diff --git a/lib/libpfctl/libpfctl.c b/lib/libpfctl/libpfctl.c index 398595c4715f..c2e842d65b11 100644 --- a/lib/libpfctl/libpfctl.c +++ b/lib/libpfctl/libpfctl.c @@ -1,2791 +1,2835 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2021 Rubicon Communications, LLC (Netgate) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libpfctl.h" struct pfctl_handle { int fd; struct snl_state ss; }; const char* PFCTL_SYNCOOKIES_MODE_NAMES[] = { "never", "always", "adaptive" }; static int _pfctl_clear_states(int , const struct pfctl_kill *, unsigned int *, uint64_t); struct pfctl_handle * pfctl_open(const char *pf_device) { struct pfctl_handle *h; h = calloc(1, sizeof(struct pfctl_handle)); h->fd = -1; h->fd = open(pf_device, O_RDWR); if (h->fd < 0) goto error; if (!snl_init(&h->ss, NETLINK_GENERIC)) goto error; return (h); error: close(h->fd); snl_free(&h->ss); free(h); return (NULL); } void pfctl_close(struct pfctl_handle *h) { close(h->fd); snl_free(&h->ss); free(h); } int pfctl_fd(struct pfctl_handle *h) { return (h->fd); } static int pfctl_do_netlink_cmd(struct pfctl_handle *h, uint cmd) { struct snl_errmsg_data e = {}; struct snl_writer nw; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, cmd); hdr = snl_finalize_msg(&nw); if (hdr == NULL) return (ENOMEM); seq_id = hdr->nlmsg_seq; snl_send_message(&h->ss, hdr); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { } return (e.error); } static int pfctl_do_ioctl(int dev, uint cmd, size_t size, nvlist_t **nvl) { struct pfioc_nv nv; void *data; size_t nvlen; int ret; data = nvlist_pack(*nvl, &nvlen); if (nvlen > size) size = nvlen; retry: nv.data = malloc(size); if (nv.data == NULL) { ret = ENOMEM; goto out; } memcpy(nv.data, data, nvlen); nv.len = nvlen; nv.size = size; ret = ioctl(dev, cmd, &nv); if (ret == -1 && errno == ENOSPC) { size *= 2; free(nv.data); goto retry; } nvlist_destroy(*nvl); *nvl = NULL; if (ret == 0) { *nvl = nvlist_unpack(nv.data, nv.len, 0); if (*nvl == NULL) { ret = EIO; goto out; } } else { ret = errno; } out: free(data); free(nv.data); return (ret); } static void pf_nvuint_8_array(const nvlist_t *nvl, const char *name, size_t maxelems, uint8_t *numbers, size_t *nelems) { const uint64_t *tmp; size_t elems; tmp = nvlist_get_number_array(nvl, name, &elems); assert(elems <= maxelems); for (size_t i = 0; i < elems; i++) numbers[i] = tmp[i]; if (nelems) *nelems = elems; } static void pf_nvuint_16_array(const nvlist_t *nvl, const char *name, size_t maxelems, uint16_t *numbers, size_t *nelems) { const uint64_t *tmp; size_t elems; tmp = nvlist_get_number_array(nvl, name, &elems); assert(elems <= maxelems); for (size_t i = 0; i < elems; i++) numbers[i] = tmp[i]; if (nelems) *nelems = elems; } static void pf_nvuint_32_array(const nvlist_t *nvl, const char *name, size_t maxelems, uint32_t *numbers, size_t *nelems) { const uint64_t *tmp; size_t elems; tmp = nvlist_get_number_array(nvl, name, &elems); for (size_t i = 0; i < elems && i < maxelems; i++) numbers[i] = tmp[i]; if (nelems) *nelems = elems; } static void pf_nvuint_64_array(const nvlist_t *nvl, const char *name, size_t maxelems, uint64_t *numbers, size_t *nelems) { const uint64_t *tmp; size_t elems; tmp = nvlist_get_number_array(nvl, name, &elems); assert(elems <= maxelems); for (size_t i = 0; i < elems; i++) numbers[i] = tmp[i]; if (nelems) *nelems = elems; } int pfctl_startstop(struct pfctl_handle *h, int start) { return (pfctl_do_netlink_cmd(h, start ? PFNL_CMD_START : PFNL_CMD_STOP)); } static void _pfctl_get_status_counters(const nvlist_t *nvl, struct pfctl_status_counters *counters) { const uint64_t *ids, *counts; const char *const *names; size_t id_len, counter_len, names_len; ids = nvlist_get_number_array(nvl, "ids", &id_len); counts = nvlist_get_number_array(nvl, "counters", &counter_len); names = nvlist_get_string_array(nvl, "names", &names_len); assert(id_len == counter_len); assert(counter_len == names_len); TAILQ_INIT(counters); for (size_t i = 0; i < id_len; i++) { struct pfctl_status_counter *c; c = malloc(sizeof(*c)); if (c == NULL) continue; c->id = ids[i]; c->counter = counts[i]; c->name = strdup(names[i]); TAILQ_INSERT_TAIL(counters, c, entry); } } #define _OUT(_field) offsetof(struct pfctl_status_counter, _field) static const struct snl_attr_parser ap_counter[] = { { .type = PF_C_COUNTER, .off = _OUT(counter), .cb = snl_attr_get_uint64 }, { .type = PF_C_NAME, .off = _OUT(name), .cb = snl_attr_get_string }, { .type = PF_C_ID, .off = _OUT(id), .cb = snl_attr_get_uint32 }, }; SNL_DECLARE_ATTR_PARSER(counter_parser, ap_counter); #undef _OUT static bool snl_attr_get_counters(struct snl_state *ss, struct nlattr *nla, const void *arg __unused, void *target) { struct pfctl_status_counter counter = {}; struct pfctl_status_counter *c; bool error; error = snl_parse_header(ss, NLA_DATA(nla), NLA_DATA_LEN(nla), &counter_parser, &counter); if (! error) return (error); c = malloc(sizeof(*c)); if (c == NULL) return (false); c->id = counter.id; c->counter = counter.counter; c->name = strdup(counter.name); TAILQ_INSERT_TAIL((struct pfctl_status_counters *)target, c, entry); return (error); } struct snl_uint64_array { uint64_t *array; size_t count; size_t max; }; static bool snl_attr_get_uint64_element(struct snl_state *ss, struct nlattr *nla, const void *arg, void *target) { bool error; uint64_t value; struct snl_uint64_array *t = (struct snl_uint64_array *)target; if (t->count >= t->max) return (false); error = snl_attr_get_uint64(ss, nla, arg, &value); if (! error) return (error); t->array[t->count++] = value; return (true); } static const struct snl_attr_parser ap_array[] = { { .cb = snl_attr_get_uint64_element }, }; SNL_DECLARE_ATTR_PARSER(array_parser, ap_array); static bool snl_attr_get_uint64_array(struct snl_state *ss, struct nlattr *nla, const void *arg, void *target) { struct snl_uint64_array a = { .array = target, .count = 0, .max = (size_t)arg, }; bool error; error = snl_parse_header(ss, NLA_DATA(nla), NLA_DATA_LEN(nla), &array_parser, &a); if (! error) return (error); return (true); } #define _OUT(_field) offsetof(struct pfctl_status, _field) static const struct snl_attr_parser ap_getstatus[] = { { .type = PF_GS_IFNAME, .off = _OUT(ifname), .arg_u32 = IFNAMSIZ, .cb = snl_attr_copy_string }, { .type = PF_GS_RUNNING, .off = _OUT(running), .cb = snl_attr_get_bool }, { .type = PF_GS_SINCE, .off = _OUT(since), .cb = snl_attr_get_uint32 }, { .type = PF_GS_DEBUG, .off = _OUT(debug), .cb = snl_attr_get_uint32 }, { .type = PF_GS_HOSTID, .off = _OUT(hostid), .cb = snl_attr_get_uint32 }, { .type = PF_GS_STATES, .off = _OUT(states), .cb = snl_attr_get_uint32 }, { .type = PF_GS_SRC_NODES, .off = _OUT(src_nodes), .cb = snl_attr_get_uint32 }, { .type = PF_GS_REASSEMBLE, .off = _OUT(reass), .cb = snl_attr_get_uint32 }, { .type = PF_GS_SYNCOOKIES_ACTIVE, .off = _OUT(syncookies_active), .cb = snl_attr_get_uint32 }, { .type = PF_GS_COUNTERS, .off = _OUT(counters), .cb = snl_attr_get_counters }, { .type = PF_GS_LCOUNTERS, .off = _OUT(lcounters), .cb = snl_attr_get_counters }, { .type = PF_GS_FCOUNTERS, .off = _OUT(fcounters), .cb = snl_attr_get_counters }, { .type = PF_GS_SCOUNTERS, .off = _OUT(scounters), .cb = snl_attr_get_counters }, { .type = PF_GS_CHKSUM, .off = _OUT(pf_chksum), .arg_u32 = PF_MD5_DIGEST_LENGTH, .cb = snl_attr_get_bytes }, { .type = PF_GS_BCOUNTERS, .off = _OUT(bcounters), .arg_u32 = 2 * 2, .cb = snl_attr_get_uint64_array }, { .type = PF_GS_PCOUNTERS, .off = _OUT(pcounters), .arg_u32 = 2 * 2 * 2, .cb = snl_attr_get_uint64_array }, }; static struct snl_field_parser fp_getstatus[] = {}; SNL_DECLARE_PARSER(getstatus_parser, struct genlmsghdr, fp_getstatus, ap_getstatus); #undef _OUT struct pfctl_status * pfctl_get_status_h(struct pfctl_handle *h __unused) { struct pfctl_status *status; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; struct snl_writer nw; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (NULL); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_GET_STATUS); hdr->nlmsg_flags |= NLM_F_DUMP; hdr = snl_finalize_msg(&nw); if (hdr == NULL) { return (NULL); } seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (NULL); status = calloc(1, sizeof(*status)); if (status == NULL) return (NULL); TAILQ_INIT(&status->counters); TAILQ_INIT(&status->lcounters); TAILQ_INIT(&status->fcounters); TAILQ_INIT(&status->scounters); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { if (! snl_parse_nlmsg(&h->ss, hdr, &getstatus_parser, status)) continue; } return (status); } struct pfctl_status * pfctl_get_status(int dev) { struct pfctl_status *status; nvlist_t *nvl; size_t len; const void *chksum; status = calloc(1, sizeof(*status)); if (status == NULL) return (NULL); nvl = nvlist_create(0); if (pfctl_do_ioctl(dev, DIOCGETSTATUSNV, 4096, &nvl)) { nvlist_destroy(nvl); free(status); return (NULL); } status->running = nvlist_get_bool(nvl, "running"); status->since = nvlist_get_number(nvl, "since"); status->debug = nvlist_get_number(nvl, "debug"); status->hostid = ntohl(nvlist_get_number(nvl, "hostid")); status->states = nvlist_get_number(nvl, "states"); status->src_nodes = nvlist_get_number(nvl, "src_nodes"); status->syncookies_active = nvlist_get_bool(nvl, "syncookies_active"); status->reass = nvlist_get_number(nvl, "reass"); strlcpy(status->ifname, nvlist_get_string(nvl, "ifname"), IFNAMSIZ); chksum = nvlist_get_binary(nvl, "chksum", &len); assert(len == PF_MD5_DIGEST_LENGTH); memcpy(status->pf_chksum, chksum, len); _pfctl_get_status_counters(nvlist_get_nvlist(nvl, "counters"), &status->counters); _pfctl_get_status_counters(nvlist_get_nvlist(nvl, "lcounters"), &status->lcounters); _pfctl_get_status_counters(nvlist_get_nvlist(nvl, "fcounters"), &status->fcounters); _pfctl_get_status_counters(nvlist_get_nvlist(nvl, "scounters"), &status->scounters); pf_nvuint_64_array(nvl, "pcounters", 2 * 2 * 2, (uint64_t *)status->pcounters, NULL); pf_nvuint_64_array(nvl, "bcounters", 2 * 2, (uint64_t *)status->bcounters, NULL); nvlist_destroy(nvl); return (status); } int pfctl_clear_status(struct pfctl_handle *h) { return (pfctl_do_netlink_cmd(h, PFNL_CMD_CLEAR_STATUS)); } static uint64_t _pfctl_status_counter(struct pfctl_status_counters *counters, uint64_t id) { struct pfctl_status_counter *c; TAILQ_FOREACH(c, counters, entry) { if (c->id == id) return (c->counter); } return (0); } uint64_t pfctl_status_counter(struct pfctl_status *status, int id) { return (_pfctl_status_counter(&status->counters, id)); } uint64_t pfctl_status_lcounter(struct pfctl_status *status, int id) { return (_pfctl_status_counter(&status->lcounters, id)); } uint64_t pfctl_status_fcounter(struct pfctl_status *status, int id) { return (_pfctl_status_counter(&status->fcounters, id)); } uint64_t pfctl_status_scounter(struct pfctl_status *status, int id) { return (_pfctl_status_counter(&status->scounters, id)); } void pfctl_free_status(struct pfctl_status *status) { struct pfctl_status_counter *c, *tmp; if (status == NULL) return; TAILQ_FOREACH_SAFE(c, &status->counters, entry, tmp) { free(c->name); free(c); } TAILQ_FOREACH_SAFE(c, &status->lcounters, entry, tmp) { free(c->name); free(c); } TAILQ_FOREACH_SAFE(c, &status->fcounters, entry, tmp) { free(c->name); free(c); } TAILQ_FOREACH_SAFE(c, &status->scounters, entry, tmp) { free(c->name); free(c); } free(status); } static void pfctl_nv_add_addr(nvlist_t *nvparent, const char *name, const struct pf_addr *addr) { nvlist_t *nvl = nvlist_create(0); nvlist_add_binary(nvl, "addr", addr, sizeof(*addr)); nvlist_add_nvlist(nvparent, name, nvl); nvlist_destroy(nvl); } static void pf_nvaddr_to_addr(const nvlist_t *nvl, struct pf_addr *addr) { size_t len; const void *data; data = nvlist_get_binary(nvl, "addr", &len); assert(len == sizeof(struct pf_addr)); memcpy(addr, data, len); } static void pfctl_nv_add_addr_wrap(nvlist_t *nvparent, const char *name, const struct pf_addr_wrap *addr) { nvlist_t *nvl = nvlist_create(0); nvlist_add_number(nvl, "type", addr->type); nvlist_add_number(nvl, "iflags", addr->iflags); if (addr->type == PF_ADDR_DYNIFTL) nvlist_add_string(nvl, "ifname", addr->v.ifname); if (addr->type == PF_ADDR_TABLE) nvlist_add_string(nvl, "tblname", addr->v.tblname); pfctl_nv_add_addr(nvl, "addr", &addr->v.a.addr); pfctl_nv_add_addr(nvl, "mask", &addr->v.a.mask); nvlist_add_nvlist(nvparent, name, nvl); nvlist_destroy(nvl); } static void pf_nvaddr_wrap_to_addr_wrap(const nvlist_t *nvl, struct pf_addr_wrap *addr) { bzero(addr, sizeof(*addr)); addr->type = nvlist_get_number(nvl, "type"); addr->iflags = nvlist_get_number(nvl, "iflags"); if (addr->type == PF_ADDR_DYNIFTL) { strlcpy(addr->v.ifname, nvlist_get_string(nvl, "ifname"), IFNAMSIZ); addr->p.dyncnt = nvlist_get_number(nvl, "dyncnt"); } if (addr->type == PF_ADDR_TABLE) { strlcpy(addr->v.tblname, nvlist_get_string(nvl, "tblname"), PF_TABLE_NAME_SIZE); addr->p.tblcnt = nvlist_get_number(nvl, "tblcnt"); } pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "addr"), &addr->v.a.addr); pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "mask"), &addr->v.a.mask); } static void pfctl_nv_add_rule_addr(nvlist_t *nvparent, const char *name, const struct pf_rule_addr *addr) { uint64_t ports[2]; nvlist_t *nvl = nvlist_create(0); pfctl_nv_add_addr_wrap(nvl, "addr", &addr->addr); ports[0] = addr->port[0]; ports[1] = addr->port[1]; nvlist_add_number_array(nvl, "port", ports, 2); nvlist_add_number(nvl, "neg", addr->neg); nvlist_add_number(nvl, "port_op", addr->port_op); nvlist_add_nvlist(nvparent, name, nvl); nvlist_destroy(nvl); } static void pf_nvrule_addr_to_rule_addr(const nvlist_t *nvl, struct pf_rule_addr *addr) { pf_nvaddr_wrap_to_addr_wrap(nvlist_get_nvlist(nvl, "addr"), &addr->addr); pf_nvuint_16_array(nvl, "port", 2, addr->port, NULL); addr->neg = nvlist_get_number(nvl, "neg"); addr->port_op = nvlist_get_number(nvl, "port_op"); } static void pf_nvmape_to_mape(const nvlist_t *nvl, struct pf_mape_portset *mape) { mape->offset = nvlist_get_number(nvl, "offset"); mape->psidlen = nvlist_get_number(nvl, "psidlen"); mape->psid = nvlist_get_number(nvl, "psid"); } static void pf_nvpool_to_pool(const nvlist_t *nvl, struct pfctl_pool *pool) { size_t len; const void *data; data = nvlist_get_binary(nvl, "key", &len); assert(len == sizeof(pool->key)); memcpy(&pool->key, data, len); pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "counter"), &pool->counter); pool->tblidx = nvlist_get_number(nvl, "tblidx"); pf_nvuint_16_array(nvl, "proxy_port", 2, pool->proxy_port, NULL); pool->opts = nvlist_get_number(nvl, "opts"); if (nvlist_exists_nvlist(nvl, "mape")) pf_nvmape_to_mape(nvlist_get_nvlist(nvl, "mape"), &pool->mape); } static void pf_nvrule_uid_to_rule_uid(const nvlist_t *nvl, struct pf_rule_uid *uid) { pf_nvuint_32_array(nvl, "uid", 2, uid->uid, NULL); uid->op = nvlist_get_number(nvl, "op"); } static void pf_nvdivert_to_divert(const nvlist_t *nvl, struct pfctl_rule *rule) { pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "addr"), &rule->divert.addr); rule->divert.port = nvlist_get_number(nvl, "port"); } static void pf_nvrule_to_rule(const nvlist_t *nvl, struct pfctl_rule *rule) { const uint64_t *skip; const char *const *labels; size_t skipcount, labelcount; rule->nr = nvlist_get_number(nvl, "nr"); pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "src"), &rule->src); pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "dst"), &rule->dst); skip = nvlist_get_number_array(nvl, "skip", &skipcount); assert(skip); assert(skipcount == PF_SKIP_COUNT); for (int i = 0; i < PF_SKIP_COUNT; i++) rule->skip[i].nr = skip[i]; labels = nvlist_get_string_array(nvl, "labels", &labelcount); assert(labelcount <= PF_RULE_MAX_LABEL_COUNT); for (size_t i = 0; i < labelcount; i++) strlcpy(rule->label[i], labels[i], PF_RULE_LABEL_SIZE); rule->ridentifier = nvlist_get_number(nvl, "ridentifier"); strlcpy(rule->ifname, nvlist_get_string(nvl, "ifname"), IFNAMSIZ); strlcpy(rule->qname, nvlist_get_string(nvl, "qname"), PF_QNAME_SIZE); strlcpy(rule->pqname, nvlist_get_string(nvl, "pqname"), PF_QNAME_SIZE); strlcpy(rule->tagname, nvlist_get_string(nvl, "tagname"), PF_TAG_NAME_SIZE); strlcpy(rule->match_tagname, nvlist_get_string(nvl, "match_tagname"), PF_TAG_NAME_SIZE); strlcpy(rule->overload_tblname, nvlist_get_string(nvl, "overload_tblname"), PF_TABLE_NAME_SIZE); pf_nvpool_to_pool(nvlist_get_nvlist(nvl, "rpool"), &rule->rpool); rule->evaluations = nvlist_get_number(nvl, "evaluations"); pf_nvuint_64_array(nvl, "packets", 2, rule->packets, NULL); pf_nvuint_64_array(nvl, "bytes", 2, rule->bytes, NULL); if (nvlist_exists_number(nvl, "timestamp")) { rule->last_active_timestamp = nvlist_get_number(nvl, "timestamp"); } rule->os_fingerprint = nvlist_get_number(nvl, "os_fingerprint"); rule->rtableid = nvlist_get_number(nvl, "rtableid"); pf_nvuint_32_array(nvl, "timeout", PFTM_MAX, rule->timeout, NULL); rule->max_states = nvlist_get_number(nvl, "max_states"); rule->max_src_nodes = nvlist_get_number(nvl, "max_src_nodes"); rule->max_src_states = nvlist_get_number(nvl, "max_src_states"); rule->max_src_conn = nvlist_get_number(nvl, "max_src_conn"); rule->max_src_conn_rate.limit = nvlist_get_number(nvl, "max_src_conn_rate.limit"); rule->max_src_conn_rate.seconds = nvlist_get_number(nvl, "max_src_conn_rate.seconds"); rule->qid = nvlist_get_number(nvl, "qid"); rule->pqid = nvlist_get_number(nvl, "pqid"); rule->dnpipe = nvlist_get_number(nvl, "dnpipe"); rule->dnrpipe = nvlist_get_number(nvl, "dnrpipe"); rule->free_flags = nvlist_get_number(nvl, "dnflags"); rule->prob = nvlist_get_number(nvl, "prob"); rule->cuid = nvlist_get_number(nvl, "cuid"); rule->cpid = nvlist_get_number(nvl, "cpid"); rule->return_icmp = nvlist_get_number(nvl, "return_icmp"); rule->return_icmp6 = nvlist_get_number(nvl, "return_icmp6"); rule->max_mss = nvlist_get_number(nvl, "max_mss"); rule->scrub_flags = nvlist_get_number(nvl, "scrub_flags"); pf_nvrule_uid_to_rule_uid(nvlist_get_nvlist(nvl, "uid"), &rule->uid); pf_nvrule_uid_to_rule_uid(nvlist_get_nvlist(nvl, "gid"), (struct pf_rule_uid *)&rule->gid); rule->rule_flag = nvlist_get_number(nvl, "rule_flag"); rule->action = nvlist_get_number(nvl, "action"); rule->direction = nvlist_get_number(nvl, "direction"); rule->log = nvlist_get_number(nvl, "log"); rule->logif = nvlist_get_number(nvl, "logif"); rule->quick = nvlist_get_number(nvl, "quick"); rule->ifnot = nvlist_get_number(nvl, "ifnot"); rule->match_tag_not = nvlist_get_number(nvl, "match_tag_not"); rule->natpass = nvlist_get_number(nvl, "natpass"); rule->keep_state = nvlist_get_number(nvl, "keep_state"); rule->af = nvlist_get_number(nvl, "af"); rule->proto = nvlist_get_number(nvl, "proto"); rule->type = nvlist_get_number(nvl, "type"); rule->code = nvlist_get_number(nvl, "code"); rule->flags = nvlist_get_number(nvl, "flags"); rule->flagset = nvlist_get_number(nvl, "flagset"); rule->min_ttl = nvlist_get_number(nvl, "min_ttl"); rule->allow_opts = nvlist_get_number(nvl, "allow_opts"); rule->rt = nvlist_get_number(nvl, "rt"); rule->return_ttl = nvlist_get_number(nvl, "return_ttl"); rule->tos = nvlist_get_number(nvl, "tos"); rule->set_tos = nvlist_get_number(nvl, "set_tos"); rule->anchor_relative = nvlist_get_number(nvl, "anchor_relative"); rule->anchor_wildcard = nvlist_get_number(nvl, "anchor_wildcard"); rule->flush = nvlist_get_number(nvl, "flush"); rule->prio = nvlist_get_number(nvl, "prio"); pf_nvuint_8_array(nvl, "set_prio", 2, rule->set_prio, NULL); pf_nvdivert_to_divert(nvlist_get_nvlist(nvl, "divert"), rule); rule->states_cur = nvlist_get_number(nvl, "states_cur"); rule->states_tot = nvlist_get_number(nvl, "states_tot"); rule->src_nodes = nvlist_get_number(nvl, "src_nodes"); } static void pfctl_nveth_addr_to_eth_addr(const nvlist_t *nvl, struct pfctl_eth_addr *addr) { static const u_int8_t EMPTY_MAC[ETHER_ADDR_LEN] = { 0 }; size_t len; const void *data; data = nvlist_get_binary(nvl, "addr", &len); assert(len == sizeof(addr->addr)); memcpy(addr->addr, data, sizeof(addr->addr)); data = nvlist_get_binary(nvl, "mask", &len); assert(len == sizeof(addr->mask)); memcpy(addr->mask, data, sizeof(addr->mask)); addr->neg = nvlist_get_bool(nvl, "neg"); /* To make checks for 'is this address set?' easier. */ addr->isset = memcmp(addr->addr, EMPTY_MAC, ETHER_ADDR_LEN) != 0; } static nvlist_t * pfctl_eth_addr_to_nveth_addr(const struct pfctl_eth_addr *addr) { nvlist_t *nvl; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_bool(nvl, "neg", addr->neg); nvlist_add_binary(nvl, "addr", &addr->addr, ETHER_ADDR_LEN); nvlist_add_binary(nvl, "mask", &addr->mask, ETHER_ADDR_LEN); return (nvl); } static void pfctl_nveth_rule_to_eth_rule(const nvlist_t *nvl, struct pfctl_eth_rule *rule) { const char *const *labels; size_t labelcount, i; rule->nr = nvlist_get_number(nvl, "nr"); rule->quick = nvlist_get_bool(nvl, "quick"); strlcpy(rule->ifname, nvlist_get_string(nvl, "ifname"), IFNAMSIZ); rule->ifnot = nvlist_get_bool(nvl, "ifnot"); rule->direction = nvlist_get_number(nvl, "direction"); rule->proto = nvlist_get_number(nvl, "proto"); strlcpy(rule->match_tagname, nvlist_get_string(nvl, "match_tagname"), PF_TAG_NAME_SIZE); rule->match_tag = nvlist_get_number(nvl, "match_tag"); rule->match_tag_not = nvlist_get_bool(nvl, "match_tag_not"); labels = nvlist_get_string_array(nvl, "labels", &labelcount); assert(labelcount <= PF_RULE_MAX_LABEL_COUNT); for (i = 0; i < labelcount; i++) strlcpy(rule->label[i], labels[i], PF_RULE_LABEL_SIZE); rule->ridentifier = nvlist_get_number(nvl, "ridentifier"); pfctl_nveth_addr_to_eth_addr(nvlist_get_nvlist(nvl, "src"), &rule->src); pfctl_nveth_addr_to_eth_addr(nvlist_get_nvlist(nvl, "dst"), &rule->dst); pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "ipsrc"), &rule->ipsrc); pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "ipdst"), &rule->ipdst); rule->evaluations = nvlist_get_number(nvl, "evaluations"); rule->packets[0] = nvlist_get_number(nvl, "packets-in"); rule->packets[1] = nvlist_get_number(nvl, "packets-out"); rule->bytes[0] = nvlist_get_number(nvl, "bytes-in"); rule->bytes[1] = nvlist_get_number(nvl, "bytes-out"); if (nvlist_exists_number(nvl, "timestamp")) { rule->last_active_timestamp = nvlist_get_number(nvl, "timestamp"); } strlcpy(rule->qname, nvlist_get_string(nvl, "qname"), PF_QNAME_SIZE); strlcpy(rule->tagname, nvlist_get_string(nvl, "tagname"), PF_TAG_NAME_SIZE); rule->dnpipe = nvlist_get_number(nvl, "dnpipe"); rule->dnflags = nvlist_get_number(nvl, "dnflags"); rule->anchor_relative = nvlist_get_number(nvl, "anchor_relative"); rule->anchor_wildcard = nvlist_get_number(nvl, "anchor_wildcard"); strlcpy(rule->bridge_to, nvlist_get_string(nvl, "bridge_to"), IFNAMSIZ); rule->action = nvlist_get_number(nvl, "action"); } int pfctl_get_eth_rulesets_info(int dev, struct pfctl_eth_rulesets_info *ri, const char *path) { nvlist_t *nvl; int ret; bzero(ri, sizeof(*ri)); nvl = nvlist_create(0); nvlist_add_string(nvl, "path", path); if ((ret = pfctl_do_ioctl(dev, DIOCGETETHRULESETS, 256, &nvl)) != 0) goto out; ri->nr = nvlist_get_number(nvl, "nr"); out: nvlist_destroy(nvl); return (ret); } int pfctl_get_eth_ruleset(int dev, const char *path, int nr, struct pfctl_eth_ruleset_info *ri) { nvlist_t *nvl; int ret; bzero(ri, sizeof(*ri)); nvl = nvlist_create(0); nvlist_add_string(nvl, "path", path); nvlist_add_number(nvl, "nr", nr); if ((ret = pfctl_do_ioctl(dev, DIOCGETETHRULESET, 1024, &nvl)) != 0) goto out; ri->nr = nvlist_get_number(nvl, "nr"); strlcpy(ri->path, nvlist_get_string(nvl, "path"), MAXPATHLEN); strlcpy(ri->name, nvlist_get_string(nvl, "name"), PF_ANCHOR_NAME_SIZE); out: nvlist_destroy(nvl); return (ret); } int pfctl_get_eth_rules_info(int dev, struct pfctl_eth_rules_info *rules, const char *path) { nvlist_t *nvl; int ret; bzero(rules, sizeof(*rules)); nvl = nvlist_create(0); nvlist_add_string(nvl, "anchor", path); if ((ret = pfctl_do_ioctl(dev, DIOCGETETHRULES, 1024, &nvl)) != 0) goto out; rules->nr = nvlist_get_number(nvl, "nr"); rules->ticket = nvlist_get_number(nvl, "ticket"); out: nvlist_destroy(nvl); return (ret); } int pfctl_get_eth_rule(int dev, uint32_t nr, uint32_t ticket, const char *path, struct pfctl_eth_rule *rule, bool clear, char *anchor_call) { nvlist_t *nvl; int ret; nvl = nvlist_create(0); nvlist_add_string(nvl, "anchor", path); nvlist_add_number(nvl, "ticket", ticket); nvlist_add_number(nvl, "nr", nr); nvlist_add_bool(nvl, "clear", clear); if ((ret = pfctl_do_ioctl(dev, DIOCGETETHRULE, 4096, &nvl)) != 0) goto out; pfctl_nveth_rule_to_eth_rule(nvl, rule); if (anchor_call) strlcpy(anchor_call, nvlist_get_string(nvl, "anchor_call"), MAXPATHLEN); out: nvlist_destroy(nvl); return (ret); } int pfctl_add_eth_rule(int dev, const struct pfctl_eth_rule *r, const char *anchor, const char *anchor_call, uint32_t ticket) { struct pfioc_nv nv; nvlist_t *nvl, *addr; void *packed; int error = 0; size_t labelcount, size; nvl = nvlist_create(0); nvlist_add_number(nvl, "ticket", ticket); nvlist_add_string(nvl, "anchor", anchor); nvlist_add_string(nvl, "anchor_call", anchor_call); nvlist_add_number(nvl, "nr", r->nr); nvlist_add_bool(nvl, "quick", r->quick); nvlist_add_string(nvl, "ifname", r->ifname); nvlist_add_bool(nvl, "ifnot", r->ifnot); nvlist_add_number(nvl, "direction", r->direction); nvlist_add_number(nvl, "proto", r->proto); nvlist_add_string(nvl, "match_tagname", r->match_tagname); nvlist_add_bool(nvl, "match_tag_not", r->match_tag_not); addr = pfctl_eth_addr_to_nveth_addr(&r->src); if (addr == NULL) { nvlist_destroy(nvl); return (ENOMEM); } nvlist_add_nvlist(nvl, "src", addr); nvlist_destroy(addr); addr = pfctl_eth_addr_to_nveth_addr(&r->dst); if (addr == NULL) { nvlist_destroy(nvl); return (ENOMEM); } nvlist_add_nvlist(nvl, "dst", addr); nvlist_destroy(addr); pfctl_nv_add_rule_addr(nvl, "ipsrc", &r->ipsrc); pfctl_nv_add_rule_addr(nvl, "ipdst", &r->ipdst); labelcount = 0; while (labelcount < PF_RULE_MAX_LABEL_COUNT && r->label[labelcount][0] != 0) { nvlist_append_string_array(nvl, "labels", r->label[labelcount]); labelcount++; } nvlist_add_number(nvl, "ridentifier", r->ridentifier); nvlist_add_string(nvl, "qname", r->qname); nvlist_add_string(nvl, "tagname", r->tagname); nvlist_add_number(nvl, "dnpipe", r->dnpipe); nvlist_add_number(nvl, "dnflags", r->dnflags); nvlist_add_string(nvl, "bridge_to", r->bridge_to); nvlist_add_number(nvl, "action", r->action); packed = nvlist_pack(nvl, &size); if (packed == NULL) { nvlist_destroy(nvl); return (ENOMEM); } nv.len = size; nv.size = size; nv.data = packed; if (ioctl(dev, DIOCADDETHRULE, &nv) != 0) error = errno; free(packed); nvlist_destroy(nvl); return (error); } static void snl_add_msg_attr_addr_wrap(struct snl_writer *nw, uint32_t type, const struct pf_addr_wrap *addr) { int off; off = snl_add_msg_attr_nested(nw, type); snl_add_msg_attr_ip6(nw, PF_AT_ADDR, &addr->v.a.addr.v6); snl_add_msg_attr_ip6(nw, PF_AT_MASK, &addr->v.a.mask.v6); if (addr->type == PF_ADDR_DYNIFTL) snl_add_msg_attr_string(nw, PF_AT_IFNAME, addr->v.ifname); if (addr->type == PF_ADDR_TABLE) snl_add_msg_attr_string(nw, PF_AT_TABLENAME, addr->v.tblname); snl_add_msg_attr_u8(nw, PF_AT_TYPE, addr->type); snl_add_msg_attr_u8(nw, PF_AT_IFLAGS, addr->iflags); snl_end_attr_nested(nw, off); } static void snl_add_msg_attr_pool_addr(struct snl_writer *nw, uint32_t type, const struct pf_pooladdr *pa) { int off; off = snl_add_msg_attr_nested(nw, type); snl_add_msg_attr_string(nw, PF_PA_IFNAME, pa->ifname); snl_add_msg_attr_addr_wrap(nw, PF_PA_ADDR, &pa->addr); snl_end_attr_nested(nw, off); } static void snl_add_msg_attr_rule_addr(struct snl_writer *nw, uint32_t type, const struct pf_rule_addr *addr) { int off; off = snl_add_msg_attr_nested(nw, type); snl_add_msg_attr_addr_wrap(nw, PF_RAT_ADDR, &addr->addr); snl_add_msg_attr_u16(nw, PF_RAT_SRC_PORT, addr->port[0]); snl_add_msg_attr_u16(nw, PF_RAT_DST_PORT, addr->port[1]); snl_add_msg_attr_u8(nw, PF_RAT_NEG, addr->neg); snl_add_msg_attr_u8(nw, PF_RAT_OP, addr->port_op); snl_end_attr_nested(nw, off); } static void snl_add_msg_attr_rule_labels(struct snl_writer *nw, uint32_t type, const char labels[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]) { int off, i = 0; off = snl_add_msg_attr_nested(nw, type); while (i < PF_RULE_MAX_LABEL_COUNT && labels[i][0] != 0) { snl_add_msg_attr_string(nw, PF_LT_LABEL, labels[i]); i++; } snl_end_attr_nested(nw, off); } static void snl_add_msg_attr_mape(struct snl_writer *nw, uint32_t type, const struct pf_mape_portset *me) { int off; off = snl_add_msg_attr_nested(nw, type); snl_add_msg_attr_u8(nw, PF_MET_OFFSET, me->offset); snl_add_msg_attr_u8(nw, PF_MET_PSID_LEN, me->psidlen); snl_add_msg_attr_u16(nw, PF_MET_PSID, me->psid); snl_end_attr_nested(nw, off); } static void snl_add_msg_attr_rpool(struct snl_writer *nw, uint32_t type, const struct pfctl_pool *pool) { int off; off = snl_add_msg_attr_nested(nw, type); snl_add_msg_attr(nw, PF_PT_KEY, sizeof(pool->key), &pool->key); snl_add_msg_attr_ip6(nw, PF_PT_COUNTER, &pool->counter.v6); snl_add_msg_attr_u32(nw, PF_PT_TBLIDX, pool->tblidx); snl_add_msg_attr_u16(nw, PF_PT_PROXY_SRC_PORT, pool->proxy_port[0]); snl_add_msg_attr_u16(nw, PF_PT_PROXY_DST_PORT, pool->proxy_port[1]); snl_add_msg_attr_u8(nw, PF_PT_OPTS, pool->opts); snl_add_msg_attr_mape(nw, PF_PT_MAPE, &pool->mape); snl_end_attr_nested(nw, off); } static void snl_add_msg_attr_timeouts(struct snl_writer *nw, uint32_t type, const uint32_t *timeouts) { int off; off = snl_add_msg_attr_nested(nw, type); for (int i = 0; i < PFTM_MAX; i++) snl_add_msg_attr_u32(nw, PF_TT_TIMEOUT, timeouts[i]); snl_end_attr_nested(nw, off); } static void snl_add_msg_attr_uid(struct snl_writer *nw, uint32_t type, const struct pf_rule_uid *uid) { int off; off = snl_add_msg_attr_nested(nw, type); snl_add_msg_attr_u32(nw, PF_RUT_UID_LOW, uid->uid[0]); snl_add_msg_attr_u32(nw, PF_RUT_UID_HIGH, uid->uid[1]); snl_add_msg_attr_u8(nw, PF_RUT_OP, uid->op); snl_end_attr_nested(nw, off); } static void snl_add_msg_attr_pf_rule(struct snl_writer *nw, uint32_t type, const struct pfctl_rule *r) { int off; off = snl_add_msg_attr_nested(nw, type); snl_add_msg_attr_rule_addr(nw, PF_RT_SRC, &r->src); snl_add_msg_attr_rule_addr(nw, PF_RT_DST, &r->dst); snl_add_msg_attr_rule_labels(nw, PF_RT_LABELS, r->label); snl_add_msg_attr_u32(nw, PF_RT_RIDENTIFIER, r->ridentifier); snl_add_msg_attr_string(nw, PF_RT_IFNAME, r->ifname); snl_add_msg_attr_string(nw, PF_RT_QNAME, r->qname); snl_add_msg_attr_string(nw, PF_RT_PQNAME, r->pqname); snl_add_msg_attr_string(nw, PF_RT_TAGNAME, r->tagname); snl_add_msg_attr_string(nw, PF_RT_MATCH_TAGNAME, r->match_tagname); snl_add_msg_attr_string(nw, PF_RT_OVERLOAD_TBLNAME, r->overload_tblname); snl_add_msg_attr_rpool(nw, PF_RT_RPOOL, &r->rpool); snl_add_msg_attr_u32(nw, PF_RT_OS_FINGERPRINT, r->os_fingerprint); snl_add_msg_attr_u32(nw, PF_RT_RTABLEID, r->rtableid); snl_add_msg_attr_timeouts(nw, PF_RT_TIMEOUT, r->timeout); snl_add_msg_attr_u32(nw, PF_RT_MAX_STATES, r->max_states); snl_add_msg_attr_u32(nw, PF_RT_MAX_SRC_NODES, r->max_src_nodes); snl_add_msg_attr_u32(nw, PF_RT_MAX_SRC_STATES, r->max_src_states); snl_add_msg_attr_u32(nw, PF_RT_MAX_SRC_CONN_RATE_LIMIT, r->max_src_conn_rate.limit); snl_add_msg_attr_u32(nw, PF_RT_MAX_SRC_CONN_RATE_SECS, r->max_src_conn_rate.seconds); snl_add_msg_attr_u16(nw, PF_RT_DNPIPE, r->dnpipe); snl_add_msg_attr_u16(nw, PF_RT_DNRPIPE, r->dnrpipe); snl_add_msg_attr_u32(nw, PF_RT_DNFLAGS, r->free_flags); snl_add_msg_attr_u32(nw, PF_RT_NR, r->nr); snl_add_msg_attr_u32(nw, PF_RT_PROB, r->prob); snl_add_msg_attr_u32(nw, PF_RT_CUID, r->cuid); snl_add_msg_attr_u32(nw, PF_RT_CPID, r->cpid); snl_add_msg_attr_u16(nw, PF_RT_RETURN_ICMP, r->return_icmp); snl_add_msg_attr_u16(nw, PF_RT_RETURN_ICMP6, r->return_icmp6); snl_add_msg_attr_u16(nw, PF_RT_MAX_MSS, r->max_mss); snl_add_msg_attr_u16(nw, PF_RT_SCRUB_FLAGS, r->scrub_flags); snl_add_msg_attr_uid(nw, PF_RT_UID, &r->uid); snl_add_msg_attr_uid(nw, PF_RT_GID, (const struct pf_rule_uid *)&r->gid); snl_add_msg_attr_u32(nw, PF_RT_RULE_FLAG, r->rule_flag); snl_add_msg_attr_u8(nw, PF_RT_ACTION, r->action); snl_add_msg_attr_u8(nw, PF_RT_DIRECTION, r->direction); snl_add_msg_attr_u8(nw, PF_RT_LOG, r->log); snl_add_msg_attr_u8(nw, PF_RT_LOGIF, r->logif); snl_add_msg_attr_u8(nw, PF_RT_QUICK, r->quick); snl_add_msg_attr_u8(nw, PF_RT_IF_NOT, r->ifnot); snl_add_msg_attr_u8(nw, PF_RT_MATCH_TAG_NOT, r->match_tag_not); snl_add_msg_attr_u8(nw, PF_RT_NATPASS, r->natpass); snl_add_msg_attr_u8(nw, PF_RT_KEEP_STATE, r->keep_state); snl_add_msg_attr_u8(nw, PF_RT_AF, r->af); snl_add_msg_attr_u8(nw, PF_RT_PROTO, r->proto); snl_add_msg_attr_u8(nw, PF_RT_TYPE, r->type); snl_add_msg_attr_u8(nw, PF_RT_CODE, r->code); snl_add_msg_attr_u8(nw, PF_RT_FLAGS, r->flags); snl_add_msg_attr_u8(nw, PF_RT_FLAGSET, r->flagset); snl_add_msg_attr_u8(nw, PF_RT_MIN_TTL, r->min_ttl); snl_add_msg_attr_u8(nw, PF_RT_ALLOW_OPTS, r->allow_opts); snl_add_msg_attr_u8(nw, PF_RT_RT, r->rt); snl_add_msg_attr_u8(nw, PF_RT_RETURN_TTL, r->return_ttl); snl_add_msg_attr_u8(nw, PF_RT_TOS, r->tos); snl_add_msg_attr_u8(nw, PF_RT_SET_TOS, r->set_tos); snl_add_msg_attr_u8(nw, PF_RT_ANCHOR_RELATIVE, r->anchor_relative); snl_add_msg_attr_u8(nw, PF_RT_ANCHOR_WILDCARD, r->anchor_wildcard); snl_add_msg_attr_u8(nw, PF_RT_FLUSH, r->flush); snl_add_msg_attr_u8(nw, PF_RT_PRIO, r->prio); snl_add_msg_attr_u8(nw, PF_RT_SET_PRIO, r->set_prio[0]); snl_add_msg_attr_u8(nw, PF_RT_SET_PRIO_REPLY, r->set_prio[1]); snl_add_msg_attr_ip6(nw, PF_RT_DIVERT_ADDRESS, &r->divert.addr.v6); snl_add_msg_attr_u16(nw, PF_RT_DIVERT_PORT, r->divert.port); snl_end_attr_nested(nw, off); } int pfctl_add_rule(int dev __unused, const struct pfctl_rule *r, const char *anchor, const char *anchor_call, uint32_t ticket, uint32_t pool_ticket) { struct pfctl_handle *h; int ret; h = pfctl_open(PF_DEVICE); if (h == NULL) return (ENODEV); ret = pfctl_add_rule_h(h, r, anchor, anchor_call, ticket, pool_ticket); pfctl_close(h); return (ret); } int pfctl_add_rule_h(struct pfctl_handle *h, const struct pfctl_rule *r, const char *anchor, const char *anchor_call, uint32_t ticket, uint32_t pool_ticket) { struct snl_writer nw; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_ADDRULE); hdr->nlmsg_flags |= NLM_F_DUMP; snl_add_msg_attr_u32(&nw, PF_ART_TICKET, ticket); snl_add_msg_attr_u32(&nw, PF_ART_POOL_TICKET, pool_ticket); snl_add_msg_attr_string(&nw, PF_ART_ANCHOR, anchor); snl_add_msg_attr_string(&nw, PF_ART_ANCHOR_CALL, anchor_call); snl_add_msg_attr_pf_rule(&nw, PF_ART_RULE, r); if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { } return (e.error); } #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct pfctl_rules_info, _field) static struct snl_attr_parser ap_getrules[] = { { .type = PF_GR_NR, .off = _OUT(nr), .cb = snl_attr_get_uint32 }, { .type = PF_GR_TICKET, .off = _OUT(ticket), .cb = snl_attr_get_uint32 }, }; static struct snl_field_parser fp_getrules[] = { }; #undef _IN #undef _OUT SNL_DECLARE_PARSER(getrules_parser, struct genlmsghdr, fp_getrules, ap_getrules); int pfctl_get_rules_info_h(struct pfctl_handle *h, struct pfctl_rules_info *rules, uint32_t ruleset, const char *path) { struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; struct snl_writer nw; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_GETRULES); hdr->nlmsg_flags |= NLM_F_DUMP; snl_add_msg_attr_string(&nw, PF_GR_ANCHOR, path); snl_add_msg_attr_u8(&nw, PF_GR_ACTION, ruleset); hdr = snl_finalize_msg(&nw); if (hdr == NULL) return (ENOMEM); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { if (! snl_parse_nlmsg(&h->ss, hdr, &getrules_parser, rules)) continue; } return (e.error); } int pfctl_get_rules_info(int dev __unused, struct pfctl_rules_info *rules, uint32_t ruleset, const char *path) { struct pfctl_handle *h; int error; h = pfctl_open(PF_DEVICE); if (h == NULL) return (ENOTSUP); error = pfctl_get_rules_info_h(h, rules, ruleset, path); pfctl_close(h); return (error); } int pfctl_get_rule_h(struct pfctl_handle *h, uint32_t nr, uint32_t ticket, const char *anchor, uint32_t ruleset, struct pfctl_rule *rule, char *anchor_call) { return (pfctl_get_clear_rule_h(h, nr, ticket, anchor, ruleset, rule, anchor_call, false)); } int pfctl_get_rule(int dev, uint32_t nr, uint32_t ticket, const char *anchor, uint32_t ruleset, struct pfctl_rule *rule, char *anchor_call) { return (pfctl_get_clear_rule(dev, nr, ticket, anchor, ruleset, rule, anchor_call, false)); } #define _OUT(_field) offsetof(struct pf_addr_wrap, _field) static const struct snl_attr_parser ap_addr_wrap[] = { { .type = PF_AT_ADDR, .off = _OUT(v.a.addr), .cb = snl_attr_get_in6_addr }, { .type = PF_AT_MASK, .off = _OUT(v.a.mask), .cb = snl_attr_get_in6_addr }, { .type = PF_AT_IFNAME, .off = _OUT(v.ifname), .arg = (void *)IFNAMSIZ,.cb = snl_attr_copy_string }, { .type = PF_AT_TABLENAME, .off = _OUT(v.tblname), .arg = (void *)PF_TABLE_NAME_SIZE, .cb = snl_attr_copy_string }, { .type = PF_AT_TYPE, .off = _OUT(type), .cb = snl_attr_get_uint8 }, { .type = PF_AT_IFLAGS, .off = _OUT(iflags), .cb = snl_attr_get_uint8 }, { .type = PF_AT_TBLCNT, .off = _OUT(p.tblcnt), .cb = snl_attr_get_uint32 }, { .type = PF_AT_DYNCNT, .off = _OUT(p.dyncnt), .cb = snl_attr_get_uint32 }, }; SNL_DECLARE_ATTR_PARSER(addr_wrap_parser, ap_addr_wrap); #undef _OUT #define _OUT(_field) offsetof(struct pf_rule_addr, _field) static struct snl_attr_parser ap_rule_addr[] = { { .type = PF_RAT_ADDR, .off = _OUT(addr), .arg = &addr_wrap_parser, .cb = snl_attr_get_nested }, { .type = PF_RAT_SRC_PORT, .off = _OUT(port[0]), .cb = snl_attr_get_uint16 }, { .type = PF_RAT_DST_PORT, .off = _OUT(port[1]), .cb = snl_attr_get_uint16 }, { .type = PF_RAT_NEG, .off = _OUT(neg), .cb = snl_attr_get_uint8 }, { .type = PF_RAT_OP, .off = _OUT(port_op), .cb = snl_attr_get_uint8 }, }; #undef _OUT SNL_DECLARE_ATTR_PARSER(rule_addr_parser, ap_rule_addr); struct snl_parsed_labels { char labels[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; uint32_t i; }; static bool snl_attr_get_pf_rule_labels(struct snl_state *ss, struct nlattr *nla, const void *arg __unused, void *target) { struct snl_parsed_labels *l = (struct snl_parsed_labels *)target; bool ret; if (l->i >= PF_RULE_MAX_LABEL_COUNT) return (E2BIG); ret = snl_attr_copy_string(ss, nla, (void *)PF_RULE_LABEL_SIZE, l->labels[l->i]); if (ret) l->i++; return (ret); } #define _OUT(_field) offsetof(struct nl_parsed_labels, _field) static const struct snl_attr_parser ap_labels[] = { { .type = PF_LT_LABEL, .off = 0, .cb = snl_attr_get_pf_rule_labels }, }; SNL_DECLARE_ATTR_PARSER(rule_labels_parser, ap_labels); #undef _OUT static bool snl_attr_get_nested_pf_rule_labels(struct snl_state *ss, struct nlattr *nla, const void *arg __unused, void *target) { struct snl_parsed_labels parsed_labels = { }; bool error; /* Assumes target points to the beginning of the structure */ error = snl_parse_header(ss, NLA_DATA(nla), NLA_DATA_LEN(nla), &rule_labels_parser, &parsed_labels); if (! error) return (error); memcpy(target, parsed_labels.labels, sizeof(parsed_labels.labels)); return (true); } #define _OUT(_field) offsetof(struct pf_mape_portset, _field) static const struct snl_attr_parser ap_mape_portset[] = { { .type = PF_MET_OFFSET, .off = _OUT(offset), .cb = snl_attr_get_uint8 }, { .type = PF_MET_PSID_LEN, .off = _OUT(psidlen), .cb = snl_attr_get_uint8 }, {. type = PF_MET_PSID, .off = _OUT(psid), .cb = snl_attr_get_uint16 }, }; SNL_DECLARE_ATTR_PARSER(mape_portset_parser, ap_mape_portset); #undef _OUT #define _OUT(_field) offsetof(struct pfctl_pool, _field) static const struct snl_attr_parser ap_pool[] = { { .type = PF_PT_KEY, .off = _OUT(key), .arg = (void *)sizeof(struct pf_poolhashkey), .cb = snl_attr_get_bytes }, { .type = PF_PT_COUNTER, .off = _OUT(counter), .cb = snl_attr_get_in6_addr }, { .type = PF_PT_TBLIDX, .off = _OUT(tblidx), .cb = snl_attr_get_uint32 }, { .type = PF_PT_PROXY_SRC_PORT, .off = _OUT(proxy_port[0]), .cb = snl_attr_get_uint16 }, { .type = PF_PT_PROXY_DST_PORT, .off = _OUT(proxy_port[1]), .cb = snl_attr_get_uint16 }, { .type = PF_PT_OPTS, .off = _OUT(opts), .cb = snl_attr_get_uint8 }, { .type = PF_PT_MAPE, .off = _OUT(mape), .arg = &mape_portset_parser, .cb = snl_attr_get_nested }, }; SNL_DECLARE_ATTR_PARSER(pool_parser, ap_pool); #undef _OUT struct nl_parsed_timeouts { uint32_t timeouts[PFTM_MAX]; uint32_t i; }; static bool snl_attr_get_pf_timeout(struct snl_state *ss, struct nlattr *nla, const void *arg __unused, void *target) { struct nl_parsed_timeouts *t = (struct nl_parsed_timeouts *)target; bool ret; if (t->i >= PFTM_MAX) return (E2BIG); ret = snl_attr_get_uint32(ss, nla, NULL, &t->timeouts[t->i]); if (ret) t->i++; return (ret); } #define _OUT(_field) offsetof(struct nl_parsed_timeout, _field) static const struct snl_attr_parser ap_timeouts[] = { { .type = PF_TT_TIMEOUT, .off = 0, .cb = snl_attr_get_pf_timeout }, }; SNL_DECLARE_ATTR_PARSER(timeout_parser, ap_timeouts); #undef _OUT static bool snl_attr_get_nested_timeouts(struct snl_state *ss, struct nlattr *nla, const void *arg __unused, void *target) { struct nl_parsed_timeouts parsed_timeouts = { }; bool error; /* Assumes target points to the beginning of the structure */ error = snl_parse_header(ss, NLA_DATA(nla), NLA_DATA_LEN(nla), &timeout_parser, &parsed_timeouts); if (! error) return (error); memcpy(target, parsed_timeouts.timeouts, sizeof(parsed_timeouts.timeouts)); return (true); } #define _OUT(_field) offsetof(struct pf_rule_uid, _field) static const struct snl_attr_parser ap_rule_uid[] = { { .type = PF_RUT_UID_LOW, .off = _OUT(uid[0]), .cb = snl_attr_get_uint32 }, { .type = PF_RUT_UID_HIGH, .off = _OUT(uid[1]), .cb = snl_attr_get_uint32 }, { .type = PF_RUT_OP, .off = _OUT(op), .cb = snl_attr_get_uint8 }, }; SNL_DECLARE_ATTR_PARSER(rule_uid_parser, ap_rule_uid); #undef _OUT struct pfctl_nl_get_rule { struct pfctl_rule r; char anchor_call[MAXPATHLEN]; }; #define _OUT(_field) offsetof(struct pfctl_nl_get_rule, _field) static struct snl_attr_parser ap_getrule[] = { { .type = PF_RT_SRC, .off = _OUT(r.src), .arg = &rule_addr_parser,.cb = snl_attr_get_nested }, { .type = PF_RT_DST, .off = _OUT(r.dst), .arg = &rule_addr_parser,.cb = snl_attr_get_nested }, { .type = PF_RT_RIDENTIFIER, .off = _OUT(r.ridentifier), .cb = snl_attr_get_uint32 }, { .type = PF_RT_LABELS, .off = _OUT(r.label), .arg = &rule_labels_parser,.cb = snl_attr_get_nested_pf_rule_labels }, { .type = PF_RT_IFNAME, .off = _OUT(r.ifname), .arg = (void *)IFNAMSIZ, .cb = snl_attr_copy_string }, { .type = PF_RT_QNAME, .off = _OUT(r.qname), .arg = (void *)PF_QNAME_SIZE, .cb = snl_attr_copy_string }, { .type = PF_RT_PQNAME, .off = _OUT(r.pqname), .arg = (void *)PF_QNAME_SIZE, .cb = snl_attr_copy_string }, { .type = PF_RT_TAGNAME, .off = _OUT(r.tagname), .arg = (void *)PF_TAG_NAME_SIZE, .cb = snl_attr_copy_string }, { .type = PF_RT_MATCH_TAGNAME, .off = _OUT(r.match_tagname), .arg = (void *)PF_TAG_NAME_SIZE, .cb = snl_attr_copy_string }, { .type = PF_RT_OVERLOAD_TBLNAME, .off = _OUT(r.overload_tblname), .arg = (void *)PF_TABLE_NAME_SIZE, .cb = snl_attr_copy_string }, { .type = PF_RT_RPOOL, .off = _OUT(r.rpool), .arg = &pool_parser, .cb = snl_attr_get_nested }, { .type = PF_RT_OS_FINGERPRINT, .off = _OUT(r.os_fingerprint), .cb = snl_attr_get_uint32 }, { .type = PF_RT_RTABLEID, .off = _OUT(r.rtableid), .cb = snl_attr_get_uint32 }, { .type = PF_RT_TIMEOUT, .off = _OUT(r.timeout), .arg = &timeout_parser, .cb = snl_attr_get_nested_timeouts }, { .type = PF_RT_MAX_STATES, .off = _OUT(r.max_states), .cb = snl_attr_get_uint32 }, { .type = PF_RT_MAX_SRC_NODES, .off = _OUT(r.max_src_nodes), .cb = snl_attr_get_uint32 }, { .type = PF_RT_MAX_SRC_STATES, .off = _OUT(r.max_src_states), .cb = snl_attr_get_uint32 }, { .type = PF_RT_MAX_SRC_CONN_RATE_LIMIT, .off = _OUT(r.max_src_conn_rate.limit), .cb = snl_attr_get_uint32 }, { .type = PF_RT_MAX_SRC_CONN_RATE_SECS, .off = _OUT(r.max_src_conn_rate.seconds), .cb = snl_attr_get_uint32 }, { .type = PF_RT_DNPIPE, .off = _OUT(r.dnpipe), .cb = snl_attr_get_uint16 }, { .type = PF_RT_DNRPIPE, .off = _OUT(r.dnrpipe), .cb = snl_attr_get_uint16 }, { .type = PF_RT_DNFLAGS, .off = _OUT(r.free_flags), .cb = snl_attr_get_uint32 }, { .type = PF_RT_NR, .off = _OUT(r.nr), .cb = snl_attr_get_uint32 }, { .type = PF_RT_PROB, .off = _OUT(r.prob), .cb = snl_attr_get_uint32 }, { .type = PF_RT_CUID, .off = _OUT(r.cuid), .cb = snl_attr_get_uint32 }, {. type = PF_RT_CPID, .off = _OUT(r.cpid), .cb = snl_attr_get_uint32 }, { .type = PF_RT_RETURN_ICMP, .off = _OUT(r.return_icmp), .cb = snl_attr_get_uint16 }, { .type = PF_RT_RETURN_ICMP6, .off = _OUT(r.return_icmp6), .cb = snl_attr_get_uint16 }, { .type = PF_RT_MAX_MSS, .off = _OUT(r.max_mss), .cb = snl_attr_get_uint16 }, { .type = PF_RT_SCRUB_FLAGS, .off = _OUT(r.scrub_flags), .cb = snl_attr_get_uint16 }, { .type = PF_RT_UID, .off = _OUT(r.uid), .arg = &rule_uid_parser, .cb = snl_attr_get_nested }, { .type = PF_RT_GID, .off = _OUT(r.gid), .arg = &rule_uid_parser, .cb = snl_attr_get_nested }, { .type = PF_RT_RULE_FLAG, .off = _OUT(r.rule_flag), .cb = snl_attr_get_uint32 }, { .type = PF_RT_ACTION, .off = _OUT(r.action), .cb = snl_attr_get_uint8 }, { .type = PF_RT_DIRECTION, .off = _OUT(r.direction), .cb = snl_attr_get_uint8 }, { .type = PF_RT_LOG, .off = _OUT(r.log), .cb = snl_attr_get_uint8 }, { .type = PF_RT_LOGIF, .off = _OUT(r.logif), .cb = snl_attr_get_uint8 }, { .type = PF_RT_QUICK, .off = _OUT(r.quick), .cb = snl_attr_get_uint8 }, { .type = PF_RT_IF_NOT, .off = _OUT(r.ifnot), .cb = snl_attr_get_uint8 }, { .type = PF_RT_MATCH_TAG_NOT, .off = _OUT(r.match_tag_not), .cb = snl_attr_get_uint8 }, { .type = PF_RT_NATPASS, .off = _OUT(r.natpass), .cb = snl_attr_get_uint8 }, { .type = PF_RT_KEEP_STATE, .off = _OUT(r.keep_state), .cb = snl_attr_get_uint8 }, { .type = PF_RT_AF, .off = _OUT(r.af), .cb = snl_attr_get_uint8 }, { .type = PF_RT_PROTO, .off = _OUT(r.proto), .cb = snl_attr_get_uint8 }, { .type = PF_RT_TYPE, .off = _OUT(r.type), .cb = snl_attr_get_uint8 }, { .type = PF_RT_CODE, .off = _OUT(r.code), .cb = snl_attr_get_uint8 }, { .type = PF_RT_FLAGS, .off = _OUT(r.flags), .cb = snl_attr_get_uint8 }, { .type = PF_RT_FLAGSET, .off = _OUT(r.flagset), .cb = snl_attr_get_uint8 }, { .type = PF_RT_MIN_TTL, .off = _OUT(r.min_ttl), .cb = snl_attr_get_uint8 }, { .type = PF_RT_ALLOW_OPTS, .off = _OUT(r.allow_opts), .cb = snl_attr_get_uint8 }, { .type = PF_RT_RT, .off = _OUT(r.rt), .cb = snl_attr_get_uint8 }, { .type = PF_RT_RETURN_TTL, .off = _OUT(r.return_ttl), .cb = snl_attr_get_uint8 }, { .type = PF_RT_TOS, .off = _OUT(r.tos), .cb = snl_attr_get_uint8 }, { .type = PF_RT_SET_TOS, .off = _OUT(r.set_tos), .cb = snl_attr_get_uint8 }, { .type = PF_RT_ANCHOR_RELATIVE, .off = _OUT(r.anchor_relative), .cb = snl_attr_get_uint8 }, { .type = PF_RT_ANCHOR_WILDCARD, .off = _OUT(r.anchor_wildcard), .cb = snl_attr_get_uint8 }, { .type = PF_RT_FLUSH, .off = _OUT(r.flush), .cb = snl_attr_get_uint8 }, { .type = PF_RT_PRIO, .off = _OUT(r.prio), .cb = snl_attr_get_uint8 }, { .type = PF_RT_SET_PRIO, .off = _OUT(r.set_prio[0]), .cb = snl_attr_get_uint8 }, { .type = PF_RT_SET_PRIO_REPLY, .off = _OUT(r.set_prio[1]), .cb = snl_attr_get_uint8 }, { .type = PF_RT_DIVERT_ADDRESS, .off = _OUT(r.divert.addr), .cb = snl_attr_get_in6_addr }, { .type = PF_RT_DIVERT_PORT, .off = _OUT(r.divert.port), .cb = snl_attr_get_uint16 }, { .type = PF_RT_PACKETS_IN, .off = _OUT(r.packets[0]), .cb = snl_attr_get_uint64 }, { .type = PF_RT_PACKETS_OUT, .off = _OUT(r.packets[1]), .cb = snl_attr_get_uint64 }, { .type = PF_RT_BYTES_IN, .off = _OUT(r.bytes[0]), .cb = snl_attr_get_uint64 }, { .type = PF_RT_BYTES_OUT, .off = _OUT(r.bytes[1]), .cb = snl_attr_get_uint64 }, { .type = PF_RT_EVALUATIONS, .off = _OUT(r.evaluations), .cb = snl_attr_get_uint64 }, { .type = PF_RT_TIMESTAMP, .off = _OUT(r.last_active_timestamp), .cb = snl_attr_get_uint64 }, { .type = PF_RT_STATES_CUR, .off = _OUT(r.states_cur), .cb = snl_attr_get_uint64 }, { .type = PF_RT_STATES_TOTAL, .off = _OUT(r.states_tot), .cb = snl_attr_get_uint64 }, { .type = PF_RT_SRC_NODES, .off = _OUT(r.src_nodes), .cb = snl_attr_get_uint64 }, { .type = PF_RT_ANCHOR_CALL, .off = _OUT(anchor_call), .arg = (void*)MAXPATHLEN, .cb = snl_attr_copy_string }, }; static struct snl_field_parser fp_getrule[] = {}; #undef _OUT SNL_DECLARE_PARSER(getrule_parser, struct genlmsghdr, fp_getrule, ap_getrule); int pfctl_get_clear_rule_h(struct pfctl_handle *h, uint32_t nr, uint32_t ticket, const char *anchor, uint32_t ruleset, struct pfctl_rule *rule, char *anchor_call, bool clear) { struct pfctl_nl_get_rule attrs = {}; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; struct snl_writer nw; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_GETRULE); hdr->nlmsg_flags |= NLM_F_DUMP; snl_add_msg_attr_string(&nw, PF_GR_ANCHOR, anchor); snl_add_msg_attr_u8(&nw, PF_GR_ACTION, ruleset); snl_add_msg_attr_u32(&nw, PF_GR_NR, nr); snl_add_msg_attr_u32(&nw, PF_GR_TICKET, ticket); snl_add_msg_attr_u8(&nw, PF_GR_CLEAR, clear); hdr = snl_finalize_msg(&nw); if (hdr == NULL) return (ENOMEM); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { if (! snl_parse_nlmsg(&h->ss, hdr, &getrule_parser, &attrs)) continue; } memcpy(rule, &attrs.r, sizeof(attrs.r)); strlcpy(anchor_call, attrs.anchor_call, MAXPATHLEN); return (e.error); } int pfctl_get_clear_rule(int dev, uint32_t nr, uint32_t ticket, const char *anchor, uint32_t ruleset, struct pfctl_rule *rule, char *anchor_call, bool clear) { nvlist_t *nvl; int ret; nvl = nvlist_create(0); if (nvl == 0) return (ENOMEM); nvlist_add_number(nvl, "nr", nr); nvlist_add_number(nvl, "ticket", ticket); nvlist_add_string(nvl, "anchor", anchor); nvlist_add_number(nvl, "ruleset", ruleset); if (clear) nvlist_add_bool(nvl, "clear_counter", true); if ((ret = pfctl_do_ioctl(dev, DIOCGETRULENV, 8192, &nvl)) != 0) goto out; pf_nvrule_to_rule(nvlist_get_nvlist(nvl, "rule"), rule); if (anchor_call) strlcpy(anchor_call, nvlist_get_string(nvl, "anchor_call"), MAXPATHLEN); out: nvlist_destroy(nvl); return (ret); } int pfctl_set_keepcounters(int dev, bool keep) { struct pfioc_nv nv; nvlist_t *nvl; int ret; nvl = nvlist_create(0); nvlist_add_bool(nvl, "keep_counters", keep); nv.data = nvlist_pack(nvl, &nv.len); nv.size = nv.len; nvlist_destroy(nvl); ret = ioctl(dev, DIOCKEEPCOUNTERS, &nv); free(nv.data); return (ret); } struct pfctl_creator { uint32_t id; }; #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct pfctl_creator, _field) static struct snl_attr_parser ap_creators[] = { { .type = PF_ST_CREATORID, .off = _OUT(id), .cb = snl_attr_get_uint32 }, }; static struct snl_field_parser fp_creators[] = { }; #undef _IN #undef _OUT SNL_DECLARE_PARSER(creator_parser, struct genlmsghdr, fp_creators, ap_creators); static int pfctl_get_creators_nl(struct snl_state *ss, uint32_t *creators, size_t *len) { int family_id = snl_get_genl_family(ss, PFNL_FAMILY_NAME); size_t i = 0; struct nlmsghdr *hdr; struct snl_writer nw; if (family_id == 0) return (ENOTSUP); snl_init_writer(ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_GETCREATORS); hdr->nlmsg_flags |= NLM_F_DUMP; hdr = snl_finalize_msg(&nw); if (hdr == NULL) return (ENOMEM); uint32_t seq_id = hdr->nlmsg_seq; snl_send_message(ss, hdr); struct snl_errmsg_data e = {}; while ((hdr = snl_read_reply_multi(ss, seq_id, &e)) != NULL) { struct pfctl_creator c; bzero(&c, sizeof(c)); if (!snl_parse_nlmsg(ss, hdr, &creator_parser, &c)) continue; creators[i] = c.id; i++; if (i > *len) return (E2BIG); } *len = i; return (0); } int pfctl_get_creatorids(struct pfctl_handle *h, uint32_t *creators, size_t *len) { int error; error = pfctl_get_creators_nl(&h->ss, creators, len); return (error); } static inline bool snl_attr_get_pfaddr(struct snl_state *ss __unused, struct nlattr *nla, const void *arg __unused, void *target) { memcpy(target, NLA_DATA(nla), NLA_DATA_LEN(nla)); return (true); } static inline bool snl_attr_store_ifname(struct snl_state *ss __unused, struct nlattr *nla, const void *arg __unused, void *target) { size_t maxlen = NLA_DATA_LEN(nla); if (strnlen((char *)NLA_DATA(nla), maxlen) < maxlen) { strlcpy(target, (char *)NLA_DATA(nla), maxlen); return (true); } return (false); } #define _OUT(_field) offsetof(struct pfctl_state_peer, _field) static const struct snl_attr_parser nla_p_speer[] = { { .type = PF_STP_SEQLO, .off = _OUT(seqlo), .cb = snl_attr_get_uint32 }, { .type = PF_STP_SEQHI, .off = _OUT(seqhi), .cb = snl_attr_get_uint32 }, { .type = PF_STP_SEQDIFF, .off = _OUT(seqdiff), .cb = snl_attr_get_uint32 }, { .type = PF_STP_STATE, .off = _OUT(state), .cb = snl_attr_get_uint8 }, { .type = PF_STP_WSCALE, .off = _OUT(wscale), .cb = snl_attr_get_uint8 }, }; SNL_DECLARE_ATTR_PARSER(speer_parser, nla_p_speer); #undef _OUT #define _OUT(_field) offsetof(struct pf_state_key_export, _field) static const struct snl_attr_parser nla_p_skey[] = { { .type = PF_STK_ADDR0, .off = _OUT(addr[0]), .cb = snl_attr_get_pfaddr }, { .type = PF_STK_ADDR1, .off = _OUT(addr[1]), .cb = snl_attr_get_pfaddr }, { .type = PF_STK_PORT0, .off = _OUT(port[0]), .cb = snl_attr_get_uint16 }, { .type = PF_STK_PORT1, .off = _OUT(port[1]), .cb = snl_attr_get_uint16 }, }; SNL_DECLARE_ATTR_PARSER(skey_parser, nla_p_skey); #undef _OUT #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct pfctl_state, _field) static struct snl_attr_parser ap_state[] = { { .type = PF_ST_ID, .off = _OUT(id), .cb = snl_attr_get_uint64 }, { .type = PF_ST_CREATORID, .off = _OUT(creatorid), .cb = snl_attr_get_uint32 }, { .type = PF_ST_IFNAME, .off = _OUT(ifname), .cb = snl_attr_store_ifname }, { .type = PF_ST_ORIG_IFNAME, .off = _OUT(orig_ifname), .cb = snl_attr_store_ifname }, { .type = PF_ST_KEY_WIRE, .off = _OUT(key[0]), .arg = &skey_parser, .cb = snl_attr_get_nested }, { .type = PF_ST_KEY_STACK, .off = _OUT(key[1]), .arg = &skey_parser, .cb = snl_attr_get_nested }, { .type = PF_ST_PEER_SRC, .off = _OUT(src), .arg = &speer_parser, .cb = snl_attr_get_nested }, { .type = PF_ST_PEER_DST, .off = _OUT(dst), .arg = &speer_parser, .cb = snl_attr_get_nested }, { .type = PF_ST_RT_ADDR, .off = _OUT(rt_addr), .cb = snl_attr_get_pfaddr }, { .type = PF_ST_RULE, .off = _OUT(rule), .cb = snl_attr_get_uint32 }, { .type = PF_ST_ANCHOR, .off = _OUT(anchor), .cb = snl_attr_get_uint32 }, { .type = PF_ST_NAT_RULE, .off = _OUT(nat_rule), .cb = snl_attr_get_uint32 }, { .type = PF_ST_CREATION, .off = _OUT(creation), .cb = snl_attr_get_uint32 }, { .type = PF_ST_EXPIRE, .off = _OUT(expire), .cb = snl_attr_get_uint32 }, { .type = PF_ST_PACKETS0, .off = _OUT(packets[0]), .cb = snl_attr_get_uint64 }, { .type = PF_ST_PACKETS1, .off = _OUT(packets[1]), .cb = snl_attr_get_uint64 }, { .type = PF_ST_BYTES0, .off = _OUT(bytes[0]), .cb = snl_attr_get_uint64 }, { .type = PF_ST_BYTES1, .off = _OUT(bytes[1]), .cb = snl_attr_get_uint64 }, { .type = PF_ST_AF, .off = _OUT(key[0].af), .cb = snl_attr_get_uint8 }, { .type = PF_ST_PROTO, .off = _OUT(key[0].proto), .cb = snl_attr_get_uint8 }, { .type = PF_ST_DIRECTION, .off = _OUT(direction), .cb = snl_attr_get_uint8 }, { .type = PF_ST_LOG, .off = _OUT(log), .cb = snl_attr_get_uint8 }, { .type = PF_ST_STATE_FLAGS, .off = _OUT(state_flags), .cb = snl_attr_get_uint16 }, { .type = PF_ST_SYNC_FLAGS, .off = _OUT(sync_flags), .cb = snl_attr_get_uint8 }, { .type = PF_ST_RTABLEID, .off = _OUT(rtableid), .cb = snl_attr_get_int32 }, { .type = PF_ST_MIN_TTL, .off = _OUT(min_ttl), .cb = snl_attr_get_uint8 }, { .type = PF_ST_MAX_MSS, .off = _OUT(max_mss), .cb = snl_attr_get_uint16 }, { .type = PF_ST_DNPIPE, .off = _OUT(dnpipe), .cb = snl_attr_get_uint16 }, { .type = PF_ST_DNRPIPE, .off = _OUT(dnrpipe), .cb = snl_attr_get_uint16 }, { .type = PF_ST_RT, .off = _OUT(rt), .cb = snl_attr_get_uint8 }, { .type = PF_ST_RT_IFNAME, .off = _OUT(rt_ifname), .cb = snl_attr_store_ifname }, }; static struct snl_field_parser fp_state[] = { }; #undef _IN #undef _OUT SNL_DECLARE_PARSER(state_parser, struct genlmsghdr, fp_state, ap_state); static const struct snl_hdr_parser *all_parsers[] = { &state_parser, &skey_parser, &speer_parser, &creator_parser, &getrules_parser }; static int pfctl_get_states_nl(struct pfctl_state_filter *filter, struct snl_state *ss, pfctl_get_state_fn f, void *arg) { SNL_VERIFY_PARSERS(all_parsers); int family_id = snl_get_genl_family(ss, PFNL_FAMILY_NAME); int ret; struct nlmsghdr *hdr; struct snl_writer nw; if (family_id == 0) return (ENOTSUP); snl_init_writer(ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_GETSTATES); hdr->nlmsg_flags |= NLM_F_DUMP; snl_add_msg_attr_string(&nw, PF_ST_IFNAME, filter->ifname); snl_add_msg_attr_u16(&nw, PF_ST_PROTO, filter->proto); snl_add_msg_attr_u8(&nw, PF_ST_AF, filter->af); snl_add_msg_attr_ip6(&nw, PF_ST_FILTER_ADDR, &filter->addr.v6); snl_add_msg_attr_ip6(&nw, PF_ST_FILTER_MASK, &filter->mask.v6); hdr = snl_finalize_msg(&nw); if (hdr == NULL) return (ENOMEM); uint32_t seq_id = hdr->nlmsg_seq; snl_send_message(ss, hdr); struct snl_errmsg_data e = {}; while ((hdr = snl_read_reply_multi(ss, seq_id, &e)) != NULL) { struct pfctl_state s; bzero(&s, sizeof(s)); if (!snl_parse_nlmsg(ss, hdr, &state_parser, &s)) continue; s.key[1].af = s.key[0].af; s.key[1].proto = s.key[0].proto; ret = f(&s, arg); if (ret != 0) return (ret); } return (0); } int pfctl_get_states_iter(pfctl_get_state_fn f, void *arg) { struct pfctl_state_filter filter = {}; return (pfctl_get_filtered_states_iter(&filter, f, arg)); } int pfctl_get_filtered_states_iter(struct pfctl_state_filter *filter, pfctl_get_state_fn f, void *arg) { struct snl_state ss = {}; int error; snl_init(&ss, NETLINK_GENERIC); error = pfctl_get_states_nl(filter, &ss, f, arg); snl_free(&ss); return (error); } static int pfctl_append_states(struct pfctl_state *s, void *arg) { struct pfctl_state *new; struct pfctl_states *states = (struct pfctl_states *)arg; new = malloc(sizeof(*s)); if (new == NULL) return (ENOMEM); memcpy(new, s, sizeof(*s)); TAILQ_INSERT_TAIL(&states->states, new, entry); return (0); } int pfctl_get_states(int dev __unused, struct pfctl_states *states) { int ret; bzero(states, sizeof(*states)); TAILQ_INIT(&states->states); ret = pfctl_get_states_iter(pfctl_append_states, states); if (ret != 0) { pfctl_free_states(states); return (ret); } return (0); } void pfctl_free_states(struct pfctl_states *states) { struct pfctl_state *s, *tmp; TAILQ_FOREACH_SAFE(s, &states->states, entry, tmp) { free(s); } bzero(states, sizeof(*states)); } struct pfctl_nl_clear_states { uint32_t killed; }; #define _OUT(_field) offsetof(struct pfctl_nl_clear_states, _field) static struct snl_attr_parser ap_clear_states[] = { { .type = PF_CS_KILLED, .off = _OUT(killed), .cb = snl_attr_get_uint32 }, }; static struct snl_field_parser fp_clear_states[] = {}; #undef _OUT SNL_DECLARE_PARSER(clear_states_parser, struct genlmsghdr, fp_clear_states, ap_clear_states); static int _pfctl_clear_states_h(struct pfctl_handle *h, const struct pfctl_kill *kill, unsigned int *killed, int cmd) { struct snl_writer nw; struct snl_errmsg_data e = {}; struct pfctl_nl_clear_states attrs = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, cmd); hdr->nlmsg_flags |= NLM_F_DUMP; snl_add_msg_attr_u64(&nw, PF_CS_CMP_ID, kill->cmp.id); snl_add_msg_attr_u32(&nw, PF_CS_CMP_CREATORID, htonl(kill->cmp.creatorid)); snl_add_msg_attr_u8(&nw, PF_CS_CMP_DIR, kill->cmp.direction); snl_add_msg_attr_u8(&nw, PF_CS_AF, kill->af); snl_add_msg_attr_u8(&nw, PF_CS_PROTO, kill->proto); snl_add_msg_attr_rule_addr(&nw, PF_CS_SRC, &kill->src); snl_add_msg_attr_rule_addr(&nw, PF_CS_DST, &kill->dst); snl_add_msg_attr_rule_addr(&nw, PF_CS_RT_ADDR, &kill->rt_addr); snl_add_msg_attr_string(&nw, PF_CS_IFNAME, kill->ifname); snl_add_msg_attr_string(&nw, PF_CS_LABEL, kill->label); snl_add_msg_attr_bool(&nw, PF_CS_KILL_MATCH, kill->kill_match); snl_add_msg_attr_bool(&nw, PF_CS_NAT, kill->nat); if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { if (! snl_parse_nlmsg(&h->ss, hdr, &clear_states_parser, &attrs)) continue; } if (killed) *killed = attrs.killed; return (e.error); } int pfctl_clear_states_h(struct pfctl_handle *h, const struct pfctl_kill *kill, unsigned int *killed) { return(_pfctl_clear_states_h(h, kill, killed, PFNL_CMD_CLRSTATES)); } int pfctl_kill_states_h(struct pfctl_handle *h, const struct pfctl_kill *kill, unsigned int *killed) { return(_pfctl_clear_states_h(h, kill, killed, PFNL_CMD_KILLSTATES)); } static int _pfctl_clear_states(int dev __unused, const struct pfctl_kill *kill, unsigned int *killed, uint64_t cmd) { struct pfctl_handle *h; int ret; h = pfctl_open(PF_DEVICE); if (h == NULL) return (ENODEV); ret = _pfctl_clear_states_h(h, kill, killed, cmd); pfctl_close(h); return (ret); } int pfctl_clear_states(int dev __unused, const struct pfctl_kill *kill, unsigned int *killed) { return (_pfctl_clear_states(dev, kill, killed, PFNL_CMD_CLRSTATES)); } int pfctl_kill_states(int dev __unused, const struct pfctl_kill *kill, unsigned int *killed) { return (_pfctl_clear_states(dev, kill, killed, PFNL_CMD_KILLSTATES)); } int pfctl_clear_rules(int dev, const char *anchorname) { struct pfioc_trans trans; struct pfioc_trans_e transe[2]; int ret; bzero(&trans, sizeof(trans)); bzero(&transe, sizeof(transe)); transe[0].rs_num = PF_RULESET_SCRUB; if (strlcpy(transe[0].anchor, anchorname, sizeof(transe[0].anchor)) >= sizeof(transe[0].anchor)) return (E2BIG); transe[1].rs_num = PF_RULESET_FILTER; if (strlcpy(transe[1].anchor, anchorname, sizeof(transe[1].anchor)) >= sizeof(transe[1].anchor)) return (E2BIG); trans.size = 2; trans.esize = sizeof(transe[0]); trans.array = transe; ret = ioctl(dev, DIOCXBEGIN, &trans); if (ret != 0) return (ret); return ioctl(dev, DIOCXCOMMIT, &trans); } int pfctl_clear_nat(int dev, const char *anchorname) { struct pfioc_trans trans; struct pfioc_trans_e transe[3]; int ret; bzero(&trans, sizeof(trans)); bzero(&transe, sizeof(transe)); transe[0].rs_num = PF_RULESET_NAT; if (strlcpy(transe[0].anchor, anchorname, sizeof(transe[0].anchor)) >= sizeof(transe[0].anchor)) return (E2BIG); transe[1].rs_num = PF_RULESET_BINAT; if (strlcpy(transe[1].anchor, anchorname, sizeof(transe[1].anchor)) >= sizeof(transe[0].anchor)) return (E2BIG); transe[2].rs_num = PF_RULESET_RDR; if (strlcpy(transe[2].anchor, anchorname, sizeof(transe[2].anchor)) >= sizeof(transe[2].anchor)) return (E2BIG); trans.size = 3; trans.esize = sizeof(transe[0]); trans.array = transe; ret = ioctl(dev, DIOCXBEGIN, &trans); if (ret != 0) return (ret); return ioctl(dev, DIOCXCOMMIT, &trans); } int pfctl_clear_eth_rules(int dev, const char *anchorname) { struct pfioc_trans trans; struct pfioc_trans_e transe; int ret; bzero(&trans, sizeof(trans)); bzero(&transe, sizeof(transe)); transe.rs_num = PF_RULESET_ETH; if (strlcpy(transe.anchor, anchorname, sizeof(transe.anchor)) >= sizeof(transe.anchor)) return (E2BIG); trans.size = 1; trans.esize = sizeof(transe); trans.array = &transe; ret = ioctl(dev, DIOCXBEGIN, &trans); if (ret != 0) return (ret); return ioctl(dev, DIOCXCOMMIT, &trans); } static int _pfctl_get_limit(int dev, const int index, uint *limit) { struct pfioc_limit pl; bzero(&pl, sizeof(pl)); pl.index = index; if (ioctl(dev, DIOCGETLIMIT, &pl) == -1) return (errno); *limit = pl.limit; return (0); } int pfctl_set_syncookies(int dev, const struct pfctl_syncookies *s) { struct pfioc_nv nv; nvlist_t *nvl; int ret; uint state_limit; uint64_t lim, hi, lo; ret = _pfctl_get_limit(dev, PF_LIMIT_STATES, &state_limit); if (ret != 0) return (ret); lim = state_limit; hi = lim * s->highwater / 100; lo = lim * s->lowwater / 100; if (lo == hi) hi++; nvl = nvlist_create(0); nvlist_add_bool(nvl, "enabled", s->mode != PFCTL_SYNCOOKIES_NEVER); nvlist_add_bool(nvl, "adaptive", s->mode == PFCTL_SYNCOOKIES_ADAPTIVE); nvlist_add_number(nvl, "highwater", hi); nvlist_add_number(nvl, "lowwater", lo); nv.data = nvlist_pack(nvl, &nv.len); nv.size = nv.len; nvlist_destroy(nvl); nvl = NULL; ret = ioctl(dev, DIOCSETSYNCOOKIES, &nv); free(nv.data); return (ret); } int pfctl_get_syncookies(int dev, struct pfctl_syncookies *s) { nvlist_t *nvl; int ret; uint state_limit; bool enabled, adaptive; ret = _pfctl_get_limit(dev, PF_LIMIT_STATES, &state_limit); if (ret != 0) return (ret); bzero(s, sizeof(*s)); nvl = nvlist_create(0); if ((ret = pfctl_do_ioctl(dev, DIOCGETSYNCOOKIES, 256, &nvl)) != 0) { ret = errno; goto out; } enabled = nvlist_get_bool(nvl, "enabled"); adaptive = nvlist_get_bool(nvl, "adaptive"); if (enabled) { if (adaptive) s->mode = PFCTL_SYNCOOKIES_ADAPTIVE; else s->mode = PFCTL_SYNCOOKIES_ALWAYS; } else { s->mode = PFCTL_SYNCOOKIES_NEVER; } s->highwater = nvlist_get_number(nvl, "highwater") * 100 / state_limit; s->lowwater = nvlist_get_number(nvl, "lowwater") * 100 / state_limit; s->halfopen_states = nvlist_get_number(nvl, "halfopen_states"); out: nvlist_destroy(nvl); return (ret); } int pfctl_table_add_addrs(int dev, struct pfr_table *tbl, struct pfr_addr *addr, int size, int *nadd, int flags) { struct pfioc_table io; if (tbl == NULL || size < 0 || (size && addr == NULL)) { return (EINVAL); } bzero(&io, sizeof io); io.pfrio_flags = flags; io.pfrio_table = *tbl; io.pfrio_buffer = addr; io.pfrio_esize = sizeof(*addr); io.pfrio_size = size; if (ioctl(dev, DIOCRADDADDRS, &io)) return (errno); if (nadd != NULL) *nadd = io.pfrio_nadd; return (0); } int pfctl_table_del_addrs(int dev, struct pfr_table *tbl, struct pfr_addr *addr, int size, int *ndel, int flags) { struct pfioc_table io; if (tbl == NULL || size < 0 || (size && addr == NULL)) { return (EINVAL); } bzero(&io, sizeof io); io.pfrio_flags = flags; io.pfrio_table = *tbl; io.pfrio_buffer = addr; io.pfrio_esize = sizeof(*addr); io.pfrio_size = size; if (ioctl(dev, DIOCRDELADDRS, &io)) return (errno); if (ndel != NULL) *ndel = io.pfrio_ndel; return (0); } int pfctl_table_set_addrs(int dev, struct pfr_table *tbl, struct pfr_addr *addr, int size, int *size2, int *nadd, int *ndel, int *nchange, int flags) { struct pfioc_table io; if (tbl == NULL || size < 0 || (size && addr == NULL)) { return (EINVAL); } bzero(&io, sizeof io); io.pfrio_flags = flags; io.pfrio_table = *tbl; io.pfrio_buffer = addr; io.pfrio_esize = sizeof(*addr); io.pfrio_size = size; io.pfrio_size2 = (size2 != NULL) ? *size2 : 0; if (ioctl(dev, DIOCRSETADDRS, &io)) return (-1); if (nadd != NULL) *nadd = io.pfrio_nadd; if (ndel != NULL) *ndel = io.pfrio_ndel; if (nchange != NULL) *nchange = io.pfrio_nchange; if (size2 != NULL) *size2 = io.pfrio_size2; return (0); } int pfctl_table_get_addrs(int dev, struct pfr_table *tbl, struct pfr_addr *addr, int *size, int flags) { struct pfioc_table io; if (tbl == NULL || size == NULL || *size < 0 || (*size && addr == NULL)) { return (EINVAL); } bzero(&io, sizeof io); io.pfrio_flags = flags; io.pfrio_table = *tbl; io.pfrio_buffer = addr; io.pfrio_esize = sizeof(*addr); io.pfrio_size = *size; if (ioctl(dev, DIOCRGETADDRS, &io)) return (-1); *size = io.pfrio_size; return (0); } int pfctl_set_statusif(struct pfctl_handle *h, const char *ifname) { struct snl_writer nw; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_SET_STATUSIF); snl_add_msg_attr_string(&nw, PF_SS_IFNAME, ifname); if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { } return (e.error); } #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct pfctl_natlook, _field) static struct snl_attr_parser ap_natlook[] = { { .type = PF_NL_SRC_ADDR, .off = _OUT(saddr), .cb = snl_attr_get_in6_addr }, { .type = PF_NL_DST_ADDR, .off = _OUT(daddr), .cb = snl_attr_get_in6_addr }, { .type = PF_NL_SRC_PORT, .off = _OUT(sport), .cb = snl_attr_get_uint16 }, { .type = PF_NL_DST_PORT, .off = _OUT(dport), .cb = snl_attr_get_uint16 }, }; static struct snl_field_parser fp_natlook[] = {}; #undef _IN #undef _OUT SNL_DECLARE_PARSER(natlook_parser, struct genlmsghdr, fp_natlook, ap_natlook); int pfctl_natlook(struct pfctl_handle *h, const struct pfctl_natlook_key *k, struct pfctl_natlook *r) { struct snl_writer nw; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_NATLOOK); hdr->nlmsg_flags |= NLM_F_DUMP; snl_add_msg_attr_u8(&nw, PF_NL_AF, k->af); snl_add_msg_attr_u8(&nw, PF_NL_DIRECTION, k->direction); snl_add_msg_attr_u8(&nw, PF_NL_PROTO, k->proto); snl_add_msg_attr_ip6(&nw, PF_NL_SRC_ADDR, &k->saddr.v6); snl_add_msg_attr_ip6(&nw, PF_NL_DST_ADDR, &k->daddr.v6); snl_add_msg_attr_u16(&nw, PF_NL_SRC_PORT, k->sport); snl_add_msg_attr_u16(&nw, PF_NL_DST_PORT, k->dport); if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { if (! snl_parse_nlmsg(&h->ss, hdr, &natlook_parser, r)) continue; } return (e.error); } int pfctl_set_debug(struct pfctl_handle *h, uint32_t level) { struct snl_writer nw; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_SET_DEBUG); snl_add_msg_attr_u32(&nw, PF_SD_LEVEL, level); if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { } return (e.error); } int pfctl_set_timeout(struct pfctl_handle *h, uint32_t timeout, uint32_t seconds) { struct snl_writer nw; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_SET_TIMEOUT); snl_add_msg_attr_u32(&nw, PF_TO_TIMEOUT, timeout); snl_add_msg_attr_u32(&nw, PF_TO_SECONDS, seconds); if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { } return (e.error); } struct pfctl_nl_timeout { uint32_t seconds; }; #define _OUT(_field) offsetof(struct pfctl_nl_timeout, _field) static struct snl_attr_parser ap_get_timeout[] = { { .type = PF_TO_SECONDS, .off = _OUT(seconds), .cb = snl_attr_get_uint32 }, }; static struct snl_field_parser fp_get_timeout[] = {}; #undef _OUT SNL_DECLARE_PARSER(get_timeout_parser, struct genlmsghdr, fp_get_timeout, ap_get_timeout); int pfctl_get_timeout(struct pfctl_handle *h, uint32_t timeout, uint32_t *seconds) { struct snl_writer nw; struct pfctl_nl_timeout to = {}; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_GET_TIMEOUT); hdr->nlmsg_flags |= NLM_F_DUMP; snl_add_msg_attr_u32(&nw, PF_TO_TIMEOUT, timeout); if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { if (! snl_parse_nlmsg(&h->ss, hdr, &get_timeout_parser, &to)) continue; } if (seconds != NULL) *seconds = to.seconds; return (e.error); } int pfctl_set_limit(struct pfctl_handle *h, const int index, const uint limit) { struct snl_writer nw; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_SET_LIMIT); snl_add_msg_attr_u32(&nw, PF_LI_INDEX, index); snl_add_msg_attr_u32(&nw, PF_LI_LIMIT, limit); if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { } return (e.error); } struct pfctl_nl_limit { unsigned int limit; }; #define _OUT(_field) offsetof(struct pfctl_nl_limit, _field) static struct snl_attr_parser ap_get_limit[] = { { .type = PF_LI_LIMIT, .off = _OUT(limit), .cb = snl_attr_get_uint32 }, }; static struct snl_field_parser fp_get_limit[] = {}; #undef _OUT SNL_DECLARE_PARSER(get_limit_parser, struct genlmsghdr, fp_get_limit, ap_get_limit); int pfctl_get_limit(struct pfctl_handle *h, const int index, uint *limit) { struct snl_writer nw; struct pfctl_nl_limit li = {}; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_GET_LIMIT); hdr->nlmsg_flags |= NLM_F_DUMP; snl_add_msg_attr_u32(&nw, PF_LI_INDEX, index); if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { if (! snl_parse_nlmsg(&h->ss, hdr, &get_limit_parser, &li)) continue; } if (limit != NULL) *limit = li.limit; return (e.error); } struct pfctl_nl_begin_addrs { uint32_t ticket; }; #define _OUT(_field) offsetof(struct pfctl_nl_begin_addrs, _field) static struct snl_attr_parser ap_begin_addrs[] = { { .type = PF_BA_TICKET, .off = _OUT(ticket), .cb = snl_attr_get_uint32 }, }; static struct snl_field_parser fp_begin_addrs[] = {}; #undef _OUT SNL_DECLARE_PARSER(begin_addrs_parser, struct genlmsghdr, fp_begin_addrs, ap_begin_addrs); int pfctl_begin_addrs(struct pfctl_handle *h, uint32_t *ticket) { struct snl_writer nw; struct pfctl_nl_begin_addrs attrs = {}; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_BEGIN_ADDRS); hdr->nlmsg_flags |= NLM_F_DUMP; if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { if (! snl_parse_nlmsg(&h->ss, hdr, &begin_addrs_parser, &attrs)) continue; } if (ticket != NULL) *ticket = attrs.ticket; return (e.error); } int pfctl_add_addr(struct pfctl_handle *h, const struct pfioc_pooladdr *pa) { struct snl_writer nw; struct snl_errmsg_data e = {}; struct nlmsghdr *hdr; uint32_t seq_id; int family_id; family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); if (family_id == 0) return (ENOTSUP); snl_init_writer(&h->ss, &nw); hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_ADD_ADDR); snl_add_msg_attr_u32(&nw, PF_AA_ACTION, pa->action); snl_add_msg_attr_u32(&nw, PF_AA_TICKET, pa->ticket); snl_add_msg_attr_u32(&nw, PF_AA_NR, pa->nr); snl_add_msg_attr_u32(&nw, PF_AA_R_NUM, pa->r_num); snl_add_msg_attr_u8(&nw, PF_AA_R_ACTION, pa->r_action); snl_add_msg_attr_u8(&nw, PF_AA_R_LAST, pa->r_last); snl_add_msg_attr_u8(&nw, PF_AA_AF, pa->af); snl_add_msg_attr_string(&nw, PF_AA_ANCHOR, pa->anchor); snl_add_msg_attr_pool_addr(&nw, PF_AA_ADDR, &pa->addr); if ((hdr = snl_finalize_msg(&nw)) == NULL) return (ENXIO); seq_id = hdr->nlmsg_seq; if (! snl_send_message(&h->ss, hdr)) return (ENXIO); while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { } return (e.error); } + +static const struct snl_attr_parser ap_get_addrs[] = { + { .type = PF_AA_NR, .off = 0, .cb = snl_attr_get_uint32 }, +}; +static struct snl_field_parser fp_get_addrs[] = {}; +SNL_DECLARE_PARSER(get_addrs_parser, struct genlmsghdr, fp_get_addrs, ap_get_addrs); + +int +pfctl_get_addrs(struct pfctl_handle *h, uint32_t ticket, uint32_t r_num, + uint8_t r_action, const char *anchor, uint32_t *nr) +{ + struct snl_writer nw; + struct snl_errmsg_data e = {}; + struct nlmsghdr *hdr; + uint32_t seq_id; + int family_id; + + family_id = snl_get_genl_family(&h->ss, PFNL_FAMILY_NAME); + if (family_id == 0) + return (ENOTSUP); + + snl_init_writer(&h->ss, &nw); + hdr = snl_create_genl_msg_request(&nw, family_id, PFNL_CMD_GET_ADDRS); + + snl_add_msg_attr_u32(&nw, PF_AA_TICKET, ticket); + snl_add_msg_attr_u32(&nw, PF_AA_R_NUM, r_num); + snl_add_msg_attr_u8(&nw, PF_AA_R_ACTION, r_action); + snl_add_msg_attr_string(&nw, PF_AA_ANCHOR, anchor); + + if ((hdr = snl_finalize_msg(&nw)) == NULL) + return (ENXIO); + + seq_id = hdr->nlmsg_seq; + + if (! snl_send_message(&h->ss, hdr)) + return (ENXIO); + + while ((hdr = snl_read_reply_multi(&h->ss, seq_id, &e)) != NULL) { + if (! snl_parse_nlmsg(&h->ss, hdr, &get_addrs_parser, nr)) + continue; + } + + return (e.error); +} diff --git a/lib/libpfctl/libpfctl.h b/lib/libpfctl/libpfctl.h index dd09b061efea..22db0b2d90b5 100644 --- a/lib/libpfctl/libpfctl.h +++ b/lib/libpfctl/libpfctl.h @@ -1,503 +1,505 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2021 Rubicon Communications, LLC (Netgate) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef _PFCTL_IOCTL_H_ #define _PFCTL_IOCTL_H_ #include struct pfctl_anchor; struct pfctl_eth_anchor; struct pfctl_status_counter { uint64_t id; uint64_t counter; char *name; TAILQ_ENTRY(pfctl_status_counter) entry; }; TAILQ_HEAD(pfctl_status_counters, pfctl_status_counter); struct pfctl_status { bool running; uint32_t since; uint32_t debug; uint32_t hostid; uint64_t states; uint64_t src_nodes; char ifname[IFNAMSIZ]; uint8_t pf_chksum[PF_MD5_DIGEST_LENGTH]; bool syncookies_active; uint32_t reass; struct pfctl_status_counters counters; struct pfctl_status_counters lcounters; struct pfctl_status_counters fcounters; struct pfctl_status_counters scounters; uint64_t pcounters[2][2][2]; uint64_t bcounters[2][2]; }; struct pfctl_eth_rulesets_info { uint32_t nr; }; struct pfctl_eth_rules_info { uint32_t nr; uint32_t ticket; }; struct pfctl_eth_addr { uint8_t addr[ETHER_ADDR_LEN]; uint8_t mask[ETHER_ADDR_LEN]; bool neg; bool isset; }; struct pfctl_eth_rule { uint32_t nr; char label[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; uint32_t ridentifier; bool quick; /* Filter */ char ifname[IFNAMSIZ]; uint8_t ifnot; uint8_t direction; uint16_t proto; struct pfctl_eth_addr src, dst; struct pf_rule_addr ipsrc, ipdst; char match_tagname[PF_TAG_NAME_SIZE]; uint16_t match_tag; bool match_tag_not; /* Stats */ uint64_t evaluations; uint64_t packets[2]; uint64_t bytes[2]; time_t last_active_timestamp; /* Action */ char qname[PF_QNAME_SIZE]; char tagname[PF_TAG_NAME_SIZE]; uint16_t dnpipe; uint32_t dnflags; char bridge_to[IFNAMSIZ]; uint8_t action; struct pfctl_eth_anchor *anchor; uint8_t anchor_relative; uint8_t anchor_wildcard; TAILQ_ENTRY(pfctl_eth_rule) entries; }; TAILQ_HEAD(pfctl_eth_rules, pfctl_eth_rule); struct pfctl_eth_ruleset_info { uint32_t nr; char name[PF_ANCHOR_NAME_SIZE]; char path[MAXPATHLEN]; }; struct pfctl_eth_ruleset { struct pfctl_eth_rules rules; struct pfctl_eth_anchor *anchor; }; struct pfctl_eth_anchor { struct pfctl_eth_anchor *parent; char name[PF_ANCHOR_NAME_SIZE]; char path[MAXPATHLEN]; struct pfctl_eth_ruleset ruleset; int refcnt; /* anchor rules */ int match; /* XXX: used for pfctl black magic */ }; struct pfctl_pool { struct pf_palist list; struct pf_pooladdr *cur; struct pf_poolhashkey key; struct pf_addr counter; struct pf_mape_portset mape; int tblidx; uint16_t proxy_port[2]; uint8_t opts; }; struct pfctl_rules_info { uint32_t nr; uint32_t ticket; }; struct pfctl_rule { struct pf_rule_addr src; struct pf_rule_addr dst; union pf_rule_ptr skip[PF_SKIP_COUNT]; char label[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; uint32_t ridentifier; char ifname[IFNAMSIZ]; char qname[PF_QNAME_SIZE]; char pqname[PF_QNAME_SIZE]; char tagname[PF_TAG_NAME_SIZE]; char match_tagname[PF_TAG_NAME_SIZE]; char overload_tblname[PF_TABLE_NAME_SIZE]; TAILQ_ENTRY(pfctl_rule) entries; struct pfctl_pool rpool; uint64_t evaluations; uint64_t packets[2]; uint64_t bytes[2]; time_t last_active_timestamp; struct pfi_kif *kif; struct pfctl_anchor *anchor; struct pfr_ktable *overload_tbl; pf_osfp_t os_fingerprint; int rtableid; uint32_t timeout[PFTM_MAX]; uint32_t max_states; uint32_t max_src_nodes; uint32_t max_src_states; uint32_t max_src_conn; struct { uint32_t limit; uint32_t seconds; } max_src_conn_rate; uint32_t qid; uint32_t pqid; uint16_t dnpipe; uint16_t dnrpipe; uint32_t free_flags; uint32_t nr; uint32_t prob; uid_t cuid; pid_t cpid; uint64_t states_cur; uint64_t states_tot; uint64_t src_nodes; uint16_t return_icmp; uint16_t return_icmp6; uint16_t max_mss; uint16_t tag; uint16_t match_tag; uint16_t scrub_flags; struct pf_rule_uid uid; struct pf_rule_gid gid; uint32_t rule_flag; uint8_t action; uint8_t direction; uint8_t log; uint8_t logif; uint8_t quick; uint8_t ifnot; uint8_t match_tag_not; uint8_t natpass; uint8_t keep_state; sa_family_t af; uint8_t proto; uint8_t type; uint8_t code; uint8_t flags; uint8_t flagset; uint8_t min_ttl; uint8_t allow_opts; uint8_t rt; uint8_t return_ttl; uint8_t tos; uint8_t set_tos; uint8_t anchor_relative; uint8_t anchor_wildcard; uint8_t flush; uint8_t prio; uint8_t set_prio[2]; struct { struct pf_addr addr; uint16_t port; } divert; }; TAILQ_HEAD(pfctl_rulequeue, pfctl_rule); struct pfctl_ruleset { struct { struct pfctl_rulequeue queues[2]; struct { struct pfctl_rulequeue *ptr; struct pfctl_rule **ptr_array; uint32_t rcount; uint32_t ticket; int open; } active, inactive; } rules[PF_RULESET_MAX]; struct pfctl_anchor *anchor; uint32_t tticket; int tables; int topen; }; RB_HEAD(pfctl_anchor_global, pfctl_anchor); RB_HEAD(pfctl_anchor_node, pfctl_anchor); struct pfctl_anchor { RB_ENTRY(pfctl_anchor) entry_global; RB_ENTRY(pfctl_anchor) entry_node; struct pfctl_anchor *parent; struct pfctl_anchor_node children; char name[PF_ANCHOR_NAME_SIZE]; char path[MAXPATHLEN]; struct pfctl_ruleset ruleset; int refcnt; /* anchor rules */ int match; /* XXX: used for pfctl black magic */ }; RB_PROTOTYPE(pfctl_anchor_global, pfctl_anchor, entry_global, pf_anchor_compare); RB_PROTOTYPE(pfctl_anchor_node, pfctl_anchor, entry_node, pf_anchor_compare); struct pfctl_state_cmp { uint64_t id; uint32_t creatorid; uint8_t direction; }; struct pfctl_kill { struct pfctl_state_cmp cmp; sa_family_t af; int proto; struct pf_rule_addr src; struct pf_rule_addr dst; struct pf_rule_addr rt_addr; char ifname[IFNAMSIZ]; char label[PF_RULE_LABEL_SIZE]; bool kill_match; bool nat; }; struct pfctl_state_peer { uint32_t seqlo; uint32_t seqhi; uint32_t seqdiff; uint8_t state; uint8_t wscale; }; struct pfctl_state_key { struct pf_addr addr[2]; uint16_t port[2]; sa_family_t af; uint8_t proto; }; struct pfctl_state { TAILQ_ENTRY(pfctl_state) entry; uint64_t id; uint32_t creatorid; uint8_t direction; struct pfctl_state_peer src; struct pfctl_state_peer dst; uint32_t rule; uint32_t anchor; uint32_t nat_rule; struct pf_addr rt_addr; struct pfctl_state_key key[2]; /* addresses stack and wire */ char ifname[IFNAMSIZ]; char orig_ifname[IFNAMSIZ]; uint64_t packets[2]; uint64_t bytes[2]; uint32_t creation; uint32_t expire; uint32_t pfsync_time; uint16_t state_flags; uint32_t sync_flags; uint16_t qid; uint16_t pqid; uint16_t dnpipe; uint16_t dnrpipe; uint8_t log; int32_t rtableid; uint8_t min_ttl; uint8_t set_tos; uint16_t max_mss; uint8_t set_prio[2]; uint8_t rt; char rt_ifname[IFNAMSIZ]; }; TAILQ_HEAD(pfctl_statelist, pfctl_state); struct pfctl_states { struct pfctl_statelist states; }; enum pfctl_syncookies_mode { PFCTL_SYNCOOKIES_NEVER, PFCTL_SYNCOOKIES_ALWAYS, PFCTL_SYNCOOKIES_ADAPTIVE }; extern const char* PFCTL_SYNCOOKIES_MODE_NAMES[]; struct pfctl_syncookies { enum pfctl_syncookies_mode mode; uint8_t highwater; /* Percent */ uint8_t lowwater; /* Percent */ uint32_t halfopen_states; }; #define PF_DEVICE "/dev/pf" struct pfctl_handle; struct pfctl_handle *pfctl_open(const char *pf_device); void pfctl_close(struct pfctl_handle *); int pfctl_fd(struct pfctl_handle *); int pfctl_startstop(struct pfctl_handle *h, int start); struct pfctl_status* pfctl_get_status_h(struct pfctl_handle *h); struct pfctl_status* pfctl_get_status(int dev); int pfctl_clear_status(struct pfctl_handle *h); uint64_t pfctl_status_counter(struct pfctl_status *status, int id); uint64_t pfctl_status_lcounter(struct pfctl_status *status, int id); uint64_t pfctl_status_fcounter(struct pfctl_status *status, int id); uint64_t pfctl_status_scounter(struct pfctl_status *status, int id); void pfctl_free_status(struct pfctl_status *status); int pfctl_get_eth_rulesets_info(int dev, struct pfctl_eth_rulesets_info *ri, const char *path); int pfctl_get_eth_ruleset(int dev, const char *path, int nr, struct pfctl_eth_ruleset_info *ri); int pfctl_get_eth_rules_info(int dev, struct pfctl_eth_rules_info *rules, const char *path); int pfctl_get_eth_rule(int dev, uint32_t nr, uint32_t ticket, const char *path, struct pfctl_eth_rule *rule, bool clear, char *anchor_call); int pfctl_add_eth_rule(int dev, const struct pfctl_eth_rule *r, const char *anchor, const char *anchor_call, uint32_t ticket); int pfctl_get_rules_info_h(struct pfctl_handle *h, struct pfctl_rules_info *rules, uint32_t ruleset, const char *path); int pfctl_get_rules_info(int dev, struct pfctl_rules_info *rules, uint32_t ruleset, const char *path); int pfctl_get_rule(int dev, uint32_t nr, uint32_t ticket, const char *anchor, uint32_t ruleset, struct pfctl_rule *rule, char *anchor_call); int pfctl_get_rule_h(struct pfctl_handle *h, uint32_t nr, uint32_t ticket, const char *anchor, uint32_t ruleset, struct pfctl_rule *rule, char *anchor_call); int pfctl_get_clear_rule(int dev, uint32_t nr, uint32_t ticket, const char *anchor, uint32_t ruleset, struct pfctl_rule *rule, char *anchor_call, bool clear); int pfctl_get_clear_rule_h(struct pfctl_handle *h, uint32_t nr, uint32_t ticket, const char *anchor, uint32_t ruleset, struct pfctl_rule *rule, char *anchor_call, bool clear); int pfctl_add_rule(int dev, const struct pfctl_rule *r, const char *anchor, const char *anchor_call, uint32_t ticket, uint32_t pool_ticket); int pfctl_add_rule_h(struct pfctl_handle *h, const struct pfctl_rule *r, const char *anchor, const char *anchor_call, uint32_t ticket, uint32_t pool_ticket); int pfctl_set_keepcounters(int dev, bool keep); int pfctl_get_creatorids(struct pfctl_handle *h, uint32_t *creators, size_t *len); struct pfctl_state_filter { char ifname[IFNAMSIZ]; uint16_t proto; sa_family_t af; struct pf_addr addr; struct pf_addr mask; }; typedef int (*pfctl_get_state_fn)(struct pfctl_state *, void *); int pfctl_get_states_iter(pfctl_get_state_fn f, void *arg); int pfctl_get_filtered_states_iter(struct pfctl_state_filter *filter, pfctl_get_state_fn f, void *arg); int pfctl_get_states(int dev, struct pfctl_states *states); void pfctl_free_states(struct pfctl_states *states); int pfctl_clear_states(int dev, const struct pfctl_kill *kill, unsigned int *killed); int pfctl_kill_states(int dev, const struct pfctl_kill *kill, unsigned int *killed); int pfctl_clear_states_h(struct pfctl_handle *h, const struct pfctl_kill *kill, unsigned int *killed); int pfctl_kill_states_h(struct pfctl_handle *h, const struct pfctl_kill *kill, unsigned int *killed); int pfctl_clear_rules(int dev, const char *anchorname); int pfctl_clear_nat(int dev, const char *anchorname); int pfctl_clear_eth_rules(int dev, const char *anchorname); int pfctl_set_syncookies(int dev, const struct pfctl_syncookies *s); int pfctl_get_syncookies(int dev, struct pfctl_syncookies *s); int pfctl_table_add_addrs(int dev, struct pfr_table *tbl, struct pfr_addr *addr, int size, int *nadd, int flags); int pfctl_table_del_addrs(int dev, struct pfr_table *tbl, struct pfr_addr *addr, int size, int *ndel, int flags); int pfctl_table_set_addrs(int dev, struct pfr_table *tbl, struct pfr_addr *addr, int size, int *size2, int *nadd, int *ndel, int *nchange, int flags); int pfctl_table_get_addrs(int dev, struct pfr_table *tbl, struct pfr_addr *addr, int *size, int flags); int pfctl_set_statusif(struct pfctl_handle *h, const char *ifname); struct pfctl_natlook_key { sa_family_t af; uint8_t direction; uint8_t proto; struct pf_addr saddr; struct pf_addr daddr; uint16_t sport; uint16_t dport; }; struct pfctl_natlook { struct pf_addr saddr; struct pf_addr daddr; uint16_t sport; uint16_t dport; }; int pfctl_natlook(struct pfctl_handle *h, const struct pfctl_natlook_key *k, struct pfctl_natlook *r); int pfctl_set_debug(struct pfctl_handle *h, uint32_t level); int pfctl_set_timeout(struct pfctl_handle *h, uint32_t timeout, uint32_t seconds); int pfctl_get_timeout(struct pfctl_handle *h, uint32_t timeout, uint32_t *seconds); int pfctl_set_limit(struct pfctl_handle *h, const int index, const uint limit); int pfctl_get_limit(struct pfctl_handle *h, const int index, uint *limit); int pfctl_begin_addrs(struct pfctl_handle *h, uint32_t *ticket); int pfctl_add_addr(struct pfctl_handle *h, const struct pfioc_pooladdr *pa); +int pfctl_get_addrs(struct pfctl_handle *h, uint32_t ticket, uint32_t r_num, + uint8_t r_action, const char *anchor, uint32_t *nr); #endif diff --git a/sbin/pfctl/pfctl.c b/sbin/pfctl/pfctl.c index a49e82809f9e..f9522484cdc7 100644 --- a/sbin/pfctl/pfctl.c +++ b/sbin/pfctl/pfctl.c @@ -1,3328 +1,3328 @@ /* $OpenBSD: pfctl.c,v 1.278 2008/08/31 20:18:17 jmc Exp $ */ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * Copyright (c) 2002,2003 Henning Brauer * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #include #define PFIOC_USE_LATEST #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pfctl_parser.h" #include "pfctl.h" void usage(void); int pfctl_enable(int, int); int pfctl_disable(int, int); int pfctl_clear_stats(struct pfctl_handle *, int); int pfctl_get_skip_ifaces(void); int pfctl_check_skip_ifaces(char *); int pfctl_adjust_skip_ifaces(struct pfctl *); int pfctl_clear_interface_flags(int, int); int pfctl_flush_eth_rules(int, int, char *); int pfctl_flush_rules(int, int, char *); int pfctl_flush_nat(int, int, char *); int pfctl_clear_altq(int, int); int pfctl_clear_src_nodes(int, int); int pfctl_clear_iface_states(int, const char *, int); void pfctl_addrprefix(char *, struct pf_addr *); int pfctl_kill_src_nodes(int, const char *, int); int pfctl_net_kill_states(int, const char *, int); int pfctl_gateway_kill_states(int, const char *, int); int pfctl_label_kill_states(int, const char *, int); int pfctl_id_kill_states(int, const char *, int); void pfctl_init_options(struct pfctl *); int pfctl_load_options(struct pfctl *); int pfctl_load_limit(struct pfctl *, unsigned int, unsigned int); int pfctl_load_timeout(struct pfctl *, unsigned int, unsigned int); int pfctl_load_debug(struct pfctl *, unsigned int); int pfctl_load_logif(struct pfctl *, char *); int pfctl_load_hostid(struct pfctl *, u_int32_t); int pfctl_load_reassembly(struct pfctl *, u_int32_t); int pfctl_load_syncookies(struct pfctl *, u_int8_t); int pfctl_get_pool(int, struct pfctl_pool *, u_int32_t, u_int32_t, int, char *); void pfctl_print_eth_rule_counters(struct pfctl_eth_rule *, int); void pfctl_print_rule_counters(struct pfctl_rule *, int); int pfctl_show_eth_rules(int, char *, int, enum pfctl_show, char *, int, int); int pfctl_show_rules(int, char *, int, enum pfctl_show, char *, int, int); int pfctl_show_nat(int, char *, int, char *, int, int); int pfctl_show_src_nodes(int, int); int pfctl_show_states(int, const char *, int); int pfctl_show_status(int, int); int pfctl_show_running(int); int pfctl_show_timeouts(int, int); int pfctl_show_limits(int, int); void pfctl_debug(int, u_int32_t, int); int pfctl_test_altqsupport(int, int); int pfctl_show_anchors(int, int, char *); int pfctl_show_eth_anchors(int, int, char *); int pfctl_ruleset_trans(struct pfctl *, char *, struct pfctl_anchor *, bool); int pfctl_eth_ruleset_trans(struct pfctl *, char *, struct pfctl_eth_anchor *); int pfctl_load_eth_ruleset(struct pfctl *, char *, struct pfctl_eth_ruleset *, int); int pfctl_load_eth_rule(struct pfctl *, char *, struct pfctl_eth_rule *, int); int pfctl_load_ruleset(struct pfctl *, char *, struct pfctl_ruleset *, int, int); int pfctl_load_rule(struct pfctl *, char *, struct pfctl_rule *, int); const char *pfctl_lookup_option(char *, const char * const *); static struct pfctl_anchor_global pf_anchors; struct pfctl_anchor pf_main_anchor; struct pfctl_eth_anchor pf_eth_main_anchor; static struct pfr_buffer skip_b; static const char *clearopt; static char *rulesopt; static const char *showopt; static const char *debugopt; static char *anchoropt; static const char *optiopt = NULL; static const char *pf_device = PF_DEVICE; static char *ifaceopt; static char *tableopt; static const char *tblcmdopt; static int src_node_killers; static char *src_node_kill[2]; static int state_killers; static char *state_kill[2]; int loadopt; int altqsupport; int dev = -1; struct pfctl_handle *pfh = NULL; static int first_title = 1; static int labels = 0; #define INDENT(d, o) do { \ if (o) { \ int i; \ for (i=0; i < d; i++) \ printf(" "); \ } \ } while (0); \ static const struct { const char *name; int index; } pf_limits[] = { { "states", PF_LIMIT_STATES }, { "src-nodes", PF_LIMIT_SRC_NODES }, { "frags", PF_LIMIT_FRAGS }, { "table-entries", PF_LIMIT_TABLE_ENTRIES }, { NULL, 0 } }; struct pf_hint { const char *name; int timeout; }; static const struct pf_hint pf_hint_normal[] = { { "tcp.first", 2 * 60 }, { "tcp.opening", 30 }, { "tcp.established", 24 * 60 * 60 }, { "tcp.closing", 15 * 60 }, { "tcp.finwait", 45 }, { "tcp.closed", 90 }, { "tcp.tsdiff", 30 }, { NULL, 0 } }; static const struct pf_hint pf_hint_satellite[] = { { "tcp.first", 3 * 60 }, { "tcp.opening", 30 + 5 }, { "tcp.established", 24 * 60 * 60 }, { "tcp.closing", 15 * 60 + 5 }, { "tcp.finwait", 45 + 5 }, { "tcp.closed", 90 + 5 }, { "tcp.tsdiff", 60 }, { NULL, 0 } }; static const struct pf_hint pf_hint_conservative[] = { { "tcp.first", 60 * 60 }, { "tcp.opening", 15 * 60 }, { "tcp.established", 5 * 24 * 60 * 60 }, { "tcp.closing", 60 * 60 }, { "tcp.finwait", 10 * 60 }, { "tcp.closed", 3 * 60 }, { "tcp.tsdiff", 60 }, { NULL, 0 } }; static const struct pf_hint pf_hint_aggressive[] = { { "tcp.first", 30 }, { "tcp.opening", 5 }, { "tcp.established", 5 * 60 * 60 }, { "tcp.closing", 60 }, { "tcp.finwait", 30 }, { "tcp.closed", 30 }, { "tcp.tsdiff", 10 }, { NULL, 0 } }; static const struct { const char *name; const struct pf_hint *hint; } pf_hints[] = { { "normal", pf_hint_normal }, { "satellite", pf_hint_satellite }, { "high-latency", pf_hint_satellite }, { "conservative", pf_hint_conservative }, { "aggressive", pf_hint_aggressive }, { NULL, NULL } }; static const char * const clearopt_list[] = { "nat", "queue", "rules", "Sources", "states", "info", "Tables", "osfp", "all", "ethernet", NULL }; static const char * const showopt_list[] = { "ether", "nat", "queue", "rules", "Anchors", "Sources", "states", "info", "Interfaces", "labels", "timeouts", "memory", "Tables", "osfp", "Running", "all", "creatorids", NULL }; static const char * const tblcmdopt_list[] = { "kill", "flush", "add", "delete", "load", "replace", "show", "test", "zero", "expire", NULL }; static const char * const debugopt_list[] = { "none", "urgent", "misc", "loud", NULL }; static const char * const optiopt_list[] = { "none", "basic", "profile", NULL }; void usage(void) { extern char *__progname; fprintf(stderr, "usage: %s [-AdeghMmNnOPqRrvz] [-a anchor] [-D macro=value] [-F modifier]\n" "\t[-f file] [-i interface] [-K host | network]\n" "\t[-k host | network | gateway | label | id] [-o level] [-p device]\n" "\t[-s modifier] [-t table -T command [address ...]] [-x level]\n", __progname); exit(1); } /* * Cache protocol number to name translations. * * Translation is performed a lot e.g., when dumping states and * getprotobynumber is incredibly expensive. * * Note from the getprotobynumber(3) manpage: * * These functions use a thread-specific data space; if the data is needed * for future use, it should be copied before any subsequent calls overwrite * it. Only the Internet protocols are currently understood. * * * Consequently we only cache the name and strdup it for safety. * * At the time of writing this comment the last entry in /etc/protocols is: * divert 258 DIVERT # Divert pseudo-protocol [non IANA] */ const char * pfctl_proto2name(int proto) { static const char *pfctl_proto_cache[259]; struct protoent *p; if (proto >= nitems(pfctl_proto_cache)) { p = getprotobynumber(proto); if (p == NULL) { return (NULL); } return (p->p_name); } if (pfctl_proto_cache[proto] == NULL) { p = getprotobynumber(proto); if (p == NULL) { return (NULL); } pfctl_proto_cache[proto] = strdup(p->p_name); } return (pfctl_proto_cache[proto]); } int pfctl_enable(int dev, int opts) { int ret; if ((ret = pfctl_startstop(pfh, 1)) != 0) { if (ret == EEXIST) errx(1, "pf already enabled"); else if (ret == ESRCH) errx(1, "pfil registeration failed"); else err(1, "DIOCSTART"); } if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "pf enabled\n"); if (altqsupport && ioctl(dev, DIOCSTARTALTQ)) if (errno != EEXIST) err(1, "DIOCSTARTALTQ"); return (0); } int pfctl_disable(int dev, int opts) { int ret; if ((ret = pfctl_startstop(pfh, 0)) != 0) { if (ret == ENOENT) errx(1, "pf not enabled"); else err(1, "DIOCSTOP"); } if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "pf disabled\n"); if (altqsupport && ioctl(dev, DIOCSTOPALTQ)) if (errno != ENOENT) err(1, "DIOCSTOPALTQ"); return (0); } int pfctl_clear_stats(struct pfctl_handle *h, int opts) { if (pfctl_clear_status(h)) err(1, "DIOCCLRSTATUS"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "pf: statistics cleared\n"); return (0); } int pfctl_get_skip_ifaces(void) { bzero(&skip_b, sizeof(skip_b)); skip_b.pfrb_type = PFRB_IFACES; for (;;) { pfr_buf_grow(&skip_b, skip_b.pfrb_size); skip_b.pfrb_size = skip_b.pfrb_msize; if (pfi_get_ifaces(NULL, skip_b.pfrb_caddr, &skip_b.pfrb_size)) err(1, "pfi_get_ifaces"); if (skip_b.pfrb_size <= skip_b.pfrb_msize) break; } return (0); } int pfctl_check_skip_ifaces(char *ifname) { struct pfi_kif *p; struct node_host *h = NULL, *n = NULL; PFRB_FOREACH(p, &skip_b) { if (!strcmp(ifname, p->pfik_name) && (p->pfik_flags & PFI_IFLAG_SKIP)) p->pfik_flags &= ~PFI_IFLAG_SKIP; if (!strcmp(ifname, p->pfik_name) && p->pfik_group != NULL) { if ((h = ifa_grouplookup(p->pfik_name, 0)) == NULL) continue; for (n = h; n != NULL; n = n->next) { if (p->pfik_ifp == NULL) continue; if (strncmp(p->pfik_name, ifname, IFNAMSIZ)) continue; p->pfik_flags &= ~PFI_IFLAG_SKIP; } } } return (0); } int pfctl_adjust_skip_ifaces(struct pfctl *pf) { struct pfi_kif *p, *pp; struct node_host *h = NULL, *n = NULL; PFRB_FOREACH(p, &skip_b) { if (p->pfik_group == NULL || !(p->pfik_flags & PFI_IFLAG_SKIP)) continue; pfctl_set_interface_flags(pf, p->pfik_name, PFI_IFLAG_SKIP, 0); if ((h = ifa_grouplookup(p->pfik_name, 0)) == NULL) continue; for (n = h; n != NULL; n = n->next) PFRB_FOREACH(pp, &skip_b) { if (pp->pfik_ifp == NULL) continue; if (strncmp(pp->pfik_name, n->ifname, IFNAMSIZ)) continue; if (!(pp->pfik_flags & PFI_IFLAG_SKIP)) pfctl_set_interface_flags(pf, pp->pfik_name, PFI_IFLAG_SKIP, 1); if (pp->pfik_flags & PFI_IFLAG_SKIP) pp->pfik_flags &= ~PFI_IFLAG_SKIP; } } PFRB_FOREACH(p, &skip_b) { if (p->pfik_ifp == NULL || ! (p->pfik_flags & PFI_IFLAG_SKIP)) continue; pfctl_set_interface_flags(pf, p->pfik_name, PFI_IFLAG_SKIP, 0); } return (0); } int pfctl_clear_interface_flags(int dev, int opts) { struct pfioc_iface pi; if ((opts & PF_OPT_NOACTION) == 0) { bzero(&pi, sizeof(pi)); pi.pfiio_flags = PFI_IFLAG_SKIP; if (ioctl(dev, DIOCCLRIFFLAG, &pi)) err(1, "DIOCCLRIFFLAG"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "pf: interface flags reset\n"); } return (0); } int pfctl_flush_eth_rules(int dev, int opts, char *anchorname) { int ret; ret = pfctl_clear_eth_rules(dev, anchorname); if (ret != 0) err(1, "pfctl_clear_eth_rules"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "Ethernet rules cleared\n"); return (ret); } int pfctl_flush_rules(int dev, int opts, char *anchorname) { int ret; ret = pfctl_clear_rules(dev, anchorname); if (ret != 0) err(1, "pfctl_clear_rules"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "rules cleared\n"); return (0); } int pfctl_flush_nat(int dev, int opts, char *anchorname) { int ret; ret = pfctl_clear_nat(dev, anchorname); if (ret != 0) err(1, "pfctl_clear_nat"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "nat cleared\n"); return (0); } int pfctl_clear_altq(int dev, int opts) { struct pfr_buffer t; if (!altqsupport) return (-1); memset(&t, 0, sizeof(t)); t.pfrb_type = PFRB_TRANS; if (pfctl_add_trans(&t, PF_RULESET_ALTQ, "") || pfctl_trans(dev, &t, DIOCXBEGIN, 0) || pfctl_trans(dev, &t, DIOCXCOMMIT, 0)) err(1, "pfctl_clear_altq"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "altq cleared\n"); return (0); } int pfctl_clear_src_nodes(int dev, int opts) { if (ioctl(dev, DIOCCLRSRCNODES)) err(1, "DIOCCLRSRCNODES"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "source tracking entries cleared\n"); return (0); } int pfctl_clear_iface_states(int dev, const char *iface, int opts) { struct pfctl_kill kill; unsigned int killed; memset(&kill, 0, sizeof(kill)); if (iface != NULL && strlcpy(kill.ifname, iface, sizeof(kill.ifname)) >= sizeof(kill.ifname)) errx(1, "invalid interface: %s", iface); if (opts & PF_OPT_KILLMATCH) kill.kill_match = true; if (pfctl_clear_states_h(pfh, &kill, &killed)) err(1, "DIOCCLRSTATES"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "%d states cleared\n", killed); return (0); } void pfctl_addrprefix(char *addr, struct pf_addr *mask) { char *p; const char *errstr; int prefix, ret_ga, q, r; struct addrinfo hints, *res; if ((p = strchr(addr, '/')) == NULL) return; *p++ = '\0'; prefix = strtonum(p, 0, 128, &errstr); if (errstr) errx(1, "prefix is %s: %s", errstr, p); bzero(&hints, sizeof(hints)); /* prefix only with numeric addresses */ hints.ai_flags |= AI_NUMERICHOST; if ((ret_ga = getaddrinfo(addr, NULL, &hints, &res))) { errx(1, "getaddrinfo: %s", gai_strerror(ret_ga)); /* NOTREACHED */ } if (res->ai_family == AF_INET && prefix > 32) errx(1, "prefix too long for AF_INET"); else if (res->ai_family == AF_INET6 && prefix > 128) errx(1, "prefix too long for AF_INET6"); q = prefix >> 3; r = prefix & 7; switch (res->ai_family) { case AF_INET: bzero(&mask->v4, sizeof(mask->v4)); mask->v4.s_addr = htonl((u_int32_t) (0xffffffffffULL << (32 - prefix))); break; case AF_INET6: bzero(&mask->v6, sizeof(mask->v6)); if (q > 0) memset((void *)&mask->v6, 0xff, q); if (r > 0) *((u_char *)&mask->v6 + q) = (0xff00 >> r) & 0xff; break; } freeaddrinfo(res); } int pfctl_kill_src_nodes(int dev, const char *iface, int opts) { struct pfioc_src_node_kill psnk; struct addrinfo *res[2], *resp[2]; struct sockaddr last_src, last_dst; int killed, sources, dests; int ret_ga; killed = sources = dests = 0; memset(&psnk, 0, sizeof(psnk)); memset(&psnk.psnk_src.addr.v.a.mask, 0xff, sizeof(psnk.psnk_src.addr.v.a.mask)); memset(&last_src, 0xff, sizeof(last_src)); memset(&last_dst, 0xff, sizeof(last_dst)); pfctl_addrprefix(src_node_kill[0], &psnk.psnk_src.addr.v.a.mask); if ((ret_ga = getaddrinfo(src_node_kill[0], NULL, NULL, &res[0]))) { errx(1, "getaddrinfo: %s", gai_strerror(ret_ga)); /* NOTREACHED */ } for (resp[0] = res[0]; resp[0]; resp[0] = resp[0]->ai_next) { if (resp[0]->ai_addr == NULL) continue; /* We get lots of duplicates. Catch the easy ones */ if (memcmp(&last_src, resp[0]->ai_addr, sizeof(last_src)) == 0) continue; last_src = *(struct sockaddr *)resp[0]->ai_addr; psnk.psnk_af = resp[0]->ai_family; sources++; if (psnk.psnk_af == AF_INET) psnk.psnk_src.addr.v.a.addr.v4 = ((struct sockaddr_in *)resp[0]->ai_addr)->sin_addr; else if (psnk.psnk_af == AF_INET6) psnk.psnk_src.addr.v.a.addr.v6 = ((struct sockaddr_in6 *)resp[0]->ai_addr)-> sin6_addr; else errx(1, "Unknown address family %d", psnk.psnk_af); if (src_node_killers > 1) { dests = 0; memset(&psnk.psnk_dst.addr.v.a.mask, 0xff, sizeof(psnk.psnk_dst.addr.v.a.mask)); memset(&last_dst, 0xff, sizeof(last_dst)); pfctl_addrprefix(src_node_kill[1], &psnk.psnk_dst.addr.v.a.mask); if ((ret_ga = getaddrinfo(src_node_kill[1], NULL, NULL, &res[1]))) { errx(1, "getaddrinfo: %s", gai_strerror(ret_ga)); /* NOTREACHED */ } for (resp[1] = res[1]; resp[1]; resp[1] = resp[1]->ai_next) { if (resp[1]->ai_addr == NULL) continue; if (psnk.psnk_af != resp[1]->ai_family) continue; if (memcmp(&last_dst, resp[1]->ai_addr, sizeof(last_dst)) == 0) continue; last_dst = *(struct sockaddr *)resp[1]->ai_addr; dests++; if (psnk.psnk_af == AF_INET) psnk.psnk_dst.addr.v.a.addr.v4 = ((struct sockaddr_in *)resp[1]-> ai_addr)->sin_addr; else if (psnk.psnk_af == AF_INET6) psnk.psnk_dst.addr.v.a.addr.v6 = ((struct sockaddr_in6 *)resp[1]-> ai_addr)->sin6_addr; else errx(1, "Unknown address family %d", psnk.psnk_af); if (ioctl(dev, DIOCKILLSRCNODES, &psnk)) err(1, "DIOCKILLSRCNODES"); killed += psnk.psnk_killed; } freeaddrinfo(res[1]); } else { if (ioctl(dev, DIOCKILLSRCNODES, &psnk)) err(1, "DIOCKILLSRCNODES"); killed += psnk.psnk_killed; } } freeaddrinfo(res[0]); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "killed %d src nodes from %d sources and %d " "destinations\n", killed, sources, dests); return (0); } int pfctl_net_kill_states(int dev, const char *iface, int opts) { struct pfctl_kill kill; struct addrinfo *res[2], *resp[2]; struct sockaddr last_src, last_dst; unsigned int newkilled; int killed, sources, dests; int ret_ga; killed = sources = dests = 0; memset(&kill, 0, sizeof(kill)); memset(&kill.src.addr.v.a.mask, 0xff, sizeof(kill.src.addr.v.a.mask)); memset(&last_src, 0xff, sizeof(last_src)); memset(&last_dst, 0xff, sizeof(last_dst)); if (iface != NULL && strlcpy(kill.ifname, iface, sizeof(kill.ifname)) >= sizeof(kill.ifname)) errx(1, "invalid interface: %s", iface); if (state_killers == 2 && (strcmp(state_kill[0], "nat") == 0)) { kill.nat = true; state_kill[0] = state_kill[1]; state_killers = 1; } pfctl_addrprefix(state_kill[0], &kill.src.addr.v.a.mask); if (opts & PF_OPT_KILLMATCH) kill.kill_match = true; if ((ret_ga = getaddrinfo(state_kill[0], NULL, NULL, &res[0]))) { errx(1, "getaddrinfo: %s", gai_strerror(ret_ga)); /* NOTREACHED */ } for (resp[0] = res[0]; resp[0]; resp[0] = resp[0]->ai_next) { if (resp[0]->ai_addr == NULL) continue; /* We get lots of duplicates. Catch the easy ones */ if (memcmp(&last_src, resp[0]->ai_addr, sizeof(last_src)) == 0) continue; last_src = *(struct sockaddr *)resp[0]->ai_addr; kill.af = resp[0]->ai_family; sources++; if (kill.af == AF_INET) kill.src.addr.v.a.addr.v4 = ((struct sockaddr_in *)resp[0]->ai_addr)->sin_addr; else if (kill.af == AF_INET6) kill.src.addr.v.a.addr.v6 = ((struct sockaddr_in6 *)resp[0]->ai_addr)-> sin6_addr; else errx(1, "Unknown address family %d", kill.af); if (state_killers > 1) { dests = 0; memset(&kill.dst.addr.v.a.mask, 0xff, sizeof(kill.dst.addr.v.a.mask)); memset(&last_dst, 0xff, sizeof(last_dst)); pfctl_addrprefix(state_kill[1], &kill.dst.addr.v.a.mask); if ((ret_ga = getaddrinfo(state_kill[1], NULL, NULL, &res[1]))) { errx(1, "getaddrinfo: %s", gai_strerror(ret_ga)); /* NOTREACHED */ } for (resp[1] = res[1]; resp[1]; resp[1] = resp[1]->ai_next) { if (resp[1]->ai_addr == NULL) continue; if (kill.af != resp[1]->ai_family) continue; if (memcmp(&last_dst, resp[1]->ai_addr, sizeof(last_dst)) == 0) continue; last_dst = *(struct sockaddr *)resp[1]->ai_addr; dests++; if (kill.af == AF_INET) kill.dst.addr.v.a.addr.v4 = ((struct sockaddr_in *)resp[1]-> ai_addr)->sin_addr; else if (kill.af == AF_INET6) kill.dst.addr.v.a.addr.v6 = ((struct sockaddr_in6 *)resp[1]-> ai_addr)->sin6_addr; else errx(1, "Unknown address family %d", kill.af); if (pfctl_kill_states_h(pfh, &kill, &newkilled)) err(1, "DIOCKILLSTATES"); killed += newkilled; } freeaddrinfo(res[1]); } else { if (pfctl_kill_states_h(pfh, &kill, &newkilled)) err(1, "DIOCKILLSTATES"); killed += newkilled; } } freeaddrinfo(res[0]); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "killed %d states from %d sources and %d " "destinations\n", killed, sources, dests); return (0); } int pfctl_gateway_kill_states(int dev, const char *iface, int opts) { struct pfctl_kill kill; struct addrinfo *res, *resp; struct sockaddr last_src; unsigned int newkilled; int killed = 0; int ret_ga; if (state_killers != 2 || (strlen(state_kill[1]) == 0)) { warnx("no gateway specified"); usage(); } memset(&kill, 0, sizeof(kill)); memset(&kill.rt_addr.addr.v.a.mask, 0xff, sizeof(kill.rt_addr.addr.v.a.mask)); memset(&last_src, 0xff, sizeof(last_src)); if (iface != NULL && strlcpy(kill.ifname, iface, sizeof(kill.ifname)) >= sizeof(kill.ifname)) errx(1, "invalid interface: %s", iface); if (opts & PF_OPT_KILLMATCH) kill.kill_match = true; pfctl_addrprefix(state_kill[1], &kill.rt_addr.addr.v.a.mask); if ((ret_ga = getaddrinfo(state_kill[1], NULL, NULL, &res))) { errx(1, "getaddrinfo: %s", gai_strerror(ret_ga)); /* NOTREACHED */ } for (resp = res; resp; resp = resp->ai_next) { if (resp->ai_addr == NULL) continue; /* We get lots of duplicates. Catch the easy ones */ if (memcmp(&last_src, resp->ai_addr, sizeof(last_src)) == 0) continue; last_src = *(struct sockaddr *)resp->ai_addr; kill.af = resp->ai_family; if (kill.af == AF_INET) kill.rt_addr.addr.v.a.addr.v4 = ((struct sockaddr_in *)resp->ai_addr)->sin_addr; else if (kill.af == AF_INET6) kill.rt_addr.addr.v.a.addr.v6 = ((struct sockaddr_in6 *)resp->ai_addr)-> sin6_addr; else errx(1, "Unknown address family %d", kill.af); if (pfctl_kill_states_h(pfh, &kill, &newkilled)) err(1, "DIOCKILLSTATES"); killed += newkilled; } freeaddrinfo(res); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "killed %d states\n", killed); return (0); } int pfctl_label_kill_states(int dev, const char *iface, int opts) { struct pfctl_kill kill; unsigned int killed; if (state_killers != 2 || (strlen(state_kill[1]) == 0)) { warnx("no label specified"); usage(); } memset(&kill, 0, sizeof(kill)); if (iface != NULL && strlcpy(kill.ifname, iface, sizeof(kill.ifname)) >= sizeof(kill.ifname)) errx(1, "invalid interface: %s", iface); if (opts & PF_OPT_KILLMATCH) kill.kill_match = true; if (strlcpy(kill.label, state_kill[1], sizeof(kill.label)) >= sizeof(kill.label)) errx(1, "label too long: %s", state_kill[1]); if (pfctl_kill_states_h(pfh, &kill, &killed)) err(1, "DIOCKILLSTATES"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "killed %d states\n", killed); return (0); } int pfctl_id_kill_states(int dev, const char *iface, int opts) { struct pfctl_kill kill; unsigned int killed; if (state_killers != 2 || (strlen(state_kill[1]) == 0)) { warnx("no id specified"); usage(); } memset(&kill, 0, sizeof(kill)); if (opts & PF_OPT_KILLMATCH) kill.kill_match = true; if ((sscanf(state_kill[1], "%jx/%x", &kill.cmp.id, &kill.cmp.creatorid)) == 2) { } else if ((sscanf(state_kill[1], "%jx", &kill.cmp.id)) == 1) { kill.cmp.creatorid = 0; } else { warnx("wrong id format specified"); usage(); } if (kill.cmp.id == 0) { warnx("cannot kill id 0"); usage(); } if (pfctl_kill_states_h(pfh, &kill, &killed)) err(1, "DIOCKILLSTATES"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "killed %d states\n", killed); return (0); } int pfctl_get_pool(int dev, struct pfctl_pool *pool, u_int32_t nr, u_int32_t ticket, int r_action, char *anchorname) { struct pfioc_pooladdr pp; struct pf_pooladdr *pa; u_int32_t pnr, mpnr; memset(&pp, 0, sizeof(pp)); memcpy(pp.anchor, anchorname, sizeof(pp.anchor)); pp.r_action = r_action; pp.r_num = nr; pp.ticket = ticket; - if (ioctl(dev, DIOCGETADDRS, &pp)) { + if (pfctl_get_addrs(pfh, ticket, nr, r_action, anchorname, &pp.nr) != 0) { warn("DIOCGETADDRS"); return (-1); } mpnr = pp.nr; TAILQ_INIT(&pool->list); for (pnr = 0; pnr < mpnr; ++pnr) { pp.nr = pnr; if (ioctl(dev, DIOCGETADDR, &pp)) { warn("DIOCGETADDR"); return (-1); } pa = calloc(1, sizeof(struct pf_pooladdr)); if (pa == NULL) err(1, "calloc"); bcopy(&pp.addr, pa, sizeof(struct pf_pooladdr)); TAILQ_INSERT_TAIL(&pool->list, pa, entries); } return (0); } void pfctl_move_pool(struct pfctl_pool *src, struct pfctl_pool *dst) { struct pf_pooladdr *pa; while ((pa = TAILQ_FIRST(&src->list)) != NULL) { TAILQ_REMOVE(&src->list, pa, entries); TAILQ_INSERT_TAIL(&dst->list, pa, entries); } } void pfctl_clear_pool(struct pfctl_pool *pool) { struct pf_pooladdr *pa; while ((pa = TAILQ_FIRST(&pool->list)) != NULL) { TAILQ_REMOVE(&pool->list, pa, entries); free(pa); } } void pfctl_print_eth_rule_counters(struct pfctl_eth_rule *rule, int opts) { if (opts & PF_OPT_VERBOSE) { printf(" [ Evaluations: %-8llu Packets: %-8llu " "Bytes: %-10llu]\n", (unsigned long long)rule->evaluations, (unsigned long long)(rule->packets[0] + rule->packets[1]), (unsigned long long)(rule->bytes[0] + rule->bytes[1])); } if (opts & PF_OPT_VERBOSE2) { char timestr[30]; if (rule->last_active_timestamp != 0) { bcopy(ctime(&rule->last_active_timestamp), timestr, sizeof(timestr)); *strchr(timestr, '\n') = '\0'; } else { snprintf(timestr, sizeof(timestr), "N/A"); } printf(" [ Last Active Time: %s ]\n", timestr); } } void pfctl_print_rule_counters(struct pfctl_rule *rule, int opts) { if (opts & PF_OPT_DEBUG) { const char *t[PF_SKIP_COUNT] = { "i", "d", "f", "p", "sa", "sp", "da", "dp" }; int i; printf(" [ Skip steps: "); for (i = 0; i < PF_SKIP_COUNT; ++i) { if (rule->skip[i].nr == rule->nr + 1) continue; printf("%s=", t[i]); if (rule->skip[i].nr == -1) printf("end "); else printf("%u ", rule->skip[i].nr); } printf("]\n"); printf(" [ queue: qname=%s qid=%u pqname=%s pqid=%u ]\n", rule->qname, rule->qid, rule->pqname, rule->pqid); } if (opts & PF_OPT_VERBOSE) { printf(" [ Evaluations: %-8llu Packets: %-8llu " "Bytes: %-10llu States: %-6ju]\n", (unsigned long long)rule->evaluations, (unsigned long long)(rule->packets[0] + rule->packets[1]), (unsigned long long)(rule->bytes[0] + rule->bytes[1]), (uintmax_t)rule->states_cur); if (!