diff --git a/sys/arm/arm/trap-v6.c b/sys/arm/arm/trap-v6.c
index 16f166e83114..cd141376d381 100644
--- a/sys/arm/arm/trap-v6.c
+++ b/sys/arm/arm/trap-v6.c
@@ -1,678 +1,670 @@
 /*-
  * Copyright 2014 Olivier Houchard <cognet@FreeBSD.org>
  * Copyright 2014 Svatopluk Kraus <onwahe@gmail.com>
  * Copyright 2014 Michal Meloun <meloun@miracle.cz>
  * Copyright 2014 Andrew Turner <andrew@FreeBSD.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include "opt_ktrace.h"
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/bus.h>
 #include <sys/systm.h>
 #include <sys/proc.h>
 #include <sys/kernel.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/signalvar.h>
 #include <sys/ktr.h>
 #include <sys/vmmeter.h>
 #ifdef KTRACE
 #include <sys/uio.h>
 #include <sys/ktrace.h>
 #endif
 
 #include <vm/vm.h>
 #include <vm/pmap.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_map.h>
 #include <vm/vm_extern.h>
 #include <vm/vm_param.h>
 
 #include <machine/cpu.h>
 #include <machine/frame.h>
 #include <machine/machdep.h>
 #include <machine/pcb.h>
 
 #ifdef KDB
 #include <sys/kdb.h>
 #include <machine/db_machdep.h>
 #endif
 
 #ifdef KDTRACE_HOOKS
 #include <sys/dtrace_bsd.h>
 #endif
 
 extern char cachebailout[];
 
-#ifdef DEBUG
-int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
-#endif
-
 struct ksig {
 	int sig;
 	u_long code;
 	vm_offset_t	addr;
 };
 
 typedef int abort_func_t(struct trapframe *, u_int, u_int, u_int, u_int,
     struct thread *, struct ksig *);
 
 static abort_func_t abort_fatal;
 static abort_func_t abort_align;
 static abort_func_t abort_icache;
 
 struct abort {
 	abort_func_t	*func;
 	const char	*desc;
 };
 
 /*
  * How are the aborts handled?
  *
  * Undefined Code:
  *  - Always fatal as we do not know what does it mean.
  * Imprecise External Abort:
  *  - Always fatal, but can be handled somehow in the future.
  *    Now, due to PCIe buggy hardware, ignored.
  * Precise External Abort:
  *  - Always fatal, but who knows in the future???
  * Debug Event:
  *  - Special handling.
  * External Translation Abort (L1 & L2)
  *  - Always fatal as something is screwed up in page tables or hardware.
  * Domain Fault (L1 & L2):
  *  - Always fatal as we do not play game with domains.
  * Alignment Fault:
  *  - Everything should be aligned in kernel with exception of user to kernel
  *    and vice versa data copying, so if pcb_onfault is not set, it's fatal.
  *    We generate signal in case of abort from user mode.
  * Instruction cache maintenance:
  *  - According to manual, this is translation fault during cache maintenance
  *    operation. So, it could be really complex in SMP case and fuzzy too
  *    for cache operations working on virtual addresses. For now, we will
  *    consider this abort as fatal. In fact, no cache maintenance on
  *    not mapped virtual addresses should be called. As cache maintenance
  *    operation (except DMB, DSB, and Flush Prefetch Buffer) are priviledged,
  *    the abort is fatal for user mode as well for now. (This is good place to
  *    note that cache maintenance on virtual address fill TLB.)
  * Acces Bit (L1 & L2):
  *  - Fast hardware emulation for kernel and user mode.
  * Translation Fault (L1 & L2):
  *  - Standard fault mechanism is held including vm_fault().
  * Permission Fault (L1 & L2):
  *  - Fast hardware emulation of modify bits and in other cases, standard
  *    fault mechanism is held including vm_fault().
  */
 
 static const struct abort aborts[] = {
 	{abort_fatal,	"Undefined Code (0x000)"},
 	{abort_align,	"Alignment Fault"},
 	{abort_fatal,	"Debug Event"},
 	{NULL,		"Access Bit (L1)"},
 	{NULL,		"Instruction cache maintenance"},
 	{NULL,		"Translation Fault (L1)"},
 	{NULL,		"Access Bit (L2)"},
 	{NULL,		"Translation Fault (L2)"},
 
