diff --git a/sys/net/pfvar.h b/sys/net/pfvar.h index f9071546cbce..8bf01eb11f4f 100644 --- a/sys/net/pfvar.h +++ b/sys/net/pfvar.h @@ -1,2187 +1,2188 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $OpenBSD: pfvar.h,v 1.282 2009/01/29 15:12:28 pyr Exp $ * $FreeBSD$ */ #ifndef _NET_PFVAR_H_ #define _NET_PFVAR_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include #endif #include #include #include #ifdef _KERNEL #if defined(__arm__) #define PF_WANT_32_TO_64_COUNTER #endif /* * A hybrid of 32-bit and 64-bit counters which can be used on platforms where * counter(9) is very expensive. * * As 32-bit counters are expected to overflow, a periodic job sums them up to * a saved 64-bit state. Fetching the value still walks all CPUs to get the most * current snapshot. */ #ifdef PF_WANT_32_TO_64_COUNTER struct pf_counter_u64_pcpu { u_int32_t current; u_int32_t snapshot; }; struct pf_counter_u64 { struct pf_counter_u64_pcpu *pfcu64_pcpu; u_int64_t pfcu64_value; seqc_t pfcu64_seqc; }; static inline int pf_counter_u64_init(struct pf_counter_u64 *pfcu64, int flags) { pfcu64->pfcu64_value = 0; pfcu64->pfcu64_seqc = 0; pfcu64->pfcu64_pcpu = uma_zalloc_pcpu(pcpu_zone_8, flags | M_ZERO); if (__predict_false(pfcu64->pfcu64_pcpu == NULL)) return (ENOMEM); return (0); } static inline void pf_counter_u64_deinit(struct pf_counter_u64 *pfcu64) { uma_zfree_pcpu(pcpu_zone_8, pfcu64->pfcu64_pcpu); } static inline void pf_counter_u64_critical_enter(void) { critical_enter(); } static inline void pf_counter_u64_critical_exit(void) { critical_exit(); } static inline void pf_counter_u64_add_protected(struct pf_counter_u64 *pfcu64, uint32_t n) { struct pf_counter_u64_pcpu *pcpu; u_int32_t val; MPASS(curthread->td_critnest > 0); pcpu = zpcpu_get(pfcu64->pfcu64_pcpu); val = atomic_load_int(&pcpu->current); atomic_store_int(&pcpu->current, val + n); } static inline void pf_counter_u64_add(struct pf_counter_u64 *pfcu64, uint32_t n) { critical_enter(); pf_counter_u64_add_protected(pfcu64, n); critical_exit(); } static inline u_int64_t pf_counter_u64_periodic(struct pf_counter_u64 *pfcu64) { struct pf_counter_u64_pcpu *pcpu; u_int64_t sum; u_int32_t val; int cpu; MPASS(curthread->td_critnest > 0); seqc_write_begin(&pfcu64->pfcu64_seqc); sum = pfcu64->pfcu64_value; CPU_FOREACH(cpu) { pcpu = zpcpu_get_cpu(pfcu64->pfcu64_pcpu, cpu); val = atomic_load_int(&pcpu->current); sum += (uint32_t)(val - pcpu->snapshot); pcpu->snapshot = val; } pfcu64->pfcu64_value = sum; seqc_write_end(&pfcu64->pfcu64_seqc); return (sum); } static inline u_int64_t pf_counter_u64_fetch(struct pf_counter_u64 *pfcu64) { struct pf_counter_u64_pcpu *pcpu; u_int64_t sum; seqc_t seqc; int cpu; for (;;) { seqc = seqc_read(&pfcu64->pfcu64_seqc); sum = 0; CPU_FOREACH(cpu) { pcpu = zpcpu_get_cpu(pfcu64->pfcu64_pcpu, cpu); sum += (uint32_t)(atomic_load_int(&pcpu->current) -pcpu->snapshot); } sum += pfcu64->pfcu64_value; if (seqc_consistent(&pfcu64->pfcu64_seqc, seqc)) break; } return (sum); } static inline void pf_counter_u64_zero_protected(struct pf_counter_u64 *pfcu64) { struct pf_counter_u64_pcpu *pcpu; int cpu; MPASS(curthread->td_critnest > 0); seqc_write_begin(&pfcu64->pfcu64_seqc); CPU_FOREACH(cpu) { pcpu = zpcpu_get_cpu(pfcu64->pfcu64_pcpu, cpu); pcpu->snapshot = atomic_load_int(&pcpu->current); } pfcu64->pfcu64_value = 0; seqc_write_end(&pfcu64->pfcu64_seqc); } static inline void pf_counter_u64_zero(struct pf_counter_u64 *pfcu64) { critical_enter(); pf_counter_u64_zero_protected(pfcu64); critical_exit(); } #else struct pf_counter_u64 { counter_u64_t counter; }; static inline int pf_counter_u64_init(struct pf_counter_u64 *pfcu64, int flags) { pfcu64->counter = counter_u64_alloc(flags); if (__predict_false(pfcu64->counter == NULL)) return (ENOMEM); return (0); } static inline void pf_counter_u64_deinit(struct pf_counter_u64 *pfcu64) { counter_u64_free(pfcu64->counter); } static inline void pf_counter_u64_critical_enter(void) { } static inline void pf_counter_u64_critical_exit(void) { } static inline void pf_counter_u64_add_protected(struct pf_counter_u64 *pfcu64, uint32_t n) { counter_u64_add(pfcu64->counter, n); } static inline void pf_counter_u64_add(struct pf_counter_u64 *pfcu64, uint32_t n) { pf_counter_u64_add_protected(pfcu64, n); } static inline u_int64_t pf_counter_u64_fetch(struct pf_counter_u64 *pfcu64) { return (counter_u64_fetch(pfcu64->counter)); } static inline void pf_counter_u64_zero_protected(struct pf_counter_u64 *pfcu64) { counter_u64_zero(pfcu64->counter); } static inline void pf_counter_u64_zero(struct pf_counter_u64 *pfcu64) { pf_counter_u64_zero_protected(pfcu64); } #endif SYSCTL_DECL(_net_pf); MALLOC_DECLARE(M_PFHASH); struct pfi_dynaddr { TAILQ_ENTRY(pfi_dynaddr) entry; struct pf_addr pfid_addr4; struct pf_addr pfid_mask4; struct pf_addr pfid_addr6; struct pf_addr pfid_mask6; struct pfr_ktable *pfid_kt; struct pfi_kkif *pfid_kif; int pfid_net; /* mask or 128 */ int pfid_acnt4; /* address count IPv4 */ int pfid_acnt6; /* address count IPv6 */ sa_family_t pfid_af; /* rule af */ u_int8_t pfid_iflags; /* PFI_AFLAG_* */ }; /* * Address manipulation macros */ #define HTONL(x) (x) = htonl((__uint32_t)(x)) #define HTONS(x) (x) = htons((__uint16_t)(x)) #define NTOHL(x) (x) = ntohl((__uint32_t)(x)) #define NTOHS(x) (x) = ntohs((__uint16_t)(x)) #define PF_NAME "pf" #define PF_HASHROW_ASSERT(h) mtx_assert(&(h)->lock, MA_OWNED) #define PF_HASHROW_LOCK(h) mtx_lock(&(h)->lock) #define PF_HASHROW_UNLOCK(h) mtx_unlock(&(h)->lock) #ifdef INVARIANTS #define PF_STATE_LOCK(s) \ do { \ struct pf_kstate *_s = (s); \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(_s)]; \ MPASS(_s->lock == &_ih->lock); \ mtx_lock(_s->lock); \ } while (0) #define PF_STATE_UNLOCK(s) \ do { \ struct pf_kstate *_s = (s); \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(_s)]; \ MPASS(_s->lock == &_ih->lock); \ mtx_unlock(_s->lock); \ } while (0) #else #define PF_STATE_LOCK(s) mtx_lock(s->lock) #define PF_STATE_UNLOCK(s) mtx_unlock(s->lock) #endif #ifdef INVARIANTS #define PF_STATE_LOCK_ASSERT(s) \ do { \ struct pf_kstate *_s = (s); \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(_s)]; \ MPASS(_s->lock == &_ih->lock); \ PF_HASHROW_ASSERT(_ih); \ } while (0) #else /* !INVARIANTS */ #define PF_STATE_LOCK_ASSERT(s) do {} while (0) #endif /* INVARIANTS */ extern struct mtx_padalign pf_unlnkdrules_mtx; #define PF_UNLNKDRULES_LOCK() mtx_lock(&pf_unlnkdrules_mtx) #define PF_UNLNKDRULES_UNLOCK() mtx_unlock(&pf_unlnkdrules_mtx) extern struct rmlock pf_rules_lock; #define PF_RULES_RLOCK_TRACKER struct rm_priotracker _pf_rules_tracker #define PF_RULES_RLOCK() rm_rlock(&pf_rules_lock, &_pf_rules_tracker) #define PF_RULES_RUNLOCK() rm_runlock(&pf_rules_lock, &_pf_rules_tracker) #define PF_RULES_WLOCK() rm_wlock(&pf_rules_lock) #define PF_RULES_WUNLOCK() rm_wunlock(&pf_rules_lock) #define PF_RULES_WOWNED() rm_wowned(&pf_rules_lock) #define PF_RULES_ASSERT() rm_assert(&pf_rules_lock, RA_LOCKED) #define PF_RULES_RASSERT() rm_assert(&pf_rules_lock, RA_RLOCKED) #define PF_RULES_WASSERT() rm_assert(&pf_rules_lock, RA_WLOCKED) extern struct mtx_padalign pf_table_stats_lock; #define PF_TABLE_STATS_LOCK() mtx_lock(&pf_table_stats_lock) #define PF_TABLE_STATS_UNLOCK() mtx_unlock(&pf_table_stats_lock) #define PF_TABLE_STATS_OWNED() mtx_owned(&pf_table_stats_lock) #define PF_TABLE_STATS_ASSERT() mtx_assert(&pf_rules_lock, MA_OWNED) extern struct sx pf_end_lock; #define PF_MODVER 1 #define PFLOG_MODVER 1 #define PFSYNC_MODVER 1 #define PFLOG_MINVER 1 #define PFLOG_PREFVER PFLOG_MODVER #define PFLOG_MAXVER 1 #define PFSYNC_MINVER 1 #define PFSYNC_PREFVER PFSYNC_MODVER #define PFSYNC_MAXVER 1 #ifdef INET #ifndef INET6 #define PF_INET_ONLY #endif /* ! INET6 */ #endif /* INET */ #ifdef INET6 #ifndef INET #define PF_INET6_ONLY #endif /* ! INET */ #endif /* INET6 */ #ifdef INET #ifdef INET6 #define PF_INET_INET6 #endif /* INET6 */ #endif /* INET */ #else #define PF_INET_INET6 #endif /* _KERNEL */ /* Both IPv4 and IPv6 */ #ifdef PF_INET_INET6 #define PF_AEQ(a, b, c) \ ((c == AF_INET && (a)->addr32[0] == (b)->addr32[0]) || \ (c == AF_INET6 && (a)->addr32[3] == (b)->addr32[3] && \ (a)->addr32[2] == (b)->addr32[2] && \ (a)->addr32[1] == (b)->addr32[1] && \ (a)->addr32[0] == (b)->addr32[0])) \ #define PF_ANEQ(a, b, c) \ ((c == AF_INET && (a)->addr32[0] != (b)->addr32[0]) || \ (c == AF_INET6 && ((a)->addr32[0] != (b)->addr32[0] || \ (a)->addr32[1] != (b)->addr32[1] || \ (a)->addr32[2] != (b)->addr32[2] || \ (a)->addr32[3] != (b)->addr32[3]))) \ #define PF_AZERO(a, c) \ ((c == AF_INET && !(a)->addr32[0]) || \ (c == AF_INET6 && !(a)->addr32[0] && !(a)->addr32[1] && \ !(a)->addr32[2] && !(a)->addr32[3] )) \ #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ pf_addrcpy(a, b, f) #define PF_AINC(a, f) \ pf_addr_inc(a, f) #define PF_POOLMASK(a, b, c, d, f) \ pf_poolmask(a, b, c, d, f) #else /* Just IPv6 */ #ifdef PF_INET6_ONLY #define PF_AEQ(a, b, c) \ ((a)->addr32[3] == (b)->addr32[3] && \ (a)->addr32[2] == (b)->addr32[2] && \ (a)->addr32[1] == (b)->addr32[1] && \ (a)->addr32[0] == (b)->addr32[0]) \ #define PF_ANEQ(a, b, c) \ ((a)->addr32[3] != (b)->addr32[3] || \ (a)->addr32[2] != (b)->addr32[2] || \ (a)->addr32[1] != (b)->addr32[1] || \ (a)->addr32[0] != (b)->addr32[0]) \ #define PF_AZERO(a, c) \ (!(a)->addr32[0] && \ !(a)->addr32[1] && \ !(a)->addr32[2] && \ !(a)->addr32[3] ) \ #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ pf_addrcpy(a, b, f) #define PF_AINC(a, f) \ pf_addr_inc(a, f) #define PF_POOLMASK(a, b, c, d, f) \ pf_poolmask(a, b, c, d, f) #else /* Just IPv4 */ #ifdef PF_INET_ONLY #define PF_AEQ(a, b, c) \ ((a)->addr32[0] == (b)->addr32[0]) #define PF_ANEQ(a, b, c) \ ((a)->addr32[0] != (b)->addr32[0]) #define PF_AZERO(a, c) \ (!(a)->addr32[0]) #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ (a)->v4.s_addr = (b)->v4.s_addr #define PF_AINC(a, f) \ do { \ (a)->addr32[0] = htonl(ntohl((a)->addr32[0]) + 1); \ } while (0) #define PF_POOLMASK(a, b, c, d, f) \ do { \ (a)->addr32[0] = ((b)->addr32[0] & (c)->addr32[0]) | \ (((c)->addr32[0] ^ 0xffffffff ) & (d)->addr32[0]); \ } while (0) #endif /* PF_INET_ONLY */ #endif /* PF_INET6_ONLY */ #endif /* PF_INET_INET6 */ /* * XXX callers not FIB-aware in our version of pf yet. * OpenBSD fixed it later it seems, 2010/05/07 13:33:16 claudio. */ #define PF_MISMATCHAW(aw, x, af, neg, ifp, rtid) \ ( \ (((aw)->type == PF_ADDR_NOROUTE && \ pf_routable((x), (af), NULL, (rtid))) || \ (((aw)->type == PF_ADDR_URPFFAILED && (ifp) != NULL && \ pf_routable((x), (af), (ifp), (rtid))) || \ ((aw)->type == PF_ADDR_TABLE && \ !pfr_match_addr((aw)->p.tbl, (x), (af))) || \ ((aw)->type == PF_ADDR_DYNIFTL && \ !pfi_match_addr((aw)->p.dyn, (x), (af))) || \ ((aw)->type == PF_ADDR_RANGE && \ !pf_match_addr_range(&(aw)->v.a.addr, \ &(aw)->v.a.mask, (x), (af))) || \ ((aw)->type == PF_ADDR_ADDRMASK && \ !PF_AZERO(&(aw)->v.a.mask, (af)) && \ !PF_MATCHA(0, &(aw)->v.a.addr, \ &(aw)->v.a.mask, (x), (af))))) != \ (neg) \ ) #define PF_ALGNMNT(off) (((off) % 2) == 0) #ifdef _KERNEL struct pf_kpooladdr { struct pf_addr_wrap addr; TAILQ_ENTRY(pf_kpooladdr) entries; char ifname[IFNAMSIZ]; struct pfi_kkif *kif; }; TAILQ_HEAD(pf_kpalist, pf_kpooladdr); struct pf_kpool { + struct mtx mtx; struct pf_kpalist list; struct pf_kpooladdr *cur; struct pf_poolhashkey key; struct pf_addr counter; struct pf_mape_portset mape; int tblidx; u_int16_t proxy_port[2]; u_int8_t opts; }; struct pf_rule_actions { uint16_t qid; uint16_t pqid; }; union pf_krule_ptr { struct pf_krule *ptr; u_int32_t nr; }; struct pf_krule { struct pf_rule_addr src; struct pf_rule_addr dst; union pf_krule_ptr skip[PF_SKIP_COUNT]; char label[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; uint32_t ridentifier; char ifname[IFNAMSIZ]; char qname[PF_QNAME_SIZE]; char pqname[PF_QNAME_SIZE]; char tagname[PF_TAG_NAME_SIZE]; char match_tagname[PF_TAG_NAME_SIZE]; char overload_tblname[PF_TABLE_NAME_SIZE]; TAILQ_ENTRY(pf_krule) entries; struct pf_kpool rpool; struct pf_counter_u64 evaluations; struct pf_counter_u64 packets[2]; struct pf_counter_u64 bytes[2]; struct pfi_kkif *kif; struct pf_kanchor *anchor; struct pfr_ktable *overload_tbl; pf_osfp_t os_fingerprint; int rtableid; u_int32_t timeout[PFTM_MAX]; u_int32_t max_states; u_int32_t max_src_nodes; u_int32_t max_src_states; u_int32_t max_src_conn; struct { u_int32_t limit; u_int32_t seconds; } max_src_conn_rate; u_int16_t qid; u_int16_t pqid; u_int32_t nr; u_int32_t prob; uid_t cuid; pid_t cpid; counter_u64_t states_cur; counter_u64_t states_tot; counter_u64_t src_nodes; u_int16_t return_icmp; u_int16_t return_icmp6; u_int16_t max_mss; u_int16_t tag; u_int16_t match_tag; u_int16_t scrub_flags; struct pf_rule_uid uid; struct pf_rule_gid gid; u_int32_t rule_flag; uint32_t rule_ref; u_int8_t action; u_int8_t direction; u_int8_t log; u_int8_t logif; u_int8_t quick; u_int8_t ifnot; u_int8_t match_tag_not; u_int8_t natpass; u_int8_t keep_state; sa_family_t af; u_int8_t proto; u_int8_t type; u_int8_t code; u_int8_t flags; u_int8_t flagset; u_int8_t min_ttl; u_int8_t allow_opts; u_int8_t rt; u_int8_t return_ttl; u_int8_t tos; u_int8_t set_tos; u_int8_t anchor_relative; u_int8_t anchor_wildcard; u_int8_t flush; u_int8_t prio; u_int8_t set_prio[2]; struct { struct pf_addr addr; u_int16_t port; } divert; #ifdef PF_WANT_32_TO_64_COUNTER LIST_ENTRY(pf_krule) allrulelist; bool allrulelinked; #endif }; struct pf_ksrc_node { LIST_ENTRY(pf_ksrc_node) entry; struct pf_addr addr; struct pf_addr raddr; union pf_krule_ptr rule; struct pfi_kkif *kif; counter_u64_t bytes[2]; counter_u64_t packets[2]; u_int32_t states; u_int32_t conn; struct pf_threshold conn_rate; u_int32_t creation; u_int32_t expire; sa_family_t af; u_int8_t ruletype; }; #endif struct pf_state_scrub { struct timeval pfss_last; /* time received last packet */ u_int32_t pfss_tsecr; /* last echoed timestamp */ u_int32_t pfss_tsval; /* largest timestamp */ u_int32_t pfss_tsval0; /* original timestamp */ u_int16_t pfss_flags; #define PFSS_TIMESTAMP 0x0001 /* modulate timestamp */ #define PFSS_PAWS 0x0010 /* stricter PAWS checks */ #define PFSS_PAWS_IDLED 0x0020 /* was idle too long. no PAWS */ #define PFSS_DATA_TS 0x0040 /* timestamp on data packets */ #define PFSS_DATA_NOTS 0x0080 /* no timestamp on data packets */ u_int8_t pfss_ttl; /* stashed TTL */ u_int8_t pad; u_int32_t pfss_ts_mod; /* timestamp modulation */ }; struct pf_state_host { struct pf_addr addr; u_int16_t port; u_int16_t pad; }; struct pf_state_peer { struct pf_state_scrub *scrub; /* state is scrubbed */ u_int32_t seqlo; /* Max sequence number sent */ u_int32_t seqhi; /* Max the other end ACKd + win */ u_int32_t seqdiff; /* Sequence number modulator */ u_int16_t max_win; /* largest window (pre scaling) */ u_int16_t mss; /* Maximum segment size option */ u_int8_t state; /* active state level */ u_int8_t wscale; /* window scaling factor */ u_int8_t tcp_est; /* Did we reach TCPS_ESTABLISHED */ u_int8_t pad[1]; }; /* Keep synced with struct pf_state_key. */ struct pf_state_key_cmp { struct pf_addr addr[2]; u_int16_t port[2]; sa_family_t af; u_int8_t proto; u_int8_t pad[2]; }; struct pf_state_key { struct pf_addr addr[2]; u_int16_t port[2]; sa_family_t af; u_int8_t proto; u_int8_t pad[2]; LIST_ENTRY(pf_state_key) entry; TAILQ_HEAD(, pf_kstate) states[2]; }; /* Keep synced with struct pf_kstate. */ struct pf_state_cmp { u_int64_t id; u_int32_t creatorid; u_int8_t direction; u_int8_t pad[3]; }; #define PFSTATE_ALLOWOPTS 0x01 #define PFSTATE_SLOPPY 0x02 /* was PFSTATE_PFLOW 0x04 */ #define PFSTATE_NOSYNC 0x08 #define PFSTATE_ACK 0x10 #define PFSTATE_SETPRIO 0x0200 #define PFSTATE_SETMASK (PFSTATE_SETPRIO) struct pf_state_scrub_export { uint16_t pfss_flags; uint8_t pfss_ttl; /* stashed TTL */ #define PF_SCRUB_FLAG_VALID 0x01 uint8_t scrub_flag; uint32_t pfss_ts_mod; /* timestamp modulation */ }; struct pf_state_key_export { struct pf_addr addr[2]; uint16_t port[2]; }; struct pf_state_peer_export { struct pf_state_scrub_export scrub; /* state is scrubbed */ uint32_t seqlo; /* Max sequence number sent */ uint32_t seqhi; /* Max the other end ACKd + win */ uint32_t seqdiff; /* Sequence number modulator */ uint16_t max_win; /* largest window (pre scaling) */ uint16_t mss; /* Maximum segment size option */ uint8_t state; /* active state level */ uint8_t wscale; /* window scaling factor */ uint8_t dummy[6]; }; _Static_assert(sizeof(struct pf_state_peer_export) == 32, "size incorrect"); struct pf_state_export { uint64_t version; #define PF_STATE_VERSION 20210706 uint64_t id; char ifname[IFNAMSIZ]; char orig_ifname[IFNAMSIZ]; struct pf_state_key_export key[2]; struct pf_state_peer_export src; struct pf_state_peer_export dst; struct pf_addr rt_addr; uint32_t rule; uint32_t anchor; uint32_t nat_rule; uint32_t creation; uint32_t expire; uint32_t spare0; uint64_t packets[2]; uint64_t bytes[2]; uint32_t creatorid; uint32_t spare1; sa_family_t af; uint8_t proto; uint8_t direction; uint8_t log; uint8_t state_flags; uint8_t timeout; uint8_t sync_flags; uint8_t updates; uint8_t spare[112]; }; _Static_assert(sizeof(struct pf_state_export) == 384, "size incorrect"); #ifdef _KERNEL struct pf_kstate { /* * Area shared with pf_state_cmp */ u_int64_t id; u_int32_t creatorid; u_int8_t direction; u_int8_t pad[3]; /* * end of the area */ u_int8_t state_flags; u_int8_t timeout; u_int8_t sync_state; /* PFSYNC_S_x */ u_int8_t sync_updates; /* XXX */ u_int refs; struct mtx *lock; TAILQ_ENTRY(pf_kstate) sync_list; TAILQ_ENTRY(pf_kstate) key_list[2]; LIST_ENTRY(pf_kstate) entry; struct pf_state_peer src; struct pf_state_peer dst; union pf_krule_ptr rule; union pf_krule_ptr anchor; union pf_krule_ptr nat_rule; struct pf_addr rt_addr; struct pf_state_key *key[2]; /* addresses stack and wire */ struct pfi_kkif *kif; struct pfi_kkif *orig_kif; /* The real kif, even if we're a floating state (i.e. if == V_pfi_all). */ struct pfi_kkif *rt_kif; struct pf_ksrc_node *src_node; struct pf_ksrc_node *nat_src_node; u_int64_t packets[2]; u_int64_t bytes[2]; u_int32_t creation; u_int32_t expire; u_int32_t pfsync_time; u_int16_t qid; u_int16_t pqid; u_int16_t tag; u_int8_t log; }; /* * Size <= fits 13 objects per page on LP64. Try to not grow the struct beyond that. */ _Static_assert(sizeof(struct pf_kstate) <= 312, "pf_kstate size crosses 312 bytes"); #endif /* * Unified state structures for pulling states out of the kernel * used by pfsync(4) and the pf(4) ioctl. */ struct pfsync_state_scrub { u_int16_t pfss_flags; u_int8_t pfss_ttl; /* stashed TTL */ #define PFSYNC_SCRUB_FLAG_VALID 0x01 u_int8_t scrub_flag; u_int32_t pfss_ts_mod; /* timestamp modulation */ } __packed; struct pfsync_state_peer { struct pfsync_state_scrub scrub; /* state is scrubbed */ u_int32_t seqlo; /* Max sequence number sent */ u_int32_t seqhi; /* Max the other end ACKd + win */ u_int32_t seqdiff; /* Sequence number modulator */ u_int16_t max_win; /* largest window (pre scaling) */ u_int16_t mss; /* Maximum segment size option */ u_int8_t state; /* active state level */ u_int8_t wscale; /* window scaling factor */ u_int8_t pad[6]; } __packed; struct pfsync_state_key { struct pf_addr addr[2]; u_int16_t port[2]; }; struct pfsync_state { u_int64_t id; char ifname[IFNAMSIZ]; struct pfsync_state_key key[2]; struct pfsync_state_peer src; struct pfsync_state_peer dst; struct pf_addr rt_addr; u_int32_t rule; u_int32_t anchor; u_int32_t nat_rule; u_int32_t creation; u_int32_t expire; u_int32_t packets[2][2]; u_int32_t bytes[2][2]; u_int32_t creatorid; sa_family_t af; u_int8_t proto; u_int8_t direction; u_int8_t __spare[2]; u_int8_t log; u_int8_t state_flags; u_int8_t timeout; u_int8_t sync_flags; u_int8_t updates; } __packed; #ifdef _KERNEL /* pfsync */ typedef int pfsync_state_import_t(struct pfsync_state *, u_int8_t); typedef void pfsync_insert_state_t(struct pf_kstate *); typedef void pfsync_update_state_t(struct pf_kstate *); typedef void pfsync_delete_state_t(struct pf_kstate *); typedef void pfsync_clear_states_t(u_int32_t, const char *); typedef int pfsync_defer_t(struct pf_kstate *, struct mbuf *); typedef void pfsync_detach_ifnet_t(struct ifnet *); VNET_DECLARE(pfsync_state_import_t *, pfsync_state_import_ptr); #define V_pfsync_state_import_ptr VNET(pfsync_state_import_ptr) VNET_DECLARE(pfsync_insert_state_t *, pfsync_insert_state_ptr); #define V_pfsync_insert_state_ptr VNET(pfsync_insert_state_ptr) VNET_DECLARE(pfsync_update_state_t *, pfsync_update_state_ptr); #define V_pfsync_update_state_ptr VNET(pfsync_update_state_ptr) VNET_DECLARE(pfsync_delete_state_t *, pfsync_delete_state_ptr); #define V_pfsync_delete_state_ptr VNET(pfsync_delete_state_ptr) VNET_DECLARE(pfsync_clear_states_t *, pfsync_clear_states_ptr); #define V_pfsync_clear_states_ptr VNET(pfsync_clear_states_ptr) VNET_DECLARE(pfsync_defer_t *, pfsync_defer_ptr); #define V_pfsync_defer_ptr VNET(pfsync_defer_ptr) extern pfsync_detach_ifnet_t *pfsync_detach_ifnet_ptr; void pfsync_state_export(struct pfsync_state *, struct pf_kstate *); void pf_state_export(struct pf_state_export *, struct pf_kstate *); /* pflog */ struct pf_kruleset; struct pf_pdesc; typedef int pflog_packet_t(struct pfi_kkif *, struct mbuf *, sa_family_t, u_int8_t, u_int8_t, struct pf_krule *, struct pf_krule *, struct pf_kruleset *, struct pf_pdesc *, int); extern pflog_packet_t *pflog_packet_ptr; #endif /* _KERNEL */ #define PFSYNC_FLAG_SRCNODE 0x04 #define PFSYNC_FLAG_NATSRCNODE 0x08 /* for copies to/from network byte order */ /* ioctl interface also uses network byte order */ #define pf_state_peer_hton(s,d) do { \ (d)->seqlo = htonl((s)->seqlo); \ (d)->seqhi = htonl((s)->seqhi); \ (d)->seqdiff = htonl((s)->seqdiff); \ (d)->max_win = htons((s)->max_win); \ (d)->mss = htons((s)->mss); \ (d)->state = (s)->state; \ (d)->wscale = (s)->wscale; \ if ((s)->scrub) { \ (d)->scrub.pfss_flags = \ htons((s)->scrub->pfss_flags & PFSS_TIMESTAMP); \ (d)->scrub.pfss_ttl = (s)->scrub->pfss_ttl; \ (d)->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod);\ (d)->scrub.scrub_flag = PFSYNC_SCRUB_FLAG_VALID; \ } \ } while (0) #define pf_state_peer_ntoh(s,d) do { \ (d)->seqlo = ntohl((s)->seqlo); \ (d)->seqhi = ntohl((s)->seqhi); \ (d)->seqdiff = ntohl((s)->seqdiff); \ (d)->max_win = ntohs((s)->max_win); \ (d)->mss = ntohs((s)->mss); \ (d)->state = (s)->state; \ (d)->wscale = (s)->wscale; \ if ((s)->scrub.scrub_flag == PFSYNC_SCRUB_FLAG_VALID && \ (d)->scrub != NULL) { \ (d)->scrub->pfss_flags = \ ntohs((s)->scrub.pfss_flags) & PFSS_TIMESTAMP; \ (d)->scrub->pfss_ttl = (s)->scrub.pfss_ttl; \ (d)->scrub->pfss_ts_mod = ntohl((s)->scrub.pfss_ts_mod);\ } \ } while (0) #define pf_state_counter_hton(s,d) do { \ d[0] = htonl((s>>32)&0xffffffff); \ d[1] = htonl(s&0xffffffff); \ } while (0) #define pf_state_counter_from_pfsync(s) \ (((u_int64_t)(s[0])<<32) | (u_int64_t)(s[1])) #define pf_state_counter_ntoh(s,d) do { \ d = ntohl(s[0]); \ d = d<<32; \ d += ntohl(s[1]); \ } while (0) TAILQ_HEAD(pf_krulequeue, pf_krule); struct pf_kanchor; struct pf_kruleset { struct { struct pf_krulequeue queues[2]; struct { struct pf_krulequeue *ptr; struct pf_krule **ptr_array; u_int32_t rcount; u_int32_t ticket; int open; } active, inactive; } rules[PF_RULESET_MAX]; struct pf_kanchor *anchor; u_int32_t tticket; int tables; int topen; }; RB_HEAD(pf_kanchor_global, pf_kanchor); RB_HEAD(pf_kanchor_node, pf_kanchor); struct pf_kanchor { RB_ENTRY(pf_kanchor) entry_global; RB_ENTRY(pf_kanchor) entry_node; struct pf_kanchor *parent; struct pf_kanchor_node children; char name[PF_ANCHOR_NAME_SIZE]; char path[MAXPATHLEN]; struct pf_kruleset ruleset; int refcnt; /* anchor rules */ }; RB_PROTOTYPE(pf_kanchor_global, pf_kanchor, entry_global, pf_anchor_compare); RB_PROTOTYPE(pf_kanchor_node, pf_kanchor, entry_node, pf_kanchor_compare); #define PF_RESERVED_ANCHOR "_pf" #define PFR_TFLAG_PERSIST 0x00000001 #define PFR_TFLAG_CONST 0x00000002 #define PFR_TFLAG_ACTIVE 0x00000004 #define PFR_TFLAG_INACTIVE 0x00000008 #define PFR_TFLAG_REFERENCED 0x00000010 #define PFR_TFLAG_REFDANCHOR 0x00000020 #define PFR_TFLAG_COUNTERS 0x00000040 /* Adjust masks below when adding