(opts & PF_OPT_DEBUG)) printf(" [ Inserted: uid %u pid %u " "State Creations: %-6ju]\n", (unsigned)rule->cuid, (unsigned)rule->cpid, (uintmax_t)rule->states_tot); } if (opts & PF_OPT_VERBOSE2) { char timestr[30]; if (rule->last_active_timestamp != 0) { bcopy(ctime(&rule->last_active_timestamp), timestr, sizeof(timestr)); *strchr(timestr, '\n') = '\0'; } else { snprintf(timestr, sizeof(timestr), "N/A"); } printf(" [ Last Active Time: %s ]\n", timestr); } } void pfctl_print_title(char *title) { if (!first_title) printf("\n"); first_title = 0; printf("%s\n", title); } int pfctl_show_eth_rules(int dev, char *path, int opts, enum pfctl_show format, char *anchorname, int depth, int wildcard) { char anchor_call[MAXPATHLEN]; struct pfctl_eth_rules_info info; struct pfctl_eth_rule rule; int brace; int dotitle = opts & PF_OPT_SHOWALL; int len = strlen(path); char *npath, *p; /* * Truncate a trailing / and * on an anchorname before searching for * the ruleset, this is syntactic sugar that doesn't actually make it * to the kernel. */ if ((p = strrchr(anchorname, '/')) != NULL && p[1] == '*' && p[2] == '\0') { p[0] = '\0'; } if (anchorname[0] == '/') { if ((npath = calloc(1, MAXPATHLEN)) == NULL) errx(1, "pfctl_rules: calloc"); snprintf(npath, MAXPATHLEN, "%s", anchorname); } else { if (path[0]) snprintf(&path[len], MAXPATHLEN - len, "/%s", anchorname); else snprintf(&path[len], MAXPATHLEN - len, "%s", anchorname); npath = path; } /* * If this anchor was called with a wildcard path, go through * the rulesets in the anchor rather than the rules. */ if (wildcard && (opts & PF_OPT_RECURSE)) { struct pfctl_eth_rulesets_info ri; u_int32_t mnr, nr; if (pfctl_get_eth_rulesets_info(dev, &ri, npath)) { if (errno == EINVAL) { fprintf(stderr, "Anchor '%s' " "not found.\n", anchorname); } else { warn("DIOCGETETHRULESETS"); return (-1); } } mnr = ri.nr; pfctl_print_eth_rule_counters(&rule, opts); for (nr = 0; nr < mnr; ++nr) { struct pfctl_eth_ruleset_info rs; if (pfctl_get_eth_ruleset(dev, npath, nr, &rs)) err(1, "DIOCGETETHRULESET"); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("anchor \"%s\" all {\n", rs.name); pfctl_show_eth_rules(dev, npath, opts, format, rs.name, depth + 1, 0); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("}\n"); } path[len] = '\0'; return (0); } if (pfctl_get_eth_rules_info(dev, &info, path)) { warn("DIOCGETETHRULES"); return (-1); } for (int nr = 0; nr < info.nr; nr++) { brace = 0; INDENT(depth, !(opts & PF_OPT_VERBOSE)); if (pfctl_get_eth_rule(dev, nr, info.ticket, path, &rule, opts & PF_OPT_CLRRULECTRS, anchor_call) != 0) { warn("DIOCGETETHRULE"); return (-1); } if (anchor_call[0] && ((((p = strrchr(anchor_call, '_')) != NULL) && (p == anchor_call || *(--p) == '/')) || (opts & PF_OPT_RECURSE))) { brace++; int aclen = strlen(anchor_call); if (anchor_call[aclen - 1] == '*') anchor_call[aclen - 2] = '\0'; } p = &anchor_call[0]; if (dotitle) { pfctl_print_title("ETH RULES:"); dotitle = 0; } print_eth_rule(&rule, anchor_call, opts & (PF_OPT_VERBOSE2 | PF_OPT_DEBUG)); if (brace) printf(" {\n"); else printf("\n"); pfctl_print_eth_rule_counters(&rule, opts); if (brace) { pfctl_show_eth_rules(dev, path, opts, format, p, depth + 1, rule.anchor_wildcard); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("}\n"); } } path[len] = '\0'; return (0); } int pfctl_show_rules(int dev, char *path, int opts, enum pfctl_show format, char *anchorname, int depth, int wildcard) { struct pfctl_rules_info ri; struct pfctl_rule rule; char anchor_call[MAXPATHLEN]; u_int32_t nr, header = 0; int rule_numbers = opts & (PF_OPT_VERBOSE2 | PF_OPT_DEBUG); int numeric = opts & PF_OPT_NUMERIC; int len = strlen(path), ret = 0; char *npath, *p; /* * Truncate a trailing / and * on an anchorname before searching for * the ruleset, this is syntactic sugar that doesn't actually make it * to the kernel. */ if ((p = strrchr(anchorname, '/')) != NULL && p[1] == '*' && p[2] == '\0') { p[0] = '\0'; } if (anchorname[0] == '/') { if ((npath = calloc(1, MAXPATHLEN)) == NULL) errx(1, "pfctl_rules: calloc"); snprintf(npath, MAXPATHLEN, "%s", anchorname); } else { if (path[0]) snprintf(&path[len], MAXPATHLEN - len, "/%s", anchorname); else snprintf(&path[len], MAXPATHLEN - len, "%s", anchorname); npath = path; } /* * If this anchor was called with a wildcard path, go through * the rulesets in the anchor rather than the rules. */ if (wildcard && (opts & PF_OPT_RECURSE)) { struct pfioc_ruleset prs; u_int32_t mnr, nr; memset(&prs, 0, sizeof(prs)); memcpy(prs.path, npath, sizeof(prs.path)); if (ioctl(dev, DIOCGETRULESETS, &prs)) { if (errno == EINVAL) fprintf(stderr, "Anchor '%s' " "not found.\n", anchorname); else err(1, "DIOCGETRULESETS"); } mnr = prs.nr; pfctl_print_rule_counters(&rule, opts); for (nr = 0; nr < mnr; ++nr) { prs.nr = nr; if (ioctl(dev, DIOCGETRULESET, &prs)) err(1, "DIOCGETRULESET"); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("anchor \"%s\" all {\n", prs.name); pfctl_show_rules(dev, npath, opts, format, prs.name, depth + 1, 0); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("}\n"); } path[len] = '\0'; return (0); } if (opts & PF_OPT_SHOWALL) { ret = pfctl_get_rules_info_h(pfh, &ri, PF_PASS, path); if (ret != 0) { warn("DIOCGETRULES"); goto error; } header++; } ret = pfctl_get_rules_info_h(pfh, &ri, PF_SCRUB, path); if (ret != 0) { warn("DIOCGETRULES"); goto error; } if (opts & PF_OPT_SHOWALL) { if (format == PFCTL_SHOW_RULES && (ri.nr > 0 || header)) pfctl_print_title("FILTER RULES:"); else if (format == PFCTL_SHOW_LABELS && labels) pfctl_print_title("LABEL COUNTERS:"); } for (nr = 0; nr < ri.nr; ++nr) { if (pfctl_get_clear_rule_h(pfh, nr, ri.ticket, path, PF_SCRUB, &rule, anchor_call, opts & PF_OPT_CLRRULECTRS)) { warn("DIOCGETRULENV"); goto error; } if (pfctl_get_pool(dev, &rule.rpool, nr, ri.ticket, PF_SCRUB, path) != 0) goto error; switch (format) { case PFCTL_SHOW_LABELS: break; case PFCTL_SHOW_RULES: if (rule.label[0][0] && (opts & PF_OPT_SHOWALL)) labels = 1; print_rule(&rule, anchor_call, rule_numbers, numeric); printf("\n"); pfctl_print_rule_counters(&rule, opts); break; case PFCTL_SHOW_NOTHING: break; } pfctl_clear_pool(&rule.rpool); } ret = pfctl_get_rules_info_h(pfh, &ri, PF_PASS, path); if (ret != 0) { warn("DIOCGETRULES"); goto error; } for (nr = 0; nr < ri.nr; ++nr) { if (pfctl_get_clear_rule_h(pfh, nr, ri.ticket, path, PF_PASS, &rule, anchor_call, opts & PF_OPT_CLRRULECTRS)) { warn("DIOCGETRULE"); goto error; } if (pfctl_get_pool(dev, &rule.rpool, nr, ri.ticket, PF_PASS, path) != 0) goto error; switch (format) { case PFCTL_SHOW_LABELS: { bool show = false; int i = 0; while (rule.label[i][0]) { printf("%s ", rule.label[i++]); show = true; } if (show) { printf("%llu %llu %llu %llu" " %llu %llu %llu %ju\n", (unsigned long long)rule.evaluations, (unsigned long long)(rule.packets[0] + rule.packets[1]), (unsigned long long)(rule.bytes[0] + rule.bytes[1]), (unsigned long long)rule.packets[0], (unsigned long long)rule.bytes[0], (unsigned long long)rule.packets[1], (unsigned long long)rule.bytes[1], (uintmax_t)rule.states_tot); } if (anchor_call[0] && (((p = strrchr(anchor_call, '/')) ? p[1] == '_' : anchor_call[0] == '_') || opts & PF_OPT_RECURSE)) { pfctl_show_rules(dev, npath, opts, format, anchor_call, depth, rule.anchor_wildcard); } break; } case PFCTL_SHOW_RULES: if (rule.label[0][0] && (opts & PF_OPT_SHOWALL)) labels = 1; INDENT(depth, !(opts & PF_OPT_VERBOSE)); print_rule(&rule, anchor_call, rule_numbers, numeric); /* * If this is a 'unnamed' brace notation * anchor, OR the user has explicitly requested * recursion, print it recursively. */ if (anchor_call[0] && (((p = strrchr(anchor_call, '/')) ? p[1] == '_' : anchor_call[0] == '_') || opts & PF_OPT_RECURSE)) { printf(" {\n"); pfctl_print_rule_counters(&rule, opts); pfctl_show_rules(dev, npath, opts, format, anchor_call, depth + 1, rule.anchor_wildcard); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("}\n"); } else { printf("\n"); pfctl_print_rule_counters(&rule, opts); } break; case PFCTL_SHOW_NOTHING: break; } pfctl_clear_pool(&rule.rpool); } error: path[len] = '\0'; return (ret); } int pfctl_show_nat(int dev, char *path, int opts, char *anchorname, int depth, int wildcard) { struct pfctl_rules_info ri; struct pfctl_rule rule; char anchor_call[MAXPATHLEN]; u_int32_t nr; static int nattype[3] = { PF_NAT, PF_RDR, PF_BINAT }; int i, dotitle = opts & PF_OPT_SHOWALL; int ret; int len = strlen(path); char *npath, *p; /* * Truncate a trailing / and * on an anchorname before searching for * the ruleset, this is syntactic sugar that doesn't actually make it * to the kernel. */ if ((p = strrchr(anchorname, '/')) != NULL && p[1] == '*' && p[2] == '\0') { p[0] = '\0'; } if (anchorname[0] == '/') { if ((npath = calloc(1, MAXPATHLEN)) == NULL) errx(1, "pfctl_rules: calloc"); snprintf(npath, MAXPATHLEN, "%s", anchorname); } else { if (path[0]) snprintf(&path[len], MAXPATHLEN - len, "/%s", anchorname); else snprintf(&path[len], MAXPATHLEN - len, "%s", anchorname); npath = path; } /* * If this anchor was called with a wildcard path, go through * the rulesets in the anchor rather than the rules. */ if (wildcard && (opts & PF_OPT_RECURSE)) { struct pfioc_ruleset prs; u_int32_t mnr, nr; memset(&prs, 0, sizeof(prs)); memcpy(prs.path, npath, sizeof(prs.path)); if (ioctl(dev, DIOCGETRULESETS, &prs)) { if (errno == EINVAL) fprintf(stderr, "NAT anchor '%s' " "not found.\n", anchorname); else err(1, "DIOCGETRULESETS"); } mnr = prs.nr; pfctl_print_rule_counters(&rule, opts); for (nr = 0; nr < mnr; ++nr) { prs.nr = nr; if (ioctl(dev, DIOCGETRULESET, &prs)) err(1, "DIOCGETRULESET"); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("nat-anchor \"%s\" all {\n", prs.name); pfctl_show_nat(dev, npath, opts, prs.name, depth + 1, 0); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("}\n"); } path[len] = '\0'; return (0); } for (i = 0; i < 3; i++) { ret = pfctl_get_rules_info_h(pfh, &ri, nattype[i], path); if (ret != 0) { warn("DIOCGETRULES"); return (-1); } for (nr = 0; nr < ri.nr; ++nr) { INDENT(depth, !(opts & PF_OPT_VERBOSE)); if (pfctl_get_rule_h(pfh, nr, ri.ticket, path, nattype[i], &rule, anchor_call)) { warn("DIOCGETRULE"); return (-1); } if (pfctl_get_pool(dev, &rule.rpool, nr, ri.ticket, nattype[i], path) != 0) return (-1); if (dotitle) { pfctl_print_title("TRANSLATION RULES:"); dotitle = 0; } print_rule(&rule, anchor_call, opts & PF_OPT_VERBOSE2, opts & PF_OPT_NUMERIC); if (anchor_call[0] && (((p = strrchr(anchor_call, '/')) ? p[1] == '_' : anchor_call[0] == '_') || opts & PF_OPT_RECURSE)) { printf(" {\n"); pfctl_print_rule_counters(&rule, opts); pfctl_show_nat(dev, npath, opts, anchor_call, depth + 1, rule.anchor_wildcard); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("}\n"); } else { printf("\n"); pfctl_print_rule_counters(&rule, opts); } } } return (0); } int pfctl_show_src_nodes(int dev, int opts) { struct pfioc_src_nodes psn; struct pf_src_node *p; char *inbuf = NULL, *newinbuf = NULL; unsigned int len = 0; int i; memset(&psn, 0, sizeof(psn)); for (;;) { psn.psn_len = len; if (len) { newinbuf = realloc(inbuf, len); if (newinbuf == NULL) err(1, "realloc"); psn.psn_buf = inbuf = newinbuf; } if (ioctl(dev, DIOCGETSRCNODES, &psn) < 0) { warn("DIOCGETSRCNODES"); free(inbuf); return (-1); } if (psn.psn_len + sizeof(struct pfioc_src_nodes) < len) break; if (len == 0 && psn.psn_len == 0) goto done; if (len == 0 && psn.psn_len != 0) len = psn.psn_len; if (psn.psn_len == 0) goto done; /* no src_nodes */ len *= 2; } p = psn.psn_src_nodes; if (psn.psn_len > 0 && (opts & PF_OPT_SHOWALL)) pfctl_print_title("SOURCE TRACKING NODES:"); for (i = 0; i < psn.psn_len; i += sizeof(*p)) { print_src_node(p, opts); p++; } done: free(inbuf); return (0); } struct pfctl_show_state_arg { int opts; int dotitle; const char *iface; }; static int pfctl_show_state(struct pfctl_state *s, void *arg) { struct pfctl_show_state_arg *a = (struct pfctl_show_state_arg *)arg; if (a->dotitle) { pfctl_print_title("STATES:"); a->dotitle = 0; } print_state(s, a->opts); return (0); } int pfctl_show_states(int dev, const char *iface, int opts) { struct pfctl_show_state_arg arg; struct pfctl_state_filter filter = {}; if (iface != NULL) strncpy(filter.ifname, iface, IFNAMSIZ); arg.opts = opts; arg.dotitle = opts & PF_OPT_SHOWALL; arg.iface = iface; if (pfctl_get_filtered_states_iter(&filter, pfctl_show_state, &arg)) return (-1); return (0); } int pfctl_show_status(int dev, int opts) { struct pfctl_status *status; struct pfctl_syncookies cookies; if ((status = pfctl_get_status_h(pfh)) == NULL) { warn("DIOCGETSTATUS"); return (-1); } if (pfctl_get_syncookies(dev, &cookies)) { pfctl_free_status(status); warn("DIOCGETSYNCOOKIES"); return (-1); } if (opts & PF_OPT_SHOWALL) pfctl_print_title("INFO:"); print_status(status, &cookies, opts); pfctl_free_status(status); return (0); } int pfctl_show_running(int dev) { struct pfctl_status *status; int running; if ((status = pfctl_get_status_h(pfh)) == NULL) { warn("DIOCGETSTATUS"); return (-1); } running = status->running; print_running(status); pfctl_free_status(status); return (!running); } int pfctl_show_timeouts(int dev, int opts) { uint32_t seconds; int i; if (opts & PF_OPT_SHOWALL) pfctl_print_title("TIMEOUTS:"); for (i = 0; pf_timeouts[i].name; i++) { if (pfctl_get_timeout(pfh, pf_timeouts[i].timeout, &seconds)) err(1, "DIOCGETTIMEOUT"); printf("%-20s %10d", pf_timeouts[i].name, seconds); if (pf_timeouts[i].timeout >= PFTM_ADAPTIVE_START && pf_timeouts[i].timeout <= PFTM_ADAPTIVE_END) printf(" states"); else printf("s"); printf("\n"); } return (0); } int pfctl_show_limits(int dev, int opts) { unsigned int limit; int i; if (opts & PF_OPT_SHOWALL) pfctl_print_title("LIMITS:"); for (i = 0; pf_limits[i].name; i++) { if (pfctl_get_limit(pfh, pf_limits[i].index, &limit)) err(1, "DIOCGETLIMIT"); printf("%-13s ", pf_limits[i].name); if (limit == UINT_MAX) printf("unlimited\n"); else printf("hard limit %8u\n", limit); } return (0); } void pfctl_show_creators(int opts) { int ret; uint32_t creators[16]; size_t count = nitems(creators); ret = pfctl_get_creatorids(pfh, creators, &count); if (ret != 0) errx(ret, "Failed to retrieve creators"); printf("Creator IDs:\n"); for (size_t i = 0; i < count; i++) printf("%08x\n", creators[i]); } /* callbacks for rule/nat/rdr/addr */ int pfctl_add_pool(struct pfctl *pf, struct pfctl_pool *p, sa_family_t af) { struct pf_pooladdr *pa; if ((pf->opts & PF_OPT_NOACTION) == 0) { if (pfctl_begin_addrs(pf->h, &pf->paddr.ticket)) err(1, "DIOCBEGINADDRS"); } pf->paddr.af = af; TAILQ_FOREACH(pa, &p->list, entries) { memcpy(&pf->paddr.addr, pa, sizeof(struct pf_pooladdr)); if ((pf->opts & PF_OPT_NOACTION) == 0) { if (pfctl_add_addr(pf->h, &pf->paddr) != 0) err(1, "DIOCADDADDR"); } } return (0); } int pfctl_append_rule(struct pfctl *pf, struct pfctl_rule *r, const char *anchor_call) { u_int8_t rs_num; struct pfctl_rule *rule; struct pfctl_ruleset *rs; char *p; rs_num = pf_get_ruleset_number(r->action); if (rs_num == PF_RULESET_MAX) errx(1, "Invalid rule type %d", r->action); rs = &pf->anchor->ruleset; if (anchor_call[0] && r->anchor == NULL) { /* * Don't make non-brace anchors part of the main anchor pool. */ if ((r->anchor = calloc(1, sizeof(*r->anchor))) == NULL) err(1, "pfctl_append_rule: calloc"); pf_init_ruleset(&r->anchor->ruleset); r->anchor->ruleset.anchor = r->anchor; if (strlcpy(r->anchor->path, anchor_call, sizeof(rule->anchor->path)) >= sizeof(rule->anchor->path)) errx(1, "pfctl_append_rule: strlcpy"); if ((p = strrchr(anchor_call, '/')) != NULL) { if (!strlen(p)) err(1, "pfctl_append_rule: bad anchor name %s", anchor_call); } else p = (char *)anchor_call; if (strlcpy(r->anchor->name, p, sizeof(rule->anchor->name)) >= sizeof(rule->anchor->name)) errx(1, "pfctl_append_rule: strlcpy"); } if ((rule = calloc(1, sizeof(*rule))) == NULL) err(1, "calloc"); bcopy(r, rule, sizeof(*rule)); TAILQ_INIT(&rule->rpool.list); pfctl_move_pool(&r->rpool, &rule->rpool); TAILQ_INSERT_TAIL(rs->rules[rs_num].active.ptr, rule, entries); return (0); } int pfctl_append_eth_rule(struct pfctl *pf, struct pfctl_eth_rule *r, const char *anchor_call) { struct pfctl_eth_rule *rule; struct pfctl_eth_ruleset *rs; char *p; rs = &pf->eanchor->ruleset; if (anchor_call[0] && r->anchor == NULL) { /* * Don't make non-brace anchors part of the main anchor pool. */ if ((r->anchor = calloc(1, sizeof(*r->anchor))) == NULL) err(1, "pfctl_append_rule: calloc"); pf_init_eth_ruleset(&r->anchor->ruleset); r->anchor->ruleset.anchor = r->anchor; if (strlcpy(r->anchor->path, anchor_call, sizeof(rule->anchor->path)) >= sizeof(rule->anchor->path)) errx(1, "pfctl_append_rule: strlcpy"); if ((p = strrchr(anchor_call, '/')) != NULL) { if (!strlen(p)) err(1, "pfctl_append_eth_rule: bad anchor name %s", anchor_call); } else p = (char *)anchor_call; if (strlcpy(r->anchor->name, p, sizeof(rule->anchor->name)) >= sizeof(rule->anchor->name)) errx(1, "pfctl_append_eth_rule: strlcpy"); } if ((rule = calloc(1, sizeof(*rule))) == NULL) err(1, "calloc"); bcopy(r, rule, sizeof(*rule)); TAILQ_INSERT_TAIL(&rs->rules, rule, entries); return (0); } int pfctl_eth_ruleset_trans(struct pfctl *pf, char *path, struct pfctl_eth_anchor *a) { int osize = pf->trans->pfrb_size; if ((pf->loadopt & PFCTL_FLAG_ETH) != 0) { if (pfctl_add_trans(pf->trans, PF_RULESET_ETH, path)) return (1); } if (pfctl_trans(pf->dev, pf->trans, DIOCXBEGIN, osize)) return (5); return (0); } int pfctl_ruleset_trans(struct pfctl *pf, char *path, struct pfctl_anchor *a, bool do_eth) { int osize = pf->trans->pfrb_size; if ((pf->loadopt & PFCTL_FLAG_ETH) != 0 && do_eth) { if (pfctl_add_trans(pf->trans, PF_RULESET_ETH, path)) return (1); } if ((pf->loadopt & PFCTL_FLAG_NAT) != 0) { if (pfctl_add_trans(pf->trans, PF_RULESET_NAT, path) || pfctl_add_trans(pf->trans, PF_RULESET_BINAT, path) || pfctl_add_trans(pf->trans, PF_RULESET_RDR, path)) return (1); } if (a == pf->astack[0] && ((altqsupport && (pf->loadopt & PFCTL_FLAG_ALTQ) != 0))) { if (pfctl_add_trans(pf->trans, PF_RULESET_ALTQ, path)) return (2); } if ((pf->loadopt & PFCTL_FLAG_FILTER) != 0) { if (pfctl_add_trans(pf->trans, PF_RULESET_SCRUB, path) || pfctl_add_trans(pf->trans, PF_RULESET_FILTER, path)) return (3); } if (pf->loadopt & PFCTL_FLAG_TABLE) if (pfctl_add_trans(pf->trans, PF_RULESET_TABLE, path)) return (4); if (pfctl_trans(pf->dev, pf->trans, DIOCXBEGIN, osize)) return (5); return (0); } int pfctl_load_eth_ruleset(struct pfctl *pf, char *path, struct pfctl_eth_ruleset *rs, int depth) { struct pfctl_eth_rule *r; int error, len = strlen(path); int brace = 0; pf->eanchor = rs->anchor; if (path[0]) snprintf(&path[len], MAXPATHLEN - len, "/%s", pf->eanchor->name); else snprintf(&path[len], MAXPATHLEN - len, "%s", pf->eanchor->name); if (depth) { if (TAILQ_FIRST(&rs->rules) != NULL) { brace++; if (pf->opts & PF_OPT_VERBOSE) printf(" {\n"); if ((pf->opts & PF_OPT_NOACTION) == 0 && (error = pfctl_eth_ruleset_trans(pf, path, rs->anchor))) { printf("pfctl_load_eth_rulesets: " "pfctl_eth_ruleset_trans %d\n", error); goto error; } } else if (pf->opts & PF_OPT_VERBOSE) printf("\n"); } while ((r = TAILQ_FIRST(&rs->rules)) != NULL) { TAILQ_REMOVE(&rs->rules, r, entries); error = pfctl_load_eth_rule(pf, path, r, depth); if (error) return (error); if (r->anchor) { if ((error = pfctl_load_eth_ruleset(pf, path, &r->anchor->ruleset, depth + 1))) return (error); } else if (pf->opts & PF_OPT_VERBOSE) printf("\n"); free(r); } if (brace && pf->opts & PF_OPT_VERBOSE) { INDENT(depth - 1, (pf->opts & PF_OPT_VERBOSE)); printf("}\n"); } path[len] = '\0'; return (0); error: path[len] = '\0'; return (error); } int pfctl_load_eth_rule(struct pfctl *pf, char *path, struct pfctl_eth_rule *r, int depth) { char *name; char anchor[PF_ANCHOR_NAME_SIZE]; int len = strlen(path); if (strlcpy(anchor, path, sizeof(anchor)) >= sizeof(anchor)) errx(1, "pfctl_load_eth_rule: strlcpy"); if (r->anchor) { if (r->anchor->match) { if (path[0]) snprintf(&path[len], MAXPATHLEN - len, "/%s", r->anchor->name); else snprintf(&path[len], MAXPATHLEN - len, "%s", r->anchor->name); name = r->anchor->name; } else name = r->anchor->path; } else name = ""; if ((pf->opts & PF_OPT_NOACTION) == 0) if (pfctl_add_eth_rule(pf->dev, r, anchor, name, pf->eth_ticket)) err(1, "DIOCADDETHRULENV"); if (pf->opts & PF_OPT_VERBOSE) { INDENT(depth, !(pf->opts & PF_OPT_VERBOSE2)); print_eth_rule(r, r->anchor ? r->anchor->name : "", pf->opts & (PF_OPT_VERBOSE2 | PF_OPT_DEBUG)); } path[len] = '\0'; return (0); } int pfctl_load_ruleset(struct pfctl *pf, char *path, struct pfctl_ruleset *rs, int rs_num, int depth) { struct pfctl_rule *r; int error, len = strlen(path); int brace = 0; pf->anchor = rs->anchor; if (path[0]) snprintf(&path[len], MAXPATHLEN - len, "/%s", pf->anchor->name); else snprintf(&path[len], MAXPATHLEN - len, "%s", pf->anchor->name); if (depth) { if (TAILQ_FIRST(rs->rules[rs_num].active.ptr) != NULL) { brace++; if (pf->opts & PF_OPT_VERBOSE) printf(" {\n"); if ((pf->opts & PF_OPT_NOACTION) == 0 && (error = pfctl_ruleset_trans(pf, path, rs->anchor, false))) { printf("pfctl_load_rulesets: " "pfctl_ruleset_trans %d\n", error); goto error; } } else if (pf->opts & PF_OPT_VERBOSE) printf("\n"); } if (pf->optimize && rs_num == PF_RULESET_FILTER) pfctl_optimize_ruleset(pf, rs); while ((r = TAILQ_FIRST(rs->rules[rs_num].active.ptr)) != NULL) { TAILQ_REMOVE(rs->rules[rs_num].active.ptr, r, entries); for (int i = 0; i < PF_RULE_MAX_LABEL_COUNT; i++) expand_label(r->label[i], PF_RULE_LABEL_SIZE, r); expand_label(r->tagname, PF_TAG_NAME_SIZE, r); expand_label(r->match_tagname, PF_TAG_NAME_SIZE, r); if ((error = pfctl_load_rule(pf, path, r, depth))) goto error; if (r->anchor) { if ((error = pfctl_load_ruleset(pf, path, &r->anchor->ruleset, rs_num, depth + 1))) goto error; } else if (pf->opts & PF_OPT_VERBOSE) printf("\n"); free(r); } if (brace && pf->opts & PF_OPT_VERBOSE) { INDENT(depth - 1, (pf->opts & PF_OPT_VERBOSE)); printf("}\n"); } path[len] = '\0'; return (0); error: path[len] = '\0'; return (error); } int pfctl_load_rule(struct pfctl *pf, char *path, struct pfctl_rule *r, int depth) { u_int8_t rs_num = pf_get_ruleset_number(r->action); char *name; u_int32_t ticket; char anchor[PF_ANCHOR_NAME_SIZE]; int len = strlen(path); int error; bool was_present; /* set up anchor before adding to path for anchor_call */ if ((pf->opts & PF_OPT_NOACTION) == 0) ticket = pfctl_get_ticket(pf->trans, rs_num, path); if (strlcpy(anchor, path, sizeof(anchor)) >= sizeof(anchor)) errx(1, "pfctl_load_rule: strlcpy"); if (r->anchor) { if (r->anchor->match) { if (path[0]) snprintf(&path[len], MAXPATHLEN - len, "/%s", r->anchor->name); else snprintf(&path[len], MAXPATHLEN - len, "%s", r->anchor->name); name = r->anchor->name; } else name = r->anchor->path; } else name = ""; was_present = false; if ((pf->opts & PF_OPT_NOACTION) == 0) { if (pfctl_add_pool(pf, &r->rpool, r->af)) return (1); error = pfctl_add_rule_h(pf->h, r, anchor, name, ticket, pf->paddr.ticket); switch (error) { case 0: /* things worked, do nothing */ break; case EEXIST: /* an identical rule is already present */ was_present = true; break; default: err(1, "DIOCADDRULENV"); } } if (pf->opts & PF_OPT_VERBOSE) { INDENT(depth, !(pf->opts & PF_OPT_VERBOSE2)); print_rule(r, name, pf->opts & PF_OPT_VERBOSE2, pf->opts & PF_OPT_NUMERIC); if (was_present) printf(" -- rule was already present"); } path[len] = '\0'; pfctl_clear_pool(&r->rpool); return (0); } int pfctl_add_altq(struct pfctl *pf, struct pf_altq *a) { if (altqsupport && (loadopt & PFCTL_FLAG_ALTQ) != 0) { memcpy(&pf->paltq->altq, a, sizeof(struct pf_altq)); if ((pf->opts & PF_OPT_NOACTION) == 0) { if (ioctl(pf->dev, DIOCADDALTQ, pf->paltq)) { if (errno == ENXIO) errx(1, "qtype not configured"); else if (errno == ENODEV) errx(1, "%s: driver does not support " "altq", a->ifname); else err(1, "DIOCADDALTQ"); } } pfaltq_store(&pf->paltq->altq); } return (0); } int pfctl_rules(int dev, char *filename, int opts, int optimize, char *anchorname, struct pfr_buffer *trans) { #define ERR(x) do { warn(x); goto _error; } while(0) #define ERRX(x) do { warnx(x); goto _error; } while(0) struct pfr_buffer *t, buf; struct pfioc_altq pa; struct pfctl pf; struct pfctl_ruleset *rs; struct pfctl_eth_ruleset *ethrs; struct pfr_table trs; char *path; int osize; RB_INIT(&pf_anchors); memset(&pf_main_anchor, 0, sizeof(pf_main_anchor)); pf_init_ruleset(&pf_main_anchor.ruleset); pf_main_anchor.ruleset.anchor = &pf_main_anchor; memset(&pf_eth_main_anchor, 0, sizeof(pf_eth_main_anchor)); pf_init_eth_ruleset(&pf_eth_main_anchor.ruleset); pf_eth_main_anchor.ruleset.anchor = &pf_eth_main_anchor; if (trans == NULL) { bzero(&buf, sizeof(buf)); buf.pfrb_type = PFRB_TRANS; t = &buf; osize = 0; } else { t = trans; osize = t->pfrb_size; } memset(&pa, 0, sizeof(pa)); pa.version = PFIOC_ALTQ_VERSION; memset(&pf, 0, sizeof(pf)); memset(&trs, 0, sizeof(trs)); if ((path = calloc(1, MAXPATHLEN)) == NULL) ERRX("pfctl_rules: calloc"); if (strlcpy(trs.pfrt_anchor, anchorname, sizeof(trs.pfrt_anchor)) >= sizeof(trs.pfrt_anchor)) ERRX("pfctl_rules: strlcpy"); pf.dev = dev; pf.h = pfh; pf.opts = opts; pf.optimize = optimize; pf.loadopt = loadopt; /* non-brace anchor, create without resolving the path */ if ((pf.anchor = calloc(1, sizeof(*pf.anchor))) == NULL) ERRX("pfctl_rules: calloc"); rs = &pf.anchor->ruleset; pf_init_ruleset(rs); rs->anchor = pf.anchor; if (strlcpy(pf.anchor->path, anchorname, sizeof(pf.anchor->path)) >= sizeof(pf.anchor->path)) errx(1, "pfctl_rules: strlcpy"); if (strlcpy(pf.anchor->name, anchorname, sizeof(pf.anchor->name)) >= sizeof(pf.anchor->name)) errx(1, "pfctl_rules: strlcpy"); pf.astack[0] = pf.anchor; pf.asd = 0; if (anchorname[0]) pf.loadopt &= ~PFCTL_FLAG_ALTQ; pf.paltq = &pa; pf.trans = t; pfctl_init_options(&pf); /* Set up ethernet anchor */ if ((pf.eanchor = calloc(1, sizeof(*pf.eanchor))) == NULL) ERRX("pfctl_rules: calloc"); if (strlcpy(pf.eanchor->path, anchorname, sizeof(pf.eanchor->path)) >= sizeof(pf.eanchor->path)) errx(1, "pfctl_rules: strlcpy"); if (strlcpy(pf.eanchor->name, anchorname, sizeof(pf.eanchor->name)) >= sizeof(pf.eanchor->name)) errx(1, "pfctl_rules: strlcpy"); ethrs = &pf.eanchor->ruleset; pf_init_eth_ruleset(ethrs); ethrs->anchor = pf.eanchor; pf.eastack[0] = pf.eanchor; if ((opts & PF_OPT_NOACTION) == 0) { /* * XXX For the time being we need to open transactions for * the main ruleset before parsing, because tables are still * loaded at parse time. */ if (pfctl_ruleset_trans(&pf, anchorname, pf.anchor, true)) ERRX("pfctl_rules"); if (pf.loadopt & PFCTL_FLAG_ETH) pf.eth_ticket = pfctl_get_ticket(t, PF_RULESET_ETH, anchorname); if (altqsupport && (pf.loadopt & PFCTL_FLAG_ALTQ)) pa.ticket = pfctl_get_ticket(t, PF_RULESET_ALTQ, anchorname); if (pf.loadopt & PFCTL_FLAG_TABLE) pf.astack[0]->ruleset.tticket = pfctl_get_ticket(t, PF_RULESET_TABLE, anchorname); } if (parse_config(filename, &pf) < 0) { if ((opts & PF_OPT_NOACTION) == 0) ERRX("Syntax error in config file: " "pf rules not loaded"); else goto _error; } if (loadopt & PFCTL_FLAG_OPTION) pfctl_adjust_skip_ifaces(&pf); if ((pf.loadopt & PFCTL_FLAG_FILTER && (pfctl_load_ruleset(&pf, path, rs, PF_RULESET_SCRUB, 0))) || (pf.loadopt & PFCTL_FLAG_ETH && (pfctl_load_eth_ruleset(&pf, path, ethrs, 0))) || (pf.loadopt & PFCTL_FLAG_NAT && (pfctl_load_ruleset(&pf, path, rs, PF_RULESET_NAT, 0) || pfctl_load_ruleset(&pf, path, rs, PF_RULESET_RDR, 0) || pfctl_load_ruleset(&pf, path, rs, PF_RULESET_BINAT, 0))) || (pf.loadopt & PFCTL_FLAG_FILTER && pfctl_load_ruleset(&pf, path, rs, PF_RULESET_FILTER, 0))) { if ((opts & PF_OPT_NOACTION) == 0) ERRX("Unable to load rules into kernel"); else goto _error; } if ((altqsupport && (pf.loadopt & PFCTL_FLAG_ALTQ) != 0)) if (check_commit_altq(dev, opts) != 0) ERRX("errors in altq config"); /* process "load anchor" directives */ if (!anchorname[0]) if (pfctl_load_anchors(dev, &pf, t) == -1) ERRX("load anchors"); if (trans == NULL && (opts & PF_OPT_NOACTION) == 0) { if (!anchorname[0]) if (pfctl_load_options(&pf)) goto _error; if (pfctl_trans(dev, t, DIOCXCOMMIT, osize)) ERR("DIOCXCOMMIT"); } free(path); return (0); _error: if (trans == NULL) { /* main ruleset */ if ((opts & PF_OPT_NOACTION) == 0) if (pfctl_trans(dev, t, DIOCXROLLBACK, osize)) err(1, "DIOCXROLLBACK"); exit(1); } else { /* sub ruleset */ free(path); return (-1); } #undef ERR #undef ERRX } FILE * pfctl_fopen(const char *name, const char *mode) { struct stat st; FILE *fp; fp = fopen(name, mode); if (fp == NULL) return (NULL); if (fstat(fileno(fp), &st)) { fclose(fp); return (NULL); } if (S_ISDIR(st.st_mode)) { fclose(fp); errno = EISDIR; return (NULL); } return (fp); } void pfctl_init_options(struct pfctl *pf) { pf->timeout[PFTM_TCP_FIRST_PACKET] = PFTM_TCP_FIRST_PACKET_VAL; pf->timeout[PFTM_TCP_OPENING] = PFTM_TCP_OPENING_VAL; pf->timeout[PFTM_TCP_ESTABLISHED] = PFTM_TCP_ESTABLISHED_VAL; pf->timeout[PFTM_TCP_CLOSING] = PFTM_TCP_CLOSING_VAL; pf->timeout[PFTM_TCP_FIN_WAIT] = PFTM_TCP_FIN_WAIT_VAL; pf->timeout[PFTM_TCP_CLOSED] = PFTM_TCP_CLOSED_VAL; pf->timeout[PFTM_SCTP_FIRST_PACKET] = PFTM_TCP_FIRST_PACKET_VAL; pf->timeout[PFTM_SCTP_OPENING] = PFTM_TCP_OPENING_VAL; pf->timeout[PFTM_SCTP_ESTABLISHED] = PFTM_TCP_ESTABLISHED_VAL; pf->timeout[PFTM_SCTP_CLOSING] = PFTM_TCP_CLOSING_VAL; pf->timeout[PFTM_SCTP_CLOSED] = PFTM_TCP_CLOSED_VAL; pf->timeout[PFTM_UDP_FIRST_PACKET] = PFTM_UDP_FIRST_PACKET_VAL; pf->timeout[PFTM_UDP_SINGLE] = PFTM_UDP_SINGLE_VAL; pf->timeout[PFTM_UDP_MULTIPLE] = PFTM_UDP_MULTIPLE_VAL; pf->timeout[PFTM_ICMP_FIRST_PACKET] = PFTM_ICMP_FIRST_PACKET_VAL; pf->timeout[PFTM_ICMP_ERROR_REPLY] = PFTM_ICMP_ERROR_REPLY_VAL; pf->timeout[PFTM_OTHER_FIRST_PACKET] = PFTM_OTHER_FIRST_PACKET_VAL; pf->timeout[PFTM_OTHER_SINGLE] = PFTM_OTHER_SINGLE_VAL; pf->timeout[PFTM_OTHER_MULTIPLE] = PFTM_OTHER_MULTIPLE_VAL; pf->timeout[PFTM_FRAG] = PFTM_FRAG_VAL; pf->timeout[PFTM_INTERVAL] = PFTM_INTERVAL_VAL; pf->timeout[PFTM_SRC_NODE] = PFTM_SRC_NODE_VAL; pf->timeout[PFTM_TS_DIFF] = PFTM_TS_DIFF_VAL; pf->timeout[PFTM_ADAPTIVE_START] = PFSTATE_ADAPT_START; pf->timeout[PFTM_ADAPTIVE_END] = PFSTATE_ADAPT_END; pf->limit[PF_LIMIT_STATES] = PFSTATE_HIWAT; pf->limit[PF_LIMIT_FRAGS] = PFFRAG_FRENT_HIWAT; pf->limit[PF_LIMIT_SRC_NODES] = PFSNODE_HIWAT; pf->limit[PF_LIMIT_TABLE_ENTRIES] = PFR_KENTRY_HIWAT; pf->debug = PF_DEBUG_URGENT; pf->reassemble = 0; pf->syncookies = false; pf->syncookieswat[0] = PF_SYNCOOKIES_LOWATPCT; pf->syncookieswat[1] = PF_SYNCOOKIES_HIWATPCT; } int pfctl_load_options(struct pfctl *pf) { int i, error = 0; if ((loadopt & PFCTL_FLAG_OPTION) == 0) return (0); /* load limits */ for (i = 0; i < PF_LIMIT_MAX; i++) { if ((pf->opts & PF_OPT_MERGE) && !pf->limit_set[i]) continue; if (pfctl_load_limit(pf, i, pf->limit[i])) error = 1; } /* * If we've set the limit, but haven't explicitly set adaptive * timeouts, do it now with a start of 60% and end of 120%. */ if (pf->limit_set[PF_LIMIT_STATES] && !pf->timeout_set[PFTM_ADAPTIVE_START] && !pf->timeout_set[PFTM_ADAPTIVE_END]) { pf->timeout[PFTM_ADAPTIVE_START] = (pf->limit[PF_LIMIT_STATES] / 10) * 6; pf->timeout_set[PFTM_ADAPTIVE_START] = 1; pf->timeout[PFTM_ADAPTIVE_END] = (pf->limit[PF_LIMIT_STATES] / 10) * 12; pf->timeout_set[PFTM_ADAPTIVE_END] = 1; } /* load timeouts */ for (i = 0; i < PFTM_MAX; i++) { if ((pf->opts & PF_OPT_MERGE) && !pf->timeout_set[i]) continue; if (pfctl_load_timeout(pf, i, pf->timeout[i])) error = 1; } /* load debug */ if (!(pf->opts & PF_OPT_MERGE) || pf->debug_set) if (pfctl_load_debug(pf, pf->debug)) error = 1; /* load logif */ if (!(pf->opts & PF_OPT_MERGE) || pf->ifname_set) if (pfctl_load_logif(pf, pf->ifname)) error = 1; /* load hostid */ if (!(pf->opts & PF_OPT_MERGE) || pf->hostid_set) if (pfctl_load_hostid(pf, pf->hostid)) error = 1; /* load reassembly settings */ if (!(pf->opts & PF_OPT_MERGE) || pf->reass_set) if (pfctl_load_reassembly(pf, pf->reassemble)) error = 1; /* load keepcounters */ if (pfctl_set_keepcounters(pf->dev, pf->keep_counters)) error = 1; /* load syncookies settings */ if (pfctl_load_syncookies(pf, pf->syncookies)) error = 1; return (error); } int pfctl_apply_limit(struct pfctl *pf, const char *opt, unsigned int limit) { int i; for (i = 0; pf_limits[i].name; i++) { if (strcasecmp(opt, pf_limits[i].name) == 0) { pf->limit[pf_limits[i].index] = limit; pf->limit_set[pf_limits[i].index] = 1; break; } } if (pf_limits[i].name == NULL) { warnx("Bad pool name."); return (1); } if (pf->opts & PF_OPT_VERBOSE) printf("set limit %s %d\n", opt, limit); return (0); } int pfctl_load_limit(struct pfctl *pf, unsigned int index, unsigned int limit) { if (pfctl_set_limit(pf->h, index, limit)) { if (errno == EBUSY) warnx("Current pool size exceeds requested hard limit"); else warnx("DIOCSETLIMIT"); return (1); } return (0); } int pfctl_apply_timeout(struct pfctl *pf, const char *opt, int seconds, int quiet) { int i; if ((loadopt & PFCTL_FLAG_OPTION) == 0) return (0); for (i = 0; pf_timeouts[i].name; i++) { if (strcasecmp(opt, pf_timeouts[i].name) == 0) { pf->timeout[pf_timeouts[i].timeout] = seconds; pf->timeout_set[pf_timeouts[i].timeout] = 1; break; } } if (pf_timeouts[i].name == NULL) { warnx("Bad timeout name."); return (1); } if (pf->opts & PF_OPT_VERBOSE && ! quiet) printf("set timeout %s %d\n", opt, seconds); return (0); } int pfctl_load_timeout(struct pfctl *pf, unsigned int timeout, unsigned int seconds) { if (pfctl_set_timeout(pf->h, timeout, seconds)) { warnx("DIOCSETTIMEOUT"); return (1); } return (0); } int pfctl_set_reassembly(struct pfctl *pf, int on, int nodf) { if ((loadopt & PFCTL_FLAG_OPTION) == 0) return (0); pf->reass_set = 1; if (on) { pf->reassemble = PF_REASS_ENABLED; if (nodf) pf->reassemble |= PF_REASS_NODF; } else { pf->reassemble = 0; } if (pf->opts & PF_OPT_VERBOSE) printf("set reassemble %s %s\n", on ? "yes" : "no", nodf ? "no-df" : ""); return (0); } int pfctl_set_optimization(struct pfctl *pf, const char *opt) { const struct pf_hint *hint; int i, r; if ((loadopt & PFCTL_FLAG_OPTION) == 0) return (0); for (i = 0; pf_hints[i].name; i++) if (strcasecmp(opt, pf_hints[i].name) == 0) break; hint = pf_hints[i].hint; if (hint == NULL) { warnx("invalid state timeouts optimization"); return (1); } for (i = 0; hint[i].name; i++) if ((r = pfctl_apply_timeout(pf, hint[i].name, hint[i].timeout, 1))) return (r); if (pf->opts & PF_OPT_VERBOSE) printf("set optimization %s\n", opt); return (0); } int pfctl_set_logif(struct pfctl *pf, char *ifname) { if ((loadopt & PFCTL_FLAG_OPTION) == 0) return (0); if (!strcmp(ifname, "none")) { free(pf->ifname); pf->ifname = NULL; } else { pf->ifname = strdup(ifname); if (!pf->ifname) errx(1, "pfctl_set_logif: strdup"); } pf->ifname_set = 1; if (pf->opts & PF_OPT_VERBOSE) printf("set loginterface %s\n", ifname); return (0); } int pfctl_load_logif(struct pfctl *pf, char *ifname) { if (ifname != NULL && strlen(ifname) >= IFNAMSIZ) { warnx("pfctl_load_logif: strlcpy"); return (1); } return (pfctl_set_statusif(pfh, ifname ? ifname : "")); } int pfctl_set_hostid(struct pfctl *pf, u_int32_t hostid) { if ((loadopt & PFCTL_FLAG_OPTION) == 0) return (0); HTONL(hostid); pf->hostid = hostid; pf->hostid_set = 1; if (pf->opts & PF_OPT_VERBOSE) printf("set hostid 0x%08x\n", ntohl(hostid)); return (0); } int pfctl_load_hostid(struct pfctl *pf, u_int32_t hostid) { if (ioctl(dev, DIOCSETHOSTID, &hostid)) { warnx("DIOCSETHOSTID"); return (1); } return (0); } int pfctl_load_reassembly(struct pfctl *pf, u_int32_t reassembly) { if (ioctl(dev, DIOCSETREASS, &reassembly)) { warnx("DIOCSETREASS"); return (1); } return (0); } int pfctl_load_syncookies(struct pfctl *pf, u_int8_t val) { struct pfctl_syncookies cookies; bzero(&cookies, sizeof(cookies)); cookies.mode = val; cookies.lowwater = pf->syncookieswat[0]; cookies.highwater = pf->syncookieswat[1]; if (pfctl_set_syncookies(dev, &cookies)) { warnx("DIOCSETSYNCOOKIES"); return (1); } return (0); } int pfctl_cfg_syncookies(struct pfctl *pf, uint8_t val, struct pfctl_watermarks *w) { if (val != PF_SYNCOOKIES_ADAPTIVE && w != NULL) { warnx("syncookies start/end only apply to adaptive"); return (1); } if (val == PF_SYNCOOKIES_ADAPTIVE && w != NULL) { if (!w->hi) w->hi = PF_SYNCOOKIES_HIWATPCT; if (!w->lo) w->lo = w->hi / 2; if (w->lo >= w->hi) { warnx("start must be higher than end"); return (1); } pf->syncookieswat[0] = w->lo; pf->syncookieswat[1] = w->hi; pf->syncookieswat_set = 1; } if (pf->opts & PF_OPT_VERBOSE) { if (val == PF_SYNCOOKIES_NEVER) printf("set syncookies never\n"); else if (val == PF_SYNCOOKIES_ALWAYS) printf("set syncookies always\n"); else if (val == PF_SYNCOOKIES_ADAPTIVE) { if (pf->syncookieswat_set) printf("set syncookies adaptive (start %u%%, " "end %u%%)\n", pf->syncookieswat[1], pf->syncookieswat[0]); else printf("set syncookies adaptive\n"); } else { /* cannot happen */ warnx("king bula ate all syncookies"); return (1); } } pf->syncookies = val; return (0); } int pfctl_do_set_debug(struct pfctl *pf, char *d) { u_int32_t level; if ((loadopt & PFCTL_FLAG_OPTION) == 0) return (0); if (!strcmp(d, "none")) pf->debug = PF_DEBUG_NONE; else if (!strcmp(d, "urgent")) pf->debug = PF_DEBUG_URGENT; else if (!strcmp(d, "misc")) pf->debug = PF_DEBUG_MISC; else if (!strcmp(d, "loud")) pf->debug = PF_DEBUG_NOISY; else { warnx("unknown debug level \"%s\"", d); return (-1); } pf->debug_set = 1; level = pf->debug; if ((pf->opts & PF_OPT_NOACTION) == 0) if (pfctl_set_debug(pfh, level)) err(1, "DIOCSETDEBUG"); if (pf->opts & PF_OPT_VERBOSE) printf("set debug %s\n", d); return (0); } int pfctl_load_debug(struct pfctl *pf, unsigned int level) { if (pfctl_set_debug(pf->h, level)) { warnx("DIOCSETDEBUG"); return (1); } return (0); } int pfctl_set_interface_flags(struct pfctl *pf, char *ifname, int flags, int how) { struct pfioc_iface pi; struct node_host *h = NULL, *n = NULL; if ((loadopt & PFCTL_FLAG_OPTION) == 0) return (0); bzero(&pi, sizeof(pi)); pi.pfiio_flags = flags; /* Make sure our cache matches the kernel. If we set or clear the flag * for a group this applies to all members. */ h = ifa_grouplookup(ifname, 0); for (n = h; n != NULL; n = n->next) pfctl_set_interface_flags(pf, n->ifname, flags, how); if (strlcpy(pi.pfiio_name, ifname, sizeof(pi.pfiio_name)) >= sizeof(pi.pfiio_name)) errx(1, "pfctl_set_interface_flags: strlcpy"); if ((pf->opts & PF_OPT_NOACTION) == 0) { if (how == 0) { if (ioctl(pf->dev, DIOCCLRIFFLAG, &pi)) err(1, "DIOCCLRIFFLAG"); } else { if (ioctl(pf->dev, DIOCSETIFFLAG, &pi)) err(1, "DIOCSETIFFLAG"); pfctl_check_skip_ifaces(ifname); } } return (0); } void pfctl_debug(int dev, u_int32_t level, int opts) { if (pfctl_set_debug(pfh, level)) err(1, "DIOCSETDEBUG"); if ((opts & PF_OPT_QUIET) == 0) { fprintf(stderr, "debug level set to '"); switch (level) { case PF_DEBUG_NONE: fprintf(stderr, "none"); break; case PF_DEBUG_URGENT: fprintf(stderr, "urgent"); break; case PF_DEBUG_MISC: fprintf(stderr, "misc"); break; case PF_DEBUG_NOISY: fprintf(stderr, "loud"); break; default: fprintf(stderr, ""); break; } fprintf(stderr, "'\n"); } } int pfctl_test_altqsupport(int dev, int opts) { struct pfioc_altq pa; pa.version = PFIOC_ALTQ_VERSION; if (ioctl(dev, DIOCGETALTQS, &pa)) { if (errno == ENODEV) { if (opts & PF_OPT_VERBOSE) fprintf(stderr, "No ALTQ support in kernel\n" "ALTQ related functions disabled\n"); return (0); } else err(1, "DIOCGETALTQS"); } return (1); } int pfctl_show_anchors(int dev, int opts, char *anchorname) { struct pfioc_ruleset pr; u_int32_t mnr, nr; memset(&pr, 0, sizeof(pr)); memcpy(pr.path, anchorname, sizeof(pr.path)); if (ioctl(dev, DIOCGETRULESETS, &pr)) { if (errno == EINVAL) fprintf(stderr, "Anchor '%s' not found.\n", anchorname); else err(1, "DIOCGETRULESETS"); return (-1); } mnr = pr.nr; for (nr = 0; nr < mnr; ++nr) { char sub[MAXPATHLEN]; pr.nr = nr; if (ioctl(dev, DIOCGETRULESET, &pr)) err(1, "DIOCGETRULESET"); if (!strcmp(pr.name, PF_RESERVED_ANCHOR)) continue; sub[0] = 0; if (pr.path[0]) { strlcat(sub, pr.path, sizeof(sub)); strlcat(sub, "/", sizeof(sub)); } strlcat(sub, pr.name, sizeof(sub)); if (sub[0] != '_' || (opts & PF_OPT_VERBOSE)) printf(" %s\n", sub); if ((opts & PF_OPT_VERBOSE) && pfctl_show_anchors(dev, opts, sub)) return (-1); } return (0); } int pfctl_show_eth_anchors(int dev, int opts, char *anchorname) { struct pfctl_eth_rulesets_info ri; struct pfctl_eth_ruleset_info rs; int ret; if ((ret = pfctl_get_eth_rulesets_info(dev, &ri, anchorname)) != 0) { if (ret == ENOENT) fprintf(stderr, "Anchor '%s' not found.\n", anchorname); else err(1, "DIOCGETETHRULESETS"); return (-1); } for (int nr = 0; nr < ri.nr; nr++) { char sub[MAXPATHLEN]; if (pfctl_get_eth_ruleset(dev, anchorname, nr, &rs) != 0) err(1, "DIOCGETETHRULESET"); if (!strcmp(rs.name, PF_RESERVED_ANCHOR)) continue; sub[0] = 0; if (rs.path[0]) { strlcat(sub, rs.path, sizeof(sub)); strlcat(sub, "/", sizeof(sub)); } strlcat(sub, rs.name, sizeof(sub)); if (sub[0] != '_' || (opts & PF_OPT_VERBOSE)) printf(" %s\n", sub); if ((opts & PF_OPT_VERBOSE) && pfctl_show_eth_anchors(dev, opts, sub)) return (-1); } return (0); } const char * pfctl_lookup_option(char *cmd, const char * const *list) { if (cmd != NULL && *cmd) for (; *list; list++) if (!strncmp(cmd, *list, strlen(cmd))) return (*list); return (NULL); } int main(int argc, char *argv[]) { int error = 0; int ch; int mode = O_RDONLY; int opts = 0; int optimize = PF_OPTIMIZE_BASIC; char anchorname[MAXPATHLEN]; char *path; if (argc < 2) usage(); while ((ch = getopt(argc, argv, "a:AdD:eqf:F:ghi:k:K:mMnNOo:Pp:rRs:t:T:vx:z")) != -1) { switch (ch) { case 'a': anchoropt = optarg; break; case 'd': opts |= PF_OPT_DISABLE; mode = O_RDWR; break; case 'D': if (pfctl_cmdline_symset(optarg) < 0) warnx("could not parse macro definition %s", optarg); break; case 'e': opts |= PF_OPT_ENABLE; mode = O_RDWR; break; case 'q': opts |= PF_OPT_QUIET; break; case 'F': clearopt = pfctl_lookup_option(optarg, clearopt_list); if (clearopt == NULL) { warnx("Unknown flush modifier '%s'", optarg); usage(); } mode = O_RDWR; break; case 'i': ifaceopt = optarg; break; case 'k': if (state_killers >= 2) { warnx("can only specify -k twice"); usage(); /* NOTREACHED */ } state_kill[state_killers++] = optarg; mode = O_RDWR; break; case 'K': if (src_node_killers >= 2) { warnx("can only specify -K twice"); usage(); /* NOTREACHED */ } src_node_kill[src_node_killers++] = optarg; mode = O_RDWR; break; case 'm': opts |= PF_OPT_MERGE; break; case 'M': opts |= PF_OPT_KILLMATCH; break; case 'n': opts |= PF_OPT_NOACTION; break; case 'N': loadopt |= PFCTL_FLAG_NAT; break; case 'r': opts |= PF_OPT_USEDNS; break; case 'f': rulesopt = optarg; mode = O_RDWR; break; case 'g': opts |= PF_OPT_DEBUG; break; case 'A': loadopt |= PFCTL_FLAG_ALTQ; break; case 'R': loadopt |= PFCTL_FLAG_FILTER; break; case 'o': optiopt = pfctl_lookup_option(optarg, optiopt_list); if (optiopt == NULL) { warnx("Unknown optimization '%s'", optarg); usage(); } opts |= PF_OPT_OPTIMIZE; break; case 'O': loadopt |= PFCTL_FLAG_OPTION; break; case 'p': pf_device = optarg; break; case 'P': opts |= PF_OPT_NUMERIC; break; case 's': showopt = pfctl_lookup_option(optarg, showopt_list); if (showopt == NULL) { warnx("Unknown show modifier '%s'", optarg); usage(); } break; case 't': tableopt = optarg; break; case 'T': tblcmdopt = pfctl_lookup_option(optarg, tblcmdopt_list); if (tblcmdopt == NULL) { warnx("Unknown table command '%s'", optarg); usage(); } break; case 'v': if (opts & PF_OPT_VERBOSE) opts |= PF_OPT_VERBOSE2; opts |= PF_OPT_VERBOSE; break; case 'x': debugopt = pfctl_lookup_option(optarg, debugopt_list); if (debugopt == NULL) { warnx("Unknown debug level '%s'", optarg); usage(); } mode = O_RDWR; break; case 'z': opts |= PF_OPT_CLRRULECTRS; mode = O_RDWR; break; case 'h': /* FALLTHROUGH */ default: usage(); /* NOTREACHED */ } } if (tblcmdopt != NULL) { argc -= optind; argv += optind; ch = *tblcmdopt; if (ch == 'l') { loadopt |= PFCTL_FLAG_TABLE; tblcmdopt = NULL; } else mode = strchr("acdefkrz", ch) ? O_RDWR : O_RDONLY; } else if (argc != optind) { warnx("unknown command line argument: %s ...", argv[optind]); usage(); /* NOTREACHED */ } if (loadopt == 0) loadopt = ~0; if ((path = calloc(1, MAXPATHLEN)) == NULL) errx(1, "pfctl: calloc"); memset(anchorname, 0, sizeof(anchorname)); if (anchoropt != NULL) { int len = strlen(anchoropt); if (len >= 1 && anchoropt[len - 1] == '*') { if (len >= 2 && anchoropt[len - 2] == '/') anchoropt[len - 2] = '\0'; else anchoropt[len - 1] = '\0'; opts |= PF_OPT_RECURSE; } if (strlcpy(anchorname, anchoropt, sizeof(anchorname)) >= sizeof(anchorname)) errx(1, "anchor name '%s' too long", anchoropt); loadopt &= PFCTL_FLAG_FILTER|PFCTL_FLAG_NAT|PFCTL_FLAG_TABLE|PFCTL_FLAG_ETH; } if ((opts & PF_OPT_NOACTION) == 0) { dev = open(pf_device, mode); if (dev == -1) err(1, "%s", pf_device); altqsupport = pfctl_test_altqsupport(dev, opts); } else { dev = open(pf_device, O_RDONLY); if (dev >= 0) opts |= PF_OPT_DUMMYACTION; /* turn off options */ opts &= ~ (PF_OPT_DISABLE | PF_OPT_ENABLE); clearopt = showopt = debugopt = NULL; #if !defined(ENABLE_ALTQ) altqsupport = 0; #else altqsupport = 1; #endif } pfh = pfctl_open(pf_device); if (pfh == NULL) err(1, "Failed to open netlink"); if (opts & PF_OPT_DISABLE) if (pfctl_disable(dev, opts)) error = 1; if (showopt != NULL) { switch (*showopt) { case 'A': pfctl_show_anchors(dev, opts, anchorname); if (opts & PF_OPT_VERBOSE2) printf("Ethernet:\n"); pfctl_show_eth_anchors(dev, opts, anchorname); break; case 'r': pfctl_load_fingerprints(dev, opts); pfctl_show_rules(dev, path, opts, PFCTL_SHOW_RULES, anchorname, 0, 0); break; case 'l': pfctl_load_fingerprints(dev, opts); pfctl_show_rules(dev, path, opts, PFCTL_SHOW_LABELS, anchorname, 0, 0); break; case 'n': pfctl_load_fingerprints(dev, opts); pfctl_show_nat(dev, path, opts, anchorname, 0, 0); break; case 'q': pfctl_show_altq(dev, ifaceopt, opts, opts & PF_OPT_VERBOSE2); break; case 's': pfctl_show_states(dev, ifaceopt, opts); break; case 'S': pfctl_show_src_nodes(dev, opts); break; case 'i': pfctl_show_status(dev, opts); break; case 'R': error = pfctl_show_running(dev); break; case 't': pfctl_show_timeouts(dev, opts); break; case 'm': pfctl_show_limits(dev, opts); break; case 'e': pfctl_show_eth_rules(dev, path, opts, 0, anchorname, 0, 0); break; case 'a': opts |= PF_OPT_SHOWALL; pfctl_load_fingerprints(dev, opts); pfctl_show_eth_rules(dev, path, opts, 0, anchorname, 0, 0); pfctl_show_nat(dev, path, opts, anchorname, 0, 0); pfctl_show_rules(dev, path, opts, 0, anchorname, 0, 0); pfctl_show_altq(dev, ifaceopt, opts, 0); pfctl_show_states(dev, ifaceopt, opts); pfctl_show_src_nodes(dev, opts); pfctl_show_status(dev, opts); pfctl_show_rules(dev, path, opts, 1, anchorname, 0, 0); pfctl_show_timeouts(dev, opts); pfctl_show_limits(dev, opts); pfctl_show_tables(anchorname, opts); pfctl_show_fingerprints(opts); break; case 'T': pfctl_show_tables(anchorname, opts); break; case 'o': pfctl_load_fingerprints(dev, opts); pfctl_show_fingerprints(opts); break; case 'I': pfctl_show_ifaces(ifaceopt, opts); break; case 'c': pfctl_show_creators(opts); break; } } if ((opts & PF_OPT_CLRRULECTRS) && showopt == NULL) { pfctl_show_eth_rules(dev, path, opts, PFCTL_SHOW_NOTHING, anchorname, 0, 0); pfctl_show_rules(dev, path, opts, PFCTL_SHOW_NOTHING, anchorname, 0, 0); } if (clearopt != NULL) { if (anchorname[0] == '_' || strstr(anchorname, "/_") != NULL) errx(1, "anchor names beginning with '_' cannot " "be modified from the command line"); switch (*clearopt) { case 'e': pfctl_flush_eth_rules(dev, opts, anchorname); break; case 'r': pfctl_flush_rules(dev, opts, anchorname); break; case 'n': pfctl_flush_nat(dev, opts, anchorname); break; case 'q': pfctl_clear_altq(dev, opts); break; case 's': pfctl_clear_iface_states(dev, ifaceopt, opts); break; case 'S': pfctl_clear_src_nodes(dev, opts); break; case 'i': pfctl_clear_stats(pfh, opts); break; case 'a': pfctl_flush_eth_rules(dev, opts, anchorname); pfctl_flush_rules(dev, opts, anchorname); pfctl_flush_nat(dev, opts, anchorname); pfctl_clear_tables(anchorname, opts); if (!*anchorname) { pfctl_clear_altq(dev, opts); pfctl_clear_iface_states(dev, ifaceopt, opts); pfctl_clear_src_nodes(dev, opts); pfctl_clear_stats(pfh, opts); pfctl_clear_fingerprints(dev, opts); pfctl_clear_interface_flags(dev, opts); } break; case 'o': pfctl_clear_fingerprints(dev, opts); break; case 'T': pfctl_clear_tables(anchorname, opts); break; } } if (state_killers) { if (!strcmp(state_kill[0], "label")) pfctl_label_kill_states(dev, ifaceopt, opts); else if (!strcmp(state_kill[0], "id")) pfctl_id_kill_states(dev, ifaceopt, opts); else if (!strcmp(state_kill[0], "gateway")) pfctl_gateway_kill_states(dev, ifaceopt, opts); else pfctl_net_kill_states(dev, ifaceopt, opts); } if (src_node_killers) pfctl_kill_src_nodes(dev, ifaceopt, opts); if (tblcmdopt != NULL) { error = pfctl_command_tables(argc, argv, tableopt, tblcmdopt, rulesopt, anchorname, opts); rulesopt = NULL; } if (optiopt != NULL) { switch (*optiopt) { case 'n': optimize = 0; break; case 'b': optimize |= PF_OPTIMIZE_BASIC; break; case 'o': case 'p': optimize |= PF_OPTIMIZE_PROFILE; break; } } if ((rulesopt != NULL) && (loadopt & PFCTL_FLAG_OPTION) && !anchorname[0] && !