /* link into issuing queue */ list_node_t sio_list_node; /* link for issuing to disk */ } sio_nodes; /* * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, * depending on how many were in the original bp. Only the * first DVA is really used for sorting and issuing purposes. * The other DVAs (if provided) simply exist so that the zio * layer can find additional copies to repair from in the * event of an error. This array must go at the end of the * struct to allow this for the variable number of elements. */ dva_t sio_dva[]; } scan_io_t; #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) #define SIO_GET_END_OFFSET(sio) \ (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) #define SIO_GET_MUSED(sio) \ (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) struct dsl_scan_io_queue { dsl_scan_t *q_scn; /* associated dsl_scan_t */ vdev_t *q_vd; /* top-level vdev that this queue represents */ zio_t *q_zio; /* scn_zio_root child for waiting on IO */ /* trees used for sorting I/Os and extents of I/Os */ range_tree_t *q_exts_by_addr; zfs_btree_t q_exts_by_size; avl_tree_t q_sios_by_addr; uint64_t q_sio_memused; uint64_t q_last_ext_addr; /* members for zio rate limiting */ uint64_t q_maxinflight_bytes; uint64_t q_inflight_bytes; kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ /* per txg statistics */ uint64_t q_total_seg_size_this_txg; uint64_t q_segs_this_txg; uint64_t q_total_zio_size_this_txg; uint64_t q_zios_this_txg; }; /* private data for dsl_scan_prefetch_cb() */ typedef struct scan_prefetch_ctx { zfs_refcount_t spc_refcnt; /* refcount for memory management */ dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ boolean_t spc_root; /* is this prefetch for an objset? */ uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ } scan_prefetch_ctx_t; /* private data for dsl_scan_prefetch() */ typedef struct scan_prefetch_issue_ctx { avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ blkptr_t spic_bp; /* bp to prefetch */ zbookmark_phys_t spic_zb; /* bookmark to prefetch */ } scan_prefetch_issue_ctx_t; static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio); static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); static void scan_io_queues_destroy(dsl_scan_t *scn); static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; /* sio->sio_nr_dvas must be set so we know which cache to free from */ static void sio_free(scan_io_t *sio) { ASSERT3U(sio->sio_nr_dvas, >, 0); ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); } /* It is up to the caller to set sio->sio_nr_dvas for freeing */ static scan_io_t * sio_alloc(unsigned short nr_dvas) { ASSERT3U(nr_dvas, >, 0); ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); } void scan_init(void) { /* * This is used in ext_size_compare() to weight segments * based on how sparse they are. This cannot be changed * mid-scan and the tree comparison functions don't currently * have a mechanism for passing additional context to the * compare functions. Thus we store this value globally and * we only allow it to be set at module initialization time */ fill_weight = zfs_scan_fill_weight; for (int i = 0; i < SPA_DVAS_PER_BP; i++) { char name[36]; (void) snprintf(name, sizeof (name), "sio_cache_%d", i); sio_cache[i] = kmem_cache_create(name, (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 0, NULL, NULL, NULL, NULL, NULL, 0); } } void scan_fini(void) { for (int i = 0; i < SPA_DVAS_PER_BP; i++) { kmem_cache_destroy(sio_cache[i]); } } static inline boolean_t dsl_scan_is_running(const dsl_scan_t *scn) { return (scn->scn_phys.scn_state == DSS_SCANNING); } boolean_t dsl_scan_resilvering(dsl_pool_t *dp) { return (dsl_scan_is_running(dp->dp_scan) && dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); } static inline void sio2bp(const scan_io_t *sio, blkptr_t *bp) { memset(bp, 0, sizeof (*bp)); bp->blk_prop = sio->sio_blk_prop; bp->blk_phys_birth = sio->sio_phys_birth; bp->blk_birth = sio->sio_birth; bp->blk_fill = 1; /* we always only work with data pointers */ bp->blk_cksum = sio->sio_cksum; ASSERT3U(sio->sio_nr_dvas, >, 0); ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t)); } static inline void bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) { sio->sio_blk_prop = bp->blk_prop; sio->sio_phys_birth = bp->blk_phys_birth; sio->sio_birth = bp->blk_birth; sio->sio_cksum = bp->blk_cksum; sio->sio_nr_dvas = BP_GET_NDVAS(bp); /* * Copy the DVAs to the sio. We need all copies of the block so * that the self healing code can use the alternate copies if the * first is corrupted. We want the DVA at index dva_i to be first * in the sio since this is the primary one that we want to issue. */ for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; } } int dsl_scan_init(dsl_pool_t *dp, uint64_t txg) { int err; dsl_scan_t *scn; spa_t *spa = dp->dp_spa; uint64_t f; scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); scn->scn_dp = dp; /* * It's possible that we're resuming a scan after a reboot so * make sure that the scan_async_destroying flag is initialized * appropriately. */ ASSERT(!scn->scn_async_destroying); scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY); /* * Calculate the max number of in-flight bytes for pool-wide * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). * Limits for the issuing phase are done per top-level vdev and * are handled separately. */ scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), offsetof(scan_ds_t, sds_node)); avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, sizeof (scan_prefetch_issue_ctx_t), offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, "scrub_func", sizeof (uint64_t), 1, &f); if (err == 0) { /* * There was an old-style scrub in progress. Restart a * new-style scrub from the beginning. */ scn->scn_restart_txg = txg; zfs_dbgmsg("old-style scrub was in progress for %s; " "restarting new-style scrub in txg %llu", spa->spa_name, (longlong_t)scn->scn_restart_txg); /* * Load the queue obj from the old location so that it * can be freed by dsl_scan_done(). */ (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, "scrub_queue", sizeof (uint64_t), 1, &scn->scn_phys.scn_queue_obj); } else { err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, &scn->scn_phys); /* * Detect if the pool contains the signature of #2094. If it * does properly update the scn->scn_phys structure and notify * the administrator by setting an errata for the pool. */ if (err == EOVERFLOW) { uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, (23 * sizeof (uint64_t))); err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); if (err == 0) { uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; if (overflow & ~DSL_SCAN_FLAGS_MASK || scn->scn_async_destroying) { spa->spa_errata = ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; return (EOVERFLOW); } memcpy(&scn->scn_phys, zaptmp, SCAN_PHYS_NUMINTS * sizeof (uint64_t)); scn->scn_phys.scn_flags = overflow; /* Required scrub already in progress. */ if (scn->scn_phys.scn_state == DSS_FINISHED || scn->scn_phys.scn_state == DSS_CANCELED) spa->spa_errata = ZPOOL_ERRATA_ZOL_2094_SCRUB; } } if (err == ENOENT) return (0); else if (err) return (err); /* * We might be restarting after a reboot, so jump the issued * counter to how far we've scanned. We know we're consistent * up to here. */ scn->scn_issued_before_pass = scn->scn_phys.scn_examined; if (dsl_scan_is_running(scn) && spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { /* * A new-type scrub was in progress on an old * pool, and the pool was accessed by old * software. Restart from the beginning, since * the old software may have changed the pool in * the meantime. */ scn->scn_restart_txg = txg; zfs_dbgmsg("new-style scrub for %s was modified " "by old software; restarting in txg %llu", spa->spa_name, (longlong_t)scn->scn_restart_txg); } else if (dsl_scan_resilvering(dp)) { /* * If a resilver is in progress and there are already * errors, restart it instead of finishing this scan and * then restarting it. If there haven't been any errors * then remember that the incore DTL is valid. */ if (scn->scn_phys.scn_errors > 0) { scn->scn_restart_txg = txg; zfs_dbgmsg("resilver can't excise DTL_MISSING " "when finished; restarting on %s in txg " "%llu", spa->spa_name, (u_longlong_t)scn->scn_restart_txg); } else { /* it's safe to excise DTL when finished */ spa->spa_scrub_started = B_TRUE; } } } memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); /* reload the queue into the in-core state */ if (scn->scn_phys.scn_queue_obj != 0) { zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, dp->dp_meta_objset, scn->scn_phys.scn_queue_obj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { scan_ds_queue_insert(scn, zfs_strtonum(za.za_name, NULL), za.za_first_integer); } zap_cursor_fini(&zc); } spa_scan_stat_init(spa); vdev_scan_stat_init(spa->spa_root_vdev); return (0); } void dsl_scan_fini(dsl_pool_t *dp) { if (dp->dp_scan != NULL) { dsl_scan_t *scn = dp->dp_scan; if (scn->scn_taskq != NULL) taskq_destroy(scn->scn_taskq); scan_ds_queue_clear(scn); avl_destroy(&scn->scn_queue); scan_ds_prefetch_queue_clear(scn); avl_destroy(&scn->scn_prefetch_queue); kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); dp->dp_scan = NULL; } } static boolean_t dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) { return (scn->scn_restart_txg != 0 && scn->scn_restart_txg <= tx->tx_txg); } boolean_t dsl_scan_resilver_scheduled(dsl_pool_t *dp) { return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); } boolean_t dsl_scan_scrubbing(const dsl_pool_t *dp) { dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; return (scn_phys->scn_state == DSS_SCANNING && scn_phys->scn_func == POOL_SCAN_SCRUB); } boolean_t dsl_scan_is_paused_scrub(const dsl_scan_t *scn) { return (dsl_scan_scrubbing(scn->scn_dp) && scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); } /* * Writes out a persistent dsl_scan_phys_t record to the pool directory. * Because we can be running in the block sorting algorithm, we do not always * want to write out the record, only when it is "safe" to do so. This safety * condition is achieved by making sure that the sorting queues are empty * (scn_queues_pending == 0). When this condition is not true, the sync'd state * is inconsistent with how much actual scanning progress has been made. The * kind of sync to be performed is specified by the sync_type argument. If the * sync is optional, we only sync if the queues are empty. If the sync is * mandatory, we do a hard ASSERT to make sure that the queues are empty. The * third possible state is a "cached" sync. This is done in response to: * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been * destroyed, so we wouldn't be able to restart scanning from it. * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been * superseded by a newer snapshot. * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been * swapped with its clone. * In all cases, a cached sync simply rewrites the last record we've written, * just slightly modified. For the modifications that are performed to the * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. */ static void dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) { int i; spa_t *spa = scn->scn_dp->dp_spa; ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0); if (scn->scn_queues_pending == 0) { for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; if (q == NULL) continue; mutex_enter(&vd->vdev_scan_io_queue_lock); ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, NULL); ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); mutex_exit(&vd->vdev_scan_io_queue_lock); } if (scn->scn_phys.scn_queue_obj != 0) scan_ds_queue_sync(scn, tx); VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, &scn->scn_phys, tx)); memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); if (scn->scn_checkpointing) zfs_dbgmsg("finish scan checkpoint for %s", spa->spa_name); scn->scn_checkpointing = B_FALSE; scn->scn_last_checkpoint = ddi_get_lbolt(); } else if (sync_type == SYNC_CACHED) { VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, &scn->scn_phys_cached, tx)); } } int dsl_scan_setup_check(void *arg, dmu_tx_t *tx) { (void) arg; dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd)) return (SET_ERROR(EBUSY)); return (0); } void dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; pool_scan_func_t *funcp = arg; dmu_object_type_t ot = 0; dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; ASSERT(!dsl_scan_is_running(scn)); ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); memset(&scn->scn_phys, 0, sizeof (scn->scn_phys)); scn->scn_phys.scn_func = *funcp; scn->scn_phys.scn_state = DSS_SCANNING; scn->scn_phys.scn_min_txg = 0; scn->scn_phys.scn_max_txg = tx->tx_txg; scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ scn->scn_phys.scn_start_time = gethrestime_sec(); scn->scn_phys.scn_errors = 0; scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; scn->scn_issued_before_pass = 0; scn->scn_restart_txg = 0; scn->scn_done_txg = 0; scn->scn_last_checkpoint = 0; scn->scn_checkpointing = B_FALSE; spa_scan_stat_init(spa); vdev_scan_stat_init(spa->spa_root_vdev); if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; /* rewrite all disk labels */ vdev_config_dirty(spa->spa_root_vdev); if (vdev_resilver_needed(spa->spa_root_vdev, &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { nvlist_t *aux = fnvlist_alloc(); fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "healing"); spa_event_notify(spa, NULL, aux, ESC_ZFS_RESILVER_START); nvlist_free(aux); } else { spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); } spa->spa_scrub_started = B_TRUE; /* * If this is an incremental scrub, limit the DDT scrub phase * to just the auto-ditto class (for correctness); the rest * of the scrub should go faster using top-down pruning. */ if (scn->scn_phys.scn_min_txg > TXG_INITIAL) scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; /* * When starting a resilver clear any existing rebuild state. * This is required to prevent stale rebuild status from * being reported when a rebuild is run, then a resilver and * finally a scrub. In which case only the scrub status * should be reported by 'zpool status'. */ if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *vd = rvd->vdev_child[i]; vdev_rebuild_clear_sync( (void *)(uintptr_t)vd->vdev_id, tx); } } } /* back to the generic stuff */ if (zfs_scan_blkstats) { if (dp->dp_blkstats == NULL) { dp->dp_blkstats = vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); } memset(&dp->dp_blkstats->zab_type, 0, sizeof (dp->dp_blkstats->zab_type)); } else { if (dp->dp_blkstats) { vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); dp->dp_blkstats = NULL; } } if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) ot = DMU_OT_ZAP_OTHER; scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); spa_history_log_internal(spa, "scan setup", tx, "func=%u mintxg=%llu maxtxg=%llu", *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, (u_longlong_t)scn->scn_phys.scn_max_txg); } /* * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. * Can also be called to resume a paused scrub. */ int dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) { spa_t *spa = dp->dp_spa; dsl_scan_t *scn = dp->dp_scan; /* * Purge all vdev caches and probe all devices. We do this here * rather than in sync context because this requires a writer lock * on the spa_config lock, which we can't do from sync context. The * spa_scrub_reopen flag indicates that vdev_open() should not * attempt to start another scrub. */ spa_vdev_state_enter(spa, SCL_NONE); spa->spa_scrub_reopen = B_TRUE; vdev_reopen(spa->spa_root_vdev); spa->spa_scrub_reopen = B_FALSE; (void) spa_vdev_state_exit(spa, NULL, 0); if (func == POOL_SCAN_RESILVER) { dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); return (0); } if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { /* got scrub start cmd, resume paused scrub */ int err = dsl_scrub_set_pause_resume(scn->scn_dp, POOL_SCRUB_NORMAL); if (err == 0) { spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); return (SET_ERROR(ECANCELED)); } return (SET_ERROR(err)); } return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); } static void dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) { static const char *old_names[] = { "scrub_bookmark", "scrub_ddt_bookmark", "scrub_ddt_class_max", "scrub_queue", "scrub_min_txg", "scrub_max_txg", "scrub_func", "scrub_errors", NULL }; dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; int i; /* Remove any remnants of an old-style scrub. */ for (i = 0; old_names[i]; i++) { (void) zap_remove(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); } if (scn->scn_phys.scn_queue_obj != 0) { VERIFY0(dmu_object_free(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, tx)); scn->scn_phys.scn_queue_obj = 0; } scan_ds_queue_clear(scn); scan_ds_prefetch_queue_clear(scn); scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; /* * If we were "restarted" from a stopped state, don't bother * with anything else. */ if (!dsl_scan_is_running(scn)) { ASSERT(!scn->scn_is_sorted); return; } if (scn->scn_is_sorted) { scan_io_queues_destroy(scn); scn->scn_is_sorted = B_FALSE; if (scn->scn_taskq != NULL) { taskq_destroy(scn->scn_taskq); scn->scn_taskq = NULL; } } scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; spa_notify_waiters(spa); if (dsl_scan_restarting(scn, tx)) spa_history_log_internal(spa, "scan aborted, restarting", tx, "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); else if (!complete) spa_history_log_internal(spa, "scan cancelled", tx, "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); else spa_history_log_internal(spa, "scan done", tx, "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { spa->spa_scrub_active = B_FALSE; /* * If the scrub/resilver completed, update all DTLs to * reflect this. Whether it succeeded or not, vacate * all temporary scrub DTLs. * * As the scrub does not currently support traversing * data that have been freed but are part of a checkpoint, * we don't mark the scrub as done in the DTLs as faults * may still exist in those vdevs. */ if (complete && !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); if (scn->scn_phys.scn_min_txg) { nvlist_t *aux = fnvlist_alloc(); fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "healing"); spa_event_notify(spa, NULL, aux, ESC_ZFS_RESILVER_FINISH); nvlist_free(aux); } else { spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_FINISH); } } else { vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 0, B_TRUE, B_FALSE); } spa_errlog_rotate(spa); /* * Don't clear flag until after vdev_dtl_reassess to ensure that * DTL_MISSING will get updated when possible. */ spa->spa_scrub_started = B_FALSE; /* * We may have finished replacing a device. * Let the async thread assess this and handle the detach. */ spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); /* * Clear any resilver_deferred flags in the config. * If there are drives that need resilvering, kick * off an asynchronous request to start resilver. * vdev_clear_resilver_deferred() may update the config * before the resilver can restart. In the event of * a crash during this period, the spa loading code * will find the drives that need to be resilvered * and start the resilver then. */ if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { spa_history_log_internal(spa, "starting deferred resilver", tx, "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); spa_async_request(spa, SPA_ASYNC_RESILVER); } /* Clear recent error events (i.e. duplicate events tracking) */ if (complete) zfs_ereport_clear(spa, NULL); } scn->scn_phys.scn_end_time = gethrestime_sec(); if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) spa->spa_errata = 0; ASSERT(!dsl_scan_is_running(scn)); } static int dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) { (void) arg; dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; if (!dsl_scan_is_running(scn)) return (SET_ERROR(ENOENT)); return (0); } static void dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) { (void) arg; dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; dsl_scan_done(scn, B_FALSE, tx); dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); } int dsl_scan_cancel(dsl_pool_t *dp) { return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); } static int dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) { pool_scrub_cmd_t *cmd = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_scan_t *scn = dp->dp_scan; if (*cmd == POOL_SCRUB_PAUSE) { /* can't pause a scrub when there is no in-progress scrub */ if (!dsl_scan_scrubbing(dp)) return (SET_ERROR(ENOENT)); /* can't pause a paused scrub */ if (dsl_scan_is_paused_scrub(scn)) return (SET_ERROR(EBUSY)); } else if (*cmd != POOL_SCRUB_NORMAL) { return (SET_ERROR(ENOTSUP)); } return (0); } static void dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) { pool_scrub_cmd_t *cmd = arg; dsl_pool_t *dp = dmu_tx_pool(tx); spa_t *spa = dp->dp_spa; dsl_scan_t *scn = dp->dp_scan; if (*cmd == POOL_SCRUB_PAUSE) { /* can't pause a scrub when there is no in-progress scrub */ spa->spa_scan_pass_scrub_pause = gethrestime_sec(); scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; dsl_scan_sync_state(scn, tx, SYNC_CACHED); spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); spa_notify_waiters(spa); } else { ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); if (dsl_scan_is_paused_scrub(scn)) { /* * We need to keep track of how much time we spend * paused per pass so that we can adjust the scrub rate * shown in the output of 'zpool status' */ spa->spa_scan_pass_scrub_spent_paused += gethrestime_sec() - spa->spa_scan_pass_scrub_pause; spa->spa_scan_pass_scrub_pause = 0; scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; dsl_scan_sync_state(scn, tx, SYNC_CACHED); } } } /* * Set scrub pause/resume state if it makes sense to do so */ int dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) { return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, ZFS_SPACE_CHECK_RESERVED)); } /* start a new scan, or restart an existing one. */ void dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) { if (txg == 0) { dmu_tx_t *tx; tx = dmu_tx_create_dd(dp->dp_mos_dir); VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); txg = dmu_tx_get_txg(tx); dp->dp_scan->scn_restart_txg = txg; dmu_tx_commit(tx); } else { dp->dp_scan->scn_restart_txg = txg; } zfs_dbgmsg("restarting resilver for %s at txg=%llu", dp->dp_spa->spa_name, (longlong_t)txg); } void dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) { zio_free(dp->dp_spa, txg, bp); } void dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) { ASSERT(dsl_pool_sync_context(dp)); zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); } static int scan_ds_queue_compare(const void *a, const void *b) { const scan_ds_t *sds_a = a, *sds_b = b; if (sds_a->sds_dsobj < sds_b->sds_dsobj) return (-1); if (sds_a->sds_dsobj == sds_b->sds_dsobj) return (0); return (1); } static void scan_ds_queue_clear(dsl_scan_t *scn) { void *cookie = NULL; scan_ds_t *sds; while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { kmem_free(sds, sizeof (*sds)); } } static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) { scan_ds_t srch, *sds; srch.sds_dsobj = dsobj; sds = avl_find(&scn->scn_queue, &srch, NULL); if (sds != NULL && txg != NULL) *txg = sds->sds_txg; return (sds != NULL); } static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) { scan_ds_t *sds; avl_index_t where; sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); sds->sds_dsobj = dsobj; sds->sds_txg = txg; VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); avl_insert(&scn->scn_queue, sds, where); } static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) { scan_ds_t srch, *sds; srch.sds_dsobj = dsobj; sds = avl_find(&scn->scn_queue, &srch, NULL); VERIFY(sds != NULL); avl_remove(&scn->scn_queue, sds); kmem_free(sds, sizeof (*sds)); } static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; ASSERT0(scn->scn_queues_pending); ASSERT(scn->scn_phys.scn_queue_obj != 0); VERIFY0(dmu_object_free(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, tx)); scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, DMU_OT_NONE, 0, tx); for (scan_ds_t *sds = avl_first(&scn->scn_queue); sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { VERIFY0(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, sds->sds_dsobj, sds->sds_txg, tx)); } } /* * Computes the memory limit state that we're currently in. A sorted scan * needs quite a bit of memory to hold the sorting queue, so we need to * reasonably constrain the size so it doesn't impact overall system * performance. We compute two limits: * 1) Hard memory limit: if the amount of memory used by the sorting * queues on a pool gets above this value, we stop the metadata * scanning portion and start issuing the queued up and sorted * I/Os to reduce memory usage. * This limit is calculated as a fraction of physmem (by default 5%). * We constrain the lower bound of the hard limit to an absolute * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain * the upper bound to 5% of the total pool size - no chance we'll * ever need that much memory, but just to keep the value in check. * 2) Soft memory limit: once we hit the hard memory limit, we start * issuing I/O to reduce queue memory usage, but we don't want to * completely empty out the queues, since we might be able to find I/Os * that will fill in the gaps of our non-sequential IOs at some point * in the future. So we stop the issuing of I/Os once the amount of * memory used drops below the soft limit (at which point we stop issuing * I/O and start scanning metadata again). * * This limit is calculated by subtracting a fraction of the hard * limit from the hard limit. By default this fraction is 5%, so * the soft limit is 95% of the hard limit. We cap the size of the * difference between the hard and soft limits at an absolute * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is * sufficient to not cause too frequent switching between the * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's * worth of queues is about 1.2 GiB of on-pool data, so scanning * that should take at least a decent fraction of a second). */ static boolean_t dsl_scan_should_clear(dsl_scan_t *scn) { spa_t *spa = scn->scn_dp->dp_spa; vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; uint64_t alloc, mlim_hard, mlim_soft, mused; alloc = metaslab_class_get_alloc(spa_normal_class(spa)); alloc += metaslab_class_get_alloc(spa_special_class(spa)); alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, zfs_scan_mem_lim_min); mlim_hard = MIN(mlim_hard, alloc / 20); mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, zfs_scan_mem_lim_soft_max); mused = 0; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *tvd = rvd->vdev_child[i]; dsl_scan_io_queue_t *queue; mutex_enter(&tvd->vdev_scan_io_queue_lock); queue = tvd->vdev_scan_io_queue; if (queue != NULL) { /* * # of extents in exts_by_addr = # in exts_by_size. * B-tree efficiency is ~75%, but can be as low as 50%. */ mused += zfs_btree_numnodes(&queue->q_exts_by_size) * ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) * 3 / 2) + queue->q_sio_memused; } mutex_exit(&tvd->vdev_scan_io_queue_lock); } dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); if (mused == 0) ASSERT0(scn->scn_queues_pending); /* * If we are above our hard limit, we need to clear out memory. * If we are below our soft limit, we need to accumulate sequential IOs. * Otherwise, we should keep doing whatever we are currently doing. */ if (mused >= mlim_hard) return (B_TRUE); else if (mused < mlim_soft) return (B_FALSE); else return (scn->scn_clearing); } static boolean_t dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) { /* we never skip user/group accounting objects */ if (zb && (int64_t)zb->zb_object < 0) return (B_FALSE); if (scn->scn_suspending) return (B_TRUE); /* we're already suspending */ if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) return (B_FALSE); /* we're resuming */ /* We only know how to resume from level-0 and objset blocks. */ if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) return (B_FALSE); /* * We suspend if: * - we have scanned for at least the minimum time (default 1 sec * for scrub, 3 sec for resilver), and either we have sufficient * dirty data that we are starting to write more quickly * (default 30%), someone is explicitly waiting for this txg * to complete, or we have used up all of the time in the txg * timeout (default 5 sec). * or * - the spa is shutting down because this pool is being exported * or the machine is rebooting. * or * - the scan queue has reached its memory use limit */ uint64_t curr_time_ns = gethrtime(); uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; uint64_t sync_time_ns = curr_time_ns - scn->scn_dp->dp_spa->spa_sync_starttime; uint64_t dirty_min_bytes = zfs_dirty_data_max * zfs_vdev_async_write_active_min_dirty_percent / 100; uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; if ((NSEC2MSEC(scan_time_ns) > mintime && (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || txg_sync_waiting(scn->scn_dp) || NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || spa_shutting_down(scn->scn_dp->dp_spa) || (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { if (zb && zb->zb_level == ZB_ROOT_LEVEL) { dprintf("suspending at first available bookmark " "%llx/%llx/%llx/%llx\n", (longlong_t)zb->zb_objset, (longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (longlong_t)zb->zb_blkid); SET_BOOKMARK(&scn->scn_phys.scn_bookmark, zb->zb_objset, 0, 0, 0); } else if (zb != NULL) { dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", (longlong_t)zb->zb_objset, (longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (longlong_t)zb->zb_blkid); scn->scn_phys.scn_bookmark = *zb; } else { #ifdef ZFS_DEBUG dsl_scan_phys_t *scnp = &scn->scn_phys; dprintf("suspending at at DDT bookmark " "%llx/%llx/%llx/%llx\n", (longlong_t)scnp->scn_ddt_bookmark.ddb_class, (longlong_t)scnp->scn_ddt_bookmark.ddb_type, (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); #endif } scn->scn_suspending = B_TRUE; return (B_TRUE); } return (B_FALSE); } typedef struct zil_scan_arg { dsl_pool_t *zsa_dp; zil_header_t *zsa_zh; } zil_scan_arg_t; static int dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) { (void) zilog; zil_scan_arg_t *zsa = arg; dsl_pool_t *dp = zsa->zsa_dp; dsl_scan_t *scn = dp->dp_scan; zil_header_t *zh = zsa->zsa_zh; zbookmark_phys_t zb; ASSERT(!BP_IS_REDACTED(bp)); if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) return (0); /* * One block ("stubby") can be allocated a long time ago; we * want to visit that one because it has been allocated * (on-disk) even if it hasn't been claimed (even though for * scrub there's nothing to do to it). */ if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) return (0); SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); return (0); } static int dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, uint64_t claim_txg) { (void) zilog; if (lrc->lrc_txtype == TX_WRITE) { zil_scan_arg_t *zsa = arg; dsl_pool_t *dp = zsa->zsa_dp; dsl_scan_t *scn = dp->dp_scan; zil_header_t *zh = zsa->zsa_zh; const lr_write_t *lr = (const lr_write_t *)lrc; const blkptr_t *bp = &lr->lr_blkptr; zbookmark_phys_t zb; ASSERT(!BP_IS_REDACTED(bp)); if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) return (0); /* * birth can be < claim_txg if this record's txg is * already txg sync'ed (but this log block contains * other records that are not synced) */ if (claim_txg == 0 || bp->blk_birth < claim_txg) return (0); ASSERT3U(BP_GET_LSIZE(bp), !=, 0); SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); } return (0); } static void dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) { uint64_t claim_txg = zh->zh_claim_txg; zil_scan_arg_t zsa = { dp, zh }; zilog_t *zilog; ASSERT(spa_writeable(dp->dp_spa)); /* * We only want to visit blocks that have been claimed but not yet * replayed (or, in read-only mode, blocks that *would* be claimed). */ if (claim_txg == 0) return; zilog = zil_alloc(dp->dp_meta_objset, zh); (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, claim_txg, B_FALSE); zil_free(zilog); } /* * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea * here is to sort the AVL tree by the order each block will be needed. */ static int scan_prefetch_queue_compare(const void *a, const void *b) { const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; return (zbookmark_compare(spc_a->spc_datablkszsec, spc_a->spc_indblkshift, spc_b->spc_datablkszsec, spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); } static void scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag) { if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { zfs_refcount_destroy(&spc->spc_refcnt); kmem_free(spc, sizeof (scan_prefetch_ctx_t)); } } static scan_prefetch_ctx_t * scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag) { scan_prefetch_ctx_t *spc; spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); zfs_refcount_create(&spc->spc_refcnt); zfs_refcount_add(&spc->spc_refcnt, tag); spc->spc_scn = scn; if (dnp != NULL) { spc->spc_datablkszsec = dnp->dn_datablkszsec; spc->spc_indblkshift = dnp->dn_indblkshift; spc->spc_root = B_FALSE; } else { spc->spc_datablkszsec = 0; spc->spc_indblkshift = 0; spc->spc_root = B_TRUE; } return (spc); } static void scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag) { zfs_refcount_add(&spc->spc_refcnt, tag); } static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn) { spa_t *spa = scn->scn_dp->dp_spa; void *cookie = NULL; scan_prefetch_issue_ctx_t *spic = NULL; mutex_enter(&spa->spa_scrub_lock); while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, &cookie)) != NULL) { scan_prefetch_ctx_rele(spic->spic_spc, scn); kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); } mutex_exit(&spa->spa_scrub_lock); } static boolean_t dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, const zbookmark_phys_t *zb) { zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; dnode_phys_t tmp_dnp; dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; if (zb->zb_objset != last_zb->zb_objset) return (B_TRUE); if ((int64_t)zb->zb_object < 0) return (B_FALSE); tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; tmp_dnp.dn_indblkshift = spc->spc_indblkshift; if (zbookmark_subtree_completed(dnp, zb, last_zb)) return (B_TRUE); return (B_FALSE); } static void dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) { avl_index_t idx; dsl_scan_t *scn = spc->spc_scn; spa_t *spa = scn->scn_dp->dp_spa; scan_prefetch_issue_ctx_t *spic; if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) return; if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) return; if (dsl_scan_check_prefetch_resume(spc, zb)) return; scan_prefetch_ctx_add_ref(spc, scn); spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); spic->spic_spc = spc; spic->spic_bp = *bp; spic->spic_zb = *zb; /* * Add the IO to the queue of blocks to prefetch. This allows us to * prioritize blocks that we will need first for the main traversal * thread. */ mutex_enter(&spa->spa_scrub_lock); if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { /* this block is already queued for prefetch */ kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); scan_prefetch_ctx_rele(spc, scn); mutex_exit(&spa->spa_scrub_lock); return; } avl_insert(&scn->scn_prefetch_queue, spic, idx); cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); } static void dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, uint64_t objset, uint64_t object) { int i; zbookmark_phys_t zb; scan_prefetch_ctx_t *spc; if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) return; SET_BOOKMARK(&zb, objset, object, 0, 0); spc = scan_prefetch_ctx_create(scn, dnp, FTAG); for (i = 0; i < dnp->dn_nblkptr; i++) { zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); zb.zb_blkid = i; dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); } if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { zb.zb_level = 0; zb.zb_blkid = DMU_SPILL_BLKID; dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); } scan_prefetch_ctx_rele(spc, FTAG); } static void dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, arc_buf_t *buf, void *private) { (void) zio; scan_prefetch_ctx_t *spc = private; dsl_scan_t *scn = spc->spc_scn; spa_t *spa = scn->scn_dp->dp_spa; /* broadcast that the IO has completed for rate limiting purposes */ mutex_enter(&spa->spa_scrub_lock); ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); /* if there was an error or we are done prefetching, just cleanup */ if (buf == NULL || scn->scn_prefetch_stop) goto out; if (BP_GET_LEVEL(bp) > 0) { int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; zbookmark_phys_t czb; for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); dsl_scan_prefetch(spc, cbp, &czb); } } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { dnode_phys_t *cdnp; int i; int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; for (i = 0, cdnp = buf->b_data; i < epb; i += cdnp->dn_extra_slots + 1, cdnp += cdnp->dn_extra_slots + 1) { dsl_scan_prefetch_dnode(scn, cdnp, zb->zb_objset, zb->zb_blkid * epb + i); } } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { objset_phys_t *osp = buf->b_data; dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, zb->zb_objset, DMU_META_DNODE_OBJECT); if (OBJSET_BUF_HAS_USERUSED(buf)) { dsl_scan_prefetch_dnode(scn, &osp->os_groupused_dnode, zb->zb_objset, DMU_GROUPUSED_OBJECT); dsl_scan_prefetch_dnode(scn, &osp->os_userused_dnode, zb->zb_objset, DMU_USERUSED_OBJECT); } } out: if (buf != NULL) arc_buf_destroy(buf, private); scan_prefetch_ctx_rele(spc, scn); } static void dsl_scan_prefetch_thread(void *arg) { dsl_scan_t *scn = arg; spa_t *spa = scn->scn_dp->dp_spa; scan_prefetch_issue_ctx_t *spic; /* loop until we are told to stop */ while (!scn->scn_prefetch_stop) { arc_flags_t flags = ARC_FLAG_NOWAIT | ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; mutex_enter(&spa->spa_scrub_lock); /* * Wait until we have an IO to issue and are not above our * maximum in flight limit. */ while (!scn->scn_prefetch_stop && (avl_numnodes(&scn->scn_prefetch_queue) == 0 || spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); } /* recheck if we should stop since we waited for the cv */ if (scn->scn_prefetch_stop) { mutex_exit(&spa->spa_scrub_lock); break; } /* remove the prefetch IO from the tree */ spic = avl_first(&scn->scn_prefetch_queue); spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); avl_remove(&scn->scn_prefetch_queue, spic); mutex_exit(&spa->spa_scrub_lock); if (BP_IS_PROTECTED(&spic->spic_bp)) { ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); zio_flags |= ZIO_FLAG_RAW; } /* issue the prefetch asynchronously */ (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); } ASSERT(scn->scn_prefetch_stop); /* free any prefetches we didn't get to complete */ mutex_enter(&spa->spa_scrub_lock); while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { avl_remove(&scn->scn_prefetch_queue, spic); scan_prefetch_ctx_rele(spic->spic_spc, scn); kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); } ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); mutex_exit(&spa->spa_scrub_lock); } static boolean_t dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, const zbookmark_phys_t *zb) { /* * We never skip over user/group accounting objects (obj<0) */ if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && (int64_t)zb->zb_object >= 0) { /* * If we already visited this bp & everything below (in * a prior txg sync), don't bother doing it again. */ if (zbookmark_subtree_completed(dnp, zb, &scn->scn_phys.scn_bookmark)) return (B_TRUE); /* * If we found the block we're trying to resume from, or * we went past it, zero it out to indicate that it's OK * to start checking for suspending again. */ if (zbookmark_subtree_tbd(dnp, zb, &scn->scn_phys.scn_bookmark)) { dprintf("resuming at %llx/%llx/%llx/%llx\n", (longlong_t)zb->zb_objset, (longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (longlong_t)zb->zb_blkid); memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb)); } } return (B_FALSE); } static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, dmu_objset_type_t ostype, dmu_tx_t *tx); inline __attribute__((always_inline)) static void dsl_scan_visitdnode( dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); /* * Return nonzero on i/o error. * Return new buf to write out in *bufp. */ inline __attribute__((always_inline)) static int dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_phys_t *zb, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; int err; ASSERT(!BP_IS_REDACTED(bp)); /* * There is an unlikely case of encountering dnodes with contradicting * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created * or modified before commit 4254acb was merged. As it is not possible * to know which of the two is correct, report an error. */ if (dnp != NULL && dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) { scn->scn_phys.scn_errors++; spa_log_error(spa, zb); return (SET_ERROR(EINVAL)); } if (BP_GET_LEVEL(bp) > 0) { arc_flags_t flags = ARC_FLAG_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; arc_buf_t *buf; err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); dsl_scan_visitbp(cbp, &czb, dnp, ds, scn, ostype, tx); } arc_buf_destroy(buf, &buf); } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { arc_flags_t flags = ARC_FLAG_WAIT; dnode_phys_t *cdnp; int i; int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; arc_buf_t *buf; if (BP_IS_PROTECTED(bp)) { ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); zio_flags |= ZIO_FLAG_RAW; } err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } for (i = 0, cdnp = buf->b_data; i < epb; i += cdnp->dn_extra_slots + 1, cdnp += cdnp->dn_extra_slots + 1) { dsl_scan_visitdnode(scn, ds, ostype, cdnp, zb->zb_blkid * epb + i, tx); } arc_buf_destroy(buf, &buf); } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { arc_flags_t flags = ARC_FLAG_WAIT; objset_phys_t *osp; arc_buf_t *buf; err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } osp = buf->b_data; dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); if (OBJSET_BUF_HAS_USERUSED(buf)) { /* * We also always visit user/group/project accounting * objects, and never skip them, even if we are * suspending. This is necessary so that the * space deltas from this txg get integrated. */ if (OBJSET_BUF_HAS_PROJECTUSED(buf)) dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_projectused_dnode, DMU_PROJECTUSED_OBJECT, tx); dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_groupused_dnode, DMU_GROUPUSED_OBJECT, tx); dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_userused_dnode, DMU_USERUSED_OBJECT, tx); } arc_buf_destroy(buf, &buf); } else if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) { /* * Sanity check the block pointer contents, this is handled * by arc_read() for the cases above. */ scn->scn_phys.scn_errors++; spa_log_error(spa, zb); return (SET_ERROR(EINVAL)); } return (0); } inline __attribute__((always_inline)) static void dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx) { int j; for (j = 0; j < dnp->dn_nblkptr; j++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, dnp->dn_nlevels - 1, j); dsl_scan_visitbp(&dnp->dn_blkptr[j], &czb, dnp, ds, scn, ostype, tx); } if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 0, DMU_SPILL_BLKID); dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), &czb, dnp, ds, scn, ostype, tx); } } /* * The arguments are in this order because mdb can only print the * first 5; we want them to be useful. */ static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, dmu_objset_type_t ostype, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; blkptr_t *bp_toread = NULL; if (dsl_scan_check_suspend(scn, zb)) return; if (dsl_scan_check_resume(scn, dnp, zb)) return; scn->scn_visited_this_txg++; if (BP_IS_HOLE(bp)) { scn->scn_holes_this_txg++; return; } if (BP_IS_REDACTED(bp)) { ASSERT(dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)); return; } /* * Check if this block contradicts any filesystem flags. */ spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS; if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) ASSERT(dsl_dataset_feature_is_active(ds, f)); f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp)); if (f != SPA_FEATURE_NONE) ASSERT(dsl_dataset_feature_is_active(ds, f)); f = zio_compress_to_feature(BP_GET_COMPRESS(bp)); if (f != SPA_FEATURE_NONE) ASSERT(dsl_dataset_feature_is_active(ds, f)); if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { scn->scn_lt_min_this_txg++; return; } bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); *bp_toread = *bp; if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) goto out; /* * If dsl_scan_ddt() has already visited this block, it will have * already done any translations or scrubbing, so don't call the * callback again. */ if (ddt_class_contains(dp->dp_spa, scn->scn_phys.scn_ddt_class_max, bp)) { scn->scn_ddt_contained_this_txg++; goto out; } /* * If this block is from the future (after cur_max_txg), then we * are doing this on behalf of a deleted snapshot, and we will * revisit the future block on the next pass of this dataset. * Don't scan it now unless we need to because something * under it was modified. */ if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { scn->scn_gt_max_this_txg++; goto out; } scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); out: kmem_free(bp_toread, sizeof (blkptr_t)); } static void dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx) { zbookmark_phys_t zb; scan_prefetch_ctx_t *spc; SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { SET_BOOKMARK(&scn->scn_prefetch_bookmark, zb.zb_objset, 0, 0, 0); } else { scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; } scn->scn_objsets_visited_this_txg++; spc = scan_prefetch_ctx_create(scn, NULL, FTAG); dsl_scan_prefetch(spc, bp, &zb); scan_prefetch_ctx_rele(spc, FTAG); dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); dprintf_ds(ds, "finished scan%s", ""); } static void ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) { if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { if (ds->ds_is_snapshot) { /* * Note: * - scn_cur_{min,max}_txg stays the same. * - Setting the flag is not really necessary if * scn_cur_max_txg == scn_max_txg, because there * is nothing after this snapshot that we care * about. However, we set it anyway and then * ignore it when we retraverse it in * dsl_scan_visitds(). */ scn_phys->scn_bookmark.zb_objset = dsl_dataset_phys(ds)->ds_next_snap_obj; zfs_dbgmsg("destroying ds %llu on %s; currently " "traversing; reset zb_objset to %llu", (u_longlong_t)ds->ds_object, ds->ds_dir->dd_pool->dp_spa->spa_name, (u_longlong_t)dsl_dataset_phys(ds)-> ds_next_snap_obj); scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; } else { SET_BOOKMARK(&scn_phys->scn_bookmark, ZB_DESTROYED_OBJSET, 0, 0, 0); zfs_dbgmsg("destroying ds %llu on %s; currently " "traversing; reset bookmark to -1,0,0,0", (u_longlong_t)ds->ds_object, ds->ds_dir->dd_pool->dp_spa->spa_name); } } } /* * Invoked when a dataset is destroyed. We need to make sure that: * * 1) If it is the dataset that was currently being scanned, we write * a new dsl_scan_phys_t and marking the objset reference in it * as destroyed. * 2) Remove it from the work queue, if it was present. * * If the dataset was actually a snapshot, instead of marking the dataset * as destroyed, we instead substitute the next snapshot in line. */ void dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg; if (!dsl_scan_is_running(scn)) return; ds_destroyed_scn_phys(ds, &scn->scn_phys); ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { scan_ds_queue_remove(scn, ds->ds_object); if (ds->ds_is_snapshot) scan_ds_queue_insert(scn, dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); } if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) { ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); if (ds->ds_is_snapshot) { /* * We keep the same mintxg; it could be > * ds_creation_txg if the previous snapshot was * deleted too. */ VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg, tx) == 0); zfs_dbgmsg("destroying ds %llu on %s; in queue; " "replacing with %llu", (u_longlong_t)ds->ds_object, dp->dp_spa->spa_name, (u_longlong_t)dsl_dataset_phys(ds)-> ds_next_snap_obj); } else { zfs_dbgmsg("destroying ds %llu on %s; in queue; " "removing", (u_longlong_t)ds->ds_object, dp->dp_spa->spa_name); } } /* * dsl_scan_sync() should be called after this, and should sync * out our changed state, but just to be safe, do it here. */ dsl_scan_sync_state(scn, tx, SYNC_CACHED); } static void ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) { if (scn_bookmark->zb_objset == ds->ds_object) { scn_bookmark->zb_objset = dsl_dataset_phys(ds)->ds_prev_snap_obj; zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds->ds_object, ds->ds_dir->dd_pool->dp_spa->spa_name, (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); } } /* * Called when a dataset is snapshotted. If we were currently traversing * this snapshot, we reset our bookmark to point at the newly created * snapshot. We also modify our work queue to remove the old snapshot and * replace with the new one. */ void dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg; if (!dsl_scan_is_running(scn)) return; ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { scan_ds_queue_remove(scn, ds->ds_object); scan_ds_queue_insert(scn, dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); } if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) { VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " "replacing with %llu", (u_longlong_t)ds->ds_object, dp->dp_spa->spa_name, (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); } dsl_scan_sync_state(scn, tx, SYNC_CACHED); } static void ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, zbookmark_phys_t *scn_bookmark) { if (scn_bookmark->zb_objset == ds1->ds_object) { scn_bookmark->zb_objset = ds2->ds_object; zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds1->ds_object, ds1->ds_dir->dd_pool->dp_spa->spa_name, (u_longlong_t)ds2->ds_object); } else if (scn_bookmark->zb_objset == ds2->ds_object) { scn_bookmark->zb_objset = ds1->ds_object; zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds2->ds_object, ds2->ds_dir->dd_pool->dp_spa->spa_name, (u_longlong_t)ds1->ds_object); } } /* * Called when an origin dataset and its clone are swapped. If we were * currently traversing the dataset, we need to switch to traversing the * newly promoted clone. */ void dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) { dsl_pool_t *dp = ds1->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg1, mintxg2; boolean_t ds1_queued, ds2_queued; if (!dsl_scan_is_running(scn)) return; ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); /* * Handle the in-memory scan queue. */ ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); /* Sanity checking. */ if (ds1_queued) { ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); } if (ds2_queued) { ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); } if (ds1_queued && ds2_queued) { /* * If both are queued, we don't need to do anything. * The swapping code below would not handle this case correctly, * since we can't insert ds2 if it is already there. That's * because scan_ds_queue_insert() prohibits a duplicate insert * and panics. */ } else if (ds1_queued) { scan_ds_queue_remove(scn, ds1->ds_object); scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); } else if (ds2_queued) { scan_ds_queue_remove(scn, ds2->ds_object); scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); } /* * Handle the on-disk scan queue. * The on-disk state is an out-of-date version of the in-memory state, * so the in-memory and on-disk values for ds1_queued and ds2_queued may * be different. Therefore we need to apply the swap logic to the * on-disk state independently of the in-memory state. */ ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; /* Sanity checking. */ if (ds1_queued) { ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); } if (ds2_queued) { ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); } if (ds1_queued && ds2_queued) { /* * If both are queued, we don't need to do anything. * Alternatively, we could check for EEXIST from * zap_add_int_key() and back out to the original state, but * that would be more work than checking for this case upfront. */ } else if (ds1_queued) { VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " "replacing with %llu", (u_longlong_t)ds1->ds_object, dp->dp_spa->spa_name, (u_longlong_t)ds2->ds_object); } else if (ds2_queued) { VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " "replacing with %llu", (u_longlong_t)ds2->ds_object, dp->dp_spa->spa_name, (u_longlong_t)ds1->ds_object); } dsl_scan_sync_state(scn, tx, SYNC_CACHED); } static int enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { uint64_t originobj = *(uint64_t *)arg; dsl_dataset_t *ds; int err; dsl_scan_t *scn = dp->dp_scan; if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) return (0); err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); if (err) return (err); while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { dsl_dataset_t *prev; err = dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); dsl_dataset_rele(ds, FTAG); if (err) return (err); ds = prev; } scan_ds_queue_insert(scn, ds->ds_object, dsl_dataset_phys(ds)->ds_prev_snap_txg); dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; dsl_dataset_t *ds; VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); if (scn->scn_phys.scn_cur_min_txg >= scn->scn_phys.scn_max_txg) { /* * This can happen if this snapshot was created after the * scan started, and we already completed a previous snapshot * that was created after the scan started. This snapshot * only references blocks with: * * birth < our ds_creation_txg * cur_min_txg is no less than ds_creation_txg. * We have already visited these blocks. * or * birth > scn_max_txg * The scan requested not to visit these blocks. * * Subsequent snapshots (and clones) can reference our * blocks, or blocks with even higher birth times. * Therefore we do not need to visit them either, * so we do not add them to the work queue. * * Note that checking for cur_min_txg >= cur_max_txg * is not sufficient, because in that case we may need to * visit subsequent snapshots. This happens when min_txg > 0, * which raises cur_min_txg. In this case we will visit * this dataset but skip all of its blocks, because the * rootbp's birth time is < cur_min_txg. Then we will * add the next snapshots/clones to the work queue. */ char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); dsl_dataset_name(ds, dsname); zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " "cur_min_txg (%llu) >= max_txg (%llu)", (longlong_t)dsobj, dsname, (longlong_t)scn->scn_phys.scn_cur_min_txg, (longlong_t)scn->scn_phys.scn_max_txg); kmem_free(dsname, MAXNAMELEN); goto out; } /* * Only the ZIL in the head (non-snapshot) is valid. Even though * snapshots can have ZIL block pointers (which may be the same * BP as in the head), they must be ignored. In addition, $ORIGIN * doesn't have a objset (i.e. its ds_bp is a hole) so we don't * need to look for a ZIL in it either. So we traverse the ZIL here, * rather than in scan_recurse(), because the regular snapshot * block-sharing rules don't apply to it. */ if (!dsl_dataset_is_snapshot(ds) && (dp->dp_origin_snap == NULL || ds->ds_dir != dp->dp_origin_snap->ds_dir)) { objset_t *os; if (dmu_objset_from_ds(ds, &os) != 0) { goto out; } dsl_scan_zil(dp, &os->os_zil_header); } /* * Iterate over the bps in this ds. */ dmu_buf_will_dirty(ds->ds_dbuf, tx); rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); rrw_exit(&ds->ds_bp_rwlock, FTAG); char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); dsl_dataset_name(ds, dsname); zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " "suspending=%u", (longlong_t)dsobj, dsname, (longlong_t)scn->scn_phys.scn_cur_min_txg, (longlong_t)scn->scn_phys.scn_cur_max_txg, (int)scn->scn_suspending); kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); if (scn->scn_suspending) goto out; /* * We've finished this pass over this dataset. */ /* * If we did not completely visit this dataset, do another pass. */ if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { zfs_dbgmsg("incomplete pass on %s; visiting again", dp->dp_spa->spa_name); scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; scan_ds_queue_insert(scn, ds->ds_object, scn->scn_phys.scn_cur_max_txg); goto out; } /* * Add descendant datasets to work queue. */ if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { scan_ds_queue_insert(scn, dsl_dataset_phys(ds)->ds_next_snap_obj, dsl_dataset_phys(ds)->ds_creation_txg); } if (dsl_dataset_phys(ds)->ds_num_children > 1) { boolean_t usenext = B_FALSE; if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { uint64_t count; /* * A bug in a previous version of the code could * cause upgrade_clones_cb() to not set * ds_next_snap_obj when it should, leading to a * missing entry. Therefore we can only use the * next_clones_obj when its count is correct. */ int err = zap_count(dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_next_clones_obj, &count); if (err == 0 && count == dsl_dataset_phys(ds)->ds_num_children - 1) usenext = B_TRUE; } if (usenext) { zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_next_clones_obj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { scan_ds_queue_insert(scn, zfs_strtonum(za.za_name, NULL), dsl_dataset_phys(ds)->ds_creation_txg); } zap_cursor_fini(&zc); } else { VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, enqueue_clones_cb, &ds->ds_object, DS_FIND_CHILDREN)); } } out: dsl_dataset_rele(ds, FTAG); } static int enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { (void) arg; dsl_dataset_t *ds; int err; dsl_scan_t *scn = dp->dp_scan; err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); if (err) return (err); while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { dsl_dataset_t *prev; err = dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); if (err) { dsl_dataset_rele(ds, FTAG); return (err); } /* * If this is a clone, we don't need to worry about it for now. */ if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { dsl_dataset_rele(ds, FTAG); dsl_dataset_rele(prev, FTAG); return (0); } dsl_dataset_rele(ds, FTAG); ds = prev; } scan_ds_queue_insert(scn, ds->ds_object, dsl_dataset_phys(ds)->ds_prev_snap_txg); dsl_dataset_rele(ds, FTAG); return (0); } void dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, ddt_entry_t *dde, dmu_tx_t *tx) { (void) tx; const ddt_key_t *ddk = &dde->dde_key; ddt_phys_t *ddp = dde->dde_phys; blkptr_t bp; zbookmark_phys_t zb = { 0 }; if (!dsl_scan_is_running(scn)) return; /* * This function is special because it is the only thing * that can add scan_io_t's to the vdev scan queues from * outside dsl_scan_sync(). For the most part this is ok * as long as it is called from within syncing context. * However, dsl_scan_sync() expects that no new sio's will * be added between when all the work for a scan is done * and the next txg when the scan is actually marked as * completed. This check ensures we do not issue new sio's * during this period. */ if (scn->scn_done_txg != 0) return; for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0 || ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) continue; ddt_bp_create(checksum, ddk, ddp, &bp); scn->scn_visited_this_txg++; scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); } } /* * Scrub/dedup interaction. * * If there are N references to a deduped block, we don't want to scrub it * N times -- ideally, we should scrub it exactly once. * * We leverage the fact that the dde's replication class (enum ddt_class) * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. * * To prevent excess scrubbing, the scrub begins by walking the DDT * to find all blocks with refcnt > 1, and scrubs each of these once. * Since there are two replication classes which contain blocks with * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. * * There would be nothing more to say if a block's refcnt couldn't change * during a scrub, but of course it can so we must account for changes * in a block's replication class. * * Here's an example of what can occur: * * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 * when visited during the top-down scrub phase, it will be scrubbed twice. * This negates our scrub optimization, but is otherwise harmless. * * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 * on each visit during the top-down scrub phase, it will never be scrubbed. * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 * while a scrub is in progress, it scrubs the block right then. */ static void dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) { ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; ddt_entry_t dde = {{{{0}}}}; int error; uint64_t n = 0; while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { ddt_t *ddt; if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) break; dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", (longlong_t)ddb->ddb_class, (longlong_t)ddb->ddb_type, (longlong_t)ddb->ddb_checksum, (longlong_t)ddb->ddb_cursor); /* There should be no pending changes to the dedup table */ ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; ASSERT(avl_first(&ddt->ddt_tree) == NULL); dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); n++; if (dsl_scan_check_suspend(scn, NULL)) break; } zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; " "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name, (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); ASSERT(error == 0 || error == ENOENT); ASSERT(error != ENOENT || ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); } static uint64_t dsl_scan_ds_maxtxg(dsl_dataset_t *ds) { uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; if (ds->ds_is_snapshot) return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); return (smt); } static void dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) { scan_ds_t *sds; dsl_pool_t *dp = scn->scn_dp; if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= scn->scn_phys.scn_ddt_class_max) { scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; dsl_scan_ddt(scn, tx); if (scn->scn_suspending) return; } if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { /* First do the MOS & ORIGIN */ scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; dsl_scan_visit_rootbp(scn, NULL, &dp->dp_meta_rootbp, tx); spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); if (scn->scn_suspending) return; if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, enqueue_cb, NULL, DS_FIND_CHILDREN)); } else { dsl_scan_visitds(scn, dp->dp_origin_snap->ds_object, tx); } ASSERT(!scn->scn_suspending); } else if (scn->scn_phys.scn_bookmark.zb_objset != ZB_DESTROYED_OBJSET) { uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; /* * If we were suspended, continue from here. Note if the * ds we were suspended on was deleted, the zb_objset may * be -1, so we will skip this and find a new objset * below. */ dsl_scan_visitds(scn, dsobj, tx); if (scn->scn_suspending) return; } /* * In case we suspended right at the end of the ds, zero the * bookmark so we don't think that we're still trying to resume. */ memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t)); /* * Keep pulling things out of the dataset avl queue. Updates to the * persistent zap-object-as-queue happen only at checkpoints. */ while ((sds = avl_first(&scn->scn_queue)) != NULL) { dsl_dataset_t *ds; uint64_t dsobj = sds->sds_dsobj; uint64_t txg = sds->sds_txg; /* dequeue and free the ds from the queue */ scan_ds_queue_remove(scn, dsobj); sds = NULL; /* set up min / max txg */ VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); if (txg != 0) { scn->scn_phys.scn_cur_min_txg = MAX(scn->scn_phys.scn_min_txg, txg); } else { scn->scn_phys.scn_cur_min_txg = MAX(scn->scn_phys.scn_min_txg, dsl_dataset_phys(ds)->ds_prev_snap_txg); } scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); dsl_dataset_rele(ds, FTAG); dsl_scan_visitds(scn, dsobj, tx); if (scn->scn_suspending) return; } /* No more objsets to fetch, we're done */ scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; ASSERT0(scn->scn_suspending); } static uint64_t dsl_scan_count_data_disks(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; uint64_t i, leaves = 0; for (i = 0; i < rvd->vdev_children; i++) { vdev_t *vd = rvd->vdev_child[i]; if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) continue; leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); } return (leaves); } static void scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) { int i; uint64_t cur_size = 0; for (i = 0; i < BP_GET_NDVAS(bp); i++) { cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); } q->q_total_zio_size_this_txg += cur_size; q->q_zios_this_txg++; } static void scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, uint64_t end) { q->q_total_seg_size_this_txg += end - start; q->q_segs_this_txg++; } static boolean_t scan_io_queue_check_suspend(dsl_scan_t *scn) { /* See comment in dsl_scan_check_suspend() */ uint64_t curr_time_ns = gethrtime(); uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; uint64_t sync_time_ns = curr_time_ns - scn->scn_dp->dp_spa->spa_sync_starttime; uint64_t dirty_min_bytes = zfs_dirty_data_max * zfs_vdev_async_write_active_min_dirty_percent / 100; uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; return ((NSEC2MSEC(scan_time_ns) > mintime && (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || txg_sync_waiting(scn->scn_dp) || NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || spa_shutting_down(scn->scn_dp->dp_spa)); } /* * Given a list of scan_io_t's in io_list, this issues the I/Os out to * disk. This consumes the io_list and frees the scan_io_t's. This is * called when emptying queues, either when we're up against the memory * limit or when we have finished scanning. Returns B_TRUE if we stopped * processing the list before we finished. Any sios that were not issued * will remain in the io_list. */ static boolean_t scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) { dsl_scan_t *scn = queue->q_scn; scan_io_t *sio; boolean_t suspended = B_FALSE; while ((sio = list_head(io_list)) != NULL) { blkptr_t bp; if (scan_io_queue_check_suspend(scn)) { suspended = B_TRUE; break; } sio2bp(sio, &bp); scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, &sio->sio_zb, queue); (void) list_remove_head(io_list); scan_io_queues_update_zio_stats(queue, &bp); sio_free(sio); } return (suspended); } /* * This function removes sios from an IO queue which reside within a given * range_seg_t and inserts them (in offset order) into a list. Note that * we only ever return a maximum of 32 sios at once. If there are more sios * to process within this segment that did not make it onto the list we * return B_TRUE and otherwise B_FALSE. */ static boolean_t scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) { scan_io_t *srch_sio, *sio, *next_sio; avl_index_t idx; uint_t num_sios = 0; int64_t bytes_issued = 0; ASSERT(rs != NULL); ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); srch_sio = sio_alloc(1); srch_sio->sio_nr_dvas = 1; SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); /* * The exact start of the extent might not contain any matching zios, * so if that's the case, examine the next one in the tree. */ sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); sio_free(srch_sio); if (sio == NULL) sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, queue->q_exts_by_addr) && num_sios <= 32) { ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, queue->q_exts_by_addr)); ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, queue->q_exts_by_addr)); next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); avl_remove(&queue->q_sios_by_addr, sio); if (avl_is_empty(&queue->q_sios_by_addr)) atomic_add_64(&queue->q_scn->scn_queues_pending, -1); queue->q_sio_memused -= SIO_GET_MUSED(sio); bytes_issued += SIO_GET_ASIZE(sio); num_sios++; list_insert_tail(list, sio); sio = next_sio; } /* * We limit the number of sios we process at once to 32 to avoid * biting off more than we can chew. If we didn't take everything * in the segment we update it to reflect the work we were able to * complete. Otherwise, we remove it from the range tree entirely. */ if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, queue->q_exts_by_addr)) { range_tree_adjust_fill(queue->q_exts_by_addr, rs, -bytes_issued); range_tree_resize_segment(queue->q_exts_by_addr, rs, SIO_GET_OFFSET(sio), rs_get_end(rs, queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); queue->q_last_ext_addr = SIO_GET_OFFSET(sio); return (B_TRUE); } else { uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); queue->q_last_ext_addr = -1; return (B_FALSE); } } /* * This is called from the queue emptying thread and selects the next * extent from which we are to issue I/Os. The behavior of this function * depends on the state of the scan, the current memory consumption and * whether or not we are performing a scan shutdown. * 1) We select extents in an elevator algorithm (LBA-order) if the scan * needs to perform a checkpoint * 2) We select the largest available extent if we are up against the * memory limit. * 3) Otherwise we don't select any extents. */ static range_seg_t * scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) { dsl_scan_t *scn = queue->q_scn; range_tree_t *rt = queue->q_exts_by_addr; ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); ASSERT(scn->scn_is_sorted); if (!scn->scn_checkpointing && !scn->scn_clearing) return (NULL); /* * During normal clearing, we want to issue our largest segments * first, keeping IO as sequential as possible, and leaving the * smaller extents for later with the hope that they might eventually * grow to larger sequential segments. However, when the scan is * checkpointing, no new extents will be added to the sorting queue, * so the way we are sorted now is as good as it will ever get. * In this case, we instead switch to issuing extents in LBA order. */ if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) || zfs_scan_issue_strategy == 1) return (range_tree_first(rt)); /* * Try to continue previous extent if it is not completed yet. After * shrink in scan_io_queue_gather() it may no longer be the best, but * otherwise we leave shorter remnant every txg. */ uint64_t start; uint64_t size = 1ULL << rt->rt_shift; range_seg_t *addr_rs; if (queue->q_last_ext_addr != -1) { start = queue->q_last_ext_addr; addr_rs = range_tree_find(rt, start, size); if (addr_rs != NULL) return (addr_rs); } /* * Nothing to continue, so find new best extent. */ uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL); if (v == NULL) return (NULL); queue->q_last_ext_addr = start = *v << rt->rt_shift; /* * We need to get the original entry in the by_addr tree so we can * modify it. */ addr_rs = range_tree_find(rt, start, size); ASSERT3P(addr_rs, !=, NULL); ASSERT3U(rs_get_start(addr_rs, rt), ==, start); ASSERT3U(rs_get_end(addr_rs, rt), >, start); return (addr_rs); } static void scan_io_queues_run_one(void *arg) { dsl_scan_io_queue_t *queue = arg; kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; boolean_t suspended = B_FALSE; range_seg_t *rs; scan_io_t *sio; zio_t *zio; list_t sio_list; ASSERT(queue->q_scn->scn_is_sorted); list_create(&sio_list, sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_list_node)); zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa, NULL, NULL, NULL, ZIO_FLAG_CANFAIL); mutex_enter(q_lock); queue->q_zio = zio; /* Calculate maximum in-flight bytes for this vdev. */ queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); /* reset per-queue scan statistics for this txg */ queue->q_total_seg_size_this_txg = 0; queue->q_segs_this_txg = 0; queue->q_total_zio_size_this_txg = 0; queue->q_zios_this_txg = 0; /* loop until we run out of time or sios */ while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { uint64_t seg_start = 0, seg_end = 0; boolean_t more_left; ASSERT(list_is_empty(&sio_list)); /* loop while we still have sios left to process in this rs */ do { scan_io_t *first_sio, *last_sio; /* * We have selected which extent needs to be * processed next. Gather up the corresponding sios. */ more_left = scan_io_queue_gather(queue, rs, &sio_list); ASSERT(!list_is_empty(&sio_list)); first_sio = list_head(&sio_list); last_sio = list_tail(&sio_list); seg_end = SIO_GET_END_OFFSET(last_sio); if (seg_start == 0) seg_start = SIO_GET_OFFSET(first_sio); /* * Issuing sios can take a long time so drop the * queue lock. The sio queue won't be updated by * other threads since we're in syncing context so * we can be sure that our trees will remain exactly * as we left them. */ mutex_exit(q_lock); suspended = scan_io_queue_issue(queue, &sio_list); mutex_enter(q_lock); if (suspended) break; } while (more_left); /* update statistics for debugging purposes */ scan_io_queues_update_seg_stats(queue, seg_start, seg_end); if (suspended) break; } /* * If we were suspended in the middle of processing, * requeue any unfinished sios and exit. */ while ((sio = list_head(&sio_list)) != NULL) { list_remove(&sio_list, sio); scan_io_queue_insert_impl(queue, sio); } queue->q_zio = NULL; mutex_exit(q_lock); zio_nowait(zio); list_destroy(&sio_list); } /* * Performs an emptying run on all scan queues in the pool. This just * punches out one thread per top-level vdev, each of which processes * only that vdev's scan queue. We can parallelize the I/O here because * we know that each queue's I/Os only affect its own top-level vdev. * * This function waits for the queue runs to complete, and must be * called from dsl_scan_sync (or in general, syncing context). */ static void scan_io_queues_run(dsl_scan_t *scn) { spa_t *spa = scn->scn_dp->dp_spa; ASSERT(scn->scn_is_sorted); ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (scn->scn_queues_pending == 0) return; if (scn->scn_taskq == NULL) { int nthreads = spa->spa_root_vdev->vdev_children; /* * We need to make this taskq *always* execute as many * threads in parallel as we have top-level vdevs and no * less, otherwise strange serialization of the calls to * scan_io_queues_run_one can occur during spa_sync runs * and that significantly impacts performance. */ scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); } for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; mutex_enter(&vd->vdev_scan_io_queue_lock); if (vd->vdev_scan_io_queue != NULL) { VERIFY(taskq_dispatch(scn->scn_taskq, scan_io_queues_run_one, vd->vdev_scan_io_queue, TQ_SLEEP) != TASKQID_INVALID); } mutex_exit(&vd->vdev_scan_io_queue_lock); } /* * Wait for the queues to finish issuing their IOs for this run * before we return. There may still be IOs in flight at this * point. */ taskq_wait(scn->scn_taskq); } static boolean_t dsl_scan_async_block_should_pause(dsl_scan_t *scn) { uint64_t elapsed_nanosecs; if (zfs_recover) return (B_FALSE); if (zfs_async_block_max_blocks != 0 && scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { return (B_TRUE); } if (zfs_max_async_dedup_frees != 0 && scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { return (B_TRUE); } elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && txg_sync_waiting(scn->scn_dp)) || spa_shutting_down(scn->scn_dp->dp_spa)); } static int dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { dsl_scan_t *scn = arg; if (!scn->scn_is_bptree || (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { if (dsl_scan_async_block_should_pause(scn)) return (SET_ERROR(ERESTART)); } zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, dmu_tx_get_txg(tx), bp, 0)); dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); scn->scn_visited_this_txg++; if (BP_GET_DEDUP(bp)) scn->scn_dedup_frees_this_txg++; return (0); } static void dsl_scan_update_stats(dsl_scan_t *scn) { spa_t *spa = scn->scn_dp->dp_spa; uint64_t i; uint64_t seg_size_total = 0, zio_size_total = 0; uint64_t seg_count_total = 0, zio_count_total = 0; for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; if (queue == NULL) continue; seg_size_total += queue->q_total_seg_size_this_txg; zio_size_total += queue->q_total_zio_size_this_txg; seg_count_total += queue->q_segs_this_txg; zio_count_total += queue->q_zios_this_txg; } if (seg_count_total == 0 || zio_count_total == 0) { scn->scn_avg_seg_size_this_txg = 0; scn->scn_avg_zio_size_this_txg = 0; scn->scn_segs_this_txg = 0; scn->scn_zios_this_txg = 0; return; } scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; scn->scn_segs_this_txg = seg_count_total; scn->scn_zios_this_txg = zio_count_total; } static int bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { ASSERT(!bp_freed); return (dsl_scan_free_block_cb(arg, bp, tx)); } static int dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { ASSERT(!bp_freed); dsl_scan_t *scn = arg; const dva_t *dva = &bp->blk_dva[0]; if (dsl_scan_async_block_should_pause(scn)) return (SET_ERROR(ERESTART)); spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), tx); scn->scn_visited_this_txg++; return (0); } boolean_t dsl_scan_active(dsl_scan_t *scn) { spa_t *spa = scn->scn_dp->dp_spa; uint64_t used = 0, comp, uncomp; boolean_t clones_left; if (spa->spa_load_state != SPA_LOAD_NONE) return (B_FALSE); if (spa_shutting_down(spa)) return (B_FALSE); if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || (scn->scn_async_destroying && !scn->scn_async_stalled)) return (B_TRUE); if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, &used, &comp, &uncomp); } clones_left = spa_livelist_delete_check(spa); return ((used != 0) || (clones_left)); } static boolean_t dsl_scan_check_deferred(vdev_t *vd) { boolean_t need_resilver = B_FALSE; for (int c = 0; c < vd->vdev_children; c++) { need_resilver |= dsl_scan_check_deferred(vd->vdev_child[c]); } if (!vdev_is_concrete(vd) || vd->vdev_aux || !vd->vdev_ops->vdev_op_leaf) return (need_resilver); if (!vd->vdev_resilver_deferred) need_resilver = B_TRUE; return (need_resilver); } static boolean_t dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, uint64_t phys_birth) { vdev_t *vd; vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); if (vd->vdev_ops == &vdev_indirect_ops) { /* * The indirect vdev can point to multiple * vdevs. For simplicity, always create * the resilver zio_t. zio_vdev_io_start() * will bypass the child resilver i/o's if * they are on vdevs that don't have DTL's. */ return (B_TRUE); } if (DVA_GET_GANG(dva)) { /* * Gang members may be spread across multiple * vdevs, so the best estimate we have is the * scrub range, which has already been checked. * XXX -- it would be better to change our * allocation policy to ensure that all * gang members reside on the same vdev. */ return (B_TRUE); } /* * Check if the top-level vdev must resilver this offset. * When the offset does not intersect with a dirty leaf DTL * then it may be possible to skip the resilver IO. The psize * is provided instead of asize to simplify the check for RAIDZ. */ if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) return (B_FALSE); /* * Check that this top-level vdev has a device under it which * is resilvering and is not deferred. */ if (!dsl_scan_check_deferred(vd)) return (B_FALSE); return (B_TRUE); } static int dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) { dsl_scan_t *scn = dp->dp_scan; spa_t *spa = dp->dp_spa; int err = 0; if (spa_suspend_async_destroy(spa)) return (0); if (zfs_free_bpobj_enabled && spa_version(spa) >= SPA_VERSION_DEADLISTS) { scn->scn_is_bptree = B_FALSE; scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; scn->scn_zio_root = zio_root(spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); err = bpobj_iterate(&dp->dp_free_bpobj, bpobj_dsl_scan_free_block_cb, scn, tx); VERIFY0(zio_wait(scn->scn_zio_root)); scn->scn_zio_root = NULL; if (err != 0 && err != ERESTART) zfs_panic_recover("error %u from bpobj_iterate()", err); } if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { ASSERT(scn->scn_async_destroying); scn->scn_is_bptree = B_TRUE; scn->scn_zio_root = zio_root(spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); err = bptree_iterate(dp->dp_meta_objset, dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); VERIFY0(zio_wait(scn->scn_zio_root)); scn->scn_zio_root = NULL; if (err == EIO || err == ECKSUM) { err = 0; } else if (err != 0 && err != ERESTART) { zfs_panic_recover("error %u from " "traverse_dataset_destroyed()", err); } if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { /* finished; deactivate async destroy feature */ spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); ASSERT(!spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)); VERIFY0(zap_remove(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_BPTREE_OBJ, tx)); VERIFY0(bptree_free(dp->dp_meta_objset, dp->dp_bptree_obj, tx)); dp->dp_bptree_obj = 0; scn->scn_async_destroying = B_FALSE; scn->scn_async_stalled = B_FALSE; } else { /* * If we didn't make progress, mark the async * destroy as stalled, so that we will not initiate * a spa_sync() on its behalf. Note that we only * check this if we are not finished, because if the * bptree had no blocks for us to visit, we can * finish without "making progress". */ scn->scn_async_stalled = (scn->scn_visited_this_txg == 0); } } if (scn->scn_visited_this_txg) { zfs_dbgmsg("freed %llu blocks in %llums from " "free_bpobj/bptree on %s in txg %llu; err=%u", (longlong_t)scn->scn_visited_this_txg, (longlong_t) NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), spa->spa_name, (longlong_t)tx->tx_txg, err); scn->scn_visited_this_txg = 0; scn->scn_dedup_frees_this_txg = 0; /* - * Write out changes to the DDT that may be required as a - * result of the blocks freed. This ensures that the DDT - * is clean when a scrub/resilver runs. + * Write out changes to the DDT and the BRT that may be required + * as a result of the blocks freed. This ensures that the DDT + * and the BRT are clean when a scrub/resilver runs. */ ddt_sync(spa, tx->tx_txg); + brt_sync(spa, tx->tx_txg); } if (err != 0) return (err); if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && zfs_free_leak_on_eio && (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { /* * We have finished background destroying, but there is still * some space left in the dp_free_dir. Transfer this leaked * space to the dp_leak_dir. */ if (dp->dp_leak_dir == NULL) { rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); (void) dsl_dir_create_sync(dp, dp->dp_root_dir, LEAK_DIR_NAME, tx); VERIFY0(dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, &dp->dp_leak_dir)); rrw_exit(&dp->dp_config_rwlock, FTAG); } dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); } if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && !spa_livelist_delete_check(spa)) { /* finished; verify that space accounting went to zero */ ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); } spa_notify_waiters(spa); EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_OBSOLETE_BPOBJ)); if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)); scn->scn_is_bptree = B_FALSE; scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; err = bpobj_iterate(&dp->dp_obsolete_bpobj, dsl_scan_obsolete_block_cb, scn, tx); if (err != 0 && err != ERESTART) zfs_panic_recover("error %u from bpobj_iterate()", err); if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) dsl_pool_destroy_obsolete_bpobj(dp, tx); } return (0); } /* * This is the primary entry point for scans that is called from syncing * context. Scans must happen entirely during syncing context so that we * can guarantee that blocks we are currently scanning will not change out * from under us. While a scan is active, this function controls how quickly * transaction groups proceed, instead of the normal handling provided by * txg_sync_thread(). */ void dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) { int err = 0; dsl_scan_t *scn = dp->dp_scan; spa_t *spa = dp->dp_spa; state_sync_type_t sync_type = SYNC_OPTIONAL; if (spa->spa_resilver_deferred && !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); /* * Check for scn_restart_txg before checking spa_load_state, so * that we can restart an old-style scan while the pool is being * imported (see dsl_scan_init). We also restart scans if there * is a deferred resilver and the user has manually disabled * deferred resilvers via the tunable. */ if (dsl_scan_restarting(scn, tx) || (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { pool_scan_func_t func = POOL_SCAN_SCRUB; dsl_scan_done(scn, B_FALSE, tx); if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) func = POOL_SCAN_RESILVER; zfs_dbgmsg("restarting scan func=%u on %s txg=%llu", func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg); dsl_scan_setup_sync(&func, tx); } /* * Only process scans in sync pass 1. */ if (spa_sync_pass(spa) > 1) return; /* * If the spa is shutting down, then stop scanning. This will * ensure that the scan does not dirty any new data during the * shutdown phase. */ if (spa_shutting_down(spa)) return; /* * If the scan is inactive due to a stalled async destroy, try again. */ if (!scn->scn_async_stalled && !dsl_scan_active(scn)) return; /* reset scan statistics */ scn->scn_visited_this_txg = 0; scn->scn_dedup_frees_this_txg = 0; scn->scn_holes_this_txg = 0; scn->scn_lt_min_this_txg = 0; scn->scn_gt_max_this_txg = 0; scn->scn_ddt_contained_this_txg = 0; scn->scn_objsets_visited_this_txg = 0; scn->scn_avg_seg_size_this_txg = 0; scn->scn_segs_this_txg = 0; scn->scn_avg_zio_size_this_txg = 0; scn->scn_zios_this_txg = 0; scn->scn_suspending = B_FALSE; scn->scn_sync_start_time = gethrtime(); spa->spa_scrub_active = B_TRUE; /* * First process the async destroys. If we suspend, don't do * any scrubbing or resilvering. This ensures that there are no * async destroys while we are scanning, so the scan code doesn't * have to worry about traversing it. It is also faster to free the * blocks than to scrub them. */ err = dsl_process_async_destroys(dp, tx); if (err != 0) return; if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) return; /* * Wait a few txgs after importing to begin scanning so that * we can get the pool imported quickly. */ if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) return; /* * zfs_scan_suspend_progress can be set to disable scan progress. * We don't want to spin the txg_sync thread, so we add a delay * here to simulate the time spent doing a scan. This is mostly * useful for testing and debugging. */ if (zfs_scan_suspend_progress) { uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; while (zfs_scan_suspend_progress && !txg_sync_waiting(scn->scn_dp) && !spa_shutting_down(scn->scn_dp->dp_spa) && NSEC2MSEC(scan_time_ns) < mintime) { delay(hz); scan_time_ns = gethrtime() - scn->scn_sync_start_time; } return; } /* * Disabled by default, set zfs_scan_report_txgs to report * average performance over the last zfs_scan_report_txgs TXGs. */ if (!dsl_scan_is_paused_scrub(scn) && zfs_scan_report_txgs != 0 && tx->tx_txg % zfs_scan_report_txgs == 0) { scn->scn_issued_before_pass += spa->spa_scan_pass_issued; spa_scan_stat_init(spa); } /* * It is possible to switch from unsorted to sorted at any time, * but afterwards the scan will remain sorted unless reloaded from * a checkpoint after a reboot. */ if (!zfs_scan_legacy) { scn->scn_is_sorted = B_TRUE; if (scn->scn_last_checkpoint == 0) scn->scn_last_checkpoint = ddi_get_lbolt(); } /* * For sorted scans, determine what kind of work we will be doing * this txg based on our memory limitations and whether or not we * need to perform a checkpoint. */ if (scn->scn_is_sorted) { /* * If we are over our checkpoint interval, set scn_clearing * so that we can begin checkpointing immediately. The * checkpoint allows us to save a consistent bookmark * representing how much data we have scrubbed so far. * Otherwise, use the memory limit to determine if we should * scan for metadata or start issue scrub IOs. We accumulate * metadata until we hit our hard memory limit at which point * we issue scrub IOs until we are at our soft memory limit. */ if (scn->scn_checkpointing || ddi_get_lbolt() - scn->scn_last_checkpoint > SEC_TO_TICK(zfs_scan_checkpoint_intval)) { if (!scn->scn_checkpointing) zfs_dbgmsg("begin scan checkpoint for %s", spa->spa_name); scn->scn_checkpointing = B_TRUE; scn->scn_clearing = B_TRUE; } else { boolean_t should_clear = dsl_scan_should_clear(scn); if (should_clear && !scn->scn_clearing) { zfs_dbgmsg("begin scan clearing for %s", spa->spa_name); scn->scn_clearing = B_TRUE; } else if (!should_clear && scn->scn_clearing) { zfs_dbgmsg("finish scan clearing for %s", spa->spa_name); scn->scn_clearing = B_FALSE; } } } else { ASSERT0(scn->scn_checkpointing); ASSERT0(scn->scn_clearing); } if (!scn->scn_clearing && scn->scn_done_txg == 0) { /* Need to scan metadata for more blocks to scrub */ dsl_scan_phys_t *scnp = &scn->scn_phys; taskqid_t prefetch_tqid; /* * Calculate the max number of in-flight bytes for pool-wide * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). * Limits for the issuing phase are done per top-level vdev and * are handled separately. */ scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); if (scnp->scn_ddt_bookmark.ddb_class <= scnp->scn_ddt_class_max) { ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); zfs_dbgmsg("doing scan sync for %s txg %llu; " "ddt bm=%llu/%llu/%llu/%llx", spa->spa_name, (longlong_t)tx->tx_txg, (longlong_t)scnp->scn_ddt_bookmark.ddb_class, (longlong_t)scnp->scn_ddt_bookmark.ddb_type, (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); } else { zfs_dbgmsg("doing scan sync for %s txg %llu; " "bm=%llu/%llu/%llu/%llu", spa->spa_name, (longlong_t)tx->tx_txg, (longlong_t)scnp->scn_bookmark.zb_objset, (longlong_t)scnp->scn_bookmark.zb_object, (longlong_t)scnp->scn_bookmark.zb_level, (longlong_t)scnp->scn_bookmark.zb_blkid); } scn->scn_zio_root = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); scn->scn_prefetch_stop = B_FALSE; prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, dsl_scan_prefetch_thread, scn, TQ_SLEEP); ASSERT(prefetch_tqid != TASKQID_INVALID); dsl_pool_config_enter(dp, FTAG); dsl_scan_visit(scn, tx); dsl_pool_config_exit(dp, FTAG); mutex_enter(&dp->dp_spa->spa_scrub_lock); scn->scn_prefetch_stop = B_TRUE; cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&dp->dp_spa->spa_scrub_lock); taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); (void) zio_wait(scn->scn_zio_root); scn->scn_zio_root = NULL; zfs_dbgmsg("scan visited %llu blocks of %s in %llums " "(%llu os's, %llu holes, %llu < mintxg, " "%llu in ddt, %llu > maxtxg)", (longlong_t)scn->scn_visited_this_txg, spa->spa_name, (longlong_t)NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), (longlong_t)scn->scn_objsets_visited_this_txg, (longlong_t)scn->scn_holes_this_txg, (longlong_t)scn->scn_lt_min_this_txg, (longlong_t)scn->scn_ddt_contained_this_txg, (longlong_t)scn->scn_gt_max_this_txg); if (!scn->scn_suspending) { ASSERT0(avl_numnodes(&scn->scn_queue)); scn->scn_done_txg = tx->tx_txg + 1; if (scn->scn_is_sorted) { scn->scn_checkpointing = B_TRUE; scn->scn_clearing = B_TRUE; scn->scn_issued_before_pass += spa->spa_scan_pass_issued; spa_scan_stat_init(spa); } zfs_dbgmsg("scan complete for %s txg %llu", spa->spa_name, (longlong_t)tx->tx_txg); } } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) { ASSERT(scn->scn_clearing); /* need to issue scrubbing IOs from per-vdev queues */ scn->scn_zio_root = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); scan_io_queues_run(scn); (void) zio_wait(scn->scn_zio_root); scn->scn_zio_root = NULL; /* calculate and dprintf the current memory usage */ (void) dsl_scan_should_clear(scn); dsl_scan_update_stats(scn); zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", (longlong_t)scn->scn_zios_this_txg, spa->spa_name, (longlong_t)scn->scn_segs_this_txg, (longlong_t)NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), (longlong_t)scn->scn_avg_zio_size_this_txg, (longlong_t)scn->scn_avg_seg_size_this_txg); } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { /* Finished with everything. Mark the scrub as complete */ zfs_dbgmsg("scan issuing complete txg %llu for %s", (longlong_t)tx->tx_txg, spa->spa_name); ASSERT3U(scn->scn_done_txg, !=, 0); ASSERT0(spa->spa_scrub_inflight); ASSERT0(scn->scn_queues_pending); dsl_scan_done(scn, B_TRUE, tx); sync_type = SYNC_MANDATORY; } dsl_scan_sync_state(scn, tx, sync_type); } static void count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all) { /* * Don't count embedded bp's, since we already did the work of * scanning these when we scanned the containing block. */ if (BP_IS_EMBEDDED(bp)) return; /* * Update the spa's stats on how many bytes we have issued. * Sequential scrubs create a zio for each DVA of the bp. Each * of these will include all DVAs for repair purposes, but the * zio code will only try the first one unless there is an issue. * Therefore, we should only count the first DVA for these IOs. */ atomic_add_64(&spa->spa_scan_pass_issued, all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); } static void count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) { /* * If we resume after a reboot, zab will be NULL; don't record * incomplete stats in that case. */ if (zab == NULL) return; for (int i = 0; i < 4; i++) { int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; if (t & DMU_OT_NEWTYPE) t = DMU_OT_OTHER; zfs_blkstat_t *zb = &zab->zab_type[l][t]; int equal; zb->zb_count++; zb->zb_asize += BP_GET_ASIZE(bp); zb->zb_lsize += BP_GET_LSIZE(bp); zb->zb_psize += BP_GET_PSIZE(bp); zb->zb_gangs += BP_COUNT_GANG(bp); switch (BP_GET_NDVAS(bp)) { case 2: if (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) zb->zb_ditto_2_of_2_samevdev++; break; case 3: equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) + (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[2])) + (DVA_GET_VDEV(&bp->blk_dva[1]) == DVA_GET_VDEV(&bp->blk_dva[2])); if (equal == 1) zb->zb_ditto_2_of_3_samevdev++; else if (equal == 3) zb->zb_ditto_3_of_3_samevdev++; break; } } } static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) { avl_index_t idx; dsl_scan_t *scn = queue->q_scn; ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); if (unlikely(avl_is_empty(&queue->q_sios_by_addr))) atomic_add_64(&scn->scn_queues_pending, 1); if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { /* block is already scheduled for reading */ sio_free(sio); return; } avl_insert(&queue->q_sios_by_addr, sio, idx); queue->q_sio_memused += SIO_GET_MUSED(sio); range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)); } /* * Given all the info we got from our metadata scanning process, we * construct a scan_io_t and insert it into the scan sorting queue. The * I/O must already be suitable for us to process. This is controlled * by dsl_scan_enqueue(). */ static void scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, int zio_flags, const zbookmark_phys_t *zb) { scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); ASSERT0(BP_IS_GANG(bp)); ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); bp2sio(bp, sio, dva_i); sio->sio_flags = zio_flags; sio->sio_zb = *zb; queue->q_last_ext_addr = -1; scan_io_queue_insert_impl(queue, sio); } /* * Given a set of I/O parameters as discovered by the metadata traversal * process, attempts to place the I/O into the sorted queues (if allowed), * or immediately executes the I/O. */ static void dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, const zbookmark_phys_t *zb) { spa_t *spa = dp->dp_spa; ASSERT(!BP_IS_EMBEDDED(bp)); /* * Gang blocks are hard to issue sequentially, so we just issue them * here immediately instead of queuing them. */ if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { scan_exec_io(dp, bp, zio_flags, zb, NULL); return; } for (int i = 0; i < BP_GET_NDVAS(bp); i++) { dva_t dva; vdev_t *vdev; dva = bp->blk_dva[i]; vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); ASSERT(vdev != NULL); mutex_enter(&vdev->vdev_scan_io_queue_lock); if (vdev->vdev_scan_io_queue == NULL) vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); ASSERT(dp->dp_scan != NULL); scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, i, zio_flags, zb); mutex_exit(&vdev->vdev_scan_io_queue_lock); } } static int dsl_scan_scrub_cb(dsl_pool_t *dp, const blkptr_t *bp, const zbookmark_phys_t *zb) { dsl_scan_t *scn = dp->dp_scan; spa_t *spa = dp->dp_spa; uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); size_t psize = BP_GET_PSIZE(bp); boolean_t needs_io = B_FALSE; int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; count_block(dp->dp_blkstats, bp); if (phys_birth <= scn->scn_phys.scn_min_txg || phys_birth >= scn->scn_phys.scn_max_txg) { count_block_issued(spa, bp, B_TRUE); return (0); } /* Embedded BP's have phys_birth==0, so we reject them above. */ ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { zio_flags |= ZIO_FLAG_SCRUB; needs_io = B_TRUE; } else { ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); zio_flags |= ZIO_FLAG_RESILVER; needs_io = B_FALSE; } /* If it's an intent log block, failure is expected. */ if (zb->zb_level == ZB_ZIL_LEVEL) zio_flags |= ZIO_FLAG_SPECULATIVE; for (int d = 0; d < BP_GET_NDVAS(bp); d++) { const dva_t *dva = &bp->blk_dva[d]; /* * Keep track of how much data we've examined so that * zpool(8) status can make useful progress reports. */ uint64_t asize = DVA_GET_ASIZE(dva); scn->scn_phys.scn_examined += asize; spa->spa_scan_pass_exam += asize; /* if it's a resilver, this may not be in the target range */ if (!needs_io) needs_io = dsl_scan_need_resilver(spa, dva, psize, phys_birth); } if (needs_io && !zfs_no_scrub_io) { dsl_scan_enqueue(dp, bp, zio_flags, zb); } else { count_block_issued(spa, bp, B_TRUE); } /* do not relocate this block */ return (0); } static void dsl_scan_scrub_done(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; dsl_scan_io_queue_t *queue = zio->io_private; abd_free(zio->io_abd); if (queue == NULL) { mutex_enter(&spa->spa_scrub_lock); ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); } else { mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); queue->q_inflight_bytes -= BP_GET_PSIZE(bp); cv_broadcast(&queue->q_zio_cv); mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); } if (zio->io_error && (zio->io_error != ECKSUM || !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); } } /* * Given a scanning zio's information, executes the zio. The zio need * not necessarily be only sortable, this function simply executes the * zio, no matter what it is. The optional queue argument allows the * caller to specify that they want per top level vdev IO rate limiting * instead of the legacy global limiting. */ static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) { spa_t *spa = dp->dp_spa; dsl_scan_t *scn = dp->dp_scan; size_t size = BP_GET_PSIZE(bp); abd_t *data = abd_alloc_for_io(size, B_FALSE); zio_t *pio; if (queue == NULL) { ASSERT3U(scn->scn_maxinflight_bytes, >, 0); mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight += BP_GET_PSIZE(bp); mutex_exit(&spa->spa_scrub_lock); pio = scn->scn_zio_root; } else { kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; ASSERT3U(queue->q_maxinflight_bytes, >, 0); mutex_enter(q_lock); while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) cv_wait(&queue->q_zio_cv, q_lock); queue->q_inflight_bytes += BP_GET_PSIZE(bp); pio = queue->q_zio; mutex_exit(q_lock); } ASSERT(pio != NULL); count_block_issued(spa, bp, queue == NULL); zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); } /* * This is the primary extent sorting algorithm. We balance two parameters: * 1) how many bytes of I/O are in an extent * 2) how well the extent is filled with I/O (as a fraction of its total size) * Since we allow extents to have gaps between their constituent I/Os, it's * possible to have a fairly large extent that contains the same amount of * I/O bytes than a much smaller extent, which just packs the I/O more tightly. * The algorithm sorts based on a score calculated from the extent's size, * the relative fill volume (in %) and a "fill weight" parameter that controls * the split between whether we prefer larger extents or more well populated * extents: * * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) * * Example: * 1) assume extsz = 64 MiB * 2) assume fill = 32 MiB (extent is half full) * 3) assume fill_weight = 3 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 * SCORE = 32M + (50 * 3 * 32M) / 100 * SCORE = 32M + (4800M / 100) * SCORE = 32M + 48M * ^ ^ * | +--- final total relative fill-based score * +--------- final total fill-based score * SCORE = 80M * * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards * extents that are more completely filled (in a 3:2 ratio) vs just larger. * Note that as an optimization, we replace multiplication and division by * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). * * Since we do not care if one extent is only few percent better than another, * compress the score into 6 bits via binary logarithm AKA highbit64() and * put into otherwise unused due to ashift high bits of offset. This allows * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them * with single operation. Plus it makes scrubs more sequential and reduces * chances that minor extent change move it within the B-tree. */ static int ext_size_compare(const void *x, const void *y) { const uint64_t *a = x, *b = y; return (TREE_CMP(*a, *b)); } static void ext_size_create(range_tree_t *rt, void *arg) { (void) rt; zfs_btree_t *size_tree = arg; zfs_btree_create(size_tree, ext_size_compare, sizeof (uint64_t)); } static void ext_size_destroy(range_tree_t *rt, void *arg) { (void) rt; zfs_btree_t *size_tree = arg; ASSERT0(zfs_btree_numnodes(size_tree)); zfs_btree_destroy(size_tree); } static uint64_t ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg) { (void) rt; uint64_t size = rsg->rs_end - rsg->rs_start; uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) * fill_weight * rsg->rs_fill) >> 7); ASSERT3U(rt->rt_shift, >=, 8); return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start); } static void ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg) { zfs_btree_t *size_tree = arg; ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); zfs_btree_add(size_tree, &v); } static void ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg) { zfs_btree_t *size_tree = arg; ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); zfs_btree_remove(size_tree, &v); } static void ext_size_vacate(range_tree_t *rt, void *arg) { zfs_btree_t *size_tree = arg; zfs_btree_clear(size_tree); zfs_btree_destroy(size_tree); ext_size_create(rt, arg); } static const range_tree_ops_t ext_size_ops = { .rtop_create = ext_size_create, .rtop_destroy = ext_size_destroy, .rtop_add = ext_size_add, .rtop_remove = ext_size_remove, .rtop_vacate = ext_size_vacate }; /* * Comparator for the q_sios_by_addr tree. Sorting is simply performed * based on LBA-order (from lowest to highest). */ static int sio_addr_compare(const void *x, const void *y) { const scan_io_t *a = x, *b = y; return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); } /* IO queues are created on demand when they are needed. */ static dsl_scan_io_queue_t * scan_io_queue_create(vdev_t *vd) { dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); q->q_scn = scn; q->q_vd = vd; q->q_sio_memused = 0; q->q_last_ext_addr = -1; cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap); avl_create(&q->q_sios_by_addr, sio_addr_compare, sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); return (q); } /* * Destroys a scan queue and all segments and scan_io_t's contained in it. * No further execution of I/O occurs, anything pending in the queue is * simply freed without being executed. */ void dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) { dsl_scan_t *scn = queue->q_scn; scan_io_t *sio; void *cookie = NULL; ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); if (!avl_is_empty(&queue->q_sios_by_addr)) atomic_add_64(&scn->scn_queues_pending, -1); while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != NULL) { ASSERT(range_tree_contains(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); queue->q_sio_memused -= SIO_GET_MUSED(sio); sio_free(sio); } ASSERT0(queue->q_sio_memused); range_tree_vacate(queue->q_exts_by_addr, NULL, queue); range_tree_destroy(queue->q_exts_by_addr); avl_destroy(&queue->q_sios_by_addr); cv_destroy(&queue->q_zio_cv); kmem_free(queue, sizeof (*queue)); } /* * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is * called on behalf of vdev_top_transfer when creating or destroying * a mirror vdev due to zpool attach/detach. */ void dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) { mutex_enter(&svd->vdev_scan_io_queue_lock); mutex_enter(&tvd->vdev_scan_io_queue_lock); VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; svd->vdev_scan_io_queue = NULL; if (tvd->vdev_scan_io_queue != NULL) tvd->vdev_scan_io_queue->q_vd = tvd; mutex_exit(&tvd->vdev_scan_io_queue_lock); mutex_exit(&svd->vdev_scan_io_queue_lock); } static void scan_io_queues_destroy(dsl_scan_t *scn) { vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *tvd = rvd->vdev_child[i]; mutex_enter(&tvd->vdev_scan_io_queue_lock); if (tvd->vdev_scan_io_queue != NULL) dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); tvd->vdev_scan_io_queue = NULL; mutex_exit(&tvd->vdev_scan_io_queue_lock); } } static void dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) { dsl_pool_t *dp = spa->spa_dsl_pool; dsl_scan_t *scn = dp->dp_scan; vdev_t *vdev; kmutex_t *q_lock; dsl_scan_io_queue_t *queue; scan_io_t *srch_sio, *sio; avl_index_t idx; uint64_t start, size; vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); ASSERT(vdev != NULL); q_lock = &vdev->vdev_scan_io_queue_lock; queue = vdev->vdev_scan_io_queue; mutex_enter(q_lock); if (queue == NULL) { mutex_exit(q_lock); return; } srch_sio = sio_alloc(BP_GET_NDVAS(bp)); bp2sio(bp, srch_sio, dva_i); start = SIO_GET_OFFSET(srch_sio); size = SIO_GET_ASIZE(srch_sio); /* * We can find the zio in two states: * 1) Cold, just sitting in the queue of zio's to be issued at * some point in the future. In this case, all we do is * remove the zio from the q_sios_by_addr tree, decrement * its data volume from the containing range_seg_t and * resort the q_exts_by_size tree to reflect that the * range_seg_t has lost some of its 'fill'. We don't shorten * the range_seg_t - this is usually rare enough not to be * worth the extra hassle of trying keep track of precise * extent boundaries. * 2) Hot, where the zio is currently in-flight in * dsl_scan_issue_ios. In this case, we can't simply * reach in and stop the in-flight zio's, so we instead * block the caller. Eventually, dsl_scan_issue_ios will * be done with issuing the zio's it gathered and will * signal us. */ sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); sio_free(srch_sio); if (sio != NULL) { blkptr_t tmpbp; /* Got it while it was cold in the queue */ ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); ASSERT3U(size, ==, SIO_GET_ASIZE(sio)); avl_remove(&queue->q_sios_by_addr, sio); if (avl_is_empty(&queue->q_sios_by_addr)) atomic_add_64(&scn->scn_queues_pending, -1); queue->q_sio_memused -= SIO_GET_MUSED(sio); ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); range_tree_remove_fill(queue->q_exts_by_addr, start, size); /* count the block as though we issued it */ sio2bp(sio, &tmpbp); count_block_issued(spa, &tmpbp, B_FALSE); sio_free(sio); } mutex_exit(q_lock); } /* * Callback invoked when a zio_free() zio is executing. This needs to be * intercepted to prevent the zio from deallocating a particular portion * of disk space and it then getting reallocated and written to, while we * still have it queued up for processing. */ void dsl_scan_freed(spa_t *spa, const blkptr_t *bp) { dsl_pool_t *dp = spa->spa_dsl_pool; dsl_scan_t *scn = dp->dp_scan; ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(scn != NULL); if (!dsl_scan_is_running(scn)) return; for (int i = 0; i < BP_GET_NDVAS(bp); i++) dsl_scan_freed_dva(spa, bp, i); } /* * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has * not started, start it. Otherwise, only restart if max txg in DTL range is * greater than the max txg in the current scan. If the DTL max is less than * the scan max, then the vdev has not missed any new data since the resilver * started, so a restart is not needed. */ void dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) { uint64_t min, max; if (!vdev_resilver_needed(vd, &min, &max)) return; if (!dsl_scan_resilvering(dp)) { spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); return; } if (max <= dp->dp_scan->scn_phys.scn_max_txg) return; /* restart is needed, check if it can be deferred */ if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) vdev_defer_resilver(vd); else spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); } ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW, "Max bytes in flight per leaf vdev for scrubs and resilvers"); ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW, "Min millisecs to scrub per txg"); ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW, "Min millisecs to obsolete per txg"); ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW, "Min millisecs to free per txg"); ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW, "Min millisecs to resilver per txg"); ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, "Set to prevent scans from progressing"); ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, "Set to disable scrub I/O"); ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, "Set to disable scrub prefetching"); ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW, "Max number of blocks freed in one txg"); ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW, "Max number of dedup blocks freed in one txg"); ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, "Enable processing of the free_bpobj"); ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW, "Enable block statistics calculation during scrub"); ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW, "Fraction of RAM for scan hard limit"); ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW, "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size"); ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, "Scrub using legacy non-sequential method"); ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW, "Scan progress on-disk checkpointing interval"); ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW, "Max gap in bytes between sequential scrub / resilver I/Os"); ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW, "Fraction of hard limit used as soft limit"); ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, "Tunable to attempt to reduce lock contention"); ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW, "Tunable to adjust bias towards more filled segments during scans"); ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW, "Tunable to report resilver performance over the last N txgs"); ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, "Process all resilvers immediately"); diff --git a/module/zfs/spa.c b/module/zfs/spa.c index 6be6fe11561a..98a302237df8 100644 --- a/module/zfs/spa.c +++ b/module/zfs/spa.c @@ -1,10053 +1,10092 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright (c) 2016 Actifio, Inc. All rights reserved. * Copyright 2018 Joyent, Inc. * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. * Copyright 2017 Joyent, Inc. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2021, Colm Buckley */ /* * SPA: Storage Pool Allocator * * This file contains all the routines used when modifying on-disk SPA state. * This includes opening, importing, destroying, exporting a pool, and syncing a * pool. */ #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include #endif /* _KERNEL */ #include "zfs_prop.h" #include "zfs_comutil.h" /* * The interval, in seconds, at which failed configuration cache file writes * should be retried. */ int zfs_ccw_retry_interval = 300; typedef enum zti_modes { ZTI_MODE_FIXED, /* value is # of threads (min 1) */ ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ ZTI_MODE_NULL, /* don't create a taskq */ ZTI_NMODES } zti_modes_t; #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } #define ZTI_N(n) ZTI_P(n, 1) #define ZTI_ONE ZTI_N(1) typedef struct zio_taskq_info { zti_modes_t zti_mode; uint_t zti_value; uint_t zti_count; } zio_taskq_info_t; static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { "iss", "iss_h", "int", "int_h" }; /* * This table defines the taskq settings for each ZFS I/O type. When * initializing a pool, we use this table to create an appropriately sized * taskq. Some operations are low volume and therefore have a small, static * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE * macros. Other operations process a large amount of data; the ZTI_BATCH * macro causes us to create a taskq oriented for throughput. Some operations * are so high frequency and short-lived that the taskq itself can become a * point of lock contention. The ZTI_P(#, #) macro indicates that we need an * additional degree of parallelism specified by the number of threads per- * taskq and the number of taskqs; when dispatching an event in this case, the * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH, * but with number of taskqs also scaling with number of CPUs. * * The different taskq priorities are to handle the different contexts (issue * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that * need to be handled with minimum delay. */ static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ }; static void spa_sync_version(void *arg, dmu_tx_t *tx); static void spa_sync_props(void *arg, dmu_tx_t *tx); static boolean_t spa_has_active_shared_spare(spa_t *spa); static int spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport); static void spa_vdev_resilver_done(spa_t *spa); static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ static uint_t zio_taskq_batch_tpq; /* threads per taskq */ static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ static const uint_t zio_taskq_basedc = 80; /* base duty cycle */ static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */ /* * Report any spa_load_verify errors found, but do not fail spa_load. * This is used by zdb to analyze non-idle pools. */ boolean_t spa_load_verify_dryrun = B_FALSE; /* * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ). * This is used by zdb for spacemaps verification. */ boolean_t spa_mode_readable_spacemaps = B_FALSE; /* * This (illegal) pool name is used when temporarily importing a spa_t in order * to get the vdev stats associated with the imported devices. */ #define TRYIMPORT_NAME "$import" /* * For debugging purposes: print out vdev tree during pool import. */ static int spa_load_print_vdev_tree = B_FALSE; /* * A non-zero value for zfs_max_missing_tvds means that we allow importing * pools with missing top-level vdevs. This is strictly intended for advanced * pool recovery cases since missing data is almost inevitable. Pools with * missing devices can only be imported read-only for safety reasons, and their * fail-mode will be automatically set to "continue". * * With 1 missing vdev we should be able to import the pool and mount all * datasets. User data that was not modified after the missing device has been * added should be recoverable. This means that snapshots created prior to the * addition of that device should be completely intact. * * With 2 missing vdevs, some datasets may fail to mount since there are * dataset statistics that are stored as regular metadata. Some data might be * recoverable if those vdevs were added recently. * * With 3 or more missing vdevs, the pool is severely damaged and MOS entries * may be missing entirely. Chances of data recovery are very low. Note that * there are also risks of performing an inadvertent rewind as we might be * missing all the vdevs with the latest uberblocks. */ uint64_t zfs_max_missing_tvds = 0; /* * The parameters below are similar to zfs_max_missing_tvds but are only * intended for a preliminary open of the pool with an untrusted config which * might be incomplete or out-dated. * * We are more tolerant for pools opened from a cachefile since we could have * an out-dated cachefile where a device removal was not registered. * We could have set the limit arbitrarily high but in the case where devices * are really missing we would want to return the proper error codes; we chose * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available * and we get a chance to retrieve the trusted config. */ uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; /* * In the case where config was assembled by scanning device paths (/dev/dsks * by default) we are less tolerant since all the existing devices should have * been detected and we want spa_load to return the right error codes. */ uint64_t zfs_max_missing_tvds_scan = 0; /* * Debugging aid that pauses spa_sync() towards the end. */ static const boolean_t zfs_pause_spa_sync = B_FALSE; /* * Variables to indicate the livelist condense zthr func should wait at certain * points for the livelist to be removed - used to test condense/destroy races */ static int zfs_livelist_condense_zthr_pause = 0; static int zfs_livelist_condense_sync_pause = 0; /* * Variables to track whether or not condense cancellation has been * triggered in testing. */ static int zfs_livelist_condense_sync_cancel = 0; static int zfs_livelist_condense_zthr_cancel = 0; /* * Variable to track whether or not extra ALLOC blkptrs were added to a * livelist entry while it was being condensed (caused by the way we track * remapped blkptrs in dbuf_remap_impl) */ static int zfs_livelist_condense_new_alloc = 0; /* * ========================================================================== * SPA properties routines * ========================================================================== */ /* * Add a (source=src, propname=propval) list to an nvlist. */ static void spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval, uint64_t intval, zprop_source_t src) { const char *propname = zpool_prop_to_name(prop); nvlist_t *propval; propval = fnvlist_alloc(); fnvlist_add_uint64(propval, ZPROP_SOURCE, src); if (strval != NULL) fnvlist_add_string(propval, ZPROP_VALUE, strval); else fnvlist_add_uint64(propval, ZPROP_VALUE, intval); fnvlist_add_nvlist(nvl, propname, propval); nvlist_free(propval); } /* * Get property values from the spa configuration. */ static void spa_prop_get_config(spa_t *spa, nvlist_t **nvp) { vdev_t *rvd = spa->spa_root_vdev; dsl_pool_t *pool = spa->spa_dsl_pool; uint64_t size, alloc, cap, version; const zprop_source_t src = ZPROP_SRC_NONE; spa_config_dirent_t *dp; metaslab_class_t *mc = spa_normal_class(spa); ASSERT(MUTEX_HELD(&spa->spa_props_lock)); if (rvd != NULL) { alloc = metaslab_class_get_alloc(mc); alloc += metaslab_class_get_alloc(spa_special_class(spa)); alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); size = metaslab_class_get_space(mc); size += metaslab_class_get_space(spa_special_class(spa)); size += metaslab_class_get_space(spa_dedup_class(spa)); size += metaslab_class_get_space(spa_embedded_log_class(spa)); spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, size - alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, spa->spa_checkpoint_info.sci_dspace, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, metaslab_class_fragmentation(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, metaslab_class_expandable_space(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, (spa_mode(spa) == SPA_MODE_READ), src); cap = (size == 0) ? 0 : (alloc * 100 / size); spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, ddt_get_pool_dedup_ratio(spa), src); + spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL, + brt_get_used(spa), src); + spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL, + brt_get_saved(spa), src); + spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL, + brt_get_ratio(spa), src); spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, rvd->vdev_state, src); version = spa_version(spa); if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, ZPROP_SRC_DEFAULT); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, ZPROP_SRC_LOCAL); } spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, NULL, spa_load_guid(spa), src); } if (pool != NULL) { /* * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, * when opening pools before this version freedir will be NULL. */ if (pool->dp_free_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 0, src); } if (pool->dp_leak_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 0, src); } } spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); if (spa->spa_comment != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 0, ZPROP_SRC_LOCAL); } if (spa->spa_compatibility != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY, spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); } if (spa->spa_root != NULL) spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 0, ZPROP_SRC_LOCAL); if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); } if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, DNODE_MAX_SIZE, ZPROP_SRC_NONE); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, DNODE_MIN_SIZE, ZPROP_SRC_NONE); } if ((dp = list_head(&spa->spa_config_list)) != NULL) { if (dp->scd_path == NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, "none", 0, ZPROP_SRC_LOCAL); } else if (strcmp(dp->scd_path, spa_config_path) != 0) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, dp->scd_path, 0, ZPROP_SRC_LOCAL); } } } /* * Get zpool property values. */ int spa_prop_get(spa_t *spa, nvlist_t **nvp) { objset_t *mos = spa->spa_meta_objset; zap_cursor_t zc; zap_attribute_t za; dsl_pool_t *dp; int err; err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); if (err) return (err); dp = spa_get_dsl(spa); dsl_pool_config_enter(dp, FTAG); mutex_enter(&spa->spa_props_lock); /* * Get properties from the spa config. */ spa_prop_get_config(spa, nvp); /* If no pool property object, no more prop to get. */ if (mos == NULL || spa->spa_pool_props_object == 0) goto out; /* * Get properties from the MOS pool property object. */ for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); (err = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { uint64_t intval = 0; char *strval = NULL; zprop_source_t src = ZPROP_SRC_DEFAULT; zpool_prop_t prop; if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) continue; switch (za.za_integer_length) { case 8: /* integer property */ if (za.za_first_integer != zpool_prop_default_numeric(prop)) src = ZPROP_SRC_LOCAL; if (prop == ZPOOL_PROP_BOOTFS) { dsl_dataset_t *ds = NULL; err = dsl_dataset_hold_obj(dp, za.za_first_integer, FTAG, &ds); if (err != 0) break; strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); dsl_dataset_name(ds, strval); dsl_dataset_rele(ds, FTAG); } else { strval = NULL; intval = za.za_first_integer; } spa_prop_add_list(*nvp, prop, strval, intval, src); if (strval != NULL) kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); break; case 1: /* string property */ strval = kmem_alloc(za.za_num_integers, KM_SLEEP); err = zap_lookup(mos, spa->spa_pool_props_object, za.za_name, 1, za.za_num_integers, strval); if (err) { kmem_free(strval, za.za_num_integers); break; } spa_prop_add_list(*nvp, prop, strval, 0, src); kmem_free(strval, za.za_num_integers); break; default: break; } } zap_cursor_fini(&zc); out: mutex_exit(&spa->spa_props_lock); dsl_pool_config_exit(dp, FTAG); if (err && err != ENOENT) { nvlist_free(*nvp); *nvp = NULL; return (err); } return (0); } /* * Validate the given pool properties nvlist and modify the list * for the property values to be set. */ static int spa_prop_validate(spa_t *spa, nvlist_t *props) { nvpair_t *elem; int error = 0, reset_bootfs = 0; uint64_t objnum = 0; boolean_t has_feature = B_FALSE; elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { uint64_t intval; char *strval, *slash, *check, *fname; const char *propname = nvpair_name(elem); zpool_prop_t prop = zpool_name_to_prop(propname); switch (prop) { case ZPOOL_PROP_INVAL: if (!zpool_prop_feature(propname)) { error = SET_ERROR(EINVAL); break; } /* * Sanitize the input. */ if (nvpair_type(elem) != DATA_TYPE_UINT64) { error = SET_ERROR(EINVAL); break; } if (nvpair_value_uint64(elem, &intval) != 0) { error = SET_ERROR(EINVAL); break; } if (intval != 0) { error = SET_ERROR(EINVAL); break; } fname = strchr(propname, '@') + 1; if (zfeature_lookup_name(fname, NULL) != 0) { error = SET_ERROR(EINVAL); break; } has_feature = B_TRUE; break; case ZPOOL_PROP_VERSION: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < spa_version(spa) || intval > SPA_VERSION_BEFORE_FEATURES || has_feature)) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_DELEGATION: case ZPOOL_PROP_AUTOREPLACE: case ZPOOL_PROP_LISTSNAPS: case ZPOOL_PROP_AUTOEXPAND: case ZPOOL_PROP_AUTOTRIM: error = nvpair_value_uint64(elem, &intval); if (!error && intval > 1) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_MULTIHOST: error = nvpair_value_uint64(elem, &intval); if (!error && intval > 1) error = SET_ERROR(EINVAL); if (!error) { uint32_t hostid = zone_get_hostid(NULL); if (hostid) spa->spa_hostid = hostid; else error = SET_ERROR(ENOTSUP); } break; case ZPOOL_PROP_BOOTFS: /* * If the pool version is less than SPA_VERSION_BOOTFS, * or the pool is still being created (version == 0), * the bootfs property cannot be set. */ if (spa_version(spa) < SPA_VERSION_BOOTFS) { error = SET_ERROR(ENOTSUP); break; } /* * Make sure the vdev config is bootable */ if (!vdev_is_bootable(spa->spa_root_vdev)) { error = SET_ERROR(ENOTSUP); break; } reset_bootfs = 1; error = nvpair_value_string(elem, &strval); if (!error) { objset_t *os; if (strval == NULL || strval[0] == '\0') { objnum = zpool_prop_default_numeric( ZPOOL_PROP_BOOTFS); break; } error = dmu_objset_hold(strval, FTAG, &os); if (error != 0) break; /* Must be ZPL. */ if (dmu_objset_type(os) != DMU_OST_ZFS) { error = SET_ERROR(ENOTSUP); } else { objnum = dmu_objset_id(os); } dmu_objset_rele(os, FTAG); } break; case ZPOOL_PROP_FAILUREMODE: error = nvpair_value_uint64(elem, &intval); if (!error && intval > ZIO_FAILURE_MODE_PANIC) error = SET_ERROR(EINVAL); /* * This is a special case which only occurs when * the pool has completely failed. This allows * the user to change the in-core failmode property * without syncing it out to disk (I/Os might * currently be blocked). We do this by returning * EIO to the caller (spa_prop_set) to trick it * into thinking we encountered a property validation * error. */ if (!error && spa_suspended(spa)) { spa->spa_failmode = intval; error = SET_ERROR(EIO); } break; case ZPOOL_PROP_CACHEFILE: if ((error = nvpair_value_string(elem, &strval)) != 0) break; if (strval[0] == '\0') break; if (strcmp(strval, "none") == 0) break; if (strval[0] != '/') { error = SET_ERROR(EINVAL); break; } slash = strrchr(strval, '/'); ASSERT(slash != NULL); if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || strcmp(slash, "/..") == 0) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_COMMENT: if ((error = nvpair_value_string(elem, &strval)) != 0) break; for (check = strval; *check != '\0'; check++) { if (!isprint(*check)) { error = SET_ERROR(EINVAL); break; } } if (strlen(strval) > ZPROP_MAX_COMMENT) error = SET_ERROR(E2BIG); break; default: break; } if (error) break; } (void) nvlist_remove_all(props, zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); if (!error && reset_bootfs) { error = nvlist_remove(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); if (!error) { error = nvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); } } return (error); } void spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) { char *cachefile; spa_config_dirent_t *dp; if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), &cachefile) != 0) return; dp = kmem_alloc(sizeof (spa_config_dirent_t), KM_SLEEP); if (cachefile[0] == '\0') dp->scd_path = spa_strdup(spa_config_path); else if (strcmp(cachefile, "none") == 0) dp->scd_path = NULL; else dp->scd_path = spa_strdup(cachefile); list_insert_head(&spa->spa_config_list, dp); if (need_sync) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } int spa_prop_set(spa_t *spa, nvlist_t *nvp) { int error; nvpair_t *elem = NULL; boolean_t need_sync = B_FALSE; if ((error = spa_prop_validate(spa, nvp)) != 0) return (error); while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT || prop == ZPOOL_PROP_READONLY) continue; if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { uint64_t ver = 0; if (prop == ZPOOL_PROP_VERSION) { VERIFY(nvpair_value_uint64(elem, &ver) == 0); } else { ASSERT(zpool_prop_feature(nvpair_name(elem))); ver = SPA_VERSION_FEATURES; need_sync = B_TRUE; } /* Save time if the version is already set. */ if (ver == spa_version(spa)) continue; /* * In addition to the pool directory object, we might * create the pool properties object, the features for * read object, the features for write object, or the * feature descriptions object. */ error = dsl_sync_task(spa->spa_name, NULL, spa_sync_version, &ver, 6, ZFS_SPACE_CHECK_RESERVED); if (error) return (error); continue; } need_sync = B_TRUE; break; } if (need_sync) { return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, nvp, 6, ZFS_SPACE_CHECK_RESERVED)); } return (0); } /* * If the bootfs property value is dsobj, clear it. */ void spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) { if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { VERIFY(zap_remove(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); spa->spa_bootfs = 0; } } static int spa_change_guid_check(void *arg, dmu_tx_t *tx) { uint64_t *newguid __maybe_unused = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; vdev_t *rvd = spa->spa_root_vdev; uint64_t vdev_state; if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { int error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (SET_ERROR(error)); } spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); vdev_state = rvd->vdev_state; spa_config_exit(spa, SCL_STATE, FTAG); if (vdev_state != VDEV_STATE_HEALTHY) return (SET_ERROR(ENXIO)); ASSERT3U(spa_guid(spa), !=, *newguid); return (0); } static void spa_change_guid_sync(void *arg, dmu_tx_t *tx) { uint64_t *newguid = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; uint64_t oldguid; vdev_t *rvd = spa->spa_root_vdev; oldguid = spa_guid(spa); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); rvd->vdev_guid = *newguid; rvd->vdev_guid_sum += (*newguid - oldguid); vdev_config_dirty(rvd); spa_config_exit(spa, SCL_STATE, FTAG); spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", (u_longlong_t)oldguid, (u_longlong_t)*newguid); } /* * Change the GUID for the pool. This is done so that we can later * re-import a pool built from a clone of our own vdevs. We will modify * the root vdev's guid, our own pool guid, and then mark all of our * vdevs dirty. Note that we must make sure that all our vdevs are * online when we do this, or else any vdevs that weren't present * would be orphaned from our pool. We are also going to issue a * sysevent to update any watchers. */ int spa_change_guid(spa_t *spa) { int error; uint64_t guid; mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); guid = spa_generate_guid(NULL); error = dsl_sync_task(spa->spa_name, spa_change_guid_check, spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); if (error == 0) { /* * Clear the kobj flag from all the vdevs to allow * vdev_cache_process_kobj_evt() to post events to all the * vdevs since GUID is updated. */ vdev_clear_kobj_evt(spa->spa_root_vdev); for (int i = 0; i < spa->spa_l2cache.sav_count; i++) vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]); spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); } mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * ========================================================================== * SPA state manipulation (open/create/destroy/import/export) * ========================================================================== */ static int spa_error_entry_compare(const void *a, const void *b) { const spa_error_entry_t *sa = (const spa_error_entry_t *)a; const spa_error_entry_t *sb = (const spa_error_entry_t *)b; int ret; ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, sizeof (zbookmark_phys_t)); return (TREE_ISIGN(ret)); } /* * Utility function which retrieves copies of the current logs and * re-initializes them in the process. */ void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) { ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t)); memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } static void spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; enum zti_modes mode = ztip->zti_mode; uint_t value = ztip->zti_value; uint_t count = ztip->zti_count; spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; uint_t cpus, flags = TASKQ_DYNAMIC; boolean_t batch = B_FALSE; switch (mode) { case ZTI_MODE_FIXED: ASSERT3U(value, >, 0); break; case ZTI_MODE_BATCH: batch = B_TRUE; flags |= TASKQ_THREADS_CPU_PCT; value = MIN(zio_taskq_batch_pct, 100); break; case ZTI_MODE_SCALE: flags |= TASKQ_THREADS_CPU_PCT; /* * We want more taskqs to reduce lock contention, but we want * less for better request ordering and CPU utilization. */ cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); if (zio_taskq_batch_tpq > 0) { count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / zio_taskq_batch_tpq); } else { /* * Prefer 6 threads per taskq, but no more taskqs * than threads in them on large systems. For 80%: * * taskq taskq total * cpus taskqs percent threads threads * ------- ------- ------- ------- ------- * 1 1 80% 1 1 * 2 1 80% 1 1 * 4 1 80% 3 3 * 8 2 40% 3 6 * 16 3 27% 4 12 * 32 5 16% 5 25 * 64 7 11% 7 49 * 128 10 8% 10 100 * 256 14 6% 15 210 */ count = 1 + cpus / 6; while (count * count > cpus) count--; } /* Limit each taskq within 100% to not trigger assertion. */ count = MAX(count, (zio_taskq_batch_pct + 99) / 100); value = (zio_taskq_batch_pct + count / 2) / count; break; case ZTI_MODE_NULL: tqs->stqs_count = 0; tqs->stqs_taskq = NULL; return; default: panic("unrecognized mode for %s_%s taskq (%u:%u) in " "spa_activate()", zio_type_name[t], zio_taskq_types[q], mode, value); break; } ASSERT3U(count, >, 0); tqs->stqs_count = count; tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); for (uint_t i = 0; i < count; i++) { taskq_t *tq; char name[32]; if (count > 1) (void) snprintf(name, sizeof (name), "%s_%s_%u", zio_type_name[t], zio_taskq_types[q], i); else (void) snprintf(name, sizeof (name), "%s_%s", zio_type_name[t], zio_taskq_types[q]); if (zio_taskq_sysdc && spa->spa_proc != &p0) { if (batch) flags |= TASKQ_DC_BATCH; (void) zio_taskq_basedc; tq = taskq_create_sysdc(name, value, 50, INT_MAX, spa->spa_proc, zio_taskq_basedc, flags); } else { pri_t pri = maxclsyspri; /* * The write issue taskq can be extremely CPU * intensive. Run it at slightly less important * priority than the other taskqs. * * Under Linux and FreeBSD this means incrementing * the priority value as opposed to platforms like * illumos where it should be decremented. * * On FreeBSD, if priorities divided by four (RQ_PPQ) * are equal then a difference between them is * insignificant. */ if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { #if defined(__linux__) pri++; #elif defined(__FreeBSD__) pri += 4; #else #error "unknown OS" #endif } tq = taskq_create_proc(name, value, pri, 50, INT_MAX, spa->spa_proc, flags); } tqs->stqs_taskq[i] = tq; } } static void spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; if (tqs->stqs_taskq == NULL) { ASSERT3U(tqs->stqs_count, ==, 0); return; } for (uint_t i = 0; i < tqs->stqs_count; i++) { ASSERT3P(tqs->stqs_taskq[i], !=, NULL); taskq_destroy(tqs->stqs_taskq[i]); } kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); tqs->stqs_taskq = NULL; } /* * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. * Note that a type may have multiple discrete taskqs to avoid lock contention * on the taskq itself. In that case we choose which taskq at random by using * the low bits of gethrtime(). */ void spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; taskq_t *tq; ASSERT3P(tqs->stqs_taskq, !=, NULL); ASSERT3U(tqs->stqs_count, !=, 0); if (tqs->stqs_count == 1) { tq = tqs->stqs_taskq[0]; } else { tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; } taskq_dispatch_ent(tq, func, arg, flags, ent); } /* * Same as spa_taskq_dispatch_ent() but block on the task until completion. */ void spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; taskq_t *tq; taskqid_t id; ASSERT3P(tqs->stqs_taskq, !=, NULL); ASSERT3U(tqs->stqs_count, !=, 0); if (tqs->stqs_count == 1) { tq = tqs->stqs_taskq[0]; } else { tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; } id = taskq_dispatch(tq, func, arg, flags); if (id) taskq_wait_id(tq, id); } static void spa_create_zio_taskqs(spa_t *spa) { for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_init(spa, t, q); } } } /* * Disabled until spa_thread() can be adapted for Linux. */ #undef HAVE_SPA_THREAD #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) static void spa_thread(void *arg) { psetid_t zio_taskq_psrset_bind = PS_NONE; callb_cpr_t cprinfo; spa_t *spa = arg; user_t *pu = PTOU(curproc); CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, spa->spa_name); ASSERT(curproc != &p0); (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), "zpool-%s", spa->spa_name); (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); /* bind this thread to the requested psrset */ if (zio_taskq_psrset_bind != PS_NONE) { pool_lock(); mutex_enter(&cpu_lock); mutex_enter(&pidlock); mutex_enter(&curproc->p_lock); if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 0, NULL, NULL) == 0) { curthread->t_bind_pset = zio_taskq_psrset_bind; } else { cmn_err(CE_WARN, "Couldn't bind process for zfs pool \"%s\" to " "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); } mutex_exit(&curproc->p_lock); mutex_exit(&pidlock); mutex_exit(&cpu_lock); pool_unlock(); } if (zio_taskq_sysdc) { sysdc_thread_enter(curthread, 100, 0); } spa->spa_proc = curproc; spa->spa_did = curthread->t_did; spa_create_zio_taskqs(spa); mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); spa->spa_proc_state = SPA_PROC_ACTIVE; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_SAFE_BEGIN(&cprinfo); while (spa->spa_proc_state == SPA_PROC_ACTIVE) cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); spa->spa_proc_state = SPA_PROC_GONE; spa->spa_proc = &p0; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ mutex_enter(&curproc->p_lock); lwp_exit(); } #endif /* * Activate an uninitialized pool. */ static void spa_activate(spa_t *spa, spa_mode_t mode) { ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); spa->spa_state = POOL_STATE_ACTIVE; spa->spa_mode = mode; spa->spa_read_spacemaps = spa_mode_readable_spacemaps; spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops); spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops); spa->spa_embedded_log_class = metaslab_class_create(spa, &zfs_metaslab_ops); spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops); spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops); /* Try to create a covering process */ mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_NONE); ASSERT(spa->spa_proc == &p0); spa->spa_did = 0; (void) spa_create_process; #ifdef HAVE_SPA_THREAD /* Only create a process if we're going to be around a while. */ if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, NULL, 0) == 0) { spa->spa_proc_state = SPA_PROC_CREATED; while (spa->spa_proc_state == SPA_PROC_CREATED) { cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); ASSERT(spa->spa_proc != &p0); ASSERT(spa->spa_did != 0); } else { #ifdef _KERNEL cmn_err(CE_WARN, "Couldn't create process for zfs pool \"%s\"\n", spa->spa_name); #endif } } #endif /* HAVE_SPA_THREAD */ mutex_exit(&spa->spa_proc_lock); /* If we didn't create a process, we need to create our taskqs. */ if (spa->spa_proc == &p0) { spa_create_zio_taskqs(spa); } for (size_t i = 0; i < TXG_SIZE; i++) { spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); } list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_config_dirty_node)); list_create(&spa->spa_evicting_os_list, sizeof (objset_t), offsetof(objset_t, os_evicting_node)); list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_state_dirty_node)); txg_list_create(&spa->spa_vdev_txg_list, spa, offsetof(struct vdev, vdev_txg_node)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_healed, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); spa_activate_os(spa); spa_keystore_init(&spa->spa_keystore); /* * This taskq is used to perform zvol-minor-related tasks * asynchronously. This has several advantages, including easy * resolution of various deadlocks. * * The taskq must be single threaded to ensure tasks are always * processed in the order in which they were dispatched. * * A taskq per pool allows one to keep the pools independent. * This way if one pool is suspended, it will not impact another. * * The preferred location to dispatch a zvol minor task is a sync * task. In this context, there is easy access to the spa_t and minimal * error handling is required because the sync task must succeed. */ spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1, INT_MAX, 0); /* * Taskq dedicated to prefetcher threads: this is used to prevent the * pool traverse code from monopolizing the global (and limited) * system_taskq by inappropriately scheduling long running tasks on it. */ spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); /* * The taskq to upgrade datasets in this pool. Currently used by * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. */ spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); } /* * Opposite of spa_activate(). */ static void spa_deactivate(spa_t *spa) { ASSERT(spa->spa_sync_on == B_FALSE); ASSERT(spa->spa_dsl_pool == NULL); ASSERT(spa->spa_root_vdev == NULL); ASSERT(spa->spa_async_zio_root == NULL); ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); spa_evicting_os_wait(spa); if (spa->spa_zvol_taskq) { taskq_destroy(spa->spa_zvol_taskq); spa->spa_zvol_taskq = NULL; } if (spa->spa_prefetch_taskq) { taskq_destroy(spa->spa_prefetch_taskq); spa->spa_prefetch_taskq = NULL; } if (spa->spa_upgrade_taskq) { taskq_destroy(spa->spa_upgrade_taskq); spa->spa_upgrade_taskq = NULL; } txg_list_destroy(&spa->spa_vdev_txg_list); list_destroy(&spa->spa_config_dirty_list); list_destroy(&spa->spa_evicting_os_list); list_destroy(&spa->spa_state_dirty_list); taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_fini(spa, t, q); } } for (size_t i = 0; i < TXG_SIZE; i++) { ASSERT3P(spa->spa_txg_zio[i], !=, NULL); VERIFY0(zio_wait(spa->spa_txg_zio[i])); spa->spa_txg_zio[i] = NULL; } metaslab_class_destroy(spa->spa_normal_class); spa->spa_normal_class = NULL; metaslab_class_destroy(spa->spa_log_class); spa->spa_log_class = NULL; metaslab_class_destroy(spa->spa_embedded_log_class); spa->spa_embedded_log_class = NULL; metaslab_class_destroy(spa->spa_special_class); spa->spa_special_class = NULL; metaslab_class_destroy(spa->spa_dedup_class); spa->spa_dedup_class = NULL; /* * If this was part of an import or the open otherwise failed, we may * still have errors left in the queues. Empty them just in case. */ spa_errlog_drain(spa); avl_destroy(&spa->spa_errlist_scrub); avl_destroy(&spa->spa_errlist_last); avl_destroy(&spa->spa_errlist_healed); spa_keystore_fini(&spa->spa_keystore); spa->spa_state = POOL_STATE_UNINITIALIZED; mutex_enter(&spa->spa_proc_lock); if (spa->spa_proc_state != SPA_PROC_NONE) { ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); spa->spa_proc_state = SPA_PROC_DEACTIVATE; cv_broadcast(&spa->spa_proc_cv); while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { ASSERT(spa->spa_proc != &p0); cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_GONE); spa->spa_proc_state = SPA_PROC_NONE; } ASSERT(spa->spa_proc == &p0); mutex_exit(&spa->spa_proc_lock); /* * We want to make sure spa_thread() has actually exited the ZFS * module, so that the module can't be unloaded out from underneath * it. */ if (spa->spa_did != 0) { thread_join(spa->spa_did); spa->spa_did = 0; } spa_deactivate_os(spa); } /* * Verify a pool configuration, and construct the vdev tree appropriately. This * will create all the necessary vdevs in the appropriate layout, with each vdev * in the CLOSED state. This will prep the pool before open/creation/import. * All vdev validation is done by the vdev_alloc() routine. */ int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int atype) { nvlist_t **child; uint_t children; int error; if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) return (error); if ((*vdp)->vdev_ops->vdev_op_leaf) return (0); error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children); if (error == ENOENT) return (0); if (error) { vdev_free(*vdp); *vdp = NULL; return (SET_ERROR(EINVAL)); } for (int c = 0; c < children; c++) { vdev_t *vd; if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, atype)) != 0) { vdev_free(*vdp); *vdp = NULL; return (error); } } ASSERT(*vdp != NULL); return (0); } static boolean_t spa_should_flush_logs_on_unload(spa_t *spa) { if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) return (B_FALSE); if (!spa_writeable(spa)) return (B_FALSE); if (!spa->spa_sync_on) return (B_FALSE); if (spa_state(spa) != POOL_STATE_EXPORTED) return (B_FALSE); if (zfs_keep_log_spacemaps_at_export) return (B_FALSE); return (B_TRUE); } /* * Opens a transaction that will set the flag that will instruct * spa_sync to attempt to flush all the metaslabs for that txg. */ static void spa_unload_log_sm_flush_all(spa_t *spa) { dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); ASSERT3U(spa->spa_log_flushall_txg, ==, 0); spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); dmu_tx_commit(tx); txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); } static void spa_unload_log_sm_metadata(spa_t *spa) { void *cookie = NULL; spa_log_sm_t *sls; while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, &cookie)) != NULL) { VERIFY0(sls->sls_mscount); kmem_free(sls, sizeof (spa_log_sm_t)); } for (log_summary_entry_t *e = list_head(&spa->spa_log_summary); e != NULL; e = list_head(&spa->spa_log_summary)) { VERIFY0(e->lse_mscount); list_remove(&spa->spa_log_summary, e); kmem_free(e, sizeof (log_summary_entry_t)); } spa->spa_unflushed_stats.sus_nblocks = 0; spa->spa_unflushed_stats.sus_memused = 0; spa->spa_unflushed_stats.sus_blocklimit = 0; } static void spa_destroy_aux_threads(spa_t *spa) { if (spa->spa_condense_zthr != NULL) { zthr_destroy(spa->spa_condense_zthr); spa->spa_condense_zthr = NULL; } if (spa->spa_checkpoint_discard_zthr != NULL) { zthr_destroy(spa->spa_checkpoint_discard_zthr); spa->spa_checkpoint_discard_zthr = NULL; } if (spa->spa_livelist_delete_zthr != NULL) { zthr_destroy(spa->spa_livelist_delete_zthr); spa->spa_livelist_delete_zthr = NULL; } if (spa->spa_livelist_condense_zthr != NULL) { zthr_destroy(spa->spa_livelist_condense_zthr); spa->spa_livelist_condense_zthr = NULL; } } /* * Opposite of spa_load(). */ static void spa_unload(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); spa_import_progress_remove(spa_guid(spa)); spa_load_note(spa, "UNLOADING"); spa_wake_waiters(spa); /* * If we have set the spa_final_txg, we have already performed the * tasks below in spa_export_common(). We should not redo it here since * we delay the final TXGs beyond what spa_final_txg is set at. */ if (spa->spa_final_txg == UINT64_MAX) { /* * If the log space map feature is enabled and the pool is * getting exported (but not destroyed), we want to spend some * time flushing as many metaslabs as we can in an attempt to * destroy log space maps and save import time. */ if (spa_should_flush_logs_on_unload(spa)) spa_unload_log_sm_flush_all(spa); /* * Stop async tasks. */ spa_async_suspend(spa); if (spa->spa_root_vdev) { vdev_t *root_vdev = spa->spa_root_vdev; vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE); vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); vdev_autotrim_stop_all(spa); vdev_rebuild_stop_all(spa); } } /* * Stop syncing. */ if (spa->spa_sync_on) { txg_sync_stop(spa->spa_dsl_pool); spa->spa_sync_on = B_FALSE; } /* * This ensures that there is no async metaslab prefetching * while we attempt to unload the spa. */ if (spa->spa_root_vdev != NULL) { for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) { vdev_t *vc = spa->spa_root_vdev->vdev_child[c]; if (vc->vdev_mg != NULL) taskq_wait(vc->vdev_mg->mg_taskq); } } if (spa->spa_mmp.mmp_thread) mmp_thread_stop(spa); /* * Wait for any outstanding async I/O to complete. */ if (spa->spa_async_zio_root != NULL) { for (int i = 0; i < max_ncpus; i++) (void) zio_wait(spa->spa_async_zio_root[i]); kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); spa->spa_async_zio_root = NULL; } if (spa->spa_vdev_removal != NULL) { spa_vdev_removal_destroy(spa->spa_vdev_removal); spa->spa_vdev_removal = NULL; } spa_destroy_aux_threads(spa); spa_condense_fini(spa); bpobj_close(&spa->spa_deferred_bpobj); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); /* * Close all vdevs. */ if (spa->spa_root_vdev) vdev_free(spa->spa_root_vdev); ASSERT(spa->spa_root_vdev == NULL); /* * Close the dsl pool. */ if (spa->spa_dsl_pool) { dsl_pool_close(spa->spa_dsl_pool); spa->spa_dsl_pool = NULL; spa->spa_meta_objset = NULL; } ddt_unload(spa); + brt_unload(spa); spa_unload_log_sm_metadata(spa); /* * Drop and purge level 2 cache */ spa_l2cache_drop(spa); if (spa->spa_spares.sav_vdevs) { for (int i = 0; i < spa->spa_spares.sav_count; i++) vdev_free(spa->spa_spares.sav_vdevs[i]); kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); spa->spa_spares.sav_vdevs = NULL; } if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; } spa->spa_spares.sav_count = 0; if (spa->spa_l2cache.sav_vdevs) { for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); vdev_free(spa->spa_l2cache.sav_vdevs[i]); } kmem_free(spa->spa_l2cache.sav_vdevs, spa->spa_l2cache.sav_count * sizeof (void *)); spa->spa_l2cache.sav_vdevs = NULL; } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; } spa->spa_l2cache.sav_count = 0; spa->spa_async_suspended = 0; spa->spa_indirect_vdevs_loaded = B_FALSE; if (spa->spa_comment != NULL) { spa_strfree(spa->spa_comment); spa->spa_comment = NULL; } if (spa->spa_compatibility != NULL) { spa_strfree(spa->spa_compatibility); spa->spa_compatibility = NULL; } spa_config_exit(spa, SCL_ALL, spa); } /* * Load (or re-load) the current list of vdevs describing the active spares for * this pool. When this is called, we have some form of basic information in * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. */ void spa_load_spares(spa_t *spa) { nvlist_t **spares; uint_t nspares; int i; vdev_t *vd, *tvd; #ifndef _KERNEL /* * zdb opens both the current state of the pool and the * checkpointed state (if present), with a different spa_t. * * As spare vdevs are shared among open pools, we skip loading * them when we load the checkpointed state of the pool. */ if (!spa_writeable(spa)) return; #endif ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * First, close and free any existing spare vdevs. */ if (spa->spa_spares.sav_vdevs) { for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; /* Undo the call to spa_activate() below */ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL && tvd->vdev_isspare) spa_spare_remove(tvd); vdev_close(vd); vdev_free(vd); } kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); } if (spa->spa_spares.sav_config == NULL) nspares = 0; else VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares)); spa->spa_spares.sav_count = (int)nspares; spa->spa_spares.sav_vdevs = NULL; if (nspares == 0) return; /* * Construct the array of vdevs, opening them to get status in the * process. For each spare, there is potentially two different vdev_t * structures associated with it: one in the list of spares (used only * for basic validation purposes) and one in the active vdev * configuration (if it's spared in). During this phase we open and * validate each vdev on the spare list. If the vdev also exists in the * active configuration, then we also mark this vdev as an active spare. */ spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) { VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, VDEV_ALLOC_SPARE) == 0); ASSERT(vd != NULL); spa->spa_spares.sav_vdevs[i] = vd; if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL) { if (!tvd->vdev_isspare) spa_spare_add(tvd); /* * We only mark the spare active if we were successfully * able to load the vdev. Otherwise, importing a pool * with a bad active spare would result in strange * behavior, because multiple pool would think the spare * is actively in use. * * There is a vulnerability here to an equally bizarre * circumstance, where a dead active spare is later * brought back to life (onlined or otherwise). Given * the rarity of this scenario, and the extra complexity * it adds, we ignore the possibility. */ if (!vdev_is_dead(tvd)) spa_spare_activate(tvd); } vd->vdev_top = vd; vd->vdev_aux = &spa->spa_spares; if (vdev_open(vd) != 0) continue; if (vdev_validate_aux(vd) == 0) spa_spare_add(vd); } /* * Recompute the stashed list of spares, with status information * this time. */ fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) spares[i] = vdev_config_generate(spa, spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); fnvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, spa->spa_spares.sav_count); for (i = 0; i < spa->spa_spares.sav_count; i++) nvlist_free(spares[i]); kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); } /* * Load (or re-load) the current list of vdevs describing the active l2cache for * this pool. When this is called, we have some form of basic information in * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. * Devices which are already active have their details maintained, and are * not re-opened. */ void spa_load_l2cache(spa_t *spa) { nvlist_t **l2cache = NULL; uint_t nl2cache; int i, j, oldnvdevs; uint64_t guid; vdev_t *vd, **oldvdevs, **newvdevs; spa_aux_vdev_t *sav = &spa->spa_l2cache; #ifndef _KERNEL /* * zdb opens both the current state of the pool and the * checkpointed state (if present), with a different spa_t. * * As L2 caches are part of the ARC which is shared among open * pools, we skip loading them when we load the checkpointed * state of the pool. */ if (!spa_writeable(spa)) return; #endif ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); oldvdevs = sav->sav_vdevs; oldnvdevs = sav->sav_count; sav->sav_vdevs = NULL; sav->sav_count = 0; if (sav->sav_config == NULL) { nl2cache = 0; newvdevs = NULL; goto out; } VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); /* * Process new nvlist of vdevs. */ for (i = 0; i < nl2cache; i++) { guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); newvdevs[i] = NULL; for (j = 0; j < oldnvdevs; j++) { vd = oldvdevs[j]; if (vd != NULL && guid == vd->vdev_guid) { /* * Retain previous vdev for add/remove ops. */ newvdevs[i] = vd; oldvdevs[j] = NULL; break; } } if (newvdevs[i] == NULL) { /* * Create new vdev */ VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, VDEV_ALLOC_L2CACHE) == 0); ASSERT(vd != NULL); newvdevs[i] = vd; /* * Commit this vdev as an l2cache device, * even if it fails to open. */ spa_l2cache_add(vd); vd->vdev_top = vd; vd->vdev_aux = sav; spa_l2cache_activate(vd); if (vdev_open(vd) != 0) continue; (void) vdev_validate_aux(vd); if (!vdev_is_dead(vd)) l2arc_add_vdev(spa, vd); /* * Upon cache device addition to a pool or pool * creation with a cache device or if the header * of the device is invalid we issue an async * TRIM command for the whole device which will * execute if l2arc_trim_ahead > 0. */ spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); } } sav->sav_vdevs = newvdevs; sav->sav_count = (int)nl2cache; /* * Recompute the stashed list of l2cache devices, with status * information this time. */ fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE); if (sav->sav_count > 0) l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) l2cache[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, sav->sav_count); out: /* * Purge vdevs that were dropped */ if (oldvdevs) { for (i = 0; i < oldnvdevs; i++) { uint64_t pool; vd = oldvdevs[i]; if (vd != NULL) { ASSERT(vd->vdev_isl2cache); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); vdev_clear_stats(vd); vdev_free(vd); } } kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); } for (i = 0; i < sav->sav_count; i++) nvlist_free(l2cache[i]); if (sav->sav_count) kmem_free(l2cache, sav->sav_count * sizeof (void *)); } static int load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) { dmu_buf_t *db; char *packed = NULL; size_t nvsize = 0; int error; *value = NULL; error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); if (error) return (error); nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); packed = vmem_alloc(nvsize, KM_SLEEP); error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, DMU_READ_PREFETCH); if (error == 0) error = nvlist_unpack(packed, nvsize, value, 0); vmem_free(packed, nvsize); return (error); } /* * Concrete top-level vdevs that are not missing and are not logs. At every * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. */ static uint64_t spa_healthy_core_tvds(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; uint64_t tvds = 0; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *vd = rvd->vdev_child[i]; if (vd->vdev_islog) continue; if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) tvds++; } return (tvds); } /* * Checks to see if the given vdev could not be opened, in which case we post a * sysevent to notify the autoreplace code that the device has been removed. */ static void spa_check_removed(vdev_t *vd) { for (uint64_t c = 0; c < vd->vdev_children; c++) spa_check_removed(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && vdev_is_concrete(vd)) { zfs_post_autoreplace(vd->vdev_spa, vd); spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); } } static int spa_check_for_missing_logs(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; /* * If we're doing a normal import, then build up any additional * diagnostic information about missing log devices. * We'll pass this up to the user for further processing. */ if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { nvlist_t **child, *nv; uint64_t idx = 0; child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), KM_SLEEP); nv = fnvlist_alloc(); for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; /* * We consider a device as missing only if it failed * to open (i.e. offline or faulted is not considered * as missing). */ if (tvd->vdev_islog && tvd->vdev_state == VDEV_STATE_CANT_OPEN) { child[idx++] = vdev_config_generate(spa, tvd, B_FALSE, VDEV_CONFIG_MISSING); } } if (idx > 0) { fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, (const nvlist_t * const *)child, idx); fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_MISSING_DEVICES, nv); for (uint64_t i = 0; i < idx; i++) nvlist_free(child[i]); } nvlist_free(nv); kmem_free(child, rvd->vdev_children * sizeof (char **)); if (idx > 0) { spa_load_failed(spa, "some log devices are missing"); vdev_dbgmsg_print_tree(rvd, 2); return (SET_ERROR(ENXIO)); } } else { for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_islog && tvd->vdev_state == VDEV_STATE_CANT_OPEN) { spa_set_log_state(spa, SPA_LOG_CLEAR); spa_load_note(spa, "some log devices are " "missing, ZIL is dropped."); vdev_dbgmsg_print_tree(rvd, 2); break; } } } return (0); } /* * Check for missing log devices */ static boolean_t spa_check_logs(spa_t *spa) { boolean_t rv = B_FALSE; dsl_pool_t *dp = spa_get_dsl(spa); switch (spa->spa_log_state) { default: break; case SPA_LOG_MISSING: /* need to recheck in case slog has been restored */ case SPA_LOG_UNKNOWN: rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); if (rv) spa_set_log_state(spa, SPA_LOG_MISSING); break; } return (rv); } /* * Passivate any log vdevs (note, does not apply to embedded log metaslabs). */ static boolean_t spa_passivate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; boolean_t slog_found = B_FALSE; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_islog) { ASSERT3P(tvd->vdev_log_mg, ==, NULL); metaslab_group_passivate(tvd->vdev_mg); slog_found = B_TRUE; } } return (slog_found); } /* * Activate any log vdevs (note, does not apply to embedded log metaslabs). */ static void spa_activate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_islog) { ASSERT3P(tvd->vdev_log_mg, ==, NULL); metaslab_group_activate(tvd->vdev_mg); } } } int spa_reset_logs(spa_t *spa) { int error; error = dmu_objset_find(spa_name(spa), zil_reset, NULL, DS_FIND_CHILDREN); if (error == 0) { /* * We successfully offlined the log device, sync out the * current txg so that the "stubby" block can be removed * by zil_sync(). */ txg_wait_synced(spa->spa_dsl_pool, 0); } return (error); } static void spa_aux_check_removed(spa_aux_vdev_t *sav) { for (int i = 0; i < sav->sav_count; i++) spa_check_removed(sav->sav_vdevs[i]); } void spa_claim_notify(zio_t *zio) { spa_t *spa = zio->io_spa; if (zio->io_error) return; mutex_enter(&spa->spa_props_lock); /* any mutex will do */ if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) spa->spa_claim_max_txg = zio->io_bp->blk_birth; mutex_exit(&spa->spa_props_lock); } typedef struct spa_load_error { boolean_t sle_verify_data; uint64_t sle_meta_count; uint64_t sle_data_count; } spa_load_error_t; static void spa_load_verify_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; spa_load_error_t *sle = zio->io_private; dmu_object_type_t type = BP_GET_TYPE(bp); int error = zio->io_error; spa_t *spa = zio->io_spa; abd_free(zio->io_abd); if (error) { if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && type != DMU_OT_INTENT_LOG) atomic_inc_64(&sle->sle_meta_count); else atomic_inc_64(&sle->sle_data_count); } mutex_enter(&spa->spa_scrub_lock); spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); } /* * Maximum number of inflight bytes is the log2 fraction of the arc size. * By default, we set it to 1/16th of the arc. */ static uint_t spa_load_verify_shift = 4; static int spa_load_verify_metadata = B_TRUE; static int spa_load_verify_data = B_TRUE; static int spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { zio_t *rio = arg; spa_load_error_t *sle = rio->io_private; (void) zilog, (void) dnp; /* * Note: normally this routine will not be called if * spa_load_verify_metadata is not set. However, it may be useful * to manually set the flag after the traversal has begun. */ if (!spa_load_verify_metadata) return (0); /* * Sanity check the block pointer in order to detect obvious damage * before using the contents in subsequent checks or in zio_read(). * When damaged consider it to be a metadata error since we cannot * trust the BP_GET_TYPE and BP_GET_LEVEL values. */ if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) { atomic_inc_64(&sle->sle_meta_count); return (0); } if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) return (0); if (!BP_IS_METADATA(bp) && (!spa_load_verify_data || !sle->sle_verify_data)) return (0); uint64_t maxinflight_bytes = arc_target_bytes() >> spa_load_verify_shift; size_t size = BP_GET_PSIZE(bp); mutex_enter(&spa->spa_scrub_lock); while (spa->spa_load_verify_bytes >= maxinflight_bytes) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_load_verify_bytes += size; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); return (0); } static int verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { (void) dp, (void) arg; if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) return (SET_ERROR(ENAMETOOLONG)); return (0); } static int spa_load_verify(spa_t *spa) { zio_t *rio; spa_load_error_t sle = { 0 }; zpool_load_policy_t policy; boolean_t verify_ok = B_FALSE; int error = 0; zpool_get_load_policy(spa->spa_config, &policy); if (policy.zlp_rewind & ZPOOL_NEVER_REWIND || policy.zlp_maxmeta == UINT64_MAX) return (0); dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); error = dmu_objset_find_dp(spa->spa_dsl_pool, spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, DS_FIND_CHILDREN); dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); if (error != 0) return (error); /* * Verify data only if we are rewinding or error limit was set. * Otherwise nothing except dbgmsg care about it to waste time. */ sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) || (policy.zlp_maxdata < UINT64_MAX); rio = zio_root(spa, NULL, &sle, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); if (spa_load_verify_metadata) { if (spa->spa_extreme_rewind) { spa_load_note(spa, "performing a complete scan of the " "pool since extreme rewind is on. This may take " "a very long time.\n (spa_load_verify_data=%u, " "spa_load_verify_metadata=%u)", spa_load_verify_data, spa_load_verify_metadata); } error = traverse_pool(spa, spa->spa_verify_min_txg, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); } (void) zio_wait(rio); ASSERT0(spa->spa_load_verify_bytes); spa->spa_load_meta_errors = sle.sle_meta_count; spa->spa_load_data_errors = sle.sle_data_count; if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { spa_load_note(spa, "spa_load_verify found %llu metadata errors " "and %llu data errors", (u_longlong_t)sle.sle_meta_count, (u_longlong_t)sle.sle_data_count); } if (spa_load_verify_dryrun || (!error && sle.sle_meta_count <= policy.zlp_maxmeta && sle.sle_data_count <= policy.zlp_maxdata)) { int64_t loss = 0; verify_ok = B_TRUE; spa->spa_load_txg = spa->spa_uberblock.ub_txg; spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts); fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, loss); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count); } else { spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; } if (spa_load_verify_dryrun) return (0); if (error) { if (error != ENXIO && error != EIO) error = SET_ERROR(EIO); return (error); } return (verify_ok ? 0 : EIO); } /* * Find a value in the pool props object. */ static void spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) { (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); } /* * Find a value in the pool directory object. */ static int spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) { int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, val); if (error != 0 && (error != ENOENT || log_enoent)) { spa_load_failed(spa, "couldn't get '%s' value in MOS directory " "[error=%d]", name, error); } return (error); } static int spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) { vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); return (SET_ERROR(err)); } boolean_t spa_livelist_delete_check(spa_t *spa) { return (spa->spa_livelists_to_delete != 0); } static boolean_t spa_livelist_delete_cb_check(void *arg, zthr_t *z) { (void) z; spa_t *spa = arg; return (spa_livelist_delete_check(spa)); } static int delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { spa_t *spa = arg; zio_free(spa, tx->tx_txg, bp); dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, -bp_get_dsize_sync(spa, bp), -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); return (0); } static int dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) { int err; zap_cursor_t zc; zap_attribute_t za; zap_cursor_init(&zc, os, zap_obj); err = zap_cursor_retrieve(&zc, &za); zap_cursor_fini(&zc); if (err == 0) *llp = za.za_first_integer; return (err); } /* * Components of livelist deletion that must be performed in syncing * context: freeing block pointers and updating the pool-wide data * structures to indicate how much work is left to do */ typedef struct sublist_delete_arg { spa_t *spa; dsl_deadlist_t *ll; uint64_t key; bplist_t *to_free; } sublist_delete_arg_t; static void sublist_delete_sync(void *arg, dmu_tx_t *tx) { sublist_delete_arg_t *sda = arg; spa_t *spa = sda->spa; dsl_deadlist_t *ll = sda->ll; uint64_t key = sda->key; bplist_t *to_free = sda->to_free; bplist_iterate(to_free, delete_blkptr_cb, spa, tx); dsl_deadlist_remove_entry(ll, key, tx); } typedef struct livelist_delete_arg { spa_t *spa; uint64_t ll_obj; uint64_t zap_obj; } livelist_delete_arg_t; static void livelist_delete_sync(void *arg, dmu_tx_t *tx) { livelist_delete_arg_t *lda = arg; spa_t *spa = lda->spa; uint64_t ll_obj = lda->ll_obj; uint64_t zap_obj = lda->zap_obj; objset_t *mos = spa->spa_meta_objset; uint64_t count; /* free the livelist and decrement the feature count */ VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); dsl_deadlist_free(mos, ll_obj, tx); spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); VERIFY0(zap_count(mos, zap_obj, &count)); if (count == 0) { /* no more livelists to delete */ VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DELETED_CLONES, tx)); VERIFY0(zap_destroy(mos, zap_obj, tx)); spa->spa_livelists_to_delete = 0; spa_notify_waiters(spa); } } /* * Load in the value for the livelist to be removed and open it. Then, * load its first sublist and determine which block pointers should actually * be freed. Then, call a synctask which performs the actual frees and updates * the pool-wide livelist data. */ static void spa_livelist_delete_cb(void *arg, zthr_t *z) { spa_t *spa = arg; uint64_t ll_obj = 0, count; objset_t *mos = spa->spa_meta_objset; uint64_t zap_obj = spa->spa_livelists_to_delete; /* * Determine the next livelist to delete. This function should only * be called if there is at least one deleted clone. */ VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); VERIFY0(zap_count(mos, ll_obj, &count)); if (count > 0) { dsl_deadlist_t *ll; dsl_deadlist_entry_t *dle; bplist_t to_free; ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); dsl_deadlist_open(ll, mos, ll_obj); dle = dsl_deadlist_first(ll); ASSERT3P(dle, !=, NULL); bplist_create(&to_free); int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, z, NULL); if (err == 0) { sublist_delete_arg_t sync_arg = { .spa = spa, .ll = ll, .key = dle->dle_mintxg, .to_free = &to_free }; zfs_dbgmsg("deleting sublist (id %llu) from" " livelist %llu, %lld remaining", (u_longlong_t)dle->dle_bpobj.bpo_object, (u_longlong_t)ll_obj, (longlong_t)count - 1); VERIFY0(dsl_sync_task(spa_name(spa), NULL, sublist_delete_sync, &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); } else { VERIFY3U(err, ==, EINTR); } bplist_clear(&to_free); bplist_destroy(&to_free); dsl_deadlist_close(ll); kmem_free(ll, sizeof (dsl_deadlist_t)); } else { livelist_delete_arg_t sync_arg = { .spa = spa, .ll_obj = ll_obj, .zap_obj = zap_obj }; zfs_dbgmsg("deletion of livelist %llu completed", (u_longlong_t)ll_obj); VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); } } static void spa_start_livelist_destroy_thread(spa_t *spa) { ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); spa->spa_livelist_delete_zthr = zthr_create("z_livelist_destroy", spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa, minclsyspri); } typedef struct livelist_new_arg { bplist_t *allocs; bplist_t *frees; } livelist_new_arg_t; static int livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { ASSERT(tx == NULL); livelist_new_arg_t *lna = arg; if (bp_freed) { bplist_append(lna->frees, bp); } else { bplist_append(lna->allocs, bp); zfs_livelist_condense_new_alloc++; } return (0); } typedef struct livelist_condense_arg { spa_t *spa; bplist_t to_keep; uint64_t first_size; uint64_t next_size; } livelist_condense_arg_t; static void spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) { livelist_condense_arg_t *lca = arg; spa_t *spa = lca->spa; bplist_t new_frees; dsl_dataset_t *ds = spa->spa_to_condense.ds; /* Have we been cancelled? */ if (spa->spa_to_condense.cancelled) { zfs_livelist_condense_sync_cancel++; goto out; } dsl_deadlist_entry_t *first = spa->spa_to_condense.first; dsl_deadlist_entry_t *next = spa->spa_to_condense.next; dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; /* * It's possible that the livelist was changed while the zthr was * running. Therefore, we need to check for new blkptrs in the two * entries being condensed and continue to track them in the livelist. * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), * it's possible that the newly added blkptrs are FREEs or ALLOCs so * we need to sort them into two different bplists. */ uint64_t first_obj = first->dle_bpobj.bpo_object; uint64_t next_obj = next->dle_bpobj.bpo_object; uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; bplist_create(&new_frees); livelist_new_arg_t new_bps = { .allocs = &lca->to_keep, .frees = &new_frees, }; if (cur_first_size > lca->first_size) { VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, livelist_track_new_cb, &new_bps, lca->first_size)); } if (cur_next_size > lca->next_size) { VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, livelist_track_new_cb, &new_bps, lca->next_size)); } dsl_deadlist_clear_entry(first, ll, tx); ASSERT(bpobj_is_empty(&first->dle_bpobj)); dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); bplist_destroy(&new_frees); char dsname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(ds, dsname); zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname, (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj, (u_longlong_t)cur_first_size, (u_longlong_t)next_obj, (u_longlong_t)cur_next_size, (u_longlong_t)first->dle_bpobj.bpo_object, (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs); out: dmu_buf_rele(ds->ds_dbuf, spa); spa->spa_to_condense.ds = NULL; bplist_clear(&lca->to_keep); bplist_destroy(&lca->to_keep); kmem_free(lca, sizeof (livelist_condense_arg_t)); spa->spa_to_condense.syncing = B_FALSE; } static void spa_livelist_condense_cb(void *arg, zthr_t *t) { while (zfs_livelist_condense_zthr_pause && !(zthr_has_waiters(t) || zthr_iscancelled(t))) delay(1); spa_t *spa = arg; dsl_deadlist_entry_t *first = spa->spa_to_condense.first; dsl_deadlist_entry_t *next = spa->spa_to_condense.next; uint64_t first_size, next_size; livelist_condense_arg_t *lca = kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); bplist_create(&lca->to_keep); /* * Process the livelists (matching FREEs and ALLOCs) in open context * so we have minimal work in syncing context to condense. * * We save bpobj sizes (first_size and next_size) to use later in * syncing context to determine if entries were added to these sublists * while in open context. This is possible because the clone is still * active and open for normal writes and we want to make sure the new, * unprocessed blockpointers are inserted into the livelist normally. * * Note that dsl_process_sub_livelist() both stores the size number of * blockpointers and iterates over them while the bpobj's lock held, so * the sizes returned to us are consistent which what was actually * processed. */ int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, &first_size); if (err == 0) err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, t, &next_size); if (err == 0) { while (zfs_livelist_condense_sync_pause && !(zthr_has_waiters(t) || zthr_iscancelled(t))) delay(1); dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); dmu_tx_mark_netfree(tx); dmu_tx_hold_space(tx, 1); err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); if (err == 0) { /* * Prevent the condense zthr restarting before * the synctask completes. */ spa->spa_to_condense.syncing = B_TRUE; lca->spa = spa; lca->first_size = first_size; lca->next_size = next_size; dsl_sync_task_nowait(spa_get_dsl(spa), spa_livelist_condense_sync, lca, tx); dmu_tx_commit(tx); return; } } /* * Condensing can not continue: either it was externally stopped or * we were unable to assign to a tx because the pool has run out of * space. In the second case, we'll just end up trying to condense * again in a later txg. */ ASSERT(err != 0); bplist_clear(&lca->to_keep); bplist_destroy(&lca->to_keep); kmem_free(lca, sizeof (livelist_condense_arg_t)); dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); spa->spa_to_condense.ds = NULL; if (err == EINTR) zfs_livelist_condense_zthr_cancel++; } /* * Check that there is something to condense but that a condense is not * already in progress and that condensing has not been cancelled. */ static boolean_t spa_livelist_condense_cb_check(void *arg, zthr_t *z) { (void) z; spa_t *spa = arg; if ((spa->spa_to_condense.ds != NULL) && (spa->spa_to_condense.syncing == B_FALSE) && (spa->spa_to_condense.cancelled == B_FALSE)) { return (B_TRUE); } return (B_FALSE); } static void spa_start_livelist_condensing_thread(spa_t *spa) { spa->spa_to_condense.ds = NULL; spa->spa_to_condense.first = NULL; spa->spa_to_condense.next = NULL; spa->spa_to_condense.syncing = B_FALSE; spa->spa_to_condense.cancelled = B_FALSE; ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); spa->spa_livelist_condense_zthr = zthr_create("z_livelist_condense", spa_livelist_condense_cb_check, spa_livelist_condense_cb, spa, minclsyspri); } static void spa_spawn_aux_threads(spa_t *spa) { ASSERT(spa_writeable(spa)); ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_start_indirect_condensing_thread(spa); spa_start_livelist_destroy_thread(spa); spa_start_livelist_condensing_thread(spa); ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); spa->spa_checkpoint_discard_zthr = zthr_create("z_checkpoint_discard", spa_checkpoint_discard_thread_check, spa_checkpoint_discard_thread, spa, minclsyspri); } /* * Fix up config after a partly-completed split. This is done with the * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off * pool have that entry in their config, but only the splitting one contains * a list of all the guids of the vdevs that are being split off. * * This function determines what to do with that list: either rejoin * all the disks to the pool, or complete the splitting process. To attempt * the rejoin, each disk that is offlined is marked online again, and * we do a reopen() call. If the vdev label for every disk that was * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) * then we call vdev_split() on each disk, and complete the split. * * Otherwise we leave the config alone, with all the vdevs in place in * the original pool. */ static void spa_try_repair(spa_t *spa, nvlist_t *config) { uint_t extracted; uint64_t *glist; uint_t i, gcount; nvlist_t *nvl; vdev_t **vd; boolean_t attempt_reopen; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) return; /* check that the config is complete */ if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, &glist, &gcount) != 0) return; vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); /* attempt to online all the vdevs & validate */ attempt_reopen = B_TRUE; for (i = 0; i < gcount; i++) { if (glist[i] == 0) /* vdev is hole */ continue; vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); if (vd[i] == NULL) { /* * Don't bother attempting to reopen the disks; * just do the split. */ attempt_reopen = B_FALSE; } else { /* attempt to re-online it */ vd[i]->vdev_offline = B_FALSE; } } if (attempt_reopen) { vdev_reopen(spa->spa_root_vdev); /* check each device to see what state it's in */ for (extracted = 0, i = 0; i < gcount; i++) { if (vd[i] != NULL && vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) break; ++extracted; } } /* * If every disk has been moved to the new pool, or if we never * even attempted to look at them, then we split them off for * good. */ if (!attempt_reopen || gcount == extracted) { for (i = 0; i < gcount; i++) if (vd[i] != NULL) vdev_split(vd[i]); vdev_reopen(spa->spa_root_vdev); } kmem_free(vd, gcount * sizeof (vdev_t *)); } static int spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) { const char *ereport = FM_EREPORT_ZFS_POOL; int error; spa->spa_load_state = state; (void) spa_import_progress_set_state(spa_guid(spa), spa_load_state(spa)); gethrestime(&spa->spa_loaded_ts); error = spa_load_impl(spa, type, &ereport); /* * Don't count references from objsets that are already closed * and are making their way through the eviction process. */ spa_evicting_os_wait(spa); spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); if (error) { if (error != EEXIST) { spa->spa_loaded_ts.tv_sec = 0; spa->spa_loaded_ts.tv_nsec = 0; } if (error != EBADF) { (void) zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0); } } spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; spa->spa_ena = 0; (void) spa_import_progress_set_state(spa_guid(spa), spa_load_state(spa)); return (error); } #ifdef ZFS_DEBUG /* * Count the number of per-vdev ZAPs associated with all of the vdevs in the * vdev tree rooted in the given vd, and ensure that each ZAP is present in the * spa's per-vdev ZAP list. */ static uint64_t vdev_count_verify_zaps(vdev_t *vd) { spa_t *spa = vd->vdev_spa; uint64_t total = 0; if (vd->vdev_top_zap != 0) { total++; ASSERT0(zap_lookup_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, vd->vdev_top_zap)); } if (vd->vdev_leaf_zap != 0) { total++; ASSERT0(zap_lookup_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); } for (uint64_t i = 0; i < vd->vdev_children; i++) { total += vdev_count_verify_zaps(vd->vdev_child[i]); } return (total); } #else #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0) #endif /* * Determine whether the activity check is required. */ static boolean_t spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, nvlist_t *config) { uint64_t state = 0; uint64_t hostid = 0; uint64_t tryconfig_txg = 0; uint64_t tryconfig_timestamp = 0; uint16_t tryconfig_mmp_seq = 0; nvlist_t *nvinfo; if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, &tryconfig_txg); (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, &tryconfig_timestamp); (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, &tryconfig_mmp_seq); } (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); /* * Disable the MMP activity check - This is used by zdb which * is intended to be used on potentially active pools. */ if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) return (B_FALSE); /* * Skip the activity check when the MMP feature is disabled. */ if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) return (B_FALSE); /* * If the tryconfig_ values are nonzero, they are the results of an * earlier tryimport. If they all match the uberblock we just found, * then the pool has not changed and we return false so we do not test * a second time. */ if (tryconfig_txg && tryconfig_txg == ub->ub_txg && tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && tryconfig_mmp_seq && tryconfig_mmp_seq == (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) return (B_FALSE); /* * Allow the activity check to be skipped when importing the pool * on the same host which last imported it. Since the hostid from * configuration may be stale use the one read from the label. */ if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); if (hostid == spa_get_hostid(spa)) return (B_FALSE); /* * Skip the activity test when the pool was cleanly exported. */ if (state != POOL_STATE_ACTIVE) return (B_FALSE); return (B_TRUE); } /* * Nanoseconds the activity check must watch for changes on-disk. */ static uint64_t spa_activity_check_duration(spa_t *spa, uberblock_t *ub) { uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); uint64_t multihost_interval = MSEC2NSEC( MMP_INTERVAL_OK(zfs_multihost_interval)); uint64_t import_delay = MAX(NANOSEC, import_intervals * multihost_interval); /* * Local tunables determine a minimum duration except for the case * where we know when the remote host will suspend the pool if MMP * writes do not land. * * See Big Theory comment at the top of mmp.c for the reasoning behind * these cases and times. */ ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && MMP_FAIL_INT(ub) > 0) { /* MMP on remote host will suspend pool after failed writes */ import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * MMP_IMPORT_SAFETY_FACTOR / 100; zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " "mmp_fails=%llu ub_mmp mmp_interval=%llu " "import_intervals=%llu", (u_longlong_t)import_delay, (u_longlong_t)MMP_FAIL_INT(ub), (u_longlong_t)MMP_INTERVAL(ub), (u_longlong_t)import_intervals); } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && MMP_FAIL_INT(ub) == 0) { /* MMP on remote host will never suspend pool */ import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + ub->ub_mmp_delay) * import_intervals); zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " "mmp_interval=%llu ub_mmp_delay=%llu " "import_intervals=%llu", (u_longlong_t)import_delay, (u_longlong_t)MMP_INTERVAL(ub), (u_longlong_t)ub->ub_mmp_delay, (u_longlong_t)import_intervals); } else if (MMP_VALID(ub)) { /* * zfs-0.7 compatibility case */ import_delay = MAX(import_delay, (multihost_interval + ub->ub_mmp_delay) * import_intervals); zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " "import_intervals=%llu leaves=%u", (u_longlong_t)import_delay, (u_longlong_t)ub->ub_mmp_delay, (u_longlong_t)import_intervals, vdev_count_leaves(spa)); } else { /* Using local tunings is the only reasonable option */ zfs_dbgmsg("pool last imported on non-MMP aware " "host using import_delay=%llu multihost_interval=%llu " "import_intervals=%llu", (u_longlong_t)import_delay, (u_longlong_t)multihost_interval, (u_longlong_t)import_intervals); } return (import_delay); } /* * Perform the import activity check. If the user canceled the import or * we detected activity then fail. */ static int spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) { uint64_t txg = ub->ub_txg; uint64_t timestamp = ub->ub_timestamp; uint64_t mmp_config = ub->ub_mmp_config; uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; uint64_t import_delay; hrtime_t import_expire; nvlist_t *mmp_label = NULL; vdev_t *rvd = spa->spa_root_vdev; kcondvar_t cv; kmutex_t mtx; int error = 0; cv_init(&cv, NULL, CV_DEFAULT, NULL); mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); mutex_enter(&mtx); /* * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed * during the earlier tryimport. If the txg recorded there is 0 then * the pool is known to be active on another host. * * Otherwise, the pool might be in use on another host. Check for * changes in the uberblocks on disk if necessary. */ if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { vdev_uberblock_load(rvd, ub, &mmp_label); error = SET_ERROR(EREMOTEIO); goto out; } } import_delay = spa_activity_check_duration(spa, ub); /* Add a small random factor in case of simultaneous imports (0-25%) */ import_delay += import_delay * random_in_range(250) / 1000; import_expire = gethrtime() + import_delay; while (gethrtime() < import_expire) { (void) spa_import_progress_set_mmp_check(spa_guid(spa), NSEC2SEC(import_expire - gethrtime())); vdev_uberblock_load(rvd, ub, &mmp_label); if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { zfs_dbgmsg("multihost activity detected " "txg %llu ub_txg %llu " "timestamp %llu ub_timestamp %llu " "mmp_config %#llx ub_mmp_config %#llx", (u_longlong_t)txg, (u_longlong_t)ub->ub_txg, (u_longlong_t)timestamp, (u_longlong_t)ub->ub_timestamp, (u_longlong_t)mmp_config, (u_longlong_t)ub->ub_mmp_config); error = SET_ERROR(EREMOTEIO); break; } if (mmp_label) { nvlist_free(mmp_label); mmp_label = NULL; } error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); if (error != -1) { error = SET_ERROR(EINTR); break; } error = 0; } out: mutex_exit(&mtx); mutex_destroy(&mtx); cv_destroy(&cv); /* * If the pool is determined to be active store the status in the * spa->spa_load_info nvlist. If the remote hostname or hostid are * available from configuration read from disk store them as well. * This allows 'zpool import' to generate a more useful message. * * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool */ if (error == EREMOTEIO) { const char *hostname = ""; uint64_t hostid = 0; if (mmp_label) { if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { hostname = fnvlist_lookup_string(mmp_label, ZPOOL_CONFIG_HOSTNAME); fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_MMP_HOSTNAME, hostname); } if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { hostid = fnvlist_lookup_uint64(mmp_label, ZPOOL_CONFIG_HOSTID); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_HOSTID, hostid); } } fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_TXG, 0); error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); } if (mmp_label) nvlist_free(mmp_label); return (error); } static int spa_verify_host(spa_t *spa, nvlist_t *mos_config) { uint64_t hostid; char *hostname; uint64_t myhostid = 0; if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { hostname = fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME); myhostid = zone_get_hostid(NULL); if (hostid != 0 && myhostid != 0 && hostid != myhostid) { cmn_err(CE_WARN, "pool '%s' could not be " "loaded as it was last accessed by " "another system (host: %s hostid: 0x%llx). " "See: https://openzfs.github.io/openzfs-docs/msg/" "ZFS-8000-EY", spa_name(spa), hostname, (u_longlong_t)hostid); spa_load_failed(spa, "hostid verification failed: pool " "last accessed by host: %s (hostid: 0x%llx)", hostname, (u_longlong_t)hostid); return (SET_ERROR(EBADF)); } } return (0); } static int spa_ld_parse_config(spa_t *spa, spa_import_type_t type) { int error = 0; nvlist_t *nvtree, *nvl, *config = spa->spa_config; int parse; vdev_t *rvd; uint64_t pool_guid; char *comment; char *compatibility; /* * Versioning wasn't explicitly added to the label until later, so if * it's not present treat it as the initial version. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &spa->spa_ubsync.ub_version) != 0) spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { spa_load_failed(spa, "invalid config provided: '%s' missing", ZPOOL_CONFIG_POOL_GUID); return (SET_ERROR(EINVAL)); } /* * If we are doing an import, ensure that the pool is not already * imported by checking if its pool guid already exists in the * spa namespace. * * The only case that we allow an already imported pool to be * imported again, is when the pool is checkpointed and we want to * look at its checkpointed state from userland tools like zdb. */ #ifdef _KERNEL if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) { #else if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0) && !spa_importing_readonly_checkpoint(spa)) { #endif spa_load_failed(spa, "a pool with guid %llu is already open", (u_longlong_t)pool_guid); return (SET_ERROR(EEXIST)); } spa->spa_config_guid = pool_guid; nvlist_free(spa->spa_load_info); spa->spa_load_info = fnvlist_alloc(); ASSERT(spa->spa_comment == NULL); if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) spa->spa_comment = spa_strdup(comment); ASSERT(spa->spa_compatibility == NULL); if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, &compatibility) == 0) spa->spa_compatibility = spa_strdup(compatibility); (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &spa->spa_config_txg); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) spa->spa_config_splitting = fnvlist_dup(nvl); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { spa_load_failed(spa, "invalid config provided: '%s' missing", ZPOOL_CONFIG_VDEV_TREE); return (SET_ERROR(EINVAL)); } /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Parse the configuration into a vdev tree. We explicitly set the * value that will be returned by spa_version() since parsing the * configuration requires knowing the version number. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); parse = (type == SPA_IMPORT_EXISTING ? VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "unable to parse config [error=%d]", error); return (error); } ASSERT(spa->spa_root_vdev == rvd); ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); if (type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_guid(spa) == pool_guid); } return (0); } /* * Recursively open all vdevs in the vdev tree. This function is called twice: * first with the untrusted config, then with the trusted config. */ static int spa_ld_open_vdevs(spa_t *spa) { int error = 0; /* * spa_missing_tvds_allowed defines how many top-level vdevs can be * missing/unopenable for the root vdev to be still considered openable. */ if (spa->spa_trust_config) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; } else { spa->spa_missing_tvds_allowed = 0; } spa->spa_missing_tvds_allowed = MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_open(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); if (spa->spa_missing_tvds != 0) { spa_load_note(spa, "vdev tree has %lld missing top-level " "vdevs.", (u_longlong_t)spa->spa_missing_tvds); if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { /* * Although theoretically we could allow users to open * incomplete pools in RW mode, we'd need to add a lot * of extra logic (e.g. adjust pool space to account * for missing vdevs). * This limitation also prevents users from accidentally * opening the pool in RW mode during data recovery and * damaging it further. */ spa_load_note(spa, "pools with missing top-level " "vdevs can only be opened in read-only mode."); error = SET_ERROR(ENXIO); } else { spa_load_note(spa, "current settings allow for maximum " "%lld missing top-level vdevs at this stage.", (u_longlong_t)spa->spa_missing_tvds_allowed); } } if (error != 0) { spa_load_failed(spa, "unable to open vdev tree [error=%d]", error); } if (spa->spa_missing_tvds != 0 || error != 0) vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); return (error); } /* * We need to validate the vdev labels against the configuration that * we have in hand. This function is called twice: first with an untrusted * config, then with a trusted config. The validation is more strict when the * config is trusted. */ static int spa_ld_validate_vdevs(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_validate(rvd); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "vdev_validate failed [error=%d]", error); return (error); } if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { spa_load_failed(spa, "cannot open vdev tree after invalidating " "some vdevs"); vdev_dbgmsg_print_tree(rvd, 2); return (SET_ERROR(ENXIO)); } return (0); } static void spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) { spa->spa_state = POOL_STATE_ACTIVE; spa->spa_ubsync = spa->spa_uberblock; spa->spa_verify_min_txg = spa->spa_extreme_rewind ? TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; spa->spa_first_txg = spa->spa_last_ubsync_txg ? spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; spa->spa_claim_max_txg = spa->spa_first_txg; spa->spa_prev_software_version = ub->ub_software_version; } static int spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) { vdev_t *rvd = spa->spa_root_vdev; nvlist_t *label; uberblock_t *ub = &spa->spa_uberblock; boolean_t activity_check = B_FALSE; /* * If we are opening the checkpointed state of the pool by * rewinding to it, at this point we will have written the * checkpointed uberblock to the vdev labels, so searching * the labels will find the right uberblock. However, if * we are opening the checkpointed state read-only, we have * not modified the labels. Therefore, we must ignore the * labels and continue using the spa_uberblock that was set * by spa_ld_checkpoint_rewind. * * Note that it would be fine to ignore the labels when * rewinding (opening writeable) as well. However, if we * crash just after writing the labels, we will end up * searching the labels. Doing so in the common case means * that this code path gets exercised normally, rather than * just in the edge case. */ if (ub->ub_checkpoint_txg != 0 && spa_importing_readonly_checkpoint(spa)) { spa_ld_select_uberblock_done(spa, ub); return (0); } /* * Find the best uberblock. */ vdev_uberblock_load(rvd, ub, &label); /* * If we weren't able to find a single valid uberblock, return failure. */ if (ub->ub_txg == 0) { nvlist_free(label); spa_load_failed(spa, "no valid uberblock found"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } if (spa->spa_load_max_txg != UINT64_MAX) { (void) spa_import_progress_set_max_txg(spa_guid(spa), (u_longlong_t)spa->spa_load_max_txg); } spa_load_note(spa, "using uberblock with txg=%llu", (u_longlong_t)ub->ub_txg); /* * For pools which have the multihost property on determine if the * pool is truly inactive and can be safely imported. Prevent * hosts which don't have a hostid set from importing the pool. */ activity_check = spa_activity_check_required(spa, ub, label, spa->spa_config); if (activity_check) { if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && spa_get_hostid(spa) == 0) { nvlist_free(label); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); } int error = spa_activity_check(spa, ub, spa->spa_config); if (error) { nvlist_free(label); return (error); } fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); fnvlist_add_uint16(spa->spa_load_info, ZPOOL_CONFIG_MMP_SEQ, (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); } /* * If the pool has an unsupported version we can't open it. */ if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { nvlist_free(label); spa_load_failed(spa, "version %llu is not supported", (u_longlong_t)ub->ub_version); return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); } if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *features; /* * If we weren't able to find what's necessary for reading the * MOS in the label, return failure. */ if (label == NULL) { spa_load_failed(spa, "label config unavailable"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { nvlist_free(label); spa_load_failed(spa, "invalid label: '%s' missing", ZPOOL_CONFIG_FEATURES_FOR_READ); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } /* * Update our in-core representation with the definitive values * from the label. */ nvlist_free(spa->spa_label_features); spa->spa_label_features = fnvlist_dup(features); } nvlist_free(label); /* * Look through entries in the label nvlist's features_for_read. If * there is a feature listed there which we don't understand then we * cannot open a pool. */ if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *unsup_feat; unsup_feat = fnvlist_alloc(); for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, NULL); nvp != NULL; nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { if (!zfeature_is_supported(nvpair_name(nvp))) { fnvlist_add_string(unsup_feat, nvpair_name(nvp), ""); } } if (!nvlist_empty(unsup_feat)) { fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); nvlist_free(unsup_feat); spa_load_failed(spa, "some features are unsupported"); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } nvlist_free(unsup_feat); } if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_try_repair(spa, spa->spa_config); spa_config_exit(spa, SCL_ALL, FTAG); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; } /* * Initialize internal SPA structures. */ spa_ld_select_uberblock_done(spa, ub); return (0); } static int spa_ld_open_rootbp(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); if (error != 0) { spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; return (0); } static int spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, boolean_t reloading) { vdev_t *mrvd, *rvd = spa->spa_root_vdev; nvlist_t *nv, *mos_config, *policy; int error = 0, copy_error; uint64_t healthy_tvds, healthy_tvds_mos; uint64_t mos_config_txg; if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * If we're assembling a pool from a split, the config provided is * already trusted so there is nothing to do. */ if (type == SPA_IMPORT_ASSEMBLE) return (0); healthy_tvds = spa_healthy_core_tvds(spa); if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { spa_load_failed(spa, "unable to retrieve MOS config"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * If we are doing an open, pool owner wasn't verified yet, thus do * the verification here. */ if (spa->spa_load_state == SPA_LOAD_OPEN) { error = spa_verify_host(spa, mos_config); if (error != 0) { nvlist_free(mos_config); return (error); } } nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Build a new vdev tree from the trusted config */ error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); if (error != 0) { nvlist_free(mos_config); spa_config_exit(spa, SCL_ALL, FTAG); spa_load_failed(spa, "spa_config_parse failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } /* * Vdev paths in the MOS may be obsolete. If the untrusted config was * obtained by scanning /dev/dsk, then it will have the right vdev * paths. We update the trusted MOS config with this information. * We first try to copy the paths with vdev_copy_path_strict, which * succeeds only when both configs have exactly the same vdev tree. * If that fails, we fall back to a more flexible method that has a * best effort policy. */ copy_error = vdev_copy_path_strict(rvd, mrvd); if (copy_error != 0 || spa_load_print_vdev_tree) { spa_load_note(spa, "provided vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); spa_load_note(spa, "MOS vdev tree:"); vdev_dbgmsg_print_tree(mrvd, 2); } if (copy_error != 0) { spa_load_note(spa, "vdev_copy_path_strict failed, falling " "back to vdev_copy_path_relaxed"); vdev_copy_path_relaxed(rvd, mrvd); } vdev_close(rvd); vdev_free(rvd); spa->spa_root_vdev = mrvd; rvd = mrvd; spa_config_exit(spa, SCL_ALL, FTAG); /* * We will use spa_config if we decide to reload the spa or if spa_load * fails and we rewind. We must thus regenerate the config using the * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to * pass settings on how to load the pool and is not stored in the MOS. * We copy it over to our new, trusted config. */ mos_config_txg = fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_POOL_TXG); nvlist_free(mos_config); mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, &policy) == 0) fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); spa_config_set(spa, mos_config); spa->spa_config_source = SPA_CONFIG_SRC_MOS; /* * Now that we got the config from the MOS, we should be more strict * in checking blkptrs and can make assumptions about the consistency * of the vdev tree. spa_trust_config must be set to true before opening * vdevs in order for them to be writeable. */ spa->spa_trust_config = B_TRUE; /* * Open and validate the new vdev tree */ error = spa_ld_open_vdevs(spa); if (error != 0) return (error); error = spa_ld_validate_vdevs(spa); if (error != 0) return (error); if (copy_error != 0 || spa_load_print_vdev_tree) { spa_load_note(spa, "final vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); } if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { /* * Sanity check to make sure that we are indeed loading the * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds * in the config provided and they happened to be the only ones * to have the latest uberblock, we could involuntarily perform * an extreme rewind. */ healthy_tvds_mos = spa_healthy_core_tvds(spa); if (healthy_tvds_mos - healthy_tvds >= SPA_SYNC_MIN_VDEVS) { spa_load_note(spa, "config provided misses too many " "top-level vdevs compared to MOS (%lld vs %lld). ", (u_longlong_t)healthy_tvds, (u_longlong_t)healthy_tvds_mos); spa_load_note(spa, "vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); if (reloading) { spa_load_failed(spa, "config was already " "provided from MOS. Aborting."); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_load_note(spa, "spa must be reloaded using MOS " "config"); return (SET_ERROR(EAGAIN)); } } error = spa_check_for_missing_logs(spa); if (error != 0) return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { spa_load_failed(spa, "uberblock guid sum doesn't match MOS " "guid sum (%llu != %llu)", (u_longlong_t)spa->spa_uberblock.ub_guid_sum, (u_longlong_t)rvd->vdev_guid_sum); return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); } return (0); } static int spa_ld_open_indirect_vdev_metadata(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * Everything that we read before spa_remove_init() must be stored * on concreted vdevs. Therefore we do this as early as possible. */ error = spa_remove_init(spa); if (error != 0) { spa_load_failed(spa, "spa_remove_init failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Retrieve information needed to condense indirect vdev mappings. */ error = spa_condense_init(spa); if (error != 0) { spa_load_failed(spa, "spa_condense_init failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } return (0); } static int spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; if (spa_version(spa) >= SPA_VERSION_FEATURES) { boolean_t missing_feat_read = B_FALSE; nvlist_t *unsup_feat, *enabled_feat; if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, &spa->spa_feat_for_read_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, &spa->spa_feat_for_write_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, &spa->spa_feat_desc_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } enabled_feat = fnvlist_alloc(); unsup_feat = fnvlist_alloc(); if (!spa_features_check(spa, B_FALSE, unsup_feat, enabled_feat)) missing_feat_read = B_TRUE; if (spa_writeable(spa) || spa->spa_load_state == SPA_LOAD_TRYIMPORT) { if (!spa_features_check(spa, B_TRUE, unsup_feat, enabled_feat)) { *missing_feat_writep = B_TRUE; } } fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); if (!nvlist_empty(unsup_feat)) { fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); } fnvlist_free(enabled_feat); fnvlist_free(unsup_feat); if (!missing_feat_read) { fnvlist_add_boolean(spa->spa_load_info, ZPOOL_CONFIG_CAN_RDONLY); } /* * If the state is SPA_LOAD_TRYIMPORT, our objective is * twofold: to determine whether the pool is available for * import in read-write mode and (if it is not) whether the * pool is available for import in read-only mode. If the pool * is available for import in read-write mode, it is displayed * as available in userland; if it is not available for import * in read-only mode, it is displayed as unavailable in * userland. If the pool is available for import in read-only * mode but not read-write mode, it is displayed as unavailable * in userland with a special note that the pool is actually * available for open in read-only mode. * * As a result, if the state is SPA_LOAD_TRYIMPORT and we are * missing a feature for write, we must first determine whether * the pool can be opened read-only before returning to * userland in order to know whether to display the * abovementioned note. */ if (missing_feat_read || (*missing_feat_writep && spa_writeable(spa))) { spa_load_failed(spa, "pool uses unsupported features"); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Load refcounts for ZFS features from disk into an in-memory * cache during SPA initialization. */ for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { uint64_t refcount; error = feature_get_refcount_from_disk(spa, &spa_feature_table[i], &refcount); if (error == 0) { spa->spa_feat_refcount_cache[i] = refcount; } else if (error == ENOTSUP) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } else { spa_load_failed(spa, "error getting refcount " "for feature %s [error=%d]", spa_feature_table[i].fi_guid, error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } } } if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Encryption was added before bookmark_v2, even though bookmark_v2 * is now a dependency. If this pool has encryption enabled without * bookmark_v2, trigger an errata message. */ if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; } return (0); } static int spa_ld_load_special_directories(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; spa->spa_is_initializing = B_TRUE; error = dsl_pool_open(spa->spa_dsl_pool); spa->spa_is_initializing = B_FALSE; if (error != 0) { spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int spa_ld_get_props(spa_t *spa) { int error = 0; uint64_t obj; vdev_t *rvd = spa->spa_root_vdev; /* Grab the checksum salt from the MOS. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes); if (error == ENOENT) { /* Generate a new salt for subsequent use */ (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, sizeof (spa->spa_cksum_salt.zcs_bytes)); } else if (error != 0) { spa_load_failed(spa, "unable to retrieve checksum salt from " "MOS [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); if (error != 0) { spa_load_failed(spa, "error opening deferred-frees bpobj " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Load the bit that tells us to use the new accounting function * (raid-z deflation). If we have an older pool, this will not * be present. */ error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, &spa->spa_creation_version, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the persistent error log. If we have an older pool, this will * not be present. */ error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, &spa->spa_errlog_scrub, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the livelist deletion field. If a livelist is queued for * deletion, indicate that in the spa */ error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, &spa->spa_livelists_to_delete, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the history object. If we have an older pool, this * will not be present. */ error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the per-vdev ZAP map. If we have an older pool, this will not * be present; in this case, defer its creation to a later time to * avoid dirtying the MOS this early / out of sync context. See * spa_sync_config_object. */ /* The sentinel is only available in the MOS config. */ nvlist_t *mos_config; if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { spa_load_failed(spa, "unable to retrieve MOS config"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, &spa->spa_all_vdev_zaps, B_FALSE); if (error == ENOENT) { VERIFY(!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); spa->spa_avz_action = AVZ_ACTION_INITIALIZE; ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); } else if (error != 0) { nvlist_free(mos_config); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { /* * An older version of ZFS overwrote the sentinel value, so * we have orphaned per-vdev ZAPs in the MOS. Defer their * destruction to later; see spa_sync_config_object. */ spa->spa_avz_action = AVZ_ACTION_DESTROY; /* * We're assuming that no vdevs have had their ZAPs created * before this. Better be sure of it. */ ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); } nvlist_free(mos_config); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, B_FALSE); if (error && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0) { uint64_t autoreplace = 0; spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); spa->spa_autoreplace = (autoreplace != 0); } /* * If we are importing a pool with missing top-level vdevs, * we enforce that the pool doesn't panic or get suspended on * error since the likelihood of missing data is extremely high. */ if (spa->spa_missing_tvds > 0 && spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { spa_load_note(spa, "forcing failmode to 'continue' " "as some top level vdevs are missing"); spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; } return (0); } static int spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * If we're assembling the pool from the split-off vdevs of * an existing pool, we don't want to attach the spares & cache * devices. */ /* * Load any hot spares for this pool. */ error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); if (load_nvlist(spa, spa->spa_spares.sav_object, &spa->spa_spares.sav_config) != 0) { spa_load_failed(spa, "error loading spares nvlist"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_spares.sav_sync = B_TRUE; } /* * Load any level 2 ARC devices for this pool. */ error = spa_dir_prop(spa, DMU_POOL_L2CACHE, &spa->spa_l2cache.sav_object, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); if (load_nvlist(spa, spa->spa_l2cache.sav_object, &spa->spa_l2cache.sav_config) != 0) { spa_load_failed(spa, "error loading l2cache nvlist"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_l2cache.sav_sync = B_TRUE; } return (0); } static int spa_ld_load_vdev_metadata(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * If the 'multihost' property is set, then never allow a pool to * be imported when the system hostid is zero. The exception to * this rule is zdb which is always allowed to access pools. */ if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); } /* * If the 'autoreplace' property is set, then post a resource notifying * the ZFS DE that it should not issue any faults for unopenable * devices. We also iterate over the vdevs, and post a sysevent for any * unopenable vdevs so that the normal autoreplace handler can take * over. */ if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { spa_check_removed(spa->spa_root_vdev); /* * For the import case, this is done in spa_import(), because * at this point we're using the spare definitions from * the MOS config, not necessarily from the userland config. */ if (spa->spa_load_state != SPA_LOAD_IMPORT) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } } /* * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. */ error = vdev_load(rvd); if (error != 0) { spa_load_failed(spa, "vdev_load failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } error = spa_ld_log_spacemaps(spa); if (error != 0) { spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } /* * Propagate the leaf DTLs we just loaded all the way up the vdev tree. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); spa_config_exit(spa, SCL_ALL, FTAG); return (0); } static int spa_ld_load_dedup_tables(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; error = ddt_load(spa); if (error != 0) { spa_load_failed(spa, "ddt_load failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } +static int +spa_ld_load_brt(spa_t *spa) +{ + int error = 0; + vdev_t *rvd = spa->spa_root_vdev; + + error = brt_load(spa); + if (error != 0) { + spa_load_failed(spa, "brt_load failed [error=%d]", error); + return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); + } + + return (0); +} + static int spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport) { vdev_t *rvd = spa->spa_root_vdev; if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { boolean_t missing = spa_check_logs(spa); if (missing) { if (spa->spa_missing_tvds != 0) { spa_load_note(spa, "spa_check_logs failed " "so dropping the logs"); } else { *ereport = FM_EREPORT_ZFS_LOG_REPLAY; spa_load_failed(spa, "spa_check_logs failed"); return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); } } } return (0); } static int spa_ld_verify_pool_data(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * We've successfully opened the pool, verify that we're ready * to start pushing transactions. */ if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { error = spa_load_verify(spa); if (error != 0) { spa_load_failed(spa, "spa_load_verify failed " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } } return (0); } static void spa_ld_claim_log_blocks(spa_t *spa) { dmu_tx_t *tx; dsl_pool_t *dp = spa_get_dsl(spa); /* * Claim log blocks that haven't been committed yet. * This must all happen in a single txg. * Note: spa_claim_max_txg is updated by spa_claim_notify(), * invoked from zil_claim_log_block()'s i/o done callback. * Price of rollback is that we abandon the log. */ spa->spa_claiming = B_TRUE; tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, zil_claim, tx, DS_FIND_CHILDREN); dmu_tx_commit(tx); spa->spa_claiming = B_FALSE; spa_set_log_state(spa, SPA_LOG_GOOD); } static void spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, boolean_t update_config_cache) { vdev_t *rvd = spa->spa_root_vdev; int need_update = B_FALSE; /* * If the config cache is stale, or we have uninitialized * metaslabs (see spa_vdev_add()), then update the config. * * If this is a verbatim import, trust the current * in-core spa_config and update the disk labels. */ if (update_config_cache || config_cache_txg != spa->spa_config_txg || spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_RECOVER || (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) need_update = B_TRUE; for (int c = 0; c < rvd->vdev_children; c++) if (rvd->vdev_child[c]->vdev_ms_array == 0) need_update = B_TRUE; /* * Update the config cache asynchronously in case we're the * root pool, in which case the config cache isn't writable yet. */ if (need_update) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } static void spa_ld_prepare_for_reload(spa_t *spa) { spa_mode_t mode = spa->spa_mode; int async_suspended = spa->spa_async_suspended; spa_unload(spa); spa_deactivate(spa); spa_activate(spa, mode); /* * We save the value of spa_async_suspended as it gets reset to 0 by * spa_unload(). We want to restore it back to the original value before * returning as we might be calling spa_async_resume() later. */ spa->spa_async_suspended = async_suspended; } static int spa_ld_read_checkpoint_txg(spa_t *spa) { uberblock_t checkpoint; int error = 0; ASSERT0(spa->spa_checkpoint_txg); ASSERT(MUTEX_HELD(&spa_namespace_lock)); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); if (error == ENOENT) return (0); if (error != 0) return (error); ASSERT3U(checkpoint.ub_txg, !=, 0); ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); ASSERT3U(checkpoint.ub_timestamp, !=, 0); spa->spa_checkpoint_txg = checkpoint.ub_txg; spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; return (0); } static int spa_ld_mos_init(spa_t *spa, spa_import_type_t type) { int error = 0; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); /* * Never trust the config that is provided unless we are assembling * a pool following a split. * This means don't trust blkptrs and the vdev tree in general. This * also effectively puts the spa in read-only mode since * spa_writeable() checks for spa_trust_config to be true. * We will later load a trusted config from the MOS. */ if (type != SPA_IMPORT_ASSEMBLE) spa->spa_trust_config = B_FALSE; /* * Parse the config provided to create a vdev tree. */ error = spa_ld_parse_config(spa, type); if (error != 0) return (error); spa_import_progress_add(spa); /* * Now that we have the vdev tree, try to open each vdev. This involves * opening the underlying physical device, retrieving its geometry and * probing the vdev with a dummy I/O. The state of each vdev will be set * based on the success of those operations. After this we'll be ready * to read from the vdevs. */ error = spa_ld_open_vdevs(spa); if (error != 0) return (error); /* * Read the label of each vdev and make sure that the GUIDs stored * there match the GUIDs in the config provided. * If we're assembling a new pool that's been split off from an * existing pool, the labels haven't yet been updated so we skip * validation for now. */ if (type != SPA_IMPORT_ASSEMBLE) { error = spa_ld_validate_vdevs(spa); if (error != 0) return (error); } /* * Read all vdev labels to find the best uberblock (i.e. latest, * unless spa_load_max_txg is set) and store it in spa_uberblock. We * get the list of features required to read blkptrs in the MOS from * the vdev label with the best uberblock and verify that our version * of zfs supports them all. */ error = spa_ld_select_uberblock(spa, type); if (error != 0) return (error); /* * Pass that uberblock to the dsl_pool layer which will open the root * blkptr. This blkptr points to the latest version of the MOS and will * allow us to read its contents. */ error = spa_ld_open_rootbp(spa); if (error != 0) return (error); return (0); } static int spa_ld_checkpoint_rewind(spa_t *spa) { uberblock_t checkpoint; int error = 0; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); if (error != 0) { spa_load_failed(spa, "unable to retrieve checkpointed " "uberblock from the MOS config [error=%d]", error); if (error == ENOENT) error = ZFS_ERR_NO_CHECKPOINT; return (error); } ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); /* * We need to update the txg and timestamp of the checkpointed * uberblock to be higher than the latest one. This ensures that * the checkpointed uberblock is selected if we were to close and * reopen the pool right after we've written it in the vdev labels. * (also see block comment in vdev_uberblock_compare) */ checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; checkpoint.ub_timestamp = gethrestime_sec(); /* * Set current uberblock to be the checkpointed uberblock. */ spa->spa_uberblock = checkpoint; /* * If we are doing a normal rewind, then the pool is open for * writing and we sync the "updated" checkpointed uberblock to * disk. Once this is done, we've basically rewound the whole * pool and there is no way back. * * There are cases when we don't want to attempt and sync the * checkpointed uberblock to disk because we are opening a * pool as read-only. Specifically, verifying the checkpointed * state with zdb, and importing the checkpointed state to get * a "preview" of its content. */ if (spa_writeable(spa)) { vdev_t *rvd = spa->spa_root_vdev; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; int svdcount = 0; int children = rvd->vdev_children; int c0 = random_in_range(children); for (int c = 0; c < children; c++) { vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; /* Stop when revisiting the first vdev */ if (c > 0 && svd[0] == vd) break; if (vd->vdev_ms_array == 0 || vd->vdev_islog || !vdev_is_concrete(vd)) continue; svd[svdcount++] = vd; if (svdcount == SPA_SYNC_MIN_VDEVS) break; } error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); if (error == 0) spa->spa_last_synced_guid = rvd->vdev_guid; spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "failed to write checkpointed " "uberblock to the vdev labels [error=%d]", error); return (error); } } return (0); } static int spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, boolean_t *update_config_cache) { int error; /* * Parse the config for pool, open and validate vdevs, * select an uberblock, and use that uberblock to open * the MOS. */ error = spa_ld_mos_init(spa, type); if (error != 0) return (error); /* * Retrieve the trusted config stored in the MOS and use it to create * a new, exact version of the vdev tree, then reopen all vdevs. */ error = spa_ld_trusted_config(spa, type, B_FALSE); if (error == EAGAIN) { if (update_config_cache != NULL) *update_config_cache = B_TRUE; /* * Redo the loading process with the trusted config if it is * too different from the untrusted config. */ spa_ld_prepare_for_reload(spa); spa_load_note(spa, "RELOADING"); error = spa_ld_mos_init(spa, type); if (error != 0) return (error); error = spa_ld_trusted_config(spa, type, B_TRUE); if (error != 0) return (error); } else if (error != 0) { return (error); } return (0); } /* * Load an existing storage pool, using the config provided. This config * describes which vdevs are part of the pool and is later validated against * partial configs present in each vdev's label and an entire copy of the * config stored in the MOS. */ static int spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport) { int error = 0; boolean_t missing_feat_write = B_FALSE; boolean_t checkpoint_rewind = (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); boolean_t update_config_cache = B_FALSE; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); spa_load_note(spa, "LOADING"); error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); if (error != 0) return (error); /* * If we are rewinding to the checkpoint then we need to repeat * everything we've done so far in this function but this time * selecting the checkpointed uberblock and using that to open * the MOS. */ if (checkpoint_rewind) { /* * If we are rewinding to the checkpoint update config cache * anyway. */ update_config_cache = B_TRUE; /* * Extract the checkpointed uberblock from the current MOS * and use this as the pool's uberblock from now on. If the * pool is imported as writeable we also write the checkpoint * uberblock to the labels, making the rewind permanent. */ error = spa_ld_checkpoint_rewind(spa); if (error != 0) return (error); /* * Redo the loading process again with the * checkpointed uberblock. */ spa_ld_prepare_for_reload(spa); spa_load_note(spa, "LOADING checkpointed uberblock"); error = spa_ld_mos_with_trusted_config(spa, type, NULL); if (error != 0) return (error); } /* * Retrieve the checkpoint txg if the pool has a checkpoint. */ error = spa_ld_read_checkpoint_txg(spa); if (error != 0) return (error); /* * Retrieve the mapping of indirect vdevs. Those vdevs were removed * from the pool and their contents were re-mapped to other vdevs. Note * that everything that we read before this step must have been * rewritten on concrete vdevs after the last device removal was * initiated. Otherwise we could be reading from indirect vdevs before * we have loaded their mappings. */ error = spa_ld_open_indirect_vdev_metadata(spa); if (error != 0) return (error); /* * Retrieve the full list of active features from the MOS and check if * they are all supported. */ error = spa_ld_check_features(spa, &missing_feat_write); if (error != 0) return (error); /* * Load several special directories from the MOS needed by the dsl_pool * layer. */ error = spa_ld_load_special_directories(spa); if (error != 0) return (error); /* * Retrieve pool properties from the MOS. */ error = spa_ld_get_props(spa); if (error != 0) return (error); /* * Retrieve the list of auxiliary devices - cache devices and spares - * and open them. */ error = spa_ld_open_aux_vdevs(spa, type); if (error != 0) return (error); /* * Load the metadata for all vdevs. Also check if unopenable devices * should be autoreplaced. */ error = spa_ld_load_vdev_metadata(spa); if (error != 0) return (error); error = spa_ld_load_dedup_tables(spa); if (error != 0) return (error); + error = spa_ld_load_brt(spa); + if (error != 0) + return (error); + /* * Verify the logs now to make sure we don't have any unexpected errors * when we claim log blocks later. */ error = spa_ld_verify_logs(spa, type, ereport); if (error != 0) return (error); if (missing_feat_write) { ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); /* * At this point, we know that we can open the pool in * read-only mode but not read-write mode. We now have enough * information and can return to userland. */ return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Traverse the last txgs to make sure the pool was left off in a safe * state. When performing an extreme rewind, we verify the whole pool, * which can take a very long time. */ error = spa_ld_verify_pool_data(spa); if (error != 0) return (error); /* * Calculate the deflated space for the pool. This must be done before * we write anything to the pool because we'd need to update the space * accounting using the deflated sizes. */ spa_update_dspace(spa); /* * We have now retrieved all the information we needed to open the * pool. If we are importing the pool in read-write mode, a few * additional steps must be performed to finish the import. */ if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || spa->spa_load_max_txg == UINT64_MAX)) { uint64_t config_cache_txg = spa->spa_config_txg; ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); /* * In case of a checkpoint rewind, log the original txg * of the checkpointed uberblock. */ if (checkpoint_rewind) { spa_history_log_internal(spa, "checkpoint rewind", NULL, "rewound state to txg=%llu", (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); } /* * Traverse the ZIL and claim all blocks. */ spa_ld_claim_log_blocks(spa); /* * Kick-off the syncing thread. */ spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); mmp_thread_start(spa); /* * Wait for all claims to sync. We sync up to the highest * claimed log block birth time so that claimed log blocks * don't appear to be from the future. spa_claim_max_txg * will have been set for us by ZIL traversal operations * performed above. */ txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); /* * Check if we need to request an update of the config. On the * next sync, we would update the config stored in vdev labels * and the cachefile (by default /etc/zfs/zpool.cache). */ spa_ld_check_for_config_update(spa, config_cache_txg, update_config_cache); /* * Check if a rebuild was in progress and if so resume it. * Then check all DTLs to see if anything needs resilvering. * The resilver will be deferred if a rebuild was started. */ if (vdev_rebuild_active(spa->spa_root_vdev)) { vdev_rebuild_restart(spa); } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { spa_async_request(spa, SPA_ASYNC_RESILVER); } /* * Log the fact that we booted up (so that we can detect if * we rebooted in the middle of an operation). */ spa_history_log_version(spa, "open", NULL); spa_restart_removal(spa); spa_spawn_aux_threads(spa); /* * Delete any inconsistent datasets. * * Note: * Since we may be issuing deletes for clones here, * we make sure to do so after we've spawned all the * auxiliary threads above (from which the livelist * deletion zthr is part of). */ (void) dmu_objset_find(spa_name(spa), dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); /* * Clean up any stale temporary dataset userrefs. */ dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_initialize_restart(spa->spa_root_vdev); vdev_trim_restart(spa->spa_root_vdev); vdev_autotrim_restart(spa); spa_config_exit(spa, SCL_CONFIG, FTAG); } spa_import_progress_remove(spa_guid(spa)); spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); spa_load_note(spa, "LOADED"); return (0); } static int spa_load_retry(spa_t *spa, spa_load_state_t state) { spa_mode_t mode = spa->spa_mode; spa_unload(spa); spa_deactivate(spa); spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; spa_activate(spa, mode); spa_async_suspend(spa); spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", (u_longlong_t)spa->spa_load_max_txg); return (spa_load(spa, state, SPA_IMPORT_EXISTING)); } /* * If spa_load() fails this function will try loading prior txg's. If * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this * function will not rewind the pool and will return the same error as * spa_load(). */ static int spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, int rewind_flags) { nvlist_t *loadinfo = NULL; nvlist_t *config = NULL; int load_error, rewind_error; uint64_t safe_rewind_txg; uint64_t min_txg; if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { spa->spa_load_max_txg = spa->spa_load_txg; spa_set_log_state(spa, SPA_LOG_CLEAR); } else { spa->spa_load_max_txg = max_request; if (max_request != UINT64_MAX) spa->spa_extreme_rewind = B_TRUE; } load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); if (load_error == 0) return (0); if (load_error == ZFS_ERR_NO_CHECKPOINT) { /* * When attempting checkpoint-rewind on a pool with no * checkpoint, we should not attempt to load uberblocks * from previous txgs when spa_load fails. */ ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); spa_import_progress_remove(spa_guid(spa)); return (load_error); } if (spa->spa_root_vdev != NULL) config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; if (rewind_flags & ZPOOL_NEVER_REWIND) { nvlist_free(config); spa_import_progress_remove(spa_guid(spa)); return (load_error); } if (state == SPA_LOAD_RECOVER) { /* Price of rolling back is discarding txgs, including log */ spa_set_log_state(spa, SPA_LOG_CLEAR); } else { /* * If we aren't rolling back save the load info from our first * import attempt so that we can restore it after attempting * to rewind. */ loadinfo = spa->spa_load_info; spa->spa_load_info = fnvlist_alloc(); } spa->spa_load_max_txg = spa->spa_last_ubsync_txg; safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? TXG_INITIAL : safe_rewind_txg; /* * Continue as long as we're finding errors, we're still within * the acceptable rewind range, and we're still finding uberblocks */ while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { if (spa->spa_load_max_txg < safe_rewind_txg) spa->spa_extreme_rewind = B_TRUE; rewind_error = spa_load_retry(spa, state); } spa->spa_extreme_rewind = B_FALSE; spa->spa_load_max_txg = UINT64_MAX; if (config && (rewind_error || state != SPA_LOAD_RECOVER)) spa_config_set(spa, config); else nvlist_free(config); if (state == SPA_LOAD_RECOVER) { ASSERT3P(loadinfo, ==, NULL); spa_import_progress_remove(spa_guid(spa)); return (rewind_error); } else { /* Store the rewind info as part of the initial load info */ fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, spa->spa_load_info); /* Restore the initial load info */ fnvlist_free(spa->spa_load_info); spa->spa_load_info = loadinfo; spa_import_progress_remove(spa_guid(spa)); return (load_error); } } /* * Pool Open/Import * * The import case is identical to an open except that the configuration is sent * down from userland, instead of grabbed from the configuration cache. For the * case of an open, the pool configuration will exist in the * POOL_STATE_UNINITIALIZED state. * * The stats information (gen/count/ustats) is used to gather vdev statistics at * the same time open the pool, without having to keep around the spa_t in some * ambiguous state. */ static int spa_open_common(const char *pool, spa_t **spapp, const void *tag, nvlist_t *nvpolicy, nvlist_t **config) { spa_t *spa; spa_load_state_t state = SPA_LOAD_OPEN; int error; int locked = B_FALSE; int firstopen = B_FALSE; *spapp = NULL; /* * As disgusting as this is, we need to support recursive calls to this * function because dsl_dir_open() is called during spa_load(), and ends * up calling spa_open() again. The real fix is to figure out how to * avoid dsl_dir_open() calling this in the first place. */ if (MUTEX_NOT_HELD(&spa_namespace_lock)) { mutex_enter(&spa_namespace_lock); locked = B_TRUE; } if ((spa = spa_lookup(pool)) == NULL) { if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (spa->spa_state == POOL_STATE_UNINITIALIZED) { zpool_load_policy_t policy; firstopen = B_TRUE; zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, &policy); if (policy.zlp_rewind & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; spa_activate(spa, spa_mode_global); if (state != SPA_LOAD_RECOVER) spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; zfs_dbgmsg("spa_open_common: opening %s", pool); error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); if (error == EBADF) { /* * If vdev_validate() returns failure (indicated by * EBADF), it indicates that one of the vdevs indicates * that the pool has been exported or destroyed. If * this is the case, the config cache is out of sync and * we should remove the pool from the namespace. */ spa_unload(spa); spa_deactivate(spa); spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); spa_remove(spa); if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (error) { /* * We can't open the pool, but we still have useful * information: the state of each vdev after the * attempted vdev_open(). Return this to the user. */ if (config != NULL && spa->spa_config) { *config = fnvlist_dup(spa->spa_config); fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); } spa_unload(spa); spa_deactivate(spa); spa->spa_last_open_failed = error; if (locked) mutex_exit(&spa_namespace_lock); *spapp = NULL; return (error); } } spa_open_ref(spa, tag); if (config != NULL) *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); /* * If we've recovered the pool, pass back any information we * gathered while doing the load. */ if (state == SPA_LOAD_RECOVER && config != NULL) { fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); } if (locked) { spa->spa_last_open_failed = 0; spa->spa_last_ubsync_txg = 0; spa->spa_load_txg = 0; mutex_exit(&spa_namespace_lock); } if (firstopen) zvol_create_minors_recursive(spa_name(spa)); *spapp = spa; return (0); } int spa_open_rewind(const char *name, spa_t **spapp, const void *tag, nvlist_t *policy, nvlist_t **config) { return (spa_open_common(name, spapp, tag, policy, config)); } int spa_open(const char *name, spa_t **spapp, const void *tag) { return (spa_open_common(name, spapp, tag, NULL, NULL)); } /* * Lookup the given spa_t, incrementing the inject count in the process, * preventing it from being exported or destroyed. */ spa_t * spa_inject_addref(char *name) { spa_t *spa; mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(name)) == NULL) { mutex_exit(&spa_namespace_lock); return (NULL); } spa->spa_inject_ref++; mutex_exit(&spa_namespace_lock); return (spa); } void spa_inject_delref(spa_t *spa) { mutex_enter(&spa_namespace_lock); spa->spa_inject_ref--; mutex_exit(&spa_namespace_lock); } /* * Add spares device information to the nvlist. */ static void spa_add_spares(spa_t *spa, nvlist_t *config) { nvlist_t **spares; uint_t i, nspares; nvlist_t *nvroot; uint64_t guid; vdev_stat_t *vs; uint_t vsc; uint64_t pool; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_spares.sav_count == 0) return; nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares)); if (nspares != 0) { fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, nspares); VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares)); /* * Go through and find any spares which have since been * repurposed as an active spare. If this is the case, update * their status appropriately. */ for (i = 0; i < nspares; i++) { guid = fnvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID); if (spa_spare_exists(guid, &pool, NULL) && pool != 0ULL) { VERIFY0(nvlist_lookup_uint64_array(spares[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); vs->vs_state = VDEV_STATE_CANT_OPEN; vs->vs_aux = VDEV_AUX_SPARED; } } } } /* * Add l2cache device information to the nvlist, including vdev stats. */ static void spa_add_l2cache(spa_t *spa, nvlist_t *config) { nvlist_t **l2cache; uint_t i, j, nl2cache; nvlist_t *nvroot; uint64_t guid; vdev_t *vd; vdev_stat_t *vs; uint_t vsc; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_l2cache.sav_count == 0) return; nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); if (nl2cache != 0) { fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, nl2cache); VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); /* * Update level 2 cache device stats. */ for (i = 0; i < nl2cache; i++) { guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); vd = NULL; for (j = 0; j < spa->spa_l2cache.sav_count; j++) { if (guid == spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { vd = spa->spa_l2cache.sav_vdevs[j]; break; } } ASSERT(vd != NULL); VERIFY0(nvlist_lookup_uint64_array(l2cache[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); vdev_get_stats(vd, vs); vdev_config_generate_stats(vd, l2cache[i]); } } } static void spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) { zap_cursor_t zc; zap_attribute_t za; if (spa->spa_feat_for_read_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_read_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY0(nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } if (spa->spa_feat_for_write_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_write_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY0(nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } } static void spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) { int i; for (i = 0; i < SPA_FEATURES; i++) { zfeature_info_t feature = spa_feature_table[i]; uint64_t refcount; if (feature_get_refcount(spa, &feature, &refcount) != 0) continue; VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); } } /* * Store a list of pool features and their reference counts in the * config. * * The first time this is called on a spa, allocate a new nvlist, fetch * the pool features and reference counts from disk, then save the list * in the spa. In subsequent calls on the same spa use the saved nvlist * and refresh its values from the cached reference counts. This * ensures we don't block here on I/O on a suspended pool so 'zpool * clear' can resume the pool. */ static void spa_add_feature_stats(spa_t *spa, nvlist_t *config) { nvlist_t *features; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); mutex_enter(&spa->spa_feat_stats_lock); features = spa->spa_feat_stats; if (features != NULL) { spa_feature_stats_from_cache(spa, features); } else { VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); spa->spa_feat_stats = features; spa_feature_stats_from_disk(spa, features); } VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, features)); mutex_exit(&spa->spa_feat_stats_lock); } int spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) { int error; spa_t *spa; *config = NULL; error = spa_open_common(name, &spa, FTAG, NULL, config); if (spa != NULL) { /* * This still leaves a window of inconsistency where the spares * or l2cache devices could change and the config would be * self-inconsistent. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); if (*config != NULL) { uint64_t loadtimes[2]; loadtimes[0] = spa->spa_loaded_ts.tv_sec; loadtimes[1] = spa->spa_loaded_ts.tv_nsec; fnvlist_add_uint64_array(*config, ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2); fnvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, spa_approx_errlog_size(spa)); if (spa_suspended(spa)) { fnvlist_add_uint64(*config, ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode); fnvlist_add_uint64(*config, ZPOOL_CONFIG_SUSPENDED_REASON, spa->spa_suspended); } spa_add_spares(spa, *config); spa_add_l2cache(spa, *config); spa_add_feature_stats(spa, *config); } } /* * We want to get the alternate root even for faulted pools, so we cheat * and call spa_lookup() directly. */ if (altroot) { if (spa == NULL) { mutex_enter(&spa_namespace_lock); spa = spa_lookup(name); if (spa) spa_altroot(spa, altroot, buflen); else altroot[0] = '\0'; spa = NULL; mutex_exit(&spa_namespace_lock); } else { spa_altroot(spa, altroot, buflen); } } if (spa != NULL) { spa_config_exit(spa, SCL_CONFIG, FTAG); spa_close(spa, FTAG); } return (error); } /* * Validate that the auxiliary device array is well formed. We must have an * array of nvlists, each which describes a valid leaf vdev. If this is an * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be * specified, as long as they are well-formed. */ static int spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, spa_aux_vdev_t *sav, const char *config, uint64_t version, vdev_labeltype_t label) { nvlist_t **dev; uint_t i, ndev; vdev_t *vd; int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * It's acceptable to have no devs specified. */ if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) return (0); if (ndev == 0) return (SET_ERROR(EINVAL)); /* * Make sure the pool is formatted with a version that supports this * device type. */ if (spa_version(spa) < version) return (SET_ERROR(ENOTSUP)); /* * Set the pending device list so we correctly handle device in-use * checking. */ sav->sav_pending = dev; sav->sav_npending = ndev; for (i = 0; i < ndev; i++) { if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, mode)) != 0) goto out; if (!vd->vdev_ops->vdev_op_leaf) { vdev_free(vd); error = SET_ERROR(EINVAL); goto out; } vd->vdev_top = vd; if ((error = vdev_open(vd)) == 0 && (error = vdev_label_init(vd, crtxg, label)) == 0) { fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, vd->vdev_guid); } vdev_free(vd); if (error && (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) goto out; else error = 0; } out: sav->sav_pending = NULL; sav->sav_npending = 0; return (error); } static int spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) { int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, VDEV_LABEL_SPARE)) != 0) { return (error); } return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, VDEV_LABEL_L2CACHE)); } static void spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, const char *config) { int i; if (sav->sav_config != NULL) { nvlist_t **olddevs; uint_t oldndevs; nvlist_t **newdevs; /* * Generate new dev list by concatenating with the * current dev list. */ VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config, &olddevs, &oldndevs)); newdevs = kmem_alloc(sizeof (void *) * (ndevs + oldndevs), KM_SLEEP); for (i = 0; i < oldndevs; i++) newdevs[i] = fnvlist_dup(olddevs[i]); for (i = 0; i < ndevs; i++) newdevs[i + oldndevs] = fnvlist_dup(devs[i]); fnvlist_remove(sav->sav_config, config); fnvlist_add_nvlist_array(sav->sav_config, config, (const nvlist_t * const *)newdevs, ndevs + oldndevs); for (i = 0; i < oldndevs + ndevs; i++) nvlist_free(newdevs[i]); kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); } else { /* * Generate a new dev list. */ sav->sav_config = fnvlist_alloc(); fnvlist_add_nvlist_array(sav->sav_config, config, (const nvlist_t * const *)devs, ndevs); } } /* * Stop and drop level 2 ARC devices */ void spa_l2cache_drop(spa_t *spa) { vdev_t *vd; int i; spa_aux_vdev_t *sav = &spa->spa_l2cache; for (i = 0; i < sav->sav_count; i++) { uint64_t pool; vd = sav->sav_vdevs[i]; ASSERT(vd != NULL); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); } } /* * Verify encryption parameters for spa creation. If we are encrypting, we must * have the encryption feature flag enabled. */ static int spa_create_check_encryption_params(dsl_crypto_params_t *dcp, boolean_t has_encryption) { if (dcp->cp_crypt != ZIO_CRYPT_OFF && dcp->cp_crypt != ZIO_CRYPT_INHERIT && !has_encryption) return (SET_ERROR(ENOTSUP)); return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); } /* * Pool Creation */ int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, nvlist_t *zplprops, dsl_crypto_params_t *dcp) { spa_t *spa; char *altroot = NULL; vdev_t *rvd; dsl_pool_t *dp; dmu_tx_t *tx; int error = 0; uint64_t txg = TXG_INITIAL; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; uint64_t version, obj, ndraid = 0; boolean_t has_features; boolean_t has_encryption; boolean_t has_allocclass; spa_feature_t feat; char *feat_name; char *poolname; nvlist_t *nvl; if (props == NULL || nvlist_lookup_string(props, "tname", &poolname) != 0) poolname = (char *)pool; /* * If this pool already exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(poolname) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Allocate a new spa_t structure. */ nvl = fnvlist_alloc(); fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); spa = spa_add(poolname, nvl, altroot); fnvlist_free(nvl); spa_activate(spa, spa_mode_global); if (props && (error = spa_prop_validate(spa, props))) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Temporary pool names should never be written to disk. */ if (poolname != pool) spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; has_features = B_FALSE; has_encryption = B_FALSE; has_allocclass = B_FALSE; for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); elem != NULL; elem = nvlist_next_nvpair(props, elem)) { if (zpool_prop_feature(nvpair_name(elem))) { has_features = B_TRUE; feat_name = strchr(nvpair_name(elem), '@') + 1; VERIFY0(zfeature_lookup_name(feat_name, &feat)); if (feat == SPA_FEATURE_ENCRYPTION) has_encryption = B_TRUE; if (feat == SPA_FEATURE_ALLOCATION_CLASSES) has_allocclass = B_TRUE; } } /* verify encryption params, if they were provided */ if (dcp != NULL) { error = spa_create_check_encryption_params(dcp, has_encryption); if (error != 0) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } } if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (ENOTSUP); } if (has_features || nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { version = SPA_VERSION; } ASSERT(SPA_VERSION_IS_SUPPORTED(version)); spa->spa_first_txg = txg; spa->spa_uberblock.ub_txg = txg - 1; spa->spa_uberblock.ub_version = version; spa->spa_ubsync = spa->spa_uberblock; spa->spa_load_state = SPA_LOAD_CREATE; spa->spa_removing_phys.sr_state = DSS_NONE; spa->spa_removing_phys.sr_removing_vdev = -1; spa->spa_removing_phys.sr_prev_indirect_vdev = -1; spa->spa_indirect_vdevs_loaded = B_TRUE; /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Create the root vdev. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); ASSERT(error != 0 || rvd != NULL); ASSERT(error != 0 || spa->spa_root_vdev == rvd); if (error == 0 && !zfs_allocatable_devs(nvroot)) error = SET_ERROR(EINVAL); if (error == 0 && (error = vdev_create(rvd, txg, B_FALSE)) == 0 && (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { /* * instantiate the metaslab groups (this will dirty the vdevs) * we can no longer error exit past this point */ for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; vdev_metaslab_set_size(vd); vdev_expand(vd, txg); } } spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Get the list of spares, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { spa->spa_spares.sav_config = fnvlist_alloc(); fnvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, nspares); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } /* * Get the list of level 2 cache devices, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP)); fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, nl2cache); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } spa->spa_is_initializing = B_TRUE; spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); spa->spa_is_initializing = B_FALSE; /* * Create DDTs (dedup tables). */ ddt_create(spa); + /* + * Create BRT table and BRT table object. + */ + brt_create(spa); spa_update_dspace(spa); tx = dmu_tx_create_assigned(dp, txg); /* * Create the pool's history object. */ if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) spa_history_create_obj(spa, tx); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); spa_history_log_version(spa, "create", tx); /* * Create the pool config object. */ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool config"); } if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, sizeof (uint64_t), 1, &version, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool version"); } /* Newly created pools with the right version are always deflated. */ if (version >= SPA_VERSION_RAIDZ_DEFLATE) { spa->spa_deflate = TRUE; if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { cmn_err(CE_PANIC, "failed to add deflate"); } } /* * Create the deferred-free bpobj. Turn off compression * because sync-to-convergence takes longer if the blocksize * keeps changing. */ obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); dmu_object_set_compress(spa->spa_meta_objset, obj, ZIO_COMPRESS_OFF, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, sizeof (uint64_t), 1, &obj, tx) != 0) { cmn_err(CE_PANIC, "failed to add bpobj"); } VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj)); /* * Generate some random noise for salted checksums to operate on. */ (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, sizeof (spa->spa_cksum_salt.zcs_bytes)); /* * Set pool properties. */ spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); if (props != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_sync_props(props, tx); } for (int i = 0; i < ndraid; i++) spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(dp); mmp_thread_start(spa); txg_wait_synced(dp, txg); spa_spawn_aux_threads(spa); spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); /* * Don't count references from objsets that are already closed * and are making their way through the eviction process. */ spa_evicting_os_wait(spa); spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); spa->spa_load_state = SPA_LOAD_NONE; spa_import_os(spa); mutex_exit(&spa_namespace_lock); return (0); } /* * Import a non-root pool into the system. */ int spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) { spa_t *spa; char *altroot = NULL; spa_load_state_t state = SPA_LOAD_IMPORT; zpool_load_policy_t policy; spa_mode_t mode = spa_mode_global; uint64_t readonly = B_FALSE; int error; nvlist_t *nvroot; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; /* * If a pool with this name exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Create and initialize the spa structure. */ (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); if (readonly) mode = SPA_MODE_READ; spa = spa_add(pool, config, altroot); spa->spa_import_flags = flags; /* * Verbatim import - Take a pool and insert it into the namespace * as if it had been loaded at boot. */ if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { if (props != NULL) spa_configfile_set(spa, props, B_FALSE); spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); zfs_dbgmsg("spa_import: verbatim import of %s", pool); mutex_exit(&spa_namespace_lock); return (0); } spa_activate(spa, mode); /* * Don't start async tasks until we know everything is healthy. */ spa_async_suspend(spa); zpool_get_load_policy(config, &policy); if (policy.zlp_rewind & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; if (state != SPA_LOAD_RECOVER) { spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; zfs_dbgmsg("spa_import: importing %s", pool); } else { zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); } error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); /* * Propagate anything learned while loading the pool and pass it * back to caller (i.e. rewind info, missing devices, etc). */ fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Toss any existing sparelist, as it doesn't have any validity * anymore, and conflicts with spa_has_spare(). */ if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; spa_load_spares(spa); } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; spa_load_l2cache(spa); } nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); spa_config_exit(spa, SCL_ALL, FTAG); if (props != NULL) spa_configfile_set(spa, props, B_FALSE); if (error != 0 || (props && spa_writeable(spa) && (error = spa_prop_set(spa, props)))) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } spa_async_resume(spa); /* * Override any spares and level 2 cache devices as specified by * the user, as these may have correct device names/devids, etc. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { if (spa->spa_spares.sav_config) fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); else spa->spa_spares.sav_config = fnvlist_alloc(); fnvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, nspares); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { if (spa->spa_l2cache.sav_config) fnvlist_remove(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE); else spa->spa_l2cache.sav_config = fnvlist_alloc(); fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, nl2cache); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } /* * Check for any removed devices. */ if (spa->spa_autoreplace) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } if (spa_writeable(spa)) { /* * Update the config cache to include the newly-imported pool. */ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); } /* * It's possible that the pool was expanded while it was exported. * We kick off an async task to handle this for us. */ spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); spa_history_log_version(spa, "import", NULL); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); mutex_exit(&spa_namespace_lock); zvol_create_minors_recursive(pool); spa_import_os(spa); return (0); } nvlist_t * spa_tryimport(nvlist_t *tryconfig) { nvlist_t *config = NULL; char *poolname, *cachefile; spa_t *spa; uint64_t state; int error; zpool_load_policy_t policy; if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) return (NULL); if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) return (NULL); /* * Create and initialize the spa structure. */ mutex_enter(&spa_namespace_lock); spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); spa_activate(spa, SPA_MODE_READ); /* * Rewind pool if a max txg was provided. */ zpool_get_load_policy(spa->spa_config, &policy); if (policy.zlp_txg != UINT64_MAX) { spa->spa_load_max_txg = policy.zlp_txg; spa->spa_extreme_rewind = B_TRUE; zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", poolname, (longlong_t)policy.zlp_txg); } else { zfs_dbgmsg("spa_tryimport: importing %s", poolname); } if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) == 0) { zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; } else { spa->spa_config_source = SPA_CONFIG_SRC_SCAN; } error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); /* * If 'tryconfig' was at least parsable, return the current config. */ if (spa->spa_root_vdev != NULL) { config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, spa->spa_uberblock.ub_timestamp); fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, spa->spa_errata); /* * If the bootfs property exists on this pool then we * copy it out so that external consumers can tell which * pools are bootable. */ if ((!error || error == EEXIST) && spa->spa_bootfs) { char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); /* * We have to play games with the name since the * pool was opened as TRYIMPORT_NAME. */ if (dsl_dsobj_to_dsname(spa_name(spa), spa->spa_bootfs, tmpname) == 0) { char *cp; char *dsname; dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); cp = strchr(tmpname, '/'); if (cp == NULL) { (void) strlcpy(dsname, tmpname, MAXPATHLEN); } else { (void) snprintf(dsname, MAXPATHLEN, "%s/%s", poolname, ++cp); } fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, dsname); kmem_free(dsname, MAXPATHLEN); } kmem_free(tmpname, MAXPATHLEN); } /* * Add the list of hot spares and level 2 cache devices. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_add_spares(spa, config); spa_add_l2cache(spa, config); spa_config_exit(spa, SCL_CONFIG, FTAG); } spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (config); } /* * Pool export/destroy * * The act of destroying or exporting a pool is very simple. We make sure there * is no more pending I/O and any references to the pool are gone. Then, we * update the pool state and sync all the labels to disk, removing the * configuration from the cache afterwards. If the 'hardforce' flag is set, then * we don't sync the labels or remove the configuration cache. */ static int spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { int error; spa_t *spa; if (oldconfig) *oldconfig = NULL; if (!(spa_mode_global & SPA_MODE_WRITE)) return (SET_ERROR(EROFS)); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pool)) == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (spa->spa_is_exporting) { /* the pool is being exported by another thread */ mutex_exit(&spa_namespace_lock); return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); } spa->spa_is_exporting = B_TRUE; /* * Put a hold on the pool, drop the namespace lock, stop async tasks, * reacquire the namespace lock, and see if we can export. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); if (spa->spa_zvol_taskq) { zvol_remove_minors(spa, spa_name(spa), B_TRUE); taskq_wait(spa->spa_zvol_taskq); } mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state == POOL_STATE_UNINITIALIZED) goto export_spa; /* * The pool will be in core if it's openable, in which case we can * modify its state. Objsets may be open only because they're dirty, * so we have to force it to sync before checking spa_refcnt. */ if (spa->spa_sync_on) { txg_wait_synced(spa->spa_dsl_pool, 0); spa_evicting_os_wait(spa); } /* * A pool cannot be exported or destroyed if there are active * references. If we are resetting a pool, allow references by * fault injection handlers. */ if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { error = SET_ERROR(EBUSY); goto fail; } if (spa->spa_sync_on) { vdev_t *rvd = spa->spa_root_vdev; /* * A pool cannot be exported if it has an active shared spare. * This is to prevent other pools stealing the active spare * from an exported pool. At user's own will, such pool can * be forcedly exported. */ if (!force && new_state == POOL_STATE_EXPORTED && spa_has_active_shared_spare(spa)) { error = SET_ERROR(EXDEV); goto fail; } /* * We're about to export or destroy this pool. Make sure * we stop all initialization and trim activity here before * we set the spa_final_txg. This will ensure that all * dirty data resulting from the initialization is * committed to disk before we unload the pool. */ vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); vdev_autotrim_stop_all(spa); vdev_rebuild_stop_all(spa); /* * We want this to be reflected on every label, * so mark them all dirty. spa_unload() will do the * final sync that pushes these changes out. */ if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa->spa_state = new_state; vdev_config_dirty(rvd); spa_config_exit(spa, SCL_ALL, FTAG); } /* * If the log space map feature is enabled and the pool is * getting exported (but not destroyed), we want to spend some * time flushing as many metaslabs as we can in an attempt to * destroy log space maps and save import time. This has to be * done before we set the spa_final_txg, otherwise * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs. * spa_should_flush_logs_on_unload() should be called after * spa_state has been set to the new_state. */ if (spa_should_flush_logs_on_unload(spa)) spa_unload_log_sm_flush_all(spa); if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa->spa_final_txg = spa_last_synced_txg(spa) + TXG_DEFER_SIZE + 1; spa_config_exit(spa, SCL_ALL, FTAG); } } export_spa: spa_export_os(spa); if (new_state == POOL_STATE_DESTROYED) spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); else if (new_state == POOL_STATE_EXPORTED) spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } if (oldconfig && spa->spa_config) *oldconfig = fnvlist_dup(spa->spa_config); if (new_state != POOL_STATE_UNINITIALIZED) { if (!hardforce) spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); spa_remove(spa); } else { /* * If spa_remove() is not called for this spa_t and * there is any possibility that it can be reused, * we make sure to reset the exporting flag. */ spa->spa_is_exporting = B_FALSE; } mutex_exit(&spa_namespace_lock); return (0); fail: spa->spa_is_exporting = B_FALSE; spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Destroy a storage pool. */ int spa_destroy(const char *pool) { return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE, B_FALSE)); } /* * Export a storage pool. */ int spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force, hardforce)); } /* * Similar to spa_export(), this unloads the spa_t without actually removing it * from the namespace in any way. */ int spa_reset(const char *pool) { return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, B_FALSE, B_FALSE)); } /* * ========================================================================== * Device manipulation * ========================================================================== */ /* * This is called as a synctask to increment the draid feature flag */ static void spa_draid_feature_incr(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; int draid = (int)(uintptr_t)arg; for (int c = 0; c < draid; c++) spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); } /* * Add a device to a storage pool. */ int spa_vdev_add(spa_t *spa, nvlist_t *nvroot) { uint64_t txg, ndraid = 0; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *tvd; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, NULL, txg, error)); spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) != 0) nl2cache = 0; if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) return (spa_vdev_exit(spa, vd, txg, EINVAL)); if (vd->vdev_children != 0 && (error = vdev_create(vd, txg, B_FALSE)) != 0) { return (spa_vdev_exit(spa, vd, txg, error)); } /* * The virtual dRAID spares must be added after vdev tree is created * and the vdev guids are generated. The guid of their associated * dRAID is stored in the config and used when opening the spare. */ if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, rvd->vdev_children)) == 0) { if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; } else { return (spa_vdev_exit(spa, vd, txg, error)); } /* * We must validate the spares and l2cache devices after checking the * children. Otherwise, vdev_inuse() will blindly overwrite the spare. */ if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, vd, txg, error)); /* * If we are in the middle of a device removal, we can only add * devices which match the existing devices in the pool. * If we are in the middle of a removal, or have some indirect * vdevs, we can not add raidz or dRAID top levels. */ if (spa->spa_vdev_removal != NULL || spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { for (int c = 0; c < vd->vdev_children; c++) { tvd = vd->vdev_child[c]; if (spa->spa_vdev_removal != NULL && tvd->vdev_ashift != spa->spa_max_ashift) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } /* Fail if top level vdev is raidz or a dRAID */ if (vdev_get_nparity(tvd) != 0) return (spa_vdev_exit(spa, vd, txg, EINVAL)); /* * Need the top level mirror to be * a mirror of leaf vdevs only */ if (tvd->vdev_ops == &vdev_mirror_ops) { for (uint64_t cid = 0; cid < tvd->vdev_children; cid++) { vdev_t *cvd = tvd->vdev_child[cid]; if (!cvd->vdev_ops->vdev_op_leaf) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } } } } } for (int c = 0; c < vd->vdev_children; c++) { tvd = vd->vdev_child[c]; vdev_remove_child(vd, tvd); tvd->vdev_id = rvd->vdev_children; vdev_add_child(rvd, tvd); vdev_config_dirty(tvd); } if (nspares != 0) { spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, ZPOOL_CONFIG_SPARES); spa_load_spares(spa); spa->spa_spares.sav_sync = B_TRUE; } if (nl2cache != 0) { spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, ZPOOL_CONFIG_L2CACHE); spa_load_l2cache(spa); spa->spa_l2cache.sav_sync = B_TRUE; } /* * We can't increment a feature while holding spa_vdev so we * have to do it in a synctask. */ if (ndraid != 0) { dmu_tx_t *tx; tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, (void *)(uintptr_t)ndraid, tx); dmu_tx_commit(tx); } /* * We have to be careful when adding new vdevs to an existing pool. * If other threads start allocating from these vdevs before we * sync the config cache, and we lose power, then upon reboot we may * fail to open the pool because there are DVAs that the config cache * can't translate. Therefore, we first add the vdevs without * initializing metaslabs; sync the config cache (via spa_vdev_exit()); * and then let spa_config_update() initialize the new metaslabs. * * spa_load() checks for added-but-not-initialized vdevs, so that * if we lose power at any point in this sequence, the remaining * steps will be completed the next time we load the pool. */ (void) spa_vdev_exit(spa, vd, txg, 0); mutex_enter(&spa_namespace_lock); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); mutex_exit(&spa_namespace_lock); return (0); } /* * Attach a device to a mirror. The arguments are the path to any device * in the mirror, and the nvroot for the new device. If the path specifies * a device that is not mirrored, we automatically insert the mirror vdev. * * If 'replacing' is specified, the new device is intended to replace the * existing device; in this case the two devices are made into their own * mirror using the 'replacing' vdev, which is functionally identical to * the mirror vdev (it actually reuses all the same ops) but has a few * extra rules: you can't attach to it after it's been created, and upon * completion of resilvering, the first disk (the one being replaced) * is automatically detached. * * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) * should be performed instead of traditional healing reconstruction. From * an administrators perspective these are both resilver operations. */ int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, int rebuild) { uint64_t txg, dtl_max_txg; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; vdev_ops_t *pvops; char *oldvdpath, *newvdpath; int newvd_isspare; int error; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } if (rebuild) { if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); if (dsl_scan_resilvering(spa_get_dsl(spa))) return (spa_vdev_exit(spa, NULL, txg, ZFS_ERR_RESILVER_IN_PROGRESS)); } else { if (vdev_rebuild_active(rvd)) return (spa_vdev_exit(spa, NULL, txg, ZFS_ERR_REBUILD_IN_PROGRESS)); } if (spa->spa_vdev_removal != NULL) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); if (oldvd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!oldvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = oldvd->vdev_parent; if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, VDEV_ALLOC_ATTACH) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); if (newrootvd->vdev_children != 1) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); newvd = newrootvd->vdev_child[0]; if (!newvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); if ((error = vdev_create(newrootvd, txg, replacing)) != 0) return (spa_vdev_exit(spa, newrootvd, txg, error)); /* * log, dedup and special vdevs should not be replaced by spares. */ if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE || oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } /* * A dRAID spare can only replace a child of its parent dRAID vdev. */ if (newvd->vdev_ops == &vdev_draid_spare_ops && oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } if (rebuild) { /* * For rebuilds, the top vdev must support reconstruction * using only space maps. This means the only allowable * vdevs types are the root vdev, a mirror, or dRAID. */ tvd = pvd; if (pvd->vdev_top != NULL) tvd = pvd->vdev_top; if (tvd->vdev_ops != &vdev_mirror_ops && tvd->vdev_ops != &vdev_root_ops && tvd->vdev_ops != &vdev_draid_ops) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } } if (!replacing) { /* * For attach, the only allowable parent is a mirror or the root * vdev. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); pvops = &vdev_mirror_ops; } else { /* * Active hot spares can only be replaced by inactive hot * spares. */ if (pvd->vdev_ops == &vdev_spare_ops && oldvd->vdev_isspare && !spa_has_spare(spa, newvd->vdev_guid)) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If the source is a hot spare, and the parent isn't already a * spare, then we want to create a new hot spare. Otherwise, we * want to create a replacing vdev. The user is not allowed to * attach to a spared vdev child unless the 'isspare' state is * the same (spare replaces spare, non-spare replaces * non-spare). */ if (pvd->vdev_ops == &vdev_replacing_ops && spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } else if (pvd->vdev_ops == &vdev_spare_ops && newvd->vdev_isspare != oldvd->vdev_isspare) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } if (newvd->vdev_isspare) pvops = &vdev_spare_ops; else pvops = &vdev_replacing_ops; } /* * Make sure the new device is big enough. */ if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); /* * The new device cannot have a higher alignment requirement * than the top-level vdev. */ if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If this is an in-place replacement, update oldvd's path and devid * to make it distinguishable from newvd, and unopenable from now on. */ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { spa_strfree(oldvd->vdev_path); oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, KM_SLEEP); (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5, "%s/%s", newvd->vdev_path, "old"); if (oldvd->vdev_devid != NULL) { spa_strfree(oldvd->vdev_devid); oldvd->vdev_devid = NULL; } } /* * If the parent is not a mirror, or if we're replacing, insert the new * mirror/replacing/spare vdev above oldvd. */ if (pvd->vdev_ops != pvops) pvd = vdev_add_parent(oldvd, pvops); ASSERT(pvd->vdev_top->vdev_parent == rvd); ASSERT(pvd->vdev_ops == pvops); ASSERT(oldvd->vdev_parent == pvd); /* * Extract the new device from its root and add it to pvd. */ vdev_remove_child(newrootvd, newvd); newvd->vdev_id = pvd->vdev_children; newvd->vdev_crtxg = oldvd->vdev_crtxg; vdev_add_child(pvd, newvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(pvd); tvd = newvd->vdev_top; ASSERT(pvd->vdev_top == tvd); ASSERT(tvd->vdev_parent == rvd); vdev_config_dirty(tvd); /* * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account * for any dmu_sync-ed blocks. It will propagate upward when * spa_vdev_exit() calls vdev_dtl_reassess(). */ dtl_max_txg = txg + TXG_CONCURRENT_STATES; vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, dtl_max_txg - TXG_INITIAL); if (newvd->vdev_isspare) { spa_spare_activate(newvd); spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); } oldvdpath = spa_strdup(oldvd->vdev_path); newvdpath = spa_strdup(newvd->vdev_path); newvd_isspare = newvd->vdev_isspare; /* * Mark newvd's DTL dirty in this txg. */ vdev_dirty(tvd, VDD_DTL, newvd, txg); /* * Schedule the resilver or rebuild to restart in the future. We do * this to ensure that dmu_sync-ed blocks have been stitched into the * respective datasets. */ if (rebuild) { newvd->vdev_rebuild_txg = txg; vdev_rebuild(tvd); } else { newvd->vdev_resilver_txg = txg; if (dsl_scan_resilvering(spa_get_dsl(spa)) && spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) { vdev_defer_resilver(newvd); } else { dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg); } } if (spa->spa_bootfs) spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); /* * Commit the config */ (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); spa_history_log_internal(spa, "vdev attach", NULL, "%s vdev=%s %s vdev=%s", replacing && newvd_isspare ? "spare in" : replacing ? "replace" : "attach", newvdpath, replacing ? "for" : "to", oldvdpath); spa_strfree(oldvdpath); spa_strfree(newvdpath); return (0); } /* * Detach a device from a mirror or replacing vdev. * * If 'replace_done' is specified, only detach if the parent * is a replacing vdev. */ int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) { uint64_t txg; int error; vdev_t *rvd __maybe_unused = spa->spa_root_vdev; vdev_t *vd, *pvd, *cvd, *tvd; boolean_t unspare = B_FALSE; uint64_t unspare_guid = 0; char *vdpath; ASSERT(spa_writeable(spa)); txg = spa_vdev_detach_enter(spa, guid); vd = spa_lookup_by_guid(spa, guid, B_FALSE); /* * Besides being called directly from the userland through the * ioctl interface, spa_vdev_detach() can be potentially called * at the end of spa_vdev_resilver_done(). * * In the regular case, when we have a checkpoint this shouldn't * happen as we never empty the DTLs of a vdev during the scrub * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() * should never get here when we have a checkpoint. * * That said, even in a case when we checkpoint the pool exactly * as spa_vdev_resilver_done() calls this function everything * should be fine as the resilver will return right away. */ ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } if (vd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = vd->vdev_parent; /* * If the parent/child relationship is not as expected, don't do it. * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing * vdev that's replacing B with C. The user's intent in replacing * is to go from M(A,B) to M(A,C). If the user decides to cancel * the replace by detaching C, the expected behavior is to end up * M(A,B). But suppose that right after deciding to detach C, * the replacement of B completes. We would have M(A,C), and then * ask to detach C, which would leave us with just A -- not what * the user wanted. To prevent this, we make sure that the * parent/child relationship hasn't changed -- in this example, * that C's parent is still the replacing vdev R. */ if (pvd->vdev_guid != pguid && pguid != 0) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * Only 'replacing' or 'spare' vdevs can be replaced. */ if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); ASSERT(pvd->vdev_ops != &vdev_spare_ops || spa_version(spa) >= SPA_VERSION_SPARES); /* * Only mirror, replacing, and spare vdevs support detach. */ if (pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); /* * If this device has the only valid copy of some data, * we cannot safely detach it. */ if (vdev_dtl_required(vd)) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); ASSERT(pvd->vdev_children >= 2); /* * If we are detaching the second disk from a replacing vdev, then * check to see if we changed the original vdev's path to have "/old" * at the end in spa_vdev_attach(). If so, undo that change now. */ if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && vd->vdev_path != NULL) { size_t len = strlen(vd->vdev_path); for (int c = 0; c < pvd->vdev_children; c++) { cvd = pvd->vdev_child[c]; if (cvd == vd || cvd->vdev_path == NULL) continue; if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && strcmp(cvd->vdev_path + len, "/old") == 0) { spa_strfree(cvd->vdev_path); cvd->vdev_path = spa_strdup(vd->vdev_path); break; } } } /* * If we are detaching the original disk from a normal spare, then it * implies that the spare should become a real disk, and be removed * from the active spare list for the pool. dRAID spares on the * other hand are coupled to the pool and thus should never be removed * from the spares list. */ if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; if (last_cvd->vdev_isspare && last_cvd->vdev_ops != &vdev_draid_spare_ops) { unspare = B_TRUE; } } /* * Erase the disk labels so the disk can be used for other things. * This must be done after all other error cases are handled, * but before we disembowel vd (so we can still do I/O to it). * But if we can't do it, don't treat the error as fatal -- * it may be that the unwritability of the disk is the reason * it's being detached! */ (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); /* * Remove vd from its parent and compact the parent's children. */ vdev_remove_child(pvd, vd); vdev_compact_children(pvd); /* * Remember one of the remaining children so we can get tvd below. */ cvd = pvd->vdev_child[pvd->vdev_children - 1]; /* * If we need to remove the remaining child from the list of hot spares, * do it now, marking the vdev as no longer a spare in the process. * We must do this before vdev_remove_parent(), because that can * change the GUID if it creates a new toplevel GUID. For a similar * reason, we must remove the spare now, in the same txg as the detach; * otherwise someone could attach a new sibling, change the GUID, and * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. */ if (unspare) { ASSERT(cvd->vdev_isspare); spa_spare_remove(cvd); unspare_guid = cvd->vdev_guid; (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); cvd->vdev_unspare = B_TRUE; } /* * If the parent mirror/replacing vdev only has one child, * the parent is no longer needed. Remove it from the tree. */ if (pvd->vdev_children == 1) { if (pvd->vdev_ops == &vdev_spare_ops) cvd->vdev_unspare = B_FALSE; vdev_remove_parent(cvd); } /* * We don't set tvd until now because the parent we just removed * may have been the previous top-level vdev. */ tvd = cvd->vdev_top; ASSERT(tvd->vdev_parent == rvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(cvd); /* * If the 'autoexpand' property is set on the pool then automatically * try to expand the size of the pool. For example if the device we * just detached was smaller than the others, it may be possible to * add metaslabs (i.e. grow the pool). We need to reopen the vdev * first so that we can obtain the updated sizes of the leaf vdevs. */ if (spa->spa_autoexpand) { vdev_reopen(tvd); vdev_expand(tvd, txg); } vdev_config_dirty(tvd); /* * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that * vd->vdev_detached is set and free vd's DTL object in syncing context. * But first make sure we're not on any *other* txg's DTL list, to * prevent vd from being accessed after it's freed. */ vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); for (int t = 0; t < TXG_SIZE; t++) (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); vd->vdev_detached = B_TRUE; vdev_dirty(tvd, VDD_DTL, vd, txg); spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); spa_notify_waiters(spa); /* hang on to the spa before we release the lock */ spa_open_ref(spa, FTAG); error = spa_vdev_exit(spa, vd, txg, 0); spa_history_log_internal(spa, "detach", NULL, "vdev=%s", vdpath); spa_strfree(vdpath); /* * If this was the removal of the original device in a hot spare vdev, * then we want to go through and remove the device from the hot spare * list of every other pool. */ if (unspare) { spa_t *altspa = NULL; mutex_enter(&spa_namespace_lock); while ((altspa = spa_next(altspa)) != NULL) { if (altspa->spa_state != POOL_STATE_ACTIVE || altspa == spa) continue; spa_open_ref(altspa, FTAG); mutex_exit(&spa_namespace_lock); (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); mutex_enter(&spa_namespace_lock); spa_close(altspa, FTAG); } mutex_exit(&spa_namespace_lock); /* search the rest of the vdevs for spares to remove */ spa_vdev_resilver_done(spa); } /* all done with the spa; OK to release */ mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); mutex_exit(&spa_namespace_lock); return (error); } static int spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, list_t *vd_list) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); /* Look up vdev and ensure it's a leaf. */ vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL || vd->vdev_detached) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(ENODEV)); } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EINVAL)); } else if (!vdev_writeable(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EROFS)); } mutex_enter(&vd->vdev_initialize_lock); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); /* * When we activate an initialize action we check to see * if the vdev_initialize_thread is NULL. We do this instead * of using the vdev_initialize_state since there might be * a previous initialization process which has completed but * the thread is not exited. */ if (cmd_type == POOL_INITIALIZE_START && (vd->vdev_initialize_thread != NULL || vd->vdev_top->vdev_removing)) { mutex_exit(&vd->vdev_initialize_lock); return (SET_ERROR(EBUSY)); } else if (cmd_type == POOL_INITIALIZE_CANCEL && (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { mutex_exit(&vd->vdev_initialize_lock); return (SET_ERROR(ESRCH)); } else if (cmd_type == POOL_INITIALIZE_SUSPEND && vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { mutex_exit(&vd->vdev_initialize_lock); return (SET_ERROR(ESRCH)); } switch (cmd_type) { case POOL_INITIALIZE_START: vdev_initialize(vd); break; case POOL_INITIALIZE_CANCEL: vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); break; case POOL_INITIALIZE_SUSPEND: vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); break; default: panic("invalid cmd_type %llu", (unsigned long long)cmd_type); } mutex_exit(&vd->vdev_initialize_lock); return (0); } int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, nvlist_t *vdev_errlist) { int total_errors = 0; list_t vd_list; list_create(&vd_list, sizeof (vdev_t), offsetof(vdev_t, vdev_initialize_node)); /* * We hold the namespace lock through the whole function * to prevent any changes to the pool while we're starting or * stopping initialization. The config and state locks are held so that * we can properly assess the vdev state before we commit to * the initializing operation. */ mutex_enter(&spa_namespace_lock); for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { uint64_t vdev_guid = fnvpair_value_uint64(pair); int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, &vd_list); if (error != 0) { char guid_as_str[MAXNAMELEN]; (void) snprintf(guid_as_str, sizeof (guid_as_str), "%llu", (unsigned long long)vdev_guid); fnvlist_add_int64(vdev_errlist, guid_as_str, error); total_errors++; } } /* Wait for all initialize threads to stop. */ vdev_initialize_stop_wait(spa, &vd_list); /* Sync out the initializing state */ txg_wait_synced(spa->spa_dsl_pool, 0); mutex_exit(&spa_namespace_lock); list_destroy(&vd_list); return (total_errors); } static int spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); /* Look up vdev and ensure it's a leaf. */ vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL || vd->vdev_detached) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(ENODEV)); } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EINVAL)); } else if (!vdev_writeable(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EROFS)); } else if (!vd->vdev_has_trim) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EOPNOTSUPP)); } else if (secure && !vd->vdev_has_securetrim) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EOPNOTSUPP)); } mutex_enter(&vd->vdev_trim_lock); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); /* * When we activate a TRIM action we check to see if the * vdev_trim_thread is NULL. We do this instead of using the * vdev_trim_state since there might be a previous TRIM process * which has completed but the thread is not exited. */ if (cmd_type == POOL_TRIM_START && (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) { mutex_exit(&vd->vdev_trim_lock); return (SET_ERROR(EBUSY)); } else if (cmd_type == POOL_TRIM_CANCEL && (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { mutex_exit(&vd->vdev_trim_lock); return (SET_ERROR(ESRCH)); } else if (cmd_type == POOL_TRIM_SUSPEND && vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { mutex_exit(&vd->vdev_trim_lock); return (SET_ERROR(ESRCH)); } switch (cmd_type) { case POOL_TRIM_START: vdev_trim(vd, rate, partial, secure); break; case POOL_TRIM_CANCEL: vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); break; case POOL_TRIM_SUSPEND: vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); break; default: panic("invalid cmd_type %llu", (unsigned long long)cmd_type); } mutex_exit(&vd->vdev_trim_lock); return (0); } /* * Initiates a manual TRIM for the requested vdevs. This kicks off individual * TRIM threads for each child vdev. These threads pass over all of the free * space in the vdev's metaslabs and issues TRIM commands for that space. */ int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) { int total_errors = 0; list_t vd_list; list_create(&vd_list, sizeof (vdev_t), offsetof(vdev_t, vdev_trim_node)); /* * We hold the namespace lock through the whole function * to prevent any changes to the pool while we're starting or * stopping TRIM. The config and state locks are held so that * we can properly assess the vdev state before we commit to * the TRIM operation. */ mutex_enter(&spa_namespace_lock); for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { uint64_t vdev_guid = fnvpair_value_uint64(pair); int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, rate, partial, secure, &vd_list); if (error != 0) { char guid_as_str[MAXNAMELEN]; (void) snprintf(guid_as_str, sizeof (guid_as_str), "%llu", (unsigned long long)vdev_guid); fnvlist_add_int64(vdev_errlist, guid_as_str, error); total_errors++; } } /* Wait for all TRIM threads to stop. */ vdev_trim_stop_wait(spa, &vd_list); /* Sync out the TRIM state */ txg_wait_synced(spa->spa_dsl_pool, 0); mutex_exit(&spa_namespace_lock); list_destroy(&vd_list); return (total_errors); } /* * Split a set of devices from their mirrors, and create a new pool from them. */ int spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config, nvlist_t *props, boolean_t exp) { int error = 0; uint64_t txg, *glist; spa_t *newspa; uint_t c, children, lastlog; nvlist_t **child, *nvl, *tmp; dmu_tx_t *tx; char *altroot = NULL; vdev_t *rvd, **vml = NULL; /* vdev modify list */ boolean_t activate_slog; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } /* clear the log and flush everything up to now */ activate_slog = spa_passivate_log(spa); (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); error = spa_reset_logs(spa); txg = spa_vdev_config_enter(spa); if (activate_slog) spa_activate_log(spa); if (error != 0) return (spa_vdev_exit(spa, NULL, txg, error)); /* check new spa name before going any further */ if (spa_lookup(newname) != NULL) return (spa_vdev_exit(spa, NULL, txg, EEXIST)); /* * scan through all the children to ensure they're all mirrors */ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* first, check to ensure we've got the right child count */ rvd = spa->spa_root_vdev; lastlog = 0; for (c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; /* don't count the holes & logs as children */ if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && !vdev_is_concrete(vd))) { if (lastlog == 0) lastlog = c; continue; } lastlog = 0; } if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* next, ensure no spare or cache devices are part of the split */ if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); /* then, loop over each vdev and validate it */ for (c = 0; c < children; c++) { uint64_t is_hole = 0; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &is_hole); if (is_hole != 0) { if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || spa->spa_root_vdev->vdev_child[c]->vdev_islog) { continue; } else { error = SET_ERROR(EINVAL); break; } } /* deal with indirect vdevs */ if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == &vdev_indirect_ops) continue; /* which disk is going to be split? */ if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, &glist[c]) != 0) { error = SET_ERROR(EINVAL); break; } /* look it up in the spa */ vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); if (vml[c] == NULL) { error = SET_ERROR(ENODEV); break; } /* make sure there's nothing stopping the split */ if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || vml[c]->vdev_islog || !vdev_is_concrete(vml[c]) || vml[c]->vdev_isspare || vml[c]->vdev_isl2cache || !vdev_writeable(vml[c]) || vml[c]->vdev_children != 0 || vml[c]->vdev_state != VDEV_STATE_HEALTHY || c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { error = SET_ERROR(EINVAL); break; } if (vdev_dtl_required(vml[c]) || vdev_resilver_needed(vml[c], NULL, NULL)) { error = SET_ERROR(EBUSY); break; } /* we need certain info from the top level */ fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, vml[c]->vdev_top->vdev_ms_array); fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, vml[c]->vdev_top->vdev_ms_shift); fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, vml[c]->vdev_top->vdev_asize); fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, vml[c]->vdev_top->vdev_ashift); /* transfer per-vdev ZAPs */ ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); VERIFY0(nvlist_add_uint64(child[c], ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); VERIFY0(nvlist_add_uint64(child[c], ZPOOL_CONFIG_VDEV_TOP_ZAP, vml[c]->vdev_parent->vdev_top_zap)); } if (error != 0) { kmem_free(vml, children * sizeof (vdev_t *)); kmem_free(glist, children * sizeof (uint64_t)); return (spa_vdev_exit(spa, NULL, txg, error)); } /* stop writers from using the disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_TRUE; } vdev_reopen(spa->spa_root_vdev); /* * Temporarily record the splitting vdevs in the spa config. This * will disappear once the config is regenerated. */ nvl = fnvlist_alloc(); fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children); kmem_free(glist, children * sizeof (uint64_t)); mutex_enter(&spa->spa_props_lock); fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl); mutex_exit(&spa->spa_props_lock); spa->spa_config_splitting = nvl; vdev_config_dirty(spa->spa_root_vdev); /* configure and create the new pool */ fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE); fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_generate_guid(NULL)); VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); /* add the new pool to the namespace */ newspa = spa_add(newname, config, altroot); newspa->spa_avz_action = AVZ_ACTION_REBUILD; newspa->spa_config_txg = spa->spa_config_txg; spa_set_log_state(newspa, SPA_LOG_CLEAR); /* release the spa config lock, retaining the namespace lock */ spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 1); spa_activate(newspa, spa_mode_global); spa_async_suspend(newspa); /* * Temporarily stop the initializing and TRIM activity. We set the * state to ACTIVE so that we know to resume initializing or TRIM * once the split has completed. */ list_t vd_initialize_list; list_create(&vd_initialize_list, sizeof (vdev_t), offsetof(vdev_t, vdev_initialize_node)); list_t vd_trim_list; list_create(&vd_trim_list, sizeof (vdev_t), offsetof(vdev_t, vdev_trim_node)); for (c = 0; c < children; c++) { if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { mutex_enter(&vml[c]->vdev_initialize_lock); vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); mutex_exit(&vml[c]->vdev_initialize_lock); mutex_enter(&vml[c]->vdev_trim_lock); vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); mutex_exit(&vml[c]->vdev_trim_lock); } } vdev_initialize_stop_wait(spa, &vd_initialize_list); vdev_trim_stop_wait(spa, &vd_trim_list); list_destroy(&vd_initialize_list); list_destroy(&vd_trim_list); newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; newspa->spa_is_splitting = B_TRUE; /* create the new pool from the disks of the original pool */ error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); if (error) goto out; /* if that worked, generate a real config for the new pool */ if (newspa->spa_root_vdev != NULL) { newspa->spa_config_splitting = fnvlist_alloc(); fnvlist_add_uint64(newspa->spa_config_splitting, ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)); spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, B_TRUE)); } /* set the props */ if (props != NULL) { spa_configfile_set(newspa, props, B_FALSE); error = spa_prop_set(newspa, props); if (error) goto out; } /* flush everything */ txg = spa_vdev_config_enter(newspa); vdev_config_dirty(newspa->spa_root_vdev); (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 2); spa_async_resume(newspa); /* finally, update the original pool's config */ txg = spa_vdev_config_enter(spa); tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) dmu_tx_abort(tx); for (c = 0; c < children; c++) { if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { vdev_t *tvd = vml[c]->vdev_top; /* * Need to be sure the detachable VDEV is not * on any *other* txg's DTL list to prevent it * from being accessed after it's freed. */ for (int t = 0; t < TXG_SIZE; t++) { (void) txg_list_remove_this( &tvd->vdev_dtl_list, vml[c], t); } vdev_split(vml[c]); if (error == 0) spa_history_log_internal(spa, "detach", tx, "vdev=%s", vml[c]->vdev_path); vdev_free(vml[c]); } } spa->spa_avz_action = AVZ_ACTION_REBUILD; vdev_config_dirty(spa->spa_root_vdev); spa->spa_config_splitting = NULL; nvlist_free(nvl); if (error == 0) dmu_tx_commit(tx); (void) spa_vdev_exit(spa, NULL, txg, 0); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 3); /* split is complete; log a history record */ spa_history_log_internal(newspa, "split", NULL, "from pool %s", spa_name(spa)); newspa->spa_is_splitting = B_FALSE; kmem_free(vml, children * sizeof (vdev_t *)); /* if we're not going to mount the filesystems in userland, export */ if (exp) error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, B_FALSE, B_FALSE); return (error); out: spa_unload(newspa); spa_deactivate(newspa); spa_remove(newspa); txg = spa_vdev_config_enter(spa); /* re-online all offlined disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_FALSE; } /* restart initializing or trimming disks as necessary */ spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); vdev_reopen(spa->spa_root_vdev); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; (void) spa_vdev_exit(spa, NULL, txg, error); kmem_free(vml, children * sizeof (vdev_t *)); return (error); } /* * Find any device that's done replacing, or a vdev marked 'unspare' that's * currently spared, so we can detach it. */ static vdev_t * spa_vdev_resilver_done_hunt(vdev_t *vd) { vdev_t *newvd, *oldvd; for (int c = 0; c < vd->vdev_children; c++) { oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); if (oldvd != NULL) return (oldvd); } /* * Check for a completed replacement. We always consider the first * vdev in the list to be the oldest vdev, and the last one to be * the newest (see spa_vdev_attach() for how that works). In * the case where the newest vdev is faulted, we will not automatically * remove it after a resilver completes. This is OK as it will require * user intervention to determine which disk the admin wishes to keep. */ if (vd->vdev_ops == &vdev_replacing_ops) { ASSERT(vd->vdev_children > 1); newvd = vd->vdev_child[vd->vdev_children - 1]; oldvd = vd->vdev_child[0]; if (vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); } /* * Check for a completed resilver with the 'unspare' flag set. * Also potentially update faulted state. */ if (vd->vdev_ops == &vdev_spare_ops) { vdev_t *first = vd->vdev_child[0]; vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; if (last->vdev_unspare) { oldvd = first; newvd = last; } else if (first->vdev_unspare) { oldvd = last; newvd = first; } else { oldvd = NULL; } if (oldvd != NULL && vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); vdev_propagate_state(vd); /* * If there are more than two spares attached to a disk, * and those spares are not required, then we want to * attempt to free them up now so that they can be used * by other pools. Once we're back down to a single * disk+spare, we stop removing them. */ if (vd->vdev_children > 2) { newvd = vd->vdev_child[1]; if (newvd->vdev_isspare && last->vdev_isspare && vdev_dtl_empty(last, DTL_MISSING) && vdev_dtl_empty(last, DTL_OUTAGE) && !vdev_dtl_required(newvd)) return (newvd); } } return (NULL); } static void spa_vdev_resilver_done(spa_t *spa) { vdev_t *vd, *pvd, *ppvd; uint64_t guid, sguid, pguid, ppguid; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { pvd = vd->vdev_parent; ppvd = pvd->vdev_parent; guid = vd->vdev_guid; pguid = pvd->vdev_guid; ppguid = ppvd->vdev_guid; sguid = 0; /* * If we have just finished replacing a hot spared device, then * we need to detach the parent's first child (the original hot * spare) as well. */ if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && ppvd->vdev_children == 2) { ASSERT(pvd->vdev_ops == &vdev_replacing_ops); sguid = ppvd->vdev_child[1]->vdev_guid; } ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); spa_config_exit(spa, SCL_ALL, FTAG); if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) return; if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) return; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); } spa_config_exit(spa, SCL_ALL, FTAG); /* * If a detach was not performed above replace waiters will not have * been notified. In which case we must do so now. */ spa_notify_waiters(spa); } /* * Update the stored path or FRU for this vdev. */ static int spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, boolean_t ispath) { vdev_t *vd; boolean_t sync = B_FALSE; ASSERT(spa_writeable(spa)); spa_vdev_state_enter(spa, SCL_ALL); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENOENT)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); if (ispath) { if (strcmp(value, vd->vdev_path) != 0) { spa_strfree(vd->vdev_path); vd->vdev_path = spa_strdup(value); sync = B_TRUE; } } else { if (vd->vdev_fru == NULL) { vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } else if (strcmp(value, vd->vdev_fru) != 0) { spa_strfree(vd->vdev_fru); vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } } return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); } int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) { return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); } int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) { return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); } /* * ========================================================================== * SPA Scanning * ========================================================================== */ int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); } int spa_scan_stop(spa_t *spa) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scan_cancel(spa->spa_dsl_pool)); } int spa_scan(spa_t *spa, pool_scan_func_t func) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) return (SET_ERROR(ENOTSUP)); if (func == POOL_SCAN_RESILVER && !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) return (SET_ERROR(ENOTSUP)); /* * If a resilver was requested, but there is no DTL on a * writeable leaf device, we have nothing to do. */ if (func == POOL_SCAN_RESILVER && !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); return (0); } return (dsl_scan(spa->spa_dsl_pool, func)); } /* * ========================================================================== * SPA async task processing * ========================================================================== */ static void spa_async_remove(spa_t *spa, vdev_t *vd) { if (vd->vdev_remove_wanted) { vd->vdev_remove_wanted = B_FALSE; vd->vdev_delayed_close = B_FALSE; vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); /* * We want to clear the stats, but we don't want to do a full * vdev_clear() as that will cause us to throw away * degraded/faulted state as well as attempt to reopen the * device, all of which is a waste. */ vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; vdev_state_dirty(vd->vdev_top); /* Tell userspace that the vdev is gone. */ zfs_post_remove(spa, vd); } for (int c = 0; c < vd->vdev_children; c++) spa_async_remove(spa, vd->vdev_child[c]); } static void spa_async_probe(spa_t *spa, vdev_t *vd) { if (vd->vdev_probe_wanted) { vd->vdev_probe_wanted = B_FALSE; vdev_reopen(vd); /* vdev_open() does the actual probe */ } for (int c = 0; c < vd->vdev_children; c++) spa_async_probe(spa, vd->vdev_child[c]); } static void spa_async_autoexpand(spa_t *spa, vdev_t *vd) { if (!spa->spa_autoexpand) return; for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; spa_async_autoexpand(spa, cvd); } if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) return; spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); } static __attribute__((noreturn)) void spa_async_thread(void *arg) { spa_t *spa = (spa_t *)arg; dsl_pool_t *dp = spa->spa_dsl_pool; int tasks; ASSERT(spa->spa_sync_on); mutex_enter(&spa->spa_async_lock); tasks = spa->spa_async_tasks; spa->spa_async_tasks = 0; mutex_exit(&spa->spa_async_lock); /* * See if the config needs to be updated. */ if (tasks & SPA_ASYNC_CONFIG_UPDATE) { uint64_t old_space, new_space; mutex_enter(&spa_namespace_lock); old_space = metaslab_class_get_space(spa_normal_class(spa)); old_space += metaslab_class_get_space(spa_special_class(spa)); old_space += metaslab_class_get_space(spa_dedup_class(spa)); old_space += metaslab_class_get_space( spa_embedded_log_class(spa)); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); new_space = metaslab_class_get_space(spa_normal_class(spa)); new_space += metaslab_class_get_space(spa_special_class(spa)); new_space += metaslab_class_get_space(spa_dedup_class(spa)); new_space += metaslab_class_get_space( spa_embedded_log_class(spa)); mutex_exit(&spa_namespace_lock); /* * If the pool grew as a result of the config update, * then log an internal history event. */ if (new_space != old_space) { spa_history_log_internal(spa, "vdev online", NULL, "pool '%s' size: %llu(+%llu)", spa_name(spa), (u_longlong_t)new_space, (u_longlong_t)(new_space - old_space)); } } /* * See if any devices need to be marked REMOVED. */ if (tasks & SPA_ASYNC_REMOVE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_remove(spa, spa->spa_root_vdev); for (int i = 0; i < spa->spa_l2cache.sav_count; i++) spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); for (int i = 0; i < spa->spa_spares.sav_count; i++) spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); (void) spa_vdev_state_exit(spa, NULL, 0); } if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_async_autoexpand(spa, spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); } /* * See if any devices need to be probed. */ if (tasks & SPA_ASYNC_PROBE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_probe(spa, spa->spa_root_vdev); (void) spa_vdev_state_exit(spa, NULL, 0); } /* * If any devices are done replacing, detach them. */ if (tasks & SPA_ASYNC_RESILVER_DONE || tasks & SPA_ASYNC_REBUILD_DONE) { spa_vdev_resilver_done(spa); } /* * Kick off a resilver. */ if (tasks & SPA_ASYNC_RESILVER && !vdev_rebuild_active(spa->spa_root_vdev) && (!dsl_scan_resilvering(dp) || !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) dsl_scan_restart_resilver(dp, 0); if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_initialize_restart(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } if (tasks & SPA_ASYNC_TRIM_RESTART) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_trim_restart(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_autotrim_restart(spa); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } /* * Kick off L2 cache whole device TRIM. */ if (tasks & SPA_ASYNC_L2CACHE_TRIM) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_trim_l2arc(spa); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } /* * Kick off L2 cache rebuilding. */ if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); l2arc_spa_rebuild_start(spa); spa_config_exit(spa, SCL_L2ARC, FTAG); mutex_exit(&spa_namespace_lock); } /* * Let the world know that we're done. */ mutex_enter(&spa->spa_async_lock); spa->spa_async_thread = NULL; cv_broadcast(&spa->spa_async_cv); mutex_exit(&spa->spa_async_lock); thread_exit(); } void spa_async_suspend(spa_t *spa) { mutex_enter(&spa->spa_async_lock); spa->spa_async_suspended++; while (spa->spa_async_thread != NULL) cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); mutex_exit(&spa->spa_async_lock); spa_vdev_remove_suspend(spa); zthr_t *condense_thread = spa->spa_condense_zthr; if (condense_thread != NULL) zthr_cancel(condense_thread); zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; if (discard_thread != NULL) zthr_cancel(discard_thread); zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; if (ll_delete_thread != NULL) zthr_cancel(ll_delete_thread); zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; if (ll_condense_thread != NULL) zthr_cancel(ll_condense_thread); } void spa_async_resume(spa_t *spa) { mutex_enter(&spa->spa_async_lock); ASSERT(spa->spa_async_suspended != 0); spa->spa_async_suspended--; mutex_exit(&spa->spa_async_lock); spa_restart_removal(spa); zthr_t *condense_thread = spa->spa_condense_zthr; if (condense_thread != NULL) zthr_resume(condense_thread); zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; if (discard_thread != NULL) zthr_resume(discard_thread); zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; if (ll_delete_thread != NULL) zthr_resume(ll_delete_thread); zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; if (ll_condense_thread != NULL) zthr_resume(ll_condense_thread); } static boolean_t spa_async_tasks_pending(spa_t *spa) { uint_t non_config_tasks; uint_t config_task; boolean_t config_task_suspended; non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; if (spa->spa_ccw_fail_time == 0) { config_task_suspended = B_FALSE; } else { config_task_suspended = (gethrtime() - spa->spa_ccw_fail_time) < ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); } return (non_config_tasks || (config_task && !config_task_suspended)); } static void spa_async_dispatch(spa_t *spa) { mutex_enter(&spa->spa_async_lock); if (spa_async_tasks_pending(spa) && !spa->spa_async_suspended && spa->spa_async_thread == NULL) spa->spa_async_thread = thread_create(NULL, 0, spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); mutex_exit(&spa->spa_async_lock); } void spa_async_request(spa_t *spa, int task) { zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); mutex_enter(&spa->spa_async_lock); spa->spa_async_tasks |= task; mutex_exit(&spa->spa_async_lock); } int spa_async_tasks(spa_t *spa) { return (spa->spa_async_tasks); } /* * ========================================================================== * SPA syncing routines * ========================================================================== */ static int bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { bpobj_t *bpo = arg; bpobj_enqueue(bpo, bp, bp_freed, tx); return (0); } int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); } int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); } static int spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zio_t *pio = arg; zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, pio->io_flags)); return (0); } static int bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { ASSERT(!bp_freed); return (spa_free_sync_cb(arg, bp, tx)); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing frees. */ static void spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) { zio_t *zio = zio_root(spa, NULL, NULL, 0); bplist_iterate(bpl, spa_free_sync_cb, zio, tx); VERIFY(zio_wait(zio) == 0); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing deferred frees. */ static void spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) { if (spa_sync_pass(spa) != 1) return; /* * Note: * If the log space map feature is active, we stop deferring * frees to the next TXG and therefore running this function * would be considered a no-op as spa_deferred_bpobj should * not have any entries. * * That said we run this function anyway (instead of returning * immediately) for the edge-case scenario where we just * activated the log space map feature in this TXG but we have * deferred frees from the previous TXG. */ zio_t *zio = zio_root(spa, NULL, NULL, 0); VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, bpobj_spa_free_sync_cb, zio, tx), ==, 0); VERIFY0(zio_wait(zio)); } static void spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) { char *packed = NULL; size_t bufsize; size_t nvsize = 0; dmu_buf_t *db; VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); /* * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration * information. This avoids the dmu_buf_will_dirty() path and * saves us a pre-read to get data we don't actually care about. */ bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); packed = vmem_alloc(bufsize, KM_SLEEP); VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, KM_SLEEP) == 0); memset(packed + nvsize, 0, bufsize - nvsize); dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); vmem_free(packed, bufsize); VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); dmu_buf_will_dirty(db, tx); *(uint64_t *)db->db_data = nvsize; dmu_buf_rele(db, FTAG); } static void spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, const char *config, const char *entry) { nvlist_t *nvroot; nvlist_t **list; int i; if (!sav->sav_sync) return; /* * Update the MOS nvlist describing the list of available devices. * spa_validate_aux() will have already made sure this nvlist is * valid and the vdevs are labeled appropriately. */ if (sav->sav_object == 0) { sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); VERIFY(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, &sav->sav_object, tx) == 0); } nvroot = fnvlist_alloc(); if (sav->sav_count == 0) { fnvlist_add_nvlist_array(nvroot, config, (const nvlist_t * const *)NULL, 0); } else { list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_FALSE, VDEV_CONFIG_L2CACHE); fnvlist_add_nvlist_array(nvroot, config, (const nvlist_t * const *)list, sav->sav_count); for (i = 0; i < sav->sav_count; i++) nvlist_free(list[i]); kmem_free(list, sav->sav_count * sizeof (void *)); } spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); nvlist_free(nvroot); sav->sav_sync = B_FALSE; } /* * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. * The all-vdev ZAP must be empty. */ static void spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) { spa_t *spa = vd->vdev_spa; if (vd->vdev_top_zap != 0) { VERIFY0(zap_add_int(spa->spa_meta_objset, avz, vd->vdev_top_zap, tx)); } if (vd->vdev_leaf_zap != 0) { VERIFY0(zap_add_int(spa->spa_meta_objset, avz, vd->vdev_leaf_zap, tx)); } for (uint64_t i = 0; i < vd->vdev_children; i++) { spa_avz_build(vd->vdev_child[i], avz, tx); } } static void spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) { nvlist_t *config; /* * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, * its config may not be dirty but we still need to build per-vdev ZAPs. * Similarly, if the pool is being assembled (e.g. after a split), we * need to rebuild the AVZ although the config may not be dirty. */ if (list_is_empty(&spa->spa_config_dirty_list) && spa->spa_avz_action == AVZ_ACTION_NONE) return; spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || spa->spa_avz_action == AVZ_ACTION_INITIALIZE || spa->spa_all_vdev_zaps != 0); if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { /* Make and build the new AVZ */ uint64_t new_avz = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); spa_avz_build(spa->spa_root_vdev, new_avz, tx); /* Diff old AVZ with new one */ zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_all_vdev_zaps); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t vdzap = za.za_first_integer; if (zap_lookup_int(spa->spa_meta_objset, new_avz, vdzap) == ENOENT) { /* * ZAP is listed in old AVZ but not in new one; * destroy it */ VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, tx)); } } zap_cursor_fini(&zc); /* Destroy the old AVZ */ VERIFY0(zap_destroy(spa->spa_meta_objset, spa->spa_all_vdev_zaps, tx)); /* Replace the old AVZ in the dir obj with the new one */ VERIFY0(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, sizeof (new_avz), 1, &new_avz, tx)); spa->spa_all_vdev_zaps = new_avz; } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { zap_cursor_t zc; zap_attribute_t za; /* Walk through the AVZ and destroy all listed ZAPs */ for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_all_vdev_zaps); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t zap = za.za_first_integer; VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); } zap_cursor_fini(&zc); /* Destroy and unlink the AVZ itself */ VERIFY0(zap_destroy(spa->spa_meta_objset, spa->spa_all_vdev_zaps, tx)); VERIFY0(zap_remove(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); spa->spa_all_vdev_zaps = 0; } if (spa->spa_all_vdev_zaps == 0) { spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx); } spa->spa_avz_action = AVZ_ACTION_NONE; /* Create ZAPs for vdevs that don't have them. */ vdev_construct_zaps(spa->spa_root_vdev, tx); config = spa_config_generate(spa, spa->spa_root_vdev, dmu_tx_get_txg(tx), B_FALSE); /* * If we're upgrading the spa version then make sure that * the config object gets updated with the correct version. */ if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa->spa_uberblock.ub_version); spa_config_exit(spa, SCL_STATE, FTAG); nvlist_free(spa->spa_config_syncing); spa->spa_config_syncing = config; spa_sync_nvlist(spa, spa->spa_config_object, config, tx); } static void spa_sync_version(void *arg, dmu_tx_t *tx) { uint64_t *versionp = arg; uint64_t version = *versionp; spa_t *spa = dmu_tx_pool(tx)->dp_spa; /* * Setting the version is special cased when first creating the pool. */ ASSERT(tx->tx_txg != TXG_INITIAL); ASSERT(SPA_VERSION_IS_SUPPORTED(version)); ASSERT(version >= spa_version(spa)); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "version=%lld", (longlong_t)version); } /* * Set zpool properties. */ static void spa_sync_props(void *arg, dmu_tx_t *tx) { nvlist_t *nvp = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = spa->spa_meta_objset; nvpair_t *elem = NULL; mutex_enter(&spa->spa_props_lock); while ((elem = nvlist_next_nvpair(nvp, elem))) { uint64_t intval; char *strval, *fname; zpool_prop_t prop; const char *propname; zprop_type_t proptype; spa_feature_t fid; switch (prop = zpool_name_to_prop(nvpair_name(elem))) { case ZPOOL_PROP_INVAL: /* * We checked this earlier in spa_prop_validate(). */ ASSERT(zpool_prop_feature(nvpair_name(elem))); fname = strchr(nvpair_name(elem), '@') + 1; VERIFY0(zfeature_lookup_name(fname, &fid)); spa_feature_enable(spa, fid, tx); spa_history_log_internal(spa, "set", tx, "%s=enabled", nvpair_name(elem)); break; case ZPOOL_PROP_VERSION: intval = fnvpair_value_uint64(elem); /* * The version is synced separately before other * properties and should be correct by now. */ ASSERT3U(spa_version(spa), >=, intval); break; case ZPOOL_PROP_ALTROOT: /* * 'altroot' is a non-persistent property. It should * have been set temporarily at creation or import time. */ ASSERT(spa->spa_root != NULL); break; case ZPOOL_PROP_READONLY: case ZPOOL_PROP_CACHEFILE: /* * 'readonly' and 'cachefile' are also non-persistent * properties. */ break; case ZPOOL_PROP_COMMENT: strval = fnvpair_value_string(elem); if (spa->spa_comment != NULL) spa_strfree(spa->spa_comment); spa->spa_comment = spa_strdup(strval); /* * We need to dirty the configuration on all the vdevs * so that their labels get updated. We also need to * update the cache file to keep it in sync with the * MOS version. It's unnecessary to do this for pool * creation since the vdev's configuration has already * been dirtied. */ if (tx->tx_txg != TXG_INITIAL) { vdev_config_dirty(spa->spa_root_vdev); spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); break; case ZPOOL_PROP_COMPATIBILITY: strval = fnvpair_value_string(elem); if (spa->spa_compatibility != NULL) spa_strfree(spa->spa_compatibility); spa->spa_compatibility = spa_strdup(strval); /* * Dirty the configuration on vdevs as above. */ if (tx->tx_txg != TXG_INITIAL) { vdev_config_dirty(spa->spa_root_vdev); spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); break; default: /* * Set pool property values in the poolprops mos object. */ if (spa->spa_pool_props_object == 0) { spa->spa_pool_props_object = zap_create_link(mos, DMU_OT_POOL_PROPS, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, tx); } /* normalize the property name */ propname = zpool_prop_to_name(prop); proptype = zpool_prop_get_type(prop); if (nvpair_type(elem) == DATA_TYPE_STRING) { ASSERT(proptype == PROP_TYPE_STRING); strval = fnvpair_value_string(elem); VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 1, strlen(strval) + 1, strval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { intval = fnvpair_value_uint64(elem); if (proptype == PROP_TYPE_INDEX) { const char *unused; VERIFY0(zpool_prop_index_to_string( prop, intval, &unused)); } VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 8, 1, &intval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%lld", nvpair_name(elem), (longlong_t)intval); switch (prop) { case ZPOOL_PROP_DELEGATION: spa->spa_delegation = intval; break; case ZPOOL_PROP_BOOTFS: spa->spa_bootfs = intval; break; case ZPOOL_PROP_FAILUREMODE: spa->spa_failmode = intval; break; case ZPOOL_PROP_AUTOTRIM: spa->spa_autotrim = intval; spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); break; case ZPOOL_PROP_AUTOEXPAND: spa->spa_autoexpand = intval; if (tx->tx_txg != TXG_INITIAL) spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); break; case ZPOOL_PROP_MULTIHOST: spa->spa_multihost = intval; break; default: break; } } else { ASSERT(0); /* not allowed */ } } } mutex_exit(&spa->spa_props_lock); } /* * Perform one-time upgrade on-disk changes. spa_version() does not * reflect the new version this txg, so there must be no changes this * txg to anything that the upgrade code depends on after it executes. * Therefore this must be called after dsl_pool_sync() does the sync * tasks. */ static void spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) { if (spa_sync_pass(spa) != 1) return; dsl_pool_t *dp = spa->spa_dsl_pool; rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { dsl_pool_create_origin(dp, tx); /* Keeping the origin open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { dsl_pool_upgrade_clones(dp, tx); } if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { dsl_pool_upgrade_dir_clones(dp, tx); /* Keeping the freedir open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { spa_feature_create_zap_objects(spa, tx); } /* * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable * when possibility to use lz4 compression for metadata was added * Old pools that have this feature enabled must be upgraded to have * this feature active */ if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { boolean_t lz4_en = spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS); boolean_t lz4_ac = spa_feature_is_active(spa, SPA_FEATURE_LZ4_COMPRESS); if (lz4_en && !lz4_ac) spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); } /* * If we haven't written the salt, do so now. Note that the * feature may not be activated yet, but that's fine since * the presence of this ZAP entry is backwards compatible. */ if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT) == ENOENT) { VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes, tx)); } rrw_exit(&dp->dp_config_rwlock, FTAG); } static void vdev_indirect_state_sync_verify(vdev_t *vd) { vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; if (vd->vdev_ops == &vdev_indirect_ops) { ASSERT(vim != NULL); ASSERT(vib != NULL); } uint64_t obsolete_sm_object = 0; ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); if (obsolete_sm_object != 0) { ASSERT(vd->vdev_obsolete_sm != NULL); ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); ASSERT3U(obsolete_sm_object, ==, space_map_object(vd->vdev_obsolete_sm)); ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, space_map_allocated(vd->vdev_obsolete_sm)); } ASSERT(vd->vdev_obsolete_segments != NULL); /* * Since frees / remaps to an indirect vdev can only * happen in syncing context, the obsolete segments * tree must be empty when we start syncing. */ ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); } /* * Set the top-level vdev's max queue depth. Evaluate each top-level's * async write queue depth in case it changed. The max queue depth will * not change in the middle of syncing out this txg. */ static void spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) { ASSERT(spa_writeable(spa)); vdev_t *rvd = spa->spa_root_vdev; uint32_t max_queue_depth = zfs_vdev_async_write_max_active * zfs_vdev_queue_depth_pct / 100; metaslab_class_t *normal = spa_normal_class(spa); metaslab_class_t *special = spa_special_class(spa); metaslab_class_t *dedup = spa_dedup_class(spa); uint64_t slots_per_allocator = 0; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (mg == NULL || !metaslab_group_initialized(mg)) continue; metaslab_class_t *mc = mg->mg_class; if (mc != normal && mc != special && mc != dedup) continue; /* * It is safe to do a lock-free check here because only async * allocations look at mg_max_alloc_queue_depth, and async * allocations all happen from spa_sync(). */ for (int i = 0; i < mg->mg_allocators; i++) { ASSERT0(zfs_refcount_count( &(mg->mg_allocator[i].mga_alloc_queue_depth))); } mg->mg_max_alloc_queue_depth = max_queue_depth; for (int i = 0; i < mg->mg_allocators; i++) { mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = zfs_vdev_def_queue_depth; } slots_per_allocator += zfs_vdev_def_queue_depth; } for (int i = 0; i < spa->spa_alloc_count; i++) { ASSERT0(zfs_refcount_count(&normal->mc_allocator[i]. mca_alloc_slots)); ASSERT0(zfs_refcount_count(&special->mc_allocator[i]. mca_alloc_slots)); ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i]. mca_alloc_slots)); normal->mc_allocator[i].mca_alloc_max_slots = slots_per_allocator; special->mc_allocator[i].mca_alloc_max_slots = slots_per_allocator; dedup->mc_allocator[i].mca_alloc_max_slots = slots_per_allocator; } normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; } static void spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) { ASSERT(spa_writeable(spa)); vdev_t *rvd = spa->spa_root_vdev; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; vdev_indirect_state_sync_verify(vd); if (vdev_indirect_should_condense(vd)) { spa_condense_indirect_start_sync(vd, tx); break; } } } static void spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) { objset_t *mos = spa->spa_meta_objset; dsl_pool_t *dp = spa->spa_dsl_pool; uint64_t txg = tx->tx_txg; bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; do { int pass = ++spa->spa_sync_pass; spa_sync_config_object(spa, tx); spa_sync_aux_dev(spa, &spa->spa_spares, tx, ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); spa_errlog_sync(spa, txg); dsl_pool_sync(dp, txg); if (pass < zfs_sync_pass_deferred_free || spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { /* * If the log space map feature is active we don't * care about deferred frees and the deferred bpobj * as the log space map should effectively have the * same results (i.e. appending only to one object). */ spa_sync_frees(spa, free_bpl, tx); } else { /* * We can not defer frees in pass 1, because * we sync the deferred frees later in pass 1. */ ASSERT3U(pass, >, 1); bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, &spa->spa_deferred_bpobj, tx); } + brt_sync(spa, txg); ddt_sync(spa, txg); dsl_scan_sync(dp, tx); svr_sync(spa, tx); spa_sync_upgrades(spa, tx); spa_flush_metaslabs(spa, tx); vdev_t *vd = NULL; while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) != NULL) vdev_sync(vd, txg); /* * Note: We need to check if the MOS is dirty because we could * have marked the MOS dirty without updating the uberblock * (e.g. if we have sync tasks but no dirty user data). We need * to check the uberblock's rootbp because it is updated if we * have synced out dirty data (though in this case the MOS will * most likely also be dirty due to second order effects, we * don't want to rely on that here). */ if (pass == 1 && spa->spa_uberblock.ub_rootbp.blk_birth < txg && !dmu_objset_is_dirty(mos, txg)) { /* * Nothing changed on the first pass, therefore this * TXG is a no-op. Avoid syncing deferred frees, so * that we can keep this TXG as a no-op. */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); break; } spa_sync_deferred_frees(spa, tx); } while (dmu_objset_is_dirty(mos, txg)); } /* * Rewrite the vdev configuration (which includes the uberblock) to * commit the transaction group. * * If there are no dirty vdevs, we sync the uberblock to a few random * top-level vdevs that are known to be visible in the config cache * (see spa_vdev_add() for a complete description). If there *are* dirty * vdevs, sync the uberblock to all vdevs. */ static void spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) { vdev_t *rvd = spa->spa_root_vdev; uint64_t txg = tx->tx_txg; for (;;) { int error = 0; /* * We hold SCL_STATE to prevent vdev open/close/etc. * while we're attempting to write the vdev labels. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (list_is_empty(&spa->spa_config_dirty_list)) { vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; int svdcount = 0; int children = rvd->vdev_children; int c0 = random_in_range(children); for (int c = 0; c < children; c++) { vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; /* Stop when revisiting the first vdev */ if (c > 0 && svd[0] == vd) break; if (vd->vdev_ms_array == 0 || vd->vdev_islog || !vdev_is_concrete(vd)) continue; svd[svdcount++] = vd; if (svdcount == SPA_SYNC_MIN_VDEVS) break; } error = vdev_config_sync(svd, svdcount, txg); } else { error = vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg); } if (error == 0) spa->spa_last_synced_guid = rvd->vdev_guid; spa_config_exit(spa, SCL_STATE, FTAG); if (error == 0) break; zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); zio_resume_wait(spa); } } /* * Sync the specified transaction group. New blocks may be dirtied as * part of the process, so we iterate until it converges. */ void spa_sync(spa_t *spa, uint64_t txg) { vdev_t *vd = NULL; VERIFY(spa_writeable(spa)); /* * Wait for i/os issued in open context that need to complete * before this txg syncs. */ (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); + /* + * Now that there can be no more cloning in this transaction group, + * but we are still before issuing frees, we can process pending BRT + * updates. + */ + brt_pending_apply(spa, txg); + /* * Lock out configuration changes. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa->spa_syncing_txg = txg; spa->spa_sync_pass = 0; for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_enter(&spa->spa_allocs[i].spaa_lock); VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); mutex_exit(&spa->spa_allocs[i].spaa_lock); } /* * If there are any pending vdev state changes, convert them * into config changes that go out with this transaction group. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { /* Avoid holding the write lock unless actually necessary */ if (vd->vdev_aux == NULL) { vdev_state_clean(vd); vdev_config_dirty(vd); continue; } /* * We need the write lock here because, for aux vdevs, * calling vdev_config_dirty() modifies sav_config. * This is ugly and will become unnecessary when we * eliminate the aux vdev wart by integrating all vdevs * into the root vdev tree. */ spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { vdev_state_clean(vd); vdev_config_dirty(vd); } spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); } spa_config_exit(spa, SCL_STATE, FTAG); dsl_pool_t *dp = spa->spa_dsl_pool; dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); spa->spa_sync_starttime = gethrtime(); taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + NSEC_TO_TICK(spa->spa_deadman_synctime)); /* * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, * set spa_deflate if we have no raid-z vdevs. */ if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { vdev_t *rvd = spa->spa_root_vdev; int i; for (i = 0; i < rvd->vdev_children; i++) { vd = rvd->vdev_child[i]; if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) break; } if (i == rvd->vdev_children) { spa->spa_deflate = TRUE; VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx)); } } spa_sync_adjust_vdev_max_queue_depth(spa); spa_sync_condense_indirect(spa, tx); spa_sync_iterate_to_convergence(spa, tx); #ifdef ZFS_DEBUG if (!list_is_empty(&spa->spa_config_dirty_list)) { /* * Make sure that the number of ZAPs for all the vdevs matches * the number of ZAPs in the per-vdev ZAP list. This only gets * called if the config is dirty; otherwise there may be * outstanding AVZ operations that weren't completed in * spa_sync_config_object. */ uint64_t all_vdev_zap_entry_count; ASSERT0(zap_count(spa->spa_meta_objset, spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, all_vdev_zap_entry_count); } #endif if (spa->spa_vdev_removal != NULL) { ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); } spa_sync_rewrite_vdev_config(spa, tx); dmu_tx_commit(tx); taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); spa->spa_deadman_tqid = 0; /* * Clear the dirty config list. */ while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) vdev_config_clean(vd); /* * Now that the new config has synced transactionally, * let it become visible to the config cache. */ if (spa->spa_config_syncing != NULL) { spa_config_set(spa, spa->spa_config_syncing); spa->spa_config_txg = txg; spa->spa_config_syncing = NULL; } dsl_pool_sync_done(dp, txg); for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_enter(&spa->spa_allocs[i].spaa_lock); VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); mutex_exit(&spa->spa_allocs[i].spaa_lock); } /* * Update usable space statistics. */ while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) != NULL) vdev_sync_done(vd, txg); metaslab_class_evict_old(spa->spa_normal_class, txg); metaslab_class_evict_old(spa->spa_log_class, txg); spa_sync_close_syncing_log_sm(spa); spa_update_dspace(spa); /* * It had better be the case that we didn't dirty anything * since vdev_config_sync(). */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); while (zfs_pause_spa_sync) delay(1); spa->spa_sync_pass = 0; /* * Update the last synced uberblock here. We want to do this at * the end of spa_sync() so that consumers of spa_last_synced_txg() * will be guaranteed that all the processing associated with * that txg has been completed. */ spa->spa_ubsync = spa->spa_uberblock; spa_config_exit(spa, SCL_CONFIG, FTAG); spa_handle_ignored_writes(spa); /* * If any async tasks have been requested, kick them off. */ spa_async_dispatch(spa); } /* * Sync all pools. We don't want to hold the namespace lock across these * operations, so we take a reference on the spa_t and drop the lock during the * sync. */ void spa_sync_allpools(void) { spa_t *spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa_state(spa) != POOL_STATE_ACTIVE || !spa_writeable(spa) || spa_suspended(spa)) continue; spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); txg_wait_synced(spa_get_dsl(spa), 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); } mutex_exit(&spa_namespace_lock); } /* * ========================================================================== * Miscellaneous routines * ========================================================================== */ /* * Remove all pools in the system. */ void spa_evict_all(void) { spa_t *spa; /* * Remove all cached state. All pools should be closed now, * so every spa in the AVL tree should be unreferenced. */ mutex_enter(&spa_namespace_lock); while ((spa = spa_next(NULL)) != NULL) { /* * Stop async tasks. The async thread may need to detach * a device that's been replaced, which requires grabbing * spa_namespace_lock, so we must drop it here. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } spa_remove(spa); } mutex_exit(&spa_namespace_lock); } vdev_t * spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) { vdev_t *vd; int i; if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) return (vd); if (aux) { for (i = 0; i < spa->spa_l2cache.sav_count; i++) { vd = spa->spa_l2cache.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } } return (NULL); } void spa_upgrade(spa_t *spa, uint64_t version) { ASSERT(spa_writeable(spa)); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * This should only be called for a non-faulted pool, and since a * future version would result in an unopenable pool, this shouldn't be * possible. */ ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); ASSERT3U(version, >=, spa->spa_uberblock.ub_version); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); } static boolean_t spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav) { (void) spa; int i; uint64_t vdev_guid; for (i = 0; i < sav->sav_count; i++) if (sav->sav_vdevs[i]->vdev_guid == guid) return (B_TRUE); for (i = 0; i < sav->sav_npending; i++) { if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, &vdev_guid) == 0 && vdev_guid == guid) return (B_TRUE); } return (B_FALSE); } boolean_t spa_has_l2cache(spa_t *spa, uint64_t guid) { return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache)); } boolean_t spa_has_spare(spa_t *spa, uint64_t guid) { return (spa_has_aux_vdev(spa, guid, &spa->spa_spares)); } /* * Check if a pool has an active shared spare device. * Note: reference count of an active spare is 2, as a spare and as a replace */ static boolean_t spa_has_active_shared_spare(spa_t *spa) { int i, refcnt; uint64_t pool; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) { if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, &refcnt) && pool != 0ULL && pool == spa_guid(spa) && refcnt > 2) return (B_TRUE); } return (B_FALSE); } uint64_t spa_total_metaslabs(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; uint64_t m = 0; for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; if (!vdev_is_concrete(vd)) continue; m += vd->vdev_ms_count; } return (m); } /* * Notify any waiting threads that some activity has switched from being in- * progress to not-in-progress so that the thread can wake up and determine * whether it is finished waiting. */ void spa_notify_waiters(spa_t *spa) { /* * Acquiring spa_activities_lock here prevents the cv_broadcast from * happening between the waiting thread's check and cv_wait. */ mutex_enter(&spa->spa_activities_lock); cv_broadcast(&spa->spa_activities_cv); mutex_exit(&spa->spa_activities_lock); } /* * Notify any waiting threads that the pool is exporting, and then block until * they are finished using the spa_t. */ void spa_wake_waiters(spa_t *spa) { mutex_enter(&spa->spa_activities_lock); spa->spa_waiters_cancel = B_TRUE; cv_broadcast(&spa->spa_activities_cv); while (spa->spa_waiters != 0) cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); spa->spa_waiters_cancel = B_FALSE; mutex_exit(&spa->spa_activities_lock); } /* Whether the vdev or any of its descendants are being initialized/trimmed. */ static boolean_t spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); ASSERT(activity == ZPOOL_WAIT_INITIALIZE || activity == ZPOOL_WAIT_TRIM); kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? &vd->vdev_initialize_lock : &vd->vdev_trim_lock; mutex_exit(&spa->spa_activities_lock); mutex_enter(lock); mutex_enter(&spa->spa_activities_lock); boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); mutex_exit(lock); if (in_progress) return (B_TRUE); for (int i = 0; i < vd->vdev_children; i++) { if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], activity)) return (B_TRUE); } return (B_FALSE); } /* * If use_guid is true, this checks whether the vdev specified by guid is * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool * is being initialized/trimmed. The caller must hold the config lock and * spa_activities_lock. */ static int spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, zpool_wait_activity_t activity, boolean_t *in_progress) { mutex_exit(&spa->spa_activities_lock); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); mutex_enter(&spa->spa_activities_lock); vdev_t *vd; if (use_guid) { vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (EINVAL); } } else { vd = spa->spa_root_vdev; } *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (0); } /* * Locking for waiting threads * --------------------------- * * Waiting threads need a way to check whether a given activity is in progress, * and then, if it is, wait for it to complete. Each activity will have some * in-memory representation of the relevant on-disk state which can be used to * determine whether or not the activity is in progress. The in-memory state and * the locking used to protect it will be different for each activity, and may * not be suitable for use with a cvar (e.g., some state is protected by the * config lock). To allow waiting threads to wait without any races, another * lock, spa_activities_lock, is used. * * When the state is checked, both the activity-specific lock (if there is one) * and spa_activities_lock are held. In some cases, the activity-specific lock * is acquired explicitly (e.g. the config lock). In others, the locking is * internal to some check (e.g. bpobj_is_empty). After checking, the waiting * thread releases the activity-specific lock and, if the activity is in * progress, then cv_waits using spa_activities_lock. * * The waiting thread is woken when another thread, one completing some * activity, updates the state of the activity and then calls * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only * needs to hold its activity-specific lock when updating the state, and this * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. * * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, * and because it is held when the waiting thread checks the state of the * activity, it can never be the case that the completing thread both updates * the activity state and cv_broadcasts in between the waiting thread's check * and cv_wait. Thus, a waiting thread can never miss a wakeup. * * In order to prevent deadlock, when the waiting thread does its check, in some * cases it will temporarily drop spa_activities_lock in order to acquire the * activity-specific lock. The order in which spa_activities_lock and the * activity specific lock are acquired in the waiting thread is determined by * the order in which they are acquired in the completing thread; if the * completing thread calls spa_notify_waiters with the activity-specific lock * held, then the waiting thread must also acquire the activity-specific lock * first. */ static int spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, boolean_t use_tag, uint64_t tag, boolean_t *in_progress) { int error = 0; ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); switch (activity) { case ZPOOL_WAIT_CKPT_DISCARD: *in_progress = (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == ENOENT); break; case ZPOOL_WAIT_FREE: *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || spa_livelist_delete_check(spa)); break; case ZPOOL_WAIT_INITIALIZE: case ZPOOL_WAIT_TRIM: error = spa_vdev_activity_in_progress(spa, use_tag, tag, activity, in_progress); break; case ZPOOL_WAIT_REPLACE: mutex_exit(&spa->spa_activities_lock); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); mutex_enter(&spa->spa_activities_lock); *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); break; case ZPOOL_WAIT_REMOVE: *in_progress = (spa->spa_removing_phys.sr_state == DSS_SCANNING); break; case ZPOOL_WAIT_RESILVER: if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev))) break; zfs_fallthrough; case ZPOOL_WAIT_SCRUB: { boolean_t scanning, paused, is_scrub; dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); scanning = (scn->scn_phys.scn_state == DSS_SCANNING); paused = dsl_scan_is_paused_scrub(scn); *in_progress = (scanning && !paused && is_scrub == (activity == ZPOOL_WAIT_SCRUB)); break; } default: panic("unrecognized value for activity %d", activity); } return (error); } static int spa_wait_common(const char *pool, zpool_wait_activity_t activity, boolean_t use_tag, uint64_t tag, boolean_t *waited) { /* * The tag is used to distinguish between instances of an activity. * 'initialize' and 'trim' are the only activities that we use this for. * The other activities can only have a single instance in progress in a * pool at one time, making the tag unnecessary. * * There can be multiple devices being replaced at once, but since they * all finish once resilvering finishes, we don't bother keeping track * of them individually, we just wait for them all to finish. */ if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && activity != ZPOOL_WAIT_TRIM) return (EINVAL); if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) return (EINVAL); spa_t *spa; int error = spa_open(pool, &spa, FTAG); if (error != 0) return (error); /* * Increment the spa's waiter count so that we can call spa_close and * still ensure that the spa_t doesn't get freed before this thread is * finished with it when the pool is exported. We want to call spa_close * before we start waiting because otherwise the additional ref would * prevent the pool from being exported or destroyed throughout the * potentially long wait. */ mutex_enter(&spa->spa_activities_lock); spa->spa_waiters++; spa_close(spa, FTAG); *waited = B_FALSE; for (;;) { boolean_t in_progress; error = spa_activity_in_progress(spa, activity, use_tag, tag, &in_progress); if (error || !in_progress || spa->spa_waiters_cancel) break; *waited = B_TRUE; if (cv_wait_sig(&spa->spa_activities_cv, &spa->spa_activities_lock) == 0) { error = EINTR; break; } } spa->spa_waiters--; cv_signal(&spa->spa_waiters_cv); mutex_exit(&spa->spa_activities_lock); return (error); } /* * Wait for a particular instance of the specified activity to complete, where * the instance is identified by 'tag' */ int spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, boolean_t *waited) { return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); } /* * Wait for all instances of the specified activity complete */ int spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) { return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); } sysevent_t * spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) { sysevent_t *ev = NULL; #ifdef _KERNEL nvlist_t *resource; resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); if (resource) { ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); ev->resource = resource; } #else (void) spa, (void) vd, (void) hist_nvl, (void) name; #endif return (ev); } void spa_event_post(sysevent_t *ev) { #ifdef _KERNEL if (ev) { zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); kmem_free(ev, sizeof (*ev)); } #else (void) ev; #endif } /* * Post a zevent corresponding to the given sysevent. The 'name' must be one * of the event definitions in sys/sysevent/eventdefs.h. The payload will be * filled in from the spa and (optionally) the vdev. This doesn't do anything * in the userland libzpool, as we don't want consumers to misinterpret ztest * or zdb as real changes. */ void spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) { spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); } /* state manipulation functions */ EXPORT_SYMBOL(spa_open); EXPORT_SYMBOL(spa_open_rewind); EXPORT_SYMBOL(spa_get_stats); EXPORT_SYMBOL(spa_create); EXPORT_SYMBOL(spa_import); EXPORT_SYMBOL(spa_tryimport); EXPORT_SYMBOL(spa_destroy); EXPORT_SYMBOL(spa_export); EXPORT_SYMBOL(spa_reset); EXPORT_SYMBOL(spa_async_request); EXPORT_SYMBOL(spa_async_suspend); EXPORT_SYMBOL(spa_async_resume); EXPORT_SYMBOL(spa_inject_addref); EXPORT_SYMBOL(spa_inject_delref); EXPORT_SYMBOL(spa_scan_stat_init); EXPORT_SYMBOL(spa_scan_get_stats); /* device manipulation */ EXPORT_SYMBOL(spa_vdev_add); EXPORT_SYMBOL(spa_vdev_attach); EXPORT_SYMBOL(spa_vdev_detach); EXPORT_SYMBOL(spa_vdev_setpath); EXPORT_SYMBOL(spa_vdev_setfru); EXPORT_SYMBOL(spa_vdev_split_mirror); /* spare statech is global across all pools) */ EXPORT_SYMBOL(spa_spare_add); EXPORT_SYMBOL(spa_spare_remove); EXPORT_SYMBOL(spa_spare_exists); EXPORT_SYMBOL(spa_spare_activate); /* L2ARC statech is global across all pools) */ EXPORT_SYMBOL(spa_l2cache_add); EXPORT_SYMBOL(spa_l2cache_remove); EXPORT_SYMBOL(spa_l2cache_exists); EXPORT_SYMBOL(spa_l2cache_activate); EXPORT_SYMBOL(spa_l2cache_drop); /* scanning */ EXPORT_SYMBOL(spa_scan); EXPORT_SYMBOL(spa_scan_stop); /* spa syncing */ EXPORT_SYMBOL(spa_sync); /* only for DMU use */ EXPORT_SYMBOL(spa_sync_allpools); /* properties */ EXPORT_SYMBOL(spa_prop_set); EXPORT_SYMBOL(spa_prop_get); EXPORT_SYMBOL(spa_prop_clear_bootfs); /* asynchronous event notification */ EXPORT_SYMBOL(spa_event_notify); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW, "log2 fraction of arc that can be used by inflight I/Os when " "verifying pool during import"); /* END CSTYLED */ ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, "Set to traverse metadata on pool import"); ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, "Set to traverse data on pool import"); ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, "Print vdev tree to zfs_dbgmsg during pool import"); ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD, "Percentage of CPUs to run an IO worker thread"); ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD, "Number of threads per IO worker taskqueue"); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW, "Allow importing pool with up to this number of missing top-level " "vdevs (in read-only mode)"); /* END CSTYLED */ ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW, "Set the livelist condense zthr to pause"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW, "Set the livelist condense synctask to pause"); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW, "Whether livelist condensing was canceled in the synctask"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW, "Whether livelist condensing was canceled in the zthr function"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW, "Whether extra ALLOC blkptrs were added to a livelist entry while it " "was being condensed"); /* END CSTYLED */ diff --git a/module/zfs/spa_misc.c b/module/zfs/spa_misc.c index 53763e915ca8..8466fa80e1e3 100644 --- a/module/zfs/spa_misc.c +++ b/module/zfs/spa_misc.c @@ -1,2958 +1,2961 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2019 by Delphix. All rights reserved. * Copyright 2015 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2017 Datto Inc. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2019, loli10K . All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include "zfs_prop.h" #include #include #include #include /* * SPA locking * * There are three basic locks for managing spa_t structures: * * spa_namespace_lock (global mutex) * * This lock must be acquired to do any of the following: * * - Lookup a spa_t by name * - Add or remove a spa_t from the namespace * - Increase spa_refcount from non-zero * - Check if spa_refcount is zero * - Rename a spa_t * - add/remove/attach/detach devices * - Held for the duration of create/destroy/import/export * * It does not need to handle recursion. A create or destroy may * reference objects (files or zvols) in other pools, but by * definition they must have an existing reference, and will never need * to lookup a spa_t by name. * * spa_refcount (per-spa zfs_refcount_t protected by mutex) * * This reference count keep track of any active users of the spa_t. The * spa_t cannot be destroyed or freed while this is non-zero. Internally, * the refcount is never really 'zero' - opening a pool implicitly keeps * some references in the DMU. Internally we check against spa_minref, but * present the image of a zero/non-zero value to consumers. * * spa_config_lock[] (per-spa array of rwlocks) * * This protects the spa_t from config changes, and must be held in * the following circumstances: * * - RW_READER to perform I/O to the spa * - RW_WRITER to change the vdev config * * The locking order is fairly straightforward: * * spa_namespace_lock -> spa_refcount * * The namespace lock must be acquired to increase the refcount from 0 * or to check if it is zero. * * spa_refcount -> spa_config_lock[] * * There must be at least one valid reference on the spa_t to acquire * the config lock. * * spa_namespace_lock -> spa_config_lock[] * * The namespace lock must always be taken before the config lock. * * * The spa_namespace_lock can be acquired directly and is globally visible. * * The namespace is manipulated using the following functions, all of which * require the spa_namespace_lock to be held. * * spa_lookup() Lookup a spa_t by name. * * spa_add() Create a new spa_t in the namespace. * * spa_remove() Remove a spa_t from the namespace. This also * frees up any memory associated with the spa_t. * * spa_next() Returns the next spa_t in the system, or the * first if NULL is passed. * * spa_evict_all() Shutdown and remove all spa_t structures in * the system. * * spa_guid_exists() Determine whether a pool/device guid exists. * * The spa_refcount is manipulated using the following functions: * * spa_open_ref() Adds a reference to the given spa_t. Must be * called with spa_namespace_lock held if the * refcount is currently zero. * * spa_close() Remove a reference from the spa_t. This will * not free the spa_t or remove it from the * namespace. No locking is required. * * spa_refcount_zero() Returns true if the refcount is currently * zero. Must be called with spa_namespace_lock * held. * * The spa_config_lock[] is an array of rwlocks, ordered as follows: * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). * * To read the configuration, it suffices to hold one of these locks as reader. * To modify the configuration, you must hold all locks as writer. To modify * vdev state without altering the vdev tree's topology (e.g. online/offline), * you must hold SCL_STATE and SCL_ZIO as writer. * * We use these distinct config locks to avoid recursive lock entry. * For example, spa_sync() (which holds SCL_CONFIG as reader) induces * block allocations (SCL_ALLOC), which may require reading space maps * from disk (dmu_read() -> zio_read() -> SCL_ZIO). * * The spa config locks cannot be normal rwlocks because we need the * ability to hand off ownership. For example, SCL_ZIO is acquired * by the issuing thread and later released by an interrupt thread. * They do, however, obey the usual write-wanted semantics to prevent * writer (i.e. system administrator) starvation. * * The lock acquisition rules are as follows: * * SCL_CONFIG * Protects changes to the vdev tree topology, such as vdev * add/remove/attach/detach. Protects the dirty config list * (spa_config_dirty_list) and the set of spares and l2arc devices. * * SCL_STATE * Protects changes to pool state and vdev state, such as vdev * online/offline/fault/degrade/clear. Protects the dirty state list * (spa_state_dirty_list) and global pool state (spa_state). * * SCL_ALLOC * Protects changes to metaslab groups and classes. * Held as reader by metaslab_alloc() and metaslab_claim(). * * SCL_ZIO * Held by bp-level zios (those which have no io_vd upon entry) * to prevent changes to the vdev tree. The bp-level zio implicitly * protects all of its vdev child zios, which do not hold SCL_ZIO. * * SCL_FREE * Protects changes to metaslab groups and classes. * Held as reader by metaslab_free(). SCL_FREE is distinct from * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free * blocks in zio_done() while another i/o that holds either * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. * * SCL_VDEV * Held as reader to prevent changes to the vdev tree during trivial * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the * other locks, and lower than all of them, to ensure that it's safe * to acquire regardless of caller context. * * In addition, the following rules apply: * * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. * The lock ordering is SCL_CONFIG > spa_props_lock. * * (b) I/O operations on leaf vdevs. For any zio operation that takes * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), * or zio_write_phys() -- the caller must ensure that the config cannot * cannot change in the interim, and that the vdev cannot be reopened. * SCL_STATE as reader suffices for both. * * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). * * spa_vdev_enter() Acquire the namespace lock and the config lock * for writing. * * spa_vdev_exit() Release the config lock, wait for all I/O * to complete, sync the updated configs to the * cache, and release the namespace lock. * * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual * locking is, always, based on spa_namespace_lock and spa_config_lock[]. */ static avl_tree_t spa_namespace_avl; kmutex_t spa_namespace_lock; static kcondvar_t spa_namespace_cv; static const int spa_max_replication_override = SPA_DVAS_PER_BP; static kmutex_t spa_spare_lock; static avl_tree_t spa_spare_avl; static kmutex_t spa_l2cache_lock; static avl_tree_t spa_l2cache_avl; spa_mode_t spa_mode_global = SPA_MODE_UNINIT; #ifdef ZFS_DEBUG /* * Everything except dprintf, set_error, spa, and indirect_remap is on * by default in debug builds. */ int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | ZFS_DEBUG_INDIRECT_REMAP); #else int zfs_flags = 0; #endif /* * zfs_recover can be set to nonzero to attempt to recover from * otherwise-fatal errors, typically caused by on-disk corruption. When * set, calls to zfs_panic_recover() will turn into warning messages. * This should only be used as a last resort, as it typically results * in leaked space, or worse. */ int zfs_recover = B_FALSE; /* * If destroy encounters an EIO while reading metadata (e.g. indirect * blocks), space referenced by the missing metadata can not be freed. * Normally this causes the background destroy to become "stalled", as * it is unable to make forward progress. While in this stalled state, * all remaining space to free from the error-encountering filesystem is * "temporarily leaked". Set this flag to cause it to ignore the EIO, * permanently leak the space from indirect blocks that can not be read, * and continue to free everything else that it can. * * The default, "stalling" behavior is useful if the storage partially * fails (i.e. some but not all i/os fail), and then later recovers. In * this case, we will be able to continue pool operations while it is * partially failed, and when it recovers, we can continue to free the * space, with no leaks. However, note that this case is actually * fairly rare. * * Typically pools either (a) fail completely (but perhaps temporarily, * e.g. a top-level vdev going offline), or (b) have localized, * permanent errors (e.g. disk returns the wrong data due to bit flip or * firmware bug). In case (a), this setting does not matter because the * pool will be suspended and the sync thread will not be able to make * forward progress regardless. In case (b), because the error is * permanent, the best we can do is leak the minimum amount of space, * which is what setting this flag will do. Therefore, it is reasonable * for this flag to normally be set, but we chose the more conservative * approach of not setting it, so that there is no possibility of * leaking space in the "partial temporary" failure case. */ int zfs_free_leak_on_eio = B_FALSE; /* * Expiration time in milliseconds. This value has two meanings. First it is * used to determine when the spa_deadman() logic should fire. By default the * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. * Secondly, the value determines if an I/O is considered "hung". Any I/O that * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting * in one of three behaviors controlled by zfs_deadman_failmode. */ uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ /* * This value controls the maximum amount of time zio_wait() will block for an * outstanding IO. By default this is 300 seconds at which point the "hung" * behavior will be applied as described for zfs_deadman_synctime_ms. */ uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ /* * Check time in milliseconds. This defines the frequency at which we check * for hung I/O. */ uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ /* * By default the deadman is enabled. */ int zfs_deadman_enabled = B_TRUE; /* * Controls the behavior of the deadman when it detects a "hung" I/O. * Valid values are zfs_deadman_failmode=. * * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system */ const char *zfs_deadman_failmode = "wait"; /* * The worst case is single-sector max-parity RAID-Z blocks, in which * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) * times the size; so just assume that. Add to this the fact that * we can have up to 3 DVAs per bp, and one more factor of 2 because * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, * the worst case is: * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 */ uint_t spa_asize_inflation = 24; /* * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in * the pool to be consumed (bounded by spa_max_slop). This ensures that we * don't run the pool completely out of space, due to unaccounted changes (e.g. * to the MOS). It also limits the worst-case time to allocate space. If we * have less than this amount of free space, most ZPL operations (e.g. write, * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are * also part of this 3.2% of space which can't be consumed by normal writes; * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded * log space. * * Certain operations (e.g. file removal, most administrative actions) can * use half the slop space. They will only return ENOSPC if less than half * the slop space is free. Typically, once the pool has less than the slop * space free, the user will use these operations to free up space in the pool. * These are the operations that call dsl_pool_adjustedsize() with the netfree * argument set to TRUE. * * Operations that are almost guaranteed to free up space in the absence of * a pool checkpoint can use up to three quarters of the slop space * (e.g zfs destroy). * * A very restricted set of operations are always permitted, regardless of * the amount of free space. These are the operations that call * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net * increase in the amount of space used, it is possible to run the pool * completely out of space, causing it to be permanently read-only. * * Note that on very small pools, the slop space will be larger than * 3.2%, in an effort to have it be at least spa_min_slop (128MB), * but we never allow it to be more than half the pool size. * * Further, on very large pools, the slop space will be smaller than * 3.2%, to avoid reserving much more space than we actually need; bounded * by spa_max_slop (128GB). * * See also the comments in zfs_space_check_t. */ uint_t spa_slop_shift = 5; static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; static const int spa_allocators = 4; void spa_load_failed(spa_t *spa, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, spa->spa_trust_config ? "trusted" : "untrusted", buf); } void spa_load_note(spa_t *spa, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, spa->spa_trust_config ? "trusted" : "untrusted", buf); } /* * By default dedup and user data indirects land in the special class */ static int zfs_ddt_data_is_special = B_TRUE; static int zfs_user_indirect_is_special = B_TRUE; /* * The percentage of special class final space reserved for metadata only. * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only * let metadata into the class. */ static uint_t zfs_special_class_metadata_reserve_pct = 25; /* * ========================================================================== * SPA config locking * ========================================================================== */ static void spa_config_lock_init(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); scl->scl_writer = NULL; scl->scl_write_wanted = 0; scl->scl_count = 0; } } static void spa_config_lock_destroy(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_destroy(&scl->scl_lock); cv_destroy(&scl->scl_cv); ASSERT(scl->scl_writer == NULL); ASSERT(scl->scl_write_wanted == 0); ASSERT(scl->scl_count == 0); } } int spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { if (scl->scl_writer || scl->scl_write_wanted) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks & ((1 << i) - 1), tag); return (0); } } else { ASSERT(scl->scl_writer != curthread); if (scl->scl_count != 0) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks & ((1 << i) - 1), tag); return (0); } scl->scl_writer = curthread; } scl->scl_count++; mutex_exit(&scl->scl_lock); } return (1); } void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) { (void) tag; int wlocks_held = 0; ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (scl->scl_writer == curthread) wlocks_held |= (1 << i); if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { while (scl->scl_writer || scl->scl_write_wanted) { cv_wait(&scl->scl_cv, &scl->scl_lock); } } else { ASSERT(scl->scl_writer != curthread); while (scl->scl_count != 0) { scl->scl_write_wanted++; cv_wait(&scl->scl_cv, &scl->scl_lock); scl->scl_write_wanted--; } scl->scl_writer = curthread; } scl->scl_count++; mutex_exit(&scl->scl_lock); } ASSERT3U(wlocks_held, <=, locks); } void spa_config_exit(spa_t *spa, int locks, const void *tag) { (void) tag; for (int i = SCL_LOCKS - 1; i >= 0; i--) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); ASSERT(scl->scl_count > 0); if (--scl->scl_count == 0) { ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread); scl->scl_writer = NULL; /* OK in either case */ cv_broadcast(&scl->scl_cv); } mutex_exit(&scl->scl_lock); } } int spa_config_held(spa_t *spa, int locks, krw_t rw) { int locks_held = 0; for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; if ((rw == RW_READER && scl->scl_count != 0) || (rw == RW_WRITER && scl->scl_writer == curthread)) locks_held |= 1 << i; } return (locks_held); } /* * ========================================================================== * SPA namespace functions * ========================================================================== */ /* * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. * Returns NULL if no matching spa_t is found. */ spa_t * spa_lookup(const char *name) { static spa_t search; /* spa_t is large; don't allocate on stack */ spa_t *spa; avl_index_t where; char *cp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); /* * If it's a full dataset name, figure out the pool name and * just use that. */ cp = strpbrk(search.spa_name, "/@#"); if (cp != NULL) *cp = '\0'; spa = avl_find(&spa_namespace_avl, &search, &where); return (spa); } /* * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. * If the zfs_deadman_enabled flag is set then it inspects all vdev queues * looking for potentially hung I/Os. */ void spa_deadman(void *arg) { spa_t *spa = arg; /* Disable the deadman if the pool is suspended. */ if (spa_suspended(spa)) return; zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", (gethrtime() - spa->spa_sync_starttime) / NANOSEC, (u_longlong_t)++spa->spa_deadman_calls); if (zfs_deadman_enabled) vdev_deadman(spa->spa_root_vdev, FTAG); spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + MSEC_TO_TICK(zfs_deadman_checktime_ms)); } static int spa_log_sm_sort_by_txg(const void *va, const void *vb) { const spa_log_sm_t *a = va; const spa_log_sm_t *b = vb; return (TREE_CMP(a->sls_txg, b->sls_txg)); } /* * Create an uninitialized spa_t with the given name. Requires * spa_namespace_lock. The caller must ensure that the spa_t doesn't already * exist by calling spa_lookup() first. */ spa_t * spa_add(const char *name, nvlist_t *config, const char *altroot) { spa_t *spa; spa_config_dirent_t *dp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); for (int t = 0; t < TXG_SIZE; t++) bplist_create(&spa->spa_free_bplist[t]); (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); spa->spa_state = POOL_STATE_UNINITIALIZED; spa->spa_freeze_txg = UINT64_MAX; spa->spa_final_txg = UINT64_MAX; spa->spa_load_max_txg = UINT64_MAX; spa->spa_proc = &p0; spa->spa_proc_state = SPA_PROC_NONE; spa->spa_trust_config = B_TRUE; spa->spa_hostid = zone_get_hostid(NULL); spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); spa_set_deadman_failmode(spa, zfs_deadman_failmode); zfs_refcount_create(&spa->spa_refcount); spa_config_lock_init(spa); spa_stats_init(spa); avl_add(&spa_namespace_avl, spa); /* * Set the alternate root, if there is one. */ if (altroot) spa->spa_root = spa_strdup(altroot); spa->spa_alloc_count = spa_allocators; spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * sizeof (spa_alloc_t), KM_SLEEP); for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, sizeof (zio_t), offsetof(zio_t, io_alloc_node)); } avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), offsetof(log_summary_entry_t, lse_node)); /* * Every pool starts with the default cachefile */ list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), offsetof(spa_config_dirent_t, scd_link)); dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); list_insert_head(&spa->spa_config_list, dp); VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (config != NULL) { nvlist_t *features; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) == 0) { VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); } VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); } if (spa->spa_label_features == NULL) { VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, KM_SLEEP) == 0); } spa->spa_min_ashift = INT_MAX; spa->spa_max_ashift = 0; spa->spa_min_alloc = INT_MAX; /* Reset cached value */ spa->spa_dedup_dspace = ~0ULL; /* * As a pool is being created, treat all features as disabled by * setting SPA_FEATURE_DISABLED for all entries in the feature * refcount cache. */ for (int i = 0; i < SPA_FEATURES; i++) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } list_create(&spa->spa_leaf_list, sizeof (vdev_t), offsetof(vdev_t, vdev_leaf_node)); return (spa); } /* * Removes a spa_t from the namespace, freeing up any memory used. Requires * spa_namespace_lock. This is called only after the spa_t has been closed and * deactivated. */ void spa_remove(spa_t *spa) { spa_config_dirent_t *dp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); ASSERT0(spa->spa_waiters); nvlist_free(spa->spa_config_splitting); avl_remove(&spa_namespace_avl, spa); cv_broadcast(&spa_namespace_cv); if (spa->spa_root) spa_strfree(spa->spa_root); while ((dp = list_head(&spa->spa_config_list)) != NULL) { list_remove(&spa->spa_config_list, dp); if (dp->scd_path != NULL) spa_strfree(dp->scd_path); kmem_free(dp, sizeof (spa_config_dirent_t)); } for (int i = 0; i < spa->spa_alloc_count; i++) { avl_destroy(&spa->spa_allocs[i].spaa_tree); mutex_destroy(&spa->spa_allocs[i].spaa_lock); } kmem_free(spa->spa_allocs, spa->spa_alloc_count * sizeof (spa_alloc_t)); avl_destroy(&spa->spa_metaslabs_by_flushed); avl_destroy(&spa->spa_sm_logs_by_txg); list_destroy(&spa->spa_log_summary); list_destroy(&spa->spa_config_list); list_destroy(&spa->spa_leaf_list); nvlist_free(spa->spa_label_features); nvlist_free(spa->spa_load_info); nvlist_free(spa->spa_feat_stats); spa_config_set(spa, NULL); zfs_refcount_destroy(&spa->spa_refcount); spa_stats_destroy(spa); spa_config_lock_destroy(spa); for (int t = 0; t < TXG_SIZE; t++) bplist_destroy(&spa->spa_free_bplist[t]); zio_checksum_templates_free(spa); cv_destroy(&spa->spa_async_cv); cv_destroy(&spa->spa_evicting_os_cv); cv_destroy(&spa->spa_proc_cv); cv_destroy(&spa->spa_scrub_io_cv); cv_destroy(&spa->spa_suspend_cv); cv_destroy(&spa->spa_activities_cv); cv_destroy(&spa->spa_waiters_cv); mutex_destroy(&spa->spa_flushed_ms_lock); mutex_destroy(&spa->spa_async_lock); mutex_destroy(&spa->spa_errlist_lock); mutex_destroy(&spa->spa_errlog_lock); mutex_destroy(&spa->spa_evicting_os_lock); mutex_destroy(&spa->spa_history_lock); mutex_destroy(&spa->spa_proc_lock); mutex_destroy(&spa->spa_props_lock); mutex_destroy(&spa->spa_cksum_tmpls_lock); mutex_destroy(&spa->spa_scrub_lock); mutex_destroy(&spa->spa_suspend_lock); mutex_destroy(&spa->spa_vdev_top_lock); mutex_destroy(&spa->spa_feat_stats_lock); mutex_destroy(&spa->spa_activities_lock); kmem_free(spa, sizeof (spa_t)); } /* * Given a pool, return the next pool in the namespace, or NULL if there is * none. If 'prev' is NULL, return the first pool. */ spa_t * spa_next(spa_t *prev) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (prev) return (AVL_NEXT(&spa_namespace_avl, prev)); else return (avl_first(&spa_namespace_avl)); } /* * ========================================================================== * SPA refcount functions * ========================================================================== */ /* * Add a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_open_ref(spa_t *spa, const void *tag) { ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) zfs_refcount_add(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_close(spa_t *spa, const void *tag) { ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) zfs_refcount_remove(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t held by a dsl dir that is * being asynchronously released. Async releases occur from a taskq * performing eviction of dsl datasets and dirs. The namespace lock * isn't held and the hold by the object being evicted may contribute to * spa_minref (e.g. dataset or directory released during pool export), * so the asserts in spa_close() do not apply. */ void spa_async_close(spa_t *spa, const void *tag) { (void) zfs_refcount_remove(&spa->spa_refcount, tag); } /* * Check to see if the spa refcount is zero. Must be called with * spa_namespace_lock held. We really compare against spa_minref, which is the * number of references acquired when opening a pool */ boolean_t spa_refcount_zero(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); } /* * ========================================================================== * SPA spare and l2cache tracking * ========================================================================== */ /* * Hot spares and cache devices are tracked using the same code below, * for 'auxiliary' devices. */ typedef struct spa_aux { uint64_t aux_guid; uint64_t aux_pool; avl_node_t aux_avl; int aux_count; } spa_aux_t; static inline int spa_aux_compare(const void *a, const void *b) { const spa_aux_t *sa = (const spa_aux_t *)a; const spa_aux_t *sb = (const spa_aux_t *)b; return (TREE_CMP(sa->aux_guid, sb->aux_guid)); } static void spa_aux_add(vdev_t *vd, avl_tree_t *avl) { avl_index_t where; spa_aux_t search; spa_aux_t *aux; search.aux_guid = vd->vdev_guid; if ((aux = avl_find(avl, &search, &where)) != NULL) { aux->aux_count++; } else { aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); aux->aux_guid = vd->vdev_guid; aux->aux_count = 1; avl_insert(avl, aux, where); } } static void spa_aux_remove(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search; spa_aux_t *aux; avl_index_t where; search.aux_guid = vd->vdev_guid; aux = avl_find(avl, &search, &where); ASSERT(aux != NULL); if (--aux->aux_count == 0) { avl_remove(avl, aux); kmem_free(aux, sizeof (spa_aux_t)); } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { aux->aux_pool = 0ULL; } } static boolean_t spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) { spa_aux_t search, *found; search.aux_guid = guid; found = avl_find(avl, &search, NULL); if (pool) { if (found) *pool = found->aux_pool; else *pool = 0ULL; } if (refcnt) { if (found) *refcnt = found->aux_count; else *refcnt = 0; } return (found != NULL); } static void spa_aux_activate(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search, *found; avl_index_t where; search.aux_guid = vd->vdev_guid; found = avl_find(avl, &search, &where); ASSERT(found != NULL); ASSERT(found->aux_pool == 0ULL); found->aux_pool = spa_guid(vd->vdev_spa); } /* * Spares are tracked globally due to the following constraints: * * - A spare may be part of multiple pools. * - A spare may be added to a pool even if it's actively in use within * another pool. * - A spare in use in any pool can only be the source of a replacement if * the target is a spare in the same pool. * * We keep track of all spares on the system through the use of a reference * counted AVL tree. When a vdev is added as a spare, or used as a replacement * spare, then we bump the reference count in the AVL tree. In addition, we set * the 'vdev_isspare' member to indicate that the device is a spare (active or * inactive). When a spare is made active (used to replace a device in the * pool), we also keep track of which pool its been made a part of. * * The 'spa_spare_lock' protects the AVL tree. These functions are normally * called under the spa_namespace lock as part of vdev reconfiguration. The * separate spare lock exists for the status query path, which does not need to * be completely consistent with respect to other vdev configuration changes. */ static int spa_spare_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_spare_add(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(!vd->vdev_isspare); spa_aux_add(vd, &spa_spare_avl); vd->vdev_isspare = B_TRUE; mutex_exit(&spa_spare_lock); } void spa_spare_remove(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_remove(vd, &spa_spare_avl); vd->vdev_isspare = B_FALSE; mutex_exit(&spa_spare_lock); } boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) { boolean_t found; mutex_enter(&spa_spare_lock); found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); mutex_exit(&spa_spare_lock); return (found); } void spa_spare_activate(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_activate(vd, &spa_spare_avl); mutex_exit(&spa_spare_lock); } /* * Level 2 ARC devices are tracked globally for the same reasons as spares. * Cache devices currently only support one pool per cache device, and so * for these devices the aux reference count is currently unused beyond 1. */ static int spa_l2cache_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_l2cache_add(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(!vd->vdev_isl2cache); spa_aux_add(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_TRUE; mutex_exit(&spa_l2cache_lock); } void spa_l2cache_remove(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_remove(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_FALSE; mutex_exit(&spa_l2cache_lock); } boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool) { boolean_t found; mutex_enter(&spa_l2cache_lock); found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); return (found); } void spa_l2cache_activate(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_activate(vd, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); } /* * ========================================================================== * SPA vdev locking * ========================================================================== */ /* * Lock the given spa_t for the purpose of adding or removing a vdev. * Grabs the global spa_namespace_lock plus the spa config lock for writing. * It returns the next transaction group for the spa_t. */ uint64_t spa_vdev_enter(spa_t *spa) { mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); vdev_autotrim_stop_all(spa); return (spa_vdev_config_enter(spa)); } /* * The same as spa_vdev_enter() above but additionally takes the guid of * the vdev being detached. When there is a rebuild in process it will be * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). * The rebuild is canceled if only a single child remains after the detach. */ uint64_t spa_vdev_detach_enter(spa_t *spa, uint64_t guid) { mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); vdev_autotrim_stop_all(spa); if (guid != 0) { vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd) { vdev_rebuild_stop_wait(vd->vdev_top); } } return (spa_vdev_config_enter(spa)); } /* * Internal implementation for spa_vdev_enter(). Used when a vdev * operation requires multiple syncs (i.e. removing a device) while * keeping the spa_namespace_lock held. */ uint64_t spa_vdev_config_enter(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); return (spa_last_synced_txg(spa) + 1); } /* * Used in combination with spa_vdev_config_enter() to allow the syncing * of multiple transactions without releasing the spa_namespace_lock. */ void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, const char *tag) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); int config_changed = B_FALSE; ASSERT(txg > spa_last_synced_txg(spa)); spa->spa_pending_vdev = NULL; /* * Reassess the DTLs. */ vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { config_changed = B_TRUE; spa->spa_config_generation++; } /* * Verify the metaslab classes. */ ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); spa_config_exit(spa, SCL_ALL, spa); /* * Panic the system if the specified tag requires it. This * is useful for ensuring that configurations are updated * transactionally. */ if (zio_injection_enabled) zio_handle_panic_injection(spa, tag, 0); /* * Note: this txg_wait_synced() is important because it ensures * that there won't be more than one config change per txg. * This allows us to use the txg as the generation number. */ if (error == 0) txg_wait_synced(spa->spa_dsl_pool, txg); if (vd != NULL) { ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); if (vd->vdev_ops->vdev_op_leaf) { mutex_enter(&vd->vdev_initialize_lock); vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, NULL); mutex_exit(&vd->vdev_initialize_lock); mutex_enter(&vd->vdev_trim_lock); vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); mutex_exit(&vd->vdev_trim_lock); } /* * The vdev may be both a leaf and top-level device. */ vdev_autotrim_stop_wait(vd); spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); vdev_free(vd); spa_config_exit(spa, SCL_STATE_ALL, spa); } /* * If the config changed, update the config cache. */ if (config_changed) spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); } /* * Unlock the spa_t after adding or removing a vdev. Besides undoing the * locking of spa_vdev_enter(), we also want make sure the transactions have * synced to disk, and then update the global configuration cache with the new * information. */ int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) { vdev_autotrim_restart(spa); vdev_rebuild_restart(spa); spa_vdev_config_exit(spa, vd, txg, error, FTAG); mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * Lock the given spa_t for the purpose of changing vdev state. */ void spa_vdev_state_enter(spa_t *spa, int oplocks) { int locks = SCL_STATE_ALL | oplocks; /* * Root pools may need to read of the underlying devfs filesystem * when opening up a vdev. Unfortunately if we're holding the * SCL_ZIO lock it will result in a deadlock when we try to issue * the read from the root filesystem. Instead we "prefetch" * the associated vnodes that we need prior to opening the * underlying devices and cache them so that we can prevent * any I/O when we are doing the actual open. */ if (spa_is_root(spa)) { int low = locks & ~(SCL_ZIO - 1); int high = locks & ~low; spa_config_enter(spa, high, spa, RW_WRITER); vdev_hold(spa->spa_root_vdev); spa_config_enter(spa, low, spa, RW_WRITER); } else { spa_config_enter(spa, locks, spa, RW_WRITER); } spa->spa_vdev_locks = locks; } int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) { boolean_t config_changed = B_FALSE; vdev_t *vdev_top; if (vd == NULL || vd == spa->spa_root_vdev) { vdev_top = spa->spa_root_vdev; } else { vdev_top = vd->vdev_top; } if (vd != NULL || error == 0) vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); if (vd != NULL) { if (vd != spa->spa_root_vdev) vdev_state_dirty(vdev_top); config_changed = B_TRUE; spa->spa_config_generation++; } if (spa_is_root(spa)) vdev_rele(spa->spa_root_vdev); ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); spa_config_exit(spa, spa->spa_vdev_locks, spa); /* * If anything changed, wait for it to sync. This ensures that, * from the system administrator's perspective, zpool(8) commands * are synchronous. This is important for things like zpool offline: * when the command completes, you expect no further I/O from ZFS. */ if (vd != NULL) txg_wait_synced(spa->spa_dsl_pool, 0); /* * If the config changed, update the config cache. */ if (config_changed) { mutex_enter(&spa_namespace_lock); spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); mutex_exit(&spa_namespace_lock); } return (error); } /* * ========================================================================== * Miscellaneous functions * ========================================================================== */ void spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) { if (!nvlist_exists(spa->spa_label_features, feature)) { fnvlist_add_boolean(spa->spa_label_features, feature); /* * When we are creating the pool (tx_txg==TXG_INITIAL), we can't * dirty the vdev config because lock SCL_CONFIG is not held. * Thankfully, in this case we don't need to dirty the config * because it will be written out anyway when we finish * creating the pool. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); } } void spa_deactivate_mos_feature(spa_t *spa, const char *feature) { if (nvlist_remove_all(spa->spa_label_features, feature) == 0) vdev_config_dirty(spa->spa_root_vdev); } /* * Return the spa_t associated with given pool_guid, if it exists. If * device_guid is non-zero, determine whether the pool exists *and* contains * a device with the specified device_guid. */ spa_t * spa_by_guid(uint64_t pool_guid, uint64_t device_guid) { spa_t *spa; avl_tree_t *t = &spa_namespace_avl; ASSERT(MUTEX_HELD(&spa_namespace_lock)); for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { if (spa->spa_state == POOL_STATE_UNINITIALIZED) continue; if (spa->spa_root_vdev == NULL) continue; if (spa_guid(spa) == pool_guid) { if (device_guid == 0) break; if (vdev_lookup_by_guid(spa->spa_root_vdev, device_guid) != NULL) break; /* * Check any devices we may be in the process of adding. */ if (spa->spa_pending_vdev) { if (vdev_lookup_by_guid(spa->spa_pending_vdev, device_guid) != NULL) break; } } } return (spa); } /* * Determine whether a pool with the given pool_guid exists. */ boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) { return (spa_by_guid(pool_guid, device_guid) != NULL); } char * spa_strdup(const char *s) { size_t len; char *new; len = strlen(s); new = kmem_alloc(len + 1, KM_SLEEP); memcpy(new, s, len + 1); return (new); } void spa_strfree(char *s) { kmem_free(s, strlen(s) + 1); } uint64_t spa_generate_guid(spa_t *spa) { uint64_t guid; if (spa != NULL) { do { (void) random_get_pseudo_bytes((void *)&guid, sizeof (guid)); } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); } else { do { (void) random_get_pseudo_bytes((void *)&guid, sizeof (guid)); } while (guid == 0 || spa_guid_exists(guid, 0)); } return (guid); } void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) { char type[256]; const char *checksum = NULL; const char *compress = NULL; if (bp != NULL) { if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { dmu_object_byteswap_t bswap = DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); (void) snprintf(type, sizeof (type), "bswap %s %s", DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? "metadata" : "data", dmu_ot_byteswap[bswap].ob_name); } else { (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, sizeof (type)); } if (!BP_IS_EMBEDDED(bp)) { checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; } compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; } SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum, compress); } void spa_freeze(spa_t *spa) { uint64_t freeze_txg = 0; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); if (spa->spa_freeze_txg == UINT64_MAX) { freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; spa->spa_freeze_txg = freeze_txg; } spa_config_exit(spa, SCL_ALL, FTAG); if (freeze_txg != 0) txg_wait_synced(spa_get_dsl(spa), freeze_txg); } void zfs_panic_recover(const char *fmt, ...) { va_list adx; va_start(adx, fmt); vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); va_end(adx); } /* * This is a stripped-down version of strtoull, suitable only for converting * lowercase hexadecimal numbers that don't overflow. */ uint64_t zfs_strtonum(const char *str, char **nptr) { uint64_t val = 0; char c; int digit; while ((c = *str) != '\0') { if (c >= '0' && c <= '9') digit = c - '0'; else if (c >= 'a' && c <= 'f') digit = 10 + c - 'a'; else break; val *= 16; val += digit; str++; } if (nptr) *nptr = (char *)str; return (val); } void spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) { /* * We bump the feature refcount for each special vdev added to the pool */ ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); } /* * ========================================================================== * Accessor functions * ========================================================================== */ boolean_t spa_shutting_down(spa_t *spa) { return (spa->spa_async_suspended); } dsl_pool_t * spa_get_dsl(spa_t *spa) { return (spa->spa_dsl_pool); } boolean_t spa_is_initializing(spa_t *spa) { return (spa->spa_is_initializing); } boolean_t spa_indirect_vdevs_loaded(spa_t *spa) { return (spa->spa_indirect_vdevs_loaded); } blkptr_t * spa_get_rootblkptr(spa_t *spa) { return (&spa->spa_ubsync.ub_rootbp); } void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) { spa->spa_uberblock.ub_rootbp = *bp; } void spa_altroot(spa_t *spa, char *buf, size_t buflen) { if (spa->spa_root == NULL) buf[0] = '\0'; else (void) strlcpy(buf, spa->spa_root, buflen); } uint32_t spa_sync_pass(spa_t *spa) { return (spa->spa_sync_pass); } char * spa_name(spa_t *spa) { return (spa->spa_name); } uint64_t spa_guid(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); uint64_t guid; /* * If we fail to parse the config during spa_load(), we can go through * the error path (which posts an ereport) and end up here with no root * vdev. We stash the original pool guid in 'spa_config_guid' to handle * this case. */ if (spa->spa_root_vdev == NULL) return (spa->spa_config_guid); guid = spa->spa_last_synced_guid != 0 ? spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; /* * Return the most recently synced out guid unless we're * in syncing context. */ if (dp && dsl_pool_sync_context(dp)) return (spa->spa_root_vdev->vdev_guid); else return (guid); } uint64_t spa_load_guid(spa_t *spa) { /* * This is a GUID that exists solely as a reference for the * purposes of the arc. It is generated at load time, and * is never written to persistent storage. */ return (spa->spa_load_guid); } uint64_t spa_last_synced_txg(spa_t *spa) { return (spa->spa_ubsync.ub_txg); } uint64_t spa_first_txg(spa_t *spa) { return (spa->spa_first_txg); } uint64_t spa_syncing_txg(spa_t *spa) { return (spa->spa_syncing_txg); } /* * Return the last txg where data can be dirtied. The final txgs * will be used to just clear out any deferred frees that remain. */ uint64_t spa_final_dirty_txg(spa_t *spa) { return (spa->spa_final_txg - TXG_DEFER_SIZE); } pool_state_t spa_state(spa_t *spa) { return (spa->spa_state); } spa_load_state_t spa_load_state(spa_t *spa) { return (spa->spa_load_state); } uint64_t spa_freeze_txg(spa_t *spa) { return (spa->spa_freeze_txg); } /* * Return the inflated asize for a logical write in bytes. This is used by the * DMU to calculate the space a logical write will require on disk. * If lsize is smaller than the largest physical block size allocatable on this * pool we use its value instead, since the write will end up using the whole * block anyway. */ uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) { if (lsize == 0) return (0); /* No inflation needed */ return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); } /* * Return the amount of slop space in bytes. It is typically 1/32 of the pool * (3.2%), minus the embedded log space. On very small pools, it may be * slightly larger than this. On very large pools, it will be capped to * the value of spa_max_slop. The embedded log space is not included in * spa_dspace. By subtracting it, the usable space (per "zfs list") is a * constant 97% of the total space, regardless of metaslab size (assuming the * default spa_slop_shift=5 and a non-tiny pool). * * See the comment above spa_slop_shift for more details. */ uint64_t spa_get_slop_space(spa_t *spa) { uint64_t space = 0; uint64_t slop = 0; /* * Make sure spa_dedup_dspace has been set. */ if (spa->spa_dedup_dspace == ~0ULL) spa_update_dspace(spa); /* * spa_get_dspace() includes the space only logically "used" by * deduplicated data, so since it's not useful to reserve more * space with more deduplicated data, we subtract that out here. */ space = spa_get_dspace(spa) - spa->spa_dedup_dspace; slop = MIN(space >> spa_slop_shift, spa_max_slop); /* * Subtract the embedded log space, but no more than half the (3.2%) * unusable space. Note, the "no more than half" is only relevant if * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by * default. */ uint64_t embedded_log = metaslab_class_get_dspace(spa_embedded_log_class(spa)); slop -= MIN(embedded_log, slop >> 1); /* * Slop space should be at least spa_min_slop, but no more than half * the entire pool. */ slop = MAX(slop, MIN(space >> 1, spa_min_slop)); return (slop); } uint64_t spa_get_dspace(spa_t *spa) { return (spa->spa_dspace); } uint64_t spa_get_checkpoint_space(spa_t *spa) { return (spa->spa_checkpoint_info.sci_dspace); } void spa_update_dspace(spa_t *spa) { spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + - ddt_get_dedup_dspace(spa); + ddt_get_dedup_dspace(spa) + brt_get_dspace(spa); if (spa->spa_nonallocating_dspace > 0) { /* * Subtract the space provided by all non-allocating vdevs that * contribute to dspace. If a file is overwritten, its old * blocks are freed and new blocks are allocated. If there are * no snapshots of the file, the available space should remain * the same. The old blocks could be freed from the * non-allocating vdev, but the new blocks must be allocated on * other (allocating) vdevs. By reserving the entire size of * the non-allocating vdevs (including allocated space), we * ensure that there will be enough space on the allocating * vdevs for this file overwrite to succeed. * * Note that the DMU/DSL doesn't actually know or care * how much space is allocated (it does its own tracking * of how much space has been logically used). So it * doesn't matter that the data we are moving may be * allocated twice (on the old device and the new device). */ ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace); spa->spa_dspace -= spa->spa_nonallocating_dspace; } } /* * Return the failure mode that has been set to this pool. The default * behavior will be to block all I/Os when a complete failure occurs. */ uint64_t spa_get_failmode(spa_t *spa) { return (spa->spa_failmode); } boolean_t spa_suspended(spa_t *spa) { return (spa->spa_suspended != ZIO_SUSPEND_NONE); } uint64_t spa_version(spa_t *spa) { return (spa->spa_ubsync.ub_version); } boolean_t spa_deflate(spa_t *spa) { return (spa->spa_deflate); } metaslab_class_t * spa_normal_class(spa_t *spa) { return (spa->spa_normal_class); } metaslab_class_t * spa_log_class(spa_t *spa) { return (spa->spa_log_class); } metaslab_class_t * spa_embedded_log_class(spa_t *spa) { return (spa->spa_embedded_log_class); } metaslab_class_t * spa_special_class(spa_t *spa) { return (spa->spa_special_class); } metaslab_class_t * spa_dedup_class(spa_t *spa) { return (spa->spa_dedup_class); } /* * Locate an appropriate allocation class */ metaslab_class_t * spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, uint_t level, uint_t special_smallblk) { /* * ZIL allocations determine their class in zio_alloc_zil(). */ ASSERT(objtype != DMU_OT_INTENT_LOG); boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; if (DMU_OT_IS_DDT(objtype)) { if (spa->spa_dedup_class->mc_groups != 0) return (spa_dedup_class(spa)); else if (has_special_class && zfs_ddt_data_is_special) return (spa_special_class(spa)); else return (spa_normal_class(spa)); } /* Indirect blocks for user data can land in special if allowed */ if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { if (has_special_class && zfs_user_indirect_is_special) return (spa_special_class(spa)); else return (spa_normal_class(spa)); } if (DMU_OT_IS_METADATA(objtype) || level > 0) { if (has_special_class) return (spa_special_class(spa)); else return (spa_normal_class(spa)); } /* * Allow small file blocks in special class in some cases (like * for the dRAID vdev feature). But always leave a reserve of * zfs_special_class_metadata_reserve_pct exclusively for metadata. */ if (DMU_OT_IS_FILE(objtype) && has_special_class && size <= special_smallblk) { metaslab_class_t *special = spa_special_class(spa); uint64_t alloc = metaslab_class_get_alloc(special); uint64_t space = metaslab_class_get_space(special); uint64_t limit = (space * (100 - zfs_special_class_metadata_reserve_pct)) / 100; if (alloc < limit) return (special); } return (spa_normal_class(spa)); } void spa_evicting_os_register(spa_t *spa, objset_t *os) { mutex_enter(&spa->spa_evicting_os_lock); list_insert_head(&spa->spa_evicting_os_list, os); mutex_exit(&spa->spa_evicting_os_lock); } void spa_evicting_os_deregister(spa_t *spa, objset_t *os) { mutex_enter(&spa->spa_evicting_os_lock); list_remove(&spa->spa_evicting_os_list, os); cv_broadcast(&spa->spa_evicting_os_cv); mutex_exit(&spa->spa_evicting_os_lock); } void spa_evicting_os_wait(spa_t *spa) { mutex_enter(&spa->spa_evicting_os_lock); while (!list_is_empty(&spa->spa_evicting_os_list)) cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); mutex_exit(&spa->spa_evicting_os_lock); dmu_buf_user_evict_wait(); } int spa_max_replication(spa_t *spa) { /* * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to * handle BPs with more than one DVA allocated. Set our max * replication level accordingly. */ if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) return (1); return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); } int spa_prev_software_version(spa_t *spa) { return (spa->spa_prev_software_version); } uint64_t spa_deadman_synctime(spa_t *spa) { return (spa->spa_deadman_synctime); } spa_autotrim_t spa_get_autotrim(spa_t *spa) { return (spa->spa_autotrim); } uint64_t spa_deadman_ziotime(spa_t *spa) { return (spa->spa_deadman_ziotime); } uint64_t spa_get_deadman_failmode(spa_t *spa) { return (spa->spa_deadman_failmode); } void spa_set_deadman_failmode(spa_t *spa, const char *failmode) { if (strcmp(failmode, "wait") == 0) spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; else if (strcmp(failmode, "continue") == 0) spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; else if (strcmp(failmode, "panic") == 0) spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; else spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; } void spa_set_deadman_ziotime(hrtime_t ns) { spa_t *spa = NULL; if (spa_mode_global != SPA_MODE_UNINIT) { mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) spa->spa_deadman_ziotime = ns; mutex_exit(&spa_namespace_lock); } } void spa_set_deadman_synctime(hrtime_t ns) { spa_t *spa = NULL; if (spa_mode_global != SPA_MODE_UNINIT) { mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) spa->spa_deadman_synctime = ns; mutex_exit(&spa_namespace_lock); } } uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva) { uint64_t asize = DVA_GET_ASIZE(dva); uint64_t dsize = asize; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (asize != 0 && spa->spa_deflate) { vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); if (vd != NULL) dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; } return (dsize); } uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); return (dsize); } uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); spa_config_exit(spa, SCL_VDEV, FTAG); return (dsize); } uint64_t spa_dirty_data(spa_t *spa) { return (spa->spa_dsl_pool->dp_dirty_total); } /* * ========================================================================== * SPA Import Progress Routines * ========================================================================== */ typedef struct spa_import_progress { uint64_t pool_guid; /* unique id for updates */ char *pool_name; spa_load_state_t spa_load_state; uint64_t mmp_sec_remaining; /* MMP activity check */ uint64_t spa_load_max_txg; /* rewind txg */ procfs_list_node_t smh_node; } spa_import_progress_t; spa_history_list_t *spa_import_progress_list = NULL; static int spa_import_progress_show_header(struct seq_file *f) { seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", "load_state", "multihost_secs", "max_txg", "pool_name"); return (0); } static int spa_import_progress_show(struct seq_file *f, void *data) { spa_import_progress_t *sip = (spa_import_progress_t *)data; seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, (u_longlong_t)sip->mmp_sec_remaining, (u_longlong_t)sip->spa_load_max_txg, (sip->pool_name ? sip->pool_name : "-")); return (0); } /* Remove oldest elements from list until there are no more than 'size' left */ static void spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) { spa_import_progress_t *sip; while (shl->size > size) { sip = list_remove_head(&shl->procfs_list.pl_list); if (sip->pool_name) spa_strfree(sip->pool_name); kmem_free(sip, sizeof (spa_import_progress_t)); shl->size--; } IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); } static void spa_import_progress_init(void) { spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), KM_SLEEP); spa_import_progress_list->size = 0; spa_import_progress_list->procfs_list.pl_private = spa_import_progress_list; procfs_list_install("zfs", NULL, "import_progress", 0644, &spa_import_progress_list->procfs_list, spa_import_progress_show, spa_import_progress_show_header, NULL, offsetof(spa_import_progress_t, smh_node)); } static void spa_import_progress_destroy(void) { spa_history_list_t *shl = spa_import_progress_list; procfs_list_uninstall(&shl->procfs_list); spa_import_progress_truncate(shl, 0); procfs_list_destroy(&shl->procfs_list); kmem_free(shl, sizeof (spa_history_list_t)); } int spa_import_progress_set_state(uint64_t pool_guid, spa_load_state_t load_state) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; int error = ENOENT; if (shl->size == 0) return (0); mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { sip->spa_load_state = load_state; error = 0; break; } } mutex_exit(&shl->procfs_list.pl_lock); return (error); } int spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; int error = ENOENT; if (shl->size == 0) return (0); mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { sip->spa_load_max_txg = load_max_txg; error = 0; break; } } mutex_exit(&shl->procfs_list.pl_lock); return (error); } int spa_import_progress_set_mmp_check(uint64_t pool_guid, uint64_t mmp_sec_remaining) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; int error = ENOENT; if (shl->size == 0) return (0); mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { sip->mmp_sec_remaining = mmp_sec_remaining; error = 0; break; } } mutex_exit(&shl->procfs_list.pl_lock); return (error); } /* * A new import is in progress, add an entry. */ void spa_import_progress_add(spa_t *spa) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; char *poolname = NULL; sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); sip->pool_guid = spa_guid(spa); (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, &poolname); if (poolname == NULL) poolname = spa_name(spa); sip->pool_name = spa_strdup(poolname); sip->spa_load_state = spa_load_state(spa); mutex_enter(&shl->procfs_list.pl_lock); procfs_list_add(&shl->procfs_list, sip); shl->size++; mutex_exit(&shl->procfs_list.pl_lock); } void spa_import_progress_remove(uint64_t pool_guid) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { if (sip->pool_name) spa_strfree(sip->pool_name); list_remove(&shl->procfs_list.pl_list, sip); shl->size--; kmem_free(sip, sizeof (spa_import_progress_t)); break; } } mutex_exit(&shl->procfs_list.pl_lock); } /* * ========================================================================== * Initialization and Termination * ========================================================================== */ static int spa_name_compare(const void *a1, const void *a2) { const spa_t *s1 = a1; const spa_t *s2 = a2; int s; s = strcmp(s1->spa_name, s2->spa_name); return (TREE_ISIGN(s)); } void spa_boot_init(void) { spa_config_load(); } void spa_init(spa_mode_t mode) { mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), offsetof(spa_t, spa_avl)); avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); spa_mode_global = mode; #ifndef _KERNEL if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { struct sigaction sa; sa.sa_flags = SA_SIGINFO; sigemptyset(&sa.sa_mask); sa.sa_sigaction = arc_buf_sigsegv; if (sigaction(SIGSEGV, &sa, NULL) == -1) { perror("could not enable watchpoints: " "sigaction(SIGSEGV, ...) = "); } else { arc_watch = B_TRUE; } } #endif fm_init(); zfs_refcount_init(); unique_init(); zfs_btree_init(); metaslab_stat_init(); + brt_init(); ddt_init(); zio_init(); dmu_init(); zil_init(); vdev_cache_stat_init(); vdev_mirror_stat_init(); vdev_raidz_math_init(); vdev_file_init(); zfs_prop_init(); chksum_init(); zpool_prop_init(); zpool_feature_init(); spa_config_load(); vdev_prop_init(); l2arc_start(); scan_init(); qat_init(); spa_import_progress_init(); } void spa_fini(void) { l2arc_stop(); spa_evict_all(); vdev_file_fini(); vdev_cache_stat_fini(); vdev_mirror_stat_fini(); vdev_raidz_math_fini(); chksum_fini(); zil_fini(); dmu_fini(); zio_fini(); ddt_fini(); + brt_fini(); metaslab_stat_fini(); zfs_btree_fini(); unique_fini(); zfs_refcount_fini(); fm_fini(); scan_fini(); qat_fini(); spa_import_progress_destroy(); avl_destroy(&spa_namespace_avl); avl_destroy(&spa_spare_avl); avl_destroy(&spa_l2cache_avl); cv_destroy(&spa_namespace_cv); mutex_destroy(&spa_namespace_lock); mutex_destroy(&spa_spare_lock); mutex_destroy(&spa_l2cache_lock); } /* * Return whether this pool has a dedicated slog device. No locking needed. * It's not a problem if the wrong answer is returned as it's only for * performance and not correctness. */ boolean_t spa_has_slogs(spa_t *spa) { return (spa->spa_log_class->mc_groups != 0); } spa_log_state_t spa_get_log_state(spa_t *spa) { return (spa->spa_log_state); } void spa_set_log_state(spa_t *spa, spa_log_state_t state) { spa->spa_log_state = state; } boolean_t spa_is_root(spa_t *spa) { return (spa->spa_is_root); } boolean_t spa_writeable(spa_t *spa) { return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); } /* * Returns true if there is a pending sync task in any of the current * syncing txg, the current quiescing txg, or the current open txg. */ boolean_t spa_has_pending_synctask(spa_t *spa) { return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); } spa_mode_t spa_mode(spa_t *spa) { return (spa->spa_mode); } uint64_t spa_bootfs(spa_t *spa) { return (spa->spa_bootfs); } uint64_t spa_delegation(spa_t *spa) { return (spa->spa_delegation); } objset_t * spa_meta_objset(spa_t *spa) { return (spa->spa_meta_objset); } enum zio_checksum spa_dedup_checksum(spa_t *spa) { return (spa->spa_dedup_checksum); } /* * Reset pool scan stat per scan pass (or reboot). */ void spa_scan_stat_init(spa_t *spa) { /* data not stored on disk */ spa->spa_scan_pass_start = gethrestime_sec(); if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; else spa->spa_scan_pass_scrub_pause = 0; spa->spa_scan_pass_scrub_spent_paused = 0; spa->spa_scan_pass_exam = 0; spa->spa_scan_pass_issued = 0; } /* * Get scan stats for zpool status reports */ int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) { dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) return (SET_ERROR(ENOENT)); memset(ps, 0, sizeof (pool_scan_stat_t)); /* data stored on disk */ ps->pss_func = scn->scn_phys.scn_func; ps->pss_state = scn->scn_phys.scn_state; ps->pss_start_time = scn->scn_phys.scn_start_time; ps->pss_end_time = scn->scn_phys.scn_end_time; ps->pss_to_examine = scn->scn_phys.scn_to_examine; ps->pss_examined = scn->scn_phys.scn_examined; ps->pss_to_process = scn->scn_phys.scn_to_process; ps->pss_processed = scn->scn_phys.scn_processed; ps->pss_errors = scn->scn_phys.scn_errors; /* data not stored on disk */ ps->pss_pass_exam = spa->spa_scan_pass_exam; ps->pss_pass_start = spa->spa_scan_pass_start; ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; ps->pss_pass_issued = spa->spa_scan_pass_issued; ps->pss_issued = scn->scn_issued_before_pass + spa->spa_scan_pass_issued; return (0); } int spa_maxblocksize(spa_t *spa) { if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) return (SPA_MAXBLOCKSIZE); else return (SPA_OLD_MAXBLOCKSIZE); } /* * Returns the txg that the last device removal completed. No indirect mappings * have been added since this txg. */ uint64_t spa_get_last_removal_txg(spa_t *spa) { uint64_t vdevid; uint64_t ret = -1ULL; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* * sr_prev_indirect_vdev is only modified while holding all the * config locks, so it is sufficient to hold SCL_VDEV as reader when * examining it. */ vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; while (vdevid != -1ULL) { vdev_t *vd = vdev_lookup_top(spa, vdevid); vdev_indirect_births_t *vib = vd->vdev_indirect_births; ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); /* * If the removal did not remap any data, we don't care. */ if (vdev_indirect_births_count(vib) != 0) { ret = vdev_indirect_births_last_entry_txg(vib); break; } vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; } spa_config_exit(spa, SCL_VDEV, FTAG); IMPLY(ret != -1ULL, spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); return (ret); } int spa_maxdnodesize(spa_t *spa) { if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) return (DNODE_MAX_SIZE); else return (DNODE_MIN_SIZE); } boolean_t spa_multihost(spa_t *spa) { return (spa->spa_multihost ? B_TRUE : B_FALSE); } uint32_t spa_get_hostid(spa_t *spa) { return (spa->spa_hostid); } boolean_t spa_trust_config(spa_t *spa) { return (spa->spa_trust_config); } uint64_t spa_missing_tvds_allowed(spa_t *spa) { return (spa->spa_missing_tvds_allowed); } space_map_t * spa_syncing_log_sm(spa_t *spa) { return (spa->spa_syncing_log_sm); } void spa_set_missing_tvds(spa_t *spa, uint64_t missing) { spa->spa_missing_tvds = missing; } /* * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). */ const char * spa_state_to_name(spa_t *spa) { ASSERT3P(spa, !=, NULL); /* * it is possible for the spa to exist, without root vdev * as the spa transitions during import/export */ vdev_t *rvd = spa->spa_root_vdev; if (rvd == NULL) { return ("TRANSITIONING"); } vdev_state_t state = rvd->vdev_state; vdev_aux_t aux = rvd->vdev_stat.vs_aux; if (spa_suspended(spa) && (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)) return ("SUSPENDED"); switch (state) { case VDEV_STATE_CLOSED: case VDEV_STATE_OFFLINE: return ("OFFLINE"); case VDEV_STATE_REMOVED: return ("REMOVED"); case VDEV_STATE_CANT_OPEN: if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) return ("FAULTED"); else if (aux == VDEV_AUX_SPLIT_POOL) return ("SPLIT"); else return ("UNAVAIL"); case VDEV_STATE_FAULTED: return ("FAULTED"); case VDEV_STATE_DEGRADED: return ("DEGRADED"); case VDEV_STATE_HEALTHY: return ("ONLINE"); default: break; } return ("UNKNOWN"); } boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t c = 0; c < rvd->vdev_children; c++) { if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) return (B_FALSE); } return (B_TRUE); } boolean_t spa_has_checkpoint(spa_t *spa) { return (spa->spa_checkpoint_txg != 0); } boolean_t spa_importing_readonly_checkpoint(spa_t *spa) { return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && spa->spa_mode == SPA_MODE_READ); } uint64_t spa_min_claim_txg(spa_t *spa) { uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; if (checkpoint_txg != 0) return (checkpoint_txg + 1); return (spa->spa_first_txg); } /* * If there is a checkpoint, async destroys may consume more space from * the pool instead of freeing it. In an attempt to save the pool from * getting suspended when it is about to run out of space, we stop * processing async destroys. */ boolean_t spa_suspend_async_destroy(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); uint64_t unreserved = dsl_pool_unreserved_space(dp, ZFS_SPACE_CHECK_EXTRA_RESERVED); uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; if (spa_has_checkpoint(spa) && avail == 0) return (B_TRUE); return (B_FALSE); } #if defined(_KERNEL) int param_set_deadman_failmode_common(const char *val) { spa_t *spa = NULL; char *p; if (val == NULL) return (SET_ERROR(EINVAL)); if ((p = strchr(val, '\n')) != NULL) *p = '\0'; if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && strcmp(val, "panic")) return (SET_ERROR(EINVAL)); if (spa_mode_global != SPA_MODE_UNINIT) { mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) spa_set_deadman_failmode(spa, val); mutex_exit(&spa_namespace_lock); } return (0); } #endif /* Namespace manipulation */ EXPORT_SYMBOL(spa_lookup); EXPORT_SYMBOL(spa_add); EXPORT_SYMBOL(spa_remove); EXPORT_SYMBOL(spa_next); /* Refcount functions */ EXPORT_SYMBOL(spa_open_ref); EXPORT_SYMBOL(spa_close); EXPORT_SYMBOL(spa_refcount_zero); /* Pool configuration lock */ EXPORT_SYMBOL(spa_config_tryenter); EXPORT_SYMBOL(spa_config_enter); EXPORT_SYMBOL(spa_config_exit); EXPORT_SYMBOL(spa_config_held); /* Pool vdev add/remove lock */ EXPORT_SYMBOL(spa_vdev_enter); EXPORT_SYMBOL(spa_vdev_exit); /* Pool vdev state change lock */ EXPORT_SYMBOL(spa_vdev_state_enter); EXPORT_SYMBOL(spa_vdev_state_exit); /* Accessor functions */ EXPORT_SYMBOL(spa_shutting_down); EXPORT_SYMBOL(spa_get_dsl); EXPORT_SYMBOL(spa_get_rootblkptr); EXPORT_SYMBOL(spa_set_rootblkptr); EXPORT_SYMBOL(spa_altroot); EXPORT_SYMBOL(spa_sync_pass); EXPORT_SYMBOL(spa_name); EXPORT_SYMBOL(spa_guid); EXPORT_SYMBOL(spa_last_synced_txg); EXPORT_SYMBOL(spa_first_txg); EXPORT_SYMBOL(spa_syncing_txg); EXPORT_SYMBOL(spa_version); EXPORT_SYMBOL(spa_state); EXPORT_SYMBOL(spa_load_state); EXPORT_SYMBOL(spa_freeze_txg); EXPORT_SYMBOL(spa_get_dspace); EXPORT_SYMBOL(spa_update_dspace); EXPORT_SYMBOL(spa_deflate); EXPORT_SYMBOL(spa_normal_class); EXPORT_SYMBOL(spa_log_class); EXPORT_SYMBOL(spa_special_class); EXPORT_SYMBOL(spa_preferred_class); EXPORT_SYMBOL(spa_max_replication); EXPORT_SYMBOL(spa_prev_software_version); EXPORT_SYMBOL(spa_get_failmode); EXPORT_SYMBOL(spa_suspended); EXPORT_SYMBOL(spa_bootfs); EXPORT_SYMBOL(spa_delegation); EXPORT_SYMBOL(spa_meta_objset); EXPORT_SYMBOL(spa_maxblocksize); EXPORT_SYMBOL(spa_maxdnodesize); /* Miscellaneous support routines */ EXPORT_SYMBOL(spa_guid_exists); EXPORT_SYMBOL(spa_strdup); EXPORT_SYMBOL(spa_strfree); EXPORT_SYMBOL(spa_generate_guid); EXPORT_SYMBOL(snprintf_blkptr); EXPORT_SYMBOL(spa_freeze); EXPORT_SYMBOL(spa_upgrade); EXPORT_SYMBOL(spa_evict_all); EXPORT_SYMBOL(spa_lookup_by_guid); EXPORT_SYMBOL(spa_has_spare); EXPORT_SYMBOL(dva_get_dsize_sync); EXPORT_SYMBOL(bp_get_dsize_sync); EXPORT_SYMBOL(bp_get_dsize); EXPORT_SYMBOL(spa_has_slogs); EXPORT_SYMBOL(spa_is_root); EXPORT_SYMBOL(spa_writeable); EXPORT_SYMBOL(spa_mode); EXPORT_SYMBOL(spa_namespace_lock); EXPORT_SYMBOL(spa_trust_config); EXPORT_SYMBOL(spa_missing_tvds_allowed); EXPORT_SYMBOL(spa_set_missing_tvds); EXPORT_SYMBOL(spa_state_to_name); EXPORT_SYMBOL(spa_importing_readonly_checkpoint); EXPORT_SYMBOL(spa_min_claim_txg); EXPORT_SYMBOL(spa_suspend_async_destroy); EXPORT_SYMBOL(spa_has_checkpoint); EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, "Set additional debugging flags"); ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, "Set to attempt to recover from fatal errors"); ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, "Set to ignore IO errors during free and permanently leak the space"); ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW, "Dead I/O check interval in milliseconds"); ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, "Enable deadman timer"); ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW, "SPA size estimate multiplication factor"); ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, "Place DDT data into the special class"); ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, "Place user data indirect blocks into the special class"); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, param_set_deadman_failmode, param_get_charp, ZMOD_RW, "Failmode for deadman timer"); ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW, "Pool sync expiration time in milliseconds"); ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW, "IO expiration time in milliseconds"); ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW, "Small file blocks in special vdevs depends on this much " "free space available"); /* END CSTYLED */ ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, param_get_uint, ZMOD_RW, "Reserved free space in pool"); diff --git a/module/zfs/zfs_ioctl.c b/module/zfs/zfs_ioctl.c index 24ae0a00d92f..9b859adc5551 100644 --- a/module/zfs/zfs_ioctl.c +++ b/module/zfs/zfs_ioctl.c @@ -1,7881 +1,7881 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Portions Copyright 2011 Martin Matuska * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. - * Portions Copyright 2012 Pawel Jakub Dawidek + * Copyright (c) 2012 Pawel Jakub Dawidek * Copyright (c) 2014, 2016 Joyent, Inc. All rights reserved. * Copyright 2016 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright (c) 2016 Actifio, Inc. All rights reserved. * Copyright (c) 2018, loli10K . All rights reserved. * Copyright 2017 RackTop Systems. * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. * Copyright (c) 2019 Datto Inc. * Copyright (c) 2019, 2020 by Christian Schwarz. All rights reserved. * Copyright (c) 2019, 2021, Klara Inc. * Copyright (c) 2019, Allan Jude */ /* * ZFS ioctls. * * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage * pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool. * * There are two ways that we handle ioctls: the legacy way where almost * all of the logic is in the ioctl callback, and the new way where most * of the marshalling is handled in the common entry point, zfsdev_ioctl(). * * Non-legacy ioctls should be registered by calling * zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked * from userland by lzc_ioctl(). * * The registration arguments are as follows: * * const char *name * The name of the ioctl. This is used for history logging. If the * ioctl returns successfully (the callback returns 0), and allow_log * is true, then a history log entry will be recorded with the input & * output nvlists. The log entry can be printed with "zpool history -i". * * zfs_ioc_t ioc * The ioctl request number, which userland will pass to ioctl(2). * We want newer versions of libzfs and libzfs_core to run against * existing zfs kernel modules (i.e. a deferred reboot after an update). * Therefore the ioctl numbers cannot change from release to release. * * zfs_secpolicy_func_t *secpolicy * This function will be called before the zfs_ioc_func_t, to * determine if this operation is permitted. It should return EPERM * on failure, and 0 on success. Checks include determining if the * dataset is visible in this zone, and if the user has either all * zfs privileges in the zone (SYS_MOUNT), or has been granted permission * to do this operation on this dataset with "zfs allow". * * zfs_ioc_namecheck_t namecheck * This specifies what to expect in the zfs_cmd_t:zc_name -- a pool * name, a dataset name, or nothing. If the name is not well-formed, * the ioctl will fail and the callback will not be called. * Therefore, the callback can assume that the name is well-formed * (e.g. is null-terminated, doesn't have more than one '@' character, * doesn't have invalid characters). * * zfs_ioc_poolcheck_t pool_check * This specifies requirements on the pool state. If the pool does * not meet them (is suspended or is readonly), the ioctl will fail * and the callback will not be called. If any checks are specified * (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME. * Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED | * POOL_CHECK_READONLY). * * zfs_ioc_key_t *nvl_keys * The list of expected/allowable innvl input keys. This list is used * to validate the nvlist input to the ioctl. * * boolean_t smush_outnvlist * If smush_outnvlist is true, then the output is presumed to be a * list of errors, and it will be "smushed" down to fit into the * caller's buffer, by removing some entries and replacing them with a * single "N_MORE_ERRORS" entry indicating how many were removed. See * nvlist_smush() for details. If smush_outnvlist is false, and the * outnvlist does not fit into the userland-provided buffer, then the * ioctl will fail with ENOMEM. * * zfs_ioc_func_t *func * The callback function that will perform the operation. * * The callback should return 0 on success, or an error number on * failure. If the function fails, the userland ioctl will return -1, * and errno will be set to the callback's return value. The callback * will be called with the following arguments: * * const char *name * The name of the pool or dataset to operate on, from * zfs_cmd_t:zc_name. The 'namecheck' argument specifies the * expected type (pool, dataset, or none). * * nvlist_t *innvl * The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or * NULL if no input nvlist was provided. Changes to this nvlist are * ignored. If the input nvlist could not be deserialized, the * ioctl will fail and the callback will not be called. * * nvlist_t *outnvl * The output nvlist, initially empty. The callback can fill it in, * and it will be returned to userland by serializing it into * zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization * fails (e.g. because the caller didn't supply a large enough * buffer), then the overall ioctl will fail. See the * 'smush_nvlist' argument above for additional behaviors. * * There are two typical uses of the output nvlist: * - To return state, e.g. property values. In this case, * smush_outnvlist should be false. If the buffer was not large * enough, the caller will reallocate a larger buffer and try * the ioctl again. * * - To return multiple errors from an ioctl which makes on-disk * changes. In this case, smush_outnvlist should be true. * Ioctls which make on-disk modifications should generally not * use the outnvl if they succeed, because the caller can not * distinguish between the operation failing, and * deserialization failing. * * IOCTL Interface Errors * * The following ioctl input errors can be returned: * ZFS_ERR_IOC_CMD_UNAVAIL the ioctl number is not supported by kernel * ZFS_ERR_IOC_ARG_UNAVAIL an input argument is not supported by kernel * ZFS_ERR_IOC_ARG_REQUIRED a required input argument is missing * ZFS_ERR_IOC_ARG_BADTYPE an input argument has an invalid type */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_deleg.h" #include "zfs_comutil.h" #include #include #include kmutex_t zfsdev_state_lock; static zfsdev_state_t zfsdev_state_listhead; /* * Limit maximum nvlist size. We don't want users passing in insane values * for zc->zc_nvlist_src_size, since we will need to allocate that much memory. * Defaults to 0=auto which is handled by platform code. */ uint64_t zfs_max_nvlist_src_size = 0; /* * When logging the output nvlist of an ioctl in the on-disk history, limit * the logged size to this many bytes. This must be less than DMU_MAX_ACCESS. * This applies primarily to zfs_ioc_channel_program(). */ static uint64_t zfs_history_output_max = 1024 * 1024; uint_t zfs_fsyncer_key; uint_t zfs_allow_log_key; /* DATA_TYPE_ANY is used when zkey_type can vary. */ #define DATA_TYPE_ANY DATA_TYPE_UNKNOWN typedef struct zfs_ioc_vec { zfs_ioc_legacy_func_t *zvec_legacy_func; zfs_ioc_func_t *zvec_func; zfs_secpolicy_func_t *zvec_secpolicy; zfs_ioc_namecheck_t zvec_namecheck; boolean_t zvec_allow_log; zfs_ioc_poolcheck_t zvec_pool_check; boolean_t zvec_smush_outnvlist; const char *zvec_name; const zfs_ioc_key_t *zvec_nvl_keys; size_t zvec_nvl_key_count; } zfs_ioc_vec_t; /* This array is indexed by zfs_userquota_prop_t */ static const char *userquota_perms[] = { ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_PERM_GROUPQUOTA, ZFS_DELEG_PERM_USEROBJUSED, ZFS_DELEG_PERM_USEROBJQUOTA, ZFS_DELEG_PERM_GROUPOBJUSED, ZFS_DELEG_PERM_GROUPOBJQUOTA, ZFS_DELEG_PERM_PROJECTUSED, ZFS_DELEG_PERM_PROJECTQUOTA, ZFS_DELEG_PERM_PROJECTOBJUSED, ZFS_DELEG_PERM_PROJECTOBJQUOTA, }; static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc); static int zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc); static int zfs_check_settable(const char *name, nvpair_t *property, cred_t *cr); static int zfs_check_clearable(const char *dataset, nvlist_t *props, nvlist_t **errors); static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *, boolean_t *); int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *); static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp); static void history_str_free(char *buf) { kmem_free(buf, HIS_MAX_RECORD_LEN); } static char * history_str_get(zfs_cmd_t *zc) { char *buf; if (zc->zc_history == 0) return (NULL); buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP); if (copyinstr((void *)(uintptr_t)zc->zc_history, buf, HIS_MAX_RECORD_LEN, NULL) != 0) { history_str_free(buf); return (NULL); } buf[HIS_MAX_RECORD_LEN -1] = '\0'; return (buf); } /* * Return non-zero if the spa version is less than requested version. */ static int zfs_earlier_version(const char *name, int version) { spa_t *spa; if (spa_open(name, &spa, FTAG) == 0) { if (spa_version(spa) < version) { spa_close(spa, FTAG); return (1); } spa_close(spa, FTAG); } return (0); } /* * Return TRUE if the ZPL version is less than requested version. */ static boolean_t zpl_earlier_version(const char *name, int version) { objset_t *os; boolean_t rc = B_TRUE; if (dmu_objset_hold(name, FTAG, &os) == 0) { uint64_t zplversion; if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (B_TRUE); } /* XXX reading from non-owned objset */ if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0) rc = zplversion < version; dmu_objset_rele(os, FTAG); } return (rc); } static void zfs_log_history(zfs_cmd_t *zc) { spa_t *spa; char *buf; if ((buf = history_str_get(zc)) == NULL) return; if (spa_open(zc->zc_name, &spa, FTAG) == 0) { if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY) (void) spa_history_log(spa, buf); spa_close(spa, FTAG); } history_str_free(buf); } /* * Policy for top-level read operations (list pools). Requires no privileges, * and can be used in the local zone, as there is no associated dataset. */ static int zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl, (void) cr; return (0); } /* * Policy for dataset read operations (list children, get statistics). Requires * no privileges, but must be visible in the local zone. */ static int zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl, (void) cr; if (INGLOBALZONE(curproc) || zone_dataset_visible(zc->zc_name, NULL)) return (0); return (SET_ERROR(ENOENT)); } static int zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr) { int writable = 1; /* * The dataset must be visible by this zone -- check this first * so they don't see EPERM on something they shouldn't know about. */ if (!INGLOBALZONE(curproc) && !zone_dataset_visible(dataset, &writable)) return (SET_ERROR(ENOENT)); if (INGLOBALZONE(curproc)) { /* * If the fs is zoned, only root can access it from the * global zone. */ if (secpolicy_zfs(cr) && zoned) return (SET_ERROR(EPERM)); } else { /* * If we are in a local zone, the 'zoned' property must be set. */ if (!zoned) return (SET_ERROR(EPERM)); /* must be writable by this zone */ if (!writable) return (SET_ERROR(EPERM)); } return (0); } static int zfs_dozonecheck(const char *dataset, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_integer(dataset, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (SET_ERROR(ENOENT)); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned)) return (SET_ERROR(ENOENT)); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds, const char *perm, cred_t *cr) { int error; error = zfs_dozonecheck_ds(name, ds, cr); if (error == 0) { error = secpolicy_zfs(cr); if (error != 0) error = dsl_deleg_access_impl(ds, perm, cr); } return (error); } static int zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr) { int error; dsl_dataset_t *ds; dsl_pool_t *dp; /* * First do a quick check for root in the global zone, which * is allowed to do all write_perms. This ensures that zfs_ioc_* * will get to handle nonexistent datasets. */ if (INGLOBALZONE(curproc) && secpolicy_zfs(cr) == 0) return (0); error = dsl_pool_hold(name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = zfs_secpolicy_write_perms_ds(name, ds, perm, cr); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * Policy for setting the security label property. * * Returns 0 for success, non-zero for access and other errors. */ static int zfs_set_slabel_policy(const char *name, const char *strval, cred_t *cr) { #ifdef HAVE_MLSLABEL char ds_hexsl[MAXNAMELEN]; bslabel_t ds_sl, new_sl; boolean_t new_default = FALSE; uint64_t zoned; int needed_priv = -1; int error; /* First get the existing dataset label. */ error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1, sizeof (ds_hexsl), &ds_hexsl, NULL); if (error != 0) return (SET_ERROR(EPERM)); if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) new_default = TRUE; /* The label must be translatable */ if (!new_default && (hexstr_to_label(strval, &new_sl) != 0)) return (SET_ERROR(EINVAL)); /* * In a non-global zone, disallow attempts to set a label that * doesn't match that of the zone; otherwise no other checks * are needed. */ if (!INGLOBALZONE(curproc)) { if (new_default || !blequal(&new_sl, CR_SL(CRED()))) return (SET_ERROR(EPERM)); return (0); } /* * For global-zone datasets (i.e., those whose zoned property is * "off", verify that the specified new label is valid for the * global zone. */ if (dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (SET_ERROR(EPERM)); if (!zoned) { if (zfs_check_global_label(name, strval) != 0) return (SET_ERROR(EPERM)); } /* * If the existing dataset label is nondefault, check if the * dataset is mounted (label cannot be changed while mounted). * Get the zfsvfs_t; if there isn't one, then the dataset isn't * mounted (or isn't a dataset, doesn't exist, ...). */ if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) { objset_t *os; static const char *setsl_tag = "setsl_tag"; /* * Try to own the dataset; abort if there is any error, * (e.g., already mounted, in use, or other error). */ error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, B_TRUE, setsl_tag, &os); if (error != 0) return (SET_ERROR(EPERM)); dmu_objset_disown(os, B_TRUE, setsl_tag); if (new_default) { needed_priv = PRIV_FILE_DOWNGRADE_SL; goto out_check; } if (hexstr_to_label(strval, &new_sl) != 0) return (SET_ERROR(EPERM)); if (blstrictdom(&ds_sl, &new_sl)) needed_priv = PRIV_FILE_DOWNGRADE_SL; else if (blstrictdom(&new_sl, &ds_sl)) needed_priv = PRIV_FILE_UPGRADE_SL; } else { /* dataset currently has a default label */ if (!new_default) needed_priv = PRIV_FILE_UPGRADE_SL; } out_check: if (needed_priv != -1) return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL)); return (0); #else return (SET_ERROR(ENOTSUP)); #endif /* HAVE_MLSLABEL */ } static int zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval, cred_t *cr) { char *strval; /* * Check permissions for special properties. */ switch (prop) { default: break; case ZFS_PROP_ZONED: /* * Disallow setting of 'zoned' from within a local zone. */ if (!INGLOBALZONE(curproc)) return (SET_ERROR(EPERM)); break; case ZFS_PROP_QUOTA: case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: if (!INGLOBALZONE(curproc)) { uint64_t zoned; char setpoint[ZFS_MAX_DATASET_NAME_LEN]; /* * Unprivileged users are allowed to modify the * limit on things *under* (ie. contained by) * the thing they own. */ if (dsl_prop_get_integer(dsname, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, setpoint)) return (SET_ERROR(EPERM)); if (!zoned || strlen(dsname) <= strlen(setpoint)) return (SET_ERROR(EPERM)); } break; case ZFS_PROP_MLSLABEL: if (!is_system_labeled()) return (SET_ERROR(EPERM)); if (nvpair_value_string(propval, &strval) == 0) { int err; err = zfs_set_slabel_policy(dsname, strval, CRED()); if (err != 0) return (err); } break; } return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr)); } static int zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { /* * permission to set permissions will be evaluated later in * dsl_deleg_can_allow() */ (void) innvl; return (zfs_dozonecheck(zc->zc_name, cr)); } static int zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_ROLLBACK, cr)); } static int zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; dsl_pool_t *dp; dsl_dataset_t *ds; const char *cp; int error; /* * Generate the current snapshot name from the given objsetid, then * use that name for the secpolicy/zone checks. */ cp = strchr(zc->zc_name, '@'); if (cp == NULL) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } dsl_dataset_name(ds, zc->zc_name); error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds, ZFS_DELEG_PERM_SEND, cr); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } static int zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_SEND, cr)); } static int zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl, (void) cr; return (SET_ERROR(ENOTSUP)); } static int zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl, (void) cr; return (SET_ERROR(ENOTSUP)); } static int zfs_get_parent(const char *datasetname, char *parent, int parentsize) { char *cp; /* * Remove the @bla or /bla from the end of the name to get the parent. */ (void) strlcpy(parent, datasetname, parentsize); cp = strrchr(parent, '@'); if (cp != NULL) { cp[0] = '\0'; } else { cp = strrchr(parent, '/'); if (cp == NULL) return (SET_ERROR(ENOENT)); cp[0] = '\0'; } return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr)); } static int zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; return (zfs_secpolicy_destroy_perms(zc->zc_name, cr)); } /* * Destroying snapshots with delegated permissions requires * descendant mount and destroy permissions. */ static int zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; nvlist_t *snaps; nvpair_t *pair, *nextpair; int error = 0; snaps = fnvlist_lookup_nvlist(innvl, "snaps"); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nextpair) { nextpair = nvlist_next_nvpair(snaps, pair); error = zfs_secpolicy_destroy_perms(nvpair_name(pair), cr); if (error == ENOENT) { /* * Ignore any snapshots that don't exist (we consider * them "already destroyed"). Remove the name from the * nvl here in case the snapshot is created between * now and when we try to destroy it (in which case * we don't want to destroy it since we haven't * checked for permission). */ fnvlist_remove_nvpair(snaps, pair); error = 0; } if (error != 0) break; } return (error); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; int error; if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_RENAME, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); if ((error = zfs_get_parent(to, parentname, sizeof (parentname))) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (error); } static int zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr)); } static int zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; dsl_pool_t *dp; dsl_dataset_t *clone; int error; error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_PROMOTE, cr); if (error != 0) return (error); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &clone); if (error == 0) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_t *origin = NULL; dsl_dir_t *dd; dd = clone->ds_dir; error = dsl_dataset_hold_obj(dd->dd_pool, dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin); if (error != 0) { dsl_dataset_rele(clone, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = zfs_secpolicy_write_perms_ds(zc->zc_name, clone, ZFS_DELEG_PERM_MOUNT, cr); dsl_dataset_name(origin, parentname); if (error == 0) { error = zfs_secpolicy_write_perms_ds(parentname, origin, ZFS_DELEG_PERM_PROMOTE, cr); } dsl_dataset_rele(clone, FTAG); dsl_dataset_rele(origin, FTAG); } dsl_pool_rele(dp, FTAG); return (error); } static int zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_RECEIVE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CREATE, cr)); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_SNAPSHOT, cr)); } /* * Check for permission to create each snapshot in the nvlist. */ static int zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; nvlist_t *snaps; int error = 0; nvpair_t *pair; snaps = fnvlist_lookup_nvlist(innvl, "snaps"); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { char *name = nvpair_name(pair); char *atp = strchr(name, '@'); if (atp == NULL) { error = SET_ERROR(EINVAL); break; } *atp = '\0'; error = zfs_secpolicy_snapshot_perms(name, cr); *atp = '@'; if (error != 0) break; } return (error); } /* * Check for permission to create each bookmark in the nvlist. */ static int zfs_secpolicy_bookmark(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; int error = 0; for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char *name = nvpair_name(pair); char *hashp = strchr(name, '#'); if (hashp == NULL) { error = SET_ERROR(EINVAL); break; } *hashp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_BOOKMARK, cr); *hashp = '#'; if (error != 0) break; } return (error); } static int zfs_secpolicy_destroy_bookmarks(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; nvpair_t *pair, *nextpair; int error = 0; for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nextpair) { char *name = nvpair_name(pair); char *hashp = strchr(name, '#'); nextpair = nvlist_next_nvpair(innvl, pair); if (hashp == NULL) { error = SET_ERROR(EINVAL); break; } *hashp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr); *hashp = '#'; if (error == ENOENT) { /* * Ignore any filesystems that don't exist (we consider * their bookmarks "already destroyed"). Remove * the name from the nvl here in case the filesystem * is created between now and when we try to destroy * the bookmark (in which case we don't want to * destroy it since we haven't checked for permission). */ fnvlist_remove_nvpair(innvl, pair); error = 0; } if (error != 0) break; } return (error); } static int zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl, (void) cr; /* * Even root must have a proper TSD so that we know what pool * to log to. */ if (tsd_get(zfs_allow_log_key) == NULL) return (SET_ERROR(EPERM)); return (0); } static int zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; int error; char *origin; if ((error = zfs_get_parent(zc->zc_name, parentname, sizeof (parentname))) != 0) return (error); if (nvlist_lookup_string(innvl, "origin", &origin) == 0 && (error = zfs_secpolicy_write_perms(origin, ZFS_DELEG_PERM_CLONE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)); } /* * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires * SYS_CONFIG privilege, which is not available in a local zone. */ int zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl; if (secpolicy_sys_config(cr, B_FALSE) != 0) return (SET_ERROR(EPERM)); return (0); } /* * Policy for object to name lookups. */ static int zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; int error; if (secpolicy_sys_config(cr, B_FALSE) == 0) return (0); error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr); return (error); } /* * Policy for fault injection. Requires all privileges. */ static int zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl; return (secpolicy_zinject(cr)); } static int zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; zfs_prop_t prop = zfs_name_to_prop(zc->zc_value); if (prop == ZPROP_USERPROP) { if (!zfs_prop_user(zc->zc_value)) return (SET_ERROR(EINVAL)); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_USERPROP, cr)); } else { return (zfs_secpolicy_setprop(zc->zc_name, prop, NULL, cr)); } } static int zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int err = zfs_secpolicy_read(zc, innvl, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); if (zc->zc_value[0] == 0) { /* * They are asking about a posix uid/gid. If it's * themself, allow it. */ if (zc->zc_objset_type == ZFS_PROP_USERUSED || zc->zc_objset_type == ZFS_PROP_USERQUOTA || zc->zc_objset_type == ZFS_PROP_USEROBJUSED || zc->zc_objset_type == ZFS_PROP_USEROBJQUOTA) { if (zc->zc_guid == crgetuid(cr)) return (0); } else if (zc->zc_objset_type == ZFS_PROP_GROUPUSED || zc->zc_objset_type == ZFS_PROP_GROUPQUOTA || zc->zc_objset_type == ZFS_PROP_GROUPOBJUSED || zc->zc_objset_type == ZFS_PROP_GROUPOBJQUOTA) { if (groupmember(zc->zc_guid, cr)) return (0); } /* else is for project quota/used */ } return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int err = zfs_secpolicy_read(zc, innvl, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION, NULL, cr)); } static int zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; nvpair_t *pair; nvlist_t *holds; int error; holds = fnvlist_lookup_nvlist(innvl, "holds"); for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; pair = nvlist_next_nvpair(holds, pair)) { char fsname[ZFS_MAX_DATASET_NAME_LEN]; error = dmu_fsname(nvpair_name(pair), fsname); if (error != 0) return (error); error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_HOLD, cr); if (error != 0) return (error); } return (0); } static int zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; nvpair_t *pair; int error; for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char fsname[ZFS_MAX_DATASET_NAME_LEN]; error = dmu_fsname(nvpair_name(pair), fsname); if (error != 0) return (error); error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_RELEASE, cr); if (error != 0) return (error); } return (0); } /* * Policy for allowing temporary snapshots to be taken or released */ static int zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { /* * A temporary snapshot is the same as a snapshot, * hold, destroy and release all rolled into one. * Delegated diff alone is sufficient that we allow this. */ int error; if (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr) == 0) return (0); error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr); if (innvl != NULL) { if (error == 0) error = zfs_secpolicy_hold(zc, innvl, cr); if (error == 0) error = zfs_secpolicy_release(zc, innvl, cr); if (error == 0) error = zfs_secpolicy_destroy(zc, innvl, cr); } return (error); } static int zfs_secpolicy_load_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_LOAD_KEY, cr)); } static int zfs_secpolicy_change_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CHANGE_KEY, cr)); } /* * Returns the nvlist as specified by the user in the zfs_cmd_t. */ static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp) { char *packed; int error; nvlist_t *list = NULL; /* * Read in and unpack the user-supplied nvlist. */ if (size == 0) return (SET_ERROR(EINVAL)); packed = vmem_alloc(size, KM_SLEEP); if (ddi_copyin((void *)(uintptr_t)nvl, packed, size, iflag) != 0) { vmem_free(packed, size); return (SET_ERROR(EFAULT)); } if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) { vmem_free(packed, size); return (error); } vmem_free(packed, size); *nvp = list; return (0); } /* * Reduce the size of this nvlist until it can be serialized in 'max' bytes. * Entries will be removed from the end of the nvlist, and one int32 entry * named "N_MORE_ERRORS" will be added indicating how many entries were * removed. */ static int nvlist_smush(nvlist_t *errors, size_t max) { size_t size; size = fnvlist_size(errors); if (size > max) { nvpair_t *more_errors; int n = 0; if (max < 1024) return (SET_ERROR(ENOMEM)); fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0); more_errors = nvlist_prev_nvpair(errors, NULL); do { nvpair_t *pair = nvlist_prev_nvpair(errors, more_errors); fnvlist_remove_nvpair(errors, pair); n++; size = fnvlist_size(errors); } while (size > max); fnvlist_remove_nvpair(errors, more_errors); fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n); ASSERT3U(fnvlist_size(errors), <=, max); } return (0); } static int put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) { char *packed = NULL; int error = 0; size_t size; size = fnvlist_size(nvl); if (size > zc->zc_nvlist_dst_size) { error = SET_ERROR(ENOMEM); } else { packed = fnvlist_pack(nvl, &size); if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, size, zc->zc_iflags) != 0) error = SET_ERROR(EFAULT); fnvlist_pack_free(packed, size); } zc->zc_nvlist_dst_size = size; zc->zc_nvlist_dst_filled = B_TRUE; return (error); } int getzfsvfs_impl(objset_t *os, zfsvfs_t **zfvp) { int error = 0; if (dmu_objset_type(os) != DMU_OST_ZFS) { return (SET_ERROR(EINVAL)); } mutex_enter(&os->os_user_ptr_lock); *zfvp = dmu_objset_get_user(os); /* bump s_active only when non-zero to prevent umount race */ error = zfs_vfs_ref(zfvp); mutex_exit(&os->os_user_ptr_lock); return (error); } int getzfsvfs(const char *dsname, zfsvfs_t **zfvp) { objset_t *os; int error; error = dmu_objset_hold(dsname, FTAG, &os); if (error != 0) return (error); error = getzfsvfs_impl(os, zfvp); dmu_objset_rele(os, FTAG); return (error); } /* * Find a zfsvfs_t for a mounted filesystem, or create our own, in which * case its z_sb will be NULL, and it will be opened as the owner. * If 'writer' is set, the z_teardown_lock will be held for RW_WRITER, * which prevents all inode ops from running. */ static int zfsvfs_hold(const char *name, const void *tag, zfsvfs_t **zfvp, boolean_t writer) { int error = 0; if (getzfsvfs(name, zfvp) != 0) error = zfsvfs_create(name, B_FALSE, zfvp); if (error == 0) { if (writer) ZFS_TEARDOWN_ENTER_WRITE(*zfvp, tag); else ZFS_TEARDOWN_ENTER_READ(*zfvp, tag); if ((*zfvp)->z_unmounted) { /* * XXX we could probably try again, since the unmounting * thread should be just about to disassociate the * objset from the zfsvfs. */ ZFS_TEARDOWN_EXIT(*zfvp, tag); return (SET_ERROR(EBUSY)); } } return (error); } static void zfsvfs_rele(zfsvfs_t *zfsvfs, const void *tag) { ZFS_TEARDOWN_EXIT(zfsvfs, tag); if (zfs_vfs_held(zfsvfs)) { zfs_vfs_rele(zfsvfs); } else { dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); zfsvfs_free(zfsvfs); } } static int zfs_ioc_pool_create(zfs_cmd_t *zc) { int error; nvlist_t *config, *props = NULL; nvlist_t *rootprops = NULL; nvlist_t *zplprops = NULL; dsl_crypto_params_t *dcp = NULL; const char *spa_name = zc->zc_name; boolean_t unload_wkey = B_TRUE; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config))) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (props) { nvlist_t *nvl = NULL; nvlist_t *hidden_args = NULL; uint64_t version = SPA_VERSION; char *tname; (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version); if (!SPA_VERSION_IS_SUPPORTED(version)) { error = SET_ERROR(EINVAL); goto pool_props_bad; } (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl); if (nvl) { error = nvlist_dup(nvl, &rootprops, KM_SLEEP); if (error != 0) goto pool_props_bad; (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS); } (void) nvlist_lookup_nvlist(props, ZPOOL_HIDDEN_ARGS, &hidden_args); error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, rootprops, hidden_args, &dcp); if (error != 0) goto pool_props_bad; (void) nvlist_remove_all(props, ZPOOL_HIDDEN_ARGS); VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops_root(version, rootprops, zplprops, NULL); if (error != 0) goto pool_props_bad; if (nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_TNAME), &tname) == 0) spa_name = tname; } error = spa_create(zc->zc_name, config, props, zplprops, dcp); /* * Set the remaining root properties */ if (!error && (error = zfs_set_prop_nvlist(spa_name, ZPROP_SRC_LOCAL, rootprops, NULL)) != 0) { (void) spa_destroy(spa_name); unload_wkey = B_FALSE; /* spa_destroy() unloads wrapping keys */ } pool_props_bad: nvlist_free(rootprops); nvlist_free(zplprops); nvlist_free(config); nvlist_free(props); dsl_crypto_params_free(dcp, unload_wkey && !!error); return (error); } static int zfs_ioc_pool_destroy(zfs_cmd_t *zc) { int error; zfs_log_history(zc); error = spa_destroy(zc->zc_name); return (error); } static int zfs_ioc_pool_import(zfs_cmd_t *zc) { nvlist_t *config, *props = NULL; uint64_t guid; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) != 0) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != zc->zc_guid) error = SET_ERROR(EINVAL); else error = spa_import(zc->zc_name, config, props, zc->zc_cookie); if (zc->zc_nvlist_dst != 0) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; } nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_pool_export(zfs_cmd_t *zc) { int error; boolean_t force = (boolean_t)zc->zc_cookie; boolean_t hardforce = (boolean_t)zc->zc_guid; zfs_log_history(zc); error = spa_export(zc->zc_name, NULL, force, hardforce); return (error); } static int zfs_ioc_pool_configs(zfs_cmd_t *zc) { nvlist_t *configs; int error; if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL) return (SET_ERROR(EEXIST)); error = put_nvlist(zc, configs); nvlist_free(configs); return (error); } /* * inputs: * zc_name name of the pool * * outputs: * zc_cookie real errno * zc_nvlist_dst config nvlist * zc_nvlist_dst_size size of config nvlist */ static int zfs_ioc_pool_stats(zfs_cmd_t *zc) { nvlist_t *config; int error; int ret = 0; error = spa_get_stats(zc->zc_name, &config, zc->zc_value, sizeof (zc->zc_value)); if (config != NULL) { ret = put_nvlist(zc, config); nvlist_free(config); /* * The config may be present even if 'error' is non-zero. * In this case we return success, and preserve the real errno * in 'zc_cookie'. */ zc->zc_cookie = error; } else { ret = error; } return (ret); } /* * Try to import the given pool, returning pool stats as appropriate so that * user land knows which devices are available and overall pool health. */ static int zfs_ioc_pool_tryimport(zfs_cmd_t *zc) { nvlist_t *tryconfig, *config = NULL; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &tryconfig)) != 0) return (error); config = spa_tryimport(tryconfig); nvlist_free(tryconfig); if (config == NULL) return (SET_ERROR(EINVAL)); error = put_nvlist(zc, config); nvlist_free(config); return (error); } /* * inputs: * zc_name name of the pool * zc_cookie scan func (pool_scan_func_t) * zc_flags scrub pause/resume flag (pool_scrub_cmd_t) */ static int zfs_ioc_pool_scan(zfs_cmd_t *zc) { spa_t *spa; int error; if (zc->zc_flags >= POOL_SCRUB_FLAGS_END) return (SET_ERROR(EINVAL)); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_flags == POOL_SCRUB_PAUSE) error = spa_scrub_pause_resume(spa, POOL_SCRUB_PAUSE); else if (zc->zc_cookie == POOL_SCAN_NONE) error = spa_scan_stop(spa); else error = spa_scan(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_freeze(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { spa_freeze(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_pool_upgrade(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_cookie < spa_version(spa) || !SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) { spa_close(spa, FTAG); return (SET_ERROR(EINVAL)); } spa_upgrade(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_history(zfs_cmd_t *zc) { spa_t *spa; char *hist_buf; uint64_t size; int error; if ((size = zc->zc_history_len) == 0) return (SET_ERROR(EINVAL)); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } hist_buf = vmem_alloc(size, KM_SLEEP); if ((error = spa_history_get(spa, &zc->zc_history_offset, &zc->zc_history_len, hist_buf)) == 0) { error = ddi_copyout(hist_buf, (void *)(uintptr_t)zc->zc_history, zc->zc_history_len, zc->zc_iflags); } spa_close(spa, FTAG); vmem_free(hist_buf, size); return (error); } static int zfs_ioc_pool_reguid(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { error = spa_change_guid(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) { return (dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_value name of object */ static int zfs_ioc_obj_to_path(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele_flags(os, B_TRUE, FTAG); return (SET_ERROR(EINVAL)); } error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele_flags(os, B_TRUE, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_stat stats on object * zc_value path to object */ static int zfs_ioc_obj_to_stats(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele_flags(os, B_TRUE, FTAG); return (SET_ERROR(EINVAL)); } error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele_flags(os, B_TRUE, FTAG); return (error); } static int zfs_ioc_vdev_add(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *config; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config); if (error == 0) { error = spa_vdev_add(spa, config); nvlist_free(config); } spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of the pool * zc_guid guid of vdev to remove * zc_cookie cancel removal */ static int zfs_ioc_vdev_remove(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); if (zc->zc_cookie != 0) { error = spa_vdev_remove_cancel(spa); } else { error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_set_state(zfs_cmd_t *zc) { spa_t *spa; int error; vdev_state_t newstate = VDEV_STATE_UNKNOWN; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); switch (zc->zc_cookie) { case VDEV_STATE_ONLINE: error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate); break; case VDEV_STATE_OFFLINE: error = vdev_offline(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_FAULTED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL && zc->zc_obj != VDEV_AUX_EXTERNAL_PERSIST) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_fault(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_DEGRADED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_REMOVED: error = vdev_remove_wanted(spa, zc->zc_guid); break; default: error = SET_ERROR(EINVAL); } zc->zc_cookie = newstate; spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_attach(zfs_cmd_t *zc) { spa_t *spa; nvlist_t *config; int replacing = zc->zc_cookie; int rebuild = zc->zc_simple; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) == 0) { error = spa_vdev_attach(spa, zc->zc_guid, config, replacing, rebuild); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_detach(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_split(zfs_cmd_t *zc) { spa_t *spa; nvlist_t *config, *props = NULL; int error; boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config))) { spa_close(spa, FTAG); return (error); } if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { spa_close(spa, FTAG); nvlist_free(config); return (error); } error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp); spa_close(spa, FTAG); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_vdev_setpath(zfs_cmd_t *zc) { spa_t *spa; const char *path = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setpath(spa, guid, path); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_setfru(zfs_cmd_t *zc) { spa_t *spa; const char *fru = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setfru(spa, guid, fru); spa_close(spa, FTAG); return (error); } static int zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os) { int error = 0; nvlist_t *nv; dmu_objset_fast_stat(os, &zc->zc_objset_stats); if (!zc->zc_simple && zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_all(os, &nv)) == 0) { dmu_objset_stats(os, nv); /* * NB: zvol_get_stats() will read the objset contents, * which we aren't supposed to do with a * DS_MODE_USER hold, because it could be * inconsistent. So this is a bit of a workaround... * XXX reading without owning */ if (!zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZVOL) { error = zvol_get_stats(os, nv); if (error == EIO) { nvlist_free(nv); return (error); } VERIFY0(error); } if (error == 0) error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_objset_stats(zfs_cmd_t *zc) { objset_t *os; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error == 0) { error = zfs_ioc_objset_stats_impl(zc, os); dmu_objset_rele(os, FTAG); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_nvlist_dst received property nvlist * zc_nvlist_dst_size size of received property nvlist * * Gets received properties (distinct from local properties on or after * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from * local property values. */ static int zfs_ioc_objset_recvd_props(zfs_cmd_t *zc) { int error = 0; nvlist_t *nv; /* * Without this check, we would return local property values if the * caller has not already received properties on or after * SPA_VERSION_RECVD_PROPS. */ if (!dsl_prop_get_hasrecvd(zc->zc_name)) return (SET_ERROR(ENOTSUP)); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_received(zc->zc_name, &nv)) == 0) { error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } static int nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop) { uint64_t value; int error; /* * zfs_get_zplprop() will either find a value or give us * the default value (if there is one). */ if ((error = zfs_get_zplprop(os, prop, &value)) != 0) return (error); VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0); return (0); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for zpl property nvlist * * outputs: * zc_nvlist_dst zpl property nvlist * zc_nvlist_dst_size size of zpl property nvlist */ static int zfs_ioc_objset_zplprops(zfs_cmd_t *zc) { objset_t *os; int err; /* XXX reading without owning */ if ((err = dmu_objset_hold(zc->zc_name, FTAG, &os))) return (err); dmu_objset_fast_stat(os, &zc->zc_objset_stats); /* * NB: nvl_add_zplprop() will read the objset contents, * which we aren't supposed to do with a DS_MODE_USER * hold, because it could be inconsistent. */ if (zc->zc_nvlist_dst != 0 && !zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZFS) { nvlist_t *nv; VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0) err = put_nvlist(zc, nv); nvlist_free(nv); } else { err = SET_ERROR(ENOENT); } dmu_objset_rele(os, FTAG); return (err); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_name name of next filesystem * zc_cookie zap cursor * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_dataset_list_next(zfs_cmd_t *zc) { objset_t *os; int error; char *p; size_t orig_len = strlen(zc->zc_name); top: if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os))) { if (error == ENOENT) error = SET_ERROR(ESRCH); return (error); } p = strrchr(zc->zc_name, '/'); if (p == NULL || p[1] != '\0') (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); p = zc->zc_name + strlen(zc->zc_name); do { error = dmu_dir_list_next(os, sizeof (zc->zc_name) - (p - zc->zc_name), p, NULL, &zc->zc_cookie); if (error == ENOENT) error = SET_ERROR(ESRCH); } while (error == 0 && zfs_dataset_name_hidden(zc->zc_name)); dmu_objset_rele(os, FTAG); /* * If it's an internal dataset (ie. with a '$' in its name), * don't try to get stats for it, otherwise we'll return ENOENT. */ if (error == 0 && strchr(zc->zc_name, '$') == NULL) { error = zfs_ioc_objset_stats(zc); /* fill in the stats */ if (error == ENOENT) { /* We lost a race with destroy, get the next one. */ zc->zc_name[orig_len] = '\0'; goto top; } } return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_src iteration range nvlist * zc_nvlist_src_size size of iteration range nvlist * * outputs: * zc_name name of next snapshot * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) { int error; objset_t *os, *ossnap; dsl_dataset_t *ds; uint64_t min_txg = 0, max_txg = 0; if (zc->zc_nvlist_src_size != 0) { nvlist_t *props = NULL; error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props); if (error != 0) return (error); (void) nvlist_lookup_uint64(props, SNAP_ITER_MIN_TXG, &min_txg); (void) nvlist_lookup_uint64(props, SNAP_ITER_MAX_TXG, &max_txg); nvlist_free(props); } error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) { return (error == ENOENT ? SET_ERROR(ESRCH) : error); } /* * A dataset name of maximum length cannot have any snapshots, * so exit immediately. */ if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= ZFS_MAX_DATASET_NAME_LEN) { dmu_objset_rele(os, FTAG); return (SET_ERROR(ESRCH)); } while (error == 0) { if (issig(JUSTLOOKING) && issig(FORREAL)) { error = SET_ERROR(EINTR); break; } error = dmu_snapshot_list_next(os, sizeof (zc->zc_name) - strlen(zc->zc_name), zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, &zc->zc_cookie, NULL); if (error == ENOENT) { error = SET_ERROR(ESRCH); break; } else if (error != 0) { break; } error = dsl_dataset_hold_obj(dmu_objset_pool(os), zc->zc_obj, FTAG, &ds); if (error != 0) break; if ((min_txg != 0 && dsl_get_creationtxg(ds) < min_txg) || (max_txg != 0 && dsl_get_creationtxg(ds) > max_txg)) { dsl_dataset_rele(ds, FTAG); /* undo snapshot name append */ *(strchr(zc->zc_name, '@') + 1) = '\0'; /* skip snapshot */ continue; } if (zc->zc_simple) { dsl_dataset_fast_stat(ds, &zc->zc_objset_stats); dsl_dataset_rele(ds, FTAG); break; } if ((error = dmu_objset_from_ds(ds, &ossnap)) != 0) { dsl_dataset_rele(ds, FTAG); break; } if ((error = zfs_ioc_objset_stats_impl(zc, ossnap)) != 0) { dsl_dataset_rele(ds, FTAG); break; } dsl_dataset_rele(ds, FTAG); break; } dmu_objset_rele(os, FTAG); /* if we failed, undo the @ that we tacked on to zc_name */ if (error != 0) *strchr(zc->zc_name, '@') = '\0'; return (error); } static int zfs_prop_set_userquota(const char *dsname, nvpair_t *pair) { const char *propname = nvpair_name(pair); uint64_t *valary; unsigned int vallen; const char *dash, *domain; zfs_userquota_prop_t type; uint64_t rid; uint64_t quota; zfsvfs_t *zfsvfs; int err; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) != 0) return (SET_ERROR(EINVAL)); } /* * A correctly constructed propname is encoded as * userquota@-. */ if ((dash = strchr(propname, '-')) == NULL || nvpair_value_uint64_array(pair, &valary, &vallen) != 0 || vallen != 3) return (SET_ERROR(EINVAL)); domain = dash + 1; type = valary[0]; rid = valary[1]; quota = valary[2]; err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE); if (err == 0) { err = zfs_set_userquota(zfsvfs, type, domain, rid, quota); zfsvfs_rele(zfsvfs, FTAG); } return (err); } /* * If the named property is one that has a special function to set its value, * return 0 on success and a positive error code on failure; otherwise if it is * not one of the special properties handled by this function, return -1. * * XXX: It would be better for callers of the property interface if we handled * these special cases in dsl_prop.c (in the dsl layer). */ static int zfs_prop_set_special(const char *dsname, zprop_source_t source, nvpair_t *pair) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval = 0; const char *strval = NULL; int err = -1; if (prop == ZPROP_USERPROP) { if (zfs_prop_userquota(propname)) return (zfs_prop_set_userquota(dsname, pair)); return (-1); } if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } /* all special properties are numeric except for keylocation */ if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) { strval = fnvpair_value_string(pair); } else { intval = fnvpair_value_uint64(pair); } switch (prop) { case ZFS_PROP_QUOTA: err = dsl_dir_set_quota(dsname, source, intval); break; case ZFS_PROP_REFQUOTA: err = dsl_dataset_set_refquota(dsname, source, intval); break; case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: if (intval == UINT64_MAX) { /* clearing the limit, just do it */ err = 0; } else { err = dsl_dir_activate_fs_ss_limit(dsname); } /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_KEYLOCATION: err = dsl_crypto_can_set_keylocation(dsname, strval); /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_RESERVATION: err = dsl_dir_set_reservation(dsname, source, intval); break; case ZFS_PROP_REFRESERVATION: err = dsl_dataset_set_refreservation(dsname, source, intval); break; case ZFS_PROP_COMPRESSION: err = dsl_dataset_set_compression(dsname, source, intval); /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_VOLSIZE: err = zvol_set_volsize(dsname, intval); break; case ZFS_PROP_SNAPDEV: err = zvol_set_snapdev(dsname, source, intval); break; case ZFS_PROP_VOLMODE: err = zvol_set_volmode(dsname, source, intval); break; case ZFS_PROP_VERSION: { zfsvfs_t *zfsvfs; if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0) break; err = zfs_set_version(zfsvfs, intval); zfsvfs_rele(zfsvfs, FTAG); if (err == 0 && intval >= ZPL_VERSION_USERSPACE) { zfs_cmd_t *zc; zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strlcpy(zc->zc_name, dsname, sizeof (zc->zc_name)); (void) zfs_ioc_userspace_upgrade(zc); (void) zfs_ioc_id_quota_upgrade(zc); kmem_free(zc, sizeof (zfs_cmd_t)); } break; } default: err = -1; } return (err); } static boolean_t zfs_is_namespace_prop(zfs_prop_t prop) { switch (prop) { case ZFS_PROP_ATIME: case ZFS_PROP_RELATIME: case ZFS_PROP_DEVICES: case ZFS_PROP_EXEC: case ZFS_PROP_SETUID: case ZFS_PROP_READONLY: case ZFS_PROP_XATTR: case ZFS_PROP_NBMAND: return (B_TRUE); default: return (B_FALSE); } } /* * This function is best effort. If it fails to set any of the given properties, * it continues to set as many as it can and returns the last error * encountered. If the caller provides a non-NULL errlist, it will be filled in * with the list of names of all the properties that failed along with the * corresponding error numbers. * * If every property is set successfully, zero is returned and errlist is not * modified. */ int zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl, nvlist_t *errlist) { nvpair_t *pair; nvpair_t *propval; int rv = 0; int err; uint64_t intval; const char *strval; boolean_t should_update_mount_cache = B_FALSE; nvlist_t *genericnvl = fnvlist_alloc(); nvlist_t *retrynvl = fnvlist_alloc(); retry: pair = NULL; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); err = 0; /* decode the property value */ propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; attrs = fnvpair_value_nvlist(pair); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &propval) != 0) err = SET_ERROR(EINVAL); } /* Validate value type */ if (err == 0 && source == ZPROP_SRC_INHERITED) { /* inherited properties are expected to be booleans */ if (nvpair_type(propval) != DATA_TYPE_BOOLEAN) err = SET_ERROR(EINVAL); } else if (err == 0 && prop == ZPROP_USERPROP) { if (zfs_prop_user(propname)) { if (nvpair_type(propval) != DATA_TYPE_STRING) err = SET_ERROR(EINVAL); } else if (zfs_prop_userquota(propname)) { if (nvpair_type(propval) != DATA_TYPE_UINT64_ARRAY) err = SET_ERROR(EINVAL); } else { err = SET_ERROR(EINVAL); } } else if (err == 0) { if (nvpair_type(propval) == DATA_TYPE_STRING) { if (zfs_prop_get_type(prop) != PROP_TYPE_STRING) err = SET_ERROR(EINVAL); } else if (nvpair_type(propval) == DATA_TYPE_UINT64) { const char *unused; intval = fnvpair_value_uint64(propval); switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: break; case PROP_TYPE_STRING: err = SET_ERROR(EINVAL); break; case PROP_TYPE_INDEX: if (zfs_prop_index_to_string(prop, intval, &unused) != 0) err = SET_ERROR(ZFS_ERR_BADPROP); break; default: cmn_err(CE_PANIC, "unknown property type"); } } else { err = SET_ERROR(EINVAL); } } /* Validate permissions */ if (err == 0) err = zfs_check_settable(dsname, pair, CRED()); if (err == 0) { if (source == ZPROP_SRC_INHERITED) err = -1; /* does not need special handling */ else err = zfs_prop_set_special(dsname, source, pair); if (err == -1) { /* * For better performance we build up a list of * properties to set in a single transaction. */ err = nvlist_add_nvpair(genericnvl, pair); } else if (err != 0 && nvl != retrynvl) { /* * This may be a spurious error caused by * receiving quota and reservation out of order. * Try again in a second pass. */ err = nvlist_add_nvpair(retrynvl, pair); } } if (err != 0) { if (errlist != NULL) fnvlist_add_int32(errlist, propname, err); rv = err; } if (zfs_is_namespace_prop(prop)) should_update_mount_cache = B_TRUE; } if (nvl != retrynvl && !nvlist_empty(retrynvl)) { nvl = retrynvl; goto retry; } if (nvlist_empty(genericnvl)) goto out; /* * Try to set them all in one batch. */ err = dsl_props_set(dsname, source, genericnvl); if (err == 0) goto out; /* * If batching fails, we still want to set as many properties as we * can, so try setting them individually. */ pair = NULL; while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) { const char *propname = nvpair_name(pair); propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; attrs = fnvpair_value_nvlist(pair); propval = fnvlist_lookup_nvpair(attrs, ZPROP_VALUE); } if (nvpair_type(propval) == DATA_TYPE_STRING) { strval = fnvpair_value_string(propval); err = dsl_prop_set_string(dsname, propname, source, strval); } else if (nvpair_type(propval) == DATA_TYPE_BOOLEAN) { err = dsl_prop_inherit(dsname, propname, source); } else { intval = fnvpair_value_uint64(propval); err = dsl_prop_set_int(dsname, propname, source, intval); } if (err != 0) { if (errlist != NULL) { fnvlist_add_int32(errlist, propname, err); } rv = err; } } out: if (should_update_mount_cache) zfs_ioctl_update_mount_cache(dsname); nvlist_free(genericnvl); nvlist_free(retrynvl); return (rv); } /* * Check that all the properties are valid user properties. */ static int zfs_check_userprops(nvlist_t *nvl) { nvpair_t *pair = NULL; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); if (!zfs_prop_user(propname) || nvpair_type(pair) != DATA_TYPE_STRING) return (SET_ERROR(EINVAL)); if (strlen(propname) >= ZAP_MAXNAMELEN) return (SET_ERROR(ENAMETOOLONG)); if (strlen(fnvpair_value_string(pair)) >= ZAP_MAXVALUELEN) return (SET_ERROR(E2BIG)); } return (0); } static void props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops) { nvpair_t *pair; VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); pair = NULL; while ((pair = nvlist_next_nvpair(props, pair)) != NULL) { if (nvlist_exists(skipped, nvpair_name(pair))) continue; VERIFY(nvlist_add_nvpair(*newprops, pair) == 0); } } static int clear_received_props(const char *dsname, nvlist_t *props, nvlist_t *skipped) { int err = 0; nvlist_t *cleared_props = NULL; props_skip(props, skipped, &cleared_props); if (!nvlist_empty(cleared_props)) { /* * Acts on local properties until the dataset has received * properties at least once on or after SPA_VERSION_RECVD_PROPS. */ zprop_source_t flags = (ZPROP_SRC_NONE | (dsl_prop_get_hasrecvd(dsname) ? ZPROP_SRC_RECEIVED : 0)); err = zfs_set_prop_nvlist(dsname, flags, cleared_props, NULL); } nvlist_free(cleared_props); return (err); } /* * inputs: * zc_name name of filesystem * zc_value name of property to set * zc_nvlist_src{_size} nvlist of properties to apply * zc_cookie received properties flag * * outputs: * zc_nvlist_dst{_size} error for each unapplied received property */ static int zfs_ioc_set_prop(zfs_cmd_t *zc) { nvlist_t *nvl; boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_RECEIVED : ZPROP_SRC_LOCAL); nvlist_t *errors; int error; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvl)) != 0) return (error); if (received) { nvlist_t *origprops; if (dsl_prop_get_received(zc->zc_name, &origprops) == 0) { (void) clear_received_props(zc->zc_name, origprops, nvl); nvlist_free(origprops); } error = dsl_prop_set_hasrecvd(zc->zc_name); } errors = fnvlist_alloc(); if (error == 0) error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors); if (zc->zc_nvlist_dst != 0 && errors != NULL) { (void) put_nvlist(zc, errors); } nvlist_free(errors); nvlist_free(nvl); return (error); } /* * inputs: * zc_name name of filesystem * zc_value name of property to inherit * zc_cookie revert to received value if TRUE * * outputs: none */ static int zfs_ioc_inherit_prop(zfs_cmd_t *zc) { const char *propname = zc->zc_value; zfs_prop_t prop = zfs_name_to_prop(propname); boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_NONE /* revert to received value, if any */ : ZPROP_SRC_INHERITED); /* explicitly inherit */ nvlist_t *dummy; nvpair_t *pair; zprop_type_t type; int err; if (!received) { /* * Only check this in the non-received case. We want to allow * 'inherit -S' to revert non-inheritable properties like quota * and reservation to the received or default values even though * they are not considered inheritable. */ if (prop != ZPROP_USERPROP && !zfs_prop_inheritable(prop)) return (SET_ERROR(EINVAL)); } if (prop == ZPROP_USERPROP) { if (!zfs_prop_user(propname)) return (SET_ERROR(EINVAL)); type = PROP_TYPE_STRING; } else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) { return (SET_ERROR(EINVAL)); } else { type = zfs_prop_get_type(prop); } /* * zfs_prop_set_special() expects properties in the form of an * nvpair with type info. */ dummy = fnvlist_alloc(); switch (type) { case PROP_TYPE_STRING: VERIFY(0 == nvlist_add_string(dummy, propname, "")); break; case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: VERIFY(0 == nvlist_add_uint64(dummy, propname, 0)); break; default: err = SET_ERROR(EINVAL); goto errout; } pair = nvlist_next_nvpair(dummy, NULL); if (pair == NULL) { err = SET_ERROR(EINVAL); } else { err = zfs_prop_set_special(zc->zc_name, source, pair); if (err == -1) /* property is not "special", needs handling */ err = dsl_prop_inherit(zc->zc_name, zc->zc_value, source); } errout: nvlist_free(dummy); return (err); } static int zfs_ioc_pool_set_props(zfs_cmd_t *zc) { nvlist_t *props; spa_t *spa; int error; nvpair_t *pair; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) return (error); /* * If the only property is the configfile, then just do a spa_lookup() * to handle the faulted case. */ pair = nvlist_next_nvpair(props, NULL); if (pair != NULL && strcmp(nvpair_name(pair), zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 && nvlist_next_nvpair(props, pair) == NULL) { mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); } mutex_exit(&spa_namespace_lock); if (spa != NULL) { nvlist_free(props); return (0); } } if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { nvlist_free(props); return (error); } error = spa_prop_set(spa, props); nvlist_free(props); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_props(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *nvp = NULL; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { /* * If the pool is faulted, there may be properties we can still * get (such as altroot and cachefile), so attempt to get them * anyway. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) error = spa_prop_get(spa, &nvp); mutex_exit(&spa_namespace_lock); } else { error = spa_prop_get(spa, &nvp); spa_close(spa, FTAG); } if (error == 0 && zc->zc_nvlist_dst != 0) error = put_nvlist(zc, nvp); else error = SET_ERROR(EFAULT); nvlist_free(nvp); return (error); } /* * innvl: { * "vdevprops_set_vdev" -> guid * "vdevprops_set_props" -> { prop -> value } * } * * outnvl: propname -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_vdev_set_props[] = { {ZPOOL_VDEV_PROPS_SET_VDEV, DATA_TYPE_UINT64, 0}, {ZPOOL_VDEV_PROPS_SET_PROPS, DATA_TYPE_NVLIST, 0} }; static int zfs_ioc_vdev_set_props(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa; int error; vdev_t *vd; uint64_t vdev_guid; /* Early validation */ if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, &vdev_guid) != 0) return (SET_ERROR(EINVAL)); if (outnvl == NULL) return (SET_ERROR(EINVAL)); if ((error = spa_open(poolname, &spa, FTAG)) != 0) return (error); ASSERT(spa_writeable(spa)); if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) { spa_close(spa, FTAG); return (SET_ERROR(ENOENT)); } error = vdev_prop_set(vd, innvl, outnvl); spa_close(spa, FTAG); return (error); } /* * innvl: { * "vdevprops_get_vdev" -> guid * (optional) "vdevprops_get_props" -> { propname -> propid } * } * * outnvl: propname -> value */ static const zfs_ioc_key_t zfs_keys_vdev_get_props[] = { {ZPOOL_VDEV_PROPS_GET_VDEV, DATA_TYPE_UINT64, 0}, {ZPOOL_VDEV_PROPS_GET_PROPS, DATA_TYPE_NVLIST, ZK_OPTIONAL} }; static int zfs_ioc_vdev_get_props(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa; int error; vdev_t *vd; uint64_t vdev_guid; /* Early validation */ if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, &vdev_guid) != 0) return (SET_ERROR(EINVAL)); if (outnvl == NULL) return (SET_ERROR(EINVAL)); if ((error = spa_open(poolname, &spa, FTAG)) != 0) return (error); if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) { spa_close(spa, FTAG); return (SET_ERROR(ENOENT)); } error = vdev_prop_get(vd, innvl, outnvl); spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_src{_size} nvlist of delegated permissions * zc_perm_action allow/unallow flag * * outputs: none */ static int zfs_ioc_set_fsacl(zfs_cmd_t *zc) { int error; nvlist_t *fsaclnv = NULL; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &fsaclnv)) != 0) return (error); /* * Verify nvlist is constructed correctly */ if (zfs_deleg_verify_nvlist(fsaclnv) != 0) { nvlist_free(fsaclnv); return (SET_ERROR(EINVAL)); } /* * If we don't have PRIV_SYS_MOUNT, then validate * that user is allowed to hand out each permission in * the nvlist(s) */ error = secpolicy_zfs(CRED()); if (error != 0) { if (zc->zc_perm_action == B_FALSE) { error = dsl_deleg_can_allow(zc->zc_name, fsaclnv, CRED()); } else { error = dsl_deleg_can_unallow(zc->zc_name, fsaclnv, CRED()); } } if (error == 0) error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action); nvlist_free(fsaclnv); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_nvlist_src{_size} nvlist of delegated permissions */ static int zfs_ioc_get_fsacl(zfs_cmd_t *zc) { nvlist_t *nvp; int error; if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) { error = put_nvlist(zc, nvp); nvlist_free(nvp); } return (error); } static void zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; zfs_create_fs(os, cr, zct->zct_zplprops, tx); } #define ZFS_PROP_UNDEFINED ((uint64_t)-1) /* * inputs: * os parent objset pointer (NULL if root fs) * fuids_ok fuids allowed in this version of the spa? * sa_ok SAs allowed in this version of the spa? * createprops list of properties requested by creator * * outputs: * zplprops values for the zplprops we attach to the master node object * is_ci true if requested file system will be purely case-insensitive * * Determine the settings for utf8only, normalization and * casesensitivity. Specific values may have been requested by the * creator and/or we can inherit values from the parent dataset. If * the file system is of too early a vintage, a creator can not * request settings for these properties, even if the requested * setting is the default value. We don't actually want to create dsl * properties for these, so remove them from the source nvlist after * processing. */ static int zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver, boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { uint64_t sense = ZFS_PROP_UNDEFINED; uint64_t norm = ZFS_PROP_UNDEFINED; uint64_t u8 = ZFS_PROP_UNDEFINED; int error; ASSERT(zplprops != NULL); /* parent dataset must be a filesystem */ if (os != NULL && os->os_phys->os_type != DMU_OST_ZFS) return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); /* * Pull out creator prop choices, if any. */ if (createprops) { (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_VERSION), &zplver); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_CASE), &sense); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_CASE)); } /* * If the zpl version requested is whacky or the file system * or pool is version is too "young" to support normalization * and the creator tried to set a value for one of the props, * error out. */ if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) || (zplver >= ZPL_VERSION_FUID && !fuids_ok) || (zplver >= ZPL_VERSION_SA && !sa_ok) || (zplver < ZPL_VERSION_NORMALIZATION && (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED || sense != ZFS_PROP_UNDEFINED))) return (SET_ERROR(ENOTSUP)); /* * Put the version in the zplprops */ VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0); if (norm == ZFS_PROP_UNDEFINED && (error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm)) != 0) return (error); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0); /* * If we're normalizing, names must always be valid UTF-8 strings. */ if (norm) u8 = 1; if (u8 == ZFS_PROP_UNDEFINED && (error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8)) != 0) return (error); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0); if (sense == ZFS_PROP_UNDEFINED && (error = zfs_get_zplprop(os, ZFS_PROP_CASE, &sense)) != 0) return (error); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0); if (is_ci) *is_ci = (sense == ZFS_CASE_INSENSITIVE); return (0); } static int zfs_fill_zplprops(const char *dataset, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok, sa_ok; uint64_t zplver = ZPL_VERSION; objset_t *os = NULL; char parentname[ZFS_MAX_DATASET_NAME_LEN]; spa_t *spa; uint64_t spa_vers; int error; zfs_get_parent(dataset, parentname, sizeof (parentname)); if ((error = spa_open(dataset, &spa, FTAG)) != 0) return (error); spa_vers = spa_version(spa); spa_close(spa, FTAG); zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); /* * Open parent object set so we can inherit zplprop values. */ if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0) return (error); error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); dmu_objset_rele(os, FTAG); return (error); } static int zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok; boolean_t sa_ok; uint64_t zplver = ZPL_VERSION; int error; zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); return (error); } /* * innvl: { * "type" -> dmu_objset_type_t (int32) * (optional) "props" -> { prop -> value } * (optional) "hidden_args" -> { "wkeydata" -> value } * raw uint8_t array of encryption wrapping key data (32 bytes) * } * * outnvl: propname -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_create[] = { {"type", DATA_TYPE_INT32, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { int error = 0; zfs_creat_t zct = { 0 }; nvlist_t *nvprops = NULL; nvlist_t *hidden_args = NULL; void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); dmu_objset_type_t type; boolean_t is_insensitive = B_FALSE; dsl_crypto_params_t *dcp = NULL; type = (dmu_objset_type_t)fnvlist_lookup_int32(innvl, "type"); (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); (void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); switch (type) { case DMU_OST_ZFS: cbfunc = zfs_create_cb; break; case DMU_OST_ZVOL: cbfunc = zvol_create_cb; break; default: cbfunc = NULL; break; } if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); zct.zct_props = nvprops; if (cbfunc == NULL) return (SET_ERROR(EINVAL)); if (type == DMU_OST_ZVOL) { uint64_t volsize, volblocksize; if (nvprops == NULL) return (SET_ERROR(EINVAL)); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) return (SET_ERROR(EINVAL)); if ((error = nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize)) != 0 && error != ENOENT) return (SET_ERROR(EINVAL)); if (error != 0) volblocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); if ((error = zvol_check_volblocksize(fsname, volblocksize)) != 0 || (error = zvol_check_volsize(volsize, volblocksize)) != 0) return (error); } else if (type == DMU_OST_ZFS) { int error; /* * We have to have normalization and * case-folding flags correct when we do the * file system creation, so go figure them out * now. */ VERIFY(nvlist_alloc(&zct.zct_zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops(fsname, nvprops, zct.zct_zplprops, &is_insensitive); if (error != 0) { nvlist_free(zct.zct_zplprops); return (error); } } error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, nvprops, hidden_args, &dcp); if (error != 0) { nvlist_free(zct.zct_zplprops); return (error); } error = dmu_objset_create(fsname, type, is_insensitive ? DS_FLAG_CI_DATASET : 0, dcp, cbfunc, &zct); nvlist_free(zct.zct_zplprops); dsl_crypto_params_free(dcp, !!error); /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, nvprops, outnvl); if (error != 0) { spa_t *spa; int error2; /* * Volumes will return EBUSY and cannot be destroyed * until all asynchronous minor handling (e.g. from * setting the volmode property) has completed. Wait for * the spa_zvol_taskq to drain then retry. */ error2 = dsl_destroy_head(fsname); while ((error2 == EBUSY) && (type == DMU_OST_ZVOL)) { error2 = spa_open(fsname, &spa, FTAG); if (error2 == 0) { taskq_wait(spa->spa_zvol_taskq); spa_close(spa, FTAG); } error2 = dsl_destroy_head(fsname); } } } return (error); } /* * innvl: { * "origin" -> name of origin snapshot * (optional) "props" -> { prop -> value } * (optional) "hidden_args" -> { "wkeydata" -> value } * raw uint8_t array of encryption wrapping key data (32 bytes) * } * * outputs: * outnvl: propname -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_clone[] = { {"origin", DATA_TYPE_STRING, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { int error = 0; nvlist_t *nvprops = NULL; const char *origin_name; origin_name = fnvlist_lookup_string(innvl, "origin"); (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); if (dataset_namecheck(origin_name, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); error = dmu_objset_clone(fsname, origin_name); /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, nvprops, outnvl); if (error != 0) (void) dsl_destroy_head(fsname); } return (error); } static const zfs_ioc_key_t zfs_keys_remap[] = { /* no nvl keys */ }; static int zfs_ioc_remap(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { /* This IOCTL is no longer supported. */ (void) fsname, (void) innvl, (void) outnvl; return (0); } /* * innvl: { * "snaps" -> { snapshot1, snapshot2 } * (optional) "props" -> { prop -> value (string) } * } * * outnvl: snapshot -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_snapshot[] = { {"snaps", DATA_TYPE_NVLIST, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { nvlist_t *snaps; nvlist_t *props = NULL; int error, poollen; nvpair_t *pair; (void) nvlist_lookup_nvlist(innvl, "props", &props); if (!nvlist_empty(props) && zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS)) return (SET_ERROR(ENOTSUP)); if ((error = zfs_check_userprops(props)) != 0) return (error); snaps = fnvlist_lookup_nvlist(innvl, "snaps"); poollen = strlen(poolname); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { const char *name = nvpair_name(pair); char *cp = strchr(name, '@'); /* * The snap name must contain an @, and the part after it must * contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); /* * The snap must be in the specified pool. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '@')) return (SET_ERROR(EXDEV)); /* * Check for permission to set the properties on the fs. */ if (!nvlist_empty(props)) { *cp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_USERPROP, CRED()); *cp = '@'; if (error != 0) return (error); } /* This must be the only snap of this fs. */ for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair); pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) { if (strncmp(name, nvpair_name(pair2), cp - name + 1) == 0) { return (SET_ERROR(EXDEV)); } } } error = dsl_dataset_snapshot(snaps, props, outnvl); return (error); } /* * innvl: "message" -> string */ static const zfs_ioc_key_t zfs_keys_log_history[] = { {"message", DATA_TYPE_STRING, 0}, }; static int zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl) { (void) unused, (void) outnvl; const char *message; char *poolname; spa_t *spa; int error; /* * The poolname in the ioctl is not set, we get it from the TSD, * which was set at the end of the last successful ioctl that allows * logging. The secpolicy func already checked that it is set. * Only one log ioctl is allowed after each successful ioctl, so * we clear the TSD here. */ poolname = tsd_get(zfs_allow_log_key); if (poolname == NULL) return (SET_ERROR(EINVAL)); (void) tsd_set(zfs_allow_log_key, NULL); error = spa_open(poolname, &spa, FTAG); kmem_strfree(poolname); if (error != 0) return (error); message = fnvlist_lookup_string(innvl, "message"); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } error = spa_history_log(spa, message); spa_close(spa, FTAG); return (error); } /* * This ioctl is used to set the bootenv configuration on the current * pool. This configuration is stored in the second padding area of the label, * and it is used by the bootloader(s) to store the bootloader and/or system * specific data. * The data is stored as nvlist data stream, and is protected by * an embedded checksum. * The version can have two possible values: * VB_RAW: nvlist should have key GRUB_ENVMAP, value DATA_TYPE_STRING. * VB_NVLIST: nvlist with arbitrary pairs. */ static const zfs_ioc_key_t zfs_keys_set_bootenv[] = { {"version", DATA_TYPE_UINT64, 0}, {"", DATA_TYPE_ANY, ZK_OPTIONAL | ZK_WILDCARDLIST}, }; static int zfs_ioc_set_bootenv(const char *name, nvlist_t *innvl, nvlist_t *outnvl) { int error; spa_t *spa; if ((error = spa_open(name, &spa, FTAG)) != 0) return (error); spa_vdev_state_enter(spa, SCL_ALL); error = vdev_label_write_bootenv(spa->spa_root_vdev, innvl); (void) spa_vdev_state_exit(spa, NULL, 0); spa_close(spa, FTAG); return (error); } static const zfs_ioc_key_t zfs_keys_get_bootenv[] = { /* no nvl keys */ }; static int zfs_ioc_get_bootenv(const char *name, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa; int error; if ((error = spa_open(name, &spa, FTAG)) != 0) return (error); spa_vdev_state_enter(spa, SCL_ALL); error = vdev_label_read_bootenv(spa->spa_root_vdev, outnvl); (void) spa_vdev_state_exit(spa, NULL, 0); spa_close(spa, FTAG); return (error); } /* * The dp_config_rwlock must not be held when calling this, because the * unmount may need to write out data. * * This function is best-effort. Callers must deal gracefully if it * remains mounted (or is remounted after this call). * * Returns 0 if the argument is not a snapshot, or it is not currently a * filesystem, or we were able to unmount it. Returns error code otherwise. */ void zfs_unmount_snap(const char *snapname) { if (strchr(snapname, '@') == NULL) return; (void) zfsctl_snapshot_unmount(snapname, MNT_FORCE); } static int zfs_unmount_snap_cb(const char *snapname, void *arg) { (void) arg; zfs_unmount_snap(snapname); return (0); } /* * When a clone is destroyed, its origin may also need to be destroyed, * in which case it must be unmounted. This routine will do that unmount * if necessary. */ void zfs_destroy_unmount_origin(const char *fsname) { int error; objset_t *os; dsl_dataset_t *ds; error = dmu_objset_hold(fsname, FTAG, &os); if (error != 0) return; ds = dmu_objset_ds(os); if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) { char originname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(ds->ds_prev, originname); dmu_objset_rele(os, FTAG); zfs_unmount_snap(originname); } else { dmu_objset_rele(os, FTAG); } } /* * innvl: { * "snaps" -> { snapshot1, snapshot2 } * (optional boolean) "defer" * } * * outnvl: snapshot -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_destroy_snaps[] = { {"snaps", DATA_TYPE_NVLIST, 0}, {"defer", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, }; static int zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { int poollen; nvlist_t *snaps; nvpair_t *pair; boolean_t defer; spa_t *spa; snaps = fnvlist_lookup_nvlist(innvl, "snaps"); defer = nvlist_exists(innvl, "defer"); poollen = strlen(poolname); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { const char *name = nvpair_name(pair); /* * The snap must be in the specified pool to prevent the * invalid removal of zvol minors below. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '@')) return (SET_ERROR(EXDEV)); zfs_unmount_snap(nvpair_name(pair)); if (spa_open(name, &spa, FTAG) == 0) { zvol_remove_minors(spa, name, B_TRUE); spa_close(spa, FTAG); } } return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl)); } /* * Create bookmarks. The bookmark names are of the form #. * All bookmarks and snapshots must be in the same pool. * dsl_bookmark_create_nvl_validate describes the nvlist schema in more detail. * * innvl: { * new_bookmark1 -> existing_snapshot, * new_bookmark2 -> existing_bookmark, * } * * outnvl: bookmark -> error code (int32) * */ static const zfs_ioc_key_t zfs_keys_bookmark[] = { {"...", DATA_TYPE_STRING, ZK_WILDCARDLIST}, }; static int zfs_ioc_bookmark(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { (void) poolname; return (dsl_bookmark_create(innvl, outnvl)); } /* * innvl: { * property 1, property 2, ... * } * * outnvl: { * bookmark name 1 -> { property 1, property 2, ... }, * bookmark name 2 -> { property 1, property 2, ... } * } * */ static const zfs_ioc_key_t zfs_keys_get_bookmarks[] = { {"...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST | ZK_OPTIONAL}, }; static int zfs_ioc_get_bookmarks(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { return (dsl_get_bookmarks(fsname, innvl, outnvl)); } /* * innvl is not used. * * outnvl: { * property 1, property 2, ... * } * */ static const zfs_ioc_key_t zfs_keys_get_bookmark_props[] = { /* no nvl keys */ }; static int zfs_ioc_get_bookmark_props(const char *bookmark, nvlist_t *innvl, nvlist_t *outnvl) { (void) innvl; char fsname[ZFS_MAX_DATASET_NAME_LEN]; char *bmname; bmname = strchr(bookmark, '#'); if (bmname == NULL) return (SET_ERROR(EINVAL)); bmname++; (void) strlcpy(fsname, bookmark, sizeof (fsname)); *(strchr(fsname, '#')) = '\0'; return (dsl_get_bookmark_props(fsname, bmname, outnvl)); } /* * innvl: { * bookmark name 1, bookmark name 2 * } * * outnvl: bookmark -> error code (int32) * */ static const zfs_ioc_key_t zfs_keys_destroy_bookmarks[] = { {"...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST}, }; static int zfs_ioc_destroy_bookmarks(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { int error, poollen; poollen = strlen(poolname); for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { const char *name = nvpair_name(pair); const char *cp = strchr(name, '#'); /* * The bookmark name must contain an #, and the part after it * must contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); /* * The bookmark must be in the specified pool. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '#')) return (SET_ERROR(EXDEV)); } error = dsl_bookmark_destroy(innvl, outnvl); return (error); } static const zfs_ioc_key_t zfs_keys_channel_program[] = { {"program", DATA_TYPE_STRING, 0}, {"arg", DATA_TYPE_ANY, 0}, {"sync", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, {"instrlimit", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"memlimit", DATA_TYPE_UINT64, ZK_OPTIONAL}, }; static int zfs_ioc_channel_program(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { char *program; uint64_t instrlimit, memlimit; boolean_t sync_flag; nvpair_t *nvarg = NULL; program = fnvlist_lookup_string(innvl, ZCP_ARG_PROGRAM); if (0 != nvlist_lookup_boolean_value(innvl, ZCP_ARG_SYNC, &sync_flag)) { sync_flag = B_TRUE; } if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_INSTRLIMIT, &instrlimit)) { instrlimit = ZCP_DEFAULT_INSTRLIMIT; } if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_MEMLIMIT, &memlimit)) { memlimit = ZCP_DEFAULT_MEMLIMIT; } nvarg = fnvlist_lookup_nvpair(innvl, ZCP_ARG_ARGLIST); if (instrlimit == 0 || instrlimit > zfs_lua_max_instrlimit) return (SET_ERROR(EINVAL)); if (memlimit == 0 || memlimit > zfs_lua_max_memlimit) return (SET_ERROR(EINVAL)); return (zcp_eval(poolname, program, sync_flag, instrlimit, memlimit, nvarg, outnvl)); } /* * innvl: unused * outnvl: empty */ static const zfs_ioc_key_t zfs_keys_pool_checkpoint[] = { /* no nvl keys */ }; static int zfs_ioc_pool_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { (void) innvl, (void) outnvl; return (spa_checkpoint(poolname)); } /* * innvl: unused * outnvl: empty */ static const zfs_ioc_key_t zfs_keys_pool_discard_checkpoint[] = { /* no nvl keys */ }; static int zfs_ioc_pool_discard_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { (void) innvl, (void) outnvl; return (spa_checkpoint_discard(poolname)); } /* * inputs: * zc_name name of dataset to destroy * zc_defer_destroy mark for deferred destroy * * outputs: none */ static int zfs_ioc_destroy(zfs_cmd_t *zc) { objset_t *os; dmu_objset_type_t ost; int err; err = dmu_objset_hold(zc->zc_name, FTAG, &os); if (err != 0) return (err); ost = dmu_objset_type(os); dmu_objset_rele(os, FTAG); if (ost == DMU_OST_ZFS) zfs_unmount_snap(zc->zc_name); if (strchr(zc->zc_name, '@')) { err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy); } else { err = dsl_destroy_head(zc->zc_name); if (err == EEXIST) { /* * It is possible that the given DS may have * hidden child (%recv) datasets - "leftovers" * resulting from the previously interrupted * 'zfs receive'. * * 6 extra bytes for /%recv */ char namebuf[ZFS_MAX_DATASET_NAME_LEN + 6]; if (snprintf(namebuf, sizeof (namebuf), "%s/%s", zc->zc_name, recv_clone_name) >= sizeof (namebuf)) return (SET_ERROR(EINVAL)); /* * Try to remove the hidden child (%recv) and after * that try to remove the target dataset. * If the hidden child (%recv) does not exist * the original error (EEXIST) will be returned */ err = dsl_destroy_head(namebuf); if (err == 0) err = dsl_destroy_head(zc->zc_name); else if (err == ENOENT) err = SET_ERROR(EEXIST); } } return (err); } /* * innvl: { * "initialize_command" -> POOL_INITIALIZE_{CANCEL|START|SUSPEND} (uint64) * "initialize_vdevs": { -> guids to initialize (nvlist) * "vdev_path_1": vdev_guid_1, (uint64), * "vdev_path_2": vdev_guid_2, (uint64), * ... * }, * } * * outnvl: { * "initialize_vdevs": { -> initialization errors (nvlist) * "vdev_path_1": errno, see function body for possible errnos (uint64) * "vdev_path_2": errno, ... (uint64) * ... * } * } * * EINVAL is returned for an unknown commands or if any of the provided vdev * guids have be specified with a type other than uint64. */ static const zfs_ioc_key_t zfs_keys_pool_initialize[] = { {ZPOOL_INITIALIZE_COMMAND, DATA_TYPE_UINT64, 0}, {ZPOOL_INITIALIZE_VDEVS, DATA_TYPE_NVLIST, 0} }; static int zfs_ioc_pool_initialize(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { uint64_t cmd_type; if (nvlist_lookup_uint64(innvl, ZPOOL_INITIALIZE_COMMAND, &cmd_type) != 0) { return (SET_ERROR(EINVAL)); } if (!(cmd_type == POOL_INITIALIZE_CANCEL || cmd_type == POOL_INITIALIZE_START || cmd_type == POOL_INITIALIZE_SUSPEND)) { return (SET_ERROR(EINVAL)); } nvlist_t *vdev_guids; if (nvlist_lookup_nvlist(innvl, ZPOOL_INITIALIZE_VDEVS, &vdev_guids) != 0) { return (SET_ERROR(EINVAL)); } for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { uint64_t vdev_guid; if (nvpair_value_uint64(pair, &vdev_guid) != 0) { return (SET_ERROR(EINVAL)); } } spa_t *spa; int error = spa_open(poolname, &spa, FTAG); if (error != 0) return (error); nvlist_t *vdev_errlist = fnvlist_alloc(); int total_errors = spa_vdev_initialize(spa, vdev_guids, cmd_type, vdev_errlist); if (fnvlist_size(vdev_errlist) > 0) { fnvlist_add_nvlist(outnvl, ZPOOL_INITIALIZE_VDEVS, vdev_errlist); } fnvlist_free(vdev_errlist); spa_close(spa, FTAG); return (total_errors > 0 ? SET_ERROR(EINVAL) : 0); } /* * innvl: { * "trim_command" -> POOL_TRIM_{CANCEL|START|SUSPEND} (uint64) * "trim_vdevs": { -> guids to TRIM (nvlist) * "vdev_path_1": vdev_guid_1, (uint64), * "vdev_path_2": vdev_guid_2, (uint64), * ... * }, * "trim_rate" -> Target TRIM rate in bytes/sec. * "trim_secure" -> Set to request a secure TRIM. * } * * outnvl: { * "trim_vdevs": { -> TRIM errors (nvlist) * "vdev_path_1": errno, see function body for possible errnos (uint64) * "vdev_path_2": errno, ... (uint64) * ... * } * } * * EINVAL is returned for an unknown commands or if any of the provided vdev * guids have be specified with a type other than uint64. */ static const zfs_ioc_key_t zfs_keys_pool_trim[] = { {ZPOOL_TRIM_COMMAND, DATA_TYPE_UINT64, 0}, {ZPOOL_TRIM_VDEVS, DATA_TYPE_NVLIST, 0}, {ZPOOL_TRIM_RATE, DATA_TYPE_UINT64, ZK_OPTIONAL}, {ZPOOL_TRIM_SECURE, DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, }; static int zfs_ioc_pool_trim(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { uint64_t cmd_type; if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_COMMAND, &cmd_type) != 0) return (SET_ERROR(EINVAL)); if (!(cmd_type == POOL_TRIM_CANCEL || cmd_type == POOL_TRIM_START || cmd_type == POOL_TRIM_SUSPEND)) { return (SET_ERROR(EINVAL)); } nvlist_t *vdev_guids; if (nvlist_lookup_nvlist(innvl, ZPOOL_TRIM_VDEVS, &vdev_guids) != 0) return (SET_ERROR(EINVAL)); for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { uint64_t vdev_guid; if (nvpair_value_uint64(pair, &vdev_guid) != 0) { return (SET_ERROR(EINVAL)); } } /* Optional, defaults to maximum rate when not provided */ uint64_t rate; if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_RATE, &rate) != 0) rate = 0; /* Optional, defaults to standard TRIM when not provided */ boolean_t secure; if (nvlist_lookup_boolean_value(innvl, ZPOOL_TRIM_SECURE, &secure) != 0) { secure = B_FALSE; } spa_t *spa; int error = spa_open(poolname, &spa, FTAG); if (error != 0) return (error); nvlist_t *vdev_errlist = fnvlist_alloc(); int total_errors = spa_vdev_trim(spa, vdev_guids, cmd_type, rate, !!zfs_trim_metaslab_skip, secure, vdev_errlist); if (fnvlist_size(vdev_errlist) > 0) fnvlist_add_nvlist(outnvl, ZPOOL_TRIM_VDEVS, vdev_errlist); fnvlist_free(vdev_errlist); spa_close(spa, FTAG); return (total_errors > 0 ? SET_ERROR(EINVAL) : 0); } /* * This ioctl waits for activity of a particular type to complete. If there is * no activity of that type in progress, it returns immediately, and the * returned value "waited" is false. If there is activity in progress, and no * tag is passed in, the ioctl blocks until all activity of that type is * complete, and then returns with "waited" set to true. * * If a tag is provided, it identifies a particular instance of an activity to * wait for. Currently, this is only valid for use with 'initialize', because * that is the only activity for which there can be multiple instances running * concurrently. In the case of 'initialize', the tag corresponds to the guid of * the vdev on which to wait. * * If a thread waiting in the ioctl receives a signal, the call will return * immediately, and the return value will be EINTR. * * innvl: { * "wait_activity" -> int32_t * (optional) "wait_tag" -> uint64_t * } * * outnvl: "waited" -> boolean_t */ static const zfs_ioc_key_t zfs_keys_pool_wait[] = { {ZPOOL_WAIT_ACTIVITY, DATA_TYPE_INT32, 0}, {ZPOOL_WAIT_TAG, DATA_TYPE_UINT64, ZK_OPTIONAL}, }; static int zfs_ioc_wait(const char *name, nvlist_t *innvl, nvlist_t *outnvl) { int32_t activity; uint64_t tag; boolean_t waited; int error; if (nvlist_lookup_int32(innvl, ZPOOL_WAIT_ACTIVITY, &activity) != 0) return (EINVAL); if (nvlist_lookup_uint64(innvl, ZPOOL_WAIT_TAG, &tag) == 0) error = spa_wait_tag(name, activity, tag, &waited); else error = spa_wait(name, activity, &waited); if (error == 0) fnvlist_add_boolean_value(outnvl, ZPOOL_WAIT_WAITED, waited); return (error); } /* * This ioctl waits for activity of a particular type to complete. If there is * no activity of that type in progress, it returns immediately, and the * returned value "waited" is false. If there is activity in progress, and no * tag is passed in, the ioctl blocks until all activity of that type is * complete, and then returns with "waited" set to true. * * If a thread waiting in the ioctl receives a signal, the call will return * immediately, and the return value will be EINTR. * * innvl: { * "wait_activity" -> int32_t * } * * outnvl: "waited" -> boolean_t */ static const zfs_ioc_key_t zfs_keys_fs_wait[] = { {ZFS_WAIT_ACTIVITY, DATA_TYPE_INT32, 0}, }; static int zfs_ioc_wait_fs(const char *name, nvlist_t *innvl, nvlist_t *outnvl) { int32_t activity; boolean_t waited = B_FALSE; int error; dsl_pool_t *dp; dsl_dir_t *dd; dsl_dataset_t *ds; if (nvlist_lookup_int32(innvl, ZFS_WAIT_ACTIVITY, &activity) != 0) return (SET_ERROR(EINVAL)); if (activity >= ZFS_WAIT_NUM_ACTIVITIES || activity < 0) return (SET_ERROR(EINVAL)); if ((error = dsl_pool_hold(name, FTAG, &dp)) != 0) return (error); if ((error = dsl_dataset_hold(dp, name, FTAG, &ds)) != 0) { dsl_pool_rele(dp, FTAG); return (error); } dd = ds->ds_dir; mutex_enter(&dd->dd_activity_lock); dd->dd_activity_waiters++; /* * We get a long-hold here so that the dsl_dataset_t and dsl_dir_t * aren't evicted while we're waiting. Normally this is prevented by * holding the pool, but we can't do that while we're waiting since * that would prevent TXGs from syncing out. Some of the functionality * of long-holds (e.g. preventing deletion) is unnecessary for this * case, since we would cancel the waiters before proceeding with a * deletion. An alternative mechanism for keeping the dataset around * could be developed but this is simpler. */ dsl_dataset_long_hold(ds, FTAG); dsl_pool_rele(dp, FTAG); error = dsl_dir_wait(dd, ds, activity, &waited); dsl_dataset_long_rele(ds, FTAG); dd->dd_activity_waiters--; if (dd->dd_activity_waiters == 0) cv_signal(&dd->dd_activity_cv); mutex_exit(&dd->dd_activity_lock); dsl_dataset_rele(ds, FTAG); if (error == 0) fnvlist_add_boolean_value(outnvl, ZFS_WAIT_WAITED, waited); return (error); } /* * fsname is name of dataset to rollback (to most recent snapshot) * * innvl may contain name of expected target snapshot * * outnvl: "target" -> name of most recent snapshot * } */ static const zfs_ioc_key_t zfs_keys_rollback[] = { {"target", DATA_TYPE_STRING, ZK_OPTIONAL}, }; static int zfs_ioc_rollback(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { zfsvfs_t *zfsvfs; zvol_state_handle_t *zv; char *target = NULL; int error; (void) nvlist_lookup_string(innvl, "target", &target); if (target != NULL) { const char *cp = strchr(target, '@'); /* * The snap name must contain an @, and the part after it must * contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); } if (getzfsvfs(fsname, &zfsvfs) == 0) { dsl_dataset_t *ds; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); if (error == 0) { int resume_err; error = dsl_dataset_rollback(fsname, target, zfsvfs, outnvl); resume_err = zfs_resume_fs(zfsvfs, ds); error = error ? error : resume_err; } zfs_vfs_rele(zfsvfs); } else if ((zv = zvol_suspend(fsname)) != NULL) { error = dsl_dataset_rollback(fsname, target, zvol_tag(zv), outnvl); zvol_resume(zv); } else { error = dsl_dataset_rollback(fsname, target, NULL, outnvl); } return (error); } static int recursive_unmount(const char *fsname, void *arg) { const char *snapname = arg; char *fullname; fullname = kmem_asprintf("%s@%s", fsname, snapname); zfs_unmount_snap(fullname); kmem_strfree(fullname); return (0); } /* * * snapname is the snapshot to redact. * innvl: { * "bookname" -> (string) * shortname of the redaction bookmark to generate * "snapnv" -> (nvlist, values ignored) * snapshots to redact snapname with respect to * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_redact[] = { {"bookname", DATA_TYPE_STRING, 0}, {"snapnv", DATA_TYPE_NVLIST, 0}, }; static int zfs_ioc_redact(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { (void) outnvl; nvlist_t *redactnvl = NULL; char *redactbook = NULL; if (nvlist_lookup_nvlist(innvl, "snapnv", &redactnvl) != 0) return (SET_ERROR(EINVAL)); if (fnvlist_num_pairs(redactnvl) == 0) return (SET_ERROR(ENXIO)); if (nvlist_lookup_string(innvl, "bookname", &redactbook) != 0) return (SET_ERROR(EINVAL)); return (dmu_redact_snap(snapname, redactnvl, redactbook)); } /* * inputs: * zc_name old name of dataset * zc_value new name of dataset * zc_cookie recursive flag (only valid for snapshots) * * outputs: none */ static int zfs_ioc_rename(zfs_cmd_t *zc) { objset_t *os; dmu_objset_type_t ost; boolean_t recursive = zc->zc_cookie & 1; boolean_t nounmount = !!(zc->zc_cookie & 2); char *at; int err; /* "zfs rename" from and to ...%recv datasets should both fail */ zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_name, '%') || strchr(zc->zc_value, '%')) return (SET_ERROR(EINVAL)); err = dmu_objset_hold(zc->zc_name, FTAG, &os); if (err != 0) return (err); ost = dmu_objset_type(os); dmu_objset_rele(os, FTAG); at = strchr(zc->zc_name, '@'); if (at != NULL) { /* snaps must be in same fs */ int error; if (strncmp(zc->zc_name, zc->zc_value, at - zc->zc_name + 1)) return (SET_ERROR(EXDEV)); *at = '\0'; if (ost == DMU_OST_ZFS && !nounmount) { error = dmu_objset_find(zc->zc_name, recursive_unmount, at + 1, recursive ? DS_FIND_CHILDREN : 0); if (error != 0) { *at = '@'; return (error); } } error = dsl_dataset_rename_snapshot(zc->zc_name, at + 1, strchr(zc->zc_value, '@') + 1, recursive); *at = '@'; return (error); } else { return (dsl_dir_rename(zc->zc_name, zc->zc_value)); } } static int zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr) { const char *propname = nvpair_name(pair); boolean_t issnap = (strchr(dsname, '@') != NULL); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval, compval; int err; if (prop == ZPROP_USERPROP) { if (zfs_prop_user(propname)) { if ((err = zfs_secpolicy_write_perms(dsname, ZFS_DELEG_PERM_USERPROP, cr))) return (err); return (0); } if (!issnap && zfs_prop_userquota(propname)) { const char *perm = NULL; const char *uq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA]; const char *gq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA]; const char *uiq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA]; const char *giq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA]; const char *pq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA]; const char *piq_prefix = zfs_userquota_prop_prefixes[\ ZFS_PROP_PROJECTOBJQUOTA]; if (strncmp(propname, uq_prefix, strlen(uq_prefix)) == 0) { perm = ZFS_DELEG_PERM_USERQUOTA; } else if (strncmp(propname, uiq_prefix, strlen(uiq_prefix)) == 0) { perm = ZFS_DELEG_PERM_USEROBJQUOTA; } else if (strncmp(propname, gq_prefix, strlen(gq_prefix)) == 0) { perm = ZFS_DELEG_PERM_GROUPQUOTA; } else if (strncmp(propname, giq_prefix, strlen(giq_prefix)) == 0) { perm = ZFS_DELEG_PERM_GROUPOBJQUOTA; } else if (strncmp(propname, pq_prefix, strlen(pq_prefix)) == 0) { perm = ZFS_DELEG_PERM_PROJECTQUOTA; } else if (strncmp(propname, piq_prefix, strlen(piq_prefix)) == 0) { perm = ZFS_DELEG_PERM_PROJECTOBJQUOTA; } else { /* {USER|GROUP|PROJECT}USED are read-only */ return (SET_ERROR(EINVAL)); } if ((err = zfs_secpolicy_write_perms(dsname, perm, cr))) return (err); return (0); } return (SET_ERROR(EINVAL)); } if (issnap) return (SET_ERROR(EINVAL)); if (nvpair_type(pair) == DATA_TYPE_NVLIST) { /* * dsl_prop_get_all_impl() returns properties in this * format. */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } /* * Check that this value is valid for this pool version */ switch (prop) { case ZFS_PROP_COMPRESSION: /* * If the user specified gzip compression, make sure * the SPA supports it. We ignore any errors here since * we'll catch them later. */ if (nvpair_value_uint64(pair, &intval) == 0) { compval = ZIO_COMPRESS_ALGO(intval); if (compval >= ZIO_COMPRESS_GZIP_1 && compval <= ZIO_COMPRESS_GZIP_9 && zfs_earlier_version(dsname, SPA_VERSION_GZIP_COMPRESSION)) { return (SET_ERROR(ENOTSUP)); } if (compval == ZIO_COMPRESS_ZLE && zfs_earlier_version(dsname, SPA_VERSION_ZLE_COMPRESSION)) return (SET_ERROR(ENOTSUP)); if (compval == ZIO_COMPRESS_LZ4) { spa_t *spa; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } if (compval == ZIO_COMPRESS_ZSTD) { spa_t *spa; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } } break; case ZFS_PROP_COPIES: if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS)) return (SET_ERROR(ENOTSUP)); break; case ZFS_PROP_VOLBLOCKSIZE: case ZFS_PROP_RECORDSIZE: /* Record sizes above 128k need the feature to be enabled */ if (nvpair_value_uint64(pair, &intval) == 0 && intval > SPA_OLD_MAXBLOCKSIZE) { spa_t *spa; /* * We don't allow setting the property above 1MB, * unless the tunable has been changed. */ if (intval > zfs_max_recordsize || intval > SPA_MAXBLOCKSIZE) return (SET_ERROR(ERANGE)); if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } break; case ZFS_PROP_DNODESIZE: /* Dnode sizes above 512 need the feature to be enabled */ if (nvpair_value_uint64(pair, &intval) == 0 && intval != ZFS_DNSIZE_LEGACY) { spa_t *spa; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } break; case ZFS_PROP_SPECIAL_SMALL_BLOCKS: /* * This property could require the allocation classes * feature to be active for setting, however we allow * it so that tests of settable properties succeed. * The CLI will issue a warning in this case. */ break; case ZFS_PROP_SHARESMB: if (zpl_earlier_version(dsname, ZPL_VERSION_FUID)) return (SET_ERROR(ENOTSUP)); break; case ZFS_PROP_ACLINHERIT: if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { if (intval == ZFS_ACL_PASSTHROUGH_X && zfs_earlier_version(dsname, SPA_VERSION_PASSTHROUGH_X)) return (SET_ERROR(ENOTSUP)); } break; case ZFS_PROP_CHECKSUM: case ZFS_PROP_DEDUP: { spa_feature_t feature; spa_t *spa; int err; /* dedup feature version checks */ if (prop == ZFS_PROP_DEDUP && zfs_earlier_version(dsname, SPA_VERSION_DEDUP)) return (SET_ERROR(ENOTSUP)); if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { /* check prop value is enabled in features */ feature = zio_checksum_to_feature( intval & ZIO_CHECKSUM_MASK); if (feature == SPA_FEATURE_NONE) break; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, feature)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } break; } default: break; } return (zfs_secpolicy_setprop(dsname, prop, pair, CRED())); } /* * Removes properties from the given props list that fail permission checks * needed to clear them and to restore them in case of a receive error. For each * property, make sure we have both set and inherit permissions. * * Returns the first error encountered if any permission checks fail. If the * caller provides a non-NULL errlist, it also gives the complete list of names * of all the properties that failed a permission check along with the * corresponding error numbers. The caller is responsible for freeing the * returned errlist. * * If every property checks out successfully, zero is returned and the list * pointed at by errlist is NULL. */ static int zfs_check_clearable(const char *dataset, nvlist_t *props, nvlist_t **errlist) { zfs_cmd_t *zc; nvpair_t *pair, *next_pair; nvlist_t *errors; int err, rv = 0; if (props == NULL) return (0); VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strlcpy(zc->zc_name, dataset, sizeof (zc->zc_name)); pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { next_pair = nvlist_next_nvpair(props, pair); (void) strlcpy(zc->zc_value, nvpair_name(pair), sizeof (zc->zc_value)); if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 || (err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) { VERIFY(nvlist_remove_nvpair(props, pair) == 0); VERIFY(nvlist_add_int32(errors, zc->zc_value, err) == 0); } pair = next_pair; } kmem_free(zc, sizeof (zfs_cmd_t)); if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { nvlist_free(errors); errors = NULL; } else { VERIFY(nvpair_value_int32(pair, &rv) == 0); } if (errlist == NULL) nvlist_free(errors); else *errlist = errors; return (rv); } static boolean_t propval_equals(nvpair_t *p1, nvpair_t *p2) { if (nvpair_type(p1) == DATA_TYPE_NVLIST) { /* dsl_prop_get_all_impl() format */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p1, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p1) == 0); } if (nvpair_type(p2) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p2, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p2) == 0); } if (nvpair_type(p1) != nvpair_type(p2)) return (B_FALSE); if (nvpair_type(p1) == DATA_TYPE_STRING) { char *valstr1, *valstr2; VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0); VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0); return (strcmp(valstr1, valstr2) == 0); } else { uint64_t intval1, intval2; VERIFY(nvpair_value_uint64(p1, &intval1) == 0); VERIFY(nvpair_value_uint64(p2, &intval2) == 0); return (intval1 == intval2); } } /* * Remove properties from props if they are not going to change (as determined * by comparison with origprops). Remove them from origprops as well, since we * do not need to clear or restore properties that won't change. */ static void props_reduce(nvlist_t *props, nvlist_t *origprops) { nvpair_t *pair, *next_pair; if (origprops == NULL) return; /* all props need to be received */ pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { const char *propname = nvpair_name(pair); nvpair_t *match; next_pair = nvlist_next_nvpair(props, pair); if ((nvlist_lookup_nvpair(origprops, propname, &match) != 0) || !propval_equals(pair, match)) goto next; /* need to set received value */ /* don't clear the existing received value */ (void) nvlist_remove_nvpair(origprops, match); /* don't bother receiving the property */ (void) nvlist_remove_nvpair(props, pair); next: pair = next_pair; } } /* * Extract properties that cannot be set PRIOR to the receipt of a dataset. * For example, refquota cannot be set until after the receipt of a dataset, * because in replication streams, an older/earlier snapshot may exceed the * refquota. We want to receive the older/earlier snapshot, but setting * refquota pre-receipt will set the dsl's ACTUAL quota, which will prevent * the older/earlier snapshot from being received (with EDQUOT). * * The ZFS test "zfs_receive_011_pos" demonstrates such a scenario. * * libzfs will need to be judicious handling errors encountered by props * extracted by this function. */ static nvlist_t * extract_delay_props(nvlist_t *props) { nvlist_t *delayprops; nvpair_t *nvp, *tmp; static const zfs_prop_t delayable[] = { ZFS_PROP_REFQUOTA, ZFS_PROP_KEYLOCATION, /* * Setting ZFS_PROP_SHARESMB requires the objset type to be * known, which is not possible prior to receipt of raw sends. */ ZFS_PROP_SHARESMB, 0 }; int i; VERIFY(nvlist_alloc(&delayprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (nvp = nvlist_next_nvpair(props, NULL); nvp != NULL; nvp = nvlist_next_nvpair(props, nvp)) { /* * strcmp() is safe because zfs_prop_to_name() always returns * a bounded string. */ for (i = 0; delayable[i] != 0; i++) { if (strcmp(zfs_prop_to_name(delayable[i]), nvpair_name(nvp)) == 0) { break; } } if (delayable[i] != 0) { tmp = nvlist_prev_nvpair(props, nvp); VERIFY(nvlist_add_nvpair(delayprops, nvp) == 0); VERIFY(nvlist_remove_nvpair(props, nvp) == 0); nvp = tmp; } } if (nvlist_empty(delayprops)) { nvlist_free(delayprops); delayprops = NULL; } return (delayprops); } static void zfs_allow_log_destroy(void *arg) { char *poolname = arg; if (poolname != NULL) kmem_strfree(poolname); } #ifdef ZFS_DEBUG static boolean_t zfs_ioc_recv_inject_err; #endif /* * nvlist 'errors' is always allocated. It will contain descriptions of * encountered errors, if any. It's the callers responsibility to free. */ static int zfs_ioc_recv_impl(char *tofs, char *tosnap, char *origin, nvlist_t *recvprops, nvlist_t *localprops, nvlist_t *hidden_args, boolean_t force, boolean_t heal, boolean_t resumable, int input_fd, dmu_replay_record_t *begin_record, uint64_t *read_bytes, uint64_t *errflags, nvlist_t **errors) { dmu_recv_cookie_t drc; int error = 0; int props_error = 0; offset_t off, noff; nvlist_t *local_delayprops = NULL; nvlist_t *recv_delayprops = NULL; nvlist_t *inherited_delayprops = NULL; nvlist_t *origprops = NULL; /* existing properties */ nvlist_t *origrecvd = NULL; /* existing received properties */ boolean_t first_recvd_props = B_FALSE; boolean_t tofs_was_redacted; zfs_file_t *input_fp; *read_bytes = 0; *errflags = 0; *errors = fnvlist_alloc(); off = 0; if ((input_fp = zfs_file_get(input_fd)) == NULL) return (SET_ERROR(EBADF)); noff = off = zfs_file_off(input_fp); error = dmu_recv_begin(tofs, tosnap, begin_record, force, heal, resumable, localprops, hidden_args, origin, &drc, input_fp, &off); if (error != 0) goto out; tofs_was_redacted = dsl_get_redacted(drc.drc_ds); /* * Set properties before we receive the stream so that they are applied * to the new data. Note that we must call dmu_recv_stream() if * dmu_recv_begin() succeeds. */ if (recvprops != NULL && !drc.drc_newfs) { if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >= SPA_VERSION_RECVD_PROPS && !dsl_prop_get_hasrecvd(tofs)) first_recvd_props = B_TRUE; /* * If new received properties are supplied, they are to * completely replace the existing received properties, * so stash away the existing ones. */ if (dsl_prop_get_received(tofs, &origrecvd) == 0) { nvlist_t *errlist = NULL; /* * Don't bother writing a property if its value won't * change (and avoid the unnecessary security checks). * * The first receive after SPA_VERSION_RECVD_PROPS is a * special case where we blow away all local properties * regardless. */ if (!first_recvd_props) props_reduce(recvprops, origrecvd); if (zfs_check_clearable(tofs, origrecvd, &errlist) != 0) (void) nvlist_merge(*errors, errlist, 0); nvlist_free(errlist); if (clear_received_props(tofs, origrecvd, first_recvd_props ? NULL : recvprops) != 0) *errflags |= ZPROP_ERR_NOCLEAR; } else { *errflags |= ZPROP_ERR_NOCLEAR; } } /* * Stash away existing properties so we can restore them on error unless * we're doing the first receive after SPA_VERSION_RECVD_PROPS, in which * case "origrecvd" will take care of that. */ if (localprops != NULL && !drc.drc_newfs && !first_recvd_props) { objset_t *os; if (dmu_objset_hold(tofs, FTAG, &os) == 0) { if (dsl_prop_get_all(os, &origprops) != 0) { *errflags |= ZPROP_ERR_NOCLEAR; } dmu_objset_rele(os, FTAG); } else { *errflags |= ZPROP_ERR_NOCLEAR; } } if (recvprops != NULL) { props_error = dsl_prop_set_hasrecvd(tofs); if (props_error == 0) { recv_delayprops = extract_delay_props(recvprops); (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, recvprops, *errors); } } if (localprops != NULL) { nvlist_t *oprops = fnvlist_alloc(); nvlist_t *xprops = fnvlist_alloc(); nvpair_t *nvp = NULL; while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) { if (nvpair_type(nvp) == DATA_TYPE_BOOLEAN) { /* -x property */ const char *name = nvpair_name(nvp); zfs_prop_t prop = zfs_name_to_prop(name); if (prop != ZPROP_USERPROP) { if (!zfs_prop_inheritable(prop)) continue; } else if (!zfs_prop_user(name)) continue; fnvlist_add_boolean(xprops, name); } else { /* -o property=value */ fnvlist_add_nvpair(oprops, nvp); } } local_delayprops = extract_delay_props(oprops); (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, oprops, *errors); inherited_delayprops = extract_delay_props(xprops); (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, xprops, *errors); nvlist_free(oprops); nvlist_free(xprops); } error = dmu_recv_stream(&drc, &off); if (error == 0) { zfsvfs_t *zfsvfs = NULL; zvol_state_handle_t *zv = NULL; if (getzfsvfs(tofs, &zfsvfs) == 0) { /* online recv */ dsl_dataset_t *ds; int end_err; boolean_t stream_is_redacted = DMU_GET_FEATUREFLAGS( begin_record->drr_u.drr_begin. drr_versioninfo) & DMU_BACKUP_FEATURE_REDACTED; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); /* * If the suspend fails, then the recv_end will * likely also fail, and clean up after itself. */ end_err = dmu_recv_end(&drc, zfsvfs); /* * If the dataset was not redacted, but we received a * redacted stream onto it, we need to unmount the * dataset. Otherwise, resume the filesystem. */ if (error == 0 && !drc.drc_newfs && stream_is_redacted && !tofs_was_redacted) { error = zfs_end_fs(zfsvfs, ds); } else if (error == 0) { error = zfs_resume_fs(zfsvfs, ds); } error = error ? error : end_err; zfs_vfs_rele(zfsvfs); } else if ((zv = zvol_suspend(tofs)) != NULL) { error = dmu_recv_end(&drc, zvol_tag(zv)); zvol_resume(zv); } else { error = dmu_recv_end(&drc, NULL); } /* Set delayed properties now, after we're done receiving. */ if (recv_delayprops != NULL && error == 0) { (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, recv_delayprops, *errors); } if (local_delayprops != NULL && error == 0) { (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, local_delayprops, *errors); } if (inherited_delayprops != NULL && error == 0) { (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, inherited_delayprops, *errors); } } /* * Merge delayed props back in with initial props, in case * we're DEBUG and zfs_ioc_recv_inject_err is set (which means * we have to make sure clear_received_props() includes * the delayed properties). * * Since zfs_ioc_recv_inject_err is only in DEBUG kernels, * using ASSERT() will be just like a VERIFY. */ if (recv_delayprops != NULL) { ASSERT(nvlist_merge(recvprops, recv_delayprops, 0) == 0); nvlist_free(recv_delayprops); } if (local_delayprops != NULL) { ASSERT(nvlist_merge(localprops, local_delayprops, 0) == 0); nvlist_free(local_delayprops); } if (inherited_delayprops != NULL) { ASSERT(nvlist_merge(localprops, inherited_delayprops, 0) == 0); nvlist_free(inherited_delayprops); } *read_bytes = off - noff; #ifdef ZFS_DEBUG if (zfs_ioc_recv_inject_err) { zfs_ioc_recv_inject_err = B_FALSE; error = 1; } #endif /* * On error, restore the original props. */ if (error != 0 && recvprops != NULL && !drc.drc_newfs) { if (clear_received_props(tofs, recvprops, NULL) != 0) { /* * We failed to clear the received properties. * Since we may have left a $recvd value on the * system, we can't clear the $hasrecvd flag. */ *errflags |= ZPROP_ERR_NORESTORE; } else if (first_recvd_props) { dsl_prop_unset_hasrecvd(tofs); } if (origrecvd == NULL && !drc.drc_newfs) { /* We failed to stash the original properties. */ *errflags |= ZPROP_ERR_NORESTORE; } /* * dsl_props_set() will not convert RECEIVED to LOCAL on or * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL * explicitly if we're restoring local properties cleared in the * first new-style receive. */ if (origrecvd != NULL && zfs_set_prop_nvlist(tofs, (first_recvd_props ? ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED), origrecvd, NULL) != 0) { /* * We stashed the original properties but failed to * restore them. */ *errflags |= ZPROP_ERR_NORESTORE; } } if (error != 0 && localprops != NULL && !drc.drc_newfs && !first_recvd_props) { nvlist_t *setprops; nvlist_t *inheritprops; nvpair_t *nvp; if (origprops == NULL) { /* We failed to stash the original properties. */ *errflags |= ZPROP_ERR_NORESTORE; goto out; } /* Restore original props */ setprops = fnvlist_alloc(); inheritprops = fnvlist_alloc(); nvp = NULL; while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) { const char *name = nvpair_name(nvp); const char *source; nvlist_t *attrs; if (!nvlist_exists(origprops, name)) { /* * Property was not present or was explicitly * inherited before the receive, restore this. */ fnvlist_add_boolean(inheritprops, name); continue; } attrs = fnvlist_lookup_nvlist(origprops, name); source = fnvlist_lookup_string(attrs, ZPROP_SOURCE); /* Skip received properties */ if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) continue; if (strcmp(source, tofs) == 0) { /* Property was locally set */ fnvlist_add_nvlist(setprops, name, attrs); } else { /* Property was implicitly inherited */ fnvlist_add_boolean(inheritprops, name); } } if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, setprops, NULL) != 0) *errflags |= ZPROP_ERR_NORESTORE; if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, inheritprops, NULL) != 0) *errflags |= ZPROP_ERR_NORESTORE; nvlist_free(setprops); nvlist_free(inheritprops); } out: zfs_file_put(input_fp); nvlist_free(origrecvd); nvlist_free(origprops); if (error == 0) error = props_error; return (error); } /* * inputs: * zc_name name of containing filesystem (unused) * zc_nvlist_src{_size} nvlist of properties to apply * zc_nvlist_conf{_size} nvlist of properties to exclude * (DATA_TYPE_BOOLEAN) and override (everything else) * zc_value name of snapshot to create * zc_string name of clone origin (if DRR_FLAG_CLONE) * zc_cookie file descriptor to recv from * zc_begin_record the BEGIN record of the stream (not byteswapped) * zc_guid force flag * * outputs: * zc_cookie number of bytes read * zc_obj zprop_errflags_t * zc_nvlist_dst{_size} error for each unapplied received property */ static int zfs_ioc_recv(zfs_cmd_t *zc) { dmu_replay_record_t begin_record; nvlist_t *errors = NULL; nvlist_t *recvdprops = NULL; nvlist_t *localprops = NULL; char *origin = NULL; char *tosnap; char tofs[ZFS_MAX_DATASET_NAME_LEN]; int error = 0; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '@') == NULL || strchr(zc->zc_value, '%')) return (SET_ERROR(EINVAL)); (void) strlcpy(tofs, zc->zc_value, sizeof (tofs)); tosnap = strchr(tofs, '@'); *tosnap++ = '\0'; if (zc->zc_nvlist_src != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &recvdprops)) != 0) return (error); if (zc->zc_nvlist_conf != 0 && (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &localprops)) != 0) return (error); if (zc->zc_string[0]) origin = zc->zc_string; begin_record.drr_type = DRR_BEGIN; begin_record.drr_payloadlen = 0; begin_record.drr_u.drr_begin = zc->zc_begin_record; error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvdprops, localprops, NULL, zc->zc_guid, B_FALSE, B_FALSE, zc->zc_cookie, &begin_record, &zc->zc_cookie, &zc->zc_obj, &errors); nvlist_free(recvdprops); nvlist_free(localprops); /* * Now that all props, initial and delayed, are set, report the prop * errors to the caller. */ if (zc->zc_nvlist_dst_size != 0 && errors != NULL && (nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 || put_nvlist(zc, errors) != 0)) { /* * Caller made zc->zc_nvlist_dst less than the minimum expected * size or supplied an invalid address. */ error = SET_ERROR(EINVAL); } nvlist_free(errors); return (error); } /* * innvl: { * "snapname" -> full name of the snapshot to create * (optional) "props" -> received properties to set (nvlist) * (optional) "localprops" -> override and exclude properties (nvlist) * (optional) "origin" -> name of clone origin (DRR_FLAG_CLONE) * "begin_record" -> non-byteswapped dmu_replay_record_t * "input_fd" -> file descriptor to read stream from (int32) * (optional) "force" -> force flag (value ignored) * (optional) "heal" -> use send stream to heal data corruption * (optional) "resumable" -> resumable flag (value ignored) * (optional) "cleanup_fd" -> unused * (optional) "action_handle" -> unused * (optional) "hidden_args" -> { "wkeydata" -> value } * } * * outnvl: { * "read_bytes" -> number of bytes read * "error_flags" -> zprop_errflags_t * "errors" -> error for each unapplied received property (nvlist) * } */ static const zfs_ioc_key_t zfs_keys_recv_new[] = { {"snapname", DATA_TYPE_STRING, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"localprops", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"origin", DATA_TYPE_STRING, ZK_OPTIONAL}, {"begin_record", DATA_TYPE_BYTE_ARRAY, 0}, {"input_fd", DATA_TYPE_INT32, 0}, {"force", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"heal", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"resumable", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL}, {"action_handle", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_recv_new(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { dmu_replay_record_t *begin_record; uint_t begin_record_size; nvlist_t *errors = NULL; nvlist_t *recvprops = NULL; nvlist_t *localprops = NULL; nvlist_t *hidden_args = NULL; char *snapname; char *origin = NULL; char *tosnap; char tofs[ZFS_MAX_DATASET_NAME_LEN]; boolean_t force; boolean_t heal; boolean_t resumable; uint64_t read_bytes = 0; uint64_t errflags = 0; int input_fd = -1; int error; snapname = fnvlist_lookup_string(innvl, "snapname"); if (dataset_namecheck(snapname, NULL, NULL) != 0 || strchr(snapname, '@') == NULL || strchr(snapname, '%')) return (SET_ERROR(EINVAL)); (void) strlcpy(tofs, snapname, sizeof (tofs)); tosnap = strchr(tofs, '@'); *tosnap++ = '\0'; error = nvlist_lookup_string(innvl, "origin", &origin); if (error && error != ENOENT) return (error); error = nvlist_lookup_byte_array(innvl, "begin_record", (uchar_t **)&begin_record, &begin_record_size); if (error != 0 || begin_record_size != sizeof (*begin_record)) return (SET_ERROR(EINVAL)); input_fd = fnvlist_lookup_int32(innvl, "input_fd"); force = nvlist_exists(innvl, "force"); heal = nvlist_exists(innvl, "heal"); resumable = nvlist_exists(innvl, "resumable"); /* we still use "props" here for backwards compatibility */ error = nvlist_lookup_nvlist(innvl, "props", &recvprops); if (error && error != ENOENT) return (error); error = nvlist_lookup_nvlist(innvl, "localprops", &localprops); if (error && error != ENOENT) return (error); error = nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); if (error && error != ENOENT) return (error); error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvprops, localprops, hidden_args, force, heal, resumable, input_fd, begin_record, &read_bytes, &errflags, &errors); fnvlist_add_uint64(outnvl, "read_bytes", read_bytes); fnvlist_add_uint64(outnvl, "error_flags", errflags); fnvlist_add_nvlist(outnvl, "errors", errors); nvlist_free(errors); nvlist_free(recvprops); nvlist_free(localprops); return (error); } typedef struct dump_bytes_io { zfs_file_t *dbi_fp; caddr_t dbi_buf; int dbi_len; int dbi_err; } dump_bytes_io_t; static void dump_bytes_cb(void *arg) { dump_bytes_io_t *dbi = (dump_bytes_io_t *)arg; zfs_file_t *fp; caddr_t buf; fp = dbi->dbi_fp; buf = dbi->dbi_buf; dbi->dbi_err = zfs_file_write(fp, buf, dbi->dbi_len, NULL); } static int dump_bytes(objset_t *os, void *buf, int len, void *arg) { dump_bytes_io_t dbi; dbi.dbi_fp = arg; dbi.dbi_buf = buf; dbi.dbi_len = len; #if defined(HAVE_LARGE_STACKS) dump_bytes_cb(&dbi); #else /* * The vn_rdwr() call is performed in a taskq to ensure that there is * always enough stack space to write safely to the target filesystem. * The ZIO_TYPE_FREE threads are used because there can be a lot of * them and they are used in vdev_file.c for a similar purpose. */ spa_taskq_dispatch_sync(dmu_objset_spa(os), ZIO_TYPE_FREE, ZIO_TASKQ_ISSUE, dump_bytes_cb, &dbi, TQ_SLEEP); #endif /* HAVE_LARGE_STACKS */ return (dbi.dbi_err); } /* * inputs: * zc_name name of snapshot to send * zc_cookie file descriptor to send stream to * zc_obj fromorigin flag (mutually exclusive with zc_fromobj) * zc_sendobj objsetid of snapshot to send * zc_fromobj objsetid of incremental fromsnap (may be zero) * zc_guid if set, estimate size of stream only. zc_cookie is ignored. * output size in zc_objset_type. * zc_flags lzc_send_flags * * outputs: * zc_objset_type estimated size, if zc_guid is set * * NOTE: This is no longer the preferred interface, any new functionality * should be added to zfs_ioc_send_new() instead. */ static int zfs_ioc_send(zfs_cmd_t *zc) { int error; offset_t off; boolean_t estimate = (zc->zc_guid != 0); boolean_t embedok = (zc->zc_flags & 0x1); boolean_t large_block_ok = (zc->zc_flags & 0x2); boolean_t compressok = (zc->zc_flags & 0x4); boolean_t rawok = (zc->zc_flags & 0x8); boolean_t savedok = (zc->zc_flags & 0x10); if (zc->zc_obj != 0) { dsl_pool_t *dp; dsl_dataset_t *tosnap; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (dsl_dir_is_clone(tosnap->ds_dir)) zc->zc_fromobj = dsl_dir_phys(tosnap->ds_dir)->dd_origin_obj; dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } if (estimate) { dsl_pool_t *dp; dsl_dataset_t *tosnap; dsl_dataset_t *fromsnap = NULL; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (zc->zc_fromobj != 0) { error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, FTAG, &fromsnap); if (error != 0) { dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } } error = dmu_send_estimate_fast(tosnap, fromsnap, NULL, compressok || rawok, savedok, &zc->zc_objset_type); if (fromsnap != NULL) dsl_dataset_rele(fromsnap, FTAG); dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } else { zfs_file_t *fp; dmu_send_outparams_t out = {0}; if ((fp = zfs_file_get(zc->zc_cookie)) == NULL) return (SET_ERROR(EBADF)); off = zfs_file_off(fp); out.dso_outfunc = dump_bytes; out.dso_arg = fp; out.dso_dryrun = B_FALSE; error = dmu_send_obj(zc->zc_name, zc->zc_sendobj, zc->zc_fromobj, embedok, large_block_ok, compressok, rawok, savedok, zc->zc_cookie, &off, &out); zfs_file_put(fp); } return (error); } /* * inputs: * zc_name name of snapshot on which to report progress * zc_cookie file descriptor of send stream * * outputs: * zc_cookie number of bytes written in send stream thus far * zc_objset_type logical size of data traversed by send thus far */ static int zfs_ioc_send_progress(zfs_cmd_t *zc) { dsl_pool_t *dp; dsl_dataset_t *ds; dmu_sendstatus_t *dsp = NULL; int error; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } mutex_enter(&ds->ds_sendstream_lock); /* * Iterate over all the send streams currently active on this dataset. * If there's one which matches the specified file descriptor _and_ the * stream was started by the current process, return the progress of * that stream. */ for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL; dsp = list_next(&ds->ds_sendstreams, dsp)) { if (dsp->dss_outfd == zc->zc_cookie && zfs_proc_is_caller(dsp->dss_proc)) break; } if (dsp != NULL) { zc->zc_cookie = atomic_cas_64((volatile uint64_t *)dsp->dss_off, 0, 0); /* This is the closest thing we have to atomic_read_64. */ zc->zc_objset_type = atomic_cas_64(&dsp->dss_blocks, 0, 0); } else { error = SET_ERROR(ENOENT); } mutex_exit(&ds->ds_sendstream_lock); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } static int zfs_ioc_inject_fault(zfs_cmd_t *zc) { int id, error; error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, &zc->zc_inject_record); if (error == 0) zc->zc_guid = (uint64_t)id; return (error); } static int zfs_ioc_clear_fault(zfs_cmd_t *zc) { return (zio_clear_fault((int)zc->zc_guid)); } static int zfs_ioc_inject_list_next(zfs_cmd_t *zc) { int id = (int)zc->zc_guid; int error; error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), &zc->zc_inject_record); zc->zc_guid = id; return (error); } static int zfs_ioc_error_log(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, &zc->zc_nvlist_dst_size); spa_close(spa, FTAG); return (error); } static int zfs_ioc_clear(zfs_cmd_t *zc) { spa_t *spa; vdev_t *vd; int error; /* * On zpool clear we also fix up missing slogs */ mutex_enter(&spa_namespace_lock); spa = spa_lookup(zc->zc_name); if (spa == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EIO)); } if (spa_get_log_state(spa) == SPA_LOG_MISSING) { /* we need to let spa_open/spa_load clear the chains */ spa_set_log_state(spa, SPA_LOG_CLEAR); } spa->spa_last_open_failed = 0; mutex_exit(&spa_namespace_lock); if (zc->zc_cookie & ZPOOL_NO_REWIND) { error = spa_open(zc->zc_name, &spa, FTAG); } else { nvlist_t *policy; nvlist_t *config = NULL; if (zc->zc_nvlist_src == 0) return (SET_ERROR(EINVAL)); if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) { error = spa_open_rewind(zc->zc_name, &spa, FTAG, policy, &config); if (config != NULL) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; nvlist_free(config); } nvlist_free(policy); } } if (error != 0) return (error); /* * If multihost is enabled, resuming I/O is unsafe as another * host may have imported the pool. */ if (spa_multihost(spa) && spa_suspended(spa)) return (SET_ERROR(EINVAL)); spa_vdev_state_enter(spa, SCL_NONE); if (zc->zc_guid == 0) { vd = NULL; } else { vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE); if (vd == NULL) { error = SET_ERROR(ENODEV); (void) spa_vdev_state_exit(spa, NULL, error); spa_close(spa, FTAG); return (error); } } vdev_clear(spa, vd); (void) spa_vdev_state_exit(spa, spa_suspended(spa) ? NULL : spa->spa_root_vdev, 0); /* * Resume any suspended I/Os. */ if (zio_resume(spa) != 0) error = SET_ERROR(EIO); spa_close(spa, FTAG); return (error); } /* * Reopen all the vdevs associated with the pool. * * innvl: { * "scrub_restart" -> when true and scrub is running, allow to restart * scrub as the side effect of the reopen (boolean). * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_pool_reopen[] = { {"scrub_restart", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, }; static int zfs_ioc_pool_reopen(const char *pool, nvlist_t *innvl, nvlist_t *outnvl) { (void) outnvl; spa_t *spa; int error; boolean_t rc, scrub_restart = B_TRUE; if (innvl) { error = nvlist_lookup_boolean_value(innvl, "scrub_restart", &rc); if (error == 0) scrub_restart = rc; } error = spa_open(pool, &spa, FTAG); if (error != 0) return (error); spa_vdev_state_enter(spa, SCL_NONE); /* * If the scrub_restart flag is B_FALSE and a scrub is already * in progress then set spa_scrub_reopen flag to B_TRUE so that * we don't restart the scrub as a side effect of the reopen. * Otherwise, let vdev_open() decided if a resilver is required. */ spa->spa_scrub_reopen = (!scrub_restart && dsl_scan_scrubbing(spa->spa_dsl_pool)); vdev_reopen(spa->spa_root_vdev); spa->spa_scrub_reopen = B_FALSE; (void) spa_vdev_state_exit(spa, NULL, 0); spa_close(spa, FTAG); return (0); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_string name of conflicting snapshot, if there is one */ static int zfs_ioc_promote(zfs_cmd_t *zc) { dsl_pool_t *dp; dsl_dataset_t *ds, *ods; char origin[ZFS_MAX_DATASET_NAME_LEN]; char *cp; int error; zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || strchr(zc->zc_name, '%')) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (!dsl_dir_is_clone(ds->ds_dir)) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (SET_ERROR(EINVAL)); } error = dsl_dataset_hold_obj(dp, dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &ods); if (error != 0) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } dsl_dataset_name(ods, origin); dsl_dataset_rele(ods, FTAG); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); /* * We don't need to unmount *all* the origin fs's snapshots, but * it's easier. */ cp = strchr(origin, '@'); if (cp) *cp = '\0'; (void) dmu_objset_find(origin, zfs_unmount_snap_cb, NULL, DS_FIND_SNAPSHOTS); return (dsl_dataset_promote(zc->zc_name, zc->zc_string)); } /* * Retrieve a single {user|group|project}{used|quota}@... property. * * inputs: * zc_name name of filesystem * zc_objset_type zfs_userquota_prop_t * zc_value domain name (eg. "S-1-234-567-89") * zc_guid RID/UID/GID * * outputs: * zc_cookie property value */ static int zfs_ioc_userspace_one(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int error; if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error != 0) return (error); error = zfs_userspace_one(zfsvfs, zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_objset_type zfs_userquota_prop_t * zc_nvlist_dst[_size] buffer to fill (not really an nvlist) * * outputs: * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t) * zc_cookie zap cursor */ static int zfs_ioc_userspace_many(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int bufsize = zc->zc_nvlist_dst_size; if (bufsize <= 0) return (SET_ERROR(ENOMEM)); int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error != 0) return (error); void *buf = vmem_alloc(bufsize, KM_SLEEP); error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, buf, &zc->zc_nvlist_dst_size); if (error == 0) { error = xcopyout(buf, (void *)(uintptr_t)zc->zc_nvlist_dst, zc->zc_nvlist_dst_size); } vmem_free(buf, bufsize); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * none */ static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc) { int error = 0; zfsvfs_t *zfsvfs; if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { if (!dmu_objset_userused_enabled(zfsvfs->z_os)) { /* * If userused is not enabled, it may be because the * objset needs to be closed & reopened (to grow the * objset_phys_t). Suspend/resume the fs will do that. */ dsl_dataset_t *ds, *newds; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); if (error == 0) { dmu_objset_refresh_ownership(ds, &newds, B_TRUE, zfsvfs); error = zfs_resume_fs(zfsvfs, newds); } } if (error == 0) { mutex_enter(&zfsvfs->z_os->os_upgrade_lock); if (zfsvfs->z_os->os_upgrade_id == 0) { /* clear potential error code and retry */ zfsvfs->z_os->os_upgrade_status = 0; mutex_exit(&zfsvfs->z_os->os_upgrade_lock); dsl_pool_config_enter( dmu_objset_pool(zfsvfs->z_os), FTAG); dmu_objset_userspace_upgrade(zfsvfs->z_os); dsl_pool_config_exit( dmu_objset_pool(zfsvfs->z_os), FTAG); } else { mutex_exit(&zfsvfs->z_os->os_upgrade_lock); } taskq_wait_id(zfsvfs->z_os->os_spa->spa_upgrade_taskq, zfsvfs->z_os->os_upgrade_id); error = zfsvfs->z_os->os_upgrade_status; } zfs_vfs_rele(zfsvfs); } else { objset_t *os; /* XXX kind of reading contents without owning */ error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os); if (error != 0) return (error); mutex_enter(&os->os_upgrade_lock); if (os->os_upgrade_id == 0) { /* clear potential error code and retry */ os->os_upgrade_status = 0; mutex_exit(&os->os_upgrade_lock); dmu_objset_userspace_upgrade(os); } else { mutex_exit(&os->os_upgrade_lock); } dsl_pool_rele(dmu_objset_pool(os), FTAG); taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id); error = os->os_upgrade_status; dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, FTAG); } return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * none */ static int zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc) { objset_t *os; int error; error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os); if (error != 0) return (error); if (dmu_objset_userobjspace_upgradable(os) || dmu_objset_projectquota_upgradable(os)) { mutex_enter(&os->os_upgrade_lock); if (os->os_upgrade_id == 0) { /* clear potential error code and retry */ os->os_upgrade_status = 0; mutex_exit(&os->os_upgrade_lock); dmu_objset_id_quota_upgrade(os); } else { mutex_exit(&os->os_upgrade_lock); } dsl_pool_rele(dmu_objset_pool(os), FTAG); taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id); error = os->os_upgrade_status; } else { dsl_pool_rele(dmu_objset_pool(os), FTAG); } dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, FTAG); return (error); } static int zfs_ioc_share(zfs_cmd_t *zc) { return (SET_ERROR(ENOSYS)); } /* * inputs: * zc_name name of containing filesystem * zc_obj object # beyond which we want next in-use object # * * outputs: * zc_obj next in-use object # */ static int zfs_ioc_next_obj(zfs_cmd_t *zc) { objset_t *os = NULL; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) return (error); error = dmu_object_next(os, &zc->zc_obj, B_FALSE, 0); dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_value prefix name for snapshot * zc_cleanup_fd cleanup-on-exit file descriptor for calling process * * outputs: * zc_value short name of new snapshot */ static int zfs_ioc_tmp_snapshot(zfs_cmd_t *zc) { char *snap_name; char *hold_name; minor_t minor; zfs_file_t *fp = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor); if (fp == NULL) return (SET_ERROR(EBADF)); snap_name = kmem_asprintf("%s-%016llx", zc->zc_value, (u_longlong_t)ddi_get_lbolt64()); hold_name = kmem_asprintf("%%%s", zc->zc_value); int error = dsl_dataset_snapshot_tmp(zc->zc_name, snap_name, minor, hold_name); if (error == 0) (void) strlcpy(zc->zc_value, snap_name, sizeof (zc->zc_value)); kmem_strfree(snap_name); kmem_strfree(hold_name); zfs_onexit_fd_rele(fp); return (error); } /* * inputs: * zc_name name of "to" snapshot * zc_value name of "from" snapshot * zc_cookie file descriptor to write diff data on * * outputs: * dmu_diff_record_t's to the file descriptor */ static int zfs_ioc_diff(zfs_cmd_t *zc) { zfs_file_t *fp; offset_t off; int error; if ((fp = zfs_file_get(zc->zc_cookie)) == NULL) return (SET_ERROR(EBADF)); off = zfs_file_off(fp); error = dmu_diff(zc->zc_name, zc->zc_value, fp, &off); zfs_file_put(fp); return (error); } static int zfs_ioc_smb_acl(zfs_cmd_t *zc) { return (SET_ERROR(ENOTSUP)); } /* * innvl: { * "holds" -> { snapname -> holdname (string), ... } * (optional) "cleanup_fd" -> fd (int32) * } * * outnvl: { * snapname -> error value (int32) * ... * } */ static const zfs_ioc_key_t zfs_keys_hold[] = { {"holds", DATA_TYPE_NVLIST, 0}, {"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL}, }; static int zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist) { (void) pool; nvpair_t *pair; nvlist_t *holds; int cleanup_fd = -1; int error; minor_t minor = 0; zfs_file_t *fp = NULL; holds = fnvlist_lookup_nvlist(args, "holds"); /* make sure the user didn't pass us any invalid (empty) tags */ for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; pair = nvlist_next_nvpair(holds, pair)) { char *htag; error = nvpair_value_string(pair, &htag); if (error != 0) return (SET_ERROR(error)); if (strlen(htag) == 0) return (SET_ERROR(EINVAL)); } if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) { fp = zfs_onexit_fd_hold(cleanup_fd, &minor); if (fp == NULL) return (SET_ERROR(EBADF)); } error = dsl_dataset_user_hold(holds, minor, errlist); if (fp != NULL) { ASSERT3U(minor, !=, 0); zfs_onexit_fd_rele(fp); } return (SET_ERROR(error)); } /* * innvl is not used. * * outnvl: { * holdname -> time added (uint64 seconds since epoch) * ... * } */ static const zfs_ioc_key_t zfs_keys_get_holds[] = { /* no nvl keys */ }; static int zfs_ioc_get_holds(const char *snapname, nvlist_t *args, nvlist_t *outnvl) { (void) args; return (dsl_dataset_get_holds(snapname, outnvl)); } /* * innvl: { * snapname -> { holdname, ... } * ... * } * * outnvl: { * snapname -> error value (int32) * ... * } */ static const zfs_ioc_key_t zfs_keys_release[] = { {"...", DATA_TYPE_NVLIST, ZK_WILDCARDLIST}, }; static int zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist) { (void) pool; return (dsl_dataset_user_release(holds, errlist)); } /* * inputs: * zc_guid flags (ZEVENT_NONBLOCK) * zc_cleanup_fd zevent file descriptor * * outputs: * zc_nvlist_dst next nvlist event * zc_cookie dropped events since last get */ static int zfs_ioc_events_next(zfs_cmd_t *zc) { zfs_zevent_t *ze; nvlist_t *event = NULL; minor_t minor; uint64_t dropped = 0; int error; zfs_file_t *fp = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze); if (fp == NULL) return (SET_ERROR(EBADF)); do { error = zfs_zevent_next(ze, &event, &zc->zc_nvlist_dst_size, &dropped); if (event != NULL) { zc->zc_cookie = dropped; error = put_nvlist(zc, event); nvlist_free(event); } if (zc->zc_guid & ZEVENT_NONBLOCK) break; if ((error == 0) || (error != ENOENT)) break; error = zfs_zevent_wait(ze); if (error != 0) break; } while (1); zfs_zevent_fd_rele(fp); return (error); } /* * outputs: * zc_cookie cleared events count */ static int zfs_ioc_events_clear(zfs_cmd_t *zc) { uint_t count; zfs_zevent_drain_all(&count); zc->zc_cookie = count; return (0); } /* * inputs: * zc_guid eid | ZEVENT_SEEK_START | ZEVENT_SEEK_END * zc_cleanup zevent file descriptor */ static int zfs_ioc_events_seek(zfs_cmd_t *zc) { zfs_zevent_t *ze; minor_t minor; int error; zfs_file_t *fp = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze); if (fp == NULL) return (SET_ERROR(EBADF)); error = zfs_zevent_seek(ze, zc->zc_guid); zfs_zevent_fd_rele(fp); return (error); } /* * inputs: * zc_name name of later filesystem or snapshot * zc_value full name of old snapshot or bookmark * * outputs: * zc_cookie space in bytes * zc_objset_type compressed space in bytes * zc_perm_action uncompressed space in bytes */ static int zfs_ioc_space_written(zfs_cmd_t *zc) { int error; dsl_pool_t *dp; dsl_dataset_t *new; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &new); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (strchr(zc->zc_value, '#') != NULL) { zfs_bookmark_phys_t bmp; error = dsl_bookmark_lookup(dp, zc->zc_value, new, &bmp); if (error == 0) { error = dsl_dataset_space_written_bookmark(&bmp, new, &zc->zc_cookie, &zc->zc_objset_type, &zc->zc_perm_action); } } else { dsl_dataset_t *old; error = dsl_dataset_hold(dp, zc->zc_value, FTAG, &old); if (error == 0) { error = dsl_dataset_space_written(old, new, &zc->zc_cookie, &zc->zc_objset_type, &zc->zc_perm_action); dsl_dataset_rele(old, FTAG); } } dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * innvl: { * "firstsnap" -> snapshot name * } * * outnvl: { * "used" -> space in bytes * "compressed" -> compressed space in bytes * "uncompressed" -> uncompressed space in bytes * } */ static const zfs_ioc_key_t zfs_keys_space_snaps[] = { {"firstsnap", DATA_TYPE_STRING, 0}, }; static int zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl, nvlist_t *outnvl) { int error; dsl_pool_t *dp; dsl_dataset_t *new, *old; char *firstsnap; uint64_t used, comp, uncomp; firstsnap = fnvlist_lookup_string(innvl, "firstsnap"); error = dsl_pool_hold(lastsnap, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, lastsnap, FTAG, &new); if (error == 0 && !new->ds_is_snapshot) { dsl_dataset_rele(new, FTAG); error = SET_ERROR(EINVAL); } if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_hold(dp, firstsnap, FTAG, &old); if (error == 0 && !old->ds_is_snapshot) { dsl_dataset_rele(old, FTAG); error = SET_ERROR(EINVAL); } if (error != 0) { dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_space_wouldfree(old, new, &used, &comp, &uncomp); dsl_dataset_rele(old, FTAG); dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); fnvlist_add_uint64(outnvl, "used", used); fnvlist_add_uint64(outnvl, "compressed", comp); fnvlist_add_uint64(outnvl, "uncompressed", uncomp); return (error); } /* * innvl: { * "fd" -> file descriptor to write stream to (int32) * (optional) "fromsnap" -> full snap name to send an incremental from * (optional) "largeblockok" -> (value ignored) * indicates that blocks > 128KB are permitted * (optional) "embedok" -> (value ignored) * presence indicates DRR_WRITE_EMBEDDED records are permitted * (optional) "compressok" -> (value ignored) * presence indicates compressed DRR_WRITE records are permitted * (optional) "rawok" -> (value ignored) * presence indicates raw encrypted records should be used. * (optional) "savedok" -> (value ignored) * presence indicates we should send a partially received snapshot * (optional) "resume_object" and "resume_offset" -> (uint64) * if present, resume send stream from specified object and offset. * (optional) "redactbook" -> (string) * if present, use this bookmark's redaction list to generate a redacted * send stream * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_send_new[] = { {"fd", DATA_TYPE_INT32, 0}, {"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL}, {"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"savedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"redactbook", DATA_TYPE_STRING, ZK_OPTIONAL}, }; static int zfs_ioc_send_new(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { (void) outnvl; int error; offset_t off; char *fromname = NULL; int fd; zfs_file_t *fp; boolean_t largeblockok; boolean_t embedok; boolean_t compressok; boolean_t rawok; boolean_t savedok; uint64_t resumeobj = 0; uint64_t resumeoff = 0; char *redactbook = NULL; fd = fnvlist_lookup_int32(innvl, "fd"); (void) nvlist_lookup_string(innvl, "fromsnap", &fromname); largeblockok = nvlist_exists(innvl, "largeblockok"); embedok = nvlist_exists(innvl, "embedok"); compressok = nvlist_exists(innvl, "compressok"); rawok = nvlist_exists(innvl, "rawok"); savedok = nvlist_exists(innvl, "savedok"); (void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj); (void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff); (void) nvlist_lookup_string(innvl, "redactbook", &redactbook); if ((fp = zfs_file_get(fd)) == NULL) return (SET_ERROR(EBADF)); off = zfs_file_off(fp); dmu_send_outparams_t out = {0}; out.dso_outfunc = dump_bytes; out.dso_arg = fp; out.dso_dryrun = B_FALSE; error = dmu_send(snapname, fromname, embedok, largeblockok, compressok, rawok, savedok, resumeobj, resumeoff, redactbook, fd, &off, &out); zfs_file_put(fp); return (error); } static int send_space_sum(objset_t *os, void *buf, int len, void *arg) { (void) os, (void) buf; uint64_t *size = arg; *size += len; return (0); } /* * Determine approximately how large a zfs send stream will be -- the number * of bytes that will be written to the fd supplied to zfs_ioc_send_new(). * * innvl: { * (optional) "from" -> full snap or bookmark name to send an incremental * from * (optional) "largeblockok" -> (value ignored) * indicates that blocks > 128KB are permitted * (optional) "embedok" -> (value ignored) * presence indicates DRR_WRITE_EMBEDDED records are permitted * (optional) "compressok" -> (value ignored) * presence indicates compressed DRR_WRITE records are permitted * (optional) "rawok" -> (value ignored) * presence indicates raw encrypted records should be used. * (optional) "resume_object" and "resume_offset" -> (uint64) * if present, resume send stream from specified object and offset. * (optional) "fd" -> file descriptor to use as a cookie for progress * tracking (int32) * } * * outnvl: { * "space" -> bytes of space (uint64) * } */ static const zfs_ioc_key_t zfs_keys_send_space[] = { {"from", DATA_TYPE_STRING, ZK_OPTIONAL}, {"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL}, {"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"fd", DATA_TYPE_INT32, ZK_OPTIONAL}, {"redactbook", DATA_TYPE_STRING, ZK_OPTIONAL}, {"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"bytes", DATA_TYPE_UINT64, ZK_OPTIONAL}, }; static int zfs_ioc_send_space(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { dsl_pool_t *dp; dsl_dataset_t *tosnap; dsl_dataset_t *fromsnap = NULL; int error; char *fromname = NULL; char *redactlist_book = NULL; boolean_t largeblockok; boolean_t embedok; boolean_t compressok; boolean_t rawok; boolean_t savedok; uint64_t space = 0; boolean_t full_estimate = B_FALSE; uint64_t resumeobj = 0; uint64_t resumeoff = 0; uint64_t resume_bytes = 0; int32_t fd = -1; zfs_bookmark_phys_t zbm = {0}; error = dsl_pool_hold(snapname, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, snapname, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } (void) nvlist_lookup_int32(innvl, "fd", &fd); largeblockok = nvlist_exists(innvl, "largeblockok"); embedok = nvlist_exists(innvl, "embedok"); compressok = nvlist_exists(innvl, "compressok"); rawok = nvlist_exists(innvl, "rawok"); savedok = nvlist_exists(innvl, "savedok"); boolean_t from = (nvlist_lookup_string(innvl, "from", &fromname) == 0); boolean_t altbook = (nvlist_lookup_string(innvl, "redactbook", &redactlist_book) == 0); (void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj); (void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff); (void) nvlist_lookup_uint64(innvl, "bytes", &resume_bytes); if (altbook) { full_estimate = B_TRUE; } else if (from) { if (strchr(fromname, '#')) { error = dsl_bookmark_lookup(dp, fromname, tosnap, &zbm); /* * dsl_bookmark_lookup() will fail with EXDEV if * the from-bookmark and tosnap are at the same txg. * However, it's valid to do a send (and therefore, * a send estimate) from and to the same time point, * if the bookmark is redacted (the incremental send * can change what's redacted on the target). In * this case, dsl_bookmark_lookup() fills in zbm * but returns EXDEV. Ignore this error. */ if (error == EXDEV && zbm.zbm_redaction_obj != 0 && zbm.zbm_guid == dsl_dataset_phys(tosnap)->ds_guid) error = 0; if (error != 0) { dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } if (zbm.zbm_redaction_obj != 0 || !(zbm.zbm_flags & ZBM_FLAG_HAS_FBN)) { full_estimate = B_TRUE; } } else if (strchr(fromname, '@')) { error = dsl_dataset_hold(dp, fromname, FTAG, &fromsnap); if (error != 0) { dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } if (!dsl_dataset_is_before(tosnap, fromsnap, 0)) { full_estimate = B_TRUE; dsl_dataset_rele(fromsnap, FTAG); } } else { /* * from is not properly formatted as a snapshot or * bookmark */ dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (SET_ERROR(EINVAL)); } } if (full_estimate) { dmu_send_outparams_t out = {0}; offset_t off = 0; out.dso_outfunc = send_space_sum; out.dso_arg = &space; out.dso_dryrun = B_TRUE; /* * We have to release these holds so dmu_send can take them. It * will do all the error checking we need. */ dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); error = dmu_send(snapname, fromname, embedok, largeblockok, compressok, rawok, savedok, resumeobj, resumeoff, redactlist_book, fd, &off, &out); } else { error = dmu_send_estimate_fast(tosnap, fromsnap, (from && strchr(fromname, '#') != NULL ? &zbm : NULL), compressok || rawok, savedok, &space); space -= resume_bytes; if (fromsnap != NULL) dsl_dataset_rele(fromsnap, FTAG); dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } fnvlist_add_uint64(outnvl, "space", space); return (error); } /* * Sync the currently open TXG to disk for the specified pool. * This is somewhat similar to 'zfs_sync()'. * For cases that do not result in error this ioctl will wait for * the currently open TXG to commit before returning back to the caller. * * innvl: { * "force" -> when true, force uberblock update even if there is no dirty data. * In addition this will cause the vdev configuration to be written * out including updating the zpool cache file. (boolean_t) * } * * onvl is unused */ static const zfs_ioc_key_t zfs_keys_pool_sync[] = { {"force", DATA_TYPE_BOOLEAN_VALUE, 0}, }; static int zfs_ioc_pool_sync(const char *pool, nvlist_t *innvl, nvlist_t *onvl) { (void) onvl; int err; boolean_t rc, force = B_FALSE; spa_t *spa; if ((err = spa_open(pool, &spa, FTAG)) != 0) return (err); if (innvl) { err = nvlist_lookup_boolean_value(innvl, "force", &rc); if (err == 0) force = rc; } if (force) { spa_config_enter(spa, SCL_CONFIG, FTAG, RW_WRITER); vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); } txg_wait_synced(spa_get_dsl(spa), 0); spa_close(spa, FTAG); return (0); } /* * Load a user's wrapping key into the kernel. * innvl: { * "hidden_args" -> { "wkeydata" -> value } * raw uint8_t array of encryption wrapping key data (32 bytes) * (optional) "noop" -> (value ignored) * presence indicated key should only be verified, not loaded * } */ static const zfs_ioc_key_t zfs_keys_load_key[] = { {"hidden_args", DATA_TYPE_NVLIST, 0}, {"noop", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, }; static int zfs_ioc_load_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) { (void) outnvl; int ret; dsl_crypto_params_t *dcp = NULL; nvlist_t *hidden_args; boolean_t noop = nvlist_exists(innvl, "noop"); if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { ret = SET_ERROR(EINVAL); goto error; } hidden_args = fnvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS); ret = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, hidden_args, &dcp); if (ret != 0) goto error; ret = spa_keystore_load_wkey(dsname, dcp, noop); if (ret != 0) goto error; dsl_crypto_params_free(dcp, noop); return (0); error: dsl_crypto_params_free(dcp, B_TRUE); return (ret); } /* * Unload a user's wrapping key from the kernel. * Both innvl and outnvl are unused. */ static const zfs_ioc_key_t zfs_keys_unload_key[] = { /* no nvl keys */ }; static int zfs_ioc_unload_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) { (void) innvl, (void) outnvl; int ret = 0; if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { ret = (SET_ERROR(EINVAL)); goto out; } ret = spa_keystore_unload_wkey(dsname); if (ret != 0) goto out; out: return (ret); } /* * Changes a user's wrapping key used to decrypt a dataset. The keyformat, * keylocation, pbkdf2salt, and pbkdf2iters properties can also be specified * here to change how the key is derived in userspace. * * innvl: { * "hidden_args" (optional) -> { "wkeydata" -> value } * raw uint8_t array of new encryption wrapping key data (32 bytes) * "props" (optional) -> { prop -> value } * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_change_key[] = { {"crypt_cmd", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_change_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) { (void) outnvl; int ret; uint64_t cmd = DCP_CMD_NONE; dsl_crypto_params_t *dcp = NULL; nvlist_t *args = NULL, *hidden_args = NULL; if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { ret = (SET_ERROR(EINVAL)); goto error; } (void) nvlist_lookup_uint64(innvl, "crypt_cmd", &cmd); (void) nvlist_lookup_nvlist(innvl, "props", &args); (void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); ret = dsl_crypto_params_create_nvlist(cmd, args, hidden_args, &dcp); if (ret != 0) goto error; ret = spa_keystore_change_key(dsname, dcp); if (ret != 0) goto error; dsl_crypto_params_free(dcp, B_FALSE); return (0); error: dsl_crypto_params_free(dcp, B_TRUE); return (ret); } static zfs_ioc_vec_t zfs_ioc_vec[ZFS_IOC_LAST - ZFS_IOC_FIRST]; static void zfs_ioctl_register_legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, boolean_t log_history, zfs_ioc_poolcheck_t pool_check) { zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; ASSERT3U(ioc, >=, ZFS_IOC_FIRST); ASSERT3U(ioc, <, ZFS_IOC_LAST); ASSERT3P(vec->zvec_legacy_func, ==, NULL); ASSERT3P(vec->zvec_func, ==, NULL); vec->zvec_legacy_func = func; vec->zvec_secpolicy = secpolicy; vec->zvec_namecheck = namecheck; vec->zvec_allow_log = log_history; vec->zvec_pool_check = pool_check; } /* * See the block comment at the beginning of this file for details on * each argument to this function. */ void zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, zfs_ioc_poolcheck_t pool_check, boolean_t smush_outnvlist, boolean_t allow_log, const zfs_ioc_key_t *nvl_keys, size_t num_keys) { zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; ASSERT3U(ioc, >=, ZFS_IOC_FIRST); ASSERT3U(ioc, <, ZFS_IOC_LAST); ASSERT3P(vec->zvec_legacy_func, ==, NULL); ASSERT3P(vec->zvec_func, ==, NULL); /* if we are logging, the name must be valid */ ASSERT(!allow_log || namecheck != NO_NAME); vec->zvec_name = name; vec->zvec_func = func; vec->zvec_secpolicy = secpolicy; vec->zvec_namecheck = namecheck; vec->zvec_pool_check = pool_check; vec->zvec_smush_outnvlist = smush_outnvlist; vec->zvec_allow_log = allow_log; vec->zvec_nvl_keys = nvl_keys; vec->zvec_nvl_key_count = num_keys; } static void zfs_ioctl_register_pool(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, boolean_t log_history, zfs_ioc_poolcheck_t pool_check) { zfs_ioctl_register_legacy(ioc, func, secpolicy, POOL_NAME, log_history, pool_check); } void zfs_ioctl_register_dataset_nolog(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_poolcheck_t pool_check) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_FALSE, pool_check); } static void zfs_ioctl_register_pool_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) { zfs_ioctl_register_legacy(ioc, func, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } static void zfs_ioctl_register_pool_meta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, NO_NAME, B_FALSE, POOL_CHECK_NONE); } static void zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED); } static void zfs_ioctl_register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) { zfs_ioctl_register_dataset_read_secpolicy(ioc, func, zfs_secpolicy_read); } static void zfs_ioctl_register_dataset_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } static void zfs_ioctl_init(void) { zfs_ioctl_register("snapshot", ZFS_IOC_SNAPSHOT, zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_snapshot, ARRAY_SIZE(zfs_keys_snapshot)); zfs_ioctl_register("log_history", ZFS_IOC_LOG_HISTORY, zfs_ioc_log_history, zfs_secpolicy_log_history, NO_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_log_history, ARRAY_SIZE(zfs_keys_log_history)); zfs_ioctl_register("space_snaps", ZFS_IOC_SPACE_SNAPS, zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_space_snaps, ARRAY_SIZE(zfs_keys_space_snaps)); zfs_ioctl_register("send", ZFS_IOC_SEND_NEW, zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_send_new, ARRAY_SIZE(zfs_keys_send_new)); zfs_ioctl_register("send_space", ZFS_IOC_SEND_SPACE, zfs_ioc_send_space, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_send_space, ARRAY_SIZE(zfs_keys_send_space)); zfs_ioctl_register("create", ZFS_IOC_CREATE, zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_create, ARRAY_SIZE(zfs_keys_create)); zfs_ioctl_register("clone", ZFS_IOC_CLONE, zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_clone, ARRAY_SIZE(zfs_keys_clone)); zfs_ioctl_register("remap", ZFS_IOC_REMAP, zfs_ioc_remap, zfs_secpolicy_none, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, zfs_keys_remap, ARRAY_SIZE(zfs_keys_remap)); zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS, zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_destroy_snaps, ARRAY_SIZE(zfs_keys_destroy_snaps)); zfs_ioctl_register("hold", ZFS_IOC_HOLD, zfs_ioc_hold, zfs_secpolicy_hold, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_hold, ARRAY_SIZE(zfs_keys_hold)); zfs_ioctl_register("release", ZFS_IOC_RELEASE, zfs_ioc_release, zfs_secpolicy_release, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_release, ARRAY_SIZE(zfs_keys_release)); zfs_ioctl_register("get_holds", ZFS_IOC_GET_HOLDS, zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_holds, ARRAY_SIZE(zfs_keys_get_holds)); zfs_ioctl_register("rollback", ZFS_IOC_ROLLBACK, zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, zfs_keys_rollback, ARRAY_SIZE(zfs_keys_rollback)); zfs_ioctl_register("bookmark", ZFS_IOC_BOOKMARK, zfs_ioc_bookmark, zfs_secpolicy_bookmark, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_bookmark, ARRAY_SIZE(zfs_keys_bookmark)); zfs_ioctl_register("get_bookmarks", ZFS_IOC_GET_BOOKMARKS, zfs_ioc_get_bookmarks, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_bookmarks, ARRAY_SIZE(zfs_keys_get_bookmarks)); zfs_ioctl_register("get_bookmark_props", ZFS_IOC_GET_BOOKMARK_PROPS, zfs_ioc_get_bookmark_props, zfs_secpolicy_read, ENTITY_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_bookmark_props, ARRAY_SIZE(zfs_keys_get_bookmark_props)); zfs_ioctl_register("destroy_bookmarks", ZFS_IOC_DESTROY_BOOKMARKS, zfs_ioc_destroy_bookmarks, zfs_secpolicy_destroy_bookmarks, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_destroy_bookmarks, ARRAY_SIZE(zfs_keys_destroy_bookmarks)); zfs_ioctl_register("receive", ZFS_IOC_RECV_NEW, zfs_ioc_recv_new, zfs_secpolicy_recv, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_recv_new, ARRAY_SIZE(zfs_keys_recv_new)); zfs_ioctl_register("load-key", ZFS_IOC_LOAD_KEY, zfs_ioc_load_key, zfs_secpolicy_load_key, DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, zfs_keys_load_key, ARRAY_SIZE(zfs_keys_load_key)); zfs_ioctl_register("unload-key", ZFS_IOC_UNLOAD_KEY, zfs_ioc_unload_key, zfs_secpolicy_load_key, DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, zfs_keys_unload_key, ARRAY_SIZE(zfs_keys_unload_key)); zfs_ioctl_register("change-key", ZFS_IOC_CHANGE_KEY, zfs_ioc_change_key, zfs_secpolicy_change_key, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_change_key, ARRAY_SIZE(zfs_keys_change_key)); zfs_ioctl_register("sync", ZFS_IOC_POOL_SYNC, zfs_ioc_pool_sync, zfs_secpolicy_none, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_pool_sync, ARRAY_SIZE(zfs_keys_pool_sync)); zfs_ioctl_register("reopen", ZFS_IOC_POOL_REOPEN, zfs_ioc_pool_reopen, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, zfs_keys_pool_reopen, ARRAY_SIZE(zfs_keys_pool_reopen)); zfs_ioctl_register("channel_program", ZFS_IOC_CHANNEL_PROGRAM, zfs_ioc_channel_program, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_channel_program, ARRAY_SIZE(zfs_keys_channel_program)); zfs_ioctl_register("redact", ZFS_IOC_REDACT, zfs_ioc_redact, zfs_secpolicy_config, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_redact, ARRAY_SIZE(zfs_keys_redact)); zfs_ioctl_register("zpool_checkpoint", ZFS_IOC_POOL_CHECKPOINT, zfs_ioc_pool_checkpoint, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_checkpoint, ARRAY_SIZE(zfs_keys_pool_checkpoint)); zfs_ioctl_register("zpool_discard_checkpoint", ZFS_IOC_POOL_DISCARD_CHECKPOINT, zfs_ioc_pool_discard_checkpoint, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_discard_checkpoint, ARRAY_SIZE(zfs_keys_pool_discard_checkpoint)); zfs_ioctl_register("initialize", ZFS_IOC_POOL_INITIALIZE, zfs_ioc_pool_initialize, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_initialize, ARRAY_SIZE(zfs_keys_pool_initialize)); zfs_ioctl_register("trim", ZFS_IOC_POOL_TRIM, zfs_ioc_pool_trim, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_trim, ARRAY_SIZE(zfs_keys_pool_trim)); zfs_ioctl_register("wait", ZFS_IOC_WAIT, zfs_ioc_wait, zfs_secpolicy_none, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_pool_wait, ARRAY_SIZE(zfs_keys_pool_wait)); zfs_ioctl_register("wait_fs", ZFS_IOC_WAIT_FS, zfs_ioc_wait_fs, zfs_secpolicy_none, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_fs_wait, ARRAY_SIZE(zfs_keys_fs_wait)); zfs_ioctl_register("set_bootenv", ZFS_IOC_SET_BOOTENV, zfs_ioc_set_bootenv, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, zfs_keys_set_bootenv, ARRAY_SIZE(zfs_keys_set_bootenv)); zfs_ioctl_register("get_bootenv", ZFS_IOC_GET_BOOTENV, zfs_ioc_get_bootenv, zfs_secpolicy_none, POOL_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_TRUE, zfs_keys_get_bootenv, ARRAY_SIZE(zfs_keys_get_bootenv)); zfs_ioctl_register("zpool_vdev_get_props", ZFS_IOC_VDEV_GET_PROPS, zfs_ioc_vdev_get_props, zfs_secpolicy_read, POOL_NAME, POOL_CHECK_NONE, B_FALSE, B_FALSE, zfs_keys_vdev_get_props, ARRAY_SIZE(zfs_keys_vdev_get_props)); zfs_ioctl_register("zpool_vdev_set_props", ZFS_IOC_VDEV_SET_PROPS, zfs_ioc_vdev_set_props, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_vdev_set_props, ARRAY_SIZE(zfs_keys_vdev_set_props)); /* IOCTLS that use the legacy function signature */ zfs_ioctl_register_legacy(ZFS_IOC_POOL_FREEZE, zfs_ioc_pool_freeze, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY); zfs_ioctl_register_pool(ZFS_IOC_POOL_CREATE, zfs_ioc_pool_create, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SCAN, zfs_ioc_pool_scan); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_UPGRADE, zfs_ioc_pool_upgrade); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ADD, zfs_ioc_vdev_add); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_REMOVE, zfs_ioc_vdev_remove); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SET_STATE, zfs_ioc_vdev_set_state); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ATTACH, zfs_ioc_vdev_attach); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_DETACH, zfs_ioc_vdev_detach); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETPATH, zfs_ioc_vdev_setpath); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETFRU, zfs_ioc_vdev_setfru); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SET_PROPS, zfs_ioc_pool_set_props); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SPLIT, zfs_ioc_vdev_split); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_REGUID, zfs_ioc_pool_reguid); zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_CONFIGS, zfs_ioc_pool_configs, zfs_secpolicy_none); zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_TRYIMPORT, zfs_ioc_pool_tryimport, zfs_secpolicy_config); zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_FAULT, zfs_ioc_inject_fault, zfs_secpolicy_inject); zfs_ioctl_register_pool_meta(ZFS_IOC_CLEAR_FAULT, zfs_ioc_clear_fault, zfs_secpolicy_inject); zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_LIST_NEXT, zfs_ioc_inject_list_next, zfs_secpolicy_inject); /* * pool destroy, and export don't log the history as part of * zfsdev_ioctl, but rather zfs_ioc_pool_export * does the logging of those commands. */ zfs_ioctl_register_pool(ZFS_IOC_POOL_DESTROY, zfs_ioc_pool_destroy, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_EXPORT, zfs_ioc_pool_export, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_STATS, zfs_ioc_pool_stats, zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_PROPS, zfs_ioc_pool_get_props, zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_ERROR_LOG, zfs_ioc_error_log, zfs_secpolicy_inject, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_DSOBJ_TO_DSNAME, zfs_ioc_dsobj_to_dsname, zfs_secpolicy_diff, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_HISTORY, zfs_ioc_pool_get_history, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_IMPORT, zfs_ioc_pool_import, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_CLEAR, zfs_ioc_clear, zfs_secpolicy_config, B_TRUE, POOL_CHECK_READONLY); zfs_ioctl_register_dataset_read(ZFS_IOC_SPACE_WRITTEN, zfs_ioc_space_written); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_RECVD_PROPS, zfs_ioc_objset_recvd_props); zfs_ioctl_register_dataset_read(ZFS_IOC_NEXT_OBJ, zfs_ioc_next_obj); zfs_ioctl_register_dataset_read(ZFS_IOC_GET_FSACL, zfs_ioc_get_fsacl); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_STATS, zfs_ioc_objset_stats); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_ZPLPROPS, zfs_ioc_objset_zplprops); zfs_ioctl_register_dataset_read(ZFS_IOC_DATASET_LIST_NEXT, zfs_ioc_dataset_list_next); zfs_ioctl_register_dataset_read(ZFS_IOC_SNAPSHOT_LIST_NEXT, zfs_ioc_snapshot_list_next); zfs_ioctl_register_dataset_read(ZFS_IOC_SEND_PROGRESS, zfs_ioc_send_progress); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_DIFF, zfs_ioc_diff, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_STATS, zfs_ioc_obj_to_stats, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_PATH, zfs_ioc_obj_to_path, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_ONE, zfs_ioc_userspace_one, zfs_secpolicy_userspace_one); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_MANY, zfs_ioc_userspace_many, zfs_secpolicy_userspace_many); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_SEND, zfs_ioc_send, zfs_secpolicy_send); zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_PROP, zfs_ioc_set_prop, zfs_secpolicy_none); zfs_ioctl_register_dataset_modify(ZFS_IOC_DESTROY, zfs_ioc_destroy, zfs_secpolicy_destroy); zfs_ioctl_register_dataset_modify(ZFS_IOC_RENAME, zfs_ioc_rename, zfs_secpolicy_rename); zfs_ioctl_register_dataset_modify(ZFS_IOC_RECV, zfs_ioc_recv, zfs_secpolicy_recv); zfs_ioctl_register_dataset_modify(ZFS_IOC_PROMOTE, zfs_ioc_promote, zfs_secpolicy_promote); zfs_ioctl_register_dataset_modify(ZFS_IOC_INHERIT_PROP, zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop); zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_FSACL, zfs_ioc_set_fsacl, zfs_secpolicy_set_fsacl); zfs_ioctl_register_dataset_nolog(ZFS_IOC_SHARE, zfs_ioc_share, zfs_secpolicy_share, POOL_CHECK_NONE); zfs_ioctl_register_dataset_nolog(ZFS_IOC_SMB_ACL, zfs_ioc_smb_acl, zfs_secpolicy_smb_acl, POOL_CHECK_NONE); zfs_ioctl_register_dataset_nolog(ZFS_IOC_USERSPACE_UPGRADE, zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); zfs_ioctl_register_dataset_nolog(ZFS_IOC_TMP_SNAPSHOT, zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_NEXT, zfs_ioc_events_next, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_CLEAR, zfs_ioc_events_clear, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_SEEK, zfs_ioc_events_seek, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_init_os(); } /* * Verify that for non-legacy ioctls the input nvlist * pairs match against the expected input. * * Possible errors are: * ZFS_ERR_IOC_ARG_UNAVAIL An unrecognized nvpair was encountered * ZFS_ERR_IOC_ARG_REQUIRED A required nvpair is missing * ZFS_ERR_IOC_ARG_BADTYPE Invalid type for nvpair */ static int zfs_check_input_nvpairs(nvlist_t *innvl, const zfs_ioc_vec_t *vec) { const zfs_ioc_key_t *nvl_keys = vec->zvec_nvl_keys; boolean_t required_keys_found = B_FALSE; /* * examine each input pair */ for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char *name = nvpair_name(pair); data_type_t type = nvpair_type(pair); boolean_t identified = B_FALSE; /* * check pair against the documented names and type */ for (int k = 0; k < vec->zvec_nvl_key_count; k++) { /* if not a wild card name, check for an exact match */ if ((nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) == 0 && strcmp(nvl_keys[k].zkey_name, name) != 0) continue; identified = B_TRUE; if (nvl_keys[k].zkey_type != DATA_TYPE_ANY && nvl_keys[k].zkey_type != type) { return (SET_ERROR(ZFS_ERR_IOC_ARG_BADTYPE)); } if (nvl_keys[k].zkey_flags & ZK_OPTIONAL) continue; required_keys_found = B_TRUE; break; } /* allow an 'optional' key, everything else is invalid */ if (!identified && (strcmp(name, "optional") != 0 || type != DATA_TYPE_NVLIST)) { return (SET_ERROR(ZFS_ERR_IOC_ARG_UNAVAIL)); } } /* verify that all required keys were found */ for (int k = 0; k < vec->zvec_nvl_key_count; k++) { if (nvl_keys[k].zkey_flags & ZK_OPTIONAL) continue; if (nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) { /* at least one non-optional key is expected here */ if (!required_keys_found) return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED)); continue; } if (!nvlist_exists(innvl, nvl_keys[k].zkey_name)) return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED)); } return (0); } static int pool_status_check(const char *name, zfs_ioc_namecheck_t type, zfs_ioc_poolcheck_t check) { spa_t *spa; int error; ASSERT(type == POOL_NAME || type == DATASET_NAME || type == ENTITY_NAME); if (check & POOL_CHECK_NONE) return (0); error = spa_open(name, &spa, FTAG); if (error == 0) { if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa)) error = SET_ERROR(EAGAIN); else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa)) error = SET_ERROR(EROFS); spa_close(spa, FTAG); } return (error); } int zfsdev_getminor(zfs_file_t *fp, minor_t *minorp) { zfsdev_state_t *zs, *fpd; ASSERT(!MUTEX_HELD(&zfsdev_state_lock)); fpd = zfs_file_private(fp); if (fpd == NULL) return (SET_ERROR(EBADF)); mutex_enter(&zfsdev_state_lock); for (zs = &zfsdev_state_listhead; zs != NULL; zs = zs->zs_next) { if (zs->zs_minor == -1) continue; if (fpd == zs) { *minorp = fpd->zs_minor; mutex_exit(&zfsdev_state_lock); return (0); } } mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EBADF)); } void * zfsdev_get_state(minor_t minor, enum zfsdev_state_type which) { zfsdev_state_t *zs; for (zs = &zfsdev_state_listhead; zs != NULL; zs = zs->zs_next) { if (zs->zs_minor == minor) { membar_consumer(); switch (which) { case ZST_ONEXIT: return (zs->zs_onexit); case ZST_ZEVENT: return (zs->zs_zevent); case ZST_ALL: return (zs); } } } return (NULL); } /* * Find a free minor number. The zfsdev_state_list is expected to * be short since it is only a list of currently open file handles. */ static minor_t zfsdev_minor_alloc(void) { static minor_t last_minor = 0; minor_t m; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); for (m = last_minor + 1; m != last_minor; m++) { if (m > ZFSDEV_MAX_MINOR) m = 1; if (zfsdev_get_state(m, ZST_ALL) == NULL) { last_minor = m; return (m); } } return (0); } int zfsdev_state_init(void *priv) { zfsdev_state_t *zs, *zsprev = NULL; minor_t minor; boolean_t newzs = B_FALSE; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); minor = zfsdev_minor_alloc(); if (minor == 0) return (SET_ERROR(ENXIO)); for (zs = &zfsdev_state_listhead; zs != NULL; zs = zs->zs_next) { if (zs->zs_minor == -1) break; zsprev = zs; } if (!zs) { zs = kmem_zalloc(sizeof (zfsdev_state_t), KM_SLEEP); newzs = B_TRUE; } zfsdev_private_set_state(priv, zs); zfs_onexit_init((zfs_onexit_t **)&zs->zs_onexit); zfs_zevent_init((zfs_zevent_t **)&zs->zs_zevent); /* * In order to provide for lock-free concurrent read access * to the minor list in zfsdev_get_state(), new entries * must be completely written before linking them into the * list whereas existing entries are already linked; the last * operation must be updating zs_minor (from -1 to the new * value). */ if (newzs) { zs->zs_minor = minor; membar_producer(); zsprev->zs_next = zs; } else { membar_producer(); zs->zs_minor = minor; } return (0); } void zfsdev_state_destroy(void *priv) { zfsdev_state_t *zs = zfsdev_private_get_state(priv); ASSERT(zs != NULL); ASSERT3S(zs->zs_minor, >, 0); /* * The last reference to this zfsdev file descriptor is being dropped. * We don't have to worry about lookup grabbing this state object, and * zfsdev_state_init() will not try to reuse this object until it is * invalidated by setting zs_minor to -1. Invalidation must be done * last, with a memory barrier to ensure ordering. This lets us avoid * taking the global zfsdev state lock around destruction. */ zfs_onexit_destroy(zs->zs_onexit); zfs_zevent_destroy(zs->zs_zevent); zs->zs_onexit = NULL; zs->zs_zevent = NULL; membar_producer(); zs->zs_minor = -1; } long zfsdev_ioctl_common(uint_t vecnum, zfs_cmd_t *zc, int flag) { int error, cmd; const zfs_ioc_vec_t *vec; char *saved_poolname = NULL; uint64_t max_nvlist_src_size; size_t saved_poolname_len = 0; nvlist_t *innvl = NULL; fstrans_cookie_t cookie; hrtime_t start_time = gethrtime(); cmd = vecnum; error = 0; if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) return (SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL)); vec = &zfs_ioc_vec[vecnum]; /* * The registered ioctl list may be sparse, verify that either * a normal or legacy handler are registered. */ if (vec->zvec_func == NULL && vec->zvec_legacy_func == NULL) return (SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL)); zc->zc_iflags = flag & FKIOCTL; max_nvlist_src_size = zfs_max_nvlist_src_size_os(); if (zc->zc_nvlist_src_size > max_nvlist_src_size) { /* * Make sure the user doesn't pass in an insane value for * zc_nvlist_src_size. We have to check, since we will end * up allocating that much memory inside of get_nvlist(). This * prevents a nefarious user from allocating tons of kernel * memory. * * Also, we return EINVAL instead of ENOMEM here. The reason * being that returning ENOMEM from an ioctl() has a special * connotation; that the user's size value is too small and * needs to be expanded to hold the nvlist. See * zcmd_expand_dst_nvlist() for details. */ error = SET_ERROR(EINVAL); /* User's size too big */ } else if (zc->zc_nvlist_src_size != 0) { error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &innvl); if (error != 0) goto out; } /* * Ensure that all pool/dataset names are valid before we pass down to * the lower layers. */ zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; switch (vec->zvec_namecheck) { case POOL_NAME: if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) error = SET_ERROR(EINVAL); else error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); break; case DATASET_NAME: if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) error = SET_ERROR(EINVAL); else error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); break; case ENTITY_NAME: if (entity_namecheck(zc->zc_name, NULL, NULL) != 0) { error = SET_ERROR(EINVAL); } else { error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); } break; case NO_NAME: break; } /* * Ensure that all input pairs are valid before we pass them down * to the lower layers. * * The vectored functions can use fnvlist_lookup_{type} for any * required pairs since zfs_check_input_nvpairs() confirmed that * they exist and are of the correct type. */ if (error == 0 && vec->zvec_func != NULL) { error = zfs_check_input_nvpairs(innvl, vec); if (error != 0) goto out; } if (error == 0) { cookie = spl_fstrans_mark(); error = vec->zvec_secpolicy(zc, innvl, CRED()); spl_fstrans_unmark(cookie); } if (error != 0) goto out; /* legacy ioctls can modify zc_name */ /* * Can't use kmem_strdup() as we might truncate the string and * kmem_strfree() would then free with incorrect size. */ saved_poolname_len = strlen(zc->zc_name) + 1; saved_poolname = kmem_alloc(saved_poolname_len, KM_SLEEP); strlcpy(saved_poolname, zc->zc_name, saved_poolname_len); saved_poolname[strcspn(saved_poolname, "/@#")] = '\0'; if (vec->zvec_func != NULL) { nvlist_t *outnvl; int puterror = 0; spa_t *spa; nvlist_t *lognv = NULL; ASSERT(vec->zvec_legacy_func == NULL); /* * Add the innvl to the lognv before calling the func, * in case the func changes the innvl. */ if (vec->zvec_allow_log) { lognv = fnvlist_alloc(); fnvlist_add_string(lognv, ZPOOL_HIST_IOCTL, vec->zvec_name); if (!nvlist_empty(innvl)) { fnvlist_add_nvlist(lognv, ZPOOL_HIST_INPUT_NVL, innvl); } } outnvl = fnvlist_alloc(); cookie = spl_fstrans_mark(); error = vec->zvec_func(zc->zc_name, innvl, outnvl); spl_fstrans_unmark(cookie); /* * Some commands can partially execute, modify state, and still * return an error. In these cases, attempt to record what * was modified. */ if ((error == 0 || (cmd == ZFS_IOC_CHANNEL_PROGRAM && error != EINVAL)) && vec->zvec_allow_log && spa_open(zc->zc_name, &spa, FTAG) == 0) { if (!nvlist_empty(outnvl)) { size_t out_size = fnvlist_size(outnvl); if (out_size > zfs_history_output_max) { fnvlist_add_int64(lognv, ZPOOL_HIST_OUTPUT_SIZE, out_size); } else { fnvlist_add_nvlist(lognv, ZPOOL_HIST_OUTPUT_NVL, outnvl); } } if (error != 0) { fnvlist_add_int64(lognv, ZPOOL_HIST_ERRNO, error); } fnvlist_add_int64(lognv, ZPOOL_HIST_ELAPSED_NS, gethrtime() - start_time); (void) spa_history_log_nvl(spa, lognv); spa_close(spa, FTAG); } fnvlist_free(lognv); if (!nvlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) { int smusherror = 0; if (vec->zvec_smush_outnvlist) { smusherror = nvlist_smush(outnvl, zc->zc_nvlist_dst_size); } if (smusherror == 0) puterror = put_nvlist(zc, outnvl); } if (puterror != 0) error = puterror; nvlist_free(outnvl); } else { cookie = spl_fstrans_mark(); error = vec->zvec_legacy_func(zc); spl_fstrans_unmark(cookie); } out: nvlist_free(innvl); if (error == 0 && vec->zvec_allow_log) { char *s = tsd_get(zfs_allow_log_key); if (s != NULL) kmem_strfree(s); (void) tsd_set(zfs_allow_log_key, kmem_strdup(saved_poolname)); } if (saved_poolname != NULL) kmem_free(saved_poolname, saved_poolname_len); return (error); } int zfs_kmod_init(void) { int error; if ((error = zvol_init()) != 0) return (error); spa_init(SPA_MODE_READ | SPA_MODE_WRITE); zfs_init(); zfs_ioctl_init(); mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL); zfsdev_state_listhead.zs_minor = -1; if ((error = zfsdev_attach()) != 0) goto out; tsd_create(&zfs_fsyncer_key, NULL); tsd_create(&rrw_tsd_key, rrw_tsd_destroy); tsd_create(&zfs_allow_log_key, zfs_allow_log_destroy); return (0); out: zfs_fini(); spa_fini(); zvol_fini(); return (error); } void zfs_kmod_fini(void) { zfsdev_state_t *zs, *zsnext = NULL; zfsdev_detach(); mutex_destroy(&zfsdev_state_lock); for (zs = &zfsdev_state_listhead; zs != NULL; zs = zsnext) { zsnext = zs->zs_next; if (zs->zs_onexit) zfs_onexit_destroy(zs->zs_onexit); if (zs->zs_zevent) zfs_zevent_destroy(zs->zs_zevent); } zfs_ereport_taskq_fini(); /* run before zfs_fini() on Linux */ zfs_fini(); spa_fini(); zvol_fini(); tsd_destroy(&zfs_fsyncer_key); tsd_destroy(&rrw_tsd_key); tsd_destroy(&zfs_allow_log_key); } ZFS_MODULE_PARAM(zfs, zfs_, max_nvlist_src_size, U64, ZMOD_RW, "Maximum size in bytes allowed for src nvlist passed with ZFS ioctls"); ZFS_MODULE_PARAM(zfs, zfs_, history_output_max, U64, ZMOD_RW, "Maximum size in bytes of ZFS ioctl output that will be logged"); diff --git a/module/zfs/zfs_log.c b/module/zfs/zfs_log.c index 77bf9140d52d..d009c58d8644 100644 --- a/module/zfs/zfs_log.c +++ b/module/zfs/zfs_log.c @@ -1,895 +1,947 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2015, 2018 by Delphix. All rights reserved. + * Copyright (c) 2022 by Pawel Jakub Dawidek */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * These zfs_log_* functions must be called within a dmu tx, in one * of 2 contexts depending on zilog->z_replay: * * Non replay mode * --------------- * We need to record the transaction so that if it is committed to * the Intent Log then it can be replayed. An intent log transaction * structure (itx_t) is allocated and all the information necessary to * possibly replay the transaction is saved in it. The itx is then assigned * a sequence number and inserted in the in-memory list anchored in the zilog. * * Replay mode * ----------- * We need to mark the intent log record as replayed in the log header. * This is done in the same transaction as the replay so that they * commit atomically. */ int zfs_log_create_txtype(zil_create_t type, vsecattr_t *vsecp, vattr_t *vap) { int isxvattr = (vap->va_mask & ATTR_XVATTR); switch (type) { case Z_FILE: if (vsecp == NULL && !isxvattr) return (TX_CREATE); if (vsecp && isxvattr) return (TX_CREATE_ACL_ATTR); if (vsecp) return (TX_CREATE_ACL); else return (TX_CREATE_ATTR); case Z_DIR: if (vsecp == NULL && !isxvattr) return (TX_MKDIR); if (vsecp && isxvattr) return (TX_MKDIR_ACL_ATTR); if (vsecp) return (TX_MKDIR_ACL); else return (TX_MKDIR_ATTR); case Z_XATTRDIR: return (TX_MKXATTR); } ASSERT(0); return (TX_MAX_TYPE); } /* * build up the log data necessary for logging xvattr_t * First lr_attr_t is initialized. following the lr_attr_t * is the mapsize and attribute bitmap copied from the xvattr_t. * Following the bitmap and bitmapsize two 64 bit words are reserved * for the create time which may be set. Following the create time * records a single 64 bit integer which has the bits to set on * replay for the xvattr. */ static void zfs_log_xvattr(lr_attr_t *lrattr, xvattr_t *xvap) { xoptattr_t *xoap; xoap = xva_getxoptattr(xvap); ASSERT(xoap); lrattr->lr_attr_masksize = xvap->xva_mapsize; uint32_t *bitmap = &lrattr->lr_attr_bitmap; for (int i = 0; i != xvap->xva_mapsize; i++, bitmap++) *bitmap = xvap->xva_reqattrmap[i]; lr_attr_end_t *end = (lr_attr_end_t *)bitmap; end->lr_attr_attrs = 0; end->lr_attr_crtime[0] = 0; end->lr_attr_crtime[1] = 0; memset(end->lr_attr_scanstamp, 0, AV_SCANSTAMP_SZ); if (XVA_ISSET_REQ(xvap, XAT_READONLY)) end->lr_attr_attrs |= (xoap->xoa_readonly == 0) ? 0 : XAT0_READONLY; if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) end->lr_attr_attrs |= (xoap->xoa_hidden == 0) ? 0 : XAT0_HIDDEN; if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) end->lr_attr_attrs |= (xoap->xoa_system == 0) ? 0 : XAT0_SYSTEM; if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) end->lr_attr_attrs |= (xoap->xoa_archive == 0) ? 0 : XAT0_ARCHIVE; if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) end->lr_attr_attrs |= (xoap->xoa_immutable == 0) ? 0 : XAT0_IMMUTABLE; if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) end->lr_attr_attrs |= (xoap->xoa_nounlink == 0) ? 0 : XAT0_NOUNLINK; if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) end->lr_attr_attrs |= (xoap->xoa_appendonly == 0) ? 0 : XAT0_APPENDONLY; if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) end->lr_attr_attrs |= (xoap->xoa_opaque == 0) ? 0 : XAT0_APPENDONLY; if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) end->lr_attr_attrs |= (xoap->xoa_nodump == 0) ? 0 : XAT0_NODUMP; if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) end->lr_attr_attrs |= (xoap->xoa_av_quarantined == 0) ? 0 : XAT0_AV_QUARANTINED; if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) end->lr_attr_attrs |= (xoap->xoa_av_modified == 0) ? 0 : XAT0_AV_MODIFIED; if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) ZFS_TIME_ENCODE(&xoap->xoa_createtime, end->lr_attr_crtime); if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { ASSERT(!XVA_ISSET_REQ(xvap, XAT_PROJID)); memcpy(end->lr_attr_scanstamp, xoap->xoa_av_scanstamp, AV_SCANSTAMP_SZ); } else if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { /* * XAT_PROJID and XAT_AV_SCANSTAMP will never be valid * at the same time, so we can share the same space. */ memcpy(end->lr_attr_scanstamp, &xoap->xoa_projid, sizeof (uint64_t)); } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) end->lr_attr_attrs |= (xoap->xoa_reparse == 0) ? 0 : XAT0_REPARSE; if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) end->lr_attr_attrs |= (xoap->xoa_offline == 0) ? 0 : XAT0_OFFLINE; if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) end->lr_attr_attrs |= (xoap->xoa_sparse == 0) ? 0 : XAT0_SPARSE; if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) end->lr_attr_attrs |= (xoap->xoa_projinherit == 0) ? 0 : XAT0_PROJINHERIT; } static void * zfs_log_fuid_ids(zfs_fuid_info_t *fuidp, void *start) { zfs_fuid_t *zfuid; uint64_t *fuidloc = start; /* First copy in the ACE FUIDs */ for (zfuid = list_head(&fuidp->z_fuids); zfuid; zfuid = list_next(&fuidp->z_fuids, zfuid)) { *fuidloc++ = zfuid->z_logfuid; } return (fuidloc); } static void * zfs_log_fuid_domains(zfs_fuid_info_t *fuidp, void *start) { zfs_fuid_domain_t *zdomain; /* now copy in the domain info, if any */ if (fuidp->z_domain_str_sz != 0) { for (zdomain = list_head(&fuidp->z_domains); zdomain; zdomain = list_next(&fuidp->z_domains, zdomain)) { memcpy(start, zdomain->z_domain, strlen(zdomain->z_domain) + 1); start = (caddr_t)start + strlen(zdomain->z_domain) + 1; } } return (start); } /* * If zp is an xattr node, check whether the xattr owner is unlinked. * We don't want to log anything if the owner is unlinked. */ static int zfs_xattr_owner_unlinked(znode_t *zp) { int unlinked = 0; znode_t *dzp; #ifdef __FreeBSD__ znode_t *tzp = zp; /* * zrele drops the vnode lock which violates the VOP locking contract * on FreeBSD. See comment at the top of zfs_replay.c for more detail. */ /* * if zp is XATTR node, keep walking up via z_xattr_parent until we * get the owner */ while (tzp->z_pflags & ZFS_XATTR) { ASSERT3U(zp->z_xattr_parent, !=, 0); if (zfs_zget(ZTOZSB(tzp), tzp->z_xattr_parent, &dzp) != 0) { unlinked = 1; break; } if (tzp != zp) zrele(tzp); tzp = dzp; unlinked = tzp->z_unlinked; } if (tzp != zp) zrele(tzp); #else zhold(zp); /* * if zp is XATTR node, keep walking up via z_xattr_parent until we * get the owner */ while (zp->z_pflags & ZFS_XATTR) { ASSERT3U(zp->z_xattr_parent, !=, 0); if (zfs_zget(ZTOZSB(zp), zp->z_xattr_parent, &dzp) != 0) { unlinked = 1; break; } zrele(zp); zp = dzp; unlinked = zp->z_unlinked; } zrele(zp); #endif return (unlinked); } /* * Handles TX_CREATE, TX_CREATE_ATTR, TX_MKDIR, TX_MKDIR_ATTR and * TK_MKXATTR transactions. * * TX_CREATE and TX_MKDIR are standard creates, but they may have FUID * domain information appended prior to the name. In this case the * uid/gid in the log record will be a log centric FUID. * * TX_CREATE_ACL_ATTR and TX_MKDIR_ACL_ATTR handle special creates that * may contain attributes, ACL and optional fuid information. * * TX_CREATE_ACL and TX_MKDIR_ACL handle special creates that specify * and ACL and normal users/groups in the ACEs. * * There may be an optional xvattr attribute information similar * to zfs_log_setattr. * * Also, after the file name "domain" strings may be appended. */ void zfs_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, const char *name, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp, vattr_t *vap) { itx_t *itx; lr_create_t *lr; lr_acl_create_t *lracl; size_t aclsize = 0; size_t xvatsize = 0; size_t txsize; xvattr_t *xvap = (xvattr_t *)vap; void *end; size_t lrsize; size_t namesize = strlen(name) + 1; size_t fuidsz = 0; if (zil_replaying(zilog, tx) || zfs_xattr_owner_unlinked(dzp)) return; /* * If we have FUIDs present then add in space for * domains and ACE fuid's if any. */ if (fuidp) { fuidsz += fuidp->z_domain_str_sz; fuidsz += fuidp->z_fuid_cnt * sizeof (uint64_t); } if (vap->va_mask & ATTR_XVATTR) xvatsize = ZIL_XVAT_SIZE(xvap->xva_mapsize); if ((int)txtype == TX_CREATE_ATTR || (int)txtype == TX_MKDIR_ATTR || (int)txtype == TX_CREATE || (int)txtype == TX_MKDIR || (int)txtype == TX_MKXATTR) { txsize = sizeof (*lr) + namesize + fuidsz + xvatsize; lrsize = sizeof (*lr); } else { txsize = sizeof (lr_acl_create_t) + namesize + fuidsz + ZIL_ACE_LENGTH(aclsize) + xvatsize; lrsize = sizeof (lr_acl_create_t); } itx = zil_itx_create(txtype, txsize); lr = (lr_create_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_foid = zp->z_id; /* Store dnode slot count in 8 bits above object id. */ LR_FOID_SET_SLOTS(lr->lr_foid, zp->z_dnodesize >> DNODE_SHIFT); lr->lr_mode = zp->z_mode; if (!IS_EPHEMERAL(KUID_TO_SUID(ZTOUID(zp)))) { lr->lr_uid = (uint64_t)KUID_TO_SUID(ZTOUID(zp)); } else { lr->lr_uid = fuidp->z_fuid_owner; } if (!IS_EPHEMERAL(KGID_TO_SGID(ZTOGID(zp)))) { lr->lr_gid = (uint64_t)KGID_TO_SGID(ZTOGID(zp)); } else { lr->lr_gid = fuidp->z_fuid_group; } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(ZTOZSB(zp)), &lr->lr_gen, sizeof (uint64_t)); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)), lr->lr_crtime, sizeof (uint64_t) * 2); if (sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(ZTOZSB(zp)), &lr->lr_rdev, sizeof (lr->lr_rdev)) != 0) lr->lr_rdev = 0; /* * Fill in xvattr info if any */ if (vap->va_mask & ATTR_XVATTR) { zfs_log_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), xvap); end = (caddr_t)lr + lrsize + xvatsize; } else { end = (caddr_t)lr + lrsize; } /* Now fill in any ACL info */ if (vsecp) { lracl = (lr_acl_create_t *)&itx->itx_lr; lracl->lr_aclcnt = vsecp->vsa_aclcnt; lracl->lr_acl_bytes = aclsize; lracl->lr_domcnt = fuidp ? fuidp->z_domain_cnt : 0; lracl->lr_fuidcnt = fuidp ? fuidp->z_fuid_cnt : 0; if (vsecp->vsa_aclflags & VSA_ACE_ACLFLAGS) lracl->lr_acl_flags = (uint64_t)vsecp->vsa_aclflags; else lracl->lr_acl_flags = 0; memcpy(end, vsecp->vsa_aclentp, aclsize); end = (caddr_t)end + ZIL_ACE_LENGTH(aclsize); } /* drop in FUID info */ if (fuidp) { end = zfs_log_fuid_ids(fuidp, end); end = zfs_log_fuid_domains(fuidp, end); } /* * Now place file name in log record */ memcpy(end, name, namesize); zil_itx_assign(zilog, itx, tx); } /* * Handles both TX_REMOVE and TX_RMDIR transactions. */ void zfs_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, const char *name, uint64_t foid, boolean_t unlinked) { itx_t *itx; lr_remove_t *lr; size_t namesize = strlen(name) + 1; if (zil_replaying(zilog, tx) || zfs_xattr_owner_unlinked(dzp)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize); lr = (lr_remove_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; memcpy(lr + 1, name, namesize); itx->itx_oid = foid; /* * Object ids can be re-instantiated in the next txg so * remove any async transactions to avoid future leaks. * This can happen if a fsync occurs on the re-instantiated * object for a WR_INDIRECT or WR_NEED_COPY write, which gets * the new file data and flushes a write record for the old object. */ if (unlinked) { ASSERT((txtype & ~TX_CI) == TX_REMOVE); zil_remove_async(zilog, foid); } zil_itx_assign(zilog, itx, tx); } /* * Handles TX_LINK transactions. */ void zfs_log_link(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, const char *name) { itx_t *itx; lr_link_t *lr; size_t namesize = strlen(name) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize); lr = (lr_link_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_link_obj = zp->z_id; memcpy(lr + 1, name, namesize); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_SYMLINK transactions. */ void zfs_log_symlink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, const char *name, const char *link) { itx_t *itx; lr_create_t *lr; size_t namesize = strlen(name) + 1; size_t linksize = strlen(link) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize + linksize); lr = (lr_create_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_foid = zp->z_id; lr->lr_uid = KUID_TO_SUID(ZTOUID(zp)); lr->lr_gid = KGID_TO_SGID(ZTOGID(zp)); lr->lr_mode = zp->z_mode; (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(ZTOZSB(zp)), &lr->lr_gen, sizeof (uint64_t)); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)), lr->lr_crtime, sizeof (uint64_t) * 2); memcpy((char *)(lr + 1), name, namesize); memcpy((char *)(lr + 1) + namesize, link, linksize); zil_itx_assign(zilog, itx, tx); } static void do_zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, const char *sname, znode_t *tdzp, const char *dname, znode_t *szp) { itx_t *itx; lr_rename_t *lr; size_t snamesize = strlen(sname) + 1; size_t dnamesize = strlen(dname) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + snamesize + dnamesize); lr = (lr_rename_t *)&itx->itx_lr; lr->lr_sdoid = sdzp->z_id; lr->lr_tdoid = tdzp->z_id; memcpy((char *)(lr + 1), sname, snamesize); memcpy((char *)(lr + 1) + snamesize, dname, dnamesize); itx->itx_oid = szp->z_id; zil_itx_assign(zilog, itx, tx); } /* * Handles TX_RENAME transactions. */ void zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, const char *sname, znode_t *tdzp, const char *dname, znode_t *szp) { txtype |= TX_RENAME; do_zfs_log_rename(zilog, tx, txtype, sdzp, sname, tdzp, dname, szp); } /* * Handles TX_RENAME_EXCHANGE transactions. */ void zfs_log_rename_exchange(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, const char *sname, znode_t *tdzp, const char *dname, znode_t *szp) { txtype |= TX_RENAME_EXCHANGE; do_zfs_log_rename(zilog, tx, txtype, sdzp, sname, tdzp, dname, szp); } /* * Handles TX_RENAME_WHITEOUT transactions. * * Unfortunately we cannot reuse do_zfs_log_rename because we we need to call * zfs_mknode() on replay which requires stashing bits as with TX_CREATE. */ void zfs_log_rename_whiteout(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, const char *sname, znode_t *tdzp, const char *dname, znode_t *szp, znode_t *wzp) { itx_t *itx; lr_rename_whiteout_t *lr; size_t snamesize = strlen(sname) + 1; size_t dnamesize = strlen(dname) + 1; if (zil_replaying(zilog, tx)) return; txtype |= TX_RENAME_WHITEOUT; itx = zil_itx_create(txtype, sizeof (*lr) + snamesize + dnamesize); lr = (lr_rename_whiteout_t *)&itx->itx_lr; lr->lr_rename.lr_sdoid = sdzp->z_id; lr->lr_rename.lr_tdoid = tdzp->z_id; /* * RENAME_WHITEOUT will create an entry at the source znode, so we need * to store the same data that the equivalent call to zfs_log_create() * would. */ lr->lr_wfoid = wzp->z_id; LR_FOID_SET_SLOTS(lr->lr_wfoid, wzp->z_dnodesize >> DNODE_SHIFT); (void) sa_lookup(wzp->z_sa_hdl, SA_ZPL_GEN(ZTOZSB(wzp)), &lr->lr_wgen, sizeof (uint64_t)); (void) sa_lookup(wzp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(wzp)), lr->lr_wcrtime, sizeof (uint64_t) * 2); lr->lr_wmode = wzp->z_mode; lr->lr_wuid = (uint64_t)KUID_TO_SUID(ZTOUID(wzp)); lr->lr_wgid = (uint64_t)KGID_TO_SGID(ZTOGID(wzp)); /* * This rdev will always be makdevice(0, 0) but because the ZIL log and * replay code needs to be platform independent (and there is no * platform independent makdev()) we need to copy the one created * during the rename operation. */ (void) sa_lookup(wzp->z_sa_hdl, SA_ZPL_RDEV(ZTOZSB(wzp)), &lr->lr_wrdev, sizeof (lr->lr_wrdev)); memcpy((char *)(lr + 1), sname, snamesize); memcpy((char *)(lr + 1) + snamesize, dname, dnamesize); itx->itx_oid = szp->z_id; zil_itx_assign(zilog, itx, tx); } /* * zfs_log_write() handles TX_WRITE transactions. The specified callback is * called as soon as the write is on stable storage (be it via a DMU sync or a * ZIL commit). */ static int64_t zfs_immediate_write_sz = 32768; void zfs_log_write(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, offset_t off, ssize_t resid, int ioflag, zil_callback_t callback, void *callback_data) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); uint32_t blocksize = zp->z_blksz; itx_wr_state_t write_state; uintptr_t fsync_cnt; uint64_t gen = 0; ssize_t size = resid; if (zil_replaying(zilog, tx) || zp->z_unlinked || zfs_xattr_owner_unlinked(zp)) { if (callback != NULL) callback(callback_data); return; } if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) write_state = WR_INDIRECT; else if (!spa_has_slogs(zilog->zl_spa) && resid >= zfs_immediate_write_sz) write_state = WR_INDIRECT; else if (ioflag & (O_SYNC | O_DSYNC)) write_state = WR_COPIED; else write_state = WR_NEED_COPY; if ((fsync_cnt = (uintptr_t)tsd_get(zfs_fsyncer_key)) != 0) { (void) tsd_set(zfs_fsyncer_key, (void *)(fsync_cnt - 1)); } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(ZTOZSB(zp)), &gen, sizeof (gen)); while (resid) { itx_t *itx; lr_write_t *lr; itx_wr_state_t wr_state = write_state; ssize_t len = resid; /* * A WR_COPIED record must fit entirely in one log block. * Large writes can use WR_NEED_COPY, which the ZIL will * split into multiple records across several log blocks * if necessary. */ if (wr_state == WR_COPIED && resid > zil_max_copied_data(zilog)) wr_state = WR_NEED_COPY; else if (wr_state == WR_INDIRECT) len = MIN(blocksize - P2PHASE(off, blocksize), resid); itx = zil_itx_create(txtype, sizeof (*lr) + (wr_state == WR_COPIED ? len : 0)); lr = (lr_write_t *)&itx->itx_lr; /* * For WR_COPIED records, copy the data into the lr_write_t. */ if (wr_state == WR_COPIED) { int err; DB_DNODE_ENTER(db); err = dmu_read_by_dnode(DB_DNODE(db), off, len, lr + 1, DMU_READ_NO_PREFETCH); if (err != 0) { zil_itx_destroy(itx); itx = zil_itx_create(txtype, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; wr_state = WR_NEED_COPY; } DB_DNODE_EXIT(db); } itx->itx_wr_state = wr_state; lr->lr_foid = zp->z_id; lr->lr_offset = off; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); itx->itx_private = ZTOZSB(zp); itx->itx_gen = gen; if (!