diff --git a/crypto/openssl/include/internal/ktls.h b/crypto/openssl/include/internal/ktls.h index 622d7be76d1e..393794298ccd 100644 --- a/crypto/openssl/include/internal/ktls.h +++ b/crypto/openssl/include/internal/ktls.h @@ -1,400 +1,408 @@ /* * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #if defined(OPENSSL_SYS_LINUX) # ifndef OPENSSL_NO_KTLS # include # if LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0) # define OPENSSL_NO_KTLS # ifndef PEDANTIC # warning "KTLS requires Kernel Headers >= 4.13.0" # warning "Skipping Compilation of KTLS" # endif # endif # endif #endif #ifndef HEADER_INTERNAL_KTLS # define HEADER_INTERNAL_KTLS # ifndef OPENSSL_NO_KTLS # if defined(__FreeBSD__) # include # include # include # include # include # include "openssl/ssl3.h" # ifndef TCP_RXTLS_ENABLE # define OPENSSL_NO_KTLS_RX # endif # define OPENSSL_KTLS_AES_GCM_128 # define OPENSSL_KTLS_AES_GCM_256 # define OPENSSL_KTLS_TLS13 /* * Only used by the tests in sslapitest.c. */ # define TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE 8 # define TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE 8 typedef struct tls_enable ktls_crypto_info_t; /* * FreeBSD does not require any additional steps to enable KTLS before * setting keys. */ static ossl_inline int ktls_enable(int fd) { return 1; } /* * The TCP_TXTLS_ENABLE socket option marks the outgoing socket buffer * as using TLS. If successful, then data sent using this socket will * be encrypted and encapsulated in TLS records using the tls_en * provided here. * * The TCP_RXTLS_ENABLE socket option marks the incoming socket buffer * as using TLS. If successful, then data received for this socket will * be authenticated and decrypted using the tls_en provided here. */ static ossl_inline int ktls_start(int fd, ktls_crypto_info_t *tls_en, int is_tx) { if (is_tx) return setsockopt(fd, IPPROTO_TCP, TCP_TXTLS_ENABLE, tls_en, sizeof(*tls_en)) ? 0 : 1; # ifndef OPENSSL_NO_KTLS_RX return setsockopt(fd, IPPROTO_TCP, TCP_RXTLS_ENABLE, tls_en, sizeof(*tls_en)) ? 0 : 1; # else return 0; # endif } /* * Send a TLS record using the tls_en provided in ktls_start and use * record_type instead of the default SSL3_RT_APPLICATION_DATA. * When the socket is non-blocking, then this call either returns EAGAIN or * the entire record is pushed to TCP. It is impossible to send a partial * record using this control message. */ static ossl_inline int ktls_send_ctrl_message(int fd, unsigned char record_type, const void *data, size_t length) { struct msghdr msg = { 0 }; int cmsg_len = sizeof(record_type); struct cmsghdr *cmsg; char buf[CMSG_SPACE(cmsg_len)]; struct iovec msg_iov; /* Vector of data to send/receive into */ msg.msg_control = buf; msg.msg_controllen = sizeof(buf); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_level = IPPROTO_TCP; cmsg->cmsg_type = TLS_SET_RECORD_TYPE; cmsg->cmsg_len = CMSG_LEN(cmsg_len); *((unsigned char *)CMSG_DATA(cmsg)) = record_type; msg.msg_controllen = cmsg->cmsg_len; msg_iov.iov_base = (void *)data; msg_iov.iov_len = length; msg.msg_iov = &msg_iov; msg.msg_iovlen = 1; return sendmsg(fd, &msg, 0); } # ifdef OPENSSL_NO_KTLS_RX static ossl_inline int ktls_read_record(int fd, void *data, size_t length) { return -1; } # else /* !defined(OPENSSL_NO_KTLS_RX) */ /* * Receive a TLS record using the tls_en provided in ktls_start. The * kernel strips any explicit IV and authentication tag, but provides * the TLS record header via a control message. If there is an error * with the TLS record such as