(opts & PF_OPT_NOACTION)) if (pfctl_get_skip_ifaces()) error = 1; if (rulesopt != NULL && !(opts & (PF_OPT_MERGE|PF_OPT_NOACTION)) && !anchorname[0] && (loadopt & PFCTL_FLAG_OPTION)) if (pfctl_file_fingerprints(dev, opts, PF_OSFP_FILE)) error = 1; if (rulesopt != NULL) { if (anchorname[0] == '_' || strstr(anchorname, "/_") != NULL) errx(1, "anchor names beginning with '_' cannot " "be modified from the command line"); if (pfctl_rules(dev, rulesopt, opts, optimize, anchorname, NULL)) error = 1; else if (!(opts & PF_OPT_NOACTION) && (loadopt & PFCTL_FLAG_TABLE)) warn_namespace_collision(NULL); } if (opts & PF_OPT_ENABLE) if (pfctl_enable(dev, opts)) error = 1; if (debugopt != NULL) { switch (*debugopt) { case 'n': pfctl_debug(dev, PF_DEBUG_NONE, opts); break; case 'u': pfctl_debug(dev, PF_DEBUG_URGENT, opts); break; case 'm': pfctl_debug(dev, PF_DEBUG_MISC, opts); break; case 'l': pfctl_debug(dev, PF_DEBUG_NOISY, opts); break; } } exit(error); } diff --git a/sys/net/pfvar.h b/sys/net/pfvar.h index b38a1bebcc1f..291acce19327 100644 --- a/sys/net/pfvar.h +++ b/sys/net/pfvar.h @@ -1,2594 +1,2595 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $OpenBSD: pfvar.h,v 1.282 2009/01/29 15:12:28 pyr Exp $ */ #ifndef _NET_PFVAR_H_ #define _NET_PFVAR_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include #include #endif #include #include #include #ifdef _KERNEL #if defined(__arm__) #define PF_WANT_32_TO_64_COUNTER #endif /* * A hybrid of 32-bit and 64-bit counters which can be used on platforms where * counter(9) is very expensive. * * As 32-bit counters are expected to overflow, a periodic job sums them up to * a saved 64-bit state. Fetching the value still walks all CPUs to get the most * current snapshot. */ #ifdef PF_WANT_32_TO_64_COUNTER struct pf_counter_u64_pcpu { u_int32_t current; u_int32_t snapshot; }; struct pf_counter_u64 { struct pf_counter_u64_pcpu *pfcu64_pcpu; u_int64_t pfcu64_value; seqc_t pfcu64_seqc; }; static inline int pf_counter_u64_init(struct pf_counter_u64 *pfcu64, int flags) { pfcu64->pfcu64_value = 0; pfcu64->pfcu64_seqc = 0; pfcu64->pfcu64_pcpu = uma_zalloc_pcpu(pcpu_zone_8, flags | M_ZERO); if (__predict_false(pfcu64->pfcu64_pcpu == NULL)) return (ENOMEM); return (0); } static inline void pf_counter_u64_deinit(struct pf_counter_u64 *pfcu64) { uma_zfree_pcpu(pcpu_zone_8, pfcu64->pfcu64_pcpu); } static inline void pf_counter_u64_critical_enter(void) { critical_enter(); } static inline void pf_counter_u64_critical_exit(void) { critical_exit(); } static inline void pf_counter_u64_rollup_protected(struct pf_counter_u64 *pfcu64, uint64_t n) { MPASS(curthread->td_critnest > 0); pfcu64->pfcu64_value += n; } static inline void pf_counter_u64_add_protected(struct pf_counter_u64 *pfcu64, uint32_t n) { struct pf_counter_u64_pcpu *pcpu; u_int32_t val; MPASS(curthread->td_critnest > 0); pcpu = zpcpu_get(pfcu64->pfcu64_pcpu); val = atomic_load_int(&pcpu->current); atomic_store_int(&pcpu->current, val + n); } static inline void pf_counter_u64_add(struct pf_counter_u64 *pfcu64, uint32_t n) { critical_enter(); pf_counter_u64_add_protected(pfcu64, n); critical_exit(); } static inline u_int64_t pf_counter_u64_periodic(struct pf_counter_u64 *pfcu64) { struct pf_counter_u64_pcpu *pcpu; u_int64_t sum; u_int32_t val; int cpu; MPASS(curthread->td_critnest > 0); seqc_write_begin(&pfcu64->pfcu64_seqc); sum = pfcu64->pfcu64_value; CPU_FOREACH(cpu) { pcpu = zpcpu_get_cpu(pfcu64->pfcu64_pcpu, cpu); val = atomic_load_int(&pcpu->current); sum += (uint32_t)(val - pcpu->snapshot); pcpu->snapshot = val; } pfcu64->pfcu64_value = sum; seqc_write_end(&pfcu64->pfcu64_seqc); return (sum); } static inline u_int64_t pf_counter_u64_fetch(const struct pf_counter_u64 *pfcu64) { struct pf_counter_u64_pcpu *pcpu; u_int64_t sum; seqc_t seqc; int cpu; for (;;) { seqc = seqc_read(&pfcu64->pfcu64_seqc); sum = 0; CPU_FOREACH(cpu) { pcpu = zpcpu_get_cpu(pfcu64->pfcu64_pcpu, cpu); sum += (uint32_t)(atomic_load_int(&pcpu->current) -pcpu->snapshot); } sum += pfcu64->pfcu64_value; if (seqc_consistent(&pfcu64->pfcu64_seqc, seqc)) break; } return (sum); } static inline void pf_counter_u64_zero_protected(struct pf_counter_u64 *pfcu64) { struct pf_counter_u64_pcpu *pcpu; int cpu; MPASS(curthread->td_critnest > 0); seqc_write_begin(&pfcu64->pfcu64_seqc); CPU_FOREACH(cpu) { pcpu = zpcpu_get_cpu(pfcu64->pfcu64_pcpu, cpu); pcpu->snapshot = atomic_load_int(&pcpu->current); } pfcu64->pfcu64_value = 0; seqc_write_end(&pfcu64->pfcu64_seqc); } static inline void pf_counter_u64_zero(struct pf_counter_u64 *pfcu64) { critical_enter(); pf_counter_u64_zero_protected(pfcu64); critical_exit(); } #else struct pf_counter_u64 { counter_u64_t counter; }; static inline int pf_counter_u64_init(struct pf_counter_u64 *pfcu64, int flags) { pfcu64->counter = counter_u64_alloc(flags); if (__predict_false(pfcu64->counter == NULL)) return (ENOMEM); return (0); } static inline void pf_counter_u64_deinit(struct pf_counter_u64 *pfcu64) { counter_u64_free(pfcu64->counter); } static inline void pf_counter_u64_critical_enter(void) { } static inline void pf_counter_u64_critical_exit(void) { } static inline void pf_counter_u64_rollup_protected(struct pf_counter_u64 *pfcu64, uint64_t n) { counter_u64_add(pfcu64->counter, n); } static inline void pf_counter_u64_add_protected(struct pf_counter_u64 *pfcu64, uint32_t n) { counter_u64_add(pfcu64->counter, n); } static inline void pf_counter_u64_add(struct pf_counter_u64 *pfcu64, uint32_t n) { pf_counter_u64_add_protected(pfcu64, n); } static inline u_int64_t pf_counter_u64_fetch(const struct pf_counter_u64 *pfcu64) { return (counter_u64_fetch(pfcu64->counter)); } static inline void pf_counter_u64_zero_protected(struct pf_counter_u64 *pfcu64) { counter_u64_zero(pfcu64->counter); } static inline void pf_counter_u64_zero(struct pf_counter_u64 *pfcu64) { pf_counter_u64_zero_protected(pfcu64); } #endif #define pf_get_timestamp(prule)({ \ uint32_t _ts = 0; \ uint32_t __ts; \ int cpu; \ CPU_FOREACH(cpu) { \ __ts = *zpcpu_get_cpu(prule->timestamp, cpu); \ if (__ts > _ts) \ _ts = __ts; \ } \ _ts; \ }) #define pf_update_timestamp(prule) \ do { \ critical_enter(); \ *zpcpu_get((prule)->timestamp) = time_second; \ critical_exit(); \ } while (0) #define pf_timestamp_pcpu_zone (sizeof(time_t) == 4 ? pcpu_zone_4 : pcpu_zone_8) _Static_assert(sizeof(time_t) == 4 || sizeof(time_t) == 8, "unexpected time_t size"); SYSCTL_DECL(_net_pf); MALLOC_DECLARE(M_PFHASH); MALLOC_DECLARE(M_PF_RULE_ITEM); SDT_PROVIDER_DECLARE(pf); struct pfi_dynaddr { TAILQ_ENTRY(pfi_dynaddr) entry; struct pf_addr pfid_addr4; struct pf_addr pfid_mask4; struct pf_addr pfid_addr6; struct pf_addr pfid_mask6; struct pfr_ktable *pfid_kt; struct pfi_kkif *pfid_kif; int pfid_net; /* mask or 128 */ int pfid_acnt4; /* address count IPv4 */ int pfid_acnt6; /* address count IPv6 */ sa_family_t pfid_af; /* rule af */ u_int8_t pfid_iflags; /* PFI_AFLAG_* */ }; /* * Address manipulation macros */ #define HTONL(x) (x) = htonl((__uint32_t)(x)) #define HTONS(x) (x) = htons((__uint16_t)(x)) #define NTOHL(x) (x) = ntohl((__uint32_t)(x)) #define NTOHS(x) (x) = ntohs((__uint16_t)(x)) #define PF_NAME "pf" #define PF_HASHROW_ASSERT(h) mtx_assert(&(h)->lock, MA_OWNED) #define PF_HASHROW_LOCK(h) mtx_lock(&(h)->lock) #define PF_HASHROW_UNLOCK(h) mtx_unlock(&(h)->lock) #ifdef INVARIANTS #define PF_STATE_LOCK(s) \ do { \ struct pf_kstate *_s = (s); \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(_s)]; \ MPASS(_s->lock == &_ih->lock); \ mtx_lock(_s->lock); \ } while (0) #define PF_STATE_UNLOCK(s) \ do { \ struct pf_kstate *_s = (s); \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(_s)]; \ MPASS(_s->lock == &_ih->lock); \ mtx_unlock(_s->lock); \ } while (0) #else #define PF_STATE_LOCK(s) mtx_lock(s->lock) #define PF_STATE_UNLOCK(s) mtx_unlock(s->lock) #endif #ifdef INVARIANTS #define PF_STATE_LOCK_ASSERT(s) \ do { \ struct pf_kstate *_s = (s); \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(_s)]; \ MPASS(_s->lock == &_ih->lock); \ PF_HASHROW_ASSERT(_ih); \ } while (0) #else /* !INVARIANTS */ #define PF_STATE_LOCK_ASSERT(s) do {} while (0) #endif /* INVARIANTS */ #ifdef INVARIANTS #define PF_SRC_NODE_LOCK(sn) \ do { \ struct pf_ksrc_node *_sn = (sn); \ struct pf_srchash *_sh = &V_pf_srchash[ \ pf_hashsrc(&_sn->addr, _sn->af)]; \ MPASS(_sn->lock == &_sh->lock); \ mtx_lock(_sn->lock); \ } while (0) #define PF_SRC_NODE_UNLOCK(sn) \ do { \ struct pf_ksrc_node *_sn = (sn); \ struct pf_srchash *_sh = &V_pf_srchash[ \ pf_hashsrc(&_sn->addr, _sn->af)]; \ MPASS(_sn->lock == &_sh->lock); \ mtx_unlock(_sn->lock); \ } while (0) #else #define PF_SRC_NODE_LOCK(sn) mtx_lock((sn)->lock) #define PF_SRC_NODE_UNLOCK(sn) mtx_unlock((sn)->lock) #endif #ifdef INVARIANTS #define PF_SRC_NODE_LOCK_ASSERT(sn) \ do { \ struct pf_ksrc_node *_sn = (sn); \ struct pf_srchash *_sh = &V_pf_srchash[ \ pf_hashsrc(&_sn->addr, _sn->af)]; \ MPASS(_sn->lock == &_sh->lock); \ PF_HASHROW_ASSERT(_sh); \ } while (0) #else /* !INVARIANTS */ #define PF_SRC_NODE_LOCK_ASSERT(sn) do {} while (0) #endif /* INVARIANTS */ extern struct mtx_padalign pf_unlnkdrules_mtx; #define PF_UNLNKDRULES_LOCK() mtx_lock(&pf_unlnkdrules_mtx) #define PF_UNLNKDRULES_UNLOCK() mtx_unlock(&pf_unlnkdrules_mtx) #define PF_UNLNKDRULES_ASSERT() mtx_assert(&pf_unlnkdrules_mtx, MA_OWNED) extern struct sx pf_config_lock; #define PF_CONFIG_LOCK() sx_xlock(&pf_config_lock) #define PF_CONFIG_UNLOCK() sx_xunlock(&pf_config_lock) #define PF_CONFIG_ASSERT() sx_assert(&pf_config_lock, SA_XLOCKED) VNET_DECLARE(struct rmlock, pf_rules_lock); #define V_pf_rules_lock VNET(pf_rules_lock) #define PF_RULES_RLOCK_TRACKER struct rm_priotracker _pf_rules_tracker #define PF_RULES_RLOCK() rm_rlock(&V_pf_rules_lock, &_pf_rules_tracker) #define PF_RULES_RUNLOCK() rm_runlock(&V_pf_rules_lock, &_pf_rules_tracker) #define PF_RULES_WLOCK() rm_wlock(&V_pf_rules_lock) #define PF_RULES_WUNLOCK() rm_wunlock(&V_pf_rules_lock) #define PF_RULES_WOWNED() rm_wowned(&V_pf_rules_lock) #define PF_RULES_ASSERT() rm_assert(&V_pf_rules_lock, RA_LOCKED) #define PF_RULES_RASSERT() rm_assert(&V_pf_rules_lock, RA_RLOCKED) #define PF_RULES_WASSERT() rm_assert(&V_pf_rules_lock, RA_WLOCKED) extern struct mtx_padalign pf_table_stats_lock; #define PF_TABLE_STATS_LOCK() mtx_lock(&pf_table_stats_lock) #define PF_TABLE_STATS_UNLOCK() mtx_unlock(&pf_table_stats_lock) #define PF_TABLE_STATS_OWNED() mtx_owned(&pf_table_stats_lock) #define PF_TABLE_STATS_ASSERT() mtx_assert(&pf_table_stats_lock, MA_OWNED) extern struct sx pf_end_lock; #define PF_MODVER 1 #define PFLOG_MODVER 1 #define PFSYNC_MODVER 1 #define PFLOG_MINVER 1 #define PFLOG_PREFVER PFLOG_MODVER #define PFLOG_MAXVER 1 #define PFSYNC_MINVER 1 #define PFSYNC_PREFVER PFSYNC_MODVER #define PFSYNC_MAXVER 1 #ifdef INET #ifndef INET6 #define PF_INET_ONLY #endif /* ! INET6 */ #endif /* INET */ #ifdef INET6 #ifndef INET #define PF_INET6_ONLY #endif /* ! INET */ #endif /* INET6 */ #ifdef INET #ifdef INET6 #define PF_INET_INET6 #endif /* INET6 */ #endif /* INET */ #else #define PF_INET_INET6 #endif /* _KERNEL */ /* Both IPv4 and IPv6 */ #ifdef PF_INET_INET6 #define PF_AEQ(a, b, c) \ ((c == AF_INET && (a)->addr32[0] == (b)->addr32[0]) || \ (c == AF_INET6 && (a)->addr32[3] == (b)->addr32[3] && \ (a)->addr32[2] == (b)->addr32[2] && \ (a)->addr32[1] == (b)->addr32[1] && \ (a)->addr32[0] == (b)->addr32[0])) \ #define PF_ANEQ(a, b, c) \ ((c == AF_INET && (a)->addr32[0] != (b)->addr32[0]) || \ (c == AF_INET6 && ((a)->addr32[0] != (b)->addr32[0] || \ (a)->addr32[1] != (b)->addr32[1] || \ (a)->addr32[2] != (b)->addr32[2] || \ (a)->addr32[3] != (b)->addr32[3]))) \ #define PF_AZERO(a, c) \ ((c == AF_INET && !(a)->addr32[0]) || \ (c == AF_INET6 && !(a)->addr32[0] && !(a)->addr32[1] && \ !(a)->addr32[2] && !(a)->addr32[3] )) \ #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ pf_addrcpy(a, b, f) #define PF_AINC(a, f) \ pf_addr_inc(a, f) #define PF_POOLMASK(a, b, c, d, f) \ pf_poolmask(a, b, c, d, f) #else /* Just IPv6 */ #ifdef PF_INET6_ONLY #define PF_AEQ(a, b, c) \ ((a)->addr32[3] == (b)->addr32[3] && \ (a)->addr32[2] == (b)->addr32[2] && \ (a)->addr32[1] == (b)->addr32[1] && \ (a)->addr32[0] == (b)->addr32[0]) \ #define PF_ANEQ(a, b, c) \ ((a)->addr32[3] != (b)->addr32[3] || \ (a)->addr32[2] != (b)->addr32[2] || \ (a)->addr32[1] != (b)->addr32[1] || \ (a)->addr32[0] != (b)->addr32[0]) \ #define PF_AZERO(a, c) \ (!(a)->addr32[0] && \ !(a)->addr32[1] && \ !(a)->addr32[2] && \ !(a)->addr32[3] ) \ #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ pf_addrcpy(a, b, f) #define PF_AINC(a, f) \ pf_addr_inc(a, f) #define PF_POOLMASK(a, b, c, d, f) \ pf_poolmask(a, b, c, d, f) #else /* Just IPv4 */ #ifdef PF_INET_ONLY #define PF_AEQ(a, b, c) \ ((a)->addr32[0] == (b)->addr32[0]) #define PF_ANEQ(a, b, c) \ ((a)->addr32[0] != (b)->addr32[0]) #define PF_AZERO(a, c) \ (!(a)->addr32[0]) #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ (a)->v4.s_addr = (b)->v4.s_addr #define PF_AINC(a, f) \ do { \ (a)->addr32[0] = htonl(ntohl((a)->addr32[0]) + 1); \ } while (0) #define PF_POOLMASK(a, b, c, d, f) \ do { \ (a)->addr32[0] = ((b)->addr32[0] & (c)->addr32[0]) | \ (((c)->addr32[0] ^ 0xffffffff ) & (d)->addr32[0]); \ } while (0) #endif /* PF_INET_ONLY */ #endif /* PF_INET6_ONLY */ #endif /* PF_INET_INET6 */ /* * XXX callers not FIB-aware in our version of pf yet. * OpenBSD fixed it later it seems, 2010/05/07 13:33:16 claudio. */ #define PF_MISMATCHAW(aw, x, af, neg, ifp, rtid) \ ( \ (((aw)->type == PF_ADDR_NOROUTE && \ pf_routable((x), (af), NULL, (rtid))) || \ (((aw)->type == PF_ADDR_URPFFAILED && (ifp) != NULL && \ pf_routable((x), (af), (ifp), (rtid))) || \ ((aw)->type == PF_ADDR_TABLE && \ !pfr_match_addr((aw)->p.tbl, (x), (af))) || \ ((aw)->type == PF_ADDR_DYNIFTL && \ !pfi_match_addr((aw)->p.dyn, (x), (af))) || \ ((aw)->type == PF_ADDR_RANGE && \ !pf_match_addr_range(&(aw)->v.a.addr, \ &(aw)->v.a.mask, (x), (af))) || \ ((aw)->type == PF_ADDR_ADDRMASK && \ !PF_AZERO(&(aw)->v.a.mask, (af)) && \ !PF_MATCHA(0, &(aw)->v.a.addr, \ &(aw)->v.a.mask, (x), (af))))) != \ (neg) \ ) #define PF_ALGNMNT(off) (((off) % 2) == 0) #ifdef _KERNEL struct pf_kpooladdr { struct pf_addr_wrap addr; TAILQ_ENTRY(pf_kpooladdr) entries; char ifname[IFNAMSIZ]; struct pfi_kkif *kif; }; TAILQ_HEAD(pf_kpalist, pf_kpooladdr); struct pf_kpool { struct mtx mtx; struct pf_kpalist list; struct pf_kpooladdr *cur; struct pf_poolhashkey key; struct pf_addr counter; struct pf_mape_portset mape; int tblidx; u_int16_t proxy_port[2]; u_int8_t opts; }; struct pf_rule_actions { int32_t rtableid; uint16_t qid; uint16_t pqid; uint16_t max_mss; uint8_t log; uint8_t set_tos; uint8_t min_ttl; uint16_t dnpipe; uint16_t dnrpipe; /* Reverse direction pipe */ uint32_t flags; uint8_t set_prio[2]; }; union pf_keth_rule_ptr { struct pf_keth_rule *ptr; uint32_t nr; }; struct pf_keth_rule_addr { uint8_t addr[ETHER_ADDR_LEN]; uint8_t mask[ETHER_ADDR_LEN]; bool neg; uint8_t isset; }; struct pf_keth_anchor; TAILQ_HEAD(pf_keth_ruleq, pf_keth_rule); struct pf_keth_ruleset { struct pf_keth_ruleq rules[2]; struct pf_keth_rules { struct pf_keth_ruleq *rules; int open; uint32_t ticket; } active, inactive; struct epoch_context epoch_ctx; struct vnet *vnet; struct pf_keth_anchor *anchor; }; RB_HEAD(pf_keth_anchor_global, pf_keth_anchor); RB_HEAD(pf_keth_anchor_node, pf_keth_anchor); struct pf_keth_anchor { RB_ENTRY(pf_keth_anchor) entry_node; RB_ENTRY(pf_keth_anchor) entry_global; struct pf_keth_anchor *parent; struct pf_keth_anchor_node children; char name[PF_ANCHOR_NAME_SIZE]; char path[MAXPATHLEN]; struct pf_keth_ruleset ruleset; int refcnt; /* anchor rules */ uint8_t anchor_relative; uint8_t anchor_wildcard; }; RB_PROTOTYPE(pf_keth_anchor_node, pf_keth_anchor, entry_node, pf_keth_anchor_compare); RB_PROTOTYPE(pf_keth_anchor_global, pf_keth_anchor, entry_global, pf_keth_anchor_compare); struct pf_keth_rule { #define PFE_SKIP_IFP 0 #define PFE_SKIP_DIR 1 #define PFE_SKIP_PROTO 2 #define PFE_SKIP_SRC_ADDR 3 #define PFE_SKIP_DST_ADDR 4 #define PFE_SKIP_SRC_IP_ADDR 5 #define PFE_SKIP_DST_IP_ADDR 6 #define PFE_SKIP_COUNT 7 union pf_keth_rule_ptr skip[PFE_SKIP_COUNT]; TAILQ_ENTRY(pf_keth_rule) entries; struct pf_keth_anchor *anchor; u_int8_t anchor_relative; u_int8_t anchor_wildcard; uint32_t nr; bool quick; /* Filter */ char ifname[IFNAMSIZ]; struct pfi_kkif *kif; bool ifnot; uint8_t direction; uint16_t proto; struct pf_keth_rule_addr src, dst; struct pf_rule_addr ipsrc, ipdst; char match_tagname[PF_TAG_NAME_SIZE]; uint16_t match_tag; bool match_tag_not; /* Stats */ counter_u64_t evaluations; counter_u64_t packets[2]; counter_u64_t bytes[2]; time_t *timestamp; /* Action */ char qname[PF_QNAME_SIZE]; int qid; char tagname[PF_TAG_NAME_SIZE]; uint16_t tag; char bridge_to_name[IFNAMSIZ]; struct pfi_kkif *bridge_to; uint8_t action; uint16_t dnpipe; uint32_t dnflags; char label[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; uint32_t ridentifier; }; union pf_krule_ptr { struct pf_krule *ptr; u_int32_t nr; }; RB_HEAD(pf_krule_global, pf_krule); RB_PROTOTYPE(pf_krule_global, pf_krule, entry_global, pf_krule_compare); struct pf_krule { struct pf_rule_addr src; struct pf_rule_addr dst; union pf_krule_ptr skip[PF_SKIP_COUNT]; char label[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; uint32_t ridentifier; char ifname[IFNAMSIZ]; char qname[PF_QNAME_SIZE]; char pqname[PF_QNAME_SIZE]; char tagname[PF_TAG_NAME_SIZE]; char match_tagname[PF_TAG_NAME_SIZE]; char overload_tblname[PF_TABLE_NAME_SIZE]; TAILQ_ENTRY(pf_krule) entries; struct pf_kpool rpool; struct pf_counter_u64 evaluations; struct pf_counter_u64 packets[2]; struct pf_counter_u64 bytes[2]; time_t *timestamp; struct pfi_kkif *kif; struct pf_kanchor *anchor; struct pfr_ktable *overload_tbl; pf_osfp_t os_fingerprint; int32_t rtableid; u_int32_t timeout[PFTM_MAX]; u_int32_t max_states; u_int32_t max_src_nodes; u_int32_t max_src_states; u_int32_t max_src_conn; struct { u_int32_t limit; u_int32_t seconds; } max_src_conn_rate; u_int16_t qid; u_int16_t pqid; u_int16_t dnpipe; u_int16_t dnrpipe; u_int32_t free_flags; u_int32_t nr; u_int32_t prob; uid_t cuid; pid_t cpid; counter_u64_t states_cur; counter_u64_t states_tot; counter_u64_t src_nodes; u_int16_t return_icmp; u_int16_t return_icmp6; u_int16_t max_mss; u_int16_t tag; u_int16_t match_tag; u_int16_t scrub_flags; struct pf_rule_uid uid; struct pf_rule_gid gid; u_int32_t rule_flag; uint32_t rule_ref; u_int8_t action; u_int8_t direction; u_int8_t log; u_int8_t logif; u_int8_t quick; u_int8_t ifnot; u_int8_t match_tag_not; u_int8_t natpass; u_int8_t keep_state; sa_family_t af; u_int8_t proto; u_int8_t type; u_int8_t code; u_int8_t flags; u_int8_t flagset; u_int8_t min_ttl; u_int8_t allow_opts; u_int8_t rt; u_int8_t return_ttl; u_int8_t tos; u_int8_t set_tos; u_int8_t anchor_relative; u_int8_t anchor_wildcard; u_int8_t flush; u_int8_t prio; u_int8_t set_prio[2]; struct { struct pf_addr addr; u_int16_t port; } divert; u_int8_t md5sum[PF_MD5_DIGEST_LENGTH]; RB_ENTRY(pf_krule) entry_global; #ifdef PF_WANT_32_TO_64_COUNTER LIST_ENTRY(pf_krule) allrulelist; bool allrulelinked; #endif }; struct pf_krule_item { SLIST_ENTRY(pf_krule_item) entry; struct pf_krule *r; }; SLIST_HEAD(pf_krule_slist, pf_krule_item); struct pf_ksrc_node { LIST_ENTRY(pf_ksrc_node) entry; struct pf_addr addr; struct pf_addr raddr; struct pf_krule_slist match_rules; union pf_krule_ptr rule; struct pfi_kkif *rkif; counter_u64_t bytes[2]; counter_u64_t packets[2]; u_int32_t states; u_int32_t conn; struct pf_threshold conn_rate; u_int32_t creation; u_int32_t expire; sa_family_t af; u_int8_t ruletype; struct mtx *lock; }; #endif struct pf_state_scrub { struct timeval pfss_last; /* time received last packet */ u_int32_t pfss_tsecr; /* last echoed timestamp */ u_int32_t pfss_tsval; /* largest timestamp */ u_int32_t pfss_tsval0; /* original timestamp */ u_int16_t pfss_flags; #define PFSS_TIMESTAMP 0x0001 /* modulate timestamp */ #define PFSS_PAWS 0x0010 /* stricter PAWS checks */ #define PFSS_PAWS_IDLED 0x0020 /* was idle too long. no PAWS */ #define PFSS_DATA_TS 0x0040 /* timestamp on data packets */ #define PFSS_DATA_NOTS 0x0080 /* no timestamp on data packets */ u_int8_t pfss_ttl; /* stashed TTL */ u_int8_t pad; union { u_int32_t pfss_ts_mod; /* timestamp modulation */ u_int32_t pfss_v_tag; /* SCTP verification tag */ }; }; struct pf_state_host { struct pf_addr addr; u_int16_t port; u_int16_t pad; }; struct pf_state_peer { struct pf_state_scrub *scrub; /* state is scrubbed */ u_int32_t seqlo; /* Max sequence number sent */ u_int32_t seqhi; /* Max the other end ACKd + win */ u_int32_t seqdiff; /* Sequence number modulator */ u_int16_t max_win; /* largest window (pre scaling) */ u_int16_t mss; /* Maximum segment size option */ u_int8_t state; /* active state level */ u_int8_t wscale; /* window scaling factor */ u_int8_t tcp_est; /* Did we reach TCPS_ESTABLISHED */ u_int8_t pad[1]; }; /* Keep synced with struct pf_state_key. */ struct pf_state_key_cmp { struct pf_addr addr[2]; u_int16_t port[2]; sa_family_t af; u_int8_t proto; u_int8_t pad[2]; }; struct pf_state_key { struct pf_addr addr[2]; u_int16_t port[2]; sa_family_t af; u_int8_t proto; u_int8_t pad[2]; LIST_ENTRY(pf_state_key) entry; TAILQ_HEAD(, pf_kstate) states[2]; }; /* Keep synced with struct pf_kstate. */ struct pf_state_cmp { u_int64_t id; u_int32_t creatorid; u_int8_t direction; u_int8_t pad[3]; }; struct pf_state_scrub_export { uint16_t pfss_flags; uint8_t pfss_ttl; /* stashed TTL */ #define PF_SCRUB_FLAG_VALID 0x01 uint8_t scrub_flag; uint32_t pfss_ts_mod; /* timestamp modulation */ }; struct pf_state_key_export { struct pf_addr addr[2]; uint16_t port[2]; }; struct pf_state_peer_export { struct pf_state_scrub_export scrub; /* state is scrubbed */ uint32_t seqlo; /* Max sequence number sent */ uint32_t seqhi; /* Max the other end ACKd + win */ uint32_t seqdiff; /* Sequence number modulator */ uint16_t max_win; /* largest window (pre scaling) */ uint16_t mss; /* Maximum segment size option */ uint8_t state; /* active state level */ uint8_t wscale; /* window scaling factor */ uint8_t dummy[6]; }; _Static_assert(sizeof(struct pf_state_peer_export) == 32, "size incorrect"); struct pf_state_export { uint64_t version; #define PF_STATE_VERSION 20230404 uint64_t id; char ifname[IFNAMSIZ]; char orig_ifname[IFNAMSIZ]; struct pf_state_key_export key[2]; struct pf_state_peer_export src; struct pf_state_peer_export dst; struct pf_addr rt_addr; uint32_t rule; uint32_t anchor; uint32_t nat_rule; uint32_t creation; uint32_t expire; uint32_t spare0; uint64_t packets[2]; uint64_t bytes[2]; uint32_t creatorid; uint32_t spare1; sa_family_t af; uint8_t proto; uint8_t direction; uint8_t log; uint8_t state_flags_compat; uint8_t timeout; uint8_t sync_flags; uint8_t updates; uint16_t state_flags; uint16_t qid; uint16_t pqid; uint16_t dnpipe; uint16_t dnrpipe; int32_t rtableid; uint8_t min_ttl; uint8_t set_tos; uint16_t max_mss; uint8_t set_prio[2]; uint8_t rt; char rt_ifname[IFNAMSIZ]; uint8_t spare[72]; }; _Static_assert(sizeof(struct pf_state_export) == 384, "size incorrect"); #ifdef _KERNEL struct pf_kstate { /* * Area shared with pf_state_cmp */ u_int64_t id; u_int32_t creatorid; u_int8_t direction; u_int8_t pad[3]; /* * end of the area */ u_int16_t state_flags; u_int8_t timeout; u_int8_t sync_state; /* PFSYNC_S_x */ u_int8_t sync_updates; /* XXX */ u_int refs; struct mtx *lock; TAILQ_ENTRY(pf_kstate) sync_list; TAILQ_ENTRY(pf_kstate) key_list[2]; LIST_ENTRY(pf_kstate) entry; struct pf_state_peer src; struct pf_state_peer dst; struct pf_krule_slist match_rules; union pf_krule_ptr rule; union pf_krule_ptr anchor; union pf_krule_ptr nat_rule; struct pf_addr rt_addr; struct pf_state_key *key[2]; /* addresses stack and wire */ struct pfi_kkif *kif; struct pfi_kkif *orig_kif; /* The real kif, even if we're a floating state (i.e. if == V_pfi_all). */ struct pfi_kkif *rt_kif; struct pf_ksrc_node *src_node; struct pf_ksrc_node *nat_src_node; u_int64_t packets[2]; u_int64_t bytes[2]; u_int64_t creation; u_int64_t expire; u_int32_t pfsync_time; struct pf_rule_actions act; u_int16_t tag; u_int8_t rt; u_int16_t if_index_in; u_int16_t if_index_out; }; /* * Size <= fits 11 objects per page on LP64. Try to not grow the struct beyond that. */ _Static_assert(sizeof(struct pf_kstate) <= 372, "pf_kstate size crosses 372 bytes"); #endif /* * Unified state structures for pulling states out of the kernel * used by pfsync(4) and the pf(4) ioctl. */ struct pfsync_state_scrub { u_int16_t pfss_flags; u_int8_t pfss_ttl; /* stashed TTL */ #define PFSYNC_SCRUB_FLAG_VALID 0x01 u_int8_t scrub_flag; u_int32_t pfss_ts_mod; /* timestamp modulation */ } __packed; struct pfsync_state_peer { struct pfsync_state_scrub scrub; /* state is scrubbed */ u_int32_t seqlo; /* Max sequence number sent */ u_int32_t seqhi; /* Max the other end ACKd + win */ u_int32_t seqdiff; /* Sequence number modulator */ u_int16_t max_win; /* largest window (pre scaling) */ u_int16_t mss; /* Maximum segment size option */ u_int8_t state; /* active state level */ u_int8_t wscale; /* window scaling factor */ u_int8_t pad[6]; } __packed; struct pfsync_state_key { struct pf_addr addr[2]; u_int16_t port[2]; }; struct pfsync_state_1301 { u_int64_t id; char ifname[IFNAMSIZ]; struct pfsync_state_key key[2]; struct pfsync_state_peer src; struct pfsync_state_peer dst; struct pf_addr rt_addr; u_int32_t rule; u_int32_t anchor; u_int32_t nat_rule; u_int32_t creation; u_int32_t expire; u_int32_t packets[2][2]; u_int32_t bytes[2][2]; u_int32_t creatorid; sa_family_t af; u_int8_t proto; u_int8_t direction; u_int8_t __spare[2]; u_int8_t log; u_int8_t state_flags; u_int8_t timeout; u_int8_t sync_flags; u_int8_t updates; } __packed; struct pfsync_state_1400 { /* The beginning of the struct is compatible with previous versions */ u_int64_t id; char ifname[IFNAMSIZ]; struct pfsync_state_key key[2]; struct pfsync_state_peer src; struct pfsync_state_peer dst; struct pf_addr rt_addr; u_int32_t rule; u_int32_t anchor; u_int32_t nat_rule; u_int32_t creation; u_int32_t expire; u_int32_t packets[2][2]; u_int32_t bytes[2][2]; u_int32_t creatorid; sa_family_t af; u_int8_t proto; u_int8_t direction; u_int16_t state_flags; u_int8_t log; u_int8_t __spare; u_int8_t timeout; u_int8_t sync_flags; u_int8_t updates; /* The rest is not */ u_int16_t qid; u_int16_t pqid; u_int16_t dnpipe; u_int16_t dnrpipe; int32_t rtableid; u_int8_t min_ttl; u_int8_t set_tos; u_int16_t max_mss; u_int8_t set_prio[2]; u_int8_t rt; char rt_ifname[IFNAMSIZ]; } __packed; union pfsync_state_union { struct pfsync_state_1301 pfs_1301; struct pfsync_state_1400 pfs_1400; } __packed; #ifdef _KERNEL /* pfsync */ typedef int pfsync_state_import_t(union pfsync_state_union *, int, int); typedef void pfsync_insert_state_t(struct pf_kstate *); typedef void pfsync_update_state_t(struct pf_kstate *); typedef void pfsync_delete_state_t(struct pf_kstate *); typedef void pfsync_clear_states_t(u_int32_t, const char *); typedef int pfsync_defer_t(struct pf_kstate *, struct mbuf *); typedef void pfsync_detach_ifnet_t(struct ifnet *); typedef void pflow_export_state_t(const struct pf_kstate *); VNET_DECLARE(pfsync_state_import_t *, pfsync_state_import_ptr); #define V_pfsync_state_import_ptr VNET(pfsync_state_import_ptr) VNET_DECLARE(pfsync_insert_state_t *, pfsync_insert_state_ptr); #define V_pfsync_insert_state_ptr VNET(pfsync_insert_state_ptr) VNET_DECLARE(pfsync_update_state_t *, pfsync_update_state_ptr); #define V_pfsync_update_state_ptr VNET(pfsync_update_state_ptr) VNET_DECLARE(pfsync_delete_state_t *, pfsync_delete_state_ptr); #define V_pfsync_delete_state_ptr VNET(pfsync_delete_state_ptr) VNET_DECLARE(pfsync_clear_states_t *, pfsync_clear_states_ptr); #define V_pfsync_clear_states_ptr VNET(pfsync_clear_states_ptr) VNET_DECLARE(pfsync_defer_t *, pfsync_defer_ptr); #define V_pfsync_defer_ptr VNET(pfsync_defer_ptr) VNET_DECLARE(pflow_export_state_t *, pflow_export_state_ptr); #define V_pflow_export_state_ptr VNET(pflow_export_state_ptr) extern pfsync_detach_ifnet_t *pfsync_detach_ifnet_ptr; void pfsync_state_export(union pfsync_state_union *, struct pf_kstate *, int); void pf_state_export(struct pf_state_export *, struct pf_kstate *); /* pflog */ struct pf_kruleset; struct pf_pdesc; typedef int pflog_packet_t(struct pfi_kkif *, struct mbuf *, sa_family_t, uint8_t, u_int8_t, struct pf_krule *, struct pf_krule *, struct pf_kruleset *, struct pf_pdesc *, int); extern pflog_packet_t *pflog_packet_ptr; #endif /* _KERNEL */ #define PFSYNC_FLAG_SRCNODE 0x04 #define PFSYNC_FLAG_NATSRCNODE 0x08 /* for copies to/from network byte order */ /* ioctl interface also uses network byte order */ #define pf_state_peer_hton(s,d) do { \ (d)->seqlo = htonl((s)->seqlo); \ (d)->seqhi = htonl((s)->seqhi); \ (d)->seqdiff = htonl((s)->seqdiff); \ (d)->max_win = htons((s)->max_win); \ (d)->mss = htons((s)->mss); \ (d)->state = (s)->state; \ (d)->wscale = (s)->wscale; \ if ((s)->scrub) { \ (d)->scrub.pfss_flags = \ htons((s)->scrub->pfss_flags & PFSS_TIMESTAMP); \ (d)->scrub.pfss_ttl = (s)->scrub->pfss_ttl; \ (d)->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod);\ (d)->scrub.scrub_flag = PFSYNC_SCRUB_FLAG_VALID; \ } \ } while (0) #define pf_state_peer_ntoh(s,d) do { \ (d)->seqlo = ntohl((s)->seqlo); \ (d)->seqhi = ntohl((s)->seqhi); \ (d)->seqdiff = ntohl((s)->seqdiff); \ (d)->max_win = ntohs((s)->max_win); \ (d)->mss = ntohs((s)->mss); \ (d)->state = (s)->state; \ (d)->wscale = (s)->wscale; \ if ((s)->scrub.scrub_flag == PFSYNC_SCRUB_FLAG_VALID && \ (d)->scrub != NULL) { \ (d)->scrub->pfss_flags = \ ntohs((s)->scrub.pfss_flags) & PFSS_TIMESTAMP; \ (d)->scrub->pfss_ttl = (s)->scrub.pfss_ttl; \ (d)->scrub->pfss_ts_mod = ntohl((s)->scrub.pfss_ts_mod);\ } \ } while (0) #define pf_state_counter_hton(s,d) do { \ d[0] = htonl((s>>32)&0xffffffff); \ d[1] = htonl(s&0xffffffff); \ } while (0) #define pf_state_counter_from_pfsync(s) \ (((u_int64_t)(s[0])<<32) | (u_int64_t)(s[1])) #define pf_state_counter_ntoh(s,d) do { \ d = ntohl(s[0]); \ d = d<<32; \ d += ntohl(s[1]); \ } while (0) TAILQ_HEAD(pf_krulequeue, pf_krule); struct pf_kanchor; struct pf_kruleset { struct { struct pf_krulequeue queues[2]; struct { struct pf_krulequeue *ptr; struct pf_krule **ptr_array; u_int32_t rcount; u_int32_t ticket; int open; struct pf_krule_global *tree; } active, inactive; } rules[PF_RULESET_MAX]; struct pf_kanchor *anchor; u_int32_t tticket; int tables; int topen; }; RB_HEAD(pf_kanchor_global, pf_kanchor); RB_HEAD(pf_kanchor_node, pf_kanchor); struct pf_kanchor { RB_ENTRY(pf_kanchor) entry_global; RB_ENTRY(pf_kanchor) entry_node; struct pf_kanchor *parent; struct pf_kanchor_node children; char name[PF_ANCHOR_NAME_SIZE]; char path[MAXPATHLEN]; struct pf_kruleset ruleset; int refcnt; /* anchor rules */ }; RB_PROTOTYPE(pf_kanchor_global, pf_kanchor, entry_global, pf_anchor_compare); RB_PROTOTYPE(pf_kanchor_node, pf_kanchor, entry_node, pf_kanchor_compare); #define PF_RESERVED_ANCHOR "_pf" #define PFR_TFLAG_PERSIST 0x00000001 #define PFR_TFLAG_CONST 0x00000002 #define PFR_TFLAG_ACTIVE 0x00000004 #define PFR_TFLAG_INACTIVE 0x00000008 #define PFR_TFLAG_REFERENCED 0x00000010 #define PFR_TFLAG_REFDANCHOR 0x00000020 #define PFR_TFLAG_COUNTERS 0x00000040 /* Adjust masks below when adding flags. */ #define PFR_TFLAG_USRMASK (PFR_TFLAG_PERSIST | \ PFR_TFLAG_CONST | \ PFR_TFLAG_COUNTERS) #define PFR_TFLAG_SETMASK (PFR_TFLAG_ACTIVE | \ PFR_TFLAG_INACTIVE | \ PFR_TFLAG_REFERENCED | \ PFR_TFLAG_REFDANCHOR) #define PFR_TFLAG_ALLMASK (PFR_TFLAG_PERSIST | \ PFR_TFLAG_CONST | \ PFR_TFLAG_ACTIVE | \ PFR_TFLAG_INACTIVE | \ PFR_TFLAG_REFERENCED | \ PFR_TFLAG_REFDANCHOR | \ PFR_TFLAG_COUNTERS) struct pf_kanchor_stackframe; struct pf_keth_anchor_stackframe; struct pfr_table { char pfrt_anchor[MAXPATHLEN]; char pfrt_name[PF_TABLE_NAME_SIZE]; u_int32_t pfrt_flags; u_int8_t pfrt_fback; }; enum { PFR_FB_NONE, PFR_FB_MATCH, PFR_FB_ADDED, PFR_FB_DELETED, PFR_FB_CHANGED, PFR_FB_CLEARED, PFR_FB_DUPLICATE, PFR_FB_NOTMATCH, PFR_FB_CONFLICT, PFR_FB_NOCOUNT, PFR_FB_MAX }; struct pfr_addr { union { struct in_addr _pfra_ip4addr; struct in6_addr _pfra_ip6addr; } pfra_u; u_int8_t pfra_af; u_int8_t pfra_net; u_int8_t pfra_not; u_int8_t pfra_fback; }; #define pfra_ip4addr pfra_u._pfra_ip4addr #define pfra_ip6addr pfra_u._pfra_ip6addr enum { PFR_DIR_IN, PFR_DIR_OUT, PFR_DIR_MAX }; enum { PFR_OP_BLOCK, PFR_OP_PASS, PFR_OP_ADDR_MAX, PFR_OP_TABLE_MAX }; enum { PFR_TYPE_PACKETS, PFR_TYPE_BYTES, PFR_TYPE_MAX }; #define PFR_NUM_COUNTERS (PFR_DIR_MAX * PFR_OP_ADDR_MAX * PFR_TYPE_MAX) #define PFR_OP_XPASS PFR_OP_ADDR_MAX struct pfr_astats { struct pfr_addr pfras_a; u_int64_t pfras_packets[PFR_DIR_MAX][PFR_OP_ADDR_MAX]; u_int64_t pfras_bytes[PFR_DIR_MAX][PFR_OP_ADDR_MAX]; long pfras_tzero; }; enum { PFR_REFCNT_RULE, PFR_REFCNT_ANCHOR, PFR_REFCNT_MAX }; struct pfr_tstats { struct pfr_table pfrts_t; u_int64_t pfrts_packets[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; u_int64_t pfrts_bytes[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; u_int64_t pfrts_match; u_int64_t pfrts_nomatch; long pfrts_tzero; int pfrts_cnt; int pfrts_refcnt[PFR_REFCNT_MAX]; }; #ifdef _KERNEL struct pfr_kstate_counter { counter_u64_t pkc_pcpu; u_int64_t pkc_zero; }; static inline int pfr_kstate_counter_init(struct pfr_kstate_counter *pfrc, int flags) { pfrc->pkc_zero = 0; pfrc->pkc_pcpu = counter_u64_alloc(flags); if (pfrc->pkc_pcpu == NULL) return (ENOMEM); return (0); } static inline void pfr_kstate_counter_deinit(struct pfr_kstate_counter *pfrc) { counter_u64_free(pfrc->pkc_pcpu); } static inline u_int64_t pfr_kstate_counter_fetch(struct pfr_kstate_counter *pfrc) { u_int64_t c; c = counter_u64_fetch(pfrc->pkc_pcpu); c -= pfrc->pkc_zero; return (c); } static inline void pfr_kstate_counter_zero(struct pfr_kstate_counter *pfrc) { u_int64_t c; c = counter_u64_fetch(pfrc->pkc_pcpu); pfrc->pkc_zero = c; } static inline void pfr_kstate_counter_add(struct pfr_kstate_counter *pfrc, int64_t n) { counter_u64_add(pfrc->pkc_pcpu, n); } struct pfr_ktstats { struct pfr_table pfrts_t; struct pfr_kstate_counter pfrkts_packets[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; struct pfr_kstate_counter pfrkts_bytes[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; struct pfr_kstate_counter pfrkts_match; struct pfr_kstate_counter pfrkts_nomatch; long pfrkts_tzero; int pfrkts_cnt; int pfrkts_refcnt[PFR_REFCNT_MAX]; }; #endif /* _KERNEL */ #define pfrts_name pfrts_t.pfrt_name #define pfrts_flags pfrts_t.pfrt_flags #ifndef _SOCKADDR_UNION_DEFINED #define _SOCKADDR_UNION_DEFINED union sockaddr_union { struct sockaddr sa; struct sockaddr_in sin; struct sockaddr_in6 sin6; }; #endif /* _SOCKADDR_UNION_DEFINED */ struct pfr_kcounters { counter_u64_t pfrkc_counters; long pfrkc_tzero; }; #define pfr_kentry_counter(kc, dir, op, t) \ ((kc)->pfrkc_counters + \ (dir) * PFR_OP_ADDR_MAX * PFR_TYPE_MAX + (op) * PFR_TYPE_MAX + (t)) #ifdef _KERNEL SLIST_HEAD(pfr_kentryworkq, pfr_kentry); struct pfr_kentry { struct radix_node pfrke_node[2]; union sockaddr_union pfrke_sa; SLIST_ENTRY(pfr_kentry) pfrke_workq; struct pfr_kcounters pfrke_counters; u_int8_t pfrke_af; u_int8_t pfrke_net; u_int8_t pfrke_not; u_int8_t pfrke_mark; }; SLIST_HEAD(pfr_ktableworkq, pfr_ktable); RB_HEAD(pfr_ktablehead, pfr_ktable); struct pfr_ktable { struct pfr_ktstats pfrkt_kts; RB_ENTRY(pfr_ktable) pfrkt_tree; SLIST_ENTRY(pfr_ktable) pfrkt_workq; struct radix_node_head *pfrkt_ip4; struct radix_node_head *pfrkt_ip6; struct pfr_ktable *pfrkt_shadow; struct pfr_ktable *pfrkt_root; struct pf_kruleset *pfrkt_rs; long pfrkt_larg; int pfrkt_nflags; }; #define pfrkt_t pfrkt_kts.pfrts_t #define pfrkt_name pfrkt_t.pfrt_name #define pfrkt_anchor pfrkt_t.pfrt_anchor #define pfrkt_ruleset pfrkt_t.pfrt_ruleset #define pfrkt_flags pfrkt_t.pfrt_flags #define pfrkt_cnt pfrkt_kts.pfrkts_cnt #define pfrkt_refcnt pfrkt_kts.pfrkts_refcnt #define pfrkt_packets pfrkt_kts.pfrkts_packets #define pfrkt_bytes pfrkt_kts.pfrkts_bytes #define pfrkt_match pfrkt_kts.pfrkts_match #define pfrkt_nomatch pfrkt_kts.pfrkts_nomatch #define pfrkt_tzero pfrkt_kts.pfrkts_tzero #endif #ifdef _KERNEL struct pfi_kkif { char pfik_name[IFNAMSIZ]; union { RB_ENTRY(pfi_kkif) _pfik_tree; LIST_ENTRY(pfi_kkif) _pfik_list; } _pfik_glue; #define pfik_tree _pfik_glue._pfik_tree #define pfik_list _pfik_glue._pfik_list struct pf_counter_u64 pfik_packets[2][2][2]; struct pf_counter_u64 pfik_bytes[2][2][2]; u_int32_t pfik_tzero; u_int pfik_flags; struct ifnet *pfik_ifp; struct ifg_group *pfik_group; u_int pfik_rulerefs; TAILQ_HEAD(, pfi_dynaddr) pfik_dynaddrs; #ifdef PF_WANT_32_TO_64_COUNTER LIST_ENTRY(pfi_kkif) pfik_allkiflist; #endif }; #endif #define PFI_IFLAG_REFS 0x0001 /* has state references */ #define PFI_IFLAG_SKIP 0x0100 /* skip filtering on interface */ #ifdef _KERNEL struct pf_sctp_multihome_job; TAILQ_HEAD(pf_sctp_multihome_jobs, pf_sctp_multihome_job); struct pf_pdesc { struct { int done; uid_t uid; gid_t gid; } lookup; u_int64_t tot_len; /* Make Mickey money */ union pf_headers { struct tcphdr tcp; struct udphdr udp; struct sctphdr sctp; struct icmp icmp; #ifdef INET6 struct icmp6_hdr icmp6; #endif /* INET6 */ char any[0]; } hdr; struct pf_krule *nat_rule; /* nat/rdr rule applied to packet */ struct pf_addr *src; /* src address */ struct pf_addr *dst; /* dst address */ u_int16_t *sport; u_int16_t *dport; struct pf_mtag *pf_mtag; struct pf_rule_actions act; u_int32_t p_len; /* total length of payload */ u_int16_t *ip_sum; u_int16_t *proto_sum; u_int16_t flags; /* Let SCRUB trigger behavior in * state code. Easier than tags */ #define PFDESC_TCP_NORM 0x0001 /* TCP shall be statefully scrubbed */ #define PFDESC_IP_REAS 0x0002 /* IP frags would've been reassembled */ sa_family_t af; u_int8_t proto; u_int8_t tos; u_int8_t dir; /* direction */ u_int8_t sidx; /* key index for source */ u_int8_t didx; /* key index for destination */ #define PFDESC_SCTP_INIT 0x0001 #define PFDESC_SCTP_INIT_ACK 0x0002 #define PFDESC_SCTP_COOKIE 0x0004 #define PFDESC_SCTP_COOKIE_ACK 0x0008 #define PFDESC_SCTP_ABORT 0x0010 #define PFDESC_SCTP_SHUTDOWN 0x0020 #define PFDESC_SCTP_SHUTDOWN_COMPLETE 0x0040 #define PFDESC_SCTP_DATA 0x0080 #define PFDESC_SCTP_ASCONF 0x0100 #define PFDESC_SCTP_HEARTBEAT 0x0200 #define PFDESC_SCTP_HEARTBEAT_ACK 0x0400 #define PFDESC_SCTP_OTHER 0x0800 #define PFDESC_SCTP_ADD_IP 0x1000 u_int16_t sctp_flags; u_int32_t sctp_initiate_tag; struct pf_sctp_multihome_jobs sctp_multihome_jobs; }; struct pf_sctp_multihome_job { TAILQ_ENTRY(pf_sctp_multihome_job) next; struct pf_pdesc pd; struct pf_addr src; struct pf_addr dst; struct mbuf *m; int op; }; #endif /* flags for RDR options */ #define PF_DPORT_RANGE 0x01 /* Dest port uses range */ #define PF_RPORT_RANGE 0x02 /* RDR'ed port uses range */ /* UDP state enumeration */ #define PFUDPS_NO_TRAFFIC 0 #define PFUDPS_SINGLE 1 #define PFUDPS_MULTIPLE 2 #define PFUDPS_NSTATES 3 /* number of state levels */ #define PFUDPS_NAMES { \ "NO_TRAFFIC", \ "SINGLE", \ "MULTIPLE", \ NULL \ } /* Other protocol state enumeration */ #define PFOTHERS_NO_TRAFFIC 0 #define PFOTHERS_SINGLE 1 #define PFOTHERS_MULTIPLE 2 #define PFOTHERS_NSTATES 3 /* number of state levels */ #define PFOTHERS_NAMES { \ "NO_TRAFFIC", \ "SINGLE", \ "MULTIPLE", \ NULL \ } #define ACTION_SET(a, x) \ do { \ if ((a) != NULL) \ *(a) = (x); \ } while (0) #define REASON_SET(a, x) \ do { \ if ((a) != NULL) \ *(a) = (x); \ if (x < PFRES_MAX) \ counter_u64_add(V_pf_status.counters[x], 1); \ } while (0) enum pf_syncookies_mode { PF_SYNCOOKIES_NEVER = 0, PF_SYNCOOKIES_ALWAYS = 1, PF_SYNCOOKIES_ADAPTIVE = 2, PF_SYNCOOKIES_MODE_MAX = PF_SYNCOOKIES_ADAPTIVE }; #define PF_SYNCOOKIES_HIWATPCT 25 #define PF_SYNCOOKIES_LOWATPCT (PF_SYNCOOKIES_HIWATPCT / 2) #ifdef _KERNEL struct pf_kstatus { counter_u64_t counters[PFRES_MAX]; /* reason for passing/dropping */ counter_u64_t lcounters[KLCNT_MAX]; /* limit counters */ struct pf_counter_u64 fcounters[FCNT_MAX]; /* state operation counters */ counter_u64_t scounters[SCNT_MAX]; /* src_node operation counters */ uint32_t states; uint32_t src_nodes; uint32_t running; uint32_t since; uint32_t debug; uint32_t hostid; char ifname[IFNAMSIZ]; uint8_t pf_chksum[PF_MD5_DIGEST_LENGTH]; bool keep_counters; enum pf_syncookies_mode syncookies_mode; bool syncookies_active; uint64_t syncookies_inflight[2]; uint32_t states_halfopen; uint32_t reass; }; #endif struct pf_divert { union { struct in_addr ipv4; struct in6_addr ipv6; } addr; u_int16_t port; }; #define PFFRAG_FRENT_HIWAT 5000 /* Number of fragment entries */ #define PFR_KENTRY_HIWAT 200000 /* Number of table entries */ /* * Limit the length of the fragment queue traversal. Remember * search entry points based on the fragment offset. */ #define PF_FRAG_ENTRY_POINTS 16 /* * The number of entries in the fragment queue must be limited * to avoid DoS by linear searching. Instead of a global limit, * use a limit per entry point. For large packets these sum up. */ #define PF_FRAG_ENTRY_LIMIT 64 /* * ioctl parameter structures */ struct pfioc_pooladdr { u_int32_t action; u_int32_t ticket; u_int32_t nr; u_int32_t r_num; u_int8_t r_action; u_int8_t r_last; u_int8_t af; char anchor[MAXPATHLEN]; struct pf_pooladdr addr; }; struct pfioc_rule { u_int32_t action; u_int32_t ticket; u_int32_t pool_ticket; u_int32_t nr; char anchor[MAXPATHLEN]; char anchor_call[MAXPATHLEN]; struct pf_rule rule; }; struct pfioc_natlook { struct pf_addr saddr; struct pf_addr daddr; struct pf_addr rsaddr; struct pf_addr rdaddr; u_int16_t sport; u_int16_t dport; u_int16_t rsport; u_int16_t rdport; sa_family_t af; u_int8_t proto; u_int8_t direction; }; struct pfioc_state { struct pfsync_state_1301 state; }; struct pfioc_src_node_kill { sa_family_t psnk_af; struct pf_rule_addr psnk_src; struct pf_rule_addr psnk_dst; u_int psnk_killed; }; #ifdef _KERNEL struct pf_kstate_kill { struct pf_state_cmp psk_pfcmp; sa_family_t psk_af; int psk_proto; struct pf_rule_addr psk_src; struct pf_rule_addr psk_dst; struct pf_rule_addr psk_rt_addr; char psk_ifname[IFNAMSIZ]; char psk_label[PF_RULE_LABEL_SIZE]; u_int psk_killed; bool psk_kill_match; bool psk_nat; }; #endif struct pfioc_state_kill { struct pf_state_cmp psk_pfcmp; sa_family_t psk_af; int psk_proto; struct pf_rule_addr psk_src; struct pf_rule_addr psk_dst; char psk_ifname[IFNAMSIZ]; char psk_label[PF_RULE_LABEL_SIZE]; u_int psk_killed; }; struct pfioc_states { int ps_len; union { void *ps_buf; struct pfsync_state_1301 *ps_states; }; }; struct pfioc_states_v2 { int ps_len; uint64_t ps_req_version; union { void *ps_buf; struct pf_state_export *ps_states; }; }; struct pfioc_src_nodes { int psn_len; union { void *psn_buf; struct pf_src_node *psn_src_nodes; }; }; struct pfioc_if { char ifname[IFNAMSIZ]; }; struct pfioc_tm { int timeout; int seconds; }; struct pfioc_limit { int index; unsigned limit; }; struct pfioc_altq_v0 { u_int32_t action; u_int32_t ticket; u_int32_t nr; struct pf_altq_v0 altq; }; struct pfioc_altq_v1 { u_int32_t action; u_int32_t ticket; u_int32_t nr; /* * Placed here so code that only uses the above parameters can be * written entirely in terms of the v0 or v1 type. */ u_int32_t version; struct pf_altq_v1 altq; }; /* * Latest version of struct pfioc_altq_vX. This must move in lock-step with * the latest version of struct pf_altq_vX as it has that struct as a * member. */ #define PFIOC_ALTQ_VERSION PF_ALTQ_VERSION struct pfioc_qstats_v0 { u_int32_t ticket; u_int32_t nr; void *buf; int nbytes; u_int8_t scheduler; }; struct pfioc_qstats_v1 { u_int32_t ticket; u_int32_t nr; void *buf; int nbytes; u_int8_t scheduler; /* * Placed here so code that only uses the above parameters can be * written entirely in terms of the v0 or v1 type. */ u_int32_t version; /* Requested version of stats struct */ }; /* Latest version of struct pfioc_qstats_vX */ #define PFIOC_QSTATS_VERSION 1 struct pfioc_ruleset { u_int32_t nr; char path[MAXPATHLEN]; char name[PF_ANCHOR_NAME_SIZE]; }; #define PF_RULESET_ALTQ (PF_RULESET_MAX) #define PF_RULESET_TABLE (PF_RULESET_MAX+1) #define PF_RULESET_ETH (PF_RULESET_MAX+2) struct pfioc_trans { int size; /* number of elements */ int esize; /* size of each element in bytes */ struct pfioc_trans_e { int rs_num; char anchor[MAXPATHLEN]; u_int32_t ticket; } *array; }; #define PFR_FLAG_ATOMIC 0x00000001 /* unused */ #define PFR_FLAG_DUMMY 0x00000002 #define PFR_FLAG_FEEDBACK 0x00000004 #define PFR_FLAG_CLSTATS 0x00000008 #define PFR_FLAG_ADDRSTOO 0x00000010 #define PFR_FLAG_REPLACE 0x00000020 #define PFR_FLAG_ALLRSETS 0x00000040 #define PFR_FLAG_ALLMASK 0x0000007F #ifdef _KERNEL #define PFR_FLAG_USERIOCTL 0x10000000 #endif struct pfioc_table { struct pfr_table pfrio_table; void *pfrio_buffer; int pfrio_esize; int pfrio_size; int pfrio_size2; int pfrio_nadd; int pfrio_ndel; int pfrio_nchange; int pfrio_flags; u_int32_t pfrio_ticket; }; #define pfrio_exists pfrio_nadd #define pfrio_nzero pfrio_nadd #define pfrio_nmatch pfrio_nadd #define pfrio_naddr pfrio_size2 #define pfrio_setflag pfrio_size2 #define pfrio_clrflag pfrio_nadd struct pfioc_iface { char pfiio_name[IFNAMSIZ]; void *pfiio_buffer; int pfiio_esize; int pfiio_size; int pfiio_nzero; int pfiio_flags; }; /* * ioctl operations */ #define DIOCSTART _IO ('D', 1) #define DIOCSTOP _IO ('D', 2) #define DIOCADDRULE _IOWR('D', 4, struct pfioc_rule) #define DIOCADDRULENV _IOWR('D', 4, struct pfioc_nv) #define DIOCGETRULES _IOWR('D', 6, struct pfioc_rule) #define DIOCGETRULENV _IOWR('D', 7, struct pfioc_nv) /* XXX cut 8 - 17 */ #define DIOCCLRSTATESNV _IOWR('D', 18, struct pfioc_nv) #define DIOCGETSTATE _IOWR('D', 19, struct pfioc_state) #define DIOCGETSTATENV _IOWR('D', 19, struct pfioc_nv) #define DIOCSETSTATUSIF _IOWR('D', 20, struct pfioc_if) #define DIOCGETSTATUSNV _IOWR('D', 21, struct pfioc_nv) #define DIOCCLRSTATUS _IO ('D', 22) #define DIOCNATLOOK _IOWR('D', 23, struct pfioc_natlook) #define DIOCSETDEBUG _IOWR('D', 24, u_int32_t) #ifdef COMPAT_FREEBSD14 #define DIOCGETSTATES _IOWR('D', 25, struct pfioc_states) #endif #define DIOCCHANGERULE _IOWR('D', 26, struct pfioc_rule) /* XXX cut 26 - 28 */ #define DIOCSETTIMEOUT _IOWR('D', 29, struct pfioc_tm) #define DIOCGETTIMEOUT _IOWR('D', 30, struct pfioc_tm) #define DIOCADDSTATE _IOWR('D', 37, struct pfioc_state) #define DIOCCLRRULECTRS _IO ('D', 38) #define DIOCGETLIMIT _IOWR('D', 39, struct pfioc_limit) #define DIOCSETLIMIT _IOWR('D', 40, struct pfioc_limit) #define DIOCKILLSTATESNV _IOWR('D', 41, struct pfioc_nv) #define DIOCSTARTALTQ _IO ('D', 42) #define DIOCSTOPALTQ _IO ('D', 43) #define DIOCADDALTQV0 _IOWR('D', 45, struct pfioc_altq_v0) #define DIOCADDALTQV1 _IOWR('D', 45, struct pfioc_altq_v1) #define DIOCGETALTQSV0 _IOWR('D', 47, struct pfioc_altq_v0) #define DIOCGETALTQSV1 _IOWR('D', 47, struct pfioc_altq_v1) #define DIOCGETALTQV0 _IOWR('D', 48, struct pfioc_altq_v0) #define DIOCGETALTQV1 _IOWR('D', 48, struct pfioc_altq_v1) #define DIOCCHANGEALTQV0 _IOWR('D', 49, struct pfioc_altq_v0) #define DIOCCHANGEALTQV1 _IOWR('D', 49, struct pfioc_altq_v1) #define DIOCGETQSTATSV0 _IOWR('D', 50, struct pfioc_qstats_v0) #define DIOCGETQSTATSV1 _IOWR('D', 50, struct pfioc_qstats_v1) #define DIOCBEGINADDRS _IOWR('D', 51, struct pfioc_pooladdr) #define DIOCADDADDR _IOWR('D', 52, struct pfioc_pooladdr) #define DIOCGETADDRS _IOWR('D', 53, struct pfioc_pooladdr) #define DIOCGETADDR _IOWR('D', 54, struct pfioc_pooladdr) #define DIOCCHANGEADDR _IOWR('D', 55, struct pfioc_pooladdr) /* XXX cut 55 - 57 */ #define DIOCGETRULESETS _IOWR('D', 58, struct pfioc_ruleset) #define DIOCGETRULESET _IOWR('D', 59, struct pfioc_ruleset) #define DIOCRCLRTABLES _IOWR('D', 60, struct pfioc_table) #define DIOCRADDTABLES _IOWR('D', 61, struct pfioc_table) #define DIOCRDELTABLES _IOWR('D', 62, struct pfioc_table) #define DIOCRGETTABLES _IOWR('D', 63, struct pfioc_table) #define DIOCRGETTSTATS _IOWR('D', 64, struct pfioc_table) #define DIOCRCLRTSTATS _IOWR('D', 65, struct pfioc_table) #define DIOCRCLRADDRS _IOWR('D', 66, struct pfioc_table) #define DIOCRADDADDRS _IOWR('D', 67, struct pfioc_table) #define DIOCRDELADDRS _IOWR('D', 68, struct pfioc_table) #define DIOCRSETADDRS _IOWR('D', 69, struct pfioc_table) #define DIOCRGETADDRS _IOWR('D', 70, struct pfioc_table) #define DIOCRGETASTATS _IOWR('D', 71, struct pfioc_table) #define DIOCRCLRASTATS _IOWR('D', 72, struct pfioc_table) #define DIOCRTSTADDRS _IOWR('D', 73, struct pfioc_table) #define DIOCRSETTFLAGS _IOWR('D', 74, struct pfioc_table) #define DIOCRINADEFINE _IOWR('D', 77, struct pfioc_table) #define DIOCOSFPFLUSH _IO('D', 78) #define DIOCOSFPADD _IOWR('D', 79, struct pf_osfp_ioctl) #define DIOCOSFPGET _IOWR('D', 80, struct pf_osfp_ioctl) #define DIOCXBEGIN _IOWR('D', 81, struct pfioc_trans) #define DIOCXCOMMIT _IOWR('D', 82, struct pfioc_trans) #define DIOCXROLLBACK _IOWR('D', 83, struct pfioc_trans) #define DIOCGETSRCNODES _IOWR('D', 84, struct pfioc_src_nodes) #define DIOCCLRSRCNODES _IO('D', 85) #define DIOCSETHOSTID _IOWR('D', 86, u_int32_t) #define DIOCIGETIFACES _IOWR('D', 87, struct pfioc_iface) #define DIOCSETIFFLAG _IOWR('D', 89, struct pfioc_iface) #define DIOCCLRIFFLAG _IOWR('D', 90, struct pfioc_iface) #define DIOCKILLSRCNODES _IOWR('D', 91, struct pfioc_src_node_kill) #define DIOCGIFSPEEDV0 _IOWR('D', 92, struct pf_ifspeed_v0) #define DIOCGIFSPEEDV1 _IOWR('D', 92, struct pf_ifspeed_v1) #ifdef COMPAT_FREEBSD14 #define DIOCGETSTATESV2 _IOWR('D', 93, struct pfioc_states_v2) #endif #define DIOCGETSYNCOOKIES _IOWR('D', 94, struct pfioc_nv) #define DIOCSETSYNCOOKIES _IOWR('D', 95, struct pfioc_nv) #define DIOCKEEPCOUNTERS _IOWR('D', 96, struct pfioc_nv) #define DIOCKEEPCOUNTERS_FREEBSD13 _IOWR('D', 92, struct pfioc_nv) #define DIOCADDETHRULE _IOWR('D', 97, struct pfioc_nv) #define DIOCGETETHRULE _IOWR('D', 98, struct pfioc_nv) #define DIOCGETETHRULES _IOWR('D', 99, struct pfioc_nv) #define DIOCGETETHRULESETS _IOWR('D', 100, struct pfioc_nv) #define DIOCGETETHRULESET _IOWR('D', 101, struct pfioc_nv) #define DIOCSETREASS _IOWR('D', 102, u_int32_t) struct pf_ifspeed_v0 { char ifname[IFNAMSIZ]; u_int32_t baudrate; }; struct pf_ifspeed_v1 { char ifname[IFNAMSIZ]; u_int32_t baudrate32; /* layout identical to struct pf_ifspeed_v0 up to this point */ u_int64_t baudrate; }; /* Latest version of struct pf_ifspeed_vX */ #define PF_IFSPEED_VERSION 1 /* * Compatibility and convenience macros */ #ifndef _KERNEL #ifdef PFIOC_USE_LATEST /* * Maintaining in-tree consumers of the ioctl interface is easier when that * code can be written in terms old names that refer to the latest interface * version as that reduces the required changes in the consumers to those * that are functionally necessary to accommodate a new interface version. */ #define pfioc_altq __CONCAT(pfioc_altq_v, PFIOC_ALTQ_VERSION) #define pfioc_qstats __CONCAT(pfioc_qstats_v, PFIOC_QSTATS_VERSION) #define pf_ifspeed __CONCAT(pf_ifspeed_v, PF_IFSPEED_VERSION) #define DIOCADDALTQ __CONCAT(DIOCADDALTQV, PFIOC_ALTQ_VERSION) #define DIOCGETALTQS __CONCAT(DIOCGETALTQSV, PFIOC_ALTQ_VERSION) #define DIOCGETALTQ __CONCAT(DIOCGETALTQV, PFIOC_ALTQ_VERSION) #define DIOCCHANGEALTQ __CONCAT(DIOCCHANGEALTQV, PFIOC_ALTQ_VERSION) #define DIOCGETQSTATS __CONCAT(DIOCGETQSTATSV, PFIOC_QSTATS_VERSION) #define DIOCGIFSPEED __CONCAT(DIOCGIFSPEEDV, PF_IFSPEED_VERSION) #else /* * When building out-of-tree code that is written for the old interface, * such as may exist in ports for example, resolve the old struct tags and * ioctl command names to the v0 versions. */ #define pfioc_altq __CONCAT(pfioc_altq_v, 0) #define pfioc_qstats __CONCAT(pfioc_qstats_v, 0) #define pf_ifspeed __CONCAT(pf_ifspeed_v, 0) #define DIOCADDALTQ __CONCAT(DIOCADDALTQV, 0) #define DIOCGETALTQS __CONCAT(DIOCGETALTQSV, 0) #define DIOCGETALTQ __CONCAT(DIOCGETALTQV, 0) #define DIOCCHANGEALTQ __CONCAT(DIOCCHANGEALTQV, 0) #define DIOCGETQSTATS __CONCAT(DIOCGETQSTATSV, 0) #define DIOCGIFSPEED __CONCAT(DIOCGIFSPEEDV, 0) #endif /* PFIOC_USE_LATEST */ #endif /* _KERNEL */ #ifdef _KERNEL LIST_HEAD(pf_ksrc_node_list, pf_ksrc_node); struct pf_srchash { struct pf_ksrc_node_list nodes; struct mtx lock; }; struct pf_keyhash { LIST_HEAD(, pf_state_key) keys; struct mtx lock; }; struct pf_idhash { LIST_HEAD(, pf_kstate) states; struct mtx lock; }; extern u_long pf_ioctl_maxcount; VNET_DECLARE(u_long, pf_hashmask); #define V_pf_hashmask VNET(pf_hashmask) VNET_DECLARE(u_long, pf_srchashmask); #define V_pf_srchashmask VNET(pf_srchashmask) #define PF_HASHSIZ (131072) #define PF_SRCHASHSIZ (PF_HASHSIZ/4) VNET_DECLARE(struct pf_keyhash *, pf_keyhash); VNET_DECLARE(struct pf_idhash *, pf_idhash); #define V_pf_keyhash VNET(pf_keyhash) #define V_pf_idhash VNET(pf_idhash) VNET_DECLARE(struct pf_srchash *, pf_srchash); #define V_pf_srchash VNET(pf_srchash) #define PF_IDHASH(s) (be64toh((s)->id) % (V_pf_hashmask + 1)) VNET_DECLARE(void *, pf_swi_cookie); #define V_pf_swi_cookie VNET(pf_swi_cookie) VNET_DECLARE(struct intr_event *, pf_swi_ie); #define V_pf_swi_ie VNET(pf_swi_ie) VNET_DECLARE(struct unrhdr64, pf_stateid); #define V_pf_stateid VNET(pf_stateid) TAILQ_HEAD(pf_altqqueue, pf_altq); VNET_DECLARE(struct pf_altqqueue, pf_altqs[4]); #define V_pf_altqs