 	{abort_fatal,	"External Abort"},
 	{abort_fatal,	"Domain Fault (L1)"},
 	{abort_fatal,	"Undefined Code (0x00A)"},
 	{abort_fatal,	"Domain Fault (L2)"},
 	{abort_fatal,	"External Translation Abort (L1)"},
 	{NULL,		"Permission Fault (L1)"},
 	{abort_fatal,	"External Translation Abort (L2)"},
 	{NULL,		"Permission Fault (L2)"},
 
 	{abort_fatal,	"TLB Conflict Abort"},
 	{abort_fatal,	"Undefined Code (0x401)"},
 	{abort_fatal,	"Undefined Code (0x402)"},
 	{abort_fatal,	"Undefined Code (0x403)"},
 	{abort_fatal,	"Undefined Code (0x404)"},
 	{abort_fatal,	"Undefined Code (0x405)"},
 	{abort_fatal,	"Asynchronous External Abort"},
 	{abort_fatal,	"Undefined Code (0x407)"},
 
 	{abort_fatal,	"Asynchronous Parity Error on Memory Access"},
 	{abort_fatal,	"Parity Error on Memory Access"},
 	{abort_fatal,	"Undefined Code (0x40A)"},
 	{abort_fatal,	"Undefined Code (0x40B)"},
 	{abort_fatal,	"Parity Error on Translation (L1)"},
 	{abort_fatal,	"Undefined Code (0x40D)"},
 	{abort_fatal,	"Parity Error on Translation (L2)"},
 	{abort_fatal,	"Undefined Code (0x40F)"}
 };
 
 static __inline void
 call_trapsignal(struct thread *td, int sig, int code, vm_offset_t addr,
     int trapno)
 {
 	ksiginfo_t ksi;
 
 	CTR4(KTR_TRAP, "%s: addr: %#x, sig: %d, code: %d",
 	   __func__, addr, sig, code);
 
 	/*
 	 * TODO: some info would be nice to know
 	 * if we are serving data or prefetch abort.
 	 */
 
 	ksiginfo_init_trap(&ksi);
 	ksi.ksi_signo = sig;
 	ksi.ksi_code = code;
 	ksi.ksi_addr = (void *)addr;
 	ksi.ksi_trapno = trapno;
 	trapsignal(td, &ksi);
 }
 
 /*
  * abort_imprecise() handles the following abort:
  *
  *  FAULT_EA_IMPREC - Imprecise External Abort
  *
  * The imprecise means that we don't know where the abort happened,
  * thus FAR is undefined. The abort should not never fire, but hot
  * plugging or accidental hardware failure can be the cause of it.
  * If the abort happens, it can even be on different (thread) context.
  * Without any additional support, the abort is fatal, as we do not
  * know what really happened.
  *
  * QQQ: Some additional functionality, like pcb_onfault but global,
  *      can be implemented. Imprecise handlers could be registered
  *      which tell us if the abort is caused by something they know
  *      about. They should return one of three codes like:
  *		FAULT_IS_MINE,
  *		FAULT_CAN_BE_MINE,
  *		FAULT_IS_NOT_MINE.
  *      The handlers should be called until some of them returns
  *      FAULT_IS_MINE value or all was called. If all handlers return
  *	FAULT_IS_NOT_MINE value, then the abort is fatal.
  */
 static __inline void
 abort_imprecise(struct trapframe *tf, u_int fsr, u_int prefetch, bool usermode)
 {
 
 	/*
 	 * XXX - We can got imprecise abort as result of access
 	 * to not-present PCI/PCIe configuration space.
 	 */
 #if 0
 	goto out;
 #endif
 	abort_fatal(tf, FAULT_EA_IMPREC, fsr, 0, prefetch, curthread, NULL);
 