an invalid header, invalid padding, or * authentication failure recvmsg() will fail with an error. */ static ossl_inline int ktls_read_record(int fd, void *data, size_t length) { struct msghdr msg = { 0 }; int cmsg_len = sizeof(struct tls_get_record); struct tls_get_record *tgr; struct cmsghdr *cmsg; char buf[CMSG_SPACE(cmsg_len)]; struct iovec msg_iov; /* Vector of data to send/receive into */ int ret; unsigned char *p = data; const size_t prepend_length = SSL3_RT_HEADER_LENGTH; if (length <= prepend_length) { errno = EINVAL; return -1; } msg.msg_control = buf; msg.msg_controllen = sizeof(buf); msg_iov.iov_base = p + prepend_length; msg_iov.iov_len = length - prepend_length; msg.msg_iov = &msg_iov; msg.msg_iovlen = 1; ret = recvmsg(fd, &msg, 0); if (ret <= 0) return ret; if ((msg.msg_flags & (MSG_EOR | MSG_CTRUNC)) != MSG_EOR) { errno = EMSGSIZE; return -1; } if (msg.msg_controllen == 0) { errno = EBADMSG; return -1; } cmsg = CMSG_FIRSTHDR(&msg); if (cmsg->cmsg_level != IPPROTO_TCP || cmsg->cmsg_type != TLS_GET_RECORD || cmsg->cmsg_len != CMSG_LEN(cmsg_len)) { errno = EBADMSG; return -1; } tgr = (struct tls_get_record *)CMSG_DATA(cmsg); p[0] = tgr->tls_type; p[1] = tgr->tls_vmajor; p[2] = tgr->tls_vminor; *(uint16_t *)(p + 3) = htons(ret); return ret + prepend_length; } # endif /* OPENSSL_NO_KTLS_RX */ /* * KTLS enables the sendfile system call to send data from a file over * TLS. */ static ossl_inline ossl_ssize_t ktls_sendfile(int s, int fd, off_t off, size_t size, int flags) { off_t sbytes = 0; int ret; ret = sendfile(fd, s, off, size, NULL, &sbytes, flags); if (ret == -1 && sbytes == 0) return -1; return sbytes; } # endif /* __FreeBSD__ */ # if defined(OPENSSL_SYS_LINUX) # include # if LINUX_VERSION_CODE < KERNEL_VERSION(4, 17, 0) # define OPENSSL_NO_KTLS_RX # ifndef PEDANTIC # warning "KTLS requires Kernel Headers >= 4.17.0 for receiving" # warning "Skipping Compilation of KTLS receive data path" # endif # endif # define OPENSSL_KTLS_AES_GCM_128 # if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 1, 0) # define OPENSSL_KTLS_AES_GCM_256 # define OPENSSL_KTLS_TLS13 # if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 2, 0) # define OPENSSL_KTLS_AES_CCM_128 +# if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 11, 0) +# ifndef OPENSSL_NO_CHACHA +# define OPENSSL_KTLS_CHACHA20_POLY1305 +# endif +# endif # endif # endif # include # include # include # include "openssl/ssl3.h" # include "openssl/tls1.h" # include "openssl/evp.h" # ifndef SOL_TLS # define SOL_TLS 282 # endif # ifndef TCP_ULP # define TCP_ULP 31 # endif # ifndef TLS_RX # define TLS_RX 2 # endif struct tls_crypto_info_all { union { # ifdef OPENSSL_KTLS_AES_GCM_128 struct tls12_crypto_info_aes_gcm_128 gcm128; # endif # ifdef OPENSSL_KTLS_AES_GCM_256 struct tls12_crypto_info_aes_gcm_256 gcm256; # endif # ifdef OPENSSL_KTLS_AES_CCM_128 struct tls12_crypto_info_aes_ccm_128 ccm128; +# endif +# ifdef OPENSSL_KTLS_CHACHA20_POLY1305 + struct tls12_crypto_info_chacha20_poly1305 chacha20poly1305; # endif }; size_t tls_crypto_info_len; }; typedef struct tls_crypto_info_all ktls_crypto_info_t; /* * When successful, this socket option doesn't change the behaviour of the * TCP socket, except changing the TCP setsockopt handler to enable the * processing of SOL_TLS socket options. All other functionality remains the * same. */ static ossl_inline int ktls_enable(int fd) { return setsockopt(fd, SOL_TCP, TCP_ULP, "tls", sizeof("tls")) ? 