VNET(pf_altqs) VNET_DECLARE(struct pf_kpalist, pf_pabuf); #define V_pf_pabuf VNET(pf_pabuf) VNET_DECLARE(u_int32_t, ticket_altqs_active); #define V_ticket_altqs_active VNET(ticket_altqs_active) VNET_DECLARE(u_int32_t, ticket_altqs_inactive); #define V_ticket_altqs_inactive VNET(ticket_altqs_inactive) VNET_DECLARE(int, altqs_inactive_open); #define V_altqs_inactive_open VNET(altqs_inactive_open) VNET_DECLARE(u_int32_t, ticket_pabuf); #define V_ticket_pabuf VNET(ticket_pabuf) VNET_DECLARE(struct pf_altqqueue *, pf_altqs_active); #define V_pf_altqs_active VNET(pf_altqs_active) VNET_DECLARE(struct pf_altqqueue *, pf_altq_ifs_active); #define V_pf_altq_ifs_active VNET(pf_altq_ifs_active) VNET_DECLARE(struct pf_altqqueue *, pf_altqs_inactive); #define V_pf_altqs_inactive VNET(pf_altqs_inactive) VNET_DECLARE(struct pf_altqqueue *, pf_altq_ifs_inactive); #define V_pf_altq_ifs_inactive VNET(pf_altq_ifs_inactive) VNET_DECLARE(struct pf_krulequeue, pf_unlinked_rules); #define V_pf_unlinked_rules VNET(pf_unlinked_rules) #ifdef PF_WANT_32_TO_64_COUNTER LIST_HEAD(allkiflist_head, pfi_kkif); VNET_DECLARE(struct allkiflist_head, pf_allkiflist); #define V_pf_allkiflist VNET(pf_allkiflist) VNET_DECLARE(size_t, pf_allkifcount); #define V_pf_allkifcount VNET(pf_allkifcount) VNET_DECLARE(struct pfi_kkif *, pf_kifmarker); #define V_pf_kifmarker VNET(pf_kifmarker) LIST_HEAD(allrulelist_head, pf_krule); VNET_DECLARE(struct allrulelist_head, pf_allrulelist); #define V_pf_allrulelist VNET(pf_allrulelist) VNET_DECLARE(size_t, pf_allrulecount); #define V_pf_allrulecount VNET(pf_allrulecount) VNET_DECLARE(struct pf_krule *, pf_rulemarker); #define V_pf_rulemarker VNET(pf_rulemarker) #endif int pf_start(void); int pf_stop(void); void pf_initialize(void); void pf_mtag_initialize(void); void pf_mtag_cleanup(void); void pf_cleanup(void); struct pf_mtag *pf_get_mtag(struct mbuf *); extern void pf_calc_skip_steps(struct pf_krulequeue *); #ifdef ALTQ extern void pf_altq_ifnet_event(struct ifnet *, int); #endif VNET_DECLARE(uma_zone_t, pf_state_z); #define V_pf_state_z VNET(pf_state_z) VNET_DECLARE(uma_zone_t, pf_state_key_z); #define V_pf_state_key_z VNET(pf_state_key_z) VNET_DECLARE(uma_zone_t, pf_state_scrub_z); #define V_pf_state_scrub_z VNET(pf_state_scrub_z) extern void pf_purge_thread(void *); extern void pf_unload_vnet_purge(void); extern void pf_intr(void *); extern void pf_purge_expired_src_nodes(void); extern int pf_unlink_state(struct pf_kstate *); extern int pf_state_insert(struct pfi_kkif *, struct pfi_kkif *, struct pf_state_key *, struct pf_state_key *, struct pf_kstate *); extern struct pf_kstate *pf_alloc_state(int); extern void pf_free_state(struct pf_kstate *); extern void pf_killstates(struct pf_kstate_kill *, unsigned int *); extern unsigned int pf_clear_states(const struct pf_kstate_kill *); static __inline void pf_ref_state(struct pf_kstate *s) { refcount_acquire(&s->refs); } static __inline int pf_release_state(struct pf_kstate *s) { if (refcount_release(&s->refs)) { pf_free_state(s); return (1); } else return (0); } static __inline int pf_release_staten(struct pf_kstate *s, u_int n) { if (refcount_releasen(&s->refs, n)) { pf_free_state(s); return (1); } else return (0); } static __inline uint64_t pf_get_uptime(void) { struct timeval t; microuptime(&t); return ((t.tv_sec * 1000) + (t.tv_usec / 1000)); } static __inline uint64_t pf_get_time(void) { struct timeval t; microtime(&t); return ((t.tv_sec * 1000) + (t.tv_usec / 1000)); } extern struct pf_kstate *pf_find_state_byid(uint64_t, uint32_t); extern struct pf_kstate *pf_find_state_all( const struct pf_state_key_cmp *, u_int, int *); extern bool pf_find_state_all_exists( const struct pf_state_key_cmp *, u_int); extern struct pf_ksrc_node *pf_find_src_node(struct pf_addr *, struct pf_krule *, sa_family_t, struct pf_srchash **, bool); extern void pf_unlink_src_node(struct pf_ksrc_node *); extern u_int pf_free_src_nodes(struct pf_ksrc_node_list *); extern void pf_print_state(struct pf_kstate *); extern void pf_print_flags(u_int8_t); extern int pf_addr_wrap_neq(struct pf_addr_wrap *, struct pf_addr_wrap *); extern u_int16_t pf_cksum_fixup(u_int16_t, u_int16_t, u_int16_t, u_int8_t); extern u_int16_t pf_proto_cksum_fixup(struct mbuf *, u_int16_t, u_int16_t, u_int16_t, u_int8_t); VNET_DECLARE(struct ifnet *, sync_ifp); #define V_sync_ifp VNET(sync_ifp); VNET_DECLARE(struct pf_krule, pf_default_rule); #define V_pf_default_rule VNET(pf_default_rule) extern void pf_addrcpy(struct pf_addr *, struct pf_addr *, sa_family_t); void pf_free_rule(struct pf_krule *); int pf_test_eth(int, int, struct ifnet *, struct mbuf **, struct inpcb *); #ifdef INET int pf_test(int, int, struct ifnet *, struct mbuf **, struct inpcb *, struct pf_rule_actions *); int pf_normalize_ip(struct mbuf **, struct pfi_kkif *, u_short *, struct pf_pdesc *); #endif /* INET */ #ifdef INET6 int pf_test6(int, int, struct ifnet *, struct mbuf **, struct inpcb *, struct pf_rule_actions *); int pf_normalize_ip6(struct mbuf **, struct pfi_kkif *, u_short *, struct pf_pdesc *); void pf_poolmask(struct pf_addr *, struct pf_addr*, struct pf_addr *, struct pf_addr *, sa_family_t); void pf_addr_inc(struct pf_addr *, sa_family_t); int pf_max_frag_size(struct mbuf *); int pf_refragment6(struct ifnet *, struct mbuf **, struct m_tag *, bool); #endif /* INET6 */ int pf_multihome_scan_init(struct mbuf *, int, int, struct pf_pdesc *, struct pfi_kkif *); int pf_multihome_scan_asconf(struct mbuf *, int, int, struct pf_pdesc *, struct pfi_kkif *); u_int32_t pf_new_isn(struct pf_kstate *); void *pf_pull_hdr(struct mbuf *, int, void *, int, u_short *, u_short *, sa_family_t); void pf_change_a(void *, u_int16_t *, u_int32_t, u_int8_t); void pf_change_proto_a(struct mbuf *, void *, u_int16_t *, u_int32_t, u_int8_t); void pf_change_tcp_a(struct mbuf *, void *, u_int16_t *, u_int32_t); void pf_patch_16_unaligned(struct mbuf *, u_int16_t *, void *, u_int16_t, bool, u_int8_t); void pf_patch_32_unaligned(struct mbuf *, u_int16_t *, void *, u_int32_t, bool, u_int8_t); void pf_send_deferred_syn(struct pf_kstate *); int pf_match_addr(u_int8_t, struct pf_addr *, struct pf_addr *, struct pf_addr *, sa_family_t); int pf_match_addr_range(struct pf_addr *, struct pf_addr *, struct pf_addr *, sa_family_t); int pf_match_port(u_int8_t, u_int16_t, u_int16_t, u_int16_t); void pf_normalize_init(void); void pf_normalize_cleanup(void); int pf_normalize_tcp(struct pfi_kkif *, struct mbuf *, int, int, void *, struct pf_pdesc *); void pf_normalize_tcp_cleanup(struct pf_kstate *); int pf_normalize_tcp_init(struct mbuf *, int, struct pf_pdesc *, struct tcphdr *, struct pf_state_peer *, struct pf_state_peer *); int pf_normalize_tcp_stateful(struct mbuf *, int, struct pf_pdesc *, u_short *, struct tcphdr *, struct pf_kstate *, struct pf_state_peer *, struct pf_state_peer *, int *); int pf_normalize_sctp_init(struct mbuf *, int, struct pf_pdesc *, struct pf_state_peer *, struct pf_state_peer *); int pf_normalize_sctp(int, struct pfi_kkif *, struct mbuf *, int, int, void *, struct pf_pdesc *); u_int32_t pf_state_expires(const struct pf_kstate *); void pf_purge_expired_fragments(void); void pf_purge_fragments(uint32_t); int pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *, int); int pf_socket_lookup(struct pf_pdesc *, struct mbuf *); struct pf_state_key *pf_alloc_state_key(int); void pfr_initialize(void); void pfr_cleanup(void); int pfr_match_addr(struct pfr_ktable *, struct pf_addr *, sa_family_t); void pfr_update_stats(struct pfr_ktable *, struct pf_addr *, sa_family_t, u_int64_t, int, int, int); int pfr_pool_get(struct pfr_ktable *, int *, struct pf_addr *, sa_family_t); void pfr_dynaddr_update(struct pfr_ktable *, struct pfi_dynaddr *); struct pfr_ktable * pfr_attach_table(struct pf_kruleset *, char *); struct pfr_ktable * pfr_eth_attach_table(struct pf_keth_ruleset *, char *); void pfr_detach_table(struct pfr_ktable *); int pfr_clr_tables(struct pfr_table *, int *, int); int pfr_add_tables(struct pfr_table *, int, int *, int); int pfr_del_tables(struct pfr_table *, int, int *, int); int pfr_table_count(struct pfr_table *, int); int pfr_get_tables(struct pfr_table *, struct pfr_table *, int *, int); int pfr_get_tstats(struct pfr_table *, struct pfr_tstats *, int *, int); int pfr_clr_tstats(struct pfr_table *, int, int *, int); int pfr_set_tflags(struct pfr_table *, int, int, int, int *, int *, int); int pfr_clr_addrs(struct pfr_table *, int *, int); int pfr_insert_kentry(struct pfr_ktable *, struct pfr_addr *, long); int pfr_add_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_del_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_set_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int *, int *, int *, int, u_int32_t); int pfr_get_addrs(struct pfr_table *, struct pfr_addr *, int *, int); int pfr_get_astats(struct pfr_table *, struct pfr_astats *, int *, int); int pfr_clr_astats(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_tst_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_ina_begin(struct pfr_table *, u_int32_t *, int *, int); int pfr_ina_rollback(struct pfr_table *, u_int32_t, int *, int); int pfr_ina_commit(struct pfr_table *, u_int32_t, int *, int *, int); int pfr_ina_define(struct pfr_table *, struct pfr_addr *, int, int *, int *, u_int32_t, int); MALLOC_DECLARE(PFI_MTYPE); VNET_DECLARE(struct pfi_kkif *, pfi_all); #define V_pfi_all VNET(pfi_all) void pfi_initialize(void); void pfi_initialize_vnet(void); void pfi_cleanup(void); void pfi_cleanup_vnet(void); void pfi_kkif_ref(struct pfi_kkif *); void pfi_kkif_unref(struct pfi_kkif *); struct pfi_kkif *pfi_kkif_find(const char *); struct pfi_kkif *pfi_kkif_attach(struct pfi_kkif *, const char *); int pfi_kkif_match(struct pfi_kkif *, struct pfi_kkif *); void pfi_kkif_purge(void); int pfi_match_addr(struct pfi_dynaddr *, struct pf_addr *, sa_family_t); int pfi_dynaddr_setup(struct pf_addr_wrap *, sa_family_t); void pfi_dynaddr_remove(struct pfi_dynaddr *); void pfi_dynaddr_copyout(struct pf_addr_wrap *); void pfi_update_status(const char *, struct pf_status *); void pfi_get_ifaces(const char *, struct pfi_kif *, int *); int pfi_set_flags(const char *, int); int pfi_clear_flags(const char *, int); int pf_match_tag(struct mbuf *, struct pf_krule *, int *, int); int pf_tag_packet(struct mbuf *, struct pf_pdesc *, int); int pf_addr_cmp(struct pf_addr *, struct pf_addr *, sa_family_t); u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, sa_family_t); u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, sa_family_t); struct mbuf *pf_build_tcp(const struct pf_krule *, sa_family_t, const struct pf_addr *, const struct pf_addr *, u_int16_t, u_int16_t, u_int32_t, u_int32_t, u_int8_t, u_int16_t, u_int16_t, u_int8_t, bool, u_int16_t, u_int16_t, int); void pf_send_tcp(const struct pf_krule *, sa_family_t, const struct pf_addr *, const struct pf_addr *, u_int16_t, u_int16_t, u_int32_t, u_int32_t, u_int8_t, u_int16_t, u_int16_t, u_int8_t, bool, u_int16_t, u_int16_t, int); void pf_syncookies_init(void); void pf_syncookies_cleanup(void); int pf_get_syncookies(struct pfioc_nv *); int pf_set_syncookies(struct pfioc_nv *); int pf_synflood_check(struct pf_pdesc *); void pf_syncookie_send(struct mbuf *m, int off, struct pf_pdesc *); bool pf_syncookie_check(struct pf_pdesc *); u_int8_t pf_syncookie_validate(struct pf_pdesc *); struct mbuf * pf_syncookie_recreate_syn(uint8_t, int, struct pf_pdesc *); VNET_DECLARE(struct pf_kstatus, pf_status); #define V_pf_status VNET(pf_status) struct pf_limit { uma_zone_t zone; u_int limit; }; VNET_DECLARE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); #define V_pf_limits VNET(pf_limits) #endif /* _KERNEL */ #ifdef _KERNEL VNET_DECLARE(struct pf_kanchor_global, pf_anchors); #define V_pf_anchors VNET(pf_anchors) VNET_DECLARE(struct pf_kanchor, pf_main_anchor); #define V_pf_main_anchor VNET(pf_main_anchor) VNET_DECLARE(struct pf_keth_anchor_global, pf_keth_anchors); #define V_pf_keth_anchors VNET(pf_keth_anchors) #define pf_main_ruleset V_pf_main_anchor.ruleset VNET_DECLARE(struct pf_keth_anchor, pf_main_keth_anchor); #define V_pf_main_keth_anchor VNET(pf_main_keth_anchor) VNET_DECLARE(struct pf_keth_ruleset*, pf_keth); #define V_pf_keth VNET(pf_keth) void pf_init_kruleset(struct pf_kruleset *); void pf_init_keth(struct pf_keth_ruleset *); int pf_kanchor_setup(struct pf_krule *, const struct pf_kruleset *, const char *); int pf_kanchor_copyout(const struct pf_kruleset *, const struct pf_krule *, char *, size_t); int pf_kanchor_nvcopyout(const struct pf_kruleset *, const struct pf_krule *, nvlist_t *); void pf_kanchor_remove(struct pf_krule *); void pf_remove_if_empty_kruleset(struct pf_kruleset *); struct pf_kruleset *pf_find_kruleset(const char *); struct pf_kruleset *pf_find_or_create_kruleset(const char *); void pf_rs_initialize(void); struct pf_krule *pf_krule_alloc(void); void pf_remove_if_empty_keth_ruleset( struct pf_keth_ruleset *); struct pf_keth_ruleset *pf_find_keth_ruleset(const char *); struct pf_keth_anchor *pf_find_keth_anchor(const char *); int pf_keth_anchor_setup(struct pf_keth_rule *, const struct pf_keth_ruleset *, const char *); int pf_keth_anchor_nvcopyout( const struct pf_keth_ruleset *, const struct pf_keth_rule *, nvlist_t *); struct pf_keth_ruleset *pf_find_or_create_keth_ruleset(const char *); void pf_keth_anchor_remove(struct pf_keth_rule *); int pf_ioctl_getrules(struct pfioc_rule *); int pf_ioctl_addrule(struct pf_krule *, uint32_t, uint32_t, const char *, const char *, uid_t uid, pid_t); void pf_ioctl_clear_status(void); int pf_ioctl_get_timeout(int, int *); int pf_ioctl_set_timeout(int, int, int *); int pf_ioctl_get_limit(int, unsigned int *); int pf_ioctl_set_limit(int, unsigned int, unsigned int *); int pf_ioctl_begin_addrs(uint32_t *); int pf_ioctl_add_addr(struct pfioc_pooladdr *); +int pf_ioctl_get_addrs(struct pfioc_pooladdr *); void pf_krule_free(struct pf_krule *); void pf_krule_clear_counters(struct pf_krule *); #endif /* The fingerprint functions can be linked into userland programs (tcpdump) */ int pf_osfp_add(struct pf_osfp_ioctl *); #ifdef _KERNEL struct pf_osfp_enlist * pf_osfp_fingerprint(struct pf_pdesc *, struct mbuf *, int, const struct tcphdr *); #endif /* _KERNEL */ void pf_osfp_flush(void); int pf_osfp_get(struct pf_osfp_ioctl *); int pf_osfp_match(struct pf_osfp_enlist *, pf_osfp_t); #ifdef _KERNEL void pf_print_host(struct pf_addr *, u_int16_t, sa_family_t); void pf_step_into_anchor(struct pf_kanchor_stackframe *, int *, struct pf_kruleset **, int, struct pf_krule **, struct pf_krule **, int *); int pf_step_out_of_anchor(struct pf_kanchor_stackframe *, int *, struct pf_kruleset **, int, struct pf_krule **, struct pf_krule **, int *); void pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *, int *, struct pf_keth_ruleset **, struct pf_keth_rule **, struct pf_keth_rule **, int *); int pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *, int *, struct pf_keth_ruleset **, struct pf_keth_rule **, struct pf_keth_rule **, int *); u_short pf_map_addr(u_int8_t, struct pf_krule *, struct pf_addr *, struct pf_addr *, struct pfi_kkif **nkif, struct pf_addr *, struct pf_ksrc_node **); struct pf_krule *pf_get_translation(struct pf_pdesc *, struct mbuf *, int, struct pfi_kkif *, struct pf_ksrc_node **, struct pf_state_key **, struct pf_state_key **, struct pf_addr *, struct pf_addr *, uint16_t, uint16_t, struct pf_kanchor_stackframe *); struct pf_state_key *pf_state_key_setup(struct pf_pdesc *, struct pf_addr *, struct pf_addr *, u_int16_t, u_int16_t); struct pf_state_key *pf_state_key_clone(const struct pf_state_key *); void pf_rule_to_actions(struct pf_krule *, struct pf_rule_actions *); int pf_normalize_mss(struct mbuf *m, int off, struct pf_pdesc *pd); #ifdef INET void pf_scrub_ip(struct mbuf **, struct pf_pdesc *); #endif /* INET */ #ifdef INET6 void pf_scrub_ip6(struct mbuf **, struct pf_pdesc *); #endif /* INET6 */ struct pfi_kkif *pf_kkif_create(int); void pf_kkif_free(struct pfi_kkif *); void pf_kkif_zero(struct pfi_kkif *); #endif /* _KERNEL */ #endif /* _NET_PFVAR_H_ */ diff --git a/sys/netpfil/pf/pf_ioctl.c b/sys/netpfil/pf/pf_ioctl.c index f5a216666076..4ea0301cd3c4 100644 --- a/sys/netpfil/pf/pf_ioctl.c +++ b/sys/netpfil/pf/pf_ioctl.c @@ -1,6877 +1,6887 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * Copyright (c) 2002,2003 Henning Brauer * Copyright (c) 2012 Gleb Smirnoff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * * $OpenBSD: pf_ioctl.c,v 1.213 2009/02/15 21:46:12 mbalmer Exp $ */ #include #include "opt_inet.h" #include "opt_inet6.h" #include "opt_bpf.h" #include "opt_pf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif /* INET6 */ #ifdef ALTQ #include #endif SDT_PROBE_DEFINE3(pf, ioctl, ioctl, error, "int", "int", "int"); SDT_PROBE_DEFINE3(pf, ioctl, function, error, "char *", "int", "int"); SDT_PROBE_DEFINE2(pf, ioctl, addrule, error, "int", "int"); SDT_PROBE_DEFINE2(pf, ioctl, nvchk, error, "int", "int"); static struct pf_kpool *pf_get_kpool(const char *, u_int32_t, u_int8_t, u_int32_t, u_int8_t, u_int8_t, u_int8_t); static void pf_mv_kpool(struct pf_kpalist *, struct pf_kpalist *); static void pf_empty_kpool(struct pf_kpalist *); static int pfioctl(struct cdev *, u_long, caddr_t, int, struct thread *); static int pf_begin_eth(uint32_t *, const char *); static void pf_rollback_eth_cb(struct epoch_context *); static int pf_rollback_eth(uint32_t, const char *); static int pf_commit_eth(uint32_t, const char *); static void pf_free_eth_rule(struct pf_keth_rule *); #ifdef ALTQ static int pf_begin_altq(u_int32_t *); static int pf_rollback_altq(u_int32_t); static int pf_commit_altq(u_int32_t); static int pf_enable_altq(struct pf_altq *); static int pf_disable_altq(struct pf_altq *); static uint16_t pf_qname2qid(const char *); static void pf_qid_unref(uint16_t); #endif /* ALTQ */ static int pf_begin_rules(u_int32_t *, int, const char *); static int pf_rollback_rules(u_int32_t, int, char *); static int pf_setup_pfsync_matching(struct pf_kruleset *); static void pf_hash_rule_rolling(MD5_CTX *, struct pf_krule *); static void pf_hash_rule(struct pf_krule *); static void pf_hash_rule_addr(MD5_CTX *, struct pf_rule_addr *); static int pf_commit_rules(u_int32_t, int, char *); static int pf_addr_setup(struct pf_kruleset *, struct pf_addr_wrap *, sa_family_t); static void pf_addr_copyout(struct pf_addr_wrap *); static void pf_src_node_copy(const struct pf_ksrc_node *, struct pf_src_node *); #ifdef ALTQ static int pf_export_kaltq(struct pf_altq *, struct pfioc_altq_v1 *, size_t); static int pf_import_kaltq(struct pfioc_altq_v1 *, struct pf_altq *, size_t); #endif /* ALTQ */ VNET_DEFINE(struct pf_krule, pf_default_rule); static __inline int pf_krule_compare(struct pf_krule *, struct pf_krule *); RB_GENERATE(pf_krule_global, pf_krule, entry_global, pf_krule_compare); #ifdef ALTQ VNET_DEFINE_STATIC(int, pf_altq_running); #define V_pf_altq_running VNET(pf_altq_running) #endif #define TAGID_MAX 50000 struct pf_tagname { TAILQ_ENTRY(pf_tagname) namehash_entries; TAILQ_ENTRY(pf_tagname) taghash_entries; char name[PF_TAG_NAME_SIZE]; uint16_t tag; int ref; }; struct pf_tagset { TAILQ_HEAD(, pf_tagname) *namehash; TAILQ_HEAD(, pf_tagname) *taghash; unsigned int mask; uint32_t seed; BITSET_DEFINE(, TAGID_MAX) avail; }; VNET_DEFINE(struct pf_tagset, pf_tags); #define V_pf_tags VNET(pf_tags) static unsigned int pf_rule_tag_hashsize; #define PF_RULE_TAG_HASH_SIZE_DEFAULT 128 SYSCTL_UINT(_net_pf, OID_AUTO, rule_tag_hashsize, CTLFLAG_RDTUN, &pf_rule_tag_hashsize, PF_RULE_TAG_HASH_SIZE_DEFAULT, "Size of pf(4) rule tag hashtable"); #ifdef ALTQ VNET_DEFINE(struct pf_tagset, pf_qids); #define V_pf_qids VNET(pf_qids) static unsigned int pf_queue_tag_hashsize; #define PF_QUEUE_TAG_HASH_SIZE_DEFAULT 128 SYSCTL_UINT(_net_pf, OID_AUTO, queue_tag_hashsize, CTLFLAG_RDTUN, &pf_queue_tag_hashsize, PF_QUEUE_TAG_HASH_SIZE_DEFAULT, "Size of pf(4) queue tag hashtable"); #endif VNET_DEFINE(uma_zone_t, pf_tag_z); #define V_pf_tag_z VNET(pf_tag_z) static MALLOC_DEFINE(M_PFALTQ, "pf_altq", "pf(4) altq configuration db"); static MALLOC_DEFINE(M_PFRULE, "pf_rule", "pf(4) rules"); #if (PF_QNAME_SIZE != PF_TAG_NAME_SIZE) #error PF_QNAME_SIZE must be equal to PF_TAG_NAME_SIZE #endif VNET_DEFINE_STATIC(bool, pf_filter_local) = false; #define V_pf_filter_local VNET(pf_filter_local) SYSCTL_BOOL(_net_pf, OID_AUTO, filter_local, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(pf_filter_local), false, "Enable filtering for packets delivered to local network stack"); #ifdef PF_DEFAULT_TO_DROP VNET_DEFINE_STATIC(bool, default_to_drop) = true; #else VNET_DEFINE_STATIC(bool, default_to_drop); #endif #define V_default_to_drop VNET(default_to_drop) SYSCTL_BOOL(_net_pf, OID_AUTO, default_to_drop, CTLFLAG_RDTUN | CTLFLAG_VNET, &VNET_NAME(default_to_drop), false, "Make the default rule drop all packets."); static void pf_init_tagset(struct pf_tagset *, unsigned int *, unsigned int); static void pf_cleanup_tagset(struct pf_tagset *); static uint16_t tagname2hashindex(const struct pf_tagset *, const char *); static uint16_t tag2hashindex(const struct pf_tagset *, uint16_t); static u_int16_t tagname2tag(struct pf_tagset *, const char *); static u_int16_t pf_tagname2tag(const char *); static void tag_unref(struct pf_tagset *, u_int16_t); #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x struct cdev *pf_dev; /* * XXX - These are new and need to be checked when moveing to a new version */ static void pf_clear_all_states(void); static int pf_killstates_row(struct pf_kstate_kill *, struct pf_idhash *); static int pf_killstates_nv(struct pfioc_nv *); static int pf_clearstates_nv(struct pfioc_nv *); static int pf_getstate(struct pfioc_nv *); static int pf_getstatus(struct pfioc_nv *); static int pf_clear_tables(void); static void pf_clear_srcnodes(struct pf_ksrc_node *); static void pf_kill_srcnodes(struct pfioc_src_node_kill *); static int pf_keepcounters(struct pfioc_nv *); static void pf_tbladdr_copyout(struct pf_addr_wrap *); /* * Wrapper functions for pfil(9) hooks */ static pfil_return_t pf_eth_check_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); static pfil_return_t pf_eth_check_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); #ifdef INET static pfil_return_t pf_check_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); static pfil_return_t pf_check_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); #endif #ifdef INET6 static pfil_return_t pf_check6_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); static pfil_return_t pf_check6_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); #endif static void hook_pf_eth(void); static void hook_pf(void); static void dehook_pf_eth(void); static void dehook_pf(void); static int shutdown_pf(void); static int pf_load(void); static void pf_unload(void); static struct cdevsw pf_cdevsw = { .d_ioctl = pfioctl, .d_name = PF_NAME, .d_version = D_VERSION, }; VNET_DEFINE_STATIC(bool, pf_pfil_hooked); #define V_pf_pfil_hooked VNET(pf_pfil_hooked) VNET_DEFINE_STATIC(bool, pf_pfil_eth_hooked); #define V_pf_pfil_eth_hooked VNET(pf_pfil_eth_hooked) /* * We need a flag that is neither hooked nor running to know when * the VNET is "valid". We primarily need this to control (global) * external event, e.g., eventhandlers. */ VNET_DEFINE(int, pf_vnet_active); #define V_pf_vnet_active VNET(pf_vnet_active) int pf_end_threads; struct proc *pf_purge_proc; VNET_DEFINE(struct rmlock, pf_rules_lock); VNET_DEFINE_STATIC(struct sx, pf_ioctl_lock); #define V_pf_ioctl_lock VNET(pf_ioctl_lock) struct sx pf_end_lock; /* pfsync */ VNET_DEFINE(pfsync_state_import_t *, pfsync_state_import_ptr); VNET_DEFINE(pfsync_insert_state_t *, pfsync_insert_state_ptr); VNET_DEFINE(pfsync_update_state_t *, pfsync_update_state_ptr); VNET_DEFINE(pfsync_delete_state_t *, pfsync_delete_state_ptr); VNET_DEFINE(pfsync_clear_states_t *, pfsync_clear_states_ptr); VNET_DEFINE(pfsync_defer_t *, pfsync_defer_ptr); VNET_DEFINE(pflow_export_state_t *, pflow_export_state_ptr); pfsync_detach_ifnet_t *pfsync_detach_ifnet_ptr; /* pflog */ pflog_packet_t *pflog_packet_ptr = NULL; /* * Copy a user-provided string, returning an error if truncation would occur. * Avoid scanning past "sz" bytes in the source string since there's no * guarantee that it's nul-terminated. */ static int pf_user_strcpy(char *dst, const char *src, size_t sz) { if (strnlen(src, sz) == sz) return (EINVAL); (void)strlcpy(dst, src, sz); return (0); } static void pfattach_vnet(void) { u_int32_t *my_timeout = V_pf_default_rule.timeout; bzero(&V_pf_status, sizeof(V_pf_status)); pf_initialize(); pfr_initialize(); pfi_initialize_vnet(); pf_normalize_init(); pf_syncookies_init(); V_pf_limits[PF_LIMIT_STATES].limit = PFSTATE_HIWAT; V_pf_limits[PF_LIMIT_SRC_NODES].limit = PFSNODE_HIWAT; RB_INIT(&V_pf_anchors); pf_init_kruleset(&pf_main_ruleset); pf_init_keth(V_pf_keth); /* default rule should never be garbage collected */ V_pf_default_rule.entries.tqe_prev = &V_pf_default_rule.entries.tqe_next; V_pf_default_rule.action = V_default_to_drop ? PF_DROP : PF_PASS; V_pf_default_rule.nr = -1; V_pf_default_rule.rtableid = -1; pf_counter_u64_init(&V_pf_default_rule.evaluations, M_WAITOK); for (int i = 0; i < 2; i++) { pf_counter_u64_init(&V_pf_default_rule.packets[i], M_WAITOK); pf_counter_u64_init(&V_pf_default_rule.bytes[i], M_WAITOK); } V_pf_default_rule.states_cur = counter_u64_alloc(M_WAITOK); V_pf_default_rule.states_tot = counter_u64_alloc(M_WAITOK); V_pf_default_rule.src_nodes = counter_u64_alloc(M_WAITOK); V_pf_default_rule.timestamp = uma_zalloc_pcpu(pf_timestamp_pcpu_zone, M_WAITOK | M_ZERO); #ifdef PF_WANT_32_TO_64_COUNTER V_pf_kifmarker = malloc(sizeof(*V_pf_kifmarker), PFI_MTYPE, M_WAITOK | M_ZERO); V_pf_rulemarker = malloc(sizeof(*V_pf_rulemarker), M_PFRULE, M_WAITOK | M_ZERO); PF_RULES_WLOCK(); LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); LIST_INSERT_HEAD(&V_pf_allrulelist, &V_pf_default_rule, allrulelist); V_pf_allrulecount++; LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); PF_RULES_WUNLOCK(); #endif /* initialize default timeouts */ my_timeout[PFTM_TCP_FIRST_PACKET] = PFTM_TCP_FIRST_PACKET_VAL; my_timeout[PFTM_TCP_OPENING] = PFTM_TCP_OPENING_VAL; my_timeout[PFTM_TCP_ESTABLISHED] = PFTM_TCP_ESTABLISHED_VAL; my_timeout[PFTM_TCP_CLOSING] = PFTM_TCP_CLOSING_VAL; my_timeout[PFTM_TCP_FIN_WAIT] = PFTM_TCP_FIN_WAIT_VAL; my_timeout[PFTM_TCP_CLOSED] = PFTM_TCP_CLOSED_VAL; my_timeout[PFTM_SCTP_FIRST_PACKET] = PFTM_TCP_FIRST_PACKET_VAL; my_timeout[PFTM_SCTP_OPENING] = PFTM_TCP_OPENING_VAL; my_timeout[PFTM_SCTP_ESTABLISHED] = PFTM_TCP_ESTABLISHED_VAL; my_timeout[PFTM_SCTP_CLOSING] = PFTM_TCP_CLOSING_VAL; my_timeout[PFTM_SCTP_CLOSED] = PFTM_TCP_CLOSED_VAL; my_timeout[PFTM_UDP_FIRST_PACKET] = PFTM_UDP_FIRST_PACKET_VAL; my_timeout[PFTM_UDP_SINGLE] = PFTM_UDP_SINGLE_VAL; my_timeout[PFTM_UDP_MULTIPLE] = PFTM_UDP_MULTIPLE_VAL; my_timeout[PFTM_ICMP_FIRST_PACKET] = PFTM_ICMP_FIRST_PACKET_VAL; my_timeout[PFTM_ICMP_ERROR_REPLY] = PFTM_ICMP_ERROR_REPLY_VAL; my_timeout[PFTM_OTHER_FIRST_PACKET] = PFTM_OTHER_FIRST_PACKET_VAL; my_timeout[PFTM_OTHER_SINGLE] = PFTM_OTHER_SINGLE_VAL; my_timeout[PFTM_OTHER_MULTIPLE] = PFTM_OTHER_MULTIPLE_VAL; my_timeout[PFTM_FRAG] = PFTM_FRAG_VAL; my_timeout[PFTM_INTERVAL] = PFTM_INTERVAL_VAL; my_timeout[PFTM_SRC_NODE] = PFTM_SRC_NODE_VAL; my_timeout[PFTM_TS_DIFF] = PFTM_TS_DIFF_VAL; my_timeout[PFTM_ADAPTIVE_START] = PFSTATE_ADAPT_START; my_timeout[PFTM_ADAPTIVE_END] = PFSTATE_ADAPT_END; V_pf_status.debug = PF_DEBUG_URGENT; /* * XXX This is different than in OpenBSD where reassembly is enabled by * defult. In FreeBSD we expect people to still use scrub rules and * switch to the new syntax later. Only when they switch they must * explicitly enable reassemle. We could change the default once the * scrub rule functionality is hopefully removed some day in future. */ V_pf_status.reass = 0; V_pf_pfil_hooked = false; V_pf_pfil_eth_hooked = false; /* XXX do our best to avoid a conflict */ V_pf_status.hostid = arc4random(); for (int i = 0; i < PFRES_MAX; i++) V_pf_status.counters[i] = counter_u64_alloc(M_WAITOK); for (int i = 0; i < KLCNT_MAX; i++) V_pf_status.lcounters[i] = counter_u64_alloc(M_WAITOK); for (int i = 0; i < FCNT_MAX; i++) pf_counter_u64_init(&V_pf_status.fcounters[i], M_WAITOK); for (int i = 0; i < SCNT_MAX; i++) V_pf_status.scounters[i] = counter_u64_alloc(M_WAITOK); if (swi_add(&V_pf_swi_ie, "pf send", pf_intr, curvnet, SWI_NET, INTR_MPSAFE, &V_pf_swi_cookie) != 0) /* XXXGL: leaked all above. */ return; } static struct pf_kpool * pf_get_kpool(const char *anchor, u_int32_t ticket, u_int8_t rule_action, u_int32_t rule_number, u_int8_t r_last, u_int8_t active, u_int8_t check_ticket) { struct pf_kruleset *ruleset; struct pf_krule *rule; int rs_num; ruleset = pf_find_kruleset(anchor); if (ruleset == NULL) return (NULL); rs_num = pf_get_ruleset_number(rule_action); if (rs_num >= PF_RULESET_MAX) return (NULL); if (active) { if (check_ticket && ticket != ruleset->rules[rs_num].active.ticket) return (NULL); if (r_last) rule = TAILQ_LAST(ruleset->rules[rs_num].active.ptr, pf_krulequeue); else rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); } else { if (check_ticket && ticket != ruleset->rules[rs_num].inactive.ticket) return (NULL); if (r_last) rule = TAILQ_LAST(ruleset->rules[rs_num].inactive.ptr, pf_krulequeue); else rule = TAILQ_FIRST(ruleset->rules[rs_num].inactive.ptr); } if (!r_last) { while ((rule != NULL) && (rule->nr != rule_number)) rule = TAILQ_NEXT(rule, entries); } if (rule == NULL) return (NULL); return (&rule->rpool); } static void pf_mv_kpool(struct pf_kpalist *poola, struct pf_kpalist *poolb) { struct pf_kpooladdr *mv_pool_pa; while ((mv_pool_pa = TAILQ_FIRST(poola)) != NULL) { TAILQ_REMOVE(poola, mv_pool_pa, entries); TAILQ_INSERT_TAIL(poolb, mv_pool_pa, entries); } } static void pf_empty_kpool(struct pf_kpalist *poola) { struct pf_kpooladdr *pa; while ((pa = TAILQ_FIRST(poola)) != NULL) { switch (pa->addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(pa->addr.p.dyn); break; case PF_ADDR_TABLE: /* XXX: this could be unfinished pooladdr on pabuf */ if (pa->addr.p.tbl != NULL) pfr_detach_table(pa->addr.p.tbl); break; } if (pa->kif) pfi_kkif_unref(pa->kif); TAILQ_REMOVE(poola, pa, entries); free(pa, M_PFRULE); } } static void pf_unlink_rule_locked(struct pf_krulequeue *rulequeue, struct pf_krule *rule) { PF_RULES_WASSERT(); PF_UNLNKDRULES_ASSERT(); TAILQ_REMOVE(rulequeue, rule, entries); rule->rule_ref |= PFRULE_REFS; TAILQ_INSERT_TAIL(&V_pf_unlinked_rules, rule, entries); } static void pf_unlink_rule(struct pf_krulequeue *rulequeue, struct pf_krule *rule) { PF_RULES_WASSERT(); PF_UNLNKDRULES_LOCK(); pf_unlink_rule_locked(rulequeue, rule); PF_UNLNKDRULES_UNLOCK(); } static void pf_free_eth_rule(struct pf_keth_rule *rule) { PF_RULES_WASSERT(); if (rule == NULL) return; if (rule->tag) tag_unref(&V_pf_tags, rule->tag); if (rule->match_tag) tag_unref(&V_pf_tags, rule->match_tag); #ifdef ALTQ pf_qid_unref(rule->qid); #endif if (rule->bridge_to) pfi_kkif_unref(rule->bridge_to); if (rule->kif) pfi_kkif_unref(rule->kif); if (rule->ipsrc.addr.type == PF_ADDR_TABLE) pfr_detach_table(rule->ipsrc.addr.p.tbl); if (rule->ipdst.addr.type == PF_ADDR_TABLE) pfr_detach_table(rule->ipdst.addr.p.tbl); counter_u64_free(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_free(rule->packets[i]); counter_u64_free(rule->bytes[i]); } uma_zfree_pcpu(pf_timestamp_pcpu_zone, rule->timestamp); pf_keth_anchor_remove(rule); free(rule, M_PFRULE); } void pf_free_rule(struct pf_krule *rule) { PF_RULES_WASSERT(); PF_CONFIG_ASSERT(); if (rule->tag) tag_unref(&V_pf_tags, rule->tag); if (rule->match_tag) tag_unref(&V_pf_tags, rule->match_tag); #ifdef ALTQ if (rule->pqid != rule->qid) pf_qid_unref(rule->pqid); pf_qid_unref(rule->qid); #endif switch (rule->src.addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(rule->src.addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(rule->src.addr.p.tbl); break; } switch (rule->dst.addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(rule->dst.addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(rule->dst.addr.p.tbl); break; } if (rule->overload_tbl) pfr_detach_table(rule->overload_tbl); if (rule->kif) pfi_kkif_unref(rule->kif); pf_kanchor_remove(rule); pf_empty_kpool(&rule->rpool.list); pf_krule_free(rule); } static void pf_init_tagset(struct pf_tagset *ts, unsigned int *tunable_size, unsigned int default_size) { unsigned int i; unsigned int hashsize; if (*tunable_size == 0 || !powerof2(*tunable_size)) *tunable_size = default_size; hashsize = *tunable_size; ts->namehash = mallocarray(hashsize, sizeof(*ts->namehash), M_PFHASH, M_WAITOK); ts->taghash = mallocarray(hashsize, sizeof(*ts->taghash), M_PFHASH, M_WAITOK); ts->mask = hashsize - 1; ts->seed = arc4random(); for (i = 0; i < hashsize; i++) { TAILQ_INIT(&ts->namehash[i]); TAILQ_INIT(&ts->taghash[i]); } BIT_FILL(TAGID_MAX, &ts->avail); } static void pf_cleanup_tagset(struct pf_tagset *ts) { unsigned int i; unsigned int hashsize; struct pf_tagname *t, *tmp; /* * Only need to clean up one of the hashes as each tag is hashed * into each table. */ hashsize = ts->mask + 1; for (i = 0; i < hashsize; i++) TAILQ_FOREACH_SAFE(t, &ts->namehash[i], namehash_entries, tmp) uma_zfree(V_pf_tag_z, t); free(ts->namehash, M_PFHASH); free(ts->taghash, M_PFHASH); } static uint16_t tagname2hashindex(const struct pf_tagset *ts, const char *tagname) { size_t len; len = strnlen(tagname, PF_TAG_NAME_SIZE - 1); return (murmur3_32_hash(tagname, len, ts->seed) & ts->mask); } static uint16_t tag2hashindex(const struct pf_tagset *ts, uint16_t tag) { return (tag & ts->mask); } static u_int16_t tagname2tag(struct pf_tagset *ts, const char *tagname) { struct pf_tagname *tag; u_int32_t index; u_int16_t new_tagid; PF_RULES_WASSERT(); index = tagname2hashindex(ts, tagname); TAILQ_FOREACH(tag, &ts->namehash[index], namehash_entries) if (strcmp(tagname, tag->name) == 0) { tag->ref++; return (tag->tag); } /* * new entry * * to avoid fragmentation, we do a linear search from the beginning * and take the first free slot we find. */ new_tagid = BIT_FFS(TAGID_MAX, &ts->avail); /* * Tags are 1-based, with valid tags in the range [1..TAGID_MAX]. * BIT_FFS() returns a 1-based bit number, with 0 indicating no bits * set. It may also return a bit number greater than TAGID_MAX due * to rounding of the number of bits in the vector up to a multiple * of the vector word size at declaration/allocation time. */ if ((new_tagid == 0) || (new_tagid > TAGID_MAX)) return (0); /* Mark the tag as in use. Bits are 0-based for BIT_CLR() */ BIT_CLR(TAGID_MAX, new_tagid - 1, &ts->avail); /* allocate and fill new struct pf_tagname */ tag = uma_zalloc(V_pf_tag_z, M_NOWAIT); if (tag == NULL) return (0); strlcpy(tag->name, tagname, sizeof(tag->name)); tag->tag = new_tagid; tag->ref = 1; /* Insert into namehash */ TAILQ_INSERT_TAIL(&ts->namehash[index], tag, namehash_entries); /* Insert into taghash */ index = tag2hashindex(ts, new_tagid); TAILQ_INSERT_TAIL(&ts->taghash[index], tag, taghash_entries); return (tag->tag); } static void tag_unref(struct pf_tagset *ts, u_int16_t tag) { struct pf_tagname *t; uint16_t index; PF_RULES_WASSERT(); index = tag2hashindex(ts, tag); TAILQ_FOREACH(t, &ts->taghash[index], taghash_entries) if (tag == t->tag) { if (--t->ref == 0) { TAILQ_REMOVE(&ts->taghash[index], t, taghash_entries); index = tagname2hashindex(ts, t->name); TAILQ_REMOVE(&ts->namehash[index], t, namehash_entries); /* Bits are 0-based for BIT_SET() */ BIT_SET(TAGID_MAX, tag - 1, &ts->avail); uma_zfree(V_pf_tag_z, t); } break; } } static uint16_t pf_tagname2tag(const char *tagname) { return (tagname2tag(&V_pf_tags, tagname)); } static int pf_begin_eth(uint32_t *ticket, const char *anchor) { struct pf_keth_rule *rule, *tmp; struct pf_keth_ruleset *rs; PF_RULES_WASSERT(); rs = pf_find_or_create_keth_ruleset(anchor); if (rs == NULL) return (EINVAL); /* Purge old inactive rules. */ TAILQ_FOREACH_SAFE(rule, rs->inactive.rules, entries, tmp) { TAILQ_REMOVE(rs->inactive.rules, rule, entries); pf_free_eth_rule(rule); } *ticket = ++rs->inactive.ticket; rs->inactive.open = 1; return (0); } static void pf_rollback_eth_cb(struct epoch_context *ctx) { struct pf_keth_ruleset *rs; rs = __containerof(ctx, struct pf_keth_ruleset, epoch_ctx); CURVNET_SET(rs->vnet); PF_RULES_WLOCK(); pf_rollback_eth(rs->inactive.ticket, rs->anchor ? rs->anchor->path : ""); PF_RULES_WUNLOCK(); CURVNET_RESTORE(); } static int pf_rollback_eth(uint32_t ticket, const char *anchor) { struct pf_keth_rule *rule, *tmp; struct pf_keth_ruleset *rs; PF_RULES_WASSERT(); rs = pf_find_keth_ruleset(anchor); if (rs == NULL) return (EINVAL); if (!rs->inactive.open || ticket != rs->inactive.ticket) return (0); /* Purge old inactive rules. */ TAILQ_FOREACH_SAFE(rule, rs->inactive.rules, entries, tmp) { TAILQ_REMOVE(rs->inactive.rules, rule, entries); pf_free_eth_rule(rule); } rs->inactive.open = 0; pf_remove_if_empty_keth_ruleset(rs); return (0); } #define PF_SET_SKIP_STEPS(i) \ do { \ while (head[i] != cur) { \ head[i]->skip[i].ptr = cur; \ head[i] = TAILQ_NEXT(head[i], entries); \ } \ } while (0) static void pf_eth_calc_skip_steps(struct pf_keth_ruleq *rules) { struct pf_keth_rule *cur, *prev, *head[PFE_SKIP_COUNT]; int i; cur = TAILQ_FIRST(rules); prev = cur; for (i = 0; i < PFE_SKIP_COUNT; ++i) head[i] = cur; while (cur != NULL) { if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) PF_SET_SKIP_STEPS(PFE_SKIP_IFP); if (cur->direction != prev->direction) PF_SET_SKIP_STEPS(PFE_SKIP_DIR); if (cur->proto != prev->proto) PF_SET_SKIP_STEPS(PFE_SKIP_PROTO); if (memcmp(&cur->src, &prev->src, sizeof(cur->src)) != 0) PF_SET_SKIP_STEPS(PFE_SKIP_SRC_ADDR); if (memcmp(&cur->dst, &prev->dst, sizeof(cur->dst)) != 0) PF_SET_SKIP_STEPS(PFE_SKIP_DST_ADDR); if (cur->ipsrc.neg != prev->ipsrc.neg || pf_addr_wrap_neq(&cur->ipsrc.addr, &prev->ipsrc.addr)) PF_SET_SKIP_STEPS(PFE_SKIP_SRC_IP_ADDR); if (cur->ipdst.neg != prev->ipdst.neg || pf_addr_wrap_neq(&cur->ipdst.addr, &prev->ipdst.addr)) PF_SET_SKIP_STEPS(PFE_SKIP_DST_IP_ADDR); prev = cur; cur = TAILQ_NEXT(cur, entries); } for (i = 0; i < PFE_SKIP_COUNT; ++i) PF_SET_SKIP_STEPS(i); } static int pf_commit_eth(uint32_t ticket, const char *anchor) { struct pf_keth_ruleq *rules; struct pf_keth_ruleset *rs; rs = pf_find_keth_ruleset(anchor); if (rs == NULL) { return (EINVAL); } if (!rs->inactive.open || ticket != rs->inactive.ticket) return (EBUSY); PF_RULES_WASSERT(); pf_eth_calc_skip_steps(rs->inactive.rules); rules = rs->active.rules; ck_pr_store_ptr(&rs->active.rules, rs->inactive.rules); rs->inactive.rules = rules; rs->inactive.ticket = rs->active.ticket; /* Clean up inactive rules (i.e. previously active rules), only when * we're sure they're no longer used. */ NET_EPOCH_CALL(pf_rollback_eth_cb, &rs->epoch_ctx); return (0); } #ifdef ALTQ static uint16_t pf_qname2qid(const char *qname) { return (tagname2tag(&V_pf_qids, qname)); } static void pf_qid_unref(uint16_t qid) { tag_unref(&V_pf_qids, qid); } static int pf_begin_altq(u_int32_t *ticket) { struct pf_altq *altq, *tmp; int error = 0; PF_RULES_WASSERT(); /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ error = altq_remove(altq); } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); if (error) return (error); *ticket = ++V_ticket_altqs_inactive; V_altqs_inactive_open = 1; return (0); } static int pf_rollback_altq(u_int32_t ticket) { struct pf_altq *altq, *tmp; int error = 0; PF_RULES_WASSERT(); if (!V_altqs_inactive_open || ticket != V_ticket_altqs_inactive) return (0); /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ error = altq_remove(altq); } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); V_altqs_inactive_open = 0; return (error); } static int pf_commit_altq(u_int32_t ticket) { struct pf_altqqueue *old_altqs, *old_altq_ifs; struct pf_altq *altq, *tmp; int err, error = 0; PF_RULES_WASSERT(); if (!V_altqs_inactive_open || ticket != V_ticket_altqs_inactive) return (EBUSY); /* swap altqs, keep the old. */ old_altqs = V_pf_altqs_active; old_altq_ifs = V_pf_altq_ifs_active; V_pf_altqs_active = V_pf_altqs_inactive; V_pf_altq_ifs_active = V_pf_altq_ifs_inactive; V_pf_altqs_inactive = old_altqs; V_pf_altq_ifs_inactive = old_altq_ifs; V_ticket_altqs_active = V_ticket_altqs_inactive; /* Attach new disciplines */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* attach the discipline */ error = altq_pfattach(altq); if (error == 0 && V_pf_altq_running) error = pf_enable_altq(altq); if (error != 0) return (error); } } /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ if (V_pf_altq_running) error = pf_disable_altq(altq); err = altq_pfdetach(altq); if (err != 0 && error == 0) error = err; err = altq_remove(altq); if (err != 0 && error == 0) error = err; } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); V_altqs_inactive_open = 0; return (error); } static int pf_enable_altq(struct pf_altq *altq) { struct ifnet *ifp; struct tb_profile tb; int error = 0; if ((ifp = ifunit(altq->ifname)) == NULL) return (EINVAL); if (ifp->if_snd.altq_type != ALTQT_NONE) error = altq_enable(&ifp->if_snd); /* set tokenbucket regulator */ if (error == 0 && ifp != NULL && ALTQ_IS_ENABLED(&ifp->if_snd)) { tb.rate = altq->ifbandwidth; tb.depth = altq->tbrsize; error = tbr_set(&ifp->if_snd, &tb); } return (error); } static int pf_disable_altq(struct pf_altq *altq) { struct ifnet *ifp; struct tb_profile tb; int error; if ((ifp = ifunit(altq->ifname)) == NULL) return (EINVAL); /* * when the discipline is no longer referenced, it was overridden * by a new one. if so, just return. */ if (altq->altq_disc != ifp->if_snd.altq_disc) return (0); error = altq_disable(&ifp->if_snd); if (error == 0) { /* clear tokenbucket regulator */ tb.rate = 0; error = tbr_set(&ifp->if_snd, &tb); } return (error); } static int pf_altq_ifnet_event_add(struct ifnet *ifp, int remove, u_int32_t ticket, struct pf_altq *altq) { struct ifnet *ifp1; int error = 0; /* Deactivate the interface in question */ altq->local_flags &= ~PFALTQ_FLAG_IF_REMOVED; if ((ifp1 = ifunit(altq->ifname)) == NULL || (remove && ifp1 == ifp)) { altq->local_flags |= PFALTQ_FLAG_IF_REMOVED; } else { error = altq_add(ifp1, altq); if (ticket != V_ticket_altqs_inactive) error = EBUSY; if (error) free(altq, M_PFALTQ); } return (error); } void pf_altq_ifnet_event(struct ifnet *ifp, int remove) { struct pf_altq *a1, *a2, *a3; u_int32_t ticket; int error = 0; /* * No need to re-evaluate the configuration for events on interfaces * that do not support ALTQ, as it's not possible for such * interfaces to be part of the configuration. */ if (!ALTQ_IS_READY(&ifp->if_snd)) return; /* Interrupt userland queue modifications */ if (V_altqs_inactive_open) pf_rollback_altq(V_ticket_altqs_inactive); /* Start new altq ruleset */ if (pf_begin_altq(&ticket)) return; /* Copy the current active set */ TAILQ_FOREACH(a1, V_pf_altq_ifs_active, entries) { a2 = malloc(sizeof(*a2), M_PFALTQ, M_NOWAIT); if (a2 == NULL) { error = ENOMEM; break; } bcopy(a1, a2, sizeof(struct pf_altq)); error = pf_altq_ifnet_event_add(ifp, remove, ticket, a2); if (error) break; TAILQ_INSERT_TAIL(V_pf_altq_ifs_inactive, a2, entries); } if (error) goto out; TAILQ_FOREACH(a1, V_pf_altqs_active, entries) { a2 = malloc(sizeof(*a2), M_PFALTQ, M_NOWAIT); if (a2 == NULL) { error = ENOMEM; break; } bcopy(a1, a2, sizeof(struct pf_altq)); if ((a2->qid = pf_qname2qid(a2->qname)) == 0) { error = EBUSY; free(a2, M_PFALTQ); break; } a2->altq_disc = NULL; TAILQ_FOREACH(a3, V_pf_altq_ifs_inactive, entries) { if (strncmp(a3->ifname, a2->ifname, IFNAMSIZ) == 0) { a2->altq_disc = a3->altq_disc; break; } } error = pf_altq_ifnet_event_add(ifp, remove, ticket, a2); if (error) break; TAILQ_INSERT_TAIL(V_pf_altqs_inactive, a2, entries); } out: if (error != 0) pf_rollback_altq(ticket); else pf_commit_altq(ticket); } #endif /* ALTQ */ static struct pf_krule_global * pf_rule_tree_alloc(int flags) { struct pf_krule_global *tree; tree = malloc(sizeof(struct pf_krule_global), M_TEMP, flags); if (tree == NULL) return (NULL); RB_INIT(tree); return (tree); } static void pf_rule_tree_free(struct pf_krule_global *tree) { free(tree, M_TEMP); } static int pf_begin_rules(u_int32_t *ticket, int rs_num, const char *anchor) { struct pf_krule_global *tree; struct pf_kruleset *rs; struct pf_krule *rule; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); tree = pf_rule_tree_alloc(M_NOWAIT); if (tree == NULL) return (ENOMEM); rs = pf_find_or_create_kruleset(anchor); if (rs == NULL) { free(tree, M_TEMP); return (EINVAL); } pf_rule_tree_free(rs->rules[rs_num].inactive.tree); rs->rules[rs_num].inactive.tree = tree; while ((rule = TAILQ_FIRST(rs->rules[rs_num].inactive.ptr)) != NULL) { pf_unlink_rule(rs->rules[rs_num].inactive.ptr, rule); rs->rules[rs_num].inactive.rcount--; } *ticket = ++rs->rules[rs_num].inactive.ticket; rs->rules[rs_num].inactive.open = 1; return (0); } static int pf_rollback_rules(u_int32_t ticket, int rs_num, char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_kruleset(anchor); if (rs == NULL || !rs->rules[rs_num].inactive.open || rs->rules[rs_num].inactive.ticket != ticket) return (0); while ((rule = TAILQ_FIRST(rs->rules[rs_num].inactive.ptr)) != NULL) { pf_unlink_rule(rs->rules[rs_num].inactive.ptr, rule); rs->rules[rs_num].inactive.rcount--; } rs->rules[rs_num].inactive.open = 0; return (0); } #define PF_MD5_UPD(st, elm) \ MD5Update(ctx, (u_int8_t *) &(st)->elm, sizeof((st)->elm)) #define PF_MD5_UPD_STR(st, elm) \ MD5Update(ctx, (u_int8_t *) (st)->elm, strlen((st)->elm)) #define PF_MD5_UPD_HTONL(st, elm, stor) do { \ (stor) = htonl((st)->elm); \ MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int32_t));\ } while (0) #define PF_MD5_UPD_HTONS(st, elm, stor) do { \ (stor) = htons((st)->elm); \ MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int16_t));\ } while (0) static void pf_hash_rule_addr(MD5_CTX *ctx, struct pf_rule_addr *pfr) { PF_MD5_UPD(pfr, addr.type); switch (pfr->addr.type) { case PF_ADDR_DYNIFTL: PF_MD5_UPD(pfr, addr.v.ifname); PF_MD5_UPD(pfr, addr.iflags); break; case PF_ADDR_TABLE: PF_MD5_UPD(pfr, addr.v.tblname); break; case PF_ADDR_ADDRMASK: /* XXX ignore af? */ PF_MD5_UPD(pfr, addr.v.a.addr.addr32); PF_MD5_UPD(pfr, addr.v.a.mask.addr32); break; } PF_MD5_UPD(pfr, port[0]); PF_MD5_UPD(pfr, port[1]); PF_MD5_UPD(pfr, neg); PF_MD5_UPD(pfr, port_op); } static void pf_hash_rule_rolling(MD5_CTX *ctx, struct pf_krule *rule) { u_int16_t x; u_int32_t y; pf_hash_rule_addr(ctx, &rule->src); pf_hash_rule_addr(ctx, &rule->dst); for (int i = 0; i < PF_RULE_MAX_LABEL_COUNT; i++) PF_MD5_UPD_STR(rule, label[i]); PF_MD5_UPD_STR(rule, ifname); PF_MD5_UPD_STR(rule, match_tagname); PF_MD5_UPD_HTONS(rule, match_tag, x); /* dup? */ PF_MD5_UPD_HTONL(rule, os_fingerprint, y); PF_MD5_UPD_HTONL(rule, prob, y); PF_MD5_UPD_HTONL(rule, uid.uid[0], y); PF_MD5_UPD_HTONL(rule, uid.uid[1], y); PF_MD5_UPD(rule, uid.op); PF_MD5_UPD_HTONL(rule, gid.gid[0], y); PF_MD5_UPD_HTONL(rule, gid.gid[1], y); PF_MD5_UPD(rule, gid.op); PF_MD5_UPD_HTONL(rule, rule_flag, y); PF_MD5_UPD(rule, action); PF_MD5_UPD(rule, direction); PF_MD5_UPD(rule, af); PF_MD5_UPD(rule, quick); PF_MD5_UPD(rule, ifnot); PF_MD5_UPD(rule, match_tag_not); PF_MD5_UPD(rule, natpass); PF_MD5_UPD(rule, keep_state); PF_MD5_UPD(rule, proto); PF_MD5_UPD(rule, type); PF_MD5_UPD(rule, code); PF_MD5_UPD(rule, flags); PF_MD5_UPD(rule, flagset); PF_MD5_UPD(rule, allow_opts); PF_MD5_UPD(rule, rt); PF_MD5_UPD(rule, tos); PF_MD5_UPD(rule, scrub_flags); PF_MD5_UPD(rule, min_ttl); PF_MD5_UPD(rule, set_tos); if (rule->anchor != NULL) PF_MD5_UPD_STR(rule, anchor->path); } static void pf_hash_rule(struct pf_krule *rule) { MD5_CTX ctx; MD5Init(&ctx); pf_hash_rule_rolling(&ctx, rule); MD5Final(rule->md5sum, &ctx); } static int pf_krule_compare(struct pf_krule *a, struct pf_krule *b) { return (memcmp(a->md5sum, b->md5sum, PF_MD5_DIGEST_LENGTH)); } static int pf_commit_rules(u_int32_t ticket, int rs_num, char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule, **old_array, *old_rule; struct pf_krulequeue *old_rules; struct pf_krule_global *old_tree; int error; u_int32_t old_rcount; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_kruleset(anchor); if (rs == NULL || !rs->rules[rs_num].inactive.open || ticket != rs->rules[rs_num].inactive.ticket) return (EBUSY); /* Calculate checksum for the main ruleset */ if (rs == &pf_main_ruleset) { error = pf_setup_pfsync_matching(rs); if (error != 0) return (error); } /* Swap rules, keep the old. */ old_rules = rs->rules[rs_num].active.ptr; old_rcount = rs->rules[rs_num].active.rcount; old_array = rs->rules[rs_num].active.ptr_array; old_tree = rs->rules[rs_num].active.tree; rs->rules[rs_num].active.ptr = rs->rules[rs_num].inactive.ptr; rs->rules[rs_num].active.ptr_array = rs->rules[rs_num].inactive.ptr_array; rs->rules[rs_num].active.tree = rs->rules[rs_num].inactive.tree; rs->rules[rs_num].active.rcount = rs->rules[rs_num].inactive.rcount; /* Attempt to preserve counter information. */ if (V_pf_status.keep_counters && old_tree != NULL) { TAILQ_FOREACH(rule, rs->rules[rs_num].active.ptr, entries) { old_rule = RB_FIND(pf_krule_global, old_tree, rule); if (old_rule == NULL) { continue; } pf_counter_u64_critical_enter(); pf_counter_u64_rollup_protected(&rule->evaluations, pf_counter_u64_fetch(&old_rule->evaluations)); pf_counter_u64_rollup_protected(&rule->packets[0], pf_counter_u64_fetch(&old_rule->packets[0])); pf_counter_u64_rollup_protected(&rule->packets[1], pf_counter_u64_fetch(&old_rule->packets[1])); pf_counter_u64_rollup_protected(&rule->bytes[0], pf_counter_u64_fetch(&old_rule->bytes[0])); pf_counter_u64_rollup_protected(&rule->bytes[1], pf_counter_u64_fetch(&old_rule->bytes[1])); pf_counter_u64_critical_exit(); } } rs->rules[rs_num].inactive.ptr = old_rules; rs->rules[rs_num].inactive.ptr_array = old_array; rs->rules[rs_num].inactive.tree = NULL; /* important for pf_ioctl_addrule */ rs->rules[rs_num].inactive.rcount = old_rcount; rs->rules[rs_num].active.ticket = rs->rules[rs_num].inactive.ticket; pf_calc_skip_steps(rs->rules[rs_num].active.ptr); /* Purge the old rule list. */ PF_UNLNKDRULES_LOCK(); while ((rule = TAILQ_FIRST(old_rules)) != NULL) pf_unlink_rule_locked(old_rules, rule); PF_UNLNKDRULES_UNLOCK(); if (rs->rules[rs_num].inactive.ptr_array) free(rs->rules[rs_num].inactive.ptr_array, M_TEMP); rs->rules[rs_num].inactive.ptr_array = NULL; rs->rules[rs_num].inactive.rcount = 0; rs->rules[rs_num].inactive.open = 0; pf_remove_if_empty_kruleset(rs); free(old_tree, M_TEMP); return (0); } static int pf_setup_pfsync_matching(struct pf_kruleset *rs) { MD5_CTX ctx; struct pf_krule *rule; int rs_cnt; u_int8_t digest[PF_MD5_DIGEST_LENGTH]; MD5Init(&ctx); for (rs_cnt = 0; rs_cnt < PF_RULESET_MAX; rs_cnt++) { /* XXX PF_RULESET_SCRUB as well? */ if (rs_cnt == PF_RULESET_SCRUB) continue; if (rs->rules[rs_cnt].inactive.ptr_array) free(rs->rules[rs_cnt].inactive.ptr_array, M_TEMP); rs->rules[rs_cnt].inactive.ptr_array = NULL; if (rs->rules[rs_cnt].inactive.rcount) { rs->rules[rs_cnt].inactive.ptr_array = mallocarray(rs->rules[rs_cnt].inactive.rcount, sizeof(struct pf_rule **), M_TEMP, M_NOWAIT); if (!rs->rules[rs_cnt].inactive.ptr_array) return (ENOMEM); } TAILQ_FOREACH(rule, rs->rules[rs_cnt].inactive.ptr, entries) { pf_hash_rule_rolling(&ctx, rule); (rs->rules[rs_cnt].inactive.ptr_array)[rule->nr] = rule; } } MD5Final(digest, &ctx); memcpy(V_pf_status.pf_chksum, digest, sizeof(V_pf_status.pf_chksum)); return (0); } static int pf_eth_addr_setup(struct pf_keth_ruleset *ruleset, struct pf_addr_wrap *addr) { int error = 0; switch (addr->type) { case PF_ADDR_TABLE: addr->p.tbl = pfr_eth_attach_table(ruleset, addr->v.tblname); if (addr->p.tbl == NULL) error = ENOMEM; break; default: error = EINVAL; } return (error); } static int pf_addr_setup(struct pf_kruleset *ruleset, struct pf_addr_wrap *addr, sa_family_t af) { int error = 0; switch (addr->type) { case PF_ADDR_TABLE: addr->p.tbl = pfr_attach_table(ruleset, addr->v.tblname); if (addr->p.tbl == NULL) error = ENOMEM; break; case PF_ADDR_DYNIFTL: error = pfi_dynaddr_setup(addr, af); break; } return (error); } static void pf_addr_copyout(struct pf_addr_wrap *addr) { switch (addr->type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_copyout(addr); break; case PF_ADDR_TABLE: pf_tbladdr_copyout(addr); break; } } static void pf_src_node_copy(const struct pf_ksrc_node *in, struct pf_src_node *out) { int secs = time_uptime, diff; bzero(out, sizeof(struct pf_src_node)); bcopy(&in->addr, &out->addr, sizeof(struct pf_addr)); bcopy(&in->raddr, &out->raddr, sizeof(struct pf_addr)); if (in->rule.ptr != NULL) out->rule.nr = in->rule.ptr->nr; for (int i = 0; i < 2; i++) { out->bytes[i] = counter_u64_fetch(in->bytes[i]); out->packets[i] = counter_u64_fetch(in->packets[i]); } out->states = in->states; out->conn = in->conn; out->af = in->af; out->ruletype = in->ruletype; out->creation = secs - in->creation; if (out->expire > secs) out->expire -= secs; else out->expire = 0; /* Adjust the connection rate estimate. */ diff = secs - in->conn_rate.last; if (diff >= in->conn_rate.seconds) out->conn_rate.count = 0; else out->conn_rate.count -= in->conn_rate.count * diff / in->conn_rate.seconds; } #ifdef ALTQ /* * Handle export of struct pf_kaltq to user binaries that