 	/*
 	 * Returning from this function means that we ignore
 	 * the abort for good reason. Note that imprecise abort
 	 * could fire any time even in user mode.
 	 */
 
 #if 0
 out:
 	if (usermode)
 		userret(curthread, tf);
 #endif
 }
 
 /*
  * abort_debug() handles the following abort:
  *
  *  FAULT_DEBUG - Debug Event
  *
  */
 static __inline void
 abort_debug(struct trapframe *tf, u_int fsr, u_int prefetch, bool usermode,
     u_int far)
 {
 
 	if (usermode) {
 		struct thread *td;
 
 		td = curthread;
 		call_trapsignal(td, SIGTRAP, TRAP_BRKPT, far, FAULT_DEBUG);
 		userret(td, tf);
 	} else {
 #ifdef KDB
 		kdb_trap((prefetch) ? T_BREAKPOINT : T_WATCHPOINT, 0, tf);
 #else
 		printf("No debugger in kernel.\n");
 #endif
 	}
 }
 
 /*
  * Abort handler.
  *
  * FAR, FSR, and everything what can be lost after enabling
  * interrupts must be grabbed before the interrupts will be
  * enabled. Note that when interrupts will be enabled, we
  * could even migrate to another CPU ...
  *
  * TODO: move quick cases to ASM
  */
 void
 abort_handler(struct trapframe *tf, int prefetch)
 {
 	struct thread *td;
 	vm_offset_t far, va;
 	int idx, rv;
 	uint32_t fsr;
 	struct ksig ksig;
 	struct proc *p;
 	struct pcb *pcb;
 	struct vm_map *map;
 	struct vmspace *vm;
 	vm_prot_t ftype;
 	bool usermode;
 	int bp_harden, ucode;
 #ifdef INVARIANTS
 	void *onfault;
 #endif
 
 	VM_CNT_INC(v_trap);
 	td = curthread;
 
 	fsr = (prefetch) ? cp15_ifsr_get(): cp15_dfsr_get();
 #if __ARM_ARCH >= 7
 	far = (prefetch) ? cp15_ifar_get() : cp15_dfar_get();
 #else
 	far = (prefetch) ? TRAPF_PC(tf) : cp15_dfar_get();
 #endif
 
 	idx = FSR_TO_FAULT(fsr);
 	usermode = TRAPF_USERMODE(tf);	/* Abort came from user mode? */
 
 	/*
 	 * Apply BP hardening by flushing the branch prediction cache
 	 * for prefaults on kernel addresses.
 	 */
 	if (__predict_false(prefetch && far > VM_MAXUSER_ADDRESS &&
 	    (idx == FAULT_TRAN_L2 || idx == FAULT_PERM_L2))) {
 		bp_harden = PCPU_GET(bp_harden_kind);
 		if (bp_harden == PCPU_BP_HARDEN_KIND_BPIALL)
 			_CP15_BPIALL();
 		else if (bp_harden == PCPU_BP_HARDEN_KIND_ICIALLU)
 			_CP15_ICIALLU();
 	}
 
 	if (usermode)
 		td->td_frame = tf;
 
 	CTR6(KTR_TRAP, "%s: fsr %#x (idx %u) far %#x prefetch %u usermode %d",
 	    __func__, fsr, idx, far, prefetch, usermode);
 
 	/*
 	 * Firstly, handle aborts that are not directly related to mapping.
 	 */
 	if (__predict_false(idx == FAULT_EA_IMPREC)) {
 		abort_imprecise(tf, fsr, prefetch, usermode);
 		return;
 	}
 
 	if (__predict_false(idx == FAULT_DEBUG)) {
 		abort_debug(tf, fsr, prefetch, usermode, far);
 		return;
 	}
 