(ioflag & (O_SYNC | O_DSYNC)) && (zp->z_sync_cnt == 0) && (fsync_cnt == 0)) itx->itx_sync = B_FALSE; itx->itx_callback = callback; itx->itx_callback_data = callback_data; zil_itx_assign(zilog, itx, tx); off += len; resid -= len; } if (write_state == WR_COPIED || write_state == WR_NEED_COPY) { dsl_pool_wrlog_count(zilog->zl_dmu_pool, size, tx->tx_txg); } } /* * Handles TX_TRUNCATE transactions. */ void zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, uint64_t off, uint64_t len) { itx_t *itx; lr_truncate_t *lr; if (zil_replaying(zilog, tx) || zp->z_unlinked || zfs_xattr_owner_unlinked(zp)) return; itx = zil_itx_create(txtype, sizeof (*lr)); lr = (lr_truncate_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; lr->lr_offset = off; lr->lr_length = len; itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_SETATTR transactions. */ void zfs_log_setattr(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, vattr_t *vap, uint_t mask_applied, zfs_fuid_info_t *fuidp) { itx_t *itx; lr_setattr_t *lr; xvattr_t *xvap = (xvattr_t *)vap; size_t recsize = sizeof (lr_setattr_t); void *start; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; /* * If XVATTR set, then log record size needs to allow * for lr_attr_t + xvattr mask, mapsize and create time * plus actual attribute values */ if (vap->va_mask & ATTR_XVATTR) recsize = sizeof (*lr) + ZIL_XVAT_SIZE(xvap->xva_mapsize); if (fuidp) recsize += fuidp->z_domain_str_sz; itx = zil_itx_create(txtype, recsize); lr = (lr_setattr_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; lr->lr_mask = (uint64_t)mask_applied; lr->lr_mode = (uint64_t)vap->va_mode; if ((mask_applied & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) lr->lr_uid = fuidp->z_fuid_owner; else lr->lr_uid = (uint64_t)vap->va_uid; if ((mask_applied & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) lr->lr_gid = fuidp->z_fuid_group; else lr->lr_gid = (uint64_t)vap->va_gid; lr->lr_size = (uint64_t)vap->va_size; ZFS_TIME_ENCODE(&vap->va_atime, lr->lr_atime); ZFS_TIME_ENCODE(&vap->va_mtime, lr->lr_mtime); start = (lr_setattr_t *)(lr + 1); if (vap->va_mask & ATTR_XVATTR) { zfs_log_xvattr((lr_attr_t *)start, xvap); start = (caddr_t)start + ZIL_XVAT_SIZE(xvap->xva_mapsize); } /* * Now stick on domain information if any on end */ if (fuidp) (void) zfs_log_fuid_domains(fuidp, start); itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_SETSAXATTR transactions. */ void zfs_log_setsaxattr(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, const char *name, const void *value, size_t size) { itx_t *itx; lr_setsaxattr_t *lr; size_t recsize = sizeof (lr_setsaxattr_t); void *xattrstart; int namelen; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; namelen = strlen(name) + 1; recsize += (namelen + size); itx = zil_itx_create(txtype, recsize); lr = (lr_setsaxattr_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; xattrstart = (char *)(lr + 1); memcpy(xattrstart, name, namelen); if (value != NULL) { memcpy((char *)xattrstart + namelen, value, size); lr->lr_size = size; } else { lr->lr_size = 0; } itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_ACL transactions. */ void zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp) { itx_t *itx; lr_acl_v0_t *lrv0; lr_acl_t *lr; int txtype; int lrsize; size_t txsize; size_t aclbytes = vsecp->vsa_aclentsz; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; txtype = (ZTOZSB(zp)->z_version < ZPL_VERSION_FUID) ? TX_ACL_V0 : TX_ACL; if (txtype == TX_ACL) lrsize = sizeof (*lr); else lrsize = sizeof (*lrv0); txsize = lrsize + ((txtype == TX_ACL) ? ZIL_ACE_LENGTH(aclbytes) : aclbytes) + (fuidp ? fuidp->z_domain_str_sz : 0) + sizeof (uint64_t) * (fuidp ? fuidp->z_fuid_cnt : 0); itx = zil_itx_create(txtype, txsize); lr = (lr_acl_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; if (txtype == TX_ACL) { lr->lr_acl_bytes = aclbytes; lr->lr_domcnt = fuidp ? fuidp->z_domain_cnt : 0; lr->lr_fuidcnt = fuidp ? fuidp->z_fuid_cnt : 0; if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) lr->lr_acl_flags = (uint64_t)vsecp->vsa_aclflags; else lr->lr_acl_flags = 0; } lr->lr_aclcnt = (uint64_t)vsecp->vsa_aclcnt; if (txtype == TX_ACL_V0) { lrv0 = (lr_acl_v0_t *)lr; memcpy(lrv0 + 1, vsecp->vsa_aclentp, aclbytes); } else { void *start = (ace_t *)(lr + 1); memcpy(start, vsecp->vsa_aclentp, aclbytes); start = (caddr_t)start + ZIL_ACE_LENGTH(aclbytes); if (fuidp) { start = zfs_log_fuid_ids(fuidp, start); (void) zfs_log_fuid_domains(fuidp, start); } } itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } +/* + * Handles TX_CLONE_RANGE transactions. + */ +void +zfs_log_clone_range(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, + uint64_t off, uint64_t len, uint64_t blksz, const blkptr_t *bps, + size_t nbps) +{ + itx_t *itx; + lr_clone_range_t *lr; + uint64_t partlen, max_log_data; + size_t i, partnbps; + + VERIFY(!zil_replaying(zilog, tx)); + + if (zp->z_unlinked) + return; + + max_log_data = zil_max_log_data(zilog, sizeof (lr_clone_range_t)); + + while (nbps > 0) { + partnbps = MIN(nbps, max_log_data / sizeof (bps[0])); + partlen = 0; + for (i = 0; i < partnbps; i++) { + partlen += BP_GET_LSIZE(&bps[i]); + } + partlen = MIN(partlen, len); + + itx = zil_itx_create(txtype, + sizeof (*lr) + sizeof (bps[0]) * partnbps); + lr = (lr_clone_range_t *)&itx->itx_lr; + lr->lr_foid = zp->z_id; + lr->lr_offset = off; + lr->lr_length = partlen; + lr->lr_blksz = blksz; + lr->lr_nbps = partnbps; + memcpy(lr->lr_bps, bps, sizeof (bps[0]) * partnbps); + + itx->itx_sync = (zp->z_sync_cnt != 0); + + zil_itx_assign(zilog, itx, tx); + + bps += partnbps; + ASSERT3U(nbps, >=, partnbps); + nbps -= partnbps; + off += partlen; + ASSERT3U(len, >=, partlen); + len -= partlen; + } +} + ZFS_MODULE_PARAM(zfs, zfs_, immediate_write_sz, S64, ZMOD_RW, "Largest data block to write to zil"); diff --git a/module/zfs/zfs_quota.c b/module/zfs/zfs_quota.c index a5dc5c399b5d..9b351eefc04e 100644 --- a/module/zfs/zfs_quota.c +++ b/module/zfs/zfs_quota.c @@ -1,476 +1,475 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright (c) 2011 Pawel Jakub Dawidek . - * All rights reserved. + * Copyright (c) 2011 Pawel Jakub Dawidek * Copyright (c) 2012, 2015, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include int zpl_get_file_info(dmu_object_type_t bonustype, const void *data, zfs_file_info_t *zoi) { /* * Is it a valid type of object to track? */ if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) return (SET_ERROR(ENOENT)); zoi->zfi_project = ZFS_DEFAULT_PROJID; /* * If we have a NULL data pointer * then assume the id's aren't changing and * return EEXIST to the dmu to let it know to * use the same ids */ if (data == NULL) return (SET_ERROR(EEXIST)); if (bonustype == DMU_OT_ZNODE) { const znode_phys_t *znp = data; zoi->zfi_user = znp->zp_uid; zoi->zfi_group = znp->zp_gid; zoi->zfi_generation = znp->zp_gen; return (0); } const sa_hdr_phys_t *sap = data; if (sap->sa_magic == 0) { /* * This should only happen for newly created files * that haven't had the znode data filled in yet. */ zoi->zfi_user = 0; zoi->zfi_group = 0; zoi->zfi_generation = 0; return (0); } sa_hdr_phys_t sa = *sap; boolean_t swap = B_FALSE; if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { sa.sa_magic = SA_MAGIC; sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); swap = B_TRUE; } VERIFY3U(sa.sa_magic, ==, SA_MAGIC); int hdrsize = sa_hdrsize(&sa); VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); uintptr_t data_after_hdr = (uintptr_t)data + hdrsize; zoi->zfi_user = *((uint64_t *)(data_after_hdr + SA_UID_OFFSET)); zoi->zfi_group = *((uint64_t *)(data_after_hdr + SA_GID_OFFSET)); zoi->zfi_generation = *((uint64_t *)(data_after_hdr + SA_GEN_OFFSET)); uint64_t flags = *((uint64_t *)(data_after_hdr + SA_FLAGS_OFFSET)); if (swap) flags = BSWAP_64(flags); if (flags & ZFS_PROJID) { zoi->zfi_project = *((uint64_t *)(data_after_hdr + SA_PROJID_OFFSET)); } if (swap) { zoi->zfi_user = BSWAP_64(zoi->zfi_user); zoi->zfi_group = BSWAP_64(zoi->zfi_group); zoi->zfi_project = BSWAP_64(zoi->zfi_project); zoi->zfi_generation = BSWAP_64(zoi->zfi_generation); } return (0); } static void fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, char *domainbuf, int buflen, uid_t *ridp) { uint64_t fuid; const char *domain; fuid = zfs_strtonum(fuidstr, NULL); domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); if (domain) (void) strlcpy(domainbuf, domain, buflen); else domainbuf[0] = '\0'; *ridp = FUID_RID(fuid); } static uint64_t zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) { switch (type) { case ZFS_PROP_USERUSED: case ZFS_PROP_USEROBJUSED: return (DMU_USERUSED_OBJECT); case ZFS_PROP_GROUPUSED: case ZFS_PROP_GROUPOBJUSED: return (DMU_GROUPUSED_OBJECT); case ZFS_PROP_PROJECTUSED: case ZFS_PROP_PROJECTOBJUSED: return (DMU_PROJECTUSED_OBJECT); case ZFS_PROP_USERQUOTA: return (zfsvfs->z_userquota_obj); case ZFS_PROP_GROUPQUOTA: return (zfsvfs->z_groupquota_obj); case ZFS_PROP_USEROBJQUOTA: return (zfsvfs->z_userobjquota_obj); case ZFS_PROP_GROUPOBJQUOTA: return (zfsvfs->z_groupobjquota_obj); case ZFS_PROP_PROJECTQUOTA: return (zfsvfs->z_projectquota_obj); case ZFS_PROP_PROJECTOBJQUOTA: return (zfsvfs->z_projectobjquota_obj); default: return (ZFS_NO_OBJECT); } } int zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) { int error; zap_cursor_t zc; zap_attribute_t za; zfs_useracct_t *buf = vbuf; uint64_t obj; int offset = 0; if (!dmu_objset_userspace_present(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); if ((type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED || type == ZFS_PROP_PROJECTOBJQUOTA || type == ZFS_PROP_PROJECTOBJUSED) && !dmu_objset_projectquota_present(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA || type == ZFS_PROP_PROJECTOBJUSED || type == ZFS_PROP_PROJECTOBJQUOTA) && !dmu_objset_userobjspace_present(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); obj = zfs_userquota_prop_to_obj(zfsvfs, type); if (obj == ZFS_NO_OBJECT) { *bufsizep = 0; return (0); } if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || type == ZFS_PROP_PROJECTOBJUSED) offset = DMU_OBJACCT_PREFIX_LEN; for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); (error = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > *bufsizep) break; /* * skip object quota (with zap name prefix DMU_OBJACCT_PREFIX) * when dealing with block quota and vice versa. */ if ((offset > 0) != (strncmp(za.za_name, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN) == 0)) continue; fuidstr_to_sid(zfsvfs, za.za_name + offset, buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); buf->zu_space = za.za_first_integer; buf++; } if (error == ENOENT) error = 0; ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; *cookiep = zap_cursor_serialize(&zc); zap_cursor_fini(&zc); return (error); } int zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, const char *domain, uint64_t rid, uint64_t *valp) { char buf[20 + DMU_OBJACCT_PREFIX_LEN]; int offset = 0; int err; uint64_t obj; *valp = 0; if (!dmu_objset_userspace_present(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA || type == ZFS_PROP_PROJECTOBJUSED || type == ZFS_PROP_PROJECTOBJQUOTA) && !dmu_objset_userobjspace_present(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); if (type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED || type == ZFS_PROP_PROJECTOBJQUOTA || type == ZFS_PROP_PROJECTOBJUSED) { if (!dmu_objset_projectquota_present(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); if (!zpl_is_valid_projid(rid)) return (SET_ERROR(EINVAL)); } obj = zfs_userquota_prop_to_obj(zfsvfs, type); if (obj == ZFS_NO_OBJECT) return (0); if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || type == ZFS_PROP_PROJECTOBJUSED) { strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1); offset = DMU_OBJACCT_PREFIX_LEN; } err = zfs_id_to_fuidstr(zfsvfs, domain, rid, buf + offset, sizeof (buf) - offset, B_FALSE); if (err) return (err); err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); if (err == ENOENT) err = 0; return (err); } int zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, const char *domain, uint64_t rid, uint64_t quota) { char buf[32]; int err; dmu_tx_t *tx; uint64_t *objp; boolean_t fuid_dirtied; if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) return (SET_ERROR(ENOTSUP)); switch (type) { case ZFS_PROP_USERQUOTA: objp = &zfsvfs->z_userquota_obj; break; case ZFS_PROP_GROUPQUOTA: objp = &zfsvfs->z_groupquota_obj; break; case ZFS_PROP_USEROBJQUOTA: objp = &zfsvfs->z_userobjquota_obj; break; case ZFS_PROP_GROUPOBJQUOTA: objp = &zfsvfs->z_groupobjquota_obj; break; case ZFS_PROP_PROJECTQUOTA: if (!dmu_objset_projectquota_enabled(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); if (!zpl_is_valid_projid(rid)) return (SET_ERROR(EINVAL)); objp = &zfsvfs->z_projectquota_obj; break; case ZFS_PROP_PROJECTOBJQUOTA: if (!dmu_objset_projectquota_enabled(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); if (!zpl_is_valid_projid(rid)) return (SET_ERROR(EINVAL)); objp = &zfsvfs->z_projectobjquota_obj; break; default: return (SET_ERROR(EINVAL)); } err = zfs_id_to_fuidstr(zfsvfs, domain, rid, buf, sizeof (buf), B_TRUE); if (err) return (err); fuid_dirtied = zfsvfs->z_fuid_dirty; tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); if (*objp == 0) { dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, zfs_userquota_prop_prefixes[type]); } if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } mutex_enter(&zfsvfs->z_lock); if (*objp == 0) { *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, DMU_OT_NONE, 0, tx); VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); } mutex_exit(&zfsvfs->z_lock); if (quota == 0) { err = zap_remove(zfsvfs->z_os, *objp, buf, tx); if (err == ENOENT) err = 0; } else { err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); } ASSERT(err == 0); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); dmu_tx_commit(tx); return (err); } boolean_t zfs_id_overobjquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id) { char buf[20 + DMU_OBJACCT_PREFIX_LEN]; uint64_t used, quota, quotaobj; int err; if (!dmu_objset_userobjspace_present(zfsvfs->z_os)) { if (dmu_objset_userobjspace_upgradable(zfsvfs->z_os)) { dsl_pool_config_enter( dmu_objset_pool(zfsvfs->z_os), FTAG); dmu_objset_id_quota_upgrade(zfsvfs->z_os); dsl_pool_config_exit( dmu_objset_pool(zfsvfs->z_os), FTAG); } return (B_FALSE); } if (usedobj == DMU_PROJECTUSED_OBJECT) { if (!dmu_objset_projectquota_present(zfsvfs->z_os)) { if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) { dsl_pool_config_enter( dmu_objset_pool(zfsvfs->z_os), FTAG); dmu_objset_id_quota_upgrade(zfsvfs->z_os); dsl_pool_config_exit( dmu_objset_pool(zfsvfs->z_os), FTAG); } return (B_FALSE); } quotaobj = zfsvfs->z_projectobjquota_obj; } else if (usedobj == DMU_USERUSED_OBJECT) { quotaobj = zfsvfs->z_userobjquota_obj; } else if (usedobj == DMU_GROUPUSED_OBJECT) { quotaobj = zfsvfs->z_groupobjquota_obj; } else { return (B_FALSE); } if (quotaobj == 0 || zfsvfs->z_replay) return (B_FALSE); (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)id); err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); if (err != 0) return (B_FALSE); (void) snprintf(buf, sizeof (buf), DMU_OBJACCT_PREFIX "%llx", (longlong_t)id); err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); if (err != 0) return (B_FALSE); return (used >= quota); } boolean_t zfs_id_overblockquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id) { char buf[20]; uint64_t used, quota, quotaobj; int err; if (usedobj == DMU_PROJECTUSED_OBJECT) { if (!dmu_objset_projectquota_present(zfsvfs->z_os)) { if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) { dsl_pool_config_enter( dmu_objset_pool(zfsvfs->z_os), FTAG); dmu_objset_id_quota_upgrade(zfsvfs->z_os); dsl_pool_config_exit( dmu_objset_pool(zfsvfs->z_os), FTAG); } return (B_FALSE); } quotaobj = zfsvfs->z_projectquota_obj; } else if (usedobj == DMU_USERUSED_OBJECT) { quotaobj = zfsvfs->z_userquota_obj; } else if (usedobj == DMU_GROUPUSED_OBJECT) { quotaobj = zfsvfs->z_groupquota_obj; } else { return (B_FALSE); } if (quotaobj == 0 || zfsvfs->z_replay) return (B_FALSE); (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)id); err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); if (err != 0) return (B_FALSE); err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); if (err != 0) return (B_FALSE); return (used >= quota); } boolean_t zfs_id_overquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id) { return (zfs_id_overblockquota(zfsvfs, usedobj, id) || zfs_id_overobjquota(zfsvfs, usedobj, id)); } EXPORT_SYMBOL(zpl_get_file_info); EXPORT_SYMBOL(zfs_userspace_one); EXPORT_SYMBOL(zfs_userspace_many); EXPORT_SYMBOL(zfs_set_userquota); EXPORT_SYMBOL(zfs_id_overblockquota); EXPORT_SYMBOL(zfs_id_overobjquota); EXPORT_SYMBOL(zfs_id_overquota); diff --git a/module/zfs/zfs_replay.c b/module/zfs/zfs_replay.c index 32be27a8ba6e..04dfda56b3f1 100644 --- a/module/zfs/zfs_replay.c +++ b/module/zfs/zfs_replay.c @@ -1,1193 +1,1223 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 Cyril Plisko. All rights reserved. * Copyright (c) 2013, 2017 by Delphix. All rights reserved. + * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * NB: FreeBSD expects to be able to do vnode locking in lookup and * hold the locks across all subsequent VOPs until vput is called. * This means that its zfs vnops routines can't do any internal locking. * In order to have the same contract as the Linux vnops there would * needed to be duplicate locked vnops. If the vnops were used more widely * in common code this would likely be preferable. However, currently * this is the only file where this is the case. */ /* * Functions to replay ZFS intent log (ZIL) records * The functions are called through a function vector (zfs_replay_vector) * which is indexed by the transaction type. */ static void zfs_init_vattr(vattr_t *vap, uint64_t mask, uint64_t mode, uint64_t uid, uint64_t gid, uint64_t rdev, uint64_t nodeid) { memset(vap, 0, sizeof (*vap)); vap->va_mask = (uint_t)mask; vap->va_mode = mode; #if defined(__FreeBSD__) || defined(__APPLE__) vap->va_type = IFTOVT(mode); #endif vap->va_uid = (uid_t)(IS_EPHEMERAL(uid)) ? -1 : uid; vap->va_gid = (gid_t)(IS_EPHEMERAL(gid)) ? -1 : gid; vap->va_rdev = zfs_cmpldev(rdev); vap->va_nodeid = nodeid; } static int zfs_replay_error(void *arg1, void *arg2, boolean_t byteswap) { (void) arg1, (void) arg2, (void) byteswap; return (SET_ERROR(ENOTSUP)); } static void zfs_replay_xvattr(lr_attr_t *lrattr, xvattr_t *xvap) { xoptattr_t *xoap = NULL; uint64_t *attrs; uint64_t *crtime; uint32_t *bitmap; void *scanstamp; int i; xvap->xva_vattr.va_mask |= ATTR_XVATTR; if ((xoap = xva_getxoptattr(xvap)) == NULL) { xvap->xva_vattr.va_mask &= ~ATTR_XVATTR; /* shouldn't happen */ return; } ASSERT(lrattr->lr_attr_masksize == xvap->xva_mapsize); bitmap = &lrattr->lr_attr_bitmap; for (i = 0; i != lrattr->lr_attr_masksize; i++, bitmap++) xvap->xva_reqattrmap[i] = *bitmap; attrs = (uint64_t *)(lrattr + lrattr->lr_attr_masksize - 1); crtime = attrs + 1; scanstamp = (caddr_t)(crtime + 2); if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) xoap->xoa_hidden = ((*attrs & XAT0_HIDDEN) != 0); if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) xoap->xoa_system = ((*attrs & XAT0_SYSTEM) != 0); if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) xoap->xoa_archive = ((*attrs & XAT0_ARCHIVE) != 0); if (XVA_ISSET_REQ(xvap, XAT_READONLY)) xoap->xoa_readonly = ((*attrs & XAT0_READONLY) != 0); if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) xoap->xoa_immutable = ((*attrs & XAT0_IMMUTABLE) != 0); if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) xoap->xoa_nounlink = ((*attrs & XAT0_NOUNLINK) != 0); if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) xoap->xoa_appendonly = ((*attrs & XAT0_APPENDONLY) != 0); if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) xoap->xoa_nodump = ((*attrs & XAT0_NODUMP) != 0); if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) xoap->xoa_opaque = ((*attrs & XAT0_OPAQUE) != 0); if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) xoap->xoa_av_modified = ((*attrs & XAT0_AV_MODIFIED) != 0); if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) xoap->xoa_av_quarantined = ((*attrs & XAT0_AV_QUARANTINED) != 0); if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) ZFS_TIME_DECODE(&xoap->xoa_createtime, crtime); if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { ASSERT(!XVA_ISSET_REQ(xvap, XAT_PROJID)); memcpy(xoap->xoa_av_scanstamp, scanstamp, AV_SCANSTAMP_SZ); } else if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { /* * XAT_PROJID and XAT_AV_SCANSTAMP will never be valid * at the same time, so we can share the same space. */ memcpy(&xoap->xoa_projid, scanstamp, sizeof (uint64_t)); } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) xoap->xoa_reparse = ((*attrs & XAT0_REPARSE) != 0); if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) xoap->xoa_offline = ((*attrs & XAT0_OFFLINE) != 0); if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) xoap->xoa_sparse = ((*attrs & XAT0_SPARSE) != 0); if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) xoap->xoa_projinherit = ((*attrs & XAT0_PROJINHERIT) != 0); } static int zfs_replay_domain_cnt(uint64_t uid, uint64_t gid) { uint64_t uid_idx; uint64_t gid_idx; int domcnt = 0; uid_idx = FUID_INDEX(uid); gid_idx = FUID_INDEX(gid); if (uid_idx) domcnt++; if (gid_idx > 0 && gid_idx != uid_idx) domcnt++; return (domcnt); } static void * zfs_replay_fuid_domain_common(zfs_fuid_info_t *fuid_infop, void *start, int domcnt) { int i; for (i = 0; i != domcnt; i++) { fuid_infop->z_domain_table[i] = start; start = (caddr_t)start + strlen(start) + 1; } return (start); } /* * Set the uid/gid in the fuid_info structure. */ static void zfs_replay_fuid_ugid(zfs_fuid_info_t *fuid_infop, uint64_t uid, uint64_t gid) { /* * If owner or group are log specific FUIDs then slurp up * domain information and build zfs_fuid_info_t */ if (IS_EPHEMERAL(uid)) fuid_infop->z_fuid_owner = uid; if (IS_EPHEMERAL(gid)) fuid_infop->z_fuid_group = gid; } /* * Load fuid domains into fuid_info_t */ static zfs_fuid_info_t * zfs_replay_fuid_domain(void *buf, void **end, uint64_t uid, uint64_t gid) { int domcnt; zfs_fuid_info_t *fuid_infop; fuid_infop = zfs_fuid_info_alloc(); domcnt = zfs_replay_domain_cnt(uid, gid); if (domcnt == 0) return (fuid_infop); fuid_infop->z_domain_table = kmem_zalloc(domcnt * sizeof (char *), KM_SLEEP); zfs_replay_fuid_ugid(fuid_infop, uid, gid); fuid_infop->z_domain_cnt = domcnt; *end = zfs_replay_fuid_domain_common(fuid_infop, buf, domcnt); return (fuid_infop); } /* * load zfs_fuid_t's and fuid_domains into fuid_info_t */ static zfs_fuid_info_t * zfs_replay_fuids(void *start, void **end, int idcnt, int domcnt, uint64_t uid, uint64_t gid) { uint64_t *log_fuid = (uint64_t *)start; zfs_fuid_info_t *fuid_infop; int i; fuid_infop = zfs_fuid_info_alloc(); fuid_infop->z_domain_cnt = domcnt; fuid_infop->z_domain_table = kmem_zalloc(domcnt * sizeof (char *), KM_SLEEP); for (i = 0; i != idcnt; i++) { zfs_fuid_t *zfuid; zfuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); zfuid->z_logfuid = *log_fuid; zfuid->z_id = -1; zfuid->z_domidx = 0; list_insert_tail(&fuid_infop->z_fuids, zfuid); log_fuid++; } zfs_replay_fuid_ugid(fuid_infop, uid, gid); *end = zfs_replay_fuid_domain_common(fuid_infop, log_fuid, domcnt); return (fuid_infop); } static void zfs_replay_swap_attrs(lr_attr_t *lrattr) { /* swap the lr_attr structure */ byteswap_uint32_array(lrattr, sizeof (*lrattr)); /* swap the bitmap */ byteswap_uint32_array(lrattr + 1, (lrattr->lr_attr_masksize - 1) * sizeof (uint32_t)); /* swap the attributes, create time + 64 bit word for attributes */ byteswap_uint64_array((caddr_t)(lrattr + 1) + (sizeof (uint32_t) * (lrattr->lr_attr_masksize - 1)), 3 * sizeof (uint64_t)); } /* * Replay file create with optional ACL, xvattr information as well * as option FUID information. */ static int zfs_replay_create_acl(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_acl_create_t *lracl = arg2; char *name = NULL; /* location determined later */ lr_create_t *lr = (lr_create_t *)lracl; znode_t *dzp; znode_t *zp; xvattr_t xva; int vflg = 0; vsecattr_t vsec = { 0 }; lr_attr_t *lrattr; void *aclstart; void *fuidstart; size_t xvatlen = 0; uint64_t txtype; uint64_t objid; uint64_t dnodesize; int error; txtype = (lr->lr_common.lrc_txtype & ~TX_CI); if (byteswap) { byteswap_uint64_array(lracl, sizeof (*lracl)); if (txtype == TX_CREATE_ACL_ATTR || txtype == TX_MKDIR_ACL_ATTR) { lrattr = (lr_attr_t *)(caddr_t)(lracl + 1); zfs_replay_swap_attrs(lrattr); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); } aclstart = (caddr_t)(lracl + 1) + xvatlen; zfs_ace_byteswap(aclstart, lracl->lr_acl_bytes, B_FALSE); /* swap fuids */ if (lracl->lr_fuidcnt) { byteswap_uint64_array((caddr_t)aclstart + ZIL_ACE_LENGTH(lracl->lr_acl_bytes), lracl->lr_fuidcnt * sizeof (uint64_t)); } } if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); objid = LR_FOID_GET_OBJ(lr->lr_foid); dnodesize = LR_FOID_GET_SLOTS(lr->lr_foid) << DNODE_SHIFT; xva_init(&xva); zfs_init_vattr(&xva.xva_vattr, ATTR_MODE | ATTR_UID | ATTR_GID, lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, objid); /* * All forms of zfs create (create, mkdir, mkxattrdir, symlink) * eventually end up in zfs_mknode(), which assigns the object's * creation time, generation number, and dnode size. The generic * zfs_create() has no concept of these attributes, so we smuggle * the values inside the vattr's otherwise unused va_ctime, * va_nblocks, and va_fsid fields. */ ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_crtime); xva.xva_vattr.va_nblocks = lr->lr_gen; xva.xva_vattr.va_fsid = dnodesize; error = dnode_try_claim(zfsvfs->z_os, objid, dnodesize >> DNODE_SHIFT); if (error) goto bail; if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; switch (txtype) { case TX_CREATE_ACL: aclstart = (caddr_t)(lracl + 1); fuidstart = (caddr_t)aclstart + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); zfs_fallthrough; case TX_CREATE_ACL_ATTR: if (name == NULL) { lrattr = (lr_attr_t *)(caddr_t)(lracl + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); xva.xva_vattr.va_mask |= ATTR_XVATTR; zfs_replay_xvattr(lrattr, &xva); } vsec.vsa_mask = VSA_ACE | VSA_ACE_ACLFLAGS; vsec.vsa_aclentp = (caddr_t)(lracl + 1) + xvatlen; vsec.vsa_aclcnt = lracl->lr_aclcnt; vsec.vsa_aclentsz = lracl->lr_acl_bytes; vsec.vsa_aclflags = lracl->lr_acl_flags; if (zfsvfs->z_fuid_replay == NULL) { fuidstart = (caddr_t)(lracl + 1) + xvatlen + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); } #if defined(__linux__) error = zfs_create(dzp, name, &xva.xva_vattr, 0, 0, &zp, kcred, vflg, &vsec, kcred->user_ns); #else error = zfs_create(dzp, name, &xva.xva_vattr, 0, 0, &zp, kcred, vflg, &vsec, NULL); #endif break; case TX_MKDIR_ACL: aclstart = (caddr_t)(lracl + 1); fuidstart = (caddr_t)aclstart + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); zfs_fallthrough; case TX_MKDIR_ACL_ATTR: if (name == NULL) { lrattr = (lr_attr_t *)(caddr_t)(lracl + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); zfs_replay_xvattr(lrattr, &xva); } vsec.vsa_mask = VSA_ACE | VSA_ACE_ACLFLAGS; vsec.vsa_aclentp = (caddr_t)(lracl + 1) + xvatlen; vsec.vsa_aclcnt = lracl->lr_aclcnt; vsec.vsa_aclentsz = lracl->lr_acl_bytes; vsec.vsa_aclflags = lracl->lr_acl_flags; if (zfsvfs->z_fuid_replay == NULL) { fuidstart = (caddr_t)(lracl + 1) + xvatlen + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); } #if defined(__linux__) error = zfs_mkdir(dzp, name, &xva.xva_vattr, &zp, kcred, vflg, &vsec, kcred->user_ns); #else error = zfs_mkdir(dzp, name, &xva.xva_vattr, &zp, kcred, vflg, &vsec, NULL); #endif break; default: error = SET_ERROR(ENOTSUP); } bail: if (error == 0 && zp != NULL) { #ifdef __FreeBSD__ VOP_UNLOCK1(ZTOV(zp)); #endif zrele(zp); } zrele(dzp); if (zfsvfs->z_fuid_replay) zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; return (error); } static int zfs_replay_create(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_create_t *lr = arg2; char *name = NULL; /* location determined later */ char *link; /* symlink content follows name */ znode_t *dzp; znode_t *zp = NULL; xvattr_t xva; int vflg = 0; size_t lrsize = sizeof (lr_create_t); lr_attr_t *lrattr; void *start; size_t xvatlen; uint64_t txtype; uint64_t objid; uint64_t dnodesize; int error; txtype = (lr->lr_common.lrc_txtype & ~TX_CI); if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); if (txtype == TX_CREATE_ATTR || txtype == TX_MKDIR_ATTR) zfs_replay_swap_attrs((lr_attr_t *)(lr + 1)); } if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); objid = LR_FOID_GET_OBJ(lr->lr_foid); dnodesize = LR_FOID_GET_SLOTS(lr->lr_foid) << DNODE_SHIFT; xva_init(&xva); zfs_init_vattr(&xva.xva_vattr, ATTR_MODE | ATTR_UID | ATTR_GID, lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, objid); /* * All forms of zfs create (create, mkdir, mkxattrdir, symlink) * eventually end up in zfs_mknode(), which assigns the object's * creation time, generation number, and dnode slot count. The * generic zfs_create() has no concept of these attributes, so * we smuggle the values inside the vattr's otherwise unused * va_ctime, va_nblocks, and va_fsid fields. */ ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_crtime); xva.xva_vattr.va_nblocks = lr->lr_gen; xva.xva_vattr.va_fsid = dnodesize; error = dnode_try_claim(zfsvfs->z_os, objid, dnodesize >> DNODE_SHIFT); if (error) goto out; if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; /* * Symlinks don't have fuid info, and CIFS never creates * symlinks. * * The _ATTR versions will grab the fuid info in their subcases. */ if (txtype != TX_SYMLINK && txtype != TX_MKDIR_ATTR && txtype != TX_CREATE_ATTR) { start = (lr + 1); zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); } switch (txtype) { case TX_CREATE_ATTR: lrattr = (lr_attr_t *)(caddr_t)(lr + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); zfs_replay_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), &xva); start = (caddr_t)(lr + 1) + xvatlen; zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); name = (char *)start; zfs_fallthrough; case TX_CREATE: if (name == NULL) name = (char *)start; #if defined(__linux__) error = zfs_create(dzp, name, &xva.xva_vattr, 0, 0, &zp, kcred, vflg, NULL, kcred->user_ns); #else error = zfs_create(dzp, name, &xva.xva_vattr, 0, 0, &zp, kcred, vflg, NULL, NULL); #endif break; case TX_MKDIR_ATTR: lrattr = (lr_attr_t *)(caddr_t)(lr + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); zfs_replay_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), &xva); start = (caddr_t)(lr + 1) + xvatlen; zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); name = (char *)start; zfs_fallthrough; case TX_MKDIR: if (name == NULL) name = (char *)(lr + 1); #if defined(__linux__) error = zfs_mkdir(dzp, name, &xva.xva_vattr, &zp, kcred, vflg, NULL, kcred->user_ns); #else error = zfs_mkdir(dzp, name, &xva.xva_vattr, &zp, kcred, vflg, NULL, NULL); #endif break; case TX_MKXATTR: error = zfs_make_xattrdir(dzp, &xva.xva_vattr, &zp, kcred); break; case TX_SYMLINK: name = (char *)(lr + 1); link = name + strlen(name) + 1; #if defined(__linux__) error = zfs_symlink(dzp, name, &xva.xva_vattr, link, &zp, kcred, vflg, kcred->user_ns); #else error = zfs_symlink(dzp, name, &xva.xva_vattr, link, &zp, kcred, vflg, NULL); #endif break; default: error = SET_ERROR(ENOTSUP); } out: if (error == 0 && zp != NULL) { #ifdef __FreeBSD__ VOP_UNLOCK1(ZTOV(zp)); #endif zrele(zp); } zrele(dzp); if (zfsvfs->z_fuid_replay) zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; return (error); } static int zfs_replay_remove(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_remove_t *lr = arg2; char *name = (char *)(lr + 1); /* name follows lr_remove_t */ znode_t *dzp; int error; int vflg = 0; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; switch ((int)lr->lr_common.lrc_txtype) { case TX_REMOVE: error = zfs_remove(dzp, name, kcred, vflg); break; case TX_RMDIR: error = zfs_rmdir(dzp, name, NULL, kcred, vflg); break; default: error = SET_ERROR(ENOTSUP); } zrele(dzp); return (error); } static int zfs_replay_link(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_link_t *lr = arg2; char *name = (char *)(lr + 1); /* name follows lr_link_t */ znode_t *dzp, *zp; int error; int vflg = 0; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); if ((error = zfs_zget(zfsvfs, lr->lr_link_obj, &zp)) != 0) { zrele(dzp); return (error); } if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; error = zfs_link(dzp, zp, name, kcred, vflg); zrele(zp); zrele(dzp); return (error); } static int do_zfs_replay_rename(zfsvfs_t *zfsvfs, lr_rename_t *lr, char *sname, char *tname, uint64_t rflags, vattr_t *wo_vap) { znode_t *sdzp, *tdzp; int error, vflg = 0; /* Only Linux currently supports RENAME_* flags. */ #ifdef __linux__ VERIFY0(rflags & ~(RENAME_EXCHANGE | RENAME_WHITEOUT)); /* wo_vap must be non-NULL iff. we're doing RENAME_WHITEOUT */ VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL); #else VERIFY0(rflags); #endif if ((error = zfs_zget(zfsvfs, lr->lr_sdoid, &sdzp)) != 0) return (error); if ((error = zfs_zget(zfsvfs, lr->lr_tdoid, &tdzp)) != 0) { zrele(sdzp); return (error); } if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; #if defined(__linux__) error = zfs_rename(sdzp, sname, tdzp, tname, kcred, vflg, rflags, wo_vap, kcred->user_ns); #else error = zfs_rename(sdzp, sname, tdzp, tname, kcred, vflg, rflags, wo_vap, NULL); #endif zrele(tdzp); zrele(sdzp); return (error); } static int zfs_replay_rename(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_rename_t *lr = arg2; char *sname = (char *)(lr + 1); /* sname and tname follow lr_rename_t */ char *tname = sname + strlen(sname) + 1; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); return (do_zfs_replay_rename(zfsvfs, lr, sname, tname, 0, NULL)); } static int zfs_replay_rename_exchange(void *arg1, void *arg2, boolean_t byteswap) { #ifdef __linux__ zfsvfs_t *zfsvfs = arg1; lr_rename_t *lr = arg2; char *sname = (char *)(lr + 1); /* sname and tname follow lr_rename_t */ char *tname = sname + strlen(sname) + 1; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); return (do_zfs_replay_rename(zfsvfs, lr, sname, tname, RENAME_EXCHANGE, NULL)); #else return (SET_ERROR(ENOTSUP)); #endif } static int zfs_replay_rename_whiteout(void *arg1, void *arg2, boolean_t byteswap) { #ifdef __linux__ zfsvfs_t *zfsvfs = arg1; lr_rename_whiteout_t *lr = arg2; int error; /* sname and tname follow lr_rename_whiteout_t */ char *sname = (char *)(lr + 1); char *tname = sname + strlen(sname) + 1; /* For the whiteout file. */ xvattr_t xva; uint64_t objid; uint64_t dnodesize; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); objid = LR_FOID_GET_OBJ(lr->lr_wfoid); dnodesize = LR_FOID_GET_SLOTS(lr->lr_wfoid) << DNODE_SHIFT; xva_init(&xva); zfs_init_vattr(&xva.xva_vattr, ATTR_MODE | ATTR_UID | ATTR_GID, lr->lr_wmode, lr->lr_wuid, lr->lr_wgid, lr->lr_wrdev, objid); /* * As with TX_CREATE, RENAME_WHITEOUT ends up in zfs_mknode(), which * assigns the object's creation time, generation number, and dnode * slot count. The generic zfs_rename() has no concept of these * attributes, so we smuggle the values inside the vattr's otherwise * unused va_ctime, va_nblocks, and va_fsid fields. */ ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_wcrtime); xva.xva_vattr.va_nblocks = lr->lr_wgen; xva.xva_vattr.va_fsid = dnodesize; error = dnode_try_claim(zfsvfs->z_os, objid, dnodesize >> DNODE_SHIFT); if (error) return (error); return (do_zfs_replay_rename(zfsvfs, &lr->lr_rename, sname, tname, RENAME_WHITEOUT, &xva.xva_vattr)); #else return (SET_ERROR(ENOTSUP)); #endif } static int zfs_replay_write(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_write_t *lr = arg2; char *data = (char *)(lr + 1); /* data follows lr_write_t */ znode_t *zp; int error; uint64_t eod, offset, length; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) { /* * As we can log writes out of order, it's possible the * file has been removed. In this case just drop the write * and return success. */ if (error == ENOENT) error = 0; return (error); } offset = lr->lr_offset; length = lr->lr_length; eod = offset + length; /* end of data for this write */ /* * This may be a write from a dmu_sync() for a whole block, * and may extend beyond the current end of the file. * We can't just replay what was written for this TX_WRITE as * a future TX_WRITE2 may extend the eof and the data for that * write needs to be there. So we write the whole block and * reduce the eof. This needs to be done within the single dmu * transaction created within vn_rdwr -> zfs_write. So a possible * new end of file is passed through in zfsvfs->z_replay_eof */ zfsvfs->z_replay_eof = 0; /* 0 means don't change end of file */ /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } if (zp->z_size < eod) zfsvfs->z_replay_eof = eod; } error = zfs_write_simple(zp, data, length, offset, NULL); zrele(zp); zfsvfs->z_replay_eof = 0; /* safety */ return (error); } /* * TX_WRITE2 are only generated when dmu_sync() returns EALREADY * meaning the pool block is already being synced. So now that we always write * out full blocks, all we have to do is expand the eof if * the file is grown. */ static int zfs_replay_write2(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_write_t *lr = arg2; znode_t *zp; int error; uint64_t end; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); top: end = lr->lr_offset + lr->lr_length; if (end > zp->z_size) { dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); zp->z_size = end; dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { zrele(zp); if (error == ERESTART) { dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); return (error); } (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), (void *)&zp->z_size, sizeof (uint64_t), tx); /* Ensure the replayed seq is updated */ (void) zil_replaying(zfsvfs->z_log, tx); dmu_tx_commit(tx); } zrele(zp); return (error); } static int zfs_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_truncate_t *lr = arg2; znode_t *zp; flock64_t fl = {0}; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); fl.l_type = F_WRLCK; fl.l_whence = SEEK_SET; fl.l_start = lr->lr_offset; fl.l_len = lr->lr_length; error = zfs_space(zp, F_FREESP, &fl, O_RDWR | O_LARGEFILE, lr->lr_offset, kcred); zrele(zp); return (error); } static int zfs_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_setattr_t *lr = arg2; znode_t *zp; xvattr_t xva; vattr_t *vap = &xva.xva_vattr; int error; void *start; xva_init(&xva); if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); if ((lr->lr_mask & ATTR_XVATTR) && zfsvfs->z_version >= ZPL_VERSION_INITIAL) zfs_replay_swap_attrs((lr_attr_t *)(lr + 1)); } if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); zfs_init_vattr(vap, lr->lr_mask, lr->lr_mode, lr->lr_uid, lr->lr_gid, 0, lr->lr_foid); vap->va_size = lr->lr_size; ZFS_TIME_DECODE(&vap->va_atime, lr->lr_atime); ZFS_TIME_DECODE(&vap->va_mtime, lr->lr_mtime); gethrestime(&vap->va_ctime); vap->va_mask |= ATTR_CTIME; /* * Fill in xvattr_t portions if necessary. */ start = (lr_setattr_t *)(lr + 1); if (vap->va_mask & ATTR_XVATTR) { zfs_replay_xvattr((lr_attr_t *)start, &xva); start = (caddr_t)start + ZIL_XVAT_SIZE(((lr_attr_t *)start)->lr_attr_masksize); } else xva.xva_vattr.va_mask &= ~ATTR_XVATTR; zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); #if defined(__linux__) error = zfs_setattr(zp, vap, 0, kcred, kcred->user_ns); #else error = zfs_setattr(zp, vap, 0, kcred, NULL); #endif zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; zrele(zp); return (error); } static int zfs_replay_setsaxattr(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_setsaxattr_t *lr = arg2; znode_t *zp; nvlist_t *nvl; size_t sa_size; char *name; char *value; size_t size; int error = 0; ASSERT(spa_feature_is_active(zfsvfs->z_os->os_spa, SPA_FEATURE_ZILSAXATTR)); if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); rw_enter(&zp->z_xattr_lock, RW_WRITER); mutex_enter(&zp->z_lock); if (zp->z_xattr_cached == NULL) error = zfs_sa_get_xattr(zp); mutex_exit(&zp->z_lock); if (error) goto out; ASSERT(zp->z_xattr_cached); nvl = zp->z_xattr_cached; /* Get xattr name, value and size from log record */ size = lr->lr_size; name = (char *)(lr + 1); if (size == 0) { value = NULL; error = nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY); } else { value = name + strlen(name) + 1; /* Limited to 32k to keep nvpair memory allocations small */ if (size > DXATTR_MAX_ENTRY_SIZE) { error = SET_ERROR(EFBIG); goto out; } /* Prevent the DXATTR SA from consuming the entire SA region */ error = nvlist_size(nvl, &sa_size, NV_ENCODE_XDR); if (error) goto out; if (sa_size > DXATTR_MAX_SA_SIZE) { error = SET_ERROR(EFBIG); goto out; } error = nvlist_add_byte_array(nvl, name, (uchar_t *)value, size); } /* * Update the SA for additions, modifications, and removals. On * error drop the inconsistent cached version of the nvlist, it * will be reconstructed from the ARC when next accessed. */ if (error == 0) error = zfs_sa_set_xattr(zp, name, value, size); if (error) { nvlist_free(nvl); zp->z_xattr_cached = NULL; } out: rw_exit(&zp->z_xattr_lock); zrele(zp); return (error); } static int zfs_replay_acl_v0(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_acl_v0_t *lr = arg2; ace_t *ace = (ace_t *)(lr + 1); /* ace array follows lr_acl_t */ vsecattr_t vsa = {0}; znode_t *zp; int error; if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); zfs_oldace_byteswap(ace, lr->lr_aclcnt); } if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); vsa.vsa_mask = VSA_ACE | VSA_ACECNT; vsa.vsa_aclcnt = lr->lr_aclcnt; vsa.vsa_aclentsz = sizeof (ace_t) * vsa.vsa_aclcnt; vsa.vsa_aclflags = 0; vsa.vsa_aclentp = ace; error = zfs_setsecattr(zp, &vsa, 0, kcred); zrele(zp); return (error); } /* * Replaying ACLs is complicated by FUID support. * The log record may contain some optional data * to be used for replaying FUID's. These pieces * are the actual FUIDs that were created initially. * The FUID table index may no longer be valid and * during zfs_create() a new index may be assigned. * Because of this the log will contain the original * domain+rid in order to create a new FUID. * * The individual ACEs may contain an ephemeral uid/gid which is no * longer valid and will need to be replaced with an actual FUID. * */ static int zfs_replay_acl(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_acl_t *lr = arg2; ace_t *ace = (ace_t *)(lr + 1); vsecattr_t vsa = {0}; znode_t *zp; int error; if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); zfs_ace_byteswap(ace, lr->lr_acl_bytes, B_FALSE); if (lr->lr_fuidcnt) { byteswap_uint64_array((caddr_t)ace + ZIL_ACE_LENGTH(lr->lr_acl_bytes), lr->lr_fuidcnt * sizeof (uint64_t)); } } if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); vsa.vsa_mask = VSA_ACE | VSA_ACECNT | VSA_ACE_ACLFLAGS; vsa.vsa_aclcnt = lr->lr_aclcnt; vsa.vsa_aclentp = ace; vsa.vsa_aclentsz = lr->lr_acl_bytes; vsa.vsa_aclflags = lr->lr_acl_flags; if (lr->lr_fuidcnt) { void *fuidstart = (caddr_t)ace + ZIL_ACE_LENGTH(lr->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, &fuidstart, lr->lr_fuidcnt, lr->lr_domcnt, 0, 0); } error = zfs_setsecattr(zp, &vsa, 0, kcred); if (zfsvfs->z_fuid_replay) zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; zrele(zp); return (error); } +static int +zfs_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap) +{ + zfsvfs_t *zfsvfs = arg1; + lr_clone_range_t *lr = arg2; + znode_t *zp; + int error; + + if (byteswap) + byteswap_uint64_array(lr, sizeof (*lr)); + + if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) { + /* + * Clones can be logged out of order, so don't be surprised if + * the file is gone - just return success. + */ + if (error == ENOENT) + error = 0; + return (error); + } + + error = zfs_clone_range_replay(zp, lr->lr_offset, lr->lr_length, + lr->lr_blksz, lr->lr_bps, lr->lr_nbps); + + zrele(zp); + return (error); +} + /* * Callback vectors for replaying records */ zil_replay_func_t *const zfs_replay_vector[TX_MAX_TYPE] = { zfs_replay_error, /* no such type */ zfs_replay_create, /* TX_CREATE */ zfs_replay_create, /* TX_MKDIR */ zfs_replay_create, /* TX_MKXATTR */ zfs_replay_create, /* TX_SYMLINK */ zfs_replay_remove, /* TX_REMOVE */ zfs_replay_remove, /* TX_RMDIR */ zfs_replay_link, /* TX_LINK */ zfs_replay_rename, /* TX_RENAME */ zfs_replay_write, /* TX_WRITE */ zfs_replay_truncate, /* TX_TRUNCATE */ zfs_replay_setattr, /* TX_SETATTR */ zfs_replay_acl_v0, /* TX_ACL_V0 */ zfs_replay_acl, /* TX_ACL */ zfs_replay_create_acl, /* TX_CREATE_ACL */ zfs_replay_create, /* TX_CREATE_ATTR */ zfs_replay_create_acl, /* TX_CREATE_ACL_ATTR */ zfs_replay_create_acl, /* TX_MKDIR_ACL */ zfs_replay_create, /* TX_MKDIR_ATTR */ zfs_replay_create_acl, /* TX_MKDIR_ACL_ATTR */ zfs_replay_write2, /* TX_WRITE2 */ zfs_replay_setsaxattr, /* TX_SETSAXATTR */ zfs_replay_rename_exchange, /* TX_RENAME_EXCHANGE */ zfs_replay_rename_whiteout, /* TX_RENAME_WHITEOUT */ + zfs_replay_clone_range, /* TX_CLONE_RANGE */ }; diff --git a/module/zfs/zfs_vnops.c b/module/zfs/zfs_vnops.c index 10677d8d9947..db80be783899 100644 --- a/module/zfs/zfs_vnops.c +++ b/module/zfs/zfs_vnops.c @@ -1,1007 +1,1472 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2015 by Chunwei Chen. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. + * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek */ /* Portions Copyright 2007 Jeremy Teo */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include static ulong_t zfs_fsync_sync_cnt = 4; int zfs_fsync(znode_t *zp, int syncflag, cred_t *cr) { int error = 0; zfsvfs_t *zfsvfs = ZTOZSB(zp); (void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt); if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) goto out; atomic_inc_32(&zp->z_sync_writes_cnt); zil_commit(zfsvfs->z_log, zp->z_id); atomic_dec_32(&zp->z_sync_writes_cnt); zfs_exit(zfsvfs, FTAG); } out: tsd_set(zfs_fsyncer_key, NULL); return (error); } #if defined(SEEK_HOLE) && defined(SEEK_DATA) /* * Lseek support for finding holes (cmd == SEEK_HOLE) and * data (cmd == SEEK_DATA). "off" is an in/out parameter. */ static int zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off) { zfs_locked_range_t *lr; uint64_t noff = (uint64_t)*off; /* new offset */ uint64_t file_sz; int error; boolean_t hole; file_sz = zp->z_size; if (noff >= file_sz) { return (SET_ERROR(ENXIO)); } if (cmd == F_SEEK_HOLE) hole = B_TRUE; else hole = B_FALSE; /* Flush any mmap()'d data to disk */ if (zn_has_cached_data(zp, 0, file_sz - 1)) zn_flush_cached_data(zp, B_FALSE); lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER); error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); zfs_rangelock_exit(lr); if (error == ESRCH) return (SET_ERROR(ENXIO)); /* File was dirty, so fall back to using generic logic */ if (error == EBUSY) { if (hole) *off = file_sz; return (0); } /* * We could find a hole that begins after the logical end-of-file, * because dmu_offset_next() only works on whole blocks. If the * EOF falls mid-block, then indicate that the "virtual hole" * at the end of the file begins at the logical EOF, rather than * at the end of the last block. */ if (noff > file_sz) { ASSERT(hole); noff = file_sz; } if (noff < *off) return (error); *off = noff; return (error); } int zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off) { zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); error = zfs_holey_common(zp, cmd, off); zfs_exit(zfsvfs, FTAG); return (error); } #endif /* SEEK_HOLE && SEEK_DATA */ int zfs_access(znode_t *zp, int mode, int flag, cred_t *cr) { zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if (flag & V_ACE_MASK) #if defined(__linux__) error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, kcred->user_ns); #else error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, NULL); #endif else #if defined(__linux__) error = zfs_zaccess_rwx(zp, mode, flag, cr, kcred->user_ns); #else error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL); #endif zfs_exit(zfsvfs, FTAG); return (error); } static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */ /* * Read bytes from specified file into supplied buffer. * * IN: zp - inode of file to be read from. * uio - structure supplying read location, range info, * and return buffer. * ioflag - O_SYNC flags; used to provide FRSYNC semantics. * O_DIRECT flag; used to bypass page cache. * cr - credentials of caller. * * OUT: uio - updated offset and range, buffer filled. * * RETURN: 0 on success, error code on failure. * * Side Effects: * inode - atime updated if byte count > 0 */ int zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) { (void) cr; int error = 0; boolean_t frsync = B_FALSE; zfsvfs_t *zfsvfs = ZTOZSB(zp); if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if (zp->z_pflags & ZFS_AV_QUARANTINED) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EACCES)); } /* We don't copy out anything useful for directories. */ if (Z_ISDIR(ZTOTYPE(zp))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EISDIR)); } /* * Validate file offset */ if (zfs_uio_offset(uio) < (offset_t)0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } /* * Fasttrack empty reads */ if (zfs_uio_resid(uio) == 0) { zfs_exit(zfsvfs, FTAG); return (0); } #ifdef FRSYNC /* * If we're in FRSYNC mode, sync out this znode before reading it. * Only do this for non-snapshots. * * Some platforms do not support FRSYNC and instead map it * to O_SYNC, which results in unnecessary calls to zil_commit. We * only honor FRSYNC requests on platforms which support it. */ frsync = !!(ioflag & FRSYNC); #endif if (zfsvfs->z_log && (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) zil_commit(zfsvfs->z_log, zp->z_id); /* * Lock the range against changes. */ zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER); /* * If we are reading past end-of-file we can skip * to the end; but we might still need to set atime. */ if (zfs_uio_offset(uio) >= zp->z_size) { error = 0; goto out; } ASSERT(zfs_uio_offset(uio) < zp->z_size); #if defined(__linux__) ssize_t start_offset = zfs_uio_offset(uio); #endif ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio)); ssize_t start_resid = n; while (n > 0) { ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size - P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size)); #ifdef UIO_NOCOPY if (zfs_uio_segflg(uio) == UIO_NOCOPY) error = mappedread_sf(zp, nbytes, uio); else #endif if (zn_has_cached_data(zp, zfs_uio_offset(uio), zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) { error = mappedread(zp, nbytes, uio); } else { error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, nbytes); } if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); #if defined(__linux__) /* * if we actually read some bytes, bubbling EFAULT * up to become EAGAIN isn't what we want here... * * ...on Linux, at least. On FBSD, doing this breaks. */ if (error == EFAULT && (zfs_uio_offset(uio) - start_offset) != 0) error = 0; #endif break; } n -= nbytes; } int64_t nread = start_resid - n; dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread); task_io_account_read(nread); out: zfs_rangelock_exit(lr); ZFS_ACCESSTIME_STAMP(zfsvfs, zp); zfs_exit(zfsvfs, FTAG); return (error); } static void zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr, uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx) { zilog_t *zilog = zfsvfs->z_log; const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); ASSERT(clear_setid_bits_txgp != NULL); ASSERT(tx != NULL); /* * Clear Set-UID/Set-GID bits on successful write if not * privileged and at least one of the execute bits is set. * * It would be nice to do this after all writes have * been done, but that would still expose the ISUID/ISGID * to another app after the partial write is committed. * * Note: we don't call zfs_fuid_map_id() here because * user 0 is not an ephemeral uid. */ mutex_enter(&zp->z_acl_lock); if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && secpolicy_vnode_setid_retain(zp, cr, ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) { uint64_t newmode; zp->z_mode &= ~(S_ISUID | S_ISGID); newmode = zp->z_mode; (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), (void *)&newmode, sizeof (uint64_t), tx); mutex_exit(&zp->z_acl_lock); /* * Make sure SUID/SGID bits will be removed when we replay the * log. If the setid bits are keep coming back, don't log more * than one TX_SETATTR per transaction group. */ if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) { vattr_t va = {0}; va.va_mask = ATTR_MODE; va.va_nodeid = zp->z_id; va.va_mode = newmode; zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, ATTR_MODE, NULL); *clear_setid_bits_txgp = dmu_tx_get_txg(tx); } } else { mutex_exit(&zp->z_acl_lock); } } /* * Write the bytes to a file. * * IN: zp - znode of file to be written to. * uio - structure supplying write location, range info, * and data buffer. * ioflag - O_APPEND flag set if in append mode. * O_DIRECT flag; used to bypass page cache. * cr - credentials of caller. * * OUT: uio - updated offset and range. * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - ctime|mtime updated if byte count > 0 */ int zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) { int error = 0, error1; ssize_t start_resid = zfs_uio_resid(uio); uint64_t clear_setid_bits_txg = 0; /* * Fasttrack empty write */ ssize_t n = start_resid; if (n == 0) return (0); zfsvfs_t *zfsvfs = ZTOZSB(zp); if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); sa_bulk_attr_t bulk[4]; int count = 0; uint64_t mtime[2], ctime[2]; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); /* * Callers might not be able to detect properly that we are read-only, * so check it explicitly here. */ if (zfs_is_readonly(zfsvfs)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EROFS)); } /* * If immutable or not appending then return EPERM. * Intentionally allow ZFS_READONLY through here. * See zfs_zaccess_common() */ if ((zp->z_pflags & ZFS_IMMUTABLE) || ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) && (zfs_uio_offset(uio) < zp->z_size))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } /* * Validate file offset */ offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio); if (woff < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } const uint64_t max_blksz = zfsvfs->z_max_blksz; /* * Pre-fault the pages to ensure slow (eg NFS) pages * don't hold up txg. * Skip this if uio contains loaned arc_buf. */ if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EFAULT)); } /* * If in append mode, set the io offset pointer to eof. */ zfs_locked_range_t *lr; if (ioflag & O_APPEND) { /* * Obtain an appending range lock to guarantee file append * semantics. We reset the write offset once we have the lock. */ lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); woff = lr->lr_offset; if (lr->lr_length == UINT64_MAX) { /* * We overlocked the file because this write will cause * the file block size to increase. * Note that zp_size cannot change with this lock held. */ woff = zp->z_size; } zfs_uio_setoffset(uio, woff); } else { /* * Note that if the file block size will change as a result of * this write, then this range lock will lock the entire file * so that we can re-write the block safely. */ lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); } - if (zn_rlimit_fsize(zp, uio)) { + if (zn_rlimit_fsize_uio(zp, uio)) { zfs_rangelock_exit(lr); zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EFBIG)); } const rlim64_t limit = MAXOFFSET_T; if (woff >= limit) { zfs_rangelock_exit(lr); zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EFBIG)); } if (n > limit - woff) n = limit - woff; uint64_t end_size = MAX(zp->z_size, woff + n); zilog_t *zilog = zfsvfs->z_log; const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); const uint64_t gid = KGID_TO_SGID(ZTOGID(zp)); const uint64_t projid = zp->z_projid; /* * Write the file in reasonable size chunks. Each chunk is written * in a separate transaction; this keeps the intent log records small * and allows us to do more fine-grained space accounting. */ while (n > 0) { woff = zfs_uio_offset(uio); if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) || zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) || (projid != ZFS_DEFAULT_PROJID && zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid))) { error = SET_ERROR(EDQUOT); break; } arc_buf_t *abuf = NULL; if (n >= max_blksz && woff >= zp->z_size && P2PHASE(woff, max_blksz) == 0 && zp->z_blksz == max_blksz) { /* * This write covers a full block. "Borrow" a buffer * from the dmu so that we can fill it before we enter * a transaction. This avoids the possibility of * holding up the transaction if the data copy hangs * up on a pagefault (e.g., from an NFS server mapping). */ size_t cbytes; abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), max_blksz); ASSERT(abuf != NULL); ASSERT(arc_buf_size(abuf) == max_blksz); if ((error = zfs_uiocopy(abuf->b_data, max_blksz, UIO_WRITE, uio, &cbytes))) { dmu_return_arcbuf(abuf); break; } ASSERT3S(cbytes, ==, max_blksz); } /* * Start a transaction. */ dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); DB_DNODE_ENTER(db); dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, MIN(n, max_blksz)); DB_DNODE_EXIT(db); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); if (abuf != NULL) dmu_return_arcbuf(abuf); break; } /* * NB: We must call zfs_clear_setid_bits_if_necessary before * committing the transaction! */ /* * If rangelock_enter() over-locked we grow the blocksize * and then reduce the lock range. This will only happen * on the first iteration since rangelock_reduce() will * shrink down lr_length to the appropriate size. */ if (lr->lr_length == UINT64_MAX) { uint64_t new_blksz; if (zp->z_blksz > max_blksz) { /* * File's blocksize is already larger than the * "recordsize" property. Only let it grow to * the next power of 2. */ ASSERT(!ISP2(zp->z_blksz)); new_blksz = MIN(end_size, 1 << highbit64(zp->z_blksz)); } else { new_blksz = MIN(end_size, max_blksz); } zfs_grow_blocksize(zp, new_blksz, tx); zfs_rangelock_reduce(lr, woff, n); } /* * XXX - should we really limit each write to z_max_blksz? * Perhaps we should use SPA_MAXBLOCKSIZE chunks? */ const ssize_t nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); ssize_t tx_bytes; if (abuf == NULL) { tx_bytes = zfs_uio_resid(uio); zfs_uio_fault_disable(uio, B_TRUE); error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, nbytes, tx); zfs_uio_fault_disable(uio, B_FALSE); #ifdef __linux__ if (error == EFAULT) { zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, &clear_setid_bits_txg, tx); dmu_tx_commit(tx); /* * Account for partial writes before * continuing the loop. * Update needs to occur before the next * zfs_uio_prefaultpages, or prefaultpages may * error, and we may break the loop early. */ if (tx_bytes != zfs_uio_resid(uio)) n -= tx_bytes - zfs_uio_resid(uio); if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { break; } continue; } #endif /* * On FreeBSD, EFAULT should be propagated back to the * VFS, which will handle faulting and will retry. */ if (error != 0 && error != EFAULT) { zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, &clear_setid_bits_txg, tx); dmu_tx_commit(tx); break; } tx_bytes -= zfs_uio_resid(uio); } else { /* Implied by abuf != NULL: */ ASSERT3S(n, >=, max_blksz); ASSERT0(P2PHASE(woff, max_blksz)); /* * We can simplify nbytes to MIN(n, max_blksz) since * P2PHASE(woff, max_blksz) is 0, and knowing * n >= max_blksz lets us simplify further: */ ASSERT3S(nbytes, ==, max_blksz); /* * Thus, we're writing a full block at a block-aligned * offset and extending the file past EOF. * * dmu_assign_arcbuf_by_dbuf() will directly assign the * arc buffer to a dbuf. */ error = dmu_assign_arcbuf_by_dbuf( sa_get_db(zp->z_sa_hdl), woff, abuf, tx); if (error != 0) { /* * XXX This might not be necessary if * dmu_assign_arcbuf_by_dbuf is guaranteed * to be atomic. */ zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, &clear_setid_bits_txg, tx); dmu_return_arcbuf(abuf); dmu_tx_commit(tx); break; } ASSERT3S(nbytes, <=, zfs_uio_resid(uio)); zfs_uioskip(uio, nbytes); tx_bytes = nbytes; } if (tx_bytes && zn_has_cached_data(zp, woff, woff + tx_bytes - 1) && !(ioflag & O_DIRECT)) { update_pages(zp, woff, tx_bytes, zfsvfs->z_os); } /* * If we made no progress, we're done. If we made even * partial progress, update the znode and ZIL accordingly. */ if (tx_bytes == 0) { (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), (void *)&zp->z_size, sizeof (uint64_t), tx); dmu_tx_commit(tx); ASSERT(error != 0); break; } zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, &clear_setid_bits_txg, tx); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); /* * Update the file size (zp_size) if it has changed; * account for possible concurrent updates. */ while ((end_size = zp->z_size) < zfs_uio_offset(uio)) { (void) atomic_cas_64(&zp->z_size, end_size, zfs_uio_offset(uio)); ASSERT(error == 0 || error == EFAULT); } /* * If we are replaying and eof is non zero then force * the file size to the specified eof. Note, there's no * concurrency during replay. */ if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) zp->z_size = zfsvfs->z_replay_eof; error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); if (error1 != 0) /* Avoid clobbering EFAULT. */ error = error1; /* * NB: During replay, the TX_SETATTR record logged by * zfs_clear_setid_bits_if_necessary must precede any of * the TX_WRITE records logged here. */ zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag, NULL, NULL); dmu_tx_commit(tx); if (error != 0) break; ASSERT3S(tx_bytes, ==, nbytes); n -= nbytes; if (n > 0) { if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { error = SET_ERROR(EFAULT); break; } } } zfs_znode_update_vfs(zp); zfs_rangelock_exit(lr); /* * If we're in replay mode, or we made no progress, or the * uio data is inaccessible return an error. Otherwise, it's * at least a partial write, so it's successful. */ if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid || error == EFAULT) { zfs_exit(zfsvfs, FTAG); return (error); } if (ioflag & (O_SYNC | O_DSYNC) || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, zp->z_id); const int64_t nwritten = start_resid - zfs_uio_resid(uio); dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten); task_io_account_write(nwritten); zfs_exit(zfsvfs, FTAG); return (0); } int zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) { zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); error = zfs_getacl(zp, vsecp, skipaclchk, cr); zfs_exit(zfsvfs, FTAG); return (error); } int zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) { zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; zilog_t *zilog = zfsvfs->z_log; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); error = zfs_setacl(zp, vsecp, skipaclchk, cr); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } #ifdef ZFS_DEBUG static int zil_fault_io = 0; #endif static void zfs_get_done(zgd_t *zgd, int error); /* * Get data to generate a TX_WRITE intent log record. */ int zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) { zfsvfs_t *zfsvfs = arg; objset_t *os = zfsvfs->z_os; znode_t *zp; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; dmu_buf_t *db; zgd_t *zgd; int error = 0; uint64_t zp_gen; ASSERT3P(lwb, !=, NULL); ASSERT3P(zio, !=, NULL); ASSERT3U(size, !=, 0); /* * Nothing to do if the file has been removed */ if (zfs_zget(zfsvfs, object, &zp) != 0) return (SET_ERROR(ENOENT)); if (zp->z_unlinked) { /* * Release the vnode asynchronously as we currently have the * txg stopped from syncing. */ zfs_zrele_async(zp); return (SET_ERROR(ENOENT)); } /* check if generation number matches */ if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, sizeof (zp_gen)) != 0) { zfs_zrele_async(zp); return (SET_ERROR(EIO)); } if (zp_gen != gen) { zfs_zrele_async(zp); return (SET_ERROR(ENOENT)); } zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); zgd->zgd_lwb = lwb; zgd->zgd_private = zp; /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, offset, size, RL_READER); /* test for truncation needs to be done while range locked */ if (offset >= zp->z_size) { error = SET_ERROR(ENOENT); } else { error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); } ASSERT(error == 0 || error == ENOENT); } else { /* indirect write */ /* * Have to lock the whole block to ensure when it's * written out and its checksum is being calculated * that no one can change the data. We need to re-check * blocksize after we get the lock in case it's changed! */ for (;;) { uint64_t blkoff; size = zp->z_blksz; blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; offset -= blkoff; zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, offset, size, RL_READER); if (zp->z_blksz == size) break; offset += blkoff; zfs_rangelock_exit(zgd->zgd_lr); } /* test for truncation needs to be done while range locked */ if (lr->lr_offset >= zp->z_size) error = SET_ERROR(ENOENT); #ifdef ZFS_DEBUG if (zil_fault_io) { error = SET_ERROR(EIO); zil_fault_io = 0; } #endif if (error == 0) error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *bp = &lr->lr_blkptr; zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zfs_get_done, zgd); ASSERT(error || lr->lr_length <= size); /* * On success, we need to wait for the write I/O * initiated by dmu_sync() to complete before we can * release this dbuf. We will finish everything up * in the zfs_get_done() callback. */ if (error == 0) return (0); if (error == EALREADY) { lr->lr_common.lrc_txtype = TX_WRITE2; /* * TX_WRITE2 relies on the data previously * written by the TX_WRITE that caused * EALREADY. We zero out the BP because * it is the old, currently-on-disk BP. */ zgd->zgd_bp = NULL; BP_ZERO(bp); error = 0; } } } zfs_get_done(zgd, error); return (error); } static void zfs_get_done(zgd_t *zgd, int error) { (void) error; znode_t *zp = zgd->zgd_private; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); zfs_rangelock_exit(zgd->zgd_lr); /* * Release the vnode asynchronously as we currently have the * txg stopped from syncing. */ zfs_zrele_async(zp); kmem_free(zgd, sizeof (zgd_t)); } +static int +zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag) +{ + int error; + + /* Swap. Not sure if the order of zfs_enter()s is important. */ + if (zfsvfs1 > zfsvfs2) { + zfsvfs_t *tmpzfsvfs; + + tmpzfsvfs = zfsvfs2; + zfsvfs2 = zfsvfs1; + zfsvfs1 = tmpzfsvfs; + } + + error = zfs_enter(zfsvfs1, tag); + if (error != 0) + return (error); + if (zfsvfs1 != zfsvfs2) { + error = zfs_enter(zfsvfs2, tag); + if (error != 0) { + zfs_exit(zfsvfs1, tag); + return (error); + } + } + + return (0); +} + +static void +zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag) +{ + + zfs_exit(zfsvfs1, tag); + if (zfsvfs1 != zfsvfs2) + zfs_exit(zfsvfs2, tag); +} + +/* + * We split each clone request in chunks that can fit into a single ZIL + * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning + * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives + * us room for storing 1022 block pointers. + * + * On success, the function return the number of bytes copied in *lenp. + * Note, it doesn't return how much bytes are left to be copied. + */ +int +zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp, + uint64_t *outoffp, uint64_t *lenp, cred_t *cr) +{ + zfsvfs_t *inzfsvfs, *outzfsvfs; + objset_t *inos, *outos; + zfs_locked_range_t *inlr, *outlr; + dmu_buf_impl_t *db; + dmu_tx_t *tx; + zilog_t *zilog; + uint64_t inoff, outoff, len, done; + uint64_t outsize, size; + int error; + int count = 0; + sa_bulk_attr_t bulk[3]; + uint64_t mtime[2], ctime[2]; + uint64_t uid, gid, projid; + blkptr_t *bps; + size_t maxblocks, nbps; + uint_t inblksz; + uint64_t clear_setid_bits_txg = 0; + + inoff = *inoffp; + outoff = *outoffp; + len = *lenp; + done = 0; + + inzfsvfs = ZTOZSB(inzp); + outzfsvfs = ZTOZSB(outzp); + inos = inzfsvfs->z_os; + outos = outzfsvfs->z_os; + + /* + * Both source and destination have to belong to the same storage pool. + */ + if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) { + zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); + return (SET_ERROR(EXDEV)); + } + + /* + * We need to call zfs_enter() potentially on two different datasets, + * so we need a dedicated function for that. + */ + error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG); + if (error != 0) + return (error); + + ASSERT(!outzfsvfs->z_replay); + + error = zfs_verify_zp(inzp); + if (error == 0) + error = zfs_verify_zp(outzp); + if (error != 0) { + zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); + return (error); + } + + if (!spa_feature_is_enabled(dmu_objset_spa(outos), + SPA_FEATURE_BLOCK_CLONING)) { + zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); + return (SET_ERROR(EXDEV)); + } + + /* + * We don't copy source file's flags that's why we don't allow to clone + * files that are in quarantine. + */ + if (inzp->z_pflags & ZFS_AV_QUARANTINED) { + zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); + return (SET_ERROR(EACCES)); + } + + if (inoff >= inzp->z_size) { + *lenp = 0; + zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); + return (0); + } + if (len > inzp->z_size - inoff) { + len = inzp->z_size - inoff; + } + if (len == 0) { + *lenp = 0; + zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); + return (0); + } + + /* + * Callers might not be able to detect properly that we are read-only, + * so check it explicitly here. + */ + if (zfs_is_readonly(outzfsvfs)) { + zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); + return (SET_ERROR(EROFS)); + } + + /* + * If immutable or not appending then return EPERM. + * Intentionally allow ZFS_READONLY through here. + * See zfs_zaccess_common() + */ + if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) { + zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); + return (SET_ERROR(EPERM)); + } + + /* + * No overlapping if we are cloning within the same file. + */ + if (inzp == outzp) { + if (inoff < outoff + len && outoff < inoff + len) { + zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); + return (SET_ERROR(EINVAL)); + } + } + + /* + * Maintain predictable lock order. + */ + if (inzp < outzp || (inzp == outzp && inoff < outoff)) { + inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len, + RL_READER); + outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len, + RL_WRITER); + } else { + outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len, + RL_WRITER); + inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len, + RL_READER); + } + + inblksz = inzp->z_blksz; + + /* + * We cannot clone into files with different block size. + */ + if (inblksz != outzp->z_blksz && outzp->z_size > inblksz) { + error = SET_ERROR(EXDEV); + goto unlock; + } + + /* + * Offsets and len must be at block boundries. + */ + if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) { + error = SET_ERROR(EXDEV); + goto unlock; + } + /* + * Length must be multipe of blksz, except for the end of the file. + */ + if ((len % inblksz) != 0 && + (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) { + error = SET_ERROR(EXDEV); + goto unlock; + } + + error = zn_rlimit_fsize(outoff + len); + if (error != 0) { + goto unlock; + } + + if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) { + error = SET_ERROR(EFBIG); + goto unlock; + } + + SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL, + &mtime, 16); + SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL, + &ctime, 16); + SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL, + &outzp->z_size, 8); + + zilog = outzfsvfs->z_log; + maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) / + sizeof (bps[0]); + + uid = KUID_TO_SUID(ZTOUID(outzp)); + gid = KGID_TO_SGID(ZTOGID(outzp)); + projid = outzp->z_projid; + + bps = kmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP); + + /* + * Clone the file in reasonable size chunks. Each chunk is cloned + * in a separate transaction; this keeps the intent log records small + * and allows us to do more fine-grained space accounting. + */ + while (len > 0) { + size = MIN(inblksz * maxblocks, len); + + if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT, + uid) || + zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT, + gid) || + (projid != ZFS_DEFAULT_PROJID && + zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT, + projid))) { + error = SET_ERROR(EDQUOT); + break; + } + + /* + * Start a transaction. + */ + tx = dmu_tx_create(outos); + + nbps = maxblocks; + error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, tx, bps, + &nbps); + if (error != 0) { + dmu_tx_abort(tx); + /* + * If we are tyring to clone a block that was created + * in the current transaction group. Return an error, + * so the caller can fallback to just copying the data. + */ + if (error == EAGAIN) { + error = SET_ERROR(EXDEV); + } + break; + } + /* + * Encrypted data is fine as long as it comes from the same + * dataset. + * TODO: We want to extend it in the future to allow cloning to + * datasets with the same keys, like clones or to be able to + * clone a file from a snapshot of an encrypted dataset into the + * dataset itself. + */ + if (BP_IS_PROTECTED(&bps[0])) { + if (inzfsvfs != outzfsvfs) { + dmu_tx_abort(tx); + error = SET_ERROR(EXDEV); + break; + } + } + + dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE); + db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl); + DB_DNODE_ENTER(db); + dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size); + DB_DNODE_EXIT(db); + zfs_sa_upgrade_txholds(tx, outzp); + error = dmu_tx_assign(tx, TXG_WAIT); + if (error != 0) { + dmu_tx_abort(tx); + break; + } + + /* + * Copy source znode's block size. This only happens on the + * first iteration since zfs_rangelock_reduce() will shrink down + * lr_len to the appropriate size. + */ + if (outlr->lr_length == UINT64_MAX) { + zfs_grow_blocksize(outzp, inblksz, tx); + /* + * Round range lock up to the block boundary, so we + * prevent appends until we are done. + */ + zfs_rangelock_reduce(outlr, outoff, + ((len - 1) / inblksz + 1) * inblksz); + } + + dmu_brt_clone(outos, outzp->z_id, outoff, size, tx, bps, nbps, + B_FALSE); + + zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr, + &clear_setid_bits_txg, tx); + + zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime); + + /* + * Update the file size (zp_size) if it has changed; + * account for possible concurrent updates. + */ + while ((outsize = outzp->z_size) < outoff + size) { + (void) atomic_cas_64(&outzp->z_size, outsize, + outoff + size); + } + + error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx); + + zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff, + size, inblksz, bps, nbps); + + dmu_tx_commit(tx); + + if (error != 0) + break; + + inoff += size; + outoff += size; + len -= size; + done += size; + } + + kmem_free(bps, sizeof (bps[0]) * maxblocks); + zfs_znode_update_vfs(outzp); + +unlock: + zfs_rangelock_exit(outlr); + zfs_rangelock_exit(inlr); + + if (done > 0) { + /* + * If we have made at least partial progress, reset the error. + */ + error = 0; + + ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp); + + if (outos->os_sync == ZFS_SYNC_ALWAYS) { + zil_commit(zilog, outzp->z_id); + } + + *inoffp += done; + *outoffp += done; + *lenp = done; + } + + zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); + + return (error); +} + +/* + * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(), + * but we cannot do that, because when replaying we don't have source znode + * available. This is why we need a dedicated replay function. + */ +int +zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz, + const blkptr_t *bps, size_t nbps) +{ + zfsvfs_t *zfsvfs; + dmu_buf_impl_t *db; + dmu_tx_t *tx; + int error; + int count = 0; + sa_bulk_attr_t bulk[3]; + uint64_t mtime[2], ctime[2]; + + ASSERT3U(off, <, MAXOFFSET_T); + ASSERT3U(len, >, 0); + ASSERT3U(nbps, >, 0); + + zfsvfs = ZTOZSB(zp); + + ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os), + SPA_FEATURE_BLOCK_CLONING)); + + if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) + return (error); + + ASSERT(zfsvfs->z_replay); + ASSERT(!zfs_is_readonly(zfsvfs)); + + if ((off % blksz) != 0) { + zfs_exit(zfsvfs, FTAG); + return (SET_ERROR(EINVAL)); + } + + SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); + SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); + SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, + &zp->z_size, 8); + + /* + * Start a transaction. + */ + tx = dmu_tx_create(zfsvfs->z_os); + + dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); + db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); + DB_DNODE_ENTER(db); + dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len); + DB_DNODE_EXIT(db); + zfs_sa_upgrade_txholds(tx, zp); + error = dmu_tx_assign(tx, TXG_WAIT); + if (error != 0) { + dmu_tx_abort(tx); + zfs_exit(zfsvfs, FTAG); + return (error); + } + + if (zp->z_blksz < blksz) + zfs_grow_blocksize(zp, blksz, tx); + + dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps, B_TRUE); + + zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); + + if (zp->z_size < off + len) + zp->z_size = off + len; + + error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); + + /* + * zil_replaying() not only check if we are replaying ZIL, but also + * updates the ZIL header to record replay progress. + */ + VERIFY(zil_replaying(zfsvfs->z_log, tx)); + + dmu_tx_commit(tx); + + zfs_znode_update_vfs(zp); + + zfs_exit(zfsvfs, FTAG); + + return (error); +} + EXPORT_SYMBOL(zfs_access); EXPORT_SYMBOL(zfs_fsync); EXPORT_SYMBOL(zfs_holey); EXPORT_SYMBOL(zfs_read); EXPORT_SYMBOL(zfs_write); EXPORT_SYMBOL(zfs_getsecattr); EXPORT_SYMBOL(zfs_setsecattr); +EXPORT_SYMBOL(zfs_clone_range); +EXPORT_SYMBOL(zfs_clone_range_replay); ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW, "Bytes to read per chunk"); diff --git a/module/zfs/zil.c b/module/zfs/zil.c index fcf4e7357b00..fba1c1999612 100644 --- a/module/zfs/zil.c +++ b/module/zfs/zil.c @@ -1,4043 +1,4139 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright (c) 2018 Datto Inc. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include /* * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system * calls that change the file system. Each itx has enough information to * be able to replay them after a system crash, power loss, or * equivalent failure mode. These are stored in memory until either: * * 1. they are committed to the pool by the DMU transaction group * (txg), at which point they can be discarded; or * 2. they are committed to the on-disk ZIL for the dataset being * modified (e.g. due to an fsync, O_DSYNC, or other synchronous * requirement). * * In the event of a crash or power loss, the itxs contained by each * dataset's on-disk ZIL will be replayed when that dataset is first * instantiated (e.g. if the dataset is a normal filesystem, when it is * first mounted). * * As hinted at above, there is one ZIL per dataset (both the in-memory * representation, and the on-disk representation). The on-disk format * consists of 3 parts: * * - a single, per-dataset, ZIL header; which points to a chain of * - zero or more ZIL blocks; each of which contains * - zero or more ZIL records * * A ZIL record holds the information necessary to replay a single * system call transaction. A ZIL block can hold many ZIL records, and * the blocks are chained together, similarly to a singly linked list. * * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL * block in the chain, and the ZIL header points to the first block in * the chain. * * Note, there is not a fixed place in the pool to hold these ZIL * blocks; they are dynamically allocated and freed as needed from the * blocks available on the pool, though they can be preferentially * allocated from a dedicated "log" vdev. */ /* * This controls the amount of time that a ZIL block (lwb) will remain * "open" when it isn't "full", and it has a thread waiting for it to be * committed to stable storage. Please refer to the zil_commit_waiter() * function (and the comments within it) for more details. */ static uint_t zfs_commit_timeout_pct = 5; /* * Minimal time we care to delay commit waiting for more ZIL records. * At least FreeBSD kernel can't sleep for less than 2us at its best. * So requests to sleep for less then 5us is a waste of CPU time with * a risk of significant log latency increase due to oversleep. */ static uint64_t zil_min_commit_timeout = 5000; /* * See zil.h for more information about these fields. */ static zil_kstat_values_t zil_stats = { { "zil_commit_count", KSTAT_DATA_UINT64 }, { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, { "zil_itx_count", KSTAT_DATA_UINT64 }, { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, }; static zil_sums_t zil_sums_global; static kstat_t *zil_kstats_global; /* * Disable intent logging replay. This global ZIL switch affects all pools. */ int zil_replay_disable = 0; /* * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to * the disk(s) by the ZIL after an LWB write has completed. Setting this * will cause ZIL corruption on power loss if a volatile out-of-order * write cache is enabled. */ static int zil_nocacheflush = 0; /* * Limit SLOG write size per commit executed with synchronous priority. * Any writes above that will be executed with lower (asynchronous) priority * to limit potential SLOG device abuse by single active ZIL writer. */ static uint64_t zil_slog_bulk = 768 * 1024; static kmem_cache_t *zil_lwb_cache; static kmem_cache_t *zil_zcw_cache; #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) static int zil_bp_compare(const void *x1, const void *x2) { const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); if (likely(cmp)) return (cmp); return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); } static void zil_bp_tree_init(zilog_t *zilog) { avl_create(&zilog->zl_bp_tree, zil_bp_compare, sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); } static void zil_bp_tree_fini(zilog_t *zilog) { avl_tree_t *t = &zilog->zl_bp_tree; zil_bp_node_t *zn; void *cookie = NULL; while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zn, sizeof (zil_bp_node_t)); avl_destroy(t); } int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) { avl_tree_t *t = &zilog->zl_bp_tree; const dva_t *dva; zil_bp_node_t *zn; avl_index_t where; if (BP_IS_EMBEDDED(bp)) return (0); dva = BP_IDENTITY(bp); if (avl_find(t, dva, &where) != NULL) return (SET_ERROR(EEXIST)); zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); zn->zn_dva = *dva; avl_insert(t, zn, where); return (0); } static zil_header_t * zil_header_in_syncing_context(zilog_t *zilog) { return ((zil_header_t *)zilog->zl_header); } static void zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) { zio_cksum_t *zc = &bp->blk_cksum; (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], sizeof (zc->zc_word[ZIL_ZC_GUID_0])); (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], sizeof (zc->zc_word[ZIL_ZC_GUID_1])); zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); zc->zc_word[ZIL_ZC_SEQ] = 1ULL; } static int zil_kstats_global_update(kstat_t *ksp, int rw) { zil_kstat_values_t *zs = ksp->ks_data; ASSERT3P(&zil_stats, ==, zs); if (rw == KSTAT_WRITE) { return (SET_ERROR(EACCES)); } zil_kstat_values_update(zs, &zil_sums_global); return (0); } /* * Read a log block and make sure it's valid. */ static int zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, blkptr_t *nbp, void *dst, char **end) { zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf = NULL; zbookmark_phys_t zb; int error; if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) zio_flags |= ZIO_FLAG_SPECULATIVE; if (!decrypt) zio_flags |= ZIO_FLAG_RAW; SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { zio_cksum_t cksum = bp->blk_cksum; /* * Validate the checksummed log block. * * Sequence numbers should be... sequential. The checksum * verifier for the next block should be bp's checksum plus 1. * * Also check the log chain linkage and size used. */ cksum.zc_word[ZIL_ZC_SEQ]++; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { zil_chain_t *zilc = abuf->b_data; char *lr = (char *)(zilc + 1); uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { error = SET_ERROR(ECKSUM); } else { ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); memcpy(dst, lr, len); *end = (char *)dst + len; *nbp = zilc->zc_next_blk; } } else { char *lr = abuf->b_data; uint64_t size = BP_GET_LSIZE(bp); zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || (zilc->zc_nused > (size - sizeof (*zilc)))) { error = SET_ERROR(ECKSUM); } else { ASSERT3U(zilc->zc_nused, <=, SPA_OLD_MAXBLOCKSIZE); memcpy(dst, lr, zilc->zc_nused); *end = (char *)dst + zilc->zc_nused; *nbp = zilc->zc_next_blk; } } arc_buf_destroy(abuf, &abuf); } return (error); } /* * Read a TX_WRITE log data block. */ static int zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) { zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; const blkptr_t *bp = &lr->lr_blkptr; arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf = NULL; zbookmark_phys_t zb; int error; if (BP_IS_HOLE(bp)) { if (wbuf != NULL) memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); return (0); } if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; /* * If we are not using the resulting data, we are just checking that * it hasn't been corrupted so we don't need to waste CPU time * decompressing and decrypting it. */ if (wbuf == NULL) zio_flags |= ZIO_FLAG_RAW; ASSERT3U(BP_GET_LSIZE(bp), !=, 0); SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { if (wbuf != NULL) memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); arc_buf_destroy(abuf, &abuf); } return (error); } void zil_sums_init(zil_sums_t *zs) { wmsum_init(&zs->zil_commit_count, 0); wmsum_init(&zs->zil_commit_writer_count, 0); wmsum_init(&zs->zil_itx_count, 0); wmsum_init(&zs->zil_itx_indirect_count, 0); wmsum_init(&zs->zil_itx_indirect_bytes, 0); wmsum_init(&zs->zil_itx_copied_count, 0); wmsum_init(&zs->zil_itx_copied_bytes, 0); wmsum_init(&zs->zil_itx_needcopy_count, 0); wmsum_init(&zs->zil_itx_needcopy_bytes, 0); wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); } void zil_sums_fini(zil_sums_t *zs) { wmsum_fini(&zs->zil_commit_count); wmsum_fini(&zs->zil_commit_writer_count); wmsum_fini(&zs->zil_itx_count); wmsum_fini(&zs->zil_itx_indirect_count); wmsum_fini(&zs->zil_itx_indirect_bytes); wmsum_fini(&zs->zil_itx_copied_count); wmsum_fini(&zs->zil_itx_copied_bytes); wmsum_fini(&zs->zil_itx_needcopy_count); wmsum_fini(&zs->zil_itx_needcopy_bytes); wmsum_fini(&zs->zil_itx_metaslab_normal_count); wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); wmsum_fini(&zs->zil_itx_metaslab_slog_count); wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); } void zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) { zs->zil_commit_count.value.ui64 = wmsum_value(&zil_sums->zil_commit_count); zs->zil_commit_writer_count.value.ui64 = wmsum_value(&zil_sums->zil_commit_writer_count); zs->zil_itx_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_count); zs->zil_itx_indirect_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_indirect_count); zs->zil_itx_indirect_bytes.value.ui64 = wmsum_value(&zil_sums->zil_itx_indirect_bytes); zs->zil_itx_copied_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_copied_count); zs->zil_itx_copied_bytes.value.ui64 = wmsum_value(&zil_sums->zil_itx_copied_bytes); zs->zil_itx_needcopy_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_needcopy_count); zs->zil_itx_needcopy_bytes.value.ui64 = wmsum_value(&zil_sums->zil_itx_needcopy_bytes); zs->zil_itx_metaslab_normal_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); zs->zil_itx_metaslab_normal_bytes.value.ui64 = wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); zs->zil_itx_metaslab_slog_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); zs->zil_itx_metaslab_slog_bytes.value.ui64 = wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); } /* * Parse the intent log, and call parse_func for each valid record within. */ int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, boolean_t decrypt) { const zil_header_t *zh = zilog->zl_header; boolean_t claimed = !!zh->zh_claim_txg; uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; uint64_t max_blk_seq = 0; uint64_t max_lr_seq = 0; uint64_t blk_count = 0; uint64_t lr_count = 0; blkptr_t blk, next_blk = {{{{0}}}}; char *lrbuf, *lrp; int error = 0; /* * Old logs didn't record the maximum zh_claim_lr_seq. */ if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) claim_lr_seq = UINT64_MAX; /* * Starting at the block pointed to by zh_log we read the log chain. * For each block in the chain we strongly check that block to * ensure its validity. We stop when an invalid block is found. * For each block pointer in the chain we call parse_blk_func(). * For each record in each valid block we call parse_lr_func(). * If the log has been claimed, stop if we encounter a sequence * number greater than the highest claimed sequence number. */ lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); zil_bp_tree_init(zilog); for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; int reclen; char *end = NULL; if (blk_seq > claim_blk_seq) break; error = parse_blk_func(zilog, &blk, arg, txg); if (error != 0) break; ASSERT3U(max_blk_seq, <, blk_seq); max_blk_seq = blk_seq; blk_count++; if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) break; error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, lrbuf, &end); if (error != 0) { if (claimed) { char name[ZFS_MAX_DATASET_NAME_LEN]; dmu_objset_name(zilog->zl_os, name); cmn_err(CE_WARN, "ZFS read log block error %d, " "dataset %s, seq 0x%llx\n", error, name, (u_longlong_t)blk_seq); } break; } for (lrp = lrbuf; lrp < end; lrp += reclen) { lr_t *lr = (lr_t *)lrp; reclen = lr->lrc_reclen; ASSERT3U(reclen, >=, sizeof (lr_t)); if (lr->lrc_seq > claim_lr_seq) goto done; error = parse_lr_func(zilog, lr, arg, txg); if (error != 0) goto done; ASSERT3U(max_lr_seq, <, lr->lrc_seq); max_lr_seq = lr->lrc_seq; lr_count++; } } done: zilog->zl_parse_error = error; zilog->zl_parse_blk_seq = max_blk_seq; zilog->zl_parse_lr_seq = max_lr_seq; zilog->zl_parse_blk_count = blk_count; zilog->zl_parse_lr_count = lr_count; zil_bp_tree_fini(zilog); zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); return (error); } static int zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, uint64_t first_txg) { (void) tx; ASSERT(!BP_IS_HOLE(bp)); /* * As we call this function from the context of a rewind to a * checkpoint, each ZIL block whose txg is later than the txg * that we rewind to is invalid. Thus, we return -1 so * zil_parse() doesn't attempt to read it. */ if (bp->blk_birth >= first_txg) return (-1); if (zil_bp_tree_add(zilog, bp) != 0) return (0); zio_free(zilog->zl_spa, first_txg, bp); return (0); } static int zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) { (void) zilog, (void) lrc, (void) tx, (void) first_txg; return (0); } static int zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, uint64_t first_txg) { /* * Claim log block if not already committed and not already claimed. * If tx == NULL, just verify that the block is claimable. */ if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) return (0); return (zio_wait(zio_claim(NULL, zilog->zl_spa, tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); } static int -zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, - uint64_t first_txg) +zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) { lr_write_t *lr = (lr_write_t *)lrc; int error; - if (lrc->lrc_txtype != TX_WRITE) - return (0); + ASSERT(lrc->lrc_txtype == TX_WRITE); /* * If the block is not readable, don't claim it. This can happen * in normal operation when a log block is written to disk before * some of the dmu_sync() blocks it points to. In this case, the * transaction cannot have been committed to anyone (we would have * waited for all writes to be stable first), so it is semantically * correct to declare this the end of the log. */ if (lr->lr_blkptr.blk_birth >= first_txg) { error = zil_read_log_data(zilog, lr, NULL); if (error != 0) return (error); } return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); } +static int +zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) +{ + const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; + const blkptr_t *bp; + spa_t *spa; + uint_t ii; + + ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); + + if (tx == NULL) { + return (0); + } + + /* + * XXX: Do we need to byteswap lr? + */ + + spa = zilog->zl_spa; + + for (ii = 0; ii < lr->lr_nbps; ii++) { + bp = &lr->lr_bps[ii]; + + /* + * When data in embedded into BP there is no need to create + * BRT entry as there is no data block. Just copy the BP as + * it contains the data. + */ + if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { + brt_pending_add(spa, bp, tx); + } + } + + return (0); +} + +static int +zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, + uint64_t first_txg) +{ + + switch (lrc->lrc_txtype) { + case TX_WRITE: + return (zil_claim_write(zilog, lrc, tx, first_txg)); + case TX_CLONE_RANGE: + return (zil_claim_clone_range(zilog, lrc, tx)); + default: + return (0); + } +} + static int zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, uint64_t claim_txg) { (void) claim_txg; zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); return (0); } static int -zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, - uint64_t claim_txg) +zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) { lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; + ASSERT(lrc->lrc_txtype == TX_WRITE); + /* * If we previously claimed it, we need to free it. */ - if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && - bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && - !BP_IS_HOLE(bp)) + if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && + !BP_IS_HOLE(bp)) { zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); + } return (0); } +static int +zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) +{ + const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; + const blkptr_t *bp; + spa_t *spa; + uint_t ii; + + ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); + + if (tx == NULL) { + return (0); + } + + spa = zilog->zl_spa; + + for (ii = 0; ii < lr->lr_nbps; ii++) { + bp = &lr->lr_bps[ii]; + + if (!BP_IS_HOLE(bp)) { + zio_free(spa, dmu_tx_get_txg(tx), bp); + } + } + + return (0); +} + +static int +zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, + uint64_t claim_txg) +{ + + if (claim_txg == 0) { + return (0); + } + + switch (lrc->lrc_txtype) { + case TX_WRITE: + return (zil_free_write(zilog, lrc, tx, claim_txg)); + case TX_CLONE_RANGE: + return (zil_free_clone_range(zilog, lrc, tx)); + default: + return (0); + } +} + static int zil_lwb_vdev_compare(const void *x1, const void *x2) { const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; return (TREE_CMP(v1, v2)); } static lwb_t * zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg, boolean_t fastwrite) { lwb_t *lwb; lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); lwb->lwb_zilog = zilog; lwb->lwb_blk = *bp; lwb->lwb_fastwrite = fastwrite; lwb->lwb_slog = slog; lwb->lwb_state = LWB_STATE_CLOSED; lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); lwb->lwb_max_txg = txg; lwb->lwb_write_zio = NULL; lwb->lwb_root_zio = NULL; lwb->lwb_issued_timestamp = 0; lwb->lwb_issued_txg = 0; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { lwb->lwb_nused = sizeof (zil_chain_t); lwb->lwb_sz = BP_GET_LSIZE(bp); } else { lwb->lwb_nused = 0; lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); } mutex_enter(&zilog->zl_lock); list_insert_tail(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); VERIFY(list_is_empty(&lwb->lwb_waiters)); VERIFY(list_is_empty(&lwb->lwb_itxs)); return (lwb); } static void zil_free_lwb(zilog_t *zilog, lwb_t *lwb) { ASSERT(MUTEX_HELD(&zilog->zl_lock)); ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); VERIFY(list_is_empty(&lwb->lwb_waiters)); VERIFY(list_is_empty(&lwb->lwb_itxs)); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); ASSERT3P(lwb->lwb_write_zio, ==, NULL); ASSERT3P(lwb->lwb_root_zio, ==, NULL); ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || lwb->lwb_state == LWB_STATE_FLUSH_DONE); /* * Clear the zilog's field to indicate this lwb is no longer * valid, and prevent use-after-free errors. */ if (zilog->zl_last_lwb_opened == lwb) zilog->zl_last_lwb_opened = NULL; kmem_cache_free(zil_lwb_cache, lwb); } /* * Called when we create in-memory log transactions so that we know * to cleanup the itxs at the end of spa_sync(). */ static void zilog_dirty(zilog_t *zilog, uint64_t txg) { dsl_pool_t *dp = zilog->zl_dmu_pool; dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); ASSERT(spa_writeable(zilog->zl_spa)); if (ds->ds_is_snapshot) panic("dirtying snapshot!"); if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { /* up the hold count until we can be written out */ dmu_buf_add_ref(ds->ds_dbuf, zilog); zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); } } /* * Determine if the zil is dirty in the specified txg. Callers wanting to * ensure that the dirty state does not change must hold the itxg_lock for * the specified txg. Holding the lock will ensure that the zil cannot be * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current * state. */ static boolean_t __maybe_unused zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) { dsl_pool_t *dp = zilog->zl_dmu_pool; if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) return (B_TRUE); return (B_FALSE); } /* * Determine if the zil is dirty. The zil is considered dirty if it has * any pending itx records that have not been cleaned by zil_clean(). */ static boolean_t zilog_is_dirty(zilog_t *zilog) { dsl_pool_t *dp = zilog->zl_dmu_pool; for (int t = 0; t < TXG_SIZE; t++) { if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) return (B_TRUE); } return (B_FALSE); } /* * Its called in zil_commit context (zil_process_commit_list()/zil_create()). * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every * zil_commit. */ static void zil_commit_activate_saxattr_feature(zilog_t *zilog) { dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); uint64_t txg = 0; dmu_tx_t *tx = NULL; if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); dsl_dataset_dirty(ds, tx); txg = dmu_tx_get_txg(tx); mutex_enter(&ds->ds_lock); ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = (void *)B_TRUE; mutex_exit(&ds->ds_lock); dmu_tx_commit(tx); txg_wait_synced(zilog->zl_dmu_pool, txg); } } /* * Create an on-disk intent log. */ static lwb_t * zil_create(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb = NULL; uint64_t txg = 0; dmu_tx_t *tx = NULL; blkptr_t blk; int error = 0; boolean_t fastwrite = FALSE; boolean_t slog = FALSE; dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); ASSERT(zh->zh_claim_txg == 0); ASSERT(zh->zh_replay_seq == 0); blk = zh->zh_log; /* * Allocate an initial log block if: * - there isn't one already * - the existing block is the wrong endianness */ if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); if (!BP_IS_HOLE(&blk)) { zio_free(zilog->zl_spa, txg, &blk); BP_ZERO(&blk); } error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, ZIL_MIN_BLKSZ, &slog); fastwrite = TRUE; if (error == 0) zil_init_log_chain(zilog, &blk); } /* * Allocate a log write block (lwb) for the first log block. */ if (error == 0) lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite); /* * If we just allocated the first log block, commit our transaction * and wait for zil_sync() to stuff the block pointer into zh_log. * (zh is part of the MOS, so we cannot modify it in open context.) */ if (tx != NULL) { /* * If "zilsaxattr" feature is enabled on zpool, then activate * it now when we're creating the ZIL chain. We can't wait with * this until we write the first xattr log record because we * need to wait for the feature activation to sync out. */ if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL) { mutex_enter(&ds->ds_lock); ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = (void *)B_TRUE; mutex_exit(&ds->ds_lock); } dmu_tx_commit(tx); txg_wait_synced(zilog->zl_dmu_pool, txg); } else { /* * This branch covers the case where we enable the feature on a * zpool that has existing ZIL headers. */ zil_commit_activate_saxattr_feature(zilog); } IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); IMPLY(error == 0, lwb != NULL); return (lwb); } /* * In one tx, free all log blocks and clear the log header. If keep_first * is set, then we're replaying a log with no content. We want to keep the * first block, however, so that the first synchronous transaction doesn't * require a txg_wait_synced() in zil_create(). We don't need to * txg_wait_synced() here either when keep_first is set, because both * zil_create() and zil_destroy() will wait for any in-progress destroys * to complete. * Return B_TRUE if there were any entries to replay. */ boolean_t zil_destroy(zilog_t *zilog, boolean_t keep_first) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb; dmu_tx_t *tx; uint64_t txg; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_old_header = *zh; /* debugging aid */ if (BP_IS_HOLE(&zh->zh_log)) return (B_FALSE); tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); mutex_enter(&zilog->zl_lock); ASSERT3U(zilog->zl_destroy_txg, <, txg); zilog->zl_destroy_txg = txg; zilog->zl_keep_first = keep_first; if (!list_is_empty(&zilog->zl_lwb_list)) { ASSERT(zh->zh_claim_txg == 0); VERIFY(!keep_first); while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { if (lwb->lwb_fastwrite) metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); list_remove(&zilog->zl_lwb_list, lwb); if (lwb->lwb_buf != NULL) zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); zil_free_lwb(zilog, lwb); } } else if (!keep_first) { zil_destroy_sync(zilog, tx); } mutex_exit(&zilog->zl_lock); dmu_tx_commit(tx); return (B_TRUE); } void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) { ASSERT(list_is_empty(&zilog->zl_lwb_list)); (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); } int zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) { dmu_tx_t *tx = txarg; zilog_t *zilog; uint64_t first_txg; zil_header_t *zh; objset_t *os; int error; error = dmu_objset_own_obj(dp, ds->ds_object, DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); if (error != 0) { /* * EBUSY indicates that the objset is inconsistent, in which * case it can not have a ZIL. */ if (error != EBUSY) { cmn_err(CE_WARN, "can't open objset for %llu, error %u", (unsigned long long)ds->ds_object, error); } return (0); } zilog = dmu_objset_zil(os); zh = zil_header_in_syncing_context(zilog); ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); first_txg = spa_min_claim_txg(zilog->zl_spa); /* * If the spa_log_state is not set to be cleared, check whether * the current uberblock is a checkpoint one and if the current * header has been claimed before moving on. * * If the current uberblock is a checkpointed uberblock then * one of the following scenarios took place: * * 1] We are currently rewinding to the checkpoint of the pool. * 2] We crashed in the middle of a checkpoint rewind but we * did manage to write the checkpointed uberblock to the * vdev labels, so when we tried to import the pool again * the checkpointed uberblock was selected from the import * procedure. * * In both cases we want to zero out all the ZIL blocks, except * the ones that have been claimed at the time of the checkpoint * (their zh_claim_txg != 0). The reason is that these blocks * may be corrupted since we may have reused their locations on * disk after we took the checkpoint. * * We could try to set spa_log_state to SPA_LOG_CLEAR earlier * when we first figure out whether the current uberblock is * checkpointed or not. Unfortunately, that would discard all * the logs, including the ones that are claimed, and we would * leak space. */ if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && zh->zh_claim_txg == 0)) { if (!BP_IS_HOLE(&zh->zh_log)) { (void) zil_parse(zilog, zil_clear_log_block, zil_noop_log_record, tx, first_txg, B_FALSE); } BP_ZERO(&zh->zh_log); if (os->os_encrypted) os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; dsl_dataset_dirty(dmu_objset_ds(os), tx); dmu_objset_disown(os, B_FALSE, FTAG); return (0); } /* * If we are not rewinding and opening the pool normally, then * the min_claim_txg should be equal to the first txg of the pool. */ ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); /* * Claim all log blocks if we haven't already done so, and remember * the highest claimed sequence number. This ensures that if we can * read only part of the log now (e.g. due to a missing device), * but we can read the entire log later, we will not try to replay * or destroy beyond the last block we successfully claimed. */ ASSERT3U(zh->zh_claim_txg, <=, first_txg); if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { (void) zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, first_txg, B_FALSE); zh->zh_claim_txg = first_txg; zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) zh->zh_flags |= ZIL_REPLAY_NEEDED; zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; if (os->os_encrypted) os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; dsl_dataset_dirty(dmu_objset_ds(os), tx); } ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); dmu_objset_disown(os, B_FALSE, FTAG); return (0); } /* * Check the log by walking the log chain. * Checksum errors are ok as they indicate the end of the chain. * Any other error (no device or read failure) returns an error. */ int zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) { (void) dp; zilog_t *zilog; objset_t *os; blkptr_t *bp; int error; ASSERT(tx == NULL); error = dmu_objset_from_ds(ds, &os); if (error != 0) { cmn_err(CE_WARN, "can't open objset %llu, error %d", (unsigned long long)ds->ds_object, error); return (0); } zilog = dmu_objset_zil(os); bp = (blkptr_t *)&zilog->zl_header->zh_log; if (!BP_IS_HOLE(bp)) { vdev_t *vd; boolean_t valid = B_TRUE; /* * Check the first block and determine if it's on a log device * which may have been removed or faulted prior to loading this * pool. If so, there's no point in checking the rest of the * log as its content should have already been synced to the * pool. */ spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); if (vd->vdev_islog && vdev_is_dead(vd)) valid = vdev_log_state_valid(vd); spa_config_exit(os->os_spa, SCL_STATE, FTAG); if (!valid) return (0); /* * Check whether the current uberblock is checkpointed (e.g. * we are rewinding) and whether the current header has been * claimed or not. If it hasn't then skip verifying it. We * do this because its ZIL blocks may be part of the pool's * state before the rewind, which is no longer valid. */ zil_header_t *zh = zil_header_in_syncing_context(zilog); if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && zh->zh_claim_txg == 0) return (0); } /* * Because tx == NULL, zil_claim_log_block() will not actually claim * any blocks, but just determine whether it is possible to do so. * In addition to checking the log chain, zil_claim_log_block() * will invoke zio_claim() with a done func of spa_claim_notify(), * which will update spa_max_claim_txg. See spa_load() for details. */ error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, zilog->zl_header->zh_claim_txg ? -1ULL : spa_min_claim_txg(os->os_spa), B_FALSE); return ((error == ECKSUM || error == ENOENT) ? 0 : error); } /* * When an itx is "skipped", this function is used to properly mark the * waiter as "done, and signal any thread(s) waiting on it. An itx can * be skipped (and not committed to an lwb) for a variety of reasons, * one of them being that the itx was committed via spa_sync(), prior to * it being committed to an lwb; this can happen if a thread calling * zil_commit() is racing with spa_sync(). */ static void zil_commit_waiter_skip(zil_commit_waiter_t *zcw) { mutex_enter(&zcw->zcw_lock); ASSERT3B(zcw->zcw_done, ==, B_FALSE); zcw->zcw_done = B_TRUE; cv_broadcast(&zcw->zcw_cv); mutex_exit(&zcw->zcw_lock); } /* * This function is used when the given waiter is to be linked into an * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. * At this point, the waiter will no longer be referenced by the itx, * and instead, will be referenced by the lwb. */ static void zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) { /* * The lwb_waiters field of the lwb is protected by the zilog's * zl_lock, thus it must be held when calling this function. */ ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); mutex_enter(&zcw->zcw_lock); ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); ASSERT3P(lwb, !=, NULL); ASSERT(lwb->lwb_state == LWB_STATE_OPENED || lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE); list_insert_tail(&lwb->lwb_waiters, zcw); zcw->zcw_lwb = lwb; mutex_exit(&zcw->zcw_lock); } /* * This function is used when zio_alloc_zil() fails to allocate a ZIL * block, and the given waiter must be linked to the "nolwb waiters" * list inside of zil_process_commit_list(). */ static void zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) { mutex_enter(&zcw->zcw_lock); ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); list_insert_tail(nolwb, zcw); mutex_exit(&zcw->zcw_lock); } void zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) { avl_tree_t *t = &lwb->lwb_vdev_tree; avl_index_t where; zil_vdev_node_t *zv, zvsearch; int ndvas = BP_GET_NDVAS(bp); int i; if (zil_nocacheflush) return; mutex_enter(&lwb->lwb_vdev_lock); for (i = 0; i < ndvas; i++) { zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); if (avl_find(t, &zvsearch, &where) == NULL) { zv = kmem_alloc(sizeof (*zv), KM_SLEEP); zv->zv_vdev = zvsearch.zv_vdev; avl_insert(t, zv, where); } } mutex_exit(&lwb->lwb_vdev_lock); } static void zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) { avl_tree_t *src = &lwb->lwb_vdev_tree; avl_tree_t *dst = &nlwb->lwb_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); /* * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does * not need the protection of lwb_vdev_lock (it will only be modified * while holding zilog->zl_lock) as its writes and those of its * children have all completed. The younger 'nlwb' may be waiting on * future writes to additional vdevs. */ mutex_enter(&nlwb->lwb_vdev_lock); /* * Tear down the 'lwb' vdev tree, ensuring that entries which do not * exist in 'nlwb' are moved to it, freeing any would-be duplicates. */ while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { avl_index_t where; if (avl_find(dst, zv, &where) == NULL) { avl_insert(dst, zv, where); } else { kmem_free(zv, sizeof (*zv)); } } mutex_exit(&nlwb->lwb_vdev_lock); } void zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) { lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); } /* * This function is a called after all vdevs associated with a given lwb * write have completed their DKIOCFLUSHWRITECACHE command; or as soon * as the lwb write completes, if "zil_nocacheflush" is set. Further, * all "previous" lwb's will have completed before this function is * called; i.e. this function is called for all previous lwbs before * it's called for "this" lwb (enforced via zio the dependencies * configured in zil_lwb_set_zio_dependency()). * * The intention is for this function to be called as soon as the * contents of an lwb are considered "stable" on disk, and will survive * any sudden loss of power. At this point, any threads waiting for the * lwb to reach this state are signalled, and the "waiter" structures * are marked "done". */ static void zil_lwb_flush_vdevs_done(zio_t *zio) { lwb_t *lwb = zio->io_private; zilog_t *zilog = lwb->lwb_zilog; zil_commit_waiter_t *zcw; itx_t *itx; uint64_t txg; zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); mutex_enter(&zilog->zl_lock); /* * If we have had an allocation failure and the txg is * waiting to sync then we want zil_sync() to remove the lwb so * that it's not picked up as the next new one in * zil_process_commit_list(). zil_sync() will only remove the * lwb if lwb_buf is null. */ lwb->lwb_buf = NULL; ASSERT3U(lwb->lwb_issued_timestamp, >, 0); zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 3 + gethrtime() - lwb->lwb_issued_timestamp) / 4; lwb->lwb_root_zio = NULL; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); lwb->lwb_state = LWB_STATE_FLUSH_DONE; if (zilog->zl_last_lwb_opened == lwb) { /* * Remember the highest committed log sequence number * for ztest. We only update this value when all the log * writes succeeded, because ztest wants to ASSERT that * it got the whole log chain. */ zilog->zl_commit_lr_seq = zilog->zl_lr_seq; } while ((itx = list_head(&lwb->lwb_itxs)) != NULL) { list_remove(&lwb->lwb_itxs, itx); zil_itx_destroy(itx); } while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { mutex_enter(&zcw->zcw_lock); ASSERT(list_link_active(&zcw->zcw_node)); list_remove(&lwb->lwb_waiters, zcw); ASSERT3P(zcw->zcw_lwb, ==, lwb); zcw->zcw_lwb = NULL; /* * We expect any ZIO errors from child ZIOs to have been * propagated "up" to this specific LWB's root ZIO, in * order for this error handling to work correctly. This * includes ZIO errors from either this LWB's write or * flush, as well as any errors from other dependent LWBs * (e.g. a root LWB ZIO that might be a child of this LWB). * * With that said, it's important to note that LWB flush * errors are not propagated up to the LWB root ZIO. * This is incorrect behavior, and results in VDEV flush * errors not being handled correctly here. See the * comment above the call to "zio_flush" for details. */ zcw->zcw_zio_error = zio->io_error; ASSERT3B(zcw->zcw_done, ==, B_FALSE); zcw->zcw_done = B_TRUE; cv_broadcast(&zcw->zcw_cv); mutex_exit(&zcw->zcw_lock); } mutex_exit(&zilog->zl_lock); mutex_enter(&zilog->zl_lwb_io_lock); txg = lwb->lwb_issued_txg; ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); zilog->zl_lwb_inflight[txg & TXG_MASK]--; if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) cv_broadcast(&zilog->zl_lwb_io_cv); mutex_exit(&zilog->zl_lwb_io_lock); } /* * Wait for the completion of all issued write/flush of that txg provided. * It guarantees zil_lwb_flush_vdevs_done() is called and returned. */ static void zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) { ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); mutex_enter(&zilog->zl_lwb_io_lock); while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); mutex_exit(&zilog->zl_lwb_io_lock); #ifdef ZFS_DEBUG mutex_enter(&zilog->zl_lock); mutex_enter(&zilog->zl_lwb_io_lock); lwb_t *lwb = list_head(&zilog->zl_lwb_list); while (lwb != NULL && lwb->lwb_max_txg <= txg) { if (lwb->lwb_issued_txg <= txg) { ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); IMPLY(lwb->lwb_issued_txg > 0, lwb->lwb_state == LWB_STATE_FLUSH_DONE); } IMPLY(lwb->lwb_state == LWB_STATE_FLUSH_DONE, lwb->lwb_buf == NULL); lwb = list_next(&zilog->zl_lwb_list, lwb); } mutex_exit(&zilog->zl_lwb_io_lock); mutex_exit(&zilog->zl_lock); #endif } /* * This is called when an lwb's write zio completes. The callback's * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved * in writing out this specific lwb's data, and in the case that cache * flushes have been deferred, vdevs involved in writing the data for * previous lwbs. The writes corresponding to all the vdevs in the * lwb_vdev_tree will have completed by the time this is called, due to * the zio dependencies configured in zil_lwb_set_zio_dependency(), * which takes deferred flushes into account. The lwb will be "done" * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio * completion callback for the lwb's root zio. */ static void zil_lwb_write_done(zio_t *zio) { lwb_t *lwb = zio->io_private; spa_t *spa = zio->io_spa; zilog_t *zilog = lwb->lwb_zilog; avl_tree_t *t = &lwb->lwb_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; lwb_t *nlwb; ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); ASSERT(!BP_IS_GANG(zio->io_bp)); ASSERT(!BP_IS_HOLE(zio->io_bp)); ASSERT(BP_GET_FILL(zio->io_bp) == 0); abd_free(zio->io_abd); mutex_enter(&zilog->zl_lock); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); lwb->lwb_state = LWB_STATE_WRITE_DONE; lwb->lwb_write_zio = NULL; lwb->lwb_fastwrite = FALSE; nlwb = list_next(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); if (avl_numnodes(t) == 0) return; /* * If there was an IO error, we're not going to call zio_flush() * on these vdevs, so we simply empty the tree and free the * nodes. We avoid calling zio_flush() since there isn't any * good reason for doing so, after the lwb block failed to be * written out. * * Additionally, we don't perform any further error handling at * this point (e.g. setting "zcw_zio_error" appropriately), as * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, * we expect any error seen here, to have been propagated to * that function). */ if (zio->io_error != 0) { while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zv, sizeof (*zv)); return; } /* * If this lwb does not have any threads waiting for it to * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE * command to the vdevs written to by "this" lwb, and instead * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE * command for those vdevs. Thus, we merge the vdev tree of * "this" lwb with the vdev tree of the "next" lwb in the list, * and assume the "next" lwb will handle flushing the vdevs (or * deferring the flush(s) again). * * This is a useful performance optimization, especially for * workloads with lots of async write activity and few sync * write and/or fsync activity, as it has the potential to * coalesce multiple flush commands to a vdev into one. */ if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { zil_lwb_flush_defer(lwb, nlwb); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); return; } spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); if (vd != NULL) { /* * The "ZIO_FLAG_DONT_PROPAGATE" is currently * always used within "zio_flush". This means, * any errors when flushing the vdev(s), will * (unfortunately) not be handled correctly, * since these "zio_flush" errors will not be * propagated up to "zil_lwb_flush_vdevs_done". */ zio_flush(lwb->lwb_root_zio, vd); } kmem_free(zv, sizeof (*zv)); } spa_config_exit(spa, SCL_STATE, FTAG); } static void zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) { lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(MUTEX_HELD(&zilog->zl_lock)); /* * The zilog's "zl_last_lwb_opened" field is used to build the * lwb/zio dependency chain, which is used to preserve the * ordering of lwb completions that is required by the semantics * of the ZIL. Each new lwb zio becomes a parent of the * "previous" lwb zio, such that the new lwb's zio cannot * complete until the "previous" lwb's zio completes. * * This is required by the semantics of zil_commit(); the commit * waiters attached to the lwbs will be woken in the lwb zio's * completion callback, so this zio dependency graph ensures the * waiters are woken in the correct order (the same order the * lwbs were created). */ if (last_lwb_opened != NULL && last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || last_lwb_opened->lwb_state == LWB_STATE_ISSUED || last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); zio_add_child(lwb->lwb_root_zio, last_lwb_opened->lwb_root_zio); /* * If the previous lwb's write hasn't already completed, * we also want to order the completion of the lwb write * zios (above, we only order the completion of the lwb * root zios). This is required because of how we can * defer the DKIOCFLUSHWRITECACHE commands for each lwb. * * When the DKIOCFLUSHWRITECACHE commands are deferred, * the previous lwb will rely on this lwb to flush the * vdevs written to by that previous lwb. Thus, we need * to ensure this lwb doesn't issue the flush until * after the previous lwb's write completes. We ensure * this ordering by setting the zio parent/child * relationship here. * * Without this relationship on the lwb's write zio, * it's possible for this lwb's write to complete prior * to the previous lwb's write completing; and thus, the * vdevs for the previous lwb would be flushed prior to * that lwb's data being written to those vdevs (the * vdevs are flushed in the lwb write zio's completion * handler, zil_lwb_write_done()). */ if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || last_lwb_opened->lwb_state == LWB_STATE_ISSUED); ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); zio_add_child(lwb->lwb_write_zio, last_lwb_opened->lwb_write_zio); } } } /* * This function's purpose is to "open" an lwb such that it is ready to * accept new itxs being committed to it. To do this, the lwb's zio * structures are created, and linked to the lwb. This function is * idempotent; if the passed in lwb has already been opened, this * function is essentially a no-op. */ static void zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) { zbookmark_phys_t zb; zio_priority_t prio; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb, !