may be using any * version of struct pf_altq. */ static int pf_export_kaltq(struct pf_altq *q, struct pfioc_altq_v1 *pa, size_t ioc_size) { u_int32_t version; if (ioc_size == sizeof(struct pfioc_altq_v0)) version = 0; else version = pa->version; if (version > PFIOC_ALTQ_VERSION) return (EINVAL); #define ASSIGN(x) exported_q->x = q->x #define COPY(x) \ bcopy(&q->x, &exported_q->x, min(sizeof(q->x), sizeof(exported_q->x))) #define SATU16(x) (u_int32_t)uqmin((x), USHRT_MAX) #define SATU32(x) (u_int32_t)uqmin((x), UINT_MAX) switch (version) { case 0: { struct pf_altq_v0 *exported_q = &((struct pfioc_altq_v0 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); exported_q->tbrsize = SATU16(q->tbrsize); exported_q->ifbandwidth = SATU32(q->ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); exported_q->bandwidth = SATU32(q->bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); if (q->scheduler == ALTQT_HFSC) { #define ASSIGN_OPT(x) exported_q->pq_u.hfsc_opts.x = q->pq_u.hfsc_opts.x #define ASSIGN_OPT_SATU32(x) exported_q->pq_u.hfsc_opts.x = \ SATU32(q->pq_u.hfsc_opts.x) ASSIGN_OPT_SATU32(rtsc_m1); ASSIGN_OPT(rtsc_d); ASSIGN_OPT_SATU32(rtsc_m2); ASSIGN_OPT_SATU32(lssc_m1); ASSIGN_OPT(lssc_d); ASSIGN_OPT_SATU32(lssc_m2); ASSIGN_OPT_SATU32(ulsc_m1); ASSIGN_OPT(ulsc_d); ASSIGN_OPT_SATU32(ulsc_m2); ASSIGN_OPT(flags); #undef ASSIGN_OPT #undef ASSIGN_OPT_SATU32 } else COPY(pq_u); ASSIGN(qid); break; } case 1: { struct pf_altq_v1 *exported_q = &((struct pfioc_altq_v1 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); ASSIGN(ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); COPY(pq_u); ASSIGN(qid); break; } default: panic("%s: unhandled struct pfioc_altq version", __func__); break; } #undef ASSIGN #undef COPY #undef SATU16 #undef SATU32 return (0); } /* * Handle import to struct pf_kaltq of struct pf_altq from user binaries * that may be using any version of it. */ static int pf_import_kaltq(struct pfioc_altq_v1 *pa, struct pf_altq *q, size_t ioc_size) { u_int32_t version; if (ioc_size == sizeof(struct pfioc_altq_v0)) version = 0; else version = pa->version; if (version > PFIOC_ALTQ_VERSION) return (EINVAL); #define ASSIGN(x) q->x = imported_q->x #define COPY(x) \ bcopy(&imported_q->x, &q->x, min(sizeof(imported_q->x), sizeof(q->x))) switch (version) { case 0: { struct pf_altq_v0 *imported_q = &((struct pfioc_altq_v0 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); /* 16-bit -> 32-bit */ ASSIGN(ifbandwidth); /* 32-bit -> 64-bit */ COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); /* 32-bit -> 64-bit */ ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); if (imported_q->scheduler == ALTQT_HFSC) { #define ASSIGN_OPT(x) q->pq_u.hfsc_opts.x = imported_q->pq_u.hfsc_opts.x /* * The m1 and m2 parameters are being copied from * 32-bit to 64-bit. */ ASSIGN_OPT(rtsc_m1); ASSIGN_OPT(rtsc_d); ASSIGN_OPT(rtsc_m2); ASSIGN_OPT(lssc_m1); ASSIGN_OPT(lssc_d); ASSIGN_OPT(lssc_m2); ASSIGN_OPT(ulsc_m1); ASSIGN_OPT(ulsc_d); ASSIGN_OPT(ulsc_m2); ASSIGN_OPT(flags); #undef ASSIGN_OPT } else COPY(pq_u); ASSIGN(qid); break; } case 1: { struct pf_altq_v1 *imported_q = &((struct pfioc_altq_v1 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); ASSIGN(ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); COPY(pq_u); ASSIGN(qid); break; } default: panic("%s: unhandled struct pfioc_altq version", __func__); break; } #undef ASSIGN #undef COPY return (0); } static struct pf_altq * pf_altq_get_nth_active(u_int32_t n) { struct pf_altq *altq; u_int32_t nr; nr = 0; TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if (nr == n) return (altq); nr++; } TAILQ_FOREACH(altq, V_pf_altqs_active, entries) { if (nr == n) return (altq); nr++; } return (NULL); } #endif /* ALTQ */ struct pf_krule * pf_krule_alloc(void) { struct pf_krule *rule; rule = malloc(sizeof(struct pf_krule), M_PFRULE, M_WAITOK | M_ZERO); mtx_init(&rule->rpool.mtx, "pf_krule_pool", NULL, MTX_DEF); rule->timestamp = uma_zalloc_pcpu(pf_timestamp_pcpu_zone, M_WAITOK | M_ZERO); return (rule); } void pf_krule_free(struct pf_krule *rule) { #ifdef PF_WANT_32_TO_64_COUNTER bool wowned; #endif if (rule == NULL) return; #ifdef PF_WANT_32_TO_64_COUNTER if (rule->allrulelinked) { wowned = PF_RULES_WOWNED(); if (!wowned) PF_RULES_WLOCK(); LIST_REMOVE(rule, allrulelist); V_pf_allrulecount--; if (!wowned) PF_RULES_WUNLOCK(); } #endif pf_counter_u64_deinit(&rule->evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_deinit(&rule->packets[i]); pf_counter_u64_deinit(&rule->bytes[i]); } counter_u64_free(rule->states_cur); counter_u64_free(rule->states_tot); counter_u64_free(rule->src_nodes); uma_zfree_pcpu(pf_timestamp_pcpu_zone, rule->timestamp); mtx_destroy(&rule->rpool.mtx); free(rule, M_PFRULE); } void pf_krule_clear_counters(struct pf_krule *rule) { pf_counter_u64_zero(&rule->evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_zero(&rule->packets[i]); pf_counter_u64_zero(&rule->bytes[i]); } counter_u64_zero(rule->states_tot); } static void pf_kpooladdr_to_pooladdr(const struct pf_kpooladdr *kpool, struct pf_pooladdr *pool) { bzero(pool, sizeof(*pool)); bcopy(&kpool->addr, &pool->addr, sizeof(pool->addr)); strlcpy(pool->ifname, kpool->ifname, sizeof(pool->ifname)); } static int pf_pooladdr_to_kpooladdr(const struct pf_pooladdr *pool, struct pf_kpooladdr *kpool) { int ret; bzero(kpool, sizeof(*kpool)); bcopy(&pool->addr, &kpool->addr, sizeof(kpool->addr)); ret = pf_user_strcpy(kpool->ifname, pool->ifname, sizeof(kpool->ifname)); return (ret); } static void pf_pool_to_kpool(const struct pf_pool *pool, struct pf_kpool *kpool) { _Static_assert(sizeof(pool->key) == sizeof(kpool->key), ""); _Static_assert(sizeof(pool->counter) == sizeof(kpool->counter), ""); bcopy(&pool->key, &kpool->key, sizeof(kpool->key)); bcopy(&pool->counter, &kpool->counter, sizeof(kpool->counter)); kpool->tblidx = pool->tblidx; kpool->proxy_port[0] = pool->proxy_port[0]; kpool->proxy_port[1] = pool->proxy_port[1]; kpool->opts = pool->opts; } static int pf_rule_to_krule(const struct pf_rule *rule, struct pf_krule *krule) { int ret; #ifndef INET if (rule->af == AF_INET) { return (EAFNOSUPPORT); } #endif /* INET */ #ifndef INET6 if (rule->af == AF_INET6) { return (EAFNOSUPPORT); } #endif /* INET6 */ ret = pf_check_rule_addr(&rule->src); if (ret != 0) return (ret); ret = pf_check_rule_addr(&rule->dst); if (ret != 0) return (ret); bcopy(&rule->src, &krule->src, sizeof(rule->src)); bcopy(&rule->dst, &krule->dst, sizeof(rule->dst)); ret = pf_user_strcpy(krule->label[0], rule->label, sizeof(rule->label)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->ifname, rule->ifname, sizeof(rule->ifname)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->qname, rule->qname, sizeof(rule->qname)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->pqname, rule->pqname, sizeof(rule->pqname)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->tagname, rule->tagname, sizeof(rule->tagname)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->match_tagname, rule->match_tagname, sizeof(rule->match_tagname)); if (ret != 0) return (ret); ret = pf_user_strcpy(krule->overload_tblname, rule->overload_tblname, sizeof(rule->overload_tblname)); if (ret != 0) return (ret); pf_pool_to_kpool(&rule->rpool, &krule->rpool); /* Don't allow userspace to set evaluations, packets or bytes. */ /* kif, anchor, overload_tbl are not copied over. */ krule->os_fingerprint = rule->os_fingerprint; krule->rtableid = rule->rtableid; /* pf_rule->timeout is smaller than pf_krule->timeout */ bcopy(rule->timeout, krule->timeout, sizeof(rule->timeout)); krule->max_states = rule->max_states; krule->max_src_nodes = rule->max_src_nodes; krule->max_src_states = rule->max_src_states; krule->max_src_conn = rule->max_src_conn; krule->max_src_conn_rate.limit = rule->max_src_conn_rate.limit; krule->max_src_conn_rate.seconds = rule->max_src_conn_rate.seconds; krule->qid = rule->qid; krule->pqid = rule->pqid; krule->nr = rule->nr; krule->prob = rule->prob; krule->cuid = rule->cuid; krule->cpid = rule->cpid; krule->return_icmp = rule->return_icmp; krule->return_icmp6 = rule->return_icmp6; krule->max_mss = rule->max_mss; krule->tag = rule->tag; krule->match_tag = rule->match_tag; krule->scrub_flags = rule->scrub_flags; bcopy(&rule->uid, &krule->uid, sizeof(krule->uid)); bcopy(&rule->gid, &krule->gid, sizeof(krule->gid)); krule->rule_flag = rule->rule_flag; krule->action = rule->action; krule->direction = rule->direction; krule->log = rule->log; krule->logif = rule->logif; krule->quick = rule->quick; krule->ifnot = rule->ifnot; krule->match_tag_not = rule->match_tag_not; krule->natpass = rule->natpass; krule->keep_state = rule->keep_state; krule->af = rule->af; krule->proto = rule->proto; krule->type = rule->type; krule->code = rule->code; krule->flags = rule->flags; krule->flagset = rule->flagset; krule->min_ttl = rule->min_ttl; krule->allow_opts = rule->allow_opts; krule->rt = rule->rt; krule->return_ttl = rule->return_ttl; krule->tos = rule->tos; krule->set_tos = rule->set_tos; krule->flush = rule->flush; krule->prio = rule->prio; krule->set_prio[0] = rule->set_prio[0]; krule->set_prio[1] = rule->set_prio[1]; bcopy(&rule->divert, &krule->divert, sizeof(krule->divert)); return (0); } int pf_ioctl_getrules(struct pfioc_rule *pr) { struct pf_kruleset *ruleset; struct pf_krule *tail; int rs_num; PF_RULES_WLOCK(); ruleset = pf_find_kruleset(pr->anchor); if (ruleset == NULL) { PF_RULES_WUNLOCK(); return (EINVAL); } rs_num = pf_get_ruleset_number(pr->rule.action); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); return (EINVAL); } tail = TAILQ_LAST(ruleset->rules[rs_num].active.ptr, pf_krulequeue); if (tail) pr->nr = tail->nr + 1; else pr->nr = 0; pr->ticket = ruleset->rules[rs_num].active.ticket; PF_RULES_WUNLOCK(); return (0); } int pf_ioctl_addrule(struct pf_krule *rule, uint32_t ticket, uint32_t pool_ticket, const char *anchor, const char *anchor_call, uid_t uid, pid_t pid) { struct pf_kruleset *ruleset; struct pf_krule *tail; struct pf_kpooladdr *pa; struct pfi_kkif *kif = NULL; int rs_num; int error = 0; if ((rule->return_icmp >> 8) > ICMP_MAXTYPE) { error = EINVAL; goto errout_unlocked; } #define ERROUT(x) ERROUT_FUNCTION(errout, x) if (rule->ifname[0]) kif = pf_kkif_create(M_WAITOK); pf_counter_u64_init(&rule->evaluations, M_WAITOK); for (int i = 0; i < 2; i++) { pf_counter_u64_init(&rule->packets[i], M_WAITOK); pf_counter_u64_init(&rule->bytes[i], M_WAITOK); } rule->states_cur = counter_u64_alloc(M_WAITOK); rule->states_tot = counter_u64_alloc(M_WAITOK); rule->src_nodes = counter_u64_alloc(M_WAITOK); rule->cuid = uid; rule->cpid = pid; TAILQ_INIT(&rule->rpool.list); PF_CONFIG_LOCK(); PF_RULES_WLOCK(); #ifdef PF_WANT_32_TO_64_COUNTER LIST_INSERT_HEAD(&V_pf_allrulelist, rule, allrulelist); MPASS(!rule->allrulelinked); rule->allrulelinked = true; V_pf_allrulecount++; #endif ruleset = pf_find_kruleset(anchor); if (ruleset == NULL) ERROUT(EINVAL); rs_num = pf_get_ruleset_number(rule->action); if (rs_num >= PF_RULESET_MAX) ERROUT(EINVAL); if (ticket != ruleset->rules[rs_num].inactive.ticket) { DPFPRINTF(PF_DEBUG_MISC, ("ticket: %d != [%d]%d\n", ticket, rs_num, ruleset->rules[rs_num].inactive.ticket)); ERROUT(EBUSY); } if (pool_ticket != V_ticket_pabuf) { DPFPRINTF(PF_DEBUG_MISC, ("pool_ticket: %d != %d\n", pool_ticket, V_ticket_pabuf)); ERROUT(EBUSY); } /* * XXXMJG hack: there is no mechanism to ensure they started the * transaction. Ticket checked above may happen to match by accident, * even if nobody called DIOCXBEGIN, let alone this process. * Partially work around it by checking if the RB tree got allocated, * see pf_begin_rules. */ if (ruleset->rules[rs_num].inactive.tree == NULL) { ERROUT(EINVAL); } tail = TAILQ_LAST(ruleset->rules[rs_num].inactive.ptr, pf_krulequeue); if (tail) rule->nr = tail->nr + 1; else rule->nr = 0; if (rule->ifname[0]) { rule->kif = pfi_kkif_attach(kif, rule->ifname); kif = NULL; pfi_kkif_ref(rule->kif); } else rule->kif = NULL; if (rule->rtableid > 0 && rule->rtableid >= rt_numfibs) error = EBUSY; #ifdef ALTQ /* set queue IDs */ if (rule->qname[0] != 0) { if ((rule->qid = pf_qname2qid(rule->qname)) == 0) error = EBUSY; else if (rule->pqname[0] != 0) { if ((rule->pqid = pf_qname2qid(rule->pqname)) == 0) error = EBUSY; } else rule->pqid = rule->qid; } #endif if (rule->tagname[0]) if ((rule->tag = pf_tagname2tag(rule->tagname)) == 0) error = EBUSY; if (rule->match_tagname[0]) if ((rule->match_tag = pf_tagname2tag(rule->match_tagname)) == 0) error = EBUSY; if (rule->rt && !rule->direction) error = EINVAL; if (!rule->log) rule->logif = 0; if (rule->logif >= PFLOGIFS_MAX) error = EINVAL; if (pf_addr_setup(ruleset, &rule->src.addr, rule->af)) error = ENOMEM; if (pf_addr_setup(ruleset, &rule->dst.addr, rule->af)) error = ENOMEM; if (pf_kanchor_setup(rule, ruleset, anchor_call)) error = EINVAL; if (rule->scrub_flags & PFSTATE_SETPRIO && (rule->set_prio[0] > PF_PRIO_MAX || rule->set_prio[1] > PF_PRIO_MAX)) error = EINVAL; TAILQ_FOREACH(pa, &V_pf_pabuf, entries) if (pa->addr.type == PF_ADDR_TABLE) { pa->addr.p.tbl = pfr_attach_table(ruleset, pa->addr.v.tblname); if (pa->addr.p.tbl == NULL) error = ENOMEM; } rule->overload_tbl = NULL; if (rule->overload_tblname[0]) { if ((rule->overload_tbl = pfr_attach_table(ruleset, rule->overload_tblname)) == NULL) error = EINVAL; else rule->overload_tbl->pfrkt_flags |= PFR_TFLAG_ACTIVE; } pf_mv_kpool(&V_pf_pabuf, &rule->rpool.list); if (((((rule->action == PF_NAT) || (rule->action == PF_RDR) || (rule->action == PF_BINAT)) && rule->anchor == NULL) || (rule->rt > PF_NOPFROUTE)) && (TAILQ_FIRST(&rule->rpool.list) == NULL)) error = EINVAL; if (error) { pf_free_rule(rule); rule = NULL; ERROUT(error); } rule->rpool.cur = TAILQ_FIRST(&rule->rpool.list); TAILQ_INSERT_TAIL(ruleset->rules[rs_num].inactive.ptr, rule, entries); ruleset->rules[rs_num].inactive.rcount++; PF_RULES_WUNLOCK(); pf_hash_rule(rule); if (RB_INSERT(pf_krule_global, ruleset->rules[rs_num].inactive.tree, rule) != NULL) { PF_RULES_WLOCK(); TAILQ_REMOVE(ruleset->rules[rs_num].inactive.ptr, rule, entries); ruleset->rules[rs_num].inactive.rcount--; pf_free_rule(rule); rule = NULL; ERROUT(EEXIST); } PF_CONFIG_UNLOCK(); return (0); #undef ERROUT errout: PF_RULES_WUNLOCK(); PF_CONFIG_UNLOCK(); errout_unlocked: pf_kkif_free(kif); pf_krule_free(rule); return (error); } static bool pf_label_match(const struct pf_krule *rule, const char *label) { int i = 0; while (*rule->label[i]) { if (strcmp(rule->label[i], label) == 0) return (true); i++; } return (false); } static unsigned int pf_kill_matching_state(struct pf_state_key_cmp *key, int dir) { struct pf_kstate *s; int more = 0; s = pf_find_state_all(key, dir, &more); if (s == NULL) return (0); if (more) { PF_STATE_UNLOCK(s); return (0); } pf_unlink_state(s); return (1); } static int pf_killstates_row(struct pf_kstate_kill *psk, struct pf_idhash *ih) { struct pf_kstate *s; struct pf_state_key *sk; struct pf_addr *srcaddr, *dstaddr; struct pf_state_key_cmp match_key; int idx, killed = 0; unsigned int dir; u_int16_t srcport, dstport; struct pfi_kkif *kif; relock_DIOCKILLSTATES: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { /* For floating states look at the original kif. */ kif = s->kif == V_pfi_all ? s->orig_kif : s->kif; sk = s->key[psk->psk_nat ? PF_SK_STACK : PF_SK_WIRE]; if (s->direction == PF_OUT) { srcaddr = &sk->addr[1]; dstaddr = &sk->addr[0]; srcport = sk->port[1]; dstport = sk->port[0]; } else { srcaddr = &sk->addr[0]; dstaddr = &sk->addr[1]; srcport = sk->port[0]; dstport = sk->port[1]; } if (psk->psk_af && sk->af != psk->psk_af) continue; if (psk->psk_proto && psk->psk_proto != sk->proto) continue; if (! PF_MATCHA(psk->psk_src.neg, &psk->psk_src.addr.v.a.addr, &psk->psk_src.addr.v.a.mask, srcaddr, sk->af)) continue; if (! PF_MATCHA(psk->psk_dst.neg, &psk->psk_dst.addr.v.a.addr, &psk->psk_dst.addr.v.a.mask, dstaddr, sk->af)) continue; if (! PF_MATCHA(psk->psk_rt_addr.neg, &psk->psk_rt_addr.addr.v.a.addr, &psk->psk_rt_addr.addr.v.a.mask, &s->rt_addr, sk->af)) continue; if (psk->psk_src.port_op != 0 && ! pf_match_port(psk->psk_src.port_op, psk->psk_src.port[0], psk->psk_src.port[1], srcport)) continue; if (psk->psk_dst.port_op != 0 && ! pf_match_port(psk->psk_dst.port_op, psk->psk_dst.port[0], psk->psk_dst.port[1], dstport)) continue; if (psk->psk_label[0] && ! pf_label_match(s->rule.ptr, psk->psk_label)) continue; if (psk->psk_ifname[0] && strcmp(psk->psk_ifname, kif->pfik_name)) continue; if (psk->psk_kill_match) { /* Create the key to find matching states, with lock * held. */ bzero(&match_key, sizeof(match_key)); if (s->direction == PF_OUT) { dir = PF_IN; idx = psk->psk_nat ? PF_SK_WIRE : PF_SK_STACK; } else { dir = PF_OUT; idx = psk->psk_nat ? PF_SK_STACK : PF_SK_WIRE; } match_key.af = s->key[idx]->af; match_key.proto = s->key[idx]->proto; PF_ACPY(&match_key.addr[0], &s->key[idx]->addr[1], match_key.af); match_key.port[0] = s->key[idx]->port[1]; PF_ACPY(&match_key.addr[1], &s->key[idx]->addr[0], match_key.af); match_key.port[1] = s->key[idx]->port[0]; } pf_unlink_state(s); killed++; if (psk->psk_kill_match) killed += pf_kill_matching_state(&match_key, dir); goto relock_DIOCKILLSTATES; } PF_HASHROW_UNLOCK(ih); return (killed); } int pf_start(void) { int error = 0; sx_xlock(&V_pf_ioctl_lock); if (V_pf_status.running) error = EEXIST; else { hook_pf(); if (! TAILQ_EMPTY(V_pf_keth->active.rules)) hook_pf_eth(); V_pf_status.running = 1; V_pf_status.since = time_second; new_unrhdr64(&V_pf_stateid, time_second); DPFPRINTF(PF_DEBUG_MISC, ("pf: started\n")); } sx_xunlock(&V_pf_ioctl_lock); return (error); } int pf_stop(void) { int error = 0; sx_xlock(&V_pf_ioctl_lock); if (!V_pf_status.running) error = ENOENT; else { V_pf_status.running = 0; dehook_pf(); dehook_pf_eth(); V_pf_status.since = time_second; DPFPRINTF(PF_DEBUG_MISC, ("pf: stopped\n")); } sx_xunlock(&V_pf_ioctl_lock); return (error); } void pf_ioctl_clear_status(void) { PF_RULES_WLOCK(); for (int i = 0; i < PFRES_MAX; i++) counter_u64_zero(V_pf_status.counters[i]); for (int i = 0; i < FCNT_MAX; i++) pf_counter_u64_zero(&V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) counter_u64_zero(V_pf_status.scounters[i]); for (int i = 0; i < KLCNT_MAX; i++) counter_u64_zero(V_pf_status.lcounters[i]); V_pf_status.since = time_second; if (*V_pf_status.ifname) pfi_update_status(V_pf_status.ifname, NULL); PF_RULES_WUNLOCK(); } int pf_ioctl_set_timeout(int timeout, int seconds, int *prev_seconds) { uint32_t old; if (timeout < 0 || timeout >= PFTM_MAX || seconds < 0) return (EINVAL); PF_RULES_WLOCK(); old = V_pf_default_rule.timeout[timeout]; if (timeout == PFTM_INTERVAL && seconds == 0) seconds = 1; V_pf_default_rule.timeout[timeout] = seconds; if (timeout == PFTM_INTERVAL && seconds < old) wakeup(pf_purge_thread); if (prev_seconds != NULL) *prev_seconds = old; PF_RULES_WUNLOCK(); return (0); } int pf_ioctl_get_timeout(int timeout, int *seconds) { PF_RULES_RLOCK_TRACKER; if (timeout < 0 || timeout >= PFTM_MAX) return (EINVAL); PF_RULES_RLOCK(); *seconds = V_pf_default_rule.timeout[timeout]; PF_RULES_RUNLOCK(); return (0); } int pf_ioctl_set_limit(int index, unsigned int limit, unsigned int *old_limit) { PF_RULES_WLOCK(); if (index < 0 || index >= PF_LIMIT_MAX || V_pf_limits[index].zone == NULL) { PF_RULES_WUNLOCK(); return (EINVAL); } uma_zone_set_max(V_pf_limits[index].zone, limit); if (old_limit != NULL) *old_limit = V_pf_limits[index].limit; V_pf_limits[index].limit = limit; PF_RULES_WUNLOCK(); return (0); } int pf_ioctl_get_limit(int index, unsigned int *limit) { PF_RULES_RLOCK_TRACKER; if (index < 0 || index >= PF_LIMIT_MAX) return (EINVAL); PF_RULES_RLOCK(); *limit = V_pf_limits[index].limit; PF_RULES_RUNLOCK(); return (0); } int pf_ioctl_begin_addrs(uint32_t *ticket) { PF_RULES_WLOCK(); pf_empty_kpool(&V_pf_pabuf); *ticket = ++V_ticket_pabuf; PF_RULES_WUNLOCK(); return (0); } int pf_ioctl_add_addr(struct pfioc_pooladdr *pp) { struct pf_kpooladdr *pa = NULL; struct pfi_kkif *kif = NULL; int error; #ifndef INET if (pp->af == AF_INET) return (EAFNOSUPPORT); #endif /* INET */ #ifndef INET6 if (pp->af == AF_INET6) return (EAFNOSUPPORT); #endif /* INET6 */ if (pp->addr.addr.type != PF_ADDR_ADDRMASK && pp->addr.addr.type != PF_ADDR_DYNIFTL && pp->addr.addr.type != PF_ADDR_TABLE) return (EINVAL); if (pp->addr.addr.p.dyn != NULL) return (EINVAL); pa = malloc(sizeof(*pa), M_PFRULE, M_WAITOK); error = pf_pooladdr_to_kpooladdr(&pp->addr, pa); if (error != 0) goto out; if (pa->ifname[0]) kif = pf_kkif_create(M_WAITOK); PF_RULES_WLOCK(); if (pp->ticket != V_ticket_pabuf) { PF_RULES_WUNLOCK(); if (pa->ifname[0]) pf_kkif_free(kif); error = EBUSY; goto out; } if (pa->ifname[0]) { pa->kif = pfi_kkif_attach(kif, pa->ifname); kif = NULL; pfi_kkif_ref(pa->kif); } else pa->kif = NULL; if (pa->addr.type == PF_ADDR_DYNIFTL && ((error = pfi_dynaddr_setup(&pa->addr, pp->af)) != 0)) { if (pa->ifname[0]) pfi_kkif_unref(pa->kif); PF_RULES_WUNLOCK(); goto out; } TAILQ_INSERT_TAIL(&V_pf_pabuf, pa, entries); PF_RULES_WUNLOCK(); return (0); out: free(pa, M_PFRULE); return (error); } +int +pf_ioctl_get_addrs(struct pfioc_pooladdr *pp) +{ + struct pf_kpool *pool; + struct pf_kpooladdr *pa; + + PF_RULES_RLOCK_TRACKER; + + pp->anchor[sizeof(pp->anchor) - 1] = 0; + pp->nr = 0; + + PF_RULES_RLOCK(); + pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action, + pp->r_num, 0, 1, 0); + if (pool == NULL) { + PF_RULES_RUNLOCK(); + return (EBUSY); + } + TAILQ_FOREACH(pa, &pool->list, entries) + pp->nr++; + PF_RULES_RUNLOCK(); + + return (0); +} + static int pfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags, struct thread *td) { int error = 0; PF_RULES_RLOCK_TRACKER; #define ERROUT_IOCTL(target, x) \ do { \ error = (x); \ SDT_PROBE3(pf, ioctl, ioctl, error, cmd, error, __LINE__); \ goto target; \ } while (0) /* XXX keep in sync with switch() below */ if (securelevel_gt(td->td_ucred, 2)) switch (cmd) { case DIOCGETRULES: case DIOCGETRULENV: case DIOCGETADDRS: case DIOCGETADDR: case DIOCGETSTATE: case DIOCGETSTATENV: case DIOCSETSTATUSIF: case DIOCGETSTATUSNV: case DIOCCLRSTATUS: case DIOCNATLOOK: case DIOCSETDEBUG: #ifdef COMPAT_FREEBSD14 case DIOCGETSTATES: case DIOCGETSTATESV2: #endif case DIOCGETTIMEOUT: case DIOCCLRRULECTRS: case DIOCGETLIMIT: case DIOCGETALTQSV0: case DIOCGETALTQSV1: case DIOCGETALTQV0: case DIOCGETALTQV1: case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: case DIOCGETRULESETS: case DIOCGETRULESET: case DIOCRGETTABLES: case DIOCRGETTSTATS: case DIOCRCLRTSTATS: case DIOCRCLRADDRS: case DIOCRADDADDRS: case DIOCRDELADDRS: case DIOCRSETADDRS: case DIOCRGETADDRS: case DIOCRGETASTATS: case DIOCRCLRASTATS: case DIOCRTSTADDRS: case DIOCOSFPGET: case DIOCGETSRCNODES: case DIOCCLRSRCNODES: case DIOCGETSYNCOOKIES: case DIOCIGETIFACES: case DIOCGIFSPEEDV0: case DIOCGIFSPEEDV1: case DIOCSETIFFLAG: case DIOCCLRIFFLAG: case DIOCGETETHRULES: case DIOCGETETHRULE: case DIOCGETETHRULESETS: case DIOCGETETHRULESET: break; case DIOCRCLRTABLES: case DIOCRADDTABLES: case DIOCRDELTABLES: case DIOCRSETTFLAGS: if (((struct pfioc_table *)addr)->pfrio_flags & PFR_FLAG_DUMMY) break; /* dummy operation ok */ return (EPERM); default: return (EPERM); } if (!(flags & FWRITE)) switch (cmd) { case DIOCGETRULES: case DIOCGETADDRS: case DIOCGETADDR: case DIOCGETSTATE: case DIOCGETSTATENV: case DIOCGETSTATUSNV: #ifdef COMPAT_FREEBSD14 case DIOCGETSTATES: case DIOCGETSTATESV2: #endif case DIOCGETTIMEOUT: case DIOCGETLIMIT: case DIOCGETALTQSV0: case DIOCGETALTQSV1: case DIOCGETALTQV0: case DIOCGETALTQV1: case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: case DIOCGETRULESETS: case DIOCGETRULESET: case DIOCNATLOOK: case DIOCRGETTABLES: case DIOCRGETTSTATS: case DIOCRGETADDRS: case DIOCRGETASTATS: case DIOCRTSTADDRS: case DIOCOSFPGET: case DIOCGETSRCNODES: case DIOCGETSYNCOOKIES: case DIOCIGETIFACES: case DIOCGIFSPEEDV1: case DIOCGIFSPEEDV0: case DIOCGETRULENV: case DIOCGETETHRULES: case DIOCGETETHRULE: case DIOCGETETHRULESETS: case DIOCGETETHRULESET: break; case DIOCRCLRTABLES: case DIOCRADDTABLES: case DIOCRDELTABLES: case DIOCRCLRTSTATS: case DIOCRCLRADDRS: case DIOCRADDADDRS: case DIOCRDELADDRS: case DIOCRSETADDRS: case DIOCRSETTFLAGS: if (((struct pfioc_table *)addr)->pfrio_flags & PFR_FLAG_DUMMY) { flags |= FWRITE; /* need write lock for dummy */ break; /* dummy operation ok */ } return (EACCES); default: return (EACCES); } CURVNET_SET(TD_TO_VNET(td)); switch (cmd) { #ifdef COMPAT_FREEBSD14 case DIOCSTART: error = pf_start(); break; case DIOCSTOP: error = pf_stop(); break; #endif case DIOCGETETHRULES: { struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvl; void *packed; struct pf_keth_rule *tail; struct pf_keth_ruleset *rs; u_int32_t ticket, nr; const char *anchor = ""; nvl = NULL; packed = NULL; #define ERROUT(x) ERROUT_IOCTL(DIOCGETETHRULES_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); /* Copy the request in */ packed = malloc(nv->len, M_NVLIST, M_WAITOK); if (packed == NULL) ERROUT(ENOMEM); error = copyin(nv->data, packed, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(packed, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_string(nvl, "anchor")) ERROUT(EBADMSG); anchor = nvlist_get_string(nvl, "anchor"); rs = pf_find_keth_ruleset(anchor); nvlist_destroy(nvl); nvl = NULL; free(packed, M_NVLIST); packed = NULL; if (rs == NULL) ERROUT(ENOENT); /* Reply */ nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); PF_RULES_RLOCK(); ticket = rs->active.ticket; tail = TAILQ_LAST(rs->active.rules, pf_keth_ruleq); if (tail) nr = tail->nr + 1; else nr = 0; PF_RULES_RUNLOCK(); nvlist_add_number(nvl, "ticket", ticket); nvlist_add_number(nvl, "nr", nr); packed = nvlist_pack(nvl, &nv->len); if (packed == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(packed, nv->data, nv->len); #undef ERROUT DIOCGETETHRULES_error: free(packed, M_NVLIST); nvlist_destroy(nvl); break; } case DIOCGETETHRULE: { struct epoch_tracker et; struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvl = NULL; void *nvlpacked = NULL; struct pf_keth_rule *rule = NULL; struct pf_keth_ruleset *rs; u_int32_t ticket, nr; bool clear = false; const char *anchor; #define ERROUT(x) ERROUT_IOCTL(DIOCGETETHRULE_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ticket")) ERROUT(EBADMSG); ticket = nvlist_get_number(nvl, "ticket"); if (! nvlist_exists_string(nvl, "anchor")) ERROUT(EBADMSG); anchor = nvlist_get_string(nvl, "anchor"); if (nvlist_exists_bool(nvl, "clear")) clear = nvlist_get_bool(nvl, "clear"); if (clear && !(flags & FWRITE)) ERROUT(EACCES); if (! nvlist_exists_number(nvl, "nr")) ERROUT(EBADMSG); nr = nvlist_get_number(nvl, "nr"); PF_RULES_RLOCK(); rs = pf_find_keth_ruleset(anchor); if (rs == NULL) { PF_RULES_RUNLOCK(); ERROUT(ENOENT); } if (ticket != rs->active.ticket) { PF_RULES_RUNLOCK(); ERROUT(EBUSY); } nvlist_destroy(nvl); nvl = NULL; free(nvlpacked, M_NVLIST); nvlpacked = NULL; rule = TAILQ_FIRST(rs->active.rules); while ((rule != NULL) && (rule->nr != nr)) rule = TAILQ_NEXT(rule, entries); if (rule == NULL) { PF_RULES_RUNLOCK(); ERROUT(ENOENT); } /* Make sure rule can't go away. */ NET_EPOCH_ENTER(et); PF_RULES_RUNLOCK(); nvl = pf_keth_rule_to_nveth_rule(rule); if (pf_keth_anchor_nvcopyout(rs, rule, nvl)) ERROUT(EBUSY); NET_EPOCH_EXIT(et); if (nvl == NULL) ERROUT(ENOMEM); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); if (error == 0 && clear) { counter_u64_zero(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_zero(rule->packets[i]); counter_u64_zero(rule->bytes[i]); } } #undef ERROUT DIOCGETETHRULE_error: free(nvlpacked, M_NVLIST); nvlist_destroy(nvl); break; } case DIOCADDETHRULE: { struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvl = NULL; void *nvlpacked = NULL; struct pf_keth_rule *rule = NULL, *tail = NULL; struct pf_keth_ruleset *ruleset = NULL; struct pfi_kkif *kif = NULL, *bridge_to_kif = NULL; const char *anchor = "", *anchor_call = ""; #define ERROUT(x) ERROUT_IOCTL(DIOCADDETHRULE_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ticket")) ERROUT(EBADMSG); if (nvlist_exists_string(nvl, "anchor")) anchor = nvlist_get_string(nvl, "anchor"); if (nvlist_exists_string(nvl, "anchor_call")) anchor_call = nvlist_get_string(nvl, "anchor_call"); ruleset = pf_find_keth_ruleset(anchor); if (ruleset == NULL) ERROUT(EINVAL); if (nvlist_get_number(nvl, "ticket") != ruleset->inactive.ticket) { DPFPRINTF(PF_DEBUG_MISC, ("ticket: %d != %d\n", (u_int32_t)nvlist_get_number(nvl, "ticket"), ruleset->inactive.ticket)); ERROUT(EBUSY); } rule = malloc(sizeof(*rule), M_PFRULE, M_WAITOK); if (rule == NULL) ERROUT(ENOMEM); rule->timestamp = NULL; error = pf_nveth_rule_to_keth_rule(nvl, rule); if (error != 0) ERROUT(error); if (rule->ifname[0]) kif = pf_kkif_create(M_WAITOK); if (rule->bridge_to_name[0]) bridge_to_kif = pf_kkif_create(M_WAITOK); rule->evaluations = counter_u64_alloc(M_WAITOK); for (int i = 0; i < 2; i++) { rule->packets[i] = counter_u64_alloc(M_WAITOK); rule->bytes[i] = counter_u64_alloc(M_WAITOK); } rule->timestamp = uma_zalloc_pcpu(pf_timestamp_pcpu_zone, M_WAITOK | M_ZERO); PF_RULES_WLOCK(); if (rule->ifname[0]) { rule->kif = pfi_kkif_attach(kif, rule->ifname); pfi_kkif_ref(rule->kif); } else rule->kif = NULL; if (rule->bridge_to_name[0]) { rule->bridge_to = pfi_kkif_attach(bridge_to_kif, rule->bridge_to_name); pfi_kkif_ref(rule->bridge_to); } else rule->bridge_to = NULL; #ifdef ALTQ /* set queue IDs */ if (rule->qname[0] != 0) { if ((rule->qid = pf_qname2qid(rule->qname)) == 0) error = EBUSY; else rule->qid = rule->qid; } #endif if (rule->tagname[0]) if ((rule->tag = pf_tagname2tag(rule->tagname)) == 0) error = EBUSY; if (rule->match_tagname[0]) if ((rule->match_tag = pf_tagname2tag( rule->match_tagname)) == 0) error = EBUSY; if (error == 0 && rule->ipdst.addr.type == PF_ADDR_TABLE) error = pf_eth_addr_setup(ruleset, &rule->ipdst.addr); if (error == 0 && rule->ipsrc.addr.type == PF_ADDR_TABLE) error = pf_eth_addr_setup(ruleset, &rule->ipsrc.addr); if (error) { pf_free_eth_rule(rule); PF_RULES_WUNLOCK(); ERROUT(error); } if (pf_keth_anchor_setup(rule, ruleset, anchor_call)) { pf_free_eth_rule(rule); PF_RULES_WUNLOCK(); ERROUT(EINVAL); } tail = TAILQ_LAST(ruleset->inactive.rules, pf_keth_ruleq); if (tail) rule->nr = tail->nr + 1; else rule->nr = 0; TAILQ_INSERT_TAIL(ruleset->inactive.rules, rule, entries); PF_RULES_WUNLOCK(); #undef ERROUT DIOCADDETHRULE_error: nvlist_destroy(nvl); free(nvlpacked, M_NVLIST); break; } case DIOCGETETHRULESETS: { struct epoch_tracker et; struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvl = NULL; void *nvlpacked = NULL; struct pf_keth_ruleset *ruleset; struct pf_keth_anchor *anchor; int nr = 0; #define ERROUT(x) ERROUT_IOCTL(DIOCGETETHRULESETS_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_string(nvl, "path")) ERROUT(EBADMSG); NET_EPOCH_ENTER(et); if ((ruleset = pf_find_keth_ruleset( nvlist_get_string(nvl, "path"))) == NULL) { NET_EPOCH_EXIT(et); ERROUT(ENOENT); } if (ruleset->anchor == NULL) { RB_FOREACH(anchor, pf_keth_anchor_global, &V_pf_keth_anchors) if (anchor->parent == NULL) nr++; } else { RB_FOREACH(anchor, pf_keth_anchor_node, &ruleset->anchor->children) nr++; } NET_EPOCH_EXIT(et); nvlist_destroy(nvl); nvl = NULL; free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "nr", nr); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT DIOCGETETHRULESETS_error: free(nvlpacked, M_NVLIST); nvlist_destroy(nvl); break; } case DIOCGETETHRULESET: { struct epoch_tracker et; struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvl = NULL; void *nvlpacked = NULL; struct pf_keth_ruleset *ruleset; struct pf_keth_anchor *anchor; int nr = 0, req_nr = 0; bool found = false; #define ERROUT(x) ERROUT_IOCTL(DIOCGETETHRULESET_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_string(nvl, "path")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "nr")) ERROUT(EBADMSG); req_nr = nvlist_get_number(nvl, "nr"); NET_EPOCH_ENTER(et); if ((ruleset = pf_find_keth_ruleset( nvlist_get_string(nvl, "path"))) == NULL) { NET_EPOCH_EXIT(et); ERROUT(ENOENT); } nvlist_destroy(nvl); nvl = NULL; free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvl = nvlist_create(0); if (nvl == NULL) { NET_EPOCH_EXIT(et); ERROUT(ENOMEM); } if (ruleset->anchor == NULL) { RB_FOREACH(anchor, pf_keth_anchor_global, &V_pf_keth_anchors) { if (anchor->parent == NULL && nr++ == req_nr) { found = true; break; } } } else { RB_FOREACH(anchor, pf_keth_anchor_node, &ruleset->anchor->children) { if (nr++ == req_nr) { found = true; break; } } } NET_EPOCH_EXIT(et); if (found) { nvlist_add_number(nvl, "nr", nr); nvlist_add_string(nvl, "name", anchor->name); if (ruleset->anchor) nvlist_add_string(nvl, "path", ruleset->anchor->path); else nvlist_add_string(nvl, "path", ""); } else { ERROUT(EBUSY); } nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT DIOCGETETHRULESET_error: free(nvlpacked, M_NVLIST); nvlist_destroy(nvl); break; } case DIOCADDRULENV: { struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvl = NULL; void *nvlpacked = NULL; struct pf_krule *rule = NULL; const char *anchor = "", *anchor_call = ""; uint32_t ticket = 0, pool_ticket = 0; #define ERROUT(x) ERROUT_IOCTL(DIOCADDRULENV_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ticket")) ERROUT(EINVAL); ticket = nvlist_get_number(nvl, "ticket"); if (! nvlist_exists_number(nvl, "pool_ticket")) ERROUT(EINVAL); pool_ticket = nvlist_get_number(nvl, "pool_ticket"); if (! nvlist_exists_nvlist(nvl, "rule")) ERROUT(EINVAL); rule = pf_krule_alloc(); error = pf_nvrule_to_krule(nvlist_get_nvlist(nvl, "rule"), rule); if (error) ERROUT(error); if (nvlist_exists_string(nvl, "anchor")) anchor = nvlist_get_string(nvl, "anchor"); if (nvlist_exists_string(nvl, "anchor_call")) anchor_call = nvlist_get_string(nvl, "anchor_call"); if ((error = nvlist_error(nvl))) ERROUT(error); /* Frees rule on error */ error = pf_ioctl_addrule(rule, ticket, pool_ticket, anchor, anchor_call, td->td_ucred->cr_ruid, td->td_proc ? td->td_proc->p_pid : 0); nvlist_destroy(nvl); free(nvlpacked, M_NVLIST); break; #undef ERROUT DIOCADDRULENV_error: pf_krule_free(rule); nvlist_destroy(nvl); free(nvlpacked, M_NVLIST); break; } case DIOCADDRULE: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_krule *rule; rule = pf_krule_alloc(); error = pf_rule_to_krule(&pr->rule, rule); if (error != 0) { pf_krule_free(rule); break; } pr->anchor[sizeof(pr->anchor) - 1] = 0; /* Frees rule on error */ error = pf_ioctl_addrule(rule, pr->ticket, pr->pool_ticket, pr->anchor, pr->anchor_call, td->td_ucred->cr_ruid, td->td_proc ? td->td_proc->p_pid : 0); break; } case DIOCGETRULES: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; pr->anchor[sizeof(pr->anchor) - 1] = 0; error = pf_ioctl_getrules(pr); break; } case DIOCGETRULENV: { struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvrule = NULL; nvlist_t *nvl = NULL; struct pf_kruleset *ruleset; struct pf_krule *rule; void *nvlpacked = NULL; int rs_num, nr; bool clear_counter = false; #define ERROUT(x) ERROUT_IOCTL(DIOCGETRULENV_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); /* Copy the request in */ nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_string(nvl, "anchor")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ruleset")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ticket")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "nr")) ERROUT(EBADMSG); if (nvlist_exists_bool(nvl, "clear_counter")) clear_counter = nvlist_get_bool(nvl, "clear_counter"); if (clear_counter && !(flags & FWRITE)) ERROUT(EACCES); nr = nvlist_get_number(nvl, "nr"); PF_RULES_WLOCK(); ruleset = pf_find_kruleset(nvlist_get_string(nvl, "anchor")); if (ruleset == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOENT); } rs_num = pf_get_ruleset_number(nvlist_get_number(nvl, "ruleset")); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); ERROUT(EINVAL); } if (nvlist_get_number(nvl, "ticket") != ruleset->rules[rs_num].active.ticket) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); } if ((error = nvlist_error(nvl))) { PF_RULES_WUNLOCK(); ERROUT(error); } rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); while ((rule != NULL) && (rule->nr != nr)) rule = TAILQ_NEXT(rule, entries); if (rule == NULL) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); } nvrule = pf_krule_to_nvrule(rule); nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOMEM); } nvlist_add_number(nvl, "nr", nr); nvlist_add_nvlist(nvl, "rule", nvrule); nvlist_destroy(nvrule); nvrule = NULL; if (pf_kanchor_nvcopyout(ruleset, rule, nvl)) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); } free(nvlpacked, M_NVLIST); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOMEM); } if (nv->size == 0) { PF_RULES_WUNLOCK(); ERROUT(0); } else if (nv->size < nv->len) { PF_RULES_WUNLOCK(); ERROUT(ENOSPC); } if (clear_counter) pf_krule_clear_counters(rule); PF_RULES_WUNLOCK(); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT DIOCGETRULENV_error: free(nvlpacked, M_NVLIST); nvlist_destroy(nvrule); nvlist_destroy(nvl); break; } case DIOCCHANGERULE: { struct pfioc_rule *pcr = (struct pfioc_rule *)addr; struct pf_kruleset *ruleset; struct pf_krule *oldrule = NULL, *newrule = NULL; struct pfi_kkif *kif = NULL; struct pf_kpooladdr *pa; u_int32_t nr = 0; int rs_num; pcr->anchor[sizeof(pcr->anchor) - 1] = 0; if (pcr->action < PF_CHANGE_ADD_HEAD || pcr->action > PF_CHANGE_GET_TICKET) { error = EINVAL; break; } if (pcr->rule.return_icmp >> 8 > ICMP_MAXTYPE) { error = EINVAL; break; } if (pcr->action != PF_CHANGE_REMOVE) { newrule = pf_krule_alloc(); error = pf_rule_to_krule(&pcr->rule, newrule); if (error != 0) { pf_krule_free(newrule); break; } if (newrule->ifname[0]) kif = pf_kkif_create(M_WAITOK); pf_counter_u64_init(&newrule->evaluations, M_WAITOK); for (int i = 0; i < 2; i++) { pf_counter_u64_init(&newrule->packets[i], M_WAITOK); pf_counter_u64_init(&newrule->bytes[i], M_WAITOK); } newrule->states_cur = counter_u64_alloc(M_WAITOK); newrule->states_tot = counter_u64_alloc(M_WAITOK); newrule->src_nodes = counter_u64_alloc(M_WAITOK); newrule->cuid = td->td_ucred->cr_ruid; newrule->cpid = td->td_proc ? td->td_proc->p_pid : 0; TAILQ_INIT(&newrule->rpool.list); } #define ERROUT(x) ERROUT_IOCTL(DIOCCHANGERULE_error, x) PF_CONFIG_LOCK(); PF_RULES_WLOCK(); #ifdef PF_WANT_32_TO_64_COUNTER if (newrule != NULL) { LIST_INSERT_HEAD(&V_pf_allrulelist, newrule, allrulelist); newrule->allrulelinked = true; V_pf_allrulecount++; } #endif if (!(pcr->action == PF_CHANGE_REMOVE || pcr->action == PF_CHANGE_GET_TICKET) && pcr->pool_ticket != V_ticket_pabuf) ERROUT(EBUSY); ruleset = pf_find_kruleset(pcr->anchor); if (ruleset == NULL) ERROUT(EINVAL); rs_num = pf_get_ruleset_number(pcr->rule.action); if (rs_num >= PF_RULESET_MAX) ERROUT(EINVAL); /* * XXXMJG: there is no guarantee that the ruleset was * created by the usual route of calling DIOCXBEGIN. * As a result it is possible the rule tree will not * be allocated yet. Hack around it by doing it here. * Note it is fine to let the tree persist in case of * error as it will be freed down the road on future * updates (if need be). */ if (ruleset->rules[rs_num].active.tree == NULL) { ruleset->rules[rs_num].active.tree = pf_rule_tree_alloc(M_NOWAIT); if (ruleset->rules[rs_num].active.tree == NULL) { ERROUT(ENOMEM); } } if (pcr->action == PF_CHANGE_GET_TICKET) { pcr->ticket = ++ruleset->rules[rs_num].active.ticket; ERROUT(0); } else if (pcr->ticket != ruleset->rules[rs_num].active.ticket) ERROUT(EINVAL); if (pcr->action != PF_CHANGE_REMOVE) { if (newrule->ifname[0]) { newrule->kif = pfi_kkif_attach(kif, newrule->ifname); kif = NULL; pfi_kkif_ref(newrule->kif); } else newrule->kif = NULL; if (newrule->rtableid > 0 && newrule->rtableid >= rt_numfibs) error = EBUSY; #ifdef ALTQ /* set queue IDs */ if (newrule->qname[0] != 0) { if ((newrule->qid = pf_qname2qid(newrule->qname)) == 0) error = EBUSY; else if (newrule->pqname[0] != 0) { if ((newrule->pqid = pf_qname2qid(newrule->pqname)) == 0) error = EBUSY; } else newrule->pqid = newrule->qid; } #endif /* ALTQ */ if (newrule->tagname[0]) if ((newrule->tag = pf_tagname2tag(newrule->tagname)) == 0) error = EBUSY; if (newrule->match_tagname[0]) if ((newrule->match_tag = pf_tagname2tag( newrule->match_tagname)) == 0) error = EBUSY; if (newrule->rt && !newrule->direction) error = EINVAL; if (!newrule->log) newrule->logif = 0; if (newrule->logif >= PFLOGIFS_MAX) error = EINVAL; if (pf_addr_setup(ruleset, &newrule->src.addr, newrule->af)) error = ENOMEM; if (pf_addr_setup(ruleset, &newrule->dst.addr, newrule->af)) error = ENOMEM; if (pf_kanchor_setup(newrule, ruleset, pcr->anchor_call)) error = EINVAL; TAILQ_FOREACH(pa, &V_pf_pabuf, entries) if (pa->addr.type == PF_ADDR_TABLE) { pa->addr.p.tbl = pfr_attach_table(ruleset, pa->addr.v.tblname); if (pa->addr.p.tbl == NULL) error = ENOMEM; } newrule->overload_tbl = NULL; if (newrule->overload_tblname[0]) { if ((newrule->overload_tbl = pfr_attach_table( ruleset, newrule->overload_tblname)) == NULL) error = EINVAL; else newrule->overload_tbl->pfrkt_flags |= PFR_TFLAG_ACTIVE; } pf_mv_kpool(&V_pf_pabuf, &newrule->rpool.list); if (((((newrule->action == PF_NAT) || (newrule->action == PF_RDR) || (newrule->action == PF_BINAT) || (newrule->rt > PF_NOPFROUTE)) && !newrule->anchor)) && (TAILQ_FIRST(&newrule->rpool.list) == NULL)) error = EINVAL; if (error) { pf_free_rule(newrule); PF_RULES_WUNLOCK(); PF_CONFIG_UNLOCK(); break; } newrule->rpool.cur = TAILQ_FIRST(&newrule->rpool.list); } pf_empty_kpool(&V_pf_pabuf); if (pcr->action == PF_CHANGE_ADD_HEAD) oldrule = TAILQ_FIRST( ruleset->rules[rs_num].active.ptr); else if (pcr->action == PF_CHANGE_ADD_TAIL) oldrule = TAILQ_LAST( ruleset->rules[rs_num].active.ptr, pf_krulequeue); else { oldrule = TAILQ_FIRST( ruleset->rules[rs_num].active.ptr); while ((oldrule != NULL) && (oldrule->nr != pcr->nr)) oldrule = TAILQ_NEXT(oldrule, entries); if (oldrule == NULL) { if (newrule != NULL) pf_free_rule(newrule); PF_RULES_WUNLOCK(); PF_CONFIG_UNLOCK(); error = EINVAL; break; } } if (pcr->action == PF_CHANGE_REMOVE) { pf_unlink_rule(ruleset->rules[rs_num].active.ptr, oldrule); RB_REMOVE(pf_krule_global, ruleset->rules[rs_num].active.tree, oldrule); ruleset->rules[rs_num].active.rcount--; } else { pf_hash_rule(newrule); if (RB_INSERT(pf_krule_global, ruleset->rules[rs_num].active.tree, newrule) != NULL) { pf_free_rule(newrule); PF_RULES_WUNLOCK(); PF_CONFIG_UNLOCK(); error = EEXIST; break; } if (oldrule == NULL) TAILQ_INSERT_TAIL( ruleset->rules[rs_num].active.ptr, newrule, entries); else if (pcr->action == PF_CHANGE_ADD_HEAD || pcr->action == PF_CHANGE_ADD_BEFORE) TAILQ_INSERT_BEFORE(oldrule, newrule, entries); else TAILQ_INSERT_AFTER( ruleset->rules[rs_num].active.ptr, oldrule, newrule, entries); ruleset->rules[rs_num].active.rcount++; } nr = 0; TAILQ_FOREACH(oldrule, ruleset->rules[rs_num].active.ptr, entries) oldrule->nr = nr++; ruleset->rules[rs_num].active.ticket++; pf_calc_skip_steps(ruleset->rules[rs_num].active.ptr); pf_remove_if_empty_kruleset(ruleset); PF_RULES_WUNLOCK(); PF_CONFIG_UNLOCK(); break; #undef ERROUT DIOCCHANGERULE_error: PF_RULES_WUNLOCK(); PF_CONFIG_UNLOCK(); pf_krule_free(newrule); pf_kkif_free(kif); break; } case DIOCCLRSTATESNV: { error = pf_clearstates_nv((struct pfioc_nv *)addr); break; } case DIOCKILLSTATESNV: { error = pf_killstates_nv((struct pfioc_nv *)addr); break; } case DIOCADDSTATE: { struct pfioc_state *ps = (struct pfioc_state *)addr; struct pfsync_state_1301 *sp = &ps->state; if (sp->timeout >= PFTM_MAX) { error = EINVAL; break; } if (V_pfsync_state_import_ptr != NULL) { PF_RULES_RLOCK(); error = V_pfsync_state_import_ptr( (union pfsync_state_union *)sp, PFSYNC_SI_IOCTL, PFSYNC_MSG_VERSION_1301); PF_RULES_RUNLOCK(); } else error = EOPNOTSUPP; break; } case DIOCGETSTATE: { struct pfioc_state *ps = (struct pfioc_state *)addr; struct pf_kstate *s; s = pf_find_state_byid(ps->state.id, ps->state.creatorid); if (s == NULL) { error = ENOENT; break; } pfsync_state_export((union pfsync_state_union*)&ps->state, s, PFSYNC_MSG_VERSION_1301); PF_STATE_UNLOCK(s); break; } case DIOCGETSTATENV: { error = pf_getstate((struct pfioc_nv *)addr); break; } #ifdef COMPAT_FREEBSD14 case DIOCGETSTATES: { struct pfioc_states *ps = (struct pfioc_states *)addr; struct pf_kstate *s; struct pfsync_state_1301 *pstore, *p; int i, nr; size_t slice_count = 16, count; void *out; if (ps->ps_len <= 0) { nr = uma_zone_get_cur(V_pf_state_z); ps->ps_len = sizeof(struct pfsync_state_1301) * nr; break; } out = ps->ps_states; pstore = mallocarray(slice_count, sizeof(struct pfsync_state_1301), M_TEMP, M_WAITOK | M_ZERO); nr = 0; for (i = 0; i <= V_pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; DIOCGETSTATES_retry: p = pstore; if (LIST_EMPTY(&ih->states)) continue; PF_HASHROW_LOCK(ih); count = 0; LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; count++; } if (count > slice_count) { PF_HASHROW_UNLOCK(ih); free(pstore, M_TEMP); slice_count = count * 2; pstore = mallocarray(slice_count, sizeof(struct pfsync_state_1301), M_TEMP, M_WAITOK | M_ZERO); goto DIOCGETSTATES_retry; } if ((nr+count) * sizeof(*p) > ps->ps_len) { PF_HASHROW_UNLOCK(ih); goto DIOCGETSTATES_full; } LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; pfsync_state_export((union pfsync_state_union*)p, s, PFSYNC_MSG_VERSION_1301); p++; nr++; } PF_HASHROW_UNLOCK(ih); error = copyout(pstore, out, sizeof(struct pfsync_state_1301) * count); if (error) break; out = ps->ps_states + nr; } DIOCGETSTATES_full: ps->ps_len = sizeof(struct pfsync_state_1301) * nr; free(pstore, M_TEMP); break; } case DIOCGETSTATESV2: { struct pfioc_states_v2 *ps = (struct pfioc_states_v2 *)addr; struct pf_kstate *s; struct pf_state_export *pstore, *p; int i, nr; size_t slice_count = 16, count; void *out; if (ps->ps_req_version > PF_STATE_VERSION) { error = ENOTSUP; break; } if (ps->ps_len <= 0) { nr = uma_zone_get_cur(V_pf_state_z); ps->ps_len = sizeof(struct pf_state_export) * nr; break; } out = ps->ps_states; pstore = mallocarray(slice_count, sizeof(struct pf_state_export), M_TEMP, M_WAITOK | M_ZERO); nr = 0; for (i = 0; i <= V_pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; DIOCGETSTATESV2_retry: p = pstore; if (LIST_EMPTY(&ih->states)) continue; PF_HASHROW_LOCK(ih); count = 0; LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; count++; } if (count > slice_count) { PF_HASHROW_UNLOCK(ih); free(pstore, M_TEMP); slice_count = count * 2; pstore = mallocarray(slice_count, sizeof(struct pf_state_export), M_TEMP, M_WAITOK | M_ZERO); goto DIOCGETSTATESV2_retry; } if ((nr+count) * sizeof(*p) > ps->ps_len) { PF_HASHROW_UNLOCK(ih); goto DIOCGETSTATESV2_full; } LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; pf_state_export(p, s); p++; nr++; } PF_HASHROW_UNLOCK(ih); error = copyout(pstore, out, sizeof(struct pf_state_export) * count); if (error) break; out = ps->ps_states + nr; } DIOCGETSTATESV2_full: ps->ps_len = nr * sizeof(struct pf_state_export); free(pstore, M_TEMP); break; } #endif case DIOCGETSTATUSNV: { error = pf_getstatus((struct pfioc_nv *)addr); break; } case DIOCSETSTATUSIF: { struct pfioc_if *pi = (struct pfioc_if *)addr; if (pi->ifname[0] == 0) { bzero(V_pf_status.ifname, IFNAMSIZ); break; } PF_RULES_WLOCK(); error = pf_user_strcpy(V_pf_status.ifname, pi->ifname, IFNAMSIZ); PF_RULES_WUNLOCK(); break; } case DIOCCLRSTATUS: { pf_ioctl_clear_status(); break; } case DIOCNATLOOK: { struct pfioc_natlook *pnl = (struct pfioc_natlook *)addr; struct pf_state_key *sk; struct pf_kstate *state; struct pf_state_key_cmp key; int m = 0, direction = pnl->direction; int sidx, didx; /* NATLOOK src and dst are reversed, so reverse sidx/didx */ sidx = (direction == PF_IN) ? 1 : 0; didx = (direction == PF_IN) ? 