 	/*
 	 * ARM has a set of unprivileged load and store instructions
 	 * (LDRT/LDRBT/STRT/STRBT ...) which are supposed to be used in other
 	 * than user mode and OS should recognize their aborts and behave
 	 * appropriately. However, there is no way how to do that reasonably
 	 * in general unless we restrict the handling somehow.
 	 *
 	 * For now, these instructions are used only in copyin()/copyout()
 	 * like functions where usermode buffers are checked in advance that
 	 * they are not from KVA space. Thus, no action is needed here.
 	 */
 
 	/*
 	 * (1) Handle access and R/W hardware emulation aborts.
 	 * (2) Check that abort is not on pmap essential address ranges.
 	 *     There is no way how to fix it, so we don't even try.
 	 */
 	rv = pmap_fault(PCPU_GET(curpmap), far, fsr, idx, usermode);
 	if (rv == KERN_SUCCESS)
 		return;
 #ifdef KDB
 	if (kdb_active) {
 		kdb_reenter();
 		goto out;
 	}
 #endif
 	if (rv == KERN_INVALID_ADDRESS)
 		goto nogo;
 
 	if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) {
 		/*
 		 * Due to both processor errata and lazy TLB invalidation when
 		 * access restrictions are removed from virtual pages, memory
 		 * accesses that are allowed by the physical mapping layer may
 		 * nonetheless cause one spurious page fault per virtual page.
 		 * When the thread is executing a "no faulting" section that
 		 * is bracketed by vm_fault_{disable,enable}_pagefaults(),
 		 * every page fault is treated as a spurious page fault,
 		 * unless it accesses the same virtual address as the most
 		 * recent page fault within the same "no faulting" section.
 		 */
 		if (td->td_md.md_spurflt_addr != far ||
 		    (td->td_pflags & TDP_RESETSPUR) != 0) {
 			td->td_md.md_spurflt_addr = far;
 			td->td_pflags &= ~TDP_RESETSPUR;
 
 			tlb_flush_local(far & ~PAGE_MASK);
 			return;
 		}
 	} else {
 		/*
 		 * If we get a page fault while in a critical section, then
 		 * it is most likely a fatal kernel page fault.  The kernel
 		 * is already going to panic trying to get a sleep lock to
 		 * do the VM lookup, so just consider it a fatal trap so the
 		 * kernel can print out a useful trap message and even get
 		 * to the debugger.
 		 *
 		 * If we get a page fault while holding a non-sleepable
 		 * lock, then it is most likely a fatal kernel page fault.
 		 * If WITNESS is enabled, then it's going to whine about
 		 * bogus LORs with various VM locks, so just skip to the
 		 * fatal trap handling directly.
 		 */
 		if (td->td_critnest != 0 ||
 		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
 		    "Kernel page fault") != 0) {
 			abort_fatal(tf, idx, fsr, far, prefetch, td, &ksig);
 			return;
 		}
 	}
 
 	/* Re-enable interrupts if they were enabled previously. */
 	if (td->td_md.md_spinlock_count == 0) {
 		if (__predict_true(tf->tf_spsr & PSR_I) == 0)
 			enable_interrupts(PSR_I);
 		if (__predict_true(tf->tf_spsr & PSR_F) == 0)
 			enable_interrupts(PSR_F);
 	}
 
 	p = td->td_proc;
 	if (usermode) {
 		td->td_pticks = 0;
 		if (td->td_cowgen != p->p_cowgen)
 			thread_cow_update(td);
 	}
 
 	/* Invoke the appropriate handler, if necessary. */
 	if (__predict_false(aborts[idx].func != NULL)) {
 		if ((aborts[idx].func)(tf, idx, fsr, far, prefetch, td, &ksig))
 			goto do_trapsignal;
 		goto out;
 	}
 
 	/*
 	 * At this point, we're dealing with one of the following aborts:
 	 *
 	 *  FAULT_ICACHE   - I-cache maintenance
 	 *  FAULT_TRAN_xx  - Translation
 	 *  FAULT_PERM_xx  - Permission
 	 */
 