flags. */ #define PFR_TFLAG_USRMASK (PFR_TFLAG_PERSIST | \ PFR_TFLAG_CONST | \ PFR_TFLAG_COUNTERS) #define PFR_TFLAG_SETMASK (PFR_TFLAG_ACTIVE | \ PFR_TFLAG_INACTIVE | \ PFR_TFLAG_REFERENCED | \ PFR_TFLAG_REFDANCHOR) #define PFR_TFLAG_ALLMASK (PFR_TFLAG_PERSIST | \ PFR_TFLAG_CONST | \ PFR_TFLAG_ACTIVE | \ PFR_TFLAG_INACTIVE | \ PFR_TFLAG_REFERENCED | \ PFR_TFLAG_REFDANCHOR | \ PFR_TFLAG_COUNTERS) struct pf_kanchor_stackframe; struct pfr_table { char pfrt_anchor[MAXPATHLEN]; char pfrt_name[PF_TABLE_NAME_SIZE]; u_int32_t pfrt_flags; u_int8_t pfrt_fback; }; enum { PFR_FB_NONE, PFR_FB_MATCH, PFR_FB_ADDED, PFR_FB_DELETED, PFR_FB_CHANGED, PFR_FB_CLEARED, PFR_FB_DUPLICATE, PFR_FB_NOTMATCH, PFR_FB_CONFLICT, PFR_FB_NOCOUNT, PFR_FB_MAX }; struct pfr_addr { union { struct in_addr _pfra_ip4addr; struct in6_addr _pfra_ip6addr; } pfra_u; u_int8_t pfra_af; u_int8_t pfra_net; u_int8_t pfra_not; u_int8_t pfra_fback; }; #define pfra_ip4addr pfra_u._pfra_ip4addr #define pfra_ip6addr pfra_u._pfra_ip6addr enum { PFR_DIR_IN, PFR_DIR_OUT, PFR_DIR_MAX }; enum { PFR_OP_BLOCK, PFR_OP_PASS, PFR_OP_ADDR_MAX, PFR_OP_TABLE_MAX }; enum { PFR_TYPE_PACKETS, PFR_TYPE_BYTES, PFR_TYPE_MAX }; #define PFR_NUM_COUNTERS (PFR_DIR_MAX * PFR_OP_ADDR_MAX * PFR_TYPE_MAX) #define PFR_OP_XPASS PFR_OP_ADDR_MAX struct pfr_astats { struct pfr_addr pfras_a; u_int64_t pfras_packets[PFR_DIR_MAX][PFR_OP_ADDR_MAX]; u_int64_t pfras_bytes[PFR_DIR_MAX][PFR_OP_ADDR_MAX]; long pfras_tzero; }; enum { PFR_REFCNT_RULE, PFR_REFCNT_ANCHOR, PFR_REFCNT_MAX }; struct pfr_tstats { struct pfr_table pfrts_t; u_int64_t pfrts_packets[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; u_int64_t pfrts_bytes[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; u_int64_t pfrts_match; u_int64_t pfrts_nomatch; long pfrts_tzero; int pfrts_cnt; int pfrts_refcnt[PFR_REFCNT_MAX]; }; #ifdef _KERNEL struct pfr_kstate_counter { counter_u64_t pkc_pcpu; u_int64_t pkc_zero; }; static inline int pfr_kstate_counter_init(struct pfr_kstate_counter *pfrc, int flags) { pfrc->pkc_zero = 0; pfrc->pkc_pcpu = counter_u64_alloc(flags); if (pfrc->pkc_pcpu == NULL) return (ENOMEM); return (0); } static inline void pfr_kstate_counter_deinit(struct pfr_kstate_counter *pfrc) { counter_u64_free(pfrc->pkc_pcpu); } static inline u_int64_t pfr_kstate_counter_fetch(struct pfr_kstate_counter *pfrc) { u_int64_t c; c = counter_u64_fetch(pfrc->pkc_pcpu); c -= pfrc->pkc_zero; return (c); } static inline void pfr_kstate_counter_zero(struct pfr_kstate_counter *pfrc) { u_int64_t c; c = counter_u64_fetch(pfrc->pkc_pcpu); pfrc->pkc_zero = c; } static inline void pfr_kstate_counter_add(struct pfr_kstate_counter *pfrc, int64_t n) { counter_u64_add(pfrc->pkc_pcpu, n); } struct pfr_ktstats { struct pfr_table pfrts_t; struct pfr_kstate_counter pfrkts_packets[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; struct pfr_kstate_counter pfrkts_bytes[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; struct pfr_kstate_counter pfrkts_match; struct pfr_kstate_counter pfrkts_nomatch; long pfrkts_tzero; int pfrkts_cnt; int pfrkts_refcnt[PFR_REFCNT_MAX]; }; #endif /* _KERNEL */ #define pfrts_name pfrts_t.pfrt_name #define pfrts_flags pfrts_t.pfrt_flags #ifndef _SOCKADDR_UNION_DEFINED #define _SOCKADDR_UNION_DEFINED union sockaddr_union { struct sockaddr sa; struct sockaddr_in sin; struct sockaddr_in6 sin6; }; #endif /* _SOCKADDR_UNION_DEFINED */ struct pfr_kcounters { counter_u64_t pfrkc_counters; long pfrkc_tzero; }; #define pfr_kentry_counter(kc, dir, op, t) \ ((kc)->pfrkc_counters + \ (dir) * PFR_OP_ADDR_MAX * PFR_TYPE_MAX + (op) * PFR_TYPE_MAX + (t)) #ifdef _KERNEL SLIST_HEAD(pfr_kentryworkq, pfr_kentry); struct pfr_kentry { struct radix_node pfrke_node[2]; union sockaddr_union pfrke_sa; SLIST_ENTRY(pfr_kentry) pfrke_workq; struct pfr_kcounters pfrke_counters; u_int8_t pfrke_af; u_int8_t pfrke_net; u_int8_t pfrke_not; u_int8_t pfrke_mark; }; SLIST_HEAD(pfr_ktableworkq, pfr_ktable); RB_HEAD(pfr_ktablehead, pfr_ktable); struct pfr_ktable { struct pfr_ktstats pfrkt_kts; RB_ENTRY(pfr_ktable) pfrkt_tree; SLIST_ENTRY(pfr_ktable) pfrkt_workq; struct radix_node_head *pfrkt_ip4; struct radix_node_head *pfrkt_ip6; struct pfr_ktable *pfrkt_shadow; struct pfr_ktable *pfrkt_root; struct pf_kruleset *pfrkt_rs; long pfrkt_larg; int pfrkt_nflags; }; #define pfrkt_t pfrkt_kts.pfrts_t #define pfrkt_name pfrkt_t.pfrt_name #define pfrkt_anchor pfrkt_t.pfrt_anchor #define pfrkt_ruleset pfrkt_t.pfrt_ruleset #define pfrkt_flags pfrkt_t.pfrt_flags #define pfrkt_cnt pfrkt_kts.pfrkts_cnt #define pfrkt_refcnt pfrkt_kts.pfrkts_refcnt #define pfrkt_packets pfrkt_kts.pfrkts_packets #define pfrkt_bytes pfrkt_kts.pfrkts_bytes #define pfrkt_match pfrkt_kts.pfrkts_match #define pfrkt_nomatch pfrkt_kts.pfrkts_nomatch #define pfrkt_tzero pfrkt_kts.pfrkts_tzero #endif #ifdef _KERNEL struct pfi_kkif { char pfik_name[IFNAMSIZ]; union { RB_ENTRY(pfi_kkif) _pfik_tree; LIST_ENTRY(pfi_kkif) _pfik_list; } _pfik_glue; #define pfik_tree _pfik_glue._pfik_tree #define pfik_list _pfik_glue._pfik_list struct pf_counter_u64 pfik_packets[2][2][2]; struct pf_counter_u64 pfik_bytes[2][2][2]; u_int32_t pfik_tzero; u_int pfik_flags; struct ifnet *pfik_ifp; struct ifg_group *pfik_group; u_int pfik_rulerefs; TAILQ_HEAD(, pfi_dynaddr) pfik_dynaddrs; #ifdef PF_WANT_32_TO_64_COUNTER LIST_ENTRY(pfi_kkif) pfik_allkiflist; #endif }; #endif #define PFI_IFLAG_REFS 0x0001 /* has state references */ #define PFI_IFLAG_SKIP 0x0100 /* skip filtering on interface */ #ifdef _KERNEL struct pf_pdesc { struct { int done; uid_t uid; gid_t gid; } lookup; u_int64_t tot_len; /* Make Mickey money */ union pf_headers { struct tcphdr tcp; struct udphdr udp; struct icmp icmp; #ifdef INET6 struct icmp6_hdr icmp6; #endif /* INET6 */ char any[0]; } hdr; struct pf_krule *nat_rule; /* nat/rdr rule applied to packet */ struct pf_addr *src; /* src address */ struct pf_addr *dst; /* dst address */ u_int16_t *sport; u_int16_t *dport; struct pf_mtag *pf_mtag; struct pf_rule_actions act; u_int32_t p_len; /* total length of payload */ u_int16_t *ip_sum; u_int16_t *proto_sum; u_int16_t flags; /* Let SCRUB trigger behavior in * state code. Easier than tags */ #define PFDESC_TCP_NORM 0x0001 /* TCP shall be statefully scrubbed */ #define PFDESC_IP_REAS 0x0002 /* IP frags would've been reassembled */ sa_family_t af; u_int8_t proto; u_int8_t tos; u_int8_t dir; /* direction */ u_int8_t sidx; /* key index for source */ u_int8_t didx; /* key index for destination */ }; #endif /* flags for RDR options */ #define PF_DPORT_RANGE 0x01 /* Dest port uses range */ #define PF_RPORT_RANGE 0x02 /* RDR'ed port uses range */ /* UDP state enumeration */ #define PFUDPS_NO_TRAFFIC 0 #define PFUDPS_SINGLE 1 #define PFUDPS_MULTIPLE 2 #define PFUDPS_NSTATES 3 /* number of state levels */ #define PFUDPS_NAMES { \ "NO_TRAFFIC", \ "SINGLE", \ "MULTIPLE", \ NULL \ } /* Other protocol state enumeration */ #define PFOTHERS_NO_TRAFFIC 0 #define PFOTHERS_SINGLE 1 #define PFOTHERS_MULTIPLE 2 #define PFOTHERS_NSTATES 3 /* number of state levels */ #define PFOTHERS_NAMES { \ "NO_TRAFFIC", \ "SINGLE", \ "MULTIPLE", \ NULL \ } #define ACTION_SET(a, x) \ do { \ if ((a) != NULL) \ *(a) = (x); \ } while (0) #define REASON_SET(a, x) \ do { \ if ((a) != NULL) \ *(a) = (x); \ if (x < PFRES_MAX) \ counter_u64_add(V_pf_status.counters[x], 1); \ } while (0) enum pf_syncookies_mode { PF_SYNCOOKIES_NEVER = 0, PF_SYNCOOKIES_ALWAYS = 1, PF_SYNCOOKIES_ADAPTIVE = 2, PF_SYNCOOKIES_MODE_MAX = PF_SYNCOOKIES_ADAPTIVE }; #define PF_SYNCOOKIES_HIWATPCT 25 #define PF_SYNCOOKIES_LOWATPCT (PF_SYNCOOKIES_HIWATPCT / 2) #ifdef _KERNEL struct pf_kstatus { counter_u64_t counters[PFRES_MAX]; /* reason for passing/dropping */ counter_u64_t lcounters[KLCNT_MAX]; /* limit counters */ struct pf_counter_u64 fcounters[FCNT_MAX]; /* state operation counters */ counter_u64_t scounters[SCNT_MAX]; /* src_node operation counters */ uint32_t states; uint32_t src_nodes; uint32_t running; uint32_t since; uint32_t debug; uint32_t hostid; char ifname[IFNAMSIZ]; uint8_t pf_chksum[PF_MD5_DIGEST_LENGTH]; bool keep_counters; enum pf_syncookies_mode syncookies_mode; bool syncookies_active; uint64_t syncookies_inflight[2]; uint32_t states_halfopen; }; #endif struct pf_divert { union { struct in_addr ipv4; struct in6_addr ipv6; } addr; u_int16_t port; }; #define PFFRAG_FRENT_HIWAT 5000 /* Number of fragment entries */ #define PFR_KENTRY_HIWAT 200000 /* Number of table entries */ /* * Limit the length of the fragment queue traversal. Remember * search entry points based on the fragment offset. */ #define PF_FRAG_ENTRY_POINTS 16 /* * The number of entries in the fragment queue must be limited * to avoid DoS by linear seaching. Instead of a global limit, * use a limit per entry point. For large packets these sum up. */ #define PF_FRAG_ENTRY_LIMIT 64 /* * ioctl parameter structures */ struct pfioc_pooladdr { u_int32_t action; u_int32_t ticket; u_int32_t nr; u_int32_t r_num; u_int8_t r_action; u_int8_t r_last; u_int8_t af; char anchor[MAXPATHLEN]; struct pf_pooladdr addr; }; struct pfioc_rule { u_int32_t action; u_int32_t ticket; u_int32_t pool_ticket; u_int32_t nr; char anchor[MAXPATHLEN]; char anchor_call[MAXPATHLEN]; struct pf_rule rule; }; struct pfioc_natlook { struct pf_addr saddr; struct pf_addr daddr; struct pf_addr rsaddr; struct pf_addr rdaddr; u_int16_t sport; u_int16_t dport; u_int16_t rsport; u_int16_t rdport; sa_family_t af; u_int8_t proto; u_int8_t direction; }; struct pfioc_state { struct pfsync_state state; }; struct pfioc_src_node_kill { sa_family_t psnk_af; struct pf_rule_addr psnk_src; struct pf_rule_addr psnk_dst; u_int psnk_killed; }; #ifdef _KERNEL struct pf_kstate_kill { struct pf_state_cmp psk_pfcmp; sa_family_t psk_af; int psk_proto; struct pf_rule_addr psk_src; struct pf_rule_addr psk_dst; struct pf_rule_addr psk_rt_addr; char psk_ifname[IFNAMSIZ]; char psk_label[PF_RULE_LABEL_SIZE]; u_int psk_killed; bool psk_kill_match; }; #endif struct pfioc_state_kill { struct pf_state_cmp psk_pfcmp; sa_family_t psk_af; int psk_proto; struct pf_rule_addr psk_src; struct pf_rule_addr psk_dst; char psk_ifname[IFNAMSIZ]; char psk_label[PF_RULE_LABEL_SIZE]; u_int psk_killed; }; struct pfioc_states { int ps_len; union { caddr_t psu_buf; struct pfsync_state *psu_states; } ps_u; #define ps_buf ps_u.psu_buf #define ps_states ps_u.psu_states }; struct pfioc_states_v2 { int ps_len; uint64_t ps_req_version; union { caddr_t psu_buf; struct pf_state_export *psu_states; } ps_u; #define ps_buf ps_u.psu_buf #define ps_states ps_u.psu_states }; struct pfioc_src_nodes { int psn_len; union { caddr_t psu_buf; struct pf_src_node *psu_src_nodes; } psn_u; #define psn_buf psn_u.psu_buf #define psn_src_nodes psn_u.psu_src_nodes }; struct pfioc_if { char ifname[IFNAMSIZ]; }; struct pfioc_tm { int timeout; int seconds; }; struct pfioc_limit { int index; unsigned limit; }; struct pfioc_altq_v0 { u_int32_t action; u_int32_t ticket; u_int32_t nr; struct pf_altq_v0 altq; }; struct pfioc_altq_v1 { u_int32_t action; u_int32_t ticket; u_int32_t nr; /* * Placed here so code that only uses the above parameters can be * written entirely in terms of the v0 or v1 type. */ u_int32_t version; struct pf_altq_v1 altq; }; /* * Latest version of struct pfioc_altq_vX. This must move in lock-step with * the latest version of struct pf_altq_vX as it has that struct as a * member. */ #define PFIOC_ALTQ_VERSION PF_ALTQ_VERSION struct pfioc_qstats_v0 { u_int32_t ticket; u_int32_t nr; void *buf; int nbytes; u_int8_t scheduler; }; struct pfioc_qstats_v1 { u_int32_t ticket; u_int32_t nr; void *buf; int nbytes; u_int8_t scheduler; /* * Placed here so code that only uses the above parameters can be * written entirely in terms of the v0 or v1 type. */ u_int32_t version; /* Requested version of stats struct */ }; /* Latest version of struct pfioc_qstats_vX */ #define PFIOC_QSTATS_VERSION 1 struct pfioc_ruleset { u_int32_t nr; char path[MAXPATHLEN]; char name[PF_ANCHOR_NAME_SIZE]; }; #define PF_RULESET_ALTQ (PF_RULESET_MAX) #define PF_RULESET_TABLE (PF_RULESET_MAX+1) struct pfioc_trans { int size; /* number of elements */ int esize; /* size of each element in bytes */ struct pfioc_trans_e { int rs_num; char anchor[MAXPATHLEN]; u_int32_t ticket; } *array; }; #define PFR_FLAG_ATOMIC 0x00000001 /* unused */ #define PFR_FLAG_DUMMY 0x00000002 #define PFR_FLAG_FEEDBACK 0x00000004 #define PFR_FLAG_CLSTATS 0x00000008 #define PFR_FLAG_ADDRSTOO 0x00000010 #define PFR_FLAG_REPLACE 0x00000020 #define PFR_FLAG_ALLRSETS 0x00000040 #define PFR_FLAG_ALLMASK 0x0000007F #ifdef _KERNEL #define PFR_FLAG_USERIOCTL 0x10000000 #endif struct pfioc_table { struct pfr_table pfrio_table; void *pfrio_buffer; int pfrio_esize; int pfrio_size; int pfrio_size2; int pfrio_nadd; int pfrio_ndel; int pfrio_nchange; int pfrio_flags; u_int32_t pfrio_ticket; }; #define pfrio_exists pfrio_nadd #define pfrio_nzero pfrio_nadd #define pfrio_nmatch pfrio_nadd #define pfrio_naddr pfrio_size2 #define pfrio_setflag pfrio_size2 #define pfrio_clrflag pfrio_nadd struct pfioc_iface { char pfiio_name[IFNAMSIZ]; void *pfiio_buffer; int pfiio_esize; int pfiio_size; int pfiio_nzero; int pfiio_flags; }; /* * ioctl operations */ #define DIOCSTART _IO ('D', 1) #define DIOCSTOP _IO ('D', 2) #define DIOCADDRULE _IOWR('D', 4, struct pfioc_rule) #define DIOCADDRULENV _IOWR('D', 4, struct pfioc_nv) #define DIOCGETRULES _IOWR('D', 6, struct pfioc_rule) #define DIOCGETRULE _IOWR('D', 7, struct pfioc_rule) #define DIOCGETRULENV _IOWR('D', 7, struct pfioc_nv) /* XXX cut 8 - 17 */ #define DIOCCLRSTATES _IOWR('D', 18, struct pfioc_state_kill) #define DIOCCLRSTATESNV _IOWR('D', 18, struct pfioc_nv) #define DIOCGETSTATE _IOWR('D', 19, struct pfioc_state) #define DIOCGETSTATENV _IOWR('D', 19, struct pfioc_nv) #define DIOCSETSTATUSIF _IOWR('D', 20, struct pfioc_if) #define DIOCGETSTATUS _IOWR('D', 21, struct pf_status) #define DIOCGETSTATUSNV _IOWR('D', 21, struct pfioc_nv) #define DIOCCLRSTATUS _IO ('D', 22) #define DIOCNATLOOK _IOWR('D', 23, struct pfioc_natlook) #define DIOCSETDEBUG _IOWR('D', 24, u_int32_t) #define DIOCGETSTATES _IOWR('D', 25, struct pfioc_states) #define DIOCCHANGERULE _IOWR('D', 26, struct pfioc_rule) /* XXX cut 26 - 28 */ #define DIOCSETTIMEOUT _IOWR('D', 29, struct pfioc_tm) #define DIOCGETTIMEOUT _IOWR('D', 30, struct pfioc_tm) #define DIOCADDSTATE _IOWR('D', 37, struct pfioc_state) #define DIOCCLRRULECTRS _IO ('D', 38) #define DIOCGETLIMIT _IOWR('D', 39, struct pfioc_limit) #define DIOCSETLIMIT _IOWR('D', 40, struct pfioc_limit) #define DIOCKILLSTATES _IOWR('D', 41, struct pfioc_state_kill) #define DIOCKILLSTATESNV _IOWR('D', 41, struct pfioc_nv) #define DIOCSTARTALTQ _IO ('D', 42) #define DIOCSTOPALTQ _IO ('D', 43) #define DIOCADDALTQV0 _IOWR('D', 45, struct pfioc_altq_v0) #define DIOCADDALTQV1 _IOWR('D', 45, struct pfioc_altq_v1) #define DIOCGETALTQSV0 _IOWR('D', 47, struct pfioc_altq_v0) #define DIOCGETALTQSV1 _IOWR('D', 47, struct pfioc_altq_v1) #define DIOCGETALTQV0 _IOWR('D', 48, struct pfioc_altq_v0) #define DIOCGETALTQV1 _IOWR('D', 48, struct pfioc_altq_v1) #define DIOCCHANGEALTQV0 _IOWR('D', 49, struct pfioc_altq_v0) #define DIOCCHANGEALTQV1 _IOWR('D', 49, struct pfioc_altq_v1) #define DIOCGETQSTATSV0 _IOWR('D', 50, struct pfioc_qstats_v0) #define DIOCGETQSTATSV1 _IOWR('D', 50, struct pfioc_qstats_v1) #define DIOCBEGINADDRS _IOWR('D', 51, struct pfioc_pooladdr) #define DIOCADDADDR _IOWR('D', 52, struct pfioc_pooladdr) #define DIOCGETADDRS _IOWR('D', 53, struct pfioc_pooladdr) #define DIOCGETADDR _IOWR('D', 54, struct pfioc_pooladdr) #define DIOCCHANGEADDR _IOWR('D', 55, struct pfioc_pooladdr) /* XXX cut 55 - 57 */ #define DIOCGETRULESETS _IOWR('D', 58, struct pfioc_ruleset) #define DIOCGETRULESET _IOWR('D', 59, struct pfioc_ruleset) #define DIOCRCLRTABLES _IOWR('D', 60, struct pfioc_table) #define DIOCRADDTABLES _IOWR('D', 61, struct pfioc_table) #define DIOCRDELTABLES _IOWR('D', 62, struct pfioc_table) #define DIOCRGETTABLES _IOWR('D', 63, struct pfioc_table) #define DIOCRGETTSTATS _IOWR('D', 64, struct pfioc_table) #define DIOCRCLRTSTATS _IOWR('D', 65, struct pfioc_table) #define DIOCRCLRADDRS _IOWR('D', 66, struct pfioc_table) #define DIOCRADDADDRS _IOWR('D', 67, struct pfioc_table) #define DIOCRDELADDRS _IOWR('D', 68, struct pfioc_table) #define DIOCRSETADDRS _IOWR('D', 69, struct pfioc_table) #define DIOCRGETADDRS _IOWR('D', 70, struct pfioc_table) #define DIOCRGETASTATS _IOWR('D', 71, struct pfioc_table) #define DIOCRCLRASTATS _IOWR('D', 72, struct pfioc_table) #define DIOCRTSTADDRS _IOWR('D', 73, struct pfioc_table) #define DIOCRSETTFLAGS _IOWR('D', 74, struct pfioc_table) #define DIOCRINADEFINE _IOWR('D', 77, struct pfioc_table) #define DIOCOSFPFLUSH _IO('D', 78) #define DIOCOSFPADD _IOWR('D', 79, struct pf_osfp_ioctl) #define DIOCOSFPGET _IOWR('D', 80, struct pf_osfp_ioctl) #define DIOCXBEGIN _IOWR('D', 81, struct pfioc_trans) #define DIOCXCOMMIT _IOWR('D', 82, struct pfioc_trans) #define DIOCXROLLBACK _IOWR('D', 83, struct pfioc_trans) #define DIOCGETSRCNODES _IOWR('D', 84, struct pfioc_src_nodes) #define DIOCCLRSRCNODES _IO('D', 85) #define DIOCSETHOSTID _IOWR('D', 86, u_int32_t) #define DIOCIGETIFACES _IOWR('D', 87, struct pfioc_iface) #define DIOCSETIFFLAG _IOWR('D', 89, struct pfioc_iface) #define DIOCCLRIFFLAG _IOWR('D', 90, struct pfioc_iface) #define DIOCKILLSRCNODES _IOWR('D', 91, struct pfioc_src_node_kill) #define DIOCKEEPCOUNTERS _IOWR('D', 92, struct pfioc_nv) #define DIOCGETSTATESV2 _IOWR('D', 93, struct pfioc_states_v2) #define DIOCGETSYNCOOKIES _IOWR('D', 94, struct pfioc_nv) #define DIOCSETSYNCOOKIES _IOWR('D', 95, struct pfioc_nv) struct pf_ifspeed_v0 { char ifname[IFNAMSIZ]; u_int32_t baudrate; }; struct pf_ifspeed_v1 { char ifname[IFNAMSIZ]; u_int32_t baudrate32; /* layout identical to struct pf_ifspeed_v0 up to this point */ u_int64_t baudrate; }; /* Latest version of struct pf_ifspeed_vX */ #define PF_IFSPEED_VERSION 1 #define DIOCGIFSPEEDV0 _IOWR('D', 92, struct pf_ifspeed_v0) #define DIOCGIFSPEEDV1 _IOWR('D', 92, struct pf_ifspeed_v1) /* * Compatibility and convenience macros */ #ifndef _KERNEL #ifdef PFIOC_USE_LATEST /* * Maintaining in-tree consumers of the ioctl interface is easier when that * code can be written in terms old names that refer to the latest interface * version as that reduces the required changes in the consumers to those * that are functionally necessary to accommodate a new interface version. */ #define pfioc_altq __CONCAT(pfioc_altq_v, PFIOC_ALTQ_VERSION) #define pfioc_qstats __CONCAT(pfioc_qstats_v, PFIOC_QSTATS_VERSION) #define pf_ifspeed __CONCAT(pf_ifspeed_v, PF_IFSPEED_VERSION) #define DIOCADDALTQ __CONCAT(DIOCADDALTQV, PFIOC_ALTQ_VERSION) #define DIOCGETALTQS __CONCAT(DIOCGETALTQSV, PFIOC_ALTQ_VERSION) #define DIOCGETALTQ __CONCAT(DIOCGETALTQV, PFIOC_ALTQ_VERSION) #define DIOCCHANGEALTQ __CONCAT(DIOCCHANGEALTQV, PFIOC_ALTQ_VERSION) #define DIOCGETQSTATS __CONCAT(DIOCGETQSTATSV, PFIOC_QSTATS_VERSION) #define DIOCGIFSPEED __CONCAT(DIOCGIFSPEEDV, PF_IFSPEED_VERSION) #else /* * When building out-of-tree code that is written for the old interface, * such as may exist in ports for example, resolve the old struct tags and * ioctl command names to the v0 versions. */ #define pfioc_altq __CONCAT(pfioc_altq_v, 0) #define pfioc_qstats __CONCAT(pfioc_qstats_v, 0) #define pf_ifspeed __CONCAT(pf_ifspeed_v, 0) #define DIOCADDALTQ __CONCAT(DIOCADDALTQV, 0) #define DIOCGETALTQS __CONCAT(DIOCGETALTQSV, 0) #define DIOCGETALTQ __CONCAT(DIOCGETALTQV, 0) #define DIOCCHANGEALTQ __CONCAT(DIOCCHANGEALTQV, 0) #define DIOCGETQSTATS __CONCAT(DIOCGETQSTATSV, 0) #define DIOCGIFSPEED __CONCAT(DIOCGIFSPEEDV, 0) #endif /* PFIOC_USE_LATEST */ #endif /* _KERNEL */ #ifdef _KERNEL LIST_HEAD(pf_ksrc_node_list, pf_ksrc_node); struct pf_srchash { struct pf_ksrc_node_list nodes; struct mtx lock; }; struct pf_keyhash { LIST_HEAD(, pf_state_key) keys; struct mtx lock; }; struct pf_idhash { LIST_HEAD(, pf_kstate) states; struct mtx lock; }; extern u_long pf_ioctl_maxcount; extern u_long pf_hashmask; extern u_long pf_srchashmask; #define PF_HASHSIZ (131072) #define PF_SRCHASHSIZ (PF_HASHSIZ/4) VNET_DECLARE(struct pf_keyhash *, pf_keyhash); VNET_DECLARE(struct pf_idhash *, pf_idhash); #define V_pf_keyhash VNET(pf_keyhash) #define V_pf_idhash VNET(pf_idhash) VNET_DECLARE(struct pf_srchash *, pf_srchash); #define V_pf_srchash VNET(pf_srchash) #define PF_IDHASH(s) (be64toh((s)->id) % (pf_hashmask + 1)) VNET_DECLARE(void *, pf_swi_cookie); #define V_pf_swi_cookie VNET(pf_swi_cookie) VNET_DECLARE(struct intr_event *, pf_swi_ie); #define V_pf_swi_ie VNET(pf_swi_ie) VNET_DECLARE(uint64_t, pf_stateid[MAXCPU]); #define V_pf_stateid VNET(pf_stateid) TAILQ_HEAD(pf_altqqueue, pf_altq); VNET_DECLARE(struct pf_altqqueue, pf_altqs[4]); #define V_pf_altqs VNET(pf_altqs) VNET_DECLARE(struct pf_kpalist, pf_pabuf); #define V_pf_pabuf VNET(pf_pabuf) VNET_DECLARE(u_int32_t, ticket_altqs_active); #define V_ticket_altqs_active VNET(ticket_altqs_active) VNET_DECLARE(u_int32_t, ticket_altqs_inactive); #define V_ticket_altqs_inactive VNET(ticket_altqs_inactive) VNET_DECLARE(int, altqs_inactive_open); #define V_altqs_inactive_open VNET(altqs_inactive_open) VNET_DECLARE(u_int32_t, ticket_pabuf); #define V_ticket_pabuf VNET(ticket_pabuf) VNET_DECLARE(struct pf_altqqueue *, pf_altqs_active); #define V_pf_altqs_active VNET(pf_altqs_active) VNET_DECLARE(struct pf_altqqueue *, pf_altq_ifs_active); #define V_pf_altq_ifs_active VNET(pf_altq_ifs_active) VNET_DECLARE(struct pf_altqqueue *, pf_altqs_inactive); #define V_pf_altqs_inactive VNET(pf_altqs_inactive) VNET_DECLARE(struct pf_altqqueue *, pf_altq_ifs_inactive); #define V_pf_altq_ifs_inactive VNET(pf_altq_ifs_inactive) VNET_DECLARE(struct pf_krulequeue, pf_unlinked_rules); #define V_pf_unlinked_rules VNET(pf_unlinked_rules) #ifdef PF_WANT_32_TO_64_COUNTER LIST_HEAD(allkiflist_head, pfi_kkif); VNET_DECLARE(struct allkiflist_head, pf_allkiflist); #define V_pf_allkiflist VNET(pf_allkiflist) VNET_DECLARE(size_t, pf_allkifcount); #define V_pf_allkifcount VNET(pf_allkifcount) VNET_DECLARE(struct pfi_kkif *, pf_kifmarker); #define V_pf_kifmarker VNET(pf_kifmarker) LIST_HEAD(allrulelist_head, pf_krule); VNET_DECLARE(struct allrulelist_head, pf_allrulelist); #define V_pf_allrulelist VNET(pf_allrulelist) VNET_DECLARE(size_t, pf_allrulecount); #define V_pf_allrulecount VNET(pf_allrulecount) VNET_DECLARE(struct pf_krule *, pf_rulemarker); #define V_pf_rulemarker VNET(pf_rulemarker) #endif void pf_initialize(void); void pf_mtag_initialize(void); void pf_mtag_cleanup(void); void pf_cleanup(void); struct pf_mtag *pf_get_mtag(struct mbuf *); extern void pf_calc_skip_steps(struct pf_krulequeue *); #ifdef ALTQ extern void pf_altq_ifnet_event(struct ifnet *, int); #endif VNET_DECLARE(uma_zone_t, pf_state_z); #define V_pf_state_z VNET(pf_state_z) VNET_DECLARE(uma_zone_t, pf_state_key_z); #define V_pf_state_key_z VNET(pf_state_key_z) VNET_DECLARE(uma_zone_t, pf_state_scrub_z); #define V_pf_state_scrub_z VNET(pf_state_scrub_z) extern void pf_purge_thread(void *); extern void pf_unload_vnet_purge(void); extern void pf_intr(void *); extern void pf_purge_expired_src_nodes(void); extern int pf_unlink_state(struct pf_kstate *, u_int); #define PF_ENTER_LOCKED 0x00000001 #define PF_RETURN_LOCKED 0x00000002 extern int pf_state_insert(struct pfi_kkif *, struct pfi_kkif *, struct pf_state_key *, struct pf_state_key *, struct pf_kstate *); extern struct pf_kstate *pf_alloc_state(int); extern void pf_free_state(struct pf_kstate *); static __inline void pf_ref_state(struct pf_kstate *s) { refcount_acquire(&s->refs); } static __inline int pf_release_state(struct pf_kstate *s) { if (refcount_release(&s->refs)) { pf_free_state(s); return (1); } else return (0); } static __inline int pf_release_staten(struct pf_kstate *s, u_int n) { if (refcount_releasen(&s->refs, n)) { pf_free_state(s); return (1); } else return (0); } extern struct pf_kstate *pf_find_state_byid(uint64_t, uint32_t); extern struct pf_kstate *pf_find_state_all(struct pf_state_key_cmp *, u_int, int *); extern bool pf_find_state_all_exists(struct pf_state_key_cmp *, u_int); extern struct pf_ksrc_node *pf_find_src_node(struct pf_addr *, struct pf_krule *, sa_family_t, int); extern void pf_unlink_src_node(struct pf_ksrc_node *); extern u_int pf_free_src_nodes(struct pf_ksrc_node_list *); extern void pf_print_state(struct pf_kstate *); extern void pf_print_flags(u_int8_t); extern u_int16_t pf_cksum_fixup(u_int16_t, u_int16_t, u_int16_t, u_int8_t); extern u_int16_t pf_proto_cksum_fixup(struct mbuf *, u_int16_t, u_int16_t, u_int16_t, u_int8_t); VNET_DECLARE(struct ifnet *, sync_ifp); #define V_sync_ifp VNET(sync_ifp); VNET_DECLARE(struct pf_krule, pf_default_rule); #define V_pf_default_rule VNET(pf_default_rule) extern void pf_addrcpy(struct pf_addr *, struct pf_addr *, u_int8_t); void pf_free_rule(struct pf_krule *); #ifdef INET int pf_test(int, int, struct ifnet *, struct mbuf **, struct inpcb *); int pf_normalize_ip(struct mbuf **, int, struct pfi_kkif *, u_short *, struct pf_pdesc *); #endif /* INET */ #ifdef INET6 int pf_test6(int, int, struct ifnet *, struct mbuf **, struct inpcb *); int pf_normalize_ip6(struct mbuf **, int, struct pfi_kkif *, u_short *, struct pf_pdesc *); void pf_poolmask(struct pf_addr *, struct pf_addr*, struct pf_addr *, struct pf_addr *, u_int8_t); void pf_addr_inc(struct pf_addr *, sa_family_t); int pf_refragment6(struct ifnet *, struct mbuf **, struct m_tag *); #endif /* INET6 */ u_int32_t pf_new_isn(struct pf_kstate *); void *pf_pull_hdr(struct mbuf *, int, void *, int, u_short *, u_short *, sa_family_t); void pf_change_a(void *, u_int16_t *, u_int32_t, u_int8_t); void pf_change_proto_a(struct mbuf *, void *, u_int16_t *, u_int32_t, u_int8_t); void pf_change_tcp_a(struct mbuf *, void *, u_int16_t *, u_int32_t); void pf_patch_16_unaligned(struct mbuf *, u_int16_t *, void *, u_int16_t, bool, u_int8_t); void pf_patch_32_unaligned(struct mbuf *, u_int16_t *, void *, u_int32_t, bool, u_int8_t); void pf_send_deferred_syn(struct pf_kstate *); int pf_match_addr(u_int8_t, struct pf_addr *, struct pf_addr *, struct pf_addr *, sa_family_t); int pf_match_addr_range(struct pf_addr *, struct pf_addr *, struct pf_addr *, sa_family_t); int pf_match_port(u_int8_t, u_int16_t, u_int16_t, u_int16_t); void pf_normalize_init(void); void pf_normalize_cleanup(void); int pf_normalize_tcp(int, struct pfi_kkif *, struct mbuf *, int, int, void *, struct pf_pdesc *); void pf_normalize_tcp_cleanup(struct pf_kstate *); int pf_normalize_tcp_init(struct mbuf *, int, struct pf_pdesc *, struct tcphdr *, struct pf_state_peer *, struct pf_state_peer *); int pf_normalize_tcp_stateful(struct mbuf *, int, struct pf_pdesc *, u_short *, struct tcphdr *, struct pf_kstate *, struct pf_state_peer *, struct pf_state_peer *, int *); u_int32_t pf_state_expires(const struct pf_kstate *); void pf_purge_expired_fragments(void); void pf_purge_fragments(uint32_t); int pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *, int); int pf_socket_lookup(int, struct pf_pdesc *, struct mbuf *); struct pf_state_key *pf_alloc_state_key(int); void pfr_initialize(void); void pfr_cleanup(void); int pfr_match_addr(struct pfr_ktable *, struct pf_addr *, sa_family_t); void pfr_update_stats(struct pfr_ktable *, struct pf_addr *, sa_family_t, u_int64_t, int, int, int); int pfr_pool_get(struct pfr_ktable *, int *, struct pf_addr *, sa_family_t); void pfr_dynaddr_update(struct pfr_ktable *, struct pfi_dynaddr *); struct pfr_ktable * pfr_attach_table(struct pf_kruleset *, char *); void pfr_detach_table(struct pfr_ktable *); int pfr_clr_tables(struct pfr_table *, int *, int); int pfr_add_tables(struct pfr_table *, int, int *, int); int pfr_del_tables(struct pfr_table *, int, int *, int); int pfr_table_count(struct pfr_table *, int); int pfr_get_tables(struct pfr_table *, struct pfr_table *, int *, int); int pfr_get_tstats(struct pfr_table *, struct pfr_tstats *, int *, int); int pfr_clr_tstats(struct pfr_table *, int, int *, int); int pfr_set_tflags(struct pfr_table *, int, int, int, int *, int *, int); int pfr_clr_addrs(struct pfr_table *, int *, int); int pfr_insert_kentry(struct pfr_ktable *, struct pfr_addr *, long); int pfr_add_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_del_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_set_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int *, int *, int *, int, u_int32_t); int pfr_get_addrs(struct pfr_table *, struct pfr_addr *, int *, int); int pfr_get_astats(struct pfr_table *, struct pfr_astats *, int *, int); int pfr_clr_astats(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_tst_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_ina_begin(struct pfr_table *, u_int32_t *, int *, int); int pfr_ina_rollback(struct pfr_table *, u_int32_t, int *, int); int pfr_ina_commit(struct pfr_table *, u_int32_t, int *, int *, int); int pfr_ina_define(struct pfr_table *, struct pfr_addr *, int, int *, int *, u_int32_t, int); MALLOC_DECLARE(PFI_MTYPE); VNET_DECLARE(struct pfi_kkif *, pfi_all); #define V_pfi_all VNET(pfi_all) void pfi_initialize(void); void pfi_initialize_vnet(void); void pfi_cleanup(void); void pfi_cleanup_vnet(void); void pfi_kkif_ref(struct pfi_kkif *); void pfi_kkif_unref(struct pfi_kkif *); struct pfi_kkif *pfi_kkif_find(const char *); struct pfi_kkif *pfi_kkif_attach(struct pfi_kkif *, const char *); int pfi_kkif_match(struct pfi_kkif *, struct pfi_kkif *); void pfi_kkif_purge(void); int pfi_match_addr(struct pfi_dynaddr *, struct pf_addr *, sa_family_t); int pfi_dynaddr_setup(struct pf_addr_wrap *, sa_family_t); void pfi_dynaddr_remove(struct pfi_dynaddr *); void pfi_dynaddr_copyout(struct pf_addr_wrap *); void pfi_update_status(const char *, struct pf_status *); void pfi_get_ifaces(const char *, struct pfi_kif *, int *); int pfi_set_flags(const char *, int); int pfi_clear_flags(const char *, int); int pf_match_tag(struct mbuf *, struct pf_krule *, int *, int); int pf_tag_packet(struct mbuf *, struct pf_pdesc *, int); int pf_addr_cmp(struct pf_addr *, struct pf_addr *, sa_family_t); u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, sa_family_t); u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, sa_family_t); struct mbuf *pf_build_tcp(const struct pf_krule *, sa_family_t, const struct pf_addr *, const struct pf_addr *, u_int16_t, u_int16_t, u_int32_t, u_int32_t, u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, u_int16_t); void pf_send_tcp(const struct pf_krule *, sa_family_t, const struct pf_addr *, const struct pf_addr *, u_int16_t, u_int16_t, u_int32_t, u_int32_t, u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, u_int16_t); void pf_syncookies_init(void); void pf_syncookies_cleanup(void); int pf_get_syncookies(struct pfioc_nv *); int pf_set_syncookies(struct pfioc_nv *); int pf_synflood_check(struct pf_pdesc *); void pf_syncookie_send(struct mbuf *m, int off, struct pf_pdesc *); u_int8_t pf_syncookie_validate(struct pf_pdesc *); struct mbuf * pf_syncookie_recreate_syn(uint8_t, int, struct pf_pdesc *); VNET_DECLARE(struct pf_kstatus, pf_status); #define V_pf_status VNET(pf_status) struct pf_limit { uma_zone_t zone; u_int limit; }; VNET_DECLARE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); #define V_pf_limits VNET(pf_limits) #endif /* _KERNEL */ #ifdef _KERNEL VNET_DECLARE(struct pf_kanchor_global, pf_anchors); #define V_pf_anchors VNET(pf_anchors) VNET_DECLARE(struct pf_kanchor, pf_main_anchor); #define V_pf_main_anchor VNET(pf_main_anchor) #define pf_main_ruleset V_pf_main_anchor.ruleset void pf_init_kruleset(struct pf_kruleset *); int pf_kanchor_setup(struct pf_krule *, const struct pf_kruleset *, const char *); int pf_kanchor_nvcopyout(const struct pf_kruleset *, const struct pf_krule *, nvlist_t *); int pf_kanchor_copyout(const struct pf_kruleset *, const struct pf_krule *, struct pfioc_rule *); void pf_kanchor_remove(struct pf_krule *); void pf_remove_if_empty_kruleset(struct pf_kruleset *); struct pf_kruleset *pf_find_kruleset(const char *); struct pf_kruleset *pf_find_or_create_kruleset(const char *); void pf_rs_initialize(void); void pf_krule_free(struct pf_krule *); #endif /* The fingerprint functions can be linked into userland programs (tcpdump) */ int pf_osfp_add(struct pf_osfp_ioctl *); #ifdef _KERNEL struct pf_osfp_enlist * pf_osfp_fingerprint(struct pf_pdesc *, struct mbuf *, int, const struct tcphdr *); #endif /* _KERNEL */ void pf_osfp_flush(void); int pf_osfp_get(struct pf_osfp_ioctl *); int pf_osfp_match(struct pf_osfp_enlist *, pf_osfp_t); #ifdef _KERNEL void pf_print_host(struct pf_addr *, u_int16_t, u_int8_t); void pf_step_into_anchor(struct pf_kanchor_stackframe *, int *, struct pf_kruleset **, int, struct pf_krule **, struct pf_krule **, int *); int pf_step_out_of_anchor(struct pf_kanchor_stackframe *, int *, struct pf_kruleset **, int, struct pf_krule **, struct pf_krule **, int *); int pf_map_addr(u_int8_t, struct pf_krule *, struct pf_addr *, struct pf_addr *, struct pf_addr *, struct pf_ksrc_node **); struct pf_krule *pf_get_translation(struct pf_pdesc *, struct mbuf *, int, int, struct pfi_kkif *, struct pf_ksrc_node **, struct pf_state_key **, struct pf_state_key **, struct pf_addr *, struct pf_addr *, uint16_t, uint16_t, struct pf_kanchor_stackframe *); struct pf_state_key *pf_state_key_setup(struct pf_pdesc *, struct pf_addr *, struct pf_addr *, u_int16_t, u_int16_t); struct pf_state_key *pf_state_key_clone(struct pf_state_key *); struct pfi_kkif *pf_kkif_create(int); void pf_kkif_free(struct pfi_kkif *); void pf_kkif_zero(struct pfi_kkif *); #endif /* _KERNEL */ #endif /* _NET_PFVAR_H_ */ diff --git a/sys/netpfil/pf/pf_ioctl.c b/sys/netpfil/pf/pf_ioctl.c index 6fdce31ad308..0122389c0b08 100644 --- a/sys/netpfil/pf/pf_ioctl.c +++ b/sys/netpfil/pf/pf_ioctl.c @@ -1,5893 +1,5897 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * Copyright (c) 2002,2003 Henning Brauer * Copyright (c) 2012 Gleb Smirnoff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * * $OpenBSD: pf_ioctl.c,v 1.213 2009/02/15 21:46:12 mbalmer Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_bpf.h" #include "opt_pf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif /* INET6 */ #ifdef ALTQ #include #endif SDT_PROVIDER_DECLARE(pf); SDT_PROBE_DEFINE3(pf, ioctl, ioctl, error, "int", "int", "int"); SDT_PROBE_DEFINE3(pf, ioctl, function, error, "char *", "int", "int"); SDT_PROBE_DEFINE2(pf, ioctl, addrule, error, "int", "int"); SDT_PROBE_DEFINE2(pf, ioctl, nvchk, error, "int", "int"); static struct pf_kpool *pf_get_kpool(const char *, u_int32_t, u_int8_t, u_int32_t, u_int8_t, u_int8_t, u_int8_t); static void pf_mv_kpool(struct pf_kpalist *, struct pf_kpalist *); static void pf_empty_kpool(struct pf_kpalist *); static int pfioctl(struct cdev *, u_long, caddr_t, int, struct thread *); #ifdef ALTQ static int pf_begin_altq(u_int32_t *); static int pf_rollback_altq(u_int32_t); static int pf_commit_altq(u_int32_t); static int pf_enable_altq(struct pf_altq *); static int pf_disable_altq(struct pf_altq *); static uint16_t pf_qname2qid(const char *); static void pf_qid_unref(uint16_t); #endif /* ALTQ */ static int pf_begin_rules(u_int32_t *, int, const char *); static int pf_rollback_rules(u_int32_t, int, char *); static int pf_setup_pfsync_matching(struct pf_kruleset *); static void pf_hash_rule(MD5_CTX *, struct pf_krule *); static void pf_hash_rule_addr(MD5_CTX *, struct pf_rule_addr *); static int pf_commit_rules(u_int32_t, int, char *); static int pf_addr_setup(struct pf_kruleset *, struct pf_addr_wrap *, sa_family_t); static void pf_addr_copyout(struct pf_addr_wrap *); static void pf_src_node_copy(const struct pf_ksrc_node *, struct pf_src_node *); #ifdef ALTQ static int pf_export_kaltq(struct pf_altq *, struct pfioc_altq_v1 *, size_t); static int pf_import_kaltq(struct pfioc_altq_v1 *, struct pf_altq *, size_t); #endif /* ALTQ */ VNET_DEFINE(struct pf_krule, pf_default_rule); #ifdef ALTQ VNET_DEFINE_STATIC(int, pf_altq_running); #define V_pf_altq_running VNET(pf_altq_running) #endif #define TAGID_MAX 50000 struct pf_tagname { TAILQ_ENTRY(pf_tagname) namehash_entries; TAILQ_ENTRY(pf_tagname) taghash_entries; char name[PF_TAG_NAME_SIZE]; uint16_t tag; int ref; }; struct pf_tagset { TAILQ_HEAD(, pf_tagname) *namehash; TAILQ_HEAD(, pf_tagname) *taghash; unsigned int mask; uint32_t seed; BITSET_DEFINE(, TAGID_MAX) avail; }; VNET_DEFINE(struct pf_tagset, pf_tags); #define V_pf_tags VNET(pf_tags) static unsigned int pf_rule_tag_hashsize; #define PF_RULE_TAG_HASH_SIZE_DEFAULT 128 SYSCTL_UINT(_net_pf, OID_AUTO, rule_tag_hashsize, CTLFLAG_RDTUN, &pf_rule_tag_hashsize, PF_RULE_TAG_HASH_SIZE_DEFAULT, "Size of pf(4) rule tag hashtable"); #ifdef ALTQ VNET_DEFINE(struct pf_tagset, pf_qids); #define V_pf_qids VNET(pf_qids) static unsigned int pf_queue_tag_hashsize; #define PF_QUEUE_TAG_HASH_SIZE_DEFAULT 128 SYSCTL_UINT(_net_pf, OID_AUTO, queue_tag_hashsize, CTLFLAG_RDTUN, &pf_queue_tag_hashsize, PF_QUEUE_TAG_HASH_SIZE_DEFAULT, "Size of pf(4) queue tag hashtable"); #endif VNET_DEFINE(uma_zone_t, pf_tag_z); #define V_pf_tag_z VNET(pf_tag_z) static MALLOC_DEFINE(M_PFALTQ, "pf_altq", "pf(4) altq configuration db"); static MALLOC_DEFINE(M_PFRULE, "pf_rule", "pf(4) rules"); #if (PF_QNAME_SIZE != PF_TAG_NAME_SIZE) #error PF_QNAME_SIZE must be equal to PF_TAG_NAME_SIZE #endif static void pf_init_tagset(struct pf_tagset *, unsigned int *, unsigned int); static void pf_cleanup_tagset(struct pf_tagset *); static uint16_t tagname2hashindex(const struct pf_tagset *, const char *); static uint16_t tag2hashindex(const struct pf_tagset *, uint16_t); static u_int16_t tagname2tag(struct pf_tagset *, const char *); static u_int16_t pf_tagname2tag(const char *); static void tag_unref(struct pf_tagset *, u_int16_t); #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x struct cdev *pf_dev; /* * XXX - These are new and need to be checked when moveing to a new version */ static void pf_clear_all_states(void); static unsigned int pf_clear_states(const struct pf_kstate_kill *); static void pf_killstates(struct pf_kstate_kill *, unsigned int *); static int pf_killstates_row(struct pf_kstate_kill *, struct pf_idhash *); static int pf_killstates_nv(struct pfioc_nv *); static int pf_clearstates_nv(struct pfioc_nv *); static int pf_getstate(struct pfioc_nv *); static int pf_getstatus(struct pfioc_nv *); static int pf_clear_tables(void); static void pf_clear_srcnodes(struct pf_ksrc_node *); static void pf_kill_srcnodes(struct pfioc_src_node_kill *); static int pf_keepcounters(struct pfioc_nv *); static void pf_tbladdr_copyout(struct pf_addr_wrap *); /* * Wrapper functions for pfil(9) hooks */ #ifdef INET static pfil_return_t pf_check_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); static pfil_return_t pf_check_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); #endif #ifdef INET6 static pfil_return_t pf_check6_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); static pfil_return_t pf_check6_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); #endif static void hook_pf(void); static void dehook_pf(void); static int shutdown_pf(void); static int pf_load(void); static void pf_unload(void); static struct cdevsw pf_cdevsw = { .d_ioctl = pfioctl, .d_name = PF_NAME, .d_version = D_VERSION, }; volatile VNET_DEFINE_STATIC(int, pf_pfil_hooked); #define V_pf_pfil_hooked VNET(pf_pfil_hooked) /* * We need a flag that is neither hooked nor running to know when * the VNET is "valid". We primarily need this to control (global) * external event, e.g., eventhandlers. */ VNET_DEFINE(int, pf_vnet_active); #define V_pf_vnet_active VNET(pf_vnet_active) int pf_end_threads; struct proc *pf_purge_proc; struct rmlock pf_rules_lock; struct sx pf_ioctl_lock; struct sx pf_end_lock; /* pfsync */ VNET_DEFINE(pfsync_state_import_t *, pfsync_state_import_ptr); VNET_DEFINE(pfsync_insert_state_t *, pfsync_insert_state_ptr); VNET_DEFINE(pfsync_update_state_t *, pfsync_update_state_ptr); VNET_DEFINE(pfsync_delete_state_t *, pfsync_delete_state_ptr); VNET_DEFINE(pfsync_clear_states_t *, pfsync_clear_states_ptr); VNET_DEFINE(pfsync_defer_t *, pfsync_defer_ptr); pfsync_detach_ifnet_t *pfsync_detach_ifnet_ptr; /* pflog */ pflog_packet_t *pflog_packet_ptr = NULL; #define ERROUT_FUNCTION(target, x) \ do { \ error = (x); \ SDT_PROBE3(pf, ioctl, function, error, __func__, error, \ __LINE__); \ goto target; \ } while (0) /* * Copy a user-provided string, returning an error if truncation would occur. * Avoid scanning past "sz" bytes in the source string since there's no * guarantee that it's nul-terminated. */ static int pf_user_strcpy(char *dst, const char *src, size_t sz) { if (strnlen(src, sz) == sz) return (EINVAL); (void)strlcpy(dst, src, sz); return (0); } static void pfattach_vnet(void) { u_int32_t *my_timeout = V_pf_default_rule.timeout; pf_initialize(); pfr_initialize(); pfi_initialize_vnet(); pf_normalize_init(); pf_syncookies_init(); V_pf_limits[PF_LIMIT_STATES].limit = PFSTATE_HIWAT; V_pf_limits[PF_LIMIT_SRC_NODES].limit = PFSNODE_HIWAT; RB_INIT(&V_pf_anchors); pf_init_kruleset(&pf_main_ruleset); /* default rule should never be garbage collected */ V_pf_default_rule.entries.tqe_prev = &V_pf_default_rule.entries.tqe_next; #ifdef PF_DEFAULT_TO_DROP V_pf_default_rule.action = PF_DROP; #else V_pf_default_rule.action = PF_PASS; #endif V_pf_default_rule.nr = -1; V_pf_default_rule.rtableid = -1; pf_counter_u64_init(&V_pf_default_rule.evaluations, M_WAITOK); for (int i = 0; i < 2; i++) { pf_counter_u64_init(&V_pf_default_rule.packets[i], M_WAITOK); pf_counter_u64_init(&V_pf_default_rule.bytes[i], M_WAITOK); } V_pf_default_rule.states_cur = counter_u64_alloc(M_WAITOK); V_pf_default_rule.states_tot = counter_u64_alloc(M_WAITOK); V_pf_default_rule.src_nodes = counter_u64_alloc(M_WAITOK); #ifdef PF_WANT_32_TO_64_COUNTER V_pf_kifmarker = malloc(sizeof(*V_pf_kifmarker), PFI_MTYPE, M_WAITOK | M_ZERO); V_pf_rulemarker = malloc(sizeof(*V_pf_rulemarker), M_PFRULE, M_WAITOK | M_ZERO); PF_RULES_WLOCK(); LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); LIST_INSERT_HEAD(&V_pf_allrulelist, &V_pf_default_rule, allrulelist); V_pf_allrulecount++; LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); PF_RULES_WUNLOCK(); #endif /* initialize default timeouts */ my_timeout[PFTM_TCP_FIRST_PACKET] = PFTM_TCP_FIRST_PACKET_VAL; my_timeout[PFTM_TCP_OPENING] = PFTM_TCP_OPENING_VAL; my_timeout[PFTM_TCP_ESTABLISHED] = PFTM_TCP_ESTABLISHED_VAL; my_timeout[PFTM_TCP_CLOSING] = PFTM_TCP_CLOSING_VAL; my_timeout[PFTM_TCP_FIN_WAIT] = PFTM_TCP_FIN_WAIT_VAL; my_timeout[PFTM_TCP_CLOSED] = PFTM_TCP_CLOSED_VAL; my_timeout[PFTM_UDP_FIRST_PACKET] = PFTM_UDP_FIRST_PACKET_VAL; my_timeout[PFTM_UDP_SINGLE] = PFTM_UDP_SINGLE_VAL; my_timeout[PFTM_UDP_MULTIPLE] = PFTM_UDP_MULTIPLE_VAL; my_timeout[PFTM_ICMP_FIRST_PACKET] = PFTM_ICMP_FIRST_PACKET_VAL; my_timeout[PFTM_ICMP_ERROR_REPLY] = PFTM_ICMP_ERROR_REPLY_VAL; my_timeout[PFTM_OTHER_FIRST_PACKET] = PFTM_OTHER_FIRST_PACKET_VAL; my_timeout[PFTM_OTHER_SINGLE] = PFTM_OTHER_SINGLE_VAL; my_timeout[PFTM_OTHER_MULTIPLE] = PFTM_OTHER_MULTIPLE_VAL; my_timeout[PFTM_FRAG] = PFTM_FRAG_VAL; my_timeout[PFTM_INTERVAL] = PFTM_INTERVAL_VAL; my_timeout[PFTM_SRC_NODE] = PFTM_SRC_NODE_VAL; my_timeout[PFTM_TS_DIFF] = PFTM_TS_DIFF_VAL; my_timeout[PFTM_ADAPTIVE_START] = PFSTATE_ADAPT_START; my_timeout[PFTM_ADAPTIVE_END] = PFSTATE_ADAPT_END; bzero(&V_pf_status, sizeof(V_pf_status)); V_pf_status.debug = PF_DEBUG_URGENT; V_pf_pfil_hooked = 0; /* XXX do our best to avoid a conflict */ V_pf_status.hostid = arc4random(); for (int i = 0; i < PFRES_MAX; i++) V_pf_status.counters[i] = counter_u64_alloc(M_WAITOK); for (int i = 0; i < KLCNT_MAX; i++) V_pf_status.lcounters[i] = counter_u64_alloc(M_WAITOK); for (int i = 0; i < FCNT_MAX; i++) pf_counter_u64_init(&V_pf_status.fcounters[i], M_WAITOK); for (int i = 0; i < SCNT_MAX; i++) V_pf_status.scounters[i] = counter_u64_alloc(M_WAITOK); if (swi_add(&V_pf_swi_ie, "pf send", pf_intr, curvnet, SWI_NET, INTR_MPSAFE, &V_pf_swi_cookie) != 0) /* XXXGL: leaked all above. */ return; } static struct pf_kpool * pf_get_kpool(const char *anchor, u_int32_t ticket, u_int8_t rule_action, u_int32_t rule_number, u_int8_t r_last, u_int8_t active, u_int8_t check_ticket) { struct pf_kruleset *ruleset; struct pf_krule *rule; int rs_num; ruleset = pf_find_kruleset(anchor); if (ruleset == NULL) return (NULL); rs_num = pf_get_ruleset_number(rule_action); if (rs_num >= PF_RULESET_MAX) return (NULL); if (active) { if (check_ticket && ticket != ruleset->rules[rs_num].active.ticket) return (NULL); if (r_last) rule = TAILQ_LAST(ruleset->rules[rs_num].active.ptr, pf_krulequeue); else rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); } else { if (check_ticket && ticket != ruleset->rules[rs_num].inactive.ticket) return (NULL); if (r_last) rule = TAILQ_LAST(ruleset->rules[rs_num].inactive.ptr, pf_krulequeue); else rule = TAILQ_FIRST(ruleset->rules[rs_num].inactive.ptr); } if (!r_last) { while ((rule != NULL) && (rule->nr != rule_number)) rule = TAILQ_NEXT(rule, entries); } if (rule == NULL) return (NULL); return (&rule->rpool); } static void pf_mv_kpool(struct pf_kpalist *poola, struct pf_kpalist *poolb) { struct pf_kpooladdr *mv_pool_pa; while ((mv_pool_pa = TAILQ_FIRST(poola)) != NULL) { TAILQ_REMOVE(poola, mv_pool_pa, entries); TAILQ_INSERT_TAIL(poolb, mv_pool_pa, entries); } } static void pf_empty_kpool(struct pf_kpalist *poola) { struct pf_kpooladdr *pa; while ((pa = TAILQ_FIRST(poola)) != NULL) { switch (pa->addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(pa->addr.p.dyn); break; case PF_ADDR_TABLE: /* XXX: this could be unfinished pooladdr on pabuf */ if (pa->addr.p.tbl != NULL) pfr_detach_table(pa->addr.p.tbl); break; } if (pa->kif) pfi_kkif_unref(pa->kif); TAILQ_REMOVE(poola, pa, entries); free(pa, M_PFRULE); } } static void pf_unlink_rule(struct pf_krulequeue *rulequeue, struct pf_krule *rule) { PF_RULES_WASSERT(); TAILQ_REMOVE(rulequeue, rule, entries); PF_UNLNKDRULES_LOCK(); rule->rule_ref |= PFRULE_REFS; TAILQ_INSERT_TAIL(&V_pf_unlinked_rules, rule, entries); PF_UNLNKDRULES_UNLOCK(); } void pf_free_rule(struct pf_krule *rule) { PF_RULES_WASSERT(); if (rule->tag) tag_unref(&V_pf_tags, rule->tag); if (rule->match_tag) tag_unref(&V_pf_tags, rule->match_tag); #ifdef ALTQ if (rule->pqid != rule->qid) pf_qid_unref(rule->pqid); pf_qid_unref(rule->qid); #endif switch (rule->src.addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(rule->src.addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(rule->src.addr.p.tbl); break; } switch (rule->dst.addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(rule->dst.addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(rule->dst.addr.p.tbl); break; } if (rule->overload_tbl) pfr_detach_table(rule->overload_tbl); if (rule->kif) pfi_kkif_unref(rule->kif); pf_kanchor_remove(rule); pf_empty_kpool(&rule->rpool.list); pf_krule_free(rule); } static void pf_init_tagset(struct pf_tagset *ts, unsigned int *tunable_size, unsigned int default_size) { unsigned int i; unsigned int hashsize; if (*tunable_size == 0 || !powerof2(*tunable_size)) *tunable_size = default_size; hashsize = *tunable_size; ts->namehash = mallocarray(hashsize, sizeof(*ts->namehash), M_PFHASH, M_WAITOK); ts->taghash = mallocarray(hashsize, sizeof(*ts->taghash), M_PFHASH, M_WAITOK); ts->mask = hashsize - 1; ts->seed = arc4random(); for (i = 0; i < hashsize; i++) { TAILQ_INIT(&ts->namehash[i]); TAILQ_INIT(&ts->taghash[i]); } BIT_FILL(TAGID_MAX, &ts->avail); } static void pf_cleanup_tagset(struct pf_tagset *ts) { unsigned int i; unsigned int hashsize; struct pf_tagname *t, *tmp; /* * Only need to clean up one of the hashes as each tag is hashed * into each table. */ hashsize = ts->mask + 1; for (i = 0; i < hashsize; i++) TAILQ_FOREACH_SAFE(t, &ts->namehash[i], namehash_entries, tmp) uma_zfree(V_pf_tag_z, t); free(ts->namehash, M_PFHASH); free(ts->taghash, M_PFHASH); } static uint16_t tagname2hashindex(const struct pf_tagset *ts, const char *tagname) { size_t len; len = strnlen(tagname, PF_TAG_NAME_SIZE - 1); return (murmur3_32_hash(tagname, len, ts->seed) & ts->mask); } static