0 : 1; if (!pnl->proto || PF_AZERO(&pnl->saddr, pnl->af) || PF_AZERO(&pnl->daddr, pnl->af) || ((pnl->proto == IPPROTO_TCP || pnl->proto == IPPROTO_UDP) && (!pnl->dport || !pnl->sport))) error = EINVAL; else { bzero(&key, sizeof(key)); key.af = pnl->af; key.proto = pnl->proto; PF_ACPY(&key.addr[sidx], &pnl->saddr, pnl->af); key.port[sidx] = pnl->sport; PF_ACPY(&key.addr[didx], &pnl->daddr, pnl->af); key.port[didx] = pnl->dport; state = pf_find_state_all(&key, direction, &m); if (state == NULL) { error = ENOENT; } else { if (m > 1) { PF_STATE_UNLOCK(state); error = E2BIG; /* more than one state */ } else { sk = state->key[sidx]; PF_ACPY(&pnl->rsaddr, &sk->addr[sidx], sk->af); pnl->rsport = sk->port[sidx]; PF_ACPY(&pnl->rdaddr, &sk->addr[didx], sk->af); pnl->rdport = sk->port[didx]; PF_STATE_UNLOCK(state); } } } break; } case DIOCSETTIMEOUT: { struct pfioc_tm *pt = (struct pfioc_tm *)addr; error = pf_ioctl_set_timeout(pt->timeout, pt->seconds, &pt->seconds); break; } case DIOCGETTIMEOUT: { struct pfioc_tm *pt = (struct pfioc_tm *)addr; error = pf_ioctl_get_timeout(pt->timeout, &pt->seconds); break; } case DIOCGETLIMIT: { struct pfioc_limit *pl = (struct pfioc_limit *)addr; error = pf_ioctl_get_limit(pl->index, &pl->limit); break; } case DIOCSETLIMIT: { struct pfioc_limit *pl = (struct pfioc_limit *)addr; unsigned int old_limit; error = pf_ioctl_set_limit(pl->index, pl->limit, &old_limit); pl->limit = old_limit; break; } case DIOCSETDEBUG: { u_int32_t *level = (u_int32_t *)addr; PF_RULES_WLOCK(); V_pf_status.debug = *level; PF_RULES_WUNLOCK(); break; } case DIOCCLRRULECTRS: { /* obsoleted by DIOCGETRULE with action=PF_GET_CLR_CNTR */ struct pf_kruleset *ruleset = &pf_main_ruleset; struct pf_krule *rule; PF_RULES_WLOCK(); TAILQ_FOREACH(rule, ruleset->rules[PF_RULESET_FILTER].active.ptr, entries) { pf_counter_u64_zero(&rule->evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_zero(&rule->packets[i]); pf_counter_u64_zero(&rule->bytes[i]); } } PF_RULES_WUNLOCK(); break; } case DIOCGIFSPEEDV0: case DIOCGIFSPEEDV1: { struct pf_ifspeed_v1 *psp = (struct pf_ifspeed_v1 *)addr; struct pf_ifspeed_v1 ps; struct ifnet *ifp; if (psp->ifname[0] == '\0') { error = EINVAL; break; } error = pf_user_strcpy(ps.ifname, psp->ifname, IFNAMSIZ); if (error != 0) break; ifp = ifunit(ps.ifname); if (ifp != NULL) { psp->baudrate32 = (u_int32_t)uqmin(ifp->if_baudrate, UINT_MAX); if (cmd == DIOCGIFSPEEDV1) psp->baudrate = ifp->if_baudrate; } else { error = EINVAL; } break; } #ifdef ALTQ case DIOCSTARTALTQ: { struct pf_altq *altq; PF_RULES_WLOCK(); /* enable all altq interfaces on active list */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { error = pf_enable_altq(altq); if (error != 0) break; } } if (error == 0) V_pf_altq_running = 1; PF_RULES_WUNLOCK(); DPFPRINTF(PF_DEBUG_MISC, ("altq: started\n")); break; } case DIOCSTOPALTQ: { struct pf_altq *altq; PF_RULES_WLOCK(); /* disable all altq interfaces on active list */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { error = pf_disable_altq(altq); if (error != 0) break; } } if (error == 0) V_pf_altq_running = 0; PF_RULES_WUNLOCK(); DPFPRINTF(PF_DEBUG_MISC, ("altq: stopped\n")); break; } case DIOCADDALTQV0: case DIOCADDALTQV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq, *a; struct ifnet *ifp; altq = malloc(sizeof(*altq), M_PFALTQ, M_WAITOK | M_ZERO); error = pf_import_kaltq(pa, altq, IOCPARM_LEN(cmd)); if (error) break; altq->local_flags = 0; PF_RULES_WLOCK(); if (pa->ticket != V_ticket_altqs_inactive) { PF_RULES_WUNLOCK(); free(altq, M_PFALTQ); error = EBUSY; break; } /* * if this is for a queue, find the discipline and * copy the necessary fields */ if (altq->qname[0] != 0) { if ((altq->qid = pf_qname2qid(altq->qname)) == 0) { PF_RULES_WUNLOCK(); error = EBUSY; free(altq, M_PFALTQ); break; } altq->altq_disc = NULL; TAILQ_FOREACH(a, V_pf_altq_ifs_inactive, entries) { if (strncmp(a->ifname, altq->ifname, IFNAMSIZ) == 0) { altq->altq_disc = a->altq_disc; break; } } } if ((ifp = ifunit(altq->ifname)) == NULL) altq->local_flags |= PFALTQ_FLAG_IF_REMOVED; else error = altq_add(ifp, altq); if (error) { PF_RULES_WUNLOCK(); free(altq, M_PFALTQ); break; } if (altq->qname[0] != 0) TAILQ_INSERT_TAIL(V_pf_altqs_inactive, altq, entries); else TAILQ_INSERT_TAIL(V_pf_altq_ifs_inactive, altq, entries); /* version error check done on import above */ pf_export_kaltq(altq, pa, IOCPARM_LEN(cmd)); PF_RULES_WUNLOCK(); break; } case DIOCGETALTQSV0: case DIOCGETALTQSV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq; PF_RULES_RLOCK(); pa->nr = 0; TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) pa->nr++; TAILQ_FOREACH(altq, V_pf_altqs_active, entries) pa->nr++; pa->ticket = V_ticket_altqs_active; PF_RULES_RUNLOCK(); break; } case DIOCGETALTQV0: case DIOCGETALTQV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq; PF_RULES_RLOCK(); if (pa->ticket != V_ticket_altqs_active) { PF_RULES_RUNLOCK(); error = EBUSY; break; } altq = pf_altq_get_nth_active(pa->nr); if (altq == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pf_export_kaltq(altq, pa, IOCPARM_LEN(cmd)); PF_RULES_RUNLOCK(); break; } case DIOCCHANGEALTQV0: case DIOCCHANGEALTQV1: /* CHANGEALTQ not supported yet! */ error = ENODEV; break; case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: { struct pfioc_qstats_v1 *pq = (struct pfioc_qstats_v1 *)addr; struct pf_altq *altq; int nbytes; u_int32_t version; PF_RULES_RLOCK(); if (pq->ticket != V_ticket_altqs_active) { PF_RULES_RUNLOCK(); error = EBUSY; break; } nbytes = pq->nbytes; altq = pf_altq_get_nth_active(pq->nr); if (altq == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) != 0) { PF_RULES_RUNLOCK(); error = ENXIO; break; } PF_RULES_RUNLOCK(); if (cmd == DIOCGETQSTATSV0) version = 0; /* DIOCGETQSTATSV0 means stats struct v0 */ else version = pq->version; error = altq_getqstats(altq, pq->buf, &nbytes, version); if (error == 0) { pq->scheduler = altq->scheduler; pq->nbytes = nbytes; } break; } #endif /* ALTQ */ case DIOCBEGINADDRS: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; error = pf_ioctl_begin_addrs(&pp->ticket); break; } case DIOCADDADDR: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; error = pf_ioctl_add_addr(pp); break; } case DIOCGETADDRS: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; - struct pf_kpool *pool; - struct pf_kpooladdr *pa; - pp->anchor[sizeof(pp->anchor) - 1] = 0; - pp->nr = 0; - - PF_RULES_RLOCK(); - pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action, - pp->r_num, 0, 1, 0); - if (pool == NULL) { - PF_RULES_RUNLOCK(); - error = EBUSY; - break; - } - TAILQ_FOREACH(pa, &pool->list, entries) - pp->nr++; - PF_RULES_RUNLOCK(); + error = pf_ioctl_get_addrs(pp); break; } case DIOCGETADDR: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *pa; u_int32_t nr = 0; pp->anchor[sizeof(pp->anchor) - 1] = 0; PF_RULES_RLOCK(); pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action, pp->r_num, 0, 1, 1); if (pool == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pa = TAILQ_FIRST(&pool->list); while ((pa != NULL) && (nr < pp->nr)) { pa = TAILQ_NEXT(pa, entries); nr++; } if (pa == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pf_kpooladdr_to_pooladdr(pa, &pp->addr); pf_addr_copyout(&pp->addr.addr); PF_RULES_RUNLOCK(); break; } case DIOCCHANGEADDR: { struct pfioc_pooladdr *pca = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *oldpa = NULL, *newpa = NULL; struct pf_kruleset *ruleset; struct pfi_kkif *kif = NULL; pca->anchor[sizeof(pca->anchor) - 1] = 0; if (pca->action < PF_CHANGE_ADD_HEAD || pca->action > PF_CHANGE_REMOVE) { error = EINVAL; break; } if (pca->addr.addr.type != PF_ADDR_ADDRMASK && pca->addr.addr.type != PF_ADDR_DYNIFTL && pca->addr.addr.type != PF_ADDR_TABLE) { error = EINVAL; break; } if (pca->addr.addr.p.dyn != NULL) { error = EINVAL; break; } if (pca->action != PF_CHANGE_REMOVE) { #ifndef INET if (pca->af == AF_INET) { error = EAFNOSUPPORT; break; } #endif /* INET */ #ifndef INET6 if (pca->af == AF_INET6) { error = EAFNOSUPPORT; break; } #endif /* INET6 */ newpa = malloc(sizeof(*newpa), M_PFRULE, M_WAITOK); bcopy(&pca->addr, newpa, sizeof(struct pf_pooladdr)); if (newpa->ifname[0]) kif = pf_kkif_create(M_WAITOK); newpa->kif = NULL; } #define ERROUT(x) ERROUT_IOCTL(DIOCCHANGEADDR_error, x) PF_RULES_WLOCK(); ruleset = pf_find_kruleset(pca->anchor); if (ruleset == NULL) ERROUT(EBUSY); pool = pf_get_kpool(pca->anchor, pca->ticket, pca->r_action, pca->r_num, pca->r_last, 1, 1); if (pool == NULL) ERROUT(EBUSY); if (pca->action != PF_CHANGE_REMOVE) { if (newpa->ifname[0]) { newpa->kif = pfi_kkif_attach(kif, newpa->ifname); pfi_kkif_ref(newpa->kif); kif = NULL; } switch (newpa->addr.type) { case PF_ADDR_DYNIFTL: error = pfi_dynaddr_setup(&newpa->addr, pca->af); break; case PF_ADDR_TABLE: newpa->addr.p.tbl = pfr_attach_table(ruleset, newpa->addr.v.tblname); if (newpa->addr.p.tbl == NULL) error = ENOMEM; break; } if (error) goto DIOCCHANGEADDR_error; } switch (pca->action) { case PF_CHANGE_ADD_HEAD: oldpa = TAILQ_FIRST(&pool->list); break; case PF_CHANGE_ADD_TAIL: oldpa = TAILQ_LAST(&pool->list, pf_kpalist); break; default: oldpa = TAILQ_FIRST(&pool->list); for (int i = 0; oldpa && i < pca->nr; i++) oldpa = TAILQ_NEXT(oldpa, entries); if (oldpa == NULL) ERROUT(EINVAL); } if (pca->action == PF_CHANGE_REMOVE) { TAILQ_REMOVE(&pool->list, oldpa, entries); switch (oldpa->addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(oldpa->addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(oldpa->addr.p.tbl); break; } if (oldpa->kif) pfi_kkif_unref(oldpa->kif); free(oldpa, M_PFRULE); } else { if (oldpa == NULL) TAILQ_INSERT_TAIL(&pool->list, newpa, entries); else if (pca->action == PF_CHANGE_ADD_HEAD || pca->action == PF_CHANGE_ADD_BEFORE) TAILQ_INSERT_BEFORE(oldpa, newpa, entries); else TAILQ_INSERT_AFTER(&pool->list, oldpa, newpa, entries); } pool->cur = TAILQ_FIRST(&pool->list); PF_ACPY(&pool->counter, &pool->cur->addr.v.a.addr, pca->af); PF_RULES_WUNLOCK(); break; #undef ERROUT DIOCCHANGEADDR_error: if (newpa != NULL) { if (newpa->kif) pfi_kkif_unref(newpa->kif); free(newpa, M_PFRULE); } PF_RULES_WUNLOCK(); pf_kkif_free(kif); break; } case DIOCGETRULESETS: { struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr; struct pf_kruleset *ruleset; struct pf_kanchor *anchor; pr->path[sizeof(pr->path) - 1] = 0; PF_RULES_RLOCK(); if ((ruleset = pf_find_kruleset(pr->path)) == NULL) { PF_RULES_RUNLOCK(); error = ENOENT; break; } pr->nr = 0; if (ruleset->anchor == NULL) { /* XXX kludge for pf_main_ruleset */ RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors) if (anchor->parent == NULL) pr->nr++; } else { RB_FOREACH(anchor, pf_kanchor_node, &ruleset->anchor->children) pr->nr++; } PF_RULES_RUNLOCK(); break; } case DIOCGETRULESET: { struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr; struct pf_kruleset *ruleset; struct pf_kanchor *anchor; u_int32_t nr = 0; pr->path[sizeof(pr->path) - 1] = 0; PF_RULES_RLOCK(); if ((ruleset = pf_find_kruleset(pr->path)) == NULL) { PF_RULES_RUNLOCK(); error = ENOENT; break; } pr->name[0] = 0; if (ruleset->anchor == NULL) { /* XXX kludge for pf_main_ruleset */ RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors) if (anchor->parent == NULL && nr++ == pr->nr) { strlcpy(pr->name, anchor->name, sizeof(pr->name)); break; } } else { RB_FOREACH(anchor, pf_kanchor_node, &ruleset->anchor->children) if (nr++ == pr->nr) { strlcpy(pr->name, anchor->name, sizeof(pr->name)); break; } } if (!pr->name[0]) error = EBUSY; PF_RULES_RUNLOCK(); break; } case DIOCRCLRTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; if (io->pfrio_esize != 0) { error = ENODEV; break; } PF_RULES_WLOCK(); error = pfr_clr_tables(&io->pfrio_table, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); break; } case DIOCRADDTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { error = ENOMEM; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_add_tables(pfrts, io->pfrio_size, &io->pfrio_nadd, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRDELTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { error = ENOMEM; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_del_tables(pfrts, io->pfrio_size, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRGETTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } PF_RULES_RLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_RUNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_NOWAIT | M_ZERO); if (pfrts == NULL) { error = ENOMEM; PF_RULES_RUNLOCK(); break; } error = pfr_get_tables(&io->pfrio_table, pfrts, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfrts, io->pfrio_buffer, totlen); free(pfrts, M_TEMP); break; } case DIOCRGETTSTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_tstats *pfrtstats; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_tstats)) { error = ENODEV; break; } PF_TABLE_STATS_LOCK(); PF_RULES_RLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_RUNLOCK(); PF_TABLE_STATS_UNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); totlen = io->pfrio_size * sizeof(struct pfr_tstats); pfrtstats = mallocarray(io->pfrio_size, sizeof(struct pfr_tstats), M_TEMP, M_NOWAIT | M_ZERO); if (pfrtstats == NULL) { error = ENOMEM; PF_RULES_RUNLOCK(); PF_TABLE_STATS_UNLOCK(); break; } error = pfr_get_tstats(&io->pfrio_table, pfrtstats, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); PF_TABLE_STATS_UNLOCK(); if (error == 0) error = copyout(pfrtstats, io->pfrio_buffer, totlen); free(pfrtstats, M_TEMP); break; } case DIOCRCLRTSTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { /* We used to count tables and use the minimum required * size, so we didn't fail on overly large requests. * Keep doing so. */ io->pfrio_size = pf_ioctl_maxcount; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_TABLE_STATS_LOCK(); PF_RULES_RLOCK(); error = pfr_clr_tstats(pfrts, io->pfrio_size, &io->pfrio_nzero, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); PF_TABLE_STATS_UNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRSETTFLAGS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } PF_RULES_RLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_RUNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); PF_RULES_RUNLOCK(); totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_set_tflags(pfrts, io->pfrio_size, io->pfrio_setflag, io->pfrio_clrflag, &io->pfrio_nchange, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRCLRADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; if (io->pfrio_esize != 0) { error = ENODEV; break; } PF_RULES_WLOCK(); error = pfr_clr_addrs(&io->pfrio_table, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); break; } case DIOCRADDADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_add_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nadd, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRDELADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_del_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRSETADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen, count; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size2 < 0) { error = EINVAL; break; } count = max(io->pfrio_size, io->pfrio_size2); if (count > pf_ioctl_maxcount || WOULD_OVERFLOW(count, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = count * sizeof(struct pfr_addr); pfras = mallocarray(count, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_set_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_size2, &io->pfrio_nadd, &io->pfrio_ndel, &io->pfrio_nchange, io->pfrio_flags | PFR_FLAG_USERIOCTL, 0); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRGETADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK | M_ZERO); PF_RULES_RLOCK(); error = pfr_get_addrs(&io->pfrio_table, pfras, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRGETASTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_astats *pfrastats; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_astats)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_astats))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_astats); pfrastats = mallocarray(io->pfrio_size, sizeof(struct pfr_astats), M_TEMP, M_WAITOK | M_ZERO); PF_RULES_RLOCK(); error = pfr_get_astats(&io->pfrio_table, pfrastats, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfrastats, io->pfrio_buffer, totlen); free(pfrastats, M_TEMP); break; } case DIOCRCLRASTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_clr_astats(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nzero, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRTSTADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_RLOCK(); error = pfr_tst_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nmatch, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRINADEFINE: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_ina_define(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nadd, &io->pfrio_naddr, io->pfrio_ticket, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfras, M_TEMP); break; } case DIOCOSFPADD: { struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr; PF_RULES_WLOCK(); error = pf_osfp_add(io); PF_RULES_WUNLOCK(); break; } case DIOCOSFPGET: { struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr; PF_RULES_RLOCK(); error = pf_osfp_get(io); PF_RULES_RUNLOCK(); break; } case DIOCXBEGIN: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioes, *ioe; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_WAITOK); error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } /* Ensure there's no more ethernet rules to clean up. */ NET_EPOCH_DRAIN_CALLBACKS(); PF_RULES_WLOCK(); for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { ioe->anchor[sizeof(ioe->anchor) - 1] = '\0'; switch (ioe->rs_num) { case PF_RULESET_ETH: if ((error = pf_begin_eth(&ioe->ticket, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if ((error = pf_begin_altq(&ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_begin(&table, &ioe->ticket, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; } default: if ((error = pf_begin_rules(&ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; } } PF_RULES_WUNLOCK(); error = copyout(ioes, io->array, totlen); free(ioes, M_TEMP); break; } case DIOCXROLLBACK: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioe, *ioes; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_WAITOK); error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { ioe->anchor[sizeof(ioe->anchor) - 1] = '\0'; switch (ioe->rs_num) { case PF_RULESET_ETH: if ((error = pf_rollback_eth(ioe->ticket, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if ((error = pf_rollback_altq(ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_rollback(&table, ioe->ticket, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } default: if ((error = pf_rollback_rules(ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } } PF_RULES_WUNLOCK(); free(ioes, M_TEMP); break; } case DIOCXCOMMIT: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioe, *ioes; struct pf_kruleset *rs; struct pf_keth_ruleset *ers; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_WAITOK); error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); /* First makes sure everything will succeed. */ for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { ioe->anchor[sizeof(ioe->anchor) - 1] = 0; switch (ioe->rs_num) { case PF_RULESET_ETH: ers = pf_find_keth_ruleset(ioe->anchor); if (ers == NULL || ioe->ticket == 0 || ioe->ticket != ers->inactive.ticket) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } break; #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if (!V_altqs_inactive_open || ioe->ticket != V_ticket_altqs_inactive) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; #endif /* ALTQ */ case PF_RULESET_TABLE: rs = pf_find_kruleset(ioe->anchor); if (rs == NULL || !rs->topen || ioe->ticket != rs->tticket) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; default: if (ioe->rs_num < 0 || ioe->rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } rs = pf_find_kruleset(ioe->anchor); if (rs == NULL || !rs->rules[ioe->rs_num].inactive.open || rs->rules[ioe->rs_num].inactive.ticket != ioe->ticket) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; } } /* Now do the commit - no errors should happen here. */ for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { switch (ioe->rs_num) { case PF_RULESET_ETH: if ((error = pf_commit_eth(ioe->ticket, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; #ifdef ALTQ case PF_RULESET_ALTQ: if ((error = pf_commit_altq(ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); (void)strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_commit(&table, ioe->ticket, NULL, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } default: if ((error = pf_commit_rules(ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } } PF_RULES_WUNLOCK(); /* Only hook into EtherNet taffic if we've got rules for it. */ if (! TAILQ_EMPTY(V_pf_keth->active.rules)) hook_pf_eth(); else dehook_pf_eth(); free(ioes, M_TEMP); break; } case DIOCGETSRCNODES: { struct pfioc_src_nodes *psn = (struct pfioc_src_nodes *)addr; struct pf_srchash *sh; struct pf_ksrc_node *n; struct pf_src_node *p, *pstore; uint32_t i, nr = 0; for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) nr++; PF_HASHROW_UNLOCK(sh); } psn->psn_len = min(psn->psn_len, sizeof(struct pf_src_node) * nr); if (psn->psn_len == 0) { psn->psn_len = sizeof(struct pf_src_node) * nr; break; } nr = 0; p = pstore = malloc(psn->psn_len, M_TEMP, M_WAITOK | M_ZERO); for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) { if ((nr + 1) * sizeof(*p) > (unsigned)psn->psn_len) break; pf_src_node_copy(n, p); p++; nr++; } PF_HASHROW_UNLOCK(sh); } error = copyout(pstore, psn->psn_src_nodes, sizeof(struct pf_src_node) * nr); if (error) { free(pstore, M_TEMP); break; } psn->psn_len = sizeof(struct pf_src_node) * nr; free(pstore, M_TEMP); break; } case DIOCCLRSRCNODES: { pf_clear_srcnodes(NULL); pf_purge_expired_src_nodes(); break; } case DIOCKILLSRCNODES: pf_kill_srcnodes((struct pfioc_src_node_kill *)addr); break; #ifdef COMPAT_FREEBSD13 case DIOCKEEPCOUNTERS_FREEBSD13: #endif case DIOCKEEPCOUNTERS: error = pf_keepcounters((struct pfioc_nv *)addr); break; case DIOCGETSYNCOOKIES: error = pf_get_syncookies((struct pfioc_nv *)addr); break; case DIOCSETSYNCOOKIES: error = pf_set_syncookies((struct pfioc_nv *)addr); break; case DIOCSETHOSTID: { u_int32_t *hostid = (u_int32_t *)addr; PF_RULES_WLOCK(); if (*hostid == 0) V_pf_status.hostid = arc4random(); else V_pf_status.hostid = *hostid; PF_RULES_WUNLOCK(); break; } case DIOCOSFPFLUSH: PF_RULES_WLOCK(); pf_osfp_flush(); PF_RULES_WUNLOCK(); break; case DIOCIGETIFACES: { struct pfioc_iface *io = (struct pfioc_iface *)addr; struct pfi_kif *ifstore; size_t bufsiz; if (io->pfiio_esize != sizeof(struct pfi_kif)) { error = ENODEV; break; } if (io->pfiio_size < 0 || io->pfiio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfiio_size, sizeof(struct pfi_kif))) { error = EINVAL; break; } io->pfiio_name[sizeof(io->pfiio_name) - 1] = '\0'; bufsiz = io->pfiio_size * sizeof(struct pfi_kif); ifstore = mallocarray(io->pfiio_size, sizeof(struct pfi_kif), M_TEMP, M_WAITOK | M_ZERO); PF_RULES_RLOCK(); pfi_get_ifaces(io->pfiio_name, ifstore, &io->pfiio_size); PF_RULES_RUNLOCK(); error = copyout(ifstore, io->pfiio_buffer, bufsiz); free(ifstore, M_TEMP); break; } case DIOCSETIFFLAG: { struct pfioc_iface *io = (struct pfioc_iface *)addr; io->pfiio_name[sizeof(io->pfiio_name) - 1] = '\0'; PF_RULES_WLOCK(); error = pfi_set_flags(io->pfiio_name, io->pfiio_flags); PF_RULES_WUNLOCK(); break; } case DIOCCLRIFFLAG: { struct pfioc_iface *io = (struct pfioc_iface *)addr; io->pfiio_name[sizeof(io->pfiio_name) - 1] = '\0'; PF_RULES_WLOCK(); error = pfi_clear_flags(io->pfiio_name, io->pfiio_flags); PF_RULES_WUNLOCK(); break; } case DIOCSETREASS: { u_int32_t *reass = (u_int32_t *)addr; V_pf_status.reass = *reass & (PF_REASS_ENABLED|PF_REASS_NODF); /* Removal of DF flag without reassembly enabled is not a * valid combination. Disable reassembly in such case. */ if (!(V_pf_status.reass & PF_REASS_ENABLED)) V_pf_status.reass = 0; break; } default: error = ENODEV; break; } fail: CURVNET_RESTORE(); #undef ERROUT_IOCTL return (error); } void pfsync_state_export(union pfsync_state_union *sp, struct pf_kstate *st, int msg_version) { bzero(sp, sizeof(union pfsync_state_union)); /* copy from state key */ sp->pfs_1301.key[PF_SK_WIRE].addr[0] = st->key[PF_SK_WIRE]->addr[0]; sp->pfs_1301.key[PF_SK_WIRE].addr[1] = st->key[PF_SK_WIRE]->addr[1]; sp->pfs_1301.key[PF_SK_WIRE].port[0] = st->key[PF_SK_WIRE]->port[0]; sp->pfs_1301.key[PF_SK_WIRE].port[1] = st->key[PF_SK_WIRE]->port[1]; sp->pfs_1301.key[PF_SK_STACK].addr[0] = st->key[PF_SK_STACK]->addr[0]; sp->pfs_1301.key[PF_SK_STACK].addr[1] = st->key[PF_SK_STACK]->addr[1]; sp->pfs_1301.key[PF_SK_STACK].port[0] = st->key[PF_SK_STACK]->port[0]; sp->pfs_1301.key[PF_SK_STACK].port[1] = st->key[PF_SK_STACK]->port[1]; sp->pfs_1301.proto = st->key[PF_SK_WIRE]->proto; sp->pfs_1301.af = st->key[PF_SK_WIRE]->af; /* copy from state */ strlcpy(sp->pfs_1301.ifname, st->kif->pfik_name, sizeof(sp->pfs_1301.ifname)); bcopy(&st->rt_addr, &sp->pfs_1301.rt_addr, sizeof(sp->pfs_1301.rt_addr)); sp->pfs_1301.creation = htonl(time_uptime - (st->creation / 1000)); sp->pfs_1301.expire = pf_state_expires(st); if (sp->pfs_1301.expire <= time_uptime) sp->pfs_1301.expire = htonl(0); else sp->pfs_1301.expire = htonl(sp->pfs_1301.expire - time_uptime); sp->pfs_1301.direction = st->direction; sp->pfs_1301.log = st->act.log; sp->pfs_1301.timeout = st->timeout; switch (msg_version) { case PFSYNC_MSG_VERSION_1301: sp->pfs_1301.state_flags = st->state_flags; break; case PFSYNC_MSG_VERSION_1400: sp->pfs_1400.state_flags = htons(st->state_flags); sp->pfs_1400.qid = htons(st->act.qid); sp->pfs_1400.pqid = htons(st->act.pqid); sp->pfs_1400.dnpipe = htons(st->act.dnpipe); sp->pfs_1400.dnrpipe = htons(st->act.dnrpipe); sp->pfs_1400.rtableid = htonl(st->act.rtableid); sp->pfs_1400.min_ttl = st->act.min_ttl; sp->pfs_1400.set_tos = st->act.set_tos; sp->pfs_1400.max_mss = htons(st->act.max_mss); sp->pfs_1400.set_prio[0] = st->act.set_prio[0]; sp->pfs_1400.set_prio[1] = st->act.set_prio[1]; sp->pfs_1400.rt = st->rt; if (st->rt_kif) strlcpy(sp->pfs_1400.rt_ifname, st->rt_kif->pfik_name, sizeof(sp->pfs_1400.rt_ifname)); break; default: panic("%s: Unsupported pfsync_msg_version %d", __func__, msg_version); } if (st->src_node) sp->pfs_1301.sync_flags |= PFSYNC_FLAG_SRCNODE; if (st->nat_src_node) sp->pfs_1301.sync_flags |= PFSYNC_FLAG_NATSRCNODE; sp->pfs_1301.id = st->id; sp->pfs_1301.creatorid = st->creatorid; pf_state_peer_hton(&st->src, &sp->pfs_1301.src); pf_state_peer_hton(&st->dst, &sp->pfs_1301.dst); if (st->rule.ptr == NULL) sp->pfs_1301.rule = htonl(-1); else sp->pfs_1301.rule = htonl(st->rule.ptr->nr); if (st->anchor.ptr == NULL) sp->pfs_1301.anchor = htonl(-1); else sp->pfs_1301.anchor = htonl(st->anchor.ptr->nr); if (st->nat_rule.ptr == NULL) sp->pfs_1301.nat_rule = htonl(-1); else sp->pfs_1301.nat_rule = htonl(st->nat_rule.ptr->nr); pf_state_counter_hton(st->packets[0], sp->pfs_1301.packets[0]); pf_state_counter_hton(st->packets[1], sp->pfs_1301.packets[1]); pf_state_counter_hton(st->bytes[0], sp->pfs_1301.bytes[0]); pf_state_counter_hton(st->bytes[1], sp->pfs_1301.bytes[1]); } void pf_state_export(struct pf_state_export *sp, struct pf_kstate *st) { bzero(sp, sizeof(*sp)); sp->version = PF_STATE_VERSION; /* copy from state key */ sp->key[PF_SK_WIRE].addr[0] = st->key[PF_SK_WIRE]->addr[0]; sp->key[PF_SK_WIRE].addr[1] = st->key[PF_SK_WIRE]->addr[1]; sp->key[PF_SK_WIRE].port[0] = st->key[PF_SK_WIRE]->port[0]; sp->key[PF_SK_WIRE].port[1] = st->key[PF_SK_WIRE]->port[1]; sp->key[PF_SK_STACK].addr[0] = st->key[PF_SK_STACK]->addr[0]; sp->key[PF_SK_STACK].addr[1] = st->key[PF_SK_STACK]->addr[1]; sp->key[PF_SK_STACK].port[0] = st->key[PF_SK_STACK]->port[0]; sp->key[PF_SK_STACK].port[1] = st->key[PF_SK_STACK]->port[1]; sp->proto = st->key[PF_SK_WIRE]->proto; sp->af = st->key[PF_SK_WIRE]->af; /* copy from state */ strlcpy(sp->ifname, st->kif->pfik_name, sizeof(sp->ifname)); strlcpy(sp->orig_ifname, st->orig_kif->pfik_name, sizeof(sp->orig_ifname)); bcopy(&st->rt_addr, &sp->rt_addr, sizeof(sp->rt_addr)); sp->creation = htonl(time_uptime - (st->creation / 1000)); sp->expire = pf_state_expires(st); if (sp->expire <= time_uptime) sp->expire = htonl(0); else sp->expire = htonl(sp->expire - time_uptime); sp->direction = st->direction; sp->log = st->act.log; sp->timeout = st->timeout; /* 8 bits for the old libpfctl, 16 bits for the new libpfctl */ sp->state_flags_compat = st->state_flags; sp->state_flags = htons(st->state_flags); if (st->src_node) sp->sync_flags |= PFSYNC_FLAG_SRCNODE; if (st->nat_src_node) sp->sync_flags |= PFSYNC_FLAG_NATSRCNODE; sp->id = st->id; sp->creatorid = st->creatorid; pf_state_peer_hton(&st->src, &sp->src); pf_state_peer_hton(&st->dst, &sp->dst); if (st->rule.ptr == NULL) sp->rule = htonl(-1); else sp->rule = htonl(st->rule.ptr->nr); if (st->anchor.ptr == NULL) sp->anchor = htonl(-1); else sp->anchor = htonl(st->anchor.ptr->nr); if (st->nat_rule.ptr == NULL) sp->nat_rule = htonl(-1); else sp->nat_rule = htonl(st->nat_rule.ptr->nr); sp->packets[0] = st->packets[0]; sp->packets[1] = st->packets[1]; sp->bytes[0] = st->bytes[0]; sp->bytes[1] = st->bytes[1]; sp->qid = htons(st->act.qid); sp->pqid = htons(st->act.pqid); sp->dnpipe = htons(st->act.dnpipe); sp->dnrpipe = htons(st->act.dnrpipe); sp->rtableid = htonl(st->act.rtableid); sp->min_ttl = st->act.min_ttl; sp->set_tos = st->act.set_tos; sp->max_mss = htons(st->act.max_mss); sp->rt = st->rt; if (st->rt_kif) strlcpy(sp->rt_ifname, st->rt_kif->pfik_name, sizeof(sp->rt_ifname)); sp->set_prio[0] = st->act.set_prio[0]; sp->set_prio[1] = st->act.set_prio[1]; } static void pf_tbladdr_copyout(struct pf_addr_wrap *aw) { struct pfr_ktable *kt; KASSERT(aw->type == PF_ADDR_TABLE, ("%s: type %u", __func__, aw->type)); kt = aw->p.tbl; if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL) kt = kt->pfrkt_root; aw->p.tbl = NULL; aw->p.tblcnt = (kt->pfrkt_flags & PFR_TFLAG_ACTIVE) ? kt->pfrkt_cnt : -1; } static int pf_add_status_counters(nvlist_t *nvl, const char *name, counter_u64_t *counters, size_t number, char **names) { nvlist_t *nvc; nvc = nvlist_create(0); if (nvc == NULL) return (ENOMEM); for (int i = 0; i < number; i++) { nvlist_append_number_array(nvc, "counters", counter_u64_fetch(counters[i])); nvlist_append_string_array(nvc, "names", names[i]); nvlist_append_number_array(nvc, "ids", i); } nvlist_add_nvlist(nvl, name, nvc); nvlist_destroy(nvc); return (0); } static int pf_getstatus(struct pfioc_nv *nv) { nvlist_t *nvl = NULL, *nvc = NULL; void *nvlpacked = NULL; int error; struct pf_status s; char *pf_reasons[PFRES_MAX+1] = PFRES_NAMES; char *pf_lcounter[KLCNT_MAX+1] = KLCNT_NAMES; char *pf_fcounter[FCNT_MAX+1] = FCNT_NAMES; PF_RULES_RLOCK_TRACKER; #define ERROUT(x) ERROUT_FUNCTION(errout, x) PF_RULES_RLOCK(); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_bool(nvl, "running", V_pf_status.running); nvlist_add_number(nvl, "since", V_pf_status.since); nvlist_add_number(nvl, "debug", V_pf_status.debug); nvlist_add_number(nvl, "hostid", V_pf_status.hostid); nvlist_add_number(nvl, "states", V_pf_status.states); nvlist_add_number(nvl, "src_nodes", V_pf_status.src_nodes); nvlist_add_number(nvl, "reass", V_pf_status.reass); nvlist_add_bool(nvl, "syncookies_active", V_pf_status.syncookies_active); nvlist_add_number(nvl, "halfopen_states", V_pf_status.states_halfopen); /* counters */ error = pf_add_status_counters(nvl, "counters", V_pf_status.counters, PFRES_MAX, pf_reasons); if (error != 0) ERROUT(error); /* lcounters */ error = pf_add_status_counters(nvl, "lcounters", V_pf_status.lcounters, KLCNT_MAX, pf_lcounter); if (error != 0) ERROUT(error); /* fcounters */ nvc = nvlist_create(0); if (nvc == NULL) ERROUT(ENOMEM); for (int i = 0; i < FCNT_MAX; i++) { nvlist_append_number_array(nvc, "counters", pf_counter_u64_fetch(&V_pf_status.fcounters[i])); nvlist_append_string_array(nvc, "names", pf_fcounter[i]); nvlist_append_number_array(nvc, "ids", i); } nvlist_add_nvlist(nvl, "fcounters", nvc); nvlist_destroy(nvc); nvc = NULL; /* scounters */ error = pf_add_status_counters(nvl, "scounters", V_pf_status.scounters, SCNT_MAX, pf_fcounter); if (error != 0) ERROUT(error); nvlist_add_string(nvl, "ifname", V_pf_status.ifname); nvlist_add_binary(nvl, "chksum", V_pf_status.pf_chksum, PF_MD5_DIGEST_LENGTH); pfi_update_status(V_pf_status.ifname, &s); /* pcounters / bcounters */ for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { for (int k = 0; k < 2; k++) { nvlist_append_number_array(nvl, "pcounters", s.pcounters[i][j][k]); } nvlist_append_number_array(nvl, "bcounters", s.bcounters[i][j]); } } nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); PF_RULES_RUNLOCK(); error = copyout(nvlpacked, nv->data, nv->len); goto done; #undef ERROUT errout: PF_RULES_RUNLOCK(); done: free(nvlpacked, M_NVLIST); nvlist_destroy(nvc); nvlist_destroy(nvl); return (error); } /* * XXX - Check for version mismatch!!! */ static void pf_clear_all_states(void) { struct epoch_tracker et; struct pf_kstate *s; u_int i; NET_EPOCH_ENTER(et); for (i = 0; i <= V_pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; relock: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { s->timeout = PFTM_PURGE; /* Don't send out individual delete messages. */ s->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(s); goto relock; } PF_HASHROW_UNLOCK(ih); } NET_EPOCH_EXIT(et); } static int pf_clear_tables(void) { struct pfioc_table io; int error; bzero(&io, sizeof(io)); io.pfrio_flags |= PFR_FLAG_ALLRSETS; error = pfr_clr_tables(&io.pfrio_table, &io.pfrio_ndel, io.pfrio_flags); return (error); } static void pf_clear_srcnodes(struct pf_ksrc_node *n) { struct pf_kstate *s; int i; for (i = 0; i <= V_pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (n == NULL || n == s->src_node) s->src_node = NULL; if (n == NULL || n == s->nat_src_node) s->nat_src_node = NULL; } PF_HASHROW_UNLOCK(ih); } if (n == NULL) { struct pf_srchash *sh; for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) { n->expire = 1; n->states = 0; } PF_HASHROW_UNLOCK(sh); } } else { /* XXX: hash slot should already be locked here. */ n->expire = 1; n->states = 0; } } static void pf_kill_srcnodes(struct pfioc_src_node_kill *psnk) { struct pf_ksrc_node_list kill; LIST_INIT(&kill); for (int i = 0; i <= V_pf_srchashmask; i++) { struct pf_srchash *sh = &V_pf_srchash[i]; struct pf_ksrc_node *sn, *tmp; PF_HASHROW_LOCK(sh); LIST_FOREACH_SAFE(sn, &sh->nodes, entry, tmp) if (PF_MATCHA(psnk->psnk_src.neg, &psnk->psnk_src.addr.v.a.addr, &psnk->psnk_src.addr.v.a.mask, &sn->addr, sn->af) && PF_MATCHA(psnk->psnk_dst.neg, &psnk->psnk_dst.addr.v.a.addr, &psnk->psnk_dst.addr.v.a.mask, &sn->raddr, sn->af)) { pf_unlink_src_node(sn); LIST_INSERT_HEAD(&kill, sn, entry); sn->expire = 1; } PF_HASHROW_UNLOCK(sh); } for (int i = 0; i <= V_pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; struct pf_kstate *s; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (s->src_node && s->src_node->expire == 1) s->src_node = NULL; if (s->nat_src_node && s->nat_src_node->expire == 1) s->nat_src_node = NULL; } PF_HASHROW_UNLOCK(ih); } psnk->psnk_killed = pf_free_src_nodes(&kill); } static int pf_keepcounters(struct pfioc_nv *nv) { nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_bool(nvl, "keep_counters")) ERROUT(EBADMSG); V_pf_status.keep_counters = nvlist_get_bool(nvl, "keep_counters"); on_error: nvlist_destroy(nvl); free(nvlpacked, M_NVLIST); return (error); } unsigned int pf_clear_states(const struct pf_kstate_kill *kill) { struct pf_state_key_cmp match_key; struct pf_kstate *s; struct pfi_kkif *kif; int idx; unsigned int killed = 0, dir; NET_EPOCH_ASSERT(); for (unsigned int i = 0; i <= V_pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; relock_DIOCCLRSTATES: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { /* For floating states look at the original kif. */ kif = s->kif == V_pfi_all ? s->orig_kif : s->kif; if (kill->psk_ifname[0] && strcmp(kill->psk_ifname, kif->pfik_name)) continue; if (kill->psk_kill_match) { bzero(&match_key, sizeof(match_key)); if (s->direction == PF_OUT) { dir = PF_IN; idx = PF_SK_STACK; } else { dir = PF_OUT; idx = PF_SK_WIRE; } match_key.af = s->key[idx]->af; match_key.proto = s->key[idx]->proto; PF_ACPY(&match_key.addr[0], &s->key[idx]->addr[1], match_key.af); match_key.port[0] = s->key[idx]->port[1]; PF_ACPY(&match_key.addr[1], &s->key[idx]->addr[0], match_key.af); match_key.port[1] = s->key[idx]->port[0]; } /* * Don't send out individual * delete messages. */ s->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(s); killed++; if (kill->psk_kill_match) killed += pf_kill_matching_state(&match_key, dir); goto relock_DIOCCLRSTATES; } PF_HASHROW_UNLOCK(ih); } if (V_pfsync_clear_states_ptr != NULL) V_pfsync_clear_states_ptr(V_pf_status.hostid, kill->psk_ifname); return (killed); } void pf_killstates(struct pf_kstate_kill *kill, unsigned int *killed) { struct pf_kstate *s; NET_EPOCH_ASSERT(); if (kill->psk_pfcmp.id) { if (kill->psk_pfcmp.creatorid == 0) kill->psk_pfcmp.creatorid = V_pf_status.hostid; if ((s = pf_find_state_byid(kill->psk_pfcmp.id, kill->psk_pfcmp.creatorid))) { pf_unlink_state(s); *killed = 1; } return; } for (unsigned int i = 0; i <= V_pf_hashmask; i++) *killed += pf_killstates_row(kill, &V_pf_idhash[i]); } static int pf_killstates_nv(struct pfioc_nv *nv) { struct pf_kstate_kill kill; struct epoch_tracker et; nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; unsigned int killed = 0; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); error = pf_nvstate_kill_to_kstate_kill(nvl, &kill); if (error) ERROUT(error); NET_EPOCH_ENTER(et); pf_killstates(&kill, &killed); NET_EPOCH_EXIT(et); free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "killed", killed); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); on_error: nvlist_destroy(nvl); free(nvlpacked, M_NVLIST); return (error); } static int pf_clearstates_nv(struct pfioc_nv *nv) { struct pf_kstate_kill kill; struct epoch_tracker et; nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; unsigned int killed; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); error = pf_nvstate_kill_to_kstate_kill(nvl, &kill); if (error) ERROUT(error); NET_EPOCH_ENTER(et); killed = pf_clear_states(&kill); NET_EPOCH_EXIT(et); free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "killed", killed); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT on_error: nvlist_destroy(nvl); free(nvlpacked, M_NVLIST); return (error); } static int pf_getstate(struct pfioc_nv *nv) { nvlist_t *nvl = NULL, *nvls; void *nvlpacked = NULL; struct pf_kstate *s = NULL; int error = 0; uint64_t id, creatorid; #define ERROUT(x) ERROUT_FUNCTION(errout, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); PFNV_CHK(pf_nvuint64(nvl, "id", &id)); PFNV_CHK(pf_nvuint64(nvl, "creatorid", &creatorid)); s = pf_find_state_byid(id, creatorid); if (s == NULL) ERROUT(ENOENT); free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvls = pf_state_to_nvstate(s); if (nvls == NULL) ERROUT(ENOMEM); nvlist_add_nvlist(nvl, "state", nvls); nvlist_destroy(nvls); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT errout: if (s != NULL) PF_STATE_UNLOCK(s); free(nvlpacked, M_NVLIST); nvlist_destroy(nvl); return (error); } /* * XXX - Check for version mismatch!!! */ /* * Duplicate pfctl -Fa operation to get rid of as much as we can. */ static int shutdown_pf(void) { int error = 0; u_int32_t t[5]; char nn = '\0'; struct pf_kanchor *anchor; struct pf_keth_anchor *eth_anchor; int rs_num; do { /* Unlink rules of all user defined anchors */ RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors) { /* Wildcard based anchors may not have a respective * explicit anchor rule or they may be left empty * without rules. It leads to anchor.refcnt=0, and the * rest of the logic does not expect it. */ if (anchor->refcnt == 0) anchor->refcnt = 1; for (rs_num = 0; rs_num < PF_RULESET_MAX; ++rs_num) { if ((error = pf_begin_rules(&t[rs_num], rs_num, anchor->path)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: " "anchor.path=%s rs_num=%d\n", anchor->path, rs_num)); goto error; /* XXX: rollback? */ } } for (rs_num = 0; rs_num < PF_RULESET_MAX; ++rs_num) { error = pf_commit_rules(t[rs_num], rs_num, anchor->path); MPASS(error == 0); } } /* Unlink rules of all user defined ether anchors */ RB_FOREACH(eth_anchor, pf_keth_anchor_global, &V_pf_keth_anchors) { /* Wildcard based anchors may not have a respective * explicit anchor rule or they may be left empty * without rules. It leads to anchor.refcnt=0, and the * rest of the logic does not expect it. */ if (eth_anchor->refcnt == 0) eth_anchor->refcnt = 1; if ((error = pf_begin_eth(&t[0], eth_anchor->path)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: eth " "anchor.path=%s\n", eth_anchor->path)); goto error; } error = pf_commit_eth(t[0], eth_anchor->path); MPASS(error == 0); } if ((error = pf_begin_rules(&t[0], PF_RULESET_SCRUB, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: SCRUB\n")); break; } if ((error = pf_begin_rules(&t[1], PF_RULESET_FILTER, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: FILTER\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[2], PF_RULESET_NAT, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: NAT\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[3], PF_RULESET_BINAT, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: BINAT\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[4], PF_RULESET_RDR, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: RDR\n")); break; /* XXX: rollback? */ } error = pf_commit_rules(t[0], PF_RULESET_SCRUB, &nn); MPASS(error == 0); error = pf_commit_rules(t[1], PF_RULESET_FILTER, &nn); MPASS(error == 0); error = pf_commit_rules(t[2], PF_RULESET_NAT, &nn); MPASS(error == 0); error = pf_commit_rules(t[3], PF_RULESET_BINAT, &nn); MPASS(error == 0); error = pf_commit_rules(t[4], PF_RULESET_RDR, &nn); MPASS(error == 0); if ((error = pf_clear_tables()) != 0) break; if ((error = pf_begin_eth(&t[0], &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: eth\n")); break; } error = pf_commit_eth(t[0], &nn); MPASS(error == 0); #ifdef ALTQ if ((error = pf_begin_altq(&t[0])) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: ALTQ\n")); break; } pf_commit_altq(t[0]); #endif pf_clear_all_states(); pf_clear_srcnodes(NULL); /* status does not use malloced mem so no need to cleanup */ /* fingerprints and interfaces have their own cleanup code */ } while(0); error: return (error); } static pfil_return_t pf_check_return(int chk, struct mbuf **m) { switch (chk) { case PF_PASS: if (*m == NULL) return (PFIL_CONSUMED); else return (PFIL_PASS); break; default: if (*m != NULL) { m_freem(*m); *m = NULL; } return (PFIL_DROPPED); } } static pfil_return_t pf_eth_check_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; chk = pf_test_eth(PF_IN, flags, ifp, m, inp); return (pf_check_return(chk, m)); } static pfil_return_t pf_eth_check_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; chk = pf_test_eth(PF_OUT, flags, ifp, m, inp); return (pf_check_return(chk, m)); } #ifdef INET static pfil_return_t pf_check_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; chk = pf_test(PF_IN, flags, ifp, m, inp, NULL); return (pf_check_return(chk, m)); } static pfil_return_t pf_check_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; chk = pf_test(PF_OUT, flags, ifp, m, inp, NULL); return (pf_check_return(chk, m)); } #endif #ifdef INET6 static pfil_return_t pf_check6_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; /* * In case of loopback traffic IPv6 uses the real interface in * order to support scoped addresses. In order to support stateful * filtering we have change this to lo0 as it is the case in IPv4. */ CURVNET_SET(ifp->if_vnet); chk = pf_test6(PF_IN, flags, (*m)->m_flags & M_LOOP ? V_loif : ifp, m, inp, NULL); CURVNET_RESTORE(); return (pf_check_return(chk, m)); } static pfil_return_t pf_check6_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; CURVNET_SET(ifp->if_vnet); chk = pf_test6(PF_OUT, flags, ifp, m, inp, NULL); CURVNET_RESTORE(); return (pf_check_return(chk, m)); } #endif /* INET6 */ VNET_DEFINE_STATIC(pfil_hook_t, pf_eth_in_hook); VNET_DEFINE_STATIC(pfil_hook_t, pf_eth_out_hook); #define V_pf_eth_in_hook VNET(pf_eth_in_hook) #define V_pf_eth_out_hook VNET(pf_eth_out_hook) #ifdef INET VNET_DEFINE_STATIC(pfil_hook_t, pf_ip4_in_hook); VNET_DEFINE_STATIC(pfil_hook_t, pf_ip4_out_hook); #define V_pf_ip4_in_hook VNET(pf_ip4_in_hook) #define V_pf_ip4_out_hook VNET(pf_ip4_out_hook) #endif #ifdef INET6 VNET_DEFINE_STATIC(pfil_hook_t, pf_ip6_in_hook); VNET_DEFINE_STATIC(pfil_hook_t, pf_ip6_out_hook); #define V_pf_ip6_in_hook VNET(pf_ip6_in_hook) #define V_pf_ip6_out_hook VNET(pf_ip6_out_hook) #endif static void hook_pf_eth(void) { struct pfil_hook_args pha = { .pa_version = PFIL_VERSION, .pa_modname = "pf", .pa_type = PFIL_TYPE_ETHERNET, }; struct pfil_link_args pla = { .pa_version = PFIL_VERSION, }; int ret __diagused; if (atomic_load_bool(&V_pf_pfil_eth_hooked)) return; pha.pa_mbuf_chk = pf_eth_check_in; pha.pa_flags = PFIL_IN; pha.pa_rulname = "eth-in"; V_pf_eth_in_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_IN | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_link_pfil_head; pla.pa_hook = V_pf_eth_in_hook; ret = pfil_link(&pla); MPASS(ret == 0); pha.pa_mbuf_chk = pf_eth_check_out; pha.pa_flags = PFIL_OUT; pha.pa_rulname = "eth-out"; V_pf_eth_out_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_link_pfil_head; pla.pa_hook = V_pf_eth_out_hook; ret = pfil_link(&pla); MPASS(ret == 0); atomic_store_bool(&V_pf_pfil_eth_hooked, true); } static void hook_pf(void) { struct pfil_hook_args pha = { .pa_version = PFIL_VERSION, .pa_modname = "pf", }; struct pfil_link_args pla = { .pa_version = PFIL_VERSION, }; int ret __diagused; if (atomic_load_bool(&V_pf_pfil_hooked)) return; #ifdef INET pha.pa_type = PFIL_TYPE_IP4; pha.pa_mbuf_chk = pf_check_in; pha.pa_flags = PFIL_IN; pha.pa_rulname = "default-in"; V_pf_ip4_in_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_IN | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet_pfil_head; pla.pa_hook = V_pf_ip4_in_hook; ret = pfil_link(&pla); MPASS(ret == 0); pha.pa_mbuf_chk = pf_check_out; pha.pa_flags = PFIL_OUT; pha.pa_rulname = "default-out"; V_pf_ip4_out_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet_pfil_head; pla.pa_hook = V_pf_ip4_out_hook; ret = pfil_link(&pla); MPASS(ret == 0); if (V_pf_filter_local) { pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet_local_pfil_head; pla.pa_hook = V_pf_ip4_out_hook; ret = pfil_link(&pla); MPASS(ret == 0); } #endif #ifdef INET6 pha.pa_type = PFIL_TYPE_IP6; pha.pa_mbuf_chk = pf_check6_in; pha.pa_flags = PFIL_IN; pha.pa_rulname = "default-in6"; V_pf_ip6_in_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_IN | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet6_pfil_head; pla.pa_hook = V_pf_ip6_in_hook; ret = pfil_link(&pla); MPASS(ret == 0); pha.pa_mbuf_chk = pf_check6_out; pha.pa_rulname = "default-out6"; pha.pa_flags = PFIL_OUT; V_pf_ip6_out_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet6_pfil_head; pla.pa_hook = V_pf_ip6_out_hook; ret = pfil_link(&pla); MPASS(ret == 0); if (V_pf_filter_local) { pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet6_local_pfil_head; pla.pa_hook = V_pf_ip6_out_hook; ret = pfil_link(&pla); MPASS(ret == 0); } #endif atomic_store_bool(&V_pf_pfil_hooked, true); } static void dehook_pf_eth(void) { if (!atomic_load_bool(&V_pf_pfil_eth_hooked)) return; pfil_remove_hook(V_pf_eth_in_hook); pfil_remove_hook(V_pf_eth_out_hook); atomic_store_bool(&V_pf_pfil_eth_hooked, false); } static void dehook_pf(void) { if (!atomic_load_bool(&V_pf_pfil_hooked)) return; #ifdef INET pfil_remove_hook(V_pf_ip4_in_hook); pfil_remove_hook(V_pf_ip4_out_hook); #endif #ifdef INET6 pfil_remove_hook(V_pf_ip6_in_hook); pfil_remove_hook(V_pf_ip6_out_hook); #endif atomic_store_bool(&V_pf_pfil_hooked, false); } static void pf_load_vnet(void) { V_pf_tag_z = uma_zcreate("pf tags", sizeof(struct pf_tagname), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); rm_init_flags(&V_pf_rules_lock, "pf rulesets", RM_RECURSE); sx_init(&V_pf_ioctl_lock, "pf ioctl"); pf_init_tagset(&V_pf_tags, &pf_rule_tag_hashsize, PF_RULE_TAG_HASH_SIZE_DEFAULT); #ifdef ALTQ pf_init_tagset(&V_pf_qids, &pf_queue_tag_hashsize, PF_QUEUE_TAG_HASH_SIZE_DEFAULT); #endif V_pf_keth = &V_pf_main_keth_anchor.ruleset; pfattach_vnet(); V_pf_vnet_active = 1; } static int pf_load(void) { int error; sx_init(&pf_end_lock, "pf end thread"); pf_mtag_initialize(); pf_dev = make_dev(&pf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, PF_NAME); if (pf_dev == NULL) return (ENOMEM); pf_end_threads = 0; error = kproc_create(pf_purge_thread, NULL, &pf_purge_proc, 0, 0, "pf purge"); if (error != 0) return (error); pfi_initialize(); return (0); } static void pf_unload_vnet(void) { int ret __diagused; V_pf_vnet_active = 0; V_pf_status.running = 0; dehook_pf(); dehook_pf_eth(); PF_RULES_WLOCK(); pf_syncookies_cleanup(); shutdown_pf(); PF_RULES_WUNLOCK(); /* Make sure we've cleaned up ethernet rules before we continue. */ NET_EPOCH_DRAIN_CALLBACKS(); ret = swi_remove(V_pf_swi_cookie); MPASS(ret == 0); ret = intr_event_destroy(V_pf_swi_ie); MPASS(ret == 0); pf_unload_vnet_purge(); pf_normalize_cleanup(); PF_RULES_WLOCK(); pfi_cleanup_vnet(); PF_RULES_WUNLOCK(); pfr_cleanup(); pf_osfp_flush(); pf_cleanup(); if (IS_DEFAULT_VNET(curvnet)) pf_mtag_cleanup(); pf_cleanup_tagset(&V_pf_tags); #ifdef ALTQ pf_cleanup_tagset(&V_pf_qids); #endif uma_zdestroy(V_pf_tag_z); #ifdef PF_WANT_32_TO_64_COUNTER PF_RULES_WLOCK(); LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); MPASS(LIST_EMPTY(&V_pf_allkiflist)); MPASS(V_pf_allkifcount == 0); LIST_REMOVE(&V_pf_default_rule, allrulelist); V_pf_allrulecount--; LIST_REMOVE(V_pf_rulemarker, allrulelist); MPASS(LIST_EMPTY(&V_pf_allrulelist)); MPASS(V_pf_allrulecount == 0); PF_RULES_WUNLOCK(); free(V_pf_kifmarker, PFI_MTYPE); free(V_pf_rulemarker, M_PFRULE); #endif /* Free counters last as we updated them during shutdown. */ pf_counter_u64_deinit(&V_pf_default_rule.evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_deinit(&V_pf_default_rule.packets[i]); pf_counter_u64_deinit(&V_pf_default_rule.bytes[i]); } counter_u64_free(V_pf_default_rule.states_cur); counter_u64_free(V_pf_default_rule.states_tot); counter_u64_free(V_pf_default_rule.src_nodes); uma_zfree_pcpu(pf_timestamp_pcpu_zone, V_pf_default_rule.timestamp); for (int i = 0; i < PFRES_MAX; i++) counter_u64_free(V_pf_status.counters[i]); for (int i = 0; i < KLCNT_MAX; i++) counter_u64_free(V_pf_status.lcounters[i]); for (int i = 0; i < FCNT_MAX; i++) pf_counter_u64_deinit(&V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) counter_u64_free(V_pf_status.scounters[i]); rm_destroy(&V_pf_rules_lock); sx_destroy(&V_pf_ioctl_lock); } static void pf_unload(void) { sx_xlock(&pf_end_lock); pf_end_threads = 1; while (pf_end_threads < 2) { wakeup_one(pf_purge_thread); sx_sleep(pf_purge_proc, &pf_end_lock, 0, "pftmo", 0); } sx_xunlock(&pf_end_lock); pf_nl_unregister(); if (pf_dev != NULL) destroy_dev(pf_dev); pfi_cleanup(); sx_destroy(&pf_end_lock); } static void vnet_pf_init(void *unused __unused) { pf_load_vnet(); } VNET_SYSINIT(vnet_pf_init, SI_SUB_PROTO_FIREWALL, SI_ORDER_THIRD, vnet_pf_init, NULL); static void vnet_pf_uninit(const void *unused __unused) { pf_unload_vnet(); } SYSUNINIT(pf_unload, SI_SUB_PROTO_FIREWALL, SI_ORDER_SECOND, pf_unload, NULL); VNET_SYSUNINIT(vnet_pf_uninit, SI_SUB_PROTO_FIREWALL, SI_ORDER_THIRD, vnet_pf_uninit, NULL); static int pf_modevent(module_t mod, int type, void *data) { int error = 0; switch(type) { case MOD_LOAD: error = pf_load(); pf_nl_register(); break; case MOD_UNLOAD: /* Handled in SYSUNINIT(pf_unload) to ensure it's done after * the vnet_pf_uninit()s */ break; default: error = EINVAL; break; } return (error); } static moduledata_t pf_mod = { "pf", pf_modevent, 0 }; DECLARE_MODULE(pf, pf_mod, SI_SUB_PROTO_FIREWALL, SI_ORDER_SECOND); MODULE_DEPEND(pf, netlink, 1, 1, 1); MODULE_VERSION(pf, PF_MODVER); diff --git a/sys/netpfil/pf/pf_nl.c b/sys/netpfil/pf/pf_nl.c index 6c98a50d8e06..79aa76f625e3 100644 --- a/sys/netpfil/pf/pf_nl.c +++ b/sys/netpfil/pf/pf_nl.c @@ -1,1723 +1,1779 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2023 Alexander V. Chernikov * Copyright (c) 2023 Rubicon Communications, LLC (Netgate) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG_MOD_NAME nl_pf #define DEBUG_MAX_LEVEL LOG_DEBUG3 #include _DECLARE_DEBUG(LOG_DEBUG); struct nl_parsed_state { uint8_t version; uint32_t id; uint32_t creatorid; char ifname[IFNAMSIZ]; uint16_t proto; sa_family_t af; struct pf_addr addr; struct pf_addr mask; }; #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct nl_parsed_state, _field) static const struct nlattr_parser nla_p_state[] = { { .type = PF_ST_ID, .off = _OUT(id), .cb = nlattr_get_uint32 }, { .type = PF_ST_CREATORID, .off = _OUT(creatorid), .cb = nlattr_get_uint32 }, { .type = PF_ST_IFNAME, .arg = (const void *)IFNAMSIZ, .off = _OUT(ifname), .cb = nlattr_get_chara }, { .type = PF_ST_AF, .off = _OUT(proto), .cb = nlattr_get_uint8 }, { .type = PF_ST_PROTO, .off = _OUT(proto), .cb = nlattr_get_uint16 }, { .type = PF_ST_FILTER_ADDR, .off = _OUT(addr), .cb = nlattr_get_in6_addr }, { .type = PF_ST_FILTER_MASK, .off = _OUT(mask), .cb = nlattr_get_in6_addr }, }; static const struct nlfield_parser nlf_p_generic[] = { { .off_in = _IN(version), .off_out = _OUT(version), .cb = nlf_get_u8 }, }; #undef _IN #undef _OUT NL_DECLARE_PARSER(state_parser, struct genlmsghdr, nlf_p_generic, nla_p_state); static void dump_addr(struct nl_writer *nw, int attr, const struct pf_addr *addr, int af) { switch (af) { case AF_INET: nlattr_add(nw, attr, 4, &addr->v4); break; case AF_INET6: nlattr_add(nw, attr, 16, &addr->v6); break; }; } static bool dump_state_peer(struct nl_writer *nw, int attr, const struct pf_state_peer *peer) { int off = nlattr_add_nested(nw, attr); if (off == 0) return (false); nlattr_add_u32(nw, PF_STP_SEQLO, peer->seqlo); nlattr_add_u32(nw, PF_STP_SEQHI, peer->seqhi); nlattr_add_u32(nw, PF_STP_SEQDIFF, peer->seqdiff); nlattr_add_u16(nw, PF_STP_MAX_WIN, peer->max_win); nlattr_add_u16(nw, PF_STP_MSS, peer->mss); nlattr_add_u8(nw, PF_STP_STATE, peer->state); nlattr_add_u8(nw, PF_STP_WSCALE, peer->wscale); if (peer->scrub != NULL) { struct pf_state_scrub *sc = peer->scrub; uint16_t pfss_flags = sc->pfss_flags & PFSS_TIMESTAMP; nlattr_add_u16(nw, PF_STP_PFSS_FLAGS, pfss_flags); nlattr_add_u32(nw, PF_STP_PFSS_TS_MOD, sc->pfss_ts_mod); nlattr_add_u8(nw, PF_STP_PFSS_TTL, sc->pfss_ttl); nlattr_add_u8(nw, PF_STP_SCRUB_FLAG, PFSYNC_SCRUB_FLAG_VALID); } nlattr_set_len(nw, off); return (true); } static bool dump_state_key(struct nl_writer *nw, int attr, const struct pf_state_key *key) { int off = nlattr_add_nested(nw, attr); if (off == 0) return (false); dump_addr(nw, PF_STK_ADDR0, &key->addr[0], key->af); dump_addr(nw, PF_STK_ADDR1, &key->addr[1], key->af); nlattr_add_u16(nw, PF_STK_PORT0, key->port[0]); nlattr_add_u16(nw, PF_STK_PORT1, key->port[1]); nlattr_set_len(nw, off); return (true); } static int dump_state(struct nlpcb *nlp, const struct nlmsghdr *hdr, struct pf_kstate *s, struct nl_pstate *npt) { struct nl_writer *nw = npt->nw; int error = 0; int af; struct pf_state_key *key; PF_STATE_LOCK_ASSERT(s); if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) goto enomem; struct genlmsghdr *ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); ghdr_new->cmd = PFNL_CMD_GETSTATES; ghdr_new->version = 0; ghdr_new->reserved = 0; nlattr_add_u64(nw, PF_ST_VERSION, PF_STATE_VERSION); key = s->key[PF_SK_WIRE]; if (!dump_state_key(nw, PF_ST_KEY_WIRE, key)) goto enomem; key = s->key[PF_SK_STACK]; if (!dump_state_key(nw, PF_ST_KEY_STACK, key)) goto enomem; af = s->key[PF_SK_WIRE]->af; nlattr_add_u8(nw, PF_ST_PROTO, s->key[PF_SK_WIRE]->proto); nlattr_add_u8(nw, PF_ST_AF, af); nlattr_add_string(nw, PF_ST_IFNAME, s->kif->pfik_name); nlattr_add_string(nw, PF_ST_ORIG_IFNAME, s->orig_kif->pfik_name); dump_addr(nw, PF_ST_RT_ADDR, &s->rt_addr, af); nlattr_add_u32(nw, PF_ST_CREATION, time_uptime - (s->creation / 1000)); uint32_t expire = pf_state_expires(s); if (expire > time_uptime) expire = expire - time_uptime; nlattr_add_u32(nw, PF_ST_EXPIRE, expire); nlattr_add_u8(nw, PF_ST_DIRECTION, s->direction); nlattr_add_u8(nw, PF_ST_LOG, s->act.log); nlattr_add_u8(nw, PF_ST_TIMEOUT, s->timeout); nlattr_add_u16(nw, PF_ST_STATE_FLAGS, s->state_flags); uint8_t sync_flags = 0; if (s->src_node) sync_flags |= PFSYNC_FLAG_SRCNODE; if (s->nat_src_node) sync_flags |= PFSYNC_FLAG_NATSRCNODE; nlattr_add_u8(nw, PF_ST_SYNC_FLAGS, sync_flags); nlattr_add_u64(nw, PF_ST_ID, s->id); nlattr_add_u32(nw, PF_ST_CREATORID, htonl(s->creatorid)); nlattr_add_u32(nw, PF_ST_RULE, s->rule.ptr ? s->rule.ptr->nr : -1); nlattr_add_u32(nw, PF_ST_ANCHOR, s->anchor.ptr ? s->anchor.ptr->nr : -1); nlattr_add_u32(nw, PF_ST_NAT_RULE, s->nat_rule.ptr ? s->nat_rule.ptr->nr : -1); nlattr_add_u64(nw, PF_ST_PACKETS0, s->packets[0]); nlattr_add_u64(nw, PF_ST_PACKETS1, s->packets[1]); nlattr_add_u64(nw, PF_ST_BYTES0, s->bytes[0]); nlattr_add_u64(nw, PF_ST_BYTES1, s->bytes[1]); nlattr_add_u32(nw, PF_ST_RTABLEID, s->act.rtableid); nlattr_add_u8(nw, PF_ST_MIN_TTL, s->act.min_ttl); nlattr_add_u16(nw, PF_ST_MAX_MSS, s->act.max_mss); nlattr_add_u16(nw, PF_ST_DNPIPE, s->act.dnpipe); nlattr_add_u16(nw, PF_ST_DNRPIPE, s->act.dnrpipe); nlattr_add_u8(nw, PF_ST_RT, s->rt); if (s->rt_kif != NULL) nlattr_add_string(nw, PF_ST_RT_IFNAME, s->rt_kif->pfik_name); if (!dump_state_peer(nw, PF_ST_PEER_SRC, &s->src)) goto enomem; if (!dump_state_peer(nw, PF_ST_PEER_DST, &s->dst)) goto enomem; if (nlmsg_end(nw)) return (0); enomem: error = ENOMEM; nlmsg_abort(nw); return (error); } static int handle_dumpstates(struct nlpcb *nlp, struct nl_parsed_state *attrs, struct nlmsghdr *hdr, struct nl_pstate *npt) { int error = 0; hdr->nlmsg_flags |= NLM_F_MULTI; for (int i = 0; i <= V_pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; struct pf_kstate *s; if (LIST_EMPTY(&ih->states)) continue; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { sa_family_t af = s->key[PF_SK_WIRE]->af; if (s->timeout == PFTM_UNLINKED) continue; /* Filter */ if (attrs->creatorid != 0 && s->creatorid != attrs->creatorid) continue; if (attrs->ifname[0] != 0 && strncmp(attrs->ifname, s->kif->pfik_name, IFNAMSIZ) != 0) continue; if (attrs->proto != 0 && s->key[PF_SK_WIRE]->proto != attrs->proto) continue; if (attrs->af != 0 && af != attrs->af) continue; if (pf_match_addr(1, &s->key[PF_SK_WIRE]->addr[0], &attrs->mask, &attrs->addr, af) && pf_match_addr(1, &s->key[PF_SK_WIRE]->addr[1], &attrs->mask, &attrs->addr, af) && pf_match_addr(1, &s->key[PF_SK_STACK]->addr[0], &attrs->mask, &attrs->addr, af) && pf_match_addr(1, &s->key[PF_SK_STACK]->addr[1], &attrs->mask, &attrs->addr, af)) continue; error = dump_state(nlp, hdr, s, npt); if (error != 0) break; } PF_HASHROW_UNLOCK(ih); } if (!nlmsg_end_dump(npt->nw, error, hdr)) { NL_LOG(LOG_DEBUG, "Unable to finalize the dump"); return (ENOMEM); } return (error); } static int handle_getstate(struct nlpcb *nlp, struct nl_parsed_state *attrs, struct nlmsghdr *hdr, struct nl_pstate *npt) { struct pf_kstate *s; int ret; s = pf_find_state_byid(attrs->id, attrs->creatorid); if (s == NULL) return (ENOENT); ret = dump_state(nlp, hdr, s, npt); PF_STATE_UNLOCK(s); return (ret); } static int dump_creatorid(struct nlpcb *nlp, const struct nlmsghdr *hdr, uint32_t creator, struct nl_pstate *npt) { struct nl_writer *nw = npt->nw; if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) goto enomem; struct genlmsghdr *ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); ghdr_new->cmd = PFNL_CMD_GETCREATORS; ghdr_new->version = 0; ghdr_new->reserved = 0; nlattr_add_u32(nw, PF_ST_CREATORID, htonl(creator)); if (nlmsg_end(nw)) return (0); enomem: nlmsg_abort(nw); return (ENOMEM); } static int pf_handle_getstates(struct nlmsghdr *hdr, struct nl_pstate *npt) { int error; struct nl_parsed_state attrs = {}; error = nl_parse_nlmsg(hdr, &state_parser, npt, &attrs); if (error != 0) return (error); if (attrs.id != 0) error = handle_getstate(npt->nlp, &attrs, hdr, npt); else error = handle_dumpstates(npt->nlp, &attrs, hdr, npt); return (error); } static int pf_handle_getcreators(struct nlmsghdr *hdr, struct nl_pstate *npt) { uint32_t creators[16]; int error = 0; bzero(creators, sizeof(creators)); for (int i = 0; i < V_pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; struct pf_kstate *s; if (LIST_EMPTY(&ih->states)) continue; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { int j; if (s->timeout == PFTM_UNLINKED) continue; for (j = 0; j < nitems(creators); j++) { if (creators[j] == s->creatorid) break; if (creators[j] == 0) { creators[j] = s->creatorid; break; } } if (j == nitems(creators)) printf("Warning: too many creators!