 	/*
 	 * Don't pass faulting cache operation to vm_fault(). We don't want
 	 * to handle all vm stuff at this moment.
 	 */
 	pcb = td->td_pcb;
 	if (__predict_false(pcb->pcb_onfault == cachebailout)) {
 		tf->tf_r0 = far;		/* return failing address */
 		tf->tf_pc = (register_t)pcb->pcb_onfault;
 		return;
 	}
 
 	/* Handle remaining I-cache aborts. */
 	if (idx == FAULT_ICACHE) {
 		if (abort_icache(tf, idx, fsr, far, prefetch, td, &ksig))
 			goto do_trapsignal;
 		goto out;
 	}
 
 	va = trunc_page(far);
 	if (va >= KERNBASE) {
 		/*
 		 * Don't allow user-mode faults in kernel address space.
 		 */
 		if (usermode) {
 			ksig.sig = SIGSEGV;
 			ksig.code = SEGV_ACCERR;
 			goto nogo;
 		}
 
 		map = kernel_map;
 	} else {
 		/*
 		 * This is a fault on non-kernel virtual memory. If curproc
 		 * is NULL or curproc->p_vmspace is NULL the fault is fatal.
 		 */
 		vm = (p != NULL) ? p->p_vmspace : NULL;
 		if (vm == NULL) {
 			ksig.sig = SIGSEGV;
 			ksig.code = 0;
 			goto nogo;
 		}
 
 		map = &vm->vm_map;
 		if (!usermode && (td->td_intr_nesting_level != 0 ||
 		    pcb->pcb_onfault == NULL)) {
 			abort_fatal(tf, idx, fsr, far, prefetch, td, &ksig);
 			return;
 		}
 	}
 
 	ftype = (fsr & FSR_WNR) ? VM_PROT_WRITE : VM_PROT_READ;
 	if (prefetch)
 		ftype |= VM_PROT_EXECUTE;
 
-#ifdef DEBUG
-	last_fault_code = fsr;
-#endif
-
 #ifdef INVARIANTS
 	onfault = pcb->pcb_onfault;
 	pcb->pcb_onfault = NULL;
 #endif
 
 	/* Fault in the page. */
 	rv = vm_fault_trap(map, va, ftype, VM_FAULT_NORMAL, &ksig.sig,
 	    &ucode);
 	ksig.code = ucode;
 
 #ifdef INVARIANTS
 	pcb->pcb_onfault = onfault;
 #endif
 
 	if (__predict_true(rv == KERN_SUCCESS))
 		goto out;
 nogo:
 	if (!usermode) {
 		if (td->td_intr_nesting_level == 0 &&
 		    pcb->pcb_onfault != NULL) {
 			tf->tf_r0 = rv;
 			tf->tf_pc = (int)pcb->pcb_onfault;
 			return;
 		}
 		CTR2(KTR_TRAP, "%s: vm_fault() failed with %d", __func__, rv);
 		abort_fatal(tf, idx, fsr, far, prefetch, td, &ksig);
 		return;
 	}
 
 	ksig.addr = far;
 
 do_trapsignal:
 	call_trapsignal(td, ksig.sig, ksig.code, ksig.addr, idx);
 out:
 	if (usermode)
 		userret(td, tf);
 }
 
 /*
  * abort_fatal() handles the following data aborts:
  *
  *  FAULT_DEBUG		- Debug Event
  *  FAULT_ACCESS_xx	- Acces Bit
  *  FAULT_EA_PREC	- Precise External Abort
  *  FAULT_DOMAIN_xx	- Domain Fault
  *  FAULT_EA_TRAN_xx	- External Translation Abort
  *  FAULT_EA_IMPREC	- Imprecise External Abort
  *  + all undefined codes for ABORT
  *
  * We should never see these on a properly functioning system.
  *
  * This function is also called by the other handlers if they
  * detect a fatal problem.
  *
  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
  */
 static int
 abort_fatal(struct trapframe *tf, u_int idx, u_int fsr, u_int far,
     u_int prefetch, struct thread *td, struct ksig *ksig)
 {
 	bool usermode;
 	const char *mode;
 	const char *rw_mode;
 #ifdef KDB
 	bool handled;
 #endif
 