0 : 1; } /* * The TLS_TX socket option changes the send/sendmsg handlers of the TCP socket. * If successful, then data sent using this socket will be encrypted and * encapsulated in TLS records using the crypto_info provided here. * The TLS_RX socket option changes the recv/recvmsg handlers of the TCP socket. * If successful, then data received using this socket will be decrypted, * authenticated and decapsulated using the crypto_info provided here. */ static ossl_inline int ktls_start(int fd, ktls_crypto_info_t *crypto_info, int is_tx) { return setsockopt(fd, SOL_TLS, is_tx ? TLS_TX : TLS_RX, crypto_info, crypto_info->tls_crypto_info_len) ? 0 : 1; } /* * Send a TLS record using the crypto_info provided in ktls_start and use * record_type instead of the default SSL3_RT_APPLICATION_DATA. * When the socket is non-blocking, then this call either returns EAGAIN or * the entire record is pushed to TCP. It is impossible to send a partial * record using this control message. */ static ossl_inline int ktls_send_ctrl_message(int fd, unsigned char record_type, const void *data, size_t length) { struct msghdr msg; int cmsg_len = sizeof(record_type); struct cmsghdr *cmsg; union { struct cmsghdr hdr; char buf[CMSG_SPACE(sizeof(unsigned char))]; } cmsgbuf; struct iovec msg_iov; /* Vector of data to send/receive into */ memset(&msg, 0, sizeof(msg)); msg.msg_control = cmsgbuf.buf; msg.msg_controllen = sizeof(cmsgbuf.buf); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_level = SOL_TLS; cmsg->cmsg_type = TLS_SET_RECORD_TYPE; cmsg->cmsg_len = CMSG_LEN(cmsg_len); *((unsigned char *)CMSG_DATA(cmsg)) = record_type; msg.msg_controllen = cmsg->cmsg_len; msg_iov.iov_base = (void *)data; msg_iov.iov_len = length; msg.msg_iov = &msg_iov; msg.msg_iovlen = 1; return sendmsg(fd, &msg, 0); } /* * KTLS enables the sendfile system call to send data from a file over TLS. * @flags are ignored on Linux. (placeholder for FreeBSD sendfile) * */ static ossl_inline ossl_ssize_t ktls_sendfile(int s, int fd, off_t off, size_t size, int flags) { return sendfile(s, fd, &off, size); } # ifdef OPENSSL_NO_KTLS_RX static ossl_inline int ktls_read_record(int fd, void *data, size_t length) { return -1; } # else /* !defined(OPENSSL_NO_KTLS_RX) */ /* * Receive a TLS record using the crypto_info provided in ktls_start. * The kernel strips the TLS record header, IV and authentication tag, * returning only the plaintext data or an error on failure. * We add the TLS record header here to satisfy routines in rec_layer_s3.c */ static ossl_inline int ktls_read_record(int fd, void *data, size_t length) { struct msghdr msg; struct cmsghdr *cmsg; union { struct cmsghdr hdr; char buf[CMSG_SPACE(sizeof(unsigned char))]; } cmsgbuf; struct iovec msg_iov; int ret; unsigned char *p = data; const size_t prepend_length = SSL3_RT_HEADER_LENGTH; if (length < prepend_length + EVP_GCM_TLS_TAG_LEN) { errno = EINVAL; return -1; } memset(&msg, 0, sizeof(msg)); msg.msg_control = cmsgbuf.buf; msg.msg_controllen = sizeof(cmsgbuf.buf); msg_iov.iov_base = p + prepend_length; msg_iov.iov_len = length - prepend_length - EVP_GCM_TLS_TAG_LEN; msg.msg_iov = &msg_iov; msg.msg_iovlen = 1; ret = recvmsg(fd, &msg, 0); if (ret < 0) return ret; if (msg.msg_controllen > 0) { cmsg = CMSG_FIRSTHDR(&msg); if (cmsg->cmsg_type == TLS_GET_RECORD_TYPE) { p[0] = *((unsigned char *)CMSG_DATA(cmsg)); p[1] = TLS1_2_VERSION_MAJOR; p[2] = TLS1_2_VERSION_MINOR; /* returned length is limited to msg_iov.iov_len above */ p[3] = (ret >> 8) & 0xff; p[4] = ret & 0xff; ret += prepend_length; } } return ret; } # endif /* OPENSSL_NO_KTLS_RX */ # endif /* OPENSSL_SYS_LINUX */ # endif /* OPENSSL_NO_KTLS */ #endif /* HEADER_INTERNAL_KTLS */ diff --git a/crypto/openssl/ssl/ktls.c b/crypto/openssl/ssl/ktls.c index 7123ecac0051..f82946b260ab 100644 --- a/crypto/openssl/ssl/ktls.c +++ b/crypto/openssl/ssl/ktls.c @@ -1,221 +1,240 @@ /* * Copyright 2018-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "ssl_local.h" #include "internal/ktls.h" #if defined(__FreeBSD__) # include /*- * Check if a given cipher is supported by the KTLS interface. * The kernel might still fail the setsockopt() if no suitable * provider is found, but this checks if the socket option * supports the cipher suite used at all. */ int ktls_check_supported_cipher(const SSL *s, const EVP_CIPHER *c, const EVP_CIPHER_CTX *dd) { switch (s->version) { case TLS1_VERSION: case TLS1_1_VERSION: case TLS1_2_VERSION: case TLS1_3_VERSION: break; default: return 0; } switch (s->s3->tmp.new_cipher->algorithm_enc) { case SSL_AES128GCM: case SSL_AES256GCM: return 1; case SSL_AES128: case SSL_AES256: if (s->ext.use_etm) return 0; switch (s->s3->tmp.new_cipher->algorithm_mac) { case SSL_SHA1: case SSL_SHA256: case SSL_SHA384: return 1; default: return 0; } default: return 0; } } /* Function to configure kernel TLS structure */ int ktls_configure_crypto(const SSL *s, const EVP_CIPHER *c, EVP_CIPHER_CTX *dd, void *rl_sequence, ktls_crypto_info_t *crypto_info, unsigned char **rec_seq, unsigned char *iv, unsigned char *key, unsigned char *mac_key, size_t mac_secret_size) { memset(crypto_info, 0, sizeof(*crypto_info)); switch (s->s3->tmp.new_cipher->algorithm_enc) { case SSL_AES128GCM: case SSL_AES256GCM: crypto_info->cipher_algorithm = CRYPTO_AES_NIST_GCM_16; if (s->version == TLS1_3_VERSION) crypto_info->iv_len = EVP_CIPHER_CTX_iv_length(dd); else crypto_info->iv_len = EVP_GCM_TLS_FIXED_IV_LEN; break; case SSL_AES128: case SSL_AES256: switch (s->s3->tmp.new_cipher->algorithm_mac) { case SSL_SHA1: crypto_info->auth_algorithm = CRYPTO_SHA1_HMAC; break; case SSL_SHA256: crypto_info->auth_algorithm = CRYPTO_SHA2_256_HMAC; break; case SSL_SHA384: crypto_info->auth_algorithm = CRYPTO_SHA2_384_HMAC; break; default: return 0; } crypto_info->cipher_algorithm = CRYPTO_AES_CBC; crypto_info->iv_len = EVP_CIPHER_iv_length(c); crypto_info->auth_key = mac_key; crypto_info->auth_key_len = mac_secret_size; break; default: return 0; } crypto_info->cipher_key = key; crypto_info->cipher_key_len = EVP_CIPHER_key_length(c); crypto_info->iv = iv; crypto_info->tls_vmajor = (s->version >> 8) & 0x000000ff; crypto_info->tls_vminor = (s->version & 0x000000ff); # ifdef TCP_RXTLS_ENABLE memcpy(crypto_info->rec_seq, rl_sequence, sizeof(crypto_info->rec_seq)); if (rec_seq != NULL) *rec_seq = crypto_info->rec_seq; # else if (rec_seq != NULL) *rec_seq = NULL; # endif return 1; }; #endif /* __FreeBSD__ */ #if defined(OPENSSL_SYS_LINUX) /* Function to check supported ciphers in Linux */ int ktls_check_supported_cipher(const SSL *s, const EVP_CIPHER *c, const EVP_CIPHER_CTX *dd) { switch (s->version) { case TLS1_2_VERSION: case TLS1_3_VERSION: break; default: return 0; } - /* check that cipher is AES_GCM_128, AES_GCM_256, AES_CCM_128 */ + /* check that cipher is AES_GCM_128, AES_GCM_256, AES_CCM_128 + * or Chacha20-Poly1305 + */ switch (EVP_CIPHER_nid(c)) { # ifdef OPENSSL_KTLS_AES_CCM_128 case NID_aes_128_ccm: if (EVP_CIPHER_CTX_tag_length(dd) != EVP_CCM_TLS_TAG_LEN) return 0; # endif # ifdef OPENSSL_KTLS_AES_GCM_128 case NID_aes_128_gcm: # endif # ifdef