\n"); } PF_HASHROW_UNLOCK(ih); } hdr->nlmsg_flags |= NLM_F_MULTI; for (int i = 0; i < nitems(creators); i++) { if (creators[i] == 0) break; error = dump_creatorid(npt->nlp, hdr, creators[i], npt); } if (!nlmsg_end_dump(npt->nw, error, hdr)) { NL_LOG(LOG_DEBUG, "Unable to finalize the dump"); return (ENOMEM); } return (error); } static int pf_handle_start(struct nlmsghdr *hdr __unused, struct nl_pstate *npt __unused) { return (pf_start()); } static int pf_handle_stop(struct nlmsghdr *hdr __unused, struct nl_pstate *npt __unused) { return (pf_stop()); } #define _OUT(_field) offsetof(struct pf_addr_wrap, _field) static const struct nlattr_parser nla_p_addr_wrap[] = { { .type = PF_AT_ADDR, .off = _OUT(v.a.addr), .cb = nlattr_get_in6_addr }, { .type = PF_AT_MASK, .off = _OUT(v.a.mask), .cb = nlattr_get_in6_addr }, { .type = PF_AT_IFNAME, .off = _OUT(v.ifname), .arg = (void *)IFNAMSIZ,.cb = nlattr_get_chara }, { .type = PF_AT_TABLENAME, .off = _OUT(v.tblname), .arg = (void *)PF_TABLE_NAME_SIZE, .cb = nlattr_get_chara }, { .type = PF_AT_TYPE, .off = _OUT(type), .cb = nlattr_get_uint8 }, { .type = PF_AT_IFLAGS, .off = _OUT(iflags), .cb = nlattr_get_uint8 }, }; NL_DECLARE_ATTR_PARSER(addr_wrap_parser, nla_p_addr_wrap); #undef _OUT static bool nlattr_add_addr_wrap(struct nl_writer *nw, int attrtype, struct pf_addr_wrap *a) { int off = nlattr_add_nested(nw, attrtype); int num; nlattr_add_in6_addr(nw, PF_AT_ADDR, &a->v.a.addr.v6); nlattr_add_in6_addr(nw, PF_AT_MASK, &a->v.a.mask.v6); nlattr_add_u8(nw, PF_AT_TYPE, a->type); nlattr_add_u8(nw, PF_AT_IFLAGS, a->iflags); if (a->type == PF_ADDR_DYNIFTL) { nlattr_add_string(nw, PF_AT_IFNAME, a->v.ifname); num = 0; if (a->p.dyn != NULL) num = a->p.dyn->pfid_acnt4 + a->p.dyn->pfid_acnt6; nlattr_add_u32(nw, PF_AT_DYNCNT, num); } else if (a->type == PF_ADDR_TABLE) { struct pfr_ktable *kt; nlattr_add_string(nw, PF_AT_TABLENAME, a->v.tblname); num = -1; kt = a->p.tbl; if ((kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL) kt = kt->pfrkt_root; if (kt->pfrkt_flags & PFR_TFLAG_ACTIVE) num = kt->pfrkt_cnt; nlattr_add_u32(nw, PF_AT_TBLCNT, num); } nlattr_set_len(nw, off); return (true); } #define _OUT(_field) offsetof(struct pf_rule_addr, _field) static const struct nlattr_parser nla_p_ruleaddr[] = { { .type = PF_RAT_ADDR, .off = _OUT(addr), .arg = &addr_wrap_parser, .cb = nlattr_get_nested }, { .type = PF_RAT_SRC_PORT, .off = _OUT(port[0]), .cb = nlattr_get_uint16 }, { .type = PF_RAT_DST_PORT, .off = _OUT(port[1]), .cb = nlattr_get_uint16 }, { .type = PF_RAT_NEG, .off = _OUT(neg), .cb = nlattr_get_uint8 }, { .type = PF_RAT_OP, .off = _OUT(port_op), .cb = nlattr_get_uint8 }, }; NL_DECLARE_ATTR_PARSER(rule_addr_parser, nla_p_ruleaddr); #undef _OUT static bool nlattr_add_rule_addr(struct nl_writer *nw, int attrtype, struct pf_rule_addr *r) { int off = nlattr_add_nested(nw, attrtype); nlattr_add_addr_wrap(nw, PF_RAT_ADDR, &r->addr); nlattr_add_u16(nw, PF_RAT_SRC_PORT, r->port[0]); nlattr_add_u16(nw, PF_RAT_DST_PORT, r->port[1]); nlattr_add_u8(nw, PF_RAT_NEG, r->neg); nlattr_add_u8(nw, PF_RAT_OP, r->port_op); nlattr_set_len(nw, off); return (true); } #define _OUT(_field) offsetof(struct pf_mape_portset, _field) static const struct nlattr_parser nla_p_mape_portset[] = { { .type = PF_MET_OFFSET, .off = _OUT(offset), .cb = nlattr_get_uint8 }, { .type = PF_MET_PSID_LEN, .off = _OUT(psidlen), .cb = nlattr_get_uint8 }, {. type = PF_MET_PSID, .off = _OUT(psid), .cb = nlattr_get_uint16 }, }; NL_DECLARE_ATTR_PARSER(mape_portset_parser, nla_p_mape_portset); #undef _OUT static bool nlattr_add_mape_portset(struct nl_writer *nw, int attrtype, const struct pf_mape_portset *m) { int off = nlattr_add_nested(nw, attrtype); nlattr_add_u8(nw, PF_MET_OFFSET, m->offset); nlattr_add_u8(nw, PF_MET_PSID_LEN, m->psidlen); nlattr_add_u16(nw, PF_MET_PSID, m->psid); nlattr_set_len(nw, off); return (true); } struct nl_parsed_labels { char labels[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; uint32_t i; }; static int nlattr_get_pf_rule_labels(struct nlattr *nla, struct nl_pstate *npt, const void *arg, void *target) { struct nl_parsed_labels *l = (struct nl_parsed_labels *)target; int ret; if (l->i >= PF_RULE_MAX_LABEL_COUNT) return (E2BIG); ret = nlattr_get_chara(nla, npt, (void *)PF_RULE_LABEL_SIZE, l->labels[l->i]); if (ret == 0) l->i++; return (ret); } #define _OUT(_field) offsetof(struct nl_parsed_labels, _field) static const struct nlattr_parser nla_p_labels[] = { { .type = PF_LT_LABEL, .off = 0, .cb = nlattr_get_pf_rule_labels }, }; NL_DECLARE_ATTR_PARSER(rule_labels_parser, nla_p_labels); #undef _OUT static int nlattr_get_nested_pf_rule_labels(struct nlattr *nla, struct nl_pstate *npt, const void *arg, void *target) { struct nl_parsed_labels parsed_labels = { }; int error; /* Assumes target points to the beginning of the structure */ error = nl_parse_header(NLA_DATA(nla), NLA_DATA_LEN(nla), &rule_labels_parser, npt, &parsed_labels); if (error != 0) return (error); memcpy(target, parsed_labels.labels, sizeof(parsed_labels.labels)); return (0); } static bool nlattr_add_labels(struct nl_writer *nw, int attrtype, const struct pf_krule *r) { int off = nlattr_add_nested(nw, attrtype); int i = 0; while (r->label[i][0] != 0 && i < PF_RULE_MAX_LABEL_COUNT) { nlattr_add_string(nw, PF_LT_LABEL, r->label[i]); i++; } nlattr_set_len(nw, off); return (true); } #define _OUT(_field) offsetof(struct pf_kpool, _field) static const struct nlattr_parser nla_p_pool[] = { { .type = PF_PT_KEY, .off = _OUT(key), .arg = (void *)sizeof(struct pf_poolhashkey), .cb = nlattr_get_bytes }, { .type = PF_PT_COUNTER, .off = _OUT(counter), .cb = nlattr_get_in6_addr }, { .type = PF_PT_TBLIDX, .off = _OUT(tblidx), .cb = nlattr_get_uint32 }, { .type = PF_PT_PROXY_SRC_PORT, .off = _OUT(proxy_port[0]), .cb = nlattr_get_uint16 }, { .type = PF_PT_PROXY_DST_PORT, .off = _OUT(proxy_port[1]), .cb = nlattr_get_uint16 }, { .type = PF_PT_OPTS, .off = _OUT(opts), .cb = nlattr_get_uint8 }, { .type = PF_PT_MAPE, .off = _OUT(mape), .arg = &mape_portset_parser, .cb = nlattr_get_nested }, }; NL_DECLARE_ATTR_PARSER(pool_parser, nla_p_pool); #undef _OUT static bool nlattr_add_pool(struct nl_writer *nw, int attrtype, const struct pf_kpool *pool) { int off = nlattr_add_nested(nw, attrtype); nlattr_add(nw, PF_PT_KEY, sizeof(struct pf_poolhashkey), &pool->key); nlattr_add_in6_addr(nw, PF_PT_COUNTER, (const struct in6_addr *)&pool->counter); nlattr_add_u32(nw, PF_PT_TBLIDX, pool->tblidx); nlattr_add_u16(nw, PF_PT_PROXY_SRC_PORT, pool->proxy_port[0]); nlattr_add_u16(nw, PF_PT_PROXY_DST_PORT, pool->proxy_port[1]); nlattr_add_u8(nw, PF_PT_OPTS, pool->opts); nlattr_add_mape_portset(nw, PF_PT_MAPE, &pool->mape); nlattr_set_len(nw, off); return (true); } #define _OUT(_field) offsetof(struct pf_rule_uid, _field) static const struct nlattr_parser nla_p_rule_uid[] = { { .type = PF_RUT_UID_LOW, .off = _OUT(uid[0]), .cb = nlattr_get_uint32 }, { .type = PF_RUT_UID_HIGH, .off = _OUT(uid[1]), .cb = nlattr_get_uint32 }, { .type = PF_RUT_OP, .off = _OUT(op), .cb = nlattr_get_uint8 }, }; NL_DECLARE_ATTR_PARSER(rule_uid_parser, nla_p_rule_uid); #undef _OUT static bool nlattr_add_rule_uid(struct nl_writer *nw, int attrtype, const struct pf_rule_uid *u) { int off = nlattr_add_nested(nw, attrtype); nlattr_add_u32(nw, PF_RUT_UID_LOW, u->uid[0]); nlattr_add_u32(nw, PF_RUT_UID_HIGH, u->uid[1]); nlattr_add_u8(nw, PF_RUT_OP, u->op); nlattr_set_len(nw, off); return (true); } struct nl_parsed_timeouts { uint32_t timeouts[PFTM_MAX]; uint32_t i; }; static int nlattr_get_pf_timeout(struct nlattr *nla, struct nl_pstate *npt, const void *arg, void *target) { struct nl_parsed_timeouts *t = (struct nl_parsed_timeouts *)target; int ret; if (t->i >= PFTM_MAX) return (E2BIG); ret = nlattr_get_uint32(nla, npt, NULL, &t->timeouts[t->i]); if (ret == 0) t->i++; return (ret); } #define _OUT(_field) offsetof(struct nl_parsed_timeout, _field) static const struct nlattr_parser nla_p_timeouts[] = { { .type = PF_TT_TIMEOUT, .off = 0, .cb = nlattr_get_pf_timeout }, }; NL_DECLARE_ATTR_PARSER(timeout_parser, nla_p_timeouts); #undef _OUT static int nlattr_get_nested_timeouts(struct nlattr *nla, struct nl_pstate *npt, const void *arg, void *target) { struct nl_parsed_timeouts parsed_timeouts = { }; int error; /* Assumes target points to the beginning of the structure */ error = nl_parse_header(NLA_DATA(nla), NLA_DATA_LEN(nla), &timeout_parser, npt, &parsed_timeouts); if (error != 0) return (error); memcpy(target, parsed_timeouts.timeouts, sizeof(parsed_timeouts.timeouts)); return (0); } static bool nlattr_add_timeout(struct nl_writer *nw, int attrtype, uint32_t *timeout) { int off = nlattr_add_nested(nw, attrtype); for (int i = 0; i < PFTM_MAX; i++) nlattr_add_u32(nw, PF_RT_TIMEOUT, timeout[i]); nlattr_set_len(nw, off); return (true); } #define _OUT(_field) offsetof(struct pf_krule, _field) static const struct nlattr_parser nla_p_rule[] = { { .type = PF_RT_SRC, .off = _OUT(src), .arg = &rule_addr_parser,.cb = nlattr_get_nested }, { .type = PF_RT_DST, .off = _OUT(dst), .arg = &rule_addr_parser,.cb = nlattr_get_nested }, { .type = PF_RT_RIDENTIFIER, .off = _OUT(ridentifier), .cb = nlattr_get_uint32 }, { .type = PF_RT_LABELS, .off = _OUT(label), .arg = &rule_labels_parser,.cb = nlattr_get_nested_pf_rule_labels }, { .type = PF_RT_IFNAME, .off = _OUT(ifname), .arg = (void *)IFNAMSIZ, .cb = nlattr_get_chara }, { .type = PF_RT_QNAME, .off = _OUT(qname), .arg = (void *)PF_QNAME_SIZE, .cb = nlattr_get_chara }, { .type = PF_RT_PQNAME, .off = _OUT(pqname), .arg = (void *)PF_QNAME_SIZE, .cb = nlattr_get_chara }, { .type = PF_RT_TAGNAME, .off = _OUT(tagname), .arg = (void *)PF_TAG_NAME_SIZE, .cb = nlattr_get_chara }, { .type = PF_RT_MATCH_TAGNAME, .off = _OUT(match_tagname), .arg = (void *)PF_TAG_NAME_SIZE, .cb = nlattr_get_chara }, { .type = PF_RT_OVERLOAD_TBLNAME, .off = _OUT(overload_tblname), .arg = (void *)PF_TABLE_NAME_SIZE, .cb = nlattr_get_chara }, { .type = PF_RT_RPOOL, .off = _OUT(rpool), .arg = &pool_parser, .cb = nlattr_get_nested }, { .type = PF_RT_OS_FINGERPRINT, .off = _OUT(os_fingerprint), .cb = nlattr_get_uint32 }, { .type = PF_RT_RTABLEID, .off = _OUT(rtableid), .cb = nlattr_get_uint32 }, { .type = PF_RT_TIMEOUT, .off = _OUT(timeout), .arg = &timeout_parser, .cb = nlattr_get_nested_timeouts }, { .type = PF_RT_MAX_STATES, .off = _OUT(max_states), .cb = nlattr_get_uint32 }, { .type = PF_RT_MAX_SRC_NODES, .off = _OUT(max_src_nodes), .cb = nlattr_get_uint32 }, { .type = PF_RT_MAX_SRC_STATES, .off = _OUT(max_src_states), .cb = nlattr_get_uint32 }, { .type = PF_RT_MAX_SRC_CONN_RATE_LIMIT, .off = _OUT(max_src_conn_rate.limit), .cb = nlattr_get_uint32 }, { .type = PF_RT_MAX_SRC_CONN_RATE_SECS, .off = _OUT(max_src_conn_rate.seconds), .cb = nlattr_get_uint32 }, { .type = PF_RT_DNPIPE, .off = _OUT(dnpipe), .cb = nlattr_get_uint16 }, { .type = PF_RT_DNRPIPE, .off = _OUT(dnrpipe), .cb = nlattr_get_uint16 }, { .type = PF_RT_DNFLAGS, .off = _OUT(free_flags), .cb = nlattr_get_uint32 }, { .type = PF_RT_NR, .off = _OUT(nr), .cb = nlattr_get_uint32 }, { .type = PF_RT_PROB, .off = _OUT(prob), .cb = nlattr_get_uint32 }, { .type = PF_RT_CUID, .off = _OUT(cuid), .cb = nlattr_get_uint32 }, {. type = PF_RT_CPID, .off = _OUT(cpid), .cb = nlattr_get_uint32 }, { .type = PF_RT_RETURN_ICMP, .off = _OUT(return_icmp), .cb = nlattr_get_uint16 }, { .type = PF_RT_RETURN_ICMP6, .off = _OUT(return_icmp6), .cb = nlattr_get_uint16 }, { .type = PF_RT_MAX_MSS, .off = _OUT(max_mss), .cb = nlattr_get_uint16 }, { .type = PF_RT_SCRUB_FLAGS, .off = _OUT(scrub_flags), .cb = nlattr_get_uint16 }, { .type = PF_RT_UID, .off = _OUT(uid), .arg = &rule_uid_parser, .cb = nlattr_get_nested }, { .type = PF_RT_GID, .off = _OUT(gid), .arg = &rule_uid_parser, .cb = nlattr_get_nested }, { .type = PF_RT_RULE_FLAG, .off = _OUT(rule_flag), .cb = nlattr_get_uint32 }, { .type = PF_RT_ACTION, .off = _OUT(action), .cb = nlattr_get_uint8 }, { .type = PF_RT_DIRECTION, .off = _OUT(direction), .cb = nlattr_get_uint8 }, { .type = PF_RT_LOG, .off = _OUT(log), .cb = nlattr_get_uint8 }, { .type = PF_RT_LOGIF, .off = _OUT(logif), .cb = nlattr_get_uint8 }, { .type = PF_RT_QUICK, .off = _OUT(quick), .cb = nlattr_get_uint8 }, { .type = PF_RT_IF_NOT, .off = _OUT(ifnot), .cb = nlattr_get_uint8 }, { .type = PF_RT_MATCH_TAG_NOT, .off = _OUT(match_tag_not), .cb = nlattr_get_uint8 }, { .type = PF_RT_NATPASS, .off = _OUT(natpass), .cb = nlattr_get_uint8 }, { .type = PF_RT_KEEP_STATE, .off = _OUT(keep_state), .cb = nlattr_get_uint8 }, { .type = PF_RT_AF, .off = _OUT(af), .cb = nlattr_get_uint8 }, { .type = PF_RT_PROTO, .off = _OUT(proto), .cb = nlattr_get_uint8 }, { .type = PF_RT_TYPE, .off = _OUT(type), .cb = nlattr_get_uint8 }, { .type = PF_RT_CODE, .off = _OUT(code), .cb = nlattr_get_uint8 }, { .type = PF_RT_FLAGS, .off = _OUT(flags), .cb = nlattr_get_uint8 }, { .type = PF_RT_FLAGSET, .off = _OUT(flagset), .cb = nlattr_get_uint8 }, { .type = PF_RT_MIN_TTL, .off = _OUT(min_ttl), .cb = nlattr_get_uint8 }, { .type = PF_RT_ALLOW_OPTS, .off = _OUT(allow_opts), .cb = nlattr_get_uint8 }, { .type = PF_RT_RT, .off = _OUT(rt), .cb = nlattr_get_uint8 }, { .type = PF_RT_RETURN_TTL, .off = _OUT(return_ttl), .cb = nlattr_get_uint8 }, { .type = PF_RT_TOS, .off = _OUT(tos), .cb = nlattr_get_uint8 }, { .type = PF_RT_SET_TOS, .off = _OUT(set_tos), .cb = nlattr_get_uint8 }, { .type = PF_RT_ANCHOR_RELATIVE, .off = _OUT(anchor_relative), .cb = nlattr_get_uint8 }, { .type = PF_RT_ANCHOR_WILDCARD, .off = _OUT(anchor_wildcard), .cb = nlattr_get_uint8 }, { .type = PF_RT_FLUSH, .off = _OUT(flush), .cb = nlattr_get_uint8 }, { .type = PF_RT_PRIO, .off = _OUT(prio), .cb = nlattr_get_uint8 }, { .type = PF_RT_SET_PRIO, .off = _OUT(set_prio[0]), .cb = nlattr_get_uint8 }, { .type = PF_RT_SET_PRIO_REPLY, .off = _OUT(set_prio[1]), .cb = nlattr_get_uint8 }, { .type = PF_RT_DIVERT_ADDRESS, .off = _OUT(divert.addr), .cb = nlattr_get_in6_addr }, { .type = PF_RT_DIVERT_PORT, .off = _OUT(divert.port), .cb = nlattr_get_uint16 }, }; NL_DECLARE_ATTR_PARSER(rule_parser, nla_p_rule); #undef _OUT struct nl_parsed_addrule { struct pf_krule *rule; uint32_t ticket; uint32_t pool_ticket; char *anchor; char *anchor_call; }; #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct nl_parsed_addrule, _field) static const struct nlattr_parser nla_p_addrule[] = { { .type = PF_ART_TICKET, .off = _OUT(ticket), .cb = nlattr_get_uint32 }, { .type = PF_ART_POOL_TICKET, .off = _OUT(pool_ticket), .cb = nlattr_get_uint32 }, { .type = PF_ART_ANCHOR, .off = _OUT(anchor), .cb = nlattr_get_string }, { .type = PF_ART_ANCHOR_CALL, .off = _OUT(anchor_call), .cb = nlattr_get_string }, { .type = PF_ART_RULE, .off = _OUT(rule), .arg = &rule_parser, .cb = nlattr_get_nested_ptr } }; static const struct nlfield_parser nlf_p_addrule[] = { }; #undef _IN #undef _OUT NL_DECLARE_PARSER(addrule_parser, struct genlmsghdr, nlf_p_addrule, nla_p_addrule); static int pf_handle_addrule(struct nlmsghdr *hdr, struct nl_pstate *npt) { int error; struct nl_parsed_addrule attrs = {}; attrs.rule = pf_krule_alloc(); error = nl_parse_nlmsg(hdr, &addrule_parser, npt, &attrs); if (error != 0) { pf_free_rule(attrs.rule); return (error); } error = pf_ioctl_addrule(attrs.rule, attrs.ticket, attrs.pool_ticket, attrs.anchor, attrs.anchor_call, nlp_get_cred(npt->nlp)->cr_uid, hdr->nlmsg_pid); return (error); } #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct pfioc_rule, _field) static const struct nlattr_parser nla_p_getrules[] = { { .type = PF_GR_ANCHOR, .off = _OUT(anchor), .arg = (void *)MAXPATHLEN, .cb = nlattr_get_chara }, { .type = PF_GR_ACTION, .off = _OUT(rule.action), .cb = nlattr_get_uint8 }, }; static const struct nlfield_parser nlf_p_getrules[] = { }; #undef _IN #undef _OUT NL_DECLARE_PARSER(getrules_parser, struct genlmsghdr, nlf_p_getrules, nla_p_getrules); static int pf_handle_getrules(struct nlmsghdr *hdr, struct nl_pstate *npt) { struct pfioc_rule attrs = {}; int error; struct nl_writer *nw = npt->nw; struct genlmsghdr *ghdr_new; error = nl_parse_nlmsg(hdr, &getrules_parser, npt, &attrs); if (error != 0) return (error); if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) return (ENOMEM); ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); ghdr_new->cmd = PFNL_CMD_GETRULES; ghdr_new->version = 0; ghdr_new->reserved = 0; error = pf_ioctl_getrules(&attrs); if (error != 0) goto out; nlattr_add_u32(nw, PF_GR_NR, attrs.nr); nlattr_add_u32(nw, PF_GR_TICKET, attrs.ticket); if (!nlmsg_end(nw)) { error = ENOMEM; goto out; } return (0); out: nlmsg_abort(nw); return (error); } struct nl_parsed_get_rule { char anchor[MAXPATHLEN]; uint8_t action; uint32_t nr; uint32_t ticket; uint8_t clear; }; #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct nl_parsed_get_rule, _field) static const struct nlattr_parser nla_p_getrule[] = { { .type = PF_GR_ANCHOR, .off = _OUT(anchor), .arg = (void *)MAXPATHLEN, .cb = nlattr_get_chara }, { .type = PF_GR_ACTION, .off = _OUT(action), .cb = nlattr_get_uint8 }, { .type = PF_GR_NR, .off = _OUT(nr), .cb = nlattr_get_uint32 }, { .type = PF_GR_TICKET, .off = _OUT(ticket), .cb = nlattr_get_uint32 }, { .type = PF_GR_CLEAR, .off = _OUT(clear), .cb = nlattr_get_uint8 }, }; static const struct nlfield_parser nlf_p_getrule[] = { }; #undef _IN #undef _OUT NL_DECLARE_PARSER(getrule_parser, struct genlmsghdr, nlf_p_getrule, nla_p_getrule); static int pf_handle_getrule(struct nlmsghdr *hdr, struct nl_pstate *npt) { char anchor_call[MAXPATHLEN]; struct nl_parsed_get_rule attrs = {}; struct nl_writer *nw = npt->nw; struct genlmsghdr *ghdr_new; struct pf_kruleset *ruleset; struct pf_krule *rule; int rs_num; int error; error = nl_parse_nlmsg(hdr, &getrule_parser, npt, &attrs); if (error != 0) return (error); if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) return (ENOMEM); ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); ghdr_new->cmd = PFNL_CMD_GETRULE; ghdr_new->version = 0; ghdr_new->reserved = 0; PF_RULES_WLOCK(); ruleset = pf_find_kruleset(attrs.anchor); if (ruleset == NULL) { PF_RULES_WUNLOCK(); error = ENOENT; goto out; } rs_num = pf_get_ruleset_number(attrs.action); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); error = EINVAL; goto out; } if (attrs.ticket != ruleset->rules[rs_num].active.ticket) { PF_RULES_WUNLOCK(); error = EBUSY; goto out; } rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); while ((rule != NULL) && (rule->nr != attrs.nr)) rule = TAILQ_NEXT(rule, entries); if (rule == NULL) { PF_RULES_WUNLOCK(); error = EBUSY; goto out; } nlattr_add_rule_addr(nw, PF_RT_SRC, &rule->src); nlattr_add_rule_addr(nw, PF_RT_DST, &rule->dst); nlattr_add_u32(nw, PF_RT_RIDENTIFIER, rule->ridentifier); nlattr_add_labels(nw, PF_RT_LABELS, rule); nlattr_add_string(nw, PF_RT_IFNAME, rule->ifname); nlattr_add_string(nw, PF_RT_QNAME, rule->qname); nlattr_add_string(nw, PF_RT_PQNAME, rule->pqname); nlattr_add_string(nw, PF_RT_TAGNAME, rule->tagname); nlattr_add_string(nw, PF_RT_MATCH_TAGNAME, rule->match_tagname); nlattr_add_string(nw, PF_RT_OVERLOAD_TBLNAME, rule->overload_tblname); nlattr_add_pool(nw, PF_RT_RPOOL, &rule->rpool); nlattr_add_u32(nw, PF_RT_OS_FINGERPRINT, rule->os_fingerprint); nlattr_add_u32(nw, PF_RT_RTABLEID, rule->rtableid); nlattr_add_timeout(nw, PF_RT_TIMEOUT, rule->timeout); nlattr_add_u32(nw, PF_RT_MAX_STATES, rule->max_states); nlattr_add_u32(nw, PF_RT_MAX_SRC_NODES, rule->max_src_nodes); nlattr_add_u32(nw, PF_RT_MAX_SRC_STATES, rule->max_src_states); nlattr_add_u32(nw, PF_RT_MAX_SRC_CONN_RATE_LIMIT, rule->max_src_conn_rate.limit); nlattr_add_u32(nw, PF_RT_MAX_SRC_CONN_RATE_SECS, rule->max_src_conn_rate.seconds); nlattr_add_u16(nw, PF_RT_DNPIPE, rule->dnpipe); nlattr_add_u16(nw, PF_RT_DNRPIPE, rule->dnrpipe); nlattr_add_u32(nw, PF_RT_DNFLAGS, rule->free_flags); nlattr_add_u32(nw, PF_RT_NR, rule->nr); nlattr_add_u32(nw, PF_RT_PROB, rule->prob); nlattr_add_u32(nw, PF_RT_CUID, rule->cuid); nlattr_add_u32(nw, PF_RT_CPID, rule->cpid); nlattr_add_u16(nw, PF_RT_RETURN_ICMP, rule->return_icmp); nlattr_add_u16(nw, PF_RT_RETURN_ICMP6, rule->return_icmp6); nlattr_add_u16(nw, PF_RT_RETURN_ICMP6, rule->return_icmp6); nlattr_add_u16(nw, PF_RT_MAX_MSS, rule->max_mss); nlattr_add_u16(nw, PF_RT_SCRUB_FLAGS, rule->scrub_flags); nlattr_add_rule_uid(nw, PF_RT_UID, &rule->uid); nlattr_add_rule_uid(nw, PF_RT_GID, (const struct pf_rule_uid *)&rule->gid); nlattr_add_u32(nw, PF_RT_RULE_FLAG, rule->rule_flag); nlattr_add_u8(nw, PF_RT_ACTION, rule->action); nlattr_add_u8(nw, PF_RT_DIRECTION, rule->direction); nlattr_add_u8(nw, PF_RT_LOG, rule->log); nlattr_add_u8(nw, PF_RT_LOGIF, rule->logif); nlattr_add_u8(nw, PF_RT_QUICK, rule->quick); nlattr_add_u8(nw, PF_RT_IF_NOT, rule->ifnot); nlattr_add_u8(nw, PF_RT_MATCH_TAG_NOT, rule->match_tag_not); nlattr_add_u8(nw, PF_RT_NATPASS, rule->natpass); nlattr_add_u8(nw, PF_RT_KEEP_STATE, rule->keep_state); nlattr_add_u8(nw, PF_RT_AF, rule->af); nlattr_add_u8(nw, PF_RT_PROTO, rule->proto); nlattr_add_u8(nw, PF_RT_TYPE, rule->type); nlattr_add_u8(nw, PF_RT_CODE, rule->code); nlattr_add_u8(nw, PF_RT_FLAGS, rule->flags); nlattr_add_u8(nw, PF_RT_FLAGSET, rule->flagset); nlattr_add_u8(nw, PF_RT_MIN_TTL, rule->min_ttl); nlattr_add_u8(nw, PF_RT_ALLOW_OPTS, rule->allow_opts); nlattr_add_u8(nw, PF_RT_RT, rule->rt); nlattr_add_u8(nw, PF_RT_RETURN_TTL, rule->return_ttl); nlattr_add_u8(nw, PF_RT_TOS, rule->tos); nlattr_add_u8(nw, PF_RT_SET_TOS, rule->set_tos); nlattr_add_u8(nw, PF_RT_ANCHOR_RELATIVE, rule->anchor_relative); nlattr_add_u8(nw, PF_RT_ANCHOR_WILDCARD, rule->anchor_wildcard); nlattr_add_u8(nw, PF_RT_FLUSH, rule->flush); nlattr_add_u8(nw, PF_RT_PRIO, rule->prio); nlattr_add_u8(nw, PF_RT_SET_PRIO, rule->set_prio[0]); nlattr_add_u8(nw, PF_RT_SET_PRIO_REPLY, rule->set_prio[1]); nlattr_add_in6_addr(nw, PF_RT_DIVERT_ADDRESS, &rule->divert.addr.v6); nlattr_add_u16(nw, PF_RT_DIVERT_PORT, rule->divert.port); nlattr_add_u64(nw, PF_RT_PACKETS_IN, pf_counter_u64_fetch(&rule->packets[0])); nlattr_add_u64(nw, PF_RT_PACKETS_OUT, pf_counter_u64_fetch(&rule->packets[1])); nlattr_add_u64(nw, PF_RT_BYTES_IN, pf_counter_u64_fetch(&rule->bytes[0])); nlattr_add_u64(nw, PF_RT_BYTES_OUT, pf_counter_u64_fetch(&rule->bytes[1])); nlattr_add_u64(nw, PF_RT_EVALUATIONS, pf_counter_u64_fetch(&rule->evaluations)); nlattr_add_u64(nw, PF_RT_TIMESTAMP, pf_get_timestamp(rule)); nlattr_add_u64(nw, PF_RT_STATES_CUR, counter_u64_fetch(rule->states_cur)); nlattr_add_u64(nw, PF_RT_STATES_TOTAL, counter_u64_fetch(rule->states_tot)); nlattr_add_u64(nw, PF_RT_SRC_NODES, counter_u64_fetch(rule->src_nodes)); error = pf_kanchor_copyout(ruleset, rule, anchor_call, sizeof(anchor_call)); MPASS(error == 0); nlattr_add_string(nw, PF_RT_ANCHOR_CALL, anchor_call); if (attrs.clear) pf_krule_clear_counters(rule); PF_RULES_WUNLOCK(); if (!nlmsg_end(nw)) { error = ENOMEM; goto out; } return (0); out: nlmsg_abort(nw); return (error); } #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct pf_kstate_kill, _field) static const struct nlattr_parser nla_p_clear_states[] = { { .type = PF_CS_CMP_ID, .off = _OUT(psk_pfcmp.id), .cb = nlattr_get_uint64 }, { .type = PF_CS_CMP_CREATORID, .off = _OUT(psk_pfcmp.creatorid), .cb = nlattr_get_uint32 }, { .type = PF_CS_CMP_DIR, .off = _OUT(psk_pfcmp.direction), .cb = nlattr_get_uint8 }, { .type = PF_CS_AF, .off = _OUT(psk_af), .cb = nlattr_get_uint8 }, { .type = PF_CS_PROTO, .off = _OUT(psk_proto), .cb = nlattr_get_uint8 }, { .type = PF_CS_SRC, .off = _OUT(psk_src), .arg = &rule_addr_parser, .cb = nlattr_get_nested }, { .type = PF_CS_DST, .off = _OUT(psk_dst), .arg = &rule_addr_parser, .cb = nlattr_get_nested }, { .type = PF_CS_RT_ADDR, .off = _OUT(psk_rt_addr), .arg = &rule_addr_parser, .cb = nlattr_get_nested }, { .type = PF_CS_IFNAME, .off = _OUT(psk_ifname), .arg = (void *)IFNAMSIZ, .cb = nlattr_get_chara }, { .type = PF_CS_LABEL, .off = _OUT(psk_label), .arg = (void *)PF_RULE_LABEL_SIZE, .cb = nlattr_get_chara }, { .type = PF_CS_KILL_MATCH, .off = _OUT(psk_kill_match), .cb = nlattr_get_bool }, { .type = PF_CS_NAT, .off = _OUT(psk_nat), .cb = nlattr_get_bool }, }; static const struct nlfield_parser nlf_p_clear_states[] = {}; #undef _IN #undef _OUT NL_DECLARE_PARSER(clear_states_parser, struct genlmsghdr, nlf_p_clear_states, nla_p_clear_states); static int pf_handle_killclear_states(struct nlmsghdr *hdr, struct nl_pstate *npt, int cmd) { struct pf_kstate_kill kill = {}; struct epoch_tracker et; struct nl_writer *nw = npt->nw; struct genlmsghdr *ghdr_new; int error; unsigned int killed = 0; error = nl_parse_nlmsg(hdr, &clear_states_parser, npt, &kill); if (error != 0) return (error); if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) return (ENOMEM); ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); ghdr_new->cmd = cmd; ghdr_new->version = 0; ghdr_new->reserved = 0; NET_EPOCH_ENTER(et); if (cmd == PFNL_CMD_KILLSTATES) pf_killstates(&kill, &killed); else killed = pf_clear_states(&kill); NET_EPOCH_EXIT(et); nlattr_add_u32(nw, PF_CS_KILLED, killed); if (! nlmsg_end(nw)) { error = ENOMEM; goto out; } return (0); out: nlmsg_abort(nw); return (error); } static int pf_handle_clear_states(struct nlmsghdr *hdr, struct nl_pstate *npt) { return (pf_handle_killclear_states(hdr, npt, PFNL_CMD_CLRSTATES)); } static int pf_handle_kill_states(struct nlmsghdr *hdr, struct nl_pstate *npt) { return (pf_handle_killclear_states(hdr, npt, PFNL_CMD_KILLSTATES)); } struct nl_parsed_set_statusif { char ifname[IFNAMSIZ]; }; #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct nl_parsed_set_statusif, _field) static const struct nlattr_parser nla_p_set_statusif[] = { { .type = PF_SS_IFNAME, .off = _OUT(ifname), .arg = (const void *)IFNAMSIZ, .cb = nlattr_get_chara }, }; static const struct nlfield_parser nlf_p_set_statusif[] = {}; #undef _IN #undef _OUT NL_DECLARE_PARSER(set_statusif_parser, struct genlmsghdr, nlf_p_set_statusif, nla_p_set_statusif); static int pf_handle_set_statusif(struct nlmsghdr *hdr, struct nl_pstate *npt) { int error; struct nl_parsed_set_statusif attrs = {}; error = nl_parse_nlmsg(hdr, &set_statusif_parser, npt, &attrs); if (error != 0) return (error); PF_RULES_WLOCK(); strlcpy(V_pf_status.ifname, attrs.ifname, IFNAMSIZ); PF_RULES_WUNLOCK(); return (0); } static bool nlattr_add_counters(struct nl_writer *nw, int attr, size_t number, char **names, counter_u64_t *counters) { for (int i = 0; i < number; i++) { int off = nlattr_add_nested(nw, attr); nlattr_add_u32(nw, PF_C_ID, i); nlattr_add_string(nw, PF_C_NAME, names[i]); nlattr_add_u64(nw, PF_C_COUNTER, counter_u64_fetch(counters[i])); nlattr_set_len(nw, off); } return (true); } static bool nlattr_add_fcounters(struct nl_writer *nw, int attr, size_t number, char **names, struct pf_counter_u64 *counters) { for (int i = 0; i < number; i++) { int off = nlattr_add_nested(nw, attr); nlattr_add_u32(nw, PF_C_ID, i); nlattr_add_string(nw, PF_C_NAME, names[i]); nlattr_add_u64(nw, PF_C_COUNTER, pf_counter_u64_fetch(&counters[i])); nlattr_set_len(nw, off); } return (true); } static bool nlattr_add_u64_array(struct nl_writer *nw, int attr, size_t number, uint64_t *array) { int off = nlattr_add_nested(nw, attr); for (size_t i = 0; i < number; i++) nlattr_add_u64(nw, 0, array[i]); nlattr_set_len(nw, off); return (true); } static int pf_handle_get_status(struct nlmsghdr *hdr, struct nl_pstate *npt) { struct pf_status s; struct nl_writer *nw = npt->nw; struct genlmsghdr *ghdr_new; char *pf_reasons[PFRES_MAX+1] = PFRES_NAMES; char *pf_lcounter[KLCNT_MAX+1] = KLCNT_NAMES; char *pf_fcounter[FCNT_MAX+1] = FCNT_NAMES; int error; PF_RULES_RLOCK_TRACKER; if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) return (ENOMEM); ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); ghdr_new->cmd = PFNL_CMD_GET_STATUS; ghdr_new->version = 0; ghdr_new->reserved = 0; PF_RULES_RLOCK(); nlattr_add_string(nw, PF_GS_IFNAME, V_pf_status.ifname); nlattr_add_bool(nw, PF_GS_RUNNING, V_pf_status.running); nlattr_add_u32(nw, PF_GS_SINCE, V_pf_status.since); nlattr_add_u32(nw, PF_GS_DEBUG, V_pf_status.debug); nlattr_add_u32(nw, PF_GS_HOSTID, ntohl(V_pf_status.hostid)); nlattr_add_u32(nw, PF_GS_STATES, V_pf_status.states); nlattr_add_u32(nw, PF_GS_SRC_NODES, V_pf_status.src_nodes); nlattr_add_u32(nw, PF_GS_REASSEMBLE, V_pf_status.reass); nlattr_add_u32(nw, PF_GS_SYNCOOKIES_ACTIVE, V_pf_status.syncookies_active); nlattr_add_counters(nw, PF_GS_COUNTERS, PFRES_MAX, pf_reasons, V_pf_status.counters); nlattr_add_counters(nw, PF_GS_LCOUNTERS, KLCNT_MAX, pf_lcounter, V_pf_status.lcounters); nlattr_add_fcounters(nw, PF_GS_FCOUNTERS, FCNT_MAX, pf_fcounter, V_pf_status.fcounters); nlattr_add_counters(nw, PF_GS_SCOUNTERS, SCNT_MAX, pf_fcounter, V_pf_status.scounters); pfi_update_status(V_pf_status.ifname, &s); nlattr_add_u64_array(nw, PF_GS_BCOUNTERS, 2 * 2, (uint64_t *)s.bcounters); nlattr_add_u64_array(nw, PF_GS_PCOUNTERS, 2 * 2 * 2, (uint64_t *)s.pcounters); nlattr_add(nw, PF_GS_CHKSUM, PF_MD5_DIGEST_LENGTH, V_pf_status.pf_chksum); PF_RULES_RUNLOCK(); if (!nlmsg_end(nw)) { error = ENOMEM; goto out; } return (0); out: nlmsg_abort(nw); return (error); } static int pf_handle_clear_status(struct nlmsghdr *hdr, struct nl_pstate *npt) { pf_ioctl_clear_status(); return (0); } struct pf_nl_natlook { sa_family_t af; uint8_t direction; uint8_t proto; struct pf_addr src; struct pf_addr dst; uint16_t sport; uint16_t dport; }; #define _IN(_field) offsetof(struct genlmsghdr, _field) #define _OUT(_field) offsetof(struct pf_nl_natlook, _field) static const struct nlattr_parser nla_p_natlook[] = { { .type = PF_NL_AF, .off = _OUT(af), .cb = nlattr_get_uint8 }, { .type = PF_NL_DIRECTION, .off = _OUT(direction), .cb = nlattr_get_uint8 }, { .type = PF_NL_PROTO, .off = _OUT(proto), .cb = nlattr_get_uint8 }, { .type = PF_NL_SRC_ADDR, .off = _OUT(src), .cb = nlattr_get_in6_addr }, { .type = PF_NL_DST_ADDR, .off = _OUT(dst), .cb = nlattr_get_in6_addr }, { .type = PF_NL_SRC_PORT, .off = _OUT(sport), .cb = nlattr_get_uint16 }, { .type = PF_NL_DST_PORT, .off = _OUT(dport), .cb = nlattr_get_uint16 }, }; static const struct nlfield_parser nlf_p_natlook[] = {}; #undef _IN #undef _OUT NL_DECLARE_PARSER(natlook_parser, struct genlmsghdr, nlf_p_natlook, nla_p_natlook); static int pf_handle_natlook(struct nlmsghdr *hdr, struct nl_pstate *npt) { struct pf_nl_natlook attrs = {}; struct pf_state_key_cmp key = {}; struct nl_writer *nw = npt->nw; struct pf_state_key *sk; struct pf_kstate *state; struct genlmsghdr *ghdr_new; int error, m; int sidx, didx; error = nl_parse_nlmsg(hdr, &natlook_parser, npt, &attrs); if (error != 0) return (error); if (attrs.proto == 0 || PF_AZERO(&attrs.src, attrs.af) || PF_AZERO(&attrs.dst, attrs.af) || ((attrs.proto == IPPROTO_TCP || attrs.proto == IPPROTO_UDP) && (attrs.sport == 0 || attrs.dport == 0))) return (EINVAL); /* NATLOOK src and dst are reversed, so reverse sidx/didx */ sidx = (attrs.direction == PF_IN) ? 1 : 0; didx = (attrs.direction == PF_IN) ? 0 : 1; key.af = attrs.af; key.proto = attrs.proto; PF_ACPY(&key.addr[sidx], &attrs.src, attrs.af); key.port[sidx] = attrs.sport; PF_ACPY(&key.addr[didx], &attrs.dst, attrs.af); key.port[didx] = attrs.dport; state = pf_find_state_all(&key, attrs.direction, &m); if (state == NULL) return (ENOENT); if (m > 1) { PF_STATE_UNLOCK(state); return (E2BIG); } if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) { PF_STATE_UNLOCK(state); return (ENOMEM); } ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); ghdr_new->cmd = PFNL_CMD_NATLOOK; ghdr_new->version = 0; ghdr_new->reserved = 0; sk = state->key[sidx]; nlattr_add_in6_addr(nw, PF_NL_SRC_ADDR, &sk->addr[sidx].v6); nlattr_add_in6_addr(nw, PF_NL_DST_ADDR, &sk->addr[didx].v6); nlattr_add_u16(nw, PF_NL_SRC_PORT, sk->port[sidx]); nlattr_add_u16(nw, PF_NL_DST_PORT, sk->port[didx]); PF_STATE_UNLOCK(state); if (!nlmsg_end(nw)) { nlmsg_abort(nw); return (ENOMEM); } return (0); } struct pf_nl_set_debug { uint32_t level; }; #define _OUT(_field) offsetof(struct pf_nl_set_debug, _field) static const struct nlattr_parser nla_p_set_debug[] = { { .type = PF_SD_LEVEL, .off = _OUT(level), .cb = nlattr_get_uint32 }, }; static const struct nlfield_parser nlf_p_set_debug[] = {}; #undef _OUT NL_DECLARE_PARSER(set_debug_parser, struct genlmsghdr, nlf_p_set_debug, nla_p_set_debug); static int pf_handle_set_debug(struct nlmsghdr *hdr, struct nl_pstate *npt) { struct pf_nl_set_debug attrs = {}; int error; error = nl_parse_nlmsg(hdr, &set_debug_parser, npt, &attrs); if (error != 0) return (error); PF_RULES_WLOCK(); V_pf_status.debug = attrs.level; PF_RULES_WUNLOCK(); return (0); } struct pf_nl_set_timeout { uint32_t timeout; uint32_t seconds; }; #define _OUT(_field) offsetof(struct pf_nl_set_timeout, _field) static const struct nlattr_parser nla_p_set_timeout[] = { { .type = PF_TO_TIMEOUT, .off = _OUT(timeout), .cb = nlattr_get_uint32 }, { .type = PF_TO_SECONDS, .off = _OUT(seconds), .cb = nlattr_get_uint32 }, }; static const struct nlfield_parser nlf_p_set_timeout[] = {}; #undef _OUT NL_DECLARE_PARSER(set_timeout_parser, struct genlmsghdr, nlf_p_set_timeout, nla_p_set_timeout); static int pf_handle_set_timeout(struct nlmsghdr *hdr, struct nl_pstate *npt) { struct pf_nl_set_timeout attrs = {}; int error; error = nl_parse_nlmsg(hdr, &set_timeout_parser, npt, &attrs); if (error != 0) return (error); return (pf_ioctl_set_timeout(attrs.timeout, attrs.seconds, NULL)); } static int pf_handle_get_timeout(struct nlmsghdr *hdr, struct nl_pstate *npt) { struct pf_nl_set_timeout attrs = {}; struct nl_writer *nw = npt->nw; struct genlmsghdr *ghdr_new; int error; error = nl_parse_nlmsg(hdr, &set_timeout_parser, npt, &attrs); if (error != 0) return (error); error = pf_ioctl_get_timeout(attrs.timeout, &attrs.seconds); if (error != 0) return (error); if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) return (ENOMEM); ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); ghdr_new->cmd = PFNL_CMD_GET_TIMEOUT; ghdr_new->version = 0; ghdr_new->reserved = 0; nlattr_add_u32(nw, PF_TO_SECONDS, attrs.seconds); if (!nlmsg_end(nw)) { nlmsg_abort(nw); return (ENOMEM); } return (0); } struct pf_nl_set_limit { uint32_t index; uint32_t limit; }; #define _OUT(_field) offsetof(struct pf_nl_set_limit, _field) static const struct nlattr_parser nla_p_set_limit[] = { { .type = PF_LI_INDEX, .off = _OUT(index), .cb = nlattr_get_uint32 }, { .type = PF_LI_LIMIT, .off = _OUT(limit), .cb = nlattr_get_uint32 }, }; static const struct nlfield_parser nlf_p_set_limit[] = {}; #undef _OUT NL_DECLARE_PARSER(set_limit_parser, struct genlmsghdr, nlf_p_set_limit, nla_p_set_limit); static int pf_handle_set_limit(struct nlmsghdr *hdr, struct nl_pstate *npt) { struct pf_nl_set_limit attrs = {}; int error; error = nl_parse_nlmsg(hdr, &set_limit_parser, npt, &attrs); if (error != 0) return (error); return (pf_ioctl_set_limit(attrs.index, attrs.limit, NULL)); } static int pf_handle_get_limit(struct nlmsghdr *hdr, struct nl_pstate *npt) { struct pf_nl_set_limit attrs = {}; struct nl_writer *nw = npt->nw; struct genlmsghdr *ghdr_new; int error; error = nl_parse_nlmsg(hdr, &set_limit_parser, npt, &attrs); if (error != 0) return (error); error = pf_ioctl_get_limit(attrs.index, &attrs.limit); if (error != 0) return (error); if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) return (ENOMEM); ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); ghdr_new->cmd = PFNL_CMD_GET_LIMIT; ghdr_new->version = 0; ghdr_new->reserved = 0; nlattr_add_u32(nw, PF_LI_LIMIT, attrs.limit); if (!nlmsg_end(nw)) { nlmsg_abort(nw); return (ENOMEM); } return (0); } static int pf_handle_begin_addrs(struct nlmsghdr *hdr, struct nl_pstate *npt) { struct nl_writer *nw = npt->nw; struct genlmsghdr *ghdr_new; uint32_t ticket; int error; error = pf_ioctl_begin_addrs(&ticket); if (error != 0) return (error); if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) return (ENOMEM); ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); ghdr_new->cmd = PFNL_CMD_BEGIN_ADDRS; ghdr_new->version = 0; ghdr_new->reserved = 0; nlattr_add_u32(nw, PF_BA_TICKET, ticket); if (!nlmsg_end(nw)) { nlmsg_abort(nw); return (ENOMEM); } return (0); } +static bool +nlattr_add_pool_addr(struct nl_writer *nw, int attrtype, struct pf_pooladdr *a) +{ + int off; + + off = nlattr_add_nested(nw, attrtype); + + nlattr_add_addr_wrap(nw, PF_PA_ADDR, &a->addr); + nlattr_add_string(nw, PF_PA_IFNAME, a->ifname); + + nlattr_set_len(nw, off); + + return (true); +} + #define _OUT(_field) offsetof(struct pf_pooladdr, _field) static const struct nlattr_parser nla_p_pool_addr[] = { { .type = PF_PA_ADDR, .off = _OUT(addr), .arg = &addr_wrap_parser, .cb = nlattr_get_nested }, { .type = PF_PA_IFNAME, .off = _OUT(ifname), .arg = (void *)IFNAMSIZ, .cb = nlattr_get_chara }, }; NL_DECLARE_ATTR_PARSER(pool_addr_parser, nla_p_pool_addr); #undef _OUT #define _OUT(_field) offsetof(struct pfioc_pooladdr, _field) static const struct nlattr_parser nla_p_add_addr[] = { { .type = PF_AA_ACTION, .off = _OUT(action), .cb = nlattr_get_uint32 }, { .type = PF_AA_TICKET, .off = _OUT(ticket), .cb = nlattr_get_uint32 }, { .type = PF_AA_NR, .off = _OUT(nr), .cb = nlattr_get_uint32 }, { .type = PF_AA_R_NUM, .off = _OUT(r_num), .cb = nlattr_get_uint32 }, { .type = PF_AA_R_ACTION, .off = _OUT(r_action), .cb = nlattr_get_uint8 }, { .type = PF_AA_R_LAST, .off = _OUT(r_last), .cb = nlattr_get_uint8 }, { .type = PF_AA_AF, .off = _OUT(af), .cb = nlattr_get_uint8 }, { .type = PF_AA_ANCHOR, .off = _OUT(anchor), .arg = (void *)MAXPATHLEN, .cb = nlattr_get_chara }, { .type = PF_AA_ADDR, .off = _OUT(addr), .arg = &pool_addr_parser, .cb = nlattr_get_nested }, }; static const struct nlfield_parser nlf_p_add_addr[] = {}; #undef _OUT NL_DECLARE_PARSER(add_addr_parser, struct genlmsghdr, nlf_p_add_addr, nla_p_add_addr); static int pf_handle_add_addr(struct nlmsghdr *hdr, struct nl_pstate *npt) { struct pfioc_pooladdr attrs = { 0 }; int error; error = nl_parse_nlmsg(hdr, &add_addr_parser, npt, &attrs); if (error != 0) return (error); error = pf_ioctl_add_addr(&attrs); return (error); } +static int +pf_handle_get_addrs(struct nlmsghdr *hdr, struct nl_pstate *npt) +{ + struct pfioc_pooladdr attrs = { 0 }; + struct nl_writer *nw = npt->nw; + struct genlmsghdr *ghdr_new; + int error; + + error = nl_parse_nlmsg(hdr, &add_addr_parser, npt, &attrs); + if (error != 0) + return (error); + + error = pf_ioctl_get_addrs(&attrs); + if (error != 0) + return (error); + + if (!nlmsg_reply(nw, hdr, sizeof(struct genlmsghdr))) + return (ENOMEM); + + ghdr_new = nlmsg_reserve_object(nw, struct genlmsghdr); + ghdr_new->cmd = PFNL_CMD_GET_ADDRS; + ghdr_new->version = 0; + ghdr_new->reserved = 0; + + nlattr_add_u32(nw, PF_AA_NR, attrs.nr); + + if (!nlmsg_end(nw)) { + nlmsg_abort(nw); + return (ENOMEM); + } + + return (error); +} + static const struct nlhdr_parser *all_parsers[] = { &state_parser, &addrule_parser, &getrules_parser, &clear_states_parser, &set_statusif_parser, &natlook_parser, &set_debug_parser, &set_timeout_parser, &set_limit_parser, &pool_addr_parser, &add_addr_parser, }; static int family_id; static const struct genl_cmd pf_cmds[] = { { .cmd_num = PFNL_CMD_GETSTATES, .cmd_name = "GETSTATES", .cmd_cb = pf_handle_getstates, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_GETCREATORS, .cmd_name = "GETCREATORS", .cmd_cb = pf_handle_getcreators, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_START, .cmd_name = "START", .cmd_cb = pf_handle_start, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_STOP, .cmd_name = "STOP", .cmd_cb = pf_handle_stop, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_ADDRULE, .cmd_name = "ADDRULE", .cmd_cb = pf_handle_addrule, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_GETRULES, .cmd_name = "GETRULES", .cmd_cb = pf_handle_getrules, .cmd_flags = GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_GETRULE, .cmd_name = "GETRULE", .cmd_cb = pf_handle_getrule, .cmd_flags = GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_CLRSTATES, .cmd_name = "CLRSTATES", .cmd_cb = pf_handle_clear_states, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_KILLSTATES, .cmd_name = "KILLSTATES", .cmd_cb = pf_handle_kill_states, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_SET_STATUSIF, .cmd_name = "SETSTATUSIF", .cmd_cb = pf_handle_set_statusif, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_GET_STATUS, .cmd_name = "GETSTATUS", .cmd_cb = pf_handle_get_status, .cmd_flags = GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_CLEAR_STATUS, .cmd_name = "CLEARSTATUS", .cmd_cb = pf_handle_clear_status, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_NATLOOK, .cmd_name = "NATLOOK", .cmd_cb = pf_handle_natlook, .cmd_flags = GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_SET_DEBUG, .cmd_name = "SET_DEBUG", .cmd_cb = pf_handle_set_debug, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_SET_TIMEOUT, .cmd_name = "SET_TIMEOUT", .cmd_cb = pf_handle_set_timeout, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_GET_TIMEOUT, .cmd_name = "GET_TIMEOUT", .cmd_cb = pf_handle_get_timeout, .cmd_flags = GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_SET_LIMIT, .cmd_name = "SET_LIMIT", .cmd_cb = pf_handle_set_limit, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_GET_LIMIT, .cmd_name = "GET_LIMIT", .cmd_cb = pf_handle_get_limit, .cmd_flags = GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_BEGIN_ADDRS, .cmd_name = "BEGIN_ADDRS", .cmd_cb = pf_handle_begin_addrs, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, { .cmd_num = PFNL_CMD_ADD_ADDR, .cmd_name = "ADD_ADDR", .cmd_cb = pf_handle_add_addr, .cmd_flags = GENL_CMD_CAP_DO | GENL_CMD_CAP_HASPOL, .cmd_priv = PRIV_NETINET_PF, }, + { + .cmd_num = PFNL_CMD_GET_ADDRS, + .cmd_name = "GET_ADDRS", + .cmd_cb = pf_handle_get_addrs, + .cmd_flags = GENL_CMD_CAP_DUMP | GENL_CMD_CAP_HASPOL, + .cmd_priv = PRIV_NETINET_PF, + }, }; void pf_nl_register(void) { NL_VERIFY_PARSERS(all_parsers); family_id = genl_register_family(PFNL_FAMILY_NAME, 0, 2, PFNL_CMD_MAX); genl_register_cmds(PFNL_FAMILY_NAME, pf_cmds, NL_ARRAY_LEN(pf_cmds)); } void pf_nl_unregister(void) { genl_unregister_family(PFNL_FAMILY_NAME); } diff --git a/sys/netpfil/pf/pf_nl.h b/sys/netpfil/pf/pf_nl.h index 2459fdc15a63..013a7e1e0ef0 100644 --- a/sys/netpfil/pf/pf_nl.h +++ b/sys/netpfil/pf/pf_nl.h @@ -1,386 +1,387 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2023 Alexander V. Chernikov * Copyright (c) 2023 Rubicon Communications, LLC (Netgate) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #ifndef _NETPFIL_PF_PF_NL_H_ #define _NETPFIL_PF_PF_NL_H_ /* Genetlink family */ #define PFNL_FAMILY_NAME "pfctl" /* available commands */ enum { PFNL_CMD_UNSPEC = 0, PFNL_CMD_GETSTATES = 1, PFNL_CMD_GETCREATORS = 2, PFNL_CMD_START = 3, PFNL_CMD_STOP = 4, PFNL_CMD_ADDRULE = 5, PFNL_CMD_GETRULES = 6, PFNL_CMD_GETRULE = 7, PFNL_CMD_CLRSTATES = 8, PFNL_CMD_KILLSTATES = 9, PFNL_CMD_SET_STATUSIF = 10, PFNL_CMD_GET_STATUS = 11, PFNL_CMD_CLEAR_STATUS = 12, PFNL_CMD_NATLOOK = 13, PFNL_CMD_SET_DEBUG = 14, PFNL_CMD_SET_TIMEOUT = 15, PFNL_CMD_GET_TIMEOUT = 16, PFNL_CMD_SET_LIMIT = 17, PFNL_CMD_GET_LIMIT = 18, PFNL_CMD_BEGIN_ADDRS = 19, PFNL_CMD_ADD_ADDR = 20, + PFNL_CMD_GET_ADDRS = 21, __PFNL_CMD_MAX, }; #define PFNL_CMD_MAX (__PFNL_CMD_MAX -1) enum pfstate_key_type_t { PF_STK_UNSPEC, PF_STK_ADDR0 = 1, /* ip */ PF_STK_ADDR1 = 2, /* ip */ PF_STK_PORT0 = 3, /* u16 */ PF_STK_PORT1 = 4, /* u16 */ }; enum pfstate_peer_type_t { PF_STP_UNSPEC, PF_STP_PFSS_FLAGS = 1, /* u16 */ PF_STP_PFSS_TTL = 2, /* u8 */ PF_STP_SCRUB_FLAG = 3, /* u8 */ PF_STP_PFSS_TS_MOD = 4, /* u32 */ PF_STP_SEQLO = 5, /* u32 */ PF_STP_SEQHI = 6, /* u32 */ PF_STP_SEQDIFF = 7, /* u32 */ PF_STP_MAX_WIN = 8, /* u16 */ PF_STP_MSS = 9, /* u16 */ PF_STP_STATE = 10, /* u8 */ PF_STP_WSCALE = 11, /* u8 */ }; enum pfstate_type_t { PF_ST_UNSPEC, PF_ST_ID = 1, /* u32, state id */ PF_ST_CREATORID = 2, /* u32, */ PF_ST_IFNAME = 3, /* string */ PF_ST_ORIG_IFNAME = 4, /* string */ PF_ST_KEY_WIRE = 5, /* nested, pfstate_key_type_t */ PF_ST_KEY_STACK = 6, /* nested, pfstate_key_type_t */ PF_ST_PEER_SRC = 7, /* nested, pfstate_peer_type_t*/ PF_ST_PEER_DST = 8, /* nested, pfstate_peer_type_t */ PF_ST_RT_ADDR = 9, /* ip */ PF_ST_RULE = 10, /* u32 */ PF_ST_ANCHOR = 11, /* u32 */ PF_ST_NAT_RULE = 12, /* u32 */ PF_ST_CREATION = 13, /* u32 */ PF_ST_EXPIRE = 14, /* u32 */ PF_ST_PACKETS0 = 15, /* u64 */ PF_ST_PACKETS1 = 16, /* u64 */ PF_ST_BYTES0 = 17, /* u64 */ PF_ST_BYTES1 = 18, /* u64 */ PF_ST_AF = 19, /* u8 */ PF_ST_PROTO = 21, /* u8 */ PF_ST_DIRECTION = 22, /* u8 */ PF_ST_LOG = 23, /* u8 */ PF_ST_TIMEOUT = 24, /* u8 */ PF_ST_STATE_FLAGS = 25, /* u8 */ PF_ST_SYNC_FLAGS = 26, /* u8 */ PF_ST_UPDATES = 27, /* u8 */ PF_ST_VERSION = 28, /* u64 */ PF_ST_FILTER_ADDR = 29, /* in6_addr */ PF_ST_FILTER_MASK = 30, /* in6_addr */ PF_ST_RTABLEID = 31, /* i32 */ PF_ST_MIN_TTL = 32, /* u8 */ PF_ST_MAX_MSS = 33, /* u16 */ PF_ST_DNPIPE = 34, /* u16 */ PF_ST_DNRPIPE = 35, /* u16 */ PF_ST_RT = 36, /* u8 */ PF_ST_RT_IFNAME = 37, /* string */ }; enum pf_addr_type_t { PF_AT_UNSPEC, PF_AT_ADDR = 1, /* in6_addr */ PF_AT_MASK = 2, /* in6_addr */ PF_AT_IFNAME = 3, /* string */ PF_AT_TABLENAME = 4, /* string */ PF_AT_TYPE = 5, /* u8 */ PF_AT_IFLAGS = 6, /* u8 */ PF_AT_TBLCNT = 7, /* u32 */ PF_AT_DYNCNT = 8, /* u32 */ }; enum pfrule_addr_type_t { PF_RAT_UNSPEC, PF_RAT_ADDR = 1, /* nested, pf_addr_type_t */ PF_RAT_SRC_PORT = 2, /* u16 */ PF_RAT_DST_PORT = 3, /* u16 */ PF_RAT_NEG = 4, /* u8 */ PF_RAT_OP = 5, /* u8 */ }; enum pf_labels_type_t { PF_LT_UNSPEC, PF_LT_LABEL = 1, /* string */ }; enum pf_mape_portset_type_t { PF_MET_UNSPEC, PF_MET_OFFSET = 1, /* u8 */ PF_MET_PSID_LEN = 2, /* u8 */ PF_MET_PSID = 3, /* u16 */ }; enum pf_rpool_type_t { PF_PT_UNSPEC, PF_PT_KEY = 1, /* bytes, sizeof(struct pf_poolhashkey) */ PF_PT_COUNTER = 2, /* in6_addr */ PF_PT_TBLIDX = 3, /* u32 */ PF_PT_PROXY_SRC_PORT = 4, /* u16 */ PF_PT_PROXY_DST_PORT = 5, /* u16 */ PF_PT_OPTS = 6, /* u8 */ PF_PT_MAPE = 7, /* nested, pf_mape_portset_type_t */ }; enum pf_timeout_type_t { PF_TT_UNSPEC, PF_TT_TIMEOUT = 1, /* u32 */ }; enum pf_rule_uid_type_t { PF_RUT_UNSPEC, PF_RUT_UID_LOW = 1, /* u32 */ PF_RUT_UID_HIGH = 2, /* u32 */ PF_RUT_OP = 3, /* u8 */ }; enum pf_rule_type_t { PF_RT_UNSPEC, PF_RT_SRC = 1, /* nested, pf_rule_addr_type_t */ PF_RT_DST = 2, /* nested, pf_rule_addr_type_t */ PF_RT_RIDENTIFIER = 3, /* u32 */ PF_RT_LABELS = 4, /* nested, pf_labels_type_t */ PF_RT_IFNAME = 5, /* string */ PF_RT_QNAME = 6, /* string */ PF_RT_PQNAME = 7, /* string */ PF_RT_TAGNAME = 8, /* string */ PF_RT_MATCH_TAGNAME = 9, /* string */ PF_RT_OVERLOAD_TBLNAME = 10, /* string */ PF_RT_RPOOL = 11, /* nested, pf_rpool_type_t */ PF_RT_OS_FINGERPRINT = 12, /* u32 */ PF_RT_RTABLEID = 13, /* u32 */ PF_RT_TIMEOUT = 14, /* nested, pf_timeout_type_t */ PF_RT_MAX_STATES = 15, /* u32 */ PF_RT_MAX_SRC_NODES = 16, /* u32 */ PF_RT_MAX_SRC_STATES = 17, /* u32 */ PF_RT_MAX_SRC_CONN_RATE_LIMIT = 18, /* u32 */ PF_RT_MAX_SRC_CONN_RATE_SECS = 19, /* u32 */ PF_RT_DNPIPE = 20, /* u16 */ PF_RT_DNRPIPE = 21, /* u16 */ PF_RT_DNFLAGS = 22, /* u32 */ PF_RT_NR = 23, /* u32 */ PF_RT_PROB = 24, /* u32 */ PF_RT_CUID = 25, /* u32 */ PF_RT_CPID = 26, /* u32 */ PF_RT_RETURN_ICMP = 27, /* u16 */ PF_RT_RETURN_ICMP6 = 28, /* u16 */ PF_RT_MAX_MSS = 29, /* u16 */ PF_RT_SCRUB_FLAGS = 30, /* u16 */ PF_RT_UID = 31, /* nested, pf_rule_uid_type_t */ PF_RT_GID = 32, /* nested, pf_rule_uid_type_t */ PF_RT_RULE_FLAG = 33, /* u32 */ PF_RT_ACTION = 34, /* u8 */ PF_RT_DIRECTION = 35, /* u8 */ PF_RT_LOG = 36, /* u8 */ PF_RT_LOGIF = 37, /* u8 */ PF_RT_QUICK = 38, /* u8 */ PF_RT_IF_NOT = 39, /* u8 */ PF_RT_MATCH_TAG_NOT = 40, /* u8 */ PF_RT_NATPASS = 41, /* u8 */ PF_RT_KEEP_STATE = 42, /* u8 */ PF_RT_AF = 43, /* u8 */ PF_RT_PROTO = 44, /* u8 */ PF_RT_TYPE = 45, /* u8 */ PF_RT_CODE = 46, /* u8 */ PF_RT_FLAGS = 47, /* u8 */ PF_RT_FLAGSET = 48, /* u8 */ PF_RT_MIN_TTL = 49, /* u8 */ PF_RT_ALLOW_OPTS = 50, /* u8 */ PF_RT_RT = 51, /* u8 */ PF_RT_RETURN_TTL = 52, /* u8 */ PF_RT_TOS = 53, /* u8 */ PF_RT_SET_TOS = 54, /* u8 */ PF_RT_ANCHOR_RELATIVE = 55, /* u8 */ PF_RT_ANCHOR_WILDCARD = 56, /* u8 */ PF_RT_FLUSH = 57, /* u8 */ PF_RT_PRIO = 58, /* u8 */ PF_RT_SET_PRIO = 59, /* u8 */ PF_RT_SET_PRIO_REPLY = 60, /* u8 */ PF_RT_DIVERT_ADDRESS = 61, /* in6_addr */ PF_RT_DIVERT_PORT = 62, /* u16 */ PF_RT_PACKETS_IN = 63, /* u64 */ PF_RT_PACKETS_OUT = 64, /* u64 */ PF_RT_BYTES_IN = 65, /* u64 */ PF_RT_BYTES_OUT = 66, /* u64 */ PF_RT_EVALUATIONS = 67, /* u64 */ PF_RT_TIMESTAMP = 68, /* u64 */ PF_RT_STATES_CUR = 69, /* u64 */ PF_RT_STATES_TOTAL = 70, /* u64 */ PF_RT_SRC_NODES = 71, /* u64 */ PF_RT_ANCHOR_CALL = 72, /* string */ }; enum pf_addrule_type_t { PF_ART_UNSPEC, PF_ART_TICKET = 1, /* u32 */ PF_ART_POOL_TICKET = 2, /* u32 */ PF_ART_ANCHOR = 3, /* string */ PF_ART_ANCHOR_CALL = 4, /* string */ PF_ART_RULE = 5, /* nested, pfrule_type_t */ }; enum pf_getrules_type_t { PF_GR_UNSPEC, PF_GR_ANCHOR = 1, /* string */ PF_GR_ACTION = 2, /* u8 */ PF_GR_NR = 3, /* u32 */ PF_GR_TICKET = 4, /* u32 */ PF_GR_CLEAR = 5, /* u8 */ }; enum pf_clear_states_type_t { PF_CS_UNSPEC, PF_CS_CMP_ID = 1, /* u64 */ PF_CS_CMP_CREATORID = 2, /* u32 */ PF_CS_CMP_DIR = 3, /* u8 */ PF_CS_AF = 4, /* u8 */ PF_CS_PROTO = 5, /* u8 */ PF_CS_SRC = 6, /* nested, pf_addr_wrap */ PF_CS_DST = 7, /* nested, pf_addr_wrap */ PF_CS_RT_ADDR = 8, /* nested, pf_addr_wrap */ PF_CS_IFNAME = 9, /* string */ PF_CS_LABEL = 10, /* string */ PF_CS_KILL_MATCH = 11, /* bool */ PF_CS_NAT = 12, /* bool */ PF_CS_KILLED = 13, /* u32 */ }; enum pf_set_statusif_types_t { PF_SS_UNSPEC, PF_SS_IFNAME = 1, /* string */ }; enum pf_counter_types_t { PF_C_UNSPEC, PF_C_COUNTER = 1, /* u64 */ PF_C_NAME = 2, /* string */ PF_C_ID = 3, /* u32 */ }; enum pf_get_status_types_t { PF_GS_UNSPEC, PF_GS_IFNAME = 1, /* string */ PF_GS_RUNNING = 2, /* bool */ PF_GS_SINCE = 3, /* u32 */ PF_GS_DEBUG = 4, /* u32 */ PF_GS_HOSTID = 5, /* u32 */ PF_GS_STATES = 6, /* u32 */ PF_GS_SRC_NODES = 7, /* u32 */ PF_GS_REASSEMBLE = 8, /* u32 */ PF_GS_SYNCOOKIES_ACTIVE = 9, /* bool */ PF_GS_COUNTERS = 10, /* nested, */ PF_GS_LCOUNTERS = 11, /* nested, */ PF_GS_FCOUNTERS = 12, /* nested, */ PF_GS_SCOUNTERS = 13, /* nested, */ PF_GS_CHKSUM = 14, /* byte array */ PF_GS_PCOUNTERS = 15, /* u64 array */ PF_GS_BCOUNTERS = 16, /* u64 array */ }; enum pf_natlook_types_t { PF_NL_UNSPEC, PF_NL_AF = 1, /* u8 */ PF_NL_DIRECTION = 2, /* u8 */ PF_NL_PROTO = 3, /* u8 */ PF_NL_SRC_ADDR = 4, /* in6_addr */ PF_NL_DST_ADDR = 5, /* in6_addr */ PF_NL_SRC_PORT = 6, /* u16 */ PF_NL_DST_PORT = 7, /* u16 */ }; enum pf_set_debug_types_t { PF_SD_UNSPEC, PF_SD_LEVEL = 1, /* u32 */ }; enum pf_timeout_types_t { PF_TO_UNSPEC, PF_TO_TIMEOUT = 1, /* u32 */ PF_TO_SECONDS = 2, /* u32 */ }; enum pf_limit_types_t { PF_LI_UNSPEC, PF_LI_INDEX = 1, /* u32 */ PF_LI_LIMIT = 2, /* u32 */ }; enum pf_begin_addrs_types_t { PF_BA_UNSPEC, PF_BA_TICKET = 1, /* u32 */ }; enum pf_pool_addr_types_t { PF_PA_UNSPEC, PF_PA_ADDR = 1, /* nested, pf_addr_wrap */ PF_PA_IFNAME = 2, /* string */ }; enum pf_add_addr_types_t { PF_AA_UNSPEC, PF_AA_ACTION = 1, /* u32 */ PF_AA_TICKET = 2, /* u32 */ PF_AA_NR = 3, /* u32 */ PF_AA_R_NUM = 4, /* u32 */ PF_AA_R_ACTION = 5, /* u8 */ PF_AA_R_LAST = 6, /* u8 */ PF_AA_AF = 7, /* u8 */ PF_AA_ANCHOR = 8, /* string */ PF_AA_ADDR = 9, /* nested, pf_pooladdr */ }; #ifdef _KERNEL void pf_nl_register(void); void pf_nl_unregister(void); #endif #endif