 	usermode = TRAPF_USERMODE(tf);
 #ifdef KDTRACE_HOOKS
 	if (!usermode) {
 		if (dtrace_trap_func != NULL && (*dtrace_trap_func)(tf, far))
 			return (0);
 	}
 #endif
 
 	mode = usermode ? "user" : "kernel";
 	rw_mode  = fsr & FSR_WNR ? "write" : "read";
 	disable_interrupts(PSR_I|PSR_F);
 
 	if (td != NULL) {
 		printf("Fatal %s mode data abort: '%s' on %s\n", mode,
 		    aborts[idx].desc, rw_mode);
 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
 		if (idx != FAULT_EA_IMPREC)
 			printf("%08x, ", far);
 		else
 			printf("Invalid,  ");
 		printf("spsr=%08x\n", tf->tf_spsr);
 	} else {
 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
 		    mode, tf->tf_pc);
 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
 	}
 
 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
 	printf("r12=%08x, ", tf->tf_r12);
 
 	if (usermode)
 		printf("usp=%08x, ulr=%08x",
 		    tf->tf_usr_sp, tf->tf_usr_lr);
 	else
 		printf("ssp=%08x, slr=%08x",
 		    tf->tf_svc_sp, tf->tf_svc_lr);
 	printf(", pc =%08x\n\n", tf->tf_pc);
 
 #ifdef KDB
 	if (debugger_on_trap) {
 		kdb_why = KDB_WHY_TRAP;
 		handled = kdb_trap(fsr, 0, tf);
 		kdb_why = KDB_WHY_UNSET;
 		if (handled)
 			return (0);
 	}
 #endif
 	panic("Fatal abort");
 	/*NOTREACHED*/
 }
 
 /*
  * abort_align() handles the following data abort:
  *
  *  FAULT_ALIGN - Alignment fault
  *
  * Everything should be aligned in kernel with exception of user to kernel 
  * and vice versa data copying, so if pcb_onfault is not set, it's fatal.
  * We generate signal in case of abort from user mode.
  */
 static int
 abort_align(struct trapframe *tf, u_int idx, u_int fsr, u_int far,
     u_int prefetch, struct thread *td, struct ksig *ksig)
 {
 	bool usermode;
 
 	usermode = TRAPF_USERMODE(tf);
 	if (!usermode) {
 		if (td->td_intr_nesting_level == 0 && td != NULL &&
 		    td->td_pcb->pcb_onfault != NULL) {
 			tf->tf_r0 = EFAULT;
 			tf->tf_pc = (int)td->td_pcb->pcb_onfault;
 			return (0);
 		}
 		abort_fatal(tf, idx, fsr, far, prefetch, td, ksig);
 	}
 	/* Deliver a bus error signal to the process */
 	ksig->code = BUS_ADRALN;
 	ksig->sig = SIGBUS;
 	ksig->addr = far;
 	return (1);
 }
 
 /*
  * abort_icache() handles the following data abort:
  *
  * FAULT_ICACHE - Instruction cache maintenance
  *
  * According to manual, FAULT_ICACHE is translation fault during cache
  * maintenance operation. In fact, no cache maintenance operation on
  * not mapped virtual addresses should be called. As cache maintenance
  * operation (except DMB, DSB, and Flush Prefetch Buffer) are priviledged,
  * the abort is concider as fatal for now. However, all the matter with
  * cache maintenance operation on virtual addresses could be really complex
  * and fuzzy in SMP case, so maybe in future standard fault mechanism
  * should be held here including vm_fault() calling.
  */
 static int
 abort_icache(struct trapframe *tf, u_int idx, u_int fsr, u_int far,
     u_int prefetch, struct thread *td, struct ksig *ksig)
 {
 
 	abort_fatal(tf, idx, fsr, far, prefetch, td, ksig);
 	return(0);
 }