=, NULL); EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */ mutex_enter(&zilog->zl_lock); if (lwb->lwb_root_zio == NULL) { abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk)); if (!lwb->lwb_fastwrite) { metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk); lwb->lwb_fastwrite = 1; } if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) prio = ZIO_PRIORITY_SYNC_WRITE; else prio = ZIO_PRIORITY_ASYNC_WRITE; lwb->lwb_root_zio = zio_root(zilog->zl_spa, zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); ASSERT3P(lwb->lwb_root_zio, !=, NULL); lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb); ASSERT3P(lwb->lwb_write_zio, !=, NULL); lwb->lwb_state = LWB_STATE_OPENED; zil_lwb_set_zio_dependency(zilog, lwb); zilog->zl_last_lwb_opened = lwb; } mutex_exit(&zilog->zl_lock); ASSERT3P(lwb->lwb_root_zio, !=, NULL); ASSERT3P(lwb->lwb_write_zio, !=, NULL); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); } /* * Define a limited set of intent log block sizes. * * These must be a multiple of 4KB. Note only the amount used (again * aligned to 4KB) actually gets written. However, we can't always just * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. */ static const struct { uint64_t limit; uint64_t blksz; } zil_block_buckets[] = { { 4096, 4096 }, /* non TX_WRITE */ { 8192 + 4096, 8192 + 4096 }, /* database */ { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ { 131072, 131072 }, /* < 128KB writes */ { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ }; /* * Maximum block size used by the ZIL. This is picked up when the ZIL is * initialized. Otherwise this should not be used directly; see * zl_max_block_size instead. */ static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; /* * Start a log block write and advance to the next log block. * Calls are serialized. */ static lwb_t * zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) { lwb_t *nlwb = NULL; zil_chain_t *zilc; spa_t *spa = zilog->zl_spa; blkptr_t *bp; dmu_tx_t *tx; uint64_t txg; uint64_t zil_blksz, wsz; int i, error; boolean_t slog; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb->lwb_root_zio, !=, NULL); ASSERT3P(lwb->lwb_write_zio, !=, NULL); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { zilc = (zil_chain_t *)lwb->lwb_buf; bp = &zilc->zc_next_blk; } else { zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); bp = &zilc->zc_next_blk; } ASSERT(lwb->lwb_nused <= lwb->lwb_sz); /* * Allocate the next block and save its address in this block * before writing it in order to establish the log chain. */ tx = dmu_tx_create(zilog->zl_os); /* * Since we are not going to create any new dirty data, and we * can even help with clearing the existing dirty data, we * should not be subject to the dirty data based delays. We * use TXG_NOTHROTTLE to bypass the delay mechanism. */ VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); mutex_enter(&zilog->zl_lwb_io_lock); lwb->lwb_issued_txg = txg; zilog->zl_lwb_inflight[txg & TXG_MASK]++; zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); mutex_exit(&zilog->zl_lwb_io_lock); /* * Log blocks are pre-allocated. Here we select the size of the next * block, based on size used in the last block. * - first find the smallest bucket that will fit the block from a * limited set of block sizes. This is because it's faster to write * blocks allocated from the same metaslab as they are adjacent or * close. * - next find the maximum from the new suggested size and an array of * previous sizes. This lessens a picket fence effect of wrongly * guessing the size if we have a stream of say 2k, 64k, 2k, 64k * requests. * * Note we only write what is used, but we can't just allocate * the maximum block size because we can exhaust the available * pool log space. */ zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) continue; zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; for (i = 0; i < ZIL_PREV_BLKS; i++) zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); BP_ZERO(bp); error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog); if (slog) { ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, lwb->lwb_nused); } else { ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, lwb->lwb_nused); } if (error == 0) { ASSERT3U(bp->blk_birth, ==, txg); bp->blk_cksum = lwb->lwb_blk.blk_cksum; bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; /* * Allocate a new log write block (lwb). */ nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE); } if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { /* For Slim ZIL only write what is used. */ wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); ASSERT3U(wsz, <=, lwb->lwb_sz); zio_shrink(lwb->lwb_write_zio, wsz); } else { wsz = lwb->lwb_sz; } zilc->zc_pad = 0; zilc->zc_nused = lwb->lwb_nused; zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; /* * clear unused data for security */ memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); zil_lwb_add_block(lwb, &lwb->lwb_blk); lwb->lwb_issued_timestamp = gethrtime(); lwb->lwb_state = LWB_STATE_ISSUED; zio_nowait(lwb->lwb_root_zio); zio_nowait(lwb->lwb_write_zio); dmu_tx_commit(tx); /* * If there was an allocation failure then nlwb will be null which * forces a txg_wait_synced(). */ return (nlwb); } /* - * Maximum amount of write data that can be put into single log block. + * Maximum amount of data that can be put into single log block. */ uint64_t -zil_max_log_data(zilog_t *zilog) +zil_max_log_data(zilog_t *zilog, size_t hdrsize) { - return (zilog->zl_max_block_size - - sizeof (zil_chain_t) - sizeof (lr_write_t)); + return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); } /* * Maximum amount of log space we agree to waste to reduce number of * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). */ static inline uint64_t zil_max_waste_space(zilog_t *zilog) { - return (zil_max_log_data(zilog) / 8); + return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 8); } /* * Maximum amount of write data for WR_COPIED. For correctness, consumers * must fall back to WR_NEED_COPY if we can't fit the entire record into one * maximum sized log block, because each WR_COPIED record must fit in a * single log block. For space efficiency, we want to fit two records into a * max-sized log block. */ uint64_t zil_max_copied_data(zilog_t *zilog) { return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - sizeof (lr_write_t)); } static lwb_t * zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) { lr_t *lrcb, *lrc; lr_write_t *lrwb, *lrw; char *lr_buf; uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb, !=, NULL); ASSERT3P(lwb->lwb_buf, !=, NULL); zil_lwb_write_open(zilog, lwb); lrc = &itx->itx_lr; lrw = (lr_write_t *)lrc; /* * A commit itx doesn't represent any on-disk state; instead * it's simply used as a place holder on the commit list, and * provides a mechanism for attaching a "commit waiter" onto the * correct lwb (such that the waiter can be signalled upon * completion of that lwb). Thus, we don't process this itx's * log record if it's a commit itx (these itx's don't have log * records), and instead link the itx's waiter onto the lwb's * list of waiters. * * For more details, see the comment above zil_commit(). */ if (lrc->lrc_txtype == TX_COMMIT) { mutex_enter(&zilog->zl_lock); zil_commit_waiter_link_lwb(itx->itx_private, lwb); itx->itx_private = NULL; mutex_exit(&zilog->zl_lock); return (lwb); } if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { dlen = P2ROUNDUP_TYPED( lrw->lr_length, sizeof (uint64_t), uint64_t); dpad = dlen - lrw->lr_length; } else { dlen = dpad = 0; } reclen = lrc->lrc_reclen; zilog->zl_cur_used += (reclen + dlen); txg = lrc->lrc_txg; ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); cont: /* * If this record won't fit in the current log block, start a new one. * For WR_NEED_COPY optimize layout for minimal number of chunks. */ lwb_sp = lwb->lwb_sz - lwb->lwb_nused; - max_log_data = zil_max_log_data(zilog); + max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); if (reclen > lwb_sp || (reclen + dlen > lwb_sp && lwb_sp < zil_max_waste_space(zilog) && (dlen % max_log_data == 0 || lwb_sp < reclen + dlen % max_log_data))) { lwb = zil_lwb_write_issue(zilog, lwb); if (lwb == NULL) return (NULL); zil_lwb_write_open(zilog, lwb); ASSERT(LWB_EMPTY(lwb)); lwb_sp = lwb->lwb_sz - lwb->lwb_nused; /* * There must be enough space in the new, empty log block to * hold reclen. For WR_COPIED, we need to fit the whole * record in one block, and reclen is the header size + the * data size. For WR_NEED_COPY, we can create multiple * records, splitting the data into multiple blocks, so we * only need to fit one word of data per block; in this case * reclen is just the header size (no data). */ ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); } dnow = MIN(dlen, lwb_sp - reclen); lr_buf = lwb->lwb_buf + lwb->lwb_nused; memcpy(lr_buf, lrc, reclen); lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ ZIL_STAT_BUMP(zilog, zil_itx_count); /* * If it's a write, fetch the data or get its blkptr as appropriate. */ if (lrc->lrc_txtype == TX_WRITE) { if (txg > spa_freeze_txg(zilog->zl_spa)) txg_wait_synced(zilog->zl_dmu_pool, txg); if (itx->itx_wr_state == WR_COPIED) { ZIL_STAT_BUMP(zilog, zil_itx_copied_count); ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, lrw->lr_length); } else { char *dbuf; int error; if (itx->itx_wr_state == WR_NEED_COPY) { dbuf = lr_buf + reclen; lrcb->lrc_reclen += dnow; if (lrwb->lr_length > dnow) lrwb->lr_length = dnow; lrw->lr_offset += dnow; lrw->lr_length -= dnow; ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, dnow); } else { ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); dbuf = NULL; ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, lrw->lr_length); } /* * We pass in the "lwb_write_zio" rather than * "lwb_root_zio" so that the "lwb_write_zio" * becomes the parent of any zio's created by * the "zl_get_data" callback. The vdevs are * flushed after the "lwb_write_zio" completes, * so we want to make sure that completion * callback waits for these additional zio's, * such that the vdevs used by those zio's will * be included in the lwb's vdev tree, and those * vdevs will be properly flushed. If we passed * in "lwb_root_zio" here, then these additional * vdevs may not be flushed; e.g. if these zio's * completed after "lwb_write_zio" completed. */ error = zilog->zl_get_data(itx->itx_private, itx->itx_gen, lrwb, dbuf, lwb, lwb->lwb_write_zio); if (dbuf != NULL && error == 0 && dnow == dlen) /* Zero any padding bytes in the last block. */ memset((char *)dbuf + lrwb->lr_length, 0, dpad); /* * Typically, the only return values we should see from * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or * EALREADY. However, it is also possible to see other * error values such as ENOSPC or EINVAL from * dmu_read() -> dnode_hold() -> dnode_hold_impl() or * ENXIO as well as a multitude of others from the * block layer through dmu_buf_hold() -> dbuf_read() * -> zio_wait(), as well as through dmu_read() -> * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> * zio_wait(). When these errors happen, we can assume * that neither an immediate write nor an indirect * write occurred, so we need to fall back to * txg_wait_synced(). This is unusual, so we print to * dmesg whenever one of these errors occurs. */ switch (error) { case 0: break; default: cmn_err(CE_WARN, "zil_lwb_commit() received " "unexpected error %d from ->zl_get_data()" ". Falling back to txg_wait_synced().", error); zfs_fallthrough; case EIO: txg_wait_synced(zilog->zl_dmu_pool, txg); zfs_fallthrough; case ENOENT: zfs_fallthrough; case EEXIST: zfs_fallthrough; case EALREADY: return (lwb); } } } /* * We're actually making an entry, so update lrc_seq to be the * log record sequence number. Note that this is generally not * equal to the itx sequence number because not all transactions * are synchronous, and sometimes spa_sync() gets there first. */ lrcb->lrc_seq = ++zilog->zl_lr_seq; lwb->lwb_nused += reclen + dnow; zil_lwb_add_txg(lwb, txg); ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); dlen -= dnow; if (dlen > 0) { zilog->zl_cur_used += reclen; goto cont; } return (lwb); } itx_t * zil_itx_create(uint64_t txtype, size_t olrsize) { size_t itxsize, lrsize; itx_t *itx; lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); itxsize = offsetof(itx_t, itx_lr) + lrsize; itx = zio_data_buf_alloc(itxsize); itx->itx_lr.lrc_txtype = txtype; itx->itx_lr.lrc_reclen = lrsize; itx->itx_lr.lrc_seq = 0; /* defensive */ memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); itx->itx_sync = B_TRUE; /* default is synchronous */ itx->itx_callback = NULL; itx->itx_callback_data = NULL; itx->itx_size = itxsize; return (itx); } void zil_itx_destroy(itx_t *itx) { IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); if (itx->itx_callback != NULL) itx->itx_callback(itx->itx_callback_data); zio_data_buf_free(itx, itx->itx_size); } /* * Free up the sync and async itxs. The itxs_t has already been detached * so no locks are needed. */ static void zil_itxg_clean(void *arg) { itx_t *itx; list_t *list; avl_tree_t *t; void *cookie; itxs_t *itxs = arg; itx_async_node_t *ian; list = &itxs->i_sync_list; while ((itx = list_head(list)) != NULL) { /* * In the general case, commit itxs will not be found * here, as they'll be committed to an lwb via * zil_lwb_commit(), and free'd in that function. Having * said that, it is still possible for commit itxs to be * found here, due to the following race: * * - a thread calls zil_commit() which assigns the * commit itx to a per-txg i_sync_list * - zil_itxg_clean() is called (e.g. via spa_sync()) * while the waiter is still on the i_sync_list * * There's nothing to prevent syncing the txg while the * waiter is on the i_sync_list. This normally doesn't * happen because spa_sync() is slower than zil_commit(), * but if zil_commit() calls txg_wait_synced() (e.g. * because zil_create() or zil_commit_writer_stall() is * called) we will hit this case. */ if (itx->itx_lr.lrc_txtype == TX_COMMIT) zil_commit_waiter_skip(itx->itx_private); list_remove(list, itx); zil_itx_destroy(itx); } cookie = NULL; t = &itxs->i_async_tree; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list = &ian->ia_list; while ((itx = list_head(list)) != NULL) { list_remove(list, itx); /* commit itxs should never be on the async lists. */ ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); zil_itx_destroy(itx); } list_destroy(list); kmem_free(ian, sizeof (itx_async_node_t)); } avl_destroy(t); kmem_free(itxs, sizeof (itxs_t)); } static int zil_aitx_compare(const void *x1, const void *x2) { const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; return (TREE_CMP(o1, o2)); } /* * Remove all async itx with the given oid. */ void zil_remove_async(zilog_t *zilog, uint64_t oid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; list_t clean_list; itx_t *itx; ASSERT(oid != 0); list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * Locate the object node and append its list. */ t = &itxg->itxg_itxs->i_async_tree; ian = avl_find(t, &oid, &where); if (ian != NULL) list_move_tail(&clean_list, &ian->ia_list); mutex_exit(&itxg->itxg_lock); } while ((itx = list_head(&clean_list)) != NULL) { list_remove(&clean_list, itx); /* commit itxs should never be on the async lists. */ ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); zil_itx_destroy(itx); } list_destroy(&clean_list); } void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) { uint64_t txg; itxg_t *itxg; itxs_t *itxs, *clean = NULL; /* * Ensure the data of a renamed file is committed before the rename. */ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) zil_async_to_sync(zilog, itx->itx_oid); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) txg = ZILTEST_TXG; else txg = dmu_tx_get_txg(tx); itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); itxs = itxg->itxg_itxs; if (itxg->itxg_txg != txg) { if (itxs != NULL) { /* * The zil_clean callback hasn't got around to cleaning * this itxg. Save the itxs for release below. * This should be rare. */ zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " "txg %llu", (u_longlong_t)itxg->itxg_txg); clean = itxg->itxg_itxs; } itxg->itxg_txg = txg; itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); list_create(&itxs->i_sync_list, sizeof (itx_t), offsetof(itx_t, itx_node)); avl_create(&itxs->i_async_tree, zil_aitx_compare, sizeof (itx_async_node_t), offsetof(itx_async_node_t, ia_node)); } if (itx->itx_sync) { list_insert_tail(&itxs->i_sync_list, itx); } else { avl_tree_t *t = &itxs->i_async_tree; uint64_t foid = LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); itx_async_node_t *ian; avl_index_t where; ian = avl_find(t, &foid, &where); if (ian == NULL) { ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); list_create(&ian->ia_list, sizeof (itx_t), offsetof(itx_t, itx_node)); ian->ia_foid = foid; avl_insert(t, ian, where); } list_insert_tail(&ian->ia_list, itx); } itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); /* * We don't want to dirty the ZIL using ZILTEST_TXG, because * zil_clean() will never be called using ZILTEST_TXG. Thus, we * need to be careful to always dirty the ZIL using the "real" * TXG (not itxg_txg) even when the SPA is frozen. */ zilog_dirty(zilog, dmu_tx_get_txg(tx)); mutex_exit(&itxg->itxg_lock); /* Release the old itxs now we've dropped the lock */ if (clean != NULL) zil_itxg_clean(clean); } /* * If there are any in-memory intent log transactions which have now been * synced then start up a taskq to free them. We should only do this after we * have written out the uberblocks (i.e. txg has been committed) so that * don't inadvertently clean out in-memory log records that would be required * by zil_commit(). */ void zil_clean(zilog_t *zilog, uint64_t synced_txg) { itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; itxs_t *clean_me; ASSERT3U(synced_txg, <, ZILTEST_TXG); mutex_enter(&itxg->itxg_lock); if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { mutex_exit(&itxg->itxg_lock); return; } ASSERT3U(itxg->itxg_txg, <=, synced_txg); ASSERT3U(itxg->itxg_txg, !=, 0); clean_me = itxg->itxg_itxs; itxg->itxg_itxs = NULL; itxg->itxg_txg = 0; mutex_exit(&itxg->itxg_lock); /* * Preferably start a task queue to free up the old itxs but * if taskq_dispatch can't allocate resources to do that then * free it in-line. This should be rare. Note, using TQ_SLEEP * created a bad performance problem. */ ASSERT3P(zilog->zl_dmu_pool, !=, NULL); ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, zil_itxg_clean, clean_me, TQ_NOSLEEP); if (id == TASKQID_INVALID) zil_itxg_clean(clean_me); } /* * This function will traverse the queue of itxs that need to be * committed, and move them onto the ZIL's zl_itx_commit_list. */ static void zil_get_commit_list(zilog_t *zilog) { uint64_t otxg, txg; list_t *commit_list = &zilog->zl_itx_commit_list; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; /* * This is inherently racy, since there is nothing to prevent * the last synced txg from changing. That's okay since we'll * only commit things in the future. */ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * If we're adding itx records to the zl_itx_commit_list, * then the zil better be dirty in this "txg". We can assert * that here since we're holding the itxg_lock which will * prevent spa_sync from cleaning it. Once we add the itxs * to the zl_itx_commit_list we must commit it to disk even * if it's unnecessary (i.e. the txg was synced). */ ASSERT(zilog_is_dirty_in_txg(zilog, txg) || spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); mutex_exit(&itxg->itxg_lock); } } /* * Move the async itxs for a specified object to commit into sync lists. */ void zil_async_to_sync(zilog_t *zilog, uint64_t foid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; /* * This is inherently racy, since there is nothing to prevent * the last synced txg from changing. */ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * If a foid is specified then find that node and append its * list. Otherwise walk the tree appending all the lists * to the sync list. We add to the end rather than the * beginning to ensure the create has happened. */ t = &itxg->itxg_itxs->i_async_tree; if (foid != 0) { ian = avl_find(t, &foid, &where); if (ian != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); } } else { void *cookie = NULL; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); list_destroy(&ian->ia_list); kmem_free(ian, sizeof (itx_async_node_t)); } } mutex_exit(&itxg->itxg_lock); } } /* * This function will prune commit itxs that are at the head of the * commit list (it won't prune past the first non-commit itx), and * either: a) attach them to the last lwb that's still pending * completion, or b) skip them altogether. * * This is used as a performance optimization to prevent commit itxs * from generating new lwbs when it's unnecessary to do so. */ static void zil_prune_commit_list(zilog_t *zilog) { itx_t *itx; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { lr_t *lrc = &itx->itx_lr; if (lrc->lrc_txtype != TX_COMMIT) break; mutex_enter(&zilog->zl_lock); lwb_t *last_lwb = zilog->zl_last_lwb_opened; if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { /* * All of the itxs this waiter was waiting on * must have already completed (or there were * never any itx's for it to wait on), so it's * safe to skip this waiter and mark it done. */ zil_commit_waiter_skip(itx->itx_private); } else { zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); itx->itx_private = NULL; } mutex_exit(&zilog->zl_lock); list_remove(&zilog->zl_itx_commit_list, itx); zil_itx_destroy(itx); } IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); } static void zil_commit_writer_stall(zilog_t *zilog) { /* * When zio_alloc_zil() fails to allocate the next lwb block on * disk, we must call txg_wait_synced() to ensure all of the * lwbs in the zilog's zl_lwb_list are synced and then freed (in * zil_sync()), such that any subsequent ZIL writer (i.e. a call * to zil_process_commit_list()) will have to call zil_create(), * and start a new ZIL chain. * * Since zil_alloc_zil() failed, the lwb that was previously * issued does not have a pointer to the "next" lwb on disk. * Thus, if another ZIL writer thread was to allocate the "next" * on-disk lwb, that block could be leaked in the event of a * crash (because the previous lwb on-disk would not point to * it). * * We must hold the zilog's zl_issuer_lock while we do this, to * ensure no new threads enter zil_process_commit_list() until * all lwb's in the zl_lwb_list have been synced and freed * (which is achieved via the txg_wait_synced() call). */ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); txg_wait_synced(zilog->zl_dmu_pool, 0); ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); } /* * This function will traverse the commit list, creating new lwbs as * needed, and committing the itxs from the commit list to these newly * created lwbs. Additionally, as a new lwb is created, the previous * lwb will be issued to the zio layer to be written to disk. */ static void zil_process_commit_list(zilog_t *zilog) { spa_t *spa = zilog->zl_spa; list_t nolwb_itxs; list_t nolwb_waiters; lwb_t *lwb, *plwb; itx_t *itx; boolean_t first = B_TRUE; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); /* * Return if there's nothing to commit before we dirty the fs by * calling zil_create(). */ if (list_head(&zilog->zl_itx_commit_list) == NULL) return; list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), offsetof(zil_commit_waiter_t, zcw_node)); lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) { lwb = zil_create(zilog); } else { /* * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will * have already been created (zl_lwb_list not empty). */ zil_commit_activate_saxattr_feature(zilog); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); first = (lwb->lwb_state != LWB_STATE_OPENED) && ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL || plwb->lwb_state == LWB_STATE_FLUSH_DONE); } while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { lr_t *lrc = &itx->itx_lr; uint64_t txg = lrc->lrc_txg; ASSERT3U(txg, !=, 0); if (lrc->lrc_txtype == TX_COMMIT) { DTRACE_PROBE2(zil__process__commit__itx, zilog_t *, zilog, itx_t *, itx); } else { DTRACE_PROBE2(zil__process__normal__itx, zilog_t *, zilog, itx_t *, itx); } list_remove(&zilog->zl_itx_commit_list, itx); boolean_t synced = txg <= spa_last_synced_txg(spa); boolean_t frozen = txg > spa_freeze_txg(spa); /* * If the txg of this itx has already been synced out, then * we don't need to commit this itx to an lwb. This is * because the data of this itx will have already been * written to the main pool. This is inherently racy, and * it's still ok to commit an itx whose txg has already * been synced; this will result in a write that's * unnecessary, but will do no harm. * * With that said, we always want to commit TX_COMMIT itxs * to an lwb, regardless of whether or not that itx's txg * has been synced out. We do this to ensure any OPENED lwb * will always have at least one zil_commit_waiter_t linked * to the lwb. * * As a counter-example, if we skipped TX_COMMIT itx's * whose txg had already been synced, the following * situation could occur if we happened to be racing with * spa_sync: * * 1. We commit a non-TX_COMMIT itx to an lwb, where the * itx's txg is 10 and the last synced txg is 9. * 2. spa_sync finishes syncing out txg 10. * 3. We move to the next itx in the list, it's a TX_COMMIT * whose txg is 10, so we skip it rather than committing * it to the lwb used in (1). * * If the itx that is skipped in (3) is the last TX_COMMIT * itx in the commit list, than it's possible for the lwb * used in (1) to remain in the OPENED state indefinitely. * * To prevent the above scenario from occurring, ensuring * that once an lwb is OPENED it will transition to ISSUED * and eventually DONE, we always commit TX_COMMIT itx's to * an lwb here, even if that itx's txg has already been * synced. * * Finally, if the pool is frozen, we _always_ commit the * itx. The point of freezing the pool is to prevent data * from being written to the main pool via spa_sync, and * instead rely solely on the ZIL to persistently store the * data; i.e. when the pool is frozen, the last synced txg * value can't be trusted. */ if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { if (lwb != NULL) { lwb = zil_lwb_commit(zilog, itx, lwb); if (lwb == NULL) list_insert_tail(&nolwb_itxs, itx); else list_insert_tail(&lwb->lwb_itxs, itx); } else { if (lrc->lrc_txtype == TX_COMMIT) { zil_commit_waiter_link_nolwb( itx->itx_private, &nolwb_waiters); } list_insert_tail(&nolwb_itxs, itx); } } else { ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); zil_itx_destroy(itx); } } if (lwb == NULL) { /* * This indicates zio_alloc_zil() failed to allocate the * "next" lwb on-disk. When this happens, we must stall * the ZIL write pipeline; see the comment within * zil_commit_writer_stall() for more details. */ zil_commit_writer_stall(zilog); /* * Additionally, we have to signal and mark the "nolwb" * waiters as "done" here, since without an lwb, we * can't do this via zil_lwb_flush_vdevs_done() like * normal. */ zil_commit_waiter_t *zcw; while ((zcw = list_head(&nolwb_waiters)) != NULL) { zil_commit_waiter_skip(zcw); list_remove(&nolwb_waiters, zcw); } /* * And finally, we have to destroy the itx's that * couldn't be committed to an lwb; this will also call * the itx's callback if one exists for the itx. */ while ((itx = list_head(&nolwb_itxs)) != NULL) { list_remove(&nolwb_itxs, itx); zil_itx_destroy(itx); } } else { ASSERT(list_is_empty(&nolwb_waiters)); ASSERT3P(lwb, !=, NULL); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); /* * At this point, the ZIL block pointed at by the "lwb" * variable is in one of the following states: "closed" * or "open". * * If it's "closed", then no itxs have been committed to * it, so there's no point in issuing its zio (i.e. it's * "empty"). * * If it's "open", then it contains one or more itxs that * eventually need to be committed to stable storage. In * this case we intentionally do not issue the lwb's zio * to disk yet, and instead rely on one of the following * two mechanisms for issuing the zio: * * 1. Ideally, there will be more ZIL activity occurring * on the system, such that this function will be * immediately called again (not necessarily by the same * thread) and this lwb's zio will be issued via * zil_lwb_commit(). This way, the lwb is guaranteed to * be "full" when it is issued to disk, and we'll make * use of the lwb's size the best we can. * * 2. If there isn't sufficient ZIL activity occurring on * the system, such that this lwb's zio isn't issued via * zil_lwb_commit(), zil_commit_waiter() will issue the * lwb's zio. If this occurs, the lwb is not guaranteed * to be "full" by the time its zio is issued, and means * the size of the lwb was "too large" given the amount * of ZIL activity occurring on the system at that time. * * We do this for a couple of reasons: * * 1. To try and reduce the number of IOPs needed to * write the same number of itxs. If an lwb has space * available in its buffer for more itxs, and more itxs * will be committed relatively soon (relative to the * latency of performing a write), then it's beneficial * to wait for these "next" itxs. This way, more itxs * can be committed to stable storage with fewer writes. * * 2. To try and use the largest lwb block size that the * incoming rate of itxs can support. Again, this is to * try and pack as many itxs into as few lwbs as * possible, without significantly impacting the latency * of each individual itx. * * If we had no already running or open LWBs, it can be * the workload is single-threaded. And if the ZIL write * latency is very small or if the LWB is almost full, it * may be cheaper to bypass the delay. */ if (lwb->lwb_state == LWB_STATE_OPENED && first) { hrtime_t sleep = zilog->zl_last_lwb_latency * zfs_commit_timeout_pct / 100; if (sleep < zil_min_commit_timeout || lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) { lwb = zil_lwb_write_issue(zilog, lwb); zilog->zl_cur_used = 0; if (lwb == NULL) zil_commit_writer_stall(zilog); } } } } /* * This function is responsible for ensuring the passed in commit waiter * (and associated commit itx) is committed to an lwb. If the waiter is * not already committed to an lwb, all itxs in the zilog's queue of * itxs will be processed. The assumption is the passed in waiter's * commit itx will found in the queue just like the other non-commit * itxs, such that when the entire queue is processed, the waiter will * have been committed to an lwb. * * The lwb associated with the passed in waiter is not guaranteed to * have been issued by the time this function completes. If the lwb is * not issued, we rely on future calls to zil_commit_writer() to issue * the lwb, or the timeout mechanism found in zil_commit_waiter(). */ static void zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_lock)); ASSERT(spa_writeable(zilog->zl_spa)); mutex_enter(&zilog->zl_issuer_lock); if (zcw->zcw_lwb != NULL || zcw->zcw_done) { /* * It's possible that, while we were waiting to acquire * the "zl_issuer_lock", another thread committed this * waiter to an lwb. If that occurs, we bail out early, * without processing any of the zilog's queue of itxs. * * On certain workloads and system configurations, the * "zl_issuer_lock" can become highly contended. In an * attempt to reduce this contention, we immediately drop * the lock if the waiter has already been processed. * * We've measured this optimization to reduce CPU spent * contending on this lock by up to 5%, using a system * with 32 CPUs, low latency storage (~50 usec writes), * and 1024 threads performing sync writes. */ goto out; } ZIL_STAT_BUMP(zilog, zil_commit_writer_count); zil_get_commit_list(zilog); zil_prune_commit_list(zilog); zil_process_commit_list(zilog); out: mutex_exit(&zilog->zl_issuer_lock); } static void zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(MUTEX_HELD(&zcw->zcw_lock)); ASSERT3B(zcw->zcw_done, ==, B_FALSE); lwb_t *lwb = zcw->zcw_lwb; ASSERT3P(lwb, !=, NULL); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); /* * If the lwb has already been issued by another thread, we can * immediately return since there's no work to be done (the * point of this function is to issue the lwb). Additionally, we * do this prior to acquiring the zl_issuer_lock, to avoid * acquiring it when it's not necessary to do so. */ if (lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE) return; /* * In order to call zil_lwb_write_issue() we must hold the * zilog's "zl_issuer_lock". We can't simply acquire that lock, * since we're already holding the commit waiter's "zcw_lock", * and those two locks are acquired in the opposite order * elsewhere. */ mutex_exit(&zcw->zcw_lock); mutex_enter(&zilog->zl_issuer_lock); mutex_enter(&zcw->zcw_lock); /* * Since we just dropped and re-acquired the commit waiter's * lock, we have to re-check to see if the waiter was marked * "done" during that process. If the waiter was marked "done", * the "lwb" pointer is no longer valid (it can be free'd after * the waiter is marked "done"), so without this check we could * wind up with a use-after-free error below. */ if (zcw->zcw_done) goto out; ASSERT3P(lwb, ==, zcw->zcw_lwb); /* * We've already checked this above, but since we hadn't acquired * the zilog's zl_issuer_lock, we have to perform this check a * second time while holding the lock. * * We don't need to hold the zl_lock since the lwb cannot transition * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb * _can_ transition from ISSUED to DONE, but it's OK to race with * that transition since we treat the lwb the same, whether it's in * the ISSUED or DONE states. * * The important thing, is we treat the lwb differently depending on * if it's ISSUED or OPENED, and block any other threads that might * attempt to issue this lwb. For that reason we hold the * zl_issuer_lock when checking the lwb_state; we must not call * zil_lwb_write_issue() if the lwb had already been issued. * * See the comment above the lwb_state_t structure definition for * more details on the lwb states, and locking requirements. */ if (lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE) goto out; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); /* * As described in the comments above zil_commit_waiter() and * zil_process_commit_list(), we need to issue this lwb's zio * since we've reached the commit waiter's timeout and it still * hasn't been issued. */ lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); /* * Since the lwb's zio hadn't been issued by the time this thread * reached its timeout, we reset the zilog's "zl_cur_used" field * to influence the zil block size selection algorithm. * * By having to issue the lwb's zio here, it means the size of the * lwb was too large, given the incoming throughput of itxs. By * setting "zl_cur_used" to zero, we communicate this fact to the * block size selection algorithm, so it can take this information * into account, and potentially select a smaller size for the * next lwb block that is allocated. */ zilog->zl_cur_used = 0; if (nlwb == NULL) { /* * When zil_lwb_write_issue() returns NULL, this * indicates zio_alloc_zil() failed to allocate the * "next" lwb on-disk. When this occurs, the ZIL write * pipeline must be stalled; see the comment within the * zil_commit_writer_stall() function for more details. * * We must drop the commit waiter's lock prior to * calling zil_commit_writer_stall() or else we can wind * up with the following deadlock: * * - This thread is waiting for the txg to sync while * holding the waiter's lock; txg_wait_synced() is * used within txg_commit_writer_stall(). * * - The txg can't sync because it is waiting for this * lwb's zio callback to call dmu_tx_commit(). * * - The lwb's zio callback can't call dmu_tx_commit() * because it's blocked trying to acquire the waiter's * lock, which occurs prior to calling dmu_tx_commit() */ mutex_exit(&zcw->zcw_lock); zil_commit_writer_stall(zilog); mutex_enter(&zcw->zcw_lock); } out: mutex_exit(&zilog->zl_issuer_lock); ASSERT(MUTEX_HELD(&zcw->zcw_lock)); } /* * This function is responsible for performing the following two tasks: * * 1. its primary responsibility is to block until the given "commit * waiter" is considered "done". * * 2. its secondary responsibility is to issue the zio for the lwb that * the given "commit waiter" is waiting on, if this function has * waited "long enough" and the lwb is still in the "open" state. * * Given a sufficient amount of itxs being generated and written using * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() * function. If this does not occur, this secondary responsibility will * ensure the lwb is issued even if there is not other synchronous * activity on the system. * * For more details, see zil_process_commit_list(); more specifically, * the comment at the bottom of that function. */ static void zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_lock)); ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(spa_writeable(zilog->zl_spa)); mutex_enter(&zcw->zcw_lock); /* * The timeout is scaled based on the lwb latency to avoid * significantly impacting the latency of each individual itx. * For more details, see the comment at the bottom of the * zil_process_commit_list() function. */ int pct = MAX(zfs_commit_timeout_pct, 1); hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; hrtime_t wakeup = gethrtime() + sleep; boolean_t timedout = B_FALSE; while (!zcw->zcw_done) { ASSERT(MUTEX_HELD(&zcw->zcw_lock)); lwb_t *lwb = zcw->zcw_lwb; /* * Usually, the waiter will have a non-NULL lwb field here, * but it's possible for it to be NULL as a result of * zil_commit() racing with spa_sync(). * * When zil_clean() is called, it's possible for the itxg * list (which may be cleaned via a taskq) to contain * commit itxs. When this occurs, the commit waiters linked * off of these commit itxs will not be committed to an * lwb. Additionally, these commit waiters will not be * marked done until zil_commit_waiter_skip() is called via * zil_itxg_clean(). * * Thus, it's possible for this commit waiter (i.e. the * "zcw" variable) to be found in this "in between" state; * where it's "zcw_lwb" field is NULL, and it hasn't yet * been skipped, so it's "zcw_done" field is still B_FALSE. */ IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { ASSERT3B(timedout, ==, B_FALSE); /* * If the lwb hasn't been issued yet, then we * need to wait with a timeout, in case this * function needs to issue the lwb after the * timeout is reached; responsibility (2) from * the comment above this function. */ int rc = cv_timedwait_hires(&zcw->zcw_cv, &zcw->zcw_lock, wakeup, USEC2NSEC(1), CALLOUT_FLAG_ABSOLUTE); if (rc != -1 || zcw->zcw_done) continue; timedout = B_TRUE; zil_commit_waiter_timeout(zilog, zcw); if (!zcw->zcw_done) { /* * If the commit waiter has already been * marked "done", it's possible for the * waiter's lwb structure to have already * been freed. Thus, we can only reliably * make these assertions if the waiter * isn't done. */ ASSERT3P(lwb, ==, zcw->zcw_lwb); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); } } else { /* * If the lwb isn't open, then it must have already * been issued. In that case, there's no need to * use a timeout when waiting for the lwb to * complete. * * Additionally, if the lwb is NULL, the waiter * will soon be signaled and marked done via * zil_clean() and zil_itxg_clean(), so no timeout * is required. */ IMPLY(lwb != NULL, lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE); cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); } } mutex_exit(&zcw->zcw_lock); } static zil_commit_waiter_t * zil_alloc_commit_waiter(void) { zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); list_link_init(&zcw->zcw_node); zcw->zcw_lwb = NULL; zcw->zcw_done = B_FALSE; zcw->zcw_zio_error = 0; return (zcw); } static void zil_free_commit_waiter(zil_commit_waiter_t *zcw) { ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); ASSERT3B(zcw->zcw_done, ==, B_TRUE); mutex_destroy(&zcw->zcw_lock); cv_destroy(&zcw->zcw_cv); kmem_cache_free(zil_zcw_cache, zcw); } /* * This function is used to create a TX_COMMIT itx and assign it. This * way, it will be linked into the ZIL's list of synchronous itxs, and * then later committed to an lwb (or skipped) when * zil_process_commit_list() is called. */ static void zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) { dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); itx->itx_sync = B_TRUE; itx->itx_private = zcw; zil_itx_assign(zilog, itx, tx); dmu_tx_commit(tx); } /* * Commit ZFS Intent Log transactions (itxs) to stable storage. * * When writing ZIL transactions to the on-disk representation of the * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple * itxs can be committed to a single lwb. Once a lwb is written and * committed to stable storage (i.e. the lwb is written, and vdevs have * been flushed), each itx that was committed to that lwb is also * considered to be committed to stable storage. * * When an itx is committed to an lwb, the log record (lr_t) contained * by the itx is copied into the lwb's zio buffer, and once this buffer * is written to disk, it becomes an on-disk ZIL block. * * As itxs are generated, they're inserted into the ZIL's queue of * uncommitted itxs. The semantics of zil_commit() are such that it will * block until all itxs that were in the queue when it was called, are * committed to stable storage. * * If "foid" is zero, this means all "synchronous" and "asynchronous" * itxs, for all objects in the dataset, will be committed to stable * storage prior to zil_commit() returning. If "foid" is non-zero, all * "synchronous" itxs for all objects, but only "asynchronous" itxs * that correspond to the foid passed in, will be committed to stable * storage prior to zil_commit() returning. * * Generally speaking, when zil_commit() is called, the consumer doesn't * actually care about _all_ of the uncommitted itxs. Instead, they're * simply trying to waiting for a specific itx to be committed to disk, * but the interface(s) for interacting with the ZIL don't allow such * fine-grained communication. A better interface would allow a consumer * to create and assign an itx, and then pass a reference to this itx to * zil_commit(); such that zil_commit() would return as soon as that * specific itx was committed to disk (instead of waiting for _all_ * itxs to be committed). * * When a thread calls zil_commit() a special "commit itx" will be * generated, along with a corresponding "waiter" for this commit itx. * zil_commit() will wait on this waiter's CV, such that when the waiter * is marked done, and signaled, zil_commit() will return. * * This commit itx is inserted into the queue of uncommitted itxs. This * provides an easy mechanism for determining which itxs were in the * queue prior to zil_commit() having been called, and which itxs were * added after zil_commit() was called. * * The commit itx is special; it doesn't have any on-disk representation. * When a commit itx is "committed" to an lwb, the waiter associated * with it is linked onto the lwb's list of waiters. Then, when that lwb * completes, each waiter on the lwb's list is marked done and signaled * -- allowing the thread waiting on the waiter to return from zil_commit(). * * It's important to point out a few critical factors that allow us * to make use of the commit itxs, commit waiters, per-lwb lists of * commit waiters, and zio completion callbacks like we're doing: * * 1. The list of waiters for each lwb is traversed, and each commit * waiter is marked "done" and signaled, in the zio completion * callback of the lwb's zio[*]. * * * Actually, the waiters are signaled in the zio completion * callback of the root zio for the DKIOCFLUSHWRITECACHE commands * that are sent to the vdevs upon completion of the lwb zio. * * 2. When the itxs are inserted into the ZIL's queue of uncommitted * itxs, the order in which they are inserted is preserved[*]; as * itxs are added to the queue, they are added to the tail of * in-memory linked lists. * * When committing the itxs to lwbs (to be written to disk), they * are committed in the same order in which the itxs were added to * the uncommitted queue's linked list(s); i.e. the linked list of * itxs to commit is traversed from head to tail, and each itx is * committed to an lwb in that order. * * * To clarify: * * - the order of "sync" itxs is preserved w.r.t. other * "sync" itxs, regardless of the corresponding objects. * - the order of "async" itxs is preserved w.r.t. other * "async" itxs corresponding to the same object. * - the order of "async" itxs is *not* preserved w.r.t. other * "async" itxs corresponding to different objects. * - the order of "sync" itxs w.r.t. "async" itxs (or vice * versa) is *not* preserved, even for itxs that correspond * to the same object. * * For more details, see: zil_itx_assign(), zil_async_to_sync(), * zil_get_commit_list(), and zil_process_commit_list(). * * 3. The lwbs represent a linked list of blocks on disk. Thus, any * lwb cannot be considered committed to stable storage, until its * "previous" lwb is also committed to stable storage. This fact, * coupled with the fact described above, means that itxs are * committed in (roughly) the order in which they were generated. * This is essential because itxs are dependent on prior itxs. * Thus, we *must not* deem an itx as being committed to stable * storage, until *all* prior itxs have also been committed to * stable storage. * * To enforce this ordering of lwb zio's, while still leveraging as * much of the underlying storage performance as possible, we rely * on two fundamental concepts: * * 1. The creation and issuance of lwb zio's is protected by * the zilog's "zl_issuer_lock", which ensures only a single * thread is creating and/or issuing lwb's at a time * 2. The "previous" lwb is a child of the "current" lwb * (leveraging the zio parent-child dependency graph) * * By relying on this parent-child zio relationship, we can have * many lwb zio's concurrently issued to the underlying storage, * but the order in which they complete will be the same order in * which they were created. */ void zil_commit(zilog_t *zilog, uint64_t foid) { /* * We should never attempt to call zil_commit on a snapshot for * a couple of reasons: * * 1. A snapshot may never be modified, thus it cannot have any * in-flight itxs that would have modified the dataset. * * 2. By design, when zil_commit() is called, a commit itx will * be assigned to this zilog; as a result, the zilog will be * dirtied. We must not dirty the zilog of a snapshot; there's * checks in the code that enforce this invariant, and will * cause a panic if it's not upheld. */ ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); if (zilog->zl_sync == ZFS_SYNC_DISABLED) return; if (!spa_writeable(zilog->zl_spa)) { /* * If the SPA is not writable, there should never be any * pending itxs waiting to be committed to disk. If that * weren't true, we'd skip writing those itxs out, and * would break the semantics of zil_commit(); thus, we're * verifying that truth before we return to the caller. */ ASSERT(list_is_empty(&zilog->zl_lwb_list)); ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); for (int i = 0; i < TXG_SIZE; i++) ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); return; } /* * The ->zl_suspend_lock rwlock ensures that all in-flight * zil_commit() operations finish before suspension begins and that * no more begin. Without it, it is possible for the scheduler to * preempt us right after the zilog->zl_suspend suspend check, run * another thread that runs zil_suspend() and after the other thread * has finished its call to zil_commit_impl(), resume this thread while * zil is suspended. This can trigger an assertion failure in * VERIFY(list_is_empty(&lwb->lwb_itxs)). If it is held, it means that * `zil_suspend()` is executing in another thread, so we go to * txg_wait_synced(). */ if (!rw_tryenter(&zilog->zl_suspend_lock, RW_READER)) goto wait; /* * If the ZIL is suspended, we don't want to dirty it by calling * zil_commit_itx_assign() below, nor can we write out * lwbs like would be done in zil_commit_write(). Thus, we * simply rely on txg_wait_synced() to maintain the necessary * semantics, and avoid calling those functions altogether. */ if (zilog->zl_suspend > 0) { rw_exit(&zilog->zl_suspend_lock); wait: txg_wait_synced(zilog->zl_dmu_pool, 0); return; } zil_commit_impl(zilog, foid); rw_exit(&zilog->zl_suspend_lock); } void zil_commit_impl(zilog_t *zilog, uint64_t foid) { ZIL_STAT_BUMP(zilog, zil_commit_count); /* * Move the "async" itxs for the specified foid to the "sync" * queues, such that they will be later committed (or skipped) * to an lwb when zil_process_commit_list() is called. * * Since these "async" itxs must be committed prior to this * call to zil_commit returning, we must perform this operation * before we call zil_commit_itx_assign(). */ zil_async_to_sync(zilog, foid); /* * We allocate a new "waiter" structure which will initially be * linked to the commit itx using the itx's "itx_private" field. * Since the commit itx doesn't represent any on-disk state, * when it's committed to an lwb, rather than copying the its * lr_t into the lwb's buffer, the commit itx's "waiter" will be * added to the lwb's list of waiters. Then, when the lwb is * committed to stable storage, each waiter in the lwb's list of * waiters will be marked "done", and signalled. * * We must create the waiter and assign the commit itx prior to * calling zil_commit_writer(), or else our specific commit itx * is not guaranteed to be committed to an lwb prior to calling * zil_commit_waiter(). */ zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); zil_commit_itx_assign(zilog, zcw); zil_commit_writer(zilog, zcw); zil_commit_waiter(zilog, zcw); if (zcw->zcw_zio_error != 0) { /* * If there was an error writing out the ZIL blocks that * this thread is waiting on, then we fallback to * relying on spa_sync() to write out the data this * thread is waiting on. Obviously this has performance * implications, but the expectation is for this to be * an exceptional case, and shouldn't occur often. */ DTRACE_PROBE2(zil__commit__io__error, zilog_t *, zilog, zil_commit_waiter_t *, zcw); txg_wait_synced(zilog->zl_dmu_pool, 0); } zil_free_commit_waiter(zcw); } /* * Called in syncing context to free committed log blocks and update log header. */ void zil_sync(zilog_t *zilog, dmu_tx_t *tx) { zil_header_t *zh = zil_header_in_syncing_context(zilog); uint64_t txg = dmu_tx_get_txg(tx); spa_t *spa = zilog->zl_spa; uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; lwb_t *lwb; /* * We don't zero out zl_destroy_txg, so make sure we don't try * to destroy it twice. */ if (spa_sync_pass(spa) != 1) return; zil_lwb_flush_wait_all(zilog, txg); mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_stop_sync == 0); if (*replayed_seq != 0) { ASSERT(zh->zh_replay_seq < *replayed_seq); zh->zh_replay_seq = *replayed_seq; *replayed_seq = 0; } if (zilog->zl_destroy_txg == txg) { blkptr_t blk = zh->zh_log; dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); ASSERT(list_head(&zilog->zl_lwb_list) == NULL); memset(zh, 0, sizeof (zil_header_t)); memset(zilog->zl_replayed_seq, 0, sizeof (zilog->zl_replayed_seq)); if (zilog->zl_keep_first) { /* * If this block was part of log chain that couldn't * be claimed because a device was missing during * zil_claim(), but that device later returns, * then this block could erroneously appear valid. * To guard against this, assign a new GUID to the new * log chain so it doesn't matter what blk points to. */ zil_init_log_chain(zilog, &blk); zh->zh_log = blk; } else { /* * A destroyed ZIL chain can't contain any TX_SETSAXATTR * records. So, deactivate the feature for this dataset. * We activate it again when we start a new ZIL chain. */ if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) dsl_dataset_deactivate_feature(ds, SPA_FEATURE_ZILSAXATTR, tx); } } while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { zh->zh_log = lwb->lwb_blk; if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) break; list_remove(&zilog->zl_lwb_list, lwb); zio_free(spa, txg, &lwb->lwb_blk); zil_free_lwb(zilog, lwb); /* * If we don't have anything left in the lwb list then * we've had an allocation failure and we need to zero * out the zil_header blkptr so that we don't end * up freeing the same block twice. */ if (list_head(&zilog->zl_lwb_list) == NULL) BP_ZERO(&zh->zh_log); } /* * Remove fastwrite on any blocks that have been pre-allocated for * the next commit. This prevents fastwrite counter pollution by * unused, long-lived LWBs. */ for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) { if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) { metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); lwb->lwb_fastwrite = 0; } } mutex_exit(&zilog->zl_lock); } static int zil_lwb_cons(void *vbuf, void *unused, int kmflag) { (void) unused, (void) kmflag; lwb_t *lwb = vbuf; list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), offsetof(zil_commit_waiter_t, zcw_node)); avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } static void zil_lwb_dest(void *vbuf, void *unused) { (void) unused; lwb_t *lwb = vbuf; mutex_destroy(&lwb->lwb_vdev_lock); avl_destroy(&lwb->lwb_vdev_tree); list_destroy(&lwb->lwb_waiters); list_destroy(&lwb->lwb_itxs); } void zil_init(void) { zil_lwb_cache = kmem_cache_create("zil_lwb_cache", sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); zil_zcw_cache = kmem_cache_create("zil_zcw_cache", sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); zil_sums_init(&zil_sums_global); zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (zil_kstats_global != NULL) { zil_kstats_global->ks_data = &zil_stats; zil_kstats_global->ks_update = zil_kstats_global_update; zil_kstats_global->ks_private = NULL; kstat_install(zil_kstats_global); } } void zil_fini(void) { kmem_cache_destroy(zil_zcw_cache); kmem_cache_destroy(zil_lwb_cache); if (zil_kstats_global != NULL) { kstat_delete(zil_kstats_global); zil_kstats_global = NULL; } zil_sums_fini(&zil_sums_global); } void zil_set_sync(zilog_t *zilog, uint64_t sync) { zilog->zl_sync = sync; } void zil_set_logbias(zilog_t *zilog, uint64_t logbias) { zilog->zl_logbias = logbias; } zilog_t * zil_alloc(objset_t *os, zil_header_t *zh_phys) { zilog_t *zilog; zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); zilog->zl_header = zh_phys; zilog->zl_os = os; zilog->zl_spa = dmu_objset_spa(os); zilog->zl_dmu_pool = dmu_objset_pool(os); zilog->zl_destroy_txg = TXG_INITIAL - 1; zilog->zl_logbias = dmu_objset_logbias(os); zilog->zl_sync = dmu_objset_syncprop(os); zilog->zl_dirty_max_txg = 0; zilog->zl_last_lwb_opened = NULL; zilog->zl_last_lwb_latency = 0; zilog->zl_max_block_size = zil_maxblocksize; mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); for (int i = 0; i < TXG_SIZE; i++) { mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, MUTEX_DEFAULT, NULL); } list_create(&zilog->zl_lwb_list, sizeof (lwb_t), offsetof(lwb_t, lwb_node)); list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), offsetof(itx_t, itx_node)); cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); rw_init(&zilog->zl_suspend_lock, NULL, RW_DEFAULT, NULL); return (zilog); } void zil_free(zilog_t *zilog) { int i; zilog->zl_stop_sync = 1; ASSERT0(zilog->zl_suspend); ASSERT0(zilog->zl_suspending); ASSERT(list_is_empty(&zilog->zl_lwb_list)); list_destroy(&zilog->zl_lwb_list); ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); list_destroy(&zilog->zl_itx_commit_list); for (i = 0; i < TXG_SIZE; i++) { /* * It's possible for an itx to be generated that doesn't dirty * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() * callback to remove the entry. We remove those here. * * Also free up the ziltest itxs. */ if (zilog->zl_itxg[i].itxg_itxs) zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); mutex_destroy(&zilog->zl_itxg[i].itxg_lock); } mutex_destroy(&zilog->zl_issuer_lock); mutex_destroy(&zilog->zl_lock); mutex_destroy(&zilog->zl_lwb_io_lock); cv_destroy(&zilog->zl_cv_suspend); cv_destroy(&zilog->zl_lwb_io_cv); rw_destroy(&zilog->zl_suspend_lock); kmem_free(zilog, sizeof (zilog_t)); } /* * Open an intent log. */ zilog_t * zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) { zilog_t *zilog = dmu_objset_zil(os); ASSERT3P(zilog->zl_get_data, ==, NULL); ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); ASSERT(list_is_empty(&zilog->zl_lwb_list)); zilog->zl_get_data = get_data; zilog->zl_sums = zil_sums; return (zilog); } /* * Close an intent log. */ void zil_close(zilog_t *zilog) { lwb_t *lwb; uint64_t txg; if (!dmu_objset_is_snapshot(zilog->zl_os)) { zil_commit(zilog, 0); } else { ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); ASSERT0(zilog->zl_dirty_max_txg); ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); } mutex_enter(&zilog->zl_lock); lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) txg = zilog->zl_dirty_max_txg; else txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); mutex_exit(&zilog->zl_lock); /* * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends * on the time when the dmu_tx transaction is assigned in * zil_lwb_write_issue(). */ mutex_enter(&zilog->zl_lwb_io_lock); txg = MAX(zilog->zl_lwb_max_issued_txg, txg); mutex_exit(&zilog->zl_lwb_io_lock); /* * We need to use txg_wait_synced() to wait until that txg is synced. * zil_sync() will guarantee all lwbs up to that txg have been * written out, flushed, and cleaned. */ if (txg != 0) txg_wait_synced(zilog->zl_dmu_pool, txg); if (zilog_is_dirty(zilog)) zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, (u_longlong_t)txg); if (txg < spa_freeze_txg(zilog->zl_spa)) VERIFY(!zilog_is_dirty(zilog)); zilog->zl_get_data = NULL; /* * We should have only one lwb left on the list; remove it now. */ mutex_enter(&zilog->zl_lock); lwb = list_head(&zilog->zl_lwb_list); if (lwb != NULL) { ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); if (lwb->lwb_fastwrite) metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); list_remove(&zilog->zl_lwb_list, lwb); zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zil_free_lwb(zilog, lwb); } mutex_exit(&zilog->zl_lock); } static const char *suspend_tag = "zil suspending"; /* * Suspend an intent log. While in suspended mode, we still honor * synchronous semantics, but we rely on txg_wait_synced() to do it. * On old version pools, we suspend the log briefly when taking a * snapshot so that it will have an empty intent log. * * Long holds are not really intended to be used the way we do here -- * held for such a short time. A concurrent caller of dsl_dataset_long_held() * could fail. Therefore we take pains to only put a long hold if it is * actually necessary. Fortunately, it will only be necessary if the * objset is currently mounted (or the ZVOL equivalent). In that case it * will already have a long hold, so we are not really making things any worse. * * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or * zvol_state_t), and use their mechanism to prevent their hold from being * dropped (e.g. VFS_HOLD()). However, that would be even more pain for * very little gain. * * if cookiep == NULL, this does both the suspend & resume. * Otherwise, it returns with the dataset "long held", and the cookie * should be passed into zil_resume(). */ int zil_suspend(const char *osname, void **cookiep) { objset_t *os; zilog_t *zilog; const zil_header_t *zh; int error; error = dmu_objset_hold(osname, suspend_tag, &os); if (error != 0) return (error); zilog = dmu_objset_zil(os); rw_enter(&zilog->zl_suspend_lock, RW_WRITER); mutex_enter(&zilog->zl_lock); zh = zilog->zl_header; if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ mutex_exit(&zilog->zl_lock); rw_exit(&zilog->zl_suspend_lock); dmu_objset_rele(os, suspend_tag); return (SET_ERROR(EBUSY)); } /* * Don't put a long hold in the cases where we can avoid it. This * is when there is no cookie so we are doing a suspend & resume * (i.e. called from zil_vdev_offline()), and there's nothing to do * for the suspend because it's already suspended, or there's no ZIL. */ if (cookiep == NULL && !zilog->zl_suspending && (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { mutex_exit(&zilog->zl_lock); rw_exit(&zilog->zl_suspend_lock); dmu_objset_rele(os, suspend_tag); return (0); } dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); dsl_pool_rele(dmu_objset_pool(os), suspend_tag); zilog->zl_suspend++; rw_exit(&zilog->zl_suspend_lock); if (zilog->zl_suspend > 1) { /* * Someone else is already suspending it. * Just wait for them to finish. */ while (zilog->zl_suspending) cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); mutex_exit(&zilog->zl_lock); if (cookiep == NULL) zil_resume(os); else *cookiep = os; return (0); } /* * If there is no pointer to an on-disk block, this ZIL must not * be active (e.g. filesystem not mounted), so there's nothing * to clean up. */ if (BP_IS_HOLE(&zh->zh_log)) { ASSERT(cookiep != NULL); /* fast path already handled */ *cookiep = os; mutex_exit(&zilog->zl_lock); return (0); } /* * The ZIL has work to do. Ensure that the associated encryption * key will remain mapped while we are committing the log by * grabbing a reference to it. If the key isn't loaded we have no * choice but to return an error until the wrapping key is loaded. */ if (os->os_encrypted && dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { zilog->zl_suspend--; mutex_exit(&zilog->zl_lock); dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); return (SET_ERROR(EACCES)); } zilog->zl_suspending = B_TRUE; mutex_exit(&zilog->zl_lock); /* * We need to use zil_commit_impl to ensure we wait for all * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed * to disk before proceeding. If we used zil_commit instead, it * would just call txg_wait_synced(), because zl_suspend is set. * txg_wait_synced() doesn't wait for these lwb's to be * LWB_STATE_FLUSH_DONE before returning. */ zil_commit_impl(zilog, 0); /* * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we * use txg_wait_synced() to ensure the data from the zilog has * migrated to the main pool before calling zil_destroy(). */ txg_wait_synced(zilog->zl_dmu_pool, 0); zil_destroy(zilog, B_FALSE); mutex_enter(&zilog->zl_lock); zilog->zl_suspending = B_FALSE; cv_broadcast(&zilog->zl_cv_suspend); mutex_exit(&zilog->zl_lock); if (os->os_encrypted) dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); if (cookiep == NULL) zil_resume(os); else *cookiep = os; return (0); } void zil_resume(void *cookie) { objset_t *os = cookie; zilog_t *zilog = dmu_objset_zil(os); mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_suspend != 0); zilog->zl_suspend--; mutex_exit(&zilog->zl_lock); dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); } typedef struct zil_replay_arg { zil_replay_func_t *const *zr_replay; void *zr_arg; boolean_t zr_byteswap; char *zr_lr; } zil_replay_arg_t; static int zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) { char name[ZFS_MAX_DATASET_NAME_LEN]; zilog->zl_replaying_seq--; /* didn't actually replay this one */ dmu_objset_name(zilog->zl_os, name); cmn_err(CE_WARN, "ZFS replay transaction error %d, " "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)(lr->lrc_txtype & ~TX_CI), (lr->lrc_txtype & TX_CI) ? "CI" : ""); return (error); } static int zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, uint64_t claim_txg) { zil_replay_arg_t *zr = zra; const zil_header_t *zh = zilog->zl_header; uint64_t reclen = lr->lrc_reclen; uint64_t txtype = lr->lrc_txtype; int error = 0; zilog->zl_replaying_seq = lr->lrc_seq; if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ return (0); if (lr->lrc_txg < claim_txg) /* already committed */ return (0); /* Strip case-insensitive bit, still present in log record */ txtype &= ~TX_CI; if (txtype == 0 || txtype >= TX_MAX_TYPE) return (zil_replay_error(zilog, lr, EINVAL)); /* * If this record type can be logged out of order, the object * (lr_foid) may no longer exist. That's legitimate, not an error. */ if (TX_OOO(txtype)) { error = dmu_object_info(zilog->zl_os, LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); if (error == ENOENT || error == EEXIST) return (0); } /* * Make a copy of the data so we can revise and extend it. */ memcpy(zr->zr_lr, lr, reclen); /* * If this is a TX_WRITE with a blkptr, suck in the data. */ if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { error = zil_read_log_data(zilog, (lr_write_t *)lr, zr->zr_lr + reclen); if (error != 0) return (zil_replay_error(zilog, lr, error)); } /* * The log block containing this lr may have been byteswapped * so that we can easily examine common fields like lrc_txtype. * However, the log is a mix of different record types, and only the * replay vectors know how to byteswap their records. Therefore, if * the lr was byteswapped, undo it before invoking the replay vector. */ if (zr->zr_byteswap) byteswap_uint64_array(zr->zr_lr, reclen); /* * We must now do two things atomically: replay this log record, * and update the log header sequence number to reflect the fact that * we did so. At the end of each replay function the sequence number * is updated if we are in replay mode. */ error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); if (error != 0) { /* * The DMU's dnode layer doesn't see removes until the txg * commits, so a subsequent claim can spuriously fail with * EEXIST. So if we receive any error we try syncing out * any removes then retry the transaction. Note that we * specify B_FALSE for byteswap now, so we don't do it twice. */ txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); if (error != 0) return (zil_replay_error(zilog, lr, error)); } return (0); } static int zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) { (void) bp, (void) arg, (void) claim_txg; zilog->zl_replay_blks++; return (0); } /* * If this dataset has a non-empty intent log, replay it and destroy it. * Return B_TRUE if there were any entries to replay. */ boolean_t zil_replay(objset_t *os, void *arg, zil_replay_func_t *const replay_func[TX_MAX_TYPE]) { zilog_t *zilog = dmu_objset_zil(os); const zil_header_t *zh = zilog->zl_header; zil_replay_arg_t zr; if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { return (zil_destroy(zilog, B_TRUE)); } zr.zr_replay = replay_func; zr.zr_arg = arg; zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); /* * Wait for in-progress removes to sync before starting replay. */ txg_wait_synced(zilog->zl_dmu_pool, 0); zilog->zl_replay = B_TRUE; zilog->zl_replay_time = ddi_get_lbolt(); ASSERT(zilog->zl_replay_blks == 0); (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, zh->zh_claim_txg, B_TRUE); vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); zil_destroy(zilog, B_FALSE); txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_replay = B_FALSE; return (B_TRUE); } boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx) { if (zilog->zl_sync == ZFS_SYNC_DISABLED) return (B_TRUE); if (zilog->zl_replay) { dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = zilog->zl_replaying_seq; return (B_TRUE); } return (B_FALSE); } int zil_reset(const char *osname, void *arg) { (void) arg; int error = zil_suspend(osname, NULL); /* EACCES means crypto key not loaded */ if ((error == EACCES) || (error == EBUSY)) return (SET_ERROR(error)); if (error != 0) return (SET_ERROR(EEXIST)); return (0); } EXPORT_SYMBOL(zil_alloc); EXPORT_SYMBOL(zil_free); EXPORT_SYMBOL(zil_open); EXPORT_SYMBOL(zil_close); EXPORT_SYMBOL(zil_replay); EXPORT_SYMBOL(zil_replaying); EXPORT_SYMBOL(zil_destroy); EXPORT_SYMBOL(zil_destroy_sync); EXPORT_SYMBOL(zil_itx_create); EXPORT_SYMBOL(zil_itx_destroy); EXPORT_SYMBOL(zil_itx_assign); EXPORT_SYMBOL(zil_commit); EXPORT_SYMBOL(zil_claim); EXPORT_SYMBOL(zil_check_log_chain); EXPORT_SYMBOL(zil_sync); EXPORT_SYMBOL(zil_clean); EXPORT_SYMBOL(zil_suspend); EXPORT_SYMBOL(zil_resume); EXPORT_SYMBOL(zil_lwb_add_block); EXPORT_SYMBOL(zil_bp_tree_add); EXPORT_SYMBOL(zil_set_sync); EXPORT_SYMBOL(zil_set_logbias); EXPORT_SYMBOL(zil_sums_init); EXPORT_SYMBOL(zil_sums_fini); EXPORT_SYMBOL(zil_kstat_values_update); ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, "ZIL block open timeout percentage"); ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW, "Minimum delay we care for ZIL block commit"); ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, "Disable intent logging replay"); ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, "Disable ZIL cache flushes"); ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, "Limit in bytes slog sync writes per commit"); ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, "Limit in bytes of ZIL log block size"); diff --git a/module/zfs/zio.c b/module/zfs/zio.c index d17ee60dcde1..1b1a1831f333 100644 --- a/module/zfs/zio.c +++ b/module/zfs/zio.c @@ -1,5084 +1,5125 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2022 by Delphix. All rights reserved. * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2019, Klara Inc. * Copyright (c) 2019, Allan Jude * Copyright (c) 2021, Datto, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include /* * ========================================================================== * I/O type descriptions * ========================================================================== */ const char *const zio_type_name[ZIO_TYPES] = { /* * Note: Linux kernel thread name length is limited * so these names will differ from upstream open zfs. */ "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" }; int zio_dva_throttle_enabled = B_TRUE; static int zio_deadman_log_all = B_FALSE; /* * ========================================================================== * I/O kmem caches * ========================================================================== */ static kmem_cache_t *zio_cache; static kmem_cache_t *zio_link_cache; kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; #if defined(ZFS_DEBUG) && !defined(_KERNEL) static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; #endif /* Mark IOs as "slow" if they take longer than 30 seconds */ static uint_t zio_slow_io_ms = (30 * MILLISEC); #define BP_SPANB(indblkshift, level) \ (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) #define COMPARE_META_LEVEL 0x80000000ul /* * The following actions directly effect the spa's sync-to-convergence logic. * The values below define the sync pass when we start performing the action. * Care should be taken when changing these values as they directly impact * spa_sync() performance. Tuning these values may introduce subtle performance * pathologies and should only be done in the context of performance analysis. * These tunables will eventually be removed and replaced with #defines once * enough analysis has been done to determine optimal values. * * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that * regular blocks are not deferred. * * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable * compression (including of metadata). In practice, we don't have this * many sync passes, so this has no effect. * * The original intent was that disabling compression would help the sync * passes to converge. However, in practice disabling compression increases * the average number of sync passes, because when we turn compression off, a * lot of block's size will change and thus we have to re-allocate (not * overwrite) them. It also increases the number of 128KB allocations (e.g. * for indirect blocks and spacemaps) because these will not be compressed. * The 128K allocations are especially detrimental to performance on highly * fragmented systems, which may have very few free segments of this size, * and may need to load new metaslabs to satisfy 128K allocations. */ /* defer frees starting in this pass */ uint_t zfs_sync_pass_deferred_free = 2; /* don't compress starting in this pass */ static uint_t zfs_sync_pass_dont_compress = 8; /* rewrite new bps starting in this pass */ static uint_t zfs_sync_pass_rewrite = 2; /* * An allocating zio is one that either currently has the DVA allocate * stage set or will have it later in its lifetime. */ #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) /* * Enable smaller cores by excluding metadata * allocations as well. */ int zio_exclude_metadata = 0; static int zio_requeue_io_start_cut_in_line = 1; #ifdef ZFS_DEBUG static const int zio_buf_debug_limit = 16384; #else static const int zio_buf_debug_limit = 0; #endif static inline void __zio_execute(zio_t *zio); static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); void zio_init(void) { size_t c; zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); zio_link_cache = kmem_cache_create("zio_link_cache", sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); /* * For small buffers, we want a cache for each multiple of * SPA_MINBLOCKSIZE. For larger buffers, we want a cache * for each quarter-power of 2. */ for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { size_t size = (c + 1) << SPA_MINBLOCKSHIFT; size_t p2 = size; size_t align = 0; size_t data_cflags, cflags; data_cflags = KMC_NODEBUG; cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; while (!ISP2(p2)) p2 &= p2 - 1; #ifndef _KERNEL /* * If we are using watchpoints, put each buffer on its own page, * to eliminate the performance overhead of trapping to the * kernel when modifying a non-watched buffer that shares the * page with a watched buffer. */ if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) continue; /* * Here's the problem - on 4K native devices in userland on * Linux using O_DIRECT, buffers must be 4K aligned or I/O * will fail with EINVAL, causing zdb (and others) to coredump. * Since userland probably doesn't need optimized buffer caches, * we just force 4K alignment on everything. */ align = 8 * SPA_MINBLOCKSIZE; #else if (size < PAGESIZE) { align = SPA_MINBLOCKSIZE; } else if (IS_P2ALIGNED(size, p2 >> 2)) { align = PAGESIZE; } #endif if (align != 0) { char name[36]; if (cflags == data_cflags) { /* * Resulting kmem caches would be identical. * Save memory by creating only one. */ (void) snprintf(name, sizeof (name), "zio_buf_comb_%lu", (ulong_t)size); zio_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, NULL, cflags); zio_data_buf_cache[c] = zio_buf_cache[c]; continue; } (void) snprintf(name, sizeof (name), "zio_buf_%lu", (ulong_t)size); zio_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, NULL, cflags); (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", (ulong_t)size); zio_data_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, NULL, data_cflags); } } while (--c != 0) { ASSERT(zio_buf_cache[c] != NULL); if (zio_buf_cache[c - 1] == NULL) zio_buf_cache[c - 1] = zio_buf_cache[c]; ASSERT(zio_data_buf_cache[c] != NULL); if (zio_data_buf_cache[c - 1] == NULL) zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; } zio_inject_init(); lz4_init(); } void zio_fini(void) { size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; #if defined(ZFS_DEBUG) && !defined(_KERNEL) for (size_t i = 0; i < n; i++) { if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) (void) printf("zio_fini: [%d] %llu != %llu\n", (int)((i + 1) << SPA_MINBLOCKSHIFT), (long long unsigned)zio_buf_cache_allocs[i], (long long unsigned)zio_buf_cache_frees[i]); } #endif /* * The same kmem cache can show up multiple times in both zio_buf_cache * and zio_data_buf_cache. Do a wasteful but trivially correct scan to * sort it out. */ for (size_t i = 0; i < n; i++) { kmem_cache_t *cache = zio_buf_cache[i]; if (cache == NULL) continue; for (size_t j = i; j < n; j++) { if (cache == zio_buf_cache[j]) zio_buf_cache[j] = NULL; if (cache == zio_data_buf_cache[j]) zio_data_buf_cache[j] = NULL; } kmem_cache_destroy(cache); } for (size_t i = 0; i < n; i++) { kmem_cache_t *cache = zio_data_buf_cache[i]; if (cache == NULL) continue; for (size_t j = i; j < n; j++) { if (cache == zio_data_buf_cache[j]) zio_data_buf_cache[j] = NULL; } kmem_cache_destroy(cache); } for (size_t i = 0; i < n; i++) { VERIFY3P(zio_buf_cache[i], ==, NULL); VERIFY3P(zio_data_buf_cache[i], ==, NULL); } kmem_cache_destroy(zio_link_cache); kmem_cache_destroy(zio_cache); zio_inject_fini(); lz4_fini(); } /* * ========================================================================== * Allocate and free I/O buffers * ========================================================================== */ /* * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a * crashdump if the kernel panics, so use it judiciously. Obviously, it's * useful to inspect ZFS metadata, but if possible, we should avoid keeping * excess / transient data in-core during a crashdump. */ void * zio_buf_alloc(size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); #if defined(ZFS_DEBUG) && !defined(_KERNEL) atomic_add_64(&zio_buf_cache_allocs[c], 1); #endif return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); } /* * Use zio_data_buf_alloc to allocate data. The data will not appear in a * crashdump if the kernel panics. This exists so that we will limit the amount * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount * of kernel heap dumped to disk when the kernel panics) */ void * zio_data_buf_alloc(size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); } void zio_buf_free(void *buf, size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); #if defined(ZFS_DEBUG) && !defined(_KERNEL) atomic_add_64(&zio_buf_cache_frees[c], 1); #endif kmem_cache_free(zio_buf_cache[c], buf); } void zio_data_buf_free(void *buf, size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); kmem_cache_free(zio_data_buf_cache[c], buf); } static void zio_abd_free(void *abd, size_t size) { (void) size; abd_free((abd_t *)abd); } /* * ========================================================================== * Push and pop I/O transform buffers * ========================================================================== */ void zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, zio_transform_func_t *transform) { zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); zt->zt_orig_abd = zio->io_abd; zt->zt_orig_size = zio->io_size; zt->zt_bufsize = bufsize; zt->zt_transform = transform; zt->zt_next = zio->io_transform_stack; zio->io_transform_stack = zt; zio->io_abd = data; zio->io_size = size; } void zio_pop_transforms(zio_t *zio) { zio_transform_t *zt; while ((zt = zio->io_transform_stack) != NULL) { if (zt->zt_transform != NULL) zt->zt_transform(zio, zt->zt_orig_abd, zt->zt_orig_size); if (zt->zt_bufsize != 0) abd_free(zio->io_abd); zio->io_abd = zt->zt_orig_abd; zio->io_size = zt->zt_orig_size; zio->io_transform_stack = zt->zt_next; kmem_free(zt, sizeof (zio_transform_t)); } } /* * ========================================================================== * I/O transform callbacks for subblocks, decompression, and decryption * ========================================================================== */ static void zio_subblock(zio_t *zio, abd_t *data, uint64_t size) { ASSERT(zio->io_size > size); if (zio->io_type == ZIO_TYPE_READ) abd_copy(data, zio->io_abd, size); } static void zio_decompress(zio_t *zio, abd_t *data, uint64_t size) { if (zio->io_error == 0) { void *tmp = abd_borrow_buf(data, size); int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), zio->io_abd, tmp, zio->io_size, size, &zio->io_prop.zp_complevel); abd_return_buf_copy(data, tmp, size); if (zio_injection_enabled && ret == 0) ret = zio_handle_fault_injection(zio, EINVAL); if (ret != 0) zio->io_error = SET_ERROR(EIO); } } static void zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) { int ret; void *tmp; blkptr_t *bp = zio->io_bp; spa_t *spa = zio->io_spa; uint64_t dsobj = zio->io_bookmark.zb_objset; uint64_t lsize = BP_GET_LSIZE(bp); dmu_object_type_t ot = BP_GET_TYPE(bp); uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; boolean_t no_crypt = B_FALSE; ASSERT(BP_USES_CRYPT(bp)); ASSERT3U(size, !=, 0); if (zio->io_error != 0) return; /* * Verify the cksum of MACs stored in an indirect bp. It will always * be possible to verify this since it does not require an encryption * key. */ if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { zio_crypt_decode_mac_bp(bp, mac); if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { /* * We haven't decompressed the data yet, but * zio_crypt_do_indirect_mac_checksum() requires * decompressed data to be able to parse out the MACs * from the indirect block. We decompress it now and * throw away the result after we are finished. */ tmp = zio_buf_alloc(lsize); ret = zio_decompress_data(BP_GET_COMPRESS(bp), zio->io_abd, tmp, zio->io_size, lsize, &zio->io_prop.zp_complevel); if (ret != 0) { ret = SET_ERROR(EIO); goto error; } ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); zio_buf_free(tmp, lsize); } else { ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); } abd_copy(data, zio->io_abd, size); if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { ret = zio_handle_decrypt_injection(spa, &zio->io_bookmark, ot, ECKSUM); } if (ret != 0) goto error; return; } /* * If this is an authenticated block, just check the MAC. It would be * nice to separate this out into its own flag, but when this was done, * we had run out of bits in what is now zio_flag_t. Future cleanup * could make this a flag bit. */ if (BP_IS_AUTHENTICATED(bp)) { if (ot == DMU_OT_OBJSET) { ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); } else { zio_crypt_decode_mac_bp(bp, mac); ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, zio->io_abd, size, mac); if (zio_injection_enabled && ret == 0) { ret = zio_handle_decrypt_injection(spa, &zio->io_bookmark, ot, ECKSUM); } } abd_copy(data, zio->io_abd, size); if (ret != 0) goto error; return; } zio_crypt_decode_params_bp(bp, salt, iv); if (ot == DMU_OT_INTENT_LOG) { tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); zio_crypt_decode_mac_zil(tmp, mac); abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); } else { zio_crypt_decode_mac_bp(bp, mac); } ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, zio->io_abd, &no_crypt); if (no_crypt) abd_copy(data, zio->io_abd, size); if (ret != 0) goto error; return; error: /* assert that the key was found unless this was speculative */ ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); /* * If there was a decryption / authentication error return EIO as * the io_error. If this was not a speculative zio, create an ereport. */ if (ret == ECKSUM) { zio->io_error = SET_ERROR(EIO); if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { spa_log_error(spa, &zio->io_bookmark); (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, spa, NULL, &zio->io_bookmark, zio, 0); } } else { zio->io_error = ret; } } /* * ========================================================================== * I/O parent/child relationships and pipeline interlocks * ========================================================================== */ zio_t * zio_walk_parents(zio_t *cio, zio_link_t **zl) { list_t *pl = &cio->io_parent_list; *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); if (*zl == NULL) return (NULL); ASSERT((*zl)->zl_child == cio); return ((*zl)->zl_parent); } zio_t * zio_walk_children(zio_t *pio, zio_link_t **zl) { list_t *cl = &pio->io_child_list; ASSERT(MUTEX_HELD(&pio->io_lock)); *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); if (*zl == NULL) return (NULL); ASSERT((*zl)->zl_parent == pio); return ((*zl)->zl_child); } zio_t * zio_unique_parent(zio_t *cio) { zio_link_t *zl = NULL; zio_t *pio = zio_walk_parents(cio, &zl); VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); return (pio); } void zio_add_child(zio_t *pio, zio_t *cio) { zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); /* * Logical I/Os can have logical, gang, or vdev children. * Gang I/Os can have gang or vdev children. * Vdev I/Os can only have vdev children. * The following ASSERT captures all of these constraints. */ ASSERT3S(cio->io_child_type, <=, pio->io_child_type); zl->zl_parent = pio; zl->zl_child = cio; mutex_enter(&pio->io_lock); mutex_enter(&cio->io_lock); ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; list_insert_head(&pio->io_child_list, zl); list_insert_head(&cio->io_parent_list, zl); pio->io_child_count++; cio->io_parent_count++; mutex_exit(&cio->io_lock); mutex_exit(&pio->io_lock); } static void zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) { ASSERT(zl->zl_parent == pio); ASSERT(zl->zl_child == cio); mutex_enter(&pio->io_lock); mutex_enter(&cio->io_lock); list_remove(&pio->io_child_list, zl); list_remove(&cio->io_parent_list, zl); pio->io_child_count--; cio->io_parent_count--; mutex_exit(&cio->io_lock); mutex_exit(&pio->io_lock); kmem_cache_free(zio_link_cache, zl); } static boolean_t zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) { boolean_t waiting = B_FALSE; mutex_enter(&zio->io_lock); ASSERT(zio->io_stall == NULL); for (int c = 0; c < ZIO_CHILD_TYPES; c++) { if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) continue; uint64_t *countp = &zio->io_children[c][wait]; if (*countp != 0) { zio->io_stage >>= 1; ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); zio->io_stall = countp; waiting = B_TRUE; break; } } mutex_exit(&zio->io_lock); return (waiting); } __attribute__((always_inline)) static inline void zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, zio_t **next_to_executep) { uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; int *errorp = &pio->io_child_error[zio->io_child_type]; mutex_enter(&pio->io_lock); if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) *errorp = zio_worst_error(*errorp, zio->io_error); pio->io_reexecute |= zio->io_reexecute; ASSERT3U(*countp, >, 0); (*countp)--; if (*countp == 0 && pio->io_stall == countp) { zio_taskq_type_t type = pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : ZIO_TASKQ_INTERRUPT; pio->io_stall = NULL; mutex_exit(&pio->io_lock); /* * If we can tell the caller to execute this parent next, do * so. We only do this if the parent's zio type matches the * child's type. Otherwise dispatch the parent zio in its * own taskq. * * Having the caller execute the parent when possible reduces * locking on the zio taskq's, reduces context switch * overhead, and has no recursion penalty. Note that one * read from disk typically causes at least 3 zio's: a * zio_null(), the logical zio_read(), and then a physical * zio. When the physical ZIO completes, we are able to call * zio_done() on all 3 of these zio's from one invocation of * zio_execute() by returning the parent back to * zio_execute(). Since the parent isn't executed until this * thread returns back to zio_execute(), the caller should do * so promptly. * * In other cases, dispatching the parent prevents * overflowing the stack when we have deeply nested * parent-child relationships, as we do with the "mega zio" * of writes for spa_sync(), and the chain of ZIL blocks. */ if (next_to_executep != NULL && *next_to_executep == NULL && pio->io_type == zio->io_type) { *next_to_executep = pio; } else { zio_taskq_dispatch(pio, type, B_FALSE); } } else { mutex_exit(&pio->io_lock); } } static void zio_inherit_child_errors(zio_t *zio, enum zio_child c) { if (zio->io_child_error[c] != 0 && zio->io_error == 0) zio->io_error = zio->io_child_error[c]; } int zio_bookmark_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) return (-1); if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) return (1); if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) return (-1); if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) return (1); if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) return (-1); if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) return (1); if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) return (-1); if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) return (1); if (z1 < z2) return (-1); if (z1 > z2) return (1); return (0); } /* * ========================================================================== * Create the various types of I/O (read, write, free, etc) * ========================================================================== */ static zio_t * zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, void *private, zio_type_t type, zio_priority_t priority, zio_flag_t flags, vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) { zio_t *zio; IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); ASSERT(vd || stage == ZIO_STAGE_OPEN); IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); zio = kmem_cache_alloc(zio_cache, KM_SLEEP); memset(zio, 0, sizeof (zio_t)); mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); list_create(&zio->io_parent_list, sizeof (zio_link_t), offsetof(zio_link_t, zl_parent_node)); list_create(&zio->io_child_list, sizeof (zio_link_t), offsetof(zio_link_t, zl_child_node)); metaslab_trace_init(&zio->io_alloc_list); if (vd != NULL) zio->io_child_type = ZIO_CHILD_VDEV; else if (flags & ZIO_FLAG_GANG_CHILD) zio->io_child_type = ZIO_CHILD_GANG; else if (flags & ZIO_FLAG_DDT_CHILD) zio->io_child_type = ZIO_CHILD_DDT; else zio->io_child_type = ZIO_CHILD_LOGICAL; if (bp != NULL) { zio->io_bp = (blkptr_t *)bp; zio->io_bp_copy = *bp; zio->io_bp_orig = *bp; if (type != ZIO_TYPE_WRITE || zio->io_child_type == ZIO_CHILD_DDT) zio->io_bp = &zio->io_bp_copy; /* so caller can free */ if (zio->io_child_type == ZIO_CHILD_LOGICAL) zio->io_logical = zio; if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) pipeline |= ZIO_GANG_STAGES; } zio->io_spa = spa; zio->io_txg = txg; zio->io_done = done; zio->io_private = private; zio->io_type = type; zio->io_priority = priority; zio->io_vd = vd; zio->io_offset = offset; zio->io_orig_abd = zio->io_abd = data; zio->io_orig_size = zio->io_size = psize; zio->io_lsize = lsize; zio->io_orig_flags = zio->io_flags = flags; zio->io_orig_stage = zio->io_stage = stage; zio->io_orig_pipeline = zio->io_pipeline = pipeline; zio->io_pipeline_trace = ZIO_STAGE_OPEN; zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); if (zb != NULL) zio->io_bookmark = *zb; if (pio != NULL) { zio->io_metaslab_class = pio->io_metaslab_class; if (zio->io_logical == NULL) zio->io_logical = pio->io_logical; if (zio->io_child_type == ZIO_CHILD_GANG) zio->io_gang_leader = pio->io_gang_leader; zio_add_child(pio, zio); } taskq_init_ent(&zio->io_tqent); return (zio); } void zio_destroy(zio_t *zio) { metaslab_trace_fini(&zio->io_alloc_list); list_destroy(&zio->io_parent_list); list_destroy(&zio->io_child_list); mutex_destroy(&zio->io_lock); cv_destroy(&zio->io_cv); kmem_cache_free(zio_cache, zio); } zio_t * zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, void *private, zio_flag_t flags) { zio_t *zio; zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); return (zio); } zio_t * zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) { return (zio_null(NULL, spa, NULL, done, private, flags)); } static int zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, enum blk_verify_flag blk_verify, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); switch (blk_verify) { case BLK_VERIFY_HALT: dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); zfs_panic_recover("%s: %s", spa_name(spa), buf); break; case BLK_VERIFY_LOG: zfs_dbgmsg("%s: %s", spa_name(spa), buf); break; case BLK_VERIFY_ONLY: break; } return (1); } /* * Verify the block pointer fields contain reasonable values. This means * it only contains known object types, checksum/compression identifiers, * block sizes within the maximum allowed limits, valid DVAs, etc. * * If everything checks out B_TRUE is returned. The zfs_blkptr_verify * argument controls the behavior when an invalid field is detected. * * Modes for zfs_blkptr_verify: * 1) BLK_VERIFY_ONLY (evaluate the block) * 2) BLK_VERIFY_LOG (evaluate the block and log problems) * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) */ boolean_t zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, enum blk_verify_flag blk_verify) { int errors = 0; if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %p has invalid TYPE %llu", bp, (longlong_t)BP_GET_TYPE(bp)); } if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %p has invalid CHECKSUM %llu", bp, (longlong_t)BP_GET_CHECKSUM(bp)); } if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %p has invalid COMPRESS %llu", bp, (longlong_t)BP_GET_COMPRESS(bp)); } if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %p has invalid LSIZE %llu", bp, (longlong_t)BP_GET_LSIZE(bp)); } if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %p has invalid PSIZE %llu", bp, (longlong_t)BP_GET_PSIZE(bp)); } if (BP_IS_EMBEDDED(bp)) { if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %p has invalid ETYPE %llu", bp, (longlong_t)BPE_GET_ETYPE(bp)); } } /* * Do not verify individual DVAs if the config is not trusted. This * will be done once the zio is executed in vdev_mirror_map_alloc. */ if (!spa->spa_trust_config) return (errors == 0); if (!config_held) spa_config_enter(spa, SCL_VDEV, bp, RW_READER); else ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); /* * Pool-specific checks. * * Note: it would be nice to verify that the blk_birth and * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() * allows the birth time of log blocks (and dmu_sync()-ed blocks * that are in the log) to be arbitrarily large. */ for (int i = 0; i < BP_GET_NDVAS(bp); i++) { const dva_t *dva = &bp->blk_dva[i]; uint64_t vdevid = DVA_GET_VDEV(dva); if (vdevid >= spa->spa_root_vdev->vdev_children) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %p DVA %u has invalid VDEV %llu", bp, i, (longlong_t)vdevid); continue; } vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; if (vd == NULL) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %p DVA %u has invalid VDEV %llu", bp, i, (longlong_t)vdevid); continue; } if (vd->vdev_ops == &vdev_hole_ops) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %p DVA %u has hole VDEV %llu", bp, i, (longlong_t)vdevid); continue; } if (vd->vdev_ops == &vdev_missing_ops) { /* * "missing" vdevs are valid during import, but we * don't have their detailed info (e.g. asize), so * we can't perform any more checks on them. */ continue; } uint64_t offset = DVA_GET_OFFSET(dva); uint64_t asize = DVA_GET_ASIZE(dva); if (DVA_GET_GANG(dva)) asize = vdev_gang_header_asize(vd); if (offset + asize > vd->vdev_asize) { errors += zfs_blkptr_verify_log(spa, bp, blk_verify, "blkptr at %p DVA %u has invalid OFFSET %llu", bp, i, (longlong_t)offset); } } if (errors > 0) dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); if (!config_held) spa_config_exit(spa, SCL_VDEV, bp); return (errors == 0); } boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) { (void) bp; uint64_t vdevid = DVA_GET_VDEV(dva); if (vdevid >= spa->spa_root_vdev->vdev_children) return (B_FALSE); vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; if (vd == NULL) return (B_FALSE); if (vd->vdev_ops == &vdev_hole_ops) return (B_FALSE); if (vd->vdev_ops == &vdev_missing_ops) { return (B_FALSE); } uint64_t offset = DVA_GET_OFFSET(dva); uint64_t asize = DVA_GET_ASIZE(dva); if (DVA_GET_GANG(dva)) asize = vdev_gang_header_asize(vd); if (offset + asize > vd->vdev_asize) return (B_FALSE); return (B_TRUE); } zio_t * zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, abd_t *data, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) { zio_t *zio; zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, data, size, size, done, private, ZIO_TYPE_READ, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); return (zio); } zio_t * zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, zio_done_func_t *ready, zio_done_func_t *children_ready, zio_done_func_t *physdone, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) { zio_t *zio; ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && zp->zp_compress >= ZIO_COMPRESS_OFF && zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && DMU_OT_IS_VALID(zp->zp_type) && zp->zp_level < 32 && zp->zp_copies > 0 && zp->zp_copies <= spa_max_replication(spa)); zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); zio->io_ready = ready; zio->io_children_ready = children_ready; zio->io_physdone = physdone; zio->io_prop = *zp; /* * Data can be NULL if we are going to call zio_write_override() to * provide the already-allocated BP. But we may need the data to * verify a dedup hit (if requested). In this case, don't try to * dedup (just take the already-allocated BP verbatim). Encrypted * dedup blocks need data as well so we also disable dedup in this * case. */ if (data == NULL && (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; } return (zio); } zio_t * zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) { zio_t *zio; zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); return (zio); } void -zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) +zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite, + boolean_t brtwrite) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(zio->io_stage == ZIO_STAGE_OPEN); ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); + ASSERT(!brtwrite || !nopwrite); /* * We must reset the io_prop to match the values that existed * when the bp was first written by dmu_sync() keeping in mind * that nopwrite and dedup are mutually exclusive. */ zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; zio->io_prop.zp_nopwrite = nopwrite; + zio->io_prop.zp_brtwrite = brtwrite; zio->io_prop.zp_copies = copies; zio->io_bp_override = bp; } void zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) { (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); /* * The check for EMBEDDED is a performance optimization. We * process the free here (by ignoring it) rather than * putting it on the list and then processing it in zio_free_sync(). */ if (BP_IS_EMBEDDED(bp)) return; /* * Frees that are for the currently-syncing txg, are not going to be * deferred, and which will not need to do a read (i.e. not GANG or * DEDUP), can be processed immediately. Otherwise, put them on the * in-memory list for later processing. * * Note that we only defer frees after zfs_sync_pass_deferred_free * when the log space map feature is disabled. [see relevant comment * in spa_sync_iterate_to_convergence()] */ if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || txg != spa->spa_syncing_txg || (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && - !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { + !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || + brt_maybe_exists(spa, bp)) { metaslab_check_free(spa, bp); bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); } else { VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); } } /* * To improve performance, this function may return NULL if we were able * to do the free immediately. This avoids the cost of creating a zio * (and linking it to the parent, etc). */ zio_t * zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, zio_flag_t flags) { ASSERT(!BP_IS_HOLE(bp)); ASSERT(spa_syncing_txg(spa) == txg); if (BP_IS_EMBEDDED(bp)) return (NULL); metaslab_check_free(spa, bp); arc_freed(spa, bp); dsl_scan_freed(spa, bp); - if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) { + if (BP_IS_GANG(bp) || + BP_GET_DEDUP(bp) || + brt_maybe_exists(spa, bp)) { /* - * GANG and DEDUP blocks can induce a read (for the gang block - * header, or the DDT), so issue them asynchronously so that - * this thread is not tied up. + * GANG, DEDUP and BRT blocks can induce a read (for the gang + * block header, the DDT or the BRT), so issue them + * asynchronously so that this thread is not tied up. */ enum zio_stage stage = ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); } else { metaslab_free(spa, bp, txg, B_FALSE); return (NULL); } } zio_t * zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, zio_done_func_t *done, void *private, zio_flag_t flags) { zio_t *zio; (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, BLK_VERIFY_HALT); if (BP_IS_EMBEDDED(bp)) return (zio_null(pio, spa, NULL, NULL, NULL, 0)); /* * A claim is an allocation of a specific block. Claims are needed * to support immediate writes in the intent log. The issue is that * immediate writes contain committed data, but in a txg that was * *not* committed. Upon opening the pool after an unclean shutdown, * the intent log claims all blocks that contain immediate write data * so that the SPA knows they're in use. * * All claims *must* be resolved in the first txg -- before the SPA * starts allocating blocks -- so that nothing is allocated twice. * If txg == 0 we just verify that the block is claimable. */ ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_min_claim_txg(spa)); ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); ASSERT0(zio->io_queued_timestamp); return (zio); } zio_t * zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, zio_done_func_t *done, void *private, zio_flag_t flags) { zio_t *zio; int c; if (vd->vdev_children == 0) { zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); zio->io_cmd = cmd; } else { zio = zio_null(pio, spa, NULL, NULL, NULL, flags); for (c = 0; c < vd->vdev_children; c++) zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, done, private, flags)); } return (zio); } zio_t * zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, enum trim_flag trim_flags) { zio_t *zio; ASSERT0(vd->vdev_children); ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); ASSERT3U(size, !=, 0); zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); zio->io_trim_flags = trim_flags; return (zio); } zio_t * zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, abd_t *data, int checksum, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, boolean_t labels) { zio_t *zio; ASSERT(vd->vdev_children == 0); ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); ASSERT3U(offset + size, <=, vd->vdev_psize); zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); zio->io_prop.zp_checksum = checksum; return (zio); } zio_t * zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, abd_t *data, int checksum, zio_done_func_t *done, void *private, zio_priority_t priority, zio_flag_t flags, boolean_t labels) { zio_t *zio; ASSERT(vd->vdev_children == 0); ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); ASSERT3U(offset + size, <=, vd->vdev_psize); zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); zio->io_prop.zp_checksum = checksum; if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { /* * zec checksums are necessarily destructive -- they modify * the end of the write buffer to hold the verifier/checksum. * Therefore, we must make a local copy in case the data is * being written to multiple places in parallel. */ abd_t *wbuf = abd_alloc_sametype(data, size); abd_copy(wbuf, data, size); zio_push_transform(zio, wbuf, size, size, NULL); } return (zio); } /* * Create a child I/O to do some work for us. */ zio_t * zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, int type, zio_priority_t priority, zio_flag_t flags, zio_done_func_t *done, void *private) { enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; zio_t *zio; /* * vdev child I/Os do not propagate their error to the parent. * Therefore, for correct operation the caller *must* check for * and handle the error in the child i/o's done callback. * The only exceptions are i/os that we don't care about * (OPTIONAL or REPAIR). */ ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || done != NULL); if (type == ZIO_TYPE_READ && bp != NULL) { /* * If we have the bp, then the child should perform the * checksum and the parent need not. This pushes error * detection as close to the leaves as possible and * eliminates redundant checksums in the interior nodes. */ pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; } if (vd->vdev_ops->vdev_op_leaf) { ASSERT0(vd->vdev_children); offset += VDEV_LABEL_START_SIZE; } flags |= ZIO_VDEV_CHILD_FLAGS(pio); /* * If we've decided to do a repair, the write is not speculative -- * even if the original read was. */ if (flags & ZIO_FLAG_IO_REPAIR) flags &= ~ZIO_FLAG_SPECULATIVE; /* * If we're creating a child I/O that is not associated with a * top-level vdev, then the child zio is not an allocating I/O. * If this is a retried I/O then we ignore it since we will * have already processed the original allocating I/O. */ if (flags & ZIO_FLAG_IO_ALLOCATING && (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { ASSERT(pio->io_metaslab_class != NULL); ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); ASSERT(type == ZIO_TYPE_WRITE); ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || pio->io_child_type == ZIO_CHILD_GANG); flags &= ~ZIO_FLAG_IO_ALLOCATING; } zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, done, private, type, priority, flags, vd, offset, &pio->io_bookmark, ZIO_STAGE_VDEV_IO_START >> 1, pipeline); ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); zio->io_physdone = pio->io_physdone; if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) zio->io_logical->io_phys_children++; return (zio); } zio_t * zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, zio_type_t type, zio_priority_t priority, zio_flag_t flags, zio_done_func_t *done, void *private) { zio_t *zio; ASSERT(vd->vdev_ops->vdev_op_leaf); zio = zio_create(NULL, vd->vdev_spa, 0, NULL, data, size, size, done, private, type, priority, flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, vd, offset, NULL, ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); return (zio); } void zio_flush(zio_t *zio, vdev_t *vd) { zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); } void zio_shrink(zio_t *zio, uint64_t size) { ASSERT3P(zio->io_executor, ==, NULL); ASSERT3U(zio->io_orig_size, ==, zio->io_size); ASSERT3U(size, <=, zio->io_size); /* * We don't shrink for raidz because of problems with the * reconstruction when reading back less than the block size. * Note, BP_IS_RAIDZ() assumes no compression. */ ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); if (!BP_IS_RAIDZ(zio->io_bp)) { /* we are not doing a raw write */ ASSERT3U(zio->io_size, ==, zio->io_lsize); zio->io_orig_size = zio->io_size = zio->io_lsize = size; } } /* * ========================================================================== * Prepare to read and write logical blocks * ========================================================================== */ static zio_t * zio_read_bp_init(zio_t *zio) { blkptr_t *bp = zio->io_bp; uint64_t psize = BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && zio->io_child_type == ZIO_CHILD_LOGICAL && !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), psize, psize, zio_decompress); } if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || BP_HAS_INDIRECT_MAC_CKSUM(bp)) && zio->io_child_type == ZIO_CHILD_LOGICAL) { zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), psize, psize, zio_decrypt); } if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { int psize = BPE_GET_PSIZE(bp); void *data = abd_borrow_buf(zio->io_abd, psize); zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; decode_embedded_bp_compressed(bp, data); abd_return_buf_copy(zio->io_abd, data, psize); } else { ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); } if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) zio->io_flags |= ZIO_FLAG_DONT_CACHE; if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) zio->io_flags |= ZIO_FLAG_DONT_CACHE; if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) zio->io_pipeline = ZIO_DDT_READ_PIPELINE; return (zio); } static zio_t * zio_write_bp_init(zio_t *zio) { if (!IO_IS_ALLOCATING(zio)) return (zio); ASSERT(zio->io_child_type != ZIO_CHILD_DDT); if (zio->io_bp_override) { blkptr_t *bp = zio->io_bp; zio_prop_t *zp = &zio->io_prop; ASSERT(bp->blk_birth != zio->io_txg); - ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); *bp = *zio->io_bp_override; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; + if (zp->zp_brtwrite) + return (zio); + + ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); + if (BP_IS_EMBEDDED(bp)) return (zio); /* * If we've been overridden and nopwrite is set then * set the flag accordingly to indicate that a nopwrite * has already occurred. */ if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { ASSERT(!zp->zp_dedup); ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); zio->io_flags |= ZIO_FLAG_NOPWRITE; return (zio); } ASSERT(!zp->zp_nopwrite); if (BP_IS_HOLE(bp) || !zp->zp_dedup) return (zio); ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && !zp->zp_encrypt) { BP_SET_DEDUP(bp, 1); zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; return (zio); } /* * We were unable to handle this as an override bp, treat * it as a regular write I/O. */ zio->io_bp_override = NULL; *bp = zio->io_bp_orig; zio->io_pipeline = zio->io_orig_pipeline; } return (zio); } static zio_t * zio_write_compress(zio_t *zio) { spa_t *spa = zio->io_spa; zio_prop_t *zp = &zio->io_prop; enum zio_compress compress = zp->zp_compress; blkptr_t *bp = zio->io_bp; uint64_t lsize = zio->io_lsize; uint64_t psize = zio->io_size; uint32_t pass = 1; /* * If our children haven't all reached the ready stage, * wait for them and then repeat this pipeline stage. */ if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { return (NULL); } if (!IO_IS_ALLOCATING(zio)) return (zio); if (zio->io_children_ready != NULL) { /* * Now that all our children are ready, run the callback * associated with this zio in case it wants to modify the * data to be written. */ ASSERT3U(zp->zp_level, >, 0); zio->io_children_ready(zio); } ASSERT(zio->io_child_type != ZIO_CHILD_DDT); ASSERT(zio->io_bp_override == NULL); if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { /* * We're rewriting an existing block, which means we're * working on behalf of spa_sync(). For spa_sync() to * converge, it must eventually be the case that we don't * have to allocate new blocks. But compression changes * the blocksize, which forces a reallocate, and makes * convergence take longer. Therefore, after the first * few passes, stop compressing to ensure convergence. */ pass = spa_sync_pass(spa); ASSERT(zio->io_txg == spa_syncing_txg(spa)); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!BP_GET_DEDUP(bp)); if (pass >= zfs_sync_pass_dont_compress) compress = ZIO_COMPRESS_OFF; /* Make sure someone doesn't change their mind on overwrites */ ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), spa_max_replication(spa)) == BP_GET_NDVAS(bp)); } /* If it's a compressed write that is not raw, compress the buffer. */ if (compress != ZIO_COMPRESS_OFF && !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { void *cbuf = NULL; psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize, zp->zp_complevel); if (psize == 0) { compress = ZIO_COMPRESS_OFF; } else if (psize >= lsize) { compress = ZIO_COMPRESS_OFF; if (cbuf != NULL) zio_buf_free(cbuf, lsize); } else if (!zp->zp_dedup && !zp->zp_encrypt && psize <= BPE_PAYLOAD_SIZE && zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { encode_embedded_bp_compressed(bp, cbuf, compress, lsize, psize); BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); BP_SET_TYPE(bp, zio->io_prop.zp_type); BP_SET_LEVEL(bp, zio->io_prop.zp_level); zio_buf_free(cbuf, lsize); bp->blk_birth = zio->io_txg; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; ASSERT(spa_feature_is_active(spa, SPA_FEATURE_EMBEDDED_DATA)); return (zio); } else { /* * Round compressed size up to the minimum allocation * size of the smallest-ashift device, and zero the * tail. This ensures that the compressed size of the * BP (and thus compressratio property) are correct, * in that we charge for the padding used to fill out * the last sector. */ ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); size_t rounded = (size_t)roundup(psize, spa->spa_min_alloc); if (rounded >= lsize) { compress = ZIO_COMPRESS_OFF; zio_buf_free(cbuf, lsize); psize = lsize; } else { abd_t *cdata = abd_get_from_buf(cbuf, lsize); abd_take_ownership_of_buf(cdata, B_TRUE); abd_zero_off(cdata, psize, rounded - psize); psize = rounded; zio_push_transform(zio, cdata, psize, lsize, NULL); } } /* * We were unable to handle this as an override bp, treat * it as a regular write I/O. */ zio->io_bp_override = NULL; *bp = zio->io_bp_orig; zio->io_pipeline = zio->io_orig_pipeline; } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && zp->zp_type == DMU_OT_DNODE) { /* * The DMU actually relies on the zio layer's compression * to free metadnode blocks that have had all contained * dnodes freed. As a result, even when doing a raw * receive, we must check whether the block can be compressed * to a hole. */ psize = zio_compress_data(ZIO_COMPRESS_EMPTY, zio->io_abd, NULL, lsize, zp->zp_complevel); if (psize == 0 || psize >= lsize) compress = ZIO_COMPRESS_OFF; } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { /* * If we are raw receiving an encrypted dataset we should not * take this codepath because it will change the on-disk block * and decryption will fail. */ size_t rounded = MIN((size_t)roundup(psize, spa->spa_min_alloc), lsize); if (rounded != psize) { abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); abd_zero_off(cdata, psize, rounded - psize); abd_copy_off(cdata, zio->io_abd, 0, 0, psize); psize = rounded; zio_push_transform(zio, cdata, psize, rounded, NULL); } } else { ASSERT3U(psize, !=, 0); } /* * The final pass of spa_sync() must be all rewrites, but the first * few passes offer a trade-off: allocating blocks defers convergence, * but newly allocated blocks are sequential, so they can be written * to disk faster. Therefore, we allow the first few passes of * spa_sync() to allocate new blocks, but force rewrites after that. * There should only be a handful of blocks after pass 1 in any case. */ if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize && pass >= zfs_sync_pass_rewrite) { VERIFY3U(psize, !=, 0); enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; zio->io_flags |= ZIO_FLAG_IO_REWRITE; } else { BP_ZERO(bp); zio->io_pipeline = ZIO_WRITE_PIPELINE; } if (psize == 0) { if (zio->io_bp_orig.blk_birth != 0 && spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { BP_SET_LSIZE(bp, lsize); BP_SET_TYPE(bp, zp->zp_type); BP_SET_LEVEL(bp, zp->zp_level); BP_SET_BIRTH(bp, zio->io_txg, 0); } zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; } else { ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); BP_SET_LSIZE(bp, lsize); BP_SET_TYPE(bp, zp->zp_type); BP_SET_LEVEL(bp, zp->zp_level); BP_SET_PSIZE(bp, psize); BP_SET_COMPRESS(bp, compress); BP_SET_CHECKSUM(bp, zp->zp_checksum); BP_SET_DEDUP(bp, zp->zp_dedup); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); if (zp->zp_dedup) { ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(!zp->zp_encrypt || DMU_OT_IS_ENCRYPTED(zp->zp_type)); zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; } if (zp->zp_nopwrite) { ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; } } return (zio); } static zio_t * zio_free_bp_init(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio->io_child_type == ZIO_CHILD_LOGICAL) { if (BP_GET_DEDUP(bp)) zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; } ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); return (zio); } /* * ========================================================================== * Execute the I/O pipeline * ========================================================================== */ static void zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) { spa_t *spa = zio->io_spa; zio_type_t t = zio->io_type; int flags = (cutinline ? TQ_FRONT : 0); /* * If we're a config writer or a probe, the normal issue and * interrupt threads may all be blocked waiting for the config lock. * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. */ if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) t = ZIO_TYPE_NULL; /* * A similar issue exists for the L2ARC write thread until L2ARC 2.0. */ if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) t = ZIO_TYPE_NULL; /* * If this is a high priority I/O, then use the high priority taskq if * available. */ if ((zio->io_priority == ZIO_PRIORITY_NOW || zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && spa->spa_zio_taskq[t][q + 1].stqs_count != 0) q++; ASSERT3U(q, <, ZIO_TASKQ_TYPES); /* * NB: We are assuming that the zio can only be dispatched * to a single taskq at a time. It would be a grievous error * to dispatch the zio to another taskq at the same time. */ ASSERT(taskq_empty_ent(&zio->io_tqent)); spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, &zio->io_tqent); } static boolean_t zio_taskq_member(zio_t *zio, zio_taskq_type_t q) { spa_t *spa = zio->io_spa; taskq_t *tq = taskq_of_curthread(); for (zio_type_t t = 0; t < ZIO_TYPES; t++) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; uint_t i; for (i = 0; i < tqs->stqs_count; i++) { if (tqs->stqs_taskq[i] == tq) return (B_TRUE); } } return (B_FALSE); } static zio_t * zio_issue_async(zio_t *zio) { zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); return (NULL); } void zio_interrupt(void *zio) { zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); } void zio_delay_interrupt(zio_t *zio) { /* * The timeout_generic() function isn't defined in userspace, so * rather than trying to implement the function, the zio delay * functionality has been disabled for userspace builds. */ #ifdef _KERNEL /* * If io_target_timestamp is zero, then no delay has been registered * for this IO, thus jump to the end of this function and "skip" the * delay; issuing it directly to the zio layer. */ if (zio->io_target_timestamp != 0) { hrtime_t now = gethrtime(); if (now >= zio->io_target_timestamp) { /* * This IO has already taken longer than the target * delay to complete, so we don't want to delay it * any longer; we "miss" the delay and issue it * directly to the zio layer. This is likely due to * the target latency being set to a value less than * the underlying hardware can satisfy (e.g. delay * set to 1ms, but the disks take 10ms to complete an * IO request). */ DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, hrtime_t, now); zio_interrupt(zio); } else { taskqid_t tid; hrtime_t diff = zio->io_target_timestamp - now; clock_t expire_at_tick = ddi_get_lbolt() + NSEC_TO_TICK(diff); DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, hrtime_t, now, hrtime_t, diff); if (NSEC_TO_TICK(diff) == 0) { /* Our delay is less than a jiffy - just spin */ zfs_sleep_until(zio->io_target_timestamp); zio_interrupt(zio); } else { /* * Use taskq_dispatch_delay() in the place of * OpenZFS's timeout_generic(). */ tid = taskq_dispatch_delay(system_taskq, zio_interrupt, zio, TQ_NOSLEEP, expire_at_tick); if (tid == TASKQID_INVALID) { /* * Couldn't allocate a task. Just * finish the zio without a delay. */ zio_interrupt(zio); } } } return; } #endif DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); zio_interrupt(zio); } static void zio_deadman_impl(zio_t *pio, int ziodepth) { zio_t *cio, *cio_next; zio_link_t *zl = NULL; vdev_t *vd = pio->io_vd; if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; zbookmark_phys_t *zb = &pio->io_bookmark; uint64_t delta = gethrtime() - pio->io_timestamp; uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " "delta=%llu queued=%llu io=%llu " "path=%s " "last=%llu type=%d " "priority=%d flags=0x%llx stage=0x%x " "pipeline=0x%x pipeline-trace=0x%x " "objset=%llu object=%llu " "level=%llu blkid=%llu " "offset=%llu size=%llu " "error=%d", ziodepth, pio, pio->io_timestamp, (u_longlong_t)delta, pio->io_delta, pio->io_delay, vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0, pio->io_type, pio->io_priority, (u_longlong_t)pio->io_flags, pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, pio->io_error); (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, pio->io_spa, vd, zb, pio, 0); if (failmode == ZIO_FAILURE_MODE_CONTINUE && taskq_empty_ent(&pio->io_tqent)) { zio_interrupt(pio); } } mutex_enter(&pio->io_lock); for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio, &zl); zio_deadman_impl(cio, ziodepth + 1); } mutex_exit(&pio->io_lock); } /* * Log the critical information describing this zio and all of its children * using the zfs_dbgmsg() interface then post deadman event for the ZED. */ void zio_deadman(zio_t *pio, const char *tag) { spa_t *spa = pio->io_spa; char *name = spa_name(spa); if (!zfs_deadman_enabled || spa_suspended(spa)) return; zio_deadman_impl(pio, 0); switch (spa_get_deadman_failmode(spa)) { case ZIO_FAILURE_MODE_WAIT: zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); break; case ZIO_FAILURE_MODE_CONTINUE: zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); break; case ZIO_FAILURE_MODE_PANIC: fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); break; } } /* * Execute the I/O pipeline until one of the following occurs: * (1) the I/O completes; (2) the pipeline stalls waiting for * dependent child I/Os; (3) the I/O issues, so we're waiting * for an I/O completion interrupt; (4) the I/O is delegated by * vdev-level caching or aggregation; (5) the I/O is deferred * due to vdev-level queueing; (6) the I/O is handed off to * another thread. In all cases, the pipeline stops whenever * there's no CPU work; it never burns a thread in cv_wait_io(). * * There's no locking on io_stage because there's no legitimate way * for multiple threads to be attempting to process the same I/O. */ static zio_pipe_stage_t *zio_pipeline[]; /* * zio_execute() is a wrapper around the static function * __zio_execute() so that we can force __zio_execute() to be * inlined. This reduces stack overhead which is important * because __zio_execute() is called recursively in several zio * code paths. zio_execute() itself cannot be inlined because * it is externally visible. */ void zio_execute(void *zio) { fstrans_cookie_t cookie; cookie = spl_fstrans_mark(); __zio_execute(zio); spl_fstrans_unmark(cookie); } /* * Used to determine if in the current context the stack is sized large * enough to allow zio_execute() to be called recursively. A minimum * stack size of 16K is required to avoid needing to re-dispatch the zio. */ static boolean_t zio_execute_stack_check(zio_t *zio) { #if !defined(HAVE_LARGE_STACKS) dsl_pool_t *dp = spa_get_dsl(zio->io_spa); /* Executing in txg_sync_thread() context. */ if (dp && curthread == dp->dp_tx.tx_sync_thread) return (B_TRUE); /* Pool initialization outside of zio_taskq context. */ if (dp && spa_is_initializing(dp->dp_spa) && !