uint16_t tag2hashindex(const struct pf_tagset *ts, uint16_t tag) { return (tag & ts->mask); } static u_int16_t tagname2tag(struct pf_tagset *ts, const char *tagname) { struct pf_tagname *tag; u_int32_t index; u_int16_t new_tagid; PF_RULES_WASSERT(); index = tagname2hashindex(ts, tagname); TAILQ_FOREACH(tag, &ts->namehash[index], namehash_entries) if (strcmp(tagname, tag->name) == 0) { tag->ref++; return (tag->tag); } /* * new entry * * to avoid fragmentation, we do a linear search from the beginning * and take the first free slot we find. */ new_tagid = BIT_FFS(TAGID_MAX, &ts->avail); /* * Tags are 1-based, with valid tags in the range [1..TAGID_MAX]. * BIT_FFS() returns a 1-based bit number, with 0 indicating no bits * set. It may also return a bit number greater than TAGID_MAX due * to rounding of the number of bits in the vector up to a multiple * of the vector word size at declaration/allocation time. */ if ((new_tagid == 0) || (new_tagid > TAGID_MAX)) return (0); /* Mark the tag as in use. Bits are 0-based for BIT_CLR() */ BIT_CLR(TAGID_MAX, new_tagid - 1, &ts->avail); /* allocate and fill new struct pf_tagname */ tag = uma_zalloc(V_pf_tag_z, M_NOWAIT); if (tag == NULL) return (0); strlcpy(tag->name, tagname, sizeof(tag->name)); tag->tag = new_tagid; tag->ref = 1; /* Insert into namehash */ TAILQ_INSERT_TAIL(&ts->namehash[index], tag, namehash_entries); /* Insert into taghash */ index = tag2hashindex(ts, new_tagid); TAILQ_INSERT_TAIL(&ts->taghash[index], tag, taghash_entries); return (tag->tag); } static void tag_unref(struct pf_tagset *ts, u_int16_t tag) { struct pf_tagname *t; uint16_t index; PF_RULES_WASSERT(); index = tag2hashindex(ts, tag); TAILQ_FOREACH(t, &ts->taghash[index], taghash_entries) if (tag == t->tag) { if (--t->ref == 0) { TAILQ_REMOVE(&ts->taghash[index], t, taghash_entries); index = tagname2hashindex(ts, t->name); TAILQ_REMOVE(&ts->namehash[index], t, namehash_entries); /* Bits are 0-based for BIT_SET() */ BIT_SET(TAGID_MAX, tag - 1, &ts->avail); uma_zfree(V_pf_tag_z, t); } break; } } static uint16_t pf_tagname2tag(const char *tagname) { return (tagname2tag(&V_pf_tags, tagname)); } #ifdef ALTQ static uint16_t pf_qname2qid(const char *qname) { return (tagname2tag(&V_pf_qids, qname)); } static void pf_qid_unref(uint16_t qid) { tag_unref(&V_pf_qids, qid); } static int pf_begin_altq(u_int32_t *ticket) { struct pf_altq *altq, *tmp; int error = 0; PF_RULES_WASSERT(); /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ error = altq_remove(altq); } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); if (error) return (error); *ticket = ++V_ticket_altqs_inactive; V_altqs_inactive_open = 1; return (0); } static int pf_rollback_altq(u_int32_t ticket) { struct pf_altq *altq, *tmp; int error = 0; PF_RULES_WASSERT(); if (!V_altqs_inactive_open || ticket != V_ticket_altqs_inactive) return (0); /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ error = altq_remove(altq); } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); V_altqs_inactive_open = 0; return (error); } static int pf_commit_altq(u_int32_t ticket) { struct pf_altqqueue *old_altqs, *old_altq_ifs; struct pf_altq *altq, *tmp; int err, error = 0; PF_RULES_WASSERT(); if (!V_altqs_inactive_open || ticket != V_ticket_altqs_inactive) return (EBUSY); /* swap altqs, keep the old. */ old_altqs = V_pf_altqs_active; old_altq_ifs = V_pf_altq_ifs_active; V_pf_altqs_active = V_pf_altqs_inactive; V_pf_altq_ifs_active = V_pf_altq_ifs_inactive; V_pf_altqs_inactive = old_altqs; V_pf_altq_ifs_inactive = old_altq_ifs; V_ticket_altqs_active = V_ticket_altqs_inactive; /* Attach new disciplines */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* attach the discipline */ error = altq_pfattach(altq); if (error == 0 && V_pf_altq_running) error = pf_enable_altq(altq); if (error != 0) return (error); } } /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ if (V_pf_altq_running) error = pf_disable_altq(altq); err = altq_pfdetach(altq); if (err != 0 && error == 0) error = err; err = altq_remove(altq); if (err != 0 && error == 0) error = err; } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); V_altqs_inactive_open = 0; return (error); } static int pf_enable_altq(struct pf_altq *altq) { struct ifnet *ifp; struct tb_profile tb; int error = 0; if ((ifp = ifunit(altq->ifname)) == NULL) return (EINVAL); if (ifp->if_snd.altq_type != ALTQT_NONE) error = altq_enable(&ifp->if_snd); /* set tokenbucket regulator */ if (error == 0 && ifp != NULL && ALTQ_IS_ENABLED(&ifp->if_snd)) { tb.rate = altq->ifbandwidth; tb.depth = altq->tbrsize; error = tbr_set(&ifp->if_snd, &tb); } return (error); } static int pf_disable_altq(struct pf_altq *altq) { struct ifnet *ifp; struct tb_profile tb; int error; if ((ifp = ifunit(altq->ifname)) == NULL) return (EINVAL); /* * when the discipline is no longer referenced, it was overridden * by a new one. if so, just return. */ if (altq->altq_disc != ifp->if_snd.altq_disc) return (0); error = altq_disable(&ifp->if_snd); if (error == 0) { /* clear tokenbucket regulator */ tb.rate = 0; error = tbr_set(&ifp->if_snd, &tb); } return (error); } static int pf_altq_ifnet_event_add(struct ifnet *ifp, int remove, u_int32_t ticket, struct pf_altq *altq) { struct ifnet *ifp1; int error = 0; /* Deactivate the interface in question */ altq->local_flags &= ~PFALTQ_FLAG_IF_REMOVED; if ((ifp1 = ifunit(altq->ifname)) == NULL || (remove && ifp1 == ifp)) { altq->local_flags |= PFALTQ_FLAG_IF_REMOVED; } else { error = altq_add(ifp1, altq); if (ticket != V_ticket_altqs_inactive) error = EBUSY; if (error) free(altq, M_PFALTQ); } return (error); } void pf_altq_ifnet_event(struct ifnet *ifp, int remove) { struct pf_altq *a1, *a2, *a3; u_int32_t ticket; int error = 0; /* * No need to re-evaluate the configuration for events on interfaces * that do not support ALTQ, as it's not possible for such * interfaces to be part of the configuration. */ if (!ALTQ_IS_READY(&ifp->if_snd)) return; /* Interrupt userland queue modifications */ if (V_altqs_inactive_open) pf_rollback_altq(V_ticket_altqs_inactive); /* Start new altq ruleset */ if (pf_begin_altq(&ticket)) return; /* Copy the current active set */ TAILQ_FOREACH(a1, V_pf_altq_ifs_active, entries) { a2 = malloc(sizeof(*a2), M_PFALTQ, M_NOWAIT); if (a2 == NULL) { error = ENOMEM; break; } bcopy(a1, a2, sizeof(struct pf_altq)); error = pf_altq_ifnet_event_add(ifp, remove, ticket, a2); if (error) break; TAILQ_INSERT_TAIL(V_pf_altq_ifs_inactive, a2, entries); } if (error) goto out; TAILQ_FOREACH(a1, V_pf_altqs_active, entries) { a2 = malloc(sizeof(*a2), M_PFALTQ, M_NOWAIT); if (a2 == NULL) { error = ENOMEM; break; } bcopy(a1, a2, sizeof(struct pf_altq)); if ((a2->qid = pf_qname2qid(a2->qname)) == 0) { error = EBUSY; free(a2, M_PFALTQ); break; } a2->altq_disc = NULL; TAILQ_FOREACH(a3, V_pf_altq_ifs_inactive, entries) { if (strncmp(a3->ifname, a2->ifname, IFNAMSIZ) == 0) { a2->altq_disc = a3->altq_disc; break; } } error = pf_altq_ifnet_event_add(ifp, remove, ticket, a2); if (error) break; TAILQ_INSERT_TAIL(V_pf_altqs_inactive, a2, entries); } out: if (error != 0) pf_rollback_altq(ticket); else pf_commit_altq(ticket); } #endif /* ALTQ */ static int pf_begin_rules(u_int32_t *ticket, int rs_num, const char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_or_create_kruleset(anchor); if (rs == NULL) return (EINVAL); while ((rule = TAILQ_FIRST(rs->rules[rs_num].inactive.ptr)) != NULL) { pf_unlink_rule(rs->rules[rs_num].inactive.ptr, rule); rs->rules[rs_num].inactive.rcount--; } *ticket = ++rs->rules[rs_num].inactive.ticket; rs->rules[rs_num].inactive.open = 1; return (0); } static int pf_rollback_rules(u_int32_t ticket, int rs_num, char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_kruleset(anchor); if (rs == NULL || !rs->rules[rs_num].inactive.open || rs->rules[rs_num].inactive.ticket != ticket) return (0); while ((rule = TAILQ_FIRST(rs->rules[rs_num].inactive.ptr)) != NULL) { pf_unlink_rule(rs->rules[rs_num].inactive.ptr, rule); rs->rules[rs_num].inactive.rcount--; } rs->rules[rs_num].inactive.open = 0; return (0); } #define PF_MD5_UPD(st, elm) \ MD5Update(ctx, (u_int8_t *) &(st)->elm, sizeof((st)->elm)) #define PF_MD5_UPD_STR(st, elm) \ MD5Update(ctx, (u_int8_t *) (st)->elm, strlen((st)->elm)) #define PF_MD5_UPD_HTONL(st, elm, stor) do { \ (stor) = htonl((st)->elm); \ MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int32_t));\ } while (0) #define PF_MD5_UPD_HTONS(st, elm, stor) do { \ (stor) = htons((st)->elm); \ MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int16_t));\ } while (0) static void pf_hash_rule_addr(MD5_CTX *ctx, struct pf_rule_addr *pfr) { PF_MD5_UPD(pfr, addr.type); switch (pfr->addr.type) { case PF_ADDR_DYNIFTL: PF_MD5_UPD(pfr, addr.v.ifname); PF_MD5_UPD(pfr, addr.iflags); break; case PF_ADDR_TABLE: PF_MD5_UPD(pfr, addr.v.tblname); break; case PF_ADDR_ADDRMASK: /* XXX ignore af? */ PF_MD5_UPD(pfr, addr.v.a.addr.addr32); PF_MD5_UPD(pfr, addr.v.a.mask.addr32); break; } PF_MD5_UPD(pfr, port[0]); PF_MD5_UPD(pfr, port[1]); PF_MD5_UPD(pfr, neg); PF_MD5_UPD(pfr, port_op); } static void pf_hash_rule(MD5_CTX *ctx, struct pf_krule *rule) { u_int16_t x; u_int32_t y; pf_hash_rule_addr(ctx, &rule->src); pf_hash_rule_addr(ctx, &rule->dst); for (int i = 0; i < PF_RULE_MAX_LABEL_COUNT; i++) PF_MD5_UPD_STR(rule, label[i]); PF_MD5_UPD_STR(rule, ifname); PF_MD5_UPD_STR(rule, match_tagname); PF_MD5_UPD_HTONS(rule, match_tag, x); /* dup? */ PF_MD5_UPD_HTONL(rule, os_fingerprint, y); PF_MD5_UPD_HTONL(rule, prob, y); PF_MD5_UPD_HTONL(rule, uid.uid[0], y); PF_MD5_UPD_HTONL(rule, uid.uid[1], y); PF_MD5_UPD(rule, uid.op); PF_MD5_UPD_HTONL(rule, gid.gid[0], y); PF_MD5_UPD_HTONL(rule, gid.gid[1], y); PF_MD5_UPD(rule, gid.op); PF_MD5_UPD_HTONL(rule, rule_flag, y); PF_MD5_UPD(rule, action); PF_MD5_UPD(rule, direction); PF_MD5_UPD(rule, af); PF_MD5_UPD(rule, quick); PF_MD5_UPD(rule, ifnot); PF_MD5_UPD(rule, match_tag_not); PF_MD5_UPD(rule, natpass); PF_MD5_UPD(rule, keep_state); PF_MD5_UPD(rule, proto); PF_MD5_UPD(rule, type); PF_MD5_UPD(rule, code); PF_MD5_UPD(rule, flags); PF_MD5_UPD(rule, flagset); PF_MD5_UPD(rule, allow_opts); PF_MD5_UPD(rule, rt); PF_MD5_UPD(rule, tos); } static bool pf_krule_compare(struct pf_krule *a, struct pf_krule *b) { MD5_CTX ctx[2]; u_int8_t digest[2][PF_MD5_DIGEST_LENGTH]; MD5Init(&ctx[0]); MD5Init(&ctx[1]); pf_hash_rule(&ctx[0], a); pf_hash_rule(&ctx[1], b); MD5Final(digest[0], &ctx[0]); MD5Final(digest[1], &ctx[1]); return (memcmp(digest[0], digest[1], PF_MD5_DIGEST_LENGTH) == 0); } static int pf_commit_rules(u_int32_t ticket, int rs_num, char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule, **old_array, *tail; struct pf_krulequeue *old_rules; int error; u_int32_t old_rcount; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_kruleset(anchor); if (rs == NULL || !rs->rules[rs_num].inactive.open || ticket != rs->rules[rs_num].inactive.ticket) return (EBUSY); /* Calculate checksum for the main ruleset */ if (rs == &pf_main_ruleset) { error = pf_setup_pfsync_matching(rs); if (error != 0) return (error); } /* Swap rules, keep the old. */ old_rules = rs->rules[rs_num].active.ptr; old_rcount = rs->rules[rs_num].active.rcount; old_array = rs->rules[rs_num].active.ptr_array; rs->rules[rs_num].active.ptr = rs->rules[rs_num].inactive.ptr; rs->rules[rs_num].active.ptr_array = rs->rules[rs_num].inactive.ptr_array; rs->rules[rs_num].active.rcount = rs->rules[rs_num].inactive.rcount; /* Attempt to preserve counter information. */ if (V_pf_status.keep_counters) { TAILQ_FOREACH(rule, rs->rules[rs_num].active.ptr, entries) { tail = TAILQ_FIRST(old_rules); while ((tail != NULL) && ! pf_krule_compare(tail, rule)) tail = TAILQ_NEXT(tail, entries); if (tail != NULL) { pf_counter_u64_critical_enter(); pf_counter_u64_add_protected(&rule->evaluations, pf_counter_u64_fetch(&tail->evaluations)); pf_counter_u64_add_protected(&rule->packets[0], pf_counter_u64_fetch(&tail->packets[0])); pf_counter_u64_add_protected(&rule->packets[1], pf_counter_u64_fetch(&tail->packets[1])); pf_counter_u64_add_protected(&rule->bytes[0], pf_counter_u64_fetch(&tail->bytes[0])); pf_counter_u64_add_protected(&rule->bytes[1], pf_counter_u64_fetch(&tail->bytes[1])); pf_counter_u64_critical_exit(); } } } rs->rules[rs_num].inactive.ptr = old_rules; rs->rules[rs_num].inactive.ptr_array = old_array; rs->rules[rs_num].inactive.rcount = old_rcount; rs->rules[rs_num].active.ticket = rs->rules[rs_num].inactive.ticket; pf_calc_skip_steps(rs->rules[rs_num].active.ptr); /* Purge the old rule list. */ while ((rule = TAILQ_FIRST(old_rules)) != NULL) pf_unlink_rule(old_rules, rule); if (rs->rules[rs_num].inactive.ptr_array) free(rs->rules[rs_num].inactive.ptr_array, M_TEMP); rs->rules[rs_num].inactive.ptr_array = NULL; rs->rules[rs_num].inactive.rcount = 0; rs->rules[rs_num].inactive.open = 0; pf_remove_if_empty_kruleset(rs); return (0); } static int pf_setup_pfsync_matching(struct pf_kruleset *rs) { MD5_CTX ctx; struct pf_krule *rule; int rs_cnt; u_int8_t digest[PF_MD5_DIGEST_LENGTH]; MD5Init(&ctx); for (rs_cnt = 0; rs_cnt < PF_RULESET_MAX; rs_cnt++) { /* XXX PF_RULESET_SCRUB as well? */ if (rs_cnt == PF_RULESET_SCRUB) continue; if (rs->rules[rs_cnt].inactive.ptr_array) free(rs->rules[rs_cnt].inactive.ptr_array, M_TEMP); rs->rules[rs_cnt].inactive.ptr_array = NULL; if (rs->rules[rs_cnt].inactive.rcount) { rs->rules[rs_cnt].inactive.ptr_array = malloc(sizeof(caddr_t) * rs->rules[rs_cnt].inactive.rcount, M_TEMP, M_NOWAIT); if (!rs->rules[rs_cnt].inactive.ptr_array) return (ENOMEM); } TAILQ_FOREACH(rule, rs->rules[rs_cnt].inactive.ptr, entries) { pf_hash_rule(&ctx, rule); (rs->rules[rs_cnt].inactive.ptr_array)[rule->nr] = rule; } } MD5Final(digest, &ctx); memcpy(V_pf_status.pf_chksum, digest, sizeof(V_pf_status.pf_chksum)); return (0); } static int pf_addr_setup(struct pf_kruleset *ruleset, struct pf_addr_wrap *addr, sa_family_t af) { int error = 0; switch (addr->type) { case PF_ADDR_TABLE: addr->p.tbl = pfr_attach_table(ruleset, addr->v.tblname); if (addr->p.tbl == NULL) error = ENOMEM; break; case PF_ADDR_DYNIFTL: error = pfi_dynaddr_setup(addr, af); break; } return (error); } static void pf_addr_copyout(struct pf_addr_wrap *addr) { switch (addr->type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_copyout(addr); break; case PF_ADDR_TABLE: pf_tbladdr_copyout(addr); break; } } static void pf_src_node_copy(const struct pf_ksrc_node *in, struct pf_src_node *out) { int secs = time_uptime, diff; bzero(out, sizeof(struct pf_src_node)); bcopy(&in->addr, &out->addr, sizeof(struct pf_addr)); bcopy(&in->raddr, &out->raddr, sizeof(struct pf_addr)); if (in->rule.ptr != NULL) out->rule.nr = in->rule.ptr->nr; for (int i = 0; i < 2; i++) { out->bytes[i] = counter_u64_fetch(in->bytes[i]); out->packets[i] = counter_u64_fetch(in->packets[i]); } out->states = in->states; out->conn = in->conn; out->af = in->af; out->ruletype = in->ruletype; out->creation = secs - in->creation; if (out->expire > secs) out->expire -= secs; else out->expire = 0; /* Adjust the connection rate estimate. */ diff = secs - in->conn_rate.last; if (diff >= in->conn_rate.seconds) out->conn_rate.count = 0; else out->conn_rate.count -= in->conn_rate.count * diff / in->conn_rate.seconds; } #ifdef ALTQ /* * Handle export of struct pf_kaltq to user binaries that may be using any * version of struct pf_altq. */ static int pf_export_kaltq(struct pf_altq *q, struct pfioc_altq_v1 *pa, size_t ioc_size) { u_int32_t version; if (ioc_size == sizeof(struct pfioc_altq_v0)) version = 0; else version = pa->version; if (version > PFIOC_ALTQ_VERSION) return (EINVAL); #define ASSIGN(x) exported_q->x = q->x #define COPY(x) \ bcopy(&q->x, &exported_q->x, min(sizeof(q->x), sizeof(exported_q->x))) #define SATU16(x) (u_int32_t)uqmin((x), USHRT_MAX) #define SATU32(x) (u_int32_t)uqmin((x), UINT_MAX) switch (version) { case 0: { struct pf_altq_v0 *exported_q = &((struct pfioc_altq_v0 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); exported_q->tbrsize = SATU16(q->tbrsize); exported_q->ifbandwidth = SATU32(q->ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); exported_q->bandwidth = SATU32(q->bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); if (q->scheduler == ALTQT_HFSC) { #define ASSIGN_OPT(x) exported_q->pq_u.hfsc_opts.x = q->pq_u.hfsc_opts.x #define ASSIGN_OPT_SATU32(x) exported_q->pq_u.hfsc_opts.x = \ SATU32(q->pq_u.hfsc_opts.x) ASSIGN_OPT_SATU32(rtsc_m1); ASSIGN_OPT(rtsc_d); ASSIGN_OPT_SATU32(rtsc_m2); ASSIGN_OPT_SATU32(lssc_m1); ASSIGN_OPT(lssc_d); ASSIGN_OPT_SATU32(lssc_m2); ASSIGN_OPT_SATU32(ulsc_m1); ASSIGN_OPT(ulsc_d); ASSIGN_OPT_SATU32(ulsc_m2); ASSIGN_OPT(flags); #undef ASSIGN_OPT #undef ASSIGN_OPT_SATU32 } else COPY(pq_u); ASSIGN(qid); break; } case 1: { struct pf_altq_v1 *exported_q = &((struct pfioc_altq_v1 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); ASSIGN(ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); COPY(pq_u); ASSIGN(qid); break; } default: panic("%s: unhandled struct pfioc_altq version", __func__); break; } #undef ASSIGN #undef COPY #undef SATU16 #undef SATU32 return (0); } /* * Handle import to struct pf_kaltq of struct pf_altq from user binaries * that may be using any version of it. */ static int pf_import_kaltq(struct pfioc_altq_v1 *pa, struct pf_altq *q, size_t ioc_size) { u_int32_t version; if (ioc_size == sizeof(struct pfioc_altq_v0)) version = 0; else version = pa->version; if (version > PFIOC_ALTQ_VERSION) return (EINVAL); #define ASSIGN(x) q->x = imported_q->x #define COPY(x) \ bcopy(&imported_q->x, &q->x, min(sizeof(imported_q->x), sizeof(q->x))) switch (version) { case 0: { struct pf_altq_v0 *imported_q = &((struct pfioc_altq_v0 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); /* 16-bit -> 32-bit */ ASSIGN(ifbandwidth); /* 32-bit -> 64-bit */ COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); /* 32-bit -> 64-bit */ ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); if (imported_q->scheduler == ALTQT_HFSC) { #define ASSIGN_OPT(x) q->pq_u.hfsc_opts.x = imported_q->pq_u.hfsc_opts.x /* * The m1 and m2 parameters are being copied from * 32-bit to 64-bit. */ ASSIGN_OPT(rtsc_m1); ASSIGN_OPT(rtsc_d); ASSIGN_OPT(rtsc_m2); ASSIGN_OPT(lssc_m1); ASSIGN_OPT(lssc_d); ASSIGN_OPT(lssc_m2); ASSIGN_OPT(ulsc_m1); ASSIGN_OPT(ulsc_d); ASSIGN_OPT(ulsc_m2); ASSIGN_OPT(flags); #undef ASSIGN_OPT } else COPY(pq_u); ASSIGN(qid); break; } case 1: { struct pf_altq_v1 *imported_q = &((struct pfioc_altq_v1 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); ASSIGN(ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); COPY(pq_u); ASSIGN(qid); break; } default: panic("%s: unhandled struct pfioc_altq version", __func__); break; } #undef ASSIGN #undef COPY return (0); } static struct pf_altq * pf_altq_get_nth_active(u_int32_t n) { struct pf_altq *altq; u_int32_t nr; nr = 0; TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if (nr == n) return (altq); nr++; } TAILQ_FOREACH(altq, V_pf_altqs_active, entries) { if (nr == n) return (altq); nr++; } return (NULL); } #endif /* ALTQ */ void pf_krule_free(struct pf_krule *rule) { #ifdef PF_WANT_32_TO_64_COUNTER bool wowned; #endif if (rule == NULL) return; #ifdef PF_WANT_32_TO_64_COUNTER if (rule->allrulelinked) { wowned = PF_RULES_WOWNED(); if (!wowned) PF_RULES_WLOCK(); LIST_REMOVE(rule, allrulelist); V_pf_allrulecount--; if (!wowned) PF_RULES_WUNLOCK(); } #endif pf_counter_u64_deinit(&rule->evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_deinit(&rule->packets[i]); pf_counter_u64_deinit(&rule->bytes[i]); } counter_u64_free(rule->states_cur); counter_u64_free(rule->states_tot); counter_u64_free(rule->src_nodes); + + mtx_destroy(&rule->rpool.mtx); free(rule, M_PFRULE); } static void pf_kpooladdr_to_pooladdr(const struct pf_kpooladdr *kpool, struct pf_pooladdr *pool) { bzero(pool, sizeof(*pool)); bcopy(&kpool->addr, &pool->addr, sizeof(pool->addr)); strlcpy(pool->ifname, kpool->ifname, sizeof(pool->ifname)); } static int pf_pooladdr_to_kpooladdr(const struct pf_pooladdr *pool, struct pf_kpooladdr *kpool) { int ret; bzero(kpool, sizeof(*kpool)); bcopy(&pool->addr, &kpool->addr, sizeof(kpool->addr)); ret = pf_user_strcpy(kpool->ifname, pool->ifname, sizeof(kpool->ifname)); return (ret); } static void pf_kpool_to_pool(const struct pf_kpool *kpool, struct pf_pool *pool) { bzero(pool, sizeof(*pool)); bcopy(&kpool->key, &pool->key, sizeof(pool->key)); bcopy(&kpool->counter, &pool->counter, sizeof(pool->counter)); pool->tblidx = kpool->tblidx; pool->proxy_port[0] = kpool->proxy_port[0]; pool->proxy_port[1] = kpool->proxy_port[1]; pool->opts = kpool->opts; } static int pf_pool_to_kpool(const struct pf_pool *pool, struct pf_kpool *kpool) { _Static_assert(sizeof(pool->key) == sizeof(kpool->key), ""); _Static_assert(sizeof(pool->counter) == sizeof(kpool->counter), ""); bzero(kpool, sizeof(*kpool)); bcopy(&pool->key, &kpool->key, sizeof(kpool->key)); bcopy(&pool->counter, &kpool->counter, sizeof(kpool->counter)); kpool->tblidx = pool->tblidx; kpool->proxy_port[0] = pool->proxy_port[0]; kpool->proxy_port[1] = pool->proxy_port[1]; kpool->opts = pool->opts; return (0); } static void pf_krule_to_rule(struct pf_krule *krule, struct pf_rule *rule) { bzero(rule, sizeof(*rule)); bcopy(&krule->src, &rule->src, sizeof(rule->src)); bcopy(&krule->dst, &rule->dst, sizeof(rule->dst)); for (int i = 0; i < PF_SKIP_COUNT; ++i) { if (rule->skip[i].ptr == NULL) rule->skip[i].nr = -1; else rule->skip[i].nr = krule->skip[i].ptr->nr; } strlcpy(rule->label, krule->label[0], sizeof(rule->label)); strlcpy(rule->ifname, krule->ifname, sizeof(rule->ifname)); strlcpy(rule->qname, krule->qname, sizeof(rule->qname)); strlcpy(rule->pqname, krule->pqname, sizeof(rule->pqname)); strlcpy(rule->tagname, krule->tagname, sizeof(rule->tagname)); strlcpy(rule->match_tagname, krule->match_tagname, sizeof(rule->match_tagname)); strlcpy(rule->overload_tblname, krule->overload_tblname, sizeof(rule->overload_tblname)); pf_kpool_to_pool(&krule->rpool, &rule->rpool); rule->evaluations = pf_counter_u64_fetch(&krule->evaluations); for (int i = 0; i < 2; i++) { rule->packets[i] = pf_counter_u64_fetch(&krule->packets[i]); rule->bytes[i] = pf_counter_u64_fetch(&krule->bytes[i]); } /* kif, anchor, overload_tbl are not copied over. */ rule->os_fingerprint = krule->os_fingerprint; rule->rtableid = krule->rtableid; bcopy(krule->timeout, rule->timeout, sizeof(krule->timeout)); rule->max_states = krule->max_states; rule->max_src_nodes = krule->max_src_nodes; rule->max_src_states = krule->max_src_states; rule->max_src_conn = krule->max_src_conn; rule->max_src_conn_rate.limit = krule->max_src_conn_rate.limit; rule->max_src_conn_rate.seconds = krule->max_src_conn_rate.seconds; rule->qid = krule->qid; rule->pqid = krule->pqid; rule->nr = krule->nr; rule->prob = krule->prob; rule->cuid = krule->cuid; rule->cpid = krule->cpid; rule->return_icmp = krule->return_icmp; rule->return_icmp6 = krule->return_icmp6; rule->max_mss = krule->max_mss; rule->tag = krule->tag; rule->match_tag = krule->match_tag; rule->scrub_flags = krule->scrub_flags; bcopy(&krule->uid, &rule->uid, sizeof(krule->uid)); bcopy(&krule->gid, &rule->gid, sizeof(krule->gid)); rule->rule_flag = krule->rule_flag; rule->action = krule->action; rule->direction = krule->direction; rule->log = krule->log; rule->logif = krule->logif; rule->quick = krule->quick; rule->ifnot = krule->ifnot; rule->match_tag_not = krule->match_tag_not; rule->natpass = krule->natpass; rule->keep_state = krule->keep_state; rule->af = krule->af; rule->proto = krule->proto; rule->type = krule->type; rule->code = krule->code; rule->flags = krule->flags; rule->flagset = krule->flagset; rule->min_ttl = krule->min_ttl; rule->allow_opts = krule->allow_opts; rule->rt = krule->rt; rule->return_ttl = krule->return_ttl; rule->tos = krule->tos; rule->set_tos = krule->set_tos; rule->anchor_relative = krule->anchor_relative; rule->anchor_wildcard = krule->anchor_wildcard; rule->flush = krule->flush; rule->prio = krule->prio; rule->set_prio[0] = krule->set_prio[0]; rule->set_prio[1] = krule->set_prio[1]; bcopy(&krule->divert, &rule->divert, sizeof(krule->divert)); rule->u_states_cur = counter_u64_fetch(krule->states_cur); rule->u_states_tot = counter_u64_fetch(krule->states_tot); rule->u_src_nodes = counter_u64_fetch(krule->src_nodes); } static int pf_rule_to_krule(const struct pf_rule *rule, struct pf_krule *krule) { int ret; #ifndef INET if (rule->af == AF_INET) { return (EAFNOSUPPORT); } #endif /* INET */ #ifndef INET6 if (rule->af == AF_INET6) { return (EAFNOSUPPORT); } #endif /* INET6 */ ret = pf_check_rule_addr(&rule->src); if (ret != 0) return (ret); ret = pf_check_rule_addr(&rule->dst); if (ret != 0) return (ret); bzero(krule, sizeof(*krule)); bcopy(&rule->src, &krule->src, sizeof(rule->src)); bcopy(&rule->dst, &krule->dst, sizeof(rule->dst)); ret = pf_user_strcpy(krule->label[0], rule->label, sizeof(rule->label)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->ifname, rule->ifname, sizeof(rule->ifname)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->qname, rule->qname, sizeof(rule->qname)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->pqname, rule->pqname, sizeof(rule->pqname)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->tagname, rule->tagname, sizeof(rule->tagname)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->match_tagname, rule->match_tagname, sizeof(rule->match_tagname)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->overload_tblname, rule->overload_tblname, sizeof(rule->overload_tblname)); if (ret != 0) return (ret); ret = pf_pool_to_kpool(&rule->rpool, &krule->rpool); if (ret != 0) return (ret); /* Don't allow userspace to set evaulations, packets or bytes. */ /* kif, anchor, overload_tbl are not copied over. */ krule->os_fingerprint = rule->os_fingerprint; krule->rtableid = rule->rtableid; bcopy(rule->timeout, krule->timeout, sizeof(krule->timeout)); krule->max_states = rule->max_states; krule->max_src_nodes = rule->max_src_nodes; krule->max_src_states = rule->max_src_states; krule->max_src_conn = rule->max_src_conn; krule->max_src_conn_rate.limit = rule->max_src_conn_rate.limit; krule->max_src_conn_rate.seconds = rule->max_src_conn_rate.seconds; krule->qid = rule->qid; krule->pqid = rule->pqid; krule->nr = rule->nr; krule->prob = rule->prob; krule->cuid = rule->cuid; krule->cpid = rule->cpid; krule->return_icmp = rule->return_icmp; krule->return_icmp6 = rule->return_icmp6; krule->max_mss = rule->max_mss; krule->tag = rule->tag; krule->match_tag = rule->match_tag; krule->scrub_flags = rule->scrub_flags; bcopy(&rule->uid, &krule->uid, sizeof(krule->uid)); bcopy(&rule->gid, &krule->gid, sizeof(krule->gid)); krule->rule_flag = rule->rule_flag; krule->action = rule->action; krule->direction = rule->direction; krule->log = rule->log; krule->logif = rule->logif; krule->quick = rule->quick; krule->ifnot = rule->ifnot; krule->match_tag_not = rule->match_tag_not; krule->natpass = rule->natpass; krule->keep_state = rule->keep_state; krule->af = rule->af; krule->proto = rule->proto; krule->type = rule->type; krule->code = rule->code; krule->flags = rule->flags; krule->flagset = rule->flagset; krule->min_ttl = rule->min_ttl; krule->allow_opts = rule->allow_opts; krule->rt = rule->rt; krule->return_ttl = rule->return_ttl; krule->tos = rule->tos; krule->set_tos = rule->set_tos; krule->flush = rule->flush; krule->prio = rule->prio; krule->set_prio[0] = rule->set_prio[0]; krule->set_prio[1] = rule->set_prio[1]; bcopy(&rule->divert, &krule->divert, sizeof(krule->divert)); return (0); } static bool pf_label_match(const struct pf_krule *rule, const char *label) { int i = 0; while (*rule->label[i]) { if (strcmp(rule->label[i], label) == 0) return (true); i++; } return (false); } static unsigned int pf_kill_matching_state(struct pf_state_key_cmp *key, int dir) { struct pf_kstate *match; int more = 0; unsigned int killed = 0; /* Call with unlocked hashrow */ match = pf_find_state_all(key, dir, &more); if (match && !more) { pf_unlink_state(match, 0); killed++; } return (killed); } static int pf_killstates_row(struct pf_kstate_kill *psk, struct pf_idhash *ih) { struct pf_kstate *s; struct pf_state_key *sk; struct pf_addr *srcaddr, *dstaddr; struct pf_state_key_cmp match_key; int idx, killed = 0; unsigned int dir; u_int16_t srcport, dstport; struct pfi_kkif *kif; relock_DIOCKILLSTATES: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { /* For floating states look at the original kif. */ kif = s->kif == V_pfi_all ? s->orig_kif : s->kif; sk = s->key[PF_SK_WIRE]; if (s->direction == PF_OUT) { srcaddr = &sk->addr[1]; dstaddr = &sk->addr[0]; srcport = sk->port[1]; dstport = sk->port[0]; } else { srcaddr = &sk->addr[0]; dstaddr = &sk->addr[1]; srcport = sk->port[0]; dstport = sk->port[1]; } if (psk->psk_af && sk->af != psk->psk_af) continue; if (psk->psk_proto && psk->psk_proto != sk->proto) continue; if (! PF_MATCHA(psk->psk_src.neg, &psk->psk_src.addr.v.a.addr, &psk->psk_src.addr.v.a.mask, srcaddr, sk->af)) continue; if (! PF_MATCHA(psk->psk_dst.neg, &psk->psk_dst.addr.v.a.addr, &psk->psk_dst.addr.v.a.mask, dstaddr, sk->af)) continue; if (! PF_MATCHA(psk->psk_rt_addr.neg, &psk->psk_rt_addr.addr.v.a.addr, &psk->psk_rt_addr.addr.v.a.mask, &s->rt_addr, sk->af)) continue; if (psk->psk_src.port_op != 0 && ! pf_match_port(psk->psk_src.port_op, psk->psk_src.port[0], psk->psk_src.port[1], srcport)) continue; if (psk->psk_dst.port_op != 0 && ! pf_match_port(psk->psk_dst.port_op, psk->psk_dst.port[0], psk->psk_dst.port[1], dstport)) continue; if (psk->psk_label[0] && ! pf_label_match(s->rule.ptr, psk->psk_label)) continue; if (psk->psk_ifname[0] && strcmp(psk->psk_ifname, kif->pfik_name)) continue; if (psk->psk_kill_match) { /* Create the key to find matching states, with lock * held. */ bzero(&match_key, sizeof(match_key)); if (s->direction == PF_OUT) { dir = PF_IN; idx = PF_SK_STACK; } else { dir = PF_OUT; idx = PF_SK_WIRE; } match_key.af = s->key[idx]->af; match_key.proto = s->key[idx]->proto; PF_ACPY(&match_key.addr[0], &s->key[idx]->addr[1], match_key.af); match_key.port[0] = s->key[idx]->port[1]; PF_ACPY(&match_key.addr[1], &s->key[idx]->addr[0], match_key.af); match_key.port[1] = s->key[idx]->port[0]; } pf_unlink_state(s, PF_ENTER_LOCKED); killed++; if (psk->psk_kill_match) killed += pf_kill_matching_state(&match_key, dir); goto relock_DIOCKILLSTATES; } PF_HASHROW_UNLOCK(ih); return (killed); } static int pf_state_kill_to_kstate_kill(const struct pfioc_state_kill *psk, struct pf_kstate_kill *kill) { int ret; bzero(kill, sizeof(*kill)); bcopy(&psk->psk_pfcmp, &kill->psk_pfcmp, sizeof(kill->psk_pfcmp)); kill->psk_af = psk->psk_af; kill->psk_proto = psk->psk_proto; bcopy(&psk->psk_src, &kill->psk_src, sizeof(kill->psk_src)); bcopy(&psk->psk_dst, &kill->psk_dst, sizeof(kill->psk_dst)); ret = pf_user_strcpy(kill->psk_ifname, psk->psk_ifname, sizeof(kill->psk_ifname)); if (ret != 0) return (ret); ret = pf_user_strcpy(kill->psk_label, psk->psk_label, sizeof(kill->psk_label)); if (ret != 0) return (ret); return (0); } static int pf_ioctl_addrule(struct pf_krule *rule, uint32_t ticket, uint32_t pool_ticket, const char *anchor, const char *anchor_call, struct thread *td) { struct pf_kruleset *ruleset; struct pf_krule *tail; struct pf_kpooladdr *pa; struct pfi_kkif *kif = NULL; int rs_num; int error = 0; if ((rule->return_icmp >> 8) > ICMP_MAXTYPE) { error = EINVAL; goto errout_unlocked; } #define ERROUT(x) ERROUT_FUNCTION(errout, x) if (rule->ifname[0]) kif = pf_kkif_create(M_WAITOK); pf_counter_u64_init(&rule->evaluations, M_WAITOK); for (int i = 0; i < 2; i++) { pf_counter_u64_init(&rule->packets[i], M_WAITOK); pf_counter_u64_init(&rule->bytes[i], M_WAITOK); } rule->states_cur = counter_u64_alloc(M_WAITOK); rule->states_tot = counter_u64_alloc(M_WAITOK); rule->src_nodes = counter_u64_alloc(M_WAITOK); rule->cuid = td->td_ucred->cr_ruid; rule->cpid = td->td_proc ? td->td_proc->p_pid : 0; TAILQ_INIT(&rule->rpool.list); PF_RULES_WLOCK(); #ifdef PF_WANT_32_TO_64_COUNTER LIST_INSERT_HEAD(&V_pf_allrulelist, rule, allrulelist); MPASS(!rule->allrulelinked); rule->allrulelinked = true; V_pf_allrulecount++; #endif ruleset = pf_find_kruleset(anchor); if (ruleset == NULL) ERROUT(EINVAL); rs_num = pf_get_ruleset_number(rule->action); if (rs_num >= PF_RULESET_MAX) ERROUT(EINVAL); if (ticket != ruleset->rules[rs_num].inactive.ticket) { DPFPRINTF(PF_DEBUG_MISC, ("ticket: %d != [%d]%d\n", ticket, rs_num, ruleset->rules[rs_num].inactive.ticket)); ERROUT(EBUSY); } if (pool_ticket != V_ticket_pabuf) { DPFPRINTF(PF_DEBUG_MISC, ("pool_ticket: %d != %d\n", pool_ticket, V_ticket_pabuf)); ERROUT(EBUSY); } tail = TAILQ_LAST(ruleset->rules[rs_num].inactive.ptr, pf_krulequeue); if (tail) rule->nr = tail->nr + 1; else rule->nr = 0; if (rule->ifname[0]) { rule->kif = pfi_kkif_attach(kif, rule->ifname); kif = NULL; pfi_kkif_ref(rule->kif); } else rule->kif = NULL; if (rule->rtableid > 0 && rule->rtableid >= rt_numfibs) error = EBUSY; #ifdef ALTQ /* set queue IDs */ if (rule->qname[0] != 0) { if ((rule->qid = pf_qname2qid(rule->qname)) == 0) error = EBUSY; else if (rule->pqname[0] != 0) { if ((rule->pqid = pf_qname2qid(rule->pqname)) == 0) error = EBUSY; } else rule->pqid = rule->qid; } #endif if (rule->tagname[0]) if ((rule->tag = pf_tagname2tag(rule->tagname)) == 0) error = EBUSY; if (rule->match_tagname[0]) if ((rule->match_tag = pf_tagname2tag(rule->match_tagname)) == 0) error = EBUSY; if (rule->rt && !rule->direction) error = EINVAL; if (!rule->log) rule->logif = 0; if (rule->logif >= PFLOGIFS_MAX) error = EINVAL; if (pf_addr_setup(ruleset, &rule->src.addr, rule->af)) error = ENOMEM; if (pf_addr_setup(ruleset, &rule->dst.addr, rule->af)) error = ENOMEM; if (pf_kanchor_setup(rule, ruleset, anchor_call)) error = EINVAL; if (rule->scrub_flags & PFSTATE_SETPRIO && (rule->set_prio[0] > PF_PRIO_MAX || rule->set_prio[1] > PF_PRIO_MAX)) error = EINVAL; TAILQ_FOREACH(pa, &V_pf_pabuf, entries) if (pa->addr.type == PF_ADDR_TABLE) { pa->addr.p.tbl = pfr_attach_table(ruleset, pa->addr.v.tblname); if (pa->addr.p.tbl == NULL) error = ENOMEM; } rule->overload_tbl = NULL; if (rule->overload_tblname[0]) { if ((rule->overload_tbl = pfr_attach_table(ruleset, rule->overload_tblname)) == NULL) error = EINVAL; else rule->overload_tbl->pfrkt_flags |= PFR_TFLAG_ACTIVE; } pf_mv_kpool(&V_pf_pabuf, &rule->rpool.list); if (((((rule->action == PF_NAT) || (rule->action == PF_RDR) || (rule->action == PF_BINAT)) && rule->anchor == NULL) || (rule->rt > PF_NOPFROUTE)) && (TAILQ_FIRST(&rule->rpool.list) == NULL)) error = EINVAL; if (error) { pf_free_rule(rule); rule = NULL; ERROUT(error); } rule->rpool.cur = TAILQ_FIRST(&rule->rpool.list); pf_counter_u64_zero(&rule->evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_zero(&rule->packets[i]); pf_counter_u64_zero(&rule->bytes[i]); } TAILQ_INSERT_TAIL(ruleset->rules[rs_num].inactive.ptr, rule, entries); ruleset->rules[rs_num].inactive.rcount++; + + mtx_init(&rule->rpool.mtx, "pf_krule_pool", NULL, MTX_DEF); PF_RULES_WUNLOCK(); return (0); #undef ERROUT errout: PF_RULES_WUNLOCK(); errout_unlocked: pf_kkif_free(kif); pf_krule_free(rule); return (error); } static int pfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags, struct thread *td) { int error = 0; PF_RULES_RLOCK_TRACKER; #define ERROUT_IOCTL(target, x) \ do { \ error = (x); \ SDT_PROBE3(pf, ioctl, ioctl, error, cmd, error, __LINE__); \ goto target; \ } while (0) /* XXX keep in sync with switch() below */ if (securelevel_gt(td->td_ucred, 2)) switch (cmd) { case DIOCGETRULES: case DIOCGETRULE: case DIOCGETRULENV: case DIOCGETADDRS: case DIOCGETADDR: case DIOCGETSTATE: case DIOCGETSTATENV: case DIOCSETSTATUSIF: case DIOCGETSTATUS: case DIOCGETSTATUSNV: case DIOCCLRSTATUS: case DIOCNATLOOK: case DIOCSETDEBUG: case DIOCGETSTATES: case DIOCGETSTATESV2: case DIOCGETTIMEOUT: case DIOCCLRRULECTRS: case DIOCGETLIMIT: case DIOCGETALTQSV0: case DIOCGETALTQSV1: case DIOCGETALTQV0: case DIOCGETALTQV1: case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: case DIOCGETRULESETS: case DIOCGETRULESET: case DIOCRGETTABLES: case DIOCRGETTSTATS: case DIOCRCLRTSTATS: case DIOCRCLRADDRS: case DIOCRADDADDRS: case DIOCRDELADDRS: case DIOCRSETADDRS: case DIOCRGETADDRS: case DIOCRGETASTATS: case DIOCRCLRASTATS: case DIOCRTSTADDRS: case DIOCOSFPGET: case DIOCGETSRCNODES: case DIOCCLRSRCNODES: case DIOCGETSYNCOOKIES: case DIOCIGETIFACES: case DIOCGIFSPEEDV0: case DIOCGIFSPEEDV1: case DIOCSETIFFLAG: case DIOCCLRIFFLAG: break; case DIOCRCLRTABLES: case DIOCRADDTABLES: case DIOCRDELTABLES: case DIOCRSETTFLAGS: if (((struct pfioc_table *)addr)->pfrio_flags & PFR_FLAG_DUMMY) break; /* dummy operation ok */ return (EPERM); default: return (EPERM); } if (!(flags & FWRITE)) switch (cmd) { case DIOCGETRULES: case DIOCGETADDRS: case DIOCGETADDR: case DIOCGETSTATE: case DIOCGETSTATENV: case DIOCGETSTATUS: case DIOCGETSTATUSNV: case DIOCGETSTATES: case DIOCGETSTATESV2: case DIOCGETTIMEOUT: case DIOCGETLIMIT: case DIOCGETALTQSV0: case DIOCGETALTQSV1: case DIOCGETALTQV0: case DIOCGETALTQV1: case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: case DIOCGETRULESETS: case DIOCGETRULESET: case DIOCNATLOOK: case DIOCRGETTABLES: case DIOCRGETTSTATS: case DIOCRGETADDRS: case DIOCRGETASTATS: case DIOCRTSTADDRS: case DIOCOSFPGET: case DIOCGETSRCNODES: case DIOCGETSYNCOOKIES: case DIOCIGETIFACES: case DIOCGIFSPEEDV1: case DIOCGIFSPEEDV0: case DIOCGETRULENV: break; case DIOCRCLRTABLES: case DIOCRADDTABLES: case DIOCRDELTABLES: case DIOCRCLRTSTATS: case DIOCRCLRADDRS: case DIOCRADDADDRS: case DIOCRDELADDRS: case DIOCRSETADDRS: case DIOCRSETTFLAGS: if (((struct pfioc_table *)addr)->pfrio_flags & PFR_FLAG_DUMMY) { flags |= FWRITE; /* need write lock for dummy */ break; /* dummy operation ok */ } return (EACCES); case DIOCGETRULE: if (((struct pfioc_rule *)addr)->action == PF_GET_CLR_CNTR) return (EACCES); break; default: return (EACCES); } CURVNET_SET(TD_TO_VNET(td)); switch (cmd) { case DIOCSTART: sx_xlock(&pf_ioctl_lock); if (V_pf_status.running) error = EEXIST; else { int cpu; hook_pf(); V_pf_status.running = 1; V_pf_status.since = time_second; CPU_FOREACH(cpu) V_pf_stateid[cpu] = time_second; DPFPRINTF(PF_DEBUG_MISC, ("pf: started\n")); } break; case DIOCSTOP: sx_xlock(&pf_ioctl_lock); if (!V_pf_status.running) error = ENOENT; else { V_pf_status.running = 0; dehook_pf(); V_pf_status.since = time_second; DPFPRINTF(PF_DEBUG_MISC, ("pf: stopped\n")); } break; case DIOCADDRULENV: { struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvl = NULL; void *nvlpacked = NULL; struct pf_krule *rule = NULL; const char *anchor = "", *anchor_call = ""; uint32_t ticket = 0, pool_ticket = 0; #define ERROUT(x) ERROUT_IOCTL(DIOCADDRULENV_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ticket")) ERROUT(EINVAL); ticket = nvlist_get_number(nvl, "ticket"); if (! nvlist_exists_number(nvl, "pool_ticket")) ERROUT(EINVAL); pool_ticket = nvlist_get_number(nvl, "pool_ticket"); if (! nvlist_exists_nvlist(nvl, "rule")) ERROUT(EINVAL); rule = malloc(sizeof(*rule), M_PFRULE, M_WAITOK | M_ZERO); error = pf_nvrule_to_krule(nvlist_get_nvlist(nvl, "rule"), rule); if (error) ERROUT(error); if (nvlist_exists_string(nvl, "anchor")) anchor = nvlist_get_string(nvl, "anchor"); if (nvlist_exists_string(nvl, "anchor_call")) anchor_call = nvlist_get_string(nvl, "anchor_call"); if ((error = nvlist_error(nvl))) ERROUT(error); /* Frees rule on error */ error = pf_ioctl_addrule(rule, ticket, pool_ticket, anchor, anchor_call, td); nvlist_destroy(nvl); free(nvlpacked, M_TEMP); break; #undef ERROUT DIOCADDRULENV_error: pf_krule_free(rule); nvlist_destroy(nvl); free(nvlpacked, M_TEMP); break; } case DIOCADDRULE: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_krule *rule; rule = malloc(sizeof(*rule), M_PFRULE, M_WAITOK | M_ZERO); error = pf_rule_to_krule(&pr->rule, rule); if (error != 0) { free(rule, M_PFRULE); break; } pr->anchor[sizeof(pr->anchor) - 1] = 0; /* Frees rule on error */ error = pf_ioctl_addrule(rule, pr->ticket, pr->pool_ticket, pr->anchor, pr->anchor_call, td); break; } case DIOCGETRULES: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_kruleset *ruleset; struct pf_krule *tail; int rs_num; pr->anchor[sizeof(pr->anchor) - 1] = 0; PF_RULES_WLOCK(); ruleset = pf_find_kruleset(pr->anchor); if (ruleset == NULL) { PF_RULES_WUNLOCK(); error = EINVAL; break; } rs_num = pf_get_ruleset_number(pr->rule.action); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); error = EINVAL; break; } tail = TAILQ_LAST(ruleset->rules[rs_num].active.ptr, pf_krulequeue); if (tail) pr->nr = tail->nr + 1; else pr->nr = 0; pr->ticket = ruleset->rules[rs_num].active.ticket; PF_RULES_WUNLOCK(); break; } case DIOCGETRULE: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_kruleset *ruleset; struct pf_krule *rule; int rs_num; pr->anchor[sizeof(pr->anchor) - 1] = 0; PF_RULES_WLOCK(); ruleset = pf_find_kruleset(pr->anchor); if (ruleset == NULL) { PF_RULES_WUNLOCK(); error = EINVAL; break; } rs_num = pf_get_ruleset_number(pr->rule.action); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); error = EINVAL; break; } if (pr->ticket != ruleset->rules[rs_num].active.ticket) { PF_RULES_WUNLOCK(); error = EBUSY; break; } rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); while ((rule != NULL) && (rule->nr != pr->nr)) rule = TAILQ_NEXT(rule, entries); if (rule == NULL) { PF_RULES_WUNLOCK(); error = EBUSY; break; } pf_krule_to_rule(rule, &pr->rule); if (pf_kanchor_copyout(ruleset, rule, pr)) { PF_RULES_WUNLOCK(); error = EBUSY; break; } pf_addr_copyout(&pr->rule.src.addr); pf_addr_copyout(&pr->rule.dst.addr); if (pr->action == PF_GET_CLR_CNTR) { pf_counter_u64_zero(&rule->evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_zero(&rule->packets[i]); pf_counter_u64_zero(&rule->bytes[i]); } counter_u64_zero(rule->states_tot); } PF_RULES_WUNLOCK(); break; } case DIOCGETRULENV: { struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvrule = NULL; nvlist_t *nvl = NULL; struct pf_kruleset *ruleset; struct pf_krule *rule; void *nvlpacked = NULL; int rs_num, nr; bool clear_counter = false; #define ERROUT(x) ERROUT_IOCTL(DIOCGETRULENV_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); /* Copy the request in */ nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_string(nvl, "anchor")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ruleset")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ticket")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "nr")) ERROUT(EBADMSG); if (nvlist_exists_bool(nvl, "clear_counter")) clear_counter = nvlist_get_bool(nvl, "clear_counter"); if (clear_counter && !(flags & FWRITE)) ERROUT(EACCES); nr = nvlist_get_number(nvl, "nr"); PF_RULES_WLOCK(); ruleset = pf_find_kruleset(nvlist_get_string(nvl, "anchor")); if (ruleset == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOENT); } rs_num = pf_get_ruleset_number(nvlist_get_number(nvl, "ruleset")); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); ERROUT(EINVAL); } if (nvlist_get_number(nvl, "ticket") != ruleset->rules[rs_num].active.ticket) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); } if ((error = nvlist_error(nvl))) { PF_RULES_WUNLOCK(); ERROUT(error); } rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); while ((rule != NULL) && (rule->nr != nr)) rule = TAILQ_NEXT(rule, entries); if (rule == NULL) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); } nvrule = pf_krule_to_nvrule(rule); nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOMEM); } nvlist_add_number(nvl, "nr", nr); nvlist_add_nvlist(nvl, "rule", nvrule); nvlist_destroy(nvrule); nvrule = NULL; if (pf_kanchor_nvcopyout(ruleset, rule, nvl)) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); } free(nvlpacked, M_NVLIST); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOMEM); } if (nv->size == 0) { PF_RULES_WUNLOCK(); ERROUT(0); } else if (nv->size < nv->len) { PF_RULES_WUNLOCK(); ERROUT(ENOSPC); } if (clear_counter) { pf_counter_u64_zero(&rule->evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_zero(&rule->packets[i]); pf_counter_u64_zero(&rule->bytes[i]); } counter_u64_zero(rule->states_tot); } PF_RULES_WUNLOCK(); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT DIOCGETRULENV_error: free(nvlpacked, M_NVLIST); nvlist_destroy(nvrule); nvlist_destroy(nvl); break; } case DIOCCHANGERULE: { struct pfioc_rule *pcr = (struct pfioc_rule *)addr; struct pf_kruleset *ruleset; struct pf_krule *oldrule = NULL, *newrule = NULL; struct pfi_kkif *kif = NULL; struct pf_kpooladdr *pa; u_int32_t nr = 0; int rs_num; pcr->anchor[sizeof(pcr->anchor) - 1] = 0; if (pcr->action < PF_CHANGE_ADD_HEAD || pcr->action > PF_CHANGE_GET_TICKET) { error = EINVAL; break; } if (pcr->rule.return_icmp >> 8 > ICMP_MAXTYPE) { error = EINVAL; break; } if (pcr->action != PF_CHANGE_REMOVE) { newrule = malloc(sizeof(*newrule), M_PFRULE, M_WAITOK | M_ZERO); error = pf_rule_to_krule(&pcr->rule, newrule); if (error != 0) { free(newrule, M_PFRULE); break; } if (newrule->ifname[0]) kif = pf_kkif_create(M_WAITOK); pf_counter_u64_init(&newrule->evaluations, M_WAITOK); for (int i = 0; i < 2; i++) { pf_counter_u64_init(&newrule->packets[i], M_WAITOK); pf_counter_u64_init(&newrule->bytes[i], M_WAITOK); } newrule->states_cur = counter_u64_alloc(M_WAITOK); newrule->states_tot = counter_u64_alloc(M_WAITOK); newrule->src_nodes = counter_u64_alloc(M_WAITOK); newrule->cuid = td->td_ucred->cr_ruid; newrule->cpid = td->td_proc ? td->td_proc->p_pid : 0; TAILQ_INIT(&newrule->rpool.list); } #define ERROUT(x) { error = (x); goto DIOCCHANGERULE_error; } PF_RULES_WLOCK(); #ifdef PF_WANT_32_TO_64_COUNTER if (newrule != NULL) { LIST_INSERT_HEAD(&V_pf_allrulelist, newrule, allrulelist); newrule->allrulelinked = true; V_pf_allrulecount++; } #endif if (!