OPENSSL_KTLS_AES_GCM_256 case NID_aes_256_gcm: +# endif +# ifdef OPENSSL_KTLS_CHACHA20_POLY1305 + case NID_chacha20_poly1305: # endif return 1; default: return 0; } } /* Function to configure kernel TLS structure */ int ktls_configure_crypto(const SSL *s, const EVP_CIPHER *c, EVP_CIPHER_CTX *dd, void *rl_sequence, ktls_crypto_info_t *crypto_info, unsigned char **rec_seq, unsigned char *iv, unsigned char *key, unsigned char *mac_key, size_t mac_secret_size) { unsigned char geniv[12]; unsigned char *iiv = iv; if (s->version == TLS1_2_VERSION && EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) { EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GET_IV, EVP_GCM_TLS_FIXED_IV_LEN + EVP_GCM_TLS_EXPLICIT_IV_LEN, geniv); iiv = geniv; } memset(crypto_info, 0, sizeof(*crypto_info)); switch (EVP_CIPHER_nid(c)) { # ifdef OPENSSL_KTLS_AES_GCM_128 case NID_aes_128_gcm: crypto_info->gcm128.info.cipher_type = TLS_CIPHER_AES_GCM_128; crypto_info->gcm128.info.version = s->version; crypto_info->tls_crypto_info_len = sizeof(crypto_info->gcm128); memcpy(crypto_info->gcm128.iv, iiv + EVP_GCM_TLS_FIXED_IV_LEN, TLS_CIPHER_AES_GCM_128_IV_SIZE); memcpy(crypto_info->gcm128.salt, iiv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); memcpy(crypto_info->gcm128.key, key, EVP_CIPHER_key_length(c)); memcpy(crypto_info->gcm128.rec_seq, rl_sequence, TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); if (rec_seq != NULL) *rec_seq = crypto_info->gcm128.rec_seq; return 1; # endif # ifdef OPENSSL_KTLS_AES_GCM_256 case NID_aes_256_gcm: crypto_info->gcm256.info.cipher_type = TLS_CIPHER_AES_GCM_256; crypto_info->gcm256.info.version = s->version; crypto_info->tls_crypto_info_len = sizeof(crypto_info->gcm256); memcpy(crypto_info->gcm256.iv, iiv + EVP_GCM_TLS_FIXED_IV_LEN, TLS_CIPHER_AES_GCM_256_IV_SIZE); memcpy(crypto_info->gcm256.salt, iiv, TLS_CIPHER_AES_GCM_256_SALT_SIZE); memcpy(crypto_info->gcm256.key, key, EVP_CIPHER_key_length(c)); memcpy(crypto_info->gcm256.rec_seq, rl_sequence, TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); if (rec_seq != NULL) *rec_seq = crypto_info->gcm256.rec_seq; return 1; # endif # ifdef OPENSSL_KTLS_AES_CCM_128 case NID_aes_128_ccm: crypto_info->ccm128.info.cipher_type = TLS_CIPHER_AES_CCM_128; crypto_info->ccm128.info.version = s->version; crypto_info->tls_crypto_info_len = sizeof(crypto_info->ccm128); memcpy(crypto_info->ccm128.iv, iiv + EVP_CCM_TLS_FIXED_IV_LEN, TLS_CIPHER_AES_CCM_128_IV_SIZE); memcpy(crypto_info->ccm128.salt, iiv, TLS_CIPHER_AES_CCM_128_SALT_SIZE); memcpy(crypto_info->ccm128.key, key, EVP_CIPHER_key_length(c)); memcpy(crypto_info->ccm128.rec_seq, rl_sequence, TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE); if (rec_seq != NULL) *rec_seq = crypto_info->ccm128.rec_seq; return 1; +# endif +# ifdef OPENSSL_KTLS_CHACHA20_POLY1305 + case NID_chacha20_poly1305: + crypto_info->chacha20poly1305.info.cipher_type = TLS_CIPHER_CHACHA20_POLY1305; + crypto_info->chacha20poly1305.info.version = s->version; + crypto_info->tls_crypto_info_len = sizeof(crypto_info->chacha20poly1305); + memcpy(crypto_info->chacha20poly1305.iv, iiv, + TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE); + memcpy(crypto_info->chacha20poly1305.key, key, EVP_CIPHER_key_length(c)); + memcpy(crypto_info->chacha20poly1305.rec_seq, rl_sequence, + TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE); + if (rec_seq != NULL) + *rec_seq = crypto_info->chacha20poly1305.rec_seq; + return 1; # endif default: return 0; } } #endif /* OPENSSL_SYS_LINUX */