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) return (B_TRUE); #else (void) zio; #endif /* HAVE_LARGE_STACKS */ return (B_FALSE); } __attribute__((always_inline)) static inline void __zio_execute(zio_t *zio) { ASSERT3U(zio->io_queued_timestamp, >, 0); while (zio->io_stage < ZIO_STAGE_DONE) { enum zio_stage pipeline = zio->io_pipeline; enum zio_stage stage = zio->io_stage; zio->io_executor = curthread; ASSERT(!MUTEX_HELD(&zio->io_lock)); ASSERT(ISP2(stage)); ASSERT(zio->io_stall == NULL); do { stage <<= 1; } while ((stage & pipeline) == 0); ASSERT(stage <= ZIO_STAGE_DONE); /* * If we are in interrupt context and this pipeline stage * will grab a config lock that is held across I/O, * or may wait for an I/O that needs an interrupt thread * to complete, issue async to avoid deadlock. * * For VDEV_IO_START, we cut in line so that the io will * be sent to disk promptly. */ if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? zio_requeue_io_start_cut_in_line : B_FALSE; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); return; } /* * If the current context doesn't have large enough stacks * the zio must be issued asynchronously to prevent overflow. */ if (zio_execute_stack_check(zio)) { boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? zio_requeue_io_start_cut_in_line : B_FALSE; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); return; } zio->io_stage = stage; zio->io_pipeline_trace |= zio->io_stage; /* * The zio pipeline stage returns the next zio to execute * (typically the same as this one), or NULL if we should * stop. */ zio = zio_pipeline[highbit64(stage) - 1](zio); if (zio == NULL) return; } } /* * ========================================================================== * Initiate I/O, either sync or async * ========================================================================== */ int zio_wait(zio_t *zio) { /* * Some routines, like zio_free_sync(), may return a NULL zio * to avoid the performance overhead of creating and then destroying * an unneeded zio. For the callers' simplicity, we accept a NULL * zio and ignore it. */ if (zio == NULL) return (0); long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); int error; ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); ASSERT3P(zio->io_executor, ==, NULL); zio->io_waiter = curthread; ASSERT0(zio->io_queued_timestamp); zio->io_queued_timestamp = gethrtime(); __zio_execute(zio); mutex_enter(&zio->io_lock); while (zio->io_executor != NULL) { error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, ddi_get_lbolt() + timeout); if (zfs_deadman_enabled && error == -1 && gethrtime() - zio->io_queued_timestamp > spa_deadman_ziotime(zio->io_spa)) { mutex_exit(&zio->io_lock); timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); zio_deadman(zio, FTAG); mutex_enter(&zio->io_lock); } } mutex_exit(&zio->io_lock); error = zio->io_error; zio_destroy(zio); return (error); } void zio_nowait(zio_t *zio) { /* * See comment in zio_wait(). */ if (zio == NULL) return; ASSERT3P(zio->io_executor, ==, NULL); if (zio->io_child_type == ZIO_CHILD_LOGICAL && zio_unique_parent(zio) == NULL) { zio_t *pio; /* * This is a logical async I/O with no parent to wait for it. * We add it to the spa_async_root_zio "Godfather" I/O which * will ensure they complete prior to unloading the pool. */ spa_t *spa = zio->io_spa; pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; zio_add_child(pio, zio); } ASSERT0(zio->io_queued_timestamp); zio->io_queued_timestamp = gethrtime(); __zio_execute(zio); } /* * ========================================================================== * Reexecute, cancel, or suspend/resume failed I/O * ========================================================================== */ static void zio_reexecute(void *arg) { zio_t *pio = arg; zio_t *cio, *cio_next; ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); ASSERT(pio->io_gang_leader == NULL); ASSERT(pio->io_gang_tree == NULL); pio->io_flags = pio->io_orig_flags; pio->io_stage = pio->io_orig_stage; pio->io_pipeline = pio->io_orig_pipeline; pio->io_reexecute = 0; pio->io_flags |= ZIO_FLAG_REEXECUTED; pio->io_pipeline_trace = 0; pio->io_error = 0; for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_state[w] = 0; for (int c = 0; c < ZIO_CHILD_TYPES; c++) pio->io_child_error[c] = 0; if (IO_IS_ALLOCATING(pio)) BP_ZERO(pio->io_bp); /* * As we reexecute pio's children, new children could be created. * New children go to the head of pio's io_child_list, however, * so we will (correctly) not reexecute them. The key is that * the remainder of pio's io_child_list, from 'cio_next' onward, * cannot be affected by any side effects of reexecuting 'cio'. */ zio_link_t *zl = NULL; mutex_enter(&pio->io_lock); for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio, &zl); for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_children[cio->io_child_type][w]++; mutex_exit(&pio->io_lock); zio_reexecute(cio); mutex_enter(&pio->io_lock); } mutex_exit(&pio->io_lock); /* * Now that all children have been reexecuted, execute the parent. * We don't reexecute "The Godfather" I/O here as it's the * responsibility of the caller to wait on it. */ if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { pio->io_queued_timestamp = gethrtime(); __zio_execute(pio); } } void zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) { if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) fm_panic("Pool '%s' has encountered an uncorrectable I/O " "failure and the failure mode property for this pool " "is set to panic.", spa_name(spa)); cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " "failure and has been suspended.\n", spa_name(spa)); (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, NULL, 0); mutex_enter(&spa->spa_suspend_lock); if (spa->spa_suspend_zio_root == NULL) spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); spa->spa_suspended = reason; if (zio != NULL) { ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); ASSERT(zio != spa->spa_suspend_zio_root); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(zio_unique_parent(zio) == NULL); ASSERT(zio->io_stage == ZIO_STAGE_DONE); zio_add_child(spa->spa_suspend_zio_root, zio); } mutex_exit(&spa->spa_suspend_lock); } int zio_resume(spa_t *spa) { zio_t *pio; /* * Reexecute all previously suspended i/o. */ mutex_enter(&spa->spa_suspend_lock); spa->spa_suspended = ZIO_SUSPEND_NONE; cv_broadcast(&spa->spa_suspend_cv); pio = spa->spa_suspend_zio_root; spa->spa_suspend_zio_root = NULL; mutex_exit(&spa->spa_suspend_lock); if (pio == NULL) return (0); zio_reexecute(pio); return (zio_wait(pio)); } void zio_resume_wait(spa_t *spa) { mutex_enter(&spa->spa_suspend_lock); while (spa_suspended(spa)) cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); mutex_exit(&spa->spa_suspend_lock); } /* * ========================================================================== * Gang blocks. * * A gang block is a collection of small blocks that looks to the DMU * like one large block. When zio_dva_allocate() cannot find a block * of the requested size, due to either severe fragmentation or the pool * being nearly full, it calls zio_write_gang_block() to construct the * block from smaller fragments. * * A gang block consists of a gang header (zio_gbh_phys_t) and up to * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like * an indirect block: it's an array of block pointers. It consumes * only one sector and hence is allocatable regardless of fragmentation. * The gang header's bps point to its gang members, which hold the data. * * Gang blocks are self-checksumming, using the bp's * as the verifier to ensure uniqueness of the SHA256 checksum. * Critically, the gang block bp's blk_cksum is the checksum of the data, * not the gang header. This ensures that data block signatures (needed for * deduplication) are independent of how the block is physically stored. * * Gang blocks can be nested: a gang member may itself be a gang block. * Thus every gang block is a tree in which root and all interior nodes are * gang headers, and the leaves are normal blocks that contain user data. * The root of the gang tree is called the gang leader. * * To perform any operation (read, rewrite, free, claim) on a gang block, * zio_gang_assemble() first assembles the gang tree (minus data leaves) * in the io_gang_tree field of the original logical i/o by recursively * reading the gang leader and all gang headers below it. This yields * an in-core tree containing the contents of every gang header and the * bps for every constituent of the gang block. * * With the gang tree now assembled, zio_gang_issue() just walks the gang tree * and invokes a callback on each bp. To free a gang block, zio_gang_issue() * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). * zio_read_gang() is a wrapper around zio_read() that omits reading gang * headers, since we already have those in io_gang_tree. zio_rewrite_gang() * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() * of the gang header plus zio_checksum_compute() of the data to update the * gang header's blk_cksum as described above. * * The two-phase assemble/issue model solves the problem of partial failure -- * what if you'd freed part of a gang block but then couldn't read the * gang header for another part? Assembling the entire gang tree first * ensures that all the necessary gang header I/O has succeeded before * starting the actual work of free, claim, or write. Once the gang tree * is assembled, free and claim are in-memory operations that cannot fail. * * In the event that a gang write fails, zio_dva_unallocate() walks the * gang tree to immediately free (i.e. insert back into the space map) * everything we've allocated. This ensures that we don't get ENOSPC * errors during repeated suspend/resume cycles due to a flaky device. * * Gang rewrites only happen during sync-to-convergence. If we can't assemble * the gang tree, we won't modify the block, so we can safely defer the free * (knowing that the block is still intact). If we *can* assemble the gang * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free * each constituent bp and we can allocate a new block on the next sync pass. * * In all cases, the gang tree allows complete recovery from partial failure. * ========================================================================== */ static void zio_gang_issue_func_done(zio_t *zio) { abd_free(zio->io_abd); } static zio_t * zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { if (gn != NULL) return (pio); return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), BP_GET_PSIZE(bp), zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark)); } static zio_t * zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { zio_t *zio; if (gn != NULL) { abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); /* * As we rewrite each gang header, the pipeline will compute * a new gang block header checksum for it; but no one will * compute a new data checksum, so we do that here. The one * exception is the gang leader: the pipeline already computed * its data checksum because that stage precedes gang assembly. * (Presently, nothing actually uses interior data checksums; * this is just good hygiene.) */ if (gn != pio->io_gang_leader->io_gang_tree) { abd_t *buf = abd_get_offset(data, offset); zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), buf, BP_GET_PSIZE(bp)); abd_free(buf); } /* * If we are here to damage data for testing purposes, * leave the GBH alone so that we can detect the damage. */ if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; } else { zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, abd_get_offset(data, offset), BP_GET_PSIZE(bp), zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); } return (zio); } static zio_t * zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { (void) gn, (void) data, (void) offset; zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, ZIO_GANG_CHILD_FLAGS(pio)); if (zio == NULL) { zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); } return (zio); } static zio_t * zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { (void) gn, (void) data, (void) offset; return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); } static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { NULL, zio_read_gang, zio_rewrite_gang, zio_free_gang, zio_claim_gang, NULL }; static void zio_gang_tree_assemble_done(zio_t *zio); static zio_gang_node_t * zio_gang_node_alloc(zio_gang_node_t **gnpp) { zio_gang_node_t *gn; ASSERT(*gnpp == NULL); gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); *gnpp = gn; return (gn); } static void zio_gang_node_free(zio_gang_node_t **gnpp) { zio_gang_node_t *gn = *gnpp; for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) ASSERT(gn->gn_child[g] == NULL); zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); kmem_free(gn, sizeof (*gn)); *gnpp = NULL; } static void zio_gang_tree_free(zio_gang_node_t **gnpp) { zio_gang_node_t *gn = *gnpp; if (gn == NULL) return; for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) zio_gang_tree_free(&gn->gn_child[g]); zio_gang_node_free(gnpp); } static void zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) { zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); ASSERT(gio->io_gang_leader == gio); ASSERT(BP_IS_GANG(bp)); zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); } static void zio_gang_tree_assemble_done(zio_t *zio) { zio_t *gio = zio->io_gang_leader; zio_gang_node_t *gn = zio->io_private; blkptr_t *bp = zio->io_bp; ASSERT(gio == zio_unique_parent(zio)); ASSERT(zio->io_child_count == 0); if (zio->io_error) return; /* this ABD was created from a linear buf in zio_gang_tree_assemble */ if (BP_SHOULD_BYTESWAP(bp)) byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); abd_free(zio->io_abd); for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; if (!BP_IS_GANG(gbp)) continue; zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); } } static void zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, uint64_t offset) { zio_t *gio = pio->io_gang_leader; zio_t *zio; ASSERT(BP_IS_GANG(bp) == !!gn); ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); /* * If you're a gang header, your data is in gn->gn_gbh. * If you're a gang member, your data is in 'data' and gn == NULL. */ zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); if (gn != NULL) { ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; if (BP_IS_HOLE(gbp)) continue; zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, offset); offset += BP_GET_PSIZE(gbp); } } if (gn == gio->io_gang_tree) ASSERT3U(gio->io_size, ==, offset); if (zio != pio) zio_nowait(zio); } static zio_t * zio_gang_assemble(zio_t *zio) { blkptr_t *bp = zio->io_bp; ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); zio->io_gang_leader = zio; zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); return (zio); } static zio_t * zio_gang_issue(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { return (NULL); } ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); if (zio->io_child_error[ZIO_CHILD_GANG] == 0) zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 0); else zio_gang_tree_free(&zio->io_gang_tree); zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; return (zio); } static void zio_write_gang_member_ready(zio_t *zio) { zio_t *pio = zio_unique_parent(zio); dva_t *cdva = zio->io_bp->blk_dva; dva_t *pdva = pio->io_bp->blk_dva; uint64_t asize; zio_t *gio __maybe_unused = zio->io_gang_leader; if (BP_IS_HOLE(zio->io_bp)) return; ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); ASSERT(zio->io_child_type == ZIO_CHILD_GANG); ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); mutex_enter(&pio->io_lock); for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { ASSERT(DVA_GET_GANG(&pdva[d])); asize = DVA_GET_ASIZE(&pdva[d]); asize += DVA_GET_ASIZE(&cdva[d]); DVA_SET_ASIZE(&pdva[d], asize); } mutex_exit(&pio->io_lock); } static void zio_write_gang_done(zio_t *zio) { /* * The io_abd field will be NULL for a zio with no data. The io_flags * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't * check for it here as it is cleared in zio_ready. */ if (zio->io_abd != NULL) abd_free(zio->io_abd); } static zio_t * zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) { spa_t *spa = pio->io_spa; blkptr_t *bp = pio->io_bp; zio_t *gio = pio->io_gang_leader; zio_t *zio; zio_gang_node_t *gn, **gnpp; zio_gbh_phys_t *gbh; abd_t *gbh_abd; uint64_t txg = pio->io_txg; uint64_t resid = pio->io_size; uint64_t lsize; int copies = gio->io_prop.zp_copies; zio_prop_t zp; int error; boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); /* * If one copy was requested, store 2 copies of the GBH, so that we * can still traverse all the data (e.g. to free or scrub) even if a * block is damaged. Note that we can't store 3 copies of the GBH in * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt. */ int gbh_copies = copies; if (gbh_copies == 1) { gbh_copies = MIN(2, spa_max_replication(spa)); } int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(has_data); flags |= METASLAB_ASYNC_ALLOC; VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. mca_alloc_slots, pio)); /* * The logical zio has already placed a reservation for * 'copies' allocation slots but gang blocks may require * additional copies. These additional copies * (i.e. gbh_copies - copies) are guaranteed to succeed * since metaslab_class_throttle_reserve() always allows * additional reservations for gang blocks. */ VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, pio->io_allocator, pio, flags)); } error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, &pio->io_alloc_list, pio, pio->io_allocator); if (error) { if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(has_data); /* * If we failed to allocate the gang block header then * we remove any additional allocation reservations that * we placed here. The original reservation will * be removed when the logical I/O goes to the ready * stage. */ metaslab_class_throttle_unreserve(mc, gbh_copies - copies, pio->io_allocator, pio); } pio->io_error = error; return (pio); } if (pio == gio) { gnpp = &gio->io_gang_tree; } else { gnpp = pio->io_private; ASSERT(pio->io_ready == zio_write_gang_member_ready); } gn = zio_gang_node_alloc(gnpp); gbh = gn->gn_gbh; memset(gbh, 0, SPA_GANGBLOCKSIZE); gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); /* * Create the gang header. */ zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_write_gang_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); /* * Create and nowait the gang children. */ for (int g = 0; resid != 0; resid -= lsize, g++) { lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), SPA_MINBLOCKSIZE); ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); zp.zp_checksum = gio->io_prop.zp_checksum; zp.zp_compress = ZIO_COMPRESS_OFF; zp.zp_complevel = gio->io_prop.zp_complevel; zp.zp_type = DMU_OT_NONE; zp.zp_level = 0; zp.zp_copies = gio->io_prop.zp_copies; zp.zp_dedup = B_FALSE; zp.zp_dedup_verify = B_FALSE; zp.zp_nopwrite = B_FALSE; zp.zp_encrypt = gio->io_prop.zp_encrypt; zp.zp_byteorder = gio->io_prop.zp_byteorder; memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], has_data ? abd_get_offset(pio->io_abd, pio->io_size - resid) : NULL, lsize, lsize, &zp, zio_write_gang_member_ready, NULL, NULL, zio_write_gang_done, &gn->gn_child[g], pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(has_data); /* * Gang children won't throttle but we should * account for their work, so reserve an allocation * slot for them here. */ VERIFY(metaslab_class_throttle_reserve(mc, zp.zp_copies, cio->io_allocator, cio, flags)); } zio_nowait(cio); } /* * Set pio's pipeline to just wait for zio to finish. */ pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; /* * We didn't allocate this bp, so make sure it doesn't get unmarked. */ pio->io_flags &= ~ZIO_FLAG_FASTWRITE; zio_nowait(zio); return (pio); } /* * The zio_nop_write stage in the pipeline determines if allocating a * new bp is necessary. The nopwrite feature can handle writes in * either syncing or open context (i.e. zil writes) and as a result is * mutually exclusive with dedup. * * By leveraging a cryptographically secure checksum, such as SHA256, we * can compare the checksums of the new data and the old to determine if * allocating a new block is required. Note that our requirements for * cryptographic strength are fairly weak: there can't be any accidental * hash collisions, but we don't need to be secure against intentional * (malicious) collisions. To trigger a nopwrite, you have to be able * to write the file to begin with, and triggering an incorrect (hash * collision) nopwrite is no worse than simply writing to the file. * That said, there are no known attacks against the checksum algorithms * used for nopwrite, assuming that the salt and the checksums * themselves remain secret. */ static zio_t * zio_nop_write(zio_t *zio) { blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; zio_prop_t *zp = &zio->io_prop; ASSERT(BP_IS_HOLE(bp)); ASSERT(BP_GET_LEVEL(bp) == 0); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(zp->zp_nopwrite); ASSERT(!zp->zp_dedup); ASSERT(zio->io_bp_override == NULL); ASSERT(IO_IS_ALLOCATING(zio)); /* * Check to see if the original bp and the new bp have matching * characteristics (i.e. same checksum, compression algorithms, etc). * If they don't then just continue with the pipeline which will * allocate a new bp. */ if (BP_IS_HOLE(bp_orig) || !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & ZCHECKSUM_FLAG_NOPWRITE) || BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || zp->zp_copies != BP_GET_NDVAS(bp_orig)) return (zio); /* * If the checksums match then reset the pipeline so that we * avoid allocating a new bp and issuing any I/O. */ if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_NOPWRITE); ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); /* * If we're overwriting a block that is currently on an * indirect vdev, then ignore the nopwrite request and * allow a new block to be allocated on a concrete vdev. */ spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { vdev_t *tvd = vdev_lookup_top(zio->io_spa, DVA_GET_VDEV(&bp_orig->blk_dva[d])); if (tvd->vdev_ops == &vdev_indirect_ops) { spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); return (zio); } } spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); *bp = *bp_orig; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; zio->io_flags |= ZIO_FLAG_NOPWRITE; } return (zio); } +/* + * ========================================================================== + * Block Reference Table + * ========================================================================== + */ +static zio_t * +zio_brt_free(zio_t *zio) +{ + blkptr_t *bp; + + bp = zio->io_bp; + + if (BP_GET_LEVEL(bp) > 0 || + BP_IS_METADATA(bp) || + !brt_maybe_exists(zio->io_spa, bp)) { + return (zio); + } + + if (!brt_entry_decref(zio->io_spa, bp)) { + /* + * This isn't the last reference, so we cannot free + * the data yet. + */ + zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; + } + + return (zio); +} + /* * ========================================================================== * Dedup * ========================================================================== */ static void zio_ddt_child_read_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp; zio_t *pio = zio_unique_parent(zio); mutex_enter(&pio->io_lock); ddp = ddt_phys_select(dde, bp); if (zio->io_error == 0) ddt_phys_clear(ddp); /* this ddp doesn't need repair */ if (zio->io_error == 0 && dde->dde_repair_abd == NULL) dde->dde_repair_abd = zio->io_abd; else abd_free(zio->io_abd); mutex_exit(&pio->io_lock); } static zio_t * zio_ddt_read_start(zio_t *zio) { blkptr_t *bp = zio->io_bp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_PSIZE(bp) == zio->io_size); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (zio->io_child_error[ZIO_CHILD_DDT]) { ddt_t *ddt = ddt_select(zio->io_spa, bp); ddt_entry_t *dde = ddt_repair_start(ddt, bp); ddt_phys_t *ddp = dde->dde_phys; ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); blkptr_t blk; ASSERT(zio->io_vsd == NULL); zio->io_vsd = dde; if (ddp_self == NULL) return (zio); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) continue; ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, &blk); zio_nowait(zio_read(zio, zio->io_spa, &blk, abd_alloc_for_io(zio->io_size, B_TRUE), zio->io_size, zio_ddt_child_read_done, dde, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); } return (zio); } zio_nowait(zio_read(zio, zio->io_spa, bp, zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); return (zio); } static zio_t * zio_ddt_read_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { return (NULL); } ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_PSIZE(bp) == zio->io_size); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (zio->io_child_error[ZIO_CHILD_DDT]) { ddt_t *ddt = ddt_select(zio->io_spa, bp); ddt_entry_t *dde = zio->io_vsd; if (ddt == NULL) { ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); return (zio); } if (dde == NULL) { zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); return (NULL); } if (dde->dde_repair_abd != NULL) { abd_copy(zio->io_abd, dde->dde_repair_abd, zio->io_size); zio->io_child_error[ZIO_CHILD_DDT] = 0; } ddt_repair_done(ddt, dde); zio->io_vsd = NULL; } ASSERT(zio->io_vsd == NULL); return (zio); } static boolean_t zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) { spa_t *spa = zio->io_spa; boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); ASSERT(!(zio->io_bp_override && do_raw)); /* * Note: we compare the original data, not the transformed data, * because when zio->io_bp is an override bp, we will not have * pushed the I/O transforms. That's an important optimization * because otherwise we'd compress/encrypt all dmu_sync() data twice. * However, we should never get a raw, override zio so in these * cases we can compare the io_abd directly. This is useful because * it allows us to do dedup verification even if we don't have access * to the original data (for instance, if the encryption keys aren't * loaded). */ for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { zio_t *lio = dde->dde_lead_zio[p]; if (lio != NULL && do_raw) { return (lio->io_size != zio->io_size || abd_cmp(zio->io_abd, lio->io_abd) != 0); } else if (lio != NULL) { return (lio->io_orig_size != zio->io_orig_size || abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); } } for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { ddt_phys_t *ddp = &dde->dde_phys[p]; if (ddp->ddp_phys_birth != 0 && do_raw) { blkptr_t blk = *zio->io_bp; uint64_t psize; abd_t *tmpabd; int error; ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); psize = BP_GET_PSIZE(&blk); if (psize != zio->io_size) return (B_TRUE); ddt_exit(ddt); tmpabd = abd_alloc_for_io(psize, B_TRUE); error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_RAW, &zio->io_bookmark)); if (error == 0) { if (abd_cmp(tmpabd, zio->io_abd) != 0) error = SET_ERROR(ENOENT); } abd_free(tmpabd); ddt_enter(ddt); return (error != 0); } else if (ddp->ddp_phys_birth != 0) { arc_buf_t *abuf = NULL; arc_flags_t aflags = ARC_FLAG_WAIT; blkptr_t blk = *zio->io_bp; int error; ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); if (BP_GET_LSIZE(&blk) != zio->io_orig_size) return (B_TRUE); ddt_exit(ddt); error = arc_read(NULL, spa, &blk, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &aflags, &zio->io_bookmark); if (error == 0) { if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, zio->io_orig_size) != 0) error = SET_ERROR(ENOENT); arc_buf_destroy(abuf, &abuf); } ddt_enter(ddt); return (error != 0); } } return (B_FALSE); } static void zio_ddt_child_write_ready(zio_t *zio) { int p = zio->io_prop.zp_copies; ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp = &dde->dde_phys[p]; zio_t *pio; if (zio->io_error) return; ddt_enter(ddt); ASSERT(dde->dde_lead_zio[p] == zio); ddt_phys_fill(ddp, zio->io_bp); zio_link_t *zl = NULL; while ((pio = zio_walk_parents(zio, &zl)) != NULL) ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); ddt_exit(ddt); } static void zio_ddt_child_write_done(zio_t *zio) { int p = zio->io_prop.zp_copies; ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp = &dde->dde_phys[p]; ddt_enter(ddt); ASSERT(ddp->ddp_refcnt == 0); ASSERT(dde->dde_lead_zio[p] == zio); dde->dde_lead_zio[p] = NULL; if (zio->io_error == 0) { zio_link_t *zl = NULL; while (zio_walk_parents(zio, &zl) != NULL) ddt_phys_addref(ddp); } else { ddt_phys_clear(ddp); } ddt_exit(ddt); } static zio_t * zio_ddt_write(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; uint64_t txg = zio->io_txg; zio_prop_t *zp = &zio->io_prop; int p = zp->zp_copies; zio_t *cio = NULL; ddt_t *ddt = ddt_select(spa, bp); ddt_entry_t *dde; ddt_phys_t *ddp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_TRUE); ddp = &dde->dde_phys[p]; if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { /* * If we're using a weak checksum, upgrade to a strong checksum * and try again. If we're already using a strong checksum, * we can't resolve it, so just convert to an ordinary write. * (And automatically e-mail a paper to Nature?) */ if (!(zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP)) { zp->zp_checksum = spa_dedup_checksum(spa); zio_pop_transforms(zio); zio->io_stage = ZIO_STAGE_OPEN; BP_ZERO(bp); } else { zp->zp_dedup = B_FALSE; BP_SET_DEDUP(bp, B_FALSE); } ASSERT(!BP_GET_DEDUP(bp)); zio->io_pipeline = ZIO_WRITE_PIPELINE; ddt_exit(ddt); return (zio); } if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { if (ddp->ddp_phys_birth != 0) ddt_bp_fill(ddp, bp, txg); if (dde->dde_lead_zio[p] != NULL) zio_add_child(zio, dde->dde_lead_zio[p]); else ddt_phys_addref(ddp); } else if (zio->io_bp_override) { ASSERT(bp->blk_birth == txg); ASSERT(BP_EQUAL(bp, zio->io_bp_override)); ddt_phys_fill(ddp, bp); ddt_phys_addref(ddp); } else { cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, zio->io_orig_size, zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL, NULL, zio_ddt_child_write_done, dde, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); dde->dde_lead_zio[p] = cio; } ddt_exit(ddt); zio_nowait(cio); return (zio); } static ddt_entry_t *freedde; /* for debugging */ static zio_t * zio_ddt_free(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; ddt_t *ddt = ddt_select(spa, bp); ddt_entry_t *dde; ddt_phys_t *ddp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ddt_enter(ddt); freedde = dde = ddt_lookup(ddt, bp, B_TRUE); if (dde) { ddp = ddt_phys_select(dde, bp); if (ddp) ddt_phys_decref(ddp); } ddt_exit(ddt); return (zio); } /* * ========================================================================== * Allocate and free blocks * ========================================================================== */ static zio_t * zio_io_to_allocate(spa_t *spa, int allocator) { zio_t *zio; ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); if (zio == NULL) return (NULL); ASSERT(IO_IS_ALLOCATING(zio)); /* * Try to place a reservation for this zio. If we're unable to * reserve then we throttle. */ ASSERT3U(zio->io_allocator, ==, allocator); if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, zio->io_prop.zp_copies, allocator, zio, 0)) { return (NULL); } avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); return (zio); } static zio_t * zio_dva_throttle(zio_t *zio) { spa_t *spa = zio->io_spa; zio_t *nio; metaslab_class_t *mc; /* locate an appropriate allocation class */ mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || !mc->mc_alloc_throttle_enabled || zio->io_child_type == ZIO_CHILD_GANG || zio->io_flags & ZIO_FLAG_NODATA) { return (zio); } ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); ASSERT3U(zio->io_queued_timestamp, >, 0); ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); zbookmark_phys_t *bm = &zio->io_bookmark; /* * We want to try to use as many allocators as possible to help improve * performance, but we also want logically adjacent IOs to be physically * adjacent to improve sequential read performance. We chunk each object * into 2^20 block regions, and then hash based on the objset, object, * level, and region to accomplish both of these goals. */ int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; zio->io_allocator = allocator; zio->io_metaslab_class = mc; mutex_enter(&spa->spa_allocs[allocator].spaa_lock); avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); nio = zio_io_to_allocate(spa, allocator); mutex_exit(&spa->spa_allocs[allocator].spaa_lock); return (nio); } static void zio_allocate_dispatch(spa_t *spa, int allocator) { zio_t *zio; mutex_enter(&spa->spa_allocs[allocator].spaa_lock); zio = zio_io_to_allocate(spa, allocator); mutex_exit(&spa->spa_allocs[allocator].spaa_lock); if (zio == NULL) return; ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); ASSERT0(zio->io_error); zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); } static zio_t * zio_dva_allocate(zio_t *zio) { spa_t *spa = zio->io_spa; metaslab_class_t *mc; blkptr_t *bp = zio->io_bp; int error; int flags = 0; if (zio->io_gang_leader == NULL) { ASSERT(zio->io_child_type > ZIO_CHILD_GANG); zio->io_gang_leader = zio; } ASSERT(BP_IS_HOLE(bp)); ASSERT0(BP_GET_NDVAS(bp)); ASSERT3U(zio->io_prop.zp_copies, >, 0); ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; if (zio->io_flags & ZIO_FLAG_NODATA) flags |= METASLAB_DONT_THROTTLE; if (zio->io_flags & ZIO_FLAG_GANG_CHILD) flags |= METASLAB_GANG_CHILD; if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) flags |= METASLAB_ASYNC_ALLOC; /* * if not already chosen, locate an appropriate allocation class */ mc = zio->io_metaslab_class; if (mc == NULL) { mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); zio->io_metaslab_class = mc; } /* * Try allocating the block in the usual metaslab class. * If that's full, allocate it in the normal class. * If that's full, allocate as a gang block, * and if all are full, the allocation fails (which shouldn't happen). * * Note that we do not fall back on embedded slog (ZIL) space, to * preserve unfragmented slog space, which is critical for decent * sync write performance. If a log allocation fails, we will fall * back to spa_sync() which is abysmal for performance. */ error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_prop.zp_copies, zio->io_txg, NULL, flags, &zio->io_alloc_list, zio, zio->io_allocator); /* * Fallback to normal class when an alloc class is full */ if (error == ENOSPC && mc != spa_normal_class(spa)) { /* * If throttling, transfer reservation over to normal class. * The io_allocator slot can remain the same even though we * are switching classes. */ if (mc->mc_alloc_throttle_enabled && (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { metaslab_class_throttle_unreserve(mc, zio->io_prop.zp_copies, zio->io_allocator, zio); zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; VERIFY(metaslab_class_throttle_reserve( spa_normal_class(spa), zio->io_prop.zp_copies, zio->io_allocator, zio, flags | METASLAB_MUST_RESERVE)); } zio->io_metaslab_class = mc = spa_normal_class(spa); if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { zfs_dbgmsg("%s: metaslab allocation failure, " "trying normal class: zio %px, size %llu, error %d", spa_name(spa), zio, (u_longlong_t)zio->io_size, error); } error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_prop.zp_copies, zio->io_txg, NULL, flags, &zio->io_alloc_list, zio, zio->io_allocator); } if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { zfs_dbgmsg("%s: metaslab allocation failure, " "trying ganging: zio %px, size %llu, error %d", spa_name(spa), zio, (u_longlong_t)zio->io_size, error); } return (zio_write_gang_block(zio, mc)); } if (error != 0) { if (error != ENOSPC || (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " "size %llu, error %d", spa_name(spa), zio, (u_longlong_t)zio->io_size, error); } zio->io_error = error; } return (zio); } static zio_t * zio_dva_free(zio_t *zio) { metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); return (zio); } static zio_t * zio_dva_claim(zio_t *zio) { int error; error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); if (error) zio->io_error = error; return (zio); } /* * Undo an allocation. This is used by zio_done() when an I/O fails * and we want to give back the block we just allocated. * This handles both normal blocks and gang blocks. */ static void zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) { ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); ASSERT(zio->io_bp_override == NULL); if (!BP_IS_HOLE(bp)) metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); if (gn != NULL) { for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { zio_dva_unallocate(zio, gn->gn_child[g], &gn->gn_gbh->zg_blkptr[g]); } } } /* * Try to allocate an intent log block. Return 0 on success, errno on failure. */ int zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, uint64_t size, boolean_t *slog) { int error = 1; zio_alloc_list_t io_alloc_list; ASSERT(txg > spa_syncing_txg(spa)); metaslab_trace_init(&io_alloc_list); /* * Block pointer fields are useful to metaslabs for stats and debugging. * Fill in the obvious ones before calling into metaslab_alloc(). */ BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); BP_SET_PSIZE(new_bp, size); BP_SET_LEVEL(new_bp, 0); /* * When allocating a zil block, we don't have information about * the final destination of the block except the objset it's part * of, so we just hash the objset ID to pick the allocator to get * some parallelism. */ int flags = METASLAB_FASTWRITE | METASLAB_ZIL; int allocator = (uint_t)cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, txg, NULL, flags, &io_alloc_list, NULL, allocator); *slog = (error == 0); if (error != 0) { error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, new_bp, 1, txg, NULL, flags, &io_alloc_list, NULL, allocator); } if (error != 0) { error = metaslab_alloc(spa, spa_normal_class(spa), size, new_bp, 1, txg, NULL, flags, &io_alloc_list, NULL, allocator); } metaslab_trace_fini(&io_alloc_list); if (error == 0) { BP_SET_LSIZE(new_bp, size); BP_SET_PSIZE(new_bp, size); BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(new_bp, spa_version(spa) >= SPA_VERSION_SLIM_ZIL ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); BP_SET_LEVEL(new_bp, 0); BP_SET_DEDUP(new_bp, 0); BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); /* * encrypted blocks will require an IV and salt. We generate * these now since we will not be rewriting the bp at * rewrite time. */ if (os->os_encrypted) { uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t salt[ZIO_DATA_SALT_LEN]; BP_SET_CRYPT(new_bp, B_TRUE); VERIFY0(spa_crypt_get_salt(spa, dmu_objset_id(os), salt)); VERIFY0(zio_crypt_generate_iv(iv)); zio_crypt_encode_params_bp(new_bp, salt, iv); } } else { zfs_dbgmsg("%s: zil block allocation failure: " "size %llu, error %d", spa_name(spa), (u_longlong_t)size, error); } return (error); } /* * ========================================================================== * Read and write to physical devices * ========================================================================== */ /* * Issue an I/O to the underlying vdev. Typically the issue pipeline * stops after this stage and will resume upon I/O completion. * However, there are instances where the vdev layer may need to * continue the pipeline when an I/O was not issued. Since the I/O * that was sent to the vdev layer might be different than the one * currently active in the pipeline (see vdev_queue_io()), we explicitly * force the underlying vdev layers to call either zio_execute() or * zio_interrupt() to ensure that the pipeline continues with the correct I/O. */ static zio_t * zio_vdev_io_start(zio_t *zio) { vdev_t *vd = zio->io_vd; uint64_t align; spa_t *spa = zio->io_spa; zio->io_delay = 0; ASSERT(zio->io_error == 0); ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); if (vd == NULL) { if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) spa_config_enter(spa, SCL_ZIO, zio, RW_READER); /* * The mirror_ops handle multiple DVAs in a single BP. */ vdev_mirror_ops.vdev_op_io_start(zio); return (NULL); } ASSERT3P(zio->io_logical, !=, zio); if (zio->io_type == ZIO_TYPE_WRITE) { ASSERT(spa->spa_trust_config); /* * Note: the code can handle other kinds of writes, * but we don't expect them. */ if (zio->io_vd->vdev_noalloc) { ASSERT(zio->io_flags & (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); } } align = 1ULL << vd->vdev_top->vdev_ashift; if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && P2PHASE(zio->io_size, align) != 0) { /* Transform logical writes to be a full physical block size. */ uint64_t asize = P2ROUNDUP(zio->io_size, align); abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); ASSERT(vd == vd->vdev_top); if (zio->io_type == ZIO_TYPE_WRITE) { abd_copy(abuf, zio->io_abd, zio->io_size); abd_zero_off(abuf, zio->io_size, asize - zio->io_size); } zio_push_transform(zio, abuf, asize, asize, zio_subblock); } /* * If this is not a physical io, make sure that it is properly aligned * before proceeding. */ if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { ASSERT0(P2PHASE(zio->io_offset, align)); ASSERT0(P2PHASE(zio->io_size, align)); } else { /* * For physical writes, we allow 512b aligned writes and assume * the device will perform a read-modify-write as necessary. */ ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); } VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); /* * If this is a repair I/O, and there's no self-healing involved -- * that is, we're just resilvering what we expect to resilver -- * then don't do the I/O unless zio's txg is actually in vd's DTL. * This prevents spurious resilvering. * * There are a few ways that we can end up creating these spurious * resilver i/os: * * 1. A resilver i/o will be issued if any DVA in the BP has a * dirty DTL. The mirror code will issue resilver writes to * each DVA, including the one(s) that are not on vdevs with dirty * DTLs. * * 2. With nested replication, which happens when we have a * "replacing" or "spare" vdev that's a child of a mirror or raidz. * For example, given mirror(replacing(A+B), C), it's likely that * only A is out of date (it's the new device). In this case, we'll * read from C, then use the data to resilver A+B -- but we don't * actually want to resilver B, just A. The top-level mirror has no * way to know this, so instead we just discard unnecessary repairs * as we work our way down the vdev tree. * * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. * The same logic applies to any form of nested replication: ditto * + mirror, RAID-Z + replacing, etc. * * However, indirect vdevs point off to other vdevs which may have * DTL's, so we never bypass them. The child i/os on concrete vdevs * will be properly bypassed instead. * * Leaf DTL_PARTIAL can be empty when a legitimate write comes from * a dRAID spare vdev. For example, when a dRAID spare is first * used, its spare blocks need to be written to but the leaf vdev's * of such blocks can have empty DTL_PARTIAL. * * There seemed no clean way to allow such writes while bypassing * spurious ones. At this point, just avoid all bypassing for dRAID * for correctness. */ if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && zio->io_txg != 0 && /* not a delegated i/o */ vd->vdev_ops != &vdev_indirect_ops && vd->vdev_top->vdev_ops != &vdev_draid_ops && !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); zio_vdev_io_bypass(zio); return (zio); } /* * Select the next best leaf I/O to process. Distributed spares are * excluded since they dispatch the I/O directly to a leaf vdev after * applying the dRAID mapping. */ if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops != &vdev_draid_spare_ops && (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) { if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) return (zio); if ((zio = vdev_queue_io(zio)) == NULL) return (NULL); if (!vdev_accessible(vd, zio)) { zio->io_error = SET_ERROR(ENXIO); zio_interrupt(zio); return (NULL); } zio->io_delay = gethrtime(); } vd->vdev_ops->vdev_op_io_start(zio); return (NULL); } static zio_t * zio_vdev_io_done(zio_t *zio) { vdev_t *vd = zio->io_vd; vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; boolean_t unexpected_error = B_FALSE; if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { return (NULL); } ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); if (zio->io_delay) zio->io_delay = gethrtime() - zio->io_delay; if (vd != NULL && vd->vdev_ops->vdev_op_leaf && vd->vdev_ops != &vdev_draid_spare_ops) { vdev_queue_io_done(zio); if (zio->io_type == ZIO_TYPE_WRITE) vdev_cache_write(zio); if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_device_injections(vd, zio, EIO, EILSEQ); if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_label_injection(zio, EIO); if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { if (!vdev_accessible(vd, zio)) { zio->io_error = SET_ERROR(ENXIO); } else { unexpected_error = B_TRUE; } } } ops->vdev_op_io_done(zio); if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) VERIFY(vdev_probe(vd, zio) == NULL); return (zio); } /* * This function is used to change the priority of an existing zio that is * currently in-flight. This is used by the arc to upgrade priority in the * event that a demand read is made for a block that is currently queued * as a scrub or async read IO. Otherwise, the high priority read request * would end up having to wait for the lower priority IO. */ void zio_change_priority(zio_t *pio, zio_priority_t priority) { zio_t *cio, *cio_next; zio_link_t *zl = NULL; ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { vdev_queue_change_io_priority(pio, priority); } else { pio->io_priority = priority; } mutex_enter(&pio->io_lock); for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio, &zl); zio_change_priority(cio, priority); } mutex_exit(&pio->io_lock); } /* * For non-raidz ZIOs, we can just copy aside the bad data read from the * disk, and use that to finish the checksum ereport later. */ static void zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_buf) { /* no processing needed */ zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); } void zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) { void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); abd_copy(abd, zio->io_abd, zio->io_size); zcr->zcr_cbinfo = zio->io_size; zcr->zcr_cbdata = abd; zcr->zcr_finish = zio_vsd_default_cksum_finish; zcr->zcr_free = zio_abd_free; } static zio_t * zio_vdev_io_assess(zio_t *zio) { vdev_t *vd = zio->io_vd; if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { return (NULL); } if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) spa_config_exit(zio->io_spa, SCL_ZIO, zio); if (zio->io_vsd != NULL) { zio->io_vsd_ops->vsd_free(zio); zio->io_vsd = NULL; } if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_fault_injection(zio, EIO); /* * If the I/O failed, determine whether we should attempt to retry it. * * On retry, we cut in line in the issue queue, since we don't want * compression/checksumming/etc. work to prevent our (cheap) IO reissue. */ if (zio->io_error && vd == NULL && !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ zio->io_error = 0; zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, zio_requeue_io_start_cut_in_line); return (NULL); } /* * If we got an error on a leaf device, convert it to ENXIO * if the device is not accessible at all. */ if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && !vdev_accessible(vd, zio)) zio->io_error = SET_ERROR(ENXIO); /* * If we can't write to an interior vdev (mirror or RAID-Z), * set vdev_cant_write so that we stop trying to allocate from it. */ if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && vd != NULL && !vd->vdev_ops->vdev_op_leaf) { vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " "cant_write=TRUE due to write failure with ENXIO", zio); vd->vdev_cant_write = B_TRUE; } /* * If a cache flush returns ENOTSUP or ENOTTY, we know that no future * attempts will ever succeed. In this case we set a persistent * boolean flag so that we don't bother with it in the future. */ if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) vd->vdev_nowritecache = B_TRUE; if (zio->io_error) zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (vd != NULL && vd->vdev_ops->vdev_op_leaf && zio->io_physdone != NULL) { ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); zio->io_physdone(zio->io_logical); } return (zio); } void zio_vdev_io_reissue(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); ASSERT(zio->io_error == 0); zio->io_stage >>= 1; } void zio_vdev_io_redone(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); zio->io_stage >>= 1; } void zio_vdev_io_bypass(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); ASSERT(zio->io_error == 0); zio->io_flags |= ZIO_FLAG_IO_BYPASS; zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; } /* * ========================================================================== * Encrypt and store encryption parameters * ========================================================================== */ /* * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for * managing the storage of encryption parameters and passing them to the * lower-level encryption functions. */ static zio_t * zio_encrypt(zio_t *zio) { zio_prop_t *zp = &zio->io_prop; spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; uint64_t psize = BP_GET_PSIZE(bp); uint64_t dsobj = zio->io_bookmark.zb_objset; dmu_object_type_t ot = BP_GET_TYPE(bp); void *enc_buf = NULL; abd_t *eabd = NULL; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; boolean_t no_crypt = B_FALSE; /* the root zio already encrypted the data */ if (zio->io_child_type == ZIO_CHILD_GANG) return (zio); /* only ZIL blocks are re-encrypted on rewrite */ if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) return (zio); if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { BP_SET_CRYPT(bp, B_FALSE); return (zio); } /* if we are doing raw encryption set the provided encryption params */ if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { ASSERT0(BP_GET_LEVEL(bp)); BP_SET_CRYPT(bp, B_TRUE); BP_SET_BYTEORDER(bp, zp->zp_byteorder); if (ot != DMU_OT_OBJSET) zio_crypt_encode_mac_bp(bp, zp->zp_mac); /* dnode blocks must be written out in the provided byteorder */ if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && ot == DMU_OT_DNODE) { void *bswap_buf = zio_buf_alloc(psize); abd_t *babd = abd_get_from_buf(bswap_buf, psize); ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); abd_copy_to_buf(bswap_buf, zio->io_abd, psize); dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, psize); abd_take_ownership_of_buf(babd, B_TRUE); zio_push_transform(zio, babd, psize, psize, NULL); } if (DMU_OT_IS_ENCRYPTED(ot)) zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); return (zio); } /* indirect blocks only maintain a cksum of the lower level MACs */ if (BP_GET_LEVEL(bp) > 0) { BP_SET_CRYPT(bp, B_TRUE); VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), mac)); zio_crypt_encode_mac_bp(bp, mac); return (zio); } /* * Objset blocks are a special case since they have 2 256-bit MACs * embedded within them. */ if (ot == DMU_OT_OBJSET) { ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); BP_SET_CRYPT(bp, B_TRUE); VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); return (zio); } /* unencrypted object types are only authenticated with a MAC */ if (!DMU_OT_IS_ENCRYPTED(ot)) { BP_SET_CRYPT(bp, B_TRUE); VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, zio->io_abd, psize, mac)); zio_crypt_encode_mac_bp(bp, mac); return (zio); } /* * Later passes of sync-to-convergence may decide to rewrite data * in place to avoid more disk reallocations. This presents a problem * for encryption because this constitutes rewriting the new data with * the same encryption key and IV. However, this only applies to blocks * in the MOS (particularly the spacemaps) and we do not encrypt the * MOS. We assert that the zio is allocating or an intent log write * to enforce this. */ ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); ASSERT3U(psize, !=, 0); enc_buf = zio_buf_alloc(psize); eabd = abd_get_from_buf(enc_buf, psize); abd_take_ownership_of_buf(eabd, B_TRUE); /* * For an explanation of what encryption parameters are stored * where, see the block comment in zio_crypt.c. */ if (ot == DMU_OT_INTENT_LOG) { zio_crypt_decode_params_bp(bp, salt, iv); } else { BP_SET_CRYPT(bp, B_TRUE); } /* Perform the encryption. This should not fail */ VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); /* encode encryption metadata into the bp */ if (ot == DMU_OT_INTENT_LOG) { /* * ZIL blocks store the MAC in the embedded checksum, so the * transform must always be applied. */ zio_crypt_encode_mac_zil(enc_buf, mac); zio_push_transform(zio, eabd, psize, psize, NULL); } else { BP_SET_CRYPT(bp, B_TRUE); zio_crypt_encode_params_bp(bp, salt, iv); zio_crypt_encode_mac_bp(bp, mac); if (no_crypt) { ASSERT3U(ot, ==, DMU_OT_DNODE); abd_free(eabd); } else { zio_push_transform(zio, eabd, psize, psize, NULL); } } return (zio); } /* * ========================================================================== * Generate and verify checksums * ========================================================================== */ static zio_t * zio_checksum_generate(zio_t *zio) { blkptr_t *bp = zio->io_bp; enum zio_checksum checksum; if (bp == NULL) { /* * This is zio_write_phys(). * We're either generating a label checksum, or none at all. */ checksum = zio->io_prop.zp_checksum; if (checksum == ZIO_CHECKSUM_OFF) return (zio); ASSERT(checksum == ZIO_CHECKSUM_LABEL); } else { if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { ASSERT(!IO_IS_ALLOCATING(zio)); checksum = ZIO_CHECKSUM_GANG_HEADER; } else { checksum = BP_GET_CHECKSUM(bp); } } zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); return (zio); } static zio_t * zio_checksum_verify(zio_t *zio) { zio_bad_cksum_t info; blkptr_t *bp = zio->io_bp; int error; ASSERT(zio->io_vd != NULL); if (bp == NULL) { /* * This is zio_read_phys(). * We're either verifying a label checksum, or nothing at all. */ if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) return (zio); ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); } if ((error = zio_checksum_error(zio, &info)) != 0) { zio->io_error = error; if (error == ECKSUM && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { mutex_enter(&zio->io_vd->vdev_stat_lock); zio->io_vd->vdev_stat.vs_checksum_errors++; mutex_exit(&zio->io_vd->vdev_stat_lock); (void) zfs_ereport_start_checksum(zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, zio->io_offset, zio->io_size, &info); } } return (zio); } /* * Called by RAID-Z to ensure we don't compute the checksum twice. */ void zio_checksum_verified(zio_t *zio) { zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; } /* * ========================================================================== * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. * An error of 0 indicates success. ENXIO indicates whole-device failure, * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO * indicate errors that are specific to one I/O, and most likely permanent. * Any other error is presumed to be worse because we weren't expecting it. * ========================================================================== */ int zio_worst_error(int e1, int e2) { static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; int r1, r2; for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) if (e1 == zio_error_rank[r1]) break; for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) if (e2 == zio_error_rank[r2]) break; return (r1 > r2 ? e1 : e2); } /* * ========================================================================== * I/O completion * ========================================================================== */ static zio_t * zio_ready(zio_t *zio) { blkptr_t *bp = zio->io_bp; zio_t *pio, *pio_next; zio_link_t *zl = NULL; if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) { return (NULL); } if (zio->io_ready) { ASSERT(IO_IS_ALLOCATING(zio)); ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE)); ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); zio->io_ready(zio); } if (bp != NULL && bp != &zio->io_bp_copy) zio->io_bp_copy = *bp; if (zio->io_error != 0) { zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(IO_IS_ALLOCATING(zio)); ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(zio->io_metaslab_class != NULL); /* * We were unable to allocate anything, unreserve and * issue the next I/O to allocate. */ metaslab_class_throttle_unreserve( zio->io_metaslab_class, zio->io_prop.zp_copies, zio->io_allocator, zio); zio_allocate_dispatch(zio->io_spa, zio->io_allocator); } } mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_READY] = 1; pio = zio_walk_parents(zio, &zl); mutex_exit(&zio->io_lock); /* * As we notify zio's parents, new parents could be added. * New parents go to the head of zio's io_parent_list, however, * so we will (correctly) not notify them. The remainder of zio's * io_parent_list, from 'pio_next' onward, cannot change because * all parents must wait for us to be done before they can be done. */ for (; pio != NULL; pio = pio_next) { pio_next = zio_walk_parents(zio, &zl); zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); } if (zio->io_flags & ZIO_FLAG_NODATA) { if (bp != NULL && BP_IS_GANG(bp)) { zio->io_flags &= ~ZIO_FLAG_NODATA; } else { ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; } } if (zio_injection_enabled && zio->io_spa->spa_syncing_txg == zio->io_txg) zio_handle_ignored_writes(zio); return (zio); } /* * Update the allocation throttle accounting. */ static void zio_dva_throttle_done(zio_t *zio) { zio_t *lio __maybe_unused = zio->io_logical; zio_t *pio = zio_unique_parent(zio); vdev_t *vd = zio->io_vd; int flags = METASLAB_ASYNC_ALLOC; ASSERT3P(zio->io_bp, !=, NULL); ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); ASSERT(vd != NULL); ASSERT3P(vd, ==, vd->vdev_top); ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); /* * Parents of gang children can have two flavors -- ones that * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) * and ones that allocated the constituent blocks. The allocation * throttle needs to know the allocating parent zio so we must find * it here. */ if (pio->io_child_type == ZIO_CHILD_GANG) { /* * If our parent is a rewrite gang child then our grandparent * would have been the one that performed the allocation. */ if (pio->io_flags & ZIO_FLAG_IO_REWRITE) pio = zio_unique_parent(pio); flags |= METASLAB_GANG_CHILD; } ASSERT(IO_IS_ALLOCATING(pio)); ASSERT3P(zio, !=, zio->io_logical); ASSERT(zio->io_logical != NULL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); ASSERT(zio->io_metaslab_class != NULL); mutex_enter(&pio->io_lock); metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, pio->io_allocator, B_TRUE); mutex_exit(&pio->io_lock); metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, pio->io_allocator, pio); /* * Call into the pipeline to see if there is more work that * needs to be done. If there is work to be done it will be * dispatched to another taskq thread. */ zio_allocate_dispatch(zio->io_spa, pio->io_allocator); } static zio_t * zio_done(zio_t *zio) { /* * Always attempt to keep stack usage minimal here since * we can be called recursively up to 19 levels deep. */ const uint64_t psize = zio->io_size; zio_t *pio, *pio_next; zio_link_t *zl = NULL; /* * If our children haven't all completed, * wait for them and then repeat this pipeline stage. */ if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { return (NULL); } /* * If the allocation throttle is enabled, then update the accounting. * We only track child I/Os that are part of an allocating async * write. We must do this since the allocation is performed * by the logical I/O but the actual write is done by child I/Os. */ if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && zio->io_child_type == ZIO_CHILD_VDEV) { ASSERT(zio->io_metaslab_class != NULL); ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); zio_dva_throttle_done(zio); } /* * If the allocation throttle is enabled, verify that * we have decremented the refcounts for every I/O that was throttled. */ if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(zio->io_bp != NULL); metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, zio->io_allocator); VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); } for (int c = 0; c < ZIO_CHILD_TYPES; c++) for (int w = 0; w < ZIO_WAIT_TYPES; w++) ASSERT(zio->io_children[c][w] == 0); if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { ASSERT(zio->io_bp->blk_pad[0] == 0); ASSERT(zio->io_bp->blk_pad[1] == 0); ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || (zio->io_bp == zio_unique_parent(zio)->io_bp)); if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && zio->io_bp_override == NULL && !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || (BP_COUNT_GANG(zio->io_bp) == BP_GET_NDVAS(zio->io_bp))); } if (zio->io_flags & ZIO_FLAG_NOPWRITE) VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); } /* * If there were child vdev/gang/ddt errors, they apply to us now. */ zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); zio_inherit_child_errors(zio, ZIO_CHILD_GANG); zio_inherit_child_errors(zio, ZIO_CHILD_DDT); /* * If the I/O on the transformed data was successful, generate any * checksum reports now while we still have the transformed data. */ if (zio->io_error == 0) { while (zio->io_cksum_report != NULL) { zio_cksum_report_t *zcr = zio->io_cksum_report; uint64_t align = zcr->zcr_align; uint64_t asize = P2ROUNDUP(psize, align); abd_t *adata = zio->io_abd; if (adata != NULL && asize != psize) { adata = abd_alloc(asize, B_TRUE); abd_copy(adata, zio->io_abd, psize); abd_zero_off(adata, psize, asize - psize); } zio->io_cksum_report = zcr->zcr_next; zcr->zcr_next = NULL; zcr->zcr_finish(zcr, adata); zfs_ereport_free_checksum(zcr); if (adata != NULL && asize != psize) abd_free(adata); } } zio_pop_transforms(zio); /* note: may set zio->io_error */ vdev_stat_update(zio, psize); /* * If this I/O is attached to a particular vdev is slow, exceeding * 30 seconds to complete, post an error described the I/O delay. * We ignore these errors if the device is currently unavailable. */ if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { /* * We want to only increment our slow IO counters if * the IO is valid (i.e. not if the drive is removed). * * zfs_ereport_post() will also do these checks, but * it can also ratelimit and have other failures, so we * need to increment the slow_io counters independent * of it. */ if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, zio->io_spa, zio->io_vd, zio)) { mutex_enter(&zio->io_vd->vdev_stat_lock); zio->io_vd->vdev_stat.vs_slow_ios++; mutex_exit(&zio->io_vd->vdev_stat_lock); (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); } } } if (zio->io_error) { /* * If this I/O is attached to a particular vdev, * generate an error message describing the I/O failure * at the block level. We ignore these errors if the * device is currently unavailable. */ if (zio->io_error != ECKSUM && zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); if (ret != EALREADY) { mutex_enter(&zio->io_vd->vdev_stat_lock); if (zio->io_type == ZIO_TYPE_READ) zio->io_vd->vdev_stat.vs_read_errors++; else if (zio->io_type == ZIO_TYPE_WRITE) zio->io_vd->vdev_stat.vs_write_errors++; mutex_exit(&zio->io_vd->vdev_stat_lock); } } if ((zio->io_error == EIO || !(zio->io_flags & (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && zio == zio->io_logical) { /* * For logical I/O requests, tell the SPA to log the * error and generate a logical data ereport. */ spa_log_error(zio->io_spa, &zio->io_bookmark); (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa, NULL, &zio->io_bookmark, zio, 0); } } if (zio->io_error && zio == zio->io_logical) { /* * Determine whether zio should be reexecuted. This will * propagate all the way to the root via zio_notify_parent(). */ ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (IO_IS_ALLOCATING(zio) && !(zio->io_flags & ZIO_FLAG_CANFAIL)) { if (zio->io_error != ENOSPC) zio->io_reexecute |= ZIO_REEXECUTE_NOW; else zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; } if ((zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_FREE) && !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_error == ENXIO && spa_load_state(zio->io_spa) == SPA_LOAD_NONE && spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; /* * Here is a possibly good place to attempt to do * either combinatorial reconstruction or error correction * based on checksums. It also might be a good place * to send out preliminary ereports before we suspend * processing. */ } /* * If there were logical child errors, they apply to us now. * We defer this until now to avoid conflating logical child * errors with errors that happened to the zio itself when * updating vdev stats and reporting FMA events above. */ zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); if ((zio->io_error || zio->io_reexecute) && IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); zio_gang_tree_free(&zio->io_gang_tree); /* * Godfather I/Os should never suspend. */ if ((zio->io_flags & ZIO_FLAG_GODFATHER) && (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; if (zio->io_reexecute) { /* * This is a logical I/O that wants to reexecute. * * Reexecute is top-down. When an i/o fails, if it's not * the root, it simply notifies its parent and sticks around. * The parent, seeing that it still has children in zio_done(), * does the same. This percolates all the way up to the root. * The root i/o will reexecute or suspend the entire tree. * * This approach ensures that zio_reexecute() honors * all the original i/o dependency relationships, e.g. * parents not executing until children are ready. */ ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); zio->io_gang_leader = NULL; mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_DONE] = 1; mutex_exit(&zio->io_lock); /* * "The Godfather" I/O monitors its children but is * not a true parent to them. It will track them through * the pipeline but severs its ties whenever they get into * trouble (e.g. suspended). This allows "The Godfather" * I/O to return status without blocking. */ zl = NULL; for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { zio_link_t *remove_zl = zl; pio_next = zio_walk_parents(zio, &zl); if ((pio->io_flags & ZIO_FLAG_GODFATHER) && (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { zio_remove_child(pio, zio, remove_zl); /* * This is a rare code path, so we don't * bother with "next_to_execute". */ zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); } } if ((pio = zio_unique_parent(zio)) != NULL) { /* * We're not a root i/o, so there's nothing to do * but notify our parent. Don't propagate errors * upward since we haven't permanently failed yet. */ ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; /* * This is a rare code path, so we don't bother with * "next_to_execute". */ zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { /* * We'd fail again if we reexecuted now, so suspend * until conditions improve (e.g. device comes online). */ zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); } else { /* * Reexecution is potentially a huge amount of work. * Hand it off to the otherwise-unused claim taskq. */ ASSERT(taskq_empty_ent(&zio->io_tqent)); spa_taskq_dispatch_ent(zio->io_spa, ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, zio_reexecute, zio, 0, &zio->io_tqent); } return (NULL); } ASSERT(zio->io_child_count == 0); ASSERT(zio->io_reexecute == 0); ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); /* * Report any checksum errors, since the I/O is complete. */ while (zio->io_cksum_report != NULL) { zio_cksum_report_t *zcr = zio->io_cksum_report; zio->io_cksum_report = zcr->zcr_next; zcr->zcr_next = NULL; zcr->zcr_finish(zcr, NULL); zfs_ereport_free_checksum(zcr); } if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); } /* * It is the responsibility of the done callback to ensure that this * particular zio is no longer discoverable for adoption, and as * such, cannot acquire any new parents. */ if (zio->io_done) zio->io_done(zio); mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_DONE] = 1; mutex_exit(&zio->io_lock); /* * We are done executing this zio. We may want to execute a parent * next. See the comment in zio_notify_parent(). */ zio_t *next_to_execute = NULL; zl = NULL; for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { zio_link_t *remove_zl = zl; pio_next = zio_walk_parents(zio, &zl); zio_remove_child(pio, zio, remove_zl); zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); } if (zio->io_waiter != NULL) { mutex_enter(&zio->io_lock); zio->io_executor = NULL; cv_broadcast(&zio->io_cv); mutex_exit(&zio->io_lock); } else { zio_destroy(zio); } return (next_to_execute); } /* * ========================================================================== * I/O pipeline definition * ========================================================================== */ static zio_pipe_stage_t *zio_pipeline[] = { NULL, zio_read_bp_init, zio_write_bp_init, zio_free_bp_init, zio_issue_async, zio_write_compress, zio_encrypt, zio_checksum_generate, zio_nop_write, + zio_brt_free, zio_ddt_read_start, zio_ddt_read_done, zio_ddt_write, zio_ddt_free, zio_gang_assemble, zio_gang_issue, zio_dva_throttle, zio_dva_allocate, zio_dva_free, zio_dva_claim, zio_ready, zio_vdev_io_start, zio_vdev_io_done, zio_vdev_io_assess, zio_checksum_verify, zio_done }; /* * Compare two zbookmark_phys_t's to see which we would reach first in a * pre-order traversal of the object tree. * * This is simple in every case aside from the meta-dnode object. For all other * objects, we traverse them in order (object 1 before object 2, and so on). * However, all of these objects are traversed while traversing object 0, since * the data it points to is the list of objects. Thus, we need to convert to a * canonical representation so we can compare meta-dnode bookmarks to * non-meta-dnode bookmarks. * * We do this by calculating "equivalents" for each field of the zbookmark. * zbookmarks outside of the meta-dnode use their own object and level, and * calculate the level 0 equivalent (the first L0 blkid that is contained in the * blocks this bookmark refers to) by multiplying their blkid by their span * (the number of L0 blocks contained within one block at their level). * zbookmarks inside the meta-dnode calculate their object equivalent * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use * level + 1<<31 (any value larger than a level could ever be) for their level. * This causes them to always compare before a bookmark in their object * equivalent, compare appropriately to bookmarks in other objects, and to * compare appropriately to other bookmarks in the meta-dnode. */ int zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) { /* * These variables represent the "equivalent" values for the zbookmark, * after converting zbookmarks inside the meta dnode to their * normal-object equivalents. */ uint64_t zb1obj, zb2obj; uint64_t zb1L0, zb2L0; uint64_t zb1level, zb2level; if (zb1->zb_object == zb2->zb_object && zb1->zb_level == zb2->zb_level && zb1->zb_blkid == zb2->zb_blkid) return (0); IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); /* * BP_SPANB calculates the span in blocks. */ zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); if (zb1->zb_object == DMU_META_DNODE_OBJECT) { zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); zb1L0 = 0; zb1level = zb1->zb_level + COMPARE_META_LEVEL; } else { zb1obj = zb1->zb_object; zb1level = zb1->zb_level; } if (zb2->zb_object == DMU_META_DNODE_OBJECT) { zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); zb2L0 = 0; zb2level = zb2->zb_level + COMPARE_META_LEVEL; } else { zb2obj = zb2->zb_object; zb2level = zb2->zb_level; } /* Now that we have a canonical representation, do the comparison. */ if (zb1obj != zb2obj) return (zb1obj < zb2obj ? -1 : 1); else if (zb1L0 != zb2L0) return (zb1L0 < zb2L0 ? -1 : 1); else if (zb1level != zb2level) return (zb1level > zb2level ? -1 : 1); /* * This can (theoretically) happen if the bookmarks have the same object * and level, but different blkids, if the block sizes are not the same. * There is presently no way to change the indirect block sizes */ return (0); } /* * This function checks the following: given that last_block is the place that * our traversal stopped last time, does that guarantee that we've visited * every node under subtree_root? Therefore, we can't just use the raw output * of zbookmark_compare. We have to pass in a modified version of * subtree_root; by incrementing the block id, and then checking whether * last_block is before or equal to that, we can tell whether or not having * visited last_block implies that all of subtree_root's children have been * visited. */ boolean_t zbookmark_subtree_completed(const dnode_phys_t *dnp, const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) { zbookmark_phys_t mod_zb = *subtree_root; mod_zb.zb_blkid++; ASSERT0(last_block->zb_level); /* The objset_phys_t isn't before anything. */ if (dnp == NULL) return (B_FALSE); /* * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the * data block size in sectors, because that variable is only used if * the bookmark refers to a block in the meta-dnode. Since we don't * know without examining it what object it refers to, and there's no * harm in passing in this value in other cases, we always pass it in. * * We pass in 0 for the indirect block size shift because zb2 must be * level 0. The indirect block size is only used to calculate the span * of the bookmark, but since the bookmark must be level 0, the span is * always 1, so the math works out. * * If you make changes to how the zbookmark_compare code works, be sure * to make sure that this code still works afterwards. */ return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, last_block) <= 0); } /* * This function is similar to zbookmark_subtree_completed(), but returns true * if subtree_root is equal or ahead of last_block, i.e. still to be done. */ boolean_t zbookmark_subtree_tbd(const dnode_phys_t *dnp, const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) { ASSERT0(last_block->zb_level); if (dnp == NULL) return (B_FALSE); return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, last_block) >= 0); } EXPORT_SYMBOL(zio_type_name); EXPORT_SYMBOL(zio_buf_alloc); EXPORT_SYMBOL(zio_data_buf_alloc); EXPORT_SYMBOL(zio_buf_free); EXPORT_SYMBOL(zio_data_buf_free); ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, "Max I/O completion time (milliseconds) before marking it as slow"); ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, "Prioritize requeued I/O"); ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, "Defer frees starting in this pass"); ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, "Don't compress starting in this pass"); ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, "Rewrite new bps starting in this pass"); ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, "Throttle block allocations in the ZIO pipeline"); ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, "Log all slow ZIOs, not just those with vdevs"); diff --git a/module/zfs/zvol.c b/module/zfs/zvol.c index 1511f763fd77..06bc75c634a6 100644 --- a/module/zfs/zvol.c +++ b/module/zfs/zvol.c @@ -1,1739 +1,1794 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Rewritten for Linux by Brian Behlendorf . * LLNL-CODE-403049. * * ZFS volume emulation driver. * * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. * Volumes are accessed through the symbolic links named: * * /dev// * * Volumes are persistent through reboot and module load. No user command * needs to be run before opening and using a device. * * Copyright 2014 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2016 Actifio, Inc. All rights reserved. * Copyright (c) 2012, 2019 by Delphix. All rights reserved. */ /* * Note on locking of zvol state structures. * * These structures are used to maintain internal state used to emulate block * devices on top of zvols. In particular, management of device minor number * operations - create, remove, rename, and set_snapdev - involves access to * these structures. The zvol_state_lock is primarily used to protect the * zvol_state_list. The zv->zv_state_lock is used to protect the contents * of the zvol_state_t structures, as well as to make sure that when the * time comes to remove the structure from the list, it is not in use, and * therefore, it can be taken off zvol_state_list and freed. * * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol, * e.g. for the duration of receive and rollback operations. This lock can be * held for significant periods of time. Given that it is undesirable to hold * mutexes for long periods of time, the following lock ordering applies: * - take zvol_state_lock if necessary, to protect zvol_state_list * - take zv_suspend_lock if necessary, by the code path in question * - take zv_state_lock to protect zvol_state_t * * The minor operations are issued to spa->spa_zvol_taskq queues, that are * single-threaded (to preserve order of minor operations), and are executed * through the zvol_task_cb that dispatches the specific operations. Therefore, * these operations are serialized per pool. Consequently, we can be certain * that for a given zvol, there is only one operation at a time in progress. * That is why one can be sure that first, zvol_state_t for a given zvol is * allocated and placed on zvol_state_list, and then other minor operations * for this zvol are going to proceed in the order of issue. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned int zvol_inhibit_dev = 0; unsigned int zvol_volmode = ZFS_VOLMODE_GEOM; struct hlist_head *zvol_htable; static list_t zvol_state_list; krwlock_t zvol_state_lock; typedef enum { ZVOL_ASYNC_REMOVE_MINORS, ZVOL_ASYNC_RENAME_MINORS, ZVOL_ASYNC_SET_SNAPDEV, ZVOL_ASYNC_SET_VOLMODE, ZVOL_ASYNC_MAX } zvol_async_op_t; typedef struct { zvol_async_op_t op; char name1[MAXNAMELEN]; char name2[MAXNAMELEN]; uint64_t value; } zvol_task_t; uint64_t zvol_name_hash(const char *name) { int i; uint64_t crc = -1ULL; const uint8_t *p = (const uint8_t *)name; ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) { crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF]; } return (crc); } /* * Find a zvol_state_t given the name and hash generated by zvol_name_hash. * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, * return (NULL) without the taking locks. The zv_suspend_lock is always taken * before zv_state_lock. The mode argument indicates the mode (including none) * for zv_suspend_lock to be taken. */ zvol_state_t * zvol_find_by_name_hash(const char *name, uint64_t hash, int mode) { zvol_state_t *zv; struct hlist_node *p = NULL; rw_enter(&zvol_state_lock, RW_READER); hlist_for_each(p, ZVOL_HT_HEAD(hash)) { zv = hlist_entry(p, zvol_state_t, zv_hlink); mutex_enter(&zv->zv_state_lock); if (zv->zv_hash == hash && strncmp(zv->zv_name, name, MAXNAMELEN) == 0) { /* * this is the right zvol, take the locks in the * right order */ if (mode != RW_NONE && !rw_tryenter(&zv->zv_suspend_lock, mode)) { mutex_exit(&zv->zv_state_lock); rw_enter(&zv->zv_suspend_lock, mode); mutex_enter(&zv->zv_state_lock); /* * zvol cannot be renamed as we continue * to hold zvol_state_lock */ ASSERT(zv->zv_hash == hash && strncmp(zv->zv_name, name, MAXNAMELEN) == 0); } rw_exit(&zvol_state_lock); return (zv); } mutex_exit(&zv->zv_state_lock); } rw_exit(&zvol_state_lock); return (NULL); } /* * Find a zvol_state_t given the name. * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, * return (NULL) without the taking locks. The zv_suspend_lock is always taken * before zv_state_lock. The mode argument indicates the mode (including none) * for zv_suspend_lock to be taken. */ static zvol_state_t * zvol_find_by_name(const char *name, int mode) { return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode)); } /* * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation. */ void zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; nvlist_t *nvprops = zct->zct_props; int error; uint64_t volblocksize, volsize; VERIFY(nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); /* * These properties must be removed from the list so the generic * property setting step won't apply to them. */ VERIFY(nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); (void) nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); ASSERT(error == 0); } /* * ZFS_IOC_OBJSET_STATS entry point. */ int zvol_get_stats(objset_t *os, nvlist_t *nv) { int error; dmu_object_info_t *doi; uint64_t val; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); if (error) return (SET_ERROR(error)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); error = dmu_object_info(os, ZVOL_OBJ, doi); if (error == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, doi->doi_data_block_size); } kmem_free(doi, sizeof (dmu_object_info_t)); return (SET_ERROR(error)); } /* * Sanity check volume size. */ int zvol_check_volsize(uint64_t volsize, uint64_t blocksize) { if (volsize == 0) return (SET_ERROR(EINVAL)); if (volsize % blocksize != 0) return (SET_ERROR(EINVAL)); #ifdef _ILP32 if (volsize - 1 > SPEC_MAXOFFSET_T) return (SET_ERROR(EOVERFLOW)); #endif return (0); } /* * Ensure the zap is flushed then inform the VFS of the capacity change. */ static int zvol_update_volsize(uint64_t volsize, objset_t *os) { dmu_tx_t *tx; int error; uint64_t txg; tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (SET_ERROR(error)); } txg = dmu_tx_get_txg(tx); error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); dmu_tx_commit(tx); txg_wait_synced(dmu_objset_pool(os), txg); if (error == 0) error = dmu_free_long_range(os, ZVOL_OBJ, volsize, DMU_OBJECT_END); return (error); } /* * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume * size will result in a udev "change" event being generated. */ int zvol_set_volsize(const char *name, uint64_t volsize) { objset_t *os = NULL; uint64_t readonly; int error; boolean_t owned = B_FALSE; error = dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); if (error != 0) return (SET_ERROR(error)); if (readonly) return (SET_ERROR(EROFS)); zvol_state_t *zv = zvol_find_by_name(name, RW_READER); ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) && RW_READ_HELD(&zv->zv_suspend_lock))); if (zv == NULL || zv->zv_objset == NULL) { if (zv != NULL) rw_exit(&zv->zv_suspend_lock); if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE, FTAG, &os)) != 0) { if (zv != NULL) mutex_exit(&zv->zv_state_lock); return (SET_ERROR(error)); } owned = B_TRUE; if (zv != NULL) zv->zv_objset = os; } else { os = zv->zv_objset; } dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP); if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) || (error = zvol_check_volsize(volsize, doi->doi_data_block_size))) goto out; error = zvol_update_volsize(volsize, os); if (error == 0 && zv != NULL) { zv->zv_volsize = volsize; zv->zv_changed = 1; } out: kmem_free(doi, sizeof (dmu_object_info_t)); if (owned) { dmu_objset_disown(os, B_TRUE, FTAG); if (zv != NULL) zv->zv_objset = NULL; } else { rw_exit(&zv->zv_suspend_lock); } if (zv != NULL) mutex_exit(&zv->zv_state_lock); if (error == 0 && zv != NULL) zvol_os_update_volsize(zv, volsize); return (SET_ERROR(error)); } /* * Sanity check volume block size. */ int zvol_check_volblocksize(const char *name, uint64_t volblocksize) { /* Record sizes above 128k need the feature to be enabled */ if (volblocksize > SPA_OLD_MAXBLOCKSIZE) { spa_t *spa; int error; if ((error = spa_open(name, &spa, FTAG)) != 0) return (error); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } /* * We don't allow setting the property above 1MB, * unless the tunable has been changed. */ if (volblocksize > zfs_max_recordsize) return (SET_ERROR(EDOM)); spa_close(spa, FTAG); } if (volblocksize < SPA_MINBLOCKSIZE || volblocksize > SPA_MAXBLOCKSIZE || !ISP2(volblocksize)) return (SET_ERROR(EDOM)); return (0); } /* * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we * implement DKIOCFREE/free-long-range. */ static int zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) { zvol_state_t *zv = arg1; lr_truncate_t *lr = arg2; uint64_t offset, length; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); dmu_tx_mark_netfree(tx); int error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); } else { (void) zil_replaying(zv->zv_zilog, tx); dmu_tx_commit(tx); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length); } return (error); } /* * Replay a TX_WRITE ZIL transaction that didn't get committed * after a system failure */ static int zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap) { zvol_state_t *zv = arg1; lr_write_t *lr = arg2; objset_t *os = zv->zv_objset; char *data = (char *)(lr + 1); /* data follows lr_write_t */ uint64_t offset, length; dmu_tx_t *tx; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } } tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { dmu_write(os, ZVOL_OBJ, offset, length, data, tx); (void) zil_replaying(zv->zv_zilog, tx); dmu_tx_commit(tx); } return (error); } +/* + * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed + * after a system failure. + * + * TODO: For now we drop block cloning transations for ZVOLs as they are + * unsupported, but we still need to inform BRT about that as we + * claimed them during pool import. + * This situation can occur when we try to import a pool from a ZFS + * version supporting block cloning for ZVOLs into a system that + * has this ZFS version, that doesn't support block cloning for ZVOLs. + */ +static int +zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap) +{ + char name[ZFS_MAX_DATASET_NAME_LEN]; + zvol_state_t *zv = arg1; + objset_t *os = zv->zv_objset; + lr_clone_range_t *lr = arg2; + blkptr_t *bp; + dmu_tx_t *tx; + spa_t *spa; + uint_t ii; + int error; + + dmu_objset_name(os, name); + cmn_err(CE_WARN, "ZFS dropping block cloning transaction for %s.", + name); + + if (byteswap) + byteswap_uint64_array(lr, sizeof (*lr)); + + tx = dmu_tx_create(os); + error = dmu_tx_assign(tx, TXG_WAIT); + if (error) { + dmu_tx_abort(tx); + return (error); + } + + spa = os->os_spa; + + for (ii = 0; ii < lr->lr_nbps; ii++) { + bp = &lr->lr_bps[ii]; + + if (!BP_IS_HOLE(bp)) { + zio_free(spa, dmu_tx_get_txg(tx), bp); + } + } + + (void) zil_replaying(zv->zv_zilog, tx); + dmu_tx_commit(tx); + + return (0); +} + static int zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap) { (void) arg1, (void) arg2, (void) byteswap; return (SET_ERROR(ENOTSUP)); } /* * Callback vectors for replaying records. * Only TX_WRITE and TX_TRUNCATE are needed for zvol. */ zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = { zvol_replay_err, /* no such transaction type */ zvol_replay_err, /* TX_CREATE */ zvol_replay_err, /* TX_MKDIR */ zvol_replay_err, /* TX_MKXATTR */ zvol_replay_err, /* TX_SYMLINK */ zvol_replay_err, /* TX_REMOVE */ zvol_replay_err, /* TX_RMDIR */ zvol_replay_err, /* TX_LINK */ zvol_replay_err, /* TX_RENAME */ zvol_replay_write, /* TX_WRITE */ zvol_replay_truncate, /* TX_TRUNCATE */ zvol_replay_err, /* TX_SETATTR */ zvol_replay_err, /* TX_ACL */ zvol_replay_err, /* TX_CREATE_ATTR */ zvol_replay_err, /* TX_CREATE_ACL_ATTR */ zvol_replay_err, /* TX_MKDIR_ACL */ zvol_replay_err, /* TX_MKDIR_ATTR */ zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ zvol_replay_err, /* TX_WRITE2 */ zvol_replay_err, /* TX_SETSAXATTR */ zvol_replay_err, /* TX_RENAME_EXCHANGE */ zvol_replay_err, /* TX_RENAME_WHITEOUT */ + zvol_replay_clone_range /* TX_CLONE_RANGE */ }; /* * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. * * We store data in the log buffers if it's small enough. * Otherwise we will later flush the data out via dmu_sync(). */ static const ssize_t zvol_immediate_write_sz = 32768; void zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset, uint64_t size, int sync) { uint32_t blocksize = zv->zv_volblocksize; zilog_t *zilog = zv->zv_zilog; itx_wr_state_t write_state; uint64_t sz = size; if (zil_replaying(zilog, tx)) return; if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) write_state = WR_INDIRECT; else if (!spa_has_slogs(zilog->zl_spa) && size >= blocksize && blocksize > zvol_immediate_write_sz) write_state = WR_INDIRECT; else if (sync) write_state = WR_COPIED; else write_state = WR_NEED_COPY; while (size) { itx_t *itx; lr_write_t *lr; itx_wr_state_t wr_state = write_state; ssize_t len = size; if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog)) wr_state = WR_NEED_COPY; else if (wr_state == WR_INDIRECT) len = MIN(blocksize - P2PHASE(offset, blocksize), size); itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (wr_state == WR_COPIED ? len : 0)); lr = (lr_write_t *)&itx->itx_lr; if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; wr_state = WR_NEED_COPY; } itx->itx_wr_state = wr_state; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = offset; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); itx->itx_private = zv; itx->itx_sync = sync; (void) zil_itx_assign(zilog, itx, tx); offset += len; size -= len; } if (write_state == WR_COPIED || write_state == WR_NEED_COPY) { dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg); } } /* * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. */ void zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len, boolean_t sync) { itx_t *itx; lr_truncate_t *lr; zilog_t *zilog = zv->zv_zilog; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); lr = (lr_truncate_t *)&itx->itx_lr; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = off; lr->lr_length = len; itx->itx_sync = sync; zil_itx_assign(zilog, itx, tx); } static void zvol_get_done(zgd_t *zgd, int error) { (void) error; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); zfs_rangelock_exit(zgd->zgd_lr); kmem_free(zgd, sizeof (zgd_t)); } /* * Get data to generate a TX_WRITE intent log record. */ int zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) { zvol_state_t *zv = arg; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; dmu_buf_t *db; zgd_t *zgd; int error; ASSERT3P(lwb, !=, NULL); ASSERT3P(zio, !=, NULL); ASSERT3U(size, !=, 0); zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); zgd->zgd_lwb = lwb; /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, size, RL_READER); error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf, DMU_READ_NO_PREFETCH); } else { /* indirect write */ /* * Have to lock the whole block to ensure when it's written out * and its checksum is being calculated that no one can change * the data. Contrarily to zfs_get_data we need not re-check * blocksize after we get the lock because it cannot be changed. */ size = zv->zv_volblocksize; offset = P2ALIGN_TYPED(offset, size, uint64_t); zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, size, RL_READER); error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *bp = &lr->lr_blkptr; zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db != NULL); ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zvol_get_done, zgd); if (error == 0) return (0); } } zvol_get_done(zgd, error); return (SET_ERROR(error)); } /* * The zvol_state_t's are inserted into zvol_state_list and zvol_htable. */ void zvol_insert(zvol_state_t *zv) { ASSERT(RW_WRITE_HELD(&zvol_state_lock)); list_insert_head(&zvol_state_list, zv); hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); } /* * Simply remove the zvol from to list of zvols. */ static void zvol_remove(zvol_state_t *zv) { ASSERT(RW_WRITE_HELD(&zvol_state_lock)); list_remove(&zvol_state_list, zv); hlist_del(&zv->zv_hlink); } /* * Setup zv after we just own the zv->objset */ static int zvol_setup_zv(zvol_state_t *zv) { uint64_t volsize; int error; uint64_t ro; objset_t *os = zv->zv_objset; ASSERT(MUTEX_HELD(&zv->zv_state_lock)); ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock)); zv->zv_zilog = NULL; zv->zv_flags &= ~ZVOL_WRITTEN_TO; error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL); if (error) return (SET_ERROR(error)); error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); if (error) return (SET_ERROR(error)); error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn); if (error) return (SET_ERROR(error)); zvol_os_set_capacity(zv, volsize >> 9); zv->zv_volsize = volsize; if (ro || dmu_objset_is_snapshot(os) || !spa_writeable(dmu_objset_spa(os))) { zvol_os_set_disk_ro(zv, 1); zv->zv_flags |= ZVOL_RDONLY; } else { zvol_os_set_disk_ro(zv, 0); zv->zv_flags &= ~ZVOL_RDONLY; } return (0); } /* * Shutdown every zv_objset related stuff except zv_objset itself. * The is the reverse of zvol_setup_zv. */ static void zvol_shutdown_zv(zvol_state_t *zv) { ASSERT(MUTEX_HELD(&zv->zv_state_lock) && RW_LOCK_HELD(&zv->zv_suspend_lock)); if (zv->zv_flags & ZVOL_WRITTEN_TO) { ASSERT(zv->zv_zilog != NULL); zil_close(zv->zv_zilog); } zv->zv_zilog = NULL; dnode_rele(zv->zv_dn, zv); zv->zv_dn = NULL; /* * Evict cached data. We must write out any dirty data before * disowning the dataset. */ if (zv->zv_flags & ZVOL_WRITTEN_TO) txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); (void) dmu_objset_evict_dbufs(zv->zv_objset); } /* * return the proper tag for rollback and recv */ void * zvol_tag(zvol_state_t *zv) { ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); return (zv->zv_open_count > 0 ? zv : NULL); } /* * Suspend the zvol for recv and rollback. */ zvol_state_t * zvol_suspend(const char *name) { zvol_state_t *zv; zv = zvol_find_by_name(name, RW_WRITER); if (zv == NULL) return (NULL); /* block all I/O, release in zvol_resume. */ ASSERT(MUTEX_HELD(&zv->zv_state_lock)); ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); atomic_inc(&zv->zv_suspend_ref); if (zv->zv_open_count > 0) zvol_shutdown_zv(zv); /* * do not hold zv_state_lock across suspend/resume to * avoid locking up zvol lookups */ mutex_exit(&zv->zv_state_lock); /* zv_suspend_lock is released in zvol_resume() */ return (zv); } int zvol_resume(zvol_state_t *zv) { int error = 0; ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); mutex_enter(&zv->zv_state_lock); if (zv->zv_open_count > 0) { VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset)); VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv); VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset)); dmu_objset_rele(zv->zv_objset, zv); error = zvol_setup_zv(zv); } mutex_exit(&zv->zv_state_lock); rw_exit(&zv->zv_suspend_lock); /* * We need this because we don't hold zvol_state_lock while releasing * zv_suspend_lock. zvol_remove_minors_impl thus cannot check * zv_suspend_lock to determine it is safe to free because rwlock is * not inherent atomic. */ atomic_dec(&zv->zv_suspend_ref); return (SET_ERROR(error)); } int zvol_first_open(zvol_state_t *zv, boolean_t readonly) { objset_t *os; int error; ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); ASSERT(MUTEX_HELD(&zv->zv_state_lock)); ASSERT(mutex_owned(&spa_namespace_lock)); boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL)); error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os); if (error) return (SET_ERROR(error)); zv->zv_objset = os; error = zvol_setup_zv(zv); if (error) { dmu_objset_disown(os, 1, zv); zv->zv_objset = NULL; } return (error); } void zvol_last_close(zvol_state_t *zv) { ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); ASSERT(MUTEX_HELD(&zv->zv_state_lock)); zvol_shutdown_zv(zv); dmu_objset_disown(zv->zv_objset, 1, zv); zv->zv_objset = NULL; } typedef struct minors_job { list_t *list; list_node_t link; /* input */ char *name; /* output */ int error; } minors_job_t; /* * Prefetch zvol dnodes for the minors_job */ static void zvol_prefetch_minors_impl(void *arg) { minors_job_t *job = arg; char *dsname = job->name; objset_t *os = NULL; job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os); if (job->error == 0) { dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ); dmu_objset_disown(os, B_TRUE, FTAG); } } /* * Mask errors to continue dmu_objset_find() traversal */ static int zvol_create_snap_minor_cb(const char *dsname, void *arg) { minors_job_t *j = arg; list_t *minors_list = j->list; const char *name = j->name; ASSERT0(MUTEX_HELD(&spa_namespace_lock)); /* skip the designated dataset */ if (name && strcmp(dsname, name) == 0) return (0); /* at this point, the dsname should name a snapshot */ if (strchr(dsname, '@') == 0) { dprintf("zvol_create_snap_minor_cb(): " "%s is not a snapshot name\n", dsname); } else { minors_job_t *job; char *n = kmem_strdup(dsname); if (n == NULL) return (0); job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); job->name = n; job->list = minors_list; job->error = 0; list_insert_tail(minors_list, job); /* don't care if dispatch fails, because job->error is 0 */ taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, TQ_SLEEP); } return (0); } /* * If spa_keystore_load_wkey() is called for an encrypted zvol, * we need to look for any clones also using the key. This function * is "best effort" - so we just skip over it if there are failures. */ static void zvol_add_clones(const char *dsname, list_t *minors_list) { /* Also check if it has clones */ dsl_dir_t *dd = NULL; dsl_pool_t *dp = NULL; if (dsl_pool_hold(dsname, FTAG, &dp) != 0) return; if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) goto out; if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0) goto out; if (dsl_dir_phys(dd)->dd_clones == 0) goto out; zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); objset_t *mos = dd->dd_pool->dp_meta_objset; for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones); zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { dsl_dataset_t *clone; minors_job_t *job; if (dsl_dataset_hold_obj(dd->dd_pool, za->za_first_integer, FTAG, &clone) == 0) { char name[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(clone, name); char *n = kmem_strdup(name); job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); job->name = n; job->list = minors_list; job->error = 0; list_insert_tail(minors_list, job); dsl_dataset_rele(clone, FTAG); } } zap_cursor_fini(zc); kmem_free(za, sizeof (zap_attribute_t)); kmem_free(zc, sizeof (zap_cursor_t)); out: if (dd != NULL) dsl_dir_rele(dd, FTAG); dsl_pool_rele(dp, FTAG); } /* * Mask errors to continue dmu_objset_find() traversal */ static int zvol_create_minors_cb(const char *dsname, void *arg) { uint64_t snapdev; int error; list_t *minors_list = arg; ASSERT0(MUTEX_HELD(&spa_namespace_lock)); error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL); if (error) return (0); /* * Given the name and the 'snapdev' property, create device minor nodes * with the linkages to zvols/snapshots as needed. * If the name represents a zvol, create a minor node for the zvol, then * check if its snapshots are 'visible', and if so, iterate over the * snapshots and create device minor nodes for those. */ if (strchr(dsname, '@') == 0) { minors_job_t *job; char *n = kmem_strdup(dsname); if (n == NULL) return (0); job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); job->name = n; job->list = minors_list; job->error = 0; list_insert_tail(minors_list, job); /* don't care if dispatch fails, because job->error is 0 */ taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, TQ_SLEEP); zvol_add_clones(dsname, minors_list); if (snapdev == ZFS_SNAPDEV_VISIBLE) { /* * traverse snapshots only, do not traverse children, * and skip the 'dsname' */ (void) dmu_objset_find(dsname, zvol_create_snap_minor_cb, (void *)job, DS_FIND_SNAPSHOTS); } } else { dprintf("zvol_create_minors_cb(): %s is not a zvol name\n", dsname); } return (0); } /* * Create minors for the specified dataset, including children and snapshots. * Pay attention to the 'snapdev' property and iterate over the snapshots * only if they are 'visible'. This approach allows one to assure that the * snapshot metadata is read from disk only if it is needed. * * The name can represent a dataset to be recursively scanned for zvols and * their snapshots, or a single zvol snapshot. If the name represents a * dataset, the scan is performed in two nested stages: * - scan the dataset for zvols, and * - for each zvol, create a minor node, then check if the zvol's snapshots * are 'visible', and only then iterate over the snapshots if needed * * If the name represents a snapshot, a check is performed if the snapshot is * 'visible' (which also verifies that the parent is a zvol), and if so, * a minor node for that snapshot is created. */ void zvol_create_minors_recursive(const char *name) { list_t minors_list; minors_job_t *job; if (zvol_inhibit_dev) return; /* * This is the list for prefetch jobs. Whenever we found a match * during dmu_objset_find, we insert a minors_job to the list and do * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need * any lock because all list operation is done on the current thread. * * We will use this list to do zvol_os_create_minor after prefetch * so we don't have to traverse using dmu_objset_find again. */ list_create(&minors_list, sizeof (minors_job_t), offsetof(minors_job_t, link)); if (strchr(name, '@') != NULL) { uint64_t snapdev; int error = dsl_prop_get_integer(name, "snapdev", &snapdev, NULL); if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) (void) zvol_os_create_minor(name); } else { fstrans_cookie_t cookie = spl_fstrans_mark(); (void) dmu_objset_find(name, zvol_create_minors_cb, &minors_list, DS_FIND_CHILDREN); spl_fstrans_unmark(cookie); } taskq_wait_outstanding(system_taskq, 0); /* * Prefetch is completed, we can do zvol_os_create_minor * sequentially. */ while ((job = list_head(&minors_list)) != NULL) { list_remove(&minors_list, job); if (!job->error) (void) zvol_os_create_minor(job->name); kmem_strfree(job->name); kmem_free(job, sizeof (minors_job_t)); } list_destroy(&minors_list); } void zvol_create_minor(const char *name) { /* * Note: the dsl_pool_config_lock must not be held. * Minor node creation needs to obtain the zvol_state_lock. * zvol_open() obtains the zvol_state_lock and then the dsl pool * config lock. Therefore, we can't have the config lock now if * we are going to wait for the zvol_state_lock, because it * would be a lock order inversion which could lead to deadlock. */ if (zvol_inhibit_dev) return; if (strchr(name, '@') != NULL) { uint64_t snapdev; int error = dsl_prop_get_integer(name, "snapdev", &snapdev, NULL); if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) (void) zvol_os_create_minor(name); } else { (void) zvol_os_create_minor(name); } } /* * Remove minors for specified dataset including children and snapshots. */ static void zvol_free_task(void *arg) { zvol_os_free(arg); } void zvol_remove_minors_impl(const char *name) { zvol_state_t *zv, *zv_next; int namelen = ((name) ? strlen(name) : 0); taskqid_t t; list_t free_list; if (zvol_inhibit_dev) return; list_create(&free_list, sizeof (zvol_state_t), offsetof(zvol_state_t, zv_next)); rw_enter(&zvol_state_lock, RW_WRITER); for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { zv_next = list_next(&zvol_state_list, zv); mutex_enter(&zv->zv_state_lock); if (name == NULL || strcmp(zv->zv_name, name) == 0 || (strncmp(zv->zv_name, name, namelen) == 0 && (zv->zv_name[namelen] == '/' || zv->zv_name[namelen] == '@'))) { /* * By holding zv_state_lock here, we guarantee that no * one is currently using this zv */ /* If in use, leave alone */ if (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) { mutex_exit(&zv->zv_state_lock); continue; } zvol_remove(zv); /* * Cleared while holding zvol_state_lock as a writer * which will prevent zvol_open() from opening it. */ zvol_os_clear_private(zv); /* Drop zv_state_lock before zvol_free() */ mutex_exit(&zv->zv_state_lock); /* Try parallel zv_free, if failed do it in place */ t = taskq_dispatch(system_taskq, zvol_free_task, zv, TQ_SLEEP); if (t == TASKQID_INVALID) list_insert_head(&free_list, zv); } else { mutex_exit(&zv->zv_state_lock); } } rw_exit(&zvol_state_lock); /* Drop zvol_state_lock before calling zvol_free() */ while ((zv = list_head(&free_list)) != NULL) { list_remove(&free_list, zv); zvol_os_free(zv); } } /* Remove minor for this specific volume only */ static void zvol_remove_minor_impl(const char *name) { zvol_state_t *zv = NULL, *zv_next; if (zvol_inhibit_dev) return; rw_enter(&zvol_state_lock, RW_WRITER); for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { zv_next = list_next(&zvol_state_list, zv); mutex_enter(&zv->zv_state_lock); if (strcmp(zv->zv_name, name) == 0) { /* * By holding zv_state_lock here, we guarantee that no * one is currently using this zv */ /* If in use, leave alone */ if (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) { mutex_exit(&zv->zv_state_lock); continue; } zvol_remove(zv); zvol_os_clear_private(zv); mutex_exit(&zv->zv_state_lock); break; } else { mutex_exit(&zv->zv_state_lock); } } /* Drop zvol_state_lock before calling zvol_free() */ rw_exit(&zvol_state_lock); if (zv != NULL) zvol_os_free(zv); } /* * Rename minors for specified dataset including children and snapshots. */ static void zvol_rename_minors_impl(const char *oldname, const char *newname) { zvol_state_t *zv, *zv_next; int oldnamelen; if (zvol_inhibit_dev) return; oldnamelen = strlen(oldname); rw_enter(&zvol_state_lock, RW_READER); for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { zv_next = list_next(&zvol_state_list, zv); mutex_enter(&zv->zv_state_lock); if (strcmp(zv->zv_name, oldname) == 0) { zvol_os_rename_minor(zv, newname); } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 && (zv->zv_name[oldnamelen] == '/' || zv->zv_name[oldnamelen] == '@')) { char *name = kmem_asprintf("%s%c%s", newname, zv->zv_name[oldnamelen], zv->zv_name + oldnamelen + 1); zvol_os_rename_minor(zv, name); kmem_strfree(name); } mutex_exit(&zv->zv_state_lock); } rw_exit(&zvol_state_lock); } typedef struct zvol_snapdev_cb_arg { uint64_t snapdev; } zvol_snapdev_cb_arg_t; static int zvol_set_snapdev_cb(const char *dsname, void *param) { zvol_snapdev_cb_arg_t *arg = param; if (strchr(dsname, '@') == NULL) return (0); switch (arg->snapdev) { case ZFS_SNAPDEV_VISIBLE: (void) zvol_os_create_minor(dsname); break; case ZFS_SNAPDEV_HIDDEN: (void) zvol_remove_minor_impl(dsname); break; } return (0); } static void zvol_set_snapdev_impl(char *name, uint64_t snapdev) { zvol_snapdev_cb_arg_t arg = {snapdev}; fstrans_cookie_t cookie = spl_fstrans_mark(); /* * The zvol_set_snapdev_sync() sets snapdev appropriately * in the dataset hierarchy. Here, we only scan snapshots. */ dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS); spl_fstrans_unmark(cookie); } static void zvol_set_volmode_impl(char *name, uint64_t volmode) { fstrans_cookie_t cookie; uint64_t old_volmode; zvol_state_t *zv; if (strchr(name, '@') != NULL) return; /* * It's unfortunate we need to remove minors before we create new ones: * this is necessary because our backing gendisk (zvol_state->zv_disk) * could be different when we set, for instance, volmode from "geom" * to "dev" (or vice versa). */ zv = zvol_find_by_name(name, RW_NONE); if (zv == NULL && volmode == ZFS_VOLMODE_NONE) return; if (zv != NULL) { old_volmode = zv->zv_volmode; mutex_exit(&zv->zv_state_lock); if (old_volmode == volmode) return; zvol_wait_close(zv); } cookie = spl_fstrans_mark(); switch (volmode) { case ZFS_VOLMODE_NONE: (void) zvol_remove_minor_impl(name); break; case ZFS_VOLMODE_GEOM: case ZFS_VOLMODE_DEV: (void) zvol_remove_minor_impl(name); (void) zvol_os_create_minor(name); break; case ZFS_VOLMODE_DEFAULT: (void) zvol_remove_minor_impl(name); if (zvol_volmode == ZFS_VOLMODE_NONE) break; else /* if zvol_volmode is invalid defaults to "geom" */ (void) zvol_os_create_minor(name); break; } spl_fstrans_unmark(cookie); } static zvol_task_t * zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2, uint64_t value) { zvol_task_t *task; /* Never allow tasks on hidden names. */ if (name1[0] == '$') return (NULL); task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP); task->op = op; task->value = value; strlcpy(task->name1, name1, MAXNAMELEN); if (name2 != NULL) strlcpy(task->name2, name2, MAXNAMELEN); return (task); } static void zvol_task_free(zvol_task_t *task) { kmem_free(task, sizeof (zvol_task_t)); } /* * The worker thread function performed asynchronously. */ static void zvol_task_cb(void *arg) { zvol_task_t *task = arg; switch (task->op) { case ZVOL_ASYNC_REMOVE_MINORS: zvol_remove_minors_impl(task->name1); break; case ZVOL_ASYNC_RENAME_MINORS: zvol_rename_minors_impl(task->name1, task->name2); break; case ZVOL_ASYNC_SET_SNAPDEV: zvol_set_snapdev_impl(task->name1, task->value); break; case ZVOL_ASYNC_SET_VOLMODE: zvol_set_volmode_impl(task->name1, task->value); break; default: VERIFY(0); break; } zvol_task_free(task); } typedef struct zvol_set_prop_int_arg { const char *zsda_name; uint64_t zsda_value; zprop_source_t zsda_source; dmu_tx_t *zsda_tx; } zvol_set_prop_int_arg_t; /* * Sanity check the dataset for safe use by the sync task. No additional * conditions are imposed. */ static int zvol_set_snapdev_check(void *arg, dmu_tx_t *tx) { zvol_set_prop_int_arg_t *zsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd; int error; error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); if (error != 0) return (error); dsl_dir_rele(dd, FTAG); return (error); } static int zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { (void) arg; char dsname[MAXNAMELEN]; zvol_task_t *task; uint64_t snapdev; dsl_dataset_name(ds, dsname); if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0) return (0); task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev); if (task == NULL) return (0); (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); return (0); } /* * Traverse all child datasets and apply snapdev appropriately. * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel * dataset and read the effective "snapdev" on every child in the callback * function: this is because the value is not guaranteed to be the same in the * whole dataset hierarchy. */ static void zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx) { zvol_set_prop_int_arg_t *zsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd; dsl_dataset_t *ds; int error; VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); zsda->zsda_tx = tx; error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); if (error == 0) { dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV), zsda->zsda_source, sizeof (zsda->zsda_value), 1, &zsda->zsda_value, zsda->zsda_tx); dsl_dataset_rele(ds, FTAG); } dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb, zsda, DS_FIND_CHILDREN); dsl_dir_rele(dd, FTAG); } int zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev) { zvol_set_prop_int_arg_t zsda; zsda.zsda_name = ddname; zsda.zsda_source = source; zsda.zsda_value = snapdev; return (dsl_sync_task(ddname, zvol_set_snapdev_check, zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); } /* * Sanity check the dataset for safe use by the sync task. No additional * conditions are imposed. */ static int zvol_set_volmode_check(void *arg, dmu_tx_t *tx) { zvol_set_prop_int_arg_t *zsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd; int error; error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); if (error != 0) return (error); dsl_dir_rele(dd, FTAG); return (error); } static int zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { (void) arg; char dsname[MAXNAMELEN]; zvol_task_t *task; uint64_t volmode; dsl_dataset_name(ds, dsname); if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0) return (0); task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode); if (task == NULL) return (0); (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); return (0); } /* * Traverse all child datasets and apply volmode appropriately. * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel * dataset and read the effective "volmode" on every child in the callback * function: this is because the value is not guaranteed to be the same in the * whole dataset hierarchy. */ static void zvol_set_volmode_sync(void *arg, dmu_tx_t *tx) { zvol_set_prop_int_arg_t *zsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd; dsl_dataset_t *ds; int error; VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); zsda->zsda_tx = tx; error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); if (error == 0) { dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE), zsda->zsda_source, sizeof (zsda->zsda_value), 1, &zsda->zsda_value, zsda->zsda_tx); dsl_dataset_rele(ds, FTAG); } dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb, zsda, DS_FIND_CHILDREN); dsl_dir_rele(dd, FTAG); } int zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode) { zvol_set_prop_int_arg_t zsda; zsda.zsda_name = ddname; zsda.zsda_source = source; zsda.zsda_value = volmode; return (dsl_sync_task(ddname, zvol_set_volmode_check, zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); } void zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) { zvol_task_t *task; taskqid_t id; task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL); if (task == NULL) return; id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); if ((async == B_FALSE) && (id != TASKQID_INVALID)) taskq_wait_id(spa->spa_zvol_taskq, id); } void zvol_rename_minors(spa_t *spa, const char *name1, const char *name2, boolean_t async) { zvol_task_t *task; taskqid_t id; task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL); if (task == NULL) return; id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); if ((async == B_FALSE) && (id != TASKQID_INVALID)) taskq_wait_id(spa->spa_zvol_taskq, id); } boolean_t zvol_is_zvol(const char *name) { return (zvol_os_is_zvol(name)); } int zvol_init_impl(void) { int i; list_create(&zvol_state_list, sizeof (zvol_state_t), offsetof(zvol_state_t, zv_next)); rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL); zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head), KM_SLEEP); for (i = 0; i < ZVOL_HT_SIZE; i++) INIT_HLIST_HEAD(&zvol_htable[i]); return (0); } void zvol_fini_impl(void) { zvol_remove_minors_impl(NULL); /* * The call to "zvol_remove_minors_impl" may dispatch entries to * the system_taskq, but it doesn't wait for those entries to * complete before it returns. Thus, we must wait for all of the * removals to finish, before we can continue. */ taskq_wait_outstanding(system_taskq, 0); kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head)); list_destroy(&zvol_state_list); rw_destroy(&zvol_state_lock); } diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_get/zpool_get.cfg b/tests/zfs-tests/tests/functional/cli_root/zpool_get/zpool_get.cfg index 99a70fa2c04d..097cd52e4777 100644 --- a/tests/zfs-tests/tests/functional/cli_root/zpool_get/zpool_get.cfg +++ b/tests/zfs-tests/tests/functional/cli_root/zpool_get/zpool_get.cfg @@ -1,104 +1,108 @@ # # CDDL HEADER START # # The contents of this file are subject to the terms of the # Common Development and Distribution License (the "License"). # You may not use this file except in compliance with the License. # # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE # or https://opensource.org/licenses/CDDL-1.0. # See the License for the specific language governing permissions # and limitations under the License. # # When distributing Covered Code, include this CDDL HEADER in each # file and include the License file at usr/src/OPENSOLARIS.LICENSE. # If applicable, add the following below this CDDL HEADER, with the # fields enclosed by brackets "[]" replaced with your own identifying # information: Portions Copyright [yyyy] [name of copyright owner] # # CDDL HEADER END # # # Copyright 2009 Sun Microsystems, Inc. All rights reserved. # Use is subject to license terms. # # # Copyright (c) 2013, 2014 by Delphix. All rights reserved. # Copyright 2016 Nexenta Systems, Inc. All rights reserved. # # Set the expected properties of zpool typeset -a properties=( "size" "capacity" "altroot" "health" "guid" "load_guid" "version" "bootfs" "delegation" "autoreplace" "cachefile" "checkpoint" "failmode" "listsnapshots" "autoexpand" "dedupratio" "free" "allocated" "readonly" "comment" "expandsize" "freeing" "fragmentation" "leaked" "multihost" "autotrim" "compatibility" + "bcloneused" + "bclonesaved" + "bcloneratio" "feature@async_destroy" "feature@empty_bpobj" "feature@lz4_compress" "feature@multi_vdev_crash_dump" "feature@spacemap_histogram" "feature@enabled_txg" "feature@hole_birth" "feature@extensible_dataset" "feature@embedded_data" "feature@bookmarks" "feature@filesystem_limits" "feature@large_blocks" "feature@sha512" "feature@skein" "feature@edonr" "feature@device_removal" "feature@obsolete_counts" "feature@zpool_checkpoint" "feature@spacemap_v2" "feature@redaction_bookmarks" "feature@redacted_datasets" "feature@bookmark_written" "feature@log_spacemap" "feature@device_rebuild" "feature@draid" ) if is_linux || is_freebsd; then properties+=( "ashift" "feature@large_dnode" "feature@userobj_accounting" "feature@encryption" "feature@project_quota" "feature@allocation_classes" "feature@resilver_defer" "feature@bookmark_v2" "feature@livelist" "feature@zstd_compress" "feature@zilsaxattr" "feature@head_errlog" "feature@blake3" + "feature@block_cloning" ) fi