(pcr->action == PF_CHANGE_REMOVE || pcr->action == PF_CHANGE_GET_TICKET) && pcr->pool_ticket != V_ticket_pabuf) ERROUT(EBUSY); ruleset = pf_find_kruleset(pcr->anchor); if (ruleset == NULL) ERROUT(EINVAL); rs_num = pf_get_ruleset_number(pcr->rule.action); if (rs_num >= PF_RULESET_MAX) ERROUT(EINVAL); if (pcr->action == PF_CHANGE_GET_TICKET) { pcr->ticket = ++ruleset->rules[rs_num].active.ticket; ERROUT(0); } else if (pcr->ticket != ruleset->rules[rs_num].active.ticket) ERROUT(EINVAL); if (pcr->action != PF_CHANGE_REMOVE) { if (newrule->ifname[0]) { newrule->kif = pfi_kkif_attach(kif, newrule->ifname); kif = NULL; pfi_kkif_ref(newrule->kif); } else newrule->kif = NULL; if (newrule->rtableid > 0 && newrule->rtableid >= rt_numfibs) error = EBUSY; #ifdef ALTQ /* set queue IDs */ if (newrule->qname[0] != 0) { if ((newrule->qid = pf_qname2qid(newrule->qname)) == 0) error = EBUSY; else if (newrule->pqname[0] != 0) { if ((newrule->pqid = pf_qname2qid(newrule->pqname)) == 0) error = EBUSY; } else newrule->pqid = newrule->qid; } #endif /* ALTQ */ if (newrule->tagname[0]) if ((newrule->tag = pf_tagname2tag(newrule->tagname)) == 0) error = EBUSY; if (newrule->match_tagname[0]) if ((newrule->match_tag = pf_tagname2tag( newrule->match_tagname)) == 0) error = EBUSY; if (newrule->rt && !newrule->direction) error = EINVAL; if (!newrule->log) newrule->logif = 0; if (newrule->logif >= PFLOGIFS_MAX) error = EINVAL; if (pf_addr_setup(ruleset, &newrule->src.addr, newrule->af)) error = ENOMEM; if (pf_addr_setup(ruleset, &newrule->dst.addr, newrule->af)) error = ENOMEM; if (pf_kanchor_setup(newrule, ruleset, pcr->anchor_call)) error = EINVAL; TAILQ_FOREACH(pa, &V_pf_pabuf, entries) if (pa->addr.type == PF_ADDR_TABLE) { pa->addr.p.tbl = pfr_attach_table(ruleset, pa->addr.v.tblname); if (pa->addr.p.tbl == NULL) error = ENOMEM; } newrule->overload_tbl = NULL; if (newrule->overload_tblname[0]) { if ((newrule->overload_tbl = pfr_attach_table( ruleset, newrule->overload_tblname)) == NULL) error = EINVAL; else newrule->overload_tbl->pfrkt_flags |= PFR_TFLAG_ACTIVE; } pf_mv_kpool(&V_pf_pabuf, &newrule->rpool.list); if (((((newrule->action == PF_NAT) || (newrule->action == PF_RDR) || (newrule->action == PF_BINAT) || (newrule->rt > PF_NOPFROUTE)) && !newrule->anchor)) && (TAILQ_FIRST(&newrule->rpool.list) == NULL)) error = EINVAL; if (error) { pf_free_rule(newrule); PF_RULES_WUNLOCK(); break; } newrule->rpool.cur = TAILQ_FIRST(&newrule->rpool.list); } pf_empty_kpool(&V_pf_pabuf); if (pcr->action == PF_CHANGE_ADD_HEAD) oldrule = TAILQ_FIRST( ruleset->rules[rs_num].active.ptr); else if (pcr->action == PF_CHANGE_ADD_TAIL) oldrule = TAILQ_LAST( ruleset->rules[rs_num].active.ptr, pf_krulequeue); else { oldrule = TAILQ_FIRST( ruleset->rules[rs_num].active.ptr); while ((oldrule != NULL) && (oldrule->nr != pcr->nr)) oldrule = TAILQ_NEXT(oldrule, entries); if (oldrule == NULL) { if (newrule != NULL) pf_free_rule(newrule); PF_RULES_WUNLOCK(); error = EINVAL; break; } } if (pcr->action == PF_CHANGE_REMOVE) { pf_unlink_rule(ruleset->rules[rs_num].active.ptr, oldrule); ruleset->rules[rs_num].active.rcount--; } else { if (oldrule == NULL) TAILQ_INSERT_TAIL( ruleset->rules[rs_num].active.ptr, newrule, entries); else if (pcr->action == PF_CHANGE_ADD_HEAD || pcr->action == PF_CHANGE_ADD_BEFORE) TAILQ_INSERT_BEFORE(oldrule, newrule, entries); else TAILQ_INSERT_AFTER( ruleset->rules[rs_num].active.ptr, oldrule, newrule, entries); ruleset->rules[rs_num].active.rcount++; } nr = 0; TAILQ_FOREACH(oldrule, ruleset->rules[rs_num].active.ptr, entries) oldrule->nr = nr++; ruleset->rules[rs_num].active.ticket++; pf_calc_skip_steps(ruleset->rules[rs_num].active.ptr); pf_remove_if_empty_kruleset(ruleset); PF_RULES_WUNLOCK(); break; #undef ERROUT DIOCCHANGERULE_error: PF_RULES_WUNLOCK(); pf_krule_free(newrule); pf_kkif_free(kif); break; } case DIOCCLRSTATES: { struct pfioc_state_kill *psk = (struct pfioc_state_kill *)addr; struct pf_kstate_kill kill; error = pf_state_kill_to_kstate_kill(psk, &kill); if (error) break; psk->psk_killed = pf_clear_states(&kill); break; } case DIOCCLRSTATESNV: { error = pf_clearstates_nv((struct pfioc_nv *)addr); break; } case DIOCKILLSTATES: { struct pfioc_state_kill *psk = (struct pfioc_state_kill *)addr; struct pf_kstate_kill kill; error = pf_state_kill_to_kstate_kill(psk, &kill); if (error) break; psk->psk_killed = 0; pf_killstates(&kill, &psk->psk_killed); break; } case DIOCKILLSTATESNV: { error = pf_killstates_nv((struct pfioc_nv *)addr); break; } case DIOCADDSTATE: { struct pfioc_state *ps = (struct pfioc_state *)addr; struct pfsync_state *sp = &ps->state; if (sp->timeout >= PFTM_MAX) { error = EINVAL; break; } if (V_pfsync_state_import_ptr != NULL) { PF_RULES_RLOCK(); error = V_pfsync_state_import_ptr(sp, PFSYNC_SI_IOCTL); PF_RULES_RUNLOCK(); } else error = EOPNOTSUPP; break; } case DIOCGETSTATE: { struct pfioc_state *ps = (struct pfioc_state *)addr; struct pf_kstate *s; s = pf_find_state_byid(ps->state.id, ps->state.creatorid); if (s == NULL) { error = ENOENT; break; } pfsync_state_export(&ps->state, s); PF_STATE_UNLOCK(s); break; } case DIOCGETSTATENV: { error = pf_getstate((struct pfioc_nv *)addr); break; } case DIOCGETSTATES: { struct pfioc_states *ps = (struct pfioc_states *)addr; struct pf_kstate *s; struct pfsync_state *pstore, *p; int i, nr; size_t slice_count = 16, count; void *out; if (ps->ps_len <= 0) { nr = uma_zone_get_cur(V_pf_state_z); ps->ps_len = sizeof(struct pfsync_state) * nr; break; } out = ps->ps_states; pstore = mallocarray(slice_count, sizeof(struct pfsync_state), M_TEMP, M_WAITOK | M_ZERO); nr = 0; for (i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; DIOCGETSTATES_retry: p = pstore; if (LIST_EMPTY(&ih->states)) continue; PF_HASHROW_LOCK(ih); count = 0; LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; count++; } if (count > slice_count) { PF_HASHROW_UNLOCK(ih); free(pstore, M_TEMP); slice_count = count * 2; pstore = mallocarray(slice_count, sizeof(struct pfsync_state), M_TEMP, M_WAITOK | M_ZERO); goto DIOCGETSTATES_retry; } if ((nr+count) * sizeof(*p) > ps->ps_len) { PF_HASHROW_UNLOCK(ih); goto DIOCGETSTATES_full; } LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; pfsync_state_export(p, s); p++; nr++; } PF_HASHROW_UNLOCK(ih); error = copyout(pstore, out, sizeof(struct pfsync_state) * count); if (error) break; out = ps->ps_states + nr; } DIOCGETSTATES_full: ps->ps_len = sizeof(struct pfsync_state) * nr; free(pstore, M_TEMP); break; } case DIOCGETSTATESV2: { struct pfioc_states_v2 *ps = (struct pfioc_states_v2 *)addr; struct pf_kstate *s; struct pf_state_export *pstore, *p; int i, nr; size_t slice_count = 16, count; void *out; if (ps->ps_req_version > PF_STATE_VERSION) { error = ENOTSUP; break; } if (ps->ps_len <= 0) { nr = uma_zone_get_cur(V_pf_state_z); ps->ps_len = sizeof(struct pf_state_export) * nr; break; } out = ps->ps_states; pstore = mallocarray(slice_count, sizeof(struct pf_state_export), M_TEMP, M_WAITOK | M_ZERO); nr = 0; for (i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; DIOCGETSTATESV2_retry: p = pstore; if (LIST_EMPTY(&ih->states)) continue; PF_HASHROW_LOCK(ih); count = 0; LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; count++; } if (count > slice_count) { PF_HASHROW_UNLOCK(ih); free(pstore, M_TEMP); slice_count = count * 2; pstore = mallocarray(slice_count, sizeof(struct pf_state_export), M_TEMP, M_WAITOK | M_ZERO); goto DIOCGETSTATESV2_retry; } if ((nr+count) * sizeof(*p) > ps->ps_len) { PF_HASHROW_UNLOCK(ih); goto DIOCGETSTATESV2_full; } LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; pf_state_export(p, s); p++; nr++; } PF_HASHROW_UNLOCK(ih); error = copyout(pstore, out, sizeof(struct pf_state_export) * count); if (error) break; out = ps->ps_states + nr; } DIOCGETSTATESV2_full: ps->ps_len = nr * sizeof(struct pf_state_export); free(pstore, M_TEMP); break; } case DIOCGETSTATUS: { struct pf_status *s = (struct pf_status *)addr; PF_RULES_RLOCK(); s->running = V_pf_status.running; s->since = V_pf_status.since; s->debug = V_pf_status.debug; s->hostid = V_pf_status.hostid; s->states = V_pf_status.states; s->src_nodes = V_pf_status.src_nodes; for (int i = 0; i < PFRES_MAX; i++) s->counters[i] = counter_u64_fetch(V_pf_status.counters[i]); for (int i = 0; i < LCNT_MAX; i++) s->lcounters[i] = counter_u64_fetch(V_pf_status.lcounters[i]); for (int i = 0; i < FCNT_MAX; i++) s->fcounters[i] = pf_counter_u64_fetch(&V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) s->scounters[i] = counter_u64_fetch(V_pf_status.scounters[i]); bcopy(V_pf_status.ifname, s->ifname, IFNAMSIZ); bcopy(V_pf_status.pf_chksum, s->pf_chksum, PF_MD5_DIGEST_LENGTH); pfi_update_status(s->ifname, s); PF_RULES_RUNLOCK(); break; } case DIOCGETSTATUSNV: { error = pf_getstatus((struct pfioc_nv *)addr); break; } case DIOCSETSTATUSIF: { struct pfioc_if *pi = (struct pfioc_if *)addr; if (pi->ifname[0] == 0) { bzero(V_pf_status.ifname, IFNAMSIZ); break; } PF_RULES_WLOCK(); error = pf_user_strcpy(V_pf_status.ifname, pi->ifname, IFNAMSIZ); PF_RULES_WUNLOCK(); break; } case DIOCCLRSTATUS: { PF_RULES_WLOCK(); for (int i = 0; i < PFRES_MAX; i++) counter_u64_zero(V_pf_status.counters[i]); for (int i = 0; i < FCNT_MAX; i++) pf_counter_u64_zero(&V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) counter_u64_zero(V_pf_status.scounters[i]); for (int i = 0; i < KLCNT_MAX; i++) counter_u64_zero(V_pf_status.lcounters[i]); V_pf_status.since = time_second; if (*V_pf_status.ifname) pfi_update_status(V_pf_status.ifname, NULL); PF_RULES_WUNLOCK(); break; } case DIOCNATLOOK: { struct pfioc_natlook *pnl = (struct pfioc_natlook *)addr; struct pf_state_key *sk; struct pf_kstate *state; struct pf_state_key_cmp key; int m = 0, direction = pnl->direction; int sidx, didx; /* NATLOOK src and dst are reversed, so reverse sidx/didx */ sidx = (direction == PF_IN) ? 1 : 0; didx = (direction == PF_IN) ? 0 : 1; if (!pnl->proto || PF_AZERO(&pnl->saddr, pnl->af) || PF_AZERO(&pnl->daddr, pnl->af) || ((pnl->proto == IPPROTO_TCP || pnl->proto == IPPROTO_UDP) && (!pnl->dport || !pnl->sport))) error = EINVAL; else { bzero(&key, sizeof(key)); key.af = pnl->af; key.proto = pnl->proto; PF_ACPY(&key.addr[sidx], &pnl->saddr, pnl->af); key.port[sidx] = pnl->sport; PF_ACPY(&key.addr[didx], &pnl->daddr, pnl->af); key.port[didx] = pnl->dport; state = pf_find_state_all(&key, direction, &m); if (m > 1) error = E2BIG; /* more than one state */ else if (state != NULL) { /* XXXGL: not locked read */ sk = state->key[sidx]; PF_ACPY(&pnl->rsaddr, &sk->addr[sidx], sk->af); pnl->rsport = sk->port[sidx]; PF_ACPY(&pnl->rdaddr, &sk->addr[didx], sk->af); pnl->rdport = sk->port[didx]; } else error = ENOENT; } break; } case DIOCSETTIMEOUT: { struct pfioc_tm *pt = (struct pfioc_tm *)addr; int old; if (pt->timeout < 0 || pt->timeout >= PFTM_MAX || pt->seconds < 0) { error = EINVAL; break; } PF_RULES_WLOCK(); old = V_pf_default_rule.timeout[pt->timeout]; if (pt->timeout == PFTM_INTERVAL && pt->seconds == 0) pt->seconds = 1; V_pf_default_rule.timeout[pt->timeout] = pt->seconds; if (pt->timeout == PFTM_INTERVAL && pt->seconds < old) wakeup(pf_purge_thread); pt->seconds = old; PF_RULES_WUNLOCK(); break; } case DIOCGETTIMEOUT: { struct pfioc_tm *pt = (struct pfioc_tm *)addr; if (pt->timeout < 0 || pt->timeout >= PFTM_MAX) { error = EINVAL; break; } PF_RULES_RLOCK(); pt->seconds = V_pf_default_rule.timeout[pt->timeout]; PF_RULES_RUNLOCK(); break; } case DIOCGETLIMIT: { struct pfioc_limit *pl = (struct pfioc_limit *)addr; if (pl->index < 0 || pl->index >= PF_LIMIT_MAX) { error = EINVAL; break; } PF_RULES_RLOCK(); pl->limit = V_pf_limits[pl->index].limit; PF_RULES_RUNLOCK(); break; } case DIOCSETLIMIT: { struct pfioc_limit *pl = (struct pfioc_limit *)addr; int old_limit; PF_RULES_WLOCK(); if (pl->index < 0 || pl->index >= PF_LIMIT_MAX || V_pf_limits[pl->index].zone == NULL) { PF_RULES_WUNLOCK(); error = EINVAL; break; } uma_zone_set_max(V_pf_limits[pl->index].zone, pl->limit); old_limit = V_pf_limits[pl->index].limit; V_pf_limits[pl->index].limit = pl->limit; pl->limit = old_limit; PF_RULES_WUNLOCK(); break; } case DIOCSETDEBUG: { u_int32_t *level = (u_int32_t *)addr; PF_RULES_WLOCK(); V_pf_status.debug = *level; PF_RULES_WUNLOCK(); break; } case DIOCCLRRULECTRS: { /* obsoleted by DIOCGETRULE with action=PF_GET_CLR_CNTR */ struct pf_kruleset *ruleset = &pf_main_ruleset; struct pf_krule *rule; PF_RULES_WLOCK(); TAILQ_FOREACH(rule, ruleset->rules[PF_RULESET_FILTER].active.ptr, entries) { pf_counter_u64_zero(&rule->evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_zero(&rule->packets[i]); pf_counter_u64_zero(&rule->bytes[i]); } } PF_RULES_WUNLOCK(); break; } case DIOCGIFSPEEDV0: case DIOCGIFSPEEDV1: { struct pf_ifspeed_v1 *psp = (struct pf_ifspeed_v1 *)addr; struct pf_ifspeed_v1 ps; struct ifnet *ifp; if (psp->ifname[0] == '\0') { error = EINVAL; break; } error = pf_user_strcpy(ps.ifname, psp->ifname, IFNAMSIZ); if (error != 0) break; ifp = ifunit(ps.ifname); if (ifp != NULL) { psp->baudrate32 = (u_int32_t)uqmin(ifp->if_baudrate, UINT_MAX); if (cmd == DIOCGIFSPEEDV1) psp->baudrate = ifp->if_baudrate; } else { error = EINVAL; } break; } #ifdef ALTQ case DIOCSTARTALTQ: { struct pf_altq *altq; PF_RULES_WLOCK(); /* enable all altq interfaces on active list */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { error = pf_enable_altq(altq); if (error != 0) break; } } if (error == 0) V_pf_altq_running = 1; PF_RULES_WUNLOCK(); DPFPRINTF(PF_DEBUG_MISC, ("altq: started\n")); break; } case DIOCSTOPALTQ: { struct pf_altq *altq; PF_RULES_WLOCK(); /* disable all altq interfaces on active list */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { error = pf_disable_altq(altq); if (error != 0) break; } } if (error == 0) V_pf_altq_running = 0; PF_RULES_WUNLOCK(); DPFPRINTF(PF_DEBUG_MISC, ("altq: stopped\n")); break; } case DIOCADDALTQV0: case DIOCADDALTQV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq, *a; struct ifnet *ifp; altq = malloc(sizeof(*altq), M_PFALTQ, M_WAITOK | M_ZERO); error = pf_import_kaltq(pa, altq, IOCPARM_LEN(cmd)); if (error) break; altq->local_flags = 0; PF_RULES_WLOCK(); if (pa->ticket != V_ticket_altqs_inactive) { PF_RULES_WUNLOCK(); free(altq, M_PFALTQ); error = EBUSY; break; } /* * if this is for a queue, find the discipline and * copy the necessary fields */ if (altq->qname[0] != 0) { if ((altq->qid = pf_qname2qid(altq->qname)) == 0) { PF_RULES_WUNLOCK(); error = EBUSY; free(altq, M_PFALTQ); break; } altq->altq_disc = NULL; TAILQ_FOREACH(a, V_pf_altq_ifs_inactive, entries) { if (strncmp(a->ifname, altq->ifname, IFNAMSIZ) == 0) { altq->altq_disc = a->altq_disc; break; } } } if ((ifp = ifunit(altq->ifname)) == NULL) altq->local_flags |= PFALTQ_FLAG_IF_REMOVED; else error = altq_add(ifp, altq); if (error) { PF_RULES_WUNLOCK(); free(altq, M_PFALTQ); break; } if (altq->qname[0] != 0) TAILQ_INSERT_TAIL(V_pf_altqs_inactive, altq, entries); else TAILQ_INSERT_TAIL(V_pf_altq_ifs_inactive, altq, entries); /* version error check done on import above */ pf_export_kaltq(altq, pa, IOCPARM_LEN(cmd)); PF_RULES_WUNLOCK(); break; } case DIOCGETALTQSV0: case DIOCGETALTQSV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq; PF_RULES_RLOCK(); pa->nr = 0; TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) pa->nr++; TAILQ_FOREACH(altq, V_pf_altqs_active, entries) pa->nr++; pa->ticket = V_ticket_altqs_active; PF_RULES_RUNLOCK(); break; } case DIOCGETALTQV0: case DIOCGETALTQV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq; PF_RULES_RLOCK(); if (pa->ticket != V_ticket_altqs_active) { PF_RULES_RUNLOCK(); error = EBUSY; break; } altq = pf_altq_get_nth_active(pa->nr); if (altq == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pf_export_kaltq(altq, pa, IOCPARM_LEN(cmd)); PF_RULES_RUNLOCK(); break; } case DIOCCHANGEALTQV0: case DIOCCHANGEALTQV1: /* CHANGEALTQ not supported yet! */ error = ENODEV; break; case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: { struct pfioc_qstats_v1 *pq = (struct pfioc_qstats_v1 *)addr; struct pf_altq *altq; int nbytes; u_int32_t version; PF_RULES_RLOCK(); if (pq->ticket != V_ticket_altqs_active) { PF_RULES_RUNLOCK(); error = EBUSY; break; } nbytes = pq->nbytes; altq = pf_altq_get_nth_active(pq->nr); if (altq == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) != 0) { PF_RULES_RUNLOCK(); error = ENXIO; break; } PF_RULES_RUNLOCK(); if (cmd == DIOCGETQSTATSV0) version = 0; /* DIOCGETQSTATSV0 means stats struct v0 */ else version = pq->version; error = altq_getqstats(altq, pq->buf, &nbytes, version); if (error == 0) { pq->scheduler = altq->scheduler; pq->nbytes = nbytes; } break; } #endif /* ALTQ */ case DIOCBEGINADDRS: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; PF_RULES_WLOCK(); pf_empty_kpool(&V_pf_pabuf); pp->ticket = ++V_ticket_pabuf; PF_RULES_WUNLOCK(); break; } case DIOCADDADDR: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; struct pf_kpooladdr *pa; struct pfi_kkif *kif = NULL; #ifndef INET if (pp->af == AF_INET) { error = EAFNOSUPPORT; break; } #endif /* INET */ #ifndef INET6 if (pp->af == AF_INET6) { error = EAFNOSUPPORT; break; } #endif /* INET6 */ if (pp->addr.addr.type != PF_ADDR_ADDRMASK && pp->addr.addr.type != PF_ADDR_DYNIFTL && pp->addr.addr.type != PF_ADDR_TABLE) { error = EINVAL; break; } if (pp->addr.addr.p.dyn != NULL) { error = EINVAL; break; } pa = malloc(sizeof(*pa), M_PFRULE, M_WAITOK); error = pf_pooladdr_to_kpooladdr(&pp->addr, pa); if (error != 0) break; if (pa->ifname[0]) kif = pf_kkif_create(M_WAITOK); PF_RULES_WLOCK(); if (pp->ticket != V_ticket_pabuf) { PF_RULES_WUNLOCK(); if (pa->ifname[0]) pf_kkif_free(kif); free(pa, M_PFRULE); error = EBUSY; break; } if (pa->ifname[0]) { pa->kif = pfi_kkif_attach(kif, pa->ifname); kif = NULL; pfi_kkif_ref(pa->kif); } else pa->kif = NULL; if (pa->addr.type == PF_ADDR_DYNIFTL && ((error = pfi_dynaddr_setup(&pa->addr, pp->af)) != 0)) { if (pa->ifname[0]) pfi_kkif_unref(pa->kif); PF_RULES_WUNLOCK(); free(pa, M_PFRULE); break; } TAILQ_INSERT_TAIL(&V_pf_pabuf, pa, entries); PF_RULES_WUNLOCK(); break; } case DIOCGETADDRS: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *pa; pp->anchor[sizeof(pp->anchor) - 1] = 0; pp->nr = 0; PF_RULES_RLOCK(); pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action, pp->r_num, 0, 1, 0); if (pool == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } TAILQ_FOREACH(pa, &pool->list, entries) pp->nr++; PF_RULES_RUNLOCK(); break; } case DIOCGETADDR: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *pa; u_int32_t nr = 0; pp->anchor[sizeof(pp->anchor) - 1] = 0; PF_RULES_RLOCK(); pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action, pp->r_num, 0, 1, 1); if (pool == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pa = TAILQ_FIRST(&pool->list); while ((pa != NULL) && (nr < pp->nr)) { pa = TAILQ_NEXT(pa, entries); nr++; } if (pa == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pf_kpooladdr_to_pooladdr(pa, &pp->addr); pf_addr_copyout(&pp->addr.addr); PF_RULES_RUNLOCK(); break; } case DIOCCHANGEADDR: { struct pfioc_pooladdr *pca = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *oldpa = NULL, *newpa = NULL; struct pf_kruleset *ruleset; struct pfi_kkif *kif = NULL; pca->anchor[sizeof(pca->anchor) - 1] = 0; if (pca->action < PF_CHANGE_ADD_HEAD || pca->action > PF_CHANGE_REMOVE) { error = EINVAL; break; } if (pca->addr.addr.type != PF_ADDR_ADDRMASK && pca->addr.addr.type != PF_ADDR_DYNIFTL && pca->addr.addr.type != PF_ADDR_TABLE) { error = EINVAL; break; } if (pca->addr.addr.p.dyn != NULL) { error = EINVAL; break; } if (pca->action != PF_CHANGE_REMOVE) { #ifndef INET if (pca->af == AF_INET) { error = EAFNOSUPPORT; break; } #endif /* INET */ #ifndef INET6 if (pca->af == AF_INET6) { error = EAFNOSUPPORT; break; } #endif /* INET6 */ newpa = malloc(sizeof(*newpa), M_PFRULE, M_WAITOK); bcopy(&pca->addr, newpa, sizeof(struct pf_pooladdr)); if (newpa->ifname[0]) kif = pf_kkif_create(M_WAITOK); newpa->kif = NULL; } #define ERROUT(x) ERROUT_IOCTL(DIOCCHANGEADDR_error, x) PF_RULES_WLOCK(); ruleset = pf_find_kruleset(pca->anchor); if (ruleset == NULL) ERROUT(EBUSY); pool = pf_get_kpool(pca->anchor, pca->ticket, pca->r_action, pca->r_num, pca->r_last, 1, 1); if (pool == NULL) ERROUT(EBUSY); if (pca->action != PF_CHANGE_REMOVE) { if (newpa->ifname[0]) { newpa->kif = pfi_kkif_attach(kif, newpa->ifname); pfi_kkif_ref(newpa->kif); kif = NULL; } switch (newpa->addr.type) { case PF_ADDR_DYNIFTL: error = pfi_dynaddr_setup(&newpa->addr, pca->af); break; case PF_ADDR_TABLE: newpa->addr.p.tbl = pfr_attach_table(ruleset, newpa->addr.v.tblname); if (newpa->addr.p.tbl == NULL) error = ENOMEM; break; } if (error) goto DIOCCHANGEADDR_error; } switch (pca->action) { case PF_CHANGE_ADD_HEAD: oldpa = TAILQ_FIRST(&pool->list); break; case PF_CHANGE_ADD_TAIL: oldpa = TAILQ_LAST(&pool->list, pf_kpalist); break; default: oldpa = TAILQ_FIRST(&pool->list); for (int i = 0; oldpa && i < pca->nr; i++) oldpa = TAILQ_NEXT(oldpa, entries); if (oldpa == NULL) ERROUT(EINVAL); } if (pca->action == PF_CHANGE_REMOVE) { TAILQ_REMOVE(&pool->list, oldpa, entries); switch (oldpa->addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(oldpa->addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(oldpa->addr.p.tbl); break; } if (oldpa->kif) pfi_kkif_unref(oldpa->kif); free(oldpa, M_PFRULE); } else { if (oldpa == NULL) TAILQ_INSERT_TAIL(&pool->list, newpa, entries); else if (pca->action == PF_CHANGE_ADD_HEAD || pca->action == PF_CHANGE_ADD_BEFORE) TAILQ_INSERT_BEFORE(oldpa, newpa, entries); else TAILQ_INSERT_AFTER(&pool->list, oldpa, newpa, entries); } pool->cur = TAILQ_FIRST(&pool->list); PF_ACPY(&pool->counter, &pool->cur->addr.v.a.addr, pca->af); PF_RULES_WUNLOCK(); break; #undef ERROUT DIOCCHANGEADDR_error: if (newpa != NULL) { if (newpa->kif) pfi_kkif_unref(newpa->kif); free(newpa, M_PFRULE); } PF_RULES_WUNLOCK(); pf_kkif_free(kif); break; } case DIOCGETRULESETS: { struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr; struct pf_kruleset *ruleset; struct pf_kanchor *anchor; pr->path[sizeof(pr->path) - 1] = 0; PF_RULES_RLOCK(); if ((ruleset = pf_find_kruleset(pr->path)) == NULL) { PF_RULES_RUNLOCK(); error = ENOENT; break; } pr->nr = 0; if (ruleset->anchor == NULL) { /* XXX kludge for pf_main_ruleset */ RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors) if (anchor->parent == NULL) pr->nr++; } else { RB_FOREACH(anchor, pf_kanchor_node, &ruleset->anchor->children) pr->nr++; } PF_RULES_RUNLOCK(); break; } case DIOCGETRULESET: { struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr; struct pf_kruleset *ruleset; struct pf_kanchor *anchor; u_int32_t nr = 0; pr->path[sizeof(pr->path) - 1] = 0; PF_RULES_RLOCK(); if ((ruleset = pf_find_kruleset(pr->path)) == NULL) { PF_RULES_RUNLOCK(); error = ENOENT; break; } pr->name[0] = 0; if (ruleset->anchor == NULL) { /* XXX kludge for pf_main_ruleset */ RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors) if (anchor->parent == NULL && nr++ == pr->nr) { strlcpy(pr->name, anchor->name, sizeof(pr->name)); break; } } else { RB_FOREACH(anchor, pf_kanchor_node, &ruleset->anchor->children) if (nr++ == pr->nr) { strlcpy(pr->name, anchor->name, sizeof(pr->name)); break; } } if (!pr->name[0]) error = EBUSY; PF_RULES_RUNLOCK(); break; } case DIOCRCLRTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; if (io->pfrio_esize != 0) { error = ENODEV; break; } PF_RULES_WLOCK(); error = pfr_clr_tables(&io->pfrio_table, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); break; } case DIOCRADDTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { error = ENOMEM; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_add_tables(pfrts, io->pfrio_size, &io->pfrio_nadd, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRDELTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { error = ENOMEM; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_del_tables(pfrts, io->pfrio_size, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRGETTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } PF_RULES_RLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_RUNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_NOWAIT | M_ZERO); if (pfrts == NULL) { error = ENOMEM; PF_RULES_RUNLOCK(); break; } error = pfr_get_tables(&io->pfrio_table, pfrts, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfrts, io->pfrio_buffer, totlen); free(pfrts, M_TEMP); break; } case DIOCRGETTSTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_tstats *pfrtstats; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_tstats)) { error = ENODEV; break; } PF_TABLE_STATS_LOCK(); PF_RULES_RLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_RUNLOCK(); PF_TABLE_STATS_UNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); totlen = io->pfrio_size * sizeof(struct pfr_tstats); pfrtstats = mallocarray(io->pfrio_size, sizeof(struct pfr_tstats), M_TEMP, M_NOWAIT | M_ZERO); if (pfrtstats == NULL) { error = ENOMEM; PF_RULES_RUNLOCK(); PF_TABLE_STATS_UNLOCK(); break; } error = pfr_get_tstats(&io->pfrio_table, pfrtstats, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); PF_TABLE_STATS_UNLOCK(); if (error == 0) error = copyout(pfrtstats, io->pfrio_buffer, totlen); free(pfrtstats, M_TEMP); break; } case DIOCRCLRTSTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { /* We used to count tables and use the minimum required * size, so we didn't fail on overly large requests. * Keep doing so. */ io->pfrio_size = pf_ioctl_maxcount; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_TABLE_STATS_LOCK(); PF_RULES_RLOCK(); error = pfr_clr_tstats(pfrts, io->pfrio_size, &io->pfrio_nzero, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); PF_TABLE_STATS_UNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRSETTFLAGS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } PF_RULES_RLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_RUNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); PF_RULES_RUNLOCK(); totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_set_tflags(pfrts, io->pfrio_size, io->pfrio_setflag, io->pfrio_clrflag, &io->pfrio_nchange, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRCLRADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; if (io->pfrio_esize != 0) { error = ENODEV; break; } PF_RULES_WLOCK(); error = pfr_clr_addrs(&io->pfrio_table, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); break; } case DIOCRADDADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_add_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nadd, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRDELADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_del_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRSETADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen, count; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size2 < 0) { error = EINVAL; break; } count = max(io->pfrio_size, io->pfrio_size2); if (count > pf_ioctl_maxcount || WOULD_OVERFLOW(count, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = count * sizeof(struct pfr_addr); pfras = mallocarray(count, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_set_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_size2, &io->pfrio_nadd, &io->pfrio_ndel, &io->pfrio_nchange, io->pfrio_flags | PFR_FLAG_USERIOCTL, 0); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRGETADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK | M_ZERO); PF_RULES_RLOCK(); error = pfr_get_addrs(&io->pfrio_table, pfras, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRGETASTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_astats *pfrastats; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_astats)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_astats))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_astats); pfrastats = mallocarray(io->pfrio_size, sizeof(struct pfr_astats), M_TEMP, M_WAITOK | M_ZERO); PF_RULES_RLOCK(); error = pfr_get_astats(&io->pfrio_table, pfrastats, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfrastats, io->pfrio_buffer, totlen); free(pfrastats, M_TEMP); break; } case DIOCRCLRASTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_clr_astats(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nzero, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRTSTADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_RLOCK(); error = pfr_tst_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nmatch, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRINADEFINE: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_ina_define(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nadd, &io->pfrio_naddr, io->pfrio_ticket, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfras, M_TEMP); break; } case DIOCOSFPADD: { struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr; PF_RULES_WLOCK(); error = pf_osfp_add(io); PF_RULES_WUNLOCK(); break; } case DIOCOSFPGET: { struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr; PF_RULES_RLOCK(); error = pf_osfp_get(io); PF_RULES_RUNLOCK(); break; } case DIOCXBEGIN: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioes, *ioe; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_WAITOK); error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { ioe->anchor[sizeof(ioe->anchor) - 1] = '\0'; switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if ((error = pf_begin_altq(&ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_begin(&table, &ioe->ticket, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; } default: if ((error = pf_begin_rules(&ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; } } PF_RULES_WUNLOCK(); error = copyout(ioes, io->array, totlen); free(ioes, M_TEMP); break; } case DIOCXROLLBACK: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioe, *ioes; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_WAITOK); error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { ioe->anchor[sizeof(ioe->anchor) - 1] = '\0'; switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if ((error = pf_rollback_altq(ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_rollback(&table, ioe->ticket, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } default: if ((error = pf_rollback_rules(ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } } PF_RULES_WUNLOCK(); free(ioes, M_TEMP); break; } case DIOCXCOMMIT: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioe, *ioes; struct pf_kruleset *rs; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_WAITOK); error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); /* First makes sure everything will succeed. */ for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { ioe->anchor[sizeof(ioe->anchor) - 1] = 0; switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if (!V_altqs_inactive_open || ioe->ticket != V_ticket_altqs_inactive) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; #endif /* ALTQ */ case PF_RULESET_TABLE: rs = pf_find_kruleset(ioe->anchor); if (rs == NULL || !rs->topen || ioe->ticket != rs->tticket) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; default: if (ioe->rs_num < 0 || ioe->rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } rs = pf_find_kruleset(ioe->anchor); if (rs == NULL || !rs->rules[ioe->rs_num].inactive.open || rs->rules[ioe->rs_num].inactive.ticket != ioe->ticket) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; } } /* Now do the commit - no errors should happen here. */ for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if ((error = pf_commit_altq(ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); (void)strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_commit(&table, ioe->ticket, NULL, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } default: if ((error = pf_commit_rules(ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } } PF_RULES_WUNLOCK(); free(ioes, M_TEMP); break; } case DIOCGETSRCNODES: { struct pfioc_src_nodes *psn = (struct pfioc_src_nodes *)addr; struct pf_srchash *sh; struct pf_ksrc_node *n; struct pf_src_node *p, *pstore; uint32_t i, nr = 0; for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) nr++; PF_HASHROW_UNLOCK(sh); } psn->psn_len = min(psn->psn_len, sizeof(struct pf_src_node) * nr); if (psn->psn_len == 0) { psn->psn_len = sizeof(struct pf_src_node) * nr; break; } nr = 0; p = pstore = malloc(psn->psn_len, M_TEMP, M_WAITOK | M_ZERO); for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) { if ((nr + 1) * sizeof(*p) > (unsigned)psn->psn_len) break; pf_src_node_copy(n, p); p++; nr++; } PF_HASHROW_UNLOCK(sh); } error = copyout(pstore, psn->psn_src_nodes, sizeof(struct pf_src_node) * nr); if (error) { free(pstore, M_TEMP); break; } psn->psn_len = sizeof(struct pf_src_node) * nr; free(pstore, M_TEMP); break; } case DIOCCLRSRCNODES: { pf_clear_srcnodes(NULL); pf_purge_expired_src_nodes(); break; } case DIOCKILLSRCNODES: pf_kill_srcnodes((struct pfioc_src_node_kill *)addr); break; case DIOCKEEPCOUNTERS: error = pf_keepcounters((struct pfioc_nv *)addr); break; case DIOCGETSYNCOOKIES: error = pf_get_syncookies((struct pfioc_nv *)addr); break; case DIOCSETSYNCOOKIES: error = pf_set_syncookies((struct pfioc_nv *)addr); break; case DIOCSETHOSTID: { u_int32_t *hostid = (u_int32_t *)addr; PF_RULES_WLOCK(); if (*hostid == 0) V_pf_status.hostid = arc4random(); else V_pf_status.hostid = *hostid; PF_RULES_WUNLOCK(); break; } case DIOCOSFPFLUSH: PF_RULES_WLOCK(); pf_osfp_flush(); PF_RULES_WUNLOCK(); break; case DIOCIGETIFACES: { struct pfioc_iface *io = (struct pfioc_iface *)addr; struct pfi_kif *ifstore; size_t bufsiz; if (io->pfiio_esize != sizeof(struct pfi_kif)) { error = ENODEV; break; } if (io->pfiio_size < 0 || io->pfiio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfiio_size, sizeof(struct pfi_kif))) { error = EINVAL; break; } bufsiz = io->pfiio_size * sizeof(struct pfi_kif); ifstore = mallocarray(io->pfiio_size, sizeof(struct pfi_kif), M_TEMP, M_WAITOK | M_ZERO); PF_RULES_RLOCK(); pfi_get_ifaces(io->pfiio_name, ifstore, &io->pfiio_size); PF_RULES_RUNLOCK(); error = copyout(ifstore, io->pfiio_buffer, bufsiz); free(ifstore, M_TEMP); break; } case DIOCSETIFFLAG: { struct pfioc_iface *io = (struct pfioc_iface *)addr; PF_RULES_WLOCK(); error = pfi_set_flags(io->pfiio_name, io->pfiio_flags); PF_RULES_WUNLOCK(); break; } case DIOCCLRIFFLAG: { struct pfioc_iface *io = (struct pfioc_iface *)addr; PF_RULES_WLOCK(); error = pfi_clear_flags(io->pfiio_name, io->pfiio_flags); PF_RULES_WUNLOCK(); break; } default: error = ENODEV; break; } fail: if (sx_xlocked(&pf_ioctl_lock)) sx_xunlock(&pf_ioctl_lock); CURVNET_RESTORE(); #undef ERROUT_IOCTL return (error); } void pfsync_state_export(struct pfsync_state *sp, struct pf_kstate *st) { bzero(sp, sizeof(struct pfsync_state)); /* copy from state key */ sp->key[PF_SK_WIRE].addr[0] = st->key[PF_SK_WIRE]->addr[0]; sp->key[PF_SK_WIRE].addr[1] = st->key[PF_SK_WIRE]->addr[1]; sp->key[PF_SK_WIRE].port[0] = st->key[PF_SK_WIRE]->port[0]; sp->key[PF_SK_WIRE].port[1] = st->key[PF_SK_WIRE]->port[1]; sp->key[PF_SK_STACK].addr[0] = st->key[PF_SK_STACK]->addr[0]; sp->key[PF_SK_STACK].addr[1] = st->key[PF_SK_STACK]->addr[1]; sp->key[PF_SK_STACK].port[0] = st->key[PF_SK_STACK]->port[0]; sp->key[PF_SK_STACK].port[1] = st->key[PF_SK_STACK]->port[1]; sp->proto = st->key[PF_SK_WIRE]->proto; sp->af = st->key[PF_SK_WIRE]->af; /* copy from state */ strlcpy(sp->ifname, st->kif->pfik_name, sizeof(sp->ifname)); bcopy(&st->rt_addr, &sp->rt_addr, sizeof(sp->rt_addr)); sp->creation = htonl(time_uptime - st->creation); sp->expire = pf_state_expires(st); if (sp->expire <= time_uptime) sp->expire = htonl(0); else sp->expire = htonl(sp->expire - time_uptime); sp->direction = st->direction; sp->log = st->log; sp->timeout = st->timeout; sp->state_flags = st->state_flags; if (st->src_node) sp->sync_flags |= PFSYNC_FLAG_SRCNODE; if (st->nat_src_node) sp->sync_flags |= PFSYNC_FLAG_NATSRCNODE; sp->id = st->id; sp->creatorid = st->creatorid; pf_state_peer_hton(&st->src, &sp->src); pf_state_peer_hton(&st->dst, &sp->dst); if (st->rule.ptr == NULL) sp->rule = htonl(-1); else sp->rule = htonl(st->rule.ptr->nr); if (st->anchor.ptr == NULL) sp->anchor = htonl(-1); else sp->anchor = htonl(st->anchor.ptr->nr); if (st->nat_rule.ptr == NULL) sp->nat_rule = htonl(-1); else sp->nat_rule = htonl(st->nat_rule.ptr->nr); pf_state_counter_hton(st->packets[0], sp->packets[0]); pf_state_counter_hton(st->packets[1], sp->packets[1]); pf_state_counter_hton(st->bytes[0], sp->bytes[0]); pf_state_counter_hton(st->bytes[1], sp->bytes[1]); } void pf_state_export(struct pf_state_export *sp, struct pf_kstate *st) { bzero(sp, sizeof(*sp)); sp->version = PF_STATE_VERSION; /* copy from state key */ sp->key[PF_SK_WIRE].addr[0] = st->key[PF_SK_WIRE]->addr[0]; sp->key[PF_SK_WIRE].addr[1] = st->key[PF_SK_WIRE]->addr[1]; sp->key[PF_SK_WIRE].port[0] = st->key[PF_SK_WIRE]->port[0]; sp->key[PF_SK_WIRE].port[1] = st->key[PF_SK_WIRE]->port[1]; sp->key[PF_SK_STACK].addr[0] = st->key[PF_SK_STACK]->addr[0]; sp->key[PF_SK_STACK].addr[1] = st->key[PF_SK_STACK]->addr[1]; sp->key[PF_SK_STACK].port[0] = st->key[PF_SK_STACK]->port[0]; sp->key[PF_SK_STACK].port[1] = st->key[PF_SK_STACK]->port[1]; sp->proto = st->key[PF_SK_WIRE]->proto; sp->af = st->key[PF_SK_WIRE]->af; /* copy from state */ strlcpy(sp->ifname, st->kif->pfik_name, sizeof(sp->ifname)); strlcpy(sp->orig_ifname, st->orig_kif->pfik_name, sizeof(sp->orig_ifname)); bcopy(&st->rt_addr, &sp->rt_addr, sizeof(sp->rt_addr)); sp->creation = htonl(time_uptime - st->creation); sp->expire = pf_state_expires(st); if (sp->expire <= time_uptime) sp->expire = htonl(0); else sp->expire = htonl(sp->expire - time_uptime); sp->direction = st->direction; sp->log = st->log; sp->timeout = st->timeout; sp->state_flags = st->state_flags; if (st->src_node) sp->sync_flags |= PFSYNC_FLAG_SRCNODE; if (st->nat_src_node) sp->sync_flags |= PFSYNC_FLAG_NATSRCNODE; sp->id = st->id; sp->creatorid = st->creatorid; pf_state_peer_hton(&st->src, &sp->src); pf_state_peer_hton(&st->dst, &sp->dst); if (st->rule.ptr == NULL) sp->rule = htonl(-1); else sp->rule = htonl(st->rule.ptr->nr); if (st->anchor.ptr == NULL) sp->anchor = htonl(-1); else sp->anchor = htonl(st->anchor.ptr->nr); if (st->nat_rule.ptr == NULL) sp->nat_rule = htonl(-1); else sp->nat_rule = htonl(st->nat_rule.ptr->nr); sp->packets[0] = st->packets[0]; sp->packets[1] = st->packets[1]; sp->bytes[0] = st->bytes[0]; sp->bytes[1] = st->bytes[1]; } static void pf_tbladdr_copyout(struct pf_addr_wrap *aw) { struct pfr_ktable *kt; KASSERT(aw->type == PF_ADDR_TABLE, ("%s: type %u", __func__, aw->type)); kt = aw->p.tbl; if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL) kt = kt->pfrkt_root; aw->p.tbl = NULL; aw->p.tblcnt = (kt->pfrkt_flags & PFR_TFLAG_ACTIVE) ? kt->pfrkt_cnt : -1; } static int pf_add_status_counters(nvlist_t *nvl, const char *name, counter_u64_t *counters, size_t number, char **names) { nvlist_t *nvc; nvc = nvlist_create(0); if (nvc == NULL) return (ENOMEM); for (int i = 0; i < number; i++) { nvlist_append_number_array(nvc, "counters", counter_u64_fetch(counters[i])); nvlist_append_string_array(nvc, "names", names[i]); nvlist_append_number_array(nvc, "ids", i); } nvlist_add_nvlist(nvl, name, nvc); nvlist_destroy(nvc); return (0); } static int pf_getstatus(struct pfioc_nv *nv) { nvlist_t *nvl = NULL, *nvc = NULL; void *nvlpacked = NULL; int error; struct pf_status s; char *pf_reasons[PFRES_MAX+1] = PFRES_NAMES; char *pf_lcounter[KLCNT_MAX+1] = KLCNT_NAMES; char *pf_fcounter[FCNT_MAX+1] = FCNT_NAMES; PF_RULES_RLOCK_TRACKER; #define ERROUT(x) ERROUT_FUNCTION(errout, x) PF_RULES_RLOCK(); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_bool(nvl, "running", V_pf_status.running); nvlist_add_number(nvl, "since", V_pf_status.since); nvlist_add_number(nvl, "debug", V_pf_status.debug); nvlist_add_number(nvl, "hostid", V_pf_status.hostid); nvlist_add_number(nvl, "states", V_pf_status.states); nvlist_add_number(nvl, "src_nodes", V_pf_status.src_nodes); /* counters */ error = pf_add_status_counters(nvl, "counters", V_pf_status.counters, PFRES_MAX, pf_reasons); if (error != 0) ERROUT(error); /* lcounters */ error = pf_add_status_counters(nvl, "lcounters", V_pf_status.lcounters, KLCNT_MAX, pf_lcounter); if (error != 0) ERROUT(error); /* fcounters */ nvc = nvlist_create(0); if (nvc == NULL) ERROUT(ENOMEM); for (int i = 0; i < FCNT_MAX; i++) { nvlist_append_number_array(nvc, "counters", pf_counter_u64_fetch(&V_pf_status.fcounters[i])); nvlist_append_string_array(nvc, "names", pf_fcounter[i]); nvlist_append_number_array(nvc, "ids", i); } nvlist_add_nvlist(nvl, "fcounters", nvc); nvlist_destroy(nvc); nvc = NULL; /* scounters */ error = pf_add_status_counters(nvl, "scounters", V_pf_status.scounters, SCNT_MAX, pf_fcounter); if (error != 0) ERROUT(error); nvlist_add_string(nvl, "ifname", V_pf_status.ifname); nvlist_add_binary(nvl, "chksum", V_pf_status.pf_chksum, PF_MD5_DIGEST_LENGTH); pfi_update_status(V_pf_status.ifname, &s); /* pcounters / bcounters */ for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { for (int k = 0; k < 2; k++) { nvlist_append_number_array(nvl, "pcounters", s.pcounters[i][j][k]); } nvlist_append_number_array(nvl, "bcounters", s.bcounters[i][j]); } } nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); PF_RULES_RUNLOCK(); error = copyout(nvlpacked, nv->data, nv->len); goto done; #undef ERROUT errout: PF_RULES_RUNLOCK(); done: free(nvlpacked, M_NVLIST); nvlist_destroy(nvc); nvlist_destroy(nvl); return (error); } /* * XXX - Check for version missmatch!!! */ static void pf_clear_all_states(void) { struct pf_kstate *s; u_int i; for (i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; relock: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { s->timeout = PFTM_PURGE; /* Don't send out individual delete messages. */ s->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(s, PF_ENTER_LOCKED); goto relock; } PF_HASHROW_UNLOCK(ih); } } static int pf_clear_tables(void) { struct pfioc_table io; int error; bzero(&io, sizeof(io)); error = pfr_clr_tables(&io.pfrio_table, &io.pfrio_ndel, io.pfrio_flags); return (error); } static void pf_clear_srcnodes(struct pf_ksrc_node *n) { struct pf_kstate *s; int i; for (i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (n == NULL || n == s->src_node) s->src_node = NULL; if (n == NULL || n == s->nat_src_node) s->nat_src_node = NULL; } PF_HASHROW_UNLOCK(ih); } if (n == NULL) { struct pf_srchash *sh; for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) { n->expire = 1; n->states = 0; } PF_HASHROW_UNLOCK(sh); } } else { /* XXX: hash slot should already be locked here. */ n->expire = 1; n->states = 0; } } static void pf_kill_srcnodes(struct pfioc_src_node_kill *psnk) { struct pf_ksrc_node_list kill; LIST_INIT(&kill); for (int i = 0; i <= pf_srchashmask; i++) { struct pf_srchash *sh = &V_pf_srchash[i]; struct pf_ksrc_node *sn, *tmp; PF_HASHROW_LOCK(sh); LIST_FOREACH_SAFE(sn, &sh->nodes, entry, tmp) if (PF_MATCHA(psnk->psnk_src.neg, &psnk->psnk_src.addr.v.a.addr, &psnk->psnk_src.addr.v.a.mask, &sn->addr, sn->af) && PF_MATCHA(psnk->psnk_dst.neg, &psnk->psnk_dst.addr.v.a.addr, &psnk->psnk_dst.addr.v.a.mask, &sn->raddr, sn->af)) { pf_unlink_src_node(sn); LIST_INSERT_HEAD(&kill, sn, entry); sn->expire = 1; } PF_HASHROW_UNLOCK(sh); } for (int i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; struct pf_kstate *s; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (s->src_node && s->src_node->expire == 1) s->src_node = NULL; if (s->nat_src_node && s->nat_src_node->expire == 1) s->nat_src_node = NULL; } PF_HASHROW_UNLOCK(ih); } psnk->psnk_killed = pf_free_src_nodes(&kill); } static int pf_keepcounters(struct pfioc_nv *nv) { nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_bool(nvl, "keep_counters")) ERROUT(EBADMSG); V_pf_status.keep_counters = nvlist_get_bool(nvl, "keep_counters"); on_error: nvlist_destroy(nvl); free(nvlpacked, M_TEMP); return (error); } static unsigned int pf_clear_states(const struct pf_kstate_kill *kill) { struct pf_state_key_cmp match_key; struct pf_kstate *s; struct pfi_kkif *kif; int idx; unsigned int killed = 0, dir; for (unsigned int i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; relock_DIOCCLRSTATES: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { /* For floating states look at the original kif. */ kif = s->kif == V_pfi_all ? s->orig_kif : s->kif; if (kill->psk_ifname[0] && strcmp(kill->psk_ifname, kif->pfik_name)) continue; if (kill->psk_kill_match) { bzero(&match_key, sizeof(match_key)); if (s->direction == PF_OUT) { dir = PF_IN; idx = PF_SK_STACK; } else { dir = PF_OUT; idx = PF_SK_WIRE; } match_key.af = s->key[idx]->af; match_key.proto = s->key[idx]->proto; PF_ACPY(&match_key.addr[0], &s->key[idx]->addr[1], match_key.af); match_key.port[0] = s->key[idx]->port[1]; PF_ACPY(&match_key.addr[1], &s->key[idx]->addr[0], match_key.af); match_key.port[1] = s->key[idx]->port[0]; } /* * Don't send out individual * delete messages. */ s->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(s, PF_ENTER_LOCKED); killed++; if (kill->psk_kill_match) killed += pf_kill_matching_state(&match_key, dir); goto relock_DIOCCLRSTATES; } PF_HASHROW_UNLOCK(ih); } if (V_pfsync_clear_states_ptr != NULL) V_pfsync_clear_states_ptr(V_pf_status.hostid, kill->psk_ifname); return (killed); } static void pf_killstates(struct pf_kstate_kill *kill, unsigned int *killed) { struct pf_kstate *s; if (kill->psk_pfcmp.id) { if (kill->psk_pfcmp.creatorid == 0) kill->psk_pfcmp.creatorid = V_pf_status.hostid; if ((s = pf_find_state_byid(kill->psk_pfcmp.id, kill->psk_pfcmp.creatorid))) { pf_unlink_state(s, PF_ENTER_LOCKED); *killed = 1; } return; } for (unsigned int i = 0; i <= pf_hashmask; i++) *killed += pf_killstates_row(kill, &V_pf_idhash[i]); return; } static int pf_killstates_nv(struct pfioc_nv *nv) { struct pf_kstate_kill kill; nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; unsigned int killed = 0; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); error = pf_nvstate_kill_to_kstate_kill(nvl, &kill); if (error) ERROUT(error); pf_killstates(&kill, &killed); free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "killed", killed); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); on_error: nvlist_destroy(nvl); free(nvlpacked, M_NVLIST); return (error); } static int pf_clearstates_nv(struct pfioc_nv *nv) { struct pf_kstate_kill kill; nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; unsigned int killed; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); error = pf_nvstate_kill_to_kstate_kill(nvl, &kill); if (error) ERROUT(error); killed = pf_clear_states(&kill); free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "killed", killed); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT on_error: nvlist_destroy(nvl); free(nvlpacked, M_NVLIST); return (error); } static int pf_getstate(struct pfioc_nv *nv) { nvlist_t *nvl = NULL, *nvls; void *nvlpacked = NULL; struct pf_kstate *s = NULL; int error = 0; uint64_t id, creatorid; #define ERROUT(x) ERROUT_FUNCTION(errout, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); PFNV_CHK(pf_nvuint64(nvl, "id", &id)); PFNV_CHK(pf_nvuint64(nvl, "creatorid", &creatorid)); s = pf_find_state_byid(id, creatorid); if (s == NULL) ERROUT(ENOENT); free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvls = pf_state_to_nvstate(s); if (nvls == NULL) ERROUT(ENOMEM); nvlist_add_nvlist(nvl, "state", nvls); nvlist_destroy(nvls); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT errout: if (s != NULL) PF_STATE_UNLOCK(s); free(nvlpacked, M_NVLIST); nvlist_destroy(nvl); return (error); } /* * XXX - Check for version missmatch!!! */ /* * Duplicate pfctl -Fa operation to get rid of as much as we can. */ static int shutdown_pf(void) { int error = 0; u_int32_t t[5]; char nn = '\0'; do { if ((error = pf_begin_rules(&t[0], PF_RULESET_SCRUB, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: SCRUB\n")); break; } if ((error = pf_begin_rules(&t[1], PF_RULESET_FILTER, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: FILTER\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[2], PF_RULESET_NAT, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: NAT\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[3], PF_RULESET_BINAT, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: BINAT\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[4], PF_RULESET_RDR, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: RDR\n")); break; /* XXX: rollback? */ } /* XXX: these should always succeed here */ pf_commit_rules(t[0], PF_RULESET_SCRUB, &nn); pf_commit_rules(t[1], PF_RULESET_FILTER, &nn); pf_commit_rules(t[2], PF_RULESET_NAT, &nn); pf_commit_rules(t[3], PF_RULESET_BINAT, &nn); pf_commit_rules(t[4], PF_RULESET_RDR, &nn); if ((error = pf_clear_tables()) != 0) break; #ifdef ALTQ if ((error = pf_begin_altq(&t[0])) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: ALTQ\n")); break; } pf_commit_altq(t[0]); #endif pf_clear_all_states(); pf_clear_srcnodes(NULL); /* status does not use malloced mem so no need to cleanup */ /* fingerprints and interfaces have their own cleanup code */ } while(0); return (error); } static pfil_return_t pf_check_return(int chk, struct mbuf **m) { switch (chk) { case PF_PASS: if (*m == NULL) return (PFIL_CONSUMED); else return (PFIL_PASS); break; default: if (*m != NULL) { m_freem(*m); *m = NULL; } return (PFIL_DROPPED); } } #ifdef INET static pfil_return_t pf_check_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; chk = pf_test(PF_IN, flags, ifp, m, inp); return (pf_check_return(chk, m)); } static pfil_return_t pf_check_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; chk = pf_test(PF_OUT, flags, ifp, m, inp); return (pf_check_return(chk, m)); } #endif #ifdef INET6 static pfil_return_t pf_check6_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; /* * In case of loopback traffic IPv6 uses the real interface in * order to support scoped addresses. In order to support stateful * filtering we have change this to lo0 as it is the case in IPv4. */ CURVNET_SET(ifp->if_vnet); chk = pf_test6(PF_IN, flags, (*m)->m_flags & M_LOOP ? V_loif : ifp, m, inp); CURVNET_RESTORE(); return (pf_check_return(chk, m)); } static pfil_return_t pf_check6_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; CURVNET_SET(ifp->if_vnet); chk = pf_test6(PF_OUT, flags, ifp, m, inp); CURVNET_RESTORE(); return (pf_check_return(chk, m)); } #endif /* INET6 */ #ifdef INET VNET_DEFINE_STATIC(pfil_hook_t, pf_ip4_in_hook); VNET_DEFINE_STATIC(pfil_hook_t, pf_ip4_out_hook); #define V_pf_ip4_in_hook VNET(pf_ip4_in_hook) #define V_pf_ip4_out_hook VNET(pf_ip4_out_hook) #endif #ifdef INET6 VNET_DEFINE_STATIC(pfil_hook_t, pf_ip6_in_hook); VNET_DEFINE_STATIC(pfil_hook_t, pf_ip6_out_hook); #define V_pf_ip6_in_hook VNET(pf_ip6_in_hook) #define V_pf_ip6_out_hook VNET(pf_ip6_out_hook) #endif static void hook_pf(void) { struct pfil_hook_args pha; struct pfil_link_args pla; int ret; if (V_pf_pfil_hooked) return; pha.pa_version = PFIL_VERSION; pha.pa_modname = "pf"; pha.pa_ruleset = NULL; pla.pa_version = PFIL_VERSION; #ifdef INET pha.pa_type = PFIL_TYPE_IP4; pha.pa_func = pf_check_in; pha.pa_flags = PFIL_IN; pha.pa_rulname = "default-in"; V_pf_ip4_in_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_IN | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet_pfil_head; pla.pa_hook = V_pf_ip4_in_hook; ret = pfil_link(&pla); MPASS(ret == 0); pha.pa_func = pf_check_out; pha.pa_flags = PFIL_OUT; pha.pa_rulname = "default-out"; V_pf_ip4_out_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet_pfil_head; pla.pa_hook = V_pf_ip4_out_hook; ret = pfil_link(&pla); MPASS(ret == 0); #endif #ifdef INET6 pha.pa_type = PFIL_TYPE_IP6; pha.pa_func = pf_check6_in; pha.pa_flags = PFIL_IN; pha.pa_rulname = "default-in6"; V_pf_ip6_in_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_IN | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet6_pfil_head; pla.pa_hook = V_pf_ip6_in_hook; ret = pfil_link(&pla); MPASS(ret == 0); pha.pa_func = pf_check6_out; pha.pa_rulname = "default-out6"; pha.pa_flags = PFIL_OUT; V_pf_ip6_out_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet6_pfil_head; pla.pa_hook = V_pf_ip6_out_hook; ret = pfil_link(&pla); MPASS(ret == 0); #endif V_pf_pfil_hooked = 1; } static void dehook_pf(void) { if (V_pf_pfil_hooked == 0) return; #ifdef INET pfil_remove_hook(V_pf_ip4_in_hook); pfil_remove_hook(V_pf_ip4_out_hook); #endif #ifdef INET6 pfil_remove_hook(V_pf_ip6_in_hook); pfil_remove_hook(V_pf_ip6_out_hook); #endif V_pf_pfil_hooked = 0; } static void pf_load_vnet(void) { V_pf_tag_z = uma_zcreate("pf tags", sizeof(struct pf_tagname), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); pf_init_tagset(&V_pf_tags, &pf_rule_tag_hashsize, PF_RULE_TAG_HASH_SIZE_DEFAULT); #ifdef ALTQ pf_init_tagset(&V_pf_qids, &pf_queue_tag_hashsize, PF_QUEUE_TAG_HASH_SIZE_DEFAULT); #endif pfattach_vnet(); V_pf_vnet_active = 1; } static int pf_load(void) { int error; rm_init_flags(&pf_rules_lock, "pf rulesets", RM_RECURSE); sx_init(&pf_ioctl_lock, "pf ioctl"); sx_init(&pf_end_lock, "pf end thread"); pf_mtag_initialize(); pf_dev = make_dev(&pf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, PF_NAME); if (pf_dev == NULL) return (ENOMEM); pf_end_threads = 0; error = kproc_create(pf_purge_thread, NULL, &pf_purge_proc, 0, 0, "pf purge"); if (error != 0) return (error); pfi_initialize(); return (0); } static void pf_unload_vnet(void) { int ret; V_pf_vnet_active = 0; V_pf_status.running = 0; dehook_pf(); PF_RULES_WLOCK(); pf_syncookies_cleanup(); shutdown_pf(); PF_RULES_WUNLOCK(); ret = swi_remove(V_pf_swi_cookie); MPASS(ret == 0); ret = intr_event_destroy(V_pf_swi_ie); MPASS(ret == 0); pf_unload_vnet_purge(); pf_normalize_cleanup(); PF_RULES_WLOCK(); pfi_cleanup_vnet(); PF_RULES_WUNLOCK(); pfr_cleanup(); pf_osfp_flush(); pf_cleanup(); if (IS_DEFAULT_VNET(curvnet)) pf_mtag_cleanup(); pf_cleanup_tagset(&V_pf_tags); #ifdef ALTQ pf_cleanup_tagset(&V_pf_qids); #endif uma_zdestroy(V_pf_tag_z); #ifdef PF_WANT_32_TO_64_COUNTER PF_RULES_WLOCK(); LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); MPASS(LIST_EMPTY(&V_pf_allkiflist)); MPASS(V_pf_allkifcount == 0); LIST_REMOVE(&V_pf_default_rule, allrulelist); V_pf_allrulecount--; LIST_REMOVE(V_pf_rulemarker, allrulelist); /* * There are known pf rule leaks when running the test suite. */ #ifdef notyet MPASS(LIST_EMPTY(&V_pf_allrulelist)); MPASS(V_pf_allrulecount == 0); #endif PF_RULES_WUNLOCK(); free(V_pf_kifmarker, PFI_MTYPE); free(V_pf_rulemarker, M_PFRULE); #endif /* Free counters last as we updated them during shutdown. */ pf_counter_u64_deinit(&V_pf_default_rule.evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_deinit(&V_pf_default_rule.packets[i]); pf_counter_u64_deinit(&V_pf_default_rule.bytes[i]); } counter_u64_free(V_pf_default_rule.states_cur); counter_u64_free(V_pf_default_rule.states_tot); counter_u64_free(V_pf_default_rule.src_nodes); for (int i = 0; i < PFRES_MAX; i++) counter_u64_free(V_pf_status.counters[i]); for (int i = 0; i < KLCNT_MAX; i++) counter_u64_free(V_pf_status.lcounters[i]); for (int i = 0; i < FCNT_MAX; i++) pf_counter_u64_deinit(&V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) counter_u64_free(V_pf_status.scounters[i]); } static void pf_unload(void) { sx_xlock(&pf_end_lock); pf_end_threads = 1; while (pf_end_threads < 2) { wakeup_one(pf_purge_thread); sx_sleep(pf_purge_proc, &pf_end_lock, 0, "pftmo", 0); } sx_xunlock(&pf_end_lock); if (pf_dev != NULL) destroy_dev(pf_dev); pfi_cleanup(); rm_destroy(&pf_rules_lock); sx_destroy(&pf_ioctl_lock); sx_destroy(&pf_end_lock); } static void vnet_pf_init(void *unused __unused) { pf_load_vnet(); } VNET_SYSINIT(vnet_pf_init, SI_SUB_PROTO_FIREWALL, SI_ORDER_THIRD, vnet_pf_init, NULL); static void vnet_pf_uninit(const void *unused __unused) { pf_unload_vnet(); } SYSUNINIT(pf_unload, SI_SUB_PROTO_FIREWALL, SI_ORDER_SECOND, pf_unload, NULL); VNET_SYSUNINIT(vnet_pf_uninit, SI_SUB_PROTO_FIREWALL, SI_ORDER_THIRD, vnet_pf_uninit, NULL); static int pf_modevent(module_t mod, int type, void *data) { int error = 0; switch(type) { case MOD_LOAD: error = pf_load(); break; case MOD_UNLOAD: /* Handled in SYSUNINIT(pf_unload) to ensure it's done after * the vnet_pf_uninit()s */ break; default: error = EINVAL; break; } return (error); } static moduledata_t pf_mod = { "pf", pf_modevent, 0 }; DECLARE_MODULE(pf, pf_mod, SI_SUB_PROTO_FIREWALL, SI_ORDER_SECOND); MODULE_VERSION(pf, PF_MODVER); diff --git a/sys/netpfil/pf/pf_lb.c b/sys/netpfil/pf/pf_lb.c index 3da27c7df26d..3190e5311ff5 100644 --- a/sys/netpfil/pf/pf_lb.c +++ b/sys/netpfil/pf/pf_lb.c @@ -1,739 +1,731 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * Copyright (c) 2002 - 2008 Henning Brauer * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * * $OpenBSD: pf_lb.c,v 1.2 2009/02/12 02:13:15 sthen Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_pf.h" #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x static void pf_hash(struct pf_addr *, struct pf_addr *, struct pf_poolhashkey *, sa_family_t); static struct pf_krule *pf_match_translation(struct pf_pdesc *, struct mbuf *, int, int, struct pfi_kkif *, struct pf_addr *, u_int16_t, struct pf_addr *, uint16_t, int, struct pf_kanchor_stackframe *); static int pf_get_sport(sa_family_t, uint8_t, struct pf_krule *, struct pf_addr *, uint16_t, struct pf_addr *, uint16_t, struct pf_addr *, uint16_t *, uint16_t, uint16_t, struct pf_ksrc_node **); #define mix(a,b,c) \ do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while (0) /* * hash function based on bridge_hash in if_bridge.c */ static void pf_hash(struct pf_addr *inaddr, struct pf_addr *hash, struct pf_poolhashkey *key, sa_family_t af) { u_int32_t a = 0x9e3779b9, b = 0x9e3779b9, c = key->key32[0]; switch (af) { #ifdef INET case AF_INET: a += inaddr->addr32[0]; b += key->key32[1]; mix(a, b, c); hash->addr32[0] = c + key->key32[2]; break; #endif /* INET */ #ifdef INET6 case AF_INET6: a += inaddr->addr32[0]; b += inaddr->addr32[2]; mix(a, b, c); hash->addr32[0] = c; a += inaddr->addr32[1]; b += inaddr->addr32[3]; c += key->key32[1]; mix(a, b, c); hash->addr32[1] = c; a += inaddr->addr32[2]; b += inaddr->addr32[1]; c += key->key32[2]; mix(a, b, c); hash->addr32[2] = c; a += inaddr->addr32[3]; b += inaddr->addr32[0]; c += key->key32[3]; mix(a, b, c); hash->addr32[3] = c; break; #endif /* INET6 */ } } static struct pf_krule * pf_match_translation(struct pf_pdesc *pd, struct mbuf *m, int off, int direction, struct pfi_kkif *kif, struct pf_addr *saddr, u_int16_t sport, struct pf_addr *daddr, uint16_t dport, int rs_num, struct pf_kanchor_stackframe *anchor_stack) { struct pf_krule *r, *rm = NULL; struct pf_kruleset *ruleset = NULL; int tag = -1; int rtableid = -1; int asd = 0; r = TAILQ_FIRST(pf_main_ruleset.rules[rs_num].active.ptr); while (r && rm == NULL) { struct pf_rule_addr *src = NULL, *dst = NULL; struct pf_addr_wrap *xdst = NULL; if (r->action == PF_BINAT && direction == PF_IN) { src = &r->dst; if (r->rpool.cur != NULL) xdst = &r->rpool.cur->addr; } else { src = &r->src; dst = &r->dst; } pf_counter_u64_add(&r->evaluations, 1); if (pfi_kkif_match(r->kif, kif) == r->ifnot) r = r->skip[PF_SKIP_IFP].ptr; else if (r->direction && r->direction != direction) r = r->skip[PF_SKIP_DIR].ptr; else if (r->af && r->af != pd->af) r = r->skip[PF_SKIP_AF].ptr; else if (r->proto && r->proto != pd->proto) r = r->skip[PF_SKIP_PROTO].ptr; else if (PF_MISMATCHAW(&src->addr, saddr, pd->af, src->neg, kif, M_GETFIB(m))) r = r->skip[src == &r->src ? PF_SKIP_SRC_ADDR : PF_SKIP_DST_ADDR].ptr; else if (src->port_op && !pf_match_port(src->port_op, src->port[0], src->port[1], sport)) r = r->skip[src == &r->src ? PF_SKIP_SRC_PORT : PF_SKIP_DST_PORT].ptr; else if (dst != NULL && PF_MISMATCHAW(&dst->addr, daddr, pd->af, dst->neg, NULL, M_GETFIB(m))) r = r->skip[PF_SKIP_DST_ADDR].ptr; else if (xdst != NULL && PF_MISMATCHAW(xdst, daddr, pd->af, 0, NULL, M_GETFIB(m))) r = TAILQ_NEXT(r, entries); else if (dst != NULL && dst->port_op && !pf_match_port(dst->port_op, dst->port[0], dst->port[1], dport)) r = r->skip[PF_SKIP_DST_PORT].ptr; else if (r->match_tag && !pf_match_tag(m, r, &tag, pd->pf_mtag ? pd->pf_mtag->tag : 0)) r = TAILQ_NEXT(r, entries); else if (r->os_fingerprint != PF_OSFP_ANY && (pd->proto != IPPROTO_TCP || !pf_osfp_match(pf_osfp_fingerprint(pd, m, off, &pd->hdr.tcp), r->os_fingerprint))) r = TAILQ_NEXT(r, entries); else { if (r->tag) tag = r->tag; if (r->rtableid >= 0) rtableid = r->rtableid; if (r->anchor == NULL) { rm = r; } else pf_step_into_anchor(anchor_stack, &asd, &ruleset, rs_num, &r, NULL, NULL); } if (r == NULL) pf_step_out_of_anchor(anchor_stack, &asd, &ruleset, rs_num, &r, NULL, NULL); } if (tag > 0 && pf_tag_packet(m, pd, tag)) return (NULL); if (rtableid >= 0) M_SETFIB(m, rtableid); if (rm != NULL && (rm->action == PF_NONAT || rm->action == PF_NORDR || rm->action == PF_NOBINAT)) return (NULL); return (rm); } static int pf_get_sport(sa_family_t af, u_int8_t proto, struct pf_krule *r, struct pf_addr *saddr, uint16_t sport, struct pf_addr *daddr, uint16_t dport, struct pf_addr *naddr, uint16_t *nport, uint16_t low, uint16_t high, struct pf_ksrc_node **sn) { struct pf_state_key_cmp key; struct pf_addr init_addr; bzero(&init_addr, sizeof(init_addr)); if (pf_map_addr(af, r, saddr, naddr, &init_addr, sn)) return (1); bzero(&key, sizeof(key)); key.af = af; key.proto = proto; key.port[0] = dport; PF_ACPY(&key.addr[0], daddr, key.af); do { PF_ACPY(&key.addr[1], naddr, key.af); /* * port search; start random, step; * similar 2 portloop in in_pcbbind */ if (!(proto == IPPROTO_TCP || proto == IPPROTO_UDP || proto == IPPROTO_ICMP) || (low == 0 && high == 0)) { /* * XXX bug: icmp states don't use the id on both sides. * (traceroute -I through nat) */ key.port[1] = sport; if (!pf_find_state_all_exists(&key, PF_IN)) { *nport = sport; return (0); } } else if (low == high) { key.port[1] = htons(low); if (!pf_find_state_all_exists(&key, PF_IN)) { *nport = htons(low); return (0); } } else { uint32_t tmp; uint16_t cut; if (low > high) { tmp = low; low = high; high = tmp; } /* low < high */ cut = arc4random() % (1 + high - low) + low; /* low <= cut <= high */ for (tmp = cut; tmp <= high && tmp <= 0xffff; ++tmp) { key.port[1] = htons(tmp); if (!pf_find_state_all_exists(&key, PF_IN)) { *nport = htons(tmp); return (0); } } tmp = cut; for (tmp -= 1; tmp >= low && tmp <= 0xffff; --tmp) { key.port[1] = htons(tmp); if (!pf_find_state_all_exists(&key, PF_IN)) { *nport = htons(tmp); return (0); } } } switch (r->rpool.opts & PF_POOL_TYPEMASK) { case PF_POOL_RANDOM: case PF_POOL_ROUNDROBIN: /* * pick a different source address since we're out * of free port choices for the current one. */ if (pf_map_addr(af, r, saddr, naddr, &init_addr, sn)) return (1); break; case PF_POOL_NONE: case PF_POOL_SRCHASH: case PF_POOL_BITMASK: default: return (1); } } while (! PF_AEQ(&init_addr, naddr, af) ); return (1); /* none available */ } static int pf_get_mape_sport(sa_family_t af, u_int8_t proto, struct pf_krule *r, struct pf_addr *saddr, uint16_t sport, struct pf_addr *daddr, uint16_t dport, struct pf_addr *naddr, uint16_t *nport, struct pf_ksrc_node **sn) { uint16_t psmask, low, highmask; uint16_t i, ahigh, cut; int ashift, psidshift; ashift = 16 - r->rpool.mape.offset; psidshift = ashift - r->rpool.mape.psidlen; psmask = r->rpool.mape.psid & ((1U << r->rpool.mape.psidlen) - 1); psmask = psmask << psidshift; highmask = (1U << psidshift) - 1; ahigh = (1U << r->rpool.mape.offset) - 1; cut = arc4random() & ahigh; if (cut == 0) cut = 1; for (i = cut; i <= ahigh; i++) { low = (i << ashift) | psmask; if (!pf_get_sport(af, proto, r, saddr, sport, daddr, dport, naddr, nport, low, low | highmask, sn)) return (0); } for (i = cut - 1; i > 0; i--) { low = (i << ashift) | psmask; if (!pf_get_sport(af, proto, r, saddr, sport, daddr, dport, naddr, nport, low, low | highmask, sn)) return (0); } return (1); } int pf_map_addr(sa_family_t af, struct pf_krule *r, struct pf_addr *saddr, struct pf_addr *naddr, struct pf_addr *init_addr, struct pf_ksrc_node **sn) { struct pf_kpool *rpool = &r->rpool; struct pf_addr *raddr = NULL, *rmask = NULL; /* Try to find a src_node if none was given and this is a sticky-address rule. */ if (*sn == NULL && r->rpool.opts & PF_POOL_STICKYADDR && (r->rpool.opts & PF_POOL_TYPEMASK) != PF_POOL_NONE) *sn = pf_find_src_node(saddr, r, af, 0); /* If a src_node was found or explicitly given and it has a non-zero route address, use this address. A zeroed address is found if the src node was created just a moment ago in pf_create_state and it needs to be filled in with routing decision calculated here. */ if (*sn != NULL && !PF_AZERO(&(*sn)->raddr, af)) { /* If the supplied address is the same as the current one we've * been asked before, so tell the caller that there's no other * address to be had. */ if (PF_AEQ(naddr, &(*sn)->raddr, af)) return (1); PF_ACPY(naddr, &(*sn)->raddr, af); if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf_map_addr: src tracking maps "); pf_print_host(saddr, 0, af); printf(" to "); pf_print_host(naddr, 0, af); printf("\n"); } return (0); } + mtx_lock(&rpool->mtx); /* Find the route using chosen algorithm. Store the found route in src_node if it was given or found. */ - if (rpool->cur->addr.type == PF_ADDR_NOROUTE) + if (rpool->cur->addr.type == PF_ADDR_NOROUTE) { + mtx_unlock(&rpool->mtx); return (1); + } if (rpool->cur->addr.type == PF_ADDR_DYNIFTL) { switch (af) { #ifdef INET case AF_INET: if (rpool->cur->addr.p.dyn->pfid_acnt4 < 1 && (rpool->opts & PF_POOL_TYPEMASK) != - PF_POOL_ROUNDROBIN) + PF_POOL_ROUNDROBIN) { + mtx_unlock(&rpool->mtx); return (1); - raddr = &rpool->cur->addr.p.dyn->pfid_addr4; - rmask = &rpool->cur->addr.p.dyn->pfid_mask4; + } + raddr = &rpool->cur->addr.p.dyn->pfid_addr4; + rmask = &rpool->cur->addr.p.dyn->pfid_mask4; break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (rpool->cur->addr.p.dyn->pfid_acnt6 < 1 && (rpool->opts & PF_POOL_TYPEMASK) != - PF_POOL_ROUNDROBIN) + PF_POOL_ROUNDROBIN) { + mtx_unlock(&rpool->mtx); return (1); + } raddr = &rpool->cur->addr.p.dyn->pfid_addr6; rmask = &rpool->cur->addr.p.dyn->pfid_mask6; break; #endif /* INET6 */ } } else if (rpool->cur->addr.type == PF_ADDR_TABLE) { - if ((rpool->opts & PF_POOL_TYPEMASK) != PF_POOL_ROUNDROBIN) + if ((rpool->opts & PF_POOL_TYPEMASK) != PF_POOL_ROUNDROBIN) { + mtx_unlock(&rpool->mtx); return (1); /* unsupported */ + } } else { raddr = &rpool->cur->addr.v.a.addr; rmask = &rpool->cur->addr.v.a.mask; } switch (rpool->opts & PF_POOL_TYPEMASK) { case PF_POOL_NONE: PF_ACPY(naddr, raddr, af); break; case PF_POOL_BITMASK: PF_POOLMASK(naddr, raddr, rmask, saddr, af); break; case PF_POOL_RANDOM: if (init_addr != NULL && PF_AZERO(init_addr, af)) { switch (af) { #ifdef INET case AF_INET: rpool->counter.addr32[0] = htonl(arc4random()); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (rmask->addr32[3] != 0xffffffff) rpool->counter.addr32[3] = htonl(arc4random()); else break; if (rmask->addr32[2] != 0xffffffff) rpool->counter.addr32[2] = htonl(arc4random()); else break; if (rmask->addr32[1] != 0xffffffff) rpool->counter.addr32[1] = htonl(arc4random()); else break; if (rmask->addr32[0] != 0xffffffff) rpool->counter.addr32[0] = htonl(arc4random()); break; #endif /* INET6 */ } PF_POOLMASK(naddr, raddr, rmask, &rpool->counter, af); PF_ACPY(init_addr, naddr, af); } else { PF_AINC(&rpool->counter, af); PF_POOLMASK(naddr, raddr, rmask, &rpool->counter, af); } break; case PF_POOL_SRCHASH: { unsigned char hash[16]; pf_hash(saddr, (struct pf_addr *)&hash, &rpool->key, af); PF_POOLMASK(naddr, raddr, rmask, (struct pf_addr *)&hash, af); break; } case PF_POOL_ROUNDROBIN: { struct pf_kpooladdr *acur = rpool->cur; - /* - * XXXGL: in the round-robin case we need to store - * the round-robin machine state in the rule, thus - * forwarding thread needs to modify rule. - * - * This is done w/o locking, because performance is assumed - * more important than round-robin precision. - * - * In the simpliest case we just update the "rpool->cur" - * pointer. However, if pool contains tables or dynamic - * addresses, then "tblidx" is also used to store machine - * state. Since "tblidx" is int, concurrent access to it can't - * lead to inconsistence, only to lost of precision. - * - * Things get worse, if table contains not hosts, but - * prefixes. In this case counter also stores machine state, - * and for IPv6 address, counter can't be updated atomically. - * Probably, using round-robin on a table containing IPv6 - * prefixes (or even IPv4) would cause a panic. - */ - if (rpool->cur->addr.type == PF_ADDR_TABLE) { if (!pfr_pool_get(rpool->cur->addr.p.tbl, &rpool->tblidx, &rpool->counter, af)) goto get_addr; } else if (rpool->cur->addr.type == PF_ADDR_DYNIFTL) { if (!pfr_pool_get(rpool->cur->addr.p.dyn->pfid_kt, &rpool->tblidx, &rpool->counter, af)) goto get_addr; } else if (pf_match_addr(0, raddr, rmask, &rpool->counter, af)) goto get_addr; try_next: if (TAILQ_NEXT(rpool->cur, entries) == NULL) rpool->cur = TAILQ_FIRST(&rpool->list); else rpool->cur = TAILQ_NEXT(rpool->cur, entries); if (rpool->cur->addr.type == PF_ADDR_TABLE) { rpool->tblidx = -1; if (pfr_pool_get(rpool->cur->addr.p.tbl, &rpool->tblidx, &rpool->counter, af)) { /* table contains no address of type 'af' */ if (rpool->cur != acur) goto try_next; + mtx_unlock(&rpool->mtx); return (1); } } else if (rpool->cur->addr.type == PF_ADDR_DYNIFTL) { rpool->tblidx = -1; if (pfr_pool_get(rpool->cur->addr.p.dyn->pfid_kt, &rpool->tblidx, &rpool->counter, af)) { /* table contains no address of type 'af' */ if (rpool->cur != acur) goto try_next; + mtx_unlock(&rpool->mtx); return (1); } } else { raddr = &rpool->cur->addr.v.a.addr; rmask = &rpool->cur->addr.v.a.mask; PF_ACPY(&rpool->counter, raddr, af); } get_addr: PF_ACPY(naddr, &rpool->counter, af); if (init_addr != NULL && PF_AZERO(init_addr, af)) PF_ACPY(init_addr, naddr, af); PF_AINC(&rpool->counter, af); break; } } if (*sn != NULL) PF_ACPY(&(*sn)->raddr, naddr, af); + mtx_unlock(&rpool->mtx); + if (V_pf_status.debug >= PF_DEBUG_MISC && (rpool->opts & PF_POOL_TYPEMASK) != PF_POOL_NONE) { printf("pf_map_addr: selected address "); pf_print_host(naddr, 0, af); printf("\n"); } return (0); } struct pf_krule * pf_get_translation(struct pf_pdesc *pd, struct mbuf *m, int off, int direction, struct pfi_kkif *kif, struct pf_ksrc_node **sn, struct pf_state_key **skp, struct pf_state_key **nkp, struct pf_addr *saddr, struct pf_addr *daddr, uint16_t sport, uint16_t dport, struct pf_kanchor_stackframe *anchor_stack) { struct pf_krule *r = NULL; struct pf_addr *naddr; uint16_t *nport; uint16_t low, high; PF_RULES_RASSERT(); KASSERT(*skp == NULL, ("*skp not NULL")); KASSERT(*nkp == NULL, ("*nkp not NULL")); if (direction == PF_OUT) { r = pf_match_translation(pd, m, off, direction, kif, saddr, sport, daddr, dport, PF_RULESET_BINAT, anchor_stack); if (r == NULL) r = pf_match_translation(pd, m, off, direction, kif, saddr, sport, daddr, dport, PF_RULESET_NAT, anchor_stack); } else { r = pf_match_translation(pd, m, off, direction, kif, saddr, sport, daddr, dport, PF_RULESET_RDR, anchor_stack); if (r == NULL) r = pf_match_translation(pd, m, off, direction, kif, saddr, sport, daddr, dport, PF_RULESET_BINAT, anchor_stack); } if (r == NULL) return (NULL); switch (r->action) { case PF_NONAT: case PF_NOBINAT: case PF_NORDR: return (NULL); } *skp = pf_state_key_setup(pd, saddr, daddr, sport, dport); if (*skp == NULL) return (NULL); *nkp = pf_state_key_clone(*skp); if (*nkp == NULL) { uma_zfree(V_pf_state_key_z, *skp); *skp = NULL; return (NULL); } /* XXX We only modify one side for now. */ naddr = &(*nkp)->addr[1]; nport = &(*nkp)->port[1]; switch (r->action) { case PF_NAT: if (pd->proto == IPPROTO_ICMP) { low = 1; high = 65535; } else { low = r->rpool.proxy_port[0]; high = r->rpool.proxy_port[1]; } if (r->rpool.mape.offset > 0) { if (pf_get_mape_sport(pd->af, pd->proto, r, saddr, sport, daddr, dport, naddr, nport, sn)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: MAP-E port allocation (%u/%u/%u)" " failed\n", r->rpool.mape.offset, r->rpool.mape.psidlen, r->rpool.mape.psid)); goto notrans; } } else if (pf_get_sport(pd->af, pd->proto, r, saddr, sport, daddr, dport, naddr, nport, low, high, sn)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: NAT proxy port allocation (%u-%u) failed\n", r->rpool.proxy_port[0], r->rpool.proxy_port[1])); goto notrans; } break; case PF_BINAT: switch (direction) { case PF_OUT: if (r->rpool.cur->addr.type == PF_ADDR_DYNIFTL){ switch (pd->af) { #ifdef INET case AF_INET: if (r->rpool.cur->addr.p.dyn-> pfid_acnt4 < 1) goto notrans; PF_POOLMASK(naddr, &r->rpool.cur->addr.p.dyn-> pfid_addr4, &r->rpool.cur->addr.p.dyn-> pfid_mask4, saddr, AF_INET); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (r->rpool.cur->addr.p.dyn-> pfid_acnt6 < 1) goto notrans; PF_POOLMASK(naddr, &r->rpool.cur->addr.p.dyn-> pfid_addr6, &r->rpool.cur->addr.p.dyn-> pfid_mask6, saddr, AF_INET6); break; #endif /* INET6 */ } } else PF_POOLMASK(naddr, &r->rpool.cur->addr.v.a.addr, &r->rpool.cur->addr.v.a.mask, saddr, pd->af); break; case PF_IN: if (r->src.addr.type == PF_ADDR_DYNIFTL) { switch (pd->af) { #ifdef INET case AF_INET: if (r->src.addr.p.dyn-> pfid_acnt4 < 1) goto notrans; PF_POOLMASK(naddr, &r->src.addr.p.dyn->pfid_addr4, &r->src.addr.p.dyn->pfid_mask4, daddr, AF_INET); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (r->src.addr.p.dyn->pfid_acnt6 < 1) goto notrans; PF_POOLMASK(naddr, &r->src.addr.p.dyn->pfid_addr6, &r->src.addr.p.dyn->pfid_mask6, daddr, AF_INET6); break; #endif /* INET6 */ } } else PF_POOLMASK(naddr, &r->src.addr.v.a.addr, &r->src.addr.v.a.mask, daddr, pd->af); break; } break; case PF_RDR: { if (pf_map_addr(pd->af, r, saddr, naddr, NULL, sn)) goto notrans; if ((r->rpool.opts & PF_POOL_TYPEMASK) == PF_POOL_BITMASK) PF_POOLMASK(naddr, naddr, &r->rpool.cur->addr.v.a.mask, daddr, pd->af); if (r->rpool.proxy_port[1]) { uint32_t tmp_nport; tmp_nport = ((ntohs(dport) - ntohs(r->dst.port[0])) % (r->rpool.proxy_port[1] - r->rpool.proxy_port[0] + 1)) + r->rpool.proxy_port[0]; /* Wrap around if necessary. */ if (tmp_nport > 65535) tmp_nport -= 65535; *nport = htons((uint16_t)tmp_nport); } else if (r->rpool.proxy_port[0]) *nport = htons(r->rpool.proxy_port[0]); break; } default: panic("%s: unknown action %u", __func__, r->action); } /* Return success only if translation really happened. */ if (bcmp(*skp, *nkp, sizeof(struct pf_state_key_cmp))) return (r); notrans: uma_zfree(V_pf_state_key_z, *nkp); uma_zfree(V_pf_state_key_z, *skp); *skp = *nkp = NULL